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Abstract

Traditional parametric linear models are subject to several limiting constraints. In

biomedical data analysis, parametric assumptions are often inappropriate because of mul-

timodality and skewness arising from patient heterogeneity, presence of outliers, lack of

important covariates, etc. For these reasons it is desirable to relax the parametric assump-

tion, leading to a nonparametric approach to statistical modelling that accommodates these

non-standard relationships in data.

This dissertation is a first step to understand the suitability of Polya tree priors and

other nonparametric models for modeling biomedical data. In particular, the Polya tree

prior is applied to repeated fractional data, cell line data, and microarray data. For repeated

fractional data with a range of possible values from the unit interval and positive probability

masses on 0 and 1, a latent variable is introduced to address probability point masses at 0

and 1. Posterior simulations for Polya tree priors on residual distributions, random effects

distributions, and gene expression distributions are discussed. We propose new models and

introduce Polya tree priors in these applications and develop novel algorithms to facilitate

posterior inference.



Three case studies highlight aspects of inference with Polya trees. In one of the case

studies we develop a nonparametric approach to inference about differential gene expression

in microarray group comparison experiments. Future directions for research are discussed.

Index words: Nonparametric Bayesian, Polya Tree, Dirichlet Process,Posterior
Simulation, Fractional Data,Gene Expression
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Chapter 1

Introduction

1.1 Motivation

Linear models have been studied and applied intensively for continuous outcomes with

normal errors. However, in many applications, this normality is not a reasonable assump-

tion. This is particularly obvious in biomedical studies, where multimodality or skewness

frequently arise due to patient heterogeneity, presence of outliers, lack of accounting for

important covariates, alternative biologic mechanisms, etc.

Moreover, in linear modelling, the outcomes are often assumed to be independent. The

independence assumption is not true for repeated measurement studies, where multiple mea-

surements made on the same subject are naturally correlated. For this type of data, Laird

and Ware (1982) present the random effects model, which is referred to as the normal linear

random effects model. In this model, random effects are often assumed to be normally dis-

tributed. However, restricting the model to normally distributed random effects may be

contrary to our prior beliefs. For the normal linear random effects model, Kleinman and

Ibrahim (1998a) present an example where inference about the regression coefficients is sen-

sitive to the assumption of normality about the random effects. Verbeke and Laesaffre (1996)

show that the normal linear random effect can also perform poorly when the random effects

have a mixture distribution.

Nonparametric approach can overcome the above limitations by assuming an unknown

distribution for residuals or random effects. By doing so, we avoid to assume a specific form

for the distribution. The nonparametric prior is robust with respect to misspecification of the
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model. In particular, the nonparametric Bayesian approach for residuals or random effects

is to specify a prior distribution on the space of all possible distribution functions. This

prior is applied to the general prior distribution for residual or random effects. This can be

accomplished with a Dirichlet Process prior distribution or Polya tree prior distribution.

1.2 Nonparametric Bayesian inference

A commonly used technical definition of nonparametric Bayesian models is probability

models with infinitely many parameters (Bernardo and Smith 1994). Equivalently, nonpara-

metric Bayesian models are probability models on function spaces.

The earliest priors for nonparametric problems seem to have been described by Freedman

(1963) who introduced tail-free and Dirichlet random measures. Ferguson (1973, 1974) for-

malized and explored Dirichlet process (DP) prior. Escobar (1988), MacEachern (1994),

Escobar and West (1995) extended DP to DP mixtures (MDP) in order to remove the con-

straint to discrete measures for DP. Posterior inference in MDP model is based on MCMC

posterior simulation. Efficient MCMC simulation algorithm was discussed by MacEachern

and Müller (1998). Ishwaran and James (2001) discussed sequential importance sampling-

based methods for MDP models. Posterior consistency is discussed in Ghosal, Ghosh, and

Ramamoorthi (1999). Nonparametric models based on Dirichlet process mixture are reviewed

by MacEachern and Müller (2000).

Another type of tailfree process is Polya tree. Lavine (1992, 1994) proposed Polya tree as

a generalization of the DP. Paddock et al (2003) and Hanson and Johnson (2002) introduced

randomized Polya trees. Polya trees as priors in an accelerated failure time model were

described in Walker and Mallick (1999) and Hanson and Johnson (2002). Walker and Mallick

(1997) considered Polya tree as prior of random effects in generalized linear model.
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Recent surveys of nonparametric Bayesian models appear in Walker et al. (1999), Dey et

al. (1998), and Müller and Quintana (2004). A review of nonparametric Bayesian inference

in survival analysis can be found in Sinha and Dey (1997).

However, nonparametric Bayesian methods are not appropriate in some applications.

For example, when the data set is very small, posterior inference will be dominated by the

prior if using nonparametric methods. It is also not proper to use nonparametric methods

in experimental designs or when point estimation is of the interest.

1.3 Outline of the dissertation

The dissertation is organized as follows. In Chapter 2, we describe a model for repeated

fractional data in section 2.2. In section 2.3 we discuss posterior simulation based on a normal

random effects distribution in the proposed model. In section 2.4, we review the Dirichlet

process prior and develop a posterior simulation scheme for inference using a Dirichlet process

as a prior of the unknown random effect distribution in the fractional data model. A simulated

data set is used to illustrate our proposed fractional data model in section 2.5. Section 2.6

summarizes the advantages and limitations of Dirichlet process.

In Chapter 3, we consider Polya tree (PT) priors for the distributions of residuals and

random effects in linear models. In section 3.1, we provide the definition of PT models and

discuss the properties and limitations. Posterior inference for PT models under independently

and identically sampling is discussed in section 3.2. We provide some general suggestions for

the choice of PT parameters. In section 3.3, we separately consider PT models as priors for

residual and random effects distributions in linear models. In section 3.4, three examples are

used to demonstrate the aforementioned methods.

In Chapter 4, we use three case studies with medical data sets to illustrate the appli-

cation of nonparametric Bayesian methods in biomedical research. In our case study we

develop a nonparametric Bayesian alternative to the popular empirical Bayes method (Efron
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et al. 2001) for inference about differentially expressed genes in microarray group comparison

experiments. Finally, we conclude the dissertation with summary and the extension of future

research in Chapter 5.

In summary, nonparametric Bayesian methods provide alternative approaches to model

common biostatistical data sets. Nonparametric Bayesian inference works fairly well when

assumptions for the traditional parametric statistical methods are not satisfied because of

heterogeneity of patients, presence of outliers, absence of accounting for important covariates,

etc. It allows us to address scientific research questions without excessive dependence on

technically convenient assumptions.
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Chapter 2

A repeated fractional data model

Random-effects models are a traditional choice for the analysis of longitudinal data. Random

effects are used to model dependence of repeated measurements from the some patients or

other experimental units. Random effects can be thought of as unmeasured covariates whose

values can be considered randomly distributed amongst study individuals. It is important

to take account of unmeasured covariates or latent factors because they induce dependence

among responses within an individual.

For continuous outcomes with normal errors, Laird and Ware (1982) proposed a normal

linear random effects model. In this model, random effects were assumed to be centered

around the mean regression coefficients for the populations, also known as the fixed effects.

Conditional on random effects, repeated observations on a subject were considered inde-

pendent. Goldstein (1986) and Longford (1987) proposed a model that incorporates nested

random effect, enabling nested group-specific as well as individual-specific sources of het-

erogeneity (uncontrolled variation) to be modelled. Gilks et al (1993) presented a linear

multiple-random-effects model that simultaneously accommodates group-specific sources of

heterogeneity for several groupings of individuals with estimation using Gibbs sampling

(Geman and Geman, 1984). Kleinman and Ibrahim (1998a) described a semiparametric

Bayesian version of the normal linear random effect model, where a nonparametric prior

distribution is specified for the random effects. In this chapter we consider the practically

important case when the outcome variable is fractional data which is continuous between 0
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and 1 plus positive point masses at 0 and 1. Statistical modelling on fractional data has not

been investigated so far for longitudinal or repeated measurement data.

A standard approach for constrained data is the use of transformations to remove the

constraint, such as a logit or probit transformation. Albert and Chib (1993) propose a probit

regression model for binary and polychotomous outcomes. They impose normal regression

structure on latent continuous data. Values of the latent data are simulated from suitable

truncated normal distributions. After the latent data have been generated, the posterior

distributions of the parameters are computed using standard results from normal linear

models. Draws from these posteriors are used to sample new latent data. The process is

iterated leading to a Gibbs sampling scheme. However, for the fractional data we are consid-

ering, a complication arises from the fact that 0 and 1 are included in the range of possible

values, with positive probabilities. The conventional logit or probit transformation will no

longer be valid.

In this chapter, we propose a simulation-based approach for computing the exact posterior

distribution for parameters of interest. The key idea is to introduce additional latent variables

to represent the awkward point masses at 0 and 1. A mixed effect model is imposed on latent

variables and simultaneously accommodates individual-specific sources of heterogeneity. We

start with standard normal mixed linear model assumptions as usual for continuous data

and then extend to a nonparametric Bayesian model to accommodate the heterogeneity

from other sources.

2.1 Model Formulation on Fractional Data

Suppose that a factional outcome vector yi with ni repeated measurements is observed in

individual i. Responses yij, j = 1, ..., ni, can be 0 or 1 with positive probability. Latent

variables, zij are introduced to address this by including point masses at 0 and 1 in the
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model.

yij =





0 if zij ≤ 0

zij if 0 < zij < 1

1 if zij ≥ 1

i = 1, · · · , n, j = 1, · · · , ni

(2.1)

The zij are unknown. The distribution of zij is unconstrained and is continuous at 0

and 1. We can therefore proceed with standard linear mixed model assumptions as usual

for continuous data, including normal distribution assumptions. We construct the following

model for individual i,

zi = Xiβ + Uiθi + ei (2.2)

where β is a p×1 vector of regression coefficients, commonly called fixed effects. The matrix

Xi is a known ni × p design matrix of fixed covariates. Ui is an ni × q matrix of covariates

for the q× 1 random effect vector θi, and ei is an ni× 1 vector of errors. In implementations

of this model, it is common to assume ei and θi are independent and ei ∼ Nni
(0, σ2Ini

).

For the distribution of random effects, we start with a normal distribution. Later we will

introduce alternative and generalized models, as and if indicated by model diagnostics and

criticism. We will assign nonparametric priors to the distribution of random effects.

Model (2.1) includes a monotonicity assumption. We assume that Pr(yij = 1) increases

as the location of p(yij | 0 < yij < 1) increases, and similarly for Pr(yij = 0). We feel this is

reasonable in most applications.

For example, in an application with yij being the fraction of stained cells in immunohis-

tochemistry data, it is reasonable to assume that the probability of all cells being stained

(yij = 1) increases with the average fraction of stained cells going up. If it were desired to

decouple Pr(yij = 1) and E(yij | 0 < yij < 1), this could be achieved by introducing two

additional sets of latent variables, say uij and vij, with Pr(yij = 1) = Pr(uij ≥ vij, uij ≥ zij),
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Pr(yij = 0) = Pr(vij = max(uij, vij, zij)), and Pr(yij | 0 < yij < 1) = Pr(zij | zij =

max{uij, vij, zij}). We will not further pursue this model variation.

2.2 Normal linear random effect model

In the normal linear random effect model, the conditional distribution of zi(= (zi1, · · · , zini
))

conditional on β and θi is given by

zi|β, θi ∼ Nni
(Xiβ + Uiθi, σ

2Ini
) (2.3)

independently across experimental units, i = 1, · · · , n. The linear model (2.3) defines the top

level sampling model. Without loss of generality we assume independence across repeated

observations, that is, a diagonal variance-covariance matrix. Little would change in the fol-

lowing discuss if we were to assume a non-diagonal variance-covariance matrix.

