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ABSTRACT

The nonlinear Schrodinger equation is of tremendous importance in both theory and
applications. The NLS type equation is the main governing equation in the area of optical
solitons. Various regimes of pulse propagation in optical fibers are modeled by some form of the
nonlinear Schrodinger equation.

In this thesis, we introduce sequential and parallel numerical methods for numerical
simulations of two dimensional nonlinear Schrodinger equations. We implement the parallel
methods on the pcluster multiprocessor system at UGA. The numerical results have shown that

these methods give good results and considerable speedup.

INDEX WORDS: NLS, Split-step method, pseudo-spectral method, Finite difference method,
Parallel algorithms, FFTW.



NUMERICAL METHOD FOR TWO DIMENSIONAL NONLINEAR

SCHRODIGER EQUATION

WEI YU

B.E., Beijing University of Posts & Telecommunications, China, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2010



© 2010
WEI YU

All Rights Reserved



NUMERICAL METHOD FOR TWO DIMENSIONAL NONLINEAR

SCHRODIGER EQUATION

WEI YU

Major Professor: Thiab R. Taha

Committee: Hamid R. Arabnia
Daniel M. Everett

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
December 2010



ACKNOWLEDGEMENTS

| would like to thank my major professor, Dr. Thiab R. Taha, for his efforts, guidance and
support, which made my research better.

| am so deeply grateful to the members of my advisory committee, Dr. Hamid R. Arabnia
and Dr. Daniel M. Everett, for their kind and valuable help.

| also want to thank all of the faculty, staff and my friends in the Department of
Computer Science for discussing with them and learning a lot from them, especially Meng,
talking with him helps me greztly.

Finally, I would like to thank my fiancée, Xiaobo Lu, for her continuous support and

trust.



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... ..ttt e e e e e s s e e e e e e e e s saaraneaeeeeeeennnnnnes v

LIST OF TABLES ...ttt e e e e e e e e e s e e e e e e e e s snassaeeeeeeeeeannnnenes vii

LIST OF FIGURES ..ottt ettt e e e e e e et a e e e e e e e e nnnnnaneeeaaeeeaanns viii
CHAPTER

1 INTRODUCTION ...ttt e s st e e e e e e e s s ee e e e e s e e e asssnraeeeaaeeeessnnnsnnes 1

2 PRELIMINARIES........o oottt e e e e e e e e e e e e e e e e s nnnsnaneeaeeas 3

2.1 THE DISCRETE TWO DIMENSIONAL FOURIER TRANSFORM ............ 3

2.2 THE TWO DIMENSIONAL FOURIER TRANSFORM.......ccvvveiiiiiiiiniieenn. 4

2.3 THE FASTEST FOURIER TRANSFORM IN THEWEST .........ccooccivvieeennn. 4

24 THE SPLIT-STEP METHOD ......cuttiiiiiiii e 5

2.5 THE PSEUDO-SPECTRAL METHOD ...ttt 7

2.6 THE FINITE DIFFERENCE METHOD ...ttt 8

2.7 MESSAGE PASSING INTERFACE ... 10

3 TWO DIMENSIONAL NONLINEAR SCHRODINGER EQUATION..........c......... 11

S.LNUMERICAL METHOD .....coociiieiieee ettt e e e 12

3.2NUMERICAL EXPERIMENTS ..ot 15

3.3 PSEUDO-SPECTRAL METHOD AND EXPERIMENTS...........cccccviieeeenn. 21

3.4 FINITE DIFFERENCE METHOD AND EXPERIMENTS..........ccccovvvveennn. 24

3.5PARALLEL IMPLEMENTATION AND EXPERIMENTS..........ccccvvineennn. 29



4 RANKING ...

S CONCLUSION ..ottt asr e e nne e

REFERENCES

Vi



LIST OF TABLES

Page
Table 3.1: Convergence rates in time for the first-order splitting method.............coccoeeiiiinieens 17
Table 3.2: Convergence rates in space for the first-order splitting method.............ccccoeveeennennns 18
Table 3.3: Convergence ratesin time for the explicit method ... 25
Table 3.4: Convergence rates in space for the explicit method.............cccoviieiiiinie i, 25
Table 3.5: Results of parallel implementation for the first-order splitting method...................... 31
Table 3.6: Results of parallel implementation for the second-order splitting method ................. 31
Table 3.7: Results of parallel implementation for the fourth-order splitting method................... 32
Table 3.8: Results of parallel implementation for the pseudo-spectral method..............ccccc....... 32
Table 3.9: Results of parallel implementation for the modified pseudo-spectral method............. 33
Table 3.10: Results of parallel implementation for the explicit method.............ccccooeeiiiieinneens 33
Table 3.11: Results of parallel implementation for the implicit method..............ccoccoeiiiiiiiienn, 34

Vii



LIST OF FIGURES

Page
Figure 3.1: The initial CONAILIONS ..........eiiiiiieiiie e 19
Figure 3.2: TWO dimensional SSFL ..........coouiiiiiiiiie e sneas 19
Figure 3.3: TWO dimensioNal SSF2 ..........coouiiiiiiiiie et 20
Figure 3.4: TWO dimenSioNal SSFA .........cooouuii i e e 20
Figure 3.5: Two dimensional pseudo-spectral methods............oocvveiiiieiiiie i 23
Figure 3.6: Modified two dimensional pseudo-spectral methods...........ccceeeeeiiieiiieeciee, 23
Figure 3.7: Two dimensional explicit Methods............ooceeiiiiii e, 26
Figure 3.8: Two dimensional impliCit MEthOdS............ooceiiiiiii e 29

viii



CHAPTER 1

INTRODUCTION

The nonlinear Schrodinger equation (NLS) is being used to describe a wide class of
physical phenomena (e.g., heat pulses in solids, modulation of deep water waves, and helical
motion of a very thin vortex filament [1]).

