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ABSTRACT 

 Although many agricultural fields vary spatially in soil properties and crop 
growth patterns, some agricultural fields are not good targets for precision agriculture 
because they are fairly uniform.  The purpose of this project was to determine whether 
aerial imagery can be used to define areas within peanut fields requiring variable 
management.  We found that the best time to acquire images to detect variability within 
dryland peanut fields is approximately 7.5 to 11.5 weeks after planting.  Fields showing a 
great deal of variability in the images also varied in soil conditions or crop growth within 
the field.  A variability index which incorporated all of the measured soil parameters 
accounted for 42% of the variability in reflectance values.  Of the measured soil 
properties, the most important predictors of differences in reflectance and yield for the 
fields in this study were soil texture, organic matter, CEC, Ca, and Mn. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Precision agriculture has recently received much attention from farmers and 

agricultural researchers as an alternative to conventional farming.  Within field 

management is beneficial in many agricultural fields because they vary in soil properties 

such as soil moisture, water availability, and fertility levels (Han et al., 1996; Goderya, 

1998).  In addition, weed populations, pest conditions, irrigation patterns, and other 

factors may also vary spatially within agricultural fields (van Groenendael, 1988; 

Ellsbury et al., 1999; Jordan et al., 1999).  These factors may cause crop growth and 

development to vary within fields.  In these fields, management zones can allow a farmer 

to precisely manage individual areas of a field in different ways in regards to the type and 

variety of crop planted, the amount and timing of fertilizer, pesticide, and irrigation 

applications, as well as the timing of harvest (Pocknee, 2000).  However, all agricultural 

fields are not good targets for precision agriculture.  Some fields are fairly uniform in soil 

properties and crop growth, and would not benefit from within field management.  

  Remotely sensed data has often been used to optimize soil and plant sampling 

strategies and to design variable field management (Panten et al., 1999).  Remote sensing 

techniques have also been used to identify differences in crop development and predict 

yield (Plant and Munk, 1999; Vellidis et al., 1999).  Aerial imagery is one type of 

remotely sensed data which has the ability to show anomalies within a field.   For this 
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reason, aerial images may also be used to determine whether variability exists within a 

field and predict the need for within field management.   

The purpose of this project was to determine whether aerial imagery is a useful 

tool in defining areas within peanut (Arachis hypogaea L.) fields requiring variable 

management, and if so, to determine the best image acquisition time to distinguish within 

field variability.  In addition, we wanted to determine whether “stressed areas” detected 

in the aerial images could be related to aflatoxin contamination.  To achieve this goal we 

selected sixteen dryland fields to study during the season in 2001.  Aerial photographs 

were taken of the fields from early in the season until harvest.  In each field we selected 

strong and weak growth areas from the imagery and sampled each area for crop 

development and quality, soil physical and chemical attributes, and topography.  Through 

the study we learned that every field is a unique case, and no single property could be 

related to the imagery across all fields.  This thesis indicates that aerial images can be 

used to determine whether differences exist within a field, but that the source of 

variability within the fields varies among fields.   

Causes of within-field variability 

 Soil properties, irrigation patterns, topography, water availability, weeds, plant 

populations, and pest conditions often differ within a field.  These factors all affect crop 

growth and development, and cause variability in crop growth within a field.   

Soils 

 Crops depend on the soil for support, nutrition, and water.  Soils also differ in 

their ability to supply roots with air and water, differ in temperature, and differ in the 

growth of beneficial and destructive organisms (Reid and Cox, 1973).  A soil suited for 
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peanuts has been described as a “well-drained, light-colored, loose, friable, sandy loam” 

that is well supplied with calcium and organic matter (York and Colwell, 1951).  These 

soils are typical of most peanut-producing areas.  Sandy soils are usually considered 

better suited for peanuts than clayey soils because the crop is more easily harvested (i.e., 

fewer pods are left in the ground).    

Soil properties that affect plant growth and development often vary spatially 

within a field (Uehara et al., 1985).  Spatial variability in yield of a given crop grown 

during a season under the same management conditions is often determined by soil 

variability (Bresler et al., 1981).  Han et al. (1996) studied the spatial variability of soil 

properties in two center-pivot irrigated fields in Washington state.  They found large 

spatial variability of soil texture and nutrients within the two fields, with clay content 

being the most variable and pH being the least variable.  In a review of the literature, 

Goderya (1998) combined data relating to field scale variations in soil properties.  The 

coefficient of variation was used to express variability on a relative basis.  The 

coefficients of variation ranged from 3 to 120% for the sand and clay content, less than 

15% for pH, 12 to 70% for nitrate-nitrogen, 25 to 46% for organic matter, and 8 to 30% 

for yield.  The coefficient of variation for soil water content varied from 4 to 48%, but it 

was noted that the high variations in water content were associated with sandy loams.  As 

was earlier noted, sandy loams are typical of peanut-producing soils in the Southeastern 

United States.   

 There are several causes of spatial variability of soil properties in a landscape.  

Some natural causes include differences in parent material, chemical and mineralogical 

variability of the rock, erosion and deposition of soil materials, climate and topography 
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(mainly temperature and rainfall), physical and chemical processes, and biological 

activities (Goderya, 1998).  Other causes do not result from natural processes.  This 

variability is often caused by human activities such as cultivation, application of 

fertilizers and wastes, irrigation, plowing, sub-soiling, and leveling (Goderya, 1998).  

Different cropping patterns and land uses are also often cited as reasons for within field 

variability. 

 Because plants depend on the soil for their water supply, soil properties affecting 

soil water are important to plants.  The amount of water available to plants depends on 

the amount of available water in the soil.  In general, only the soil water between the field 

capacity (-0.01 to -0.03 MPa) and the permanent wilting point (-1.5 MPa) is available to 

plants (Brady and Weil, 1996).  Optimal plant growth usually occurs when the soil 

moisture content is near field capacity.  Because many soil properties often vary spatially, 

the amount of water available to plants varies spatially within a field.   

Crop yield variability is often caused by variation in seasonally available water 

which is a consequence of irrigation and soil heterogeneity (Warrick and Gardner, 1983). 

Soil water availability may also influence crop growth and maturation.  Consistencies 

have been found between crop growth and soil water storage patterns (Tomer et al., 

1997).  In addition, differences in soil moisture content could cause plants to germinate 

and emerge at different times, therefore maturing at different times.  For example, in a 

cool wet spring corn (Zea mays) plants in an Iowa field emerged more rapidly on upper 

portions of the field than low-lying areas of the field (Karlen et al., 1999).  In peanut, 

early season drought will delay flowering and peg formation and subsequently harvest 

date (Shorter and Simpson, 1987).     
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 One soil property affecting available water capacity (AWC) of soils is texture 

(Salter et al., 1966; Brady and Weil, 1996).  Soil texture has been defined as “the relative 

proportions of the various soil separates in a soil material” (Committee on Terminology, 

1956).  Salter et al. (1966) quantified the effect of the proportion of sand-, silt-, and clay-

sized particles on the AWC of soils.  The AWC of soils decreased as the percentage of 

coarse sand increased, and increased as the percentage of silt increased.  In general, AWC 

increases from sands to sandy loams, loams, and silt loams.  Because clays have a high 

wilting coefficient, they may provide less AWC than silt loams.  However, they still 

provide more AWC than sands and sandy loams (Brady and Weil, 1996). 

 Soil structure may also contribute to the amount of soil water available to plants 

(Salter et al., 1966; Cambardella et al., 1996).  Soil structure has been defined as the 

“aggregation of individual soil particles into larger units with planes of weakness 

between them” (Buol et al., 1997). Cambardella et al. (1996) found that aggregate size 

distribution contributed significantly to yield variability because of direct and indirect 

effects on AWC.  Soil structure combines the effect of soil properties such as soil texture, 

mineralogy, and organic matter content with percent water space, soil matric potential, 

and surface-seal formation. 

Another soil component that directly affects AWC is soil organic matter content.  

Soils high in organic matter content have significantly higher AWC than soils of similar 

texture that contain less organic matter (Hudson, 1994).  Increasing organic matter 

increased the amount of soil water held at field capacity and at the permanent wilting 

point but the amount of water held at field capacity increased at a faster rate than the 

amount of water held at the permanent wilting point.  This resulted in a net increase in 
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AWC with increasing organic matter content (Hudson, 1994).  Organic matter may also 

have an indirect effect on the water available to plants through its influence on soil 

structure and total pore space (Brady and Weil, 1996).  Because organic matter helps 

stabilize soil structure and increase pore size, it will also increase the amount of water a 

soil can hold due to physical structure.  

