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Abstract

In this dissertation, I discuss and propose several geostatistical methods for functional

Magnetic Resonance Imaging (fMRI) data. Geostatistics is a branch of applied statistics that

focuses on providing quantitative descriptions of natural variables distributed in space or in

time and space. Nowadays geostatistics is popular in many fields of science such as mining,

environmental sciences, remote sensing and ecology. Functional Magnetic Resonance Imaging

(fMRI) is a relatively new non-invasive technique for studying the workings of the active

human brain. To date there has not been much work using geostatistical methods to analyze

the brain in spite of the similarities of data types and questions of interest. Some recent

exceptions are Spence et al. (2007), who used the variogram function to find neighbors of

voxels of interest and Bowman (2007), who used the empirical variogram to define the spatial

distance structure. My dissertation topic is applying geostatistical methods more broadly in

fMRI data analysis.

There are three interrelated parts in geostatistics: Classification, Structural analysis, and

Kriging. My research explores these three parts in detail as they apply to fMRI.

In clustering, I use geostatistical methods and sparse principal component analysis to

analyze the fMRI data and establish a special clustering method for fMRI data time series;

my results show that both techniques can effectively identify regions of similar activations.



A byproduct of my analysis is the finding that masking prior to clustering, as is commonly

done in fMRI, may degrade the quality of the discovered clusters, and I offer an explanation

for this phenomenon.

In structural analysis, I first introduce an alternative point of view of an axial image

of the brain based on the empirical variograms during different time points, which gives a

good understanding of how the brain reacts to the experimental task. I then deal with the

variogram modeling of the same axial image, and use parametric and nonparametric hole

effect models to look at the spatial character of the data. The models I use consider both

physical and functional relations among the different parts of the brain, which distinguishes

them from previous attempts to use variograms in fMRI. I show the effectiveness of the hole

effect model compared with the regular monotonical model in describing the structure of the

fMRI data.

In kriging, I choose filtered kriging as an alternative to spline smoothing to remove the

measurement errors at the observed sites of the data, and maintain temporal consistency by

controlling the noise to signal ratio of the smoothness – an idea borrowed from the smoothing

function approach. This proposed new method incorporates combining both spatial and

temporal information of the data into the smoothing procedure and can reduce the noise of

the data in an intelligent way.

Index words: Autocorrelation, Bessel function, cross-correlation, elastic net,
functional neuroimaging, LASSO, hole effect, signal-to-noise ratio,
smoothing ratio, thin-plate spline
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Chapter 1

Introduction

1.1 Introduction to fMRI

The brain is the most interesting but least understood organ in the human body. Even with

the rapid development of neuro-imaging techniques in recent years, many problems still have

not been solved. Especially, the detection of active brain areas is a challenging problem.

Functional brain mapping is a useful method in analyzing the activations of the brain in

research settings because it considers the dynamic brain changes over time. Magnetic Reso-

nance Imaging(MRI) is a relatively new non-invasive technique to look at the structure of the

brain. Functional brain mapping with Magnetic Resonance Imaging (MRI), usually called

functional Magnetic Resonance Imaging (fMRI), uses functional brain mapping methods to

study the workings of the active human brain by the MRI equipment; it has perhaps been

the area of most rapid growth in image analysis (Huettel et al., 2004).

1.1.1 From MRI to fMRI

Compared with medical imaging techniques such as Computer Tomography (CT) or other X-

ray based methods, MRI is a relatively non-invasive imaging technique which uses Magnetic

Resonance (MR) to produce images of the inside of the human body (Noll, 2001). MRI

is widely used to visualize the torn ligaments in the soft tissues; diagnose inflammations,

infections or other irregularities that exist in organs; and so on. The basic imaging parameters

in the pulse sequence of the MR scanner are time constants T1 and T2, where T1 is the

longitudinal relaxation time aligned in the direction of the magnet; and T2 is the transverse

relaxation time orthogonal to the direction of the magnet. Both T1 and T2 are tissue type

1
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dependent and hence can be used to discriminate between tissues. A third relaxation time,

T ∗
2 , measures the combined effect of magnet related and tissue related inhomogeneities. Image

information are usually acquired by T1, T2 or T ∗
2 , or no relaxation time (Haacke et al., 1999;

Huettel et al., 2004).

Functional MRI (fMRI) is a method to see the activations of the brain by the blood

oxygenation level dependent (BOLD) contrast. It has been well-known that neuronal activity

causes an increase metabolic demand, which changes the Cerebral Blood Flow (CBF) and

the amount of deoxygenated hemoglobin in the related brain tissues. Since deoxygenated

blood has a different magnetic susceptibility from oxygenated blood, the measured NMR

signal is affected through the BOLD contrast effect. The changes in the ratio of oxygenated

to deoxygenated blood are measured by the hemodynamic response (HDR) estimation, which

is the change in MR signal on T ∗
2 images following neuronal activity (Huettel et al., 2004).

1.1.2 Experimental designs in fMRI

During an fMRI experiment, a sequence of magnetic resonance images is acquired while

the subject performs specific cognitive tasks. Changes in the measured signal are used to

identify and characterize the brain activity resulting from task performance. For comparing

brain responses to different tasks during the experiment, there are two main approaches: one

is the blocked design, the other is the event-related design (Lazar, 2008).

The blocked design is relatively simple and effective, and remains commonly used in fMRI

(Jezzard et al., 2001). In the simplest case, the designed conditions are separated into two

distinct states. Each condition is executed for a discrete period of time and the conditions

alternate. The two designed conditions are usually chosen as one control condition and one

experimental condition. The control condition is also called the baseline condition and the

experimental condition is called the task condition (Huettel et al., 2004). For example, the

analysis of eye movements (saccades) has long been used in neurology, since lesions in different

brain structures may result in deficits in eye movement control, as may certain diseases
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(Fischer and Everling, 1998). When subjects are instructed before a visual stimulus to look

at the stimulus, this is called a prosaccade; when subjects are instructed to perform eye

movements in the opposite direction from the location of a stimulus that appears in their

peripheral vision, this is called an antisaccade (Hallett, 1978). Prosaccade and antisaccade

experiments can be constructed as a blocked design in the analysis of deficits related to

circumscribed brain lesions (Guitton et al., 1985), where prosaccade is the baseline condition

and antisaccade is the task condition. The blocked design is simple, straightforward and it

is adequate for many types of experiments in the fMRI research (Christidis and Reynolds,

2004). But it also has some disadvantages, e.g., it is predictable for the subject; it may be

difficult to control the specific state for a long time in the block (e.g., the subject may not

be always engaged in the task); it may not be appropriate for certain cognitive tasks (I will

discuss it later) etc. (Christidis and Reynolds, 2004).

Event-related design associates brain processes with a sequence of discrete events, stimuli,

or conditions which occur arbitrarily during MR scanning sessions (Rosen et al., 1998; Chris-

tidis and Reynolds, 2004). In the event-related design, stimuli from various experimental

conditions (e.g., conditions A, B, C, and D) are presented individually in a randomized

fashion, separated by an inter-stimulus interval (ISI) of a specified length (Christidis and

Reynolds, 2004). Hence, the event-related design has more flexibility and randomization

than the blocked design, making it especially useful in cognitive neuroscience (such as the

field of memory research) (Rosen et al., 1998). For example, during an event-related study

of different memory paradigms, subjects can demonstrate an ability to remember a spe-

cific stimulus (or not) through a particular action (Rosen et al., 1998). The event-related

design is usually controlled by the ISI, which determines if the design is slow or rapid (Noll,

2001; Christidis and Reynolds, 2004). In the slow event-related design, the hemodynamic

responses for different stimuli are not overlapped and each hemodynamic response results

from one specific trial. In the rapid event-related design, the ISI is short between different

stimuli and the hemodynamic responses for different stimuli are overlapped. The main dis-
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advantage of the event-related design is that the design maybe too complicated particularly

for the rapid event-related design, which brings difficulties in modeling the hemodynamic

response (Christidis and Reynolds, 2004).

Given the advantages and disadvantages of the above designs, it is up to the researchers

to choose particular design for their needs. It is possible to use both blocked designs and

event-related designs in fMRI studies, where the blocked design is used for evaluating state-

related effects and the event-related design is used for evaluating item-related effects (neural

activity elicited by different individual items) (Otten et al., 2002).

1.1.3 Preprocessing steps

The data acquired from the MR scanner are raw spatial frequency space data, called k−space

data. Real brain images are reconstructed by Fourier transform. After the transformation,

there are spatio-temporal variabilities across images, which include thermal noise, system

noise, subject-related noise and task-related noise (Lazar, 2008). It is best, if possible, to

remove these noise and artifacts at their sources, but some major sources are unavoidable

(Kruggel et al., 1999). Hence, it is almost always necessary to do some data preprocessing

prior to further statistical analysis.

To remove unwanted noise and artifacts, the most commonly used preprocessing steps

include (Eddy et al., 1999; Jezzard et al., 2001; Huettel et al., 2004): slice timing correction,

which shifts the different slices of data acquired from different time points to a fixed time

point so that it looks as if all slices were scanned at the same time; head motion correction,

which corrects the different brain images to the same position because the subject may move

his (her) head during an experiment; intensity normalization, which rescales all images to

the same intensity since the electrical or temperature effects of the MR scanner may change

over time; spatial filtering, which uses a Gaussian filter as the signal of interest to blur

each volume spatially, thereby maximizing the signal to noise ratio, where the filter width

is used to control the degree of smoothness; temporal filtering, which removes the unwanted
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components of a time series by high-pass filtering and low-pass filtering, where the high-pass

filtering removes the slow drift-like trend from breathing, heartbeat etc., and the low-pass

filtering removes the high frequency noise. Lab and research groups differ on whether, and

how, these steps are implemented (e.g., not all researchers smooth data before analysis).

1.1.4 Description of fMRI data

An fMRI experiment yields a sequence of 3-dimensional images of the subject’s brain. Each

image comprises measurements of the MR signal over a grid of small regular volume ele-

ments called voxels. Voxel is an abbreviation for volume element, where volume is a three-

dimensional figure measured in cubic units (Milot, 1998). A voxel is analogous to a pixel,

which is an abbreviation for picture element in two dimensions. Voxel values contribute the

intensity of the fMRI image (Wynn, 2000). Coordinates for brain maps are often defined

using the following neurological convention for the three axes (Huettel et al., 2003). When

the head is viewed from behind, the x direction is left to right, the y direction is front to

back, and the z direction is top to bottom. An axial slice of an image consists of all (x, y)

voxel locations for a fixed vertical location z (Figure 1.1). A coronal image consists of all

(x, z) voxel locations for a fixed location y (Figure 1.2). A sagittal image consists of all (y, z)

voxel locations for a fixed horizontal location x (Figure 1.3).

In this dissertation, I examine two data sets in detail, a saccade data set and a resting

data set. The saccade data used here consist of 30 slices of size 64× 64, taken over 156 time

points, with images every 2.5 seconds, that is, (x, y, z, t) = 64 × 64 × 30 × 156. A blocked

design alternating anti-saccade and pro-saccade tasks was performed (Figure 1.4). The first

two conditions (Anti 1; Pro 1) were set to allow for a 5 second delay in the hemodynamic

response. The conditions during the 156 time points were thus: Anti, 1; Pro, 1; Pro, 12; Anti,

12; Pro, 12; . . . ; Anti, 12; Pro, 10. Hence there were 6 alternating blocks of size [Pro 12;

Anti 12] in the design. Pre-processing steps performed on this data set included removal of

spatial outliers, correction of head motion, outlier correction in image space, Gaussian filter
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(2) Axial image with z=10
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(1) Axial image with z=4
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Figure 1.1: Axial view of the saccade data at time t = 78. (1) is axial image with z = 4, (2)
is axial image with z = 10, (3) is axial image with z = 15, (4) is axial image with z = 25. z
ranges from 1 to 30 in this data set.

smoothing with a radius of 2 voxels, removal of linear pixel-wise trends, and removal of linear

drifts over time for each voxel.

The resting data contain three slices of size 64 × 64, taken over 1498 time points, with

images every 2 seconds, that is, (x, y, z, t) = 64× 64× 3× 1498. This is a long range resting

data set, i.e., no task was performed while the subject was in the scanner. The data were

minimally preprocessed.
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(1) Coronal image with y=16
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Figure 1.2: Coronal view of the saccade data at time t = 78. (1) is coronal image with y = 16,
(2) is coronal image with y = 24, (3) is coronal image with y = 32, (4) is coronal image with
y = 40. y ranges from 1 to 64 in this data set.
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(1) Sagittal image with x=16
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Figure 1.3: Sagittal view of the saccade data at time t = 78. (1) is sagittal image with x = 16,
(2) is sagittal image with x = 24, (3) is sagittal image with x = 32, (4) is sagittal image
with x = 40. x ranges from 1 to 64 in this data set.
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Figure 1.4: Blocked design in the saccade data, where prosaccade is the baseline condition
and antisaccade is the task condition.
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1.2 Statistical analysis in fMRI

According to Kosslyn (1999), there are two questions addressed in neuroimaging: one is

when the particular structures and processes are involved in the activations over time; the

other is how the brain implements the information processing. After the preprocessing steps,

statistical analysis is carried out to answer these questions. But even after the data prepro-

cessing, the change of true signal due to brain activity is small compared with artifacts and

noise (Eddy et al., 1999; Noll, 2001), which brings a significant technical challenge to fMRI

data (Noll, 2001). Hence carefully choosing statistical methods in the analysis is important.

Currently, there are two approaches in the statistical analysis: model-based and model-free

(Jezzard et al., 2001; Thirion, 2003; Huettel et al., 2004; Lazar, 2008.) .

1.2.1 Model-based approach

In the model-based approach, the data analysis depends heavily on the assumed model for

the sampled data (Jezzard et al., 2001). Since each voxel time series is fitted by a model

separately, this is considered to be a univariate approach (Thirion, 2003).

Basic analysis in model-based approach

In the model-based approach, the evaluation of activation status of a voxel (that is, whether

it is considered active or not) is based on an hypothesis test, hence it is also called hypothesis-

driven analysis in the literature (Huettel et. al., 2004). This method postulates that different

voxels inside the brain have different responses to the stimulus. A parameterized function

can be used to model the response and a statistical test assesses the level or shape of that

response. Usually the analysis at each voxel can be used to build a map of statistic values

for each voxel called a statistical parametric map (Huettel et al., 2004).

The General Linear Model (GLM) is a representative method (Friston et al., 1995). The

idea is to build a linear model for the stimulus and to treat the data as a linear combination of

dissociable factors. Under the assumption that the time series for each voxel is independent
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of the others, the simplest form fits each voxel by a linear function Y = XB + ε, where Y

is the signal values at the n different time points (n × 1 vector), B is the unknown model

factor with m parameters (m × 1 vector), X is the n × m design matrix of predictors,

ε is the random error which is usually assumed to be normally distributed with mean 0

and variance σ2. After estimating the model parameters by least squares, a t−statistic for

the contrast cT B̂/V ar(cT B̂) can be calculated, where c is the contrast parameter for the

hypothesis test. Plotting all of these t−statistic back on a regular (e.g., 64 × 64) grid (for

a single slice of data) results in the statistical parametric map mentioned in the previous

paragraph. Statistical tests can be used to determine which voxels are likely to have had

significant changes affected by the stimulus, e.g., which voxels are “active” and which are

not (Thirion, 2003; Lazar, 2008).

Although the GLM method is easy to use, it makes some restrictive assumptions in its

simplest form (Wang et al., 2003; Huettel et al., 2004; Lazar, 2008): voxels are independent

without considering their spatial correlations; the error variances are kept the same at dif-

ferent time and locations; one model is globally fitted everywhere. Since these assumptions

do not always hold in practice, it is necessary to use alternative methods to improve the

validity of the GLM.

Temporal, spatial, and spatio-temporal approaches

Spatio-temporal correlation in fMRI data carries much information and should not be

ignored. A great part of fMRI literature has concentrated on the partial improvement of the

model-based approach by considering the spatio-temporal structure of the data.

Temporal approach For considering the temporal correlation of the model, two basic ways

can be used (Lazar, 2008): one is analyzing the time domain directly; the other is analyzing

the frequency domain from the transformed time series.

For the first way, there is a broad range of smoothing methods available from the classical

time series analysis (Kruggel et al., 1999), such as moving average filter, finite impulse
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response low-pass filter, autoregressive filter, Kalman filter and so on. The basic method in

filtering (smoothing) is to prewhiten the correlated time series (Lazar, 2008). Because the

correlation of the time series is considered now, the GLM model is change to Y = XB + Z,

where Z is the error term with mean zero and variance σ2KKT . This linear function is

prewhitened as KT Y = KT XB + KT Z, removing the correlation structure of the error

term. Since KKT is actually unknown, different filtering methods can be applied for the

estimation.

For the second way, analysis is performed in the frequency domain (Lange and Zeger,

1997; Marchini and Ripley, 2000). The idea is to use the Fourier transform function

dw(wj) = 1
n

∑n−1
k=1 wkexp(−i2πwjδk)

where wj = jδ/n are the Fourier frequencies, n is the length of the time series, δ is the

sampling interval and j = 0, 1, ..., n/2. The model for the time series is transformed in the

frequency domain dY (wj) = dX(wj)B + dZ(wj), where dZ(wj) is uncorrelated for large n

(Marchini and Ripley, 2000). This procedure is very useful for periodic stimulus designs

(Thirion, 2003) and has the following advantages: the low frequencies of the noise are well

separated (Lange and Zeger, 1997); the Fourier coefficients are almost independent for unbi-

ased hypothesis testing (Marchini and Ripley, 2000).

Spatial approach In the spatial approach, Bayesian inference is gaining popularity in the

fMRI literature (Lazar, 2008). Bayesian inference introduces priors to the statistical model

and is made given the priors and the data (Thirion, 2003). These methods take advantage

of the neighbors of the target voxels in the smoothing process. As an example, Hartvig and

Jensen (2000) build a Bayesian spatial model based on mixtures. For the target voxel, the

model is formulated through the marginal distributions with its neighbors showing active

or non-active patterns, where the number of the neighbors is considered as 8 in a 3 × 3

grid (slice) of the voxel, or 26 in a 3 × 3 × 3 grid (cube) of the voxel. For the neighbors

with the non-active pattern, a prior with a pre-specified null distribution is used; for the
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neighbors with the active pattern, three prior models with different marginal probabilities

are presented in their paper which reflect different kinds of activations of the data.

Spatio-temporal approach Spatio-temporal models for fMRI jointly consider spatial infor-

mation and temporal information. There are two main approaches here (Lazar, 2008): direct

modeling and clustering of time series.

Direct modeling In this approach, all the model building currently considers space and

time in the data to be separable. Descombes et al. (1998) and Kruggel et al. (1999) propose

a Markov Random Field (MRF) model to restore (smooth) the signals. For the target voxel

at one specific time point, they use a prior in their model which considers the information of

its four closest spatial neighbors and two nearest temporal neighbors. In the spatial domain,

anisotropic property of the neighbors is also considered. The posterior distribution of the

spatio-temporal activation is implemented by the Markov Chain Monte Carlo (MCMC)

simulation. Their method gives much better results than those obtained from Gaussian

filtering, because it considers the spatio-temporal information of each voxel in smoothing

rather than only blurring the voxel.

Katanoda et al. (2002) develope a separable spatio-temporal model based on multiple

regression, where the covariance structure is a product of the spatial autocorrelation and

the temporal autocorrelation. The time series is acquired in the frequency domain (Marchini

and Ripley, 2000). In addition, the time series of six nearest neighbors are added to the

regression for the target voxel (Katanoda et al., 2002). Generalized least squares method

is used for parameter estimation. This method has the advantage of modeling the intrinsic

spatio-temporal property together by the separable model (Wang et al., 2003).

Clustering of time series Clustering analysis is based on the assumption that the acti-

vated and non-activated voxels inside the brain have different spatio-temporal structures.

Clustering itself is non-model based (Huettel et al., 2004; Keogh and Cordes, 2007). But
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due to the high noise level in fMRI data, the results of clustering on the raw time series are

often unsatisfactory and do not necessarily group data according to the similarity of their

pattern of response to the stimulus (Goutte et al., 1999). Hence, many clustering techniques

have focused instead on cross-correlation functions of the fMRI time series. Bandettini et al.

(1993) consider the correlation between the data time series and a reference function from a

“seed” voxel to characterize the temporal response of the brain to the paradigm. Goutte et al.

(1999, 2001) suggest clustering voxels on the basis of the cross-correlation function between

the fMRI activation and the experimental protocol signal. Yeo and Ou (2004) devise a “signal

to protocol metric” by combining the cross-correlation of two fMRI signals and the Euclidean

distance between voxels to do the clustering. Friman et al. (2002a) approach the problem by

viewing the correlation between two time series as an objective function to be maximized

with respect to some parameters, where one time series is from the target voxel and its eight

neighbors; the other time series is from the hemodynamic function corresponding to the

stimulus. Clustering on the cross-correlation function instead of the raw time series provides

increased robustness and yields improved performance, but it depends heavily on the choice

of reference function. I will explore clustering of time series in my dissertation.

Problems in model-based approach

The model-based approach provides a useful tool for fMRI data analysis, but it needs prior

knowledge of the design and response, and strongly depends on the understanding of the

anticipated hemodynamic response of the brain. For example, many experiments can not be

addressed directly, or the model building may not be valid especially in the event-related

design. Even if the hemodynamic response can be modeled “correctly”, sometimes responses

of the brain may not be directly corresponding to the task in the experimental design (Wang

et al., 2003).

On the other hand, in the model-based approach, the hypothesis-driven analysis only can

answer if the specific voxels with assumed responses to the stimuli are active or not, and can
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not address the issues of connections between the active voxels and the main spatio-temporal

patterns presenting in the image (Thirion, 2003).

1.2.2 Model-free approach

In the model-free approach, information from the fMRI data is extracted without reference

to the experimental protocol; effects or components of interest are found from the intrinsic

structure of the data directly. This approach does not depend on the estimation of any

functions and is considered as an data-driven analysis (Huettel et al., 2004). In this approach,

all voxels are considered simultaneously, hence it is also considered to be multivariate in

nature (Thirion, 2003).

This approach uses the stratagem of the covariance paradigm (Sommer and Wichert,

2002) because it assumes that the different regions of the brain have different temporal

covariance structure. Although this approach can not give the same types of answers as the

hypothesis-driven approach, e.g., hypotheses on activation status of voxels, it can assess the

patterns that appear in the data and how these patterns are spatio-temporally presented.

Examples here include principal component analysis (PCA) (Backfriender et al., 1996;

Lai and Fang, 1999), independent component analysis (ICA) (McKeown et al., 1998 and

2003), and canonical correlation analysis (CCA) (Friman et al., 2002b) .

Principal component analysis Principal component analysis (PCA), also known as empir-

ical orthogonal function (EOF), is a classical tool for analyzing large scale multivariate data.

In PCA, the first component explains the largest proportion of the variance of the data, the

second component explains the second largest proportion of the variance which is orthog-

onal to the first component, and so forth. Hence, PCA can be considered as an optimized

method to simplify the data description. The purpose of data-driven analysis is to find the

different areas inside the brain activated by the stimuli. Backfriender et al. (1996) propose an

oblique rotated PCA method through factor analysis for fMRI. In their method, the rotated

matrix is estimated by additional information about the expected factor images, where the
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factor structures are assumed not to overlap each other (Jackson, 1991). To overcome the

low density of the active signal, a local PCA in the selected region of interest (ROI) is

calculated again after the regular PCA. To overcome the superposition of the active region

with anatomical structure in fMRI, an artificial factor image of the brain anatomy is used.

Hence, the final factor images can be extracted in several steps (Backfriender et al., 1996): at

first, primary principal components which show the most prominent properties in the data

are extracted, then a local PCA in the selected ROI is executed again, and finally, the local

principal components are obliquely rotated. This method can well separate the activated

region of the brain without prior knowledge about the experimental design.

Independent component analysis Independent component analysis (ICA) is a multivariate

technique that has been widely applied in fMRI. ICA identifies statistically independent com-

ponents in either the spatial or temporal dimensions underlying the observed data (Hyvarinen

et al., 2001; Keogh and Cordes, 2007). The idea in ICA is similar to PCA, but PCA extracts

orthogonal components based on the explained variance in the data, where the assumption

is that the components are Gaussian and uncorrelated; on the other hand, ICA extracts

independent components based on the sign of the fourth moment in the data, called kurtosis

(Hyvarinen et al., 2001; Mckeown et al., 2003), where the assumption is that the compo-

nents are non-Gaussian and independent. In fMRI, ICA can be performed either in the

spatial domain, called spatial ICA (SICA) (Keogh and Cordes, 2007), or in the temporal,

called temporal ICA (TICA) (Keogh and Cordes, 2007). Often, PCA is performed first as a

dimension reduction step. SICA applied to fMRI produces a set of spatial components with

different patterns of time series (Chen and Yao, 2004; Mckeown et al., 1998). In the TICA,

the independent components are time series instead of groups of voxels (Calhoun et al., 2001,

2003). Also, both SICA and TICA can be combined in one analysis (Stone et al., 2002).

Canonical correlation analysis Canonical correlation analysis (CCA) is a multivariate anal-

ysis seeking linear combination weights that maximize the cross-correlation between two
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random vectors; the resulting linear combinations are called canonical variates. Actually,

PCA is a special case of CCA where the two random vectors in the CCA are the same.

Friman et al. (2002b) propose a CCA method that can separately detect spatial and tem-

poral properties by considering their autocorrelatuions themselves. In their method, for the

temporal analysis, the two random vectors in CCA are referred to two time courses with

different lags; for the spatial analysis, the two random vectors in CCA are referred to a

target voxel and its four proximal neighbors. Their method shows advantages over ICA in

terms of performance, i.e., it is robust for the small sample size in temporal analysis; it gives

a natural order of the components to the features of interest etc.

Problems in model-free approach

Although the model-free approach makes fewer assumptions about the data and only con-

siders the intrinsic structure directly, it also has some disadvantages. Firstly, since it is

model-free, we can not assess significance of results (Thirion, 2003). Secondly, ICA and CCA

methods usually need some methods, e.g., PCA, to reduce the dimension of the data first.