The research on optical solitons has been going on for many decades and the two
dimensional nonlinear Schrodinger (NLS) equation isone of the main governing equations in
thisarea of study [9] [16] [17].

In thisthesis, we will study the two dimensional NL S equation which is given by [9]
. 1 2
io, +§(qxx+qyy)+|q| q=0, (1.2)

where q is atwo dimensional complex-valued function. There are many popular numerical
methods to solve the NL S equation. One of them is the split-step Fourier (SSF) method,
proposed by R. H. Hardin and F. D. Tappert [5]. It is one of the most popular numerical methods
for solving the NL S equation [1]. Various versions of the split-step method have been developed
to solve the NLS equation [3].

Taha and Xu have developed split-step method for the NLS and CNLS equations as well
as parallel implementations for these methods [3].

S. Zoldi et a [13] has implemented a parallel split-step Fourier method for large-scale

simulations of the NL S equation, which are required for many physical problems. M. S. Ismail



and T. R. Taha have introduced afinite difference method to numerically simulate the CNLSE
[12].

In thisthesis, we implement three schemes of the two dimensional split-step Fourier
method and two schemes of the pseudo-spectral method for the numerical simulation of the two
dimensional NLS equation. We also implemented the parallel split-step Fourier method and
pseudo-spectral method with the Fastest Fourier Transform in the West (FFTW), which is
developed by M. Frigo and S. G. Johnson [14]. Moreover, we have implemented two schemes of
the two dimensional finite difference methods using explicit and implicit methods.

The first chapter of thisthesis is an introduction of the NL S equation. The second chapter
describes the Fourier transform, the split-step method, the pseudo-spectra method and the finite
difference methods. Chapter 3 presents the numerical methods to solve the two dimensional NLS
eguation and experiments results. The fourth chapter shows the rank for all the methods that have
been utilized to solve the two dimensional NL S equation. Chapter 5 provides a summary of my

current research work and gives the conclusion.



CHAPTER 2

PRELIMINARIES

21 THE DISCRETE TWO DIMENSIONAL FOURIER TRANSFORM

If {f [m, n]} isasequence of size M x N, obtained by taking samples of a continuous
function f with equal intervals at the direction of m and n, respectively, then its discrete Fourier
transform (DFT) is given by

1 . agnk nIo

M -
é [mnle M Neo£k<MOEI <N (2.1.2)

N-1
Flk,I a
kil= @
where M and N are the numbers of samplesin x and y directions in both spatial and frequency

domains, respectively. And F[k,l] isthe two dimensional discrete spectrum of f[m, n].

The inverse two dimensional DFT flips the sign of the exponent, which is defined as

1 . agnk nl 6

M -
A Flkile ¥ Ne0£ m<M,0En<N (2.1.2)

0 k=0

1

1
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Qo

It isthe “inverse” of the forward two dimensional DFT, in the sense that computing the
inverse transfer after the forward transform of a given sequence would yield the original
sequence.

Both F[k,I] and f[m,n] could be considered as elements of two M x N matrices x and F,

respectively.



22THE TWO DIMENSIONAL FOURIER TRANSFORM

The Fast Fourier transform (FFT) is an efficient algorithm to compute the discrete
Fourier transform (DFT) and its inverse. A DFT decomposes a sequence of values into
components of different frequencies. It is useful and being used in many fields. However,
calculating DFT directly from its definition is often too dow. Instead, FFT is a better way to
calculate the same result more quickly.

Computing a DFT of N points requires O (N?). However, an FFT can calculate the same
result in only O (NlogzN) operations [19]. The difference in speed could be substantial,
especially for large data sets where N may be very huge. In this case, FFTs are of great
importantance to alarge number of applications, like, digital signal processing and solving
partial differential equations.

A two dimensional FFT is achieved by first transforming each row, replacing each row
with its one dimensional transform FFT and then transforming each column, replacing each
column with its transform. A two dimensional FFT of size M x N requiresM + N one

dimensional FFT.

2.3THE FASTEST FOURIER TRANSFORM IN THE WEST

The Fastest Fourier Transform in the West (FFTW) is a software library used to
calculating DFTSs, developed by M. Frigo and S. G. Johnson in MIT. FFTW is a comprehensive
collection of fast C routines for calculating the DFT in one or more dimensions, of both real and
complex data, and of arbitrary input size [3]. “It has gained a wide acceptance in both academia
and industry, because it provides excellent performance on a variety of machines (even

competitive with or faster than equivalent libraries supplied by vendors)” [20].



FFTW automatically adapts the DFT agorithm to details of the underlying hardware
(cache size, memory size, registers, etc.). The inner loop of FFTW is generated automatically by
a special-purpose compiler. The FFTW begins by generating codelets. A codelet is a fragment of
C code that computes a Fourier transform of a fixed small size (e.g. 16 or 19). A composition of
codelets is called a plan which depends on the size of the input and the underline hardware. At
runtime, the FFTW?’s planner finds the optimal decomposition for transforms of a specified size
on your machine and produces a plan that contains this information. The resulting plan can be
reused as many times as needed. This makes the FFTW’srelatively expensive initialization
acceptable. FFTW also includes a shared-memory implementation on top of POSI X threads, and

adistributed-memory implementation based on MPI (Message Passing I nterface).