Environmental Factors 

 Environmental factors affect crop growth and maturity.  Rainfall patterns, which 

are especially important to non-irrigated crops, vary among years and locations in the 

Southeastern United States.  These differing rainfall patterns apply varying amounts of 

water to crops and soils, causing differences in crop growth and development.  

Temperature and daylength also often affect crop development.  In peanut, the rate of 

development towards flowering is controlled mainly by moisture and temperature (Bell et 

al., 1991a).  However, the initiation of pegs and pods and distribution of dry matter to 

these structures is mainly influenced by daylength (Bell et al., 1991b). 

Irrigation Patterns 

 Water availability within a field may vary because of spatial variability of 

irrigation patterns.  Irrigation systems are usually designed to apply uniform amounts of 

water to a field.  In the case of center pivot irrigation systems, several factors can affect 

the uniformity of water application.  Topography differences within the center pivot 

radius of a field can affect the pressure distribution along the lateral (Jordan et al., 1999).  

This can in turn affect the amount of water released by individual sprinkler heads.  End 

gun operation may also affect the performance of a center pivot irrigation system (Jordan 

et al., 1999).  The end gun may cause different pressure distributions along the lateral.  If 
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sprinkler heads are not equipped with pressure regulators when the end gun is turned on, 

significant differences in the discharge rate of individual nozzles occur.  

 Many agricultural fields are also irregularly shaped.  In these cases, a center pivot 

irrigation system may not irrigate all areas of a field, even though the entire field is 

cropped.  In low rainfall seasons, the non-irrigated areas would have less available water 

than the irrigated areas.  In addition, these areas may be watered with another form of 

irrigation, such as a cable tow system.  The two systems will likely apply different 

amounts of water to the field, causing more water variability within the field. 

 Nonuniformity of irrigation patterns within a field may induce variability in 

AWC.  Or and Hanks (1992) irrigated fields nonuniformly to induce variations in water 

availability.  Plant height and crop yield were spatially correlated across ranges similar to 

the quantities of water applied by the irrigation system.  This is another indication that 

available soil water affects crop growth and yield patterns.    

Weeds 

 In cropping systems, weeds interfere with crop harvesting and reduce crop yields 

and quality (Anderson, 1996).  Several authors have noted the spatial variability in the 

distribution of weeds within a field (Dessaint et al., 1991; Mortensen et al, 1995; Stafford 

and Miller, 1996).  Typically weeds are neither uniformly nor completely randomly 

distributed, but tend to cluster (Thornton et al., 1990).  Several processes cause this 

spatial pattern of weed populations.  Reasons include local dispersal of seeds by the 

parent plants, local distribution of conditions for successful seed germination (van 

Groenendael, 1988), and field operations such as tillage and harvesting.  Many 

agronomic variables, including soil fertility and previous field history also have effects 
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on weed distribution (Mortensen et al., 1993).  Many of the same factors causing spatial 

variability of a crop will also cause variability in weed distribution within a field. 

Pests and Diseases 

 Pest populations and severity of diseases often vary spatially within a field 

because of crop variability, soil factors, or life stages of the pests.  Pests and diseases, 

which affect crop growth and development, also cause spatial differences in crop growth 

and maturity patterns.  For example, spatially variable factors such as soil type, soil 

moisture, and crop residue affect soil temperature.  This, in turn, affects the development 

of certain insects within a field (Ellsbury et al., 1999).  Plant disease severity may also 

vary over a landscape because of topography and moisture conditions.  For example, 

some diseases are more common on lower slope positions, whereas other diseases are 

more severe on upper slope positions (Kutcher et al., 1999).   

Several pests may vary spatially within peanut fields.  For example, Aflatoxin, a 

toxic substance produced by the fungus Aspergillus flavus, has been associated with 

drought and temperature stress during the end of the growing season.  Aflatoxin is a 

serious economic concern for the U.S. peanut industry.  Peanuts that have visible 

Aspergillus flavus growth in loose shelled kernels (LSK) of official grade samples are 

classified as Segregation three and are diverted from the edible market (Whitaker et al., 

1992), greatly reducing the price a farmer receives for a load of peanuts.   

The association of high aflatoxin contamination and drought stress was reported 

as early as 1965 in South Africa (Sellschop, 1965).  Several studies have been conducted 

to define the conditions associated with preharvest contamination of peanuts with 

aflatoxin.  Wilson and Stansell (1983) found significantly more aflatoxin in peanuts when 
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water stress was imposed at least 40 days immediately preceding harvest.  However, 

drought stress alone did not consistently induce aflatoxin contamination.  They concluded 

that these year to year variations in aflatoxin contamination probably resulted from 

environmental interactions including water, temperature, and biological factors (Wilson 

and Stansell, 1983).   

Blankenship et al. (1984) reported that the mean threshold geocarposphere 

temperature required for aflatoxin development during the latter part of the peanut growth 

cycle was between 25.7°C and 27°C.  It was later reported that the optimum mean 

geocarposphere temperature range for aflatoxin production in water stressed soil is 26 to 

30.5°C during the last part of the growing season (Cole et al., 1985).  High maximum 

geocarposphere temperatures are usually related to a small canopy cover or an extended 

interval between rainfalls that results in observed plant stress (Davidson et al., 1991).  

Sanders et al. (1985) found that a threshold stress period for preharvest contamination of 

peanuts by A. flavus when soil temperatures are in the optimum range for aflatoxin 

development (28-30.5°C) was more than 20 and possibly less than 30 days before 

harvest. 

Invasion and aflatoxin contamination in peanuts grown under drought conditions 

usually occur first and to a greater degree in small immature peanuts.  Cole et al. (1985) 

reported that oil stock peanuts contained 2600 ppb aflatoxin after 30 days of stress 

whereas 40-50 days of stress were required for significant contamination of jumbos.  

Sanders et al. (1985) found that smaller immature kernels were more easily colonized or 

were invaded in a shorter period of time than kernels in more mature pods.  They 

concluded that conditions in immature kernels are more conducive to growth of A. flavus 
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or that a resistance mechanism breaks down sooner in immature kernels in response to 

water and temperature stress.  For this reason, it is recommended that harvesting be 

delayed until peanuts reach optimum maturity.   

Management zones:  a tool to manage within-field variability 

 There are several possible ways to manage within field variability.  Some of these 

include varying rates of fertilizer, chemicals, and irrigation, planting different cultivars or 

crops, and differential harvesting.  All of these techniques could be accomplished by 

dividing a field into zones.  These zones would have different soil characteristics or other 

properties that could potentially allow the crop to benefit from different management 

strategies.  Management zones have been defined as “regions of a farm that have been 

differentiated for the purpose of receiving individual management attention” (Pocknee, 

2000).   

 Management zones may be identified in a number of ways.  Farmer-identified 

management zones based on past production history correlate well with such parameters 

as soil nutrient levels, soil texture, soil conductivity, and crop yield (Fleming et al., 

1999).  Analysis of remote sensing data, including aerial photographs, is also an effective 

tool for delineating soil management units for site-specific farming (McCann et al., 

1996).  Some other resources used to create management zones include topographic 

maps, soil surveys, field boundaries, management history, past yield maps, soil test 

results, and an estimation of the minimum manageable size for zones (Pocknee, 2000).   

Remote Sensing  

 Remote sensing may be defined as the science and art of obtaining information 

about an object through the analysis of data acquired by a device that is not in contact 
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with the object under investigation (Lillesand and Kiefer, 1994).  Sensors are used to 

collect data to improve our understanding of objects.  In the past, remote sensing has had 

limited applications in agriculture.  However, as remotely sensed data becomes more 

readily available, growers will begin to look towards imagery to enhance their farming 

operation.  When coupled with global positioning systems (GPS) and geographic 

information systems (GIS), remote sensing offers the potential to improve farm 

management practices by optimizing soil and plant sampling strategies and aiding in 

variable field management.  Remote sensing observations in agriculture are commonly 

made from aircraft, satellites, and field equipment.   

Types of Remote Sensing 

Aerial photographs obtained from low altitude airplanes have the ability to show 

anomalies within a field.   Small planes can produce high resolution data sets over small 

areas and a free choice of wavelengths.  Disadvantages are that the timing for collecting 

images is dependent on weather conditions and the availability of an airplane and pilot 

(Panten et al., 1999).  However, when a pilot and plane are available, they may offer 

flexibility in the time of acquisition.  Panchromatic color and near infrared film 

photographs offer a fast and flexible method to collect remotely sensed data.  The desired 

wavelength and ground resolution depends on flight height, film type, and filter type, and 

thus can be adjusted for individual demands (Panten et al., 1999).  One disadvantage of 

these film photographs is the delay in returning the images to growers because of film 

processing and slide scanning.  This problem may be solved by the latest generation of 

digital cameras which operate without a film medium.  These cameras may offer ground 

resolution of less than 1 meter and require less processing time (Panten et al., 1999). 
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Satellite data has been used for many years to predict crop yields on a regional 

basis.  Satellites which orbit the earth are equipped with sensors that have the capability 

to rapidly gather large volumes of data in a wide range of wavelengths.  The timing and 

frequency of data acquisition from a satellite source depends on its’ orbital path.  The 

major disadvantages of satellite imagery are clouds, the restricted ground resolution, 

delivery time span from acquisition to use, fixed date of recording, and cost (Panten et 

al., 1999).  Some of these problems may be overcome by a new generation of satellites 

developed by private companies that will offer a higher spatial resolution, reduced 

repeating time, fast delivery, and lower costs.  This would make satellite imagery more 

suitable for agriculture applications (Pocknee, 1999).   

Researchers have devised remote sensing systems that can be mounted to field 

equipment to measure soil and plant parameters within a field.  Various systems have 

been developed which can rapidly measure soil nitrate levels, pH, texture, and organic 

matter.  The data is recorded in the field and tagged to a geographic location using a GPS 

receiver.  Mapping of spatial distribution can be obtained by coupling these sensors with 

a GIS (Panten et al., 1999). 

Uses of Aerial Imagery and Remote Sensing in Agriculture 

 Remotely sensed data offer a fast and economical way to help optimize soil and 

plant sampling strategies and to design variable field management (Panten et al., 1999).  

Aerial photographs have been used in the past to determine soil survey locations, 

sampling sites, and map unit boundaries.  However, in the past aerial photographs in crop 

and soil studies were interpreted manually.  Computer digitization and spatial registration 

now allow statistical approaches to easily quantify the variability captured with aerial 
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photographs (Tomer et al., 1997).  Coordinates of the images may also be used for fast 

navigation in the field using a global positioning system (GPS) (Panten et al., 1999).   

 Literature showing the benefits and uses of aerial imagery in agriculture is 

plentiful.  Aerial photographs of bare soil aid in understanding the soil properties in the 

field.  For example, bare soil images can show variations in soil texture and organic 

matter, as well as drainage patterns within the field (Pocknee, 1999).  Surface reflectance 

information has been directly related to various soil properties including loess thickness, 

organic matter, calcium carbonate content, soil nutrients, iron oxide content, and soil 

texture classes (Moran et al., 1997).  Despite these relationships, remotely sensed images 

are not currently being used to map soil characteristics on a routine basis.  This is because 

the reflectance characteristics of the desired soil properties may be easily confused by 

variability in soil moisture, surface roughness, cloud cover, climate factors, solar angle, 

or view angle (Moran et al., 1997).  However, bare soil images are still useful to direct 

samples or interpolate the results of grid soil samples (Barnes et al., 1996).   

 There are several uses for in-season images of a growing crop.  First, vegetation 

images may highlight changes as the season progresses.  Anomalies such as weed patches 

and watering problems may be identified.  Plant and Munk (1999) found that remote 

sensing using false color infrared aerial photographs can detect differences in crop 

development due to soil texture differences within the field, and may be of value in 

irrigation timing.  Aerial images may often aid in identification of water and heat stressed 

areas, regularly flooded zones, and weed controlled zones of a field.  Vegetative period 

images may reveal patterns in the field, but ground truthing is usually necessary to 

identify the causes of these patterns (Panten et al., 1999). 
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 Secondly, in-season aerial images may be used to easily assess crop damage due 

to isolated weather conditions such as hail, tornados, or frost damage.  This information 

is critical to farmers and insurance companies when making yield loss assessments 

(Pocknee, 1999).  A third and common use of aerial photographs is yield forecasting.  

Research at The University of Georgia has shown that early season classified aerial 

images of cotton fields show striking similarities to spatial patterns generated from a 

yield monitor at the end of the season (Vellidis et al., 1999). 

Reflectance of soil and vegetation 

 These techniques are possible because of the unique spectral reflectance 

properties of healthy vegetation and soil.  Spectral reflectance curves for growing 

vegetation typically have a “peak and valley” configuration (figure 1.1).  These peaks and 

valleys are dictated by the pigment in plant leaves.  Chlorophyll strongly absorbs energy 

in the wavebands centered around 0.45 (blue) and 0.67 µm (red).  We see vegetation as 

green because of the very high absorption of blue and red light energy and very high 

reflection of green energy.  A reflectance peak of growing vegetation is seen between the 

wavebands 0.5 and 0.6 µm (green band).  If stress interrupts the normal growth of a plant, 

it may decrease chlorophyll production.  This results in less absorption in the blue and red 

bands.  In the near infrared portion of the spectrum (>0.7 µm) the reflectance of healthy 

vegetation increases dramatically (Lillesand and Kiefer, 1994). 

 Spectral reflectance curves for soil show less peak and valley configuration 

because the factors that influence soil act over less specific spectral bands.  Soil 

reflectance is affected by moisture content, texture, presence of iron oxides, and organic 

matter content.  However, soil reflectance is generally greater than that of vegetation in 
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all wavebands of the visible spectrum (Lillesand and Kiefer, 1994).  This can be seen in 

figure 1.1. 
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Figure 1.1. Typical spectral reflectance curves for vegetation and soil.  (Adapted from 
Lillesand and Kiefer, 1994). 
 
  

The differential reflectance between plants, soil, and even plant types has excited 

many in the remote sensing and agricultural communities.  The challenge facing us now 

is to better understand how this tool can best aid the diverse agricultural systems found in 

any part of our region, nation, or world. 
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INTRODUCTION 

Soil properties such as soil moisture, water availability, and fertility levels often 

differ within a field (Han et al., 1996; Goderya, 1998).  In addition, weed populations, 

pest conditions, irrigation patterns, and other factors may also vary spatially within 

agricultural fields (van Groenendael, 1988; Ellsbury et al., 1999; Jordan et al., 1999).  As 

a result, crop growth and development within the field will vary.  However, most 

agricultural fields are managed as though they are uniform.  To maximize returns in non-

uniform fields some growers are dividing fields into zones of likeness, each of which is 

managed individually (Pocknee, 2000). 

  Remotely sensed images may be used to help optimize soil and plant sampling 

strategies and to design variable field management (Panten et al., 1999).  Remote sensing 

techniques have also been used to identify various forms of plant stresses and predict 

yield.  When coupled with global positioning systems (GPS) and geographic information 

systems (GIS), remote sensing offers the potential to improve farm management 

practices.  Aerial photographs are one type of remotely sensed data.  Aerial images have 

the ability to show anomalies within a field.   They may also be used to determine the 

need for within field management.  Because of limited resources, many growers cannot 

have images taken of their crops throughout the growing season.  For this reason, it 

would benefit growers to know the optimum time to get the most benefit from the 

images. 

The purpose of this project was to determine the best time to acquire aerial images 

that could be used to define areas within peanut fields requiring variable management.   
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MATERIALS AND METHODS 

Aerial images 

 We chose sixteen dryland peanut fields in two Georgia counties in the year 2001 

for this study.  Dryland peanut fields were chosen because they are more likely to be 

contaminated with aflatoxin.  Eight of the fields were located in Brooks County, Georgia 

and the other eight were located in Early County, Georgia.  The two locations are 

approximately 160 kilometers apart.  We had no prior knowledge of the soil 

characteristics or variability within the fields.  Low altitude (760-1220 meters) aerial 

photographs were taken of each field 6 times, beginning early in the season (early June) 

until harvest (late September).  These photographs were taken from the belly of a plane 

using a 35 mm camera loaded with slide film.  The film was processed and the slides 

were digitized using a Polaroid SprintScan 4000 slide scanner.  The early season 

photographs were georeferenced for groundtruthing purposes using ERDAS Imagine® 8.5 

imaging software (ERDAS, Inc., Atlanta, GA).    

 In August, the early season aerial photographs were used to choose areas of poor, 

medium, and good growth in each of the fields.  These areas were chosen based on a 

simple visual assessment of the images.  There was a wide range of variability within the 

fields selected.  Some fields appeared to have large differences in soil and plant growth 

characteristics, whereas others seemed fairly uniform.  It was difficult to choose good, 

medium, and poor growth areas in the more uniform fields, therefore two of the fields 

were assigned only good and poor areas.  Three of the fields had more than one area of 

poor growth.  These multiple “poor growth” areas appeared to result from different 

causes.  In these fields, two “poor growth” areas were chosen.         
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 After the season, reflectance values were calculated for each of the selected areas 

within each of the photographs to quantify the visual differences that we had seen.  We 

used ERDAS Imagine® 8.5 imaging software to create an area of interest layer by 

drawing a circle around each of the selected good, medium, and poor areas in the 

digitized images.  The pixel reflectance values within each of the area of interest layers 

were exported to a text file which reported the reflectance values in the red, green, and 

blue wavebands.  We took the average of the reflectance values in each of the color 

bands, and then calculated a grayscale reflectance (GSR) value for each area.  Greyscale 

was calculated using the following equation, which is a common equation used to convert 

image data from color to greyscale (Hall, 1989).     

