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Abstract

Regime Switching model was receiving increasing attention as researchers searching good

models to capture prices of financial assets. Using a regime switching model we study asset

allocation problem with one risk free asset and one risky asset. We characterize the value

function in terms of solutions of a partial differential equation. We use Viscosity solution

and Markov chain approximation for its numerical solution. The second part is concerned

with stock selling rule. We use our regime switching model to find the optimal timing to sell

under a logarithmic utility function.

A key component in this thesis is that we consider the models with partial information.

We resort to Wonham filter to recover necessary information required for optimal control of

the problems under consideration.
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Chapter 1

Introduction

When a person wants to invest her/his wealth, she/he has numerous choices. All these

choices can be categorized into two types: risky investments or risk-free investments. Risky

investments, such as stocks, bring the possibility for bigger profits as well as the risk of

possible loss. Risk-free investments, such as saving accounts, secure predictable amount of

profit but at a relatively low return rate. When making investment discussions, the problem of

balancing wealth between risk-free and risky investment, such as bonds and stocks, constantly

comes up. In this thesis, the first problem we will work on is to find the optimal proportion

of these two different assets. The term “ asset allocation” refers to the process of spreading

wealth across different types of financial asset classes. The modern financial market offers the

opportunity of move money from one class to another. The decision of optimal investment

portfolio is not done only at the beginning of the investment. Instead, it can be done in

the duration of a long time investment, which makes a dynamic asset allocation strategy

possible.

Among the two types of investment, the price of a risk-free asset is easier to model. It

can be assumed to satisfy the ordinary differential equation for a continuous compounding

bank account. For the modeling of the price for a risky asset, such as a stock, we choose a

regime switching method.

Regime Switching model was gaining more attention as researchers try to find a good

model for the prices of financial products. Traditionally, a geometric Brownian motion (GBM)

has been widely used in finance to capture the movement of stock prices because of its

tractability. However, practitioners and researchers also noticed its imperfections. One of its
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weakness is to keep the market parameters, such as return rate and volatility, constant, which

is only valid for a very short period of time. Therefore, we modify the geometric Brownian

motion with a regime-switching model, so that it is capable to characterize market behavior

in a longer time horizon. In the mean time, it still allows feasible mathematical analysis on

the related pricing model.

Regime-switching model assumes that the market has finite many modes. Under different

market mode, there are different sets of market parameters such as the rate of returns,

volatility or the risk-free interest rates. The market movement from one mode to another

mode over time is often assumed to follow a Markov process.

For example, the market is often characterized as bull or bear market which shows the

intuition behind the regime-switching model, see [11],[2].

Only recently have researchers started to recognize the importance of regime-switching

model in asset allocation. To name a few, we refer to [1],[3]. When the underlying Markov

process is observable, in [24], a closed form portfolio selection can be developed using a mean-

variance technique. For a hidden Markov model of a special structure, an optimal trading

strategy has been presented in [19]. In [15], nearly-optimal asset allocation strategies was

developed to maximize the expected returns.

In a regime switching model, the market mode can be assumed to be observable or

unobservable. When it is unobservable, certain technique has to be used to convert the

problem into an observable one. In many cases, a filter equation can be applied, see [20],

[21].

In this thesis, we consider a model where the underlying Markov process can only be

partially observed through stock prices. Our model is different from [19], because in this

paper the relationship between the instantaneous rates of return and the Markov chain is

not decided by a state matrix. Therefore, a different method of filtering has to be applied.

Due to the specific modeling of the stock price, we use the filter developed by Wonham

[23], which is referred to as Wonham filter and is given by the solution of a system of
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stochastic differential equations. In their paper [21], similar method has been used and a

classical probabilistic solution is proved for the logarithmic utility and power utility function.

The associated partial differential equation that we use to characterize the value function

in this thesis has no available analytical solution for a general utility function. For its numer-

ical solution, we turn to the notion of viscosity solutions. The theory of viscosity solutions

applies to certain type of partial differential equations. It was first introduced by Crandall

and Lion [10]. We take advantage of the fact that the viscosity solution of partial differential

equations can be non-differentiable and merely continuous. We prove that the value func-

tion in this asset allocation problem is indeed a viscosity solution for the underlying partial

differential equation.

Finite difference method is often used to compute a viscosity solution. However, in our

problem, due to the specific degenerate feature of the stochastic differential equation, finite

difference method is not applicable. So we turned to alternative ways to calculate the value

function, the solution to the key partial differential equation. We use the Markov chain

approximation method, which was developed by Kushner [6], [7]. This is a very intuitive

solution to the classical HJB equation. It relates closely to the probabilistic interpretation

of the stochastic differential equations.

If the underlying Markov chain that governs the market mode has a large state space, the

generator matrix of the Markov chain can be very large and the resulting differential equation

can be very difficult to solve. A two-time-scale approach will be used to reduce computational

complexity, see [17]. We used the two-time-scale Wonham filter in [17], developed the limit

problem to reduce the dimension of the computation scheme and proved that the value

function of the original problem converges to that of the limit problem.

The second problem in this thesis concerns how to choose the optimal selling time for

a risky investment. In practice, if one wants to profit from speculation in the marketplace,

after buying a stock, the timing for selling it becomes crucial. Setting up a selling rule is a

practical strategy. This selling rule can be a target price range like in [16], or an optimal
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selling time as in [18]. In [16], a policy based on a target price and a stop-loss price is obtained

by solving a set of two-point boundary value differential equations. In [18] , a strategy is

constructed for ”bubble stocks” so that the investor can decide when to sell a stock that has

a rapid growth rate and then a rapid rate of decline by computing the probability of the

positive growth rate and sell the stock when this probability becomes too low.

Using a regime switching model to describe the stock price, we compute an optimal selling

rule through variational inequality sufficient condition and nonlinear filtering. The results

are similar with that of [18], but more general in a sense that it is not just for ”bubble

stocks”.



Chapter 2

Asset allocation: Problem Setup

When considering investment, the problem of balancing wealth between risk free investment

such as bonds, and risky investment such as stocks, constantly comes up. In this thesis,

we consider a continuous-time market setting with one risk free investment and one risky

investment. Their prices are denoted by P1(t) and P2(t), respectively. The risk free investment

P1(t) pays a constant interest rate of r > 0. The risky investment P2(t) is modeled according

to a revised Black-Scholes model. Black-Scholes model has been widely used in finance to

capture the movement of stock prices. It assumes that the stock price follows a geometric

Brownian motion. That is,

dP2(t) = µP2(t) dt+ σP2(t) dWt,

where Wt is a standard Brownian motion, µ is a constant return rate of the stock and σ is its

constant volatility. However, the assumption that the stock prices maintain constant rate of

return and volatility is generally not true in the market place. So, in order to better capture

the movement of the market and still maintain the tractability of Black-Scholes model, we

add a built-in regime-switching feature to P2(t). Namely, P1(t) and P2(t) satisfies

dP1(t) = P1(t)rdt,

dP2

P2

= µ(α(t))dt+ σdW (t),

where α(t) ∈ M = {1, 2, · · · ,m} is a continuous-time Markov process that governs the

market mode, and µ(i) is the return rate of the stock when the market mode is i. Note

that this is a model where the rate of return follows the market trend, but the volatility is

assumed to be constant. For notation simplicity, we use µ(t) and µi interchangeably.

5
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The wealth function of the investor is denoted ξ(t), and the portion that is applied for the

risky investment is u(t). At each time t, u(t)ξ(t) is put into risky investment and (1−u(t))ξ(t)

is put in risk-free investment. We will assume self-financing, which means ξ(t) equals to the

sum of the values of the above investments and no external funds are transferred to it or

from it. There is no cash inflow or outflow and no short sell. Therefore we must have

dξ(t)

ξ(t)
= (1− u(t))rdt+ u(t)(µ(α(t))dt+ σdW (t)). (2.1)

Suppose the initial time is s, and the initial wealth is ξ(s) = y. We assume the investor

did not consume any amount of the investment until a fixed future time T . The investor’s

objective is to dynamically adjust u(t) over time to maximize the expectation of a utility

function Φ(ξ(T )).

This type of asset allocation with regime switching have been studied in finance literature,

see [19]. However, up until now, the Markov process α(t) has been generally considered to

be observable, which is not the case in the marketplace. So our goal is to consider that the

information of α(t) is not directly available and develop a method for this type of asset

allocation problems.

In control theory, u(t) is considered a feedback control. Denote the filtration generated

by P2(t) as Ft. The control u is admissible if u is progressively measurable with respect to

{Ft} and u(t) ∈ [0, 1] for all t ∈ [0, T ]. Denote the set of admissible control by A.

Definition A process {Xt}t≥0 is said to be progressively measurable with respect to the

filtration {F}t≥0 if, for all t ≥ 0, the mapping (s, w) ∈ [0, t] × Q → X(s, w) is B[0,t] × Ft-

measurable.

The difficulty involved in this problem lies both in the underlying Markov chain with only

partial observation through the stock price P2(t) and the resulting complexity of the associ-

ated stochastic differential equations especially when the dimension of α(t) is large.

To be more specific, the price of the stock, we can observe it from the marketplace. But

the market mode, α(t), we can not observe. No one can know for sure if today is a bullish
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market or a bearish market. α(t) is basically a ”hidden Markov chain.” What we can do is

to observe P2(t) and make valid estimation of α(t), which is why we say we have ”partial”

observation of α(t). P2(t) is considered a function of α(t), and in order to estimate the state of

α(t) based on P2(t) we need an non-linear filter algorithm, which is why we turn to Wonham

filter. This is because the specific structure of P2(t):

dP2(t) = P2(t)(µ(α(t))dt+ σdW (t)),

fits perfectly into the Wonham filter theorem conditions. The results allows us to compute

the conditional probability of α(t) given the past observation Ft = {P2(r), s < r < t}.

The search for the optimal control results in a special type of partial differential equations,

for which an analytic solution is often not available. We turns to viscosity solutions and

Markov chain approximations for its numerical solutions.



Chapter 3

Wonham filter

Since α(t) is not directly observable, we can not approach the asset allocation problem

directly. However, note that P2(t) is observable in the marketplace. Since P2(t) is a function

of α(t), we can treat P2(t) as a ‘signal’ that may lead to useful information of α(t). Wonham

filter can offer a very good result for this type of nonlinear filtering. We will be using the

following result about the Wonham filter, which can be found in [23], [17], and [13].

Let α(t) be a continuous-time Markov chain having finite state space M = {1, ...,m},

and generator Q = (qij) ∈ Rm×m. Consider a function y(t) of the Markov chain that is

observable with additive Gaussian noise. Let y(t) denote the observation measurement given

by

dy(t) = f(α(t))dt+ σdW (t), y(0) = 0, (3.1)

where σ is a positive constant and W (t) is a standard Brownian motion. Let pi(t) denote

the conditional probability of α(t) = i given the observations up to time t, i.e.,

pi(t) = P (α(t) = i|y(s) : s ≤ t);

for i = 1, ...,m. Let p(t) = (p1(t), ..., pm(t)) ∈ R1×m. Then the Wonham filter is given by

dp(t) = p(t)Qdt− 1

σ2

(
m∑
i=1

f(i)pi(t)

)
p(t)A(t)dt+

1

σ2
p(t)A(t)dy(t), (3.2)

p(0) = p0, being the initial probability, where

A(t) = diag(f(1), ..., f(m))−
m∑
i=1

f(i)pi(t)I.

Here, I is the identity matrix of dimension m×m.

8
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Recall that

dP2/P2 = µ(α(t))dt+ σdW (t),

so

d log(P2) = [µ(α(t))− σ2

2
]dt+ σdW (t),

Define y(t) = log(P2(t)). Then

dy(t) = [µ(α(t))− σ2

2
]dt+ σdW (t),

Since log(P2) is observable, so is y(t). Using the Wonham filter result, we can set up a

Wonham filter for α(t) by the following

dp(t) = p(t)Qdt− 1

σ2

(
m∑
i=1

[µ(i)− σ2

2
]pi(t)

)
p(t)A(t)dt+

1

σ2
p(t)A(t)dy(t). (3.3)

where p(0) = p0 being the initial probability, and

A(t) = diag(µ(1)− σ2

2
, ..., µ(m)− σ2

2
)−

m∑
i=1

[µ(i)− σ2

2
]pi(t)I.

= diag(µ(1)− σ2

2
, ..., µ(m)− σ2

2
)−

m∑
i=1

µ(i)pi(t)I +
σ2

2

m∑
i=1

pi(t)I.

= diag(µ(1), ..., µ(m))−
∑m

i=1 µ(i)pi(t)I.

Denote α̃(t) =
∑m

i=1[µ(i)− σ2

2
]pi(t), we then have

dp(t) = p(t)Qdt− 1

σ2
α̃(t)p(t)A(t)dt+

1

σ2
p(t)A(t)dy(t)

= p(t)Qdt+
p(t)A(t)

σ

(
dy(t)− α̃(t)dt

σ

)
. (3.4)

Let

dv̂ =
d log(P2)− α̃dt

σ
, v̂(0) = 0.

Note that is called an innovation process.
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We next show that Ev̂(t) = 0, E(v̂(t))2 = t.

dv̂ =
dy(t)− α̃dt

σ

=
1

σ

([
µ(α(t))− σ2

2

]
dt+ σdW (t)− α̃dt

)
=

1

σ

([
µ(α(t))− σ2

2

]
dt+ σdW (t)−

m∑
i=1

[
µ(i)− σ2

2

]
pi(t)dt

)

=
1

σ

(
µ(α(t))dt+ σdW (t)−

m∑
i=1

µ(i)pi(t)dt

)

Note that
∑m

i=1 µ(i)pi(t) = E[µ(α(t))|y(s) : s ≤ t]. Hence,

Ev̂(t) = E

∫ t

0

dv̂ = E
1

σ

∫ t

0

(
µ(α(x))dx+ σdW (x)−

m∑
i=1

µ(i)pi(x)

)
dx = 0,

E(v̂(t))2 = E(
∫
dv̂)2

= E

(∫ 1

σ

(
µ(α(t))dt+ σdW (t)−

m∑
i=1

µ(i)pi(t)dt

))2

=
1

σ2
E

(∫
σdW (t)

)2

= t.

To prove v̂ is also a standard Brownian motion, we define

Fyt = σ{y(r) : s ≤ r ≤ t}.

It follows that

E[v̂(t)|Fys ]− v̂(s) = E

[∫ t

s

(µ(α(x))dx+ σdW (x)− E[µ(α(x))|Fyx ]) dx|Fys
]

= 0.

i.e. v̂(t) is an Fyt martingale.

From the definition of dv̂, we have

σdv̂ = dy(t)− α̃dt.

Hence,

dy(t) = α̃dt+ σdv̂.
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Or

d log(P2(t)) = α̃dt+ σdv̂.

Therefore, we may rewrite the stock price equation of P2 by the following

dP2

P2

= (α̃(t) +
σ2

2
)dt+ σdv̂.

Notice that both α̃(t) and dv̂ are observable.

Because

α̃(t) =
m∑
i=1

[µ(i)− σ2/2]pi(t) =
m∑
i=1

µ(i)pi(t)− σ2/2,

we can simplify our notation and obtain

dP2

P2

= α̂(t)dt+ σdv̂,

by letting

α̂(t) =
m∑
i=1

µ(i)pi(t).

Now the dynamic of the wealth function ξ(t) can be reformulated by

dξ(t)

ξ(t)
= [1− u(t)]rdt+ u(t)(α̂dt+ σdv̂)

= [(1− u)r + uα̂]dt+ uσdv̂. (3.5)

We want to find the optimal control u which will maximize

J(s, y, u(·)) = Esy(Φ(ξ(T ))),

where T is a specific future time. The optimal expected performance v is given by

v(s, y) = sup
u(·)

J(s, y, u(·)),

where ξ(s) = y is the initial data. v(s, y) is called a value function.

Note that in the dynamic of ξ(t), both α̂(t) and v̂(t) are driven by p(t). The state process

should include both ξ(t) and p(t). And the value function should have variables s, y, and p,

where p is the initial probability vector p(s).
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Denote Z(t) = log ξ(t) and z = log y, then we have

dZ(t) = [(1− u(t))r + u(t)α̂(t)− (1/2)(u(t)σ)2]dt+ u(t)σdv̂,

dp(t) = p(t)Qdt+
p(t)A(t)

σ
dv̂(t),

Z(s) = z,

p(s) = p.

Then

J(s, z, p, u(·)) = Esz(Φ(exp(Z(T )))),

v(s, z, p) = sup
u(·)∈A

J(s, z, p, u(·)),

and v(T, z, p) = Φ(ez).

Let Y (t) = (Z(t)
...p(t))′, where A′ denote the transpose of the matrix (or vector) A. Then

dY (t) =

 (1− u)r + uα̂− (1/2)(uσ)2

Q′p(t)′

 dt+

 uσ

A(t)p(t)′

σ

 dv̂.

Let

f(t, Y, u) =

 (1− u)r + uα̂− (1/2)(uσ)2

Q′p(t)′


and

Σ(t, Y, u) =

 uσ

A(t)p(t)′

σ

 .

Then

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dv̂(t).

Define

H(t, Y, P,G) = fP +
1

2
tr{(ΣΣ′)G} (3.6)
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where P is an 1 × (m + 1) vector and G is an (m + 1) × (m + 1) matrix. Here, fP should

be understood as the inner product of two vectors.

By Dynkin’s formula,

Es,z,p[v(T, Y (T ))] = v(s, z, p) + Es,z,p

∫ T

s

{∂v
∂s

+H(s, Y,
∂v

∂Y
,
∂2v

∂Y 2
)}dt.

And

sup
u
Es,z,p[v(T, Y (T ))] = v(s, z, p) + sup

u
Es,z,p

∫ T

s

{∂v
∂s

+H(s, Y,
∂v

∂Y
,
∂2v

∂Y 2
)}dt.

Since

sup
u
Es,z,p[v(T, Y (T ))] = v(s, z, p),

we then have

sup
u
Es,z,p

∫ T

s

{∂v
∂s

+H(s, Y,
∂v

∂Y
,
∂2v

∂Y 2
)}dt = 0 for all s and T.

So

sup
u
{∂v
∂s

+H(s, Y,
∂v

∂Y
,
∂2v

∂Y 2
)} = 0

Therefore, the value function v(s, Y ) should satisfy the following Partial Differential Equation

∂v

∂s
+ sup

u
H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
) = 0 (3.7)

with the boundary condition v(T, z, p) = Φ(ez), where z = log y, y is the initial wealth, and

p is the initial probability vector. Conventionally, this is called a Hamilton-Jacobi-Bellman

(HJB) equation.



Chapter 4

Viscosity Solutions

An analytical solution to equation (3.7) is difficult to obtain (if not impossible). It is not even

clear if the equation (3.7) has a classical solution. In this thesis, We use viscosity solution to

characterize the dynamics of the system.

The theory of viscosity solutions applies to partial differential equations of the form

F (x, u,Du,D2u) = 0 where F : RN ×R×RN ×S(N)→ R and S(N) is the set of symmetric

N ×N matrices. The notion of viscosity solutions was first introduced by Crandall and Lion

for solving first-order Hamilton-Jacobi equations. The user’s guide by Crandall , Ishii and

Lion [10] offers a complete treatment of this topic. Readers are referred to [22] for applications

to deterministic and stochastic control theory. Viscosity solution is useful for characterizing

numerical solutions of partial differential equations of the form F (x, u,Du,D2u) = 0 where

Du is the gradient vector of u, D2u is its Hessian matrix. The condition on F is that it has

to be proper defined as follows.

Definition Function F is proper if it satisfies

F (x, r, p,X) ≤ F (x, s, p, Y ) whenever r ≤ s and Y ≤ X.

Definition Let Ω be an open subset of RN , F be proper and u : Ω→ R.

(a) u is a viscosity subsolution of F (x, u,Du,D2u) = 0 in Ω if it is upper semicontinuous

and for each φ ∈ C2(Ω) and local maximum point x0 of u− φ we have

F (x0, u(x0), Dφ(x0), D2φ(x0)) ≥ 0.

14



15

(b) u is a viscosity supersolution of F (x, u,Du,D2u) = 0 in Ω if it is lower semicontinuous

and for each φ ∈ C2(Ω) and local minimum point x0 of u− φ we have

F (x0, u(x0), Dφ(x0), D2φ(x0)) ≤ 0.

(c) u is a viscosity solution of F (x, u,Du,D2u) = 0 in Ω if it is both viscosity subsolution

and supersolution (hence continuous) of F (x, u,Du,D2u) = 0.

Clearly, a classical solution u ∈ C2(Ω) of F (x, u,Du,D2u) = 0 is also a viscosity solution.

However, a viscosity solution does not necessarily have to be differentiable. The reason that

viscosity solutions are attractive is that it provides uniqueness theorems. It also allows a

function that is merely continuous to be the solution of the PDE.

Recall that the value function v(s, z, p) satisfies

∂v

∂s
+ sup

u
H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
) = 0. (4.1)

If we define

F (Y, v,Dv,D2v) = sup
u
H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
),

then

vt + F (Y, v,Dv,D2v) = 0

is the equation under consideration. It is a classical parabolic equation. Note that Dv = ∂v
∂Y

and D2v = ∂2v
∂Y 2 in this case.

Next, We first prove that the value function v(s, z, p) is a viscosity solution of equation

(3.7). Then we prove that the viscosity solution of equation (3.7) is unique. Therefore, a

numerical viscosity solution is indeed a numerical solution for the PDE (3.7).

According to the above definition, in order to prove that the value function v(s, z, p) is a

viscosity solution to (3.7), we have to prove it is continuous, and

∂φ

∂s
+ sup

u

{
f
∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
}
≤ 0,
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for any φ ∈ C2([0, T ]×R× [0, 1]) such that v − φ has a local minimum at (s, z, p); and

∂φ

∂s
+ sup

u

{
f
∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
}
≥ 0,

for any φ ∈ C2([0, T ]×R× [0, 1]) such that v − φ has a local maximum at (s, z, p).

Before proving the continuity, we need the following condition for the utility function Φ.

|Φ(y)| ≤ K(1 + | log y|k1 + yk2 + y−k3),

for y ∈ (0,∞), for some nonnegative constants K, ki, i = 1, 2, 3.

Moreover, for any y1, y2 ∈ (0,∞), and some K1 > 0, Either

|Φ(y1)− Φ(y2)| ≤ K1| log y1 − log y2|

or, for some γ < 1 and γ 6= 0,

|Φ(y1)− Φ(y2)| ≤ K1|yγ1 − y
γ
2 |.

These conditions are often imposed in the literature. With these conditions, we are ready

to prove

Lemma 4.0.1. v(s, z, p) is continuous with respect to s, z, and p.

Proof. (1). v(s, ·, p) is continuous with respect to z.

Fix (s, p). For given z1, z2 and u define

R(t) =

∫ t

s

[(1− u(x))r + u(x)α̂(x)− 1

2
(u(x)σ)2]dx+

∫ t

s

u(x)σdv̂(x).

Let Zi(t), i = 1, 2, be defined as Zi(t) = zi +R(t) then Z1(t)− Z2(t) = z1 − z2 and

|v(s, z1, p)− v(s, z2, p)| ≤ sup
u
|EΦ(ez1eR(T ))− EΦ(ez2eR(T ))|

≤ sup
u
|E{[Φ(ez1)− Φ(ez2)]eR(T )}|

≤ K1|z1 − z2|E(eR(T )),
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Or

|v(s, z1, p)− v(s, z2, p)| ≤ sup
u
|EΦ(ez1eR(T ))− EΦ(ez2eR(T ))|

≤ sup
u
|E{[Φ(ez1)− Φ(ez2)]eR(T )}|

≤ EK1|(ez1R(T ))γ − (ez2R(T ))γ|

= K1|eγz1 − eγz2|E(eγR(T )).

It suffices to show the boundedness of E(eγR(T )).

By Ito’s differential rule, we have

deγR(t) = eγR(T )[γdR(t) +
γ2

2
(u(t)σ)2dt].

Taking expectation on both sides yields

EeγR(t) ≤ 1 + C

∫ t

s

EeγR(x)dx,

for some constant C > 0. Then the Gronwall inequality implies

EeγR(t) ≤ eC(t−s), s ≤ t ≤ T.

(2). v(·, z, p) is continuous with respect to s.

Fix (z, p). For a given s,∆s > 0, and u define

Ẑ(t) = Z(t−∆s),

ũ(t) = u(t−∆s),

p̃(t) = p(t−∆s),

α̃(t) =
∑m

i=1 µ(i)p(t−∆s).

Write Z(·) in terms of ũ(t):

Z(t) = z+

∫ t+∆s

s+∆s

(1− ũ(x))r + ũ(x)α̃(x)− 1

2
(ũ(x)σ)2dx

+

∫ t+∆s

s+∆s

ũ(x)σdv̂(x).
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Let

Ẑ(t) = z+

∫ t

s+∆s

(1− ũ(x))r + ũ(x)α̃(x)− 1

2
(ũ(x)σ)2dx

+

∫ t

s+∆s

ũ(x)σdv̂(x).

Then

J(s+ ∆s, z, p̃, ũ) = EΦ(eẐ(t)).

Moreover,

Z(T )− Ẑ(t) = z+

∫ t+∆s

t

(1− ũ(x))r + ũ(x)α̃(x)− 1

2
(ũ(x)σ)2dx

+

∫ t+∆s

t

ũ(x)σdv̂(x),

|J(s, z, p, u)− J(s+ ∆s, z, p̃, ũ)| = |EΦ(eZ(T ))− EΦ(eẐ(t))|

either ≤ K1E|Z(T )− Ẑ(T ) ≤ K1

√
∆s

or ≤ K1|E(eγZ(T ) − eγẐ(T ))|.

Note that E(eγZ(T )) ≤ K.

By Cauchy-Schwarz inequality, we have

|E(eγZ(T ) − eγẐ(T ))|2 ≤ E(eγ(Z(T )−Ẑ(T )) − 1)2 ≤ K∆s.

The last inequality follows by Ito’s rule.

(3). v(s, z, ·) is continuous with respect to p.

Fix (s, z). For given p1, p2 and u, define

Ri(t) =

∫ t

s

[(1− u(x))r + u(x)α̂i(x)− 1

2
u2(x)σ2]dx+

∫ t

s

u(x)σdv̂(x),

where α̂i(x) =
∑m

k=1 µ(k)pik(x), i = 1, 2.

Since Zi(t) = z +Ri(t), i = 1, 2, then Z1(t)− Z2(t) = R1(t)−R2(t).
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Either

|J(s, z, p1, u)− J(s, z, p2, u)| = |EΦ(eZ1(T ))− EΦ(eZ2(T ))|

= |EΦ(ez+R1(T ))− EΦ(ez+R2(T ))|

≤ K1E|Z1(T )− Z2(T )| = K1E|R1(T )−R2(T )|,

or

|J(s, z, p1, u)− J(s, z, p2, u)| = |EΦ(eZ1(T ))− EΦ(eZ2(T ))|

= |EΦ(ez+R1(T ))− EΦ(ez+R2(T ))|

≤ K1E|(ez+R1(T ))γ − (ez+R2(T ))γ|

= K1e
γzE|eγR1(T ) − eγR2(T )|.

E|R1(T )−R2(T )| = E
∫ T
s
u(x) [α̂1(x)− α̂2(x)] dx

= E
∫ T
s
u(x)

∑m
k=1 µk [p1

k(x)− p2
k(x)] dx

≤ ‖p1 − p2‖.

Now we are ready to prove the following theorem:

Theorem 4.0.2. The value function v(s, z, p) is the viscosity solution of HJB equation (3.7).

Proof. To prove that v(s, z, p) is a supersolution of the HJB equation, we recall the notation

Y (t) = (Z(t)
...p(t))′. Therefore, we can write Ys = (z

...p)′. Here A′ stands for the transpose of

a matrix A.

Suppose v − φ has a local minimum at (s, Ys) in the neighborhood N(s, Ys). And let

(θ, Yθ) ∈ N(s, Ys),

v(θ, Yθ)− φ(θ, Yθ) ≥ v(s, Ys)− φ(s, Ys).

We have

v(θ, Yθ) ≥ φ(θ, Yθ) + v(s, Ys)− φ(s, Ys).
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Define

ψ(t, Yt) = φ(t, Yt) + v(s, Ys)− φ(s, Ys).

It follows that

v(θ, Yθ) ≥ ψ(θ, Yθ).

By Dynkin’s formula, we have

Es,Ysψ(θ, Yθ)− ψ(s, Ys) = Es,Ys

∫ θ

s

(
∂ψ

∂t
+ f

∂ψ

∂Y
+

1

2
tr{(ΣΣ′)

∂2ψ

∂Y 2
})dt

= Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
})dt.

Notice that ψ(s, Ys) = v(s, Ys), and recall v(θ, Yθ) ≥ ψ(θ, Yθ). It follows that

Es,Ysv(θ, Yθ)− v(s, Ys) ≥ Es,Ysψ(θ, Yθ)− ψ(s, Ys)

= Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
})dt.

By optimality principle, Es,Ysv(θ, Yθ) ≤ v(s, Ys), or Es,Ysv(θ, Yθ) − v(s, Ys) ≤ 0, we have

hence

Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
})dt ≤ 0.

Take u(t) = u, a constant function on [s, θ]. The above inequality hold for all value of u.

Hence,

Es,Ys

∫ θ

s

(
∂φ

∂t
+ sup

u
{f ∂φ
∂Y

+
1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}})dt ≤ 0.

Multiplying
1

θ − s
on both sides, and letting θ → s, we have

∂φ

∂t
+ sup

u

{
f
∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
}
≤ 0.

This proves that v is a supersolution for the above PDE.

To justify that v is also a subsolution for the equation

∂v

∂s
+ sup

u

{
f
∂v

∂Y
+

1

2
tr{(ΣΣ′)

∂2v

∂Y 2
}
}

= 0
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we use dynamic programming principle. See page 176 in [22].

Suppose v − φ has a local maximum at (s, Ys) in the neighborhood N(s, Ys). And let

(θ, Yθ) ∈ N(s, Ys),

v(θ, Yθ)− φ(θ, Yθ) ≤ v(s, Ys)− φ(s, Ys).

We must have

v(θ, Yθ) ≤ φ(θ, Yθ) + v(s, Ys)− φ(s, Ys).

Define a function

ψ(t, Yt) = φ(t, Yt) + v(s, Ys)− φ(s, Ys).

It follows that

v(θ, Yθ) ≤ ψ(θ, Yθ).

By Dynkin’s formula,

Es,Ysψ(θ, Yθ)− ψ(s, Ys) = Es,Ys

∫ θ

s

(
∂ψ

∂t
+ f

∂ψ

∂Y
+

1

2
tr{(ΣΣ′)

∂2ψ

∂Y 2
}
)
dt

= Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
)
dt.

Notice ψ(s, Ys) = v(s, Ys), and recall v(θ, Yθ) ≤ ψ(θ, Yθ). Then

Es,Ysv(θ, Yθ)− v(s, Ys) ≤ Es,Ysψ(θ, Yθ)− ψ(s, Ys)

= Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
)
dt. (4.2)

By dynamic programming principle, for every δ > 0 there exists admissible control uδ(·)

such that

v(s, Ys)− δ ≤ EsYs{v(θ, Yθ)},

where Yθ = Y
uδ(·)
θ is under uδ(·). Combined with the inequality (4.2) we see that

−δ ≤ Es,Ysv(θ, Yθ)− v(s, Ys) ≤ Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
)
dt.

Let δ → 0. Then,

Es,Ys

∫ θ

s

(
∂φ

∂t
+ f

∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
)
dt ≥ 0.
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This is true for all constant u. Consequently,

Es,Ys

∫ θ

s

(
∂φ

∂t
+ sup

u

{
f
∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
})

dt ≥ 0.

Multiplying
1

θ − s
on both sides, and letting θ → s, we have

∂φ

∂t
+ sup

u

{
f
∂φ

∂Y
+

1

2
tr{(ΣΣ′)

∂2φ

∂Y 2
}
}
≥ 0.

This proves that v is a subsolution for the above PDE.

Through this theorem we have obtained the existence for the solution of the HJB equa-

tion. The following concepts is needed in the proof of uniqueness of viscosity solution v:

Definition Let f(s, z) : [0, T ]×Rm+1. Define the parabolic superjet by

P2,+f(s, z) = {(a, q,X) ∈ R×Rm+1 × S(m+ 1) : f(t, x) ≤ f(s, z) + a(t− s) + q(x− z)

+1
2
(x− z)X(x− z) + o(|t− s|+ |x− z|2) as (t, x)→ (s, z)},

and its closure is

P̄2,+f(s, z) = {(a, q,X) = limn→∞(an, qn, Xn)

with (an, qn, Xn) ∈ P2,+f(sn, zn)

and limn→∞(sn, zn) = (s, z)}.