24THE SPLIT-STEP METHOD
The split-step (Fourier) method is a pseudo-spectra numerical method used to solve
nonlinear partial differential equations [21].

For example, consider the following equation

g =(L+N)qg,

(2.4.1)
a(x, ¥,0) = g, (X%, y),

where L and N are linear and nonlinear operators, respectively. In general, the operators L and N
do not commute with each other.
The two dimensional NL S equation
q, =iq,, +ig,, +iklg*q,
with k areal number, can be rewritten as

0 = Lg+ Naq,



where
Lg =iq, +iq,,,Ng = ik|q|2q.
The solution of equation (2.4.1) could be advanced from one time-level to the next by
using the following formula 3]

q(x, y,t +Dt) = exp[Dt(L + N)]q(x, v, 1), (24.2)
where At denotes the time step. It isfirst order accurate. However, it would be exact if operators
L and N are time-independent [8].

Now the time-splitting procedure includes replacing the right-hand side of (2.4.2) by an
appropriate combination of products of the exponential operator exp (AtL) and exp (AtN). We
can find one answer by using the Baker-Campbell-Hausdorf (BCH) formula[22] for two

operators A and B as following

. )
exp(l A)exp(l B) = expgaé 1"z 2
€n=1 1]

(2.4.3)

Where | isthe coefficient of A and B, and
Z, =A+B
And the remaining operators Z, are commutators of A and B, commutators of commutators of A

and B, etc. The expressions for Z, are actually rather complicated, e.g.
1
Zz = E[A’ B]'
Where [A, B] = AB — BA is the commutator of A and B, and
1
z, == (AlaB]+[AB]B])

From this result, we can easily get the first-order gpproximation of the exponential

operator in (2.4.2) asfollows [3]



A (Dx) = exp(DrL ) exp(DIN). (2.4.4)
Note that this expression is exact whenever L and N commute.
It would be more convenient to view the scheme (2.4.4) asfirst solving the nonlinear part
G = Na,
then advancing the solution by solving the linear part
q =La,
by employing the solution of the former as the initial condition of the latter. That is, the

advancement in time is carried out in two steps, the so called split-step method.

The second-order approximation of the exponential operator in (2.4.2) is given by

e & o (2.4.5)
e2

A, (Dt) = expe= DIN Zexp(DtL ) exp
@ g2 g

The fourth-order approximation of the exponential operator in (2.4.2) which preservesthe

symmetry could also be constructed [3] [23], e.g.

A, (D) = A (wDr)A,[(1- 2w)Dt] A, (wDt), (246)
where
1
2+%2+ —
W= — Y2 _ (2.4.7)

Note that the operators L and N in (2.4.4) — (2.4.6) may be interchanged without affecting the

order of the method [24].

2.5 THE PSEUDO-SPECTRAL METHOD
Pseudo-spectral methods are a class of numerical methods which are used in applied

mathematics and scientific computing for the solution of partial differential equations[25].



Given q(x, vy, t), we want to find q(x, y, t+At) with a small At.
The first step we should take is to compute an intermediate value u; (X, y) by applying the

rightmost operator in the symmetric decomposition

Dt/2h

u,(x y) = e V%2g(x, v, t), (25.1)

where h isthe reduced Planck constant V(r) depends only on positionr.
To solve (2.5.1), it requires only a point wise multiplication.
The next step isto apply (2.5.1)
Uy (x,y) =€ ™", (x, y),
where T is the kinetic energy.

To simplify the above calculation, we can take the following equation to compute u, (X, )
E z(k) — eihkthIZmF 1(k)’
which also reguires only a point wise multiplication. F (k) could be obtained from u,(x, y) by

using the Fast Fourier transform (FFT). u,(X, y) could be obtained from F 2(k) by using the
inverse FFT.
The final computation is
alx y,t+Dt)=e vy, (x y)
We can summarize the above sequence as

q(x, y,t+ Dt) —e iV(r)Dt/ZhF—ll.eithDtIZmF[e- iV(r)Dt/th(X’ y,t)]J

26 THE FINITE DIFFERENCE METHOD
Finite difference methods are numerical methods for approximating the solutions to

differential equations using finite difference equations to approximate derivatives[28].



26.1EXPLICIT METHOD
In explicit method, we calculate the state of a system at alater time from the state of the
system at the current time.
Given Y (t) asthe current system state and Y (t + At) asthe state of the system as a later
time, then we have
Y(t+Dt) = F(Y(t))
Using the classical explicit method with central difference in time, the finite difference

representation of (1.1) would be

QEﬂl- ql?,j)_i_i(ql?ﬂ,j - 2q|?,j +q|?—l,j + ql?,jﬂ_ 2q|?,j +q|?,j—l
Dt 2

(Dx)* (Dy)*

. 2 n
i( g, =0 (2.6.2)

)+

qu?,,-
where O£k <N, and O£ j <N,.

To computeq(x, y,t), first we use q(x, y,0) asthe initial condition and use it into (2.6.2)
to getq(x, y,Dt) .