2.2.1 Prior Specification

We complete the model with conjugate priors. We choose the priors as follows. Let Np(m,S)

denote a p-dimensional normal probability density function with moments (m,S).

For the fixed effects, we assume a conjugate multivariate normal prior

β ∼ Np(µ0, Σ0) (2.4)

Random effects are assumed to arise from a normal random effects model:

θi
iid∼ Nq(0, Σθ) (2.5)

The prior on the variance of residuals is specified as follows.

τ = (σ2)−1 ∼ Ga(
γ0

2
,
λ0

2
) (2.6)
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where Ga(a, b) denotes a gamma distribution with mean a
b

and variance a
b2

. The conjugate

priors of (2.4) through (2.6) are chosen for the technical convenience. Substantial prior infor-

mation might require different prior distributions. Finally, µ0, Σ0, Σθ, γ0, and λ0 are fixed

hyperparameters.

2.2.2 Posterior Inference

We implement posterior simulation by Gibbs sampling, resampling each of the indicated

parameters conditional on the currently imputed values of all other parameters and the

data. We did not use analytic forms because:

• All priors are only conditionally conjugate. They are not conjugate for the joint pos-

terior distribution.

• Sampling one parameter at a time avoids manipulating an excessively large design

matrix.

• Additionally, data are truncated by 0 and 1, which breaks joint conjugacy. Moreover,

the normal linear mixed model is assumed on z, not on y.

Resampling z. Conditional on other parameters, resampling the latent z requires truncated

normal sampling. From (2.3) we find

zij





∼ N(Xijβ + Uijθi, σ
2)I(zij ≤ 0) if yij = 0

= yij if 0 < yij < 1

∼ N(Xijβ + Uijθi, σ
2)I(zij ≥ 1) if yij = 1

(2.7)

where Xij and Uij are the jth row of matrices Xi and Ui, respectively. Generating random

samples from a truncated normal is trivial. Suppose x ∼ N(µ, σ2)I(c1 ≤ x ≤ c2). Then

x can be generated by letting x = σΦ−1(u) + µ, where u is a random sample generated

from uniform distribution on the interval [Φ( c1−µ
σ

), Φ( c2−µ
σ

)], Φ is the normal cumulative
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distribution function.

Resampling β. We proceed as in a standard normal linear regression.

From (2.3) we find

zi − Uiθi︸ ︷︷ ︸
z?
i

= Xiβ + ei.

Then

z?
i ∼ N(Xiβ, τ−1).

combining with the conjugate prior in (2.4) we find

P (β| · · · ) = N(m, v)

with moments

v = (Σ−1
0 + τ

∑
i

X ′
iXi)

−1 (2.8)

m = v(Σ−1
0 µ + τ

∑
i

X ′
iz

?
i )

A list of other complete conditional posterior distributions is in the Appendix.

Gibbs Sampler

We implement MCMC posterior simulation by iterating over the complete conditional poste-

rior distributions given in the above expressions. Starting with initial values β, θi, i = 1, ..., n,

and σ2.

1. Generate z using (2.7).

2. Draw β ∼ P (β| · · · ) using the multivariate normal distribution given in (2.8).

3. Draw τ ∼ P (τ | · · · ) using (A.1) in the Appendix.

4. For i = 1, · · · , n, generate θi ∼ P (θi| · · · ) using (A.2) in the Appendix.

Ergodic averages over the simulated parameter values approximate posterior integrals,

including posterior means, posterior predictive distributions, etc. To verify convergence
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of the MCMC simulations, Geweke’s test (1992) was used to perform the convergence

diagnostics. The assessment is done by BOA (Bayesian Output Analysis Version 1.0.1) in R.

2.3 Dirichlet Process Priors in the Linear Random effects model

Clearly it is not always appropriate to assume that the random effects arise from some

known parametric family. The normal assumption on random effects can be restrictive. It is

possible for the distribution of random effects to be multimodal and/or with unpredictable

types of skewness. It might be desirable to take the random effects from a sufficiently large

class to capture such possibilities. In biomedical data, multimodality frequently arises from

patient heterogeneity, presence of outliers, lack of accommodating for important covariates,

alternative biologic mechanisms, etc.

Examples are adult vs. pediatric populations, patients who are resistant to a given

treatment, varying pharmacokinetics, invasive vs. non-invasive tumors, strokes arising from

bursting blood vessels vs. blocked vessels, and so forth. For lower accounting of uncertainties

and for improved prediction it is clearly critical to account for such heterogeneity. Also, the

nature of the heterogeneity might be of inherit in itself, as , for example, in the discovery

of new (sub-)issues of cancer. Our approach to achieve such generalization is the use of

nonparametric Bayesian models.

A commonly used technical definition of nonparametric Bayesian models are probability

models with infinitely many parameters (Bernardo and Smith 1994). In other words, a

nonparametric Bayesian model is a probability model on a function space. Nonparametric

Bayesian models are used to avoid critical dependence on parametric assumptions, to robus-

tify parametric models, and to define model diagnostics and sensitivity analysis for para-

metric models by embedding them in a larger encompassing nonparametric model (Müller

and Quintana 2004).
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Bayesian nonparametric and semiparametric approaches include mixture models (West

1992), mixtures of Dirichlet processes (Ferguson 1973, Antoniak 1974, Escobar and West

1995, MacEachern and Müller 1998), and Polya tree priors (Lavine 1992,1994). For a recent

review of nonprametric Bayesian models, see also Walker et al. (1999).

2.3.1 Dirichlet Process(DP)

The Dirichlet process is by far the most popular nonparametric model in the literature (for

a recent review, see MacEachern and Müller 2000). Ferguson (1973) first introduced the DP

as a random probability measure (RPM).

Definition: Let X be a space and A a σ-field of subsets, then a stochastic process G

is said to be a Dirichlet Process on (X ,A) with parameter αG0 if for every k = 1, 2, · · ·
and measurable partition (B1, , · · · , Bk) of X , the random vector (G(B1), · · · , G(Bk)) has

a Dirichlet distribution with parameters (αG0(B1), · · · , αG0(Bk)). Here α > 0 is a scale

parameter, G0 is a probability measure on X . We denote this by G ∼ DP (α,G0).

G is a random probability measure on (X ,A), that is, the DP model is a distribution

on distributions. Two parameters need to be specified. The prespecified probability measure

G0, the base measure, is the prior guess and expectation of G: E(G(Bi)) = G0(Bi). The

precision parameter, α, describes the degree of faith in the choice of G0; α could be regarded

as an “equivalent prior sample size” (Antoniak 1974). For large values of α, a sample G is

very likely to be closed to G0. For small α, a sampled G is likely to put most of its probability

masses on just a few points.

Two limiting cases highlight the nature of the prior. Consider xi
iid∼ G, i = 1, · · · , n, with

a DP prior, G ∼ DP (α, G0). As α → ∞, the random measure G becomes closed to G0,

and in the limit the model is equivalent to xi
iid∼ G0. As α → 0, the random measure G

concentrates on a few point masses, leading to an increasing probability of ties. In the limit,

x1 = x2 = . . . = xn, with x1 ∼ G0.
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An essential motivation for the DP construction is the simplicity of posterior updating.

For x ∈ X , let δx denote the measure on (X ,A) giving mass one to the point x:

δx(A) =





1 if x ∈ A

0 if x 6∈ A

Theorem (Ferguson 1973): Let G be a Dirichlet Process on (X ,A) with parameters α

and G0, and let X1, · · · , Xn be a sample of size n from G. Then the conditional distribution

of G given X1, · · · , Xn is a Dirichlet Process (α + n,G1) with G1 ∝ G0 +
n∑

i=1

δXi
.

A useful constructive definition of the DP was given by Sethuraman (1994). Any G ∼
DP (α, G0) can be represented as

G(·) =
∞∑
i=1

wiδµi
(·)

µi
i.i.d∼ G0 (2.9)

wi = Ui

∏
j<i

(1− Uj) with Ui
i.i.d∼ Beta(1, α)

with point masses generated from G; and weights arising as rescaled Beta draws.

In words, every realization of the DP can be represented as an infinite mixture of point

masses. The locations µi of point masses are an independently and identically distributed

sample from G0, and random weights wi are generated by a “stick-breaking” procedure. The

Dirichlet process selects a discrete distribution G with probability 1 (Ferguson 1973). This

discreteness is in many applications inappropriate. Antoniak (1974) introduced the mixture

of Dirichlet process model.

The mixture of DP (MDP) model convolutes the random measure G with a continuous

kernel to represent a continuous distribution. Assuming i.i.d. sampling from the random

measure we have:

yi ∼
∫

K(yi | θ, v)dG(θ), G ∼ DP (α, G0). (2.10)
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The kernel might be, for example, a Gaussian kernel, K(yi | θ, v) = N(yi; θ, v). The mixture

K(yi | θ, v)dG(θ) defines a random continuous distribution. For computational purposes it

is often convenient to rewrite (2.10) as an equivalent hierarchical model. The hierarchical

model is written as

yi
iid∼ pθi,ν(yi)

θi
iid∼ G(θi), G ∼ DP (α,G0) (2.11)

This model is referred as the mixture of Dirichlet process model(MDP). An example of

mixture of Dirichlet process is given below.

EXAMPLE 1. yi
iid∼ N(θ, σ2). θ ∼ G and G ∼ DP (α, G0). Then the marginal distribution

of y is obtained through marginalizing out the random probability measure G. It is a mixture

of normal models mixed with respect to location.

2.3.2 Dirichlet Process Prior for Random Effects

In this section, we use the DP model as random effects model in (2.2). The DP model removes

the assumption of a parametric prior in (2.5) and replaces it with a random distribution

G. The distribution G then has a Dirichlet process prior. The DP model is completed by

assigning a normal base measure. The conjugate nature of the base measure and the assumed

model for the latent zij significantly simplifies the computation. As before, let the observed

outcome be yij and assume the distribution of the latent variable zij for the jth measurement

from individual i be:

yij =





0 if zij ≤ 0

zij if 0 < zij < 1.

1 if zij ≥ 1

(zij | β, θi, σ
2) ∼ N(Xijβ + Uijθi, σ

2) (2.12)

i = 1, · · · , n, j = 1, · · · , ni
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where Xij and Uij are the jth row of matrices Xi and Ui, respectively, and ni is the

number of observations from individual i. The prior specification is a conjugate model for β

and τ , as before:

β ∼ Np(µ0, Σ0)

τ =
1

σ2
∼ Gamma(

γ0

2
,
λ0

2
) (2.13)

and a nonparametric random effect prior for θi:

θi
iid∼ G (2.14)

G ∼ DP (M, G0), G0 = Nq(0, Σθ) (2.15)

The above specification results in a semiparametric specification in that fully parametric

distributions are given in (2.12) and (2.13) and a nonparametric distribution is given in

(2.14) and (2.15). Selecting G0 to be normal emulates the conjugate relationship between

the sampling distribution of z and priors in the usual Bayesian hierarchy. Its advantage

lies in its simplicity of computation. It is possible to assign priors on (M, G0). Kleinman

and Ibrahim (1998) consider the case that places a prior on G0. Escobar and West (1995)

provided an algorithm to update M based on knowledge from data. If desired, the a.s. discrete

random effects under G could be replaced by a DP mixture model as in (2.10), by assuming

θi ∼
∫

N(θi|µ, S)dG(µ).

