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Abstract

Plasmodium parasites were identified as the cause of malaria more than 200 years ago.

However, malaria remains a public health burden responsible for approximately 400,000

(236,000 ∼ 635,000) death in 2015. Severe malaria is responsible for the majority of malaria

mortality, yet the understanding of mechanisms of host responses underlying severe malaria

pathology remains incomplete. The objective of this project is to identify and characterize

host transcriptomic, cellular and cytokine responses that are associated with malaria severity.

To quantify the removal of healthy red blood cells (hRBCs) by the host, we created a

novel mathematical model that could capture the various outcomes of malaria infection. This

model was fitted to the Malaria Host-Pathogen Interaction Center (MaHPIC) time series data

set of five Macaca mulatta infected with Plasmodium cynomolgi. Using the fitted model, our

group discovered association of the loss of healthy red blood cells and pro-inflammatory

cytokines and CD-8 T cell population.

Furthermore, our group also created novel statistical tools for the identification of differ-

ential networks. Through the application of both traditional bioinformatics analysis tools and



differential network analysis, our group characterized severe malaria infection with differen-

tial transcriptional up-regulation of genes linked with response to the pathogen-associated

molecular pattern (PAMP) and pro-inflammatory cytokines.

Through a combined approach of mathematical modeling, differential network analysis

and traditional bioinformatics analysis, we were able to identify host transcriptomic, cellular

and cytokine responses that are associated with both malaria severity and host removal of

healthy red blood cells. This project provides novel insight into the molecular and cellular

basis for the development of severe malaria.

Index words: Malaria, Plasmodium cynomolgi, Bioinformatics, Partial Differential
Equation Model, Differential Network Analysis
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Chapter 1

Introduction and Literature Review

1.1 Background and Problem Statement

Malaria is a major public health burden, responsible for approximately 400,000 (236,000 ∼

635,000) deaths in 2015 [33]. Out of the five human Plasmodium species capable of causing

malaria, P. falciparum and P. vivax account for the majority of human malaria infections.

Plasmodium is a large genus of parasitic protozoa (unicellular eukaryotic organisms), with

complex genomes and sophisticated life cycles. The genome, behavior and epidemiological

characterization of Plasmodium are orders of magnitude more complex than that of viruses

or bacteria. The clinical manifestation of infection by Plasmodium, the disease malaria, has

a broad spectrum of symptoms, varying from asymptomatic to highly severe. Malaria affects

birds, reptiles, and some mammals (mostly rodents and primates).

The Plasmodium life cycle is comprised of several stages, as demonstrated in Figure 1.1.

The infection process in humans starts with the injection of sporozoites by female anophe-

line mosquitoes into the skin of the host. This is followed by the liver stage, in which the

inoculated sporozoites grow and multiply asexually within hepatocytes for 1-2 weeks to

produce merozoites. The newly produced merozoites emerge from the liver and enter the

bloodstream. The blood-stage infection starts immediately after the hepatic stage; mero-

zoites invade red blood cells (RBCs) where they also reproduce asexually. In some instances,

the parasites develop into the sexual stage form called gametocytes. Gametocyte infected red

blood cells (iRBCs) infect newly feeding anopheline mosquitoes and through sexual repro-

duction, followed by many more rounds of asexual multiplication, are ultimately transformed
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Figure 1.1: Schematic Diagram Describing the Malaria Life Stages. Original graphic gener-
ated by Galinski et al. [16]

into sporozoites, thus completing the infection cycle between an Anopheline mosquito and

its host.

The parasite’s blood stage infection in both human and non-human primates has a regular

cycle of 24 or 72 hours depending on the species of the Plasmodium parasite [6, 11]. The

parasites invade healthy RBCs and replicate asexually, remodeling and ultimately destroying

the RBCs in the process. The destruction of RBCs during blood-stage malaria infection

sometimes results in severe anemia, which is one of the major complications of malaria and

a leading cause of mortality. Anemia caused by malaria infection is a complicated process

not only involving the malaria parasites and host RBCs, but also the innate and adaptive

immune system of the host [26, 35].
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The proposed research aims to understand better the development of severe malaria

symptoms with an emphasis on severe anemia through the multi-omic and multi-scale char-

acterization of the host response to malaria infection associated with severe malaria.

1.2 Objective, Hypothesis, and Specific Aims

Development of Mathematical Model Describing Cellular Dynamics During

Malaria Infection

Our first aim is to develop a mathematical model that simulates the with-in host dynamics of

healthy red blood cells and infected red blood cells. One of the earlier models describing the

interaction among red blood cells, malaria parasite and host immune response is published

by Anderson et al. in 1989 [2]. The Anderson model included four compartments: healthy

red blood cells, infected red blood cells, free merozoite and immune effector response. The

model was used to demonstrate that merozoite based intervention is less effective than inter-

vention aimed against infected red blood cells. One important aspect of malaria infection

which the Anderson model failed to capture was the possible disruption of erythropoietic

process [13, 32, 35]; erythropoiesis refers to the differentiation and maturation of hematopoi-

etic stem cells (HSCs) through committed cell lineages culminating in the production of

erythrocytes/RBCs.

Multiple other models have been proposed loosely based on the Anderson model. In the

model published by Hellriegel et al. [21], the author explored the scenario of superinfection,

where multiple malaria parasite species co-infects a host and concluded that in the absence

of host immune response, the more virulent parasite strain would dominate the parasite

population. Similar to the Anderson model, the Hellriegel model failed to incorporate para-

site and red blood cell age structures and variable erythropoiesis process. Later models by

Grosvenor et al [18] included age compartment for the parasites. Models including the age

structure of red blood cells have also been proposed [29]. Additionally, taking advantage of
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the regularity of malaria life cycle and possible synchronicity of parasite populations during

blood stage infection [37], several discrete time step models has also been proposed [23, 31].

Our model aims to include age structure for both healthy red blood cells and infected

red blood cells. The inclusion of age structure allows the model to accommodate preferential

infection of young red blood cells by P. vivax and varying degrees of synchronicity of the

parasite. Furthermore, the model captures the three import factors contributing to severe

anemia caused by malaria infection: (i) The destruction of RBCs directly by the parasite,

(ii) the destruction of RBCs by a non-parasitic factor, possibly the host immune system, and

(iii) the disruption of the host’s erythropoietic process.

Classic models of erythropoiesis rest on three variables representing the precursor/progenitor

population of immature erythrocytes, the population of mature RBCs, and the concentration

of erythropoietin (Epo), a signaling molecule critical to erythrocyte production. Mackey

and Milton (1990) represented these three variables with a system of ordinary differential

equations (ODEs) with one delay accounting for the time for EPO-dependent maturation

of progenitors into erythrocytes (about six days) [27]. In 1995, Belair et al. developed an

“age-structured” partial differential equation (PDE) model for erythropoiesis [4]. Belair et

al.’s model characterizes the proliferation and aging of the precursor and mature erythrocyte

populations as nonlinear, first-order PDEs and includes an ODE to represent EPO dynamics

over time. Building on Belair’s 1995 model, Mahaffy et al. (1998) investigated the addition

of state-dependent delays to the model [28].

Due to the difficulty involved in measuring EPO accurately over an extended period, we

formulated the rate at which mature RBCs enter circulation as only dependent upon the

current number of RBCs and the number of RBCs at equilibrium. Such a formulation has

previously been shown by Savil et al in 2009. To capture the erythropoiesis process using

data derived from a murine model [39]. As the only formulation of an erythropoiesis model

without an EPO component that has been validated by time course data, we believe that
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such a formulation would also be able to capture the fluctuation in the erythropoietic process

due to loss of RBCs within our hemodynamic system.

To capture the complex interactions between different age groups of iRBCs, RBCs and

various immune cells during blood stage malaria [30], we propose a coupled age-structured

PDE model of both iRBCs and host RBCs. Our model borrows from the erythropoiesis PDE

model [1, 45] and expands upon it by adding the parasite age structure system and the effect

of immune cells on both RBCs and iRBCs. We hypothesize that such a model will be able

to recreate the three clinical outcomes of malaria infection: the death of the host, clearance

of parasites and chronic disease where the parasite and the host co-exists. Additionally, the

model can be used to quantify the rate of the removal of healthy red blood cells.

Development of Novel Statistical Tools for the Integrative Analysis of

Multi-Scale Data

Our second aim is to develop novel statistical tools for the integrative analysis of multi-scale

and multi-omics data. The advent of high-throughput molecular technologies has allowed us

to measure a large number of variables simultaneously. Transcriptomic experiments typically

measure the abundance of 20,000 or so transcripts. The number of variables measured by

other “omic” technologies such as lipidomic, proteomic, glycomic and metabolomic studies is

of similar magnitude. Time series -omic data refers to molecular snapshots taken using these

-omic technologies on a time trajectory. Time series -omic data captures time-dependent

molecular dynamics and is a powerful tool in the study of disease progression [3], develop-

mental processes [38] and vaccination [34].

A variety of tools has been developed for the analysis of time series -omic data. Methods

such as MESS [5] and EDGE [41] aim to discover individual gene expression time series

that are significantly different between two experimental conditions. Other methods such as

TcGSA [20], CAMERA [51], and GSEA-TS [43] seek to find time series of pre-defined gene
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sets that are significantly different among groups. Furthermore, clustering based time series

analysis tools [14, 42] have also been developed.

Current time series analysis tools focus on finding gene expression time series or pre-

defined gene sets that most likely have changed between groups but ignore the changes in

pairwise gene dynamics. Pairwise dynamics between genes can be quantified using corre-

lation, mutual information or a distance metric. Differential correlation has been used to

study gene association with the clinical outcome of lung cancer [40] and estrogen receptor

modulation in hormonal cancers [22].

Differential network analysis (DiNA) refers to a recent school of algorithms focused on

identifying differences in network topology between states. Unlike traditional differential

analysis, DiNA identifies changes in the pairwise dynamics of genes rather than the shift in

abundance of individual genes. DiNA has been successfully used for the identification of tran-

scriptional regulator [8] and estrogen modulated genes in cancer [22]. Various methods have

been proposed to conduct DiNA, such as modulator inference by network dynamics (MINDy)

[48], differential network analysis in genomics (DINGO) [19] and modulated gene interaction

(MAGIC) analysis [22]. Each algorithm adapts its own metric to detect differential dynamics

between genes, MINDy uses mutual information based measurement of dynamics between

two genes, MAGIC uses Spearman correlation, and DINGO utilizes a Gaussian graphical

model. Each metric aims to characterize pair-wise dynamics based on a derived quantity,

and each metric has its own limitations, for example, Pearson’s correlation coefficient only

detects changes in linear dependency between two variables.

We aim to develop a novel metric to apply differential network analysis to time series data

that overcomes the limitation of correlation measurement. Furthermore, we aim to develop

an ensemble differential network analysis tool to leverage the strength of multiple network

quantification methods. Our group hypothesizes that our novel differential network analysis

can reveal underlying host response that is associated with malaria severity.
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Characterization of Host Response to Malaria Infection Associated with

Disease Severity in Macaca mulatta infected with Plosmodium cynomolgi

Our third aim is to apply the developed model and statistical tools to characterize the associa-

tion between host response and malaria severity. Specifically in Macaca mulatta infected with

P. cynomolgi. Our goal is to identify differentially regulated genes, cell types and immune

functions that are unique to hosts experiencing severe malaria. The identification of these

entities will allow us to generate novel hypothesis explaining the underlying mechanism of

severe malaria.

Despite the vast potential of host transcriptome data to help elucidate the molecular

mechanisms underlying malaria pathology, very few primate host transcriptome studies have

been conducted. In 2005, Joni Ylostalo et al generated the first transcriptome time series

of two Plasmodium cynolomolgi infected M. mulattas [54]. In 2014, Junya Yamagishi et al

conducted RNA-seq analysis of 116 Indonesian patients infected with Plasmodium falciparum

and discovered sets of host genes that correlate with the severity of malaria infections [53].

Plasmodium cynolmogi is a non-human primate parasite that infects old world mon-

keys and is capable of recapitulate clinical and histopathological findings of vivax malaria

patients[12, 15, 44]. It is both genetically and physiologically similar to P. vivax [44, 50]. For

instance, both parasites exhibit 48-h erythrocytic cycle during blood stage infection [9], pref-

erential infection of reticulocytes [49] and form hypnozoites, which are dormant, liver stage

forms that can activate and cause relapse infections [25]. Due to the difficulty of studying P.

vivax pathogenesis, P. cynomolgi infection of rhesus monkeys (M. mulatta ) has being used

to better understand hypnozoite caused relapse [10].

Host clearance of malaria parasites without complication requires a concerted effort

between inflammatory and anti-inflammatory cytokines; their balance and timing are crit-

ical in determining clinical outcome [17]. The association of cytokine, transcriptomic and

immune response and clinical outcome has been extensively studied in P. falciparum infec-

tion [7, 36, 46, 47, 52], in comparison, much less is known for P. vivax infection.
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With the aim to better characterize P. vivax infection in humans, a time series experiment

where five M. mulatta were infected with P. cynomolgi was conducted as a part of the Malaria

Pathogen-Host Interaction Center (MaHPIC) project [24]. This experiment captured host

transcriptomic, cellular and cytokine response to P. cynomolgi. The subjects within this

study responded to the infection in different manners and resulted in one death, two cases

of severe malaria, and two cases of mild malaria. The presence of both severe malaria and

mild malaria provided us the opportunity to characterize host responses that associated with

clinical outcome.

We hypothesize that the temporal immune and cytokine profiles of the two subjects expe-

riencing severe malaria and the two subjects experiencing mild malaria are significantly dif-

ferent. Identification of the specific genes, cellular population and cytokine response uniquely

associated with severe malaria should be enriched in biological functions that can shed light

on the underlying molecular mechanisms associated with severe malaria pathology. Further-

more, the rate of healthy red blood cell removal for all four subjects will be estimated using

the model described in chapter 2, and we expect to identify sets of genes, cellular population,

and cytokine that are highly correlated with the rate of healthy red blood cell removal. These

findings will provide insight into the mechanisms of malaria induced anemia.
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2.1 Abstract

We developed a coupled age-structured partial differential equation model to capture the

disease dynamics during blood-stage malaria. The addition of age structure for the parasite

population, with respect to previous models, allows us to better characterize the interaction

between the malaria parasite and red blood cells during infection. Here we prove that the

system we propose is well-posed and there exist at least two global states. We further demon-

strate that the numerical simulation of the system coincides with clinically observed outcomes

of primary and secondary malaria infection. The well-posedness of this system guarantees

that the behavior of the model remains smooth, bounded, and continuously dependent on

initial conditions; calibration with clinical data will constrain domains of parameters and

variables to physiological ranges.

2.2 Introduction

The goal of this article is to formulate a mathematical model to characterize the within-host

dynamics present in the disease malaria, between different host cell types and pathogens

of the Plasmodium species. Plasmodium is a large genus of parasitic protozoa (unicellular

eukaryotic organisms), with complex genomes and sophisticated life cycles. The genome,

behavior, and epidemiological characterization of Plasmodium are orders of magnitude more

complex than that of viruses or bacteria. The clinical manifestation of infection by Plas-

modium, the disease malaria, has a wide spectrum of symptoms, varying from asymptomatic

to highly severe. Malaria affects birds, reptiles, and some mammals (mostly rodents and

primates).

The Plasmodium life cycle is comprised of several stages. The infection process in humans

starts with the injection of sporozoites by female Anopheline mosquitoes into the skin of the

host. This is followed by the liver stage, in which the inoculated sporozoites grow and multiply

asexually within hepatocytes for 1-2 weeks to produce merozoites. The newly produced
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merozoites emerge from the liver and enter the blood stream. The blood-stage infection

starts immediately after the hepatic stage; merozoites invade red blood cells (RBCs) where

they also reproduce asexually. In some instances, the parasites develop into the sexual stage

form called gametocytes. Gametocyte-infected red blood cells (iRBCs) infect newly feeding

Anopheline mosquitoes and through sexual reproduction followed by many more rounds

of asexual multiplication are ultimately transformed into sporozoites, thus completing the

infection cycle between an Anopheline mosquito and its host.

The parasite’s blood-stage infection in both human and non-human primates generally

has a regular cycle of 24 to 72 hours depending on the species of the Plasmodium parasite

[3, 4]. The parasites invade healthy RBCs and replicate asexually, remodeling and ultimately

destroying the RBCs in the process. The destruction of RBCs during blood-stage malaria

infection sometimes results in severe anemia, which is one of the major complications of

malaria and a leading cause of mortality. Human and non-human primate RBCs have a

normal life span of 120 to 100 days, respectively, where afterwards RBCs are cleared rapidly

[11]. Both the age structure of RBCs and iRBCs play an important role in the hematody-

namics of the host during malaria infection. It has been shown previously that Plasmodium

vivax infects RBCs of different age groups at different rates and the interaction between

the life cycle of the malaria parasite and the immune system can lead to synchrony of the

parasite [12, 14]. Anemia caused by malaria infection is a complex process not only involving

the malaria parasites and host RBCs, but also the innate and adaptive immune system of

the host [7, 13]. It has been previously postulated that there are at least three factors that

contribute to severe anemia resulting from blood stage malarial infection: (i) The destruc-

tion of RBCs directly by the parasite, (ii) the destruction of RBCs by a non-parasitic factor,

possibly the host immune system, and (iii) the disruption of the host’s erythropoietic pro-

cess [6, 11, 13]; erythropoiesis refers to the differentiation and maturation of hematopoietic

stem cells (HSCs) through committed cell lineages culminating in the production of erythro-

cytes/RBCs.
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Classic models of erythropoiesis rest on three variables representing the precursor/progenitor

population of immature erythrocytes, the population of mature RBCs, and the concentration

of erythropoietin (Epo), a signaling molecule critical to erythrocyte production. Mackey

and Milton (1990) represented these three variables with a system of ordinary differential

equations (ODEs) with one delay accounting for the time for Epo dependent maturation

of progenitors into erythrocytes (about 6 days) [8]. In 1995, Belair et al. developed an

“age-structured” partial differential equation (PDE) model for erythropoiesis [2]. Belair et

al.’s model characterizes the proliferation and aging of the precursor and mature erythrocyte

populations as nonlinear, first order PDEs and includes an ODE to represent Epo dynamics

over time. Building on Belair’s 1995 model, Mahaffy et al. (1998) investigated the addition

of state-dependent delays to the model [9].

Due to the difficulty involved in measuring Epo accurately over an extended period of

time, we formulated the rate at which mature RBCs enter circulation as only dependent upon

the current number of RBCs and the number of RBCs at equilibrium. Such a formulation has

previously been shown by Savil et al. to capture the erythropoiesis process using data derived

from a murine model [15]. As the only formulation of an erythropoiesis model without an Epo

component that has been validated by time course data, we believe that such a formulation

would also be able to capture the fluctuation in the erythropoietic process due to loss of

RBCs within our hematodynamic system.