Then, for2Dt £t £T , we usethe q(x, y,t - Dt) which we get in the last computation to

obtainq(x, y,t).

26.2IMPLICIT METHOD

In implicit method, we find the solution by solving an equation involving both the current
state and the later one of the system.

Given Y (t) asthe current system state and Y (t + At) asthe state of the system at a later
time, we solve the following equation to obtain Y (t + At)

G(Y(t),Y(t+Dt)) =0



Using the alternating direction implicit method with central difference in time, the finite

difference representation of (1.1) would be

I(qk”*,”z - qk,) 1(q|':ﬁ/,2 20" +9 ) ql?,jﬂ' 20y, +q£,,-.1)+ ¢ =0 (26.3
Dt/ 2 (Dx)? (Dy)® ’
and
(qsill1 /qgn‘;l/Z) L1 (qm’ﬁ 2(?3::;/22 q|?+11/J2 N qlr:;lﬂ (Syn;z ql?jll ql?w;1/2| qn+1/2 =0 (264)

whereO£k <N, and O£ j <N, .

To computeq(x, y,t), first we use q(x, y,0) asthe initial condition and use it into (2.6.3)
togetq(x,y,Dt/2).

Second, we usethe q(x, y, Dt/ 2) which we get in the last computation into (2.6.4) to
obtainq(x, y,Dt) .

Then, for2Dt £t £T , werepeat last two operations to obtainq(x, y,t) .

2.7 MESSAGE PASSING INTERFACE

Message Passing Interface (MPI) isalibrary specification for message-passing, proposed
as a standard by a broadly based committee of vendors, implementations, and users.

Message passing is a paradigm that has been widely used on certain classes of parallel
machines, especially those with distributed memory. Processes running on such machines

communicate through messages [14].

10



CHAPTER 3

TWO DIMENSIONAL NONLINEAR SCHRODINGER EQUATION

The original two dimensional nonlinear Schrodinger equation is as follows
. 1 2
io +§(qxx+qyy)+|q| q=0, (3.0.1)

where q is a complex-valued function. The exact one-soliton solution of (3.0.1) isgiven by [7]

A
cosh?[(Bx +B,y- ut

a(x, y,t) = )]ei(- k,x- k,y+wt+q), (3.0.2)

In (3.0.2), Aisthe amplitude of the soliton, B, isthe inverse width in the x-direction and
B, isthe inverse width in the y-direction. u represents the velocity of the soliton. k, and k,

represents the soliton frequency in the x and y directions respectively, while w represents the
solitary wave number and finally g is the phase constant of the soliton. The exponent p, which is
unknown at this point, would be determined when finding the exact soliton solution [7].

By (3.0.2), we have the following pair of relations

u=- (lel +szz)

p=1

w=2[g+BY) ki+k)

11



3.1 NUMERICAL METHOD

First, we study the two dimensional NL S equation (3.0.1) with the initial condition given

A
cosh[(Bx + B,y- ut

q(x, y,0) = ) 6i- kx- k,y+q) (3.1.1)

wheret=0.0,p=1, B =10, B, =0.1, k, =0.6, k, = 0.8. Here, we also assume that q (X, Y, t)
satisfies periodic boundary condition with period [-P, P].

After normalizing the spatial period to [0, 2x], we have

2

_P - lg?

ig, =

where P = 10, which is the half length of the period. X =z(x+ P) / Pand Y = z(y + P) / P. Then,

we divide the interval [0, 2 #] in the x-direction into Ny equal subintervals with grid spacing

DX =2p/N,, and denote X, = jDX, j =0,1>%N, asthe spatial grid points. We also divide the
interval [0, 2 #] in the y-direction into Ny equal subintervals with grid spacingDY =2p /N, , and
denoteY, =kDY, k =0,1,%%N, asthe spatial grid points.

Now we advance the solution of (3.0.1) fromtimet to the next time-level t + Dt as
follows:

First, we only focus on the nonlinear part to advance the solution [1]:

iq, =-|da, (3.1.3)

which could be solved exactly with
a0, Y, t+ Dt =exp{ ifa(X; . Y,.t) Dt Ja(X, .Y, t). (3.1.4)

Second, we focus on the linear part:

12



iq, =- - ®m+qw), (3.1.5)

For the two dimensional discrete Fourier transform, we have

. 1 Ny-1N,-1 -
O = men(qjk): 5 5 Ak exp[— I(mxj +nYk)], (3.1.6)
NXNy j=0 k=0
NegmeMeg Sgne g
2 2 2
and
Neg Ny
1 (A 2 B . .
qu = F J'ylk (qmn) = aN aqun eXp[l (mxj + nYk )]’ (317)
m:-7n:_7y

j =012N, - Lk =01,20%N, - 1

According to (3.1.6) and (3.1.7), we have

N N
d - X1 Y1 . -
=g 3 5 “eenl(mx, +ny,]| (319
27 2
da, 33
O = d 2Jk =a a an'(' mz)exp[l(mXJ +nYk)], (319)
XN Ny
2 2
g
qyy = dqzjk - g g an'(' nz)exp[l (me +nYk)], (3110)
Vo NN
2 2

Substituting (3.1.8) — (3.1.10) into (3.1.5), and equating every pair of items yieldsthe

following result
1B = P () (3.1.12)
Solving (3.1.11), we have

13



(e + n2)ox ], (31.12)

Gt + D) = 6, (1) expg |
e

Then applying (3.1.12) into the following

q(X,, Y.t +Dt)= F(F(a(X,,.Y,.t + D1)))

m? 'n?