Conditional on β and θi’s, zij can be generated by (2.7) as before. Similarly, β can be

sampled from (2.8) given z, θ = (θ1, · · · , θn) with element θi = (θi1, · · · , θiq) and σ2. The full

conditional for τ is the same with (A.1) under prior (2.13) conditional on z, β and θ. Now we

describe how to update θ. We start by assuming M and Σθ to be known. Later, we will relax

this restriction and place priors on M and Σθ. Compared to the parametric model in section

2.2, the only change in the Gibbs sampler is in Step 4 of the Gibbs samplers introduced in

section 2.2.2. Conditional on all other parameters the complete conditional posterior for θi

is derived as follows.
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The closed form of joint distribution of θ1, · · · , θn is given by

dF (θ1, · · · , θn) =
n∏

i=1

MG0(θi) +
∑i−1

j=1 δθi
(dθj)

M + i− 1

By the Theorem 2 (Escobar 1994), the conditional distribution of θi given θj, j 6= i, zi, β, σ2

has the following close form:

dF (θi|θj, j 6= i, zi, β, σ2) =
φ(zi|θi, β, σ2)MG0(dθi) +

∑n
j=1,j 6=i φ(zi|θj, β, σ2)δθi

(θj)

A(zi) +
∑n

j=1,j 6=i φ(zi|θj, β, σ2)

=
A(zi)

A(zi) +
∑n

j=1,j 6=i φ(zi|θj, β, σ2)
× Mφ(zi|θi, β, σ2)g0(θi)

A(zi)

+
n∑

j=1,j 6=i

φ(zi|θj, β, σ2)

A(zi) +
∑n

j=1,j 6=i φ(zi|θj, β, σ2)
δθi

(θj)

where φ is the standard multivariate normal density function with mean Xiβ + Uiθi and

variance-covariance matrix σ2Ini
and A(zi) is defined as A(zi) = M

∫
φ(zi|θi, β, σ2)dG0(θi).

Gibbs sampling uses the simple structure of the conditional posteriors for the elements

of θ, resulting in the following conditional distribution. For each i = 1, · · · , n,

(θi|{θj, j 6= i}, zi, β, σ2) ∼ q0Gθ(θi | zl, β, σ2) +
∑

j 6=i

qjδθi
(θj) (2.16)

with the following definitions:

• Gθ(θi|zi, β) = Mφ(zi|θi,β,σ2)g0(θi)
A(zi)

is the posterior distribution of θi if G0 is the prior for

θi. g0 is the density function of G0.

• q0 = cA(zi) = cM
∫

φ(zi|θi, β, σ2)dG0(θi), just M times the density of the marginal

distribution of zi = (zi1, · · · , zini
) under the prior G0.

• qj = cφ(zi|θj, β, σ2), the likelihood of zi conditional on θi = θj.

• c = 1
A(zi)+

∑n
j=1,j 6=i φ(zi|θj ,β,σ2)

is the constant of normalization. The quantities qj are

standardized to unit sum, that is q0 +
∑
j 6=i

qj = 1.

16



Following some algebra, Gθ(θi|zi, β) is a q-dimensional multivariate normal distribution

with covariance matrix Qi = (Σ−1
θ + τU ′

iUi)
−1 and mean τQiU

′
i(zi − Xiβ). In words, with

probability q0, we sample θi from Gθ(θi|zi, β), and we set θi = θj with probability qj.

When using the above conditional distributions in the MCMC algorithm, there may

occur a problem if
∑

j 6=i qj becomes very large relative to q0. The number of distinct θi’s

typically reduce to fewer than q due to the clustering of the θi’s inherent in the Dirichlet

process (Antoniak 1974). Then the MCMC chain is slow to converge. Escobar and West(1995)

proposed a remixing algorithm to prevent the algorithm from getting stuck on a small set of

θi’s.

Some notations are now introduced to describe the remixing algorithm. Suppose θ =

(θ1, · · · , θn) has I ≤ n distinct elements denoted by b = {b1, · · · , bI}. Conditional on I,

introduce indicators sl = j iff θl = bj. S = {sl : l = 1, · · · , n} defines a configuration of θ. θ−l

denotes θ excluding the lth element. S(l) denotes the configuration of θ−l. I(l) is the number

of distinct values in θ−l, with n
(l)
j taking common value b

(l)
j .

Then we have

(θl | z, θ−l, β, τ) ∼ q0Gθ(θl|zl, β, σ2) +
I(l)∑

k=1

n
(l)
k q

(l)
k δθl

(b
(l)
k ) (2.17)

with q
(l)
k ∝ φ(zl | β, b

(l)
k , σ2Inl

), and q0 +
∑

k n
(l)
k q

(l)
k = 1.

After updating all the elements of θ, the newly generated θ implies a new configura-

tion S. Once the set S is known, the posterior analysis of bk’s devolves into a collection

of I independent analysis. Specially, the bk’s are conditionally independent with posterior

densities

p(bk|z, β, S, I, Σθ,M) ≡ p(bk|z(k), β, S, I, Σθ,M) ∝
∏
j∈Jk

φ(zj|Xjβ + Ujbk, σ
2Inj

)dG0(bk, Σθ)

(2.18)

for k = 1, · · · , I. Jk is the set of indices of z in group k; i.e., Jk = {i : Si = k}. z(k) =

{zj : Sj = k} is the observations in group k.
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In summary, in order to sample from the conditional distribution of θl given all the other

parameters in the model, one needs to do:

1. compute Gθ, the posterior distribution of θl given all the other parameters assuming

that G0 is the prior distribution for θl.

2. evaluate the marginal distribution for zl assuming that G0 is the prior distribution of

θl.

3. sample θl from (2.17).

4. sample bk from (2.18).

Typically, the covariance matrix Σθ in the base measure of the Dirichlet process in (2.15)

is unknown and thus a suitable prior distribution can be placed on it. In the consequence,

the base measure will no long marginally normal. For convenience, suppose

Σ−1
θ ∼ Wishart(ν,R0)

where ν > 0, and R0 is a q × q positive definite matrix. Then

(Σ−1
θ | ν, R0) ∝ |Σ−1

θ | ν+q+1
2 exp{−1

2
tr((R0Σθ)

−1)},

Since b1, · · · , bI are I independent observations from Nq(0, Σθ), thus

p(Σ−1
θ | z, β, θ, σ2) = p(Σ−1

θ | b1, · · · , bI)

∝ |Σ−1
θ | ν+q+I+1

2 exp{−1

2
tr((R0Σθ)

−1 +
I∑

k=1

b′kΣ
−1
θ bk)}

so Σ−1
θ can be updated by

(Σ−1
θ | z, β, θ, σ2) ∼ Wishart(ν + I, (R−1

0 +
I∑

k=1

bkb
′
k)
−1) (2.19)

The precision parameter, M , of Dirichlet process is extremely important for the model.

Learning about M from the data may be addressed to incorporate M into the Gibbs sampling
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analysis. If the prior for M is specified as M ∼ Ga(αM , βM), then sampling M can be

completed by the following steps.

• At each iteration, a latent variable η is sampled from beta distribution (η|M, I) ∼
Be(M + 1, n) conditional on the most recent values of M and I.

• A new M is sampled from a mixture of two gamma distributions based on the same I

and the newly generated η, that is,

(M |η, I) ∼ πηGa(αM + I, βM − log(η)) + (1− πη)Ga(αM + I − 1, βM − log(η))

(2.20)

where

πη/(1− πη) = (αM + I − 1)/(n(βM − log(η))).

Finally, the complete Gibbs sampling schemes are summarized as follows:

1. Select starting values β(0), θ(0), τ (0), and Σ
(0)
θ . Set i = 0.

2. Sample z(i+1) from p(z|y, β(i), θ(i), τ (0)) according to (2.7).

3. Sample β(i+1) from p(β | z(i+1), θ(i), τ (0)) according to (2.8).

4. Sample τ (i+1) from p(τ | z(i+1), β(i+1), θ(i)) according to (A.1).

5. Sample θ
(i+1)
l from p(θl | z(i+1), β(i+1), τ (i+1), θ

(i)
−l , Σ

(i)
θ ) according to (2.17), for l =

1, · · · , n.

6. Sample b
(i+1)
k from p(bk | z(i+1), β(i+1), τ (i+1), Σ

(i)
θ ,M (i)) according to (2.18), for k =

1, · · · , I.

7. Sample Σ
−1(i+1)
θ from p(Σ−1

θ | b(i+1)) according to (2.19).

8. Sample M (i+1) from p(M | I,M (i+1)) according to (2.20).
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2.3.3 Inference on the random distribution

In this subsection, we consider a generic Dirichlet process mixture model (MDP). Assume

observations yi are sampled independently and identically from a distribution represented

as a mixture of kernels pθ(yi). Denote with y = (y1, · · · , yn) the observed data. A prior

probability model is defined on the mixture by assuming a DP prior for a random mixing

measure G.

yi
i.i.d∼

∫
pθ,ν(yi)dG(θ)

︸ ︷︷ ︸
H(yi)

, G ∼ DP (MG0(·|ν)) (2.21)

The model is completed with a prior p(ν) on the hyperparameters ν. This is just model

(2.11), marginalizing over θi. Model (2.12), (2.13), (2.14), and (2.15) is a special case of (2.21),

using the normal linear regression, (2.12) as mixing kernel. In section 2.3.2, we explained the

implementation of posterior inference by MCMC simulation. Note that posterior simulation

in section 2.3.2 implicitly marginalized over G0. That is, the random measure G itself never

appeared in the posterior simulation.

The MCMC for MDP models is greatly simplified by marginalizing with respect to the

unknown distributions G. Nevertheless, sometimes the final goal of an analysis is inference

about G or H. In general, inference on the unknown distribution in DP mixture models is

challenging. See Gelfand & Kottas (2002) for a discussion. However, some important simpli-

fications are possible. The posterior means, E(H|y) and E(G|y), can be shown to be equal to

the posterior predictive distributions p(yn+1|y) and p(θn+1|y) in the MDP model. They can

be used to evaluate posterior estimates for G and H. Using full conditional posterior distri-

butions that are already evaluated in the course of the MCMC simulation, the computation

can be simplified by using an ergodic average of these conditional predictive distributions.

This allows computationally efficient evaluation of E(H|y) and E(G|y). However, for the

detailed full posterior inference more information is required. A computational algorithm is

described as follows to allow easy (approximate) simulation.
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First, we note that the posterior mean E(H|y) is equal to the posterior predictive distri-

bution. Let yn+1 denote a new , future observation, we find

p(yn+1|y) = E[H(yn+1|y,H)|y] = E[H(yn+1)|y]

Let γ denote the vector of all model parameters, and γ(i) denote the parameters imputed

after i iterations of the MCMC simulation, we evaluate p(yn+1|y) as

p(yn+1|y) = E[p(yn+1|y, γ)|y] ≈ 1

T

T∑
i=1

p(yn+1|γ(i), y) =
1

T

T∑
i=1

p(yn+1|γ(i)). (2.22)

Similarly, the posterior mean E(G|y) is equal to the posterior predictive distribution. Let

θn+1 denote a new , future observation, we find

p(θn+1|y) = E[G(θn+1|y, G)|y] = E[G(θn+1)|y] ≈ 1

T

T∑
i=1

G(θn+1|γ(i), y) =
1

T

T∑
i=1

G(θn+1|γ(i))

Denote {θ?(i)
j , j = 1, · · · , k} to be the distinct values of θ(i) = (θ

(i)
1 , · · · , θ

(i)
n ), Write n

(i)
j for

the number of occurrences θ
(i)
l = θ

?(i)
j , l = 1, · · · , n so that n1 + · · ·+ nk = n. Then

p(θn+1|y) = E[G(θn+1)|y] = M(M + n)−1G0(θn+1) + (M + n)−1

k∑
j=1

njδθ
?(i)
j

(θn+1) (2.23)

A simple example is used to illustrate the above algorithm. Assuming yi are drawn

from a normal distribution N(θi, σ
2), i = 1, · · · , n. θ = (θ1, · · · , θn) comes from some prior

distribution G. A Dirichlet process prior is placed on G with a conjugate normal base measure

G0 = N(b, τ 2). Here γ = (θ, σ2, b, τ 2). We use a superindex (i) to identify the imputed

parameter values after i iterations of the MCMC simulation. We find,

p(yn+1|γ(i)) =

∫
p(yn+1|θn+1, σ

2(i)
)p(θn+1|θ, b(i), τ 2(i)

)dθn+1

=
M

M + n

∫
f(yn+1|θ, σ2(i)

)dG0(θ) +
1

M + n

k(i)∑
j=1

n
(i)
j f(yn+1|θ?(i)

i , σ2(i)
)

=
M

M + n
N(yn+1; b

(i), σ2(i)
+ τ 2(i)

) +
1

M + n

k(i)∑
j=1

n
(i)
j N(yn+1; θ

?(i)
j , σ2(i)

).
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thus

p(yn+1 | y) =
1

T

T∑
i=1

p(yn+1|γ(i))

Similarly,

p(θn+1|γ(i)) =
M

M + n
N(θn+1; b

(i), τ 2(i)
) +

1

M + n

k(i)∑
j=1

n
(i)
j δ

θ
?(i)
j

(θn+1)

where θ?
j , j = 1, · · · , k are the unique values of θi, and nj is the number of θi equal to θ?

j .