Most recent and most relevant to our study, Thibodeaux et al. published two papers

(2010, 2013) modifying Belair, Mackey, and Mahaffy’s 1995 model in an attempt to simulate

and analyze erythropoietic dynamics subject to malaria infection [1, 16]. They conjoined an

ODE-based model of malaria infection with an age-structured PDE model of erythropoiesis,

and examined the dynamics of this new system to simulate the effects of hemozoin (Hz) on

the suppression of erythropoiesis.

In order to capture the complex interactions between different age groups of iRBCs,

RBCs and various immune cells during blood stage malaria [10], we propose a coupled
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age-structured PDE model of both iRBCs and host RBCs. Our model borrows from the

erythropoiesis PDE model [1, 16] and expands upon it by adding the parasite age structure

system and the effect of immune cells on both RBCs and iRBCs.

This paper is organized as follows: Section 2 contains the detailed derivation and descrip-

tion of our hematodynamic model. Section 3 proves the well posedness of the system and the

existence of at least two global behaviors of biological interest. Section 4 provides numer-

ical simulation results of our model. Section 5 offers some conclusions, and presents future

directions.

2.3 Model Formulation

Let u(a, t) be a function which approximates the concentration of RBCs of age a at time

point t. RBCs of age > amax are rapidly cleared from the circulation, thus we assume that

u(a, t) = 0 when a > amax. Additionally, Let v(α, t) be a function that approximates the

concentration of iRBCs of age α at time t. iRBCs of age αmax burst to produce merozoites,

which in turn infect other RBCs, thus we assume that v(α, t) = 0 when α > αmax. Assuming

that the loss of RBCs during blood stage malarial infection is only due to parasite invasion,

innate immune cells, adaptive immune cells, random loss of RBCs during aging and the rapid

clearance of RBCs with age > amax, and the destruction of RBCs by innate and adaptive

immune cells follows the law of mass action, then the difference between the concentrations
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of RBCs across all ages between two time points, t1 and t2 is∫ amax

a0

u(a, t2) da =

∫ amax

a0

u(a, t1) da +

∫ t2

t1

u(a0, t) dt −
∫ t2

t1

u(amax, t) dt

− γ
∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u(a, t)) dt da

−
T∑
i=1

∫ amax

a0

∫ t2

t1

wi(t)θiu(a, t) dt da

−
Q∑
i=1

∫ amax

a0

∫ t2

t1

si(t)ψiu(a, t) dt da

−
∫ amax

a0

∫ t2

t1

h(a)u(a, t) dt da , (2.1)

where

p(u(a, t)) =
u(a, t)∫ amax

a0
u(a, t)

is a probability density function such that
∫ amax
a0

p(u(a, t))da = 1.

The left hand side (LHS) term of (2.1) and the first three terms of the right hand side

(RHS) of (2.1),∫ amax

a0

u(a, t2) da =

∫ amax

a0

u(a, t1) da +

∫ t2

t1

u(a0, t) dt −
∫ t2

t1

u(amax, t) dt,

account for the change of the concentration of RBCs from t1 to t2 due to the production of

new RBCs and the rapid clearance of RBCs with age > amax.

The term

−γ
∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u(a, t)) dt da ,

accounts for the loss of RBCs due to infection from bursting iRBCs. v(αmax, t) is the con-

centration of bursting iRBCs at time t. r(a) is the success rate of merozoites infecting RBCs

of age a. γ is the expected number of merozoites each bursting iRBC produces. p(u(a, t))

is the expected percentage of merozoites infecting RBCs of specific age a at time t. The

concentration of new iRBCs produced at time t is

γ

∫ amax

a0

v(αmax, t)r(a)p(u(a, t)) da. (2.2)
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The term

−
T∑
i=1

∫ amax

a0

∫ t2

t1

wi(t)θiu(a, t) dt da,

accounts for the loss of RBCs due to T different kinds of innate immune cells. wi(t) is the

concentration of the ith kind of innate immune cells at time t. θi represents the ith kind of

innate immune cell’s effectiveness at destroying RBCs. The term

Q∑
i=1

∫ amax

a0

∫ t2

t1

si(t)ψiu(a, t) dt da,

accounts for the loss of RBCs due to Q different kinds of adaptive immune cells. si(t) is the

concentration of the ith kind of adaptive immune cells at time t and ψi represents the ith

kind of adaptive immune cell’s effectiveness at destroying RBCs.

The last term ∫ amax

a0

∫ t2

t1

h(a)u(a, t) dt da ,

accounts for the random loss of RBCs during aging. h(a) is the natural death rate of RBCs

of different ages.

Using the fundamental theorem of Calculus, it is clear that:∫ amax

a0

u(a, t2) da −
∫ amax

a0

u(a, t1) da =

∫ amax

a0

∫ t2

t1

ut dt da, (2.3)

and ∫ t2

t1

u(a0, t) dt−
∫ t2

t1

u(amax, t) dt = −
∫ t2

t1

∫ amax

a0

ua da dt. (2.4)

Substituting (2.3) and (2.4) into (2.1), we obtain:∫ amax

a0

∫ t2

t1

ut dt da +

∫ t2

t1

∫ amax

a0

ua da dt =

− γ
∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u(a, t)) dt da

−
T∑
i=1

∫ amax

a0

∫ t2

t1

wi(t)θiu(a, t) dt da

−
Q∑
i=1

∫ amax

a0

∫ t2

t1

si(t)ψiu(a, t) dt da

−
∫ amax

a0

∫ t2

t1

h(a)u(a, t) dt da, (2.5)
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which can be rearrange to the following equation because all the terms have the same integral:∫ amax

a0

∫ t2

t1

(ut + ua) da dt =

− γ
∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u(a, t))dt da

−
∫ amax

a0

∫ t2

t1

(
T∑
i=1

wi(t)θi +

Q∑
i=1

si(t)ψi + h(a)

)
u(a, t)dt da. (2.6)

If the function u(a, t) and its partial derivatives are continuous functions then the integrands

on both sides of (2.6) should be equal, which leads us to the following partial differential

equation:

∂u

∂t
+
∂u

∂a
=−

(
T∑
i=1

wi(t)θi +

Q∑
i=1

si(t)ψi + h(a)

)
u(a, t)

− γv(αmax, t)r(a)p(u(a, t)). (2.7)

(2.7) is subject to the boundary condition:

u(0, t) = f(t, ϕ(t)), (2.8)

where

f(t, ϕ(t)) =


ς, t < Td

ςeε(ϕ0−ϕ(t)), t > Td.

This boundary condition reflects the erythropoietic response to the change in concentration

of RBCs. ϕ(t) is the concentration of RBCs at time point t, ς is the normal rate at which

RBCs enter the peripheral blood, Td reflects a one time lag in the erythropoietic response

to the change in concentration of RBCs, as the erythropoietic process only responds to the

infection after a time period of Td. ϕ0 is the normal concentration of RBCs in a healthy host

and ε is a parameter that controls the maximum amount of erythropoietic response. During

malarial infection, as the concentration of RBCs decreases due to malaria parasites, the rate

of new RBCs entering into circulation increases.

The age structured model of iRBCs can be similarly derived. Let v(α, t) be a function

that approximates the concentration of iRBCs of age α at time t. iRBCs of age αmax bursts
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to produce merozoites, which in turn infect other RBCs, thus we assume that v(α, t) = 0

when α > αmax. Assuming the loss of iRBCs is only due to the bursting of iRBCs of

age αmax, innate immune cells and adaptive immune cells, then the difference between the

concentration of iRBCs across all ages between two time points, t1 and t2 is∫ αmax

α0

v(α, t2) dα =

∫ αmax

α0

v(α, t1) dα +

∫ t2

t1

v(α0, t) dt −
∫ t2

t1

v(αmax, t) dt

−
T∑
i=1

∫ αmax

α0

∫ t2

t1

wi(t)φiv(α, t) dt dα

−
Q∑
i=1

∫ αmax

α0

∫ t2

t1

si(t)bi(t)v(α, t) dt dα

(2.9)

Using the same technique we used to derive (2.7), we arrive at the following PDE for v(α, t):

∂v

∂t
+ V

∂v

∂α
= −

(
T∑
i=1

wi(t)φi +

Q∑
i=1

si(t)bi(t)

)
v(α, t), (2.10)

where V is the speed at which the parasite ages, which is subject to the unit of α and the

term

bi(t) =
νi

1 + exp
(
−λi(

∫ t
t0
v(0, t) dt− ξi)

) ,
describes the adaptive immune cell i’s effector strength against iRBCs. The function bi(t)

captures the ability of adaptive immune cells to increase their effect against iRBCs through

increased exposure, which increases, as the exposure to new iRBCs, characterized by∫ t
t0
v(0, t) increases past threshold ξi. The effector strength has a maximum value of νi as

the amount of exposure to iRBCs becomes substantially large.

The term

−

(
T∑
i=1

wi(t)φi

)
v(α, t),
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describes the destruction of iRBC by different innate immune cells each with constant

strength φi. The term

−

(
Q∑
i=1

si(t)bi(t)

)
v(α, t),

describes the destruction of iRBCs by different adaptive immune cells each with strength

bi(t) that changes according to the total exposure to iRBCs. Additionally, this PDE is subject

to the boundary condition:

v(α0, t) = γ

∫ amax

a0

v(αmax, t)r(a)p(u(a, t))da,

which describes the creation of new iRBCs. Because the life span of an iRBC is between 24

and 72 hours, and the infection process is within minutes, we assume that such process is

instantaneous within our model.

Additionally, due to the presence of iRBCs, the following equation is proposed to describe

the change in concentration of innate immune cells:

dwi
dt

= oi(t)− βiwi(t)− τiwi
∫ αmax

α0

v(α, t)dα, (2.11)

and

oi(t) = $i +
εi −$i

1 + exp
(
−ηi(

∫ αmax
α0

v(α, t)dα−Mi)
) . (2.12)

We assume that each innate immune cell population w(t)i decays at a rate of βi. The pro-

duction of innate immune cells increases as the concentration of iRBCs increases past a

threshold Mi and reaches a maximum level of εi − $i. Additionally, the term τi describes

the loss of functionality of innate immune cells upon contact with iRBCs. (2.12) describes

the change in the rate of production of innate immune cells in response to the change in

concentration of iRBCs.

The change in adaptive immune cell population in response to increased concentration

of iRBCs is similarly formulated as the following:

dsi
dt

= li(t)− δisi(t)− ϑisi
∫ αmax

α0

v(α, t)dα, (2.13)
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and

li(t) = σi +
%i − σi

1 + exp
(
−ωi(

∫ αmax
α0

v(α, t)dα−Ri)
) . (2.14)

We assume that each adaptive immune cell population s(t)i decays at a rate of δi. The

production of adaptive immune cells increases as the concentration of iRBCs increases past

a threshold Ri and reaches a maximum level %i− σi. Additionally, the term ϑi describes the

loss of functionality of adaptive immune cells upon contact with iRBCs. (2.14) describes the

change in the the rate of production of adaptive immune cells in response to the change in

concentration of iRBCs.

Putting (2.7), (2.8), (2.10), (2.11), (2.11), and (2.13) together we arrive at the following

PDE system:

∂u

∂t
+
∂u

∂a
=−

(
T∑
i=1

wi(t)θi +

Q∑
i=1

si(t)ψi + h(a)

)
u(a, t)

− γv(αmax, t)r(a)p(u(a, t)),

∂v

∂t
+ V

∂v

∂α
=−

(
T∑
i=1

wi(t)φi +

Q∑
i=1

si(t)bi(t)

)
v(α, t),

dwi
dt

=oi(t)− βiwi(t)− τiwi(t)
∫ αmax

α0

v(α, t)dα,

dsi
dt

=li(t)− δisi(t)− ϑisi(t)
∫ αmax

α0

v(α, t)dα,

(2.15)

subject to the following initial and boundary conditions:

u(a, 0) =g(a),

u(0, t) =f(t, ϕ(t)),

v(α, 0) =c(α),

v(0, t) =γ

∫ amax

a0

v(αmax, t)r(a)p(u(a, t)) da,

where g(a) is the initial RBC age distribution and c(α) is the initial iRBC age distribution.

Since only Plasmodium vivax has been shown to infect RBCs of different ages at different

rates [12], we consider r(a) to be a constant κ within our model where κ ∈ [0, 1]. Furthermore,
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due to a lack of data regarding the loss of innate and adaptive immune function upon

interaction with iRBC, we consider ϑi and τi to be 0 within our model. Additionally, according

to the erythropoiesis model developed by Savil et al [15], h(a) was also set to be a constant.

Lastly, we assume that the total number of iRBCs is much smaller than the total number

of RBCs. Therefore, the crowding effect on the production of iRBCs is negligible. This

assumption is justified if the host becomes resilient or completely removes the infection. The

simplified model is:

∂u

∂t
+
∂u

∂a
=−

(
T∑
i=1

wi(t)θi +

Q∑
i=1

si(t)ψi + h(a)

)
u(a, t)

− γκv(αmax, t)p(u(a, t)),

∂v

∂t
+ V

∂v

∂α
=−

(
T∑
i=1

wi(t)φi +

Q∑
i=1

si(t)bi(t)

)
v(α, t),

dwi
dt

=oi(t)− βiwi(t),

dsi
dt

=li(t)− δisi(t),

(2.16)

subject to the following initial and boundary conditions:

u(a, 0) =g(a),

u(0, t) =f(t, ϕ(t)),

v(α, 0) =c(α),

v(0, t) =γκ

∫ amax

a0

v(αmax, t)p(u(a, t)) da.

(2.17)

From this point on we will be working with the above simplified version of our model.
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2.4 System Behavior

2.4.1 Immune Saturation

Given an large parasite exposure, the adaptive immune strength bi(t) becomes constant:

lim∫ t
t0
v(0,t) dt→+∞

bi(t) = lim∫ t
t0
v(0,t) dt→+∞

νi

1 + exp
(
−λi(

∫ t
t0
v(0, t) dt− ξi)

)
=νi.

(2.18)

Additionally, the production rate of both innate and adaptive immune cells also reaches

a constant value given a large iRBC population in the system:

lim∫ αmax
α0

v(a,t)dα→+∞
oi(t) = lim∫ αmax

α0
v(a,t)dα→+∞

$i

+
εi −$i

1 + exp
(
−ηi(

∫ αmax
α0

v(α, t)dα−Mi)
) ,

=εi,

and

lim∫ αmax
α0

v(a,t)dα→+∞
li(t) = lim∫ αmax

α0
v(a,t)dα→+∞

σi

+
%i − σi

1 + exp
(
−ωi(

∫ αmax
α0

v(α, t)dα−Ri)
) ,

=%i.

Because the production rate of both the innate and adaptive immune cells becomes

constant given a large parasite population, the population of both the innate and adaptive

immune cells also become constant:

lim∫ αmax
α0

v(a,t)dα→+∞
wi(t) =

εi
βi

(2.19)

and

lim∫ αmax
α0

v(a,t)dα→+∞
si(t) =

%i
δi
. (2.20)
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Assuming immune saturation by substituting (2.19) and (2.20),(2.7) becomes:

∂u

∂t
+
∂u

∂a
=−

(
T∑
i=1

(
εi
βi

)
θi +

Q∑
i=1

(
%i
δi

)
ψi + h(a)

)
u(a, t)

− γκv(αmax, t)p(u(a, t)),

where h(a) is a constant decay term describing the random loss of RBCs over time and εi,

βi, θi, %i, δi, ψi are all constants. The system further simplifies to:

∂u

∂t
+
∂u

∂a
= C2u(a, t)− γκv(αmax, t)p(u(a, t)). (2.21)

Additionally, assuming immune saturation by substituting (2.19),(2.20) and (2.18), (2.9)

becomes

∂v

∂t
+ V

∂v

∂α
= −

(
T∑
i=1

(
εi
βi

)
φi +

Q∑
i=1

(
%i
δi

)
νi

)
v(α, t), (2.22)

where εi, βi, φi, %i, δi and νi are all positive constants. (2.22) further simplifies to:

∂v

∂t
+ V

∂v

∂α
= C1v(α, t). (2.23)

Corollary 2.4.1. There exist an unique solution for v(α, t) under immune saturation con-

ditions.

Proof. Using the fact that α is a function of time, v(α, t) can be expressed as v(α(t), t),

which transforms (2.23) into the following Equation:

d

dt
v =

∂v

∂t
+
dα

dt

∂v

∂α
= C1v,

which reduces (2.23) to the following ODE system:
dα
dt

= V,

dv
dt

= C1v,

which states that along the curves given by dα
dt

= V , dv
dt

= C1v. Solving the above system,

we arrive at: 
α̂(t) = V t+ a0,

v̂(t) = ˆv(t0) exp(C1t),

v̂(t0) = v(a0, 0).

(2.24)
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However, due to the fact that our system is bounded by t ∈ [0,∞] and α ∈ [0, αmax], a0 does

not exist when t > α̂(t)
V

. But the boundary condition of v(0, t) allows us to express (2.24) as

the following 
t0 = t− α(t)

V
,

v̂(t) = v(0, t0) exp(C1(t− t0)),

(2.25)

which essentially traces the characteristic curve to the boundary v(0, t0) if t > α(t)
V

. Consider

that the solution to v(α, t) is a system of ODEs with the form dv
dt

= −Cv, which is Lipschitz

continuous. Thus using the Picard-Lindelöf theorem, each ODEs within the system have an

unique solution, therefore, there exist an unique solution to the PDE v(α, t).

Corollary 2.4.2. If C1 = ln 1/γκ
αmax/V

, then the boundary v(0, t) exhibits periodic behavior with

a period of αmax
V

. If C1 <
ln 1/γκ
αmax/V

, limt→+∞ v(0, t) =∞. If C1 >
ln 1/γκ
αmax/V

, limt→+∞ v(0, t) = 0.