Similarly, we define the parabolic subjet P2,−f(s, z) = −P2,+(−f)(s, z) and its closure

P̄2,−f(s, z) = −P̄2,+(−f)(s, z).

We have the following result. Its proof can be found in Fleming and Soner [22].

Lemma 4.0.3. The P2,+f(s, z) (resp. P2,−f(s, z)) consist of the set of(
∂φ(s, z)

∂s
,
∂φ(s, z)

∂z
,
∂2φ(s, z)

∂z2

)
,

where φ ∈ C1,2([0, T ]×Rm+1) and f − φ has a global maximum (resp. minimum) at (s, z).
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We will use the following equivalent definition of viscosity solution.

Definition A continuous function v(s, Y ) with at most polynomial growth is a viscosity

solution of

∂v

∂s
+H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
) = 0,

if

1. for all (s, Y ) ∈ [0, T ]×Rm+1, and (a, q,X) ∈ P2,+v(s, Y )

a+ sup
u
H(s, Y, q,X) ≤ 0 in this case v is a viscosity subsolution;

and

2.for all (s, Y ) ∈ [0, T ]×Rm+1, and (a, q,X) ∈ P2,+v(s, Y )

a+ sup
u
H(s, Y, q,X) ≥ 0 in this case v is a viscosity supersolution.

To prove the uniqueness of the viscosity solution for this PDE , we need to prove the

comparison principle (Theorem 4.0.5). Before we do that we will state an important result

needed in our proof.

Theorem 4.0.4. (Crandall, Lions and Ishii [10]) For i = 1, 2, let Ωi be locally compact

subsets of Rm+1, and Ω = Ω1 × Ω2, let vi be upper semi-continuous in [0, T ] × Ωi, and

P̄ 2,+
Ωi

vi(t, Y ) the parabolic superjet of vi(t, Y ), and φ be twice continuous differentiable in a

neighborhood of [0, T ]× Ω. Set

ω(t, Y1, Y2) = v1(t, Y1) + v2(t, Y2)

for (t, Y1, Y2) ∈ [0, T ] × Ω, and suppose (t̂, Ŷ1, Ŷ2) ∈ [0, T ] × Ω is a local maximum of ω − φ

relative to [0, T ] × Ω. Moreover let us assume that, there is an r > 0 such that for every

M > 0 there exists a C such that for i = 1, 2

ai ≤ C whenever (ai, qi, Xi) ∈ P̄ 2,+
Ωi

vi(t, Y ),

|Yi − Ŷi|+ |t− t̂| ≤ r and |vi(t, Yi)|+ |qi|+ ‖Xi‖ ≤M. (4.3)
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Then for each ε > 0 there exists Xi ∈ S(m+ 1) such that

1.

(ai, DYiφ(t̂, Ŷ ), Xi) ∈ P̄ 2,+
Ωi

vi(t̂, Ŷ ) for i = 1, 2,

2.

−
(

1

ε
+ ‖D2φ(Ŷ )‖

)
I ≤

X1 0

0 X2

 ≤ D2(φ(Ŷ )) + ε(D2φ(Ŷ ))2, (4.4)

3.

a1 + a2 =
∂φ(t̂, Ŷ1, Ŷ2)

∂t
. (4.5)

Now v(s, Y ) = v(s, z, p) = sup
u(·)∈A

J(s, z, p, u(·)) = sup
u(·)∈A

Esz(Φ(exp(Z(T )))). Since we

assume Φ has at most linear growth, then v has at most linear growth.

We can apply the idea in Flemming and Soner [22] and prove the following comparison

principle.

Theorem 4.0.5. If v1(s, Y ) and v2(s, Y ) are continuous in (s, Y ) and are respectively vis-

cosity subsolution and supersolution of (3.7) with at most linear growth, namely, there exists

K

vi(s, Y ) ≤ K(1 + |Y |) for all (s, Y ) ∈ [0, T ]×Rm+1, i = 1, 2,

then

v1(s, Y ) ≤ v2(s, Y ) for all (s, Y ) ∈ [0, T ]×Rm+1. (4.6)

Proof. First we observe that for ρ > 0, ṽ1 = v1 − ρ/(T − t) is also a subsolution of (3.7) and

satisfies 
(i)
∂ṽ1

∂t
+H(s, Y,

∂ṽ1

∂Y
,
∂2ṽ1

∂Y 2
) ≤ − ρ

(T − t)2
,

(ii) lim
t↑T

ṽ1(t, Y ) = −∞.

(4.7)

If we can prove that ṽ1 ≤ v2 for any ρ > 0 then v1 ≤ v2 will follows by letting ρ→ 0.
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Hence it suffice to prove the comparison under the additional assumption

∂v1

∂t
+H(s, Y,

∂v1

∂Y
,
∂2v1

∂Y 2
) ≤ − ρ

T 2
.

We want to prove v1 ≤ v2. Suppose this is not true. Then there exists

(t, Z) ∈ (0, T )× Ω and v1(t, Z)− v2(t, Z) = δ > 0. (4.8)

We next prove that this leads to a contradiction.

For any 0 < α < 1 and 0 < γ < 1, we define

Θαγ(s, Y1, Y2) =
1

α
|Y1 − Y2|2 + γeT−s(Y 2

1 + Y 2
2 ),

Φ(s, Y1, Y2) = v1(s, Y1)− v2(s, Y2)−Θαγ(s, Y1, Y2).

Since v1(s, Y1) and v2(s, Y2) satisfy the linear growth condition, we have

lim
|Y1|+|Y2|→∞

Φ(s, Y1, Y2) = −∞.

Since Φ(s, Y1, Y2) is continuous in (s, Y1, Y2) it has a global maximum at a point (s0, Y 0
1 , Y

0
2 ).

Notice that

Φ(s0, Y 0
1 , Y

0
1 ) + Φ(s0, Y 0

2 , Y
0

2 ) ≤ 2Φ(s0, Y 0
1 , Y

0
2 ).

By the definition of Φ we have

v1(s0, Y 0
1 )− v2(s0, Y 0

1 )− 2γe(T−s0)(|Y 0
1 |2) + v1(s0, Y 0

2 )

−v2(s0, Y 0
2 )− 2γe(T−s0)(|Y 0

2 |2) ≤ 2v1(s0, Y 0
1 )− 2v2(s0, Y 0

2 )

− 2

α
|Y 0

1 − Y 0
2 |2 − 2γeT−s

0

(|Y 0
1 |2 + |Y 0

2 |2).

Then

−v2(s0, Y 0
1 )− 2γe(T−s0)(|Y 0

1 |2) + v1(s0, Y 0
2 )− 2γe(T−s0)(|Y 0

2 |2)

≤ v1(s0, Y 0
1 )− v2(s0, Y 0

2 )− 2

α
|Y 0

1 − Y 0
2 |2

−2γeT−s
0
(|Y 0

1 |2 + |Y 0
2 |2).
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Consequently, we have

2

α
|Y 0

1 − Y 0
2 |2 ≤ v1(s0, Y 0

1 )− v1(s0, Y 0
2 ) + v2(s0, Y 0

1 )− v2(s0, Y 0
2 ). (4.9)

By the linear growth condition, there exists K

vi(s, Y ) ≤ K(1 + |Y |) for all (s, Y ) ∈ [0, T ]×Rm+1, i = 1, 2.

So

|Y 0
1 − Y 0

2 |2 ≤ αK(1 + |Y 0
1 |+ |Y 0

2 |). (4.10)

In addition, the choice of (s0, Y 0
1 , Y

0
2 ) implies Φ(s0, 0, 0) ≤ Φ(s0, Y 0

1 , Y
0

2 ). Together with

Φ(s0, 0, 0) ≤ K(1 + |Y 0
1 |+ |Y 0

2 |) we then have

γe(T−s0)(|Y 0
1 |2 + |Y 0

2 |2) ≤ v1(s0, Y 0
1 )− v2(s0, Y 0

2 )− 1

α
|Y 0

1 − Y 0
2 |2 − Φ(s0, 0, 0)

≤ 3K(1 + |Y 0
1 |+ |Y 0

2 |).

It follows that

γe(T−s0)(|Y 0
1 |2 + |Y 0

2 |2)

(1 + |Y 0
1 |+ |Y 0

2 |)
≤ 3K.

Consequently, there exists Cγ such that

|Y 0
1 |+ |Y 0

2 | ≤ Cγ. (4.11)

This inequality implies that the sets {Y 0
1 }, and {Y 0

2 } are bounded by Cγ independent

of α. We can extract convergent subsequences also denote (s0, Y 0
1 , Y

0
2 ). Moreover, from the

inequality (4.10) we conclude that there exists t0, Y0 such that

lim
α→0

Y 0
1 = Y0 = lim

α→0
Y 0

2 and lim
α→0

s0 = t0.

Also, use the above limit and equation (4.9) we have

lim
α→0

2

α
|Y 0

1 − Y 0
2 |2 = 0. (4.12)
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Since Φ achieves its maximum at (s0, Y 0
1 , Y

0
2 ), Upon applying Theorem 4.0.4 we know

that there exists numbers a1, a2 and A1, A2 ∈ S(m+ 1) such that

(a1,
2

α
(Y 0

1 − Y 0
2 ) + 2γe(T−s0)Y 0

1 , A1) ∈ P̄ 2,+v1(s0, Y 0
1 ), and

(−a2,−
2

α
(Y 0

1 − Y 0
2 ) + 2γe(T−s0)Y 0

2 ,−A2) ∈ P̄ 2,+−v2((s0, Y 0
2 ).

By P̄ 2,+−v2((s0, Y 0
2 ) = −P̄ 2,−v2((s0, Y 0

2 ), we can obtain

(a2,
2

α
(Y 0

1 − Y 0
2 )− 2γe(T−s0)Y 0

2 , A2) ∈ P̄ 2,−v2((s0, Y 0
2 ).

By the equivalent definition of viscosity solution we have

a1 +H(s0, Y 0
1 ,

2

α
(Y 0

1 − Y 0
2 ) + 2γe(T−s0)Y 0

1 , A1) ≤ −c,

a2 +H(s0, Y 0
2 ,

2

α
(Y 0

1 − Y 0
2 )− 2γe(T−s0)Y 0

2 , A2) ≥ 0,

where c = ρ/T 2 > 0. Combine the above inequality, then we can get

c ≤ a2 − a1 +H(s0, Y 0
2 ,

2

α
(Y 0

1 − Y 0
2 )− 2γe(T−s0)Y 0

2 , A2)

−H(s0, Y 0
1 ,

2

α
(Y 0

1 − Y 0
2 ) + 2γe(T−s0)Y 0

1 , A1).

In view of theorem 4.0.4, we have

a1 − a2 =
∂Θαγ(s, Y1, Y2)

∂s
= γe(T−s0)((Y 0

1 )2 + (Y 0
2 )2).

So, a1 − a2 → 0 when γ → 0.

Now denote

L2 = H(s0, Y 0
2 ,

2

α
(Y 0

1 − Y 0
2 )− 2γe(T−s0)Y 0

2 , A2)

and

L1 = H(s0, Y 0
1 ,

2

α
(Y 0

1 − Y 0
2 ) + 2γe(T−s0)Y 0

1 , A1)

then we obtain c ≤ a1 − a2 + (L2 − L1). we need to approximate L2 − L1 to discover our

contradiction.
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To simplify our notation we denote

f1 = f(s0, Y 0
1 , u), f2 = f(s0, Y 0

2 , u)

C1 = Σ(s0, Y 0
1 , u), C2 = Σ(s0, Y 0

2 , u)

and

pα =
2

α
(Y 0

1 − Y 0
2 ), q1γ = 2γe(T−s0)Y 0

1 , q2γ = 2γe(T−s0)Y 0
2 .

Then

L2 − L1 = sup
u

(
f2(pα − q2γ) +

1

2
tr{(C2C

′
2)A2}

)
− sup

u

(
f1(pα − q1γ) +

1

2
tr{(C1C

′
1)A1}

)
≤ sup

u
f2(pα − q2γ)− f1(pα − q1γ) +

1

2
tr{(C2C

′
2)A2 − (C1C

′
1)A1}

≤ sup
u

(f2 − f1)pα − f2q2γ + f1q1γ) +
1

2
tr{(C2C

′
2)A2 − (C1C

′
1)A1}.

Notice that f1, f2 are bounded, pα → 0 as α→ 0. q1γ, q2γ → 0 as γ → 0.

tr{(C2C
′
2)A2 − (C1C

′
1)A1} = tr


C2C

′
2 C2C

′
1

C1c
′
2 C1C

′
1


A2 0

0 −A1


 .

In view of Crandall-Ishii’s maximum principle (4.0.4), we haveA2 0

0 −A1

 ≤ D2Θαγ(s
0, Y 0

1 , Y
0

2 ) + ε(D2Θαγ(s
0, Y 0

1 , Y
0

2 ))2.

Now

D2Θαγ(s
0, Y 0

1 , Y
0

2 ) =
2

α

 I −I

−I I

+ 2γeT−s
0

I 0

0 I

 ,
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and

(D2Θαγ(s
0, Y 0

1 , Y
0

2 ))2 =
8

α2

 I −I

−I I

+
8γeT−s

0

α

 I −I

−I I

+ 4γ2e2(t− s0)

I 0

0 I



=
8 + 8γαeT−s

0

α2

 I −I

−I I

+ 4γ2e2(t− s0)

I 0

0 I

 .
So

tr


C2C

′
2 C2C

′
1

C1c
′
2 C1C

′
1


A2 0

0 −A1


 ≤ 2

α

C2C
′
2 C2C

′
1

C1c
′
2 C1C

′
1


 I −I

−I I



+(2γeT−s
0

+ 4εγ2e2(t− s0))

C2C
′
2 C2C

′
1

C1c
′
2 C1C

′
1


I 0

0 I



+ε
8 + 8γαeT−s

0

α2

C2C
′
2 C2C

′
1

C1c
′
2 C1C

′
1


 I −I

−I I

 .
Letting γ → 0, we have

tr


C2C

′
2 C2C

′
1

C1c
′
2 C1C

′
1


A2 0

0 −A1




≤ 2

α

C2C
′
2 C2C

′
1

C1c
′
2 C1C

′
1


 I −I

−I I

+ ε
8

α2

C2C
′
2 C2C

′
1

C1c
′
2 C1C

′
1


 I −I

−I I

 .
Taking ε = α

4
, we have

tr


C2C

′
2 C2C

′
1

C1c
′
2 C1C

′
1


A2 0

0 −A1


 ≤ 4

α

C2C
′
2 C2C

′
1

C1c
′
2 C1C

′
1


 I −I

−I I

 ,
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tr


C2C

′
2 C2C

′
1

C1c
′
2 C1C

′
1


A2 0

0 −A1


 ≤ 4

α
tr(C2C

′
2 − C2C

′
1 − C1C

′
2 + C1C

′
1);

so

tr


C2C

′
2 C2C

′
1

C1c
′
2 C1C

′
1


A2 0

0 −A1


 ≤ 4

α
tr([C2 − C1][C ′2 − C ′1]) =

4

α
‖C2 − C1‖2

=
4

α
‖Σ(s0, Y 0

2 , u)− Σ(s0, Y 0
1 , u)‖2 ≤ C

4

α
|Y 0

2 − Y 0
1 |2.

In the above inequality we assume Lipschitz continuity on Σ(s, Y, u). By equation (4.12) we

see that tr{(C2C
′
2)A2 − (C1C

′
1)A1} → 0 when γ → 0, α → 0. This finishes the proof that

L2 − L1 → 0 as γ → 0, α→ 0. Now

c ≤ a2 − a1 + L2 − L1 → 0 as γ → 0 and α→ 0.

This contradicts the fact that c > 0. We conclude that the assumption of v1(t, Z) > v2(t, Z)

for some time t > 0 is false.

This proves the uniqueness of the value function.



Chapter 5

Markov Chain Approximation

In the previous chapter, we have proved that the value function v is the unique viscosity

solution of the PDE

∂v

∂s
+H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
) = 0 (5.1)

with the boundary condition v(T, z, p) = Φ(ez), where z = log y, y is the initial wealth, and

p is the initial probability vector.