Uncertainty in G is illustrated through posterior draws of G. Given θ(i), the conditional

posterior for G is a DP with updated parameters,

(G|θ(i), Y ) ∼ DP (G1,M + n) with G1 =
M

M + n
G0 +

1

M + n

k(i)∑
j=1

n
(i)
j δ

θ
?(i)
j

(2.24)

The large total mass parameter M + n implies that the random measure G is close to the

conditional expectation G1, the DP base measure in (2.24). We exploit this to approximate

a posterior draw G ∼ p(G|θ(i), y) as G ≈ G1.

2.4 A Simulation Study

In this subsection, we fit a mixed fractional data model to a simulated fractional date set

to demonstrate the aforementioned methods in the estimation of random effects. Normal

and Dirichlet process priors are placed as priors of the distributions of random effects. We

simulated n = 100 data points for random effect from the follow normal mixture

θ1, · · · , θn
iid∼ 0.5N(−0.2, 0.152) + 0.5N(0.2, 0.152)

One covariate was generated by taking Xij
iid∼ N(0.5, 0.32), i = 1, · · · , 100, j = 1, 2. The true

regression coefficient was set at β = (β0, β1) = (0.8,−0.6), and the residual ε was generated

from N(0, 0.12). Let Ỹij = β0 +Xijβ1 +θi + εij, i = 1, · · · , n, j = 1, 2. The observed fractional

data are given by Yij = 1 if Ỹij ≥ 1; Yij = Ỹij if 0 < Ỹij < 1; and Yij = 0 if Ỹij ≤ 0.
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The histogram of observed Y is displayed in Figure 2.1. A latent variable z was introduced

to remove the constraint of positive probability masses on points 0 and 1. Therefore, the

model and priors are specified as follows:

yij =





1 if zij ≥ 1

zij if 0 < zij < 1

0 if zij ≤ 0

zij = β0 + Xijβ1 + θi + εij

θi
iid∼ G, εij

iid∼ N(0, σ2)

i = 1, · · · , n, j = 1, 2

A vague normal prior is placed on β = (β0, β1) and set it as N((0, 0), 100I2).The distri-

bution of random effect θ is estimated by the following two different approaches.

2.4.1 Normal prior

The distribution of the random effect θ is firstly set as normal distribution, that is G =

N(0, σ2
θ) with the hyperparameter prior 1/σ2

θ ∼ Ga(0.01, 0.01). Following the discussion in

Section 2.2.2, the simulation was repeated 20000 times. The first 5000 iterations were dis-

carded as burn-in. The point estimations and 95% confidence intervals of β and selected

random effects are presented in Table 2.1. The posterior density of random effect θ is illus-

trated in Figure 2.2. It shows bimodality and suggests that a normal prior for random effects

is not appropriate in this example.

2.4.2 Dirichlet prior for random effect

Now we specify a Dirichlet process prior for the distribution of random effect θ. Priors for

other parameters are the same.
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Assume

θi
i.i.d∼ G, i = 1, · · · , n

G ∼ DP (α,G0) with G0 = N(0, σ2
θ)

1/σ2
θ ∼ Ga(αθ, βθ)

Selecting G0 to be normal emulates the conjugate relationship between the sampling distri-

bution of z and priors in the usual Bayesian hierarchy. Its advantage lies in its simplicity of

computation. α, the precision parameter, can take a fixed value or come from a parametric

distribution.

α is firstly chosen to be 1, which reflects a large departure from normality. The initial

values of θi is the average of y for each i. A Gamma prior is then placed on α.

The Gibbs sampler was run for 11,300 iterations. The first 2,300 iterations were discarded

as a burn-in period. Every 5th iteration was used and the rest discarded, making a total

sample size of 1,800. Convergence of the Gibbs sampler was assessed via Geweke’s (1992)

method.

2.4.3 Results

Table 2.1 shows posterior medians and 95% confidence intervals for parameters in the normal

parametric and MDP models with the two values of α. As expected the estimates of fixed

effects for different methods are close to the true values although 95% CI’s for β1 are wider

under MDP priors. The reason for this deviation is shown in the density estimates presented

in Figure 2.3. The first column in the table is for the normal model, the second column is

for the DP model with α = 1, and the third column is for the MDP model with a Gamma

prior on α.

From the posterior distribution of the selected random effects, different facts are revealed.

Not only are the 95% CI’s different, the median values are very different as well compared to
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the normal model. This is to be expected, as the random effects are directly affected by the

relaxation of the Normal assumption. σθ is not easy to interpret in the MDP model, since it

plays a complex role in the marginal posterior distribution of the θi.

From Table 2.1, it is clear that the point estimates and 95% confidence intervals of σ and

σθ using normal parametric and nonparametric methods are quite different. The posterior

densities of σ and σθ are illustrated in Figures 2.4 and 2.5.

Recall that the parameter α is a measure of the strength in the belief that G is G0.

Although it may be hard to quantify, α is a positive scalar that is related to how ”clumpy”

the data are. Clumpy data occur when the different subjects are concentrated into a few

clusters. Recall also that α determines the prior distribution of k, the number of normal

components in the mixture.

A value of α = 1 reflects a large departure from normality, the mean value of k = 6.7.

In Figure 2.6, the histogram of k is illustrated for the MDP model when a vague prior is

placed on α. The mean value of k is 21.9 and the posterior mean of α = 9.4. As mentioned,

large values of α favor the base measure G0 as the prior, i.e. the normal prior case. For this

example, α is small which is an indication that the nonparametric model will give better

estimates than normal model. The posterior histogram of α is given in Figure 2.7.

2.5 Conclusion

We have introduced semiparametric Bayesian inference for repeated fractional measurements.

The main advantage of the proposed model are computational simplicity, ease of interpre-

tation and explicit accounting and inference for clusters and subpopulations of patients.

Computational simplicity is achieved by using mixture of normal models. Posterior MCMC

proceeds by considering complete conditional posterior distributions conditional on indica-

tors breaking the mixture.Conditional on these indicators inference reduces to a traditional
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Table 2.1: 2.5%-, 50%-, and 97.5%-iles for various parameters from Normal MDP and the
parametric normal model. β0 is the intercept, β1 is the fixed effect, and σ is the error standard
deviation. θi is the intercept for subject i. σθ is the standard deviation in the base measure.
k̄ is the average number of clusters observed in the course of sampling

Parameter Normal prior DP prior DP prior
α=1 α ∼ G(γα, λα)

β0 0.830(0.768, 0.890) 0.810(0.695, 0.933) 0.813(0.715, 0.908)
β1 -0596(-0.659, -0.534) -0.559(-0.690, -0.437) -0.560(-0.687, -0.438)
σ 0.093(0.080, 0.108) 0.268(0.241, 0.305) 0.273(0.240, 0.312)
θ69 0.272(0.133, 0.401) 0.0002(-0.131, 0.129) -0.006(-0.149, 0.126)
θ99 -0.200(-0.338, -0.051) -0.011(-0.152, 0.116) -0.021(-0.174, 0.117)
σθ 0.247(0.194, 0.350) 0.099(0.052, 0.251) 0.083(0.048, 0.179)
k̄ 6.7 21.9

normal linear mixed model, greatly facilitating computation and interpretation of model

parameters.

Limitations of the proposed model arise from the assumptions made in the DP prior

model. For example, clusters generated by the DP prior are a priori stochastically ordered by

size. For example, we can not express prior information that there might be subpopulations of

a priori equal size. Also, the DP implies a specific form for predictive inference. In particular,

the relative weights given to the base measure vs. prior observations are as given in (2.16).

To generalize these weights one could use, with minimal changes to the posterior simulation

algorithm, a species sampling model (SSM, Pitman 1996); or stick-breaking priors (Ishwaran

and James 2001).

Finally, the model does not allow closed form inference. Although reasonably straight-

forward, posterior simulation is required.
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Chapter 3

Semiparametric models with Polya Tree priors

3.1 Introduction

The original description of the Polya tree (PT) model was introduced in Ferguson(1973). The

Polya tree model provides an attractive generalization of the Dirichlet process (DP). Unlike

the DP which assigns mass 1 to the set of all discrete distributions on (X ,A), Polya tree

distributions can be set up such that the random distribution G is continuous, or even an

absolutely continuous distributions with probability one. Maudlin, Sudderth, and Williams

(1992) show how to construct a Polya tree distribution using a Polya urn scheme. Lavine

(1992, 1994) formally defines and develops the Polya tree model. He focuses on the binary

tree construction used by Mauldin and Williams (1990) and Ferguson (1974) for constructing

random distribution on the real line. He demonstrated how to construct a Polya tree prior

with a given predictive density and how to use mixtures of PT’s to model uncertainty about

a parametric model.

Walker and Mallick (1997) illustrate the use of finite Polya trees as a Bayesian nonpara-

metric prior for the random effects in a generalized linear model and frailty models. They

show that it is possible to model the distribution using a Polya tree, whereas it is difficult

using parametric models, for example, modeling the distribution about its median on the

covariates. Muliere and Walker (1997) use a Polya tree prior distribution to determine a

maximum tolerated dose (MTD) in a phase I trial. Through updating of the Polya tree,

a predictive distribution for the critical dose level for the next individual is obtained, from

which the maximum tolerated dose will follow. They show that Polya tree priors lead to good
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estimation even with a modest number of patients and a limited number of doses. Walker and

Mallick (1999) assigned a finite Polya tree prior to the error distribution in an accelerated

failure time model. They consider two cases: one assumes error terms are exchangeable; the

other assumes that error terms are partially exchangeable.

Polya tree models have limitations. Inferences for a PT depends on the sample space

partitions for a specific tree structure. There are discontinuities in the predictive distribution

at all partition boundaries. Paddock et al.(2003) proposed a randomized Polya tree to address

the issue of partition dependence. They introduced observation specific parameters to jitter

the tree partition. This smoothes out the discontinuities in the predictive distributions.

Berger and Guglielmi (2001) investigated the problem of testing the fit of data to a

parametric model against a nonparametric alternative. They use a mixture of Polya trees

centered at the hypothesized parametric model. A fixed sequence of partitions is used. The

parameters that define the random probabilities of the nested partitions depend on unknown

parameters in the null parametric model. On the other hand, Hanson and Johnson (2002),

consider instead a mixture with respect to a hyperparameter that defines the partitioning

tree. They discuss a median regression model in which the residual distribution is modelled

as a mixture of Polya trees, centered at a parametric family of probability distributions with

median 0. The mixture smooths out the effect of partitioning and thus the predictive error

density is differentiable everywhere except 0.

3.1.1 Definition and Basic Properties

Polya trees were proposed as a generalization of Dirichlet Process (DP) in Lavine (1992,

1994), whose notation we follow.