We have:

, ‘ )
P (e + n?)ogr(a(X, Y t)?, (3113)
2p U g

a(X,. Y, t+Dt)= F'léeexpg- i
e

Thus, (3.1.13) is the split-step Fourier method for the first-order splitting approximation
(2.4.4), where Dt isthetime step, F and F™* are the forward and inverse discrete Fourier
transforms respectively.

To advance intime fromt to t + Dt by the split-step Fourier method with the second-
order splitting approximation (2.4.5), we should take the following steps[1]:

(1) Applying (3.1.4) to advance the solution using the nonlinear part

21

Q(Xm,Yn,t+%Dt) =exp{ i[a(X ., Y, 1) EDt ta(x.,,.Y,.t).

(2) Applying (3.1.13) to advance the solution using the linear part
2
GoX Y, t+ 1Dt =F éexpe P (e + )oKV, Dtc—’oO
e 2 2p° 0 ée 20
(3) Applying (3.1.4) to advance the solution using the nonlinear part

2
q(xm’Yn’t):eXp{ I‘aé(m’Yn’t+%uj %u }a(xm’Yn’t)'
e

Advancement intime fromt to t + Dt by the split-step Fourier method with the fourth-

order splitting approximation (2.4.6) could be obtained with following steps[3]:

14



First, advance intime fromt to t + wDt using the second-order split-step Fourier method,

where

1
2+32+
3
3 .

W

Second, advance in time from t +wDt to t +(1- w)Dt using the second-order split-step
Fourier method.

Finally, advance in time from t + (1- w)Dt to t + Dt using the second-order split-step

Fourier method and we obtain approximation toq(x, y,t + Dt).

3.2NUMERICAL EXPERIMENTS
To test the numerical method, we computed the L, normand L, norm at the terminating

time T = 1[1]. Also, we compute the relative error for the following conserved quantity

+¥ +¥

| = Ockl dxay, (3.2.2)
-¥-¥

Equation (3.2.1) is calculated using the two dimensional Simpson’s rule, which is described as
follows.
For atwo dimensional functionz = f (x, y) ,aE x£bandc£y£d, withtheinterval 2m
and 2n, respectively, we denote the equally spaced sample points as
X =X, +ih, i =012,,2m
and

Y; = Yot JK,j=0125»2n

15



Then composite Simpson’s rule would be as

bd

O0f (%, y)dA= &) (x, y)dydx » S2D(f,h,k).

ac
R

where

s2D(f,h,k)==hk{f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)

Ol

+4a f(a Yai. 1)+ Za f(a y21)+4a f(b Yaj. 1)+ Za f(b yzj)

j=1 = j=

+ 4a f (X2| ) + 2a f (X2| )+ 4a f (X2| )+ 2a f (X2| )

i=1 i=1 i=1

n

m A n-1 Am =
164 B ey, 2o TR ey, )

=1 €i=1 1] j=1€i=1
" nlgy!
+88 B8 (v, 2+ 4R B f(x,, yz,) }.
j=1ei=1 %] j=1ei=

And it could be shown that the error term is of the form
Eqo (f.h,k)=o(n*)+olk*),

thet is

b d
A0 (%, y)dyax = 52D(f, h, k) + ofh*) + ofk*)

Simpson’s rule has the pattern of weights:
1,4,2,4,2,4,2...2,4,1

And two dimensional Simpson’s rule has extended this pattern to:

1 4 2 4 2 4 2 2 4
4 16 8 16 8 16 8 8 16
2 8 4 8 4 8 4 4 8



4

1

In our numerical experiments we used N = 256 for different values of time steps At to test

the accuracy of the first-order split-step schemes that are utilized in solving (1.1). The results are

16

16

4

shown in Table 3.1.

8 16
4 8
4 8
8 16
2 4

8 16
4 8
4 8
8 16
2 4

8

2

8

2

16 4
8 2
8 2
16 4
4 1

Table 3.1: Convergence rates in time for the first-order splitting method

(N=256,- 10£ x£10, - 10£ y£10, 0£t£1, T=1).

At L, L, iy cpu(s)
0.004 7.103022E-01  2.245761E-01  5.658099E-03  10.43
0.002 7.103286E-01  2.245781E-01  5.649435E-03  18.96
0.001 7.103115E-01  2.245769E-01  5.649756E-03  36.53
0.0005 |7.103034E-01  2245758E-01  5.649831E-03  70.35
0.00025 |7.102995E-01  2.245752E-01  5.649850E-03  137.05
0.000125 | 7.102975E-01 ~ 2.245748E-01  5.649856E-03  277.04

17




In the above and following tables, L, istheinfinity norm, L, isthe Euclidian norm, i, is

C

therelative error, andi, =

‘ . C isthe conserved quantity for the exact solutionat t =0, C;

is the conserved quantity for the numerical solution at every time step.

Also, in our numerical experiments we used At = 0.000125 for different values of N to
test the accuracy of the first-order split-step schemesthat are utilized in solving (1.1). The results
are shown in Table 3.2.

Table 3.2: Convergence rates in space for the first-order splitting method

(Dt =0.000125 ,- 10£ x£10,- 10£ y£10, 0£t£1, T=1).