Prior knowledge about the data is necessary because heavily dimension reduction may discard

important information (Thirion, 2003). Thirdly, in the PCA method, variance partitioning

is non-specific (Sommer and Wichert, 2002), i.e., the separation of different components

is by their uncorrelated properties, not by their independent properties. Hence the results

from PCA are always not satisfactory (Thirion, 2003). For example, the method by Back-

friender et al. (1996) needs a sequence of extraction steps because of the high noise level

of the data and the sensitivity of the oblique rotation procedure, which may make a simple

case overcomplicated. Fourthly, the ICA method assumes statistical independence structure

in the space or time domain of the data, and is non-compatible with spatial or temporal

smoothing. But the assumption is violated when prior statistical smoothing is used for the

data, revealing a non-consistency in the data analysis procedure (Thirion, 2003; Calhoun et

al., 2001; Stone et al., 2002). Also, because of the intrinsically spatial or temporal correlations
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of the data, SICA can not recover the data structure if there is strong spatial dependence,

and TICA fails if there is strong temporal dependence (Lazar, 2008). Hence prior knowl-

edge of the data structure is very important for ICA (Lazar, 2008). Finally, ICA does not

provide an ordering of the components and they have to be inspected visually (Friman et

al, 2002b). Since sometimes it is difficult to distinguish different components by their time

courses directly, cross-correlation with the behavioral experiment is used instead for com-

paring components’ time courses (McKeown et al., 2003; Petersen et al., 2000). But these

alternative methods change the data-driven method back to hypothesis-driven and have some

limitations in the extreme cases (Baumgartner et al., 2000).

1.3 Data smoothing in fMRI

Because the amplitude of the signal change inside the brain is small, brain activations are

contaminated with larger number of un-activated voxels and noises (Eddy et al., 1999). Since

studies rely on the detection of the true signal in the presence of substantial noise, the more

we know the true structure of the brain, the better the chance of detection. Prior to the

preprocessing step, there are some ways to increase the amplitude of the fMRI signal and

decrease the noise, such as improving the experimental design or increasing the scanner field

strength (Huettel et al., 2004). During the preprocessing step, Gaussian filtering in time and

space smooths the data in some ways. But because of the limitations of these techniques,

the existing methods may not be enough to remove considering statistical noise in the data

(Lazar, 2008). instead, of course we can always expect some (statistical) noise to remain.

To improve the signal changes and reduce noise, I summarize several main data smoothing

techniques commonly used in fMRI data analysis as follows:

The first technique is to average the data across trials, commonly used for event-related

designs. This method assumes the signal of interest is identical over repeated stimulus pre-

sentations, and also requires the noise to be random with sufficient numbers of repetitions

(Huettel et al., 2004). Hence, the new data are combined across multiple trials over time. This
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method can be considered as an alternative smoothing method, with the voxel value at each

location of the image equally weighted over trials. Averaging analyses substantially simplify

computations and may capture the main features of the data. Although the experimental

trials can be repeated more times, there are limits due to time and environment constraints,

and the learning adaption of the subjects (Wang et al., 2003). Some noise or artifacts may

be enhanced by averaging the trials over time (Huettel et al., 2004). Also, this approach may

lose some important characteristics for a particularly activated region (Bowman, 2007).

The second technique is doing the low-pass Gaussian filtering (Huettel et al., 2004), either

in space or time. This method uses a Gaussian filter as the signal of interest to maximize the

signal to noise ratio, where the filter width is used to control the smoothness. For example,

in spatial filtering, typical filter widths for fMRI are two or three voxels. The disadvantages

are: the filter width is difficult to control because of the different noise levels of the data; the

blurring only depends on the data originally from that voxel; the degree of smoothness is

the same everywhere. Also, the degree of smoothness is limited since the filter width should

be smaller than the size of the active region in spatial filtering (Jezzard et al., 2001). If

not, the simple blurring will mask the difference between the active region and neighboring

nonactive regions in the brain and change the nature of the spatial correlation among voxels

(Descombes et al., 1998; Jezzard et al., 2001; Lazar, 2008).

The third technique is taking into account spatial and temporal correlation into

smoothing during the model-based approach. As mentioned before, filtering (smoothing)

methods in time series, either in the time domain directly or in the frequency domain, are

well developed and have been widely used in fMRI. By contrast, spatial smoothing methods

are quite limited. Current spatial smoothing in fMRI is usually using a fixed deterministic

model to fit the spatial surface in fMRI as “close” as possible. The parameter estimation

of the model is considered in two ways: one is least squares (Katanoda et al., 2002); the

other is simulation, e.g., MCMC (Descombes et al., 1998). Although these methods show

better results than in Gaussian filtering, they still have some limitations: it is difficult to
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formulate a general spatial model to well fit the spatial surface (Hartvig and Jensen, 2000);

the spatial model building is local, which means only a few proximal neighbors are chosen

for smoothing. But it is possible that voxels that are not physical neighbors would still show

high correlations in space (Bowman, 2007); when the statistical model inference relies on

the simulation only, it is too computationally intensive even for a trivial task (Descombes

et al., 1998).

1.4 Geostatistics and fMRI

1.4.1 Applications of geostatistics

Geostatistics is a branch of applied statistics that focuses on providing quantitative descrip-

tions of natural variables distributed in space or in time and space. The term “geostatistics”

was coined in a geographical context to denote statistical techniques that emphasize loca-

tion within areal distributions (Cressie, 1993). The development of geostatistics in the 1960s

resulted from the need for a methodology to evaluate the recoverable reserves in mining

deposits (Goovaerts, 1997). Nowadays geostatistics is popular in many fields of science and

industry where there is a need for evaluating spatially or spatio-temporally correlated data.

The application of geostatistical techniques includes mining, environmental sciences, remote

sensing and ecology (Wackernagel, 2003; Rossi et al., 1992). To date there has not been

much work using geostatistical methods to analyze the brain in spite of the similarities of

data types and questions of interest. Some recent exceptions are Spence et al. (2007), who

used the Gaussian variogram function to find neighbors of voxels of interest and Bowman

(2007), who used an alternative variogram model to define the physical and functional spatial

distance structure inside the brain. My dissertation topic is applying geostatistical methods

more broadly in fMRI data analysis.

Spatial dependence is particularly important in an analysis of spatially varying regions

and temporal variables, yet many traditional statistical measures tend to ignore it. Based

on random sampling, the classical estimators are linear sums of data, all of which carry the
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same weight. But under spatial models, we can vary the weights attributable to the data

and make the estimation more precise and efficient (Webster and Oliver 2001). The analysis

of the brain is quite similar to the analysis of other spatial and temporal phenomena in

natural science. For example, miners want to estimate the amounts of metal in ore bodies

and the thickness of coal seams, and petroleum engineers want to know the positions and

volumes of reservoirs. Usually, those deposits are not completely random but rather exhibit

some form of structure in an average sense, reflecting the fact that regions close in space

tend to have similar values (Chiles and Delfiner, 1999). fMRI analysis includes investigation

of activations in different regions and at different times. Those activations are spatially and

temporally dependent. Geostatistics brings to fMRI tools for the interpretation of spatial

patterns of regions, of the numerous temporal components with which they interact, and of

the joint spatial dependence between regions and time (Rossi et al., 1992).

1.4.2 Three parts in geostatistics

The purpose of my research is to provide a comprehensive and easily understood exploration

of geostatistical approaches to fMRI data analysis. Geostatistical analysis usually consists of

three different parts: (i) structural analysis, also called covariance and variogram analysis;

(ii) smoothing, filtering or prediction, also called kriging ; (iii) classification. These three

parts are interrelated to each other. Structural analysis is also called structural classification

in geostatistics; modeled structure can be used for kriging; kriging can also be used for

regionalized classification. My research explores these three parts in detail as they apply to

fMRI.

1.4.3 My contributions

I mainly bring three geostatistical ideas to fMRI data analysis. Firstly, I apply structural

classification from geostatistics in fMRI. Due to the high noise of the raw data in fMRI, many

clustering techniques focus on classifying the modeled cross-correlation functions instead of



22

the raw time series. This type of clustering is an example of a model-based approach, which

depends heavily on having prior knowledge of the reference function. In geostatistics, use of

autocovariance or variogram to characterize the spatial or temporal structure of the data

is called structural analysis. When the autocovariance function is used in classification, it

is called structural classification in geostatistics. This classification method has been widely

used in ecology and remote sensing (Atkinson and Lewis, 2000), but has not been applied in

fMRI. I will show that using the empirical covariance structure instead of the raw data or

the cross-correlation function gives more robust results in classification, even without using

any additional smoothing method. Secondly, I consider the use of real structure of the data

to do the smoothing, which is called filtered kriging in geostatistics. This method is more

reliable compared with Gaussian filtering or other smoothing methods in current fMRI data

analysis, because it considers combining spatial information into the smoothing procedure,

which can reduce the noise in an intelligent way. When carrying out the research in a specific

region of the brain, two main factors are to be considered. One is the relation between a given

voxel and other voxels in this specific region of the brain; the other is the relation between the

region and other regions of the brain. I call the first relation the physical region connection,

and the second relation the functional region connection. Although current spatial smoothing

considers the spatial structure in the data, model building is local, which means only the

physical region connection is considered. But in practice, functional region connections are

important in fMRI as well. For example, different areas involved in language processing may

present some functional relations inside the brain (Bowman, 2007). Geostatistics gives more

choices in model selection and model inference in fMRI. When the variogram shows a cyclical

pattern with a “down-hole”, its structure is called hole effect (Journel and Huijbregts, 1978).

The use of hole effect structure in variogram modeling will consider both the physical and

functional relations in the data. Thirdly, I control the degree of smoothness in the spatial

smoothing by introducing a smoothing ratio. When using filtered kriging to remove the

measurement errors at the observed site for different time points, I creatively borrow the
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idea of the smoothing ratio from spline method to control the degree of smoothing in filtered

kriging. The smoothing ratio in the spline method does not have physical meaning and

just provides a computational convenience. But when the smoothing ratio is used in filtered

kriging, it has a clear statistical meaning and gives a good interpretation. This method

considers both the spatial structure and the temporal properties of the fMRI data.

1.4.4 Organization of the dissertation

The remainder of the dissertation is organized as follows: In Chapter 2, I introduce basic

concepts and definitions in geostatistics. Chapter 3 and Chapter 4 introduce geostatistical

methods and sparse principal component analysis (Zou et al., 2006) in clustering and demon-

strate their uses in fMRI time series. Chapter 5 uses hole effect variogram structure to model

the spatial structure of the fMRI data, which considers both the physical and functional

region connections inside the brain. Chapter 6 considers filtered kriging as a smoothing

method and uses the smoothing ratio to control the degree of the smoothness. Chapter 7

summarizes the final conclusions and some directions for future research.



Chapter 2

Basic concepts and definitions in geostatistics

Before moving to an in-depth discussion of geostatistical analysis in fMRI, it is helpful to

introduce some basic concepts and definitions in geostatistics. This chapter includes two

parts: one deals with structural analysis, the other with kriging.

2.1 Structural analysis

Using the variogram or the covariance model to characterize the spatio-temporal structure of

the interest variable is called structural analysis in geostatistics (Wackernagel, 2003; C-Olmo

et al., 2000). The analysis treats a set of spatial data as a sample from the realization of a

random process, and stresses the structural features.

2.1.1 Definitions

The variogram is a traditional geostatistical tool that provides quantification of the degree of

directional spatial properties in the random variables (Rossi et al., 1992). The variogram gives

a nice interpretation of the variance in a second-order stationary process (Schabenberger and

Gotaway, 2005; Schabenberger and Pierce, 2002), and it only compares the average square

difference between locations and need not to know the constant population mean. Based on

these reasons, it is common to work with the variogram rather than the covariance function

in geostatistical applications.

For the general spatial model {Z(s) : s ∈ D}, s = (x, y) denotes the coordinates of the

sample site (x, y); Z(s) denotes the random variable of interest at spatial position s = (x, y);

D denotes the set of the region of interest. Considering a simple geostatistical model Z(s) =

24
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µ + ε(s), where µ is a constant population mean, ε(s) is the zero-mean random function at

s, if we have

E[ε(s)] = 0, E[Z(s)] = µ, s ∈ D;

V ar[ε(s)] = σ2, V ar[Z(s)] = σ2, s ∈ D;

C(h) = Cov[Z(s + h), Z(s)], s + h, s ∈ D,

(2.1)

then the random function is called second order stationary. The separation h in the above

covariance function is a vector with both distance and direction, usually called lag. The

variogram is defined as an alternative measure of spatial dependence

γ(h) = 1
2
V ar[Z(s + h)− Z(s)]. (2.2)

A random field is intrinsically stationary if

E[Z(s + h)− Z(s)] = 0, s + h, s ∈ D;

γ(h) = 1
2
V ar[Z(s + h)− Z(s)].

(2.3)

These two assumptions constitute Matheron’s intrinsic hypothesis (Webster and Oliver, 2001;

Wackernagel, 2003). Intrinsic stationarity allows for the possibility that σ2 = ∞. Hence, all

second order stationary random fields are intrinsic, but an intrinsic random field may not be

second order stationary.

For second order stationary random fields, we have the relation γ(h) = C(0) − C(h),

and the variogram can reach a limiting maximum value, i.e., γ(h0) = C(0), which is called

the sill. Here there is a lag h0 called the range, beyond which Z(x) and Z(x + h0) are

uncorrelated; γ(h0) reaches the variance C(0) = σ2 of the process. Range is also known as

correlation range, since it defines the average distance within which the random function

remains correlated spatially. So, C(h0) = 0.

For γ(h) = C(0)− C(h), it is clear that in theory γ(0) = 0. But sometimes in practice,

γ(h) → σ2
ε as h → 0, where σ2

ε is called the nugget effect by Matheron (1962). Nugget effect

is usually considered as a micro-scale or measurement error causing a discontinuity at the

origin (Cressie, 1993).
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2.1.2 Properties

Trend removal

The most generic geostatistical model is a decomposition of a random response variable

into a mathematical structure describing variation and covariation among the responses,

i.e., Z(s) = µ + ε(s). We assume the mean is constant but this assumption is not always

realistic. Hence we first perform trend surface analysis to remove any trend surface and

create stationary data fields (Glover et al.,2006; Schabenberger and Gotway, 2005). Trend

removal may introduce a bias, but this bias can be ignored when the sample size is large

and the variogram is used instead of covariance in further analysis (Cressie, 1993), because

the square of variogram bias goes to zero faster than does the variance and the variogram

bias has smaller order than the corresponding covariance bias. Detail proofs are in Cressie

(1993). Even if the bias can not be ignored, it is still considered less significant than the

errors introduced by leaving the trend alone (Gringarten and Deutsch, 2001). According to

Gringarten and Deutsch (2001), the reason is that residuals after trend removal are easy to

consider stationarity. If a significant trend is presented in the data, the mean value is not

independent of location in the variogram estimation.

For example, we can set up the model as

Y (s) = f(s) + µ + ε(s) = f(s) + Z(s),

where f(s) is a trend function. In trend removal analysis, the order refers to the highest

power of the variables, the rank refers to the dimensionality, the number of the variables.

For two dimensions and a second-order trend in the model, we fit by a polynomial function:

f(x, y) = m0 + m1x + m2y + m3x
2 + m4xy + m5y

2,

where m0, ..., m5 are unknown parameters estimated by least squares. After removing the

trend f(s), we render the residuals stationary and use Z(s) to compute the variograms for

further analysis, and add back the trend f(s) at the end of the analysis. After trend removal,



27

we consider Z(s) to be second order stationary, and assume that the sills and the nuggets

are equal regardless of direction (Glover et al., 2006), which simplifies the subsequent work.

Unfortunately, we do not typically know the true order of the trend function in advance.

Hence we have two choices: (i) assume that the model only has a first or second-order trend,

and the error term has the high order structure; (ii) consider the model function to be of

high order and the error term to be simple trend or even random structure. These are two

different approaches to model fitting: the first one is called the random function approach, or

kriging; the second one is called the smooth function approach, or the spline method (Watson,

1984). Actually, the final results of these two approaches are consistent, as I will discuss in

detail later.

Positive definiteness

In the second order stationary case, if we consider a linear combination form
∑n

i=1 λiZ(si),

its variance

V ar[
∑n

i=1 λiZ(si)] =
∑n

i=1

∑n
j=1 λiλjC(si − sj) (2.4)

must be positive or zero, then the covariance matrix C(si − sj) should be non-negative

whatever the λi chosen. This is called positive definiteness. The family of covariance in

Rn satisfies the following properties (Chiles and Delfiner, 1999; Schabenberger and Gotway,

2005): (i) if C(h) is a covariance in Rn, then it is also valid in Rm for m ≤ n; (ii) if C1(h) and

C2(h) are two covariances in Rn, then aC1(h)+ bC2(h) is a covariance in Rn for a > 0, b > 0;

(iii) if C1(h) and C2(h) are two covariances in Rn, then C1(h)×C2(h) is a covariance in Rn.

By these three properties, we can define different kinds of covariance functions.

If the variable is intrinsic only and the covariance does not exist, then

V ar[
∑n

i=1 λiZ(si)] = C(0)
∑n

i=1 λi

∑n
j=1 λj −

∑n
i=1

∑n
j=1 γ(si − sj). (2.5)



28

Since C(0) is unknown now, we may eliminate it by making the weights sum to 0 (Webster

and Oliver, 2001); then

V ar[
∑n

i=1 λiZ(si)] = −∑n
i=1

∑n
j=1 λiλjγ(si − sj). (2.6)

Hence, the variogram must be conditionally negative definite with the condition that the

weights sum to 0.

Anisotropy

For a specific spatial structure, if the variogram function is direction dependent, we call this

anisotropy. If both the sill and the range of the variogram vary with direction, it is called

zonal anisotropy. If only the range varies and the sill remains constant, it is called geometric

anisotropy. As mentioned before, we have removed the trend and assume the residuals are

second order stationary. Hence after trend removal we can only consider geometric anisotropy

(Glover et al., 2006).

Geometric anisotropy can be corrected by a linear transformation of the coordinate

system (Chiles and Delfiner, 1999). In R2, the axes rotation can be defined by the vari-

ogram

γ(h) = γ0(|Ah|),

where γ0(·) is an isotropic model, A is the transformation matrix from the initial space to

the isotropic space, h is the initial distance vector.

Let θ and θ + π
2

be the new coordinate system with axes parallel to the anisotropic

directions with the maximum range and the minimum range; a1 and a2 be the ranges in the

directions θ and θ + π
2
; h1 and h2 be the distances in the directions θ and θ + π

2
, then

|Ah| =



1
a1

0

0 1
a2





 cos(θ) sin(θ)

−sin(θ) cos(θ)





h1

h2


 . (2.7)

The simplest case is when the anisotropy axes coincide with the coordinate axes.
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2.1.3 Calculations of empirical covariance and variogram

Consider a spatial model {Z(s) : s ∈ D}, where D denotes the set of sample points s1, ..., sn

lying on a regular lattice. The empirical variogram γ̂(h) and the empirical autocovariance

Ĉ(h) can be calculated as follows (Isaaks and Srivastava, 1989):

2γ̂(h) = 1
N(h)

∑
(si,sj)|hsi,sj =h[Z(si)− Z(sj)]

2,

Ĉ(h) = 1
N(h)

∑
(si,sj)|hsi,sj =h Z(si) · Z(sj)− µ̂−h · µ̂+h,

(2.8)

where µ̂−h is the mean of all data values whose locations are −h away from some other data

location:

µ̂−h = 1
N(h)

∑
(si)|hsi,sj =h Z(si);

µ̂+h is the mean of all data values whose locations are +h away from some other data

location:

µ̂+h = 1
N(h)

∑
(sj)|hsi,sj =h Z(sj).

The autocorrelation ρ̂(h) is the autocovariance standardized by the standard deviations:

ρ̂(h) = Ĉ(h)
σ̂−h·σ̂+h

, (2.9)

where σ̂2
−h is the variance of all data values whose locations are −h away from some other

data location:

σ̂2
−h = 1

N(h)

∑
(si)|hsi,sj =h Z(si)

2 − µ̂2
−h;

σ̂2
+h is the variance of all data values whose locations are +h away from some other data

location:

σ̂2
+h= 1

N(h)

∑
(sj)|hsi,sj =h Z(sj)

2 − µ̂2
+h.

In the above calculations, the summation is over only the N(h) pairs of observations which

are separated by lag h. Clearly, N(h) decreases as h increases. Equally clearly, the larger

N(h), the greater the statistical reliability (Ross et al., 1992). Since a relatively large N(h)

is associated with a relatively small standard error (Morris, 1991), Journel and Huijbregts

(1978) suggest the number of data pairs in each class should be at least 30, and this rule of

thumb has been widely accepted.
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2.1.4 Modeling the variogram

There are three reasons for modeling the empirical variogram (Webster and Oliver, 2001;

Schabenberger and Gotaway, 2005): First, the empirical variogram only gives estimates at

a finite set of lags, but what we need are estimates at arbitrary lags; second, the empirical

variogram may not be valid since the corresponding covariance may not satisfy the property

of positive definiteness; third, the empirical variogram may show meaningless fluctuations

due to measurement errors. The reason is that the calculated variogram of a particular lag

is only the estimated mean of that lag. Measurement error increases as the lag distance

increases. Variogram modeling smooths the empirical variogram.

Methods for variogram fitting include maximum likelihood and least squares. Maximum

likelihood estimation requires the assumption of Gaussian distribution of the data and the fit

has to be based on all data; by contrast, least squares does not have the distribution assump-

tion and one can restrict the lag distance for the data. I choose least squares here because of

its flexibility property (Schabenberger and Gotaway, 2005; Schabenberger and Pierce, 2002).

Since fitting models in this way is a form of non-linear regression, the Levenberg-Marquardt

method (Marquardt, 1963) is used for model fitting (Webster and Oliver, 2001).

Because we do not know how much of the observed fluctuation in the empirical variogram

is due to error and how much is structural, we follow three rules in the fitting process

(Webster and Oliver, 2001; Ma and Jones, 2001): (i) ignore the point to point fluctuation

and concentrate on general trends; (ii) estimate the variogram to be accurate at short lags,

with less accuracy at longer lags; (iii) match the cyclic pattern of the variogram at least to

the first peak or trough.

2.1.5 Examples of variogram models

The standard spherical model is defined as

γsph(h) =





3
2

h
a
− 1

2
h3

a3 if h ≤ a

1 if h > a,
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where a is the range. The standard nugget effect model is

γnug(h) =





0 if h = 0

1 if h > 0.

Since the sum of two basic covariance models is still a valid covariance model, the spherical

model with a nugget effect can be constructed as

γ(h) = σ2
ε γnug(h) + (σ2 − σ2

ε )γsph(h),

where σ2
ε is the nugget effect, and σ2 is the sill of the new model. Figure 2.1 gives the graphs

of the variogram model 8γnug(h) + 12γsph(h) in two different forms, where the nugget effect

is 8, the sill is 20, and the range is 10. Graph (1) is the model in variogram form, which

is a monotonically increasing function that reaches sill 20 after range 10. Graph (2) is the

model in covariance form, which is a monotonically decreasing function that becomes 0 after

range 10. The model in variogram form is negativly related with the model in covariance

form, i.e., γ(h) = 20− C(h). The nugget effect is a discontinuous point at the origin in the

variogram form, or a discontinuous point at 20 in the covariance form. The range 10 defines

the maximum distance within which the points are correlated.

2.2 Kriging

2.2.1 General characteristics of kriging

In geostatistics interpolation or prediction is called kriging. For predicting the value of the

random variable Z(s0) at an unsampled site s0, from the data Z(s1), ..., Z(sn) at sampled

sites s1, ..., sn, kriging is given as the weighted sum of the values of the neighbors. The weights

are calculated by minimizing the error variance of a given or assumed model of covariance for

the data with regard to the spatial distribution of the observed data points. If the predicted

variable is at one of the sampled sites, kriging gives the original value at this site, which is

called interpolation.
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Figure 2.1: An example of spherical model with nugget effect 8, range 10 and sill 20. (1) is
the model in variogram form, which is a monotonically increasing function and reaches sill
20 after range 10. (2) is the model in covariance form, which is a monotonically decreasing
function and becomes 0 after range 10. The model in variogram form is negativly related with
the model in covariance form, i.e., γ(h) = 20 − C(h). The nugget effect is a discontinuous
point at the origin in the variogram form, or a discontinuous point at 20 in the covariance
form. The range defines the maximum distance within which the points are correlated.
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In order to simplify the problem, it is common to restrict the estimation to linear pre-

dictors (Stein, 1999). An unknown value Z(s0) is therefore estimated by a weighted linear

combination of n known values Z(s1), ..., Z(sn). If this linear predictor minimizes the mean

squared error among all linear predictors, it is called best linear predictor (Stein, 1999). If this

predictor also has an unbiased constraint, it is called best linear unbiased predictor. Hence,

kriging is a method to determine the best linear unbiased estimate of the already known

points (Webster and Oliver, 2001).

Defining C(0) = V ar[Z(si)] = σ2 and C(si, sj) = Cov[Z(si), Z(sj)], i, j = 1, ..., n, if

Ẑ(s0) =
∑n

i=1 wiZ(si), the random function Z(s0)−
∑n

i=1 wiZ(si) is considered as an intrinsic

random function of order n (n-IRF) by Dubrule (1983), with the properties:

E[Z(s0)−
∑n

i=1 wiZ(si)] = 0,

V ar[Z(s0)−
∑n

i=1 wiZ(si)] = σ2 − 2
∑n

i=1 wiC(si, s0) +
∑n

i=1

∑n
j=1 wiwjC(si, sj).

(2.10)

These two functions construct the basic formulas in kriging. All krigings are special cases of

the n-IRF.

2.2.2 Different krigings

Following the ideas and definitions in Cressie (1993) and Journel (1989), when Ẑ(s0) at

an unsampled site s0 is estimated from Z(s1), ..., Z(sn) at sampled sites s1, ..., sn, Z(si) is

decomposed as a geostatistical model

Z(si) = µ(si) + e(si), i = 0, ..., n,

where e(si) is the zero-mean second-order or intrinsically stationary random function at

spatial position si. The kriging is divided into three different classes depending on the prior

knowledge of µ(si). When µ(si) is an already known constant, we have simple kriging ; when

µ(si) is an unknown constant, we have ordinary kriging ; when µ(si) is presented as a trend,

it is called universal kriging. The following are the formulas of the three types.
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Simple kriging

Z(si) = µ(si) + e(si), i = 0, 1, ..., n,

where µ(s0), µ(s1), ..., µ(sn) are known constants.

The simple kriging is Ẑ(s0) =
∑n

i=1 wiZ(si) + [µ(s0) −
∑n

i=1 wiµ(si)]. When E[Z(s0) −
Ẑ(s0)]

2 is minimized,

C(si, s0) =
∑n

j=1 wjC(si, sj). (2.11)

The kriging variance is

σ2
SK = E[Z(s0)− Ẑ(s0)]

2 = σ2 −∑n
i=1 wiC(si, s0). (2.12)

Since γ(si, sj) = σ2 − C(si, sj), the above formulas also can be expressed as a form with

variogram,

γ(si, s0) =
∑n

j=1 wjγ(si, sj) + σ2[1−∑n
j=1 wj], (2.13)

σ2
SK =

∑n
i=1 wiγ(si, s0) + σ2[1−∑n

j=1 wj]. (2.14)

Ordinary kriging

Z(si) = µ(si) + e(si), i = 0, 1, ..., n,

where µ(si) = µ is an unknown constant.