Let E = [0, 1],E0 = ∅, Em be the m-fold product E × E × · · · × E, E? =
⋃∞

m=0 Em and

EN be the set of infinite sequences of elements of E. Let Ω be a separable measurable space,

π0 = Ω and Π = {πm; m = 0, 1, · · · } be a separating binary tree of partitions of Ω; that is,
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let π0, π1, · · · be a sequence of partitions such that
⋃∞

m=0 πm generates the measurable sets

and such that every B ∈ πm+1 is obtained by splitting some B′ ∈ πm into two subsets. Let

Bø = Ω and, for all ε = ε1 . . . εm ∈ E?, let Bε0 and Bε1 be the two subsets into which Bε is

split.

Definition (Lavine 1992): A random probability measure G on Ω is said to have

a Polya tree distribution, or a Polya tree prior, with parameter (Π,A), written as G ∼
PT (Π,A), if there exit non-negative numbers A = (α0, α1, α00, · · · ) and random variables

Y = (Y0, Y1, Y00, · · · ) such that

• all random variables in Y are independent;

• for every ε, (Yε0, Yε1) ∼ Beta(αε0, αε1);

• for every m = 1, 2, · · · , and every ε = ε1 . . . εm,

G(Bε1...εm) =




m∏
j=1,εj=0

Yε1...εj−10







m∏
j=1,εj=1

(1− Yε1...εj−10)




where the first term, i.e. for j = 1, are interpreted as Y0 or 1− Y0.

The random variable Yε0 is the conditional probability of partition subset Bε0 given Bε.

For instance, for m = 2, G(B00) = Y0Y00, G(B01) = Y0(1 − Y00), G(B10) = (1 − Y0)Y10,

and G(B11) = (1 − Y0)(1 − Y10). The set Π determines the partition structure of the Polya

tree. The parameters αε in A determine the smoothness of a realization of G and control

how quickly the posterior predictive distribution moves from its prior mean to the empirical

distribution.

Several properties facilitate the use of the Polya tree for nonparametric Bayesian infer-

ence.

Polya trees are conjugate. If G|Π,A ∼ PT (Π,A) and x = (x1, · · · , xn)|G ∼ G, then

G|x, Π,A ∼ PT (Π,A|x) = PT (Π,A?), where A? = {α?
ε = αε + nε : ε ∈ E?} and nε = the

number of elements of x in Bε. In words, the posterior distribution of G under i.i.d sampling
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is also Polya tree with the same fixed partition sequence and the partitioning probability

(Yε) is generated from Beta distribution with updated parameters α?
ε, where α?

ε is equal to

αε plus the number of x1, · · · , xn in subset Bε.

The PT includes the Dirichlet process as a special case. A Polya tree is a Dirichlet process

if αε = αε0 + αε1 for every ε ∈ E? (Ferguson 1974).

Polya tree can choose A such that G is absolutely continuous with probability 1. In

general, any αε1...εm = ρ(m) such that
∑∞

m=1 ρ(m)−1 < ∞ guarantees G to be absolutely

continuous. For example, Walker and Mallick (1999) and Paddock et al(2003) consider

αε1...εm = cm2, where c > 0.

Let x = (x1, · · · , xn) denote the data of sample size n, i.e., x1, · · · , xn
iid∼ g0, where g0 is the

true density, with corresponding probability distribution G0. Write K(g0, g) =
∫

g0log(g0

g
)

for the Kullback-Leibler divergence from g0 to g. Let the Kullback-Leibler neighborhood

{g : K(g0, g) < ε} be denoted by Kε(g0). By Theorem 2 in Lavine (1994), the posterior is

weakly consistent. If αε1...εm = 8m, Barron, Schervish, and Wasserman (1996) show that the

predictive density is strongly consistent.

The joint marginal density generated from a random distribution with a PT prior has

a closed form. The random probability measure G can analytically be integrated out. Sup-

pose x = (x1, · · · , xn)|G ∼ G and G|Π,A ∼ PT (Π,A), then the marginal joint density of

x1, · · · , xn is given by

m(x1, · · · , xn) =

∫
p(x1, · · · , xn | G)dp(G)

=

∫ n∏
i=1

g(xi)dp(G)

= f(x1)
n∏

i=2

f(xi | x1, · · · , xi−1)

where f(x1) = g0(x1) and

f(xi | x1, · · · , xi−1) = g0(xi) lim
M→∞

M∏
m=2

α′εm
(αεm−10 + αεm−11)

αεm
(α′εm−10 + α′εm−11)

(3.1)
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εm = ε1 · · · εm and xi ∈ Bε1···εm . g0 is the density function of centering distribution G0 such

that E(G) = G0. α′εm
is equal to αεm

plus the number of observations among x1, · · · , xi−1

that belong to Bε1···εm . In practice, we can always reduce the right side of (3.1) to a finite

product. There are two reasons for doing so. The right side of (3.1) can be approximated

by a finite product when m is large. On the other hand, α′εm
will be equal to αεm

when the

partitioning process goes down to the Mth level such that no observations will fall into the

subset which xi belongs to.

3.1.2 Construction of a Polya Tree

Two issues should be considered when a Polya tree prior is constructed on Ω, e.g., Ω = R.

One is how to construct the partition Π. The other is the selection ofA.

Through choosing Π, we may center the PT prior around a particular continuous distri-

bution G0. To do so, we take the partition points to align with percentiles of G0. For instance,

if B0 = (−∞, G−1
0

(
1
2

)
] (hence B1 = (G−1

0

(
1
2

)
,∞)), B00 = (−∞, G−1

0

(
1
4

)
], · · · and α0 = α1,

α00 = α01, · · · , then since G(B0) = Y0 ∼ Be(α0, α1), E(G(B0)) = 1
2

= G0(B0). Also, e.g.,

G(B00) = Y0Y00 implies E(G(B00)) = 1
4

= G0(B00) and for any B ∈ Π, E(G(B)) = G0(B).

We need not confine ourselves to quartiles of the form G−1
0

(
j
2r

)
.

Figure 3.1 shows an example of the construction of a Polya tree prior on (0, 1] = Ω

(Ferguson 1974). At the top level of the tree, Ω is split in half at the dyadic rational, 0.5.

Thus B0 = (0, 0.5], B1 = (0.5, 1] and Ω = B0

⋃
B1. At the second level, B0 and B1 are again

split at 0.25 and 0.75, respectively, which result in subsets B00 = (0, 0.25], B01 = (0.25, 0.5],

B10 = (0.5, 0.75], and B11 = (0.75, 1], so on.

Another issue is how to select the parameters in A. The parameters αε in A control

how quickly the updated predictive distribution moves from the centering distribution G0

to the empirical distribution. If the αε’s are large, then the distribution of xn+1 | x1, · · · , xn

is close G0. If the αε’s are small, then the distribution of xn+1 | x1, · · · , xn is close to
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Figure 3.1: Construction of a Polya tree prior on (0,1] (Ferguson 1974)

the empirical distribution function. The parameters αε also express the belief about the

smoothness of G. Ferguson (1974) provides conditions on A which yield discrete, continuous

singular, and absolutely continuous distributions with probability one. For instance, for level

m = 1, 2, · · · , αε1...εm = 2−m implies a Dirichlet process,αε = 1 yields a random probability

G of a type considered by Dubins and Freedman (1966) and shown to be continuous singular

with probability one, and αε1...εm = m2 implies an absolutely continuous distribution with

probability 1. Walker and Mallick (1999) and Paddock et al.(2003) considered αε1···εm = cm2,

where c > 0.

Therefore, through selection of A and G0, one can center the Polya tree prior around G0

arbitrarily close, as determined by A, in a manner analogous to the specification of baseline

measure and precision parameter in the Dirichlet process. A can be thought of as a precision

parameter and G0 as a base measure.
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3.1.3 Limitations of Polya Tree Models

Polya trees have some practical limitations. First, the resulting random probability measure

is dependent on the specific partition sequence adopted. Second,using a fixed partitioning

sequence Π results in discontinuities in the predictive distributions. Third, implementations

for higher dimensional distributions require extensive housekeeping and are impractical. To

mitigate problems related to the discontinuities Paddock et al. (2003) and Hanson and

Johnson (2002) introduced randomized Polya trees. The idea is based on dyadic rational par-

titions, but instead of taking the nominal half-point Paddock et al.(2003) randomly choose a

“close” cutoff. This construction is shown to reduce the effect of the binary tree partition on

the first two points noted above. Alternatively, Hanson and Johnson (2002) consider instead

a mixture with respect to a hyperparameter that defines the partitioning tree. The problem

concerning high dimension persists though.

3.1.4 Finite Polya Tree

In practice, we can only carry out the above partitioning process to a finite level r. We

then obtain a “partially specified Polya tree” (Lavine 1994), which is also called finite Polya

tree, to approximate a realization from PT (Π,A). A partially specified Polya tree will be

defined and denoted by Gr ∼ PT (Πr,Ar). Let Sr be a finite subset of E? such that, for

every ε = ε1 . . . εm ∈ Sr, ε1 . . . εj ∈ Sr(j < m) as well, and suppose that we have specified

parameters {Bε0, Bε1, αε0, αε1 : ε ∈ Sr}. Let T1 = {G(Bε1) : ε ∈ Sr} be the random proba-

bilities assigned by the partially specified Polya tree, and let T2 be the mass distribution of

G conditional on T1. Thus, G = (T1, T2) and L(G) = L(T1)× L(T2|T1).

Definition (Finite Polya Tree (Lavine 1994)) The random variable T1 has a finite

Polya tree distribution with parameter (Πr,Ar) if there exist sets Πr = {Bε1 : ε ∈ Sr},
Ar = {αε0, αε1 : ε ∈ Sr} and random variables Yr = {Yε : ε ∈ Sr} such that:
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• all the random variables in Yr are independent;

• for every ε ∈ Sr,Yε has a Beta distribution with parameters (αε0, αε1);

• for every ε = ε1 · · · εm ∈ Sr,

G(Bε1···εm) =




m∏
j=1,εj=0

Yε1···εj−10







m∏
j=1,εj=1

(1− Yε1···εj−10)




The level r can be either fixed or we can assign it a prior distribution, e.g., a Poisson

distribution. Walker and Mallick (1997, 1999) fixed r = 8. Hanson and Johnson (2002)

recommend the rule of thumb r
.
= log2n, where n is the sample size. By allowing r to grow

with the sample size, G accommodates finer and finer detail as more data are available. Or

r can also be chosen such that there is at most one observation in each subset. It is also

sensible to stop partition at the level under which the error of approximation is below a

given predetermined value.

3.2 Posterior Inference under the i.i.d Sampling Model

3.2.1 Model

Assume observations xi are independently and identically distributed, sampled from an

unknown distribution G, with a Polya tree prior on G:

xi
iid∼ G, i = 1, . . . , n and G ∼ PT (Π,A).

For the choice of parameter Π, we take the partition points to be quartiles of G0. That

is, B0 = (−∞, G−1
0 (1/2)), B1 = [G−1

0 (1/2),∞), and, at level m, setting Bj = [G−1
0 ((j −

1)/2m), G−1
0 (j/2m)) for j = 1, · · · , 2m,with G−1

0 (0) = −∞ and G−1
0 (1) = +∞. Therefore

{Bj; j = 1, · · · , 2m} correspond to the 2m partitions of level m. Under this parametrization

E(G) = G0. As for the choice of A, it is convenient to take αε = cm2 for some c > 0 where

ε = ε1 · · · εm defines the index of a subset at level m. This implies that there exits a large
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amount of variability for small m (higher levels). However, as we move down the levels (m

large), G(Bε0) and G(Bε1) are close to reflect beliefs in the underlying continuity of G.

3.2.2 Posterior updating

According to the conjugacy property of the Polya tree, given an observation x1 the posterior

Polya tree distribution is easily obtained. We write the posterior as G|x1 ∼ PT (Π,A|x1)

with A|x1 given by

α′ε =





αε if x1 6∈ Bε

αε + 1 if x1 ∈ Bε

(3.2)

For n independent observations, x = (x1, · · · , xn), A|x is given by α′ε = αε + nε where nε is

the number of observations from (x1, · · · , xn) in Bε.

