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Abstract

With the sequence of genomes of many organisms now available, the major chal-
lenge of functional genomics is ’reassembling the pieces’. A chemical reaction network
is considered to be a very simple and efficient view of a living system. The goal here
is to be able to simulate an arbitrary ensemble of hypothesized biochemical and
gene regulatory networks to predict what a cell is doing and compare them with the
observed data. Any biological network can be modeled as a system of Ordinary Dif-
ferential Equations (ODEs) mathematically. There are a number of standard ODE
solvers, such as the Euler and Runge Kutta (RK) methods. But from time to time,
these methods could be very inefficient for some special systems, called stiff sys-
tems. We consider other special ODE solvers, such as Livermore Solver for ODE
with General Sparse Jacobian Matrices (LSODES). A simulator KINSOLVER with
4 integration options (Euler, Modified Euler, RK, Adaptive RK-Fehlberg) is now
updated by adding LSODES. I also presented the theoretical and numerical work on
the stiffness of some biological circuits like qa gene cluster, lac operon and oregonator.
Performance of different methods including MATLAB ODE suite are compared too.
The efficiency of computation could be improved by a factor of 10 compared to the
standard 4th order RK method.

Index words: Ordinary Differential Equation, Biological Circuits, Stiff,
Chemical Reaction Network
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Chapter 1

Introduction

A biological system can be viewed as a chemical reaction network [3]. One of the cen-

tral problems of functional genomics then becomes the identification of biochemical

and gene regulatory networks describing how a living system functions [8]. Validating

a biological circuit depends upon our ability to simulate a particular reaction network

and to predict how the network responds to various experimental perturbations.

The study of living structures as reaction networks has utilized several well-

studied paradigms like the lac operon [9], trp operon [10, 11], GAL gene cluster [12],

qa gene cluster [13], cell cycle [14], and biological clock [15]. New simulation tools

are needed to facilitate our Computing Life project at The University of Georgia

with these systems.

In order to refine and examine the behavior of a biological circuit in a genomic

context, an efficient general purpose simulator is needed to compute life. The KIN-

SOLVER [6] is already available to simulate biological circuits represented by coupled

nonlinear differential equations, i.e. compute the time dependant concentrations of

each species from a simple interface for specifying and refining the target reaction

network. A Monte Carlo ensemble method [4] is proposed to identify the biological

circuits statistically, which consists of a probability distribution over the parameter

space of possible models. This Monte Carlo method is basically doing ”guess” the

best model thousands of times, and each time a ”guess” involves solving the ODE

once.

1
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But the problem now facing us is that sometimes it just takes too much time to

compute a fit due to various reasons, one of which is called stiffness. For a reasonably

small biological system such as biological clock for Neuropora crassa [18], it takes

almost one month to do the ensemble simulation with 40,000 sweeps through the

parameter space, hunting for a good fit.

The numerical method for solving ODE systems is a very old topic. The methods

discovered in last century are still the basis of the most effective codes[19]. There

is a certain class of problems called stiff problems, which are too expensive to solve

due to the inherent difficulty they present to conventional methods, no matter how

great an improvement in hardware becomes available. Even if you can bear the

expense, conventional methods have to take so many steps that the roundoff errors

may invalidate the solution. As a matter of fact, most stiff systems are the systems

with physical components with greatly different time constants. And most of the

biochemical and gene regulatory systems exhibit this property.

There are a number of software packages designed to address stiff problems,

such as MATLAB ODE suite (ode15s, ode23s) [20], GEAR and its descendants [21],

LSODE and its variants [22]. The KINSOLVER updated by LSODES successfully

and efficiently solves many stiff/non-stiff systems as shown in Section 4.4, and is

comparable in performance to the widely accepted commercial package MATLAB.

The performance can be improved by a factor of 10 compared to the classical 4th

order RK method. This improvement is very significant for the MC ensemble method.

In other words, the ensemble simulation will take less than one week instead of a

month.

Chapter 2 is focused on building mathematical models of the biological systems

and the numerical experiments showing the difficulty of stiff problems. Chapter 3

is devoted to the phenomenon of stiffness and why it is important and difficult in

details. The method to detect stiffness is in Chapter 4. LSODES and its performance
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are reported in Chapter 5. Future work is pointed out in Chapter 6. Chapter 7 gives

the conclusion.



Chapter 2

Biological Model

2.1 Introduction to ODE

The Ordinary Differential Equation (ODE) is a very basic and useful mathematical

model in many areas, such as economics, engineering, social science, physics, chem-

istry, biology, etc.. We focus on initial value problems (IVP), like that for a bio-

chemical reaction network. Here is the canonical first order IVP in general normal

form:

dy

dt
= f(t,y)

y(t0) = y0

where

t is the time-like independent variable,

y is the column N-vector of dependant variables,

N is the size of the vector,

d
dt

denotes differentiation with respect to t,

t0 is the initial time and y0 is the N-vector initial condition, and

f is a N-vector valued function of t and y.

2.1.1 Examples of ODEs

Some examples of ODEs follow:

• du
dt

= F (t)G(u), the Growth Equation;

4
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• d2θ
dt2

+ g
l
sin(θ) = F (t), the Pendulum Equation;

• Ld2Q
dt2

+ RdQ
dt

+ Q
C

= E(t), the LCR Oscillator Equation; and

• d2y
dt2

+ ε(y2 + 1)dy
dt

+ y = 0, the van der Pol Equation;

where t is the independent variable, usually meaning time. u, θ, Q, y are dependant

variables.

2.1.2 From high order to first order

The order of a differential equation is the order of the highest derivative in the

equation, e.g. the Growth Equation is first order while the Pendulum Equation is a

second order equation. But actually only first order ODEs are fundamental and we

can construct the high order equations in terms of multiple first order equations.

Here is one example. Suppose we have a 4th order ODE:

P (t)
d4y

dt4
+ Q(t)

d3y

dt3
+ R(t)

d2y

dt2
+ S(t)

dy

dt
= f(t)

where P (t), Q(t), R(t) and S(t) are arbitrary functions, and f(t) is determined by

the actual solution. Suppose the solution is y(t) = sin(t), then we can immediately

decide f(t):

f(t) = P (t) sin(t)−Q(t) cos(t)−R(t) sin(t) + S(t) cos(t)

We are looking for 4 differential equations to represent this 4th order equation, i.e.

we have 4 t-dependant variables: y1, y2, y3, y4. And note that:

y1 = y(t) = sin(t)

dy1

dt
= cos(t) = y2

dy2

dt
= − sin(t) = y3
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dy3

dt
= − cos(t) = y4

dy4

dt
= sin(t)

Then the complete set of ODEs is:

dy1

dt
= y2

dy2

dt
= y3

dy3

dt
= y4

dy4

dt
=

f(t)− S(t)y2 −R(t)y3 −Q(t)y4

P (t)

In other words, even if we pretend we don’t know the solution for f1 is sin(t), we’ll

find the desired solution if we are provided with the initial condition: y1(0) = 0,

y2(0) = 1, y3(t) = 0, y4(t) = −1. So they are equivalent and only 1st ODEs need to

be considered.

2.1.3 Numerical methods v.s. analytical methods

Solving ODEs is a fundamental task in numerical analysis because only a very limited

types of ODEs can be solved analytically. Most of the time, we have to refer to

approximation methods, i.e. numerical integration. The basic idea is to discretize

the IVP and approximate the exact solution. Analytical solutions are also important

for checking the accuracy of numerical solution.

2.2 How to model biological circuits

A kinetics model is a specification of reactions between hypothesized molecular par-

ticipants. The diagrammatic representation is like Figure 2.1. The species are rep-

resented as boxes. The reactions are represented by circles. The arrows indicate the
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directions of reactions. Since any living system can be viewed as a chemical reaction

network, a thorough understanding of how these models behave is important.

For one particular equation: S1 + S2 ­ S3 + S4, there are 4 species, and 2

reactions: forward and backward, indicated by ­. Suppose the forward reaction rate

is kf and backward reaction rate is kb. We want to write out the differential equation

for the species, e.g. S1. In the forward reaction the species is consumed, therefore:

−kf [S1][S2]. For the backward reaction, S1 is generated: +kb[S3][S4]. Therefore we

have:

dS1

dt
= −kf [S1][S2] + kb[S3][S4]

Similar equations for the other 3 species can be constructed. Usually the backward

reaction rate is smaller, sometimes just 0.

2.2.1 Simple hydrogen combustion model

Figure 2.1: Simple Hydrogen Combustion Model.
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Almost all of the examples in this paper relate to combustion to produce energy

(sometimes for a cell), and so to illustrate the simplest kind of combustion the simple

hydrogen combustion model as in Figure 2.1 is introduced, which is referred as Water

Model I.

The 3 reactions are:

H2 + O ­ H + OH

H + O2 ­ O + OH

H2 + OH ­ H2O + H

Based on the method introduced in the beginning of Section 2.2, we can obtain

the full multiplicative mass balance kinetics, i.e. the complete set of ODEs:

d[H2]

dt
= −kf1[H2][O] + kb1[H][OH]− kf3[H2][OH] + kb3[H2O][OH]

d[O]

dt
= −kf1[H2][O] + kb1[H][OH] + kf2[H][O2]− kb2[O][OH]

d[O2]

dt
= −kf2[H][O2] + kb2[O][OH]

d[H]

dt
= +kf1[H2][O]−kb1[H][OH]−kf2[H][O2]+kb2[O][OH]+kf3[H2][OH]−kb3[H2O][OH]

d[OH]

dt
= +kf1[H2][O]−kb1[H][OH]+kf2[H][O2]−kb2[O][OH]−kf3[H2][OH]+kb3[H2O][OH]

d[H2O]

dt
= kf3[H2][OH]− kb3[H2O][OH]

where kfi and kbi are the forward and backward reaction rates respectively for reac-

tion number i.

2.2.2 quinic acid metabolism of Neurospora crassa

The biological circuit in Figure 2.2 from [24] is a kinetic model of DNA, mRNA, and

protein involved in carbon metabolism for of Neurospora crassa [23]. This qa gene



9

Figure 2.2: quinic acid metabolism of Neurospora crassa.

cluster is a good example because of its relative simplicity and because its circuit

structure is shared with many other gene regulatory systems.

The first line of figure 2.2 is the set of inactive genes denoted by a superscript 0.

These are activated to produce the second line denoted by a superscript 1. All the

information is stored in a DNA molecule. Then segments of information are tran-

scribed into mRNA, which is denoted by a superscript r. The next step is translation

from mRNA to protein. Proteins can form structure or serve as enzymatic role in

the cell to affect the system.
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If we can identify the initial concentration of all the species and reaction rates of

this qa cluster, then we can predict how the cell takes quinic acid as a sole carbon

source, as food, and lives by solving the differential equations.

2.3 Conventional numerical methods for ODE

The numerical methods for ODEs can be categorized in many different ways: one-

step v.s. multi-step, explicit method v.s. implicit method, etc.. Here we divide them

into 2 groups: stiff methods and non-stiff methods. We talk about 3 conventional

non-stiff methods in this section, and stiff methods in Chapter 3. For many biological

circuits, they exhibit the property of stiffness and make the conventional methods

to be very inefficient.

2.3.1 Euler method

The Euler method [25] is the simplest numerical method for solving ODEs which

utilizes the first order of Taylor series expansion:

yn+1 = yn + hf(tn, yn)

where yn is the solution at time tn, and yn+1 is the estimate of the solution of time

tn+1 based on yn and slope at tn. h is the step size of discretization.

2.3.2 Runge-Kutta method

The RK method [26] is a classical higher order method. Here is one example for 4th

order RK:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = hf(tn, yn)
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k2 = hf(tn +
1

2
h, yn +

1

2
k1)

k3 = hf(tn +
1

2
h, yn +

1

2
k1)

k4 = hf(tn + h, yn + k3)

RK methods are a family of methods which are designed to approximate Taylor

series using a linear combination values of f(t, y) without requiring explicit eval-

uations of the high derivatives of f(t, y). This method needs 4 derivative function

evaluation (DFE)’s for 4th RK. We can also make this method to be adaptive, which

means the step size is adjusted according to the local error estimation and it requires

6 DFE’s per step.

2.4 Numerical experiments using MATLAB

The non-stiff numerical methods do not blow up in the presence of stiffness, but

they do become very inefficient, and possibly exceed the precision capability of a

computer. The most straightforward way to tell a system is stiff or not is measuring

the performance.

Here the MATLAB ODE suite is used for the numerical experiments for several

reasons. MATLAB is the most popular numerical package ever designed, so the test

can be accepted by most of the people in different areas. The ODE Suite has the

most complete methods implemented ever including some stiff solvers, so we can test

the performance fairly. The ’Eulermethod’ is a solver in MATLAB which is an imple-

mentation of the classical Euler method. Both ode45 and ode23 are adaptive Runge

Kutta methods, but based on Dormand-Prince [40, 41] pair and Bogacki-Shimpine

[42, 43] pair, respectively. Ode15s is a stiff solver using numerical differentiation

formulas [20] and ode23s is based on a Rosenbrock triple [20].

I tested 5 models: non-stiff/moderately stiff/stiff Water Model I’s, van der Pol

(vdp) model and the oregonator. Refer to Appendix A for description of all the
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models. And the stiffness of these models will be calculated in Chapter 3. ’-’ means

’no applicable’ and ’ !’ means ’fail to solve’. Relative error is calculated relative to the

solution of ode15s at (rtol=1E-12 and atol=1E-12). The tests are performed under

Windows XP on Pentium III (CPU 930MHz, RAM 192MB).

• Non-stiff Water Model I

Method Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

eulermethod 24 5.0E-3 40 8.9E-3
ode45 65 4.0E-2 117 7.5E-2
ode23 19 5.1E-2 90 8.1E-2
ode23s 12 6.0E-2 14 8.0E-2
ode15s 14 6.5E-2 60 1.3E-1

Table 2.1: Simulate non-stiff Water Model I using MATLAB.

From the above table, we can notice that the performance of Euler method is

the best, and RK methods can also solve the problem very efficiently. The stiff

methods are worse than conventional methods due to the fact that they need

extra computation designed for stiff systems.

• Moderately stiff Water Model I

Method Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

eulermethod 680 7.5E-2 40,000 3.8
ode45 1,593 4.8E-1 1,625 5.1E-1
ode23 523 3.4E-1 546 3.5E-1
ode23s 21 9.5E-2 397 9.2E-1
ode15s 35 8.0E-2 146 1.7E-1

Table 2.2: Simulate moderately stiff Water Model I using MATLAB.

When it comes to low accuracy, all methods perform pretty similarly to each

other. The Euler method is even a little better. For high accuracy, the stiff
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solver ode15s is preferred, which is much better than the Euler method. This

is reasonable because Euler method has lower order of accuracy.

• Stiff Water Model I

Method Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

eulermethod 499,800 5.6E+1 550,000 6.2E+1
ode45 ! > 3E + 2 ! > 3E + 2
ode23 ! > 3E + 2 ! > 3E + 2
ode23s 28 9.0E-2 2,346 5.3
ode15s 50 6.9E-2 282 2.6E-1

Table 2.3: Simulate stiff Water Model I using MATLAB.

This is a very challenging stiff model. The Euler method is able to find the

solution very expensively, while the other 2 conventional methods fail to find

the solution. The stiff solver ode15s is 100 to 1000 faster than the Euler method.