The ordinary kriging is Ẑ(s0) =
∑n

i=1 wiZ(si), subject to the linear constraint
∑n

i=1 wi =

1. Let m be the Lagrange parameter, E[Z(s0)− Ẑ(s0)]
2 − 2m[

∑n
i=1 λi − 1] is minimized by

setting its partial derivatives with respect to wi and m equal to zero. Hence,





∑n
i=1 wi = 1,

C(si, s0) =
∑n

j=1 wjC(si, sj) + m.
(2.15)

σ2
OK = E[Z(s0)− Ẑ(s0)]

2 = σ2 −∑n
i=1 wiC(si, s0) + m. (2.16)
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It also can be expressed as a form with variogram





∑n
i=1 wi = 1,

γ(si, s0) =
∑n

j=1 wjγ(si, sj)−m.
(2.17)

σ2
OK =

∑n
i=1 wiγ(si, s0) + m. (2.18)

Universal kriging

Z(si) = µ(si) + e(si), i = 0, 1, ..., n.

µ(si) =
∑L

l=0 alfl(si) is an unknown trend, where fl(si) are known functions and f0(si) = 1;

al are unknown parameters.

The universal kriging is Ẑ(s0) =
∑n

i=1 wi[Z(si)], subject to the constraint
∑n

i=1 wifl(si) =

fl(s0), for l = 0, 1, ..., L. Let ml, l = 0, 1, ..., L be the Lagrange parameters, E[Z(s0)− Ẑ(s0)]
2

is minimized with the constraint,





∑n
i=1 wifl(si) = fl(s0) for l = 0, 1, ..., L;

C(si, s0) =
∑n

i=1 wiC(si, sj) +
∑L

l=0 mlfl(si) for i = 1, ..., n.
(2.19)

σ2
UK = E[Z(s0)− Ẑ(s0)]

2 = σ2 −∑n
i=1 wiC(si, s0) +

∑L
l=0 mlfl(s0). (2.20)

It also can be expressed as a form with variogram





∑n
i=1 wifl(si) = fl(s0) for l = 0, 1, ..., L;

γ(si, s0) =
∑n

j=1 wjγ(si, sj)−
∑L

l=0 mlfl(si) for i = 1, ..., n.
(2.21)

σ2
UK =

∑n
i=1 wiγ(si, s0) +

∑L
l=0 mlfl(s0). (2.22)
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2.2.3 Selection of neighborhoods

The selection of neighbors to be included in the estimation is important since this will affect

the accuracy of prediction. In theory, for each prediction, the minimum mean square error is

achieved when all sampled points are included. However, it is not necessary to use all data

values in practice and a global neighborhood may result in a kriging matrix that is too large

to be inverted numerically. Therefore, only a subset of all data in a spatial neighborhood

around the predicted point is used. We limit our estimates to just the data within some

predefined radius of our point of estimation, called the search radius. There are no strict

rules for defining the neighborhood, rather it is usually chosen based on past experience. For

example, Schabenberger and Gotway (2005) suggest to divide the neighborhood around the

target point into quadrants or octants and use the nearest 2-3 points from each quadrant or

octant. They think kriging with more than 25 points is often unnecessary. Restricting the

number of neighbors for prediction has two advantages. One is saving on computing time;

the other is that we assume stationarity only within this search radius, which is useful if the

data in general are non-stationary (Shibli, 2003).

2.2.4 Discussions of different krigings

Actually, simple kriging is a special case of ordinary kriging, and ordinary kriging is a special

case of universal kriging. The kriging variances are σ2
SK ≤ σ2

OK ≤ σ2
UK (Webster and Oliver,

2001). The ordinary kriging variance is the sum of the simple kriging variance plus the

variance due to the estimation of the unknown mean (Wackernagel, 2003); the universal

kriging variance is the sum of the ordinary kriging variance plus the variance due to the

estimation of the unknown trend.

If the variogram has been assumed to be known, it is better to use universal kriging since

it considers the trend automatically. But in practice, we have to estimate the variogram

from the data before kriging. To guarantee stationarity over the domain of the study, the

variogram only can be estimated under the already known trend. However, we usually do
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not know the trend in advance. Hence, in the geostatistical analysis, we may estimate the

trend first, then analyze the residuals of the trend by ordinary kriging and add back the

trend after finishing the analysis (Cressie, 1993).

2.2.5 An example of ordinary kriging

Here is an example of ordinary kriging under the spherical variogram model. Assume there

are four known points Z(s1) = 5, Z(s2) = 10, Z(s3) = 15, Z(s4) = 20 at locations s1 =

(1, 5), s2 = (5, 1), s3 = (9, 5), s4 = (5, 9) (Figure 2.2, graph(1)). The predicted value at a new

location s0 is

Ẑ(s0) = w1Z(s1) + w2Z(s2) + w3Z(s3) + w4Z(s4)

with the constraint w1 + w2 + w3 + w4 = 1. If a spherical model with sill 1 and range 12 is

assumed for this process, then the kriging results for the eight predicted points at different

locations are shown in Table 2.1 and Figure 2.2 (right panel).

Note if the predicted location is at the observed location, e.g., s1
0 = s1 or s5

0 = s3, the

kriging exactly interpolates the observed point and the kriging variance is 0. The kriging

weight at the predicted location is 1, and the weights at the other three locations are 0. If

the predicted location is in the middle of the four observed points e.g., s3
0 = (5, 5), the four

observed points contribute the same weights and the predicted value is just the average of

the four points. If the predicted location is in the middle of any two observed points, e.g.,

s7
0 = (3, 7) or s9

0 = (7, 7), the two proximal points contribute the same strong weights and

the two distal points contribute weak weights.

Because the variogram defines the relationship between the variability of the data and

the distance of locations, the study of the variogram range is very informative. It determines

different contributions of the observed points to the predicted value. Since the spherical

variogram is monotonically increasing, for predicting an unobserved point, the proximal

points will contribute more weight and the distal points will contribute less weight. If we

change the range in the variogram model, the predicted values and kriging variance are



38

(1) Four observed points

 

 

0 5 10
0

2

4

6

8

10
(2) Eight predicted points

 

 

0 5 10
0

2

4

6

8

10

0

5

10

15

20

0

5

10

15

20

Figure 2.2: An example of ordinary kriging. (1) is the four observed points used in kriging.
(2) is the eight predicted points by kriging.

changed at the unobserved locations. But just changing the sill does not change the predicted

values and only the kriging variance is changed (Schabenberger and Pierce, 2002). I will

discuss the property in later chapters.
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s0 Ẑ(s0) σ2
OK w1 w2 w3 w4

(1,5) 5.0000 0 1.0000 0 0 0
(3,5) 9.2023 0.3375 0.5798 0.1784 0.0635 0.1784
(5,5) 12.5000 0.4226 0.2500 0.2500 0.2500 0.2500
(7,5) 14.3654 0.3375 0.0635 0.1784 0.5798 0.1784
(9,5) 15.0000 0 0 0 1.0000 0
(3,7) 12.5000 0.3630 0.4674 0.0326 0.0326 0.4674
(5,7) 15.7977 0.3375 0.1784 0.0635 0.1784 0.5798
(7,7) 16.8477 0.3630 0.0326 0.0326 0.4674 0.4674

Table 2.1: Kriging prediction under the spherical variogram model with sill 1 and range 12. s0

is the predicted location; Ẑ(s0) is the predicted value in kriging; σ2
OK is the kriging variance;

w1, w2, w3, w4 are the weights at observed locations s1 = (1, 5), s2 = (5, 1), s3 = (9, 5), s4 =
(5, 9) in kriging.



Chapter 3

Geostatistical analysis in clustering fMRI time series

3.1 Introduction

In recent years, characterizing brain activation by clustering the fMRI time series has gained

popularity (for example, Goutte, et al., 1999). Since regions that react to the experimental

task may be at several different physical locations, the goal in clustering time series is to

partition the brain into clusters, where voxels within each cluster have similar temporal

patterns. The underlying assumption is that voxels with similar temporal characteristics

belong to the same functional regions of the brain (Baudelet and Gallez, 2003; Yeo and Ou,

2004).

Due to the high noise level in fMRI data, the results of clustering on the raw time series

are often unsatisfactory and do not necessarily group data according to the similarity of their

pattern of response to the stimulus (Goutte et al., 1999). Hence, many clustering techniques

have focused instead on cross-correlation functions of the fMRI time series. Bandettini et al.

(1993) consider the correlation between the data time series and a reference function from a

“seed” voxel to characterize the temporal response of the brain to the paradigm. Goutte et al.

(1999, 2001) suggest clustering voxels on the basis of the cross-correlation function between

the fMRI activation and the experimental protocol signal. Yeo and Ou (2004) devise a “signal

to protocol metric” by combining the cross-correlation of two fMRI signals and the Euclidean

distance between voxels to do the clustering. Friman et al. (2002a) approach the problem by

viewing the correlation between two time series as an objective function to be maximized

with respect to some parameters. Clustering on the cross-correlation function instead of the

raw time series provides increased robustness and yields improved performance. However,

40
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methods based on cross-correlation depend heavily on the choice of reference function. Note

that different types of reference functions are possible, and they result in correspondingly

different analyses (Gibbons et al., 2004).

In this chapter, a special classification method for fMRI data is introduced. I first sum-

marize the traditional classification methods and formalize them as three steps: feature

extraction, choice of classification metric and choice of classification algorithm. In the fea-

ture extraction step, I propose the use of the autocorrelation function as the main feature

and demonstrate its efficacy. In geostatistics, use of autocovariance (autocorrelation) or var-

iogram to characterize the spatial or temporal structure of the data is called structural

analysis. When the autocovariance (autocorrelation) function is used in classification, this

is called structural classification in geostatistics. This classification method has been widely

used in geostatistical areas, e.g., ecology and remote sensing (Atkinson and Lewis, 2000;

Wackernagel, 2003; C-Olmo et al., 2000), but, to date, not in fMRI. The analysis treats a

set of data as a sample from the realization of a random process, and stresses the structural

features. The correlation structures for different functional regions of the brain are different,

and can be used to inform classification. For example, in functional regions that react to

the task, the time series exhibit periodic patterns, and the autocorrelation function may be

expected to fluctuate periodically as well (Webster and Oliver, 2001). For irrelevant regions

the autocorrelation is expected to be flat.

3.2 Methods

3.2.1 Clustering analysis

Three steps in classification

Classification is a procedure in which individual objects are placed into different classes based

on their characteristics. When objects are assigned to one of several pre-defined classes, this is

known as “supervised learning”, “pattern recognition”, or “discriminant analysis”, depending
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on the field. When neither the number of the classes nor the classes themselves are known in

advance, this is known as “unsupervised learning” or “cluster analysis” (Gordon, 1999). In

any classification problem, a good solution depends on three steps: feature extraction, the

choice of the clustering metric, and the clustering algorithm (Friman et al., 2002a; Stanberry

et al., 2003; Yeo and Ou, 2004).

Feature extraction step Feature extraction is a special form of data reduction that decreases

the resources required to describe a large set of data accurately. There are many ways to

extract the features from the object of interest. For example, principal component analysis

and canonical correlation analysis are very commonly used for multivariate data. Since our

primary interest is in time series data, we use the autocovariance (autocorrelation) structure

as the main feature for clustering.

In geostatistical applications, it is common to work with the variogram, rather than the

autocovariance (autocorrelation) function (Schabenberger and Gotway, 2005). The advantage

of the former is that it only compares the average square difference between locations; this is

quite useful in geology since one usually doesn’t know the population mean and hence it is

assumed to be constant. But it may be a disadvantage in other settings since the variogram

does not account explicitly for mean and variance changes. Specifically, in fMRI data, the

mean or variance may change over time. Therefore, I choose to work with the autocovariance

(autocorrelation) instead of the variogram because of the former’s robustness in the case that

local means and variances vary (Rossi et al,. 1992, Radeloff et al., 2000).

Definitions Consider a time series {Z(t) : t ∈ D}, where t denotes time; Z(t) denotes

the random variable of interest at time t; D denotes the set of the time points of interest

t1, t2, ..., tN . We define the lag h as the separation between two different time points. The

time series is second order stationary if:

E[Z(ti)] = E[Z(ti + h)] = µ,



43

and

Cov[Z(ti + h), Z(ti)] = C(h),

for any ti + h, ti ∈ D, where µ is a constant and C(·) is a positive semi-definite function

depending only on h. The autocorrelation function is defined as ρ(h) = C(h)/C(0).

As mentioned before, different functional regions in the brain have different temporal

behavior during the experiment, and their correlation structures are potentially also different.

As a result, we can classify voxels by comparing their correlation structures. The reason to use

correlation instead of covariance in clustering is that without the standardization, clustering

may extract regions with large variances rather than similar temporal patterns (Goutte et

al., 1999).

There are two main approaches for estimating the correlation function from the data

(Atkinson and Lewis, 2000). The first approach is based on the nonparametric or empirical

covariance estimator described below; the second approach is parametric, i.e. fitting a pre-

existing covariance model to the empirical autocovariance and obtaining the model param-

eters. Usually the modeling approach is considered to be more efficient than the empirical

one, as the covariance feature is usually described by a small number of parameters (usually

three or four suffice). However the modeling approach relies on the restrictive assumption

that the covariance belongs to a specific parametric family. No such parametric models have

been proposed and proven to be valid for fMRI data. By contrast, the empirical approach

is easy to use and very popular in geostatistics (Atkinson and Lewis, 2000). I consider the

empirical approach here.

The empirical autocovariance Ĉ(h) can be calculated as follows (Isaaks and Srivastava,

1989):

Ĉ(h) = 1
N(h)

∑
(ti,tj)|hti,tj =h Z(ti) · Z(tj)− µ̂2

h, (3.1)

where µ̂h = 1
N(h)

∑
(ti)|hti,tj =h Z(ti); that is, the average of the Z(·) values for points within

a lag h of the reference point. The autocorrelation ρ̂(h) is the autocovariance standardized



44

by the variance:

ρ̂(h) = Ĉ(h)/σ̂2
h, (3.2)

where σ̂2
h=

1
N(h)

∑
(ti)|hti,tj =h Z(ti)

2 − µ̂2
h; that is, the variance of the Z(·) values for points

within a lag h of the reference point.

The definitions of autocovariance and autocorrelation can be extended to describing the

relations between several variables. If we consider two different regionalized variables Zu(ti)

and Zv(ti), where variables u and v both are second order stationary with respective means

µu and µv, then for variable u we have

E[Zu(ti + h)− Zu(ti)] = 0,

Cuu(h) = E[{Zu(ti)− µu} {Zu(ti + h)− µu}],
and analogously for Cvv(h). The cross-covariance and cross-correlation are defined as

Cuv(h) = E[{Zu(ti + h)− µu} {Zv(ti)− µv}],

and

ρuv(h) = Cuv(h)/
√

Cu(0)Cv(0), (3.3)

respectively. Cross-covariance and cross-correlation can be estimated by moment estimators

similar to those for autocovariance (3.1) and autocorrelation (3.2) (see Goutte et al., 1999).

Classification metric step The classification metric is usually defined as the distance mea-

sure between two objects in multi-dimensional space or time. For all triples of objects (i, j, k),

the distance measure dij between the ith and jth objects is said to be a metric if it satisfies:

dij ≥ 0 (non-negativity); dii = 0 (identity); dij = dji (symmetry) and dij ≤ dik + dkj (sub-

additivity) (Gordon, 1999; Stanberry et al., 2003). In considering two objects of interest,

there are two different types of measure. One measures their dissimilarity; the other mea-

sures their similarity. Both can be developed into metrics. Measures of dissimilarity include

Euclidean distance, Mahalanobis distance, and the variogram. Measures of similarity include

correlation and covariance.
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Classification algorithm step There are two principal clustering approaches, hierarchical

clustering and partitioning (Rencher, 2002). In hierarchical clustering, each object is first

regarded as a separate cluster and clusters are then combined sequentially. The number of

clusters is reduced at each step until only one cluster is left. The results are usually pre-

sented in a tree-like structure called a dendrogram, which shows the steps of the clustering

procedure. In partitioning, objects are divided into k pre-defined clusters by some optimality

criterion (Kaufman and Rousseeuw, 1990). The k means method (MacQueen, 1967) is prob-

ably the most widely used partitioning method.

Silhouette values

Silhouette values, first introduced by Rousseeuw (1987), are used to judge the results of a

classification procedure. Each cluster is represented by a silhouette, showing which objects

lie well within the cluster and which objects merely hold an intermediate position. The entire

clustering procedure is displayed by plotting all silhouettes on a single diagram, allowing the

user to compare the quality of the clusters (Kaufman and Rousseeuw, 1990). Silhouettes are

constructed as follows: For each object i, let A be the cluster that has been assigned and a(i)

= average dissimilarity of i to all other objects in A. For any other cluster C different from

A, define d(i, C) = average dissimilarity of i to all objects in C. Let b(i) = minC 6=Ad(i, C).

d(i, B) = b(i) is called the neighbor of object i; this is the second best choice for object i: If

cluster A is discarded, cluster B is closest to i. The silhouette s(i) is defined as

[b(i)− a(i)]/max[a(i), b(i)].

By definition, s(i) is between -1 and 1. When s(i) is close to 1, the “within” dissimilarity

a(i) is much smaller than the smallest “between” dissimilarity b(i), thus object i is classified

to the right cluster. When s(i) is near 0, a(i) and b(i) are approximately equal and hence it

is not clear whether i should have been assigned to A or B. Object i lies equally far away

from both clusters and can be considered as an intermediate case. When the value is close
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to -1, then a(i) is much larger than b(i), so i lies much closer to B than to A. Therefore,

object i has probably been misclassified.

The average of s(i) for all objects in a cluster is called the average silhouette width of

that cluster. The average of the s(i) for i = 1, 2, ..., is called the average silhouette width for

the entire data set. The average silhouette width for the entire data set is used to select the

number of clusters k, by choosing k so that the average silhouette width is highest (Kaufman

and Rousseeuw, 1990).

3.3 Data Analysis

3.3.1 Classification steps for saccade data

I first perform clustering analysis to the saccade data, hoping to find the regions in the

brain reacting to the task. I focus on the fourth axial slice of the brain, which for this

subject is expected by the researcher who provided the data to have the most activity. I

apply clustering based on autocorrelation, and compare the results with those based on

cross-correlation (Goutte et al.,1999).

Data reduction The number of voxels in even a single slice of data still poses a challenge

to many clustering techniques. Clustering methods usually do not work well for ill-balanced

data. “Ill-balanced” means that the number of observations belonging to the different classes

are widely disparate, e.g., if most observations belong to one class, then all observations

might be put into a single cluster, even if there are different patterns in reality. In fMRI data

the population of “activated” (i.e., stimulus-related) voxels is much smaller than the total

population of voxels (Goutte et al., 1999; Fadili et al., 2000; Wang et al., 2007). Hence, a

data reduction step is advisable before the three clustering steps to avoid all voxels being

assigned to a single cluster.

Masking the brain is a popular dimension reduction technique. Once a specific slice or set

of slices is chosen by the researcher, the data image is first processed to identify the location
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of the brain, thereafter a suitable threshold method is used to remove all voxels outside the

brain (see for example, Goutte et al., 1999, 2001; Stanberry et al., 2003; Gibbons et al., 2004;

Bowman et al., 2004). For the saccade data, I will use both masked and unmasked data in

clustering, and compare the results. For the slice I chose for the purpose of demonstration,

there are 630 voxels (out of 4096) after masking.

Since the goal of the screening is to reduce the large amount of non-stimulus-related voxels

that could seriously affect the robustness and sensitivity of the clustering results (Goutte et

al., 1999; Fadili et al., 2000), I use a simple two-sample t test procedure comparing prosaccade

to antisaccade to screen out the probable non-active voxels (Huettel et al., 2004). A suitably

generous threshold (|t| > 2) is applied to create an image showing those regions of the brain

with moderate to strong task-related activation. After thresholding, 345 of 4096 voxels are

retained in the unmasked data and 167 of 630 voxels are retained in the masked data; only

these are subject to clustering. Note the 167 voxels are included in the 345 voxels left in the

unmasked data.

For the long range resting data, we only have masked data leaving us with 1096 voxels

out of the original 4096. Since there is no contrast between different conditions, two-sample

t test is not suitable here and all the 1096 voxels are used for clustering.

Feature extraction step For the 345 most active voxels in the unmasked data, I use the

empirical autocorrelations at the 156 time points as the main feature (Marcotte, 1996). For

the k-th voxel, k = 1, 2, ..., 345, define the time series {Zk(t); t = 1, ..., 156}, with empirical

autocovariance and autocorrelation Ĉk(h), ρ̂k(h) as in equations (3.1) and (3.2). Every voxel

is represented by the new vector ρ̂k = (ρ̂k(0), ρ̂k(1), ..., ρ̂k(155)) (Figure 3.1, graph (3)) instead

of the original time series Zk(t) (Figure 3.1, graph (1)). I also calculate the cross-correlation

(Figure 1, graph (4)) between each voxel Zk(t) and the stimulus series Y (t) (Figure 3.1,

graph (2)). As a comparison, in Section 3.3.1 I present results using the cross-correlation as

the feature in clustering.
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Figure 3.1: (1) time series of one voxel; (2) plot of stimulus time course; (3) autocorrelation
of one voxel from lag distance 0 to 155. (4) cross-correlation of one voxel and the stimulus
from lag distance 0 to 155. Graphs (3) and (4) clearly show that measurement error increases
as the lag distance increases.
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Due to a lack of data, ρ̂(h) becomes more variable when h is large. In my analysis, I thus

consider h from 0 up to a maximum lag H. The results in the sequel are based on H = 99.

However, the results are not very sensitive to the particular choice of H. I discuss this further

in Section 3.4.

Clustering metric step Two metrics are commonly used at this step. One is the “generalized

distance” (Goutte et al., 1999), also called the “functional distance” (Bowman, 2007). For

two voxels ρm and ρn in RH+1, m, n = 1, ..., 345 and H = 99, this distance is defined as

d2
E(ρ̂m, ρ̂n) = (ρ̂m − ρ̂n)TM(ρ̂m − ρ̂n),

where M is a (H + 1)× (H + 1) symmetric positive definite matrix. When M is the identity

matrix, d2
E reduces to the Euclidean distance, called “Euclidean”. The other metric is the

square root of one minus the sample correlation between two voxels, called “correlation”

(Rencher, 2002; Strauss et al., 1973), which is defined as

d2
corr(ρ̂m, ρ̂n) = 1−

∑H
h=0(ρ̂m(h)− µ̂m)(ρ̂n(h)− µ̂n)√∑H

h=0(ρ̂m(h)− µ̂m)2
∑H

h=1(ρ̂n(h)− µ̂n)2

, (3.4)

where µ̂m = 1
H

∑H
h=0 ρ̂m(h), µ̂n = 1

H

∑H
h=0 ρ̂n(h), m, n = 1, ..., 345, H = 99.

The “Euclidean” method can only compare the similarity of average profile levels among

the voxels. We are also interested in the similarity of profile shapes, since voxels with similar

patterns should belong to the same functional regions of the brain. The “correlation” metric

is more appropriate for this task (Rencher, 1998 and 2002). The connections between the

two metrics are as follows:

Given an (n × p) matrix X, where n is the number of observations (time points) and

p is the number of variables (locations). Define µ̂j and σ̂2
j as the mean and variance of the

jth vector xj = (x1j, ...xnj)
T , where j = 1, ..., p; and define a new vector x̃j = (x̃1j, ..., x̃nj)

T ,

where x̃ij = (xij− µ̂j)/(
√

nσ̂j), i = 1, ..., n. Then x̃j is normalized since x̃T
j x̃j =

∑n
i=1 x̃2

ij = 1.

Note that d2(x̃j, x̃k) = (x̃j−x̃k)
2 = 2(1−x̃T

j x̃k) = 2d2
corr(xj,xk) for j, k = 1, ..., n. The square
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of the “correlation” metric is an alternative square of the normalized “Euclidean” metric.

Hence, the “correlation” metric can extract the similarity of profile shapes in clustering.

Clustering algorithm step The k means algorithm is common in neuroimaging applications

because of its computational advantages: computations are fast, the algorithm does not

require retention of all distances, and convergence occurs quickly (Bowman et al., 2004). For

a given number of clusters k, it iteratively minimizes the within-class variance by assigning

data to the nearest center and recalculating each center (Goutte et al. 2001). Hence, I choose

k means algorithm here. To choose the number of clusters k, silhouette values (Rousseeuw,

1987) is used.

Results of autocorrelation method

In this subsection, I discuss clustering results using autocorrelation as the feature.

Unmasked data All 345 voxels that passed the initial t test screening are used for

clustering. I use both average silhouette value and the index of Calinski and Harabasz (1974)

to choose the number of clusters; according to both criteria, the appropriate number of

clusters is four. After clustering, I mask the average brain image over time and discard all

the voxels outside the brain. There are 167 voxels inside the brain of the 345 retained voxels

(Figure 3.2).

Cluster 1 has 111 voxels, of which 88 are inside the brain (Figure 3.2, graphs (5) and

(6)); empirical autocorrelations derived from the time points clearly exhibit strong peaks

and troughs in the shape of waves, showing periods of time correlation (Figure 3.3, graph

(4)), which likely result from variations of the blocks in the design paradigm (Radeloff et

al., 2000; Chen, 2005). The signals of these voxels are quite strong (Figure 3.3, graph (3)),

indicating the activation is probably due to “true” brain activity. The regions identified in

cluster 1 (Figure 3.2, graphs (5) and (6)) are also confirmed to be active regions by another

lab.
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Cluster 2 has 80 voxels, of which 46 are inside the brain (Figure 3.2, graphs (7) and (8)).

The empirical autocorrelations of these voxels also exhibit some peaks and troughs, but they

do not match up with the stimulus sequence as well as those in cluster 1 (Figures 3.3, graph

(6)). By graphs (7) and (8) in Figure 3.2, we can see the voxels in this cluster are around the

brain. It seems the “activation” of this cluster is due to uncorrected head motion, according

to the hypothesis of the researcher who supplied the data.