3.2.3 Posterior Predictive Simulation

We exploit the structure in (3.2) to implement posterior predictive simulation. Formally,

given xi
iid∼ G, i = 1, · · · , n and G ∼ PT (Π,A), we consider posterior predictive simulation

of xn+1 ∼ p(xn+1 | x1 . . . xn). Theoretically, the posterior predictive density xn+1 ∼ p(xn+1 |
x1 . . . xn) can be evaluated by (3.1). Practically, the evaluation of the right side in (3.1) will

be terminated at a finite level for two reasons. One reason is that the right side of (3.1) can

always be approximated by the product of finite terms. The other reason is that starting at

a certain level no observation will fall into the subinterval which x belongs to. Therefore, the

product will not change from that level.

Based on (3.1), it is easy to sample the density p(xn+1 | x1 . . . xn). In words, we “drop” a

ball down (well, really up) the Polya tree. Starting with (B0, B1) at the root we generate the

random probabilities (Yε0, Yε1) for picking the right and left partition in the respective next

level. Recall that Yε0 = G(Bε0 | Bε) and Yε0 ∼ Beta(α′ε0, α
′
ε1). Going down the tree we run

into some good luck. At some level m we will drop the ball into a subset Bε, ε = ε1ε2 · · · εm,

42



that does not contain any data point. From level m onwards, dropping the ball proceeds as

if we had no data observed. Thus we can generate the posterior predictive draw from the

base measure G0, restricted to Bε. The posterior predictive draw can be generated by the

following algorithm.

Algorithm 1

1. Initialize: ε = ∅.

2. Iteration: Loop over m = 1, 2, . . .:

(a) Posterior PT Parameters: Find nε0 =
∑n

i=1 I(xi ∈ Bε0) and nε1 =
∑n

i=1 I(xi ∈
Bε1), the number of x’s in the two partitioning subsets for Bε = Bε0 ∪ Bε1. Let

α′ε0 = αε0 + nε0, and α′ε1 = αε1 + nε1.

(b) Generate Random Partitioning Probability: Generate Yε0 ∼ Beta(α′ε0, α
′
ε1), and

set εm ∼ Bernoulli(1 − Yε0). If we want to keep the median of G unaffected by

the centering distribution G0, εm ∼ Bernoulli(0.5) for m = 1.

(c) Set ε = ε1 . . . εm.

3. Stop of the Recursion: Stop the iteration over m for the smallest m∗ such that nε1...εm∗ =

0 at m = m∗.

4. Generate xn+1: Draw xn+1 ∼ G0(xn+1) · I(xn+1 ∈ Bε1...εm∗ ).

Artificial data is used to illustrated the above algorithm. We simulate n = 400 data points

from a mixture of two normals with median 0.

x1, · · · , xn
iid∼ 0.5N(−1, 0.52) + 0.5N(1, 0.52) (3.3)

For illustration purposes, we assume these observations are i.i.d. from an unknown distri-

bution G. To estimate the predictive density, we assign a Polya tree prior on G. For the

partition sequences of Polya tree, we try a simple centering distribution G0 = N(µ, σ2). It
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is reasonable to fix µ at 0. For σ we consider values 1 and 10 to assess the effect of the

standard deviation of the base measure on the posterior inference. Choose parameters αε in

A to be cm2,m = 1, 2, · · · . For c we try values 0.1 and 5 in order to examine how c affects

the posterior predictive density. We repeat the above algorithm 2000 times; thus 2000 xn+1’s

are generated.

The true density (solid line) of the mixture normal and histogram of the 400 observations

are show in Figure 3.2. The data are fairly representative of the density. We compare the

effects of the standard deviation σ and c through plots. The predictive density estimates

are plotted in Figure 3.3. When c is small, the predictive density derived under the base

measure with a small standard deviation is closer to the true density compared to the base

measure with a large standard deviation. When c is large, the predictive density is less able

to capture important features of the true distribution. The reason behind this phenomenon

is that c plays a role as ”precision parameter” in the Dirichlet process. For small values of

c, the distribution of xn+1 | x1, · · · , xn is close to the empirical cdf. For large values of c, the

distribution of xn+1 | x1, · · · , xn remains close to G0.

In summary, we recommend to use a base measure with a scale (σ) comparable to the

range of the data. For c we recommend small values, say c = 0.1 as a default for moderate

size data.

3.2.4 Prior Predictive Sample

We can also use the above algorithm to generate a prior predictive sample,i.e., xi
iid∼ G, with

PT prior G ∼ PT (Π,A). The sample (x1, . . . , xn), also referred to as marginal sample, can

be generated by first sampling x1 from G0 then sampling x2, · · · , xn using Algorithm 1. The

procedure is as follows:

1. Generate x1 ∼ G0
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Figure 3.2: True density and a histogram of n=400 simulated observations.

2. Iterate over i = 2, . . . , n:

Use Algorithm 1 to generate xi ∼ p(xi | x1, . . . , xi−1).

3.2.5 Posterior Mean

Algorithm 1 provides a procedure to sample the posterior predictive density, which may

be discontinuous at the countably infinite partition points. A minor variation of Algorithm

1 can be used to compute the posterior mean E(G(Bε1...εm) | x1, . . . , xn), i.e., p(xn+1 ∈
Bε1...εm | x1, . . . , xn). The proposed algorithm replaces the generation of random (conditional)

probabilities for each of the nested partitioning intervals by the expected random probability,
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Figure 3.3: Predictive densities for different c and σ.

leading to the expected measure, E(G | data), instead of a draw, G ∼ p(G | data). The

procedure can be described as follows. Let x = x1, . . . , xn denote the observations from G.

Consider some maximum level M , say M = 10. For all levels m = 1, . . . , M compute

Y ε1ε2···εm−10 = E[Yε1ε2···εm−10 | x] =
α′ε1ε2···0

α′ε1ε2···0 + α′ε1ε2···1
.

where α′ε1···εm
= αε1···εm +

∑n
i=1 I(xi ∈ Bε1···εm). Recall that Y ε1ε2···εm−11 = 1 − Y ε1ε2···εm−10

is the complement to one. Computing Y ε is most elegantly implemented as a recursion. Let

S1, · · · ,Sr, r = 2M denote the subsets at level M . We find

E(G(Sε) | x1, . . . , xn) ≈
M∏

m=1

Y ε1ε2···εm ≡ Ĝ(Sε).
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where ε = ε1 · · · εM . Here G(·) is the c.d.f. for the random measure G.

3.2.6 Simulation of A Posterior Draw

To generate random posterior draws G ∼ p(G | x1, . . . , xn) can be proceeded as in section

3.2.5, replacing Y ε by Yε0 ∼ Beta(α′ε0, α
′
ε1), where α′ε0 = αε0 +

∑
i I(xi ∈ Bε0 and α′ε1 =

αε1 +
∑

i I(xi ∈ Bε1. Let G(Sε) =
∏M

m=1 Yε1ε2···εm . Plotting G against ε shows a random

posterior draw of G. Plotting multiple draws Gi, i = 1, 2, . . . , I in the same figure illustrates

uncertainty on the random measure.

Suppose that x1, . . . , xn come from (3.3). Assuming parameters αε1...εm = cm2, Figure 3.4

illustrates posterior draws of G under different c, where G is centering around G0 = N(0, σ2).

σ is fixed at 10. It is noted that posterior draws of G become smoother as c increases. This

is because G{(−∞, t]} | x1, · · · xn →d G0(t) as c →∞, here G0 is a smooth distribution.

3.3 Posterior Inference in Regression

In the above, we have discussed the posterior inference of PT models under i.i.d sampling

model. In this section, we will discuss the posterior inference when PT is as a prior of the

distribution of random residuals or the distribution of random effects in regression models.

Walker and Mallick (1997) assigned a Polya tree prior to the unknown distribution of

random effects in a generalized linear model. Walker and Mallick (1999) and Hanson and

Johnson (2002) considered an accelerated failure time model by specifying a Polya tree prior

to the error distribution.

3.3.1 A PT Random Probability Measure As A Prior of Residual Distribu-

tion

Here we first discuss the model presented by Walker and Mallick (1999) who assigned a

simple Polya tree prior to the distribution of regression error. Then we discuss how Hanson
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Figure 3.4: Posterior draw of G | x1, . . . , xn.
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and Johnson (2002) extended this model to mixture of Polya trees. The model is described

as follows.

Yi = −x′iβ + Wi, for i = 1, · · · , n, β ∼ fβ(β)

W1, · · · ,Wn | G iid∼ G, G | Π,A ∼ PT (Π,A) (3.4)

Firstly, the distribution of error term is given a finite Polya tree prior, which is denoted

as G | ΠM ,AM ∼ PT (ΠM ,AM). The Polya tree distribution is centered around a normal

distribution G0 with median (mean) 0 and a fixed large variance θ(i.e.G0 = N(0, θ)). A fixed

partition at level m is then generated by taking

Bε1···εm = (G−1
0 (

j

2m
), G−1

0 (
j + 1

2m
)], (3.5)

where j = 0, 1, · · · , 2m − 1. A is assumed as

A = {αε1···εm = cm2 : ε1 · · · εm ∈ {0, 1}m}, (3.6)

with a fixed value of c. Walker and Mallick (1997, 1999) choose M to be 8. M can also

be chosen such that at most one observation is in each partitioning subset at level M . For

posterior simulation, we require the full conditional distributions p(G|Y, β) and p(β|Y, G).

Obtaining the posterior distribution of p(G|Y, β) is straightforward. Since Wi = Yi + x′iβ

are i.i.d. from G, i.e. p(G|Y, β) = p(G | W1, · · · ,Wn), we find that G can be generated by the

algorithm described in Section 3.2.6. At level M , G is given as a sequence of probabilities,

{Vk, k = 1, · · · , 2M}, on the sets at level M , say S1, · · · , S2M .

To sample β, the full conditional distribution is given by

p(β, | Y, G) ∝ p(Y | G, β)fβ(β).

where p(Y | G, β) is the likelihood for β given Y and G

p(Y | G, β) =
n∏

i=1




2M∑

k=1

VkI(Yi + x′iβ ∈ Sk)



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A Metropolis-Hastings algorithm (Tierney 1994) can be used to sample β. A proposed sample

for β can be taken from a multivariate normal with mean at current value and covariance

matrix to be a scaled identity matrix.

Alternatively, in the traditional linear model with W1, · · · , Wn ∼ G0, the posterior dis-

tribution of β is proportional to fβ(β)
∏n

i=1
1√

2πσ2 exp(− (yi+x′iβ)2

2σ
). If β has a normal prior

N(µβ, Σβ), then the posterior distribution of β is normal with mean (Σ−1
β +σ−2x′x)[Σ−1

β µβ−
σ−2x′y] and variance-covariance matrix (Σ−1

β + σ−2x′x)−1, where x = −(x1, · · · , xn)′.

In the above finite Polya tree, posterior simulation MCMC requires to sample G at

each iteration. Now we consider another method for the posterior simulation. The random

unknown probability measure G is integrated out and inference is based on the predictive

distribution (Hanson and Johnson 2002). As a result, inference is exact up to MCMC error.

To be specific, the joint conditional density is p(W1, · · · ,Wn | G) =
∏n

i=1 g(Wi), where g is

the density function of G. After G is integrated out, we have

f(W1, · · · ,Wn) =

∫
p(W1, · · · ,Wn | G)dp(G)

= f(W1)f(W2 | W1) . . . f(Wn | W1, · · ·Wn+1)

= g0(W1)
n∏

i=2

f(Wi | W1, · · · ,Wi−1)

where g0 is the density function of the centering distribution G0. Using (3.1), we have

f(Wi | W1, · · · ,Wi−1) =

{
lim

m→∞

m∏
j=2

α′ε1···εj
/(α′ε1···εj−10 + α′ε1···εj−11)

αε1···εj
/(αε1···εj−10 + αε1···εj−11)

}
g0(Wi) (3.7)

where α′ε1···εj
is αε1···εj

plus the number of elements of W1, · · · ,Wi−1 in Bε1···εj
such that

Wi ∈ Bε1···εj
. As indicated before, the right side of (3.7) can be reduced to a limit product.