N L, L, iy cpu(s)
32 5.124649E-01 3.034540E-01 1.840878E-03 247
64 5.397828E-01 3.034989E-01 7.862426E-03 10.80
128 5.638354E-01 3.040974E-01 4.169053E-03 47.53
256 5.693562E-01 3.044173E-01 2.047879E-03 261.42
512 5.773713E-01 3.045096E-01 1.019764E-03 1664.98

The numerical solutions of the two dimensional NLS equation (3.0.1) at t = 0.1with the

initial condition (3.1.1) using the above split-step Fourier methods with Dt = 0.000125 and N =

256 are shown below:
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Figure 3.1: Theinitial conditions.

The modulus of the initial condition of equation (3.0.1) at t = 0.

Figure 3.2: Two dimensional SSF1.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional first-order SSF.
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Figure 3.3: Two dimensional SSF2.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional second-order SSF.
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Figure 3.4: Two dimensional SSF4.
The modulus of equation (3.0.1) at t = 0.1 using the two dimensional fourth-order SSF,

where N = 128.
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3.3 PSEUDO-SPECTRAL METHOD AND EXPERIMENTS

Pseudo-spectral method is a Fourier method in which g (x, y, t) istransformed into
Fourier space with respect to x, y, and derivatives (or other operators) with respect to x, y are
then made algebraic in the transformed variable. Again we normalize the spatial period to [0, 27]
for convenience [1].

With this scheme, q,, + q,, could be computed as

F-l((mz + nZ)F(CI(X’Y’t)))

Then, combined with a leap frog time step the two dimensional NL S equation (3.1.2) is

approximated by

q(X,Y,t+Dt)=q(X,Y,t- Dt)- 2iDt2'°—|;2 F{(m? + n?)E(a(X, Y. 1))

- 4iDt|q*q. (3.3.1)

Following the ideas of Fornberg and Whitham we make a modification in approximating

the two dimensional NLS equation (3.1.2)

p
2p

(q(x,v,t»g

e+

q(X,Y,t+Dt)=q(X,Y,t- Dt)+2iF" ésinéeDt

Q- I+|O:

- 4iDt|q*q. (3.3.2)
The algorithm to implement (3.3.1) and (3.3.2) is described as below:

First, we denote the initial condition asu,, which isequal to q (X, y, 0) at the very

beginning.
Second, we useu,to represent q (X, y, t), wheret = At at first.

Third, for t = 2At to numsteps x At (which is 1), we do the following:
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2

1) u, =- th—p2 F-2((m? + n2)E(g(X, Y1) (for (33.2))

2 0

(m? + nz):F (uz)g for (3.3.2))
g o

p
2p

2

&
(oru; =F* sing? Dt

2 u, = q(x, y,t)
B u=u,- 2i (2Dt|u2|2u2 - u3)
(4) u =u,
u, =u
Finally, we obtain q(x, y,t) :

The approximation of the linear part of (3.1.2) is the difference between (3.3.1) and
(3.3.2). Any solution of (3.1.5) would exactly satisfy the linear part of (3.3.2). And (3.3.1) is
linearly stable for Dt /(Dx)’ <1/p 2. However, according to linear analysis (3.3.2) is
unconditionally stable [1].

The solutions of the two dimensional NL S equation (3.0.1) at t = 0.1with the initial

condition (3.1.1) using the pseudo-spectral methods with Dt = 0.000125 and N = 256 are shown

below:
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Figure 3.5: Two dimensional pseudo-spectral methods.
The modulus of equation (3.0.1) at t = 0.1 using the two dimensional pseudo-spectral

method.

Figure 3.6: Modified two dimensional pseudo-spectral methods.
The modulus of equation (3.0.1) at t = 0.1 using the modified two dimensional pseudo-

spectral method.
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3.4FINITE DIFFERENCE METHOD AND EXPERIMENTS

3.41EXPLICIT METHOD
By using the explicit method, at time ty.; and acertain point (X, Y), where X =i * xand Y

=j*vy, wehave

q|n;l q| J) l(qirll,j - 2qir,1j +qirjl,j + qirjj+1 - 2qir,1j +q;jj-1

- 34.1
A 20 (%) oy (341

Toobtainq (%, v, t), wetake the following steps:

First, we denote the initial condition asu,, which isequal to q (X, y, O) at the very
beginning.

Second, we useu,to represent q (x, y, t), wheret = At &t first.

Third, for t = At to numsteps x At (which isequal to 1), we do the following:

u, (( +1)Dx, jDy) - 2u,(iDx, jDy) +u, ((i - )Dx, jDy)

(1) u,(iDx, DY) = 2D

u, (iDx, (j +1)Dy) - 2u,(iDx, jDy) +u, (iDx, (] - 1)Dy)
2(Dy)*

(2) u,(iDx, jDy) =u,(iDx, jDy) +

(3) u,(iDx, jDy) =, (iDX, jDy) +U, (iDx, jDy)*|u,(iDx, jDy)[

(4) u,(iDx, jDy) =u,(iDx, jDy)*iDX

(5) u,(iDx, jDy) = u,(iDx, jDy) +u,(iDx, jDy)

And finaly, we obtainq(x, y,t).

To do the numerical experiments, we used N = 256 for different values of time steps At

to test the accuracy of the explicit method that are utilized in solving (1.1). The results are shown

in Table 3.3.
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Table 3.3: Convergence rates in time for the explicit method

(N=256,- 10£ x£10, - 10£ y£10, 0£t£1, T=0.5).

At L, L, iy cpu(s)
0.000125 1.545538E-01 2.127007 E-01 6.675301E-04 46.87
0.0001 1.545503E-01 2.127015E-01 6.655717E-04 57.62
0.00005 1.545478E-01 2.127060E-01 6.617672E-04 119.05
0.000025 1.545475E-01 2.127087E-01 6.598842E-04 218.77

We also used At = 0.000125 for different values of N to test the accuracy of the explicit

method that are utilized in solving (1.1). The results are shown in Table 3.4.

Table 3.4: Convergence rates in space for the explicit method

(Dt =0.000125 ,- 10£ x£10,- 10£ y£10, 0£t£1, T=0.5) .

N L, L, iy cpu(s)
32 7.622602 E-02 2.339236 E-01 1.240102E-03 0.61

64 1.108153E-01 1.854285E-01 6.788211E-04 251
128 1.375294E-01 2.010176E-01 6.884926E-04 10.06
256 1.545538E-01 2.127007E-01 6.675301E-04 46.08
512 2.833494E-01 3.786824E-01 2.875514E-02 4227.40

The solutions of the two dimensional NL S equation (3.0.1) at t = 0.1with the initial

condition (3.1.1) using the explicit method with Dt = 0.000125 and N = 256 are shown below:
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Figure 3.7: Two dimensional explicit method.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional explicit method.

3.4.2IMPLICIT METHOD
For the implicit part, we use alternating direction implicit (ADI) method.

With ADI method, at time tn+1 and a certain point (X, Y), where X =i * Axand Y =] *A Yy,

we have
(90 - dp ) _ 1 qk”Ii’f 2007 + 9, G- 24, * Uy
Dt/2 (Dx)* (Dy)?
(3.4.2)
and
[CHEC qnﬂlz‘ g - 1(qk”Ii’f 2002 + it qk”*,il 20,7 + qk”*,ll)
Dt/ 2 ! 2 (Dx)? (Dy)?
(3.4.3)

Then with (3.4.2) and (3.4.3), we do the following to obtain q (%, y, t) [29]:
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First, weimplement the ADI method in aloop over the y-direction:

forj=1: N,
for k= 1: N
Dt 2
a(k) = (k+2r)qk,j LS PETIR ¢ W ?|qk,j| O
end

solve AQ™(;,j) =g

end
where,
a-2r r 0 0 0 0 0O u
g 1
8 i-2r r 0 0 0 0 a
2] r i-2r r 0 0 0O
é 1
é 1
A=¢€ G
é 1
<Y 0 0 rooi-2r r o u
é _ 1
&0 0 0 0 ri-2r r G
& 0 o 0 o0 r i-2r}

And g™ isan intermediate stage.

To get A, firgt, from (3.4.2), we have

; n+ n+ n+ . Dt 2
(i- 2r)Qk,jﬂ2 + qui/jz + qu—ll,/jz =(i+ 2r)qk,j = M0 a1~ MO j1 - E|qk,j| O j
(3.4.9

where r =

4*Dx*
Then, for O£k <N, and O£ j <N, we put the coefficients of the left side of (3.4.4) into

amatrix, which is A.
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Second, we implement the ADI method in aloop over the x-direction:
for k= 1. Ny

forj=1: N,

. . Dt 2
a(j)=a +2r)qk,j = M0y o1 - MO o1 - ?|qk,j| O j

end
solve Ag (k,;))=g
end
where A could be obtained using the same method in the first stage, but here, r = 4*Dt 5

And finally, we obtain q(x, y,t) .

The execution of the first and second steps advances the solution with a At step in time,
overwriting g.

The solutions of the two dimensional NLS equation (3.0.1) at t = 0.1with the initial

condition (3.1.1) using the ADI method with Dt = 0.000125 and N = 256 are shown below:
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Figure 3.7: Two dimensional implicit methods.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional implicit method.

3.5PARALLEL IMPLEMENTATION AND EXPERIMENTS

For the parallelization of the first-order split-step Fourier method, we parallelize it as
following [3]:

Denote A, of sizeN, xN,, asthe gpproximation solution to g at time t. Assume that there
are n processors in adistributed-memory parallel computer. The parallelization of (3.1.4) is
straightforward. Then we distribute A among n processors. Each processor | with array elements
AlIN, /njto Al +1)N, /n- 1], where0 £1 £ n- 1, works on its own subarrays independently

without communicating with others. After that, we employ FFTW’s MPI routines to parallelize

2

p

(2 + nz)DtgF (G(x..,Y..t), its

2 i<
u

the calculation of F(4(X ,Y,,t +Dt)). Forexpg- i
é
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parallelization is also straightforward. Finally, we use FFTW’s MPI routines again to parallelize

2

D e+ o (alx, )2
2p u g

q(Xj Y t+ Dt): F'léeexpg- i
e
Similarly, we could parallelize for the second-order, fourth-order split-step Fourier
methods and the pseudo-spectral method.
We implement the parallel algorithms of the split-step Fourier methods and the pseudo-

spectral method on pcluster of UGA. And we optimize all the codes at the same optimization

level.
In our simulations, speedup S,,is defined as
S, = tt—l .
where
t, = Time spent to run the MPI code on single processor
and

t, = Time spent to run the MPI code on n processors

The results for parallel implementation of split-step method and pseudo-spectral method

are shown in Table 3.5to Table 3.9.

From the numerical experiments results we could observe clearly that S, increases as the
problem size N, x N, increases with afixed number of processors n and when N islarge, S,

obtained on the multiprocessor computer running the parallel codes is considerable.
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Table 3.5: Results for parallel implementation of first-order splitting method (At =

0.000125). t, is the time on p processors, S, is the speedup on p processors.

N =128 N = 256 N =512
t1 (se0) 98.53 411.44 2083.26
t2 (se0) 70.06 287.36 1361.45
t4 (se0) 35.51 139.81 602.16
t8 (sec) 18.20 71.36 320.14
S, =tl/t2 1.41 143 153
S =tl/td 2.77 2.94 3.46
Ss=t1/t8 5.41 5.77 6.51

Table 3.6: Results for parallel implementation of second-order splitting method (At =

0.000125). t, is the time on p processors, S, is the speedup on p processors.

N =128 N = 256 N =512
t1 (se0) 116.87 486.84 2339.22
2 (sec) 77.95 320.85 144712
t4 (se0) 40.31 155.12 663.23
{8 (se0) 21.40 78.92 348.62
S, =t1/12 1.50 152 1.62
S.=tl/t4 2.90 3.14 3.53
S =t1/t8 5.46 6.17 6.71
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Table 3.7: Results for parallel implementation of fourth-order splitting method (At =

0.000125). Array size is 128 for both x and y, t, is the time on p processors, S, is the speedup on

P Processors.

N=128
t1 (sec) 344.65
2 (sec) 234.62
t4 (sec) 118.17
t8 (sec) 62.58
S =tl/t2 1.47

S =tl/td 2.92
S=t1/t8 551

Table 3.8: Results for parallel implementation of the pseudo-spectra method (At =

0.000125). t, is the time on p processors, S, is the speedup on p processors.

N=128 N =256 N=512
t1 (sec) 90.31 378.95 1771.33
t2 (sec) 65.77 273.25 1204.99
t4 (sec) 33.72 132.39 574.37
t8 (sec) 16.95 68.88 292.64
S =tl/t2 137 1.39 147
S =tl/td 2.68 2.86 3.08
S=t1/t8 533 5.50 6.05
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Table 3.9: Results for parallel implementation of the modified pseudo-spectral splitting

method (At = 0.000125). t, is the time on p processors, S, is the speedup on p processors.

N=128 N =256 N =512
t1 (sec) 98.83 41152 2100.01
2 (sec) 70.08 290.61 1093.76
t4 (sec) 35.40 141.17 610.10
t8 (sec) 20.64 7473 307.96
S, =tl/t2 1.41 1.42 1.92
S =tl/td 2.79 2.92 3.44
S=t1/t8 4.79 551 6.82

For the explicit and implicit method, we do the parallelization for the calculation of gy

and qyy in each for loop. Results are shown in the following tables.

Table 3.10: Results for parallel implementation of the explicit method (At = 0.000125). t,,

is the time on p processors, S, is the speedup on p processors.

N =128 N = 256 N =512

t1 (se0) 18.02 89.01 268.75
{2 (se0) 11.09 44.61 134.66
t4 (se0) 6.15 25.74 69.08
t8 (se0) 3.88 15.02 44.45
S, =t1/12 1.62 1.99 2.00
S.=tl/t4 2.93 3.45 3.90
Ss=t1/t8 4.64 5.93 6.05
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Table 3.11: Results for parallel implementation of the implicit method (At = 0.000125). t,,

is the time on p processors, S, is the speedup on p processors.

N=128 N = 256 N =512

t1 (sec) 35.37 176.71 547.51
t2 (sec) 21.48 86.41 268.39
t4 (sec) 11.58 48.47 138.96
t8 (sec) 7.26 29.06 84.89
S, =t1/t2 1.65 2.05 2.04
Si=tl/t4 3.05 3.65 3.94
Se=t1/t8 4.87 6.08 6.45




CHAPTER 4

RANKING

We have described seven methods to solve the two dimensional nonlinear Schrodinger
equation. To test their performances and get their ranking based on their infinite norm, Euclidian
norm and relative error, we have done the following experiments:

Let N equalsto 128 and 256, respectively. For each N, we use the initial conditions:

k, =0.6, k,=0.8, B, =1.0, B,=0.1
for all these seven methods, record their resultswhen T = 0.5.

Then for each result, we find out its infinite norm, Euclidian norm and relative error.

According to these criteria, we get the ranking:

1. Two dimensional explicit method.

2. Two dimensional split-step Fourier method using the first-order splitting method.

3. Two dimensional split-step Fourier method using the second-order splitting method.

4. Modified two dimensional pseudo-spectral method.

5. Two dimensional pseudo-spectral method.

6. Two dimensional split-step Fourier method using the fourth-order splitting method.

7. Two dimensional implicit method.
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CHAPTER 5

CONCLUSION

In thisthesis, we have applied the well-known split-step Fourier method, pseudo-spectral
method and finite difference method for solving the two dimensional nonlinear Schrodinger
eguation. We have implemented three split-step Fourier method schemes, two pseudo-spectral
method schemes and two finite difference method schemes. We find that the higher-order split-
step scheme needs more computational time than the lower-order split-step methods.

For the parallel implementation of those schemes with fixed number of processors, we
found out that as the problem size becomes larger, the speedup becomes larger. We also could
achieve considerable speedups on the multiprocessor computer by running the parallel codes for

large problem sizes.
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