• vdp1000 Model

Method Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

eulermethod ! > 3E + 2 ! > 3E + 2
ode45 ! > 3E + 2 ! > 3E + 2
ode23 ! > 3E + 2 ! > 3E + 2
ode23s 744 1.3 65,536 1.8E+2
ode15s 927 1.2 4,056 4.1

Table 2.4: Simulate vdp1000 model using MATLAB.

This is a classical stiff problem, and all of the conventional methods fail as

expected. The stiff solver ode15s again performs better than ode23s at high

accuracy, and almost the same as ode23s at low accuracy, which proves the

statement in [20] that we shall use ode23s for low accuracy and use ode15s for

high accuracy.
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• Oregonator Model

Method Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

eulermethod 100,000 9.8 ! > 3E + 2
ode45 46,073 1.5E+1 65,536 7.8E+1
ode23 16,563 1.0E+1 ! > 3E + 2
ode23s 7,127 1.3E+1 37,571 7.2E+1
ode15s 3,331 4.3 13,919 1.4E+1

Table 2.5: Simulate Oregonator model using MATLAB.

This is an oscillatory system which exhibits some stiffness as clarified in Section

4.3. Fast oscillation also makes the system difficult to solve. For low accuracy,

the Euler method is pretty good, although not as good as ode15s due to stiff-

ness. For high accuracy, ode15 again dominates the performance.

As shown in the tables above, the performance of the conventional methods are

very inefficient compared to the stiff methods on stiff problems, though they are

better when it comes to the non-stiff problem due to the fact that stiff methods are

more expensive computationally. The stiff solver ode15s is the best as it outperformed

the ode23s in most of the cases. Now more careful consideration is demanded to

detect and solve stiff systems.



Chapter 3

The Notion of Stiffness

3.1 What is stiff

Before we analyze general stiff systems and give a formal description of stiffness, let

us have a look at a simple example. A typical stiff differential equation can be given

by:

dy

dt
= −103[y − exp(−t)]− exp(−t)

y(0) = 0

where y is a scalar for simplicity. The exact solution is:

y(t) = exp(−t)− exp(−103t)

which consists of two components: exp(−t) and exp(−103t). Obviously, exp(−103t)

varies more rapidly than exp(−t). This system consists of two normal modes: τ1 = 1

and τ2 = 10−3. In order to reach equilibrium, we have to consider the time scale τ1,

while we also have to consider τ2 for the sake of step size of time. Apparently, if we

make the step size too big, it will invalidate the conventional numerical methods.

Hence the step size has to be small, about the same scale as τ2. But the total

integration time needed to reach equilibrium is much bigger than the step size. As

a consequence, we have to wait an unbearably long time.

Let us consider the stiffness more generally in the IVP in general form in Section

2.1. Because each time we make an estimate to approximate the next step yn+1, we

15
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make inevitable errors, we must consider the behavior of solutions nearby the exact

one. If we make no further errors, then we just follow this new integral curve, and

the resulting error depends on this local error. This is sometimes called the Butterfly

Effect. Here is one example:

dy

dt
= A(y − p(t)) +

dp(t)

dt

y(0) = v

where A is a constant. The exact solution is:

y(t) = (v − p(0)) exp(At) + p(t)

If A is large and positive, the solution curves diverge and we call it unstable. This

kind of problem is difficult to solve for any step-by-step numerical methods in general.

If A is small in magnitude, the curves are more or less parallel to the exact solution,

because the first term doesn’t contribute very much to the numerical estimation

if the time span isn’t unreasonably huge. We call this class of problem as neutrally

stable, and they are easy to solve by conventional methods. If A is negative and large

in magnitude, all the solution curves are identical to the particular solution p(x).

This is called super-stable after a short initial transient depending on the magnitude

of A. Because the first exponential term is essentially 0.

The behavior of the solutions near a particular solution g(t) can be studied by

Taylor series expansion:

dy

dt
= J(t,g(t))(y − g(t)) + f(x,g(t))

= J(t,g(t))(y − g(t)) +
dg(t)

dt
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where the Jacobian matrix J has its (i, j) entry as the partial derivative of the ith

component of f with respect to the jth component of y:

J =




∂f1

∂y1

∂f1

∂y2
. . . ∂f1

∂yn

∂f2

∂y1

∂f2

∂y2
. . . ∂f2

∂yn

...
...

...

∂fn

∂y1

∂fn

∂y2
. . . ∂fn

∂yn




This is actually the general vector form of the previous scalar example, and can

be uncoupled into a set of equations of scalar form with the eigenvalues of J to be

A’s.

A formal definition of stiffness was given by L. F. Shampine and C. W. Gear [28]:

”By a stiff problem we mean one for which no solution component is

unstable (no eigenvalue has a real part which is at all large and positive)

and at least some component is very stable (at least one eigenvalue has a

real part which is large and negative). Further, we will not call a problem

stiff unless its solution is slowly varying with respect to the most negative

real part of the eigenvalues.”

In other words, stiffness is defined in relation to the most negative mode and the

time span we are interested in.

3.2 How stiffness makes difference

Let’s try to integrate the example in Section 3.1 by the Euler method, which is

yn+1 = yn +hfn = yn +hdyn

dt
. Compare this with the general Taylor series expansion:

yn+1 = yn + h
dyn

dt
+

1

2
h2d2yn

dt2
+ O(h3),

we can get that the local truncation error we make here:

ε = |1
2
h2d2yn

dt2
|.
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At the same time, pretend we know the exact solution and take derivatives twice:

d2y(t)

dt2
= (v − p(0))A2 exp(At) +

d2p(t)

dt2

Therefore:

h =

(
2ε

|(v − p(0))A2 exp(At) + d2p(t)
dt2

|

) 1
2

.

When t is very small and |d2p(t)
dt2

| is also very small compared to |A|:

h
.
=

(
2ε

|(v − p(0))A2|
) 1

2

.

When t is large, we have:

h
.
=

(
2ε

|d2p(t)
dt2

|

) 1
2

where the exponential part vanishes for negative A. So, initially, the step size is

limited by the local truncation error and the eigenvalue A. After the initial transient,

the step size is independent of the A and eventually becomes large as long as it can

satisfy the local error estimate ε for the adaptive method. There are two main factors

affecting the size of the step: accuracy and stability.

3.2.1 Accuracy and stability

Accuracy refers to the smallness of the local error, and stability refers to errors not

growing in subsequent steps. We shall consider the ”test equation”: dy
dt

= Ay. We

want to identify the absolute stable area, in other words what is the criterion for A

and h.

• For the Euler method, the corresponding formula is:

yn+1 = yn + Ahyn

= (1 + Ah)yn.
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Suppose {yn} (n = 0, 1, 2 . . .) is the solution and {yn+εn} is the corresponding

error introduced in each step. Also assume ε0 6= 0 and that there is no further

error introduced other than this initial error. Then we have:

yn+1 + εn+1 = (1 + Ah)(yn + εn).

The difference between the previous 2 equations gives us:

εn+1 = (1 + Ah)εn.

Then recursively, we obtain:

εn = ε0(1 + Ah)n, n = 0, 1, 2 . . . .

This tells us that what is the global error after the nth step due to the only

error at the initial point. The criterion for absolute stable area is evidently:

|1 + Ah| ≤ 1,

in other words, |εn+1| ≤ |εn|. If |1 + Ah| > 1, then the error will be amplified

and eventually invalidate the solution. The absolute stable area is the area of

a circle with radius 1 centered at (−1, 0) in the complex surface of Ah as A

shown in Figure 3.1. Suppose A = −18, h ≤ 0.1, then, −1.8 ≤ Ah ≤ 0 satisfies

the criterion. If the equilibrium time is very big compared to 0.1, the method

will just seem very inefficient because we have to maintain this small h at any

integration step. As one extreme example, if A = −1016, we have to make h

at the order of 10−16 for this Euler method, which could blow out the limit of

any computer’s precision.