Under model (3.4) with Π and A defined in (3.5) and (3.6), respectively, the predictive

density of error term Wi | W1, · · · , Wi−1 has the following close form

fWi
(w | W1, · · · ,Wi−1) = lim

m→∞

{
m∏

j=2

cj2 + nε(j,w)

2cj2 + nε(j−1,w)

}
2m−1g0(w) (3.8)
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where nε(j,w) is the number of elements of W1, . . . , Wi−1 in the subset Bε1···εj
which contains

w. g0 is the density of base measure G0 with respect to Lebesgue measure and has median

0.

The posterior distribution of β | Y is given by

fβ(β | Y ) ∝ fβ(β)fY (Y | β)

= fβ(β)g0(Y1 + x′1β)
n∏

j=2

fWj |W1,··· ,Wj−1
(Yj + x′jβ | Y1 + x′1β, · · · , Yj−1 + x′j−1β)

(3.9)

Metropolis-Hastings algorithm can be used to obtain posterior inference. A suitable can-

didate generating density, q(β? | β), where q(β? | β) = q(β | β?), is chosen. Define the

acceptance probability α(β?, β) as

α(β?, β) = min

{
fβ(β?)fW1,··· ,Wn(Yi − x′iβ

?, · · · , Yn − x′nβ
?)

fβ(β)fW1,··· ,Wn(Yi − x′iβ, · · · , Yn − x′nβ)
, 1

}
(3.10)

At the kth iterate in the Markov chain we sample (β? | βk) ∼ q(β? | βk) and take

βk+1 =





β? with probability α(β?, β)

βk with probability 1− α(β?, β)

We construct a multivariate normal random walk candidate generating distribution for

sampling β? as follows. The covariance matrix is chosen to be as nearly as possible to the

true posterior covariance matrix, perhaps by obtaining a crude estimate of covariance matrix

from an initial sampling run (Müller 1991). Or the covariance matrix is chosen to provide a

reasonable acceptance rate.

Alternatively, a guided walk Metropolis algorithm (Gustafson 1998) can be used to update

β. A transition of the guided walk algorithm from (βk, pk) to (βk+1, pk+1) proceeds as

β? ← βk + pk|z|
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where z ∼ N(0, s2) and p ∈ {−1, +1} satisfying Pr(p = +1) = Pr(p = −1) = 0.5.

α(β, β?) is computed by (3.10). Then (βk+1, pk+1) ← (β?, pk) with probability α(β, β?),

or (βk+1, pk+1) ← (βk,−pk) with probability 1− α(β, β?).

In contrast to the random walk algorithm, the direction of the candidate β? relative to the

current state βk is not random at each iteration. The chain moves consistently in the same

direction until a candidate is rejected. Compared to the random walk Metropolis algorithm,

the guided walk metropolis algorithm performs better in terms of efficiency and convergence

time.

3.3.2 A PT Random Probability Measure as A Prior of Random Effect

Distribution

For reasons of technical convenience, random effects are often assumed to come from the

normal family of distributions (Zeger and Karim 1991). Kleinman and Ibriham (1998)

extended the models to consider Dirichlet process prior for the random effects. Walker and

Mallick (1997) assigned a Polya tree prior to the distribution of random effects in generalized

linear model. Their approach involves centering the median of the random effects distribution

at 0 and specifying the Polya tree to the finite level.

In this section, we attempt to improve on certain aspects of the aforementioned methods

in the random effect model setting. In particular, we present a random effect model in which

the random effects are modelled as a Polya tree centered about a parametric probability

distribution. With our approach, random effects can be directly sampled and inference will

be based on the predictive density.
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Without loss of generality, consider the fully specified random effect model

zi = x′iβ + θi + wi

β ∼ fβ(β)

wi ∼ N(0, σ2Ik) (3.11)

θi
iid∼ F, F ∼ PT (Π,A)

i = 1, · · · , n, j = 1, · · · , k

with Π defined by (3.5) and A defined by (3.6). xi is a p×k design matrix. β is a p×1 vector

of fixed effects and θi is an individual random effect. A vague normal prior is taken for β

and an inverse Gamma prior is assigned to σ2, that is, β ∼ Np(µβ, Σβ) and σ2 ∼ IG(a1, a2).

Therefore the relevant full conditional distributions include p(β | z, θ, σ2), p(σ2 | z, β, θ),

and p(θi | z, θ−i, β, σ2), where θ−i = (θ1, · · · , θi−1, θi+1, · · · , θn), i = 1, · · · , n. Samples can be

obtained using an MCMC algorithm and in particular a Metropolis-Hastings within Gibbs

methods.

It is easy to show that the fully conditional distribution for β is normal with mean and

covariance matrix given by (Σ−1
β + σ2(x′x)−1)−1(Σ−1

β µβ + σ2(x′x)−1x′(z − θ)) and (Σ−1
β +

σ2(x′x)−1)−1, respectively. Here, x′ is nk× p matrix with xij as the jth column of matrix xi.

The full condition for σ2 is an inverse gamma with updated parameters, a1 + n/2 and

a2 +
∑

ij(zij − x′ijβ − θi)
2/2.

We now describe how to update p(θi | z, θ−i, β, σ2). The likelihood for θi, given z, σ2, β,

and θ−i, is given by

l(z | β, θi, θ−i, σ
2) =

n∏
i=1

k∏
j=1

N(zij | β, θi, σ
2)
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Then the conditional distribution for θi can be written, up to a constant of proportionality.

That is,

p(θi|z, θ−i, β, σ2) ∝ l(z | β, θi, σ
2)p(β, θi, θ−i, σ

2)

∝ l(z | β, θi, σ
2)p(θi | β, θ−i, σ

2)p(β, θ−i, σ
2)

∝ l(z | β, θi, σ
2)p(θi | θ−i)

for each i = 1, · · · , n. This can be done using a Metropolis-Hastings algorithm.

We construct Polya tree with mean measure F0 and center the Polya tree prior at F0. F0

is the cumulative distribution function corresponding to a density f0. It is reasonable to take

F0 as a normal distribution with median zero and a large variance. We consider the fixed

partition defined by (3.5) and choose cm2 for the parameters α’s. At each level m = 1, 2, · · · ,
we sample the set Bε1···εm using Algorithm 1 described in section 3.2.3. θ

(p)
i is generated from

f0 constrained on Bε1···εm once a level is reached such that no observation falls into Bε1···εm .

The candidate θ
(p)
i is generated from the predictive distribution p(θi | θ−i). The candidate is

accepted with probability given by

min

{
1,

l(zi | β, θ
(p)
i , σ2)

l(zi | β, θ
(c)
i , σ2)

}
,

where θ
(p)
i is the proposed sample and θ

(c)
i is the current sample.

3.4 Examples

In this section, we use three examples to illustrate the aforementioned methods. The first

example emphasizes the application of Polya tree as the prior of error distribution. The

second example will focus on the implementation of Polya tree as prior of random effects

distribution. In the third example, we used the simulated fractional dataset considered in

Chapter 1 to demonstrate how a Polya tree distribution can be used as the prior of the

distribution of random effects in the fractional data model.
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3.4.1 Polya Tree Distribution as a Prior of Error Distribution

In this subsection, we will use two simulated datasets to examine the fit of model (3.4) and

compare the estimates based on Polya tree prior with the results obtained based on the

normal distribution. For simplicity, only one covariate (x1) is considered and generated from

N(2, 1). The true regression coefficient of this covariate was set at 1.

First, we let the random residual be sampled from N(0, 0.152). Then we consider the

random residuals sampled from a mixture of two normal distributions 0.5N(−0.2, 0.152) +

0.5N(0.2, 0.152). The median of residuals is set at 0, which is a standard practice in linear

regression model. The size of the sample generated from both distributions is taken to be

n = 250, large enough to provide an adequate representation of the distribution. Thus the

observed Y is given by Yi = xi + Wi,where Wi, i = 1, · · · , n is simulated residual.

We fit both data sets under normal and Polya tree priors. Following the discussion in

Section 3.2.3 for the choice of parameters αε1···εm and G0 in Polya tree prior, we take param-

eters αε1···εm = cm2 at the mth level with c = 0.1 and G0 = N(0, σ2) where σ = 5. For the

regression coefficients, we follow the standard approach, assuming β ∼ N2(0, 100I2), where

I2 is 2× 2 identity matrix.

Table 3.1 summarized the estimated regression coefficients when true residuals come from

a normal distribution. Results indicate that point estimates for the regression coefficients are

fairly accurate under both normal and Polya tree prior distributions. The estimated G under

Polya tree prior is plotted in Figure 3.5. The dashed line is the true density from which true

residuals are generated. It is clearly demonstrated that nothing appears to be lost in the

analysis using Polya tree even if the random residual distribution is a normal distribution.

The estimated regression coefficients are also presented in Table 3.1 when true residuals

come from a mixture of normals. It is clearly to see that point estimates for the regression

coefficients are fairly accurate under both normal and Polya tree prior distributions. The

histogram of estimate residuals under normal assumption is displayed in Figure 3.6. It sug-
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Table 3.1: Posterior regression estimates when residuals are sampled from normal and mix-
ture of normals

Wi ∼ N(0, 0.152) Wi ∼ 0.5N(−0.2, 0.152) + 0.5N(0.2, 0.1562)
Parameter Normal Polya tree Normal Polya tree

β0 -0.02(-0.06, 0.03) -0.03(-0.12,0.07) 0.03(-0.05, 0.10) -0.02(-0.16, 0.19)
β1 1.01(0.99, 1.03) 1.02(0.96, 1.06) 0.98(0.95, 1.02) 0.98(0.93, 1.05)

gests that normality assumption is not valid for this dataset. The estimated G under Polya

tree prior is plotted in Figure 3.7. As can be seen the estimated G’s are considerably close

the the true density of residuals. Especially the estimated G can capture the multiple modes

fairly well.

Although the point estimates for β’s are accurate for all models, Polya tree prior adds

more uncertainty to the model thus the high uncertainty occurs for β0 and β1 when the distri-

bution of residual is assumed to have a Polya tree prior. If estimating regression coefficients

is of interest, we will not loss much using traditional normal linear regression modeling when

the true distribution of residuals is not normal. However, making prediction is also important

in medical research, the prediction for a new patient will miss bimodal nature under normal

assumption when the true distribution of residual is not normal.

3.4.2 Polya tree as prior of random effect distribution

We aim to estimate the distribution of random effects in the following example. The data

set is constructed in which the actual distribution of random effects is much different than

the family of base measures centering the Polya tree prior.
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Figure 3.5: Posterior expectation of G when residuals are generated from a normal distribu-
tion. Dashed line is the true residual density. Solid line is the estimate of G under Polya tree
prior

We simulate n = 200 data points from random effect model in which the baseline distri-

bution for random effects is a normal mixture

θ1, · · · , θn
iid∼ 0.5N(−1, 0.52) + 0.5N(1, 0.52).

Covariate x1, · · · , xn
iid∼ N(1, 1). The true vector of regression coefficients was set at β =

(0.8, 1)′, the residuals (w’s) were generated from N(0, 0.52), and the observations are given

by zi = (1, xi)
′β + θi + wi.

57



−0.6 −0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

Residual from normal 
linear regression

pr
ob

ab
ili

ty
 d

en
si

ty

Figure 3.6: Histogram of residuals when residuals are generated from a mixture of normals.

As in section 3.4.1, we place a bivariate normal prior N(0, 10I2) for β. The residuals were

assumed to follow a normal distribution with mean 0 and variance σ2. An inverses gamma

prior (IG(0.1, 0.1)) was assign to σ2.

The base probability distribution for the Polya tree prior was taken to be normal with

mean 0 and variance 25. The α-values in A were taken to be constant at level m and equal to

cm2. We fixed the values of c at 0.1 and 5 to assess the effect of c on the resulting inference.

The estimated regression coefficients are presented in Table 3.2. The point estimates of

coefficients are accurate for all models. The posterior predictive density estimates for random

effects are plotted in Figure 3.8. It suggests that small c do a better job at capturing the
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Figure 3.7: Posterior expectation of G when residuals are generated from a mixture of nor-
mals. Dashed line is the true residual density. Solid line is the estimate of G under Polya
tree prior

bimodal of the true density than larger c because for large values of c we are performing a

parametric analysis.

3.4.3 Polya tree as prior of random effect distribution in fractional data

model

In this subsection we continue the fractional data example in Chapter 1, there the distribution

of random effects was assumed to be normal or Dirichlet process. In the following, we place a

Polya tree prior on the unknown distribution G, which is the distribution of random effects
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Table 3.2: Posterior regression estimates for simulated dataset

c = 0.1 c = 5
Parameter median 95% CI median 95% CI

β0 0.68 (0.34, 1.13) 0.85 (0.44, 1.40)
β1 1.01 (0.85, 1.18) 0.92 (0.62, 1.22)
σ 0.56 (0.38, 0.74) 0.29 (0.15, 0.47)

Table 3.3: Posterior regression estimates for simulated fractional data

Parameter median 95% CI

β0 0.847 (0.720, 0.942)
β1 -0.599 (-0.663, -0.534)
σ 0.093 (0.081, 0.109)

in fractional data model. The Polya tree distribution is assumed to center around N(0, 52).

At the mth level, αε1...εm is taken to be cm2. For simplicity, c is fixed to be 0.1. The estimated

regression coefficients are presented in Table 3.3. The point estimates for β0 and β1 are fairly

close to the true values. The posterior predictive density of θn+1 is plotted in Figure 3.9. It

shows that the estimated G captures the bimodal nature of random effect distribution very

well.

3.5 Conclusion

We have introduced PT models for random sampling, for residual distributions in a regression

model, and for random effects distributions in mixed effects models. We reviewed known

algorithms for prior- and posterior simulation, and developed new algorithms for posterior
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Figure 3.8: Posterior predictive density estimate for random effects.

simulation with analytically marginalized random measure and for evaluation of the posterior

mean for the random distribution. Apart from implementations with finite PTs the use of

PT priors on random effects distributions is new.

61



−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

 

d
e

n
s
it
y

Figure 3.9: Posterior predictive densities of θ, solid line is the true density of G. The dashed
line is the estimated G
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Chapter 4

Bayesian Data Analysis for Some Biomedical Applications

4.1 Introduction

In this chapter we present three case studies to complete the development of the models

introduced earlier. In section 4.1. we use a PT prior for the residual distribution in a regression

model. We show how the models and algorithms developed in the earlier chapters are used in

the data analysis and compare posterior inference under the proposed nonparametric model

with a standard parametric model.

In section 4.2. we further develop the nonparametric random effects model introduced

in section 3.3.2. In the context of a case study we show how the proposed nonparametric

model for random effects with many corresponding experimental units is combined with a

parametric random effects distribution for another set of random effects in the same model.

We compare the resulting inference with a standard parametric model, highlighting the

nature of the nonparametric extension.

Finally, in section 4.3. we develop a new nonparametric Bayesian approach to inference for

differential gene expression in microarray group comparison experiments. The proposed infer-

ence is a natural nonparametric Bayesian extension of a popular empirical Bayes approach

introduced in Efron et al. (2001). We define the model, explain appropriate posterior simula-

tion algorithms and compare results with the empirical Bayes method. The results show how

the nonparametric Bayesian model addresses some of the critical limitations of the empirical

Bayes method. In particular, the nonparametric Bayes method explicitly acknowledges the
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uncertainty in the unknown quantities and provides a full probabilistic description of the

uncertainties.

4.2 Cell line data

HER2 represents an appealing target for humoral and cellular immunotherapy because HER2

is expressed at high levels in a variety of human cancers, such as breast cancer, ovarian cancer.

Overexpression of antigenic proteins, such as HER2, is coupled with a high protein turnover,

leading subsequently to a high number of major histocompatibility complex proteins (MHC)

class I peptide complexes on the cell surface. Therefore, HER2 positive tumor cells are poten-

tially good target cells for tumor-reactive cytotoxic T cells(CTLs) recognizing HER2-derived

peptides in context with MHC class I molecules. Lytic activity of separated CTLs isolated

from normal donors and patients with HER2 positive tumors was found to be low because

HER2 is a self-antigen attributable to induction of tolerance. This study is to investigate

whether the lytic potential of HER2-specific CTLs could be improved with the help of Her-

ceptin, an inhibitory antibody against HER2, and monocyte, a white blood cell which can

ingest dead cell or damaged cells.

The HER2 positive ovarian cancer cell line SKOV3 is obtained and treated by the combi-

nation of Herceptin and monocyte at different levels. Herceptin has 4 levels: 0,1,5,10(νg/ml).

Monocyte has 4 levels: 0, 10:1, 20:1, 40:1, which are coded as 0,1,2,and 3. The percentage of

specific lysis was calculated as follows on the SKOV3 cell lines from 43 patients:

percent specific lysis=(experimental release-spontaneous release)/(maximum release -

spontaneous release) × 100.

Here experimental release is the count from cell-free culture supernatant from MO/MA

incubated with labelled target cells; spontaneous release is the count from cell-free culture

supernatant from labelled target cells only, and maximum release is the count from lysed

cells of labelled tumor cells only.
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Let yi denote the percentage of specific lysis from patient i. To constrain the percentage

to be positive, We add 0.1 to yi and then perform a logit transformation, that is, zi =

logit(yi + 0.1), where logit(p) = log( p
1−p

). The histogram of zi is presented in Figure 4.1. To

illustrate the possible interaction between Herceptin and monocyte, an interaction plot of

these two factors is displayed in Figure 4.2.
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Figure 4.1: Histogram of cell line data.

A linear regression model is used to fit the data. The model is given by

zi = β0 + β1Hi + β2Mi + β12Hi ∗Mi + εi

i = 1, · · · , n
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Figure 4.2: Interaction plot of Herceptin and monocyte.

Here H is the level of Herceptin. M is the level of monocyte, and H ∗M is the interaction

of Herceptin and monocyte.

PROC GLM procedure in SAS was firstly used to fit a conventional linear regression

model. The estimated regression coefficients are summarized in Table 4.1. The histogram of

estimated residuals is presented in Figure 4.3. The highly skewed nature of the histogram

indicates that the normal assumption is not valid for this study. To test the normality

66



assumption, we display Q-Q plot of estimated residuals in Figure 4.4. Also, the Q-Q plot

suggests possible skewness and fat tails of the distribution of residuals.
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Figure 4.3: Histogram of estimated residuals under normal assumption.

Instead of assuming a normal distribution for residuals, we let residuals εi follow an

unknown distribution, i.e., εi ∼ G, and a Polya tree distribution is proposed to be the

prior of the unknown distribution, i.e., G ∼ PT (Π,A). We take the default choices for the

parameters (Π and A) of the Polya tree. The partition sequence is chosen to center the

Polya tree prior around a normal distribution with mean 0 and standard deviation of 5. The

partition points coincide with percentiles of the centering distribution. For the assignment
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Figure 4.4: Q-Q plot of estimated residuals.

of A, we use αε0 = αε1 = cm2 for each ε at level m. The value of c is set at a fixed value of

10 in this example. For β, a normal prior with mean 0 and covariance matrix 20I4 is placed

on β = (β0, β1, β2, β12), where I4 is 4× 4 identity matrix.

The MCMC algorithm is run for 30000 iterations. The first 3000 iterations are discarded

as burn-in period, then samples are selected every 12th iteration, leaving us with 2250 Monte

Carlo samples. Geweke’s test (1992) was used to perform convergence diagnostics.
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Table 4.1: Parameter estimates and 95% confidence interval

Parameter Normal distribution Polya tree prior
median (95% CI) median (95% CI)

β0 -1.448(-1.617, -1.269) -1.612(-3.069, -0.056)
β1 0.034(-0.009, 0.077) 0.034(-0.175, 0.256)
β2 0.396(0.276, 0.513) 0.407(-0.165, 1.003)
β12 0.032(0.004, 0.062) 0.031(-0.120, 0.183)

Posterior estimates for regression parameters are presented in Table 4.1. Noted the dra-

matically increased uncertainty for β2 and β12 under the Polya tree prior. The estimated

posterior densities of regression parameters are displayed in Figure 4.5.

The posterior expectation E(G | z) of the unknown residual distribution is shown in

Figure 4.6. The distribution in Figure 4.6 indicates the large variability of toxicities. As can

be seen this is a distribution with fat tails as we expected. This large variability should be

taken into account in any modeling procedure. The advantage of using Polya trees is that

no specific form for the distribution is assumed.

The simulation-based implementation of posterior inference allows us to report inference

on any event of function of the parameters of interest. In particular, we report posterior pre-

dictive inference for a future observation. Formally, this is p(zn+1 | Hn+1,Mn+1, z1, · · · , zn).

Figure 4.7 displays predictive density curves for Hn+1 = 0 and Mn+1 = 1, i.e., Herceptin

equal to 0 and monocyte equal to 1, and Herceptin equal to 1 and monocyte equal to 0. The

predictive density curves of new observations are quite different from a normal density. In

particular, we see skewness and multimodality are present.
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Figure 4.5: Posterior density estimates of βs, the solid line is the posterior density of β1, the
dashed line is the posterior density of β2, and the dotted line is the posterior density of β12 .

4.3 Repeated Fractional measurement data

In cancer studies, some characteristics of the tumor microenvironment are often assessed

by histologic evaluation of tumor biopsies. These include oxygenation and proliferation, two

properties of the tumor environment which may influence the response to treatment. One

approach to measure tumor oxygenation is the detection of bound nitroimidazoles based on

70



−20 −10 0 10 20

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Residual 

E
(G

 |
 d

a
ta

) 

Figure 4.6: Posterior expectation of unknown distribution of residuals.

information from tumor biopsies. However, the accuracy of biopsy-based methods is related

to how precisely the information derived from the biopsies represents the overall tumor

microenvironment. Thrall et al (1997) studied binding of CCI-103F and pimonidazole, both

2-nitroimidazole compounds, in canine solid tumors for assessing pretreatment oxygenation

and changes in oxygenation during irradiation.
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Figure 4.7: Predictive density for herceptin=0 and monocyte=1(solid line), and herceptin=1
and monocyte=0 (dashed line).

In this study, nine dogs, each with a primary solid tumor, were included. Twenty-four

hours before treatment, CCI-103F was administered intravenously. Immediately prior to the

treatment, a maximum of eight biopsies were obtained from different geographic regions of

the tumor. One to four sections from each biopsy sample were placed on glass slides. The
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volume fraction of hypoxic tumor tissue was reported by measuring the CCI-103F labelled

area in each slide, which is calculated by

y =(CCI-103F labelled counts)/(CCI-103F labelled counts + unlabelled counts).

Slides from four out of eight biopsies were measured at 20 minutes after injecting the

dye. Slides from the rest of biopsies in the same tumor were measured at 24 hours after

injecting the dye. An important feature of the data is that the volume fraction of hypoxic

tumor tissue can be 0 or 1 in some slides. The questions of interest include: “What is the

average fraction of hypoxic cells in a tumor”; ”How variable is the fraction within a tