

NUMERICAL METHOD FOR TWO DIMENSIONAL NONLINEAR

SCHRÖDIGER EQUATION

by

WEI YU

(Under the Direction of Thiab R. Taha)

ABSTRACT

 The nonlinear Schrödinger equation is of tremendous importance in both theory and

applications. The NLS type equation is the main governing equation in the area of optical

solitons. Various regimes of pulse propagation in optical fibers are modeled by some form of the

nonlinear Schrödinger equation.

In this thesis, we introduce sequential and parallel numerical methods for numerical

simulations of two dimensional nonlinear Schrödinger equations. We implement the parallel

methods on the pcluster multiprocessor system at UGA. The numerical results have shown that

these methods give good results and considerable speedup.

INDEX WORDS: NLS, Split-step method, pseudo-spectral method, Finite difference method,
Parallel algorithms, FFTW.

NUMERICAL METHOD FOR TWO DIMENSIONAL NONLINEAR

SCHRÖDIGER EQUATION

by

WEI YU

B.E., Beijing University of Posts & Telecommunications, China, 2008

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2010

© 2010

WEI YU

All Rights Reserved

NUMERICAL METHOD FOR TWO DIMENSIONAL NONLINEAR

SCHRÖDIGER EQUATION

by

WEI YU

 Major Professor: Thiab R. Taha

 Committee: Hamid R. Arabnia
 Daniel M. Everett

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2010

iv

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Thiab R. Taha, for his efforts, guidance and

support, which made my research better.

 I am so deeply grateful to the members of my advisory committee, Dr. Hamid R. Arabnia

and Dr. Daniel M. Everett, for their kind and valuable help.

 I also want to thank all of the faculty, staff and my friends in the Department of

Computer Science for discussing with them and learning a lot from them, especially Meng,

talking with him helps me greatly.

 Finally, I would like to thank my fiancée, Xiaobo Lu, for her continuous support and

trust.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION ... 1

 2 PRELIMINARIES ... 3

 2.1 THE DISCRETE TWO DIMENSIONAL FOURIER TRANSFORM 3

 2.2 THE TWO DIMENSIONAL FOURIER TRANSFORM 4

 2.3 THE FASTEST FOURIER TRANSFORM IN THE WEST 4

 2.4 THE SPLIT-STEP METHOD .. 5

 2.5 THE PSEUDO-SPECTRAL METHOD ... 7

 2.6 THE FINITE DIFFERENCE METHOD .. 8

 2.7 MESSAGE PASSING INTERFACE ... 10

 3 TWO DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION 11

 3.1 NUMERICAL METHOD .. 12

 3.2 NUMERICAL EXPERIMENTS .. 15

 3.3 PSEUDO-SPECTRAL METHOD AND EXPERIMENTS 21

 3.4 FINITE DIFFERENCE METHOD AND EXPERIMENTS 24

 3.5 PARALLEL IMPLEMENTATION AND EXPERIMENTS 29

vi

 4 RANKING .. 35

 5 CONCLUSION .. 36

REFERENCES ... 37

vii

LIST OF TABLES

Page

Table 3.1: Convergence rates in time for the first-order splitting method 17

Table 3.2: Convergence rates in space for the first-order splitting method 18

Table 3.3: Convergence rates in time for the explicit method .. 25

Table 3.4: Convergence rates in space for the explicit method ... 25

Table 3.5: Results of parallel implementation for the first-order splitting method 31

Table 3.6: Results of parallel implementation for the second-order splitting method 31

Table 3.7: Results of parallel implementation for the fourth-order splitting method 32

Table 3.8: Results of parallel implementation for the pseudo-spectral method 32

Table 3.9: Results of parallel implementation for the modified pseudo-spectral method 33

Table 3.10: Results of parallel implementation for the explicit method 33

Table 3.11: Results of parallel implementation for the implicit method 34

viii

LIST OF FIGURES

Page

Figure 3.1: The initial conditions .. 19

Figure 3.2: Two dimensional SSF1 ... 19

Figure 3.3: Two dimensional SSF2 ... 20

Figure 3.4: Two dimensional SSF4 ... 20

Figure 3.5: Two dimensional pseudo-spectral methods.. 23

Figure 3.6: Modified two dimensional pseudo-spectral methods ... 23

Figure 3.7: Two dimensional explicit methods .. 26

Figure 3.8: Two dimensional implicit methods .. 29

1

CHAPTER 1

INTRODUCTION

 The nonlinear Schrödinger equation (NLS) is being used to describe a wide class of

physical phenomena (e.g., heat pulses in solids, modulation of deep water waves, and helical

motion of a very thin vortex filament [1]).

 The research on optical solitons has been going on for many decades and the two

dimensional nonlinear Schrödinger (NLS) equation is one of the main governing equations in

this area of study [9] [16] [17].

 In this thesis, we will study the two dimensional NLS equation which is given by [9]

() ,0
2
1 2 =+++ qqqqiq yyxxt

(1.1)

where q is a two dimensional complex-valued function. There are many popular numerical

methods to solve the NLS equation. One of them is the split-step Fourier (SSF) method,

proposed by R. H. Hardin and F. D. Tappert [5]. It is one of the most popular numerical methods

for solving the NLS equation [1]. Various versions of the split-step method have been developed

to solve the NLS equation [3].

 Taha and Xu have developed split-step method for the NLS and CNLS equations as well

as parallel implementations for these methods [3].

 S. Zoldi et al [13] has implemented a parallel split-step Fourier method for large-scale

simulations of the NLS equation, which are required for many physical problems. M. S. Ismail

2

and T. R. Taha have introduced a finite difference method to numerically simulate the CNLSE

[12].

 In this thesis, we implement three schemes of the two dimensional split-step Fourier

method and two schemes of the pseudo-spectral method for the numerical simulation of the two

dimensional NLS equation. We also implemented the parallel split-step Fourier method and

pseudo-spectral method with the Fastest Fourier Transform in the West (FFTW), which is

developed by M. Frigo and S. G. Johnson [14]. Moreover, we have implemented two schemes of

the two dimensional finite difference methods using explicit and implicit methods.

 The first chapter of this thesis is an introduction of the NLS equation. The second chapter

describes the Fourier transform, the split-step method, the pseudo-spectral method and the finite

difference methods. Chapter 3 presents the numerical methods to solve the two dimensional NLS

equation and experiments results. The fourth chapter shows the rank for all the methods that have

been utilized to solve the two dimensional NLS equation. Chapter 5 provides a summary of my

current research work and gives the conclusion.