Cluster 3 has 62 voxels, the correlation is around zero. There are no obvious patterns in

the signal sequence and the autocorrelation shows some overlapping cyclic patterns which do

not correspond to the experimental design (Figure 3.3, graphs (7), (8)). As shown in graphs

(9) and (10) in Figure 3.2, 33 voxels of this cluster are inside the brain and 29 voxels are

outside the brain. I conclude this cluster contains noise voxels that failed to be screened out

by the t test. Cluster 4 has 92 voxels, the mean of the correlations is almost zero (Figure

3.3, graph (10)). By looking at graphs (11) and (12) in Figure 3.2, all the voxels are outside

the brain, hence are clearly noise.

Masked data Here the 167 retained voxels in the masked fMRI data are clustered

directly. Since in unmasked data, all the voxels in cluster 4 are outside the brain, for com-

paring to the unmasked data fairly, I look here at the results when k = 3. Cluster 1 has 60

voxels and the empirical autocorrelations show strong periods of time correlations, indicating

“activation” (Figure 3.4, graph (4)). Cluster 2 has 73 voxels and the empirical autocorrela-

tions also show strong periods of time correlations (Figure 3.4, graph (6)), but its pattern is

different from cluster 1. Since all the voxels are around the edges of the brain (Figure 3.5),

cluster 2 indicates ”head motion”. Cluster 3 has 34 voxels and the empirical autocorrela-

tion shows some overlapping cyclic patterns which do not corresponding to the experimental

design (Figure 3.4, graph (8)).

The results are very similar to the unmasked method except the numbers of voxels in

each cluster change (Figure 3.5). Both methods extract the 33 voxels of noise inside the

brain (Figure 3.5, graph (9)), but the unmasked method prefers to attribute more voxels
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to “activation” (Figure 3.5, graph (3)), whereas the masked method prefers to assign more

voxels to “head motion” (Figure 3.5, graph (6)). By comparing the two “activation” clusters

with the maps from another lab, the results from the unmasked method are closer to what

has been found by other researchers. Because the saccade data has been preprocessed to

correct for head motion, the number of voxels in the “head motion” cluster should be small

compare to the number of voxels in the “activation” cluster. This is true for the unmasked

data, but not for the masked data. Also, it is noted that the “head motion” cluster in masked

data shows strong periods of time correlations (Figure 3.4, graph (6)), which means some

voxels due to the “activation” may be misclassified to “head motion” cluster. Figure 3.6

shows the mean correlations of the 60 voxels in the masked method from Figure 3.5 graph

(2), the 46 voxels in the unmasked method from Figure 3.5 graph (4), and the 28 voxels from

Figure 3.5 graph (3). Clearly, the degree of similarity between graphs (1) and (3) is higher

than that between graphs (2) and (3). Hence, the 28 voxels are closer to the “activation”

cluster.

This phenomenon can be explained by the so-called “marginal effect”. In the calculation

of a characteristic of a specific region, the lack of sufficient data outside this region may

result in biases or other errors, which is called the “marginal effect” or “edge effect”. In

order to reduce the impact of the marginal effect on a region, an easy solution is to calculate

first on an extended region, then remove the extension after calculation to get the actual

results. This idea can be referred to in our clustering analysis. By looking at the unmasked

“head motion” cluster (Figure 3.2, graph (7)), we observe that almost all of the 80 voxels

are around the edges of brain. The 34 voxels outside the brain have a strong “marginal

effect” with the 46 voxels which are just inside the brain (Figure 3.2, graph (8)). Masking

the brain before clustering removes all the voxels outside the brain, including the above 34

voxels, therefore the 46 voxels may group with some other voxels inside the brain (Figure 3.5,

graphs (3) and (6)). Hence, to reduce the “marginal effect”, it is preferred to use unmasked
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Figure 3.2: Maps of the brain for saccade data, autocorrelation method. (2) and (1) are maps
of the 345 retained voxels and overlaid on the original brain. (4) and (3) are maps of the
167 voxels after masking and overlaid on the masked brain. (5) and (6) are maps of cluster
1 before and after masking; (7) and (8) are maps of cluster 2 before and after masking; (9)
and (10) are maps of cluster 3 before and after masking; (11) and (12) are maps of cluster 4
before and after masking. There are 111, 80, 62, 92 voxels in the four clusters before masking,
and 88, 46, 33, 0 voxels left after masking.
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Figure 3.3: Time patterns for saccade data, unmasked method. (1) is the mean of the 345
retained voxels. (3), (5), (7), (9) are the means of the four clusters. (2) is the mean correlation
of the 345 voxels. (4), (6), (8), (10) are the mean correlations of the four clusters. The mean
correlation of cluster 1 shows clear peaks and troughs in the shape of waves; the mean
correlation of cluster 2 shows weak peaks and troughs in the shape of waves; the mean
correlations of cluster 3 shows some overlapping cyclic patterns which do not correspond to
the experimental design, and cluster 4 shows no pattern.
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Figure 3.4: Time patterns for saccade data, masked method. (1) is the mean of the 167
retained voxels. (3), (5), (7) are the means of the three clusters. (2) is the mean correlation
of the 167 voxels. (4), (6), (8) are the mean correlations of the three clusters. The mean
correlation of cluster 1 shows clear peaks and troughs in the shape of waves; the mean
correlation of cluster 2 also shows strong peaks and troughs in the shape of waves; the mean
correlations of cluster 3 shows some overlapping cyclic patterns which do not correspond to
the experimental design.
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data in clustering especially when the data have head motion evident around the edges of

the brain.

Results of cross-correlation method

I also use the cross-correlation between the 345 retained voxels and the stimulus as the

main feature for clustering. Again for fair comparison, I look at results when k = 4. There

are 72, 106, 109, 58 voxels in the four clusters and 50, 50, 66, 1 voxels inside the brain

respectively. Using the maps in Figure 3.2 as our standard, the maps in Figure 3.7 show

that clusters 1 and 3 are not well classified. The active voxels in the anterior and posterior

of the brain are mixed up with noise inside the brain (Figure 3.7, graphs (6) and (10)). The

intention of the cross-correlation method is to try to use the characteristics of delay and

habituation between the stimulus and the response time series to create different partitions

of the brain. The clustering metric is used to count the total number of relevant matches

between the partitions. Perhaps differences in delay and habituation are not strong enough to

be distinguished by a clustering method. Hence, in cross-correlation the clustering algorithm

may just classify the voxels inside the brain by their voxel values, and not by their different

properties. Because of this, researchers sometimes smooth the cross-correlation function (e.g.,

Goutte et al., 2001) to improve its precision and to get better results. This makes a simple

case overly complicated, and furthermore is unnecessary, as shown by the autocorrelation

results.

3.3.2 Classification for masked long range resting data

For the masked long range resting data set, there should be no task-related differences among

the three slices since the subject performed no task. Hence I examine the first slice as an

example. Since there is no task-related activation over time, the 2-sample t-test is not suitable

here as a screening device and all 1096 voxels are used in clustering. This is a long range data

with maximum lag distance 1498, and I pick an effective lag distance of h = 1000 to reduce
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Figure 3.5: Comparison between unmasked and masked methods. The numbers of voxels in
“activation”, “head motion” and “noise” are 88, 46, 33 respectively in the unmasked method
(graphs (1), (4), (7)), and 60, 73, 34 respectively in the masked method (graphs (2), (5),
(8)). Both methods can extract the 33 voxels of noise (graph (9)), but the unmasked method
prefers to assign more voxels to “activation” (graph (3)), while the masked method prefers
to attribute more voxels to “head motion” (graph (6)).
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Figure 3.6: Time patterns for different clusters. (1) is the mean correlation of the 60 voxels
in the masked method from Figure 3.5 graph (2). (2) is the mean correlation of the 46 voxels
in the unmasked method from Figure 3.5 graph (4). (3) is the mean correlation of the 28
voxels from Figure 3.5 graph (3). Clearly, the degree of similarity between graphs (1) and
(3) is higher than that between graphs (2) and (3).
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Figure 3.7: Maps of the brain for unmasked saccade data, cross-correlation method. (2) and
(1) are maps of the 345 retained voxels and overlaid on the original brain. (4) and (3) are
maps of the 167 voxels after masking and overlaid on the masked brain. (5) and (6) are
maps of cluster 1 before and after masking; (7) and (8) are maps of cluster 2 before and
after masking; (9) and (10) are maps of cluster 3 before and after masking; (11) and (12)
are maps of cluster 4 before and after masking. There are 72, 106, 109, 58 voxels in the four
clusters before masking, and 50, 50, 66, 1 voxels left after masking.
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Figure 3.8: Maps of resting data. (1) is the map of cluster 1 with 646 voxels. (2) is the map
of cluster 2 with 450 voxels.

the measurement error. I use the “correlation” metric again and the mean of silhouette values

indicates that the best choice for the number of clusters is k=2. Cluster 1 has 646 voxels

(Figure 3.8, graph (1)); cluster 2 has 450 voxels (Figure 3.8, graph (2)). There are no clear

patterns in the two clusters. Neither cluster shows peaks or troughs in time (Figure 3.9),

indicating that there are no task-related or systematic activations in the resting data. This

is what we would expect.

3.4 Discussion and conclusion

3.4.1 Different comparisons

Comparison between autocorrelation and cross-correlation method Clustering on the cross-

correlation function instead of the raw time series may provide increased robustness. This

type of clustering is an example of an hypothesis-driven analysis (Huettel et al. 2004). A

drawback of hypothesis-driven analysis is that it depends heavily on having prior knowledge

of the reference function. Sometimes it is difficult to know this in advance, and sometimes

such a reference waveform doesn’t exist. For example, in an experiment that involves having

the subject watch a film clip, there is not a clear “time course” with which to cross-correlate.
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Figure 3.9: Time patterns of resting data. (1), (2) are the means of the two clusters. (3) is
the mean of all 1096 voxels. (4), (5) are the mean covariances of the two clusters. (6) is the
mean covariance of all 1096 voxels. Neither cluster exhibits obvious peaks and troughs in
time, indicating that there are no systematic activations in the resting data.
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Even in a study with a well-defined stimulus waveform, the subject may not follow the

instructions correctly during the experiment and it is not clear how this will affect the

cross-correlation analysis. Furthermore, we might not know the expected response to the

task for a particular region because the study is exploratory. One can easily envision other

scenarios where it might be difficult or undesirable to work with a predetermined reference

function. The autocorrelation method does not rely on such an external standard, and hence

can be considered a type of data-driven analysis (Huettel et al. 2004). It offers further

improvement over the cross-correlation method, which itself improves on clustering of the

raw time series. Using the autocorrelation function as a main feature in clustering makes

fewer assumptions. In particular, as we have seen, we need not consider the hypothesized

relation between the stimulus and the response time series (including concerns about lags in

the onset of the hemodynamic response). My results indicate that this approach is superior

in identifying active regions of the brain for task data, and can be used for resting data to

examine functional similarities across the brain during ambient thought.

Comparison between saccade data and resting data The autocorrelations of the clusters

in the saccade data exhibit peaks and troughs in the shape of waves in two of the clusters,

showing periods of time correlations. This periodicity is clearer than that shown by the

raw voxel time courses and reflects changes in the experimental condition. By contrast, the

autocorrelations of clusters for the resting data do not show any clear patterns over time.

These results demonstrate the good performance of autocorrelation in a variety of situations

and its superiority over using the voxel time courses alone.

Comparison between unmasked method and masked method It is common to mask the

brain as the first step in an analysis (Goutte et al., 1999, 2001; Stanberry et al., 2003;

Gibbons et al., 2004; Bowman et al., 2004), since masking can eliminate a large number

of “useless” voxels outside the brain and make the further analysis more convenient. But

masking the brain before clustering may be problematic, as it ignores the effects of voxels
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around the edges of the brain. These voxels may affect the clustering results especially for

data with head motion.

3.4.2 Discussion of different techniques

2-sample t-test for dimension reduction Using the 2-sample t-test for dimension reduction is

a popular technique in fMRI data analysis. It is simple, convenient and effective in extracting

the most important voxels. But it also has some clear disadvantages. First, it requires a con-

trast between experimental conditions, so it does not work for resting data since there are no

such conditions to compare. Nor is it truly suitable for event-related designs. Secondly, delay

of the responses is not considered, and so the calculation of the two sample t statistic may

not be accurate. Sparse principal component analysis (Zou et al., 2006) is a new technique

which can combine dimension reduction and feature extraction together in clustering, and

which may overcome the disadvantages of the 2-sample t-test. I explore this approach in the

next chapter.

Use of empirical autocorrelation Using empirical autocorrelation in fMRI data analysis is

attractive since it captures important characteristics of the voxels over time and does not

require prior knowledge of the reference function. But there are some implementation issues.

For example, when the method of moments is used to estimate the autocorrelation, the

standard error of ρ̂(h) increases as lag h increases, because we have fewer data pairs for

large h. Hence the autocorrelation needs to be truncated at an effective lag. On the other

hand, we do not want to lose important structure by truncating too much. In practice, it

is recommended to choose the number of data pairs to be no less than 30 or to truncate

the lag distance at half of the maximum distance (Journel and Huijbregts, 1978; Bowman,

2007). I tried different effective lag values and found that the clustering results are not very

sensitive, for a reasonable range of effective lags. Table 3.1 lists average silhouette values and

the number of misclassified voxels inside the brain for different effective lag values. To keep
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the balance between retaining more data information and reducing measurement error, an

effective lag distance of 99 seems to be optimal for this data set.

Effective lag 91 93 95 97 99 101 103 105
Silhouette value 0.2747 0.2710 0.2623 0.2630 0.2682 0.2680 0.2628 0.2584

Misclassified voxels 4 3 3 6 1 3 2 3

Table 3.1: Average silhouette values and the number of misclassified voxels inside the brain
at different lags. To keep the balance between retaining more data information and reducing
measurement error, an effective lag distance of 99 is optimal.

Use of correlation instead of covariance As I mentioned before, the reason to use correlation

instead of covariance in clustering is because in the absence of standardization, clustering

will extract regions with large variances rather than similar temporal patterns (Goutte et al.,

1999). But when I use “correlation” metric in clustering, the above standardization is not

necessary here. Actually, since I have already used the covariance structure of the data in

clustering instead of the raw data, the standardization should be performed for the covariance

structure of the data now (Baudelet and Gallez, 2003).

3.4.3 Conclusions

In the analysis of brain imaging data, using the autocorrelation function offers an important

advantage over existing cross-correlation approaches. Unlike conventional cross-correlation

methods, the proposed method doesn’t require prior knowledge about the reference function,

and does characterize the important features of voxel changes in time. The analysis also

provides evidence that masking the brain may affect the clustering results. Although many

researchers often choose masking the brain as the first step to reduce dimension, I show that

this is not necessarily effective and sometimes results in less convincing results, especially

when the data have “head motion” evident around the edges of the brain.



Chapter 4

Geostatistical analysis and sparse principal component analysis in

clustering fMRI time series

In the previous chapter, I used a data-driven function based on geostatistical ideas in clus-

tering and got good results. But this method still needs a contrast between experimental

conditions to do the dimension reduction before clustering. Here I use a technique called

LASSO for the dimension reduction step. The proposed methods in this chapter will change

the whole clustering process to be a data-driven approach.

4.1 Introduction

As discussed earlier, the model-free approach has advantages over the model-based approach,

because it is a data-driven analysis by a model-free method, where the effects or components

of interest are found from the intrinsic structure of the data directly (Jezzard et al., 2001;

Huettel et al., 2004).

Principal component analysis (PCA) is a typical model-free approach. In PCA, the data

are partitioned into uncorrelated components whose patterns vary over time along mutually

orthogonal principal component axes ; each component can be considered as a cluster. But

this method does not always work well, because PCA can not separate the data unambigu-

ously into activation and noise, and components indicating activation may be contaminated

with instrumental or physiological noise (Sommer and Wichert, 2002). The reason is because

the amplitude of the signal change inside the brain is small and different clusters may be

overlapped (Backfriender et al., 1996). To overcome these disadvantages, some researchers

(e.g., Backfriender et al., 1996) consider performing factor analysis for a selected region of

65
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interest (ROI) again in several additional steps, but their method depends heavily on the

selection of the specific ROI and prior knowledge of the noise and artifacts.

Clustering based on autocorrelation structure offers an important advantage over the

raw time series and cross-correlation approaches. This model-free approach captures the

important characteristics of the voxels over time and can separate the activation and noise

very well, as shown in the previous chapter. But it still has a weakness. Namely the lack

of dimension reduction. Because clustering method usually does not work well for the ill-

balanced data (Goutte et al., 1999; Fadili et al., 2000; Wang et al., 2007), where the population

of “activated” (e.g., stimulus-related) voxels is much less than the total population of the

voxels. Hence the above method needs a contrast between experimental conditions to remove

a large portion of voxels that are almost impossible to be considered as “activated” before

clustering, e.g., 2-sample t-test. But in some cases, such as in resting data or event-related

data, there is no clear contrast for this dimension reduction step. Also, the delay of the

responses is difficult to control, so the 2-sample t-test may not be accurate for dimension

reduction.

Sparse principal component analysis (SPCA) (Zou et al., 2006) is a new technique which

combines dimension reduction and feature extraction together in clustering, and thus can

overcome the disadvantages of the 2-sample t-test. In SPCA, the focus is on the correlations

among the time courses, which is very similar to the clustering method. The sparse compo-

nents from SPCA can be regarded as different clusters. After the dimension reduction step

in SPCA, I will show that SPCA and the geostatistical method give consistent results. But

SPCA also has disadvantages as discussed below, and it is therefore necessary to do further

clustering by the geostatistical method after SPCA.

Firstly, the SPCA outcomes need to be interpreted, which is similar to the Independent

Component Analysis (ICA) method (Thirion, 2003). Since the informative content of the

time courses is not considered in SPCA, only the different statistical structures, we still need

to look at the autocovariance structure of the time course to determine which components
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are of interest. Furthermore, we may have several components which show similar time

patterns in SPCA; additional clustering may combine these components together and make

different clusters more clear. Secondly, sometimes a few voxels in the SPCA outcomes need

to be reassigned. In clustering analysis, any two clusters are mutually exclusive. But when

the components from SPCA are not sparse enough, there are overlapped voxels across the

different components (one voxel can belong to more than one component). Further clustering

can reassign these voxels to the most probable clusters. In my analysis, I will show that using

SPCA and geostatistical methods together greatly improves the efficiency of the clustering

results. The result is a purely data-driven clustering procedure.

4.2 Methods

4.2.1 Sparse principal component analysis (SPCA)

Principal component analysis (PCA), also known as empirical orthogonal functions, is a

classic tool for analyzing large scale multivariate data (Jolliffe, 1986). In PCA, the goal is

to find a few components that explain a large proportion of the total sample variance of the

original variables. The principal components can be regarded as the extracted features that

maximally separate the individual observation vectors. However, one of the shortcomings of

PCA is that each principal component is still a linear combination of all the original variables

(Zou et al., 2006; Luss and d’Aspremont, 2006). Sparse principal component analysis (SPCA)

(Zou et al., 2006) aims at producing easily interpreted components with only a few nonzero

coefficients in the principal components, i.e., each new variable is a linear combination of

a small subset of the original variables. Hence, SPCA has been a powerful tool in gene

expression arrays selection (Zou et al., 2006) and medical shape modeling (Sjostrand et al.,

2006).
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Definitions in SPCA

Regularized ordinary least squares in regression For a linear regression model, given p

predictors X = (x1, ...,xp), the response y is predicted by

ŷ = â1x1 + ... + âpxp = Xâ,

where x1 is defined as 1 when â1 is considered as the intercept (Hastie et al., 2001). Ordinary

least squares is by far the most popular method in fitting the above regression model, i.e.,

âols = argmina||y −Xa||2,

where || · || represents the L2 norm. This is the best linear unbiased estimator. However, if

small bias is allowed, we can get better estimators by adding the L2 constraint such that

âridge = argmina||y −Xa||2 + λ||a||2,

where λ ≥ 0 is a parameter that gives the best compromise between goodness-of-fit and

smoothness. This is called ridge regression. As a continuous shrinkage method, ridge regres-

sion achieves its better prediction performance through a bias-variance trade-off. Replacing

the L2 norm in the constraint with the L1 norm gives

âLASSO = argmina||y −Xa||2 + λ||a||1,

where ||a||1 =
∑p

i=1 |ai|. This method is called the least absolute shrinkage and selection

operator (LASSO) by Tibshirani (1996); it not only shrinks the coefficients, but also enforces

some of them to be exactly zero. This carries out a form of variable selection. LASSO has

proven to be a very powerful regression and variable selection technique, but it still has a

few limitations in some situations. If the number of variables p is greater than the number

of observations n, LASSO chooses at most n variables in the analysis. If there is a group of

strongly correlated predictors, LASSO tends to choose a single predictor and does not care

which one is selected (Zou and Hastie, 2005; Tibshirani, 1996; Sjostrand et al., 2006). A new
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method called elastic net (EN) regression is developed to overcome these limitations (Zou

and Hastie, 2005), where

âEN = argmina||y −Xa||2 + λ1||a||1 + λ2||a||2.

EN uses a combination of the L1 norm and L2 norm to do automatic variable selection and

continuous shrinkage simultaneously, and it can select groups of correlated variables.

Regular principal component analysis The regular principal component analysis (PCA)

takes an (n × p) matrix X, where we assume we have measurements of some variable at

locations s1, s2, ..., sp taken at time points t1, t2, ..., tn. So n is the number of observations

(time points) and p is the number of variables (locations). We form the covariance matrix

of X by calculating XTX and solve the eigenvalue problem XTX = BDBT subject to

BTB = Ik, where di, i = 1, ..., k are the k positive eigenvalues and the columns of B are the

eigenvectors (loading vectors). Let Z = XB, Z will be much smaller than X if k << p and

the dimension of the problem thereby is reduced. This makes Z(n × k) and B(p × k). The

columns of Z are the principal components (expansion coefficients), linear combinations of

the variables in X. The matrix Z is called the score matrix and the elements of Z are called

scores, measuring the position of the observations on the derived axes in B (Sjostrand et al.,

2006).

Regularized principal component regression Sparse principal component analysis focuses

on a method for computing eigenvectors by a variable selection method in a “self-contained”

principal component regression (Zou et al., 2006), in which the data set is regressed on

the principal components of itself. If X = (x1, ...,xn)T , the ordinary least squares principal

component regression,

B̂ = argminB

∑n
i=1 ||xT

i −BBTxT
i ||2,
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subject to BTB = Ik, where k is the number of components. Since Z = XB, the above

formula can also be expressed as

b̂j = argminb||zj −Xbj||2,

where j = 1, ..., k, zj is the jth regular principal component and bj is the jth sparse eigen-

vector. By using ridge regression to introduce some bias in the eigenvectors, large variances

due to multi-collinearity of the eigenvectors are reduced. To obtain sparse eigenvectors, the

least absolute shrinkage and selection operator (LASSO) method is used together (Tibshi-

rani, 1996). Hence, the regularized principal component regression, called SPCA by Zou et

al. (2006), becomes

b̂j = argminb||zj −Xbj||2 + λ||bj||2 + λ1||bj||1,

The weakness of this approach is that the results are heavily guided by regular PCA (Sjos-

trand et al., 2006), thus Zou et al. (2006) proposed an alternative SPCA criterion:

(Â, B̂) = argminAB

∑n
i=1 ||xT

i −ABTxT
i ||2 + λ

∑k
j=1 ||bj||2 + λ1

∑k
j=1 ||bj||1,

subject to ATA = Ik. This new criterion effectively transforms the PCA problem to a

regression-type problem (Zou et al., 2006). According to Sjostrand et al. (2006), this expres-

sion can be clarified as follows: firstly, BTxT
i projects the variables of observation i onto the

loading vectors of B; secondly, ABTxT
i transforms the scores of BTxT

i back to the original

space by the orthogonal constraint ATA = Ik. For proof of the SPCA criterion see Zou et

al. (2006).

4.2.2 Cross-validation

Cross-validation, also known as holdout, is probably the simplest and most widely used

technique to compare estimated and true values using only the already known data set (Hastie

et al., 2001; Isaaks and Srivastava, 1989). A cross-validation study can help to choose the

tuning parameters in SPCA. K-fold cross-validation is commonly used. It has the advantage
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that all observations in the data set are eventually used for both training and testing. The

data with sample size n are split into K roughly equal sized parts (folds), each containing

roughly n/K observations. For the kth part, the model is fitted to the other K − 1 parts

of the data, called the training data, and the prediction accuracy is measured on the kth

part, called the testing data. We do this for k = 1, 2, ..., K and combine the K estimates of

prediction error. When K = n, the procedure is known as leave-one-out cross-validation.

The choice of K depends on the objective and the data set. Typical choices of K are 5 and

10 (Hastie et al., 2001). When K = n, cross-validation is approximately unbiased but has

high variance, in addition to being computationally intensive. By Hastie et al. (2001), when

the number of time points n is greater than 125, 5-fold cross-validation has lower variance

and does not suffer from much bias. Since n = 156 for the saccade data and n = 1498 for the

resting data, I only consider K = 5 in my analysis. In our setting, for saccade data, the 5

folds are Z(t1), ..., Z(t31); Z(t32), ..., Z(t62); ...; Z(t125), ..., Z(t156); for resting data, the 5 folds

are Z(t1), ..., Z(t300); Z(t301), ..., Z(t600); ...; Z(t1201, ..., Z(t1498). In cross-validation, the data

in each fold are removed in turn and new values are predicted at those time points by the

other observations in other folds using SPCA method. Let Ẑ(t1), ..., Ẑ(tn) be the estimates,

the Mean Squared Error (MSE)

1
n

∑n
i=1[Z(ti)− Ẑ(ti)]

2

is minimized in the cross-validation.

4.2.3 Steps in SPCA

Step one: Data preprocessing

The necessary preprocessing step in SPCA is to normalize or standardize the raw data in

time, because in the absence of normalization, SPCA extracts variables with large vari-

ances rather than variables with similar patterns (Rencher, 2002; Baudelet and Gallez, 2003;

Goutte et al., 2001; Zou et al., 2006). Given an (n × p) matrix X, where n is the number
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of observations (time points) and p is the number of variables (locations), define µ̂j and

σ̂2
j as the mean and variance of the jth vector xj = (x1j, ...xnj)

T , where j = 1, ..., p; and

define a new vector x̃j = (x̃1j, ..., x̃nj)
T , where x̃ij = (xij − µ̂j)/(

√
nσ̂j), i = 1, ..., n. Then

x̃j is normalized since x̃T
j x̃j =

∑n
i=1 x̃2

ij = 1. Zou et al. (2006) prove that normalization can

ensure the reconstruction of principal components in principal component regression. If nor-

malized fitted coefficients are used, the scaling factor does not affect the eigenvectors. This is

also explained by Rencher (1998, 2002), because the principal components from the covari-

ance structure are not scale invariant, but the principal components from the correlation

structure are scale invariant. Normalization is quite useful for cluster analysis. By Rencher

(1998, 2002), we need to be concerned with the units in which variables are measured. If the

variances differ widely or if the measurement units are not commensurate, the components

just from centered data will be dominated by the variables with large variance. The other

variables will contribute very little. However we want to extract variables with similar pat-

terns rather than variables with large variances. In this case, the principal components from

normalized data will be more interpretable in the sense that all the variables can contribute

evenly (Rencher, 1998 and 2002; Baudelet and Gallez, 2003; Goutte et al., 2001).

Step two: Choose the number of components

In principal component analysis, the number of principal components is often determined by

the scree graph (Cattell, 1966). To apply the scree method, plot the value of each successive

eigenvalue against the rank order and look for a natural break between the “large” eigenvalues

and the “small” eigenvalues. The recommendation is to retain those eigenvalues in the steep

curve before the first one on the straight line (Rencher, 2002). The plot from this point on is

mere “scree”, which means “rubbish at the foot of a steep seashore” (Tatsuoka and Lohnes,

1988). The smaller eigenvalues tend to lie along a straight line and just represent random

variation.
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Step three: Determine the constrained parameter in L1 norm term

For SPCA calculation, I use the Matlab toolbox of Sjostrand (2005), which is equivalent

to Zou et al.’s (2006) R source code. In this toolbox, the L1 norm term is formulated in

equivalent forms where the penalty function enters the equation as a separate constraint:

(Â, B̂) = argminAB

∑n
i=1 ||xT

i −ABT
i xT

i ||2 + λ
∑k

j=1 ||bj||2

subject to ATA = Ik and
∑k

j=1 ||bj||1 ≤ t for some t. Zou et al. (2006) recommend to use

cross-validation to find the best constrained value t. But the case is different here. Because

fMRI data is ill-balanced, i.e., the activated region only represents a very small proportion

of the brain and a large amount of voxels are non “activated” (stimulus-related) (Fadili et

al., 2000). Here I want the components from SPCA to be sparse enough to get the most

significant patterns in the brain, i.e., dimension reduction. Hence, for my case, I have to

use prior knowledge to determine the desired number of nonzero variables (voxels). In my

opinion, the choice of constrained parameter is not very strictly, since the goal of the screening

is to reduce the large amount of non-stimulus-related voxels that could seriously affect the

robustness and sensitivity of the clustering results (Fadili et al., 2000). Actually, we will see

below that the explained variances in the components are very small when the number of

voxels is greatly reduced. Hence this step is almost equivalent to the dimension reduction

step in regular clustering.

Step four: Choose the tuning parameter λ in L2 norm term

The effect of the parameter λ in the L2 norm term is generally small (Zou et al., 2006;

Sjostrand et al., 2006). But the case is different for us now. Since we have reduced the

variables (voxels) to a small number which only explains very little of the total variance, a

minor change in λ will greatly affect the results of SPCA. Hence I use 5-fold cross-validation

to find the best value for λ.
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4.2.4 Steps in further clustering after SPCA

As mentioned in the introduction, since nothing tells us which components are of interest in

SPCA, further clustering will typically be needed to discover important clusters. The aim

of any clustering method in fMRI is to create a partition of the entire data set into distinct

regions (Stanberry et al., 2003), where each region is represented by voxels exhibiting similar

temporal behavior, but regions are dissimilar to each other. Hence, in the further clustering

after SPCA, I use the autocovariance of time as the main feature.

Step one: Define the new data

For the normalized (n× p) data matrix X, I formalize the new data after SPCA:

Y = Xb1b
T
1 + Xb2b

T
2 + ... + Xbkb

T
k .

Although the new data Y is still a (n× p) matrix, most of the p variables have been forced

to be zeros. Hence the dimension of the data is in fact greatly reduced.

Step two: Calculate the autocovariance

For the new (n × p) data matrix Y, I calculate the empirical autocovariances of the non-

zero variables in p at the n time points. For reducing estimation error, I choose effective

lag distance of n− 30 and discard the number of pairs less than 30 (Journel and Huibregts,

1978). Matlab code from Marcotte (1996) is used for these calculations.

Steps three, four and five

Steps three, four and five are: define the classification metric, use k-means algorithm in the

clustering, and determine the final results by silhouette values. I have introduced these steps

in Chapter 3.
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(1) Scree graph for unmasked data
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(2) Scree graph for masked data

Figure 4.1: Scree graphs for unmasked and masked saccade data. The turning points between
the steep curve and the straight line are 5 in both graphs. Hence 5 components are chosen.

4.3 Data analysis

4.3.1 Sparse principal component analysis for saccade data

As in the previous chapter, and for purposes of comparison, I consider here as well the 4th

sice of the saccade data.

Unmasked data

For the unmasked saccade data, all 4096 voxels are used in SPCA. The scree graph for the

PCA is shown in Figure 4.1, graph (1), Because the turning point between the steep curve
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Figure 4.2: Plots of MSE from different constraint parameters t and tuning parameters λ for
unmasked saccade data. Minimum MSEs are all at λ = 0.2. These plots also indicate that
the MSE monotonically decreases as the constraint parameter t increases. I consider t = 18
and λ = 0.2 as an example.
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and the straight line is 5, 5 components are chosen. Figure 4.2 shows the MSE of SPCA

for constrained parameter t = 17, 18, 19 with different choices of the tuning parameter λ.

These plots at different ts are not crossed, indicating that the choice of t is just used for

dimension reduction. As mentioned before, because the goal of the screening is to reduce the

large amount of non-stimulus-related voxels that could seriously affect the robustness and

sensitivity of the clustering results (Fadili et al., 2000). The choice of t is not very strictly and

depends on prior knowledge of the data or the needs of the researcher. In order to compare

with results from the previous chapter, I consider t = 18 as an example here, which reduced

the total number of voxels to fewer than 400. The tuning parameter in L2 norm term is

chosen as 0.2 by 5-fold cross-validation where it has the minimum MSE (Figure 4.2).

Figure 4.3 shows the clustering results from the SPCA method. The number of the first 5

non zero loadings are 102, 86, 48, 59, 46 voxels respectively, and the 4th and 5th loadings have

one overlapped voxel. Hence there are 340 voxels in total (Figure 4.3). These 5 components

explain only 2.97% of the total variance, indicating the dimension of the data is greatly

reduced. The graphs (1) and (3) in Figure 4.3 show apparently “true” brain activation, “head

motion” patterns in the first two components, consistent with the results from the previous

chapter. I also do further clustering to double check the results. The graphs of silhouette

values are shown in Figure 4.4. All the silhouette values using the “correlation” metric are

greater than 0.80, which means strong structures have been found (Kaufman and Rousseeuw,

1990). Graph (5) (k = 6) in Figure 4.4 has the highest mean of silhouette values 1.0000,

where the numbers of voxels in the 6 clusters are 102, 86, 48, 58, 45, 1. Cluster 6 extracts

the overlapped voxel from components 4 and 5 in the SPCA analysis. Figure 4.4 (Graph (4))

also shows the second best structure is 5 clusters, where the numbers of voxels are 102, 86,

49, 58, 45 respectively. Now the overlapped voxel is reassigned to the most probable cluster.

Hence the best number of clusters could be 5 or 6. These results are consistent with those

from SPCA. For k=6, cluster 1 has 102 voxels, we can see very strong peaks and troughs in

the shape of waves, showing periods of time correlations corresponding to the experimental
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design (Figure 4.5, graph (2)), cluster 2 has 86 voxels, we also can see some peaks and

troughs in the shape of waves, showing weak periods of time correlations corresponding to

the experimental design (Figure 4.5, graph (3)). Clusters 3, 4 and 5 show some overlapping

cyclic patterns, which do not correspond to the experimental design (Figure 4.5, graphs (4),

(5), (6)). Cluster 6 shows no pattern. (Figure 4.5, graph (7)). Figure 4.6 shows the means

of the original time courses of the six clusters. Note that the time patterns in the original

courses are not as clear as in the autocovariances. Hence the use of the autocovariances of

the time courses helps in the interpretation of the SPCA outcomes.

Based on the time patterns of the clusters, k=3 would also be a reasonable choice (Figure

4.4, graph (3)) since it has the third largest mean silhouette value. The clusters of “true” brain

activation and “head motion” would be the same as before, and the other four “noise” clusters

would be combined to form one. Hence, doing the clustering again provides a chance to double

check the results from SPCA and enhance interpretation with a scientific basis. Figure 4.7

shows the final results of the unmasked method with three clusters. After clustering, I mask

the average brain images over time and discard all the voxels outside the brain, leaving 236

voxels inside the brain of the 340 retained voxels; 83 for “activation”, 45 for “head motion”,

and 108 for unknown “noise”.

MSE λ = 10−6 λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20 λ = 0.25 λ = 0.30
t = 11 0.00205 0.00179 0.00176 0.00170** 0.00173 0.00177 0.00193
t = 12 0.00178 0.00127** 0.00133 0.00143 0.00147 0.00147 0.00153

Table 4.1: MSE from different constraint parameter t and tuning parameter λ for masked
saccade data,“**” indicates the minimum MSE.
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Masked data For the masked saccade data, only 630 retained voxels inside the brain are

used in SPCA. The scree graph is shown in Figure 4.1, graph (2). Because the turning point

between the steep curve and the straight line is five, five components are again chosen.

For comparing to previous results, I consider two choices in the dimension reduction step,

i.e., t = 11 and t = 12. When t = 11, the number of voxels is reduced to around 250, which

is used to compare with the masked data in the previous chapter; when t = 12, the number

of voxels is reduced to around 400, which is used to compare with the unmasked data. In

method one, I control the constrained parameter t in the L1 norm term as 11, where the best

choice for the tuning parameter λ in the L2 norm term is 0.15 (Table 4.1). In SPCA, the

numbers of the 5 non zero loadings are 59, 49, 47, 56 and 46 voxels (Figure 4.8). There are no

overlapped voxels, and the 257 retained voxels explain 14.6% of the total variance. Further

clustering shows the mean silhouette value equals to 1 when k = 5, where the results are

exactly the same as those in SPCA. Similarly, the brain activation cluster has 46 voxels; the

“head motion” cluster has 59 voxels, and the three noise clusters have 152 voxels in total.

In method two, I control the constrained parameter t in the L1 norm term as 12, where

the best choice for the tuning parameter λ in the L2 norm term is 0.05 (Table 4.1). It is

seen that the maps of the 5 components are very similar to those with t = 11 (Figure 4.8),

except the numbers of the 5 non zero loadings increase to 90, 84, 70, 82 and 95 voxels

respectively (Figure 4.9). The total number of voxels is 406 and they explain 20.29% of the

variance; notice that the percentage of explained variance increases as the number of voxels

increases. There are 15 overlapped voxels among the 5 components and 40% of them are

overlapped between the 1st component and the 5th component. The 1st component indicates

“head motion” and the 5th component indicates brain activation, hence the overlap reveals

a confusion between “head motion”and brain activation. Further clustering reassigns the

overlapped voxels to the most probable clusters. After reassigning, the number of voxels

corresponding to the previous 5 components became 87, 83, 69, 79, 88 without overlapping.
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Figure 4.3: Maps of five SPCA components for unmasked saccade data, with constrained
parameter t=18 and tuning parameter λ = 0.2. The first 5 components only retain 340
voxels. The numbers of the 5 non zero loadings are 102, 86, 48, 59, 46 voxels respectively,
and the 4th and 5th loadings have one overlapped voxel.
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Figure 4.4: Silhouette values for unmasked saccade data with different numbers of clusters
using “correlation” metric. (1), (2), (3), (4), (5) are the silhouette values in “correlation”
metric with k = 2, 3, 4, 5, 6. The mean silhouette values are 0.8707, 0.9830, 0.9604 0.9952,
1.0000 respectively. The selected number of clusters k could be 3, 5 or 6. See text for expla-
nation. Results are consistent with those from SPCA.
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Figure 4.5: Time patterns for unmasked saccade data. (1) is the mean covariance of the 340
retained voxels. (2), (3), (4), (5), (6), (7) are the mean covariances of the six clusters. Cluster
1 shows strong peaks and troughs in the shape of waves corresponding to the experimental
design. Cluster 2 shows weak peaks and troughs in the shape of waves corresponding to
the experimental design. Clusters 3, 4 and 5 show overlapping cyclic patterns which do not
correspond to the experimental design. Cluster 6 shows no pattern.
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Figure 4.6: Time patterns for unmasked saccade data. (1) is the mean of the 340 retained
voxels. (2), (3), (4), (5), (6), (7) are the means of the six clusters. The time patterns by their
original time courses are not as clear as those by their autocovariances in Figure 4.5.
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Figure 4.7: Maps of the brain for saccade data, unmasked method. (5) and (1) are maps of
340 voxels and overlaid on the original brain. (6) and (2) are maps of cluster 1 and overlaid
on the brain. (7) and (3) are maps of cluster 2 and overlaid on the brain. (8) and (4) are
maps of cluster 3 and overlaid on the brain. (9) is the map of 236 voxels after masking. (10),
(11), (12) are the maps of the clusters after masking. There are 102, 86, 152 voxels in the
three clusters before masking and 83, 45, 108 voxels left after masking.
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Figure 4.8: Maps of the five SPCA components for masked saccade data in method one,
where constrained parameter t=11 and tuning parameter λ = 0.15. The first 5 components
retain 257 voxels of the original 630. The number of the 5 non zero loadings are 59, 49, 47,
56, 46 voxels respectively, and there are no overlapped voxels among the components.
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Figure 4.9: Maps of the five SPCA components for masked saccade data in method two,
where constrained parameter t=12 and tuning parameter λ = 0.05. The first 5 components
retain 406 voxels of the original 630. The number of the 5 non zero loadings are 90, 84, 70,
82, 95 voxels respectively. There are 15 overlapped voxels among the 5 components and 40%
of them are overlapped between the 1st component and the 5th component.
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4.3.2 Sparse principal component analysis for masked long range resting

data

For comparison with previous results, I again consider the first slice of the resting data.

Similarly, the scree graph for the PCA is executed at first. By looking at the scree graph,

I find the turning point between the steep curve and the straight line is not as clear as before,

with 2 and 6 both being plausible values (Figure 4.10). Hence, I consider 6 components in

method one, and choose 3 components in method two for comparison.

The reason to choose 3 components instead of 2 components in method two is: if the most

probable answer for the number of cluster is 2, the further clustering in method one will

reassign 6 components to 3 clusters, 2 of them are almost the same as the first 2 components

in method two, and the other 4 of them are combined into the 3rd component. Hence the

two methods will get consistent results.

Method one In method one, the constrained parameter in the L1 norm term determines

the effective voxels in the brain; I choose t = 16 as an example. The tuning parameter λ in

the L2 norm term is determined by 5-fold cross-validation. By Table 4.2, for t = 16, k = 6,

MSE is minimized when λ = 0.05.

The first 6 components have 718 voxels and explain 13.79% of the total variance. The

number of the 6 non zero loadings are 138, 77, 152, 263, 130 and 102 voxels, and there are

144 loadings overlapped among the 6 components. The graphs of SPCA do not show any

clear patterns, perhaps due to the overlapped voxels. It is necessary to do further clustering,

and the means of silhouette values in the “correlation” metric for k=2, 3, 4, 5, 6, 7 are

shown in Figure 4.12. The best choice is k = 3 since it has the largest mean of silhouette

values (Figure 4.12, graph (2)). Maps of the resulting three clusters are shown in Figure 4.11

(Graphs (7), (8), (9)). Cluster 1 has 126 voxels, and is very similar to component 3; cluster

2 has 514 voxels, and is very similar to the combination of components 1, 4, 5, 6; cluster 3

has 78 voxels, and is very similar to component 2.
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Figure 4.10: Scree graph for the resting data, the turning point between the steep curve
and the straight line could be 2 or 6. I consider 6 components in method one; and choose 3
components in method two for comparison.
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Figure 4.11: Maps of the brain in method one for the resting data. (1)-(6) are the results
of SPCA, where the number of components k=6, constrained parameter t=16 and tuning
parameter λ = 0.05. The first 6 components have 718 voxels in total. The number of the
6 non zero loadings are 138, 77, 152, 263, 130 and 102 voxels respectively, and there are
144 loadings overlapped among the 6 components. (7), (8), (9) are the results after further
clustering. There are no overlapped voxels among the three clusters. (7) is cluster 1 with 126
voxels, which is very similar to component 3; (8) is cluster 2 with 514 voxels, which is very
similar to the combination of components 1, 4, 5, 6; (9) is cluster 3 with 78 voxels, which is
very similar to component 2.
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Figure 4.12: Silhouette values for the resting data. For k = 2, 3, 4, 5, 6, 7, the means of
the silhouette values in the “correlation” metric are 0.9076, 0.9165, 0.8402, 0.8641, 0.8766,
0.8467 respectively. The best choice is k = 3.
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Method two Since we only see some weak time patterns in cluster 1 in the method one

(Fig 4.13), I think the best choice for the number of components might be 2. In method

two, I choose the number of components to be k = 3 and do the same analysis as before

for comparison. The parameters are chosen as k = 3, t = 16 and λ = 0.05 (Table 4.2).

The results are shown in Figure 4.14. The first 3 components have 149 voxels and explain

5.66% of the total variance. The number of the 3 non zero loadings are 62, 45, 42, voxels,

respectively and there are no loadings overlapped. I also combine the 3 components and again

do further clustering. Results are exactly the same as in SPCA with mean of silhouette values

equal to 1. The different temporal patterns of the three clusters are shown in Figure 4.15.

Compared to the results in method one (Figure 4.13), we can see the time patterns of the

three clusters are very similar. Although what gets called “cluster 1”, “cluster 2”, “cluster 3”

differs from method to method. Hence, after further clustering, I conclude that the number

of components for the resting data might be 2.

MSE λ = 10−6 λ = 0.05 λ = 0.10 λ = 0.15 λ = 0.20 λ = 0.25 λ = 0.30
k = 6 0.6907 0.6606** 0.6702 0.7001 0.7280 0.7488 0.7648
k = 3 0.9206 0.9163** 0.9211 0.9236 0.9275 0.9306 0.9330

Table 4.2: MSE from different number of components k and tuning parameter λ with con-
straint parameter t=16 for resting data,“**” indicates the minimum MSE.
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Figure 4.13: (1) is the mean covariance of the 718 voxels in method one for resting data. (2),
(3), (4) are the mean covariances of the three clusters.



93

(1) PC1, 62 voxels

20 40 60

10

20

30

40

50

60

(2) PC2, 45 voxels

20 40 60

10

20

30

40

50

60

(3) PC3, 42 voxels

20 40 60

10

20

30

40

50

60

(3) Total, 149 voxels

20 40 60

10

20

30

40

50

60

Figure 4.14: Maps of the brain in method two for resting data, where the number of com-
ponents k=3, constrained parameter t=16 and tuning parameter λ = 0.05. The first 3
components have 149 voxels and explain 5.66% of the variance. The numbers of the 3 non
zero loadings are 62, 45, 42 voxels, and there is no overlap.
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Figure 4.15: (1) is the mean covariance of the 149 voxels in method two for resting data. (2),
(3), (4) are the mean covariances of the three clusters. Compared to the results in method one
(Figure 4.13), we can see the time patterns of the three clusters are very similar. Although
what gets called “cluster 1”, “cluster 2”, “cluster 3” differs from method to method.
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Clusters “Activation” “Head motion” “Noise” Total
Method A 83 voxels 45 voxels 108 voxels 236 voxels
Method B 46 voxels 59 voxels 152 voxels 257 voxels
Method C 86 voxels 87 voxels 231 voxels 406 voxels

Overlaps in A and B 42 voxels 36 voxels 63 voxels 144 voxels
Overlaps in A and C 62 voxels 42 voxels 98 voxels 208 voxels
Overlaps in B and C 45 voxels 58 voxels 134 voxels 241 voxels

Table 4.3: Classified voxels inside the brain in different methods for saccade data. Method
A indicates the unmasked method which uses the original data to do the analysis directly.
Method B indicates the masked method one which uses the masked data with constrained
parameter t = 11. Method C indicates the masked method two which uses the masked data
with constrained parameter t = 12.

4.4 Discussion and conclusion

4.4.1 Discussion

Comparisons of different methods

By the results from the saccade data and the resting data, we can see that when components

of SPCA are sparse enough, the results in further clustering are exactly the same as those in

SPCA, showing the consistency of SPCA and geostatistical analysis. The reason lies in that

both methods consider the correlations among the time courses. When SPCA components are

not sparse, further clustering by geostatistical analysis can reassign the overlapped voxels to

the most probable clusters. The analysis in the resting data also shows that when the number

of components is mis-determined in SPCA, further clustering by geostatistical analysis can

well interpret the results from SPCA and find the most probable cluster allocation.
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Masking the brain

Table 4.3 and Figure 4.16 show the results of the three different approaches for the saccade

data. The unmasked method uses the original data for the analysis and masks the clusters at

the end. Masked methods one and two use the same masked data to do the analysis directly,

but with different constrained parameters t chosen for dimension reduction. By comparing

the “activation” graphic results with the maps from the previous chapter, it seems that

results from the unmasked method are closer to what has been found by other researchers.

Unmasked method and masked method one have a similar number of voxels inside the

brain, but the numbers of voxels in the clusters are different (Table 4.3). In masked method

one, we can see the number of voxels in “activation” cluster decreases, and the numbers of

voxels in “head motion” and “noise” increase compared to the unmasked method. Masking

the data at first does not improve the results of clustering. To double check this conclusion, I

also use masked method two with dimension reduction which increases the number of voxels

in “activation” and “head motion”. Although masked method two has a similar number of

voxels in “activation” as that in unmasked method, there are 62 overlapped voxels only and

more noise is included (Figure 4.16, graph (3)). This phenomenon has been explained by the

“marginal effect” in the previous chapter.
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Figure 4.16: Classified voxels inside the brain in different methods for saccade data. (1),
(4), (7) are “activation”, “head motion”, “noise” in unmasked method. (2), (5), (8) are
“activation”, “head motion”, “noise” in masked method one. (3), (6), (9) are “activation”,
“head motion”, “noise” in masked method two. There are 42 overlapped voxels between (1)
and (2); 62 overlapped voxels between (1) and (3); 45 overlapped voxels between (2) and (3).
There are 36 overlapped voxels between (4) and (5); 42 overlapped voxels between (4) and
(6); 58 overlapped voxels between (5) and (6). There are 63 overlapped voxels between (7)
and (8); 98 overlapped voxels between (7) and (9); 134 overlapped voxels between (8) and
(9).
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4.4.2 Conclusion

We present and analyze two clustering methods and demonstrate their uses in fMRI data

analysis. The results of SPCA, which combines dimension reduction, feature extraction, clus-

tering together are encouraging. It can be used in resting data for dimension reduction and

overcome the limitation of the traditional 2-sample t-test. But SPCA still has a few small

disadvantages: First, the explained variance in each component is so small that we can not

determine the importance of the components by explained variance alone. Hence the com-

ponent needs to be interpreted by its autocovariance structure over time. Second, although

the different components from SPCA are sparse enough, sometimes they are not mutually

exclusive. The overlapped voxels across the different components need to be reassigned by

further clustering. Third, we have to decide the number of components, constrained param-

eter and tuning parameter in advance. Sometimes it is hard to make the decision and the first

decision might not be the best choice. Hence, it is necessary to consider further clustering

after SPCA. The use of autocovariance in the further clustering is also attractive since it

captures important characteristics of the voxels over time. Unlike conventional “correlation”

methods, the proposed two data-driven methods don’t require prior knowledge about any

reference functions, can effectively identify regions of similar activations and provide con-

sistent results. The analysis also provides evidence that masking the brain may affect the

clustering results. Although many researcher often choose masking the brain as the first step

to reduce the dimension, I have shown that this is not necessarily effective and sometimes

results in less convincing inference, especially when the data have “head motion” evident

around the edges of brain. This conclusion is consistent with that in the previous chapter.



Chapter 5

Structural analysis in fMRI data

Having focused until now on the temporal properties of fMRI, I change my view in this

chapter to spatial analysis of the fMRI data. I examine the specific characteristics of fMRI

data and try to find a suitable variogram model to describe the true spatial structure of the

data.

5.1 Introduction

In detecting activation inside the brain, understanding the structure of the data is a necessary

first step. It is particularly important to consider the spatial structure of the data in an

analysis of spatially varying regions inside the brain. Recently, some researchers have begun

to apply geostatistical ideas in analyzing the spatial structure of the brain. Spence et al.

(2007) use a Gaussian variogram model to find neighbors of voxels of interest, and show

such spatial analyses can identify regions of the brain that exhibit statistically significant

group differences. But their choice of variogram model is quite arbitrary. They select the

Gaussian model from a limited set of monotonic increasing variogram models because it has

a positive nugget effect. Also, the selection only considers the physical neighbors in the voxels

of interest but different regions in the brain may be functionally related, which means the

spatial correlations between voxels do not necessarily decrease with their increasing physical

distance. Bowman (2007) notices these functional relations inside the brain. He considers

an alternative monotonically increasing variogram model, which changes the lag distance

between two voxels from the location distance to the voxel value distance (the difference in

the measured signal between two voxels). But his fitting still has some problems. The usual

99
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approach in spatial statistics is to ignore an error in location and to assume that error in

voxel value is additive or perhaps multiplicative (Stein, 1999). Voxel value distance is not

as precise as location distance since it contains measurement error. Hence Bowman uses

empirical values from unspecified auxiliary data. Geostatistics gives more choices in model

selection and model inference for fMRI. When a variogram shows a cyclical pattern with a

“down-hole”, its structure is called hole effect (Journel and Huijbregts, 1978). Here I will

instead use the structural classification idea in geostatistics to analyze the characteristics

of the brain by looking at empirical variograms of fMRI data, and use a variogram model

with hole effect structure to fit the spatial structure of the brain. This method will consider

both the physical and functional relations inside the brain and does not need any auxiliary

data. Hole effect structural analysis is a relatively unexplored area in geostatistics, because

in the mining industry, the fluctuations in the empirical variogram are usually considered

as more or less random noise (Webster and Oliver, 2001). But in fMRI data, since we know

that the fluctuations in the variogram may be due to correlations among different regions of

the brain, the hole effect structure should not be ignored.

5.2 Concepts and methods

5.2.1 Assumptions in analysis

Structural analysis, i.e., covariance and variogram analysis, is the first and indispensable step

in geostatistics, either for kriging or for classification. It is a procedure for characterizing the

structural information of the regionalized variables (Journel and Huijbregts, 1978).

For a specific slice of the fMRI image, the measured signals are obtained over a regular

grid of voxels, i.e. {z(si) : si ∈ D}, where z(si) is a particular voxel value at location si, D

is the set of the region of interest. Voxel values contribute the intensity of the fMRI image

(Wynn, 2000).

The direct study of {z(si) : si ∈ D} is a nonparametric approach, using a fixed determin-

istic function to fit the spatial surface as “closely” as possible, but it does not take account
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of the spatial relations between different z(si)s (Journel and Huijbregts, 1978) because the

structure of the fitting model is fixed.

In geostatistics, the set of z(si)s are defined as regionalized variables and {z(si) : si ∈ D}
is considered as a particular realization of a random process {Z(si) : si ∈ D} (Cressie, 1993;

Webster and Oliver, 2001); this is called the random function approach. In this approach,

two random variables Z(si) and Z(sj) tend to be correlated and their relation depends on

the nature of the variable considered and the vector distance between locations si and sj

(Journel and Huijbregts, 1978). Hence geostatistics theory considers that the variabilities

of all regionalized variables have a particular structure (Journel and Huijbregts, 1978). The

exact data values are only samples of a realization {z(si) : si ∈ D} from a random function

{Z(si) : si ∈ D}. The advantage of this approach is that we only need to characterize the

main features of the random function and not the particular realizations z(si) (Wackernagel,

2003). Under the second order stationarity assumption, we can use covariance or variogram

to describe quantitatively how the spatial variability of the regionalized voxel values can be

characterized in the brain.

5.2.2 Two types of distances

By the assumption of second order stationarity, the variogram defines the relationship

between the variability and the lag distance. Hence variance is a function of lag alone.

Understanding the characteristics of different variabilities in fMRI data is very important

for further analysis, e.g., kriging.

Nonlinear distance

In the mining and petroleum industries, as the magnitude of the lag separation vector

increases, the variogram increases too, showing some linear properties. This is reasonable

since regions close in space tend to have similar values. This is generally observed in nature
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and we call it the physical distance. In fMRI data analysis, a similar distance exists. The dif-

ference is that the spatial correlation between proximal voxels is stronger than that in many

other data types, therefore the variogram approaches the origin with a somewhat reversed

curvature, showing quadratic patterns. I call it the nonlinear distance. This property has

been indicated by Spence et al. (2007).

Functional distance

Sometimes, the variogram may seem to fluctuate more or less periodically, rather than

increasing monotonically (Webster and Oliver, 2001) and cyclicity is observed as a “down-

hole” variogram. This is called hole effect in geostatistics (Gringarten and Deutsch, 2001;

Journel and Huijbregts, 1978). Hole effect structure is usually considered to be artificial and

is ignored in most applications because near things tend to be more related than distant

things in nature (Bowman, 2007; Tobler, 1970). But in fMRI data analysis, different regions

of the brain may be functionally related even though they are not neighbors; we call this

phenomena the functional distance. Ignoring these non-monotonic structures may result in

unrealistic heterogeneity models that do not produce the observed patterns of variability

(Pyrcz and Deutsch, 2007). If the model has hole effect structure, then the sill represents

the global variance. When the variogram exceeds the sill, the correlation is negative between

locations separated by lag h (Pyrcz and Deutsch, 2007), i.e., γ(h) = C(0)[1 − ρ(h)] for

ρ(h) ∈ [−1, 1]. Hence, the hole effect model contains both positive and negative correlations.

5.2.3 Variogram models

After computing an empirical variogram, we need to fit a model to the variogram. There are

many variogram models for us to choose, such as Gaussian, spherical, and exponential (Web-

ster and Oliver 2001; Goovaerts, 1997). Current geostatistical practice in selecting a model is

often rather subjective, relying on empirical guidelines (Gorsich and Genton, 2000). By the

special properties of fMRI data, I will jointly consider the nonlinear distance and functional
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distance in variogram modeling. I also consider two approaches here, one parametric, the

other nonparametric.

Basic models

Three different covariance and variogram models are used.

Nugget effect model The nugget effect model can be thought of as white noise, which

is usually due to micro-scale variation or measurement error (Schabenberger and Gotway,

2005; Schabenberger and Pierce, 2002). All random variables Z(si), i = 1, ..., N have the same

mean and variance, and are without cross-correlations. The nugget effect can be considered

as a discontinuity of the covariance function at the origin. Since the sum of valid covariance

functions is itself a valid function, the nugget effect model is usually considered as a nested

structure in other models. The nugget effect model can be expressed in a covariance form or

a variogram form:

C(h) =





σ2
ε if h = 0,

0 if h > 0.

γ(h) =





0 if h = 0,

σ2
ε if h > 0.

Gaussian-type model Wackernagel (2003) defines the Gaussian-type model in a covari-

ance form or a variogram form:

C(h) = σ2exp(−hc

ac ),

γ(h) = σ2[1− exp(−hc

ac )],

where 1 ≤ c ≤ 2. This model reaches its maximum asymptotically. An effective range is

defined as c
√

3a, which is the distance at which γ(·) equals 95% of the sill.

As c → 1, the model is more a linear at small lags and the spatial correlation between

nearby points is weaker. As c → 2, the model approaches the origin with a more quadratic
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shape and appears more sigmoid, and the spatial correlation between nearby points is higher.

The two extreme cases are: when c = 1, it becomes a exponential model; when c = 2, it

becomes a Gaussian model.

The pure Gaussian model is unstable (Webster and Oliver, 2001), because the quadratic

behavior at the origin in the variogram will generate extreme values at the borders of the

estimated map in kriging (Wackernagel, 2003). This is unrealistic in practice (Webster and

Oliver, 2001). Hence, a nugget effect model is usually added as a nested structure in the

Gaussian model to present a discontinuity at the origin, which avoids the extreme extrap-

olation properties and makes the kriging results more stable (Webster and Oliver, 2001;

Wackernagel, 2003).

Bessel model A variogram may seem to fluctuate more or less periodically, rather than

increase monotonically. This type of covariance function is defined as (Schabenberger and

Gotaway, 2005)

C(h) = 2νΓ(d
2
)(bh)−νJν(bh),

where b is the number of sign changes, d is the dimension of the data and ν = d
2
− 1.

Jν(·) is the Bessel function of the first kind of order ν. Note C(h) = cos(bh) when d = 1;

C(h) = J0(bh) when d = 2; C(h) = ( 1
bh

)sin(bh) when d = 3; C(h) = exp[−(bh)2] when

d →∞. The periodic function has weaker hole effect structure as the dimension d increases,

and it becomes a Gaussian function when d →∞.

In my problem, I mainly look at the function in R2, C(h) = J0(bh), which can be

expressed as

J0(bh) =
∑∞

k=0
(−1)k

k!2
(bh)2k.

Figure 5.1 gives examples of Bessel function J0(bh) with h ∈ [0, 3.8] and b = 2, 3, 4, 5.

The Bessel function used in my analysis is

C(h) = σ2J0(bh),

γ(h) = σ2[1− J0(bh)],
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Figure 5.1: Examples of Bessel function J0(bh) with h ∈ [0, 3.8] and b = 2, 3, 4, 5.
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where σ2 is the sill. Note that the range is not defined in the hole effect structure model

(Ecker and Gelfand, 1997).

Parametric approach

Bessel Gaussian model Since the multiplication of two basic covariance models is still a

valid covariance model, here I construct a variogram model based on a combined Gaussian-

Bessel covariance model in R2:

C(h) = σ2exp(−hc

ac )J0(bh),

γ(h) = σ2[1− exp(−hc

ac )J0(bh)],

where 1 ≤ c ≤ 2. When b = 0, it is a Gaussian-type model, i.e.,γ(h) = σ2[1 − exp(−hc

ac )];

when a →∞, it is a hole effect model, i.e., γ(h) = σ2[1− J0(bh)].

A nested variogram structure When the nugget effect model is thought of as a nested

structure, the above constructed variogram model can be defined as

γ(h) = σ2
ε + (σ2 − σ2

ε )[1− exp(−hc

ac )J0(bh)].

This alternative hole effect model considers both functional distance and nonlinear distance

in the fMRI data, where σ2
ε is the nugget effect, σ2 is the sill, c

√
3a is the range, b is the

number of sign changes.

Nonparametric approach

To increase the flexibility in modeling the variogram without violating the condition of

positive definiteness of the covariance, we may choose a linear combination of valid covariance

functions (Schabenberger and Gotway, 2005). This method is one kind of non-parametric

approach (Ecker and Gelfand, 1997). The valid covariance functions are called basis functions

or step functions (Shapiro and Botha, 1991). Since our data are two dimensional, J0(·) can
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be considered as the basis function (Ecker and Gelfand, 1997; Shapiro and Botha, 1991).

The new variogram model is defined as

γ(h) = σ2
ε + (σ2 − σ2

ε )[1−
∑p

k=1 wkJ0(bkh)],

where σ2
ε is the nugget effect, σ2 is the sill, p is the number of basis functions, wk is the weight

assigned to the kth function, bk is the number of sign changes with geometric anisotropy

property at the kth function. To fit a variogram nonparametrically, the more basis functions

we use, the better fitting for the data structure. Some researchers consider using hundreds

of basis functions in the model fitting, e.g., Cherry et al. (1996) use 200 basis functions. But

this is too computationally intensive for large data sets. Ecker and Gelfand (1997) suggest

that at most five Bessel basis functions are enough based on their experience, because too

many basis functions will result in over-fitting, i.e., a large number of weights of the basis

functions will tend to be zero in the least squares method (Schabenberger and Pierce, 2002).

To simplify model fitting again, Ecker and Gelfand (1997) also recommend to choose equal

weights in the basis functions because the choice of the number of sign changes bk is more

sensitive to the choice of the weight wk. To determine the appropriate bk’s, it is recommended

to fit the empirical variogram with various numbers of sign changes and select the best one

by least squares (Schabenberger and Pierce, 2002).

5.2.4 Variogram model selection

To choose a best model, one way is to use different kinds of variogram models for kriging

and see how well they perform by some preset criteria (Webster and Oliver, 2001). Cross-

validation is probably the simplest and most widely used technique to compare estimated and

true values using only the already known data set (Hastie et al., 2001; Isaaks and Srivastava,

1989). A cross-validation study can help to choose between different variogram models by

the different kriging results. K-fold cross-validation is commonly used.



108

In our setting, for data Z(s1), ..., Z(sN), K−fold cross-validation splits the observations

into K folds, where the kth fold has data Z(sk
1), ..., Z(sk

N/K) for k = 1, ..., K. In cross-

validation, the data in each fold are removed in turn and new values are predicted at those

locations by the observations in other folds using kriging. Let Ẑ(sk
1), ..., Ẑ(sk

N/K) be the

kriging values predicted by the (functional and physical) neighbors when the true observa-

tions are removed at locations sk
1, ..., s

k
N/K , and σ̂2(sk

1), ..., σ̂
2(sk

N/K) be the kriging variance

predicted by the neighbors. There are two criteria commonly used in geostatistics (Webster

and Oliver, 2001): One is Mean Squared Error (MSE),

1
N

∑K
k=1

∑N/K
i=1 [Z(sk

i )− Ẑ(sk
i )]

2.

For a selected variogram, we want the estimated MSE to be as small as possible. The other

is Mean Squared Deviation Ratio (MSDR),

1
N

∑K
k=1

∑N/K
i=1 [Z(sk

i )− Ẑ(sk
i )]

2/σ̂2(sk
i ).

MSDR can be considered as a weighted MSE (Ripley, 1981). Dividing the error allows one

to compare the magnitudes of both the actual and the predicted error in the cross-validation

(Davis, 1987). When MSDR >1, kriging variance underestimates the true estimation vari-

ances; when MSDR <1, kriging variance exaggerates the true estimation variances; when

MSDR ∼=1, the actual estimated error is equal on average to the error predicted by the

model. For a selected variogram, we want the estimated MSDR to be as close to 1 as pos-

sible. The choice of criterion depends on the needs of the researcher (Davis, 1987). I will

discuss this in more detail later.

5.2.5 Non-parametric marginal model analysis

Non-parametric marginal model analysis (Brunner et al., 2002) is used to test the group

difference, where the null hypothesis is that there is no difference between two groups. The

different groups in my analysis can be considered as different clusters in space or different
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variogram models. This method is primarily used for longitudinal data where the observa-

tions of an experimental unit (subject) are repeated in time and called repeated measures

analysis. Akritas and Arnold (1994) extend this method to general cases where the repeated

measurements on an experimental unit can be time, space or other different occasions. In

an experimental design with i = 1, ..., a groups, each group has k = 1, ..., ni subjects, each

subject is examined at s = 1, ..., t occasions, i.e., a vector

Xik = (Xik1, ..., Xikt)
T

is kth subject in ith group with t occasions. Usually different subjects are assumed to be

independent and different occasions are assumed to be dependent. Under the assumption

that the marginal distributions of Xik’s are identical, the hypotheses can be formulated in

terms of either the distribution functions or the corresponding relative effects (expectations)

(Brunner et al., 2002). The advantage of this method is the covariance structure of the

different occasions need not to be known in the analysis, which uses the dependencies from

the data directly.

5.3 Data analysis

5.3.1 Preprocessing steps

As in the previous chapter, the fourth slice of the saccade data is chosen here for demon-

stration purposes. Note the data for the analysis is (x, y, t) = (64, 64, 156) for z = 4.

Although the data have been processed initially for statistical analysis, it is still necessary

to adjust the data again for structural analysis. The following are three preprocessing steps.

Step one: Masking the brain

The first step is masking the brain. As already discussed in earlier chapters, this is a pop-

ular data reduction technique because it is only the brain that is of interest and not the
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surrounding area. Therefore, it is often (if not always) helpful to remove the non-brain struc-

tures prior to further structural analysis (Jezzard et al., 2001).

In masking, the data image is first processed to identify the location of the brain, there-

after a suitable threshold method is used to remove all the voxels outside the brain (Goutte

et al., 1999, 2002; Stanberry et al., 2003; Gibbons et al., 2004). For the slice I choose, there

are 630 voxels out of 4096 left after masking (Figure 5.2, graph (2)).

Step two: Subtracting the mean of time image

By Huettel et al. (2004), the raw signal is not important in image processing and only the

functional signal is of interest to the researcher. Functional signal, sometimes called dynamic

contrast, is the intensity of the signal changes (called contrast) between voxels over time.

Here we use the contrast between the raw image at each of the 156 time points and the mean

of time image to do the analysis.

The second step is therefore subtracting the mean of time image at each of the 156 time

points, which is equivalent to centering by time. Before centering the data, the images at the

different time points are dominated by the mean of time image, and signal changes are so

small that we can not see the changes clearly over time (Figure 5.2, graphs (3) and (5)). Since

what we want is to see the true activations of the brain responding to the eye movement

experiment, it is necessary to remove the background and to concentrate only on the changes

over time (Figure 5.2, graphs (4) and (6)). Figure 5.2 gives the second preprocessing step at

time points 70 and 71. The same preprocessing step is done at each time point.

Step three: Removing the trend

As mentioned before, to guarantee the surface to be stationary in the variogram estimation,

trend removal is also necessary. I assume the data only has a first order trend, i.e., f(x, y) =

m0 + m1x + m2y. The third step is thus doing the trend surface fitting to remove the first

order trend (Glover et al., 2006) (Figure 5.3). We may add back the trend after kriging if
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Figure 5.2: (1) is the mean of time image at the fourth slice. (2) is the masked mean of time
image. (3) is the masked map at time point 70. (4) is the mean subtracted map at time point
70. (5) is the masked map at time point 71. (6) is the mean subtracted map at time point
71. From (1) to (2), is the first preprocessing step in structural analysis. From (3) to (4) and
from (5) to (6) are the second preprocessing steps in structural analysis at time points 70
and 71 respectively. The signal changes are small from (3) to (5) but the changes are clearer
from (4) to (5) after subtracting the mean of time image. Similar preprocessing step is done
at every time points ranging from 1 to 156.
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Figure 5.3: (1) is the mean subtracted map at time point 70. (2) is the first order trend map
at time point 70. (3) is the trend removed map at time point 70. (4) is the mean subtracted
map at time point 71. (5) is the first order trend map at time point 71. (6) is the trend
removed map at time point 71. From (1) to (3) and from (4) to (6) is the third preprocessing
step in structural analysis at time points 70 and 71 respectively.
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necessary. Figure 5.3 gives the third preprocessing step at time points 70 and 71. The same

preprocessing step is carried out at every time point.

5.3.2 Empirical analysis

The empirical variograms over the 156 time points for the trend removed data are calcu-

lated (Marcotte, 1996). To reduce the measurement error in the calculation (Journel and

Huijbregts, 1978), lag distance of the variogram is chosen as 19, where the number of pairs

of observations in the x direction is ≥ 94, and the number of pairs of observations in the y

direction is ≥ 176.

Figure 5.4 shows the graphs of the empirical variograms at time point 70 in different

directions. “◦” indicates the variogram values in the x direction, “+” indicates the values in

the y direction, “∗” indicates the values in the 45 degree of x and y directions. “×” indicates

the values in the 135 degree of x and y directions.

I look at the variograms at different time points, and find that most of them have similar

values and patterns as demonstrated in Figure 5.4 for time point 70. The variograms in the x

and the y directions largely overlap, showing the second order stationarity in these two direc-

tions. The variograms also show “waves” as the lag distance increases, indicating functional

relationships. There are some exceptions, i.e., time points at which the variograms are not

stable, showing significant differences with the others. This makes sense from a geostatistical

perspective, because spatial information can be used to provide data on structure; different

variogram structure reflects different activation patterns in the brain. Hence the structural

classification method is used again here.

In order to find those significantly different time points, an omnidirectional classification

among the 156 time points is performed by averaging the x and y directional variograms.

Clusters are characterized by their spatial patterns, i.e. variograms. In each cluster, the

variograms have different behaviors due to variations in structure. The steps in the clustering

are: (1) average the variograms in the x and y directions; (2) define the “Euclidean” metric
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Figure 5.4: (1) are the empirical variograms in the x and y directions. (2) are the empirical
variograms in the 45 degree and 135 degree of x, y directions. (3) is the empirical variogram
map in all y, −y and x directions. (4) is the empirical variogram map in all x, −x and y
directions.
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since we want to compare the similarity of average profile levels in the variogram; (3) use

the k-means algorithm to do the clustering for different k; (4) determine the final results by

silhouette values.

The first choice for the number of clusters is two, since it has the largest mean of the

silhouette values. Cluster 1 has 2 time points, which are 1 and 93; cluster 2 contains all

other points. When I look at the time course of the 340 voxels from SPCA in the previous

chapter (Figure 5.5, graph (1)), I find there are large upward movements from time point

1 to 2 (Figure 5.5, graph (2)) and from time point 92 to 93 (Figure 5.5, graph (3)), these

discontinuities are not task related and might be from the uncorrected head motion (Jezzard

et al., 2001) because motions over time are visible as largely vertical movements on the plots

(Huettel et al., 2004). Hence, I ignore these two time points and see the other options. The

second choice of the number of the clusters is three. This process results in three clusters.

Cluster 1 has time points 1 and 93; cluster 2 has 28 time points, which are 15, 16, 17, 25, 33,

39, 40, 46, 47, 58, 59, 66, 81, 83, 87, 94, 95, 103, 104, 112, 113, 127, 128, 132, 133, 143, 144,

147; cluster 3 contains all other points. Each cluster presents a different spatial variability

profile.

A non-parametric marginal model analysis (Brunner et al., 2002) is used to test if the

groups of voxels in clusters 2 and 3 are significantly different, where each group as well as the

different lags of the variograms is subject to a structure. The null hypothesis is that there

is no difference between the two groups. Since the p−value is < 0.0001, the null hypothesis

is rejected. Hence I conclude there are 28 time points with significantly different variograms

from the rest (Table 5.1). Among the 28 time points, 16 are in anti-saccade time periods,

and the important changes usually happen near the beginning of the task, showing the brain

has strong activations when the pro-saccade task is switched to the anti-saccade task; 12

of them are in pro-saccade time periods, and the important changes usually happen at the

middle of the task. I also use the non-parametric marginal model analysis (Brunner et al.,

2002) to test if the 16 time points in the anti-saccade condition are significantly different
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Figure 5.5: (1) is the means of 340 voxels from SPCA during 156 time points. (2) is the
means between time points 1 and 20, where there is a large upward movement from time
point 1 and 2. (3) is the means between time points 78 and 97, where there is a large upward
movement from time point 92 to 93. These discontinuities are considered as uncorrected
motion which is often visible as largely vertical movements on the time course plot.
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from the 12 time points in the pro-saccade condition. The null hypothesis is not rejected.

The differences in the two tasks are not significant. In my opinion, the reason is the active

regions corresponding to the eye movement task are similar, so the variogram structure does

not have big changes.

Anti-saccade Significant time points Pro-saccade Significant time points
1 - 2-14 -

15-26 15, 16, 17, 25 27-38 33
39-50 39, 40, 46, 47 51-62 58, 59
63-74 66 75-86 81, 83
87-98 87, 94, 95 99-110 103, 104

111-122 112, 113 123-134 127, 128, 132, 133
135-146 143, 144 146-156 147

Table 5.1: Number of time points with significantly different variograms. There are 16 time
points in anti-saccade time periods, and the important changes usually happen near the
beginning of the anti-saccade task. There are 12 time points in pro-saccade time periods,
and the important changes usually happen at the middle of the pro-saccade task. Among
the 28 time points, variogram profile levels during anti-saccade are higher than those in
pro-saccade, but these differences are not significant.

5.3.3 Variogram modeling

As mentioned before, it is necessary to model the empirical variogram if we want to do

some further analysis. I consider modeling the variogram during time periods 61-90 for

demonstration purpose. Since the trend has been removed from the data, I assume each time

point is second order stationary (Glover et al., 2006). I also assume the variogram is geometric

anisotropic, which means the variogram model is the same in both x and y directions but

the parameters of the model maybe different.
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Parametric approach

First, I model the 30 time points by a Gaussian-type model

γ(h) = σ2
ε + σ2[1− exp(−hc

ac )],

with c = 1, 1.5, 2 in both x and y directions, called G-100, G-150 and G-200 respectively. For

comparison, I also model those time points with hole effect structures by the Bessel Gaussian

model

γ(h) = σ2
ε + (σ2 − σ2

ε )[1− exp(−hc

ac )J0(bh)],

with c = 1, 1.5, 2 in both x and y directions, called BG-100, BG-150, BG-200 model. I assume

the number of sign changes b is the same in both directions. Hence in the Bessel Gaussian

model, the geometric anisotropy property is the same as that in the Gaussian-type model.

The only difference is that the Bessel Gaussian model has an additional parameter b to

control the hole effect structure.

All the 30 time points can be well fit by the Gaussian-type model (for example, see

Figures 5.6, 5.7, 5.8, 5.9 and 5.10)). But for the Bessel Gaussian modeol, only 10 time points

are well fitted by the BG-100, BG-150 and BG-200 models: 61, 64, 65, 70, 71, 76, 80, 83, 85,

89 (e.g., Figures 5.6 and 5.7). 4 time points can be fitted by the BG-100 or BG-150 models:

62, 75, 86, 90 (Figure 5.8). In these four points, as c → 2.00, the number of signs b → 0, so

the BG-200 model is equivalent to the Gaussian-type model, where the hole effect structure

disappears.

The other 16 points are not well fit by the Bessel Gaussian model. In my opinion, this

has two reasons: one is that the assumption that the number of sign changes is the same in

all directions is violated (time points 66, 67, 69, 72, 73, 77, 78, 79, 81, 82, 84, 87, 88). Under

this situation, the range parameter a → ∞ in the Bessel Gaussian model and the model

becomes a pure Bessel model. The other is that the hole effect structure is weak, so the sign

change parameter b → 0 (time points 63, 68, 74).
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Figure 5.6: (1), (3), (5) are time point 64 in Gau-100, Gau-150, Gau-200 model fitting. (2),
(4), (6) are time point 64 in BG-100, BG-150, BG-200 model fitting.
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Figure 5.7: (1), (3), (5) are time point 65 in Gau-100, Gau-150, Gau-200 model fitting. (2),
(4), (6) are time point 65 in BG-100, BG-150, BG-200 model fitting.
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Figure 5.8: (1), (3), (5) are time point 62 in Gau-100, Gau-150, Gau-200 model fitting. (2),
(4), (6) are time point 62 in BG-100, BG-150, BG-200 model fitting.
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Figure 5.9: (1), (3), (5) are time point 67 in Gau-100, Gau-150, Gau-200 model fitting. (2),
(4), (6) are time point 67 in one basis function, two basis functions, three basis functions
model fitting.
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Figure 5.10: (1), (3), (5) are time point 68 in Gau-100, Gau-150, Gau-200 model fitting. (2),
(4), (6) are time point 68 in one basis function, two basis functions, three basis functions
model fitting.
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Nonparametric approach

For the 16 time points that can not be well fitted by a Bessel Gaussian model (Figures

5.9 and 5.10), I model them by a nonparametric method, where the pure Bessel model is

considered as a basis function, and the number of basis functions is chosen to be one, two

or three. Because the choice of change of signs is more sensitive than the choice of weight, I

consider each basis function as being equally weighted and the geometric anisotropy property

happens in the change of signs. Now the function is defined as

γ(h) = σ2
ε + (σ2 − σ2

ε )[1−
∑p

k=1
1
p
J0(kbh)],

where p = 1, 2, 3. Hence, the three fitting functions are:

γ(h) = σ2
ε + (σ2 − σ2

ε )[1− J0(bh)],

γ(h) = σ2
ε + (σ2 − σ2

ε )[1− (1
2
J0(bh) + 1

2
J0(2bh))],

γ(h) = σ2
ε + (σ2 − σ2

ε )[1− (1
3
J0(bh) + 1

3
J0(2bh) + 1

3
J0(3bh))].

5.3.4 Variogram model selection

The best variogram model is chosen by cross-validation in kriging. According to Hastie et al.

(2001), when the sample size N is greater than 125, 5-fold cross-validation has lower variance

and does not suffer from much bias. Since there are 630 voxels considered in the analysis, I

use K = 5 for model selection. Figure 5.11 shows the 5 cross-validation folds. In each fold,

126 voxels are removed in turn for estimation, as indicated by the dark squares.

For model selection, Mean Squared Deviation Ratio (MSDR) and Mean Squared Error

(MSE) are both calculated for each time point.

Nonlinear distance

As shown in Table 5.2, most of the MSDR values are less than 1, indicating the kriging

variance overestimated the true estimation variance. MSDR increases as the parameter c

increases from 1 to 2, indicating the model fit gets better as c increases. Most time points
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Figure 5.11: Maps for 5-fold cross-validation. (1), (2), (3), (4), (5) are the five folds where
the voxels denoted by dark squares (126 voxels) are removed in each fold for estimation. (6)
is the original map with 630 voxels.
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are fitted best by the G-200 model, showing the nonlinear distance in the neighbors of the

voxels. Hence proximal voxels in the brain have stronger relations.

Functional distance

By looking at the 14 time points fitted by the Bessel Gaussian model Table 5.2), we see the

MSDR is closer to 1 than for the Gaussian-type model. Hence, if we consider the functional

distance in the model, the estimation will more approach the true model. I also use the non-

parametric marginal model analysis (Brunner et al., 2002) to test the differences in MSDR

between the Gaussian-type model group and the Bessel Gaussian model group. The p-value

is 0.0096, indicating the difference of the two groups is significant. For these 14 time points,

using hole effect structure can significantly improve the model fitting. Table 5.3 also show

that the MSE values slightly increase if we use Bessel Gaussian model instead of Gaussian-

type model. I use the same method to test differences of MSE between the Gaussian-type

model group and the Bessel Gaussian model group. The p-value now is 0.6587, indicating

the difference of the two group is not significant. Overall, jointly considering the functional

distance will significantly improve the model fitting in these 14 time points.

For the 16 time points fitted by one, two, three basis functions, we also see the MSDR

is closer to 1 than for the Gaussian-type model (Table 5.4), but the MSEs are also larger

than for the Gaussian-type model (Table 5.5). I also do the same hypothesis tests as above,

both p-values are < 0.0001, indicating significant differences between these two approaches.

The reason is: even though the nonparametric approach fits the data very well in general,

it produces a larger nugget effect than that in the Gaussian-type model fitting (Figures 5.9

and 5.10), which means the closest neighbors are not fit well. Hence, we have two choices for

these 16 time points, either getting better model fitting but with significantly larger errors,

or having smaller errors but getting worse model fitting.

According to Davis (1987), a model chosen to be the best by the cross-validation method

in kriging, is only under some specific conditions, e.g., the choice of discrepancy measure. No
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models can be chosen to be the best under universal discrepancy measures. Although MSE is

a more popular measure in the literature, MSDR gives a way of assessing the adequacy of the

model and of its prediction. I consider MSDR as the main criterion in my variogram model

selection, because what I want is to find a valid model that is accurate for the variogram

in general trends. Hence MSDR is a good measure (Davis, 1987; Webster and Oliver, 2001).

From the above results, to fit those time points with fluctuations in the variogram, the vari-

ogram model with hole effect structure gives much better kriging results than monotonically

increasing models.

5.4 Conclusions and discussion

By looking at the empirical variograms across the 156 time points, we find their structures

reflect the activations of the brain by the saccade task. When there are no task related acti-

vations in the brain, the variograms show strong stationarity, and the sills of the variograms

are low. When there are task-related activations in the brain, the structure of the brain shows

significant differences. The variograms have stronger anisotropic properties in the x and y

directions and the sills of the variograms are higher. For the anti-saccade periods, those sig-

nificant time points are usually at the beginning of the epoch. For the pro-saccade periods,

those significant time points are usually in the middle of the task. The variogram structures

tend to be somewhat stronger in anti-saccade time periods than those in pro-saccade, but

the differences are not significant.

Spence et al. (2007) use the Gaussian model for variogram fitting. This is intuitively

obvious from my results that the proximal voxels in the brain have stronger relations. So I

confirm the validity of their results.

In geostatistics, the variogram model is monotonically increasing and “hole effect” struc-

ture is usually ignored. For fMRI data analysis, I consider both functional distance and

physical distance. This is a major difference between geostatistical data and fMRI data. In
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geostatistics, physical distance is most relevant since near regions are more related than dis-

tant regions, and distant regions will tend to not be related. But in fMRI, different regions

may be functionally related even though they are not neighbors. This claim is similar to

that in Bowman (2007), but my approach is different. The advantage of my method is that

it does not need auxiliary data any more, and considers the original data only. I use the

hole effect variogram model in model fitting, because the presence of such an effect provides

valuable information concerning spatial variability, indicating a form of periodicity (Pyrcz

and Deutsch, 2007).

In the analysis of brain imaging data, using the hole effect variogram model offers an

important advantage over the current monotonic variogram, whether a parametric method

or nonparametric method is used. This provides a good example of applying geostatistical

ideas in a new area. But my hole effect model still has two disadvantages: One is that it may

produce a larger nugget effect in the model fitting stage, especially in the nonparametric

approach, which means if we fit the functional relations very well, we have to sacrifice some

physical relations for the target voxel. The other is that the regular hole effect model in

geostatistics is with dampening, which means the functional relations are always weaker

than the physical relations. But for a target voxel in fMRI data, its distant voxels may

exhibit higher correlations than some closer neighbors (Bowman, 2007). Hence the regular

hole effect model in geostatistics may not be suitable. How to well define a suitable hole

effect variogram model and keep the balance between the functional relations and physical

relations in the model fitting will be considered in my future work.
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MSDR Gau-100 Gau-150 Gau-200 BG-100 BG-150 BG-200
61 0.1623 0.1622 0.5558 0.3731 0.5609 0.6141
62 0.2038 0.1905 0.4340 0.2390 0.1957 -
63 0.2414 0.3821 0.6499 - - -
64 0.3442 0.4448 0.6301 0.4668 0.6788 1.0026
65 0.2356 0.1928 0.4863 0.5293 0.7675 0.9634
66 0.5023 0.7017 0.9157 - - -
67 0.3824 0.3794 0.6036 - - -
68 0.2493 0.3406 0.5928 - - -
69 0.8143 1.1373 1.4314 - - -
70 0.1939 0.1482 0.4286 0.2234 0.3474 0.6226
71 0.1649 0.1678 0.5540 0.4925 0.7397 0.8088
72 0.2553 0.3342 0.5304 - - -
73 0.4075 0.6141 0.9003 - - -
74 0.2166 0.2648 0.5312 - - -
75 0.3120 0.4904 0.8536 0.2438 0.3088 -
76 0.1766 0.1160 0.3457 0.2250 0.1704 0.4083
77 0.8709 0.3477 0.4978 - - -
78 0.2349 0.2540 0.4855 - - -
79 0.6453 0.5982 0.9221 - - -
80 0.2405 0.3073 0.5337 0.2179 0.3175 0.6621
81 0.3252 0.4411 0.7044 - - -
82 0.4240 0.2898 0.3791 - - -
83 0.1954 0.1831 0.6250 0.2111 0.2044 0.9950
84 0.4911 0.6099 0.7161 - - -
85 0.2792 0.4200 0.6602 0.1962 0.3262 0.6249
86 0.2607 0.1908 0.3377 0.2986 0.1889 -
87 0.2180 0.3365 0.5484 - - -
88 0.3140 0.4890 0.7676 - - -
89 0.2130 0.1890 0.4811 0.3341 0.5254 0.6298
90 0.2298 0.2028 0.4486 0.2251 0.2246 -

Table 5.2: MSDR for different time points (61-90) in the Gaussian-type model, and MSDR
for 14 time points in the Bessel Gaussian model. Compared with the Gaussian-type model,
the Bessel Gaussian model attains better MSDR values. The differences between the two
models are significant.
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MSE G-100 G-150 G-200 BG-100 BG-150 BG-200
61 22.2578 10.3682 13.5639 24.9593 39.2324 42.1805
62 23.1404 9.8625 14.5760 21.0463 9.5371 -
63 18.2641 33.0493 66.6354 - - -
64 40.6288 47.0910 59.6362 25.5761 27.4002 33.4274
65 24.7432 9.8289 12.0064 26.2968 31.4134 33.7669
66 57.6366 95.4935 132.3619 - - -
67 45.5645 54.7449 74.2879 - - -
68 25.9159 28.0734 41.9934 - - -
69 76.3764 125.3946 171.2664 - - -
70 22.3660 8.4836 1.5125 13.3760 13.9182 20.7360
71 16.8173 7.0828 11.4915 32.2751 43.8742 45.6591
72 31.7380 31.3293 35.8695 - - -
73 29.4400 45.2649 66.5082 - - -
74 19.2579 13.0700 26.1599 - - -
75 20.9743 24.5880 40.5677 14.1453 6.9437 -
76 22.1729 7.6267 1.4703 16.5448 6.4087 6.2182
77 106.6823 27.4747 25.1347 - - -
78 29.8707 17.0820 27.0628 - - -
79 67.3441 90.0690 123.8678 - - -
80 29.9014 21.4519 36.2870 18.6205 18.3886 30.4802
81 43.7206 36.8092 68.7382 - - -
82 93.1294 30.3147 33.5358 - - -
83 37.9755 17.0388 15.1281 34.8301 12.2169 15.3086
84 39.7562 51.8816 64.7611 - - -
85 27.7348 33.4896 48.6876 13.8412 16.0320 25.6907
86 39.9071 15.3667 6.6063 29.3797 12.0022 -
87 39.1465 45.5264 72.7195 - - -
88 41.2146 59.9628 92.9210 - - -
89 20.3588 7.9737 10.1546 17.9671 23.5594 18.4348
90 18.9660 7.7225 12.2218 13.9418 6.2454 -

Table 5.3: MSE for different time points (61-90) in the Gaussian-type model, and MSE for
14 time points in the Bessel Gaussian model. Compared with the Bessel Gaussian model,
the Gaussian-type models have smaller MSE values. The differences between the two models
are not significant.
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MSDR Gau-100 Gau-150 Gau-200 One basis Two basis Third basis
63 0.2414 0.3821 0.6499 0.6213 0.7927 1.0849
66 0.5023 0.7017 0.9157 0.6949 0.7530 0.7548
67 0.3824 0.3794 0.6036 0.4511 0.7567 0.6977
68 0.2493 0.3406 0.5928 0.6372 0.6251 0.6885
69 0.8143 1.1373 1.4314 0.7967 0.8368 0.9723
72 0.2553 0.3342 0.5304 0.4793 0.6100 0.5860
73 0.4075 0.6141 0.9003 0.7940 0.8325 0.9379
74 0.2166 0.2648 0.5312 0.6878 0.6440 0.7119
77 0.8709 0.3477 0.4978 0.7630 1.0908 1.5687
78 0.2349 0.2540 0.4855 0.6385 0.6026 0.5960
79 0.6453 0.5982 0.9221 0.8324 0.8233 0.9303
81 0.3252 0.4411 0.7044 0.6339 0.7335 0.8919
82 0.4240 0.2898 0.3791 0.5746 0.7317 0.7205
84 0.4911 0.6099 0.7161 0.6669 1.0138 0.7020
87 0.2180 0.3365 0.5484 0.6682 0.6738 0.7056
88 0.3140 0.4890 0.7676 0.3846 0.6275 0.5564

Table 5.4: Comparisons of MSDR for 16 time points under the Gaussian-type method and
the nonparametric method. The nonparametric approach attains better MSDR values. These
differences are significant by non-parametric marginal model analysis.
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MSE Gau-100 Gau-150 Gau-200 One basis Two basis Third basis
63 18.2641 33.0493 66.6354 89.3964 67.0004 30.0501
66 57.6366 95.4935 132.3619 187.8435 174.5950 171.6620
67 45.5645 54.7449 74.2879 91.2558 93.9873 104.6891
68 25.9159 28.0734 41.9934 131.9907 97.0111 86.0126
69 76.3764 125.3946 171.2664 192.8486 172.9570 160.1111
72 31.7380 31.3293 35.8695 75.8956 100.7255 57.3930
73 29.4400 45.2649 66.5082 111.8570 100.2815 85.3291
74 19.2579 13.0700 26.1599 122.5606 89.3827 51.1313
77 106.6823 27.4747 25.1347 84.0561 66.6550 52.7147
78 29.8707 17.0820 27.0628 130.5393 97.4070 92.4328
79 67.3441 90.0690 123.8678 151.6380 98.1363 145.5408
81 43.7206 36.8092 68.7382 170.4746 112.8929 95.8092
82 93.1294 30.3147 33.5358 146.5626 161.1876 154.8976
84 39.7562 51.8816 64.7611 119.2967 65.9191 71.1864
87 39.1465 45.5264 72.7195 201.0792 138.0778 101.9978
88 41.2146 59.9628 92.9210 84.3343 136.8792 84.2873

Table 5.5: Comparisons of MSE for 16 time points under the Gaussian-type method and the
nonparametric method. The nonparametric method tends to larger MSE values than the
Gaussian-type method. These differences are significant by non-parametric marginal model
analysis.



Chapter 6

Spatio-temporal smoothing in fMRI

In the previous chapter, I found suitable models to describe the spatial structure of the fMRI

data. The purpose of this chapter is to use the selected variogram model to do the smoothing

in fMRI. By considering both the spatial and temporal properties of the data, the proposed

smoothing method will greatly reduce the noise of the data in an intelligent way.

6.1 Introduction

In fMRI data analysis, spatial filtering, sometimes called Gaussian filtering, is commonly

used as a preprocessing step to increase the signal to noise ratio in the original data (Huettel

et al., 2004). The width of this filter determines the extent of the smoothing that takes place,

i.e., the wider the filter, the smoother the data. It is usually required that the extent of the

smoothing is not larger than the size of the activated region (Jezzard et al., 2001). Over-

smoothing will mask the differences between different regions (Spence et al., 2007; Lazar,

2008), and result in failure to detect activation inside the brain. Based on this, the typical

filter width for fMRI data is about 2 or 3 voxels, e.g., the saccade data used in our anal-

ysis was preprocessed by Gaussian filtering with a radius of 2 voxels. But because of the

limitations of the Gaussian filtering, there is still considerable variability (statistical noise)

in the data (Lazar, 2008). Rather than doing simple blurring by Gaussian filtering, we may

consider incorporating spatial information into the smoothing procedure to reduce noise in

an intelligent way. For each target voxel, this method can selectively choose different weights

for its neighbors (Jezzard et al., 2001). Here I consider filtered kriging as an example of such

133
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a smoothing method because it has an initial consideration of the spatial structure of the

data, i.e., the modeled variogram of the data.

In time series there are three distinct types of prediction problems (Chiles and Delfiner,

1999; Schabenberger and Gotway, 2005): forecasting, which means prediction of future data;

filtering, which means prediction of current data; smoothing, which means prediction of past

data. In spatial statistics, we can use forecasting to predict data at new locations, but we can

not distinguish past and current data, therefore filtering and smoothing refer to the same

operation. As mentioned before, kriging can be used for prediction at new locations. When

the predicted variable is at one of the sampled sites, kriging gives the original data value,

which is called interpolation. This is under the assumption that there is no measurement

error at this sampled site. Often in practice data may contain measurement error. If we want

to remove the measurement error in kriging, we can consider kriging as a smoothing method,

and this is called filtered kriging (Cressie, 1993).

6.2 Concepts and methods

6.2.1 Kriging and filtered kriging

In kriging, it is assumed that there is no measurement error in the process {Z(s), s ∈ D}.
This has two meanings. The first meaning is to assume the random variable Z(s) is observed

at the exact location s and measurement errors in location s are ignored (Stein, 1999), which

makes sense and this assumption is always kept in kriging. The second meaning is to assume

either that the random variable Z(s) is continuous without error, or that the discontinuous

nugget effect structure in Z(s) is because of micro-scale variation (Cressie, 1993). Under

this assumption, kriging gives exact interpolation at the observed locations since it is the

best linear unbiased estimation. But sometimes this is not realistic. The nugget effect can

also be considered as a measurement error at the observed location (Dubrule, 1983). Stein

(1999) presumes all the discontinuous nugget effect structure is due to measurement error,

and it can not be ignored even if it is very small. Under this circumstance kriging has to
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filter the measurement errors at the observed location instead of interpolating the noisy data,

and the nugget effect can be considered as a smoothing parameter to control the degree of

smoothness of the data (Billings et al., 2002a), which is called filtered kriging (Chiles and

Delfiner, 1999; Cressie, 1993).

Since simple kriging and ordinary kriging are special cases of universal kriging, I only

discuss universal kriging as an example here. Considering a geostatistical model Z(s) =

µ(s)+e(s), µ(si) =
∑L

l=0 alfl(si) is an unknown trend, where fl(si) are known functions and

f0(si) = 1; al are unknown parameters; e(s) is the zero-mean random function at s. If the

process contains a nugget effect, called ε(s), then the model becomes Z(s) = µ(s)+e(s)+ε(s).

Assume S(s) = µ(s)+ e(s), then we have Z(s) = S(s)+ ε(s). The nugget effect term has the

following properties: E(ε) = 0 (nonsystematic), Cov(εS) = 0 (additive), Cov(εiεj) = 0 for

i 6= j (mutually independent). If the nugget effect is considered as a micro-scale variation,

the prediction is for Z(s), which is called kriging, as I discussed in chapter 2. If the nugget

effect is considered as a measurement error, the prediction is for a noiseless process S(s),

which is called filtered kriging. The following gives basic formulas in regular kriging and

filtered kriging, where regular kriging is for Z(s) and filtered kriging is for S(s).

Regular universal kriging

The model is defined as

Z(si) = S(si) + ε(si), i = 0, 1, 2..., n. (6.1)

It is noted that V ar[S(si)] = σ2, V ar[εi] = σ2
ε , and V ar[Z(si)] = σ2 + σ2

ε . The universal

kriging at site s0 is predicted by Ẑ(s0) =
∑n

i=1 wiZ(si), when the estimation E[Z(s0)−Ẑ(s0)]
2

is minimized subject to the constraint
∑n

i=1 wifl(si) = fl(s0), for l = 0, 1, ..., L. Let ml, l =

0, 1, ..., L be the Lagrange parameters, the Lagrange formalism is defined as

g(wi, i = 1, ..., n; ml, l = 0, ..., L) = E[Z(s0)− Ẑ(s0)]
2 + 2

∑L
l=0 ml[

∑n
i=1 wifl(si)− fl(s0)].
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Define CZ(si, sj) = Cov[Z(si), Z(sj)]. By setting the partial derivatives of g(wi, i = 1, ..., n;

ml, l = 0, ..., L) with respect to wi and ml, then

∂g
∂ml

= 0 =⇒ ∑n
i=1 wifl(si) = fl(s0), l = 0, 1, ..., L;

∂g
∂wi

= 0 =⇒ CZ(si, s0) =
∑n

j=1 wjCZ(si, sj) +
∑L

l=0 mlfl(si), i = 1, ..., n.

Hence, the variance of universal kriging is

σ2
k = E[Z(s0)− Ẑ(s0)]

2 = σ2 + σ2
ε −

∑n
i=1 wiCZ(si, s0) +

∑L
l=0 mlfl(s0).

It also can be expressed as a form with variogram





∑n
i=1 wifl(si) = fl(s0), l = 0, 1, ..., L;

γZ(si, s0) =
∑n

j=1 wjγZ(si, sj)−
∑L

l=0 mlfl(si), i = 1, ..., n.

The variance of universal kriging is

σ2
k =

∑n
i=1 wiγZ(si, s0) +

∑L
l=0 mlfl(s0).

Filtered universal kriging

The model is defined as

Z(si) = S(si) + ε(si), i = 0, 1, ..., n.

The filtered universal kriging at s0 is Ŝ(s0) =
∑n

i=1 w∗
i Z(si). The estimation E[S(s0)−Ŝ(s0)]

2

is minimized subject to the constraint
∑n

i=1 w∗
i fl(si) = fl(s0), for l = 0, 1, ..., L. Let ml, l =

0, 1, ..., L be the Lagrange parameters, the Lagrange formalism is defined as

g(w∗
i , i = 1, ..., n; ml, l = 0, ..., L) = E[S(s0)− Ŝ(s0)]

2 + 2
∑L

l=0 ml[
∑n

i=1 w∗
i fl(si)− fl(s0)].

Define CS(si, sj) = Cov[S(si), S(sj)], also note Cov[Z(si), S(sj)] = CS(si, sj). By setting the

partial derivatives of g(w∗
i , i = 1, ..., n; ml, l = 0, ..., L) with respect to w∗

i and ml, then

∂g
∂ml

= 0 =⇒ ∑n
i=1 w∗

i fl(si) = fl(s0), l = 0, 1, ..., L.

∂g
∂w∗i

= 0 =⇒ CS(si, s0) =
∑n

j=1 w∗
jCZ(si, sj) +

∑L
l=0 mlfl(si), i = 1, ..., n.
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Hence, the variance of filtered universal kriging is

σ2
fk = E[S(s0)− Ŝ(s0)]

2 = σ2 −∑n
i=1 w∗

i CS(si, s0) +
∑L

l=0 mlfl(s0).

It also can be expressed as a form with variogram





∑n
i=1 w∗

i fl(si) = fl(s0), l = 0, 1, ..., L.

γS(si, s0) =
∑n

j=1 w∗
jγZ(si, sj)−

∑L
l=0 mlfl(si), i = 1, ..., n.

The variance of filtered universal kriging is

σ2
fk =

∑n
i=1 w∗

i γS(si, s0) +
∑L

l=0 mlfl(s0)− σ2
ε .

Relations between regular kriging and filtered kriging

The relations between CZ(si, sj) and CS(si, sj) are as follows:





CZ(si, sj) = CS(si, sj) if si 6= sj,

CZ(si, sj) = CS(si, sj) + σ2
ε if si = sj.

(6.2)

It also can be expressed as a form with variogram as follows:





γZ(si, sj) = γS(si, sj) if si = sj,

γZ(si, sj) = γS(si, sj) + σ2
ε if si 6= sj.

(6.3)

Hence, at an unsampled site s0, the predicted values in regular kriging and filtered kriging

are the same, the only difference is they have different kriging variances, i.e., σ2
k = σ2

fk + σ2
ε .

If the predicted site s0 is one of the observed sites in s1, ..., sn, then the predicted value of

regular kriging is the exact value at this site and σ2
k = 0; the predicted value of filtered

kriging is different from the original value and smooths the value at this site, with larger

values of σ2
ε resulting in more smoothing. Under the extreme case where all the variation is

because of measurement error, the predicted value is just the average of all the known values

(Cressie, 1993).
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6.2.2 Dual kriging and spline smoothing

Consider a general spatial map {z(s) : s ∈ D}, s = (x, y) denotes the coordinates of the

sample site (x, y); D denotes the set of the region of interest, i.e. s1, ..., sn. There are two

different but related smoothing approaches for this map (Watson, 1984). One is the random

function method, i.e., kriging, which considers {z(s) : s ∈ D} as a realization of a random

function {Z(s) : s ∈ D} with or without measurement error, and computes the best linear

unbiased estimator to obtain a map as accurate as possible; the other is the deterministic

function method, i.e., thin plate spline method, which uses a deterministic function to fit

the map {z(s) : s ∈ D} as “closely” as possible, and uses a penalized term to adjust the

smoothness of the fitting.

Dual kriging

For a universal kriging model

Z(si) = µ(si) + e(si) + ε(si), (6.4)

where µ(si) =
∑L

l=0 alfl(si) is an unknown trend, ε(si) is a measurement error with E[ε(si)] =

0 and V ar[ε(si)] = σ2
ε . The model can be expressed in matrix form as follows (Wackernagel,

2003). Define Z = [Z(si)] as a n× 1 vector, C = [C(si, sj)] as a n×n matrix, c = [C(si, s0)]

as a n× 1 vector, F = [f0(si), ..., fL(si)] as a n× (L + 1) matrix, f = [fl(s0)] as a (L + 1)× 1

vector. The noiseless universal kriging is Ŝ(s0) = wTZ, where the parameters of weights w

and Lagrange parameters m can be estimated by


C + σ2

ε I F

FT 0





w

m


 =


c

f


 ,

where w = [wi] is a n× 1 vector, m = [ml] is a (L + 1)× 1 vector. Since the left hand side

matrix does not depend on s0, the formula of kriging can also be expressed in an alternative

formulation, which is called dual-kriging (Journel, 1989; Cressie, 1993; Wackernagel, 2003).
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Define an inverse matrix


 S G

GT T


 =


C + σ2

ε I F

FT 0



−1

=⇒

w

m


 =


 S G

GT T





c

f


 .

Note w = Sc + Gf , if Ŝ(s0) = wTZ = ZTw, then Ŝ(s0) = ZTSc + ZTGf . Define bT = ZTS

and aT = ZTG, which both do not dependent on s0, then


 S G

GT T





Z

0


 =


b

a


 =⇒


C + σ2

ε I F

FT 0





b

a


 =


Z

0


 .

Then the kriging can be expressed as the sum of the trend and a linear combination of the

covariance structure.

Ŝ(s0) =
[
cT fT

]

C + σ2

ε I F

FT 0



−1 

Z

0


 .

Thin-plate spline

Thin-plate spline refers to a physical analog involving the bending of a thin sheet of metal

(Billings et al. 2002a), which is a two-dimensional analog of the cubic spline in one dimension.

For Z(si) = z(si) + ε, i = 0, 1, ..., n, the predicted value

Ẑ(s0) =
∑n

i=1 bie(si, s0) +
∑3

l=0 alfl(s0),

where e(si, s0) = ||si − s0||2 log(||si − s0||2). Define Z = [Z(si)] as a n × 1 vector, E =

[e(si, sj)] as a n × n matrix, e = [e(si, s0)] as a n × 1 vector, b = [bi] as a n × 1 vector,

F = [f0(si), ..., f3(si)] as a n × 4 matrix, f = [fl(s0)] as a 4 × 1 vector, a = [al] as a 4 × 1

vector. The penalized sum of squares criterion

(Z− Eb− Fa)T(Z− Eb− Fa) + λbTEb

is minimized when 
E + λI F

FT 0





b

a


 =


Z

0


 ,
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where the nonnegative parameter λ controls the degree of smoothness, and measures the

trade-off between the goodness of fit to the data and the roughness of the surface (Cressie,

1993), which is estimated by minimizing the generalized cross-validation. Then

Ẑ(s0) =
[
eT fT

]

E + λI F

FT 0



−1 

Z

0


 .

Relations between kriging and spline-smoothing

Roughly, the spline method is just a special case of kriging (Watson, 1984), which amounts

to replacing the uncertain covariance function by a fixed smooth function. Hence, the spline

method is equivalent to kriging with a given covariance (Dubrule, 1983). The penalized

parameter λ can be considered as an alternative measurement error added to the variances

at data locations, but not to the estimation locations (Wackernagel, 2003).

The smoothing patterns in the two methods are quite similar. In the kriging method,

E[Z − Ŝ]2 = E[S− Ŝ]2 + σ2
ε , where E[S − Ŝ]2/σ2

ε is controlled by the measurement error. In

the spline method, E[Z − Ẑ]2 = V ar[Ẑ] + bias[Ẑ]2, where λ controls the trade-off between

variance and bias of the estimator.

6.2.3 Smoothing ratio (SR)

Regular signal to noise ratio (SNR)

The term signal to noise ratio (SNR) has been widely used in many areas, but it also

has different definitions and meanings in different contexts, which may cause confusion. To

classify my definition of smoothing ratio in a statistical way, I introduce the regular signal

to noise ratio at first.

In imaging processing, the signal to noise ratio is usually estimated by the ratio of the

signals’ mean to the square root of variability in the data (Curran and Dungan, 1988; Huettel

et al., 2004). In geostatistics, it is estimated by the signals’ mean divided by the square root of

the nugget effect, which is called “geostatistical method” in the literature (Van Der Meer and
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De Jong, 2001; Curran and Dungan, 1988). This method estimate the intra-signal variability

and the random sensor noise by using the variogram model fitting from a transect of signals,

and considers the estimated nugget effect as the variability. In fMRI data analysis, the raw

signal is not as important as the magnitude of the intensity difference in the signal between

different conditions. Hence researchers usually use functional signal to noise ratio in fMRI.

Functional signal to noise ratio, also called dynamic contrast to noise ratio, is defined as

the difference between two states of the signal divided by the square root of the variability

(Huettel et al, 2004). All the above signal to noise ratios have a common property, that

is, noise varies little but signal will change by states and time (Curran and Dungan, 1988;

Huettel et al., 2004). Hence, signal to noise ratio varies across different states and time.

In statistics, signal to noise ratio has totally different meanings and properties, and it is

usually defined as a noise to signal ratio. To avoid confusion, I call it smoothing ratio(SR)

in the following introduction.

Smoothing ratio (SR) in spline smoothing

In the spline smoothing method, the degree of smoothness can be measured by the smoothing

ratio (SR) (Zhen and Basher, 1995), which provides a good tool to control the roughness of

a fitted model. Smoothing ratio is defined as the ratio of the degrees of freedom for the noise

to the degrees of freedom for the signal. It also can be considered as an alternative noise to

signal ratio in statistics.

Following Wahba (1990), define

[Ẑ(s1), ..., Ẑ(sn)]T = A(λ)[Z(s1), ..., Z(sn)]T ,

where A(λ) is a smoothing matrix controlled by λ. Mean square residual (MSR) is

R(λ̂) = 1
n

∑n
i=1[Z(si)− Ẑ(si)]

2.

Estimated error variance is

σ̂2(λ̂) = nR(λ̂)/Tr[I−A(λ̂)].
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Expectation of the predictive mean square error (PMSE) is

E[T (λ̂)] = E
[

1
n

∑n
i=1[Ẑ(si)− E(Ẑ(si))]

2
]

= σ̂2(λ̂)−R(λ̂).

Then the smoothing ratio(SR) is

SR = MSR/PMSE

= R(λ̂)/[σ̂2(λ̂)−R(λ̂))]

= Tr[I−A(λ̂)]/Tr[A(λ̂)],

(6.5)

where Tr[A(λ̂)] is the degrees of freedom for signal, Tr[I−A(λ̂)] is the degrees of freedom

for error. In the spline smoothing methods, the error variance is determined by the penalized

parameter λ in the generalized cross validation. Actually, smoothing ratio is a monotonic

function of the penalized parameter λ, but it provides a useful meaning to understand and

control the nature of the surface fitting (Zhen and Basher, 1995).

Smoothing ratio (SR) in filtered kriging

Since filtered kriging and spline smoothing are consistent for a given covariance structure,

I introduce the smoothing ratio from spline smoothing to filtered kriging. For the filtered

kriging Ŝ(si) = wT
i Z, i = 1, ...n, write

[Ŝ(s1), ..., Ŝ(sn)]T = W[Z(s1), ..., Z(sn)]T ,

where the weight matrix W = (wT
1 , ...,wT

n )T . Similarily, the degrees of freedom for signal is

Tr[W], which is the sum of the weights at the original sample sites; the degrees of freedom

for noise is Tr[I−W], which is the sum of the weights at the neighbors of the original sites.

Hence the smoothing ratio(SR) in the filtered kriging is defined as

SR = Tr[I−W]/Tr[W], (6.6)

which is a function controlled by the nugget effect σ2
ε in the variogram .

In the spline smoothing method, the smoothing matrix A(λ) does not have a physical

meaning, it just provides considerable computational convenience for calculations (Wahba,
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Figure 6.1: Steps of filtered kriging by controlling the smoothing ratio

1990; Zhen and Basher, 1995). But in filtered kriging, the study of the kriging weights is

very informative. The weight matrix W has a clear statistical meaning and gives a better

interpretation for the smoothing ratio. Here the smoothing ratio can be considered as the

contribution of the neighbors in the prediction of the attribute at the original sampled sites.

If a variogram only has nugget effect structure, then the filtered kriging gives the sample

mean at the sampled sites (Schabenberger and Pierce, 2002); if a variogram has no nugget

effect, then the filtered kriging interpolates the data at the predicted sites.

Steps of filtered kriging by controlling the smoothing ratio

In the variogram modeling, all the parameters, i.e., sill, range, nugget effect and number

of sign changes are estimated at the same time by the least squares. When this estimated

variogram is used in filtered kriging, different parameters have different effects in the process,

i.e., number of sign changes determines the hole effect structure of the data; range determines
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the effective neighbors of the target point; nugget effect determines the measurement error

of the target point; sill controls the kriging variance. Actually, number of sign changes, range

and nugget effect are more important in the filtered kriging, because they are directly related

to the predicted (smoothed) value at the target point.

Figure 6.1 gives the steps of filtered kriging by controlling the smoothing ratio. Note

when smoothing ratio is considered in the procedure, the case is a little bit different. If we

change the nugget effect only, there must be literally an infinite number of possibilities of the

other estimated parameter values, i.e., different combinations of the range and the number

of sign changes, leading to the same smoothing ratio. Hence I fix the number of sign changes,

and only estimate nugget effect, range and sill again, as shown in Figure 6.1. Because sill

is not related to the predicted (smoothed) value, and the MSR is monotonically increasing

as the nugget effect increases, we have a relationship between nugget effect and range for a

fixed hole effect structure (number of sign changes). By changing the different measurement

errors (nugget effects), we can reassign the different weights among the neighbors of the

target point again and again, i.e., get different estimated ranges, thereafter find an ideal

smoothing ratio in the filtered kriging.

Temporal consistency of the smoothing ratio

Keeping the temporal consistency of the smoothing ratio is an important consideration for

smoothing when a sequence of time related data sets is being considered (Zhen and Basher,

1995), which is different from regular signal to noise ratio. For example, when we try to krige

a sequence of time related data, the estimated nugget effect at each separate time point may

vary. This will result in the degrees of the smoothness at these time points being different.

Because we usually want all the kriged maps to have the same degree of smoothness for

any further analyses, we may first estimate the variogram model and do filtered kriging in

a sequence of temporal data respectively, then identify the value of the smoothing ratio at

each time point which provides an acceptable result. After that, adjust the measurement
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error σ2
ε , and characterize the model fitting at each time point to obtain the desired value of

smoothing ratio.

6.3 Data analysis

I choose time points 61, 64, 65, 70, 71, 76, 80, 83, 85, 89 at the fourth slice with variogram

model BG-200 as examples for demonstration purposes.

6.3.1 Relations between nugget and smoothing ratio

To see the relations between nugget and smoothing ratio in filtered kriging, I arbitrarily

choose time point 64 as a first example. Figure 6.2 shows BG-200 variogram model fits in

the x and y directions with fixed b = 1.9986 and nugget effect σ2
ε = 0, 2, 4, 6, 12, 24, 36, 48

respectively. The effective lag distance is chosen as 19 in both x and y directions in the model

fitting. The estimated values of the other parameters are listed in Table 6.1. Next I use the

estimated variogram to do the filtered kriging on the 10 time points; the kriged maps are

shown in Figure 6.3. When the nugget effect σ2
ε = 0, filtered kriging interpolates the map.

When the nugget effect σ2
ε > 0, filtered kriging smooths the map. The degree of smoothness

increases as the value of the nugget effect increases. The different nugget effects of the BG-

200 model and the corresponding smoothing ratios in filtered kriging at time point 64 are

shown in Table 6.1. Note that the smoothing ratio is a monotonic function of the nugget

effect. A larger nugget effect results in more weights on the neighbors of the target points

and therefore results in a larger smoothing ratio. It is also noted that mean squared residual

(MSR) is a monotonic function and estimated ranges of the variogram do not change too

much. I will discuss this issue later.

In geostatistics, the nugget effect is just interpreted as a discontinuous nugget at the

origin of the variogram model; it has no intrinsic meaning (Figure 6.2). In filtered kriging,

the nugget effect is considered to be measurement error and it prevents the regular kriging

procedure from degenerating into exact interpolation (Figure 6.3). But the smoothing ratio
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Figure 6.2: At time point 64, BG-200 variogram model fits in x and y directions with fixed b =
1.9986 and nugget effect σ2

ε = 0, 2, 4, 6, 12, 24, 36, 48 respectively. The effective lag distance
is chosen as 19 for both x and y directions in the model fitting. The estimated values of the
other parameters are listed in Table 6.1. Note the sills and ranges in the two directions only
have minor changes as the nugget effect changes.
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Figure 6.3: At time point 64, filtered kriging maps for different nugget effects 0, 2, 4, 6, 12,
24, 36, 48. When nugget effect σ2

ε = 0, filtered kriging interpolates the map. When nugget
effect σ2

ε > 0, filtered kriging smooths the map. The degree of smoothness increases as the
nugget effect increases.
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SR MSR Nugget Sill Range in x Range in y b
0 0 0 324.7866 2.6856 0.9344 1.9986

2.7602 27.7430 2 324.7699 2.6975 0.9385 1.9986
3.1727 33.6589 4 324.7532 2.7094 0.9426 1.9986
3.4355 37.0032 6 324.7358 2.7215 0.9466 1.9986
3.9345 43.0341 12 324.6809 2.7581 0.9557 1.9986
4.6083 50.9338 24 324.5935 2.8173 0.9837 1.9986
5.1394 57.7743 36 324.4915 2.8840 1.0065 1.9986
5.6252 64.2208 48 324.4292 2.9514 1.0297 1.9986

Table 6.1: At time point 64, the different parameters of the BG-200 model and the corre-
sponding smoothing ratios and MSRs in filtered kriging. Note smoothing ratio (SR) is a
monotonic function of the nugget effect. For each different nugget effect, b is fixed and the
other parameters of the variogram model are estimated. The values of these other parameters
do not change much. A larger nugget results in more weights on the neighbors of the target
points and therefore results in a larger SR and a larger MSR.

has a more clear statistical meaning than the nugget effect; it is interpreted as the weight

that the neighbors of a target point contribute compared with the weight of the target point

(Figure 6.3). When the smoothing ratio is small, the neighbors contribute less weight to

the target point, the map is less smoothed. The extreme case is when the smoothing ratio

equals to 0, which means the map is just interpolated and the neighbors of each target

point contribute nothing. When the smoothing ratio is larger, the neighbors contribute more

weights to the target point, and hence the map is more smoothed. The extreme case is that

all the points, including each target point and its neighbors, contribute the same weights in

the estimated map. So the map is just averaged by all points.

6.3.2 Temporal consistency of the smoothing ratio

As I mentioned earlier, keeping the temporal consistency in filtered kriging is very important.

Here I first give the estimated smoothing ratios and the corresponding parameters of the BG-
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200 variogram model at the 10 different time points (Table 6.2). Note the smoothing ratios

vary from 1.2525 to 9.4196 because of the different estimated nugget effects. The average of

the 10 different smoothing ratios is 4.4861. The filtered kriging maps at the 10 different time

points are shown in Figure 6.4. Since the ratios are different, the filtered kriging maps at the

10 different time points exhibit substantial variability of smoothness. Compared with other

time points, the maps at time points 61, 71 are oversmoothed; the maps at time points 76,

83 are undersmoothed (Figure 6.4). Hence it is necessary to have temporal consistency in

smoothing. Since the mean value of the smoothing ratio in Table 6.2 is around 4.5, I adjust

all smoothing ratios to this value at each time point by specifying different nugget effects

and other parameters in the BG-200 model (Table 6.3). The filtered kriging maps at the 10

different time points with an adjusted smoothing ratio 4.50 are shown in Figure 6.5. These

maps have a consistent degree of smoothness, which should benefit further analysis.

Time point SR Nugget Sill Range in x Range in y b
61 9.4196 53.5500 438.2500 23.0823 3.6586 2.2061
64 4.5352 24.1000 324.8000 9.1949 2.8945 1.9986
65 5.3383 25.9000 307.8000 3.2488 10.8047 2.0803
70 3.0922 22.9500 282.8500 5.5177 2.6077 1.8173
71 7.4068 45.9000 296.5000 2.5222 16.9359 1.4084
76 1.2521 7.7000 352.9000 2.6443 3.2528 1.9264
80 4.2186 34.3500 408.7000 5.5902 3.4581 1.7075
83 1.5253 7.8000 546.1000 3.2014 3.5067 2.0169
85 3.9757 30.6000 294.3500 2.9028 6.4040 1.8466
89 4.0974 21.2500 264.3000 6.3621 3.4596 2.1461

Table 6.2: The smoothing ratio (SR) and the corresponding parameters of the BG-200 var-
iogram model at the 10 different time points. Note the SRs are different because of the
different estimated nugget effects. The average value of the ten SRs is 4.4861.
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Figure 6.4: The filtered kriging maps at the 10 different time points. Since the smoothing
ratios are different, the brain maps at the 10 different time points exhibit substantial vari-
ability of smoothness. Obviously, the maps at time points 61, 71 are oversmoothed; the
maps at time points 76, 83 are undersmoothed, compared with other time points. Hence it
is necessary to have temporal consistency in smoothing.
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Figure 6.5: The filtered kriging maps at the 10 different time points with an adjusted
smoothing ratio 4.50. These maps have a consistent degree of smoothness, which should
benefit further analysis.
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Time point SR Nugget Sill Range in x Range in y b
61 4.5047 2.3000 436.9759 15.6791 3.6593 2.2061
64 4.5021 21.5000 324.6026 8.7420 3.0356 1.9986
65 4.4993 14.1000 307.7412 3.3626 8.9873 2.0803
70 4.5038 40.600 283.8281 5.4552 3.4617 1.8173
71 4.6176 18.9000 297.4787 2.6707 9.0827 1.4084
76 4.5020 90.6000 350.5176 3.3371 5.0223 1.9264
80 4.5019 51.8000 408.8418 4.9444 3.8217 1.7075
83 4.4993 120.2000 542.4088 3.9937 4.5525 2.0169
85 4.4997 43.6000 294.3770 3.2400 5.9598 1.8466
89 4.5022 33.0000 264.1362 5.6935 3.8702 2.1461

Table 6.3: Since the mean value of the smoothing ratio (SR) in Table 6.2 is 4.4861, I adjust all
SRs to almost 4.5 at each time point by specifying different nugget effects and other param-
eters in the BG-200 model. Since there are no predefined methods in choosing the nugget
effect near the origin of the variogram model, the ideal SR will depend on the characteristics
of the map and how much smoothness is required.

6.4 Discussion and conclusion

6.4.1 Discussion

Choice of nugget effect From above, the choice of a behavior near the origin of the variogram

is very important in data smoothing. In geostatistics, it has to be predefined by the researcher

rather than entirely automatically because the variogram itself is not defined at lag distance

zero (Chiles and Delfiner, 1999). Since it is difficult to determine whether the modeled

variogram has been successfully estimated near the origin by the least squares method, some

papers (for example, Billings et al., 2002a and 2002b) recommend to instead choose the

nugget effect by cross-validation to achieve a better prediction performance through a bias-

variance trade-off. But I find at least in our fMRI data set, this is not an effective way.

This claim is also indicated by Goovaerts (1997). He pointed out one of the disadvantages



153

of cross-validation method in geostatistics is the relative nugget effect and the variogram

behavior at the origin can not be cross validated.

The reason is that rescaling the variogram does not affect the weights in kriging, so does

the smoothing ratio. In kriging, only the range is important for the relations between the

target point and its neighbors. Hence changing the nugget effect or sill of the variogram

without changing the range does not affect the kriging value, it only affect the kriging

variance (Schabenberger and Pierce, 2002).

In our problem, the estimated ranges in the x and y directions only change slightly as

the nugget effect changes (Table 6.1). This means that the number of effective neighbors and

their weights for the target points are almost the same. By Wahba (1990), the generalized

cross-validation (GCV) is

GCV (λ) = (n2 ·MSR)/Tr[I−A(λ̂)]2

in spline smoothing. Similarly, GCV in filtered kriging is defined as

GCV = (n2 ·MSR)/Tr[I− Ŵ]2.

Mean square residual (MSR) is a monotonically increasing function of the nugget effect

σ2
ε . Note the weight matrix W is only related to the range; when the range is almost constant

with the change of nugget effect, Tr[I− Ŵ] does not vary much. Hence the GCV function

is just a monotonic function.

σ2
ε 2 4 6 12 24 36 48

MSR 27.7430 33.6589 37.0032 43.0341 50.9338 57.7743 64.2208
DF 0.7341 0.7603 0.7745 0.7973 0.8217 0.8371 0.8491

GCV 51.4870 58.2207 61.6800 67.6890 75.4377 82.4445 89.0836

Table 6.4: At time point 64, MSR, DF, GCV values for different nugget effects σ2
ε . Since

MSR is a monotonic function and DF only has minor changes, GCV is a monotonic function
too. Therefore cross-validation does not work for our data set.
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Table 6.4 lists the MSR, DF, GCV values for different nugget effects σ2
ε at time point

64, where DF is defined as 1
n2 Tr[I− Ŵ]2. Since MSR is a monotonic function and DF only

fluctuates a little bit, GCV is a monotonic function too. Therefore cross-validation does not

work for our data set.

An exception is that we can use cross-validation to do model selection for different vari-

ogram models, because different variogram models may have different ranges. This was done

in the previous chapter.

Since there are no predefined methods in choosing the nugget effect near the origin of the

variogram model, the ideal smoothing ratio will depend on the characteristics of the data

map and how much smoothness the researcher wants. Currently I have to seek an acceptable

result by the prior knowledge subjectively to maintain a similar smoothness of the data map.

I will consider the choice of nugget effect in variogram model fitting in my future work.

6.4.2 Conclusion

In geostatistics, kriging interpolates the original data and the measurement error is usually

ignored. Here I consider filtered kriging as a smoothing method to filter the original data,

which can remove the measurement errors at the observed sites. This method incorporates

spatial information of the data in the smoothing procedure to reduce noise in an intelligent

way. I also compare the filtered kriging with the thin plate spline smoothing method, and

creatively borrow the idea of the smoothing ratio from spline smoothing to control the degree

of smoothness in filtered kriging. Use of smoothing ratio gives a clear statistical meaning and

it is easier to interpret than the nugget effect in filtered kringing. In fMRI data analysis,

it is common to smooth a sequence of time related data sets. Since the estimated nugget

effects may vary at different time points, the degrees of smoothness are different as well.

After adjusting the smoothing ratio to a fixed number in a sequence of time related fMRI

data, my results show a consistent degree of smoothness.



Chapter 7

Conclusion and future work

7.1 Conclusion

This dissertation provides an exploration of the application of geostatistical methods more

broadly in fMRI data analysis.

Clustering in fMRI time series is used to investigate and discover the salient features of

the fMRI data by the temporal structure in brain activity. Current methods - either directly

clustering the time series or through characteristic features such as the cross-correlation with

the experimental protocol signal has drawbacks: clustering of the time series themselves may

identify voxels with similar temporal behavior that is unrelated to the stimulus, whereas

cross-correlation requires knowledge of the stimulus presentation protocol. In Chapter 3, I

propose the use of autocorrelation structure instead - an idea borrowed from geostatistics; this

approach does not suffer from the deficits associated with previous clustering methods. I first

formalize the traditional classification methods as three steps: feature extraction, choice of

classification metric, and choice of classification algorithm. The use of different characteristics

to effect the clustering (cross-correlation, autocorrelation, and so forth) relates to the first of

these three steps. I then demonstrate the efficacy of autocorrelation clustering on a simple

visual task, and on resting data. A byproduct of my analysis is the finding that masking

prior to clustering, as is commonly done, may degrade the quality of the discovered clusters,

and I offer an explanation for this phenomenon.

The use of autocorrelation structural analysis in clustering provides an attractive frame-

work in data-driven analysis, but it still has a weakness, which is the lack of dimension

reduction for the ill-balanced data. When the idea of the subtraction paradigm is used in the

155
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dimension reduction step (Sommer and Wichert, 2002) some prior knowledge about the data

is needed. Sparse principal component analysis (SPCA) (Zou et al., 2006) is a relatively new

technique which can combine dimension reduction, feature extraction and clustering together.

SPCA uses the idea of LASSO in dimension reduction without any pre-requirements of the

data. Also, SPCA produces comparable clustering results to the autocorrelation structural

analysis. But since the informative content of the time courses is not taken into account in

the SPCA process, the main disadvantage of SPCA is that the outcomes need to be judged

and interpreted, which is quite similar to ICA in fMRI. Hence structural analysis in Chapter

3 is still needed after SPCA. In Chapter 4, SPCA and autocorrelation structural analysis are

jointly used to cluster fMRI time series. This purely model-free approach not only changes

the whole clustering process to be data-driven, but also offers a well-grounded framework for

data clustering. Since both techniques consider the correlations among the time courses, they

provide consistent results and the efficiency of the clustering procedure is greatly improved.

Chapter 4 also shows that masking the brain prior to clustering is not necessarily effective

for dimension reduction, consistent with the conclusion in the previous chapter.

Chapter 5 changes the point of view to the spatial analysis of the fMRI data. An axial

image of the brain is chosen for demonstration purpose. The structural analysis of the empir-

ical variograms during different time points is executed at first. This procedure is almost the

same as that in Chapter 3, but aims at finding different spatial patterns instead of different

temporal patterns, as was done in previous chapters. The results reflect the activations of the

brain by the experimental task, which gives a good understanding of how the brain reacts

to the experimental task.

In variogram modeling, the current choice in fMRI is either simply using a monotonic

function or changing the lag distance from the physical location distance to the measured

signal distance. Both approaches have drawbacks: use of a monotonic function in structural

analysis simplifies the problem but it considers the physical neighbors only and ignores the

functional connections among the distant voxels; changing the definition of the lag distance
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may violate the assumption that there is no measurement error in the lag distance, because

the measured signals are not as precise as measured physical locations. Hence auxiliary data

is usually needed for estimating the lag distance. The variogram model is called “hole effect”

when it shows a cyclical pattern with a “down-hole”. I show that the use of the hole effect

variogram model offers advantages in describing the structure of the fMRI data. Unlike

the previously proposed, my approach considers both the nonlinear physical distance and

functional distance inside the brain and does not need any auxiliary data.

Chapter 6 considers filtered kriging as a smoothing method to filter the original data,

which can remove the measurement errors at the observed sites. This method incorporates

combining spatial information of the data in the smoothing procedure and can reduce the

noise of the data in an intelligent way. I also compare filtered kriging with the thin-plate

spline smoothing method, and creatively borrow the idea of the smoothing ratio from spline

smoothing to control the degree of smoothness in filtered kriging. Use of the smoothing

ratio gives a clear statistical meaning and it is easier to interpret than the use of nugget

effect in filtered kringing. In fMRI data analysis, it is common to smooth a sequence of time

related data sets. Since the estimated nugget effects may vary at different time points, the

degrees of smoothness are different also. In filtered kriging, I adjust the smoothing ratio to a

fixed number in a sequence of time related fMRI data, which takes into account the temporal

information in the spatial analysis. My results show a consistent degree of smoothness among

a sequence of time related data in the data processing procedure.

In summary, I mainly contribute two different geostatistical approaches to fMRI data

analysis: one is concentrated on temporal analysis, i.e., clustering of fMRI time series; the

other aims at spatio-temporal analysis of fMRI data, i.e., structural analysis and filtered

kriging in a sequence of time related data sets. As a complement, two charts representing

the methods I use in the dissertation are graphically presented in Figures 7.1 and 7.2.

Figure 7.1 includes the procedures covered in Chapter 3 and Chapter 4. By jointly using

SPCA method and geostatistical method in the clustering procedure, my new method is
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Figure 7.1: Steps in clustering of fMRI time series

Figure 7.2: Steps in spatio-temporal analysis of fMRI data
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purely data-driven and is superior to other current clustering methods in fMRI. Figure 7.2

gives a big picture of the smoothing procedure of a sequence of time related data sets. By

considering the hole effect structure and controlling the smoothing ratio, both spatial and

temporal information of the data are taken account in the smoothing procedure. Especially,

the functional relations inside the brain are considered without any auxiliary data, which is

new in fMRI. I also give a new explanation of the smoothing ratio based on the geostatistical

view, which has not been seen in literature.

7.2 Future work

In the near future, I will consider the following post-dissertation works:

In the clustering of fMRI time series, I use the empirical autocorrelation as the main

feature, which is easy to use and very popular in geostatistics. But voxel values at adjacent

time points are likely correlated in the presence of noise. Modeling the autocorrelation may

remove the noise and improve the precision of clustering results. No such parametric models

have been proposed and proven to be valid for fMRI data. I will consider such models in

future. Also, in the clustering of fMRI time series, the silhouette values may be negative in

some clusters (e.g, Figure 4.12, graphs (5) and (6)), which means some voxels are not well-

classified. I will investigate the relationships between the clustering method and number of

negative silhouette values by simulations in the future.

In describing the physical and functional relations inside the brain, the choice of hole effect

variogram is very important. But hole effect structural analysis is a relatively unexplored

area and is usually ignored in geostatistics. How to well define a suitable variogram model

and keep the balance between the physical and functional relations in the model fitting will

be considered in future work.

Cokriging is the logical extension of kriging to situations where two or more variables

are spatially interdependent. Hence cokriging can be considered as the multivariate case of

kriging. Cokriging is the extension of kriging to the situation where auxiliary variables can
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be used to improve the kriging estimate. In my opinion, cokriging can be applied in the

following two different cases for fMRI: one is in Chapter 5, where only one slice of data is

considered for kriging. It is possible to consider the whole volume or several relevant slices

together by cokriging, where different slices are considered as different variables. The other

is in Chapter 6. We may treat the spatio-temporal random function Z(s, t) as a collection of

a finite number T of temporally correlated spatial random functions Z(s), i.e., the variables

of cokriging are the different time points. Overall, we can address the kriging in multi-slice

or multi-time studies. These will also be my future works.
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