GSR = 0.299(red) + 0.587(green) + 0.114(blue)   (Equation 2.1) 

At the end of this process, we had a “greyscale reflectance” (GSR) value for each area of 

good, medium, and poor growth in each field for every photograph date.   

We wanted to be able to compare reflectance values across all images, however 

the photographs were acquired on different days and different times within the days 

resulting in changes in lighting and other conditions.  Therefore we created the 

normalized difference in reflectance (NDR).  This value was calculated using the 

following equation.  

NDR = |GSRg-GSRp|/[(GSRg + GSRp)/2]   (Equation 2.2) 

GSRg is the greyscale reflectance value calculated in the good growth area and GSRp is 

the greyscale reflectance value for the poor growth area.  This equation helped normalize 

the data across all images.  The NDR values created ranged from 0.004 to 0.765, where 1 

represents high variability and 0 represents no variability. The actual NDR values are 



 25

shown in tables 2.1 and 2.2.  For the three fields which had two poor growth areas, two 

NDR values were calculated.  In the analysis comparing the fields, these were treated as 

three additional fields.   

Groundtruthing 

 Once the different growth areas were chosen in the fields we began weekly 

groundtruthing of the fields.  The goal was to determine the reasons for the differences 

seen in the images.  The georeferenced aerial images were used to determine the 

geographic coordinates of the selected areas which were then loaded into a DGPS 

handheld unit (Garmin Etrex Vista) for field navigation.  Each week, notes were made 

about soil characteristics, canopy height and width, presence of weeds and insects, and 

other anomalies that were visible.  Digital photographs of the crop canopy were taken 

during the visits using a Kodak DC4800 camera and were tagged to a DGPS location.  

Measurements of soil moisture and temperature were taken in each of the areas.  Soil 

temperature was measured using a digital meat thermometer and volumetric soil moisture 

was measured using a ThetaProbe (Delta-T Devices Ltd., Cambridge, England). 

Weather data and calculation of heat units 

 Weather data was gathered for each location using the nearest weather station in 

the Georgia Automated Environmental Monitoring Network (http://www.griffin. 

peachnet.edu/bae/).  The weather station for the Early County fields was located 

approximately 16 kilometers from the fields (Arlington, Georgia).  The weather station 

for the fields in Brooks County was located approximately 1 to 8 kilometers from the 

fields (Dixie, Georgia).  These stations report daily maximum and minimum soil 

temperatures (at 10.2 centimeters deep) and rainfall.  The maximum and minimum daily 
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soil temperatures were used to calculate heat units for each day after the planting date.  

Daily heat units were calculated using the following equation 

HU = [(MaxTF+MinTF)/2]-65    (Equation 2.3) 

MaxTF is the maximum soil temperature in degrees Fahrenheit and MinTF is the 

minimum soil temperature in degrees Fahrenheit.  The base temperature for calculating 

heat units is 65° F (18.33°C) because peanut plants cannot develop below this 

temperature.  The daily heat units from the planting date were summed for each 

photograph date to get a value of “accumulated heat units”.  Using this procedure, the 

images could be compared based on heat units since the crops were at different growth 

stages on any particular photograph date due to differences in planting date and location.   

RESULTS AND DISCUSSION 

 In order to determine the best time to acquire aerial images of nonirrigated peanut 

fields, we graphed the normalized difference in reflectance (NDR) calculated for each 

image against the accumulated heat units for each photograph date.  The peaks in NDR 

on this graph represented optimum photograph dates for detecting within field variability 

in the fields that we studied (figure 2.1). 

Early season/bare soil images 

 Early season or bare soil photographs are useful for detecting within field soil 

differences where there are large differences in soil texture and type.  Early season 

photographs (less than 400 heat units) were taken for 8 of the 16 fields.  These represent 

11 of the 19 fields for our purposes, since three fields had two “poor growth” areas.  Of 

the 11 fields for which we had early photographs, 4 of them showed an early season peak 

between 250 and 300 heat units, or 17-19 days after planting.  These fields were 
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Crossroads, Butler, Thaggard4, and Thaggard7 (table 2.1).  In addition, 2 fields showed 

an early season peak near 600 heat units or 38-39 days after planting.  These fields were 

Marco5 and GrooverP2 (table 2.1).  Because the crop could not yet be seen in the 

photographs, the variability seen in the photographs represents soil differences and cover 

crop residue within the fields.   

The differences seen in these photographs often resulted from differences in 

topography and soil texture.  For example, in one of the fields (Marco5) showing the 

early peak, the “poor growth” area was located in an area of lower elevation where water 

had moved across the surface of the field (figure2.2).  In this field, the soil texture 

analysis showed that the topsoil and subsoil near the washed area had higher percent sand 

than the other areas of the field.  Differences in other soil properties were seen within 

these fields, but no general conclusions could be drawn over all of the fields.  Early 

season aerial images of a peanut crop (300 to 600 heat units) proved useful for detecting 

variability due to soil texture and topography variability.     

Within season crop images 

 Aerial images of a growing crop may be used to detect differences in crop growth 

and maturity and possibly predict yield patterns.  Past research has shown that images 

taken over irrigated fields six to eight weeks after planting are useful to delineate 

different crop growth and development zones within fields (Kvien et al., 1996).  Other 

research with irrigated fields has shown that spatial patterns in aerial photographs can be 

correlated with yield maps when aerial photographs are taken within the first ten weeks 

of crop growth (Vellidis et al., 1999).  In this study, we found that the maximum 

differences in reflectance values within the fields were seen approximately between 700-
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1250 heat units (868 heat units, average), which is approximately 7.5 to 11.5 weeks (9 

weeks average) after planting (see figure 2.1 and table 2.2).   

The past mentioned research had all been conducted on irrigated fields.  However, 

dryland fields commonly receive less water (as rainfall) or inappropriately timed rainfall 

events, making the crop slower to develop and mature.  This could cause the optimum 

time to detect variability in crop growth to be later in the season.  Approximate examples 

of weekly water use for peanuts have been established based on previous research 

(Stansell et al., 1976; Pallas et al., 1979; Stansell and Pallas, 1985;).  Figure 2.3 indicates 

whether each field received a surplus or a deficit for each week according to the weekly 

water use data for peanuts.  All of the fields had received excess total amounts of rainfall 

by the optimum time for image acquisition.  However, the rainfall events were not timed 

properly.  During this season, most of the fields received enough rainfall during the first 5 

weeks after planting to keep up with the recommended weekly water use of peanuts.  

However during weeks 6 and 7, all of the fields were deficient in rainfall compared to the 

recommended weekly water needed.  During weeks 8-11, only a few of the fields 

received their optimum water use requirement.    Improper timing of water supplied to the 

plants as rainfall during weeks 6-11 probably caused the optimum time for acquiring 

aerial imagery of these dryland fields to be later than in past studies of irrigated fields.   

This mid-season peak (700 to 1250 heat units) was seen in 18 of the 19 fields in 

the study.  The peaks for some of the fields were small, indicating little variability in the 

images taken during this time period (Butler, B-01, B-02, B-04, and B-08).  However in 

most cases, the fields showing small differences (smaller peaks) during this time period 

also showed small differences throughout the season, meaning the fields were fairly 
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uniform in crop growth.  Although one of the fields (Marco5) did not show a strong peak 

during the period of 7.5 to 11.5 weeks after planting, it did have large differences in 

reflectance during this time period due to a washed area where no crop grew.  The overall 

best time for image acquisition to detect variability within dryland peanut fields during 

the season was approximately 7.5 to 11.5 weeks after planting.  Cooler or warmer 

conditions as well as changes in rainfall distribution would change these results.       

End of season images 

 As the end of the season approached, within field differences in reflectance in the 

images began to decrease.  It has been shown in the past that peanuts reach 100% ground 

cover at 90 to 110 days after planting, which is approximately 13 to 16 weeks after 

planting (Jaaffar and Gardner, 1988).  By approximately 1500 heat units (14-17 weeks 

after planting) the differences in reflectance (NDR) had declined to almost nothing in 

most fields (figure 2.1).  This is likely because the peanut plants in all parts of the field 

had achieved full canopy closure.  The only fields that continued to show large 

differences at this point were Marco5 and Thaggard4(P2).  These fields showed large 

differences in reflectance throughout the season because the “poor growth” areas of these 

fields were located near sandy washed areas where the canopy never closed (figure 2.4).       

CONCLUSIONS 

 Early season aerial images of a peanut crop (0 to 600 heat units) are useful for 

detecting variability within fields that have differences in soil texture and topography.  A 

bare soil image of the field could also be used for this same purpose.  Aerial images of a 

growing crop may be used to detect differences in a field during the season.  We found 

that the overall best time to acquire images in our dryland fields was 7.5 to 11.5 weeks 
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after planting (700-1250 heat units).  However, seasonal differences in rainfall and 

temperature would change this window. 
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Figure 2.1.  Graph showing normalized difference in reflectance (NDR) versus 
accumulated heat units for three representative fields.  The peaks in NDR represent 
optimum photograph times for detecting within field variability.  The blue line represents 
fields showing an early season peak (~250 heat units) which likely resulted from large 
differences in soil color and crop residue.  The red line represents the mid-season peak 
found for most fields (~1000 heat units) which was the period of maximum variability in 
crop canopy development.  The yellow line represents a field showing variability 
throughout the growing season because of a washed sandy area with no crop growth. 
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Figure 2.2. Aerial image showing the Marco5 field on July 11, 2001.  The “poor growth” 
area, which was located in a sandy washed area of the field, is highlighted. 
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Figure 2.3. Graph showing actual water received minus the recommended water use for 
peanuts by weeks after planting.  Different colors represent different fields which vary 
because of planting date and location.  
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Figure 2.4.  A and B show aerial images of two fields that continued to show large 
differences in reflectance values at the end of the season.  In both of these fields, the 
“poor growth” area was located near a washed area where the canopy never closed.  C 
shows a field whose canopy completely closed by the end of the growing season. 

Washed areas B A
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Table 2.1. This table shows the planting date, photograph date, days after planting 
(DAP), accumulated heat units, and normalized difference in reflectance (NDR) at the 
time of maximum early season image variability for each field. 

 
 
 
 
 

Field 
Name 

Planting 
Date 

Peak 
Photo Date

DAP at 
Peak 

Accumulated 
Heat Units at 

Peak 

NDR at 
Peak 

Butler 06/04/2001 06/21/2001 17 256 0.284 
Crossroads 06/04/2001 06/21/2001 17 256 0.385 
Thaggard7 06/02/2001 06/21/2001 19 289 0.361 
Thaggard4 06/02/2001 06/21/2001 19 289 0.198 

      
Marco5 06/02/2001 07/11/2001 39 595 0.765 

GrooverP2 06/03/2001 07/11/2001 38 579 0.300 
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Table 2.2. This table shows the planting date, photograph date, days after planting 
(DAP), accumulated heat units, and normalized difference in reflectance (NDR) at the 
time of maximum mid-season image variability for each field.  
 

Field 
Planting 

Date 
Peak Photo 

Date 
DAP at 

Peak 

Accumulated 
Heat Units at 

Peak 
NDR at 

Peak 
Butler 06/04/2001 08/10/2001 67 1022 0.149 

Crossroads 06/04/2001 07/27/2001 53 812 0.339 
Groover 06/03/2001 08/10/2001 68 1040 0.518 

Thaggard4 06/02/2001 07/27/2001 55 845 0.312 
Marco5 06/02/2001 no peak no peak no peak no peak 
Marco6 06/02/2001 08/22/2001 81 1254 0.328 

Thaggard7 06/02/2001 07/27/2001 55 845 0.598 
Thaggard8 06/02/2001 07/27/2001 55 845 0.542 

B-01 05/25/2001 07/27/2001 63 852 0.129 
B-02 05/23/2001 07/17/2001 55 710 0.136 
B-03 05/23/2001 07/17/2001 55 710 0.527 
B-04 05/23/2001 08/10/2001 79 1062 0.117 
B-05 05/23/2001 07/27/2001 65 859 0.307 
B-06 05/24/2001 07/17/2001 54 707 0.387 
B-07 05/15/2001 07/17/2001 63 791 0.228 
B-08 05/15/2001 07/17/2001 63 791 0.149 

Butler (P2) 06/04/2001 07/27/2001 53 812 0.444 
Groover (P2) 06/03/2001 07/27/2001 54 830 0.471 

Thaggard4 (P2) 06/02/2001 07/27/2001 55 845 0.583 
      

Average   61 868  
Maximum   81 1254  
Minimum     53 707   
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CHAPTER 3 

PREDICTING WITHIN-FIELD VARIABILITY IN PEANUT FIELDS USING 

AERIAL IMAGERY 1 
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1Wells, J.S., C. Kvien, N. Wells, S. Pocknee, G. Vellidis, D. Kissel, and G. Rains. 2002. 
To be submitted to Precision Agriculture. 
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INTRODUCTION 

Precision agriculture has recently received much attention from farmers and 

agricultural researchers as an alternative to conventional farming.  Within field 

management can be beneficial in many agricultural fields because of manageable 

differences in soil properties, water availability, pest conditions, weed populations, and 

crop growth and development (Han et al., 1996; Goderya, 1998; van Groenendael, 1988; 

Ellsbury et al., 1999; Jordan et al., 1999).  In these fields, management zones can allow a 

farmer to differentially manage individual areas of a field with regards to type and variety 

of crop planted, amount and timing of fertilizer, pesticide, and irrigation applications, as 

well as timing of harvest (Pocknee, 2000).  However, all agricultural fields are not good 

targets for precision agriculture.  Some fields are fairly uniform in soil properties and 

crop growth, and would not benefit from within field management or perhaps the 

variability occurs on such a small scale that we do not have the ability to manage it.   

  Remotely sensed data has often been used to optimize soil and plant sampling 

strategies and to design variable field management (Panten et al., 1999).  Remote sensing 

techniques have also been used to identify differences in crop development and predict 

yield (Plant and Munk, 1999; Vellidis et al., 1999).  Aerial imagery is one type of 

remotely sensed data which has the ability to show anomalies within a field.   For this 

reason, aerial images may also be useful for assessing the need for within field 

management.   

The purpose of this project was to determine whether aerial imagery can be used 

to define areas within peanut fields that would benefit from variable management.  In 

addition, we wanted to know whether a common cause of the within field variability 
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could be established from the images.  We also wanted to determine whether the stressed 

areas detected in the images could be related to aflatoxin contamination.     

MATERIALS AND METHODS 

Aerial images 

 Sixteen dryland peanut fields in two Georgia counties were selected in the year 

2001 for this study.  Dryland peanut fields were chosen because they are more likely to 

be contaminated with aflatoxin.  Eight of the fields were located in Brooks County, 

Georgia and the other eight were located in Early County, Georgia.  The two locations 

are approximately 160 kilometers apart.  We had no prior knowledge of the soil 

characteristics and variability within the fields.  Low altitude (760-1220 meters) aerial 

photographs were taken of the fields 6 times, beginning early in the season (early June) 

until harvest (late September).  These photographs were taken from the belly of a plane 

(Cessna 206) using 35 mm color slide film.  The film was processed and the slides were 

digitized using a Polaroid SprintScan 4000 slide scanner.  The early season photographs 

were georeferenced for groundtruthing purposes using ERDAS Imagine® 8.5 imaging 

software (ERDAS, Inc., Atlanta, GA).    

 In August, the early season aerial photographs were used to choose areas of poor, 

medium, and good growth in each of the fields.  These areas were chosen based on a 

simple visual assessment of the images.  Some of the fields appeared to have large 

differences in soil and plant growth characteristics, whereas others seemed fairly 

uniform.  It was difficult to choose good, medium, and poor growth areas in the more 

visually uniform fields, therefore two of the fields were assigned only good and poor 



 42

areas.  Three of the fields had more than one area of poor growth, which appeared to be 

caused by different reasons.  In these fields, two “poor growth” areas were chosen.         

 After the season, reflectance values were calculated for each of the selected areas 

within each of the photographs to quantify the visual differences that we had seen.  We 

used ERDAS Imagine® 8.5 imaging software to create an area of interest layer by 

drawing a circle around each of the selected good, medium, and poor areas in the 

digitized images.  The pixel reflectance values (ranging from 0-256) within each of the 

area of interest layers were exported to a text file which reported the reflectance values in 

the red, green, and blue wavebands.  We took the average of the reflectance values in 

each of the color bands, and then calculated a grayscale reflectance (GSR) value for each 

area.  Grayscale was calculated using the following equation, which is a common formula 

for converting images from color to grayscale (Hall, 1989). 

GSR = 0.299(red) + 0.587(green) + 0.114(blue)    (Equation 3.1) 

At the end of this process, we had a GSR value for each area of good, medium, and poor 

growth in each field for every photograph date.   

We wanted to be able to compare reflectance values across all images, however 

the photographs were acquired on different days and different times within the days 

resulting in nonconformity of lighting and other conditions.  Therefore we created the 

normalized difference in reflectance (NDR).  This value was calculated using the 

following equation. 

NDR = |GSRg-GSRp|/[(GSRg + GSRp)/2]   (Equation 3.2) 

GSRg is the grayscale reflectance value calculated in the good growth area and GSRp is 

the grayscale reflectance value for the poor growth area.  This equation helped normalize 
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the data across all images.  The NDR values created ranged from 0.004 to 0.765, where 1 

represents high variability and 0 represents no variability.  For the three fields which had 

two poor growth areas, two NDR values were calculated.  In the analysis comparing the 

fields, these were treated as three additional fields.    

In the first paper of this thesis, we chose the “optimal” in season photograph date 

for detecting variability in each field.  These “optimal” images were taken at 

approximately 7.5 to 11.5 weeks after planting.  The NDR values for the “best” 

photograph of each field were compared to normalized differences in the various soil and 

crop parameters measured to try to determine the causes of within field variability. 

Groundtruthing 

 Once the different growth areas were chosen in the fields we began to weekly 

groundtruth the fields.  The goal was to determine the reasons for the differences seen in 

the images.  The georeferenced aerial images were used to determine the geographic 

coordinates of the selected areas which were then loaded into a Garmin Etrex Vista 

handheld DGPS unit (Garmin Ltd., Olathe, Kansas) for field navigation.  Each week, 

notes were made about soil characteristics, canopy height and width, presence of weeds 

and insects, and other anomalies that were visible.  Digital photographs of the crop 

canopy were taken during the visits using a Kodak DC4800 camera and were tagged with 

a DGPS location.  Measurements of soil moisture and temperature were taken in each of 

the areas.  Soil temperature was measured using a digital meat thermometer and 

volumetric soil moisture was measured using a ThetaProbe (Delta-T Devices Ltd., 

Cambridge, England). 
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Peanut maturity test 

 As harvest time approached, peanut samples were taken from each selected area 

of the fields to measure maturity differences within the fields.  Crop maturity was 

measured on two to three different dates in each field.  These dates were August 27, 

September 11, and September 25 for the Early County fields and September 6 and 

September 19 for the Brooks County fields.  Two samples were taken in each area to 

equal approximately one meter of row.   The hull-scrape method was used to determine 

peanut maturity in each area, which is represented as recommended days until digging 

(Williams and Drexler, 1981).  The number of pods in each color category was recorded. 

Samples for yield and aflatoxin testing 

 Once the farmers had dug and inverted the peanuts, two six meter samples were 

taken from each selected area of the field.  These samples were picked using a small plot 

peanut thrasher.  The peanut samples were dried, hand cleaned and weighed.  The 

moisture content of each sample was measured using DICKEY-John grain testing 

equipment (DICKEY-john, Auburn, IL).  Yield was calculated for all of the samples by 

adjusting the weight of the peanut samples to 10% moisture and converting the weights 

from grams per six meter plot to kilograms per hectare.  Loose shelled kernels were 

removed from each sample, and a 500 gram subsample of each was shelled and graded 

using the commercial grading screens for runner peanuts.  The kernels were sorted into 

categories of sound mature kernels (SMK), sound splits (SS), damaged kernels (DAM), 

and other kernels (OK).  The peanut grades were calculated by adding the percent SMK 

and percent SS.  This is the standard grading system used by the Federal State Inspection 

Service.   
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Aflatoxin analysis 

The peanuts from the grade categories SS, DAM, and OK were used for the 

aflatoxin analysis, because these categories are more likely to be contaminated.  It was 

our intent to test the SMK if aflatoxin was found in any of the samples.  The peanuts 

were tested for aflatoxin using an immunoassay (Trucksees et al., 1991).  

Soil sampling and testing 

 After the peanut harvest, two deep core soil samples were taken in each of the 

previously selected areas of good, medium, and poor growth for each field.  These 

samples were taken as deep as possible, usually ranging from 38-99 centimeters deep.  

Photographs were taken of the soil profiles in the clear plastic tubes.  Each of the soil 

profile samples was divided into at least two horizons (A and B) and the samples were 

sent to the University of Georgia’s Soil Plant Water laboratory for routine soil testing, 

organic matter determination, and texture analysis. 

 Extractable P, K, Ca, Mg, Mn, and Zn were determined by the Mehlich-1 

extraction method (Mehlich, 1953; Nelson et al., 1953; Perkins, 1970). The amount of P, 

K, Ca, Mg, Mn, and Zn was determined simultaneously on an inductively coupled plasma 

spectrograph (ICP) (Isaac and Johnson, 1983; Munter and Grande, 1981; Soltanpour and 

Workman, 1981).  The amount of each element determined was expressed as pounds per 

acre of element on the basis of 2 million pounds of soil per acre.  The pH was determined 

with a pH meter in a 1:1 soil-water suspension.  Soil organic matter content was 

determined for all of the surface horizon samples using the loss on ignition method 

(Cuniff, 1995).  Finally, soil texture was determined using the Buoyoucos method 

(Bouyoucos, 1936; Day, 1965).   
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 The cation exchange capacity (CEC) was calculated for each surface horizon 

using the soil test values for extractable non-acid cations (Ca, Mg, and K) as an estimate 

of the effective CEC at the soil’s measured pH.  Then the CEC at a specified pH of 7 was 

calculated by adding the pH dependant CEC to the effective CEC.  An estimate of the 

CEC from the pH dependant charge that results from raising the pH was calculated using 

the following equation.  

CECpHdep = [1/b(7-pHmeasured)]/1120    (Equation 3.3) 

The value of b represents the buffering capacity of the soil.  This value was estimated 

from the soil organic carbon and clay content using an equation developed by Autumn 

Weaver, a graduate student at The University of Georgia.  Her work showed that the 

value of b can be estimated using the following equation.  

b = [0.00014 – (0.00002)(%clay)] + (0.0014 / % organic carbon)   (Equation 3.4) 

Organic matter values were converted to organic carbon values by assuming that the 

organic matter contained 40% organic carbon.  Finally the CEC at the specified pH of 7 

was calculated for each surface soil using equation 3.5.  

CECpH7 = CECpHdep + effective CEC   (Equation 3.5) 

Variability Index 

 Because no individual measured soil or crop parameter could be directly related to 

the differences in reflectance values, we created a variability index which incorporated all 

measured parameters.  These parameters included organic matter and calculated CEC in 

the surface horizon, % sand, % clay, pH, Ca, K, Mg, Mn, and P in the surface and 

subsoil, as well as crop yield, grade, and maturity.  For each parameter, the fields were 
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ranked (1-19) according to the normalized difference within the field for that parameter.  

The normalized difference was calculated using equation 3.6. 

|good-poor|/[(good + poor)/2]   (Equation 3.6) 

For example, for each field we took the absolute value of the difference in CEC in the 

good and poor growth areas, and divided by the average CEC in the areas.  For peanut 

maturity, we used the difference in predicted “days until digging” from the hullscrape 

data for September 19 in the Brooks county fields and September 25 in the Early county 

fields.  For each parameter, the field with the least variability was assigned the number 1 

and the field with the most variability received the number 19.  The total variability for 

each field was calculated as the sum of the rank received for each parameter.  This 

number ranged from 123 to 307.  The fields with the higher variability index values were 

assumed to have the most overall variability. 

Measuring topography 

 Topographic maps were created for four of the 16 fields (Butler, Crossroads, 

Thaggard4, and Thaggard8).  Real time kinematic GPS using a base station was used to 

acquire centimeter accuracy for creating topographic maps.  While driving the entire area 

of the field, FarmWorks Farm Site Mate 7.1 software (CTN Data Service, Inc., Hamilton, 

IN) was used to drop points at approximately 15 meter intervals.  The software recorded 

the latitude and longitude coordinates as well as elevation at each point.  The files were 

exported as shapefiles and the Spatial Analyst extension in ArcView 3.2 GIS software 

(Environmental Systems Research Institute, Redlands, CA) was used to create surface 

and contour maps for the four fields.  
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RESULTS AND DISCUSSION 

Using aerial images to detect within field variability 

 The early season aerial images were used to choose the good, medium, and poor 

growth areas within each field.  Some of the fields appeared fairly uniform while others 

showed a great deal of variability in soil properties and crop growth.  It was difficult to 

choose varying areas of crop growth in the fields that appeared uniform.  However, areas 

in these fields were selected to determine whether soil and crop differences existed that 

could not be seen in the photographs.  We observed that when fields showed a great deal 

of variability in the images the soil conditions or crop growth also varied within the field.  

In addition, the fields that had uniform reflectance values between the sample sites in the 

images also tended to be more uniform in soil properties, crop growth, and yield.  

However, we could not relate the within field differences of any single measured 

parameter across all fields to the differences in measured reflectance values. 

 The normalized difference in reflectance (NDR) values at the “best” photograph 

date for each field was used to determine the relative within-field differences between 

fields.  This value allowed us to determine which fields had the most variability in 

reflectance and to rank the fields according to their amount of variability.  Ranking the 

fields using NDR was successful in predicting whether fields had visual differences in 

crop growth and soil conditions. Figure 3.1 shows the ranking of all the fields in terms of 

their NDR values.  Generally the fields to the right of the graph have the most within 

field variability and the fields to the left side have the least within field variability in the 

images.  Marco5 had the highest NDR value and B-04 had the lowest value.  This is 

logical because the poor growth area in Marco5 was located near a sandy wash that was 
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apparent throughout the growing season.  In addition, fields B-04, B-02, Butler, B-07, 

and B-08 were some of the fields for which it was difficult to distinguish within-field 

differences and choose areas of good, medium, and poor growth.  Figure 3.2 shows 

examples of the images of two fields, one which is uniform and the other showing large 

variability.   

Typically when differences in crop growth were seen in the aerial imagery, 

differences in crop growth were also apparent during groundtruthing.  Figure 3.3 shows 

two fields, one with large within field differences and one with little visual differences.  

In field B-04 few differences are seen in the aerial image and the same is true for the 

groundtruthing photographs.  However the Groover field is highly variable in the aerial 

image and the variability in crop growth is also obvious from the groundtruthing 

photographs.   

Determining the cause of variability using variability index 

We wanted to determine if the variability seen in the images could be related to 

one or more biological, chemical, or physical properties.  Therefore, we measured several 

soil and crop parameters during and after the season.  However, little correlation was 

found when differences in within field reflectance were compared to single measured 

attributes.  The coefficients of determination (R2) for the linear regression of normalized 

difference in each parameter versus the normalized difference in reflectance are shown in 

table 3.1.    

Due to the limited correlation between individual parameters, we created the 

variability index to determine whether the overall within field variability could be related 

to variability in the images.  The resulting ranking of the fields according to variability in 
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measured parameters is shown in figure 3.4.  In addition, the components of the 

variability index are shown in figure 3.5.  The variability index does show similarities to 

the ranking of the fields regarding image variability (figure 3.1), however the correlation 

is not perfect.  Figure 3.6 shows the linear regression of the NDR values vs. the 

variability index values.  The coefficient of determination (R2) is 0.42, so 42% of the 

variability in reflectance can be explained by the variability index.  We recognize that the 

variability in reflectance could have been better explained if some other key crop and soil 

parameters had been measured.  For example, we did not have a direct measure of 

seasonal water availability for each location.  This may have improved the correlation 

because water is often the most limiting factor in crop growth.   

Determining the cause of variability using stepwise regression 

The measured parameters did account for a portion of the variability in the 

images.  To determine the relative importance of each measured factor within the fields 

we used a stepwise regression to predict the normalized difference in reflectance for these 

16 South Georgia fields.  We also used stepwise regression to determine the relative 

importance of the measured soil parameters in predicting differences in yield.  The 

purpose of the second stepwise regression procedure was to determine whether the same 

soil parameters that influenced differences in reflectance had also influenced differences 

in yield.  We thought that this was likely because difference in yield was one of the 

parameters that was most correlated with differences in reflectance in the linear 

regression (R2=0.378).  Table 3.2 shows the best models with 1, 2, 3, 4, and 5 variables 

for each stepwise procedure and the corresponding coefficients of determination (R2).  
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The best 5 variable model for predicting differences in reflectance used the 

variables % sand in surface, % clay in subsoil, organic matter in surface, calcium in 

subsoil, and manganese in the surface (R2=0.73).  The best five variable model for 

predicting differences in yield used the variables % sand in subsoil, % clay in subsoil, 

calcium in subsoil, manganese in surface, and CEC in surface (R2=0.72).  Both models 

used several of the same parameters.  The subsoil properties are important in the model 

because of their affect on crop growth which influences reflectance.  

It seemed logical that differences in soil texture, organic matter, and cation 

exchange capacity were important predictors for differences in reflectance data because 

the large differences in reflectance in several fields resulted from extremely sandy 

(washed) areas, wet areas, or high organic matter areas.  In addition, these parameters all 

affect the water holding capacity of the soil.  Because water is one of the most limiting 

factors for crop production, it makes sense that these factors were important in predicting 

differences in the images as well as differences in crop yield.  In most fields (11-14 of the 

19 fields) the % clay in both horizons as well as the organic matter content and CEC in 

horizon 1 was higher in the selected “good growth” area than in the “poor growth” area 

of the field.  In addition, the % sand in both horizons was typically highest in the “poor 

growth” areas. 

Differences in calcium and manganese in the soil were also important predictors 

of differences in reflectance values as well as differences in yield.  The reasons that these 

variables were important are less obvious than that of texture, organic matter, and CEC.  

However, closer examination of these two soil parameters revealed that calcium and 

manganese may reflect other soil properties.   
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A peanut crop is very sensitive to soil calcium levels (especially under drought 

conditions) because after the peanut peg has entered the soil, Ca must be absorbed 

directly from the soil solution.  This may be one reason that calcium is such an important 

factor in predicting yield.  In addition, soil pH is one of the factors of  greatest 

importance in determining the availability of calcium (Tisdale et al., 1985).  Generally, 

the Ca level for a given soil is a direct function of pH, with Ca levels being higher in 

higher pH soils.  In eleven of the nineteen observations, the area of the field with the 

highest pH also had the highest Ca level.  Lower cation exchange capacities in the high 

pH area of six of the remaining fields would explain the areas of higher pH but lower Ca.  

Calcium was generally found to be higher in the “good growth” areas of the fields (11 

fields). 

Generally Mn (used by plants as Mn+2) in the soil solution is greatly increased 

under acid, low redox conditions because the transformation of  Mn+4 to Mn+2 occurs 

(Tisdale et al., 1985).  Mn may even be toxic to plants if the pH falls below 5.5.  In 5 of 

the fields studied, the area of the field with the lowest pH also had the highest level of 

Mn within that field.  In addition, high Mn levels may be associated with temporary 

water-logged conditions.  Poor aeration and high microbial activity consumes oxygen and 

promotes the transformation of manganese oxide into soluble manganese (Mn+2).  We 

noticed low-lying wet areas in three of the fields studied.  The “wet” areas in all three of 

the fields had the highest Mn level within that field (Thaggard7, Thaggard8, and B-06).  

Therefore the importance of the differences in Mn levels may reflect and emphasize the 

importance of pH as well as topography and drainage patterns in predicting differences in 
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yield and image reflectance.  Higher Mn levels were generally found in the “good 

growth” areas of the fields. 

Because topography usually affects many soil properties within a field, we 

predicted that topography would be an important factor in predicting differences in the 

reflectance data.  Therefore, we sampled four fields for differences in topography.  

Normalized differences in elevation were measured between the good and poor areas of 

the fields.  This variable (topography) was used along with the other soil variables to 

perform the stepwise procedure to predict the differences in reflectance for these four 

fields.  The best 1,2,3,4, and 5 variable models did not include topography as an 

important variable.  However, perhaps if topographic data had been collected over all 

fields, this variable would have been more important in the models.  In addition, there 

may have been a better way to represent the topographic differences than simply the 

normalized differences in elevation, such as by using the % slope and drainage patterns. 

Yield prediction from the aerial imagery    

Previous research conduced at the University of Georgia has shown that early 

season classified aerial images of cotton fields show striking similarities to spatial 

patterns generated from a yield monitor at the end of the season (Vellidis et al., 1999).  

We predicted that the good, medium, and poor growth areas of the fields showing 

variability could be used to predict areas of high, medium, and low yield.  This would 

further validate our theory that the aerial images can be used to detect within field 

variability and determine the need for precision agriculture.  Generally the poor growth 

areas had lower yields than the predicted medium and good growth areas (figure 3.7).  In 

addition, the fields which showed more variability in the imagery tended to have larger 
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differences in yield than the fields that appeared uniform in the images.  For example, the 

Groover field showed large variability in the imagery (figure 3.3) and also showed large 

differences in yield at the end of the season.   

Relating aerial images to aflatoxin contamination 

 The “high risk” areas in several of the fields had poor plant growth compared to 

the “medium” and “low” risk areas.  When soil temperature and moisture measurements 

were first taken, some of the high risk areas appeared to have higher soil temperatures 

and lower soil moisture values.  However, little difference could be seen in soil 

temperature and moisture towards the end of the growing season because of sufficient 

rainfall.  Peanut samples taken from each area were analyzed for aflatoxin contamination.  

We used the grade categories of loose shelled kernels (LSK), OK, SS, and DAM to test 

the peanut samples for aflatoxin contamination.  These grade categories are more likely 

to be contaminated with aflatoxin.  We found less than 10 ppb aflatoxin in all but one of 

the sixteen fields.  When the sound mature kernels were tested from this field, no 

aflatoxin contamination was found.  Sufficient rainfall at the end of the peanut growing 

season is uncommon in Georgia.  Therefore, it is possible that aflatoxin contamination 

would have occurred in the stressed areas of the fields in a more common year.            

CONCLUSION 

 Aerial images of peanut fields were shown to be indicators of within field 

variability.  However, the cause of this variability could not be traced to any single 

measured crop or soil property across all fields.  A variability index of all of the 

measured parameters accounted for 42% of the variability in reflectance values.  If other 

crop and soil parameters had been measured, particularly a season long measure of crop 



 55

available water, this correlation may have been better.  Of the measured soil properties, 

the most important predictors of differences in reflectance and yield for the fields in this 

study were soil texture, organic matter, CEC, Ca, and Mn.  The images were helpful in 

delineating areas of good and poor crop growth and were generally successful in 

predicting high and low yielding areas.  In-season aerial images of peanut fields can be 

used to delineate areas of crop and soil variability.  The presence or absence of variability 

in the images could be used to determine whether a field is a good candidate for 

differential management. 
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Figure 3.1. This graph shows the ranking of all the fields in terms of their normalized 
difference in grayscale reflectance (NDR) values.  NDR is calculated as NDR = |GSRg-
GSRp|/[(GSRg + GSRp)/2], where GSRg is the grayscale reflectance value calculated in 
the good growth area and GSRp is the grayscale reflectance value for the poor growth 
area.  Generally the fields to the right of the graph have the most within field variability 
and the fields to the left side have the least within field variability in the images.    
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Figure 3.2. Images showing (a) field B-02 at 589 heat units, one of the more uniform 
fields and (b) field Marco5 at 595 heat units, one of the more variable fields.  
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Figure 3.3. Field B-04 represents a more uniform field.  The aerial image was acquired 
on 07/27/01 at 859 heat units.  Groover represents a more variable field.  The aerial 
image was acquired on 07/27/01 at 830 heat units.  Groundtruthing photographs are 
shown of the crop growth in each field. 
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Figure 3.4. This figure shows the variability index, which is the result of ranking the 
fields according to variability in measured crop parameters and soil chemical and 
physical properties.  The fields are shown in the same order as in figure 3.1, where they 
are ranked according to variability in NDR.  Fields B-04, B-01, B-02, Butler, Crossroads, 
Groover(P2), and Groover, in particular, were more variable in the variability index than 
in the imagery.   
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Figure 3.5. This figure shows the components of the variability index.  The individual 
components are the rankings of the relative differences between fields in measured crop 
and soil parameters. 
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Figure 3.6. This figure shows the linear regression of the normalized difference in 
reflectance (NDR) values vs. the variability index values. 
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Figure 3.7. (a)Graph showing actual yield in the poor, medium, and good growth areas 
chosen from the aerial images.  Only the fields with NDR > 0.3 are shown, because those 
with NDR < 0.3 appeared more uniform in the images. (b) Graph showing actual yield in 
the poor, medium, and good growth areas chosen from the images of uniform fields 
(NDR < 0.3).  Yield is not easily predicted in the more uniform fields. 
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Table 3.1. Coefficients of determination (R2) for the linear regression of normalized 
difference in each parameter versus the normalized difference in reflectance at the 
“optimum” photograph date. 
 

Soil Physical Properties R2 
sand, horizon 1 0.026
sand, horizon 2 0.195
clay, horizon 1 0.101
clay, horizon 2 0.160

org. matter, horizon 1 0.408
  

Soil Chemical Properties R2 
pH, horizon 1 0.067
pH, horizon 2 0.004
Ca, horizon 1 0.332
Ca, horizon 2 0.110
K, horizon 1 0.046
K, horizon 2 0.005

Mg, horizon 1 0.237
Mg, horizon 2 0.153
Mn, horizon 1 0.264
Mn, horizon 2 0.163
P, horizon 1 0.000
P, horizon 2 0.219

CEC, horizon 1 0.354
  

Crop Parameters R2 
Yield 0.378
Grade 0.100

Maturity 0.014
 
 



 66

 
 
 
 
 
 
 
 
Table 3.2. The best 1, 2, 3, 4, and 5 variable models for each stepwise regression 
procedure using differences in soil parameters to predict differences in reflectance and 
yield.  The corresponding coefficients of determination (R2) are also given. 
 

Normalized Difference in Reflectance (NDR) R2 
1 

variable NDR = 0.20012 + 0.43884(orgmatter) 0.41 

2 
variable NDR = 0.24915 - 1.27380(sand_sur) + 0.52352(orgmatter) 0.55 

3 
variable NDR = 0.33577 - 1.83730(sand_sur) + 0.65072(orgmatter) - 0.17095(K_sur) 0.62 

4 
variable NDR = 0.18007 - 1.42755(sand_sur) - 0.17376(clay_sub) + 0.70652(orgmatter) + 0.23262(Mn_sur) 0.68 

5 
variable 

NDR = 0.08721 - 1.16339(sand_sur) - 0.34351(clay_sub) + 0.73750(orgmatter) + 0.19741(Ca_sub) + 
0.34748(Mn_sur) 0.73 

   

Normalized Difference in Yield (NDY) R2 
1 

variable NDY = 0.12486 + 0.17506(Mn_sub) 0.21 

2 
variable NDY = 0.23619 - 1.87482(pH_sur) + 0.18659(Mn_sub) 0.27 

3 
variable NDY = 0.08311 + 0.53718(orgmatter) + 0.17200(Mn_sub) - 0.30238(P_sub) 0.38 

4 
variable NDY = 0.08755 - 0.29250(clay_sub) + 0.95289(orgmatter) + 0.13787(Mn_sub) - 0.27565(P_sub) 0.48 

5 
variable 

NDY = -0.32292 + 3.39925(sand_sub) - 1.78942(clay_sub) + 0.96010(Ca_sub) + 0.90811(Mn_sur) + 
0.44590(CEC) 0.72 
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CONCLUSION 

 

 Many agricultural fields vary spatially in soil properties and crop growth patterns.  

For this reason, precision agriculture techniques have recently received much attention.  

Remote sensing is also becoming a popular tool for making observations about 

agricultural fields.  However, many farmers are reluctant to implement these techniques 

because of economical limitations.  In addition, some fields are fairly uniform and are not 

good targets for precision agriculture.  Aerial images of agricultural fields are a relatively 

inexpensive form of remote sensing.  These images may be used to assist farmers in 

determining whether variability exists within fields and selecting fields that may be 

candidates for within field management. 

 Early season aerial images of a peanut crop (300 to 600 heat units) and bare soil 

images are useful for detecting variability within peanut fields that have differences in 

soil texture and topography.  Aerial images of a growing crop may be used to detect 

physical, chemical, and biological differences in a field during the season.  We found that 

the overall best time to acquire images during the 2001 season in South Georgia dryland 

peanut fields was approximately 7.5 to 11.5 weeks after planting (700-1250 heat units).  

The end of season aerial images were only useful for finding differences in fields with 

large differences in crop growth and soil type, such as extremely sandy or washed areas 

where the crop canopy never closes.  
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 Generally we observed that when fields showed a great deal of variability in the 

images, soil conditions and crop growth also varied within the field.  In addition, the 

fields that had uniform reflectance values between the sample sites in the images also 

tended to be more uniform in soil properties, crop growth, and yield.  However, it was 

difficult to relate the within field differences of any single measured parameter to the 

differences in measured reflectance values.  A variability index which incorporated all of 

the measured soil parameters accounted for 42% of the variability in reflectance values.  

If other crop and soil parameters had been measured, this correlation may have been 

better.  Of the measured soil properties, the most important predictors of differences in 

reflectance and yield for the fields in this study were soil texture, organic matter, CEC, 

Ca, and Mn.   

 Aerial images provide farmers with a simple, inexpensive tool to gather 

information about crop growth and development within their fields and to determine 

whether their fields are good targets for precision agriculture.  Aerial images can help 

growers make better decisions as to where to spend their limited resources. 

  

 