Proof. According to Corollary 2.4.1, The characteristic curve for v(α, t) intersects the

boundary v(0, t) when (t− t0) = αmax
V

, which leads to the following expression:

v(αmax, t) = v(0, t− (
αmax
V

)) expC1(
αmax
V

), (2.26)

which describes the constant decay of v along the characteristic curve. Using the simplified

model where r(a) = κ then (2.2) simplifies to:

v(0, t) = γκv(αmax, t), (2.27)

if

C1 =
ln 1/γκ

αmax/V
. (2.28)

Substituting (2.28) into (2.26) we get:

v(αmax, t) =
1

γκ
v(0, t− (

αmax
V

)), (2.29)

Substituting (2.27) into (2.29) we finally arrive at:

v(0, t) = v(0, t− (
αmax
V

)). (2.30)
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Meaning that v(α, t) repeat itself with a period of αmax
V

. Consider that v(αmax, t) = v(0, t−

(αmax
V

)) exp
(
−C1(αmax

V
)
)
, if v(0, t) is repeating as shown in (2.30) then v(αmax, t) is also

periodic. Therefore, if C1 = ln 1
γκ
/αmax

V
then v(α, t) is bounded. If

C1 <
ln 1/γκ

αmax/V
,

then

v(αmax, t) >
1

γκ
v(0, t− (

αmax
V

)),

and if

C1 >
ln 1/γκ

αmax/V
,

then

v(αmax, t) <
1

γκ
v(0, t− (

αmax
V

)).

Corollary 2.4.3. u(a, t) can be reduced to a system of ODEs using the method of charac-

teristics.

Proof. Using the fact that a is a function of time, u(a, t) can be expressed as u(a(t), t) which

transforms (2.21) into:

d

dt
u =

∂u

∂t
+
da

dt

∂u

∂a
= C2u− γκv(αmax, t)p(u(a, t)),

reducing the PDE (2.21) to an ODE system:
da
dt

= 1,

dû
dt

= C2û− γκv(αmax, t)p(û, t).

(2.31)

Corollary 2.4.4. u(0, t) is bounded provided 0 < inft u(a, t) for all t and a.
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Proof. If 0 < inft u(a, t), then
∫ amax

0
u(a, t)da > 0. Which leads to:

sup
t
u(0, t) ≤ ςeεϕ0 .

and

inf
t
u(0, t) ≥ ςeε(ϕ0−amaxςeεϕ0 ) > 0

Therefore u(0, t) ∈ (0, ςeεϕ0 ].

Corollary 2.4.5. There exists a set of parameters and initial conditions such that 0 <

infa,t u(a, t) < inft u(0, t).

Proof. Let 0 < N ≤ infa,t u(a, t) < inft u(0, t). Equation (2.31) shows that u(a, t) is mono-

tonically decreasing along the characteristic curves, if there exists a set of parameters and

initial conditions such that 0 < infa,t u(a, t) < inft u(0, t), then the following inequality will

hold:

inf
(
û(0) + C2

∫ amax

0

û(t)dt− γκ
∫ t0+amax

t0

v(αmax, t)p(û, t)dt
)
≥ N,

where p(û, t) = û(t)∫ amax
0 u(a,t)da

and C2 < 0. Assume u(a, t) ≥ N > 0:

inf C2

∫ amax

0

û(t)dt ≥ C2amaxû(0).

Let |C2| < 1
amax

, then û(0) + C2amaxû(0) = (1 + C2amax)û(0) > 0.

inf
(

(1 + C2amax)û(0)− γκ
∫ t0+amax

t0

v(αmax, t)p(û, t)dt
)
≥ N

Let û(0) = inf û(0) and 0 < N < (1 + C2amax) inf û(0) < inf û(0), then:

inf
(
− γκ

∫ t0+amax

t0

v(αmax, t)p(û, t)dt
)
≥ N − (1 + C2amax) inf û(0)

Because both sides of the inequality are negative, we can rearrange the inequality in the

following form:

inf
(
γκ

∫ t0+amax

t0

v(αmax, t)p(û, t)dt
)
≤ (1 + C2amax) inf û(0)−N (2.32)
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Because supt p(û, t) <
supt û(0)
amaxN

= M and let v(αmax, t) either be oscillating or decreasing as

shown in Corollary 2.4.2, then

sup
(
γκ

∫ t0+amax

t0

v(αmax, t)p(û, t)dt
)
≤ γκamax sup

t0≤t≤t0+amax

v(αmax, t)M

Let supt0≤t≤t0+amax v(αmax, t) = Vmax, then

sup
(
γκ

∫ t0+amax

t0

v(αmax, t)p(û, t)dt
)
≤ γκamaxVmaxM.

Divide (2.32) by γκamax M:

Vmax ≤
(1 + C2amax) inf û(0)−N

γκamaxM

Therefore, if

Vmax ≤
(1 + C2amax) inf û(0)−N

γκamaxM
,

|C2| <
1

amax

then

0 < N < inf
a,t

(u(a, t)) < inf
t

(u(0, t))

.

Corollary 2.4.6. There exist an unique solution of u(a, t).

Proof. As stated in Corollary 2.4.3 the solution of u(a, t) is a system of ODEs with the form:

dû

dt
= C2û− γκv(αmax, t)p(û, t) = F (û, t).

Let û1 and û2 be different, then:

|F (û1, t)− F (û2, t)| = |C2(û1 − û2)− γκv(αmax, t)(p(û1, t)− p(û2, t))| . (2.33)

Because p(ûn, t) = ûn
En(t)

, where En(t) =
∫ amax
a0

un(a, t)da.(2.33) further simplifies to:

|F (û1, t)− F (û2, t)| =
∣∣∣∣C2(û1 − û2)− γκv(αmax, t)

( û1

E1(t)
− û2

E2(t)

)∣∣∣∣ .
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As a result, it follows that:

|F (û1, t)− F (û2, t)| =
∣∣∣∣C2(û1 − û2)− γκv(αmax, t)

û1E2(t)− û2E1(t)

E1(t)E2(t)

∣∣∣∣
≤ |C2||û1 − û2|+

∣∣∣γκv(αmax, t)
û1E2(t)− û2E1(t)

E1(t)E2(t)

∣∣∣
≤ |C2||û1 − û2|+ |γκv(αmax, t)|

∣∣∣ û1E2(t)− û2E1(t)

E1(t)E2(t)

∣∣∣
(2.34)

In the previous Corollary, we have proved that under suitable initial conditions and param-

eters, 0 < N < inft u(a, t) < u(a, t) < supt u(a, t). Which implies that En(t) is bounded.

Let A = inftEn(t) and B = suptEn(t). Without loss of generality. assume E1(t) ≤ E2(t). It

follows that (2.34) is bounded above by:

sup
t
|C2||û1 − û2|+ sup |γκv(αmax, t)|

suptE2(t)

inftE1(t) inftE2(t)
|û1 − û2|

≤ |C2||û1 − û2|+ sup |γκv(αmax, t)|
B

A2
|û1 − û2|

=
(
|C2|+ sup |γκv(αmax, t)|

B

A2

)
|û1 − û2|.

If we define:

Ω =
(
|C2|+ sup |γκv(αmax, t)|

B

A2

)
,

then we have established that:

|F (û1, t)− F (û2, t)| ≤ Ω|û1 − û2|.

We have demonstrated that each of the infinite number of ODEs composing the solution

of u(a, t) is Lipschitz continuous. Applying the Picard-Lindelöf theorem, we arrive at the

conclusion that there exist an unique solution for each of the ODEs composing the solution

of u(a, t) and therefore there exist an unique solution of u(a, t).

Corollary 2.4.7. The unique solution for v(α, t) is stable for a set of parameters and initial

conditions.

Proof. Assume that there are two solutions of the system v1(α, t) and v2(α, t) with different

boundary conditions:v1(0, t),v1(α, 0),v2(0, t) and v2(α, 0). Recall Corollary 2.4.1 which states
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that the solution of v(α, t) is a system of ODEs with the following form:
α̂(t) = V t+ a0

v̂(t) = ˆv(t0) exp(C1t)

v̂(t0) = v(a0, 0).

Using (2.24), it is clear that, v1(α, t) = v1(t−V t, 0) exp(C1t) on its characteristic curves and

v2(α, t) = v2(t−V t, 0) exp(C1t) on its characteristic curves. Therefore, the difference between

v1(α, t) and v2(α, t) at any given α and t can be expressed as the following if t < αmax:

|v1(α, t)− v2(α, t)| = |(v1(t− V t, 0)− v2(t− V t, 0)) exp(C1t)| . (2.35)

If t > αmax, using (2.25), the difference between v1(α, t) and v2(α, t) at any given α and t

can be expressed as the following:

|v1(α, t)− v2(α, t)| = |(v1(0, t0)− v2(0, t0)) exp(C1(t− t0))| , (2.36)

where

t0 = t− α

V
.

Recall Corollary 2.4.2, which states that there exist a set of parameters such that v(α, t)

is bounded. Therefore, according to (2.35) and (2.36) it is clear that the solution of v(α, t)

depends continuously on its initial and boundary conditions, thus v(α, t) is stable.

Corollary 2.4.8. The unique solution for u(a, t) is stable.

Proof. Assume that there are two solutions of the system u1(a, t) and u2(a, t) with different

boundary conditions: u1(0, t), u1(a, 0), u2(0, t) and u2(a, 0). Then the difference between the

total numbers of RBCs in u1(a, t) and u2(a, t) at an arbitrary time point t can be expressed
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in the following form as demonstrated in (2.1):∫ amax

a0

u1(a, t2)− u2(a, t2) da =

∫ amax

a0

u1(a, t1)− u2(a, t1) da

+

∫ t2

t1

u1(a0, t)− u2(a0, t) dt

−
∫ t2

t1

u1(amax, t)− u2(amax, t) dt

− γ
∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u1(a, t)) dt da

+ γ

∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u2(a, t)) dt da

−
T∑
i=1

∫ amax

a0

∫ t2

t1

wi(t)θiu1(a, t)− u2(a, t) dt da

−
Q∑
i=1

∫ amax

a0

∫ t2

t1

si(t)ψiu(a, t)− u2(a, t) dt da

−
∫ amax

a0

∫ t2

t1

h(a)u1(a, t)− u2(a, t) dt da . (2.37)

Let W = u1(a, t)− u2(a, t), then (2.37) simplifies to:∫ amax

a0

W (a, t2) da =

∫ amax

a0

W (a, t1) da +

∫ t2

t1

W (a0, t) dt

−
∫ t2

t1

W (amax, t) dt

− γ
∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u1(a, t)) dt da

+ γ

∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u2(a, t)) dt da

−
T∑
i=1

∫ amax

a0

∫ t2

t1

wi(t)θiW (a, t) dt da

−
Q∑
i=1

∫ amax

a0

∫ t2

t1

si(t)ψiW (a, t) dt da

−
∫ amax

a0

∫ t2

t1

h(a)W (a, t) dt da . (2.38)

Assuming r(a) is a constant,then the following is true:

γ

∫ amax

a0

∫ t2

t1

v(αmax, t)r(a)p(u1(a, t)) dt da = γ

∫ t2

t1

v(αmax, t)r(a)dt. (2.39)
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Substituting (2.39) into (2.38) we arrive at the following system:∫ amax

a0

W (a, t2) da =

∫ amax

a0

W (a, t1) da +

∫ t2

t1

W (a0, t) dt

−
∫ t2

t1

W (amax, t) dt

−
T∑
i=1

∫ amax

a0

∫ t2

t1

wi(t)θiW (a, t) dt da

−
Q∑
i=1

∫ amax

a0

∫ t2

t1

si(t)ψiW (a, t) dt da

−
∫ amax

a0

∫ t2

t1

h(a)W (a, t) dt da . (2.40)

If W (a, t) and its partial derivatives are continuous functions then (2.40) can be rearranged

into an transport system as demonstrated in (2.21):

∂W

∂t
+
∂W

∂a
= C2W (a, t), (2.41)

subject to the following initial and boundary condition:

W (a, 0) =u1(a, 0)− u2(a, 0),

W (0, t) =u1(0, t)− u2(0, t).

(2.42)

As shown in Corollary 2.4.1,the solution to (2.41) is a system of ODEs with the following

form: 
da
dt

= 1,

dŴ
dt

= C2Ŵ ,

(2.43)

which states that alone the characteristic curve given by da
dt

, dW
dt

= exp(C2t). The solution to

(2.43) along the characteristic curve is:

Ŵ (t) = Ŵ (0) exp(C2t), (2.44)

where Ŵ (0) is the initial condition for the ODE on the characteristic curve and lies either

on W (a, 0) or W (0, a). Recall Corollary 2.4.5 and Corollary 2.4.4, which state that there

exists a set of parameters such that u(a, t) is bounded. Therefore, according to (2.43) and
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(2.44), the solution to u(a, t) depends continuously on its initial and boundary conditions,

thus u(a, t) is stable.

Lemma 2.4.9. The PDE system (2.15) is well-posed for a set of parameters and initial

conditions.

Proof. Corollary 2.4.1 and Corollary 2.4.3 demonstrate that the solution of the two transport

equation within (2.15) are systems of first order ODEs. Corollary 2.4.6 and Corollary 2.4.1

proved the existence and uniqueness of the solution to the first order ODEs composing the

solution to the two transport equation within our system. Additionally, Corollary 2.4.7 and

Corollary 2.4.8 demonstrate that the solution to (2.15) depends continuously on the initial

and boundary conditions. Therefore, the PDE system (2.15) is well-posed.

2.5 Numerical Solution

Recall that our system is a transport system with the form:

∂u

∂t
+
∂u

∂a
= −m(a, t)u(a, t), (2.45)

where

m(a, t) =

(
T∑
i=1

wi(t)θi +

Q∑
i=1

si(t)ψi + h(a) +
γv(αmax, t)r(a)∫ amax

a0
u(a, t)

)
.

Using the first order forward finite difference scheme at u(a, t), where the time interval is

divided into N steps of size k (indicated with the superindex j), and the age interval is

divided into M segments of size h (indicated with the subindex i). it is clear that:

∂u

∂t
=
uj+1
i − uji
k

,

and

∂u

∂a
=
uji − u

j
i−1

h
.
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Substituting the above Equation into (2.45), and let r = k/h, the system becomes:

uj+1
i − uji
k

+
uji − u

j
i−1

h
= −mj

iu
j
i ,

resulting in the following difference equation:
uj+1
i = −kmi

ju
j
i + (1− r)uji + ruji−1,

u0
i = g(i),

uj0 = f(j).

(2.46)

Using the above schema one can iteratively approximate all u(a, t) at t = k then t = 2k etc.

Lemma 2.5.1. The above finite difference schema is numerically stable if r < 1 and

max{
∣∣mj

i

∣∣ : ∀i, j}k < (2− 2r).

Proof. Let ûji be the numerical solution of (2.46). Then the error eji = ûji − u
j
i satisfies:


ej+1
i = −kmi

je
j
i + (1− r)eji + reji−1,

e0
i = 0,

ej0 = 0.

Let ej = max{
∣∣eji ∣∣ : ∀i} for each j ≥ 0. Then

∣∣ej+1
i

∣∣ =
∣∣(1− r + kmi

j)
∣∣+ reji−1

≤ (
∣∣1− r + kmi

j

∣∣+ r)ej

Thus ej+1 ≤ (
∣∣1− r − kmi

j

∣∣+ r)ej for all j ≥ 0. Let m̂ = max{
∣∣mj

i

∣∣ : ∀i, j} for each i ≥ 0

and j ≥ 0. For r < 1 and km̂ < (2 − 2r), we have ej+1 ≤ ej for all j ≥ 0. This means that

the error ej is not increasing when j is increasing. Therefore, (2.46) is stable.

The same schema is also applied to v(α, t). Recall that:

∂v

∂t
+ V

∂v

∂α
= −n(α, t)v(α, t),

39



where

n(α, t) =

(
T∑
i=1

wi(t)φi +

Q∑
i=1

si(t)bi(t)

)
.

Using the same finite difference schema one can iteratively approximate all v(α, t) at t = k

then t = 2k etc. 
vj+1
i = −knijv

j
i + (1− rV )vji + rV vji−1

v0
i = c(i)

vj0 = d(j)

Which is also stable for rV < 1 and max{nij}k < (2− 2rV ).

Additionally, using Taylor expansion, the value of w(t) and s(t) are approximated as

following: 
wi(t+ k) = w(t) + k dwi

dt
(t),

dwi
dt

(t) = oi(t)− βiwi(t)− τiwi
∫ αmax
α0

v(a, t)dα,

wi(0) = A,

and 
si(t+ k) = s(t) + k dsi

dt
(t),

dsi
dt

(t) = li(t)− δisi(t)− ϑisi
∫ αmax
α0

v(a, t)dα,

si(0) = B.

2.6 Results

2.6.1 RBC Equilibrium Condition

The erythropoietic process responds to events altering the concentration of RBCs and ensures

that the number and age distribution of RBCs return to normal level upon perturbation.

Figure 2.1 shows that using an arbitrary initial age distribution of RBCs, the system even-

tually returns to the basal RBC age distribution overtime. This result demonstrates that

our system reflects the actual biological property of erythropoietic control, where the host
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Figure 2.1: Using an arbitrary initial condition, the system returns to Equilibrium condition
after 80 days.

responds to a perturbation in concentration of RBCs by altering accordingly, the rate of

RBC production in the bone marrow, and the rate of RBCs entering circulation. This regu-

latory effect can be seen with the fluctuation of u(0, t) in Figure 2.1, which first responds to

the lower than normal number of RBCs with a increase of RBCs entering circulation after a

delay of 20 days.

2.6.2 Susceptibility

As stated in Corollary 2.4.2, if the immune strength is weak, eventually the iRBC popula-

tion grows without bounds and RBCs are depleted, resulting in severe anemia (Figure 2.2).

Depletion of RBCs is characteristic of first time malaria infection which without treatment

could result in mortality of the host. Within our model, this behavior can be achieved under

at least two parameter sets. The first one is where C1, the combined effector strength upon
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,

Figure 2.2: The iRBC population grows exponentially due to weak immune strength

saturation of both innate and adaptive immune cells is weak, which allows for the depletion

of RBCs. The second set is where C1 is large enough to halt the exponential growth of iRBCs,

but the parameters controlling the speed at which innate immune cells, adaptive immune

cells and adaptive immune effector strength growth are small, resulting in the depletion of

RBCs before C1 can reach its maximum value. The second scenario reflects the case where a

host is susceptible to severe anemia during primary infection, but during repeated infections,

C1 had enough time to reach maximum value, and the host is resilient to severe anemia [11].

2.6.3 Resilience

Figure 2.3: iRBC and RBC co-exist when total immune strength is close to ln 1/γκ
αmax/V
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If the immune effector strength is close to ln 1/γκ
αmax/V

, the iRBC and RBC population coexist

for a long period of time as shown in Figure 2.3. This state of resilience is characteristic of

repeated malaria infection, where the host has already built up an immune strength against

the parasite. However, sustained periodic coexistence is almost never observed in the real

world, which is expected due to the fixed maximum immune strength required for sustained

coexistence.

2.6.4 Resistance

Figure 2.4: iRBC and RBC co-exist when total immune strength is greater than ln 1/γκ
αmax/V

As stated in Corollary 2.4.2, if the immune strength reaches a greater value than ln 1/γκ
αmax/V

,

then iRBC population decays constantly until the complete removal of iRBC, as seen in

Figure 2.4. This state of resistance is rarely observed without medical intervention during

first infection; however, it is feasible to develop an immune response against malaria upon

continuous and repeated exposure high enough to clear the parasite [5].

2.7 Discussion

In this paper we present a theoretical model to capture the complex interaction between

iRBCs, RBCs and the host immune system during the course of a Plasmodium infection.

Despite not knowing many of the parameters regarding the immune system’s effect on RBCs

and iRBCs, our model was able to capture the general behavior of two major outcomes of
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infection with Plasmodium: (i) the depletion of host RBCs in a naive individual and (ii) the

coexistence of RBCs, iRBCs, and the immune system in individuals with previous exposure.

Our model states that the immune effector has to be equal to an exact number for

sustained coexistence of the system, which on first look seems rather impossible as biological

systems are rarely precise. This further coincides with known malaria infection dynamics

where the oscillation of iRBC populations is rarely sustained or regular. To produce sustained

oscillation over weeks or months, the immune effector strength only needs to lie in a range

rather than being fixed.

It is worth mentioning, that one of the major simplifications of the model was the assump-

tion of r(a), the infection probability of RBCs of different age, to be constant. For sufficiently

regular r(a), the well-posedness results can be derived in a similar fashion. However, the

rigid trichotomy which conveniently characterizes the system is not inherited. The simplified

system in (2.16) results in uncoupled dynamics for iRBCs. This could imply that infected

cells may appear even in the absence of uninfected cells; however, this condition would not be

physiological. Given realistic initial and boundary conditions, the simplified system permits

analysis and approximates well the reality of a malaria infection.

We plan to calibrate our model in the future using time course data from the Malaria

Host-Pathogen Interaction Center (MaHPIC), which is a large collaborative project between

Emory University, The University of Georgia, The Georgia Institute of Technology, and

the Centers for Disease Control and Prevention. The MaHPIC project aims to obtain time

courses of -omic data (transcriptomic, metabolomic, lipidomic, proteomic) from non-human

primates infected with several different species of Plasmodium parasites during multiple

experiments, with initial experiments lasting for about 100 days. Using data produced by

the MaHPIC group, which include daily RBC counts, iRBC counts and immune cell counts

over the 100-day period, we plan to calibrate the full model, including the different infection

rates of different age groups of RBCs and the different effector strengths against different

age groups of iRBCs. We expect to find discrepancies between our model prediction and the
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actual experimental data; such discrepancy will not only provide biological insight regarding

the hematodynamics of malaria infection, but will also allow us to re-iterate our model.

Our current PDE model is by no means a complete reflection of the complex within-

host dynamics of malaria due to its vast simplification of the immune system’s effect on the

iRBC and RBC populations along with its complete disregard of the within immune system

interaction. However, the model could be expanded to also contain these features and serve

as a liaison where the molecular features of the system can be reflected at the cellular level.

We plan to use the molecular level data generated by MaHPIC to further expand our model

to incorporate the more subtle aspects of the within-host interaction of malaria infection.
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Table 2.1: Table of Functions and Variables

Description Unit Value Source
Independent Variables

t Time. Day n/a n/a
a Age of RBC. Day n/a n/a
α Age of iRBC. 10−1Day n/a n/a

Dependent Variables
u(a, t) Circulating RBC age distribution. cells/ul/day n/a n/a
v(α, t) iRBC age distribution. cells/ul/day n/a n/a
ϕ(t) Circulating RBC concentration. cells/ul n/a n/a
wi(t) Circulating innate immune cell concen-

tration.
cells/ul n/a n/a

si(t) Circulating adaptive immune cell con-
centration.

cells/ul n/a n/a

Functions
h(a) Percentage of RBC that leaves circula-

tion per day, usually a constant.
1/day 0.02 0.03 MaHPIC

f(t, ϕt) Rate at which RBC enters circulation. cells/ul/day n/a n/a
r(a) Success rate of merozoite invading

RBC of age. a
1/day [0, 1] Literature

p(u(a, t)) Probability of a merozoite infecting a
RBC of age. a at time t

dimensionless n/a n/a

bi(t) Rate at which adaptive immunity cell
i destroys iRBC.

1/(day · cells/ul) n/a Estimated

oi(t) Rate at which innate immune cell
enters circulation.

cells/ul/day n/a Estimated

li(t) Rate at which adaptive immune cell
enters circulation.

cells/ul/day n/a Estimated
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Table 2.2: Table of Parameters

Description Unit Value Source
Parameters

V Speed at which parasite ages, equal to 1/α. 1/(day) 10 n/a
ϕ0 Normal circulating RBC concentration, equal to ϕ(0). cells/ul 6400000 MaHPIC
γ Average number of merozoite produced by a single iRBC. dimensionless 25 Literature
θi Rate at which innate immunity cell i destroys RBC. 1/(day · cells/ul) n/a Estimated
ψi Rate at which adaptive immunity cell i destroys RBC. 1/(day · cells/ul) n/a Estimated
φi Rate at which innate immunity cell i destroys iRBC. 1/(day · cells/ul) n/a Estimated
βi Rate at which innate immunity cell decays. 1/day n/a Estimated
δi Rate at which adaptive immunity cell decays. 1/day n/a Estimated
τi Rate at which innate immunity cell decay due to contact with

iRBC.
1/(day · cells/ul) n/a Estimated

ϑi Rate at which adaptive immunity cell decay due to contact
with iRBC.

1/(day · cells/ul) n/a Estimated

λi Coefficient for change of adaptive immunity effector strength. 1/cells/ul n/a Estimated
$i Normal rate of production of innate immune cell i. cells/ul/day n/a Estimated
σi Normal rate of production of adaptive immune cell i. cells/ul/day n/a Estimated
εi Maximum rate of production of innate immune cell i. cells/ul/day n/a Estimated
%i Maximum rate of production of adaptive immune cell i. cells/ul/day n/a Estimated
νi Maximum adaptive immunity effector i strength. 1/day/cells/ul n/a Estimated
ηi Coefficient for change of production of innate immune cell i. 1/cells/ul n/a Estimated
ωi Coefficient for change of production of adaptive immune cell

i.
1/cells/ul n/a Estimated

Mi Amount of parasite where the production of innate immune
cell i. increase the most

cells/ul n/a Estimated

Ri Amount of parasite where the production of adaptive immune
cell i. increase the most

cells/ul n/a Estimated

xii Amount of parasite where the production of adaptive immune
cell i. effector strength increase the most

cells/ul n/a Estimated

ε Coefficient for change of erythropoiesis. 1/cells/ul n/a Estimated
ς Number of RBC entering blood stream. cells/ul/day 8000 MaHPIC
Td Delay of hematopoietic response. day 10 20 Literature
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Chapter 3

A Method for Massively Parallel Analysis of Time Series1

1Yi H. Yan, Elizabeth D. Trippe and Juan B. Gutierrez. Submitted to ARXIV 12/27/2016.
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3.1 abstract

Quantification of system-wide perturbations from time series -omic data (i.e. a large number

of variables with multiple measures in time) provides the basis for many downstream hypoth-

esis generating tools. Here we propose a method, Massively Parallel Analysis of Time Series

(MPATS) that can be applied to quantify transcriptome-wide perturbations. The proposed

method characterizes each individual time series through its `1 distance to every other time

series. Application of MPATS to compare biological conditions produces a ranked list of

time series based on their magnitude of differences in their `1 representation, which then

can be further interpreted through enrichment analysis. The performance of MPATS was

validated through its application to a study of IFNα dendritic cell responses to viral and

bacterial infection. In conjunction with Gene Set Enrichment Analysis (GSEA), MPATS

produced consistently identified signature gene sets of anti-bacterial and anti-viral response.

Traditional methods such as Empirical Analysis of Digital Gene Expression (EDGE) and

Gene Set Enrichment Analysis for Time Series (GSEA-TS) failed to identify the relevant

signature gene sets. Furthermore, the results of MPATS highlighted the crucial functional

difference between STAT1/STAT2 during anti-viral and anti-bacterial response. In our simu-

lation study, MPATS exhibited acceptable performance with small group size (n = 3), when

the appropriate effect size is considered. This method can be easily adopted for other -omic

data types.

3.2 Introduction

The advent of high-throughput molecular technologies has allowed us to measure a large

number of variables simultaneously. Transcriptomic experiments typically measure the abun-

dance of 20,000 or so transcripts. The number of variables measured by other “omic” tech-

nologies such as lipidomic, proteomic, glycomic and metabolomic studies is of similar mag-

nitude. Time series -omic data refers to molecular snapshots taken using these -omic tech-
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nologies on a time trajectory. Time series -omic data captures time-dependent molecular

dynamics and is a powerful tool in the study of disease progression [2], developmental pro-

cesses [12] and vaccination [11].

A variety of tools has been developed for the analysis of time series -omic data. Methods

such as MESS[3] and EDGE[14] aim to discover individual gene expression time series

that are significantly different between two experimental conditions. Other methods such

as TcGSA [8] ,CAMERA [19] , and GSEA-TS aim to find time series of pre-defined gene

sets that are significantly different among groups. Furthermore, clustering based time series

analysis tools [5, 15] have also been developed.

Current time series analysis tools focus on finding gene expression time series or pre-

defined gene sets that most likely have changed between groups but ignore the changes in

pairwise gene dynamics. Pairwise dynamics between genes can be quantified using correla-

tion, mutual information or a distance metric. Differential correlation has been used to study

gene association with the clinical outcome of lung cancer [13] and estrogen receptor modu-

lation in hormonal cancers [10]. In this paper, we propose a novel method, Massive Parallel

Analysis of Time Series (MPATS), for the analysis of time series data based on the detection

of differential pairwise `1 distances. MPATS is based on the use of a linear mixed model for

gene expression time series. By characterizing each gene expression time series through its `1

distance to all other time series within the system, MPATS allows for the clear quantification

of the impact of perturbation on each time series in the context of the biological system.

A simulation study was conducted to demonstrate the statistical performance of our

method and a motivational study was used to validate the biological relevance of the analysis

result produced by MPATS. In the motivational study, time series transcriptomic data were

used to characterize the responses of IFNα dendritic cells to different antigens [1]. In contrast

with traditional time series analysis methods such as EDGE and GSEA-TS, MPATS was

able to identify signature gene modules that distinguish between anti-viral and anti-bacterial

responses of IFNα dendritic cells.
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This paper is organized as follows: Section 2 contains the derivations, theoretical justifi-

cations and description of our method. Section 3 provides the assessment of the statistical

power of our method based on simulated data. Section 4 contains the application of our

method to a recent study of IFNα dendritic cells. Section 5 provides the discussion of the

performance of our method and future directions.

3.3 Method Description

3.3.1 Linear Mixed Model of Time Series

Each individual time series is denoted Gij(t) and represents the abundance of gene i from

individual j at time point t, where i ∈ {1, 2, ...n}, j ∈ {1, 2, ...m} and t ∈ {1, 2...h}. We used

a mixed linear model [14] for the time series where:

Gij(t) = gij(t) + νt + ε. (3.1)

The above model implies that the observed entity Gij(t) can be explained by the additive

effect of its time dependent mean response gij(t), individual and time based variation νt,

and instrumentation error ε. We assume that both νt and ε follow Gaussian distributions,

νt ∼ N (0, νt) and ε ∼ N (0, ε). Equation (3.1) can be further simplified to:

Gij(t) ∼ N (gij(t), νt + ε) .

3.3.2 `1 Distance Between Two Time Series

Let `1(p, q, j) denote the `1 distance between the mean response curves of genes p and q for

subject j.

`1(p, q, j) =
h∑
t=1

|gpj(t)− gqj(t)|. (3.2)

Let X(p, q, j) be the observed `1 distance between the two genes p and q for subject j.

X(p, q, j) =
h∑
t=1

x(p, q, j, t),
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where

x(p, q, j, t) = |Gpj(t)−Gqj(t)| ∼ |N
(
µt, σ

2
t

)
|,

and

µt = gpj(t)− gqj(t),

σ2
t = 2(νt + ε)

(3.3)

Through numerical investigation, Tsagris et al [18] saw that for any folded normal distribu-

tion F , where

F ∼ |N (µ, σ2)|,

if µ ≥ 3σ2, then F can be well approximated with a normal distribution with mean |µ| and

variance σ2.

Assuming that for any t, |µt| ≥ 3σ2
t , then

X(p, q, j) ∼
h∑
t=1

N (µt, σ
2
t ).

Which means

X(p, q, j) ∼ N (
h∑
t=1

|µt|,
h∑
t=1

σ2
t ).

According to equation (3.3) and (3.2)
∑h

t=1 |µt| = `1(p, q, j), and

X(p, q, j) ∼ N (`1(p, q, j),
h∑
t=1

σ2
t ).

Which implies that given sufficiently small variance for all t, the observed `1 distance between

two gene expression time series follows an approximate normal distribution with mean equal

to the true `1 distance.

In the case that |µt| < 3σ2
t , the mean of X(p, q, j) does not necessarily equal to `1(p, q, j).

Let c be a constant, such that

c > max 10σ2
t ∀ t ∈ {1, 2, 3...h}.
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Then let

y1(p, q, t, c, j) = Gpj(t)−Gqj(t) + c,

∼ |N
(
µ1, σ

2
t

)
|,

where

µ1 = gpj(t)− gqj(t) + c.

Let

y2(p, q, t, c, j) = Gqj(t)−Gpj(t) + c,

∼ |N
(
µ2, σ

2
t

)
|,

where

µ2 = gqj(t)− gpj(t) + c.

Because c > max 10σ2
t ∀ t ∈ {1, 2, 3...h},

y1(p, q, t, c, j) ∼ N (µ1, σ
2
t ),

y2(p, q, t, c, j) ∼ N (µ2, σ
2
t ).

Furthermore,

max(µ1, µ2) = |gpj(t)− gqj(t)|+ c.

Let

z(p, q, t, c, j) =


y1(p, q, t, c, j) if µ1 ≥ µ2,

y2(p, q, t, c, j) if µ1 < µ2.

Let

Z(p, q, c, j) =
h∑
t=1

z(p, q, t, c),

then,

Z(p, q, c, j) ∼ N (`1(p, q, j) + hc,

h∑
t=1

σ2
t ). (3.4)

Which implies that Z(p, q, c, j) follows a normal distribution with mean equal to the true `1

distance plus some known constant.
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3.3.3 Detection of Significantly Changed Lpq Between Groups

Each individual gene expression time series can be characterized by its `1 distances to every

other gene expression time series. A perturbation of the system (e.g. disease progression)

shifts the mean response curve of each gene expression time series with an unknown magni-

tude and direction.

The impact of the perturbation on the system can be quantified by the number of `1

distances that have changed due to perturbation. The impact of the perturbation on each

individual gene time series can be quantified by the number of pairwise distances to this

gene that have changed.

In the case of a two-group experiment, we define two sets of subjects, where S1 =

{1, 2, 3, 4...a} and S2 = {a + 1, a + 2...m}. For a given pair of entities p and q, let Apqc =

{Z(p, q, j, c) : j ∈ S1} and Bpqc = {Z(p, q, j, c) : j ∈ S2}. As shown in (3.4), both Apqc and

Bpqc follow a normal distribution with mean corresponding to the `1 distance between gene

p and q within each group. Welch’s test is used to determine if Apqc and Bpqc have the same

mean.

Let P (p, q) be equal to the p-value from Welch’s test. The results of conducting Welch’s

test for every pair of p and q can be captured in a n by n matrix M , where

Mpq =


1, P (pq) < δ

0, P (pq) ≥ δ,

where δ is the threshold p value.

For a gene p, its contribution to the perturbation can be quantified by its perturbation

score (PS), where:

PS =
n∑
q=1

Mpq.

The genes are then ranked according to their perturbation score from highest to lowest.
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Table 3.1: Categories of Effect Size

Category ES

Minimal 0 < ES ≤ 0.25
Low 0.25 < ES ≤ 0.5

Medium 0.5 < ES ≤ 1
High 1 < ES

3.4 Power Assessment Using Simulated Data

A simulation study was conducted to evaluate the statistical power of MPATS. The simula-

tion framework was chosen based on the motivational study. For each simulation setup, 5000

gene expression time series were simulated and each time series contained 5-time points. The

simulated values of each gene at each time point were drawn from a normal distribution

with mean and variance estimated from the original data. 10 percent of the gene expression

time series were perturbed in the treatment group. Receiver operating characteristic (ROC)

curves were generated to explore the statistical performance of the proposed method for

different group sizes and effect sizes. The effect size (ES) refers to the true difference in `1

distance, and the category of effect sizes can be found in Table 3.1. Statistical performance

of the proposed method is presented in Figure 3.1. At a fixed specificity of 90%, MPATS

has a statistical power greater than 0.7 with n = 3 for medium and high effect sizes. With

n = 10, MPATS can reach a power greater than 0.7 with a fixed specificity of 90% for low

effect size.
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ROC Curve of Different Sample Size and Effect Size
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Figure 3.1: ROC curves were generated for 4 different effect sizes. For each effect size, three
different sample sizes were tested, n = 3, n = 5 and n = 10. For each simulation, 5000 gene
expression time series were generated.

3.5 Experimental Results

Motivating Study: IFNα dendritic cell response to antigen

As part of a study to understand the different responses of dendritic cells to various antigens,

microarray time series data were collected for IFNα dendritic cells and IL4 dendritic cells

challenged with different antigens. Data were collected at (1,2,6,12,24) hours after challenge.

At each time point, three biological replicates were taken. The detailed description of the

study can be found in Banchereau et al [1].
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For the purpose of the present paper, we focused on the time series of IFNα dendritic

cells grown on media alone (MEDIA), challenged with H1N1 virus (H1N1) and heat-killed

Staphylococcus aureus (HKSA). The data used in this study can be found on Gene Omnibus

(GSE44720).

Application of MPATS, EDGE, and GSEA-Time Series

MPATS and EDGE were used to conduct pairwise comparisons among the two treatment

groups and the control group. GSEA-TS was applied to the time series data of the two

treatment groups alone. During the application of MPATS, a q-value of 0.25 was used as

the threshold to determine whether a pairwise `1 distance had changed significantly between

groups. The ranked gene list produced by MPATS was analyzed using GSEA preranked

[16]. The results of EDGE consisted of q-values for each gene. A ranked list was produced

by ranking the genes according to their q-values in ascending order. The ranked gene list

produced by EDGE was also analyzed using GSEA preranked. The gene sets tested for

enrichment included: GSEA Hallmark gene sets, GO biological process gene sets, KEGG

gene sets, and the signature gene modules described by Banchereau et al [1].

3.5.1 Clustering of pairwise `1 distance representation of samples

Hierarchical clustering of the samples based on their pairwise `1 distance representation

reveals differences in biological conditions (Figure 3.2). Furthermore, the projection of the

data into the first and second principle component space also demonstrate clustering based

on biological condition (Figure 3.2). The hierarchical clustering based on biological condition

can be reproduced using only the top 100 `1 distances with the largest variance across all

three biological conditions (Figure 3.3).
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Figure 3.2: Both hierarchical clustering of pairwise `1 distance and projection into principle
component space reveal underlying biological conditions.
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Figure 3.3: Top 100 `1 distances with the largest variance can be used to cluster the samples
based on biological condition. Each row refers to the `1 distance between two genes. Each
column represents a sample.
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Figure 3.4: Percentage of genes associated with at least one `1 distance smaller than a
threshold (q).
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Figure 3.5: Highly significantly changed `1 distance are associated with a small sub-portion
of the total genes.

Only a subset of genes is associated with `1 distances that have a small q-value. For

the comparison between the H1N1 group and the MEDIA group, only 10% of the genes are

associated with a `1 distance with a q-value smaller than 0.075 (Figure 3.4). Furthermore,

the highly significantly changed `1 distances are associated with a small portion of the

genes as shown in Figure 3.5. For the comparison the between the H1N1 group and the

MEDIA group, 70% of the `1 distances with q − value ≤ 0.1 are associated with 20% of the

genes. This non-uniform distribution of these significantly changed `1 distances provides the

basis for downstream enrichment analysis. An example of a significantly changed `1 distance

between two genes is shown in Figure 3.6. The ranking of each gene is based on the number

of significantly changed `1 distance associated with that gene. Figure 3.7 shows that the

ranking of each gene is strongly associated with the change in the time series of the gene

itself.
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Figure 3.6: `1 distance between ACAT1 and LYSE changed significantly (q ≤ 0.005) between
the H1N1 challenged group and the HKSA challenged group. Time series from all three
biological replicated are displayed.

MPATS Identifies Signature Gene Sets

MPATS identified the greatest number of perturbed gene sets out of all three methods.

The number of perturbed gene sets identified by each method is reported in Table 3.2.The

differences in the number of perturbed gene sets identified by the three methods highlight

the sensitivity of MPATS. This increased sensitivity is due to the fact that MPATS ranks

the genes based on their contribution to system-wide dynamic differences between biological

conditions. The large number of gene sets perturbed highlights the tremendous impact of

antigen challenge on the cell culture. A majority of gene sets and pathways identified are

interferon response related pathways. The enrichment results are included in the supplemen-

tary material.
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Figure 3.7: The red solid lines are the time series expression profile of the gene of interest in
each row. The time series of LY6E, OAS3, and CCDC90A are shown. Three most significantly
changed `1 distances associated with each gene are also plotted. LY6E has rank 1, OAS3 has
rank 100, and CCDC90A has rank 1000. The ranking of genes strongly associates with the
changes in their temporal expression pattern.

Table 3.2: Three pairwise comparisons were conducted. Comparison between the control
group and the treatment group challenged by SA (SA). Comparison between the control
group and the treatment group challenged by H1N1 (H1N1). Comparison between the two
treatment groups (H1N1\SA). Number of perturbed gene sets discovered by each method is
shown in the table

HKSA H1N1 H1N1\SA

MPATS 326 348 270
EDGE 24 39 26

GSEA-TS 48 42 NA
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In the original study, a list of signature modules was identified for INF cell response to

different antigens. Enrichment analysis of both MPATS and EDGE results captured 9 out of

10 signature modules of INF response to the H1N1 challenge, where GSEA-TS only captured

5. All three methods performed worse for the analysis of signature response modules of anti-

bacterial responses, capturing only 30% of the signature modules. This could be attributed

to the low signal strength of these modules themselves in comparison to the signal strength

of the H1N1 modules.

Table 3.3: MPATS results are enriched in the signature modules of INF cells challenged with
different antigens. Number of enriched signature modules detected by each method is shown
in the table

SA H1N1

MPATS 11/30 9/10
EDGE 9/30 9/10

GSEA-TS 12/30 5/10

The analyses comparing IFNα response to H1N1 and HKSA are enriched in interferon-

related gene sets, such as response to interferon gamma, TNF signal of beta kappa B and

mTORC signaling. Analysis of the top 30 genes using String10 [17] shows an enrichment

in protein-protein interactions (PPIs) with p− value < 0.00001. Furthermore, the PPIs are

clustered around STAT1 and STAT2 (Figure 3.8). This result agrees with recent findings of

the crucial differences in the role of STAT1/STAT2 in anti-viral and anti-bacterial responses

[4, 6, 7, 9].

3.6 Discussion

In this paper, we presented a novel framework to quantify the perturbation of time series for

two group experiments. The quantification of perturbation of time series provides context

for downstream functional analysis. We were able to apply this framework to explore anti-

viral and anti-bacterial responses of IFNα dendritic cells. We found specific pathways that
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Figure 3.8: PPI Map of the top 30 genes for the comparison of H1N1 and HKSA.

differentiate between the viral and bacterial challenge of IFNα dendritic cells and identified

STAT1/STAT2 as important regulatory elements differentiating these responses.

MPATS quantifies system-wide perturbations and individual gene perturbations by char-

acterizing each time series by its `1 distance to every other time series. The biological sig-

nificance of this intuitive method was demonstrated through analysis of the motivational

study. The top ranked genes are not only enriched in PPIs but are also enriched in signature

gene sets. The performance of MPATS remained stable through all three analyses, whereas

EDGE and GSEA-TS identified varying numbers of perturbed gene sets. This is probably

due to the fact that ranking by the p-value of change is not biologically informative because

a change of small magnitude with low variance can generate a low p-value. Ranking time

series using variance normalized effect size should produce results similar to MPATS. The
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framework of MPATS is based on a linear mixed model and assumes normally distributed

variance, and the use of pairwise dynamics to quantify the magnitude of change for each

individual entity can be easily expanded to other -omic data types.

In conclusion, MPATS complements existing time series analysis methods by providing

a more biologically informative ranked list of genes of interest in addition to detecting genes

that have experienced large perturbations but are overlooked by existing methods.
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Chapter 4

Ensemble Differential Network Analysis (eDiNA)1

1Yi H Yan, Elizabeth D. Trippe and Juan B Gutierrez. To be submitted to Nature Scientific
Report
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4.1 abstract

Differences in the transcriptome between malaria infected and healthy individuals have the

potential to reveal molecular mechanisms underlying host response to malaria infection.

Differential network analysis (DiNA) is a recent class of algorithms designed to identify

differences in network topology between states. Here we propose an ensemble based dif-

ferential network analysis (eDiNA) tool to conduct comparative analyses of transcriptome

profiles between Plasmodium cynomolgi infected Macaca mulatta and healthy controls. The

analysis was carried out for both bone marrow and whole blood transcriptome profiles sep-

arately. Of particular interest, our analysis reveals that the differential topology of the bone

marrow transcriptome is enriched in oxidative phosphorylation and mitochondrial specific

genes. Furthermore, the analysis of the whole blood transcriptome exhibits enrichment of

antigen processing and presentation, spliceosome, and T-cell signaling pathway related genes.

Our analysis provides novel insights into host transcriptomic responses to malaria infection,

which can be used to gain a better understanding of the mechanistic causes underlying

malaria pathology.

4.2 Introduction

Human malaria is a major public health burden and host response to malaria infection plays

a major role in malaria pathology [1, 7, 11]. There were 212 million (UI: 148-304 million)

reported cases and 429,000 (UI: 235,000 - 639,000) estimated deaths in 2015 [10]. Despite the

vast potential of host transcriptome data to help elucidate the molecular mechanisms under-

lying malaria pathology, very few primate host transcriptome studies have been conducted.

In 2005, Joni Ylostalo et al. generated the first transcriptome time series of two Plasmodium

cynolomolgi infected Macaca mulattas [17]. In 2014, Junya Yamagishi et al. conducted RNA-

seq analysis of 116 Indonesian patients infected with Plasmodium falciparum and discovered

sets of host genes that correlate with the severity of malaria infections [15]. Most recently,
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the Malaria Pathogen Interaction Center (MaHPIC) consortium published a novel data set

containing the time series transcriptome profiles of five P cynolmogi infected M mulatta and

five healthy hosts.

Differential network analysis (DiNA) refers to a recent school of algorithms focused on

identifying differences in network topology between states. Unlike traditional differential

analysis, DiNA identifies changes in the pairwise dynamics of genes rather than the change

of abundance of individual genes. DiNA has been successfully used for the identification of

transcriptional regulator [2] and estrogen modulated genes in cancer [5]. Various methods

have been proposed to conduct DiNA, such as modulator inference by network dynamics

(MINDy) [14], differential network analysis in genomics (DINGO) [4] and modulated gene

interaction (MAGIC) analysis [5]. Each algorithm adapts its own metric to detect differential

dynamics between genes, MINDy uses mutual information based measurement of dynamics

between two genes, MAGIC uses Spearman correlation and DINGO utilizes a Gaussian

graphical model. Each individual metric aims to characterize pair-wise dynamics based on a

derived quantity, and each metric has its own limitations, for example, Pearson’s correlation

coefficient only detects changes in linear dependency between two variables.

In this paper, we present an ensemble differential network analysis (eDiNA) method that

provides a flexible framework to combine multiple metrics for the detection of differential

dynamics. A simulation study was done to demonstrate the statistical power of our proposed

method and the method was applied to the above-mentioned MahPIC data set. The analysis

was carried out for both bone marrow and whole blood transcriptome data separately. Of

particular interest, our analysis reveals that the differential topology of the bone marrow

transcriptome is enriched in oxidative phosphorylation and mitochondrial specific genes.

Furthermore, the analysis of the whole blood transcriptome demonstrates enrichment of

antigen processing and presentation, spliceosome, and T-cell signaling pathway related genes.

This paper is organized as follows: Section 3 contains the detailed theoretical background

and derivation of our method. Section 4 provides the assessment of the statistical power of
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our method based on simulated data. Section 5 contains the application of our method to

the MahPIC data set. Section 6 provides the discussion of the performance of our method,

the biological interpretation of the result and future directions.

4.3 Method
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Figure 4.1: Examples of differential pairwise dynamics between two variables, X and Y. Sub-
plot 1 through 4 is the modified Anscombe’s quartet, which differs in Pearson’s correlation by
10−3. Subplot 1 through 4 can be separated by their Spearman’s correlation and `1 distances.
Subplot 4 and 5 demonstrates the inability of both Pearson’s correlation and Spearman’s
correlation to distinguish between a monotonically increasing relationship between X and Y
and a step-function like increase. `1 distance can be used to separate between the behavior
exhibited by subplot 5 and 6

4.3.1 Method Description

eDiNA characterizes pairwise dynamics of genes using four measurements: Pearson’s Corre-

lation, Spearman’s Correlation, `1 distance and χ2 statistics. Figure 4.1 provides examples of

different pairwise dynamics that are indistinguishable using only one of the above-mentioned

measurements. For example, the first 4 sub-figures of Figure 4.1 all have the same Pearson’s
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Figure 4.2: eDiNA pipeline is composed of two major components. Individual statistical
testings are carried out to detect differences of pairwise dynamics in correlation, `1 distance
and χ2 statistics. The overall null hypothesis, that the pairwise dynamics between two genes
did not differ in any of the proposed measurement is then carried out using Fisher’s combined
p-value test. The final result can be visualized as a graph, where each node represents a gene,
and the edge weight denotes the result of the Fisher’s combined p-value test.
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Correlation coefficient despite having vastly different dynamics. Figure 1.5 and 1.6 differs

most significantly in their pairwise `1 distance.

An overview of eDiNA is presented in Figure 4.2. eDiNA tests the consensus null hypoth-

esis (H0): For a given pair of genes, X and Y , none of the four measurements of pairwise

dynamics differ between condition 1 and condition 2. A statistical test is conducted to detect

significant differences in each of the four measurements. Fisher’s transformation was used

to test for differential Pearson’s and Spearman’s correlation, MPATS was used to detect

differential `1 distance and Pearson’s test of independence was used to detect differences in

the joint distribution of X and Y after discretization. Each of these statistical tests produces

a p-value to reject the individual null hypothesis. Fisher’s combined probability test is then

used to test the consensus null hypothesis that the pairwise dynamics between X and Y does

not differ in any of the measurements. The resulting p-values are then adjusted for multiple

hypothesis testing [12].

4.3.2 Fisher’s Transformation and Differential Correlation

Taking n paired observations of variables X and Y from condition 1, and taking m paired

observations of X and Y from condition 2 and let r1 and r2 denote the correlation coefficient

between X and Y under condition 1 and 2 respectively. Fisher’s transform [3] is then used

to generate Z1 and Z2, where


Z1 = 1

2
ln 1+r1

1−r1 ,

Z2 = 1
2

ln 1+r2
1−r2 .

A z-test is then conducted where

Z =
Z1 − Z2√

1
n−3

+ 1
m−3

.

Z ∼ N(0, 1) under the null hypothesis that r1 = r2. The p-value is then calculated

accordingly.
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4.3.3 Pearson’s test of independence

To apply Pearson’s test of independence, continuous gene expression data is first discretized.

Setting the maximum number of quantization levels to be 6, a Gaussian Mixture model was

constructed for each variable with predefined 1 to 6 kernels. Bayesian information criterion

was then used to determine the optimal level of quantization, n. Each continuous variable is

then discretized using k-means clustering where k = n.

A contingency table for each gene pair is then constructed using the discretized gene

expression. The columns are condition 1 and condition 2. Each row represents a possible

combination of the discretized expression level of gene X and Y. The combination of dis-

cretization with zero observations is then removed from the contingency table. Pearson’s test

of independence is then used to test whether the discrete joint distribution of X and Y are

independent of the condition, and a p-value is calculated.

4.3.4 MPATS

MPATS [16] utilizes a linear mixture model for gene time series. Where:

Gij(t) = gij(t) + νt + ε.

The observed abundance of gene j in individual i at time point t can be explained by

the additive effect of its time dependent mean response gij(t), individual and time based

variation νt, and instrumentation error ε.

MPATS is designed to test whether the `1 distance between two genes, a and b, sampled

for n time points where

`1 =
t=n∑
t=1

|gia(t)− gib(t)|

differs significantly between two conditions. A detailed description of the method can be

found in the publication by Yan et al. [16].
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Table 4.1: Categories of Effect Size

Category ES

Low 0 < ES ≤ 0.6
Medium 0.6 < ES ≤ 1.2

High 1.2 < ES

4.3.5 Fisher’s Combined Probability Test

Fisher’s combined probability test is used to test the hypothesis that each independent null

hypothesis is true. (For a given pair of genesX and Y , their Pearson’s correlation, Spearman’s

correlation, `1 distance and discretized joint distributions are the same between condition 1

and condition 2)

Let pi denote the p-value from test i. Under the assumption that the p-values are inde-

pendent, then

−2
k∑
i=1

log(pi) ∼ χ2
2k

if the k individual null hypothesis tested are all true. A p-value is then generated from a

χ2 distribution with 2k degrees of freedom.

4.3.6 Enrichment Analysis and GSEA

For a gene X, a perturbation score (PS) is assigned. Where the score is the sum of the

χ2 statistics produced by Fisher’s combined probability test for each pairwise dynamics

involving X. A ranked list of genes is produced by arranging the genes in descending per-

turbation score and analyzed using GSEA [13].
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4.4 Simulation Study

A simulation study was conducted to evaluate the statistical power of eDiNA. The simulated

data set were constructed to closely resemble the MaHPIC dataset. 4,000,000 pairs of gene

time series were simulated. The simulated values of each gene time series at each time

point were drawn from a normal distribution with mean and variance estimated from the

MaHPIC study. 20 percent of the paired gene time series were perturbed in the simulated

treatment group. Receiver operating characteristic (ROC) curves were generated to explore

the statistical power of eDiNA for different group sizes and effect sizes. The effect size (ES)

refers to the true difference in normalized `1 distance, Pearson’s correlation or Spearman’s

correlation. `1 distances are normalized to have a range of [0, 2]. The categories of ES can

be found in Table 4.1. The ES of a differential pairwise dynamics is determined by the

maximum difference among normalized `1 distance, Pearson’s correlation or Spearman’s

correlation. Statistical performance of the proposed method is presented in Figure 4.3. At

a fixed specificity of 90%, eDiNA has a statistical power greater than 0.7 with n = 5 for

medium and high effect sizes. The consensus method outperforms all individual method for

the detection of medium and high effect sizes independent of group sizes.

4.5 Analysis of MaHPIC Data

4.5.1 Study Design

The MaHPIC data set is composed of 2 studies, E13 and E04. E13 is a study of five M. mulatta

without infection over 100 days. Transcriptomic data of these five hosts were collected at 7-

time points from both the bone marrow and whole blood. A detailed description of the study

can be found in the paper by Kevin et al. [8]. E04 is a study of five M. mulatta infected with P.

cynolmogi. Transcriptomic data of these five hosts were collected at 7-time points from both

the bone marrow and whole blood. This study resulted in two severe malaria infections, two
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Figure 4.3: ROC curve of individual methods and consensus method for a different number
of subjects and ES categories.(A) Low effect size. (B) Medium effect size. (C) Large Effect
Size

mild malaria infections, and one death. A detailed explanation of the experimental scheme

can be found in the publication by Chester et al. [6].
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4.5.2 Result Overview

Hierarchical clustering based on Pearson’s correlation, Spearman’s Correlation, pairwise `1

distance and ensemble distance was conducted using transcriptomic data from the bone

marrow of all 9 subjects Figure 4.4. Hierarchical clustering of all four measurements except

for Spearman’s correlation clustered the healthy hosts (H) closer to other healthy hosts than

to the disease host, regardless of mild (M) or severe clinical outcome. Principal component

analysis (PCA) was also applied and the result was then projected into the first 2 principal

component (PC) space to be inspected visually. The first 2 PC explained 32.2 percent of

the total variation and showed clear separation of both the healthy and diseased hosts in

addition to separation of mild infection and severe infection.

Hierarchical clustering and PCA were also applied to whole blood transcriptomic data

Figure 4.5. The resulting clustering and projection onto the PC space showed a similar pat-

tern to that of bone marrow data. Specific to whole blood data, hierarchical clustering based

on Spearman’s correlation clustered the data correctly based on healthy and disease state. In

both cases, using any of the pairwise dynamics measures allows for the separation of healthy

and disease state, demonstrating that pairwise gene dynamics are in fact different between

the two states where between states differences are greater than within state differences. This

finding provides the basis for the down-stream application of eDiNA to identify the partic-

ular gene-pairs that exhibit such differences in pairwise dynamics and how their biological

function are related to host response to malaria infection.

4.5.3 Comparative Analysis of Bone Marrow Transcriptome Between

Healthy and Infected Hosts

eDiNA was applied to identify significantly different pairwise gene dynamics between

transcriptomic data from the bone marrow of healthy host and disease host. Genes with
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low signal, library size normalized read count < log2(2.5) were filtered out. 10,073 genes

were analyzed for differential dynamics. After adjustment for multiple hypothesis testing, 14

percent of the pairwise dynamics had a q-value less than 0.05. An overview of differential

pairwise gene dynamics with the lowest q-values are shown in Figure 4.6. The gene pair that

had the lowest q-value was SLC14A1-PAQR9, as shown in Figure 4.7.

The distribution of PS is visualized using a histogram in 4.8. The ranked PS plot demon-

strates an asymptotic behavior, where the change of PS across rank decreases after the first

few hundred genes. Interestingly, subnetwork composed of the top 300 genes have a much

higher average edge weight and shows a significantly different distribution of edge weight

than that of the entire set of genes. Differential dynamics with q-value < 10−23 are visual-

ized in Figure 4.6. This non-uniform distribution of PS and edge weight are then explored

for biological significance using GSEA.

GSEA-Preranked was applied to the ranked list of genes according to PS, the weighted

scoring scheme was selected to emphasize the distribution of PS. Gene set tested includes

the hallmark gene set, GO gene set, annotated gene sets, motif gene sets, and immunological

signature gene sets. Out of 12,423 gene sets tested for positive enrichment, 492 gene sets had

q-value < 0.05. Leading edge analysis reveals the clustering of immune-related gene sets,

specifically wnt signaling, oxidative phosphorylation, and purine biosynthesis.

4.5.4 Comparative Analysis of Whole Blood Transcriptome Between

Healthy and Infected Hosts

eDiNA were applied to identify significantly different gene pairwise dynamics between

transcriptomic data from the whole blood of healthy host and disease host. Genes with low

signal, library size normalized read count < log(2.5) were filtered out. 9640 genes were-

were analyzed for differential dynamics. After adjustment for multiple hypothesis testing, 12
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percent of the pairwise dynamics had a q-value less than 0.05. An overview of differential

pairwise gene dynamics with the lowest q-values are shown in Figure 4.9. The gene pair that

had the lowest q-value was ARAP2-RNF125, as shown in Figure 4.10.

The distribution of edge weight and PS follows the same pattern as the analysis result of

bone marrow data4.11. However, GSEA result showed a different pattern. Out of 12423 gene

sets tested for positive enrichment, 65 gene sets had q− value < 0.05. Leading edge analysis

reveals the clustering of the spliceosome, oxidative phosphorylation and protein transport.

Table 4.2: Top Whole Blood Unique Gene Sets

NAME SIZE FDR q-val

GSEA34205 RSV VS FLU INF INFANT PBMC UP 97 0.006

CATALYTIC STEP 2 SPLICEOSOME 76 0.008

U2 TYPE SPLICEOSOMAL COMPLEX 23 0.011

SPLICESOME 113 0.013

U12 SPLICESOMAL COMPLEX 25 0.015

The result of GSEA for both bone marrow analysis and whole blood analysis was com-

pared. 6 gene sets were enriched in both the bone marrow and whole blood. Oxidative

phosphorylation related gene sets and ribosomal related gene sets constitute the majority of

genes sets enriched in both whole blood transcriptome response and bone marrow transcrip-

tome response. 17 gene sets were uniquely enriched in whole blood transcriptome response,

the top 5 gene sets according to q-value are shown in Table 4.2. 7 out of these 17 unique gene

sets are related with spliceosome function. Association of malaria infection with the change

in spliceosome related genes has recently been reported by Yamagishi et al. [15]. Top unique

gene sets of bone marrow transcriptome are shown in Table 4.3.
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Table 4.3: Top Bone Marrow Unique Gene Sets

NAME SIZE FDR q-val

CROSS PRESENTATION OF SOLUBLE EXOGENOUS ANTIGENS ENDOSOMES 42 0.000

GSE2405 0H VS 9H A PHOGOCYTOPHILUM STIM NEUTROPHIL DN 177 0.000

3 UTR MEDIATED TRANSLATIONAL REGULATION 96 0.000

PEPTIDE CHAIN ELONGATION 79 0.000

SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING TO MEMBRANE 101 0.000

4.6 Discussion

In this paper, we presented a novel differential network analysis tool. The identification

of differential networks provides context for downstream functional analysis. We were able

to apply this framework to explore differential transcriptomic network resulting from P.

cynolmogi infection. We discovered specific pathways that characterize bone marrow and

whole blood transcriptional response to P. cynolmogi infection.

eDiNA discovers differential networks through the ensemble of four measurements:

Pearson’s Correlation, Spearman’s Correlation, χ2 statistics and `1 distance. Each indi-

vidual measurement only describes one aspect of pair-wise dynamics, the ensemble method

leverages the strength of each. The ability of eDiNA to provide biological insight of tran-

scriptional response to malaria was demonstrated through its application to the MaHPIC

study. Our analysis identified 17 gene sets that were uniquely enriched in whole blood

transcriptome response to malaria infection. The splicesome related perturbation identified

by our study has also been independently reported by Yamagishi et al. [15]. Furthermore,

our analysis of bone marrow transcriptional response suggests the activation of the immune

response in the bone marrow during P. cynolmogi infection. Interestingly, mitochondrial
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and oxidative phosphorylation-related gene sets are perturbed in both the bone marrow and

whole blood, suggesting critical function of mitochondria during host response to parasite

invasion [9].The framework of eDiNA is based on Fisher’s combined p-value test and can be

easily expanded to other -omic data types and to include other measurements of pairwise

dynamics.

In conclusion, eDiNA provides the framework to leverage the strength of many different

differential network analysis methods and allow for the identification of perturbed pairwise

dynamics that are overlooked by a singular quantification method.
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Figure 4.6: Visualization of differential pairwise gene dynamics with q value < 10−23. Each
edge represents a differential pairwise gene dynamic. Each node represents a gene and the
size of a node is proportional to the degree of the node.
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Figure 4.9: Visualization of differential pairwise gene dynamics with q value < 10−23. Each
edge represents a differential pairwise gene dynamic. Each node represents a gene and the
size of a node is proportional to the degree of the node.
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Chapter 5

Correlates of severity of disease in Macaca mulatta infected with Plasmodium

cynomolgi1

1Yi H. Yan, Diego M. Moncada, Elizabeth D. Trippe, and Juan B. Gutierrez. To be submitted
to Nature Scientific Report
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5.1 Abstract

Characterization of host responses associated with severe malaria through an integrative

approach is necessary to understand the dynamics of a Plasmodium cynomolgi infection. In

this study, we conducted temporal immune profiling, cytokine profiling and transcriptomic

analysis of five Macaca mulatta infected with P. cynomolgi. This experiment resulted in two

severe infections, and two mild infections. Our analysis reveals that differential transcrip-

tional up-regulation of genes linked with response to pathogen-associated molecular pat-

tern (PAMP) and pro-inflammatory cytokines is characteristic of hosts experiencing severe

malaria. Furthermore, our analysis discovered associations of transcriptional differential reg-

ulation unique to severe hosts with specific cellular and cytokine responses. The combined

data provide a molecular and cellular basis for the development of severe malaria during P.

cynomolgi infection.

5.2 Introduction

Malaria remains a public health challenge, responsible for approximately 400,000 (236,000635,000)

death in 2015 [19]. Out of the five human Plasmodium species capable of causing malaria,

Plasmodium falciparum and Plasmodium vivax account for the majority of human malaria

infections. P. falciparum is responsible for the majority of malaria-related mortality and is

most prevalent in sub-Saharan Africa [19]. Although P. vivax infection does not typically

result in mortality, this parasite causes substantial morbidity outside of sub-Saharan Africa

and exhibits the propensity to cause severe disease. The mechanisms that underly vivax

malaria pathogenesis, however, remain poorly understood partially due to experimental

constraints such as the lack of an in vitro culture system and a rodent model of P. vivax

infection [7, 16, 17].

Plasmodium cynomolgi is a non-human primate parasite that infects old world mon-

keys and is capable of recapitulating clinical and histopathological findings of vivax malaria
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patients[5, 6, 23]. It is both genetically and physiologically similar to P. vivax [23, 27]. For

instance, both parasites exhibit 48-h erythrocytic cycle during blood stage infection [3], pref-

erential infection of reticulocytes [26] and form hypnozoites, which are dormant, liver stage

forms that can activate and cause relapse infections [12]. Due to the difficulty of studying P.

vivax pathogenesis, P. cynomolgi infection of rhesus monkeys (Macaca mulatta ) has being

used to better understand hypnozoite-caused relapse [4].

Host clearance of malaria parasites without complication requires a concerted effort

between inflammatory and anti-inflammatory cytokines; their balance and timing are crit-

ical in determining clinical outcomes [8]. The association between cytokine, transcriptomic

and immune response, and clinical outcomes has been extensively studied in P. falciparum

infections [2, 20, 24, 25, 28], in comparison, much less is known for P. vivax infections.

With the aim to better characterizing P. vivax infection in humans, a time series exper-

iment where four Macaca mulatta were infected with P. cynomolgi was conducted as a part

of the Malaria Pathogen Host Interaction Center (MaHPIC) project [10]. This experiment

captured host transcriptomic, cellular and cytokine response to P. cynomolgi infection. The

subjects within this study responded to the infection in different manners and resulted in two

cases of severe malaria, and two cases of mild malaria. The presence of both severe malaria

and mild malaria provided us the opportunity to characterize host responses associated with

clinical outcomes.

Here we present the combined analysis of cellular, transcriptome and cytokine data col-

lected during this experiment with an emphasis on comparing host responses during severe

malaria and mild malaria. Our analysis shows associations of severe malaria with differ-

ential up-regulation of pro-inflammatory signals independent of adaptive immune response,

whereas moderate malaria is associated with transcriptomic up-regulation of complement and

heme metabolism related genes. These distinct characteristics demonstrate that P. cynomolgi

induced severe malaria is strongly associated with up-regulation of inflammatory signaling

through transcriptional regulation.
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5.3 Results

5.3.1 Study Design
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Figure 5.1: Parasite count over the entire experiment. Transcriptome, cytokine, and immune
profiling were conducted during the six time points marked with red diamonds. Subject S1
and S2 experienced severe malaria symptom. Subject M1 and M2 experienced mild malaria
symptom.

The experimental design is shown in Figure 5.1. Transcriptomic, cellular and cytokine

data were measured from peripheral blood samples collected during six time points. Time

point 1 (TP1) corresponds to the pre-infection baseline for each subject. Time point 2 (TP2)

corresponds to the acute primary infection when parasite counts peaked. At time point 2,

two subjects, S1 and S2 developed signs of severe malaria including anemia and thrombocy-

topenia, which required each animal to be sub-curatively treated to prevent possible severe

complications. The other two subjects M1 and M2 experienced mild disease manifestations

and did not receive sub-curative treatment. All animals received curative blood-stage treat-

ment with artemether on Day 28 to ensure that subsequent parasitemias were due to relapses

and not recrudescing parasitemias. A detailed description of the experimental set-up can be

found in the publication by Joyner et al. [10].
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5.3.2 Differential Gene Regulation during Primary Infection

Figure 5.2: Clinical classes were defined as in Figure 5.1. (A) Principal component analysis
of the combined -omic data (Transcriptome, cytokine and immune cell counts). (B) An
unsupervised hierarchical heat map of the top 50% most variable genes at time point 2.
Subjects experiencing severe malaria symptoms are labeled S1 and S2, subjects experiencing
mild malaria symptoms are labeled M1 and M2.

To characterize the differences of transcriptomic responses induced by P. cynomolgi infec-

tion between the subjects experiencing severe malaria (severe hosts) and the ones experi-

encing mild malaria (mild hosts), we conducted RNA-Seq analysis for each clinical group

between TP1 and TP2 using the DESeq algorithm [1]. Furthermore, between-group tran-

scriptome analysis was also carried out for TP2. The transcriptome profiles differ the most
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from the healthy baseline (TP1) at TP2 and TP3 shown by principal component analysis

(Figure 5.2). Additionally, the transcriptome profiles of the severe hosts were more similar

to each other than to the mild hosts at TP2 as shown by both principal component analysis

and hierarchical clustering using the top 50% most variably expressed genes (Figure 5.2).

Mild hosts showed similar degrees of transcriptome perturbation during the onset of

primary infection (698 DEGs using an absolute fold-change threshold of > 1.5 and q-value

< 0.05) relative to severe hosts (511 DEGs). 148 genes were identified by both analyses. At

TP2, 1337 genes were differentially expressed between the mild hosts and severe hosts. 380 of

these DEGs were temporally differentially expressed in severe hosts between TP1 and TP2.

220 DEGs were temporally differentially expressed in mild hosts between TP1 and TP2.

To identify differentially regulated transcriptome responses to P. cynomolgi between

severe hosts and mild hosts, DEGs were classified into four groups: differentially up-regulated

genes in severe hosts (DUGs-S), differentially up-regulated genes in mild hosts (DUGs-

M), differentially down-regulated genes in severe hosts (DDGs-S) and differentially down-

regulated genes in mild hosts (DDGs-M). Genes were classified into each of these groups

based on their between group differential expression at TP2 and their with-in group differ-

ential expression between TP1 and TP2. The specific classification scheme is shown in Figure

5.3 and Figure 5.4.

5.3.3 Biological Pathways Perturbed During Primary Infection

To identify the biological pathways associated with each of the four groups of differentially

regulated genes, we used MySigDB to conduct enrichment analysis [13]. Using a q-value

cut-off of 0.05, DUGs-S are enriched in 205 pathways with the most significantly enriched

pathway being cytokine signaling in the immune system. DDGs-S are enriched in only 24

pathways (Figure 5.3) with the most significantly enriched pathway being immunoregula-

tory interactions between lymphocyte cells (LCS) and non-lymphocyte cells (Non - LCS).

DUGs-M is enriched in 51 pathways with the most significantly enriched pathway being
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Figure 5.3: (A) Enrichment analysis using DUGs-S with q-value < 0.05. (B) Enrichment
analysis using DDGs-S with q-value < 0.05. (C) and (D) Venn diagrams showing the iden-
tification of DUGs-S and DDGs-S. ST2 > ST1 refers to genes within severe hosts that are
up-regulated at TP 2 in comparison to TP 1. ST2 > MT2 refers to genes that are up-
regulated in severe hosts in comparison to mild hosts at TP2. ST2 < ST1 refers to genes
within severe hosts that are down-regulated at TP 2 in comparison to TP 1. ST2 < MT2
refers to genes that are down-regulated in severe hosts in comparison to mild hosts at TP2.

heme metabolism, and DDGs-M are enriched in 6 pathways. The number of enriched path-

ways within each gene set is proportional to the gene set size. Both DUGs-S and DUGs-M
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show enrichment in innate immune-related response and interferon gamma related response.

However, complement and coagulation-related genes are differentially up-regulated in the

mild hosts and differentially down-regulated in the severe hosts.

Figure 5.4: (A) Enrichment analysis using DUGs-M with q-value < 0.05. (B) Enrichment
analysis using DDGs-M with q-value < 0.05. (C) and (D) Venn diagrams showing the iden-
tification of DUGs-M and DDGs-M. MT2 > MT1 refers to genes within mild hosts that
are up-regulated at TP 2 in comparison to TP 1. MT2 > ST2 refers to genes that are up-
regulated in mild hosts in comparison to severe hosts at TP2. MT2 < MT1 refers to genes
within mild hosts that are down-regulated at TP 2 in comparison to TP 1. MT2 < ST2
refers to genes that are down-regulated in mild hosts in comparison to severe hosts at TP2.
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5.3.4 Differentially Regulated Genes Demonstrate Distinct Correlation

Pattern with Cell Populations and Cytokine Abundance

Figure 5.5: (A) An unsupervised hierarchical heat map of the pairwise Spearman’s correlation
among DUGs-S, cell populations, and cytokine abundances. (B) Heat map of the pairwise
Spearman’s correlation among DUGs-M, cell populations, and cytokine abundances.

To identify the similarities among temporal profiles of DUGs-S, DUGs-M, cytokine abun-

dances and cell populations, we constructed two correlation matrices and identified 5 clusters

(Figure 5.5). DUGs-S and DUGs-M exhibited distinct correlation patterns with respect to

cytokine abundances and cell populations. Two clusters were identified for DUGs-S, all but

11 genes were clustered into C1 and the rest into C2. C1 contained the majority of cytokine

abundances along with a few cell populations such as the percentage of CD14 CD16 mono-

cytes out of total monocyte, the percentage of granulocytes out of total lymphocytes and

parasite concentration. Furthermore, we performed enrichment analysis of transcriptional

factors for C1 and identified a list of enriched transcriptional factor targets. The top 3 tran-

scriptional factor targets enriched are ISRE, IRF7, and STAT5. Incidentally, IRF7 was also

observed to be transcriptionally differentially up-regulated in severe hosts. Unlike C1, C2

contained most of the adaptive and innate immune cell populations but very few genes. In

fact, the majority ( > 60%) of the correlations between the genes in C1 and the adaptive

immune cell populations in C2 are negative.
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Three clusters were identified for DUGs-M. C3 contained 37 genes and the majority of the

pro-inflammatory cytokines along with reticulocyte population and parasite concentration.

Enrichment analysis of C3 reveals that it is enriched in heme metabolism related genes. C4,

on the other hand, contained the rest of DUGs-M along with caspase 3 CD 8 and CD 4

T cell populations, monocyte and granulocyte populations. C4 is enriched in complement

and coagulation-related genes. C5 is composed entirely of adaptive immune cell types such

as B cell and traditional T cell populations. Transcription factor analysis of C3 and C4 did

not reveal any enrichment of transcription factor targets. Despite the fact that both heme

metabolism and complement-related genes are differentially up-regulated at TP2 in mild

hosts, their expression patterns are associated with different cell populations and cytokine

abundances. Furthermore, their temporal expressions differ over the entire experiment, in

contrast to the uniform temporal expression patterns of DUGs-S.

5.3.5 Cytokine Perturbation during Primary Infection

To characterize the differences of cytokine responses induced by P. cynomolgi infection

between the clinical groups, two-way ANOVA was used to identify significantly changed

cytokines. 4 cytokines out of all 44 cytokines measured displayed significantly different abun-

dances between the two clinical groups. All 4 cytokines have a higher abundance in severe

hosts at TP2 (Figure 5.6).

To determine whether the differences in cytokine abundances can be attributed to tran-

scription levels, Pearson’s correlation coefficients between the time series of each of the

cytokines and their respective transcripts were calculated (Figure 5.6, 5.7). The correla-

tions of IL-6, MIG, MIP-1 and SICAM1 (soluble ICAM1) to their transcripts are 0.94, 0.77,

0.83 and 0.48 respectively. The correlation between SICAM1 and its transcript within the

severe hosts is 0.59, which is significantly higher than that of the mild hosts (correlation of

0.17). Additionally, MIG, SICAM1, and MIP-1 only differ in cytokine abundances but not

transcriptional abundances. The transcription regulators of IL-6, MIG, MIP-1 and SICAM1
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were identified using the TRRUST database [9] and analyzed for differential up-regulation in

severe hosts. One transcription factor of IL-6, JUN, and one transcription factor of ICAM1,

TWIST2, were identified as differentially up-regulated in severe hosts at TP2.

Interestingly, 13 cytokines exhibited negative correlation between their protein abun-

dances and transcriptional abundances. One of these 13 cytokines, IL-2 is transcriptionally

differentially up-regulated in mild hosts at TP2. Additionally, all the genes belonging to

DUGs-S showed positive correlations to their protein abundances. MCP1 and IL1RA exhibit

the highest correlation between transcript abundances and protein abundances. Both IL1-

beta and IL1RA showed differential up-regulation in severe hosts at the transcriptional level,

however, their transcript-protein correlation differs. IL-1-beta showed a 5 fold transcriptional

change which is associated with a 4 fold increase protein abundance. IL-1RA showed 7 fold

increase in transcripts but ∼ 8000 fold change in protein abundance. The ratio of IL1 to

IL1RA is lower in severe hosts (0.0045) in comparison to mild hosts (0.04).
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Figure 5.6: Time series data of significantly different cytokines between severe hosts and
mild hosts at time point 2. The first column indicates transcript abundance and the second
column indicates protein abundance.
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Figure 5.7: Pearson’s correlation between cytokine concentrations and their transcript abun-
dances. A red circle indicates protein level differential up-regulation in severe hosts. A red
square indicates transcriptional differential up-regulation in severe hosts. A blue square indi-
cates transcriptional differential up-regulation in mild hosts.

5.4 Discussion

In this study, we analyzed temporal transcriptomic, cellular and cytokine profiles of four

M. mulatta infected with P. cynomolgi to characterize the host response to infection. We

leveraged the fact that two of the subjects experienced severe malaria during the primary

infection and the other two subjects experienced mild malaria to understand the association

of host responses with P. cynomolgi disease severity. The diverse data types allow us to

cross-validate transcriptional response with actual protein abundance in relation to cellular

populations.
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Figure 5.8: Overview of differential regulation of transcriptome, cytokine, and cellular profiles
between subject groups.

The identification of differentially up-regulated cytokines and transcripts in the severe

hosts combined with the downstream pathway analysis demonstrate that severe malaria

within our experiment is associated with elevated pro-inflammatory cytokine levels (MIP,

IL6, MIG and SICAM1) and the up-regulation of innate immunity and anti-viral responses

related gene sets (TLR Pathway, NOD Pathway, and RIG-I Pathway). Additionally, the pos-

itive correlations between the abundance of MIP, IL6, MIG and SICAM1 and their respective

transcripts suggest that the differential up-regulation of these four cytokines are associ-

ated with transcriptional up-regulation. On the other hand, only two transcription factors

that activate the production of these cytokines have been identified to be differentially up-

110



regulated. The lack of detection of other transcription factors associated with these cytokines

could be attributed to the lack of statistical power due to small sample size, or that the up-

regulation of other transcription factors happened prior to our sampling. Additionally, most

of the transcriptional regulators that control the expression of the acute phase inflamma-

tory cytokines identified here are controlled by post-translational modifications, and thus,

an increase in transcription is not alway observed even though signaling may be occurring.

Our characterization of severe malaria caused by malaria infection through elevated IL-6

levels and up-regulation of innate and anti-viral related response have also been observed in

studies of P. falciparum infection severity [14, 15, 20, 25], suggesting likely shared mechanism

of recognition of foreign dsRNA and DNA material by the innate immune cells. Correlation

analysis of DUGs-S, cell population, and cytokine abundance demonstrates that differential

up-regulation of innate immunity and anti-viral responses related gene sets are accompa-

nied by the increase in pro-inflammatory cytokine abundances. The high correlation between

cytokine abundance and DUGs-s suggest that the increase in pro-inflammatory cytokines are

not independent of transcriptional up-regulation. The negative correlations between DUGs-S

and adaptive immune cell types suggest possible innate immune suppression by the adaptive

immune system [11, 22] or cross-talk between innate immune response and adaptive immune

response.

On the other hand, the mild hosts are characterized by the differential up-regulation of

the complement, coagulation and heme metabolism related genes. Interestingly, the com-

plement and coagulation pathways are differentially down-regulated in the severe hosts.

Complement activation has been previously linked to children experiencing severe malaria

during P. falciparum infection [18, 21], however, our result indicate that within the context

of P. cynomolgi infected M. mulatta, elevated levels of complement related transcripts are

associated with mild malaria. Correlation analysis of DUGs-M, cell population, and cytokine

abundance demonstrates that heme metabolism and complement-related genes are associated

with different cell populations and cytokine signals. Complement-related genes are associ-
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ated with both innate and adaptive immune cells and heme metabolism related genes are

associated with parasitemia and inflammation. Interestingly, SICAM1 which is differentially

up-regulated in severe hosts at time point 2 shows a significantly higher transcript-cytokine

correlation within the severe hosts than that of the mild hosts, which suggest that the

abundance of SICAM1 can be further attributed to post-transcriptional activities within the

mild hosts such as less cellular damage, inflammation or endothelial activation. Furthermore,

IL-1B was observed to be transcriptionally differentially up-regulated in severe hosts, but

the large difference of IL-1/IL1RA ratio between the two clinical groups suggest that IL-1

signaling might actually have been hindered in severe hosts.

In summary, we provided transcriptomic, cellular and cytokine evidence associated with

severe disease outcome during P. cynomolgi infection in M. mulatta. We observed that severe

malaria is associated with differential up-regulation of innate viral response related genes and

pro-inflammatory cytokine, specifically elevated level of IL-6. Mild malaria is associated with

up-regulation of the complement pathway strongly associated with monocyte and neutrophil

populations. Our analysis provided a molecular and cellular basis for the development of

severe malaria during P. cynomolgi infection. Larger and more frequent sampling studies are

needed to validate our findings and specifically determine the importance of innate immune

activation and the role of complement in controlling disease severity.

5.5 Material and Methods

5.5.1 Experimental Setup and Data Collection

A detailed description of the experimental set up and the generation of cytokine and immune

profiles can be found in the publication by Joyner et al. [10]. The procedure for RNA-seq data

collection and the library size normalized data can be found on Gene Omnibus under series

number GSE99486. The daily clinical data of the experiment is stored in PlasmoDB using

the identifier E04MalariaClinical. The cytokine and immune profiling data are deposited on

ImmPort under the identifier SDY1015.
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5.5.2 Bioinformatics Analysis

Differential expression analysis was carried out using MATLAB’s implementation of DESeq

algorithm on library size normalized read counts. Enrichment analysis of identified DEG

was conducted using MySigDB web service. The gene sets tested for enrichment included

canonical pathways, Hallmark pathways, BioCarta pathways and KEGG pathways. A q-

value cut-off of 0.05 was used. Clustering of transcriptomic, cellular population and cytokine

abundances was done using k-means clustering. The number of clusters used was determined

by the silhouette value of different numbers of clusters (1-6).

5.6 References
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Chapter 6

Quantification of Healthy Red Blood Cell Removal and Preferential

Invasion of Reticulocytes in Macaca mulatta during Plasmodium cynomolgi

Infection

6.1 Introduction

The goal of this article is to quantify the removal of healthy red blood cells and preferential

invasion of reticulocytes during malaria infection, and find their associations with molecular

phenomena through a modeling approach. The disease malaria is caused by Plasmodium

parasites. Out of the five human Plasmodium species capable of causing malaria, Plasmodium

falciparum and Plasmodium vivax account for the majority of human malaria infections. P.

falciparum is responsible for the majority of malaria-related mortality and is most prevalent

in sub-Saharan Africa [9].

The Plasmodium life cycle is comprised of several stages. The infection process in humans

starts with the injection of sporozoites by mosquitoes into the skin of the host. This is followed

by the liver stage, during which the inoculated sporozoites grow and multiply asexually within

hepatocytes for 1-2 weeks to produce merozoites. The newly produced merozoites emerge

from the liver and enter the blood stream. The blood-stage infection starts immediately

after the hepatic stage. The parasite’s blood-stage infection in both human and non-human

primates generally has a regular cycle of 24 to 72 hours depending on the species of the

Plasmodium parasite [1, 4]. The parasites invade healthy red blood cells (RBCs) and replicate

asexually, remodeling and ultimately destroying the RBCs in the process. The destruction

of RBCs during blood-stage malaria infection sometimes results in severe anemia, which is

one of the major complications of malaria and a leading cause of mortality.
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During blood-stage malaria infection, the majority of red blood cell loss has been

attributed to the removal of healthy red blood cells [3, 7, 11]. The hemodynamic model

described by Yan et al [15] characterizes this phenomenon through a mechanistic model

taking into account the interaction between healthy RBCs, infected RBCs, cells form the

innate immune system, and cells from the adaptive immune system. This model captures

the clinical outcomes of a malaria infection: resistance to the disease, susceptibility, and

resilience (chronic infection with mild symptoms). That model has been simplified to

account for experimental constraints, and it has been calibrated in this article with the data

of Macaca mulatta infected with P. cynomolgi described by Joyner et al [8]. Plasmodium

cynomolgi is a malaria parasite that infects old world monkeys; it is physiologically and

evolutionarily similar to P. vivax [13, 14].

This paper is organized as follows: Section 2 provides the description of the experimental

data. Section 3 contains the detailed derivation and description of our hemodynamic model.

Section 4 describes the model calibration process. Section 5 provides an overview of the cal-

ibration results. Section 6 integrates our modeling result with transcriptomic data collected

during the experiment. Section 7 describes an adjusted model based on our calibration results.

Section 8 offers some conclusions, and discusses the biological significance of our results.

6.2 Experimental Description

The experimental design is shown in Fig 6.1. The infected red blood cell, total red blood

cell, and reticulocyte concentration were measured daily over the entire experiment. The

four subjects, S1, S2, M1 and M2 are referred as Subject 1 ∼ 4 within this paper. Each red

diamond corresponds to a specific time point where transcriptome, cytokine and immune

profiling was conducted. Time point 2 (TP2) corresponds to the acute primary infection

when parasite counts peaked. A detailed description of the experiment that collected this

data can be found in Joyner et al. [8].
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Figure 6.1: Parasite count over the entire experiment. Transcriptome, cytokine, and immune
profiling were conducted during the 6-time points marked with the red diamond. Subject S1
and S2 experienced severe malaria symptoms. Subject M1 and M2 experienced mild malaria
symptoms.

6.3 Matching a Theoretical Model with Experimental Constraints

The mechanistic partial differential equation model described by Yan et al. [15], has the form

presented below; the detailed definition of variables, parameters and functions is presented

in that paper, and also for completeness in the Appendix.

∂u

∂t
+
∂u

∂a
=−

(
T∑
i=1

wi(t)θi +

Q∑
i=1

si(t)ψi + h(a)

)
u(a, t)

− γκv(αmax, t)p(u(a, t)),

∂v

∂t
+ V

∂v

∂α
=−

(
T∑
i=1

wi(t)φi +

Q∑
i=1

si(t)bi(t)

)
v(α, t),

dwi
dt

=oi(t)− βiwi(t),

dsi
dt

=li(t)− δisi(t),

(6.1)
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subject to the following initial and boundary conditions:

u(a, 0) =g(a),

u(0, t) =f(t, ϕ(t)),

v(α, 0) =c(α),

v(0, t) =γκ

∫ amax

a0

v(αmax, t)p(u(a, t)) da.

With the experimental constraints, it was not possible to measure the delay in the erythro-

poietic response, and hence it was removed from this model. Thus the boundary condition

u(0, t) = x4e
x5(T0−T (t)), where x4 is the baseline production of red blood cells and x5 is a

parameter controlling the speed of erythropoiesis response. T0 is the sum of the steady-state

concentration of reticulocytes and mature red blood cell and T is the sum of the concentra-

tion of reticulocytes and mature red blood cell at time t.

Under the explicit assumption, that the immune cell populations do not interact with

the infected red blood cell population (v) and healthy red blood cell population (u) (φi = 0,

θi = 0, ψi = 0, for all i and bi(t) = 0 for all t), the system reduces to:

∂u

∂t
+
∂u

∂a
=− h(a)u(a, t)− γκv(αmax, t)p(u(a, t)),

∂v

∂t
+ V

∂v

∂α
=0.

Furthermore, under the explicit assumption that the initial age distribution of v is uniform,

v(α, 0) = C. Let

V (t) =

∫ αmax

0

v(α, t)dα,

where V (t) denote the total amount of iRBC at time t. Then,

V (0) = αmaxC.

Additionally, let t2 = t1 + ε, ε > 0, then:∫ αmax

0

v(α, t2)dα =

∫ αmax

0

v(α, t1)dα,

+

∫ t2

t1

γκ

∫ amax

a0

v(αmax, t)p(u(a, t))dadt,

−
∫ t2

t1

v(αmax, t)dt.
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Because
∫ amax
a0

p(u(a, t)) = 1 for all t, the system further simplifies to:∫ αmax

0

v(α, t2)dα =

∫ αmax

0

v(α, t1)dα,

+

∫ t2

t1

γκv(αmax, t)dt,

−
∫ t2

t1

v(αmax, t)dt.

(6.2)

Substituting V into (6.2), and rearranging the equation:

V (t2)− V (t1) = (γκ− 1)

∫ t2

t1

v(αmax, t)dt.

Thus, ∫ t2

t1

V̇ dt = (γκ− 1)

∫ t2

t1

v(αmax, t)dt

and

V̇ = (γκ− 1)

∫ amax

a0

v(αmax, t)p(u(a, t)) da. (6.3)

Because the age distribution of red blood cells are unknown throughout the experiment, and

only reticulocyte and mature red blood cell populations are measured, we define a1 as the

precise time point where reticulocytes become mature red blood cells. We further define the

total population of reticulocytes at time point t as R(t) and the total population of mature

red blood cells at time point t as U(t). R(t) and U(t) have the following form:

R(t) =

∫ a1

0

u(a, t)da,

and

U(t) =

∫ amax

a1

u(a, t)da,

thus

R(t) + U(t) =

∫ amax

0

u(a, t)da.

Therefore, (6.3) can be rewritten as:

V̇ = (γκ− 1)v(αmax, t)

(
R

R + U
+

U

R + U

)
.

122



Under the assumption that on average a small fixed percentage of infected red blood cells

are bursting, then

v(αmax, t) = C2V.

Which means:

V̇ = (γκ− 1)C2V

(
R

R + U
+

U

R + U

)
.

Additionally, knowing that the infection rate of reticulocyte is different from mature red

blood cells, we can modify the system to reflect this fact:

V̇ = (γκ1 − 1)C2V
R

R + U
+ (γκ2 − 1)C2V

U

R + U
.

Let

x3N = (γκ1 − 1)C2,

and

x6N = (γκ2 − 1)C2.

Then

V̇ = x3N
UV

R + U
+ x6N

RV

R + U
.

The derivative of R(t) can be derived similarly. Let:∫ a1

0

u(a, t2)da =

∫ a1

0

u(a, t1)da

+

∫ t2

t1

x4e
x5(T0−T )dt

−
∫ t2

t1

u(a1, t)dt

−
∫ t2

t1

x6N
RV

R + U
.

Because the much shorter life span of reticulocytes in comparison to mature red blood cells

[2] and the fact that the survival rate of reticulocytes to be close to 1 [6], the hazard function,

h(a), of reticulocyte is ignored. Substituting R, and rearrange the equations, we obtain:

R(t2)−R(t1) =

∫ t2

t1

x4e
x5(T0−T (t)) − u(a1, t)− x6N

RV

R + U
dt.
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Thus,

Ṙ = x4e
x5(T0−T ) − u(a1, t)− x6N

RV

R + U
.

Under the assumption that on average a small fixed percentage of reticulocyte are aging into

mature red blood cell at any given time,

Ṙ = x4e
x5(T0−T ) − x1R− x6N

RI

R + U
.

The derivative of U(t) is also derived similarly. let:∫ amax

a1

u(a, t2)da =

∫ amax

a1

u(a, t1)da

+

∫ t2

t1

u(a1, t)dt

−
∫ t2

t1

u(amax, t)dt.

−
∫ t2

t1

∫ amax

a1

h(a)u(a, t)dadt

−
∫ t2

t1

x3N
UV

R + U
.

Assuming that on average, a fixed percentage of red blood cells are removed due to random

chance, substituting U then the equation becomes:

U(t2)− U(t1) =

∫ t2

t1

u(a1, t)− x2U − x6N
RI

U +R
dt.

Thus:

U̇ = x1R− x2U − x6N
RI

U +R
.

In conclusion, under the following explicit assumptions:

• The change of infected red blood cell population and healthy red blood cell population

is independent of the immune cell populations,

• the erythropoiesis response does not have a delay,

• on average, a fixed percentage of iRBCs are bursting at any given moment and a fixed

percentage of reticulocytes are transitioning into mature red blood cells,
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the original PDE model (6.1) is simplified to the following system of ordinary differential

equations that captures the change in the total infected red blood cell, red blood cell, and

reticulocyte population:

U̇ = x1R− x2U − x3N
UI

T
,

Ṙ = x4e
x5(T0−T ) − x1R− x6N

RI

T
,

İ = x3N
UI

U +R
+ x6N

RI

U +R
.

Where U denote the concentration of healthy mature red blood cells (RBCs), R denotes

healthy reticulocytes (RT) and I denote the concentration of infected red blood cells (iRBCs).

Let T = U + R and T0 = R0 + U0 where R0 and U0 denote the steady state concentration

of RTs and RBCs in the absence of malaria infection. N denote the average merozoites

produced per infected red blood cell. x1R describes the aging of RTs to become RBCs. x2U

denote the random removal of mature red blood cells. x3 and x6 denote the infection success

rate of RBCs and RTs respectively. x4 denotes the baseline production of RTs and the term

ex5(T0−T ) describes the host erythropoiesis response.

6.4 Parameter Estimation

Under the assumption of steady state, where R0 is the steady state concentration of RTs

and U0 is the steady state concentration of RBCs, the following equality is established:

x4 = x1R0 = x2U0.

The average number of merozoite produced is set to be 20. Fonseca et al. [6] estimated that

the baseline production of RTs in M mulatta, x4, is 192, 00 cells per day [6]. R0 and U0

are estimated for each subjects using the average of the red blood cell and reticulocytes

counts during the first ten days of the experiment where no iRBCs were detected. The lower

bound and upper bound of the other three parameters, x3, x6 and x5 were also estimated.

All three parameters are positive. The upper bound of x5 was set to allow a maximum of
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2-fold increase in RTs production in each subject. Upper bound of x3 and x6 was set to be

0.05 and 1 respectively. When x3 > 0.05 and/or x6 > 1, the system becomes numerically

unstable to solve due to stiffness using odesolver45 in MATLAB environment. The upper

bound of x3 and x6 also ensures that the İ < 0.5NI throughout the simulation, meaning

that the number of infected red blood cells produced over a two day period can not exceed

the number of merozoites produced.

A multiple objective genetic algorithm [5] was used to estimate the parameters (x3, x6, x5)

for each subjects using the estimated lower and upper bound of each parameter. The model

was fitted to the cellular data with starting date corresponding to the first appearance of

iRBCs and ending date corresponding to time point 2. The two objectives minimized were

the average percent error (APE) of predicted RTs and iRBCs concentration. APE have the

following form for a specific variable such as RTs:

APEretic =
100

n

n∑
i=1

ri −Ri

Ri

,

where ri is the observed RTs concentration at time point i and Ri is the model predicted RTs

concentration. Contrary to single objective minimization, a Pareto front for both objectives

is estimated during each application of the genetic algorithm. The Pareto front refers to a

set of possible values of both object function such that the decrease in one objective function

necessitates the increase of the other [5]. Each application of a genetic algorithm is terminated

when the change in the estimated Pareto front is less than the predefined tolerance (0.0001).

Due to the stochastic nature of the genetic algorithm, 1,000 runs were applied to estimate the

parameters for each subject. > 99% of the application of genetic algorithm terminated due

to the convergence of Pareto front, the rest did not converge during the maximum allowed

run time of 60 seconds.
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Figure 6.2: Estimated Pareto Front of Average Percentage Error (APE) of iRBCs and RTs
for each of the four subjects.

6.5 Results

6.5.1 Result Overview

The Pareto front of iRBC APE and RT APE for each subject are shown in Figure 6.2. For

subject 1, 2 and 4, there exist a sub-region on the Pareto front such that the iRBC APE

and RT APE have a negative linear relationship, which means that iRTAPE +RTAPE is

close to constant. The Pareto front estimated for subject 3 does not contain such a region,

indicating a lack of model fit for that specific subject. The iRBC APE for all four subjects has

a range of (45% ∼ 90%) where the RT APE have a range of (15% ∼ 50%). The simulation

of the top 100 model with the lowest iRBCs APE are shown in Figure (6.3, 6.4, 6.5, 6.6).
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Figure 6.3: Simulation of the top 100 models with the lowest iRBCs APE and distribution
of percent error of subject 1

6.5.2 Quantification of The Preferential Infection of Reticulocyte by P.

cynomolgi
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Figure 6.4: Simulation of the top 100 models with the lowest iRBCs APE and distribution
of percent error of subject 2

To quantify the preferential infection of RTs by P cynomolgi, the ratio of x6 to x3 in

the top 100 model with the lowest iRBCs APE for each subject was calculated. The ratio

x6
x3

is interpreted as the likelihood of P cynomolgi infecting RTs over infecting RBCs. The

distribution of x6
x3

is shown in Figure 6.7. The means of the four distribution are 13, 17, 28

and 18 respectively.

6.5.3 Quantification of Removal of Healthy Red Blood Cell (hRBC)

The loss of healthy RBC (hRBC) is also calculated based on the 100 model prediction with

the lowest iRBC APE. Total Loss of hRBC and Ratio of loss of hRBC and parasitized RBC

are shown in Figure 6.8. On average, 1.5 million hRBCs per µl are cleared by the host

through out the onset of the disease till acute primary infection. Furthermore, our model

predicted that for each RBC parasitized, the host removes 3 hRBC. The quantification of
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Figure 6.5: Simulation of the top 100 models with the lowest iRBCs APE and distribution
of percent error of subject 3

the removal of hRBCs over the entire infection is shown in Figure 6.9. The model fit of RBC

and retic Population after adjusting for removal of hRBCs are shown in Figure 6.10.

6.6 Correlation and Enrichment Analysis of Rate of hRBC Removal

The rate of hRBC removal was estimated for all four subjects (Fig 6.11) based on the esti-

mated loss of hRBCs (Fig 6.9). Pearson’s correlation between hRBC removal rate and their

corresponding transcript, immune cell and cytokine abundance was calculated. The p-value

of the correlation was adjusted for false discovery rate and the transcript, immune cell and

cytokine exhibiting significant correlation with hRBC removal rate (q-val ≤ 0.05) are shown

in Fig 6.12. Several pro-inflammatory ctokines such as IL6 and IL1B are positively corre-

lated with the rate of hRBC removal. On the other hand, CD8 T cell population displayed

significant negative correlation with hRBC removal rate.
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Figure 6.6: Simulation of the top 100 models with the lowest iRBCs APE and distribution
of percent error of subject 4

Only seven genes: MYO3B, GAN, DNAJB4, TRIM45, TMEM150A, IL23R and BMF

have shown significant correlation with the rate of hRBC removal. To fully explore the asso-

ciation of transcriptome change and rate of hRBC removal, Gene Set Enrichment Analysis

[12] was applied to the correlation ranked gene lists. The most significantly enriched GO

gene sets and pathways are shown in table 6.1 and table 6.2. Innate immune related gene

sets and pathways are positively correlated with hRBC removal rate, which corresponds to

the positive correlation between hRBC removal and inflammatory cytokines. On the other

hand, transcripts that have negative correlation with hRBC removal are enriched in RNA

and protein processing related pathways.
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for subjects 1 4.
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Figure 6.8: Estimated total loss of hRBC and ratio of loss of hRBC and parasitized RBC in
subject 1-4

6.7 Empirical Model Adjustment

The simulation of the top 100 model with the lowest iRBC APE for subject 1,2 and 3

(Figure 6.3, 6.4, 6.5, 6.6) failed to capture the increase of RBC population during the early
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Table 6.1: Enrichment of GO Gene Sets

Positive Enriched GO Gene Sets Negative Enriched GO Gene Sets

INNATE IMMUNE RESPONSE NCRNA PROCESSING
IMMUNE EFFECTOR PROCESS NCRNA METABOLIC PROCESS
ACTIN FILAMENT BASED PROCESS RIBOSOME BIOGENESIS
REGULATION OF BODY FLUID LEVELS RRNA METABOLIC PROCESS
WOUND HEALING RIBONUCLEOPROTEIN COMPLEX BIOGENESIS
RESPONSE TO BACTERIUM TRANSLATIONAL INITIATION
DEFENSE RESPONSE TO OTHER ORGANISM AMIDE BIOSYNTHETIC PROCESS
INFLAMMATORY RESPONSE PEPTIDE METABOLIC PROCESS
ACTIVATION OF IMMUNE RESPONSE MULTI ORGANISM METABOLIC PROCESS
REGULATION OF RESPONSE TO WOUNDING NONSENSE MEDIATED DECAY
HEMOSTASIS PROTEIN LOCALIZATION
REGULATED EXOCYTOSIS PROTEIN LOCALIZATION TO ENDOPLASMIC RETICULUM
SECRETION PROTEIN TARGETING TO MEMBRANE
RESPONSE TO WOUNDING TRNA METABOLIC PROCESS
CELLULAR RESPONSE TO NITROGEN COMPOUND RNA CATABOLIC PROCESS
ENDOCYTOSIS ORGANIC CYCLIC COMPOUND CATABOLIC PROCESS
RESPONSE TO VIRUS TRNA PROCESSING
CELL CELL ADHESION MITOCHONDRIAL TRANSLATION
REGULATION OF INFLAMMATORY RESPONSE TRANSLATIONAL ELONGATION

Table 6.2: Enrichment of Pathways

Positive Enriched Pathways Negative Enriched Pathways

SYSTEMIC LUPUS ERYTHEMATOSUS 3 UTR MEDIATED TRANSLATIONAL REGULATION
HEMOSTASIS TRANSLATION
CYTOKINE SIGNALING IN IMMUNE SYSTEM PEPTIDE CHAIN ELONGATION
CHEMOKINE SIGNALING PATHWAY RIBOSOME
INTERFERON ALPHA BETA SIGNALING INFLUENZA VIRAL REPLICATION
PID PDGFRB PATHWAY PROTEIN TARGETING TO MEMBRANE
REGULATION OF ACTIN CYTOSKELETON NONSENSE MEDIATED DECAY
PLATELET ACTIVATION SIGNALING AND AGGREGATION INFLUENZA LIFE CYCLE
AMYLOIDS METABOLISM OF PROTEINS
PID VEGFR1 2 PATHWAY METABOLISM OF RNA
RNA POL I PROMOTER OPENING FORMATION OF THE TERNARY COMPLEX
NABA MATRISOME ASSOCIATED ACTIVATION OF THE MRNA BINDING TO 43S
RESPONSE TO ELEVATED PLATELET CYTOSOLIC CA2 METABOLISM OF MRNA
NABA SECRETED FACTORS MITOCHONDRIAL PROTEIN IMPORT
INTERFERON SIGNALING RNA POLYMERASE
RHO PATHWAY RNA POL III TRANSCRIPTION INITIATION
LEUKOCYTE TRANSENDOTHELIAL MIGRATION RESPIRATORY ELECTRON TRANSPORT ATP SYNTHESIS
FOCAL ADHESION PYRIMIDINE METABOLISM
JAK STAT SIGNALING PATHWAY TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT
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Figure 6.9: Time series of estimated loss of hRBCs.

stages of malaria infection. Considering that the difference between RBC population and

steady state RBC population is minimal during the early stage of malaria infection, this

discrepancy suggest that RBCs are released during the early stage of blood stage malaria.

Additionally, our correlation analysis identified several cell types, cytokines and transcripts

(q-value ≤ 0.05) that are linearly correlated with hRBC removal rate. This finding suggest

the possibility of using these entities to predict hRBC removal rate. Taking these findings

into consideration, our original model can be further expanded to:

U̇ = x1R− x2U − x3N
UI

T
−
∑

γiEi + g(M),

Ṙ = x4e
x5(T0−T ) − x1R− x6N

RI

T
,

İ = x3N
UI

U +R
+ x6N

RI

U +R
,

is linearly explained by a combination of the abundances of inflammatory cytokines. Where

each Ei denote the abundance of a cytokine exhibiting linear correlation with the rate of
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Figure 6.10: Time series of model predicted total red blood cell adjusted by the mean of
estimated loss of hRBC.

hRBC removal (Fig: 6.12) and each γi quantifies the linear dependency. The term g(M)

denote the increase of RBC population during the early stage of malaria infection, that is

dependent on some molecular quantity M , possibly pathogen related. The estimated form

of g(M) are shown in Figure 6.13 and the post-hoc fitted model is shown in Figure 6.14.

6.8 Discussion

In this chapter, a simplified Ordinary Differential Equation model was fitted to the time

series data collected from the MaHPIC experiment. Our simplified model was derived from

the earlier PDE system under three explicit assumptions. The simplification of the original

model reduced the unknown parameters to 3 parameters with well-defined lower and upper

bounds.
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Figure 6.11: Time series of model predicted hRBC removal rate for all four subjects.

The model was fitted using multiple objective genetic algorithm and the Pareto front

estimated (Fig: 6.2) demonstrate that the simplified model describes the dynamics of RTs

much better than that of iRBCs as shown by the 2-fold difference in the range of RT APE and

iRBC APE. The iRBC APE for all four subjects has a range of (45% ∼ 90%) where as the RT

APE have a range of (15% ∼ 20%). This result suggests that the immune function omitted

in our model have a large impact on parasite population during the primary infection.

The best-fitted models were used to quantify the preferential infection of RTs by P.

cynomolgi. Our model predicts that, on average, P. cynomolgi merozoites are 20 times more

likely to infect RTs than RBC (Fig 6.7). The experimental verification of our prediction is

difficult due to the lack of an in vitro system to study P. cynomolgi, but our prediction

provides a general range of preferential infection of RTs, which can be utilized in future

experimental designs and modeling studies.
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Figure 6.12: Transcripts, immune cell population and cytokines that are highly correlated
(q-val ≤ 0.05) with hRBC removal rate.

Additionally, in all the best fit models (Fig 6.3, 6.4, 6.5, 6.6), our prediction of RBC

concentration and RT concentration are higher than observed. This over estimation of RBC
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Figure 6.13: Time series of g(M) for subject 1 through 4.

and RT concentration constitutes the majority of APE. Furthermore, our iRBC concentration

predictions are on average lower than the observed value. We utilized this fact to estimate

the lower bound of the amount of hRBCs removed by the host. Our model estimates that

at least 50% ∼ 80% of RBC loss during the primary infection of P. cynomolgi are due to

the removal of hRBCs 6.8. Finally, our model shows that the speed at which hRBCs are

removed increases throughout the infection.

Using the estimated hRBC removal rate, a correlation study was conducted to iden-

tify transcript, immune cell and cytokine abundance that has significant correlation with

hRBC removal rate. Interestingly, innate immune related gene sets (Interferon Response,

Rho Pathway and JAK-STAT pathway et al.) along with pro-inflammatory cytokines (IL-1B,

IL-6 et al.) displayed significant positive correlation with hRBC removal. The association

of severe malaria anemia with pro-inflammatory response has long been studied [10]; our

analysis provides a list of possible cytokine biomarkers for the estimation of host clearance
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Figure 6.14: Final adjusted model prediction of RBC population for subjects 1 through 4.

of hRBCs. Due to the experimental constraint where cytokine profiling was only conducted

during peak parasitemia, our analysis lacks the resolution to provide a mechanistic expla-

nation for the correlation between pro-inflammatory cytokines and host removal of hRBC.

Furthermore, the observation that inflammation related genes and cytokines are differen-

tially up-regulated in the severe subjects (Subject 1 and 2), along with the fact that severe

subjects have a higher rate of hRBC removal during peak parastemia, suggest the possible

role of inflammation associated hRBC clearance and clinical severity.

In conclusion, we have demonstrated that a simplified model with only three unknown

parameters can be used to predict RT concentration with an APE of (15% ∼ 20%). Despite
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the model’s relatively poor performance at predicting iRBC dynamics (APE 50% ∼ 70%), it

can be used to estimate the preferential infection of RTs and hRBC removal during malaria

infection. The estimation of the hRBC removal rate using our model along with the down-

stream enrichment analysis reveals associations of hRBC removal and both the inflammatory

response and CD 8 T-cell response. Application of this model to more time series data sets of

malaria infection involving a variety of malaria species is necessary to validate our findings.

6.9 Reference
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Chapter 7

Conclusion

1. Coupled age-structured partial differential equation model can be used to

capture the disease dynamics during blood-stage malaria.

A Partial Differential Equation model was constructed based on existing biological

knowledge. This model’s ability to capture the general behavior of two major out-

comes of infection with Plasmodium: (i) the depletion of host RBCs in a naive indi-

vidual and (ii) the coexistence of RBCs, iRBCs, and the immune system in individuals

with previous exposure, was demonstrated both analytically and through numerical

simulation.

2. Differential `1 distances between transcriptomic time series can be detected

and has the potential to reveal underlying biological perturbation.

A novel statistical method (MPATS), was created to detect differential pairwise `1

distances between two groups. The statistical power of the method was demonstrated

through simulated data. Its application to existing data set exploring anti-viral and

anti-bacterial responses of IFNα dendritic cells complemented existing time series anal-

ysis by identifying novel perturbed gene sets.

3. Single metric to detect differential network is insufficient, and ensemble

method can be used to reveal underlying biological change overlooked by

traditional differential expression methods.

We developed an ensemble differential network analysis tool (eDiNA). Its statistical

power and ability to outperform single pair-wise dynamics metric were demonstrated
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through its application to simulated data. The identification of differential networks

provides context for downstream functional analysis. We applied this method to explore

differential transcriptomic network resulting from P. cynolmogi infection. We discov-

ered specific pathways that characterize bone marrow and whole blood transcriptional

response to P. cynolmogi infection. Specifically, our analysis identified 17 gene sets that

were uniquely enriched in whole blood transcriptome response to malaria infection. The

spliceosome related perturbation is uniquely observed in the whole blood transcriptome

data but not the bone marrow. Furthermore, our analysis of bone marrow transcrip-

tional response suggests the activation of the immune response in the bone marrow

during P. cynolmogi infection.

4. Severity of clinical outcome during P. cynomolgi infection of Macaca

mulatta is characterized by the differential up-regulation of proinflamma-

tory genes and cytokines.

Our analysis of the transcriptomic, cellular and cytokine data of Macaca mulatta

infected with P. cynomolgi reveals differentially up-regulation of cytokines and tran-

scripts in the severe hosts. The downstream pathway analysis demonstrates that severe

malaria within our experiment is associated with elevated pro-inflammatory cytokine

levels (MIP, IL6, MIG and SICAM) and the up-regulation of innate immunity and anti-

viral responses related gene sets (TLR Pathway, NOD Pathway, and RIG-I Pathway).

Furthermore, correlation analysis of these differentially up-regulated genes, cell popu-

lation, and cytokine abundance demonstrates that differential up-regulation of innate

immunity and anti-viral responses related gene sets are accompanied by the increase

in pro-inflammatory cytokine abundances in hosts experiencing severe malaria.

5. Quantificaiton of P. cynolmogi preferential infection of reticulocytes and

estimation of loss of healthy red blood cells during primary infection
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An ordinary differential equation model was fitted to experimental data to quantify

the preferential infection of reticulocytes by P. cynomolgi. Our model predicts that P.

cynomolgi merozoites are 20 times more likely to infect reticulocytes than mature red

blood cells, taking into account the population difference between red blood cells and

reticulocytes. Furthermore, the same model predicted that at least 50% ∼ 80% of red

blood cell loss during the primary infection of P. cynomolgi are due to the removal

of healthy red blood cells. Additionally, analysis of the estimated rate of healthy red

blood cell removal reveals its association with pro-inflammatory cytokine abundances.
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