A common choice to compute the value function is to use finite difference approxima-

tion. It is proved in [7] that finite difference approximation typically leads to Markov chain

approximation. But finite difference method is not applicable in this problem. The obstacle

is due to the fact that the matrix a(u, p) = ΣΣ′ is not diagonally dominant. To apply finite

difference method, one needs

aii(u, p)−
∑
j:j 6=i

|aij(u, p)| ≥ 0.

We can see that this is not satisfied in our setup. For example, if p(t) is 2-dimensional

which means the markov chain α(t) has two states. Since

A(t)P (t)′ =

 µ1 − α̂ 0

0 µ2 − α̂


 p1(t)

p2(t)

 =

 (µ1 − α̂)p1

(µ2 − α̂)p2

 ,

it follows that

Σ(t, Y, u) =

 uσ

A(t)p(t)′

σ

 =


uσ

1
σ
(µ1 − α̂)p1

1
σ
(µ2 − α̂)p2


.
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So

ΣΣ′ =


uσ

1
σ
(µ1 − α̂)p1

1
σ
(µ2 − α̂)p2


(uσ

1

σ
(µ1 − α̂)p1

1

σ
(µ2 − α̂)p2),

ΣΣ′ =


u2σ2 u(µ1 − α̂)p1 u(µ2 − α̂)p2

u(µ1 − α̂)p1
1
σ2 (µ1 − α̂)2p2

1
1
σ2 (µ1 − α̂)p1(µ2 − α̂)p2

u(µ2 − α̂)p2
1
σ2 (µ1 − α̂)p1(µ2 − α̂)p2

1
σ2 (µ2 − α̂)2p2

2


.

In order to have

aii(u, p)−
∑
j:j 6=i

|aij(u, p)| ≥ 0,

we must have

uσ2 ≥ |µ1 − α̂|p1 + |µ2 − α̂|p2

1
σ2 (µ1 − α̂)2p2

1 ≥ u|µ1 − α̂|p1 + 1
σ2 (µ1 − α̂)p1(µ2 − α̂)p2

1
σ2 (µ2 − α̂)2p2

2 ≥ u|µ2 − α̂|p2 + 1
σ2 (µ1 − α̂)p1(µ2 − α̂)p2.

Suppose µ1 > µ2, hence µ1 − α̂ > 0, µ2 − α̂ < 0. We then hope to have

uσ2 ≥ (µ1 − α̂)p1 + (α̂− µ2)p2,

(µ1 − α̂)p1 ≥ uσ2 + (µ2 − α̂)p2,

(µ2 − α̂)p2 ≤ uσ2 + (µ1 − α̂)p1.

The third condition holds but in order to satisfy the first two condition, we must have

uσ2 = (µ1 − α̂)p1 + (α̂− µ2)p2.

However, u is the control function that should be varying between 0 and 1.
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We will apply Kushner’s Markov chain approximation method to numerically solve this

PDE. See [6].

The idea of the Markov chain approximation method is to discretize the control problem

so as to find numerical solutions. In particular, the continuous-time state variables of the

control problem are approximated by a discrete-time Markov chain so that the value function

corresponding to the discrete-time Markov chain converges to the value function of the

continuous-time control problem.

The key requirement in finding the proper Markov chain approximation is to satisfy the

“ local consistency conditions,” which basically means that the approximating chain should

have local properties that are consistent with that of the original chain. Recall that we denote

Y (t) = (Z(t)
...p(t))′, and Y (t) evolves according to the stochastic process

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dv̂(t).

So the approximating chain Y h(t) should satisfy the following ”local consistency conditions”:

Eh,u
z,p,n∆Y h

n = f(t, Y (t), u(t))∆th(Y, u) + o(∆th(Y, u))

covarh,uz,p,n∆Y h
n = Σ(t, Y (t), u(t))Σ(t, Y (t), u(t))′∆th(Y, u) + o(∆th(Y, u))

If we can find approximating chain Y h(t) whose transition probability P h(Y, Z|u) and

time step functions ∆th(Y, u) satisfy the “local consistency conditions” then we can use it to

compute the value function vh(s, Y h) for the approximating chain. For a detailed discussion

of this method, see [6].

The value function is

v(s, Y0) = sup
u
E[Φ(exp(Z(T )))|Y (s) = Y0],

where Y0 = (z, p) is the initial condition. By the principle of dynamic programming,

v(s−∆th, Y0) = sup
u
E[v(s, Y (s))|Y (s−∆th) = Y0].
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The approximation function vh should have the same property

vh(s−∆th, Y0) = sup
u
E[vh(s, Y (s))|Y (s−∆th) = Y0].

The degenerate structure of the noise covariance matrix suggests that the part of the tran-

sitions of any approximating Markov chain which approximates the effects of the “noise”

would move the chain in the directions ±Σ(s, Y, u). Let the state space Sh be such that

Y ± hΣ(s, Y, u) ∈ Sh, for Y ∈ Sh,

and

Y ± eih ∈ Sh, for Y ∈ Sh,

We use the following steps to choose a set of transition probability P h(Y, Z|u) and time

step functions ∆th(Y, u) to satisfy the “local consistency conditions.” First we consider the

stochastic process

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dv̂(t)

as having two different components, represented respectively by

dY (t) = Σ(t, Y (t), u(t))dv̂(t)

and

dY (t) = f(t, Y (t), u(t))dt.

We choose two different sets of transition probability and time step functions, so these two

SDE’s individual “local consistency conditions” can be satisfied. Then we combine them to

obtain a choice that can satisfy the “local consistency conditions” for the original state Y (t).

(1) One set of transition probabilities for a locally consistent chain for the component

represented by

dY (t) = Σ(t, Y (t), u(t))dv̂(t)
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is P h
1 (Y, Y ± hΣ(s, Y, u)|u) = 1/2. With these transition probabilities, the covariance of the

state transition can be written as

∑
Z

(Z − Y )(Z − Y )′P h
1 (Y, Z|u) = ΣΣ′h2

Then, if we define the interpolation interval ∆th1(Y, u) = h2, P h
1 (Y, Y ±hΣ(s, Y, u)|u) is locally

consistent.

(2) One possibility for the transition probability for the approximation to

dY (t) = f(t, Y (t), u(t))dt

is

P h
2 (Y, Y ± eih|u) = f±i (t, Y, u)× normalization,

where the normalization is

1

Qh
2(Y, u)

=
1∑m+1

i=1 fi(t, Y, u)
,

f+ = max{f, 0}, f− = max{−f, 0}. Define

∆th2(Y, u) =
h∑m+1

i=1 fi(t, Y, u)
.

The local consistency can be shown by the calculations

∑
Z

(Z − Y )P h
2 (Y, Z|u) = f(t, Y, u)×∆th2(Y, u),

where Z ∈ {Y ± eih, i = 1, · · · ,m}, and

∑
Z

(Z − Y )(Z − Y )′P h
2 (Y, Z|u) = o(∆th2(Y, u)).

(3) Combine the above ”partial” transition probabilities from the diffusion and drift compo-

nent to get

P h(Y, Y ± hΣ(s, Y, u)|u) =
1

2Qh(Y, u)
,

P h(Y, Y ± eih|u) = f±i (t, Y, u)
h

Qh(Y, u)
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where

Qh(Y, u) = 1 + h

m+1∑
i=1

|fi(Y, u)| ,

and

∆th(Y, u) =
h2

Qh(Y, u)
.

To show that the local consistency is satisfied, we see that

∑
Z∈Sh

(Z − Y )P h(Y, Z|u) = f(t, Y, u)
h2

Qh(Y, u)
,

where Z ∈ {Y ± eih, i = 1, Y ± hΣ(s, Y, u), · · · ,m}, and

∑
Z∈Sh

(Z − Y )(Z − Y )′P h(Y, Z|u) = ΣΣ′
h2

Qh(Y, u)
+ o(∆th2(Y, u)).

The numerical scheme for the value function is

vh(s−∆th(Y, u), Y ) = sup
u

[
∑
Z∈Sh

P h(Y, Z|u)vh(s, Z)] (5.2)

with

vh(T, z, p) = Φ(ez), (z
...p) ∈ Sh. (5.3)

For calculation purposes, it will be better if we can find a constant interpolation intervals

∆th. This can be done by defining

Q
h

= sup
u,p

Qh(Y, u).

Then the following are locally consistent:

∆th = h2/Q
h

P h(Y, Y ± hΣ(s, Y, u)|u) = 1/2Q
h
,

P h(Y, Y ± eih|u) = f±i (t, Y, u)h/Q
h
,

P h(Y, Y |u) = (Q
h −Qh(Y, u))/Q

h
.
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Let

Fh(φ)(Y ) = sup
u

[
∑
Z∈Sh

P h(Y, Z|u)φ(Z)].

Then the scheme for computing the value function approximation can be rewritten as

vh(s, Y ) = Fh(vh(s+ ∆th(Y, u), ·))(Y ), Y ∈ Sh,

vh(T, z, p) = Φ(ez), (z
...p) ∈ Sh.

In order to use the Barles-Souganidis method [4] to prove the desired convergence, we need

to check the following condition:

Fh(φ1) ≤ Fh(φ2) if φ1 ≤ φ2(monotonicity).

For 0 < h < 1, there exists a solution vh to the computation scheme and a constant K such

that ‖vh‖ ≤ K(stability).

For every ”test function” w ∈ C1,2(Rm+1),

lim
(t,q)→

h↓0
(s,p)

h−1[Fh(w(t+ h, ·))(q)− w(t, q)]

=
∂w

∂s
+H(s, Y,

∂w

∂Y
,
∂2w

∂Y 2
) (consistency).

We have the consistency because

lim
(t,q)→

h↓0
(s,p)

h−1[Fh(w(t+ h, ·))(q)− w(t, q)]

= lim
(t,q)→

h↓0
(s,p)

supu[
∑

Z P
h(q, Z|u)w(t+ h, Z)]− w(t, q)

h

= lim
(t,q)→

h↓0
(s,p)

supu
[∑

Z P
h(q, Z|u)[w(t+ h, Z)− w(t+ h, q)]

]
+ w(t+ h, q)− w(t, q)

h

=
∂w

∂s
+H(s, Y,

∂w

∂Y
,
∂2w

∂Y 2
).

Since P h(Y, Z|u) ≥ 0, the monotonicity is immediate.
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‖Fh(φ1)(Y )−Fh(φ2)(Y )‖ =

∥∥∥∥∥sup
u

[∑
p∈Sh

P h(Y, Z|u)[φ1(Z)− φ2(Z)]

]∥∥∥∥∥
≤ sup

u
[
∑
p∈Σh0

Pw(p, q)] ‖φ1 − φ2‖

= sup
u
‖φ1 − φ2‖ .

Therefore Fh is a contraction mapping. The fixed point vh of this contraction mapping is

the solution of (5.2). This proves the stability.

Define

v∗(s, Y ) = lim sup
(t,Z)→

h↓0
(s,Y )

vh(t, Z)

v∗(s, Y ) = lim inf
(t,Z)→

h↓0
(s,Y )

vh(t, Z)

Lemma 5.0.6. v∗ is a viscosity subsolution of equation (5.1), and v∗ is a viscosity superso-

lution.

Proof. In order to prove that v∗ is a viscosity subsolution, we suppose that φ is a test function

such that v∗ − φ has a strict local maximum at (s, Y ). Then there is a sequence converging

to zero denoted by h, such that vh − φ has a local maximum at (th, Yh) which converges to

(s, Y ) as h ↓ 0.

vh(th, Yh)− φ(th, Yh) ≥ vh(th + h, Yh)− φ(th + h, Yh),

φ(th + h, Yh)− φ(th, Yh) ≥ vh(th + h, Yh)− vh(th, Yh).

By the monotonicity we proved above,

Fh(φ(th + h, ·))(Yh)− φ(th, Yh) ≥ Fh(vh(th + h, ·))(Yh)− vh(th, Yh).

Since vh is the solution of (5.2), the right side is 0. We divide by h and let h ↓ 0. By the

consistency, we have

∂φ

∂s
+H(s, Y,

∂φ

∂Y
,
∂2φ

∂Y 2
) ≥ 0
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Therefore, v∗ is a viscosity subsolution.

Similarly, suppose that φ ∈ C1,2 is a test function such that v∗ − φ has a strict local

minimum at (s, Y ). Then there is a sequence converging to zero denoted by h, such that

vh − φ has a local minimum at (th, Yh) which converges to (s, Y ) as h ↓ 0.

vh(th, Yh)− φ(th, Yh) ≤ vh(th + h, Yh)− φ(th + h, Yh),

φ(th + h, Yh)− φ(th, Yh) ≤ vh(th + h, Yh)− vh(th, Yh).

By the monotonicity we proved above,

Fh(φ(th + h, ·))(Yh)− φ(th, Yh) ≤ Fh(vh(th + h, ·))(Yh)− vh(th, Yh).

Since vh is the solution of (5.2), the right side is 0. We divide both sides by h and let h ↓ 0.

By the consistency, we have

∂φ

∂s
+H(s, Y,

∂φ

∂Y
,
∂2φ

∂Y 2
) ≤ 0

Therefore, v∗ is a viscosity supersolution.

Theorem 5.0.7. As h→ 0 the solution vh of (5.2) converges locally uniformly to the unique

continuous viscosity v of (5.1).

Proof. By Lemma 5.0.6, v∗ is a viscosity subsolution of equation (5.1). By comparison result

for viscosity solutions, v∗ ≤ v. Similarly, v∗ ≥ v. Since v∗ ≤ v∗, we have proved

lim
(t,Z)→

h↓0
(s,Y )

vh(t, Z) = v(s, Y ).



Chapter 6

Separable Case

We have proved that v is the unique viscosity solution of the PDE

∂v

∂s
+H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
) = 0 (6.1)

with the boundary condition v(T, z, p) = Φ(ez), where z = ln y, y is the initial wealth, and p

is the initial probability vector. When the utility function is of the form Φ(x) = xk, we can

simplify the numerical solution even further by variable separation.

Recall that

H(s, Y,
∂v

∂Y
,
∂2v

∂Y 2
) = sup

u
{f ∂v
∂Y

+
1

2
tr{(ΣΣ′)

∂2v

∂Y 2
}}.

Let

f(t, Y, u) =

 (1− u)r + uα̂− (1/2)(uσ)2

Q′p(t)′

 .

If we denote f(t, Y, u) = (fu, fp)
′, then

f
∂v

∂Y
= fu

∂v

∂z
+ fp

∂v

∂p
,

where fp
∂v
∂p

is the inner product of the two vectors.

Recall that

Σ(t, Y, u) =

 uσ

A(t)p(t)′

σ

 .

We can denote Σ(t, Y, u) = (cu, cp)
′, then

(ΣΣ′)
∂2v

∂Y 2
=

 c2
u cuc

′
p

cpcu cpc
′
p




∂2v

∂z2

∂2v

∂z∂p

∂2v

∂p∂z

∂2v

∂p2

 .
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So,

1

2
tr{(ΣΣ′)

∂2v

∂Y 2
} =

1

2

(
c2
u

∂2v

∂z2
+ cuc

′
p

∂2v

∂p∂z
+ c′ucp

∂2v

∂z∂p

)
+

1

2
tr

(
cpc
′
p

∂2v

∂p2

)
.

The PDE becomes

0 =
∂v

∂s
+H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
)

=
∂v

∂s
+ sup

u

{
fu
∂v

∂z
+ fp

∂v

∂p
+

1

2

(
c2
u

∂2v

∂z2
+ cuc

′
p

∂2v

∂p∂z
+ c′ucp

∂2v

∂z∂p

)
+

1

2
tr

(
cpc
′
p

∂2v

∂p2

)}
=

∂v

∂s
+ sup

u

{
fu
∂v

∂z
+

1

2
c2
u

∂2v

∂z2
+ fp

∂v

∂p
+ c′ucp

∂2v

∂z∂p

}
+

1

2
tr

(
cpc
′
p

∂2v

∂p2

)
.

Suppose that the value function has the form

v(s, z, p) = ykw(s, p) = ekzw(s, p).

Then

∂v

∂s
= ekz

∂w

∂s
,

∂v

∂z
= kekzw(s, p),

∂v

∂p
= ekz

∂w

∂p
,

∂2v

∂z2
= k2ekzw(s, p),

∂2v

∂z∂p
=

(
∂2v

∂p∂z

)′
= kekz

∂w

∂p
,

∂2v

∂p2
= ekz

∂2w

∂p2
.

It follows that

0 =
∂v

∂s
+H(s, Y,

∂v

∂Y
,
∂2v

∂Y 2
)

= ekz
∂w

∂s
+ sup

u

{
fuke

kzw(s, p) +
1

2
c2
uk

2ekzw(s, p)

+fpe
kz ∂w

∂p
+ cucpke

kz ∂w

∂p

}
+

1

2
tr(cpc

′
pe
kz ∂

2w

∂p2
)
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Therefore, if the value function has the form v(s, z, p) = ykw(s, p) = ekzw(s, p), then

∂w

∂s
+ sup

u

{
fukw(s, p) +

1

2
c2
uk

2w(s, p)

+ fp
∂w

∂p
+ cucpk

∂w

∂p

}
+

1

2
tr(cpc

′
p

∂2w

∂p2
) = 0. (6.2)

This is a reduced PDE that only contains the variables s and p.

Theorem 6.0.8. If w(s, p) is the viscosity solution of the PDE (6.2), then v(s, z, p) =

ekzw(s, p) is the viscosity solution of the HJB equation (3.7).

Proof. Suppose w(s, p) is the viscosity solution of the PDE (6.2), then

∂φ

∂s
+ sup

u

{
fukw(s, p) +

1

2
c2
uk

2w(s, p)

+fp
∂φ

∂p
+ cucpk

∂φ

∂p

}
+ 1

2
tr(cpc

′
p
∂2φ
∂p2

) ≤ 0.

for all φ ∈ C2 such that w − φ has a local minimum at (s, p). Then w(s, p) − φ(s, p) ≤

w(t, q)− φ(t, q).

Suppose v(s, z, p) = ekzw(s, p) and ψ ∈ C2 such that v − ψ has a local minimum at

(s, z, p). That is,

ekzw(s, p)− ψ(s, z, p) ≤ ekxw(t, q)− ψ(t, x, q) (6.3)

for all (t, x, q)in a neighborhood N(s, z, p).

(1) Let t = s, q = p, x = z + ∆z in (6.3) we have

ekzw(s, p)− ψ(s, z, p) ≤ ek(z+∆z)w(s, p)− ψ(s, z + ∆z, p),

or,

ψ(s, z + ∆z, p)− ψ(s, z, p) ≤ ek(z+∆z)w(s, p)− ekzw(s, p). (6.4)

Therefore,

ψ(s, z + ∆z, p)− ψ(s, z, p)

∆z
≤ ek(z+∆z) − ekz

∆z
w(s, p).

Letting ∆z → 0, we have

∂ψ

∂z
≤ ∂v

∂z
at (s, z, p). (6.5)
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Similarly, we have

ψ(s, z −∆z, p)− ψ(s, z, p) ≤ ek(z−∆z)w(s, p)− ekzw(s, p). (6.6)

Add (6.4) and (6.6). We have

ψ(s, z+∆z, p)−2ψ(s, z, p)+ψ(s, z−∆z, p) ≤ ek(z+∆z)w(s, p)+ek(z−∆z)w(s, p)−2ekzw(s, p).

Hence

ψ(s, z + ∆z, p)− 2ψ(s, z, p) + ψ(s, z −∆z, p)

(∆z)2
≤ ek(z+∆z) − 2ekz + +ek(z−∆z)

(∆z)2
w(s, p).

Letting ∆z → 0, we have

∂2ψ

∂z2
≤ ∂2v

∂z2
at (s, z, p). (6.7)

(2) Let x = z in (6.3). We also have

ekzw(s, p)− ψ(s, z, p) ≤ ekzw(t, q)− ψ(t, z, q).

Fix z and divide both sides by ekz, we have

w(s, p)− ψ(s, z, p)

ekz
≤ w(t, q)− ψ(t, z, q)

ekz
,

for all (t, q) in the neighborhood N(s, p). Because w is the viscosity solution of (6.2), we

must have

1

ekz
∂ψ

∂s
+ supu(·){fukw(s, z, p) + 1

2
c2
uk

2w(s, z, p)

+fp
1

ekz
∂ψ

∂p
+ cucpk

1

ekz
∂ψ

∂p
}+

1

2

1

ekz
tr(cpc

′
p

∂2ψ

∂p2
) ≤ 0.

Therefore,

∂ψ

∂s
+ supu(·){fukekzw(s, z, p) + 1

2
c2
uk

2ekzw(s, z, p)

+fp
∂ψ

∂p
+ cucpk

∂ψ

∂p
}+

1

2
tr(cpc

′
p

∂2ψ

∂p2
) ≤ 0.

This is true for all value of z. So

∂ψ

∂s
+ supu(·){fu

∂v

∂z
+

1

2
c2
u

∂2v

∂z2

+fp
∂ψ

∂p
+ cucpk

∂ψ

∂p
}+

1

2
tr(cpc

′
p

∂2ψ

∂p2
) ≤ 0.
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Consider (6.5) and (6.7). We have

∂ψ

∂s
+ supu(·){fu

∂ψ

∂z
+

1

2
c2
u

∂2ψ

∂z2

+fp
∂ψ

∂p
+ cucpk

∂ψ

∂p
}+

1

2
tr(cpc

′
p

∂2ψ

∂p2
) ≤ 0.

This proves that v(s, z, p) = ekzw(s, p) is a viscosity subsolution of (3.7). The proof for

supersolution is similar.

Recall that the numerical scheme for the value function is

vh(s−∆t, Y ) = sup
u

[
∑
Z

P h(Y, Z|u)vh(s, Z)] (6.8)

with

vh(T, z, p) = Φ(z), z ∈ Sh. (6.9)

Now with v(s, z, p) = ekzw(s, p) we can simplify this scheme and have

wh(s−∆t, p) = sup
u

[
∑
q

P h(p, q|u)δ(q)wh(s, p)], (6.10)

with

wh(T, p) = 1. (6.11)

6.1 Numerical Example

In order to test the numerical scheme in this chapter, we compare the value function from

the Markov chain approximation and from the Monte Carlo simulation. To take advantage

of the separable case, we assume the utility function is Φ(x) = x1/2.

Assume T = 0.5, a half year time frame. With initial investment of $1000, the value

function v(s, x, p) for different initial time s compared with the data from Monte Carlo

simulation is shown in Table 6.1 .

With initial investment of $1000, the value function v(s, x, p) for different initial proba-

bility p compared with the data from Monte Carlo simulation is shown in Table 6.2 .
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Table 6.1: Different initial time

s v(s, log(1000), 0.8) MC

0 33.5278 33.8943

0.1 33.2449 33.4353

0.2 32.8735 33.2977

0.3 32.4707 32.4048

0.4 32.0480 32.1506

Table 6.2: Different initial probability

p v(0.2, log(1000), p) MC

0 32.5956 32.9894

0.1 32.5964 32.7831

0.2 32.5981 32.8393

0.3 32.6024 32.8257

0.4 32.6140 32.9907

0.5 32.6511 32.9886

0.6 32.6963 33.0124

0.7 32.7415 33.1261

0.8 32.7868 33.1319

0.9 32.8321 33.2506

1.0 32.8588 33.2377



Chapter 7

Two-Time-scale Approximation

When the underlying Markov chain has a large state space, it is difficult to obtain an optimal

asset allocation. To deal with this problem, we use a method that is called two-time-scale

approximation. The method is effective for Markov chains whose states can be divided into

a number of weakly irreducible classes. The Markov chain fluctuates rapidly among different

states within a weakly irreducible class, but jumps less frequently from one weakly irreducible

class to another.

Let us first summarize the results of time-scale separation in Markov chains. Assume the

generator of the Markov chain is of the form:

Qε =
1

ε
Q̃+ Q̂,

where both Q̃ and Q̂ are generators. Let’s assume

Q̃ = diag
(
Q̃1, · · · , Q̃l

)
.

For each k = 1, · · · , l, Q̃k is the weakly irreducible generator corresponding to the states

in Mk = {sk1, ... , skmk}, for k = 1, · · · , l. The state space is, therefore, decomposed into

M =M1 ∪ · · · ∪Ml = {s11, ... , s1m1} ∪ · · · ∪ {sl1, ... , slml},

Note that Q̃ governs the rapidly changing part and Q̂ describes the slowly varying com-

ponents. As ε → 0, the underlying Markov chain jumps so fast within Mk, that it is no

longer useful to distinguish the states inMk. That is why we can lump all the states in each

Mk into one state. This reduces the number of states in the state space dramatically and

results in a aggregated process αε(·):

αε(t) = k, when αε(t) ∈Mk.

46
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Definition A generator Q(t) is said to be weakly irreducible if, for each fixed t ≥ 0, the

system of equations

ν(t)Q(t) = 0,

m∑
i=1

νi(t) = 1

has a unique solution ν(t) = (ν1(t), · · · , νm(t)) and ν(t) ≥ 0.

We are going to apply a couple of results from [15] and [17]. For convenience, the notation

here is also mostly consistent with these two papers.

Assuming Q̃k to be weakly irreducible, the following results have been shown in [5] section

7.5.

(a) αε(·) converges weakly to α(·), which is a continuous-time Markov chain generated

by

Q = ν Q̃1̃1,

ν = diag(ν1, · · · , ν l), 1̃1 = diag(11m1 , · · · , 11ml),

where ν k is the quasi-stationary distribution of Q̃k, k = 1, · · · , l, 11l = (1, · · · , l)′ ∈ Rl is

an l-dimensional column vector with all components being equal to 1, diag(D1, · · · , Dr) is a

block-diagonal matrix with appropriate dimensions.

(b) For any bounded deterministic β(·),

E

(∫ T

0

(I{αε(t)=sij} − νkj I{αε(t)=k})β(t)dt

)2

= O(ε),

where IA is the indicator function of a set A.

(c) Let P (t) = 1̃1(exp Q̃t)ν ∈ Rm×m. Then

| exp(Qεt)− P (t)| = O(ε+ e−
κt
ε ),

for some κ > 0.

To apply the two-time-scale Wonham Filters, we state the result from Section 2.2 in [17].

Let αε(t) be a continuous-time Markov chain having finite state space M = M1 ∪ · · · ∪
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Ml = {s11, ... , s1m1} ∪ · · · ∪ {sl1, ... , slml}, and generator Qε. Consider a function yε(t)

of the Markov chain that is observable with additive Gaussian noise. Let yε(t) denote the

observation measurement given by

dyε(t) = f(αε(t))dt+ σdW (t), yε(0) = 0, (7.1)

where σ is a positive constant and W (t) is a standard Brownian motion. Let pεij(t) denote

the conditional probability of αε(t) = sij given the observations up to time t, i.e.,

pεij(t) = P (αε(t) = sij|yε(s) : s ≤ t);

for i = 1, ..., l and j = 1, · · · ,mi. Let

pε(t) = (pε11(t), · · · , pε1m1
(t), · · · , pεl1(t), · · · , pεlml(t)) ∈ R

1×m.

Let

α̂ε(t) =
l∑

i=1

mi∑
j=1

f(sij)p
ε
ij(t).

Then the Wonham filter is given by

dpε(t) = pε(t)Qεdt− 1

σ2
α̂ε(t)pε(t)Aε(t)dt+

1

σ2
pε(t)Aε(t)dyε(t), (7.2)

where

Aε(t) = diag(f(s11), · · · , f(s1m1), · · · , f(sl1), · · · , f(lml))− α̂ε(t)I.

and pε(0) = p0 being the initial probability. Here, I is the identity matrix of dimension

m×m, m = m1 +m2 + · · ·+ml.

Let’s assume the Markov process that governs the market mode is represented by αε(t).

Then αε(t) affects the stock price P ε
2 which then affects the wealth function ξε(t). Recall

that

dP ε
2

P ε
2

= µ(αε(t))dt+ σdW (t).

So

d log(P ε
2 ) = [µ(αε(t))− σ2

2
]dt+ σdW (t).
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Since log(P ε
2 ) is observable, we can set up a Wonham filter for αε(t) by the following

dpε(t) = pε(t)Qdt− 1

σ2
α̃ε(t)pε(t)Aε(t)dt+

1

σ2
pε(t)Aε(t)d log(P ε

2 ), (7.3)

where

α̃ε(t) =
l∑

i=1

mi∑
j=1

[µ(sij)−
σ2

2
]pεij(t),

Aε(t) = diag(µ(s11)− σ2

2
, · · · , µ(s1m1)−

σ2

2
, · · · , µ(sl1)− σ2

2
, · · · , µ(lml)−

σ2

2
)− α̃ε(t)I.

and pε(0) = p0 being the initial probability.

Rewrite (7.3) as follows:

dpε(t) = pε(t)Qεdt− 1

σ2
α̃ε(t)pε(t)Aε(t)dt+

1

σ2
pε(t)Aε(t)d log(P2)

= pε(t)Qεdt+
pε(t)Aε(t)

σ

(
d log(P2)− α̃ε(t)dt

σ

)
. (7.4)

Let

dv̂ε =
d log(P ε

2 )− α̃εdt
σ

.

v̂ε is an innovation process.

From the definition of dv̂ε, we have σdv̂ε = d log(P ε
2 )− α̃εdt. Hence,

d log(P ε
2 ) = α̃εdt+ σdv̂ε.

Therefore, we can replace the dynamic of P2 by the following

dP2

P2

= (α̃ε(t) +
σ2

2
)dt+ σdv̂ε.

Notice that both α̃ε and dv̂ε are observable.

Because

α̃ε(t) =
l∑

i=1

mi∑
j=1

[µ(sij)−
σ2

2
]pεij(t) =

l∑
i=1

mi∑
j=1

µ(sij)p
ε
ij(t)−

σ2

2
= α̂ε(t)− σ2

2
,

dP ε
2 /P

ε
2 = α̂ε(t)dt+ σdv̂ε, where α̂ε(t) =

∑l
i=1

∑mi
j=1 µ(sij)p

ε
ij(t).
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Therefore, ξε(t) has the following dynamics:

dξε(t)

ξε(t)
= (1− u(t))rdt+ u(t)(α̂ε(t)dt+ σdv̂ε), (7.5)

where ξε(s) = y.

Denote Zε(t) = log ξε(t) and z = log y, then we have

dZε(t) = [(1− u(t))r + u(t)α̂ε(t)− 1

2
(u(t)σ)2]dt+ u(t)σdv̂,

dpε(t) = pε(t)Qεdt+
pε(t)Aε(t)

σ
dv̂(t).

We can write the reward and value functions in terms of the new state variables

Jε(s, z, p, u(·)) = Esz(Φ(exp(Zε(T )))),

vε(s, z, p) = sup
u
Jε(s, z, p, u(·)),

and vε(T, z, p) = Φ(ez). Let us refer to the problem of computing vε as problem P ε, the

original problem.

Let Y ε(t) = (Zε(t)
...pε(t))′, where A′ denote the transpose of the matrix (or vector) A.

Then

dY ε(t) =

 (1− u)r + uα̂ε − (1/2)(uσ)2

Qε′pε(t)′

 dt+

 uσ

Aε(t)pε(t)′

σ

 dv̂ε.

Let

f ε(t, Y, u) =

 (1− u)r + uα̂ε − (1/2)(uσ)2

Qε′pε(t)′


and

Σε(t, Y, u) =

 uσ

Aε(t)pε(t)′

σ

 .

Then

dY ε(t) = f ε(t, Y ε(t), u(t))dt+ Σε(t, Y ε(t), u(t))dv̂ε(t).
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Define

Hε(t, Y, P,G) = sup
u
{f εP +

1

2
tr{(ΣεΣε′)G}} (7.6)

where P is an 1 × (m + 1) vector and G is an (m + 1) × (m + 1) matrix. Here, fP should

be understood as the inner product of two vectors.

By Ito’s formula, the value function vε(s, Y ) should satisfy the following HJB Equation

∂vε

∂s
+Hε(s, Y ε,

∂vε

∂Y
,
∂2vε

∂Y 2
) = 0 (7.7)

with the boundary condition vε(T, z, p) = Φ(ez), where z = log y, y is the initial wealth, and

p is the initial probability vector. Using the same proof as in Chapter 3, we can see that

vε(s, z, p) is the unique viscosity solution of HJB equation (7.7).

It is shown in Section 3 of [17] that pε(t)→ p0(t) as ε→ 0, where

p0(t) = (ν 1p̄1(t), · · · , ν lp̄l(t)) = p̄(t)ν.

To determine p̄(t), we note the weak limit of yε(·) = logP ε
2 (·) is given by

dy(t) = [µ̄(α(t))− 1

2
σ2]dt+ σdW (t), y(0) = 0,

where

µ̄(i) =

mi∑
j=1

µ(sij)ν
i
j.

The corresponding conditional probability p̄(t) is decided by

p̄(t) = p̄(0) +

∫ t

0

p̄(u)Qdu− 1

σ2

∫ t

0

α̃(u)p̄(u)A(u)du+
1

σ2

∫ t

0

p̄(u)A(u)dy(u),

with initial condition

p̄(0) = p01̃1,

where

α̃(t) =
l∑

i=1

µ̄(i)p̄i(t)−
1

2
σ2,

and

A(t) = diag(µ̄(1)− 1

2
σ2, · · · , µ̄(l)− 1

2
σ2)− α̃(t)I.
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Using this filter, the SDE can be reformulated as

dZ(t) = [(1− u(t))r + u(t)µ̂(t)− (1/2)(u(t)σ)2]dt+ u(t)σdŵ,

dp̄(t) = p̄(t)Qdt+
p̄(t)A

σ
dŵ,

where

dŵ =
dy(t)− α̃(t)dt

σ

is an innovation process. And

µ̂(t) = p0(t)µ = p̄(t)νµ.

Here µ = (µ1 · · ·µm)′ and the corresponding reward and value functions are

J0(s, z, p̄, u(·)) = Esz(Φ(exp(Z(T )))),

v̄0(s, z, p) = sup
u(·)

J0(s, z, p̄, u(·)),

with v̄0(T, z, p̄) = Φ(ez). Let us refer to this problem as problem P 0, or the limit problem.

Let Y (t) = (Z(t)
...p̄(t))′, where A′ denote the transpose of the matrix (or vector) A. Then

dY (t) =

 (1− u)r + uµ̂− (1/2)(uσ)2

Q
′
p̄(t)′

 dt+

 uσ

A(t)p̄(t)′

σ

 dŵ.

Let

f(t, Y, u) =

 (1− u)r + uµ̂(t)− (1/2)(uσ)2

Q
′
p̄(t)′


and

Σ(t, Y, u) =

 uσ

A(t)p̄(t)′

σ

 .

Then

dY (t) = f(t, Y (t), u(t))dt+ Σ(t, Y (t), u(t))dŵ(t).
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Define

H(t, Y , P,G) = sup
u
{fP +

1

2
tr{(ΣΣ

′
)G}} (7.8)

where P is an 1 × (l + 1) vector and G is an (l + 1) × (l + 1) matrix. Here, fP should be

understood as the inner product of two vectors.

By Ito’s formula, for the reformulated SDE, the value function v̄0(s, Y ) should satisfy the

following HJB Equation

∂v̄0

∂s
+H(s, Y ,

∂v̄0

∂Y
,
∂2v̄0

∂Y
2 ) = 0, (7.9)

with the boundary condition v̄0(T, z, p̄) = Φ(ez), where z = log y, y is the initial wealth, and

p̄ = p01̃1 is the initial probability vector. Using the same proof as in Chapter 3, we can see

that v̄0(s, z, p) is the unique viscosity solution of HJB equation (7.9).

Define

p̃ε(t) = p̄ε(t)ν,

p̄ε(t) = p̄ε(0) +

∫ t

0

p̄ε(u)Qdu− 1

σ2

∫ t

0

α̌ε(u)p̄ε(u)A
ε
(u)du+

1

σ2

∫ t

0

p̄ε(u)A
ε
(u)dyε(u),

with initial condition

p̄ε(0) = p01̃1,

where

α̌ε(t) =
l∑

i=1

µ̄(i)p̄εi (t)−
1

2
σ2,

and

A
ε
(t) = diag(µ̄(1)− 1

2
σ2, · · · , µ̄(l)− 1

2
σ2)− α̌ε(t)I.

The following theorem has been proved in [17]:

Theorem 7.0.1. The following hold.

(a) p̃ε(t) is an approximation to pε(t) for small ε. More precisely,

E|p̃ε(t)− pε(t)|2 = O
(
ε+ e−

κt
ε

)
,

for some constant κ > 0.
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(b) p̄ε(t) converges weakly to p̄(·) in C([0, T ];Rm), where C([0, T ];Rm) denotes the space

of Rm-valued continuous functions defined on [0, T ].

We notice that p̃ε(t) has much lower dimension than pε(t) and the approximation can be

fairly accurate. So it is reasonable to consider computation of the value function using p̃ε(t)

instead of pε(t).

Through similar argument, the original SDE

dZε(t) = [(1− u(t))r + u(t)α̂ε(t)− (1/2)(u(t)σ)2]dt+ u(t)σdv̂,

dpε(t) = pε(t)Qεdt+
pε(t)Aε(t)

σ
dv̂(t).

can be reformulated into

dZ
ε
(t) = [(1− u(t))r + u(t)µ̂ε(t)− (1/2)(u(t)σ)2]dt+ u(t)σdŵε,

dp̄ε(t) = p̄ε(t)Qdt+
p̄ε(t)A

ε
(t)

σ
dŵε,

where

dŵε =
d log pε2(t)− α̌ε(t)dt

σ

is an innovation process. And

µ̂ε(t) = p̃ε(t)µ = p̄ενµ.

Here µ = (µ1 · · ·µm)′.

Recall that

Jε(s, z, p, u(·)) = Esz(Φ(exp(Zε(T )))),

vε(s, z, p) = sup
u
Jε(s, z, p, u(·)),

and vε(T, z, p) = Φ(ez).

Let Y
ε
(t) = (Z

ε
(t)

...p̄ε(t))′, where A′ denote the transpose of the matrix (or vector) A.

Then

dY
ε
(t) =

 (1− u)r + uµ̂ε − (1/2)(uσ)2

Q
′
p̄ε(t)′

 dt+

 uσ

A
ε
(t)p̄ε(t)′

σ

 dŵε.
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Let

f
ε
(t, Y, u) =

 (1− u)r + uµ̂ε − (1/2)(uσ)2

Q
′
p̄ε(t)′


and

Σ
ε
(t, Y, u) =

 uσ

A
ε
(t)p̄ε(t)′

σ

 .

Then

dY
ε
(t) = f

ε
(t, Y

ε
(t), u(t))dt+ Σ

ε
(t, Y

ε
(t), u(t))dŵε(t).

Define

H
ε
(t, Y , P,G) = sup

u
{f εP +

1

2
tr{(Σε

Σ
ε′

)G}} (7.10)

where P is an 1 × (l + 1) vector and G is an (l + 1) × (l + 1) matrix. Here, fP should be

understood as the inner product of two vectors.

By Ito’s formula, for the reformulated SDE, the value function v̄ε(s, Y ) should satisfy the

following HJB Equation

∂v̄ε

∂s
+H

ε
(s, Y

ε
,
∂v̄ε

∂Y
,
∂2v̄ε

∂Y
2 ) = 0 (7.11)

with the boundary condition v̄ε(T, z, p̄) = Φ(ez), where z = log y, y is the initial wealth,

and p̄ = p01̃1 is the initial probability vector. Using the same proof as in Chapter 3, we

can see that v̄ε(s, z, p) is the unique viscosity solution of HJB equation (7.11). v̄ε(s, z, p) is

an approximation for the original value function vε(s, z, p). Suppose the optimal control for

vε(s, z, p) is uε∗ and the optimal control for v̄ε(s, z, p) is ūε∗ then

vε(s, z, p) = sup
u
E [Φ(exp(Zε(T )))] = E

[
Φ(exp(Zε

uε∗
(T )))

]
,

v̄ε(s, z, p) = sup
u
E
[
Φ(exp(Z

ε
(T )))

]
= E

[
Φ(exp(Z

ε

ūε∗
(T )))

]
.
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We have

vε(s, z, p)− v̄ε(s, z, p̄)

= sup
u
E [Φ(exp(Zε(T )))]− sup

u
E
[
Φ(exp(Z

ε
(T )))

]
= E

[
Φ(exp(Zε

uε∗
(T )))

]
− E

[
Φ(exp(Z

ε

ūε∗
(T )))

]
≤ E

[
Φ(exp(Zε

uε∗
(T )))

]
− E

[
Φ(exp(Z

ε

uε∗
(T )))

]
= E

[
Φ(exp(Zε

uε∗
(T )))− Φ(exp(Z

ε

uε∗
(T )))

]
≤ K1E

∣∣Zε
uε∗

(T )− Zε

uε∗
(T )
∣∣ .

For the last inequality, we need the utility function to satisfy

|Φ(y1)− Φ(y2)| ≤ K1| log y1 − log y2|.

Therefore,

vε(s, z, p)− v̄ε(s, z, p̄)

≤ K1E

∣∣∣∣∫ T

s

(
(1− uε∗)r + uε∗α̂

ε − 1

2
(uε∗σ)2

)
dt−

∫ T

s

(
(1− uε∗)r + uε∗µ̂

ε − 1

2
(uε∗σ)2

)
dt

∣∣∣∣
= K1E

∣∣∣∣∫ T

s

uε∗(α̂
ε − µ̂ε)dt

∣∣∣∣
= K1E

∣∣∣∣∫ T

s

uε∗(p
ε(t)− p̃ε(t)) · µdt

∣∣∣∣
= K1E

∫ T

s

uε∗ |pε(t)− p̃ε(t)| · µdt

≤ K1

∫ T

s

uε∗E |pε(t)− p̃ε(t)| · µdt

= O
(
ε+ e−

κt
ε

)
, by theorem 7.0.1.
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On the other hand,

v̄ε(s, z, p)− vε(s, z, p̄)

= sup
u
E
[
Φ(exp(Z

ε
(T )))

]
− sup

u
E [Φ(exp(Zε(T )))]

= E
[
Φ(exp(Z

ε

ūε∗
(T )))

]
− E

[
Φ(exp(Zε

uε∗
(T )))

]
≤ E

[
Φ(exp(Z

ε

ūε∗
(T )))

]
− E

[
Φ(exp(Zε

ūε∗
(T )))

]
= E

[
Φ(exp(Z

ε

ūε∗
(T )))− Φ(exp(Zε

ūε∗
(T )))

]
≤ K1E

∣∣Zε

ūε∗
(T )− Zε

ūε∗
(T )
∣∣

≤ K1E

∣∣∣∣∫ T

s

(
(1− ūε∗)r + ūε∗α̂

ε − 1

2
(ūε∗σ)2

)
dt−

∫ T

s

(
(1− ūε∗)r + ūε∗µ̂

ε − 1

2
(ūε∗σ)2

)
dt

∣∣∣∣
= K1E

∣∣∣∣∫ T

s

ūε∗(α̂
ε − µ̂ε)dt

∣∣∣∣
= K1E

∣∣∣∣∫ T

s

ūε∗(p
ε(t)− p̃ε(t)) · µdt

∣∣∣∣
= K1E

∫ T

s

ūε∗ |pε(t)− p̃ε(t)| · µdt

≤ K1

∫ T

s

ūε∗E |pε(t)− p̃ε(t)| · µdt

= O
(
ε+ e−

κt
ε

)
, by theorem 7.0.1.

Combine the above inequalities, we conclude

|vε(s, z, p)− v̄ε(s, z, p̄)| = O
(
ε+ e−

κt
ε

)
.
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We are going to prove that v̄ε → v̄0 as ε→ 0. Suppose that the optimal control for v̄ε is

uε and the optimal control for v̄0 is u0. Then

v̄ε(s, z, p̄)− v̄0(s, z, p̄)

= sup
u
EΦ(exp(Z

ε
(T )))− sup

u
EΦ(exp(Z(T )))

= EΦ(exp(Z
ε

uε(T )))− EΦ(exp(Zu0(T )))

≤ EΦ(exp(Z
ε

uε(T )))− EΦ(exp(Zuε(T )))

= E
[
Φ(exp(Z

ε

uε(T )))− Φ(exp(Zuε(T )))
]

≤ K1E
∣∣Zε

uε(T )− Zuε(T )
∣∣

v̄0(s, z, p̄)− v̄ε(s, z, p̄)

= sup
u
EΦ(exp(Z(T )))− sup

u
EΦ(exp(Z

ε
(T )))

= EΦ(exp(Zu0(T )))− EΦ(exp(Z
ε

uε(T )))

≤ EΦ(exp(Zu0(T )))− EΦ(exp(Z
ε

u0(T )))

= E
[
Φ(exp(Zu0(T )))− Φ(exp(Z

ε

u0(T )))
]

≤ K1E
∣∣Zu0(T )− Zε

u0(T )
∣∣ .
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It suffices to prove that E|Zε

u(T )− Zu(T )| → 0 as ε→ 0 for any u(t).

E|Zε

u(T )− Zu(T )|

= E
∣∣∣∫ Ts ((1− u)r + uµ̂ε − 1

2
(uσ)2

)
dt−

∫ T
s

(
(1− u)r + uµ̂− 1

2
(uσ)2

)
dt
∣∣∣

= E
∣∣∣∫ Ts u(µ̂ε − µ̂)dt

∣∣∣
≤ E

∫ T
s
|u(µ̂ε − µ̂)| dt

≤
∫ T
s
E |u(µ̂ε − µ̂)| dt

≤
∫ T
s
E|u| · |p̄ε(t)− p̄(t)| · |ν| · |µ|dt.

Note that

|µ̂ε(t)− µ̂(t)| = |p̄ε(t)− p̄(t)| · |ν| · |µ|.

By Theorem 7.0.1, p̄ε(t) converges weakly to p̄(·) in C([0, T ];Rl), as ε → 0. This proves

E|Y ε

u(T )− Y u(T )| → 0 as ε→ 0, which means that |v̄ε(s, z, p̄)− v̄0(s, z, p̄)| → 0 as ε→ 0.

As we discussed before, the limit problem has lower dimension, therefore, its optimal

control is much easier to obtain computationally. Once we know the optimal control, or

nearly-optimal control, for the limit problem, how do we decide the optimal control for the

original problem? We can construct a nearly-optimal control of the original asset allocation

problem from the nearly-optimal control of the limit problem. Suppose ū(t, Z̄(t), p̄(t)) is the

nearly-optimal control for the limit problem such that

|J0(s, z, p̄, ū(·))− v̄0(s, z, p̄)| < δ,

for any δ > 0. Assume ū(t, Z̄(t), p̄(t)) is Lipschitz we can prove that a nearly-optimal control

of the original problem can be constructed as the following

u(t, Zε(t), pε(t)) = ū(t, Zε(t), p̄ε(t)), (7.12)

where

pε(t) = (pε11, · · · , pε1m1
, · · · , pεl1, · · · , pεlml),
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and

p̄ε(t) = (pε11 + · · ·+ pε1m1
, · · · , pεl1 + · · ·+ pεlml).

Theorem 7.0.2. With the limit problem, the original problem, and the utility functions

stated as above, if the nearly-optimal control for the limit problem is Lipschitz, then the

control defined in (7.12) is δ−optimal for the original problem for sufficient small ε.

Proof. Under the constructed control, the state Zε(t) satisfies

dZε(t) = [(1− ū(t, Zε(t), p̄ε(t)))r + ū(t, Zε(t), p̄ε(t))α̂ε(t)− 1

2
(ū(t, Zε(t), p̄ε(t))σ)2]dt

+ū(t, Zε(t), p̄ε(t))σdv̂,

dpε(t) = pε(t)Qεdt+
pε(t)Aε(t)

σ
dv̂.

For the limit problem, the corresponding system dynamics are given by

dZ(t) = [(1− ū(t, Zε(t), p̄(t)))r + ū(t, Zε(t), p̄(t))µ̂(t)− (1/2)(ū(t, Zε(t), p̄(t))σ)2]dt

+ū(t, Zε(t), p̄(t))σdv̂,

dp̄(t) = p̄(t)Qdt+
p̄(t)A

σ
dv̂,

where α̂ε(t) =
∑l

i=1

∑mi
j=1 µ(sij)p

ε
ij(t) = pε(t)µ, and µ̂(t) = p̄(t)νµ. Here µ is to denote the

column vector (µ1, µ2, · · · , µm)′. Notice that

d(Zε(t)− Z(t)) = [(ū(t, Zε(t), p̄(t))− ū(t, Zε(t), p̄ε(t))) r

+ū(t, Zε(t), p̄ε(t))α̂ε(t)− ū(t, Zε(t), p̄(t))µ̂(t)

+
1

2
(ū(t, Zε(t), p̄(t))σ)2 − 1

2
(ū(t, Zε(t), p̄ε(t))σ)2

]
dt

+(ū(t, Zε(t), p̄ε(t))− ū(t, Zε(t), p̄(t)))σdv̂.

Hence,

Zε(t)− Z(t) =

∫ t

s

Aε(t)dt+

∫ t

s

Bε(t)dv̂,
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where

Aε(t) = (ū(t, Zε
t , p̄t)− ū(t, Zε

t , p̄
ε
t)) r + ū(t, Zε

t , p̄
ε
t)α̂

ε
t − ū(t, Zε

t , p̄t)µ̂t

+
1

2
(ū(t, Zε

t , p̄t)σ)2 − 1

2
(ū(t, Zε

t , p̄
ε
t)σ)2.

If ū(t, z, p̄) is Lipschitz, then

|ū(t, Zε(t), p̄(t))− ū(t, Zε(t), p̄ε(t)| ≤ K|p̄(t)− p̄ε(t)|,

|ū(t, Zε(t), p̄ε(t))α̂ε(t)− ū(t, Zε(t), p̄(t))µ̂(t)|

≤ |ū(t, Zε(t), p̄ε(t))α̂ε(t)− ū(t, Zε(t), p̄(t))α̂ε(t)|

+|ū(t, Zε(t), p̄(t))α̂ε(t)− ū(t, Zε(t), p̄(t))µ̂(t)|

≤ K|p̄ε(t)− p̄(t)|+ |α̂ε(t)− µ̂(t)|

= K|p̄ε(t)− p̄(t)|+ |(pε(t)− p̄(t)ν)µ|.

Therefore,

|(ū(t, Zε(t), p̄(t)))2 − (ū(t, Zε(t), p̄ε(t)))2|

= |[ū(t, Zε(t), p̄(t))− ū(t, Zε(t), p̄ε(t))][ū(t, Zε(t), p̄(t)) + ū(t, Zε(t), p̄ε(t))]|

≤ 2|ū(t, Zε(t), p̄(t))− ū(t, Zε(t), p̄ε(t))|.

As proved in [17], pε(t)⇒ p̄(t)ν, p̄ε(t) = pε(t)1̃1⇒ p̄(t), as ε→ 0. Here ”⇒” denote weakly

convergence. In view of Skorohod representation, we may assume pε(t) → p̄(t)ν w.p.1, and

p̄ε(t)→ p̄(t) w.p.1.

Therefore,

E
[
Zε(t)− Z(t)

]
=

∫ t

s

Aε(t)dt→ 0, as ε→ 0.

It follows that

|EΦ(eZ
ε(T ))− EΦ(eZ(T ))| → 0, as ε→ 0.
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Consequently, we have

|Jε(s, z, pε, u(·))− vε(s, z, pε)|

≤ |Jε(s, z, pε, u(·))− J0(s, z, p̄, ū(·))|

+|J0(s, z, p̄, ū(·))− v̄0(s, z, p̄)|

+|v̄0(s, z, p̄)− vε(s, z, pε)| → 0, with p̄ = pε1̃1.



Chapter 8

Optimal selling rule

In practice, a key step in stock speculation is the timing for selling. Setting up a selling

rule is necessary for profitability. A selling rule can be given using a target price range like

in [16], or an optimal selling time as in [18]. In [16], a policy based on a target price and a

stop-loss price is obtained by solving a set of two-point boundary value differential equations.

In [18] , a strategy is constructed for ”bubble stocks” so that the investor can decide when

to sell a stock that has a rapid growth rate and then a rapid rate of decline by computing

the probability of the positive growth rate and sell the stock when this probability becomes

lower.

Using a regime switching model to describe the stock price, we are going to compute an

optimal selling rule through variational inequality sufficient condition and nonlinear filtering

similar to what has been done in [18]. Our goal, however, is to extend the result in [18] to

incorporate more general case.

Since Wonham filter has proved to be quite efficient in turning a partially observable

problem into a completely observable one, in the rest of this paper, we will work on the

optimal selling problem with partial observation.

Let’s first state the variational inequality sufficient conditions for an optimal stopping

problem. Let z be an n-dimensional vector, F (z) an n-dimensional vector valued function

and Σ(z) an (n×m)-dimensional matrix valued function of z. Let W (t) be an m-dimensional

Brownian motion process. Suppose F (z) and Σ(z) are regular enough so that solutions of

the stochastic differential equation and initial condition

dz(t) = F (z(t))dt+ Σ(z(t))dW (t), z(0) = z, (8.1)

63
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exist and are unique. Let Ft denote the σ−fields

Ft = σ{z(r) : 0 ≤ r ≤ t}

generated by the past of z(t). Let U(z) be a twice continuously differentiable utility function.

Let A denote a class of Ft stopping times. For each stopping time τ ∈ A, consider the

expected utility

E[U(z(τ))]. (8.2)

The optimal stopping problem is to find τ in A which achieves maximum of (8.2).

We use the following variational inequality sufficient conditions for optimality for this

problem. This is a simpler version than the one given in [18].

Theorem 8.0.3. Let R be a region in En. Assume for each z in R that the solution of (8.1)

with initial condition z is contained in R. Let V (z) be a scalar valued function defined on R.

Let V (z) be regular enough so that Itô’s stochastic differential rule holds for V (z(t)). Define

the differential operator A[V ](z) by

A[V ](z) = Vz(z)F (z) +
1

2
tr(Σ(z)Σ(z)′Vzz(z)).

Let V (z) be a solution of the variational inequality

A[V ](z) ≤ 0, V (z) ≥ U(z),

(V (z)− U(z))A[V ](z) = 0. (8.3)

and let the condition

E

[∫ τ

0

‖Vz(z(t))Σ(z(t))‖2dt

]
<∞ (8.4)

hold for each stopping time τ in A. For z(t) the solution of (8.1) with initial condition z, let

τ(z) = first time z(t) hits {q : V (q) = U(q)}. (8.5)

Let

τ(z) ∈ A for each z ∈ R. (8.6)
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Then

V (z) = E[U(z(τ(z)))] = max
τ∈A

E[U(z(τ))].

That is, τ(z) is an optimal stopping time in A and V (z) is the value function for the optimal

stopping problem.

To satisfy the boundary condition (8.4), we see that if

‖Vz(z(t))Σ(z(t))‖2 ≤ K, (8.7)

then

E

[∫ τ

0

‖Vz(z(t))Σ(z(t))‖2dt

]
< KE(τ),

which mean the condition (8.4) is satisfied for stopping times with finite expectations as long

as (8.7) holds.

Let S(t) denote the price of a stock at time t. It satisfies

dS(t) = µ(α(t))S(t)dt+ σS(t)dW (t),

S(0) = S0, t ≥ 0,

where S0 > 0 is the initial price, µ(i) is the expected return rate, σ is a constant, representing

the stock volatility, α(t) is the markov process with generator Q, and W (t) is a standard

Brownian motion. The processesα(t) and W (t) are independent.

Let U(S) be a utility function. Let

Ft = σ{S(r) : 0 ≤ r ≤ t}

denote the σ−fields generated by the past of the process S(·) up to times t.

We consider the problem of finding a Ft stopping time τ which maximizes the expected

utility

E[U(S(τ))].

This is an optimal stopping problem with partial observation.
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Let X(t) be the log price, i.e, S(t) = S0 exp(X(t)), then

dX(t) =

[
µ(α(t))− σ2

2

]
dt+ σdW (t)

X(0) = 0, t ≥ 0

Let pi(t) denote the conditional probability of α(t) = i given the observations of X(t) up

to time t, i.e.,

pi(t) = P (α(t) = i|X(s) : s ≤ t);

for i = 1, ...,m. Let p(t) = (p1(t), ..., pm(t)) ∈ R1×m.

Since the value of X(t) is observable and it is a function of α(t), we can set up a Wonham

filter for α(t) by the following

dp(t) = p(t)Qdt− 1

σ2

(
m∑
i=1

[µ(i)− σ2

2
]pi(t)

)
p(t)A(t)dt+

1

σ2
p(t)A(t)dX(t), (8.8)

p(0) = p, being the initial probability, where

A(t) = diag(µ(1)− σ2

2
, ..., µ(m)− σ2

2
)−

m∑
i=1

[µ(i)− σ2

2
]pi(t)I.

= diag(µ(1)− σ2

2
, ..., µ(m)− σ2

2
)−

m∑
i=1

µ(i)pi(t)I +
σ2

2

m∑
i=1

pi(t)I.

= diag(µ(1), ..., µ(m))−
∑m

i=1 µ(i)pi(t)I.

Denote α̃(t) =
∑m

i=1[µ(i)− σ2

2
]pi(t), we then have

dp(t) = p(t)Qdt− 1

σ2
α̃(t)p(t)A(t)dt+

1

σ2
p(t)A(t)dX(t)

= p(t)Qdt+
p(t)A(t)

σ

(
dX(t)− α̃(t)dt

σ

)
. (8.9)

Let

dv̂ =
dX(t)− α̃dt

σ
.
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As proved before, v̂ is an innovation process. Moreover, we can write both X and p in terms

of v̂.

dX(t) = α̃(t)dt+ σdv̂, X(0) = 0,

dp(t) = p(t)Qdt+
p(t)A(t)

σ
dv̂, p(0) = p. (8.10)

If the number of market modes is 2, M = {1, 2} . Assume µ1 is the bull market rate

of return and µ2 is the bear market rate of return, 2µ1 > σ2 > 2µ2. Assume α(t) has a

generator

Q =

 −λ1 λ1

λ2 −λ2

 ,
then

A(t) =

 µ1 − µ1p1(t)− µ2p2(t) 0

0 µ2 − µ1p1(t)− µ2p2(t)



A(t) =

 µ1p2(t)− µ2p2(t) 0

0 µ2p1(t)− µ1p1(t)

 ,
or

A(t) =

 (µ1 − µ2)p2(t) 0

0 −(µ1 − µ2)p1(t)

 .
Therefore,

p(t)Q =

[
p1(t) p2(t)

] −λ1 λ1

λ2 −λ2

 =

[
−λ1p1(t) + λ2p2(t) λ1p1(t)− λ2p2(t)

]
,

p(t)A(t) =

[
p1(t) p2(t)

] (µ1 − µ2)p2(t) 0

0 −(µ1 − µ2)p1(t)


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α̃(t) = µ1p1(t) + µ2p2(t)− σ2

2

It follows that

dX(t) =

(
µ1p1(t) + µ2p2(t)− σ2

2

)
dt+ σdv̂,

dp1(t) = (−λ1p1(t) + λ2p2(t))dt+
1

σ
((µ1 − µ2)p1(t)p2(t))dv̂,

dp2(t) = (λ1p1(t)− λ2p2(t))dt− 1

σ
((µ1 − µ2)p1(t)p2(t))dv̂. (8.11)

Since p1(t) + p2(t) = 1 we can replace p2 by 1− p1,

dX(t) =

(
µ1p1(t) + µ2 − µ2p1(t)− σ2

2

)
dt+ σdv̂, (8.12)

dp1(t) = (−λ1p1(t) + λ2 − λ2p1(t))dt+
1

σ
((µ1 − µ2)p1(t)(1− p1(t))dv̂. (8.13)

In the notation of Theorem 8.0.3,

z =

 X

p1

 ,Σ(z) =

 σ

1
σ
((µ1 − µ2)p1(t)(1− p1(t))

 .

A[V ](X, p1) = VX

(
µ1p1(t) + µ2 − µ2p1(t)− σ2

2

)
+ Vp(−λ1p1(t) + λ2 − λ2p1(t))

1

2
σ2VXX + (µ1 − µ2)p1(t)(1− p1(t))VXp

1

2

(
µ1 − µ2

σ

)2

(1− p1(t))2p1(t)2Vpp

Vz(z)Σ(z) = σVX(X, p1) +
µ1 − µ2

σ
(1− p1(t))p1(t)Vp.

The optimization problem is to choose the stopping time τ to maximize

E[U(S(τ))], or E[U(eX(τ))]

subject to

dS(t) = S(t) (µ1p1(t) + µ2 − µ2p1(t)) dt+ S(t)σdv̂,

dp1(t) = (−λ1p1(t) + λ2 − λ2p1(t))dt+
1

σ
((µ1 − µ2)p1(t)(1− p1(t))dv̂. (8.14)
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Recall the notation of Theorem 8.0.3,

z =

 S

p1

 , Σ(z) =

 Sσ

1
σ
((µ1 − µ2)p1(t)(1− p1(t))

 .

We also have

A[V ](S, p1) = VSS (µ1p1 + µ2 − µ2p1) + Vp(−λ1p1 + λ2 − λ2p1)

+
1

2
S2σ2VSS + (µ1 − µ2)p1(1− p1)SVSp

+
1

2

(
µ1 − µ2

σ

)2

(1− p1)2p2
1Vpp

Vz(z)Σ(z) = SσVS(S, p1) +
µ1 − µ2

σ
(1− p1(t))p1(t)Vp.

Consider the utility function

U(S) = ln(S)

and class of admissible Ft stopping times τ given by

A = {τ : E(τ) <∞}.

First we need to know if there are conditions under which it is optimal to sell the stock

at τ = 0 or it is optimal not to sell the stock at all. Suppose the rate of return is either µ1

or µ2 and µ1 > µ2. Then (8.12) implies that

E[ln(S(t))]− ln(S) = µ1p1(t) + µ2 − µ2p1(t)− σ2

2
(8.15)

If σ2/2 ≥ µ1, then µ1 − µ2 ≤ σ2/2− µ2. The right hand side of the above inequality will be

(µ1 − µ2)p1(t) + µ2 −
σ2

2
≤ (

σ2

2
− µ2)p1(t) + µ2 −

σ2

2
= (

σ2

2
− µ2)(p1(t)− 1) ≤ 0.

So E[ln(S(t))] ≤ ln(S). In this case, it is optimal to sell the stock immediately.

If σ2/2 ≤ µ2, then the right hand side of the inequality (8.15) will be

(µ1 − µ2)p1(t) + µ2 −
σ2

2
≥ µ2 −

σ2

2
≥ 0
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No matter what p1(t) will be, a positive rate of return is guaranteed. So there is no reason

to sell the stock.

Assume µ1 > σ2/2 > µ2 and let us find the optimal selling time in class A for this

condition. We can assume V (S, p1) takes the form

V (S, p1) = ln(S) + f(p1),

and try to find an appropriate f(x).

A[ln(S) + f(p1)](S, p1) = µ1p1 + µ2 − µ2p1 + f ′(p1)(−λ1p1 + λ2 − λ2p1)− 1

2
σ2

+
1

2

(
µ1 − µ2

σ

)2

(1− p1)2p2
1f
′′(p1). (8.16)

Denote the right hand side as B[f ](p1), the variational inequality reduces to

B[f ](p1) < 0, f(p1) ≥ 0, and f(p1)B[f ](p1) = 0. (8.17)

Note that

Vz(z)Σ(z) = SσVS(S, p1) +
µ1 − µ2

σ
(1− p1)p1Vp

= σ +
µ1 − µ2

σ
(1− p1)p1f

′(p1), (8.18)

which is bounded if f ′(p1) is bounded.

For Itô’s differential rule to hold for ln(S(t)) + f(p1(t)), f(p1) must be at least once

continuously differentiable. This implies: If q ∈ (0, 1), and if q is a boundary point of an

interval on which f(p1) = 0, then f ′(q) = 0.

So we look for a continuously differentiable f(p1) of (8.17) for which f ′(p1) is bounded

and f ′(q) = 0 at boundary points q of intervals on which f(x) = 0.

Conditions (8.17) imply that if f(p1) 6= 0, then B[f ](p1) = 0. From (8.16) this equation

is

µ1p1 + µ2 − µ2p1 + f ′(p1)(−λ1p1 + λ2 − λ2p1)− 1

2
σ2 +

1

2

(
µ1 − µ2

σ

)2

(1− p1)2p2
1f
′′(p1) = 0
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Since it is only involved f ′(p1) and f ′′(p1), we will set r(p1) = f ′(p1) and solve

µ1p1 + µ2 − µ2p1 + r(p1)(−λ1p1 + λ2 − λ2p1)− 1

2
σ2

+
1

2

(
µ1 − µ2

σ

)2

(1− p1)2p2
1r
′(p1) = 0.

Simplify this equation, then we have

1

2

(
µ1 − µ2

σ

)2

(1− p1)2p2
1r
′(p1) + r(p1)(−λ1p1 + λ2 − λ2p1) =

1

2
σ2 − µ1p1 − µ2 + µ2p1.

Denote h = 2σ2

(µ1−µ2)2
, k = λ1 + λ2, c = µ1 − µ2 to shorten notation, we then have

(1− p1)2p2
1

h
r′(p1) + r(p1)(λ2 − kp1) =

1

2
σ2 − cp1 − µ2.

Divide both sides by (1− p1)2p2
1/h, we have a classical first order ODE

r′(p1) + r(p1)
h(λ2 − kp1)

(1− p1)2p2
1

=
σ2h− 2hcp1 − 2hµ2

2(1− p1)2p2
1

.

The general solution for this equation is

r(p1) = e
−
∫ h(λ2−kp1)

(1−p1)2p21
dp1
[∫

σ2h− 2hcp1 − 2hµ2

2(1− p1)2p2
1

e

∫ h(λ2−kp1)

(1−p1)2p21
dp1
dp1 + C

]
.

In order to have the desired boundary condition, we have to compute on the integrations.

1

(1− p)p
=

1

p
+

1

1− p
,

so,
1

(1− p)2p2
=

(
1

p
+

1

1− p

)2

=
1

p2
+

1

(1− p)2
+

2

p
+

2

1− p
.

Therefore, the integral∫
1

(1− p1)2p2
1

dp1 = − 1

p1

+
1

1− p1

+ 2 ln p1 − 2 ln(1− p1) =
2p1 − 1

p1(1− p1)
+ 2 ln

p1

1− p1

.

On the other hand,

p

(1− p)2p2
=

1

1− p

(
1

(1− p)p

)
=

1

(1− p)p
+

1

(1− p)2
=

1

p
+

1

1− p
+

1

(1− p)2
.
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So its indefinite integral is∫
p1

(1− p1)2p2
1

dp1 = ln p1 − ln(1− p1) +
1

1− p1

= ln
p1

1− p1

+
1

1− p1

.

Therefore, combine the two integration above, we then have∫
h(λ2 − kp1)

(1− p1)2p2
1

dp1 = hλ2

(
2p1 − 1

p1(1− p1)
+ 2 ln

p1

1− p1

)
− hk

(
ln

p1

1− p1

+
1

1− p1

)

= (2hλ2 − hk) ln
p1

1− p1

+
h(2λ2 − k)p1 − hλ2

p1(1− p1)
.

Recall k = λ1 + λ2. So 2λ2 − k = λ2 − λ1. We can further simplify the above integration as

follows ∫
h(λ2 − kp1)

(1− p1)2p2
1

dp1 = h(λ2 − λ1) ln
p1

1− p1

+
h(λ2 − λ1)p1 − hλ2

p1(1− p1)

= h(λ2 − λ1) ln
p1

1− p1

− h(λ1 − λ2)

1− p1

− hλ2

p1(1− p1)

= h(λ2 − λ1) ln
p1

1− p1

− h(λ1 − λ2)

1− p1

− hλ2[
1

p1(1− p1)
]

= h(λ2 − λ1) ln
p1

1− p1

− h(λ1 − λ2)

1− p1

− hλ2[
1

p1

+
1

1− p1

]

= h(λ2 − λ1) ln
p1

1− p1

− hλ1

1− p1

− hλ2

p1

.

So the general solution is

r(p1) =

(
p1

1− p1

)h(λ1−λ2)

e
hλ1
1−p1

+
hλ2
p1

[∫
σ2h− 2hcp1 − 2hµ2

2(1− p1)2p2
1

e

∫ h(λ2−kp1)

(1−p1)2p21
dp1
dp1 + C

]

=

(
p1

1− p1

)h(λ1−λ2)

e
hλ1
1−p1

+
hλ2
p1

[∫
h
σ2 − 2cp1 − 2µ2

2(1− p1)2p2
1

(
p1

1− p1

)−h(λ1−λ2)

e
− hλ1

1−p1
−hλ2

p1 dp1 + C

]
.

Since h > 0,

lim
p1→1

(
p1

1− p1

)h(λ1−λ2)

e
hλ1
1−p1

+
hλ2
p1 = +∞.

In order for r(p1) to be bounded at p1 = 1, we must have

lim
p1→1

[∫
h
σ2 − 2cp1 − 2µ2

2(1− p1)2p2
1

(
p1

1− p1

)−h(λ1−λ2)

e
− hλ1

1−p1
−hλ2

p1 dp1 + C

]
= 0.
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Define g(p1) by

g(p1) =

∫ 1

p1

−hσ
2 − 2cx− 2µ2

2(1− x)2x2

(
x

1− x

)−h(λ1−λ2)

e−
hλ1
1−x−

hλ2
x dx.

Let

r(p1) =

(
p1

1− p1

)h(λ1−λ2)

e
hλ1
1−p1

+
hλ2
p1 g(p1).

Calculation using L’hospital rule shows that

lim
p1→1

g(p1)

(1− p1)h(λ1−λ2)e
− hλ1

1−p1
−hλ2

p1

=
−σ2 + 2c+ 2µ2

2λ1

=
2µ1 − σ2

2λ1

.

So

lim
p1→1

r(p1) =
2µ1 − σ2

2λ1

.

To ensure that r(p1) is bounded and continuous, we look at the function g(p1)’s behavior.

Let denote the integrand of g(p1) as j(x). Then

j(x) = h
2(µ1 − µ2)x+ 2µ2 − σ2

2(1− x)2x2

(
x

1− x

)−h(λ1−λ2)

e−
hλ1
1−x−

hλ2
x .

It is given by positive quantities times the linear term

2(µ1 − µ2)x+ 2µ2 − σ2. (8.19)

Now (8.19) will be positive on

σ2 − 2µ2

2(µ1 − µ2)
< x ≤ 1.

Therefore,

g(p1) > 0 if
σ2 − 2µ2

2(µ1 − µ2)
< p1 < 1.

Since 2µ1 > σ2, (8.19) is positive near x = 1. Since σ2 > 2µ2, (8.19) is negative near x = 0.

Also notice that

lim
x→0

j(x) = 0, lim
x→1

j(x) = 0.

Denote z = (σ2 − 2µ2)/[2(µ1 − µ2)], then 0 ≤ z ≤ 1.
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To decide if g(p1) has a root in (0, 1) we need to compare the value of I =
∫ 1

z
j(x)dx and

J =
∫ z

0
−j(x)dx. Let u = 1− x,

I =

∫ 1−z

0

h
2(µ1 − µ2)(1− u) + 2µ2 − σ2

2u2(1− u)2

(
1− u
u

)−h(λ1−λ2)

e−
hλ1
u
− hλ2

1−udu.

Note that

lim
p1→0

g(p1) < 0,

if I < J. A sufficient condition for this to happen is z > 1
2
, which means

σ2 − 2µ2

2(µ1 − µ2)
>

1

2
.

Simplifying this, we have

σ2 > µ1 + µ2.

To see that I < J , we check

J =

∫ z

0

h
σ2 − 2µ2 − 2(µ1 − µ2)u

2u2(1− u)2

(
1− u
u

)h(λ1−λ2)

e−
hλ1
u
− hλ2

1−udx

I =

∫ 1−z

0

h
2µ1 − σ2 − 2(µ1 − µ2)u

2u2(1− u)2

(
u

1− u

)h(λ1−λ2)

e−
hλ1
u
− hλ2

1−udu.

Both I and J has positive integrand. J has larger integrand and longer integration range if

z > 1/2.

So under the condition 2µ1 > σ2 > 2µ2 and σ2 > µ1 + µ2, we have the following result:

Lemma 8.0.4. r(p1) has a unique root p∗ in (0,1) which satisfies

0 < p∗ <
σ2 − 2µ2

2(µ1 − µ2)
,

and r(p1) is positive on (p∗, 1].

Proof. On the interval (0,1) the function r(p1) is given by positive quantities times g(p1),

its roots should be the same as those of g(p1). The integrand of g(p1) is given by positive

quantities times the linear term

2(µ1 − µ2)x+ 2µ2 − σ2. (8.20)
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Now (8.19) will be positive on

σ2 − 2µ2

2(µ1 − µ2)
< x ≤ 1.

Therefore,

g(p1) > 0 if
σ2 − 2µ2

2(µ1 − µ2)
< p1 < 1.

Since 2µ1 > σ2, (8.19) is positive near x = 1. Since σ2 > 2µ2, (8.19) is negative near x = 0.

Also

lim
p1→0

g(p1) < 0.

Thus g(p1) and r(p1) must have a root p∗ in (0, σ2−2µ2

2(µ1−µ2)
). Since g(p1) is monotone increasing

on this interval, p∗ is unique. This implies r(p1) is positive on (p∗, 1].

Lemma 8.0.5. For q in (0,1), let

T (q) = first time p1(t) hits [0, q].

Then

E(T (q)) <∞.

Proof. We can assume the initial probability p > q; otherwise T (q) = 0 and E[T (q)] = 0.

For p1(t) given by

dp1 = (−λ1p1 + λ2 − λ2p1)dt+
(µ1 − µ2)p1(1− p1)

σ
dv̂,

based on the proof of Theorem 2 on page 149 of [9], we have

P [p1(t) < 1] = 1. (8.21)

A solution K(p1) of the differential equation

(−λ1p1 + λ2 − λ2p1)K ′(p1) +
1

2
r2(1− p1)2p2

1K
′′(p1) + 1 = 0 (8.22)

on [0,1] satisfying K(q) = 0 and K ′(p1) bounded on [q, 1] is given by

K(p1) =

∫ p1

q

 2

r2
e

2
r2

(
λ1
1−z+

λ2
z

)

(
z

1− z

) 2(λ1−λ2)

r2
∫ 1

z

(
1− y
y

) 2(λ1−λ2)

r2 e
2
r2

(− λ1
1−y−

λ2
y

)

(1− y)2y2
dy

 dz.
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A derivation of this solution is included in the appendix.

Apply L’Hospital’s rule to K ′(p1), then we have

lim
p1→1

K ′(p1) =
1

2λ1

.

So K ′(p1) is bounded. Also note K(p1) ≥ 0 for p1 ≥ q.

Let

T (q) = inf{t : p1(t) = q}, (8.23)

and for a fixed time T greater than 0, define

τT = min(T, T (q)).

From (8.21) and (8.23), we see that p1(s) is contained in [q, 1] for s < τT . Itô’s formula

implies that

K(p1(τT ))−K(p1) =
µ1 − µ2

σ

∫ τT

0

(1− p1(s))p1(s)K ′(p1(s))dW (s)

+

∫ τT

0

[(−λ1p1 + λ2 − λ2p1(s))K ′(p1(s))

+
1

2

(
µ1 − µ2

σ

)2

(1− p1(s))2p1(s)2K ′′(p1(s))
]
ds.

Let r = µ1−µ2

σ
, then K(p1) being the solution of (8.22 ) implies that

K(p1(τT ))−K(p1) = −τT +
µ1 − µ2

σ

∫ τT

0

(1− p1(s))p1(s)K ′(p1(s))dW (s).

Since the integrand in the stochastic integral is bounded and τT is bounded, the expected

value of the stochastic integral is zero. Therefore

E[τT ] = K(p1)− E[K(p1(τT ))].

Let T →∞, then we have τT → T (q). Since K(p1(τT )) is positive, we have

E[τT ] ≤ K(p1).
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Theorem 8.0.6. For f(p1) defined by

f(p1) =


0 if 0 ≤ p1 ≤ p∗,∫ p1

p∗
r(x)dx if p∗ ≤ p1 ≤ 1.

(8.24)

the function V (S, p1) = ln(S) + f(p1) satisfies the conditions of Theorem 8.0.3, and

T (p∗) = 1st time p1(t) hits [0, p∗] (8.25)

is an optimal stopping time in the class A.

Proof. Since r(p∗) = 0, f(p1) is continuously differentiable and is twice continuously dif-

ferentiable, except at p∗. Hence Itô’s differential rule holds for ln(S) + f(p1). Lemma 8.0.4

implies that f(p1) ≥ 0. Notice that

B[f ](p1) =


µ1p1 + µ2 − µ2p1 − 1

2
σ2 if 0 ≤ p1 ≤ p∗,

0 if p∗ ≤ p1 ≤ 1.

and since

p∗ <
σ2 − 2µ2

2(µ1 − µ2)
,

we have that

B[f ](p1) ≤ 0.

Since f(p1) = 0 if 0 ≤ p1 ≤ p∗ and B[f ](p1) = 0 if p∗ ≤ p1 ≤ 1, f(p1)B[f ](p1) = 0. Thus

all the conditions of (8.17) are satisfied, which are equivalent to the conditions (8.3) for the

function V (S, p1) = ln(S) + f(p1).

Because r(p1) is continuous on [0, 1) and has a finite limit at x = 1, it is bounded. Because

the boundedness of f ′(p1) and equation (8.18), condition (8.4) is satisfied for stopping times

in A. Condition (8.6) follows from Lemma 8.0.5. Therefore, the conditions of Theorem 8.0.3

are satisfied and T (p∗) in (8.25) is an optimal stopping time in A.
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Remark Letting λ2 = 0, the results here identical to that of [18], which is fairly reasonable.

The price of “ bubble stock” can also be considered as being modulated by a Markov chain

process, but one with an absorbing state.



Chapter 9

Appendix

Definition The Markov chain or the generator Q is weakly irreducible if the system of

equations

νQ = 0, and
m∑
i=1

νi = 1

has a unique nonnegative solution. The nonnegative solution (row-vector-valued function)

ν = (ν1, . . . , νm) is termed a quasi-stationary distribution. In addition, if ν is strictly positive,

then we say the generator Q is irreducible.

Lemma 9.0.7. (Gronwall’s inequality.) Given a bounded measurable function c(t), if

0 ≤ h(t) ≤ c(t) +K

∫ t

0

h(u)du,

then

h(t) ≤ c(t) +K

∫ t

0

c(u)eK(t−u)du.

Proof of Theorem 8.0.3:

Proof. By Itô’s differential rule

dV (z(t)) =

[
Vz(z(t))F (z(t)) +

1

2
tr(Σ(z(t))Σ(z(t))′Vzz(z(t)))

]
dt+ Vz(z(t))Σ(z(t))dW (t),

or,

V (z(t))− V (z) =

∫ t

0

A[V ](z(s))ds+

∫ t

0

Vz(z(s))Σ(z(s))dW (s).

This holds for each t, it also holds for a finite stopping time τ.

Condition (8.4) implies that for each stopping time τ in A

E

[∫ τ

0

Vz(z(s))Σ(z(s))dW (s)

]
= 0.
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Hence for each τ in A,

E [V (z(τ))] = V (z) +

∫ τ

0

A[V ](z(s))ds. (9.1)

From (8.3),

A[V ](z) ≤ 0, V (z) ≥ U(z),

therefore for each τ in A,

E [U(z(τ))] ≤ E [V (z(τ))] ≤ V (z).

For

τ(z) = first time z(t) hits {q : V (q) = U(q)},

we have

A[V ](z(s)) = 0 on 0 ≤ s < τ(z)

and

U(z(τ(z))) = V (z(τ(z))).

Therefore (9.1) implies

E [U(z(τ(z)))] = V (z).

Remark To solve the ODE, we do the following simplification

(−λ1p+ λ2 − λ2p)K
′(p) +

1

2
r2(1− p)2p2K ′′(p) + 1 = 0 (9.2)

Since the equation involve only K ′(p) and K ′′(p), let y(p) = K ′(p), we then have

(−λ1p+ λ2 − λ2p)y(p) +
1

2
r2(1− p)2p2y′(p) + 1 = 0,

or

1

2
r2(1− p)2p2y′(p) + (−λ1p+ λ2 − λ2p)y(p) = −1.
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Divide both sides by r2(1− p)2p2/2, then

y′(p) +
2(−λ1p+ λ2 − λ2p)

r2(1− p)2p2
y(p) =

−2

r2(1− p)2p2
.

A general solution for this is

y(p) = e
−
∫ 2(−λ1p+λ2−λ2p)

r2(1−p)2p2
dp
[∫

−2

r2(1− p)2p2
e
∫ 2(−λ1p+λ2−λ2p)

r2(1−p)2p2
dp

+ C

]
.

To have K ′(p) bounded in [q, 1], we set

y(p) =
2

r2
e

2
r2

(
λ1
1−p+

λ2
p

)

(
p

1− p

) 2(λ1−λ2)

r2
∫ 1

z

(
1− y
y

) 2(λ1−λ2)

r2 e
2
r2

(− λ1
1−y−

λ2
y

)

(1− y)2y2
dy.
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