• For 4th order RK method, we can apply the test equation dy
dt

= Ay too:

yn+1 = [1 + Ah +
1

2
(Ah)2 +

1

6
(Ah)3 +

1

24
(Ah)4]yn,
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and the corresponding recursive relationship for error is:

εn+1 = [1 + Ah +
1

2
(Ah)2 +

1

6
(Ah)3 +

1

24
(Ah)4]εn.

Therefore the absolute stable area for 4th order RK method is:

|1 + Ah +
1

2
(Ah)2 +

1

6
(Ah)3 +

1

24
(Ah)4]| ≤ 1,

as B shown in Figure 3.1. So, for a stiff problem, the stability restriction dom-

inates the step size outside the transient region instead of the local truncation

error control.

Figure 3.1: Absolute Stability Region for Euler and RK 4th methods.

3.3 Monte Carlo ensemble method and stiffness

The goal of this computing life project is to identify the reaction networks of a living

cell’s full biochemical and gene regulatory circuitry [8]. A Monte Carlo ensemble
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method [4] was proposed, which basically guesses the network thousands of times

and gets a distribution of models that fit the data. For each ”guess”, the MC method

executes the kinetic solver once. But it takes rather long time to ”walk” through the

parameter space, e. g. about 4 weeks for the biological clock model as in Appendix

A for 40,000 sweeps using RK 4th method. The reaction rates and the concentration

of species are at very different order of magnitude for most of the actual biological

systems, which means stiffness is a very important issue. If we can improve the

kinetic solver by a factor of 10, then the time needed for the previous case will be

less than a couple of days.

3.4 Evolutionary Algorithm method and stiffness

Evolutionary computation (EC) is a very active research area nowadays, which draws

inspiration from the process of natural selection. Darwin’s theory of evolution, nat-

ural selection and survival of the fittest, offers an explanation of the biological

diversity and its underlying mechanism. EC methods have been used in a wide range

of areas, such as electrical engineering, mechanical design, economics, etc. Amazingly,

EC also benefits biological science a lot in return.

I have implemented Evolution Strategy (ES), which is one member of the family

of evolutionary algorithm (EA), to this chemical reaction network problem. The

fitness function is the comparison of the time dependent results out of KINSOLVER

with the experimental data for each individual in the population. For more details,

you can refer to Appendix B.

Like Monte Carlo ensemble method, ES executes KINSOLVER thousands of

times searching for the best solutions. Stiffness could be a big problem again. Any

small improvement for the kinetic solver will benefit the overall performance of ES

method a lot.
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Measure Stiffness

4.1 Theoretical analysis of some stiff systems

To analyze the stiffness of the system, we need to come up with a dimensionless

index of stiffness for every system:

S =
T

τ

where T is the time we are interested in, and τ = − 1
Re(λ)

, and λ is the eigenvalue with

the largest negative real part. Actually τ varies along the solution. If S is larger than

2000, we say this is stiff system. If it is comparable to 10, we say it’s not stiff. All

the values between are not well-defined. As mentioned before, stiffness doesn’t mean

it fails the conventional methods, it just makes the conventional methods inefficient.

S just tells us how severe the situation is.

Let’s have a look at some actual systems to analyze the stiffness analytically.

• van del Pol (vdp) model

The ODE form of the vdp model can be written as:

f1 =
dy1

dt
= y2

f2 =
dy2

dt
= α(1− y2

1)y2 − y1

Then the Jacobian matrix J is:

J =




∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2


 =


 0 1

2αy1y2 α− αy2
1




22
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Also, suppose the initial condition of the system is: y1 = 2, y2 = 0.

If α = 1000, i.e. vdp1000 model has:

J =


 0 1

−1 −3000




Using the standard procedure to obtain the eigenvalues of the matrix, i.e.

det(J− λI) = 0:

det


 −λ 1

−1 −3000− λ


 = 0,

yields:

λ2 + 3000λ + 1 = 0

with:

λ1
.
= 0, λ2

.
= −3000.

Obviously, λ2 is a very negative value, which indicates that this system could

be very stiff. Meanwhile, the time span that we are interested in is the period

of one limit cycle, which is about 1500. Armed with the dimensionless index

of stiffness defined above, we get:

S
.
= 4500000,

which is a large number. As you can observe in Section 2.4, the conventional

methods perform very badly on this model.

If α = 1, i.e. vdp1 model:

J =


 0 1

−1 −3




Then, after similar calculations, we get the eigenvalues:

λ1
.
= −0.38, λ2

.
= −2.62.
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This is a very small number, and the period is about 6.7, therefore:

S
.
= 17.54,

It is far below the stiffness bound 2000.

• Oregonator Model

Please refer to Appendix A for the details of the model. This is a pretty small

system again, with 3 species, so we can analytically manipulate the Jacobian

matrix:

J =




−y
ε

+ 1
ε
− 2x

ε
q
ε
− x

ε
0

−y
δ

− q
δ
− x

δ
2f

δ

1 0 −1




,

of which the 3 eigenvalues are 100, 0.26, -0.76. The period is about 18, and

the index of stiffness is about 13.7. The first impression of the system is that

it is not a stiff system. But keep in mind, during the course of the interaction,

the concentrations of the species vary dramatically, which in turn changes the

Jacobian matrix. In other words, a system could be stiff in some region and

not stiff in the others. More careful and general numerical effort is shown in

the next section.

4.2 Stiffness detector

A stiffness detector is implemented using the idea above. Let’s consider 10 models:

3 Water Model I’s, QA-A, QA-Tr.A, QA-Tr.B, lac operon, oregonator, repressilator

and the biological clock model. Please refer to Appendix A for the description of all

the models.
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• Non-stiff Water Model I

Figure 4.1: Stiffness of non-stiff Water Model I.

The maximum value is about 45.3, which is comparable to 10. Therefore, we

can consider this system to be non-stiff. The performance of the MATLAB

ODE suite also supports this conclusion as in Section 2.4.

• Moderately stiff Water Model I

Figure 4.2: Stiffness of moderately stiff Water Model I.
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The maximum stiffness is around 1308, which is not well defined. We call it

moderately stiff. The performance of stiff methods are a little bit better than

the conventional methods.

• Stiff Water Model I

Figure 4.3: Stiffness of stiff Water Model I.

This is a very stiff example, in which the maximum index of stiffness is around

1E+6, and this makes conventional methods perform very badly.
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• QA-Tr.B

Figure 4.4: Stiffness of QA-Tr.B.

This qa gene cluster model has 39 participant species and 45 reactions. The

maximum index of stiffness is around 2500. This system is stiff around the

particular region, i.e. 10 to 30 seconds.

• QA-A

Figure 4.5: Stiffness of QA-A.
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After 50 seconds, this system exhibits stiffness, with its 37 participant species

and 43 reactions. This is system is not as stiff as the previous one, QA-Tr.B,

during certain region, but is stiff a greater fraction of the time.

• QA-Tr.A

Figure 4.6: Stiffness of QA-Tr.A.

QA-Tr.A has 37 species and 43 reactions. This is obviously a very stiff system,

with a peak around 8000, and saturates around 6000.

• lac operon

The lac operon in escherichia coli [9] is one of the first biological circuits

explored in detail. The system has 64 species and 69 reactions. The figure

below shows that the increasing of the stiffness as time increases will make

the conventional methods perfrom worse and worse. The performance of the

stiff solver could be better by a factor of 100 to 200 compared to the 4thorder

RK method, while it is improved only by a factor of 10 for the qa gene cluster

models.
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Figure 4.7: Stiffness of lac operon.

• Oregonator

Figure 4.8: Stiffness of oregonator.

This is another famous oscillatory [39] system which also exhibits stiffness.

And again, the performance could almost be improved by a factor of 4.
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• Repressilator

Figure 4.9: Stiffness of repressilator.

Another famous oscillatory system [44] is not very stiff, since the maximum

index of stiffness is smaller than 2000. And as we’ll see that the stiff method

didn’t improve, instead it’s even worse than the Runge Kutta method.

• Biological clock Model

Figure 4.10: Stiffness of biological clock.
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This system is even less stiff than the repressilator model, with the peak being

around 210. We’ll see the similar performance test as the previous model.



Chapter 5

Solutions for Stiff Systems

5.1 Numerical methods for stiff ODEs

5.1.1 Backward Euler Method

Here we introduce a stiff method called the backward Euler method which is a

one-step method:

yn+1 = yn + hf(tn+1, yn+1).

This is called an implicit method. If any component of the update or intermediate

solution vectors appears both as the update on the left hand side of the equation

describing the numerical method and the the right hand side as a function evaluation,

the such method is said to be implicit, otherwise it is explicit.

If we use the test equation dy
dt

= Ay again, we get:

yn+1 = yn + Ahyn+1

yn+1 =
1

1− Ah
yn

Then:

yn+1 + εn+1 =
1

1− Ah
(yn + εn).

And the difference between the previous 2 equations gives us:

εn+1 =
1

1− Ah
εn.

32
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Then recursively, we obtain:

εn = ε0
1

(1− Ah)n
, n = 0, 1, 2 . . . .

So, the propagated error is damped whenever | 1
1−Ah

| ≤ 1, which means the whole

left half plane is an absolute stable region. This indicates that the step size is not

limited too much by the stability issue as the conventional Euler method. As you

may notice in the backward Euler equation, the yn+1 is used in the right hand side,

and this kind of equation is called implicit. Cleve Moler [33] has a very interesting

demonstration for how implicit methods work:

”Imagine you are returning from a hike in the mountain. You are in

a narrow canyon with steep walls on either side. An explicit algorithm

would sample the local gradient to find the descend direction. But fol-

lowing the gradient on either side of the trail will send you bouncing

back and forth from wall to wall, . . . You will eventually get home, but

it will be long after dark before you arrive. An implicit algorithm would

have you keep your eyes on the trail and anticipate where each step is

taking you.”

5.1.2 Backward Differential Formula Method (BDF)

This class of multi-step formulas [25] which are highly effective in solving stiff prob-

lems are based on numerical differentiation. We interpolate the previously computed

solution values yn, yn−1, . . . , yn−p as well as the new one yn+1 by a polynomial P (t).

The derivative of the solution at tn+1 is approximated by P (tn+1). The approxima-

tion is related to the differential equation by insisting that it satisfies the differential

equation at tn+1:

dP (tn+1)

dt
= f(tn+1, P (tn+1)) = f(tn+1, yn+1)
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Substituting for dP (tn+1)
dt

, we obtain the family of BDF methods:

α0yn+1 + α1yn + . . . + αpyn+1−p = hf(tn+1, yn+1),

which is also called Gear’s formulas because it was popularized by Gear . It needs

Newton iteration to solve the nonlinear algebraic equations for yn+1 which requires

approximating partial derivatives and solving systems of linear equations. The fol-

lowing is the second order BDF:

yn+1 =
4

3
yn − 1

3
yn−1 +

2

3
fn+1.

Let us consider the first order BDF which is also known as the backward Euler

method. The most difficult part is to compute yn+1 needed for interpolation. The

value of yn+1 can be computed iteratively as:

yk+1
n+1 = yn + hfn+1(tn+1, y

k
n+1), k = 0, 1, 2 . . .

But this computation is very expensive. Instead, a variation of Newton’s method is

considered:

F (yn+1) = yn+1 − yn − hfn+1 = 0,

which leads to:

yk+1
n+1 = yk

n+1 −
F (yk

n+1)

F ′(yk
n+1)

, k = 0, 1, 2 . . .

where:

F ′(yk
n+1) = I − hbJ(tn+1, y

k
n+1),

h is the step size, b is 1 for the first order BDF (2
3

for the second order BDF), I

is the identity matrix of dimension same as the number of species in the system.

And J(tn+1, y
k
n+1) is the Jacobian matrix same as define in Section 3.1. Therefore,

we find:

yk+1
n+1 = yk

n+1 −
F (yk

n+1)

I − hbJ(tn+1, yk
n+1)

, k = 0, 1, 2 . . .
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For convergence, we rewrite it as:

M = yk
n+1 − yk+1

n+1 =
F (yk

n+1)

I − hbJ(tn+1, yk
n+1)

,

then,

(I − hbJ(tn+1, y
k
n+1)M = F (yk

n+1)

is used for computing M for the sake of matrix inversion operation, although it’s

still costly as explained in [29]. The values of the vector M are substituted back

in the equation to complete one of the k iterations of the Newton’s method. The

Jacobian matrix J usually varies very slowly, so for a number of time steps, only one

evaluation of J is needed to save time.

5.2 Numerical solvers for Stiff System

The first notion of stiffness and the first formal methodology for solving stiff ODEs

was reported by Curtiss and Hirschelder [34]. They used the term stiff for ODEs

because the corresponding servomechanism felt stiff.

C. W. Gear developed a software package that used BDF called DIFSUB [35].

He then revised it to the new code called STIFF in 1969. R. J. Gelinas and A.

C. Hindmarsh rewrote STIFF and called the new package GEAR [21] at Lawrence

Livermore Natinal Laboratory. Several variants of GEAR has been developed to take

advantage of different problem structures and/or computer structures.

The MATLAB ODE suite by L. F. Shampine [20] has 2 stiff solvers: ode15s and

ode23s. The solver ode15s uses numerical differentiation formula (NDF) while ode23s

uses linearly implicit formula which is a modified Rosenbrock triple. Both of them

utilize the relatively fast built-in array operations and linear algebra implemented

in MATLAB. These methods are platform dependent though.

G. D. Byrne and A. C. Hindmarsh developed a package called LSODE [22] which

uses the LINPACK linear algebra packages, also LSODE treats the Jacobian matrix
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as either dense or banded.There are many variants of it, such as LSODA [36], which

was written by Petzold, with a novel feature to switch between stiff (BDF) and

non-stiff (Adams) methods.

LSODES [5] is another variant of LSODE, which uses the components of the Yale

Sparse Matrix Package (YSMP) [30, 31] to take advantage of the sparse Jacobian

matrix. This package is incorporated into the KINSOLVER package now.

There are still a lot of other stiff solvers. The above list doesn’t mean the unnamed

solvers are not worth trying. You can refer to the general survey paper [32] for more

possibilities.

5.3 Quasi-Static Approximation Method

In a number of areas, especially in biochemical kinetics, we can modify the system

to remove the stiffness. The basic idea is that the physical considerations allow some

components to be recognized as changing on time scales much shorter than those

of other components, in other words, we can divide the system into several sub-

systems. Imagine we have 2 reactions: one is reacting at the speed of ”flying” while

the other one is reacting at the speed of ”walking”. If we are just interested in the

very short region of time span, we can simply take the slow reaction as a constant.

Such approximations could lead to several sets of non-stiff ODEs coupled together.

But it is just too important to ignore the fact that the results of the changed model

could be different from the original model as noted in [37].

As an example, the biological clock of N. crassa as shown in Figure A.2, the

WC-2 protein is in 5-fold molar excess over FRQ and WC-1 protein in the nucleus

[38], and hence wc-2 and its products can be treated approximately as constants.

The total parameter space can be reduced further by some other simplification of
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the model. This reduces the stiffness, and at the same time makes the fixed point

analysis [18] possible.



Chapter 6

Livermore Solver for ODEs with General Sparse Jacobian Matrices

(LSODES)

6.1 Introduction to LSODES

LSODES was written by L. F. Shampine and A. H. Sherman [5]. This package uses

Backward Differential Formula (BDF) and treats the Jacobian matrix as a general

sparse matrix. As mentioned in Section 4.1, the most expensive part is that we need

to solve linear systems, which are handled by Yale Sparse Matrix Package (YSMP)

in LSODES instead of the brute force Newton iteration. The general form of the

problem is:

PM = F, P = I − hbJ,

where M is the correction vector which is the difference between the two consecutive

iterations, I is an identity matrix, h is the step size, b is a scalar depending on the

current method order and J is the Jacobian matrix. The solution can be expressed

in the following several phases:

1. Determine the sparsity structure either by the user directly or by calls to the

f routine in the package.

2. Determine the pivot order to maintain maximum sparsity by ODRV module

of YSMP.

3. Symbolic LU factorization of the matrix P by CDRV module of YSMP.

38
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4. Construction of J .

5. Construction of P = I − hbJ .

6. Numerical LU factorization of P by CDRV module of YSMP.

7. Solution of PM = F .

For more detailed discussion, please refer to [5].

6.2 LSODES in KINSOLVER

LSODES is the 6th integration option in KINSOLVER, please refer to [6] or

http://gene.genetics.uga.edu/STC about how to use the KINSOLVER and other 5

options.

LSODES is written in Fortran and it specifies the ODE’s in the source code. After

the biological circuit is specified (i. e. the initial concentrations, the rate constants)

in the web page interface, the back-end KINSOLVER starts to manipulate the input

file via Java Servlet. If the integration option is 6, which means LSODES, the corre-

sponding Fortran source code for this particular biological circuit is generated. Then

the Fortran code is compiled and executed, with output plotted by gnuplot. Finally,

the figure is returned to the web page.

6.3 Numerical experiments using LSODES

In this section, 8 models are tested. All of them have been measured for their stiffness

in Section 4.3. The conventional methods’ results for the 3 qa gene cluster models and

la operon were taken from [7]. Relative error is computed relative to the solutions

of adaptive RK method using 100,000 time steps. The tests are performed under

SunOS 5.8 on SUNFIRE 250G (dual CPU 1.12GHz each, RAM 8GB).
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• Non-stiff Water Model I

In order to get non-trivial measurements, I set the final time to be 10000

instead of 1. The Euler method is the best because this system is very simple,

and other methods are more expensive computationally. Adaptive RK method

failed to solve the problem because the implementation of this method used

static memory allocation which means long time integration requires too large

arrays.

Method No. of DFEs Relative Error < 1E-6
Steps Time(s)

Euler 1 22,641 0.06
RK4 4 16,500 0.19

Adaptive RK 6 ! !
LSODES - 106 0.08

Table 6.1: Time required to simulate non-stiff Water Model I.

• QA-Tr.B

Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 1,000 0.02 100,00,000 !
RK4 4 700 0.07 3,163 0.31

Adaptive RK 6 651 0.12 678 0.12
LSODES - 37 0.01 229 0.03

Table 6.2: Time required to simulate QA-Tr.B of qa gene cluster.

Euler method is better than other conventional methods at low accuracy, how-

ever the Euler method is low order integration method, it is not able to solve

the problem at high accuracy within a reasonable amount of time. QA-Tr.B

is stiff within a certain region, which makes LSODES better than all other

methods.
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• QA-A

Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 2,900 0.07 100,00,000 !
RK4 4 800 0.08 3,163 0.30

Adaptive RK 6 634 0.12 736 0.12
LSODES - 39 0.01 180 0.03

Table 6.3: Time required to simulate QA-A of qa gene cluster.

At low accuracy, Euler method is better than other conventional methods

again, while it is bad at high accuracy for the same reason as in the previous

model. Because QA-A is stiff for most of the time, it is considered stiffer than

QA-Tr.B. The LSODES is able to improve the performance much more than

other methods.

• QA-Tr.A

Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 3,300 0.08 100,00,000 !
RK4 4 2,300 0.22 3,163 0.30

Adaptive RK 6 1,335 0.23 2013 0.32
LSODES - 25 0.01 197 0.03

Table 6.4: Time required to simulate QA-Tr.A of qa gene cluster.

At low accuracy, LSODES is about 8 times better than the best conventional

method: the Euler method. At high accuracy, LSODES is about 10 times better

than the RK4 method. The performance of LSODES method for the above 3

qa models is almost the same, regardless of the stiffness, and the improvement

is about a factor of 10.
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Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 103,000 3.67 1E08 !
RK4 4 73,300 11.20 73,300 11.20

Adaptive RK 6 - - 30,339 7.64
LSODES - 20 0.02 102 0.05

Table 6.5: Time required to simulate lac operon.

• lac operon

The lac operon is a very stiff system. The performance of LSODES is almost

at the same magnitude as the previous 3 qa models. This stiff system makes

the conventional methods very inefficient. The improvement by LSODES could

be around a factor of 200! The ’-’ for the row of ’Adaptive RK’ indicates this

model can not be solved at low accuracy using Adaptive RK method.

• Oregonator

Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 100,000 0.71 1E+8 !
RK4 4 11,000 0.31 25,000 0.70

Adaptive RK 6 9,038 1.01 15,492 1.24
LSODES - 3,264 0.10 6,701 0.19

Table 6.6: Time required to simulate Oregonator model.

This is a stiff and oscillatory system. Usually Euler method is not good for an

oscillatory system because an oscillatory system requires rather high accuracy.

So in this case a higher order method is preferred. At both low and high

accuracy, the method LSODES is better than RK4 method by a factor of 3.
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• Repressilator

Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 30,000 0.25 1E+8 !
RK4 4 5,000 0.07 8,000 0.28

Adaptive RK 6 - - 4,487 0.52
LSODES - 465 0.37 1,708 0.51

Table 6.7: Time required to simulate repressilator model.

The Repressilator is not a stiff system according to the stiffness detection in

Section 4.3. Numerical experiments here also proved this. The Euler method is

better than LSODES at low accuracy, although the Euler method is not able

to solver the system at high accuracy. The RK4 method is the best, because

repressilator is again an oscillatory system which means the Euler method

didn’t outperform RK4.

• Biological Clock for N. crassa

Method No. of DFEs Relative Error < 1E-2 Relative Error < 1E-6
Steps Time(s) Steps Time(s)

Euler 1 10,000 0.14 1E+8 !
RK4 4 200 0.01 500 0.03

Adaptive RK 6 213 0.05 639 0.09
LSODES - 481 0.02 856 0.05

Table 6.8: Time required to simulate biological clock for N. crassa.

The Biological clock is not stiff again as shown in Section 4.3. These measure-

ments here are similar to Repressilator: LSODES is not better than 4th order

RK method due to the extra computation for the algebraic equations.
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6.4 ode15s and LSODES

The ode15s method is the best ODE solver from MATLAB ODE suite as concluded

in Section 2.4. We shall compare ode15s with the method LSODES which is used

in the KINSOLVER. Because they are running on different machines: MATLAB is

running under Windows XP on Pentium III (CPU 930MHz, RAM 192MB), and

KINSOLVER is running under SunOS 5.8 on SUNFIRE 250G (dual CPU 1.12GHz

each, RAM 8GB). I used Euler method to solve the simple Water Model I to get a

ratio of the 2 machines. The Unix machine is about 50 times faster than the Windows

machine.

Model Relative Error < 1E-2 Relative Error < 1E-6
LSODES (s) ode15s (s) LSODES (s) ode15s (s)

Oregonator 0.10(5) 4.28 0.19(9.5) 14
vdp1000 0.035(1.75) 1.16 0.06(3) 4.12

Table 6.9: Comparison of LSODES and ode15s from MALAB ODE suite.

The number in the parenthesis is the converted time value by a factor of 50 to be

compared with the ode15s on the Windows machine. At low accuracy, ode15s is a

little bit better than LSODES, while at high accuracy, LSODES is a little bit better

than ode15s. Both of the methods have almost the same performance.



Chapter 7

Future Work

LSODES has been identified as a very efficient method to solve stiff problems. It

is only contained in the KINSOLVER at this stage. We shall certainly incorporate

it into the Monte Carlo ensemble method [4], which is going to be used for various

biological circuits, to utilize the high efficiency of LSODES. For the qa gene cluster

model, we can improve about a factor of 10, in other words, the running time will

be reduced from one month to about several days.
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Chapter 8

Conclusion

Numerical solution of system of ODEs, which is the mathematical representation of

biochemical and gene regulatory networks, is a very interesting topic. Stiffness of

the ODE is one of the reasons to make conventional methods very inefficient. Many

actual biological systems present stiffness more or less.

Theoretical analysis of stiff/non-stiff models and stiff/non-stiff methods are done.

A dimensionless index of stiffness is defined and a stiffness detector is implemented.

The stiffness detection of various models are compatible with the numerical experi-

ments of MATLAB ODE suite and KINSOLVER. ode15s is identified to be the best

stiff solver among the MATLAB ODE suite. LSODES is much better than other

integration options in KINSOLVER when the problem is stiff, though it is a little

bit worse when it comes to non-stiff systems. The performance of LSODES and

ode15s are comparable to each other.

All the source code and input files for KINSOLVER and MATLAB ODE suite

are available at http://www.physast.uga.edu/ yihyu/stiff.
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Appendix A

Description of the models

The input files for all the models are available at http://www.physast.uga.edu/ yihyu/stiff.

• Water Model I

There are 3 models used: non-stiff, moderately stiff and stiff. The diagrammatic

representation is shown in Figure 2.1. For non-stiff model, the setup of reaction

rates are:

kf1 = 1.3, kb1 = 1.2, kf2 = 1.4, kb2 = 0.6, kf3 = 1.0, kb3 = 1.3,

and the initial concentration of the species are:

[H2] = 10, [O2] = 3, [O] = 4, [H] = 5, [OH] = 6, [H2O] = 7.

For moderately stiff model, the only change is that initial concentration of [H2]

is 10000. For stiff model, besides initial concentration of [H2] becomes 10000,

the kf1 is changed to be 1000.3 as well.

• van del Pol (vdp) model

vdp system is a nonlinear oscillator. This is a classical stiff problem in the

field of electrical engineering, which was first reported in the September 1927

issue of Nature by Balthazar van der Pol and his colleague van der Mark. The

mathematical representation of this system is:

dy1

dt
= y2
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dy2

dt
= α(1− y2

1)y2 − y1

The stiffness can be controlled by changing the parameter α. I used α = 1

(vdp1) for non-stiff case, and α = 1000 (vdp1000) for stiff case, with the same

initial conditions: y1 = 2 and y2 = 0.

• qa gene cluster model

3 qa gene cluster models are discussed: QA-Tr.B with 39 species and 45 reac-

tions, QA-A with 37 species and 43 reactions and QA-Tr.A with 37 species

and 43 reactions [6].

• la operon model

lac operon in escherichia coli [9] is one of the first biological circuit explored

in detail, which has 64 species and 69 reactions [6].

• Oregonator model

This oscillatory reaction network of oregonator involves x = [hbrO2], y = [Br−]

and z = [Ce4+], which can be approximated by its dimensionless form [39]:

ε
dx

dt
= qy − xy + x(1− x)

δ
dy

dt
= −qy − xy + 2fz

dz

dt
= x− z

where we set ε = δ = 0.01, q = 0.005, and f = 0.3.

• Repressilator model

Figure A.1 is taken from [7]. The lacI gene product represses the tetR gene,

whose gene product in turn represses the cI gne, whose gene product closes

the loop by repressing the lacI gene [44].
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Figure A.1: Biological circuit of the repressilator.

• Biological clock for Neurospora crassa model

As in Figure A.2 from [18], the biological clock of Neurospora crassa is another

important and interesting example. This system involves 16 species and 25

reactions. But the concentrations of some species are much high than others,

e.g. the gene of wc21 is much higher than gene of frq1, which could lead to

very serious stiff problem. The other method we can use is called quasi-static

approximation which is discussed in Section 4.5. We can divide the system

into 2 different subsystems, and take some of the species to be just constant

since they barely change in the time span of other species. If we input the
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parameters carefully, we can make the system to oscillate at the period of 24

hours., which is called circadian oscillation.

Figure A.2: Biological Clock of Neurospora crassa.



Appendix B

Solve Chemical Reaction Network Using Evolution Strategy

B.1 Introduction

An efficient general purpose simulator, KINSOLVER, from [6] is already available to

simulate chemical reaction network, i.e. compute the time dependent concentration

of each species. This simulator is appropriate only for deterministic models when

we know all the reaction parameters. The reality is that most of the parameters are

unknown, such as the reaction rates. My idea is to use Evolution Strategy (ES) to

solve this problem.

As a very first trial, I only consider the simple Hydrogen Combustion Model I.

B.2 Evolution Strategy (ES)

The family of evolutionary algorithm (EA) includes genetic algorithm (GA) [45],

evolution strategy (ES) [46], evolutionary programming (EP) [47] [48], genetic pro-

gramming (GP) [49], etc. The common idea behind all of the variants of EA is that:

given a population of individuals (or potential solutions to an optimization problem),

the environmental pressure causes natural selection, which causes a rise in the fitness

of the population. The components of any typical EA are:

• Representation of individuals

• Evaluation function or fitness function for selecting a solution
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• Population

• Parent selection mechanism

• Variation operators (recombination and mutation)

• Survivor selection mechanism

• Initialization procedure

• Termination criterion

The first step is usually to find an efficient way to represent a solution or indi-

vidual. For each particular EA, it has its own representation. For example, GA usu-

ally involves using binary vector to represent individuals, while ES uses real-valued

vectors. The most crucial component is the fitness function, which is a quality func-

tion for a proposed solution needs to be either maximized or minimized. Then we

shall maintain a population and each individual in the population is associated with a

fitness value. Iteration starts after initialization. For each iteration, a certain number

of parents are selected, which are used to generate a number of children using some

specific variation operators. For binary vector representation, the simplest operator

we can use is to flip one single bit of the vector that is the representation of one

particular individual solution. The termination criterion could be the total itera-

tions you want to spend, or total computing time. A more useful scheme is probably

to stop the program if the fitness of the population doesn’t improve over a certain

number of iterations.

Figure B.1 shows the performance of 3 general methods from a global perspective:

random search, problem tailored method and EA. For any problem, random search

is always the worst, while EA clearly outperforms random methods. But a problem

tailored method could be much better than EA and random search, however, it is
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Figure B.1: EA performance from Goldberg [50].

just designed for a specific class of problem. To be more precise, sometimes, EA even

performs worse than random search. When we want to get global optimization, the

EA may be stuck in some local optimum due to the environmental pressure or bias

we introduced into the process. Any local search algorithm has this same problem.

A number of methods have been proposed to solve this problem [51] [52]. However

the theoretical basis behind these algorithms is still in development.

We can consider the problem tailored methods to be very greedy methods, while

random search is non-greedy method. Greed helps to speed up the computation

just as in real world, greed could possibly lead to success. But if the situation is

not clear or the system is just too complex for us to understand thoroughly, greed

could lead us to local optimum or even wrong conclusions due to wrong pressure we
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introduced, which is the case for most of the problems facing us now. We can make

ES be either very greedy (close to problem tailored methods) or non-greedy (close to

random method). The essence of a good EA is to find the best point between them

considering a trade-off. The most significant difference between EA and other local

search method, such as the Monte Carlo method, is that EA maintains diversity.

ES was first invented in the early 1960s by Rechenberg and Shwefel when they

were working on optimization of shape [45]. The standard implementation is sketched

in Table B.1:

Representation Real-value vectors
Recombination Discrete or intermediary

Mutation Gaussian perturbation
Parent selection Uniform random

Survivor selection ( µ, ν ) or ( µ + ν )
Specialty Self-adaption of mutation sizes

Table B.1: Sketches of ES from [49].

For each problem, we first figure out how to represent individuals , which is called

genotype. For ES, we use a vector, with each element to be a real number. Then

we shall maintain a population with a reasonable size. The aim is to mutate and

recombine the genotype representations of the selected individuals (parents) to give

us the next generation (children). Then we decide who survives using either ( µ, ν

) or ( µ + ν ). The first one means we select µ survivors only from ν children, while

the second one means we select survivors from the union of parents and children.

ES uses Gaussian perturbation to do the mutation with step size is adjusted as the

iteration goes on.
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B.3 The Algorithm and Implementation

The genotype is taken as the unknown rate constants in a vector of real values. The

fitness function is the results out of the KINSOVLER compared with experimental

results, e.g. the total square error. We have to assume we know the topology of

the network and we have a certain amount of data measured. For each particular

individual of the population, we feed the reaction rates into the KINSOLVER. The

time-dependent concentrations of each species are computed and compared with

the experimental data. Fitness for this is just the summation of total discrepancies

over all observations. I used Gaussian perturbation to do the mutation. Use uniform

random selection for the parent selection to avoid local optima and maintain better

diversity. Use ( µ, ν ) for survivor selection. I chose µ =15, ν =100. The perturba-

tion method is uncorrelated n-dimensional step sizes (depending on the number of

unknowns):

σ
′
i = σiexp(τ

′
N(0, 1)) + τNi(0, 1),

x
′
i = xi + σiNi(0, 1)

where τ
′ ∝ 1/

√
2n and τ ∝ 1/

√
2
√

n, N(0, 1) denotes a random number drawn

from the Normal distribution with 0 mean and standard deviation 1, Ni(0, 1) is

the same definition for its corresponding element in the n-dimensional unknown

parameter vector.

The following is the overall flow of the algorithm:

1. Randomly initialize µ individuals.

2. Uniformly and randomly select ν breeding parents and apply Gaussian muta-

tion to get ν children. I used [53] for normal distribution random number

generator.
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3. Use KINSOLVER to compute the fitness of each child.

4. Select the best µ out of the ν as new generation. We want to minimize the

fitness.

5. Stop when stopping criterion is met. Use the total number of iterations as the

stopping criterion because the fitness varies depending on how many experi-

mental data points. Or you can choose if after some certain number of itera-

tions, the fitness doesn’t change.

I implemented the algorithm using C++. And the plotting tool is Origin 7.0.

Experiments are taken on atlas.cs.uga.edu. All the source codes are available at

http://www.physast.uga.edu/ yihyu/es.

B.4 Experimental Results

B.4.1 Experimental Setup

Since I don’t have any experimental data for this Water Model, I did a virtual experi-

ment that was just basically one run of a specified kinetic model using KINSOLVER

with initial concentrations, rate constants in the input file and get the real-time

results for all the 6 species as shown in Figure 5, 6, 7, 8, 9, 10. To be more real-

istic, I also added some random noise to them. For each species, suppose we have

11 experimental data points. Therefore, we have 66 data points in total. The dots

in the figures are the actual ”experimental” data points.
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Figure B.2: [H2] v.s. time.
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Figure B.3: [O2] v.s. time.
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Figure B.4: [O] v.s. time.
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Figure B.5: [H] v.s. time.
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Figure B.6: [OH] v.s. time.
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Figure B.7: [H2O] v.s. time.

Table B.2 below shows the actual reaction rates we want to find out.

Reaction Value
kf1 1.3
kb1 1.2
kf2 1.4
kb2 0.6
kf3 1.0
kb3 1.3

Table B.2: Actual reaction rates for Water Model I.

B.4.2 Identify the reaction rates and the real time result

• 5 known and 1 unknown.
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This is the simplest case. The first thing we may be interested in is the figure of

merit: the fitness versus the iteration number as in B.8. The fitness drops very

quickly to about 5, and doesn’t improve further for a long time. fk1 converges

to 1.3 as in Figure B.9. Both B.8 and B.9 start the plateau at about iteration

number 25. The real time concentration of O2 is plotted in B.10 together with

the experimental data for kf1 being 1.3029, which is the ’guess’ corresponds to

the smallest fitness value. Similar properties can be achieved and plotted for

the other 5 species.

Figure B.8: Fitness v.s. iteration number.
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Figure B.9: kf1 v.s. iteration number.
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Figure B.10: [O2] v.s. time.

• 4 known and 2 unknown.

This is a little bit more complicated due to the dimension of parameter space

increased. B.11 shows the decrease of the fitness versus iteration number. More

iterations are needed to get to the plateau. Plateau occurs at about 25 for the

previous case while it is about 50 for this case. This is reasonable because the

complexity of the unknown parameter space is increased. B.12 shows the O2

versus real time again for the best fitness. It is still a pretty good fit. The best

solutions for kf1 and kb1 are 1.41795 and 1.16662, respectively.
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Figure B.11: Fitness v.s. iteration number.
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Figure B.12: [O2] v.s. time.

• All 6 are unknown.

As we can see in Figure B.13, the fitness decreases again as iteration number

increases again. This time about 200 iterations are needed to get to the start of

the smallest fitness plain. Figure B.14 shows that fitting the O2 for the virtual

experimental data with the best reaction rates. The reaction rates vector is

1.44572 1.50547 1.42727 0.518262 1.11856 1.22016, which is pretty close to the

actual values. As the dimension of the unknown parameter space increases,

there could be a lot of local minima for the fitness. We should be careful about

the situation, we could get as stuck in some local minima. ES is pretty nice

for this problem because it could possibly exert a ’big’ perturbation on the

previous solution.
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Figure B.13: Fitness v.s. iteration.



75

Figure B.14: [O2] v.s. time.

B.4.3 Predictions for species

We can design the virtual experiment such that only 5 species’ data are available,

in other words, we shall suppose that measuring H2O is not applicable for some

reason. Now, we only have 5*11 = 55 data points now. We can test the prediction

ability of this method. Figure B.15 shows the fitness versus iteration. Figure B.16

shows the prediction of H2O together with the actual noised experimental data. The

prediction is not as good as earlier example, but it shows the trend of the change of

the concentration of H2O. Consider the fact that we have totally no idea about the

experimental information about this species at the beginning. This prediction could

give experimenters some idea of the magnitude of the concentration of H2O. I also

doubt we can further get better fitting because it seems in Figure B.15 that the fitness

doesn’t change a lot for a long time. I think we can call it ”degeneration” since we
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don’t have information of H2O, there could be many ”same” good solutions. How to

jump out of the local minima is always an active topic for evolutionary computation.

We should further improve the algorithm by making it to be less greedy to solver

this problem.

Figure B.15: Fitness v.s. iteration number.
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Figure B.16: [O2] v.s. time.

B.4.4 Future Work

1. We can push the method to more critical situation, such as put more noise to

the experimental data, or use fewer data points. Less greedy algorithm could

be better for high dimension systems.

2. We can also try more sophisticated ES, such as correlated methods. Since the

reaction rates could be correlated to each other. But it’s still an open question.

3. Apply this code to other realistic models, such as the qa gene cluster, biological

clock, repressilator.

4. We can also think of combining MC method and ES method together,

exploiting the pros of the 2 methods, such as the power of MC dealing

with high dimensional system.