3

CHAPTER 2

PRELIMINARIES

2.1 THE DISCRETE TWO DIMENSIONAL FOURIER TRANSFORM

 If {f [m, n]} is a sequence of size M × N, obtained by taking samples of a continuous

function f with equal intervals at the direction of m and n, respectively, then its discrete Fourier

transform (DFT) is given by

 [] [] NlMkenmf
MN

lkF
M

m

N
nl

M
mkiN

n
<≤<≤= ∑∑

−

=







 +−−

=

0,0,,1,
1

0

21

0

π
 (2.1.1)

where M and N are the numbers of samples in x and y directions in both spatial and frequency

domains, respectively. And []lkF , is the two dimensional discrete spectrum of []nmf , .

 The inverse two dimensional DFT flips the sign of the exponent, which is defined as

 [] [] NnMmelkF
MN

nmf
M

k

N
nl

M
mkjN

l
<≤<≤= ∑∑

−

=







 +−

=

0,0,,1,
1

0

21

0

π
 (2.1.2)

It is the “inverse” of the forward two dimensional DFT, in the sense that computing the

inverse transfer after the forward transform of a given sequence would yield the original

sequence.

Both []lkF , and []nmf , could be considered as elements of two M × N matrices x and F,

respectively.

4

2.2 THE TWO DIMENSIONAL FOURIER TRANSFORM

The Fast Fourier transform (FFT) is an efficient algorithm to compute the discrete

Fourier transform (DFT) and its inverse. A DFT decomposes a sequence of values into

components of different frequencies. It is useful and being used in many fields. However,

calculating DFT directly from its definition is often too slow. Instead, FFT is a better way to

calculate the same result more quickly.

Computing a DFT of N points requires O (N2). However, an FFT can calculate the same

result in only O (Nlog2N) operations [19]. The difference in speed could be substantial,

especially for large data sets where N may be very huge. In this case, FFTs are of great

importantance to a large number of applications, like, digital signal processing and solving

partial differential equations.

A two dimensional FFT is achieved by first transforming each row, replacing each row

with its one dimensional transform FFT and then transforming each column, replacing each

column with its transform. A two dimensional FFT of size M × N requires M + N one

dimensional FFT.

2.3 THE FASTEST FOURIER TRANSFORM IN THE WEST

 The Fastest Fourier Transform in the West (FFTW) is a software library used to

calculating DFTs, developed by M. Frigo and S. G. Johnson in MIT. FFTW is a comprehensive

collection of fast C routines for calculating the DFT in one or more dimensions, of both real and

complex data, and of arbitrary input size [3]. “It has gained a wide acceptance in both academia

and industry, because it provides excellent performance on a variety of machines (even

competitive with or faster than equivalent libraries supplied by vendors)” [20].

5

 FFTW automatically adapts the DFT algorithm to details of the underlying hardware

(cache size, memory size, registers, etc.). The inner loop of FFTW is generated automatically by

a special-purpose compiler. The FFTW begins by generating codelets. A codelet is a fragment of

C code that computes a Fourier transform of a fixed small size (e.g. 16 or 19). A composition of

codelets is called a plan which depends on the size of the input and the underline hardware. At

runtime, the FFTW’s planner finds the optimal decomposition for transforms of a specified size

on your machine and produces a plan that contains this information. The resulting plan can be

reused as many times as needed. This makes the FFTW’s relatively expensive initialization

acceptable. FFTW also includes a shared-memory implementation on top of POSIX threads, and

a distributed-memory implementation based on MPI (Message Passing Interface).

2.4 THE SPLIT-STEP METHOD

 The split-step (Fourier) method is a pseudo-spectral numerical method used to solve

nonlinear partial differential equations [21].

 For example, consider the following equation

),,()0,,(

,)(

0 yxqyxq
qNLqt

=

+=
 (2.4.1)

where L and N are linear and nonlinear operators, respectively. In general, the operators L and N

do not commute with each other.

 The two dimensional NLS equation

,2 qqikiqiqq yyxxt ++=

with k a real number, can be rewritten as

,NqLqqt +=

6

where

., 2 qqikNqiqiqLq yyxx =+=

 The solution of equation (2.4.1) could be advanced from one time-level to the next by

using the following formula [3]

[]),,,()(exp),,(tyxqNLtttyxq +∆=∆+ (2.4.2)

where ∆t denotes the time step. It is first order accurate. However, it would be exact if operators

L and N are time-independent [8].

Now the time-splitting procedure includes replacing the right-hand side of (2.4.2) by an

appropriate combination of products of the exponential operator exp (∆tL) and exp (∆tN). We

can find one answer by using the Baker-Campbell-Hausdorf (BCH) formula [22] for two

operators A and B as following

 () () ,expexpexp
1









= ∑

∞

=n
n

nZBA λλλ (2.4.3)

Where λ is the coefficient of A and B, and

BAZ +=1

And the remaining operators Zn are commutators of A and B, commutators of commutators of A

and B, etc. The expressions for Zn are actually rather complicated, e.g.

[],,
2
1

2 BAZ =

Where [A, B] = AB – BA is the commutator of A and B, and

[][] [][]().,,,,
12
1

3 BBABAAZ +=

 From this result, we can easily get the first-order approximation of the exponential

operator in (2.4.2) as follows [3]

7

 () ().expexp)(1 tNtLtA ∆∆=∆ (2.4.4)

Note that this expression is exact whenever L and N commute.

 It would be more convenient to view the scheme (2.4.4) as first solving the nonlinear part

,Nqqt =

then advancing the solution by solving the linear part

,Lqqt =

 by employing the solution of the former as the initial condition of the latter. That is, the

advancement in time is carried out in two steps, the so called split-step method.

 The second-order approximation of the exponential operator in (2.4.2) is given by

 () () .
2
1expexp

2
1exp2 






 ∆∆






 ∆=∆ tNtLtNtA (2.4.5)

 The fourth-order approximation of the exponential operator in (2.4.2) which preserves the

symmetry could also be constructed [3] [23], e.g.

 () () ()[] (),21 2224 tAtAtAtA ∆∆−∆=∆ ωωω (2.4.6)

where

 .
3

2
122

3
3 ++

=ω (2.4.7)

Note that the operators L and N in (2.4.4) – (2.4.6) may be interchanged without affecting the

order of the method [24].

2.5 THE PSEUDO-SPECTRAL METHOD

 Pseudo-spectral methods are a class of numerical methods which are used in applied

mathematics and scientific computing for the solution of partial differential equations [25].

8

 Given q(x, y, t), we want to find q(x, y, t+∆t) with a small ∆t.

 The first step we should take is to compute an intermediate value u1 (x, y) by applying the

rightmost operator in the symmetric decomposition

() (),,,),(2/
1 tyxqeyxu htriV ∆−= (2.5.1)

where h is the reduced Planck constant V(r) depends only on position r.

 To solve (2.5.1), it requires only a point wise multiplication.

 The next step is to apply (2.5.1)

(),,),(1
/

2 yxueyxu htiT∆−=

where T is the kinetic energy.

To simplify the above calculation, we can take the following equation to compute),(2 yxu

() (),1
2/

2

2

kek mtihk Φ=Φ ∆

which also requires only a point wise multiplication. ()k1Φ could be obtained from ()yxu ,1 by

using the Fast Fourier transform (FFT).),(2 yxu could be obtained from ()k2Φ by using the

inverse FFT.

 The final computation is

() () ()yxuettyxq htriV ,,, 2
2/∆−=∆+

 We can summarize the above sequence as

() () () ()[][]tyxqeFeFettyxq htriVmtihkhtriV ,,,, 2/2/12/ 2 ∆−∆−∆−=∆+

2.6 THE FINITE DIFFERENCE METHOD

 Finite difference methods are numerical methods for approximating the solutions to

differential equations using finite difference equations to approximate derivatives [28].

9

2.6.1 EXPLICIT METHOD

 In explicit method, we calculate the state of a system at a later time from the state of the

system at the current time.

 Given Y (t) as the current system state and Y (t + ∆t) as the state of the system as a later

time, then we have

))(()(tYFttY =∆+

 Using the classical explicit method with central difference in time, the finite difference

representation of (1.1) would be

 0)
)(

2
)(

2
(

2
1)(,

2

,2
1,,1,

2
,1,,1,

1
, =+

∆
+−

+
∆

+−
+

∆
− −+−+

+
n

jk
n

jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk qq

y
qqq

x
qqq

t
qq

i (2.6.2)

where xNk <≤0 and yNj <≤0 .

 To compute),,(tyxq , first we use)0,,(yxq as the initial condition and use it into (2.6.2)

to get),,(tyxq ∆ .

 Then, for Ttt ≤≤∆2 , we use the),,(ttyxq ∆− which we get in the last computation to

obtain),,(tyxq .

2.6.2 IMPLICIT METHOD

 In implicit method, we find the solution by solving an equation involving both the current

state and the later one of the system.

 Given Y (t) as the current system state and Y (t + ∆t) as the state of the system at a later

time, we solve the following equation to obtain Y (t + ∆t)

0))(),((=∆+ ttYtYG

10

 Using the alternating direction implicit method with central difference in time, the finite

difference representation of (1.1) would be

 0)
)(

2
)(

2
(

2
1)

2/
(,

2

,2
1,,1,

2

2/1
,1

2/1
,

2/1
,1,

2/1
, =+

∆
+−

+
∆

+−
+

∆
− −+

+
−

++
+

+
n

jk
n

jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk qq

y
qqq

x
qqq

t
qq

i (2.6.3)

and

0)
)(

2
)(

2
(

2
1)

2/
(2/1

,

22/1
,2

1
1,

1
,

1
1,

2

2/1
,1

2/1
,

2/1
,1

2/1
,

1
, =+

∆
+−

+
∆

+−
+

∆
− ++

+
−

++
+

+
−

++
+

++
n

jk
n

jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk

n
jk qq

y
qqq

x
qqq

t
qq

i (2.6.4)

where xNk <≤0 and yNj <≤0 .

 To compute),,(tyxq , first we use)0,,(yxq as the initial condition and use it into (2.6.3)

to get)2/,,(tyxq ∆ .

 Second, we use the)2/,,(tyxq ∆ which we get in the last computation into (2.6.4) to

obtain),,(tyxq ∆ .

 Then, for Ttt ≤≤∆2 , we repeat last two operations to obtain),,(tyxq .

2.7 MESSAGE PASSING INTERFACE

 Message Passing Interface (MPI) is a library specification for message-passing, proposed

as a standard by a broadly based committee of vendors, implementations, and users.

Message passing is a paradigm that has been widely used on certain classes of parallel

machines, especially those with distributed memory. Processes running on such machines

communicate through messages [14].

11

CHAPTER 3

TWO DIMENSIONAL NONLINEAR SCHRÖDINGER EQUATION

 The original two dimensional nonlinear Schrödinger equation is as follows

() ,0
2
1 2 =+++ qqqqiq yyxxt (3.0.1)

where q is a complex-valued function. The exact one-soliton solution of (3.0.1) is given by [7]

()[] (),
cosh

),,(21
21

θωκκ
υ

++−−
−+

= tyxei
tyBxB

Atyxq p (3.0.2)

In (3.0.2), A is the amplitude of the soliton, 1B is the inverse width in the x-direction and

2B is the inverse width in the y-direction. υ represents the velocity of the soliton. 1κ and 2κ

represents the soliton frequency in the x and y directions respectively, while ω represents the

solitary wave number and finally θ is the phase constant of the soliton. The exponent p, which is

unknown at this point, would be determined when finding the exact soliton solution [7].

By (3.0.2), we have the following pair of relations

()2211 BB κκυ +−=

1=p

BBA 2
2

2
1 +=

() ()[]κκω 2
2

2
1

2
2

2
12

1
+−+= BB

12

3.1 NUMERICAL METHOD

 First, we study the two dimensional NLS equation (3.0.1) with the initial condition given

by

()[] (),
cosh

)0,,(21
21

θκκ
υ

+−−
−+

= yxei
tyBxB

Ayxq (3.1.1)

where t = 0.0, p = 1, 1B = 1.0, 2B = 0.1, 1κ = 0.6, 2κ = 0.8. Here, we also assume that q (x, y, t)

satisfies periodic boundary condition with period [-P, P].

 After normalizing the spatial period to [0, 2π], we have

() ,
2

2
2

2

qqqq
P

iq yyxxt −+−= π

 (3.1.2)

where P = 10, which is the half length of the period. X = π(x + P) / P and Y = π(y + P) / P. Then,

we divide the interval [0, 2 π] in the x-direction into Nx equal subintervals with grid spacing

xNX /2π=∆ , and denote XjX j ∆= , xNj ,,1,0 ⋅⋅⋅= as the spatial grid points. We also divide the

interval [0, 2 π] in the y-direction into Ny equal subintervals with grid spacing yNY /2π=∆ , and

denote YkYk ∆= , yNk ,,1,0 ⋅⋅⋅= as the spatial grid points.

 Now we advance the solution of (3.0.1) from time t to the next time-level tt ∆+ as

follows:

 First, we only focus on the nonlinear part to advance the solution [1]:

,2 qqiqt −= (3.1.3)

which could be solved exactly with

{ () } ()tYXqttYXqittYXq kjkjkj ,,,,exp),,(ˆ
2
∆=∆+ . (3.1.4)

Second, we focus on the linear part:

13

 ()yyxxt qq
P

iq +−= 2

2

2
π , (3.1.5)

 For the two dimensional discrete Fourier transform, we have

() ()[]∑ ∑
−

=

−

=

+−==
1

0

1

0
, exp1ˆ

x yN

j

N

k
kjjk

yx
jknmmn nYmXiq

NN
qFq , (3.1.6)

1
22

,1
22

−≤≤−−≤≤− yyxx N
n

NNmN

and

() ()[]∑ ∑
−

−=

−

−=

− +==
1

2

2

1
2

2

1
, expˆˆ

x

x

y

y

N

Nm

N

N
n

kjmnmnkjjk nYmXiqqq F , (3.1.7)

1,,2,1,0,1,2,1,0 −⋅⋅⋅=−⋅⋅⋅= yx NkNj

According to (3.1.6) and (3.1.7), we have

()[]∑ ∑
−

−=

−

−=

+==
1

2

2

1
2

2

exp
ˆ

x

x

y

y

N

Nm

N

N
n

kj
mnjk

t nYmXi
dt
qd

dt
dq

q , (3.1.8)

 () ()[]∑ ∑
−

−=

−

−=

+−==
1

2

2

1
2

2

2
2

2

exp.ˆ
x

x

y

y

N

Nm

N

N
n

kjmn
jk

xx nYmXimq
dx

qd
q , (3.1.9)

() ()[]∑ ∑
−

−=

−

−=

+−==
1

2

2

1
2

2

2
2

2

exp.ˆ
x

x

y

y

N

Nm

N

N
n

kjmn
jk

yy nYmXinq
dy

qd
q , (3.1.10)

 Substituting (3.1.8) – (3.1.10) into (3.1.5), and equating every pair of items yields the

following result

() mn
mn qnm

Pdt
qdi ˆ

2
ˆ 22

2

2

−−−= π , (3.1.11)

Solving (3.1.11), we have

14

() () () 







∆+−=∆+ tnm

p
itqttq mnmn

22
2

2

2
expˆˆ π , (3.1.12)

Then applying (3.1.12) into the following

() ()()()ttYXqFFttYXq nmkj ∆+=∆+ − ,,ˆ,, 1

We have:

() () ()()















∆+−=∆+ − tYXqFtnm

p
iFttYXq nmkj ,,ˆ

2
exp,, 22

2

2
1 π , (3.1.13)

Thus, (3.1.13) is the split-step Fourier method for the first-order splitting approximation

(2.4.4), where t∆ is the time step, F and F-1 are the forward and inverse discrete Fourier

transforms respectively.

To advance in time from t to tt ∆+ by the split-step Fourier method with the second-

order splitting approximation (2.4.5), we should take the following steps [1]:

(1) Applying (3.1.4) to advance the solution using the nonlinear part

{ () } ()tYXqttYXqittYXq nmnmnm ,,
2
1,,exp)

2
1,,(ˆ 2 ∆=∆+ .

(2) Applying (3.1.13) to advance the solution using the linear part

() 





















 ∆+








∆+−=






 ∆+ − ttYXqFtnm

p
iFttYXq nmkj 2

1,,ˆ
2

exp
2
1,,~ 22

2

2
1 π .

(3) Applying (3.1.4) to advance the solution using the nonlinear part

{ } ()tYXqtttYXqitYXq nmnmnm ,,~
2
1

2
1,,~exp),,(

2

∆





 ∆+= .

Advancement in time from t to tt ∆+ by the split-step Fourier method with the fourth-

order splitting approximation (2.4.6) could be obtained with following steps [3]:

15

First, advance in time from t to tt ∆+ ω using the second-order split-step Fourier method,

where

3
2

122
3

3 ++
=ω .

Second, advance in time from tt ∆+ ω to () tt ∆−+ ω1 using the second-order split-step

Fourier method.

Finally, advance in time from () tt ∆−+ ω1 to tt ∆+ using the second-order split-step

Fourier method and we obtain approximation to ()ttyxq ∆+,, .

3.2 NUMERICAL EXPERIMENTS

 To test the numerical method, we computed the ∞L norm and 2L norm at the terminating

time T = 1 [1]. Also, we compute the relative error for the following conserved quantity

∫ ∫
+∞

∞−

+∞

∞−

= dxdyqI 2 , (3.2.1)

Equation (3.2.1) is calculated using the two dimensional Simpson’s rule, which is described as

follows.

 For a two dimensional function ()yxfz ,= , bxa ≤≤ and dyc ≤≤ , with the interval 2m

and 2n, respectively, we denote the equally spaced sample points as

ihxxi += 0 , mi 2,,2,1,0 ⋅⋅⋅=

and

jkyy j += 0 , nj 2,,2,1,0 ⋅⋅⋅=

where
m

abh
2
−

= and
n

cdk
2
−

= .

16

Then composite Simpson’s rule would be as

() () ()
R

b

a

d

c

khfDSdydxyxfdAyxf∫ ∫ ∫ ∫ ≈= ,,2,, .

where

() () () () (){ dbfcbfdafcafhkkhfDS ,,,,
9
1,,2 +++=

 () () () ()∑∑∑∑
−

==
−

−

==
− ++++

1

1
2

1
12

1

1
2

1
12 ,2,4,2,4

n

j
j

n

j
j

n

j
j

n

j
j ybfybfyafyaf

 () () () ()∑∑∑∑
−

==
−

−

==
− ++++

1

1
2

1
12

1

1
2

1
12 ,2,4,2,4

m

i
i

m

i
i

m

i
i

m

i
i dxfdxfcxfcxf

 () ()∑ ∑∑ ∑
−

= =
−

= =
−− 








+








+

1

1 1
212

1 1
1212 ,8,16

n

j

m

i
ji

n

j

m

i
ji yxfyxf

 () () }∑ ∑∑ ∑
−

=

−

==

−

=
− 








+








+

1

1

1

1
22

1

1

1
122 ,4,8

n

j

m

i
ji

n

j

m

i
ji yxfyxf .

 And it could be shown that the error term is of the form

() () ()44
2 ,, kohokhfE DS += ,

that is

() () () ()44,,2, kohokhfDSdydxyxf
b

a

d

c

++=∫ ∫

 Simpson’s rule has the pattern of weights:

1, 4, 2, 4, 2, 4, 2 … 2, 4, 1

 And two dimensional Simpson’s rule has extended this pattern to:

1 4 2 4 2 4 2 … 2 4 1

4 16 8 16 8 16 8 … 8 16 4

2 8 4 8 4 8 4 … 4 8 2

17

4 16 8 16 8 16 8 … 8 16 4

2 8 4 8 4 8 4 … 4 8 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2 8 4 8 4 8 4 … 4 8 2

4 16 8 16 8 16 8 … 8 16 4

1 4 2 4 2 4 2 … 2 4 1

In our numerical experiments we used N = 256 for different values of time steps ∆t to test

the accuracy of the first-order split-step schemes that are utilized in solving (1.1). The results are

shown in Table 3.1.

Table 3.1: Convergence rates in time for the first-order splitting method

(N = 256, 1010 ≤≤− x , 1010 ≤≤− y , 10 ≤≤ t , T = 1).

∆t
∞L 2L 1i cpu(s)

0.004

0.002

0.001

0.0005

0.00025

0.000125

7.103022E-01

7.103286E-01

7.103115E-01

7.103034E-01

7.102995E-01

7.102975E-01

2.245761E-01

2.245781E-01

2.245769E-01

2.245758E-01

2.245752E-01

2.245748E-01

5.658099E-03

5.649435E-03

5.649756E-03

5.649831E-03

5.649850E-03

5.649856E-03

10.43

18.96

36.53

70.35

137.05

277.04

18

In the above and following tables, ∞L is the infinity norm, 2L is the Euclidian norm, 1i is

the relative error, and
C

CCi −
= 1

1 . C is the conserved quantity for the exact solution at t = 0, C1

is the conserved quantity for the numerical solution at every time step.

Also, in our numerical experiments we used ∆t = 0.000125 for different values of N to

test the accuracy of the first-order split-step schemes that are utilized in solving (1.1). The results

are shown in Table 3.2.

Table 3.2: Convergence rates in space for the first-order splitting method

(000125.0=∆t , 1010 ≤≤− x , 1010 ≤≤− y , 10 ≤≤ t , T =1) .

N
∞L 2L 1i cpu(s)

32

64

128

256

512

5.124649E-01 3.034540E-01 1.840878E-03 2.47

5.397828E-01 3.034989E-01 7.862426E-03 10.80

5.638354E-01 3.040974E-01 4.169053E-03 47.53

5.693562E-01 3.044173E-01 2.047879E-03 261.42

5.773713E-01 3.045096E-01 1.019764E-03 1664.98

The numerical solutions of the two dimensional NLS equation (3.0.1) at t = 0.1with the

initial condition (3.1.1) using the above split-step Fourier methods with t∆ = 0.000125 and N =

256 are shown below:

19

Figure 3.1: The initial conditions.

The modulus of the initial condition of equation (3.0.1) at t = 0.

Figure 3.2: Two dimensional SSF1.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional first-order SSF.

20

Figure 3.3: Two dimensional SSF2.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional second-order SSF.

Figure 3.4: Two dimensional SSF4.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional fourth-order SSF,

where N = 128.

21

3.3 PSEUDO-SPECTRAL METHOD AND EXPERIMENTS

 Pseudo-spectral method is a Fourier method in which q (x, y, t) is transformed into

Fourier space with respect to x, y, and derivatives (or other operators) with respect to x, y are

then made algebraic in the transformed variable. Again we normalize the spatial period to [0, 2π]

for convenience [1].

 With this scheme, yyxx qq + could be computed as

() ()()()tYXqFnmF ,,221 +−

 Then, combined with a leap frog time step the two dimensional NLS equation (3.1.2) is

approximated by

() () () ()()()tYXqFnmF
p

tittYXqttYXq ,,
2

2,,,, 221
2

2

+∆−∆−=∆+ −π

qqti 24 ∆− . (3.3.1)

 Following the ideas of Fornberg and Whitham we make a modification in approximating

the two dimensional NLS equation (3.1.2)

() () () ()()















+∆−+∆−=∆+ − tYXqFnm

p
tiFttYXqttYXq ,,

2
sin2,,,, 22

2

2
1 π

qqti 24 ∆− . (3.3.2)

 The algorithm to implement (3.3.1) and (3.3.2) is described as below:

 First, we denote the initial condition as 1u , which is equal to q (x, y, 0) at the very

beginning.

 Second, we use 2u to represent q (x, y, t), where t = ∆t at first.

 Third, for t = 2∆t to numsteps × ∆t (which is 1), we do the following:

22

(1) () ()()()tYXqFnmF
p

tu ,,
2

221
2

2

3 +∆−= −π
 (for (3.3.1))

(or () ()















+∆−= −

2
22

2

2
1

3 2
sin uFnm

p
tFu π for (3.3.2))

(2) ()tyxqu ,,2 =

(3) ()32
2

21 22 uuutiuu −∆−=

(4) 21 uu =

 uu =2

Finally, we obtain ()tyxq ,, .

 The approximation of the linear part of (3.1.2) is the difference between (3.3.1) and

(3.3.2). Any solution of (3.1.5) would exactly satisfy the linear part of (3.3.2). And (3.3.1) is

linearly stable for () 22 /1/ π<∆∆ xt . However, according to linear analysis (3.3.2) is

unconditionally stable [1].

The solutions of the two dimensional NLS equation (3.0.1) at t = 0.1with the initial

condition (3.1.1) using the pseudo-spectral methods with t∆ = 0.000125 and N = 256 are shown

below:

23

Figure 3.5: Two dimensional pseudo-spectral methods.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional pseudo-spectral

method.

Figure 3.6: Modified two dimensional pseudo-spectral methods.

The modulus of equation (3.0.1) at t = 0.1 using the modified two dimensional pseudo-

spectral method.

24

3.4 FINITE DIFFERENCE METHOD AND EXPERIMENTS

3.4.1 EXPLICIT METHOD

 By using the explicit method, at time tn+1 and a certain point (X, Y), where X = i * x and Y

= j * y, we have

n

ji
n

ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji qq

y
qqq

x
qqq

t
qq

i ,

2

,2
1,,1,

2
,1,,1,

1
,)

)(
2

)(
2

(
2
1)(−

∆
+−

+
∆

+−
−=

∆
− −+−+

+

(3.4.1)

 To obtain q (x, y, t), we take the following steps:

First, we denote the initial condition as 1u , which is equal to q (x, y, 0) at the very

beginning.

 Second, we use 2u to represent q (x, y, t), where t = ∆t at first.

 Third, for t = ∆t to numsteps × ∆t (which is equal to 1), we do the following:

(1) 2
111

2)(2
),)1((),(2),)1((),(

x
yjxiuyjxiuyjxiuyjxiu

∆
∆∆−+∆∆−∆∆+=∆∆

(2) 2
111

22)(2
))1(,(),(2))1(,(),(),(

y
yjxiuyjxiuyjxiuyjxiuyjxiu

∆
∆−∆+∆∆−∆+∆+∆∆=∆∆

(3) 2
1122),(*),(),(),(yjxiuyjxiuyjxiuyjxiu ∆∆∆∆+∆∆=∆∆

(4) tiyjxiuyjxiu ∆∆∆=∆∆ *),(),(22

(5)),(),(),(122 yjxiuyjxiuyjxiu ∆∆+∆∆=∆∆

And finally, we obtain ()tyxq ,, .

To do the numerical experiments, we used N = 256 for different values of time steps ∆t

to test the accuracy of the explicit method that are utilized in solving (1.1). The results are shown

in Table 3.3.

25

Table 3.3: Convergence rates in time for the explicit method

(N = 256, 1010 ≤≤− x , 1010 ≤≤− y , 10 ≤≤ t , T = 0.5) .

∆t
∞L 2L 1i cpu(s)

0.000125

0.0001

0.00005

0.000025

1.545538E-01 2.127007 E-01 6.675301E-04 46.87

1.545503E-01 2.127015E-01 6.655717E-04 57.62

1.545478E-01 2.127060E-01 6.617672E-04 119.05

1.545475E-01 2.127087E-01 6.598842E-04 218.77

We also used ∆t = 0.000125 for different values of N to test the accuracy of the explicit

method that are utilized in solving (1.1). The results are shown in Table 3.4.

Table 3.4: Convergence rates in space for the explicit method

(000125.0=∆t , 1010 ≤≤− x , 1010 ≤≤− y , 10 ≤≤ t , T =0.5) .

N
∞L 2L 1i cpu(s)

32

64

128

256

512

7.622602 E-02 2.339236 E-01 1.240102E-03 0.61

1.108153E-01 1.854285E-01 6.788211E-04 2.51

1.375294E-01 2.010176E-01 6.884926E-04 10.06

1.545538E-01 2.127007E-01 6.675301E-04 46.08

2.833494E-01 3.786824E-01 2.875514E-02 4227.40

The solutions of the two dimensional NLS equation (3.0.1) at t = 0.1with the initial

condition (3.1.1) using the explicit method with t∆ = 0.000125 and N = 256 are shown below:

26

Figure 3.7: Two dimensional explicit method.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional explicit method.

3.4.2 IMPLICIT METHOD

For the implicit part, we use alternating direction implicit (ADI) method.

With ADI method, at time tn+1 and a certain point (X, Y), where X = i * ∆x and Y = j *∆ y,

we have

)
)(

2
)(

2
(

2
1

2/
)(

2
1,,1,

2

2/1
,1

2/1
,

2/1
,1

,

2

,
,

2/1
,

y
qqq

x
qqq

qq
t

qqi n
jk

n
jk

n
jk

n
jk

n
jk

n
jkn

jk
n

jk

n
jk

n
jk

∆
+−

+
∆

+−
−−=

∆
− −+

+
−

++
+

+

 (3.4.2)

 and

)
)(

2
)(

2
(

2
1

2/
)(

2

1
1,

1
,

1
1,

2

2/1
,1

2/1
,

2/1
,12/1

,

22/1
,

2/1
,

1
,

y
qqq

x
qqq

qq
t

qqi n
jk

n
jk

n
jk

n
jk

n
jk

n
jkn

jk
n

jk

n
jk

n
jk

∆
+−

+
∆

+−
−−=

∆
− +

−
++

+
+
−

++
+++

++

 (3.4.3)

 Then with (3.4.2) and (3.4.3), we do the following to obtain q (x, y, t) [29]:

27

First, we implement the ADI method in a loop over the y-direction:

for j = 1: Ny

 for k = 1: Nx

 jkjkjkjkjk qqtrqrqqrkkg ,

2

,1,1,, 2
)2()(∆

−−−+= −+

 end

 solve gjAq new =)(:,

 end

 where,

 A =



































−
−

−

−
−

−

rir
rrir

rrir

rrir
rrir

rri

200000
20000

02000
.......
.......
.......
00020
00002
000002

 And newq is an intermediate stage.

 To get A, first, from (3.4.2), we have

jkjkjkjkjk
n

jk
n

jk
n

jk qqtrqrqqrirqrqqri ,

2

,1,1,,
2/1

,1
2/1

,1
2/1

, 2
)2()2(∆

−−−+=++− −+
+
−

+
+

+

 (3.4.4)

 where 2*4 x
tr

∆
∆

=

.

 Then, for xNk <≤0 and yNj <≤0 we put the coefficients of the left side of (3.4.4) into

a matrix, which is A.

28

 Second, we implement the ADI method in a loop over the x-direction:

for k = 1: Nx

 for j = 1: Ny

 jkjkjkjkjk qqtrqrqqrijg ,

2

,1,1,, 2
)2()(∆

−−−+= −+

 end

 solve gkAq =:),(

 end

where A could be obtained using the same method in the first stage, but here, 2*4 y
tr

∆
∆=

And finally, we obtain ()tyxq ,, .

The execution of the first and second steps advances the solution with a ∆t step in time,

overwriting q.

The solutions of the two dimensional NLS equation (3.0.1) at t = 0.1with the initial

condition (3.1.1) using the ADI method with t∆ = 0.000125 and N = 256 are shown below:

29

Figure 3.7: Two dimensional implicit methods.

The modulus of equation (3.0.1) at t = 0.1 using the two dimensional implicit method.

3.5 PARALLEL IMPLEMENTATION AND EXPERIMENTS

 For the parallelization of the first-order split-step Fourier method, we parallelize it as

following [3]:

 Denote A, of size xN × yN , as the approximation solution to q at time t. Assume that there

are n processors in a distributed-memory parallel computer. The parallelization of (3.1.4) is

straightforward. Then we distribute A among n processors. Each processor l with array elements

[]nlNA x / to ()[]1/1 −+ nNlA x , where 10 −≤≤ nl , works on its own subarrays independently

without communicating with others. After that, we employ FFTW’s MPI routines to parallelize

the calculation of ()),,(ˆ ttYXqF kj ∆+ . For () ()()tYXqFtnm
p

i nm ,,ˆ
2

exp 22
2

2









∆+−

π , its

30

parallelization is also straightforward. Finally, we use FFTW’s MPI routines again to parallelize

() () ()()















∆+−=∆+ − tYXqFtnm

p
iFttYXq nmkj ,,ˆ

2
exp,, 22

2

2
1 π

.

Similarly, we could parallelize for the second-order, fourth-order split-step Fourier

methods and the pseudo-spectral method.

We implement the parallel algorithms of the split-step Fourier methods and the pseudo-

spectral method on pcluster of UGA. And we optimize all the codes at the same optimization

level.

In our simulations, speedup pS is defined as

n
p t

tS 1= .

where

1t = Time spent to run the MPI code on single processor

and

nt = Time spent to run the MPI code on n processors

 The results for parallel implementation of split-step method and pseudo-spectral method

are shown in Table 3.5 to Table 3.9.

 From the numerical experiments results we could observe clearly that pS increases as the

problem size xN × yN increases with a fixed number of processors n and when N is large, pS

obtained on the multiprocessor computer running the parallel codes is considerable.

31

Table 3.5: Results for parallel implementation of first-order splitting method (∆t =

0.000125). tp is the time on p processors, Sp is the speedup on p processors.

 N = 128 N = 256 N = 512

t1 (sec) 98.53 411.44 2083.26

t2 (sec) 70.06 287.36 1361.45

t4 (sec) 35.51 139.81 602.16

t8 (sec) 18.20 71.36 320.14

S2 = t1 / t2 1.41 1.43 1.53

S4 = t1 / t4 2.77 2.94 3.46

S8 = t1 / t8 5.41 5.77 6.51

 Table 3.6: Results for parallel implementation of second-order splitting method (∆t =

0.000125). tp is the time on p processors, Sp is the speedup on p processors.

 N = 128 N = 256 N = 512

t1 (sec) 116.87 486.84 2339.22

t2 (sec) 77.95 320.85 1447.12

t4 (sec) 40.31 155.12 663.23

t8 (sec) 21.40 78.92 348.62

S2 = t1 / t2 1.50 1.52 1.62

S4 = t1 / t4 2.90 3.14 3.53

S8 = t1 / t8 5.46 6.17 6.71

32

Table 3.7: Results for parallel implementation of fourth-order splitting method (∆t =

0.000125). Array size is 128 for both x and y, tp is the time on p processors, Sp is the speedup on

p processors.

 N = 128

t1 (sec) 344.65

t2 (sec) 234.62

t4 (sec) 118.17

t8 (sec) 62.58

S2 = t1 / t2 1.47

S4 = t1 / t4 2.92

S8 = t1 / t8 5.51

Table 3.8: Results for parallel implementation of the pseudo-spectral method (∆t =

0.000125). tp is the time on p processors, Sp is the speedup on p processors.

 N = 128 N = 256 N = 512

t1 (sec) 90.31 378.95 1771.33

t2 (sec) 65.77 273.25 1204.99

t4 (sec) 33.72 132.39 574.37

t8 (sec) 16.95 68.88 292.64

S2 = t1 / t2 1.37 1.39 1.47

S4 = t1 / t4 2.68 2.86 3.08

S8 = t1 / t8 5.33 5.50 6.05

33

Table 3.9: Results for parallel implementation of the modified pseudo-spectral splitting

method (∆t = 0.000125). tp is the time on p processors, Sp is the speedup on p processors.

 N = 128 N = 256 N = 512

t1 (sec) 98.83 411.52 2100.01

t2 (sec) 70.08 290.61 1093.76

t4 (sec) 35.40 141.17 610.10

t8 (sec) 20.64 74.73 307.96

S2 = t1 / t2 1.41 1.42 1.92

S4 = t1 / t4 2.79 2.92 3.44

S8 = t1 / t8 4.79 5.51 6.82

 For the explicit and implicit method, we do the parallelization for the calculation of qxx

and qyy in each for loop. Results are shown in the following tables.

Table 3.10: Results for parallel implementation of the explicit method (∆t = 0.000125). tp

is the time on p processors, Sp is the speedup on p processors.

 N = 128 N = 256 N = 512

t1 (sec) 18.02 89.01 268.75

t2 (sec) 11.09 44.61 134.66

t4 (sec) 6.15 25.74 69.08

t8 (sec) 3.88 15.02 44.45
S2 = t1 / t2 1.62 1.99 2.00

S4 = t1 / t4 2.93 3.45 3.90

S8 = t1 / t8 4.64 5.93 6.05

34

Table 3.11: Results for parallel implementation of the implicit method (∆t = 0.000125). tp

is the time on p processors, Sp is the speedup on p processors.

 N = 128 N = 256 N = 512

t1 (sec) 35.37 176.71 547.51
t2 (sec) 21.48 86.41 268.39

t4 (sec) 11.58 48.47 138.96
t8 (sec) 7.26 29.06 84.89

S2 = t1 / t2 1.65 2.05 2.04
S4 = t1 / t4 3.05 3.65 3.94

S8 = t1 / t8 4.87 6.08 6.45

35

CHAPTER 4

RANKING

 We have described seven methods to solve the two dimensional nonlinear Schrödinger

equation. To test their performances and get their ranking based on their infinite norm, Euclidian

norm and relative error, we have done the following experiments:

 Let N equals to 128 and 256, respectively. For each N, we use the initial conditions:

 6.01 =κ , 8.02 =κ , 0.11 =B , 1.02 =B

 for all these seven methods, record their results when T = 0.5.

 Then for each result, we find out its infinite norm, Euclidian norm and relative error.

 According to these criteria, we get the ranking:

1. Two dimensional explicit method.

2. Two dimensional split-step Fourier method using the first-order splitting method.

3. Two dimensional split-step Fourier method using the second-order splitting method.

4. Modified two dimensional pseudo-spectral method.

5. Two dimensional pseudo-spectral method.

6. Two dimensional split-step Fourier method using the fourth-order splitting method.

7. Two dimensional implicit method.

36

CHAPTER 5

CONCLUSION

 In this thesis, we have applied the well-known split-step Fourier method, pseudo-spectral

method and finite difference method for solving the two dimensional nonlinear Schrödinger

equation. We have implemented three split-step Fourier method schemes, two pseudo-spectral

method schemes and two finite difference method schemes. We find that the higher-order split-

step scheme needs more computational time than the lower-order split-step methods.

 For the parallel implementation of those schemes with fixed number of processors, we

found out that as the problem size becomes larger, the speedup becomes larger. We also could

achieve considerable speedups on the multiprocessor computer by running the parallel codes for

large problem sizes.

37

REFERENCES

1. T. R. Taha, M. J. Ablowitz (1984). Analytical and Numerical Aspects of Certain

Nonlinear Evolution Equations. II. Numerical Nonlinear Schrödinger Equation. Journal

of Computational Physics, vol. 55, No. 2, pp. 203-230.

2. L. F. Mollenauer, R. H. Stolen, J. P. Gordon (1980). Experimental observation of

picosecond pulse narrowing and solitons in optical fibers. Physical Review Letters, vol.

45, No. 13, pp. 1095 – 1098.

3. X. Xu, T. R. Taha (2004). Parallel Split-step Fourier Methods for Nonlinear

Schrödinger-Type Equations. Journal of Mathematical modelling and Algorithms, vol. 2,

No. 3, pp. 185 – 201.

4. E. Bouchbinder (2003). The Nonlinear Schrödinger Equation.

5. R. H. Hardin, F. D. Tappert (1973). Applications of the split-step Fourier method to the

numerical solution of nonlinear and variable coefficient wave equations. SIAM Review

Chronicle, vol. 15, pp. 423.

6. E. Knobloch, J. D. Gibbon (1991). Coupled NLS equations for counter propagating

waves in systems with reflection symmetry. Physics Letters A, vol. 154, Issues 7 – 8, pp.

353 – 356.

7. A. Biswas (2009). 1-Soliton Solution of 1 + 2 Dimensional Nonlinear Schrödinger’s

Equation in Kerr Law Media. International Journal of Theoretical Physics, vol. 48, No. 3,

pp. 689 – 692.

38

8. J. A. C. Weideman, B. M. Herbst (1986). Split-step methods for the solution of the

nonlinear Schrödinger equation. SIAM Journal on Numerical Analysis, vol. 23, Issue,

pp. 485 – 507.

9. M. J. Ablowitz, H. Segur (1981). Solitons and the Inverse Scattering Transform. SIAM,

Philadelphia.

10. G. M. Muslu, H. A. Erbay. Numerical Simulation of Blow-up Solutions for the

Generalized Davey-Stewartson System. International Journal of Computer Mathematics.

11. D. G. Fox, S. A. Orszag (1973). Pseudospectral Approximation to Two-Dimensional

Turbulence. Journal of Computational Physics, vol. 11, Issue 4, pp. 612 – 619.

12. M. S. Ismail, T. R. Taha (2001). Numerical simulation of coupled nonlinear Schrödinger

equation. Mathematics and Computers in Simulation, Special Issue on “Optical

Solitons”.

13. S. Zoldi, V. Ruban, A. Zenchuk, S. Burtsev (1999). Parallel implementation of the split-

step Fourier method for solving nonlinear Schrödinger systems. SIAM News, vol. 32,

No. 1, pp. 8 – 9.

14. M. Frigo, S. G. Johnson (1997). The Fastest Fourier Transform in the West. Technical

report, MIT – LCS – TR – 728, MIT Laboratory for Computer Science.

15. N. N. Akhmediev, A. Ankiewicz, R. Grimshaw (1999). Hamiltonian-versus-energy

diagrams in soliton theory. Physical Review E, vol. 59, Issue 5, pp. 6088 – 6096.

16. A. Biswas, A. B. Aceves (2001). Dynamics of solitons in optical fibers. Journal of

Modern Optics, vol. 48, Issue 7, pp. 1135 – 1150.

17. P. E. Zhidkov (2001). Korteweg-de Vries and Nonlinear Schrödinger’s Equation:

Qualitative Theory. Springer, New York.

39

18. Wikipedia. Fourier Transform.

Cited: Available at http://en.wikipedia.org/wiki/Fourier_transform.

19. J. W. Cooley, J. W. Tukey (1965). An algorithm for the machine computation of complex

Fourier series. Mathematics of Computation, vol. 19, pp. 297 – 301.

20. M. Frigo (1999). A fast Fourier transform compiler. MIT Laboratory for Computer

Science.

21. Wikipedia. Split-step method. Cited: Available at http://en.wikipedia.org/wiki/Split-

step_method.

22. J. M. Sanz-Serna, M. P. Calvo (1994). Numerical Hamiltonian problems. Chapman &

Hall, London.

23. R. McLachlan (1994). Symplectic integration of Hamiltonian wave equations. Numerical

Mathematics, vol. 66, pp. 465 – 492.

24. G. M. Muslu, H. A. Erbay (2003). A split-step Fourier method for the complex modified

Korteweg-de Vries equation. Computer & Mathematics with Applications, vol. 45, Issues

1 – 3, pp. 503 – 514.

25. S. A. Orszag (1972). Comparison of Pseudospectral and Spectral Approximation. Studies

in Applied Mathematics, vol. 51, pp. 253 – 259.

26. Cited: Available at http://en.wikipedia.org/wiki/Message_Passing_Interface.

27. N. Asif, Shwetanshumala, S. Konar (2008). Photovoltaic spatial soliton pairs in two-

photon photorefractive materials. Physics Letters A, vol. 372, Issue 5, pp. 735 – 740.

28. Wikipedia. Finite difference method.

Cited: Available at http://en.wikipedia.org/wiki/Finite_difference_method.

29. Cited: http://www.mth.pdx.edu/~daescu/mth410_510s/notes_week8.pdf.

http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Split
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Finite_difference_method
http://www.mth.pdx.edu/~daescu/mth410_510s/notes_week8.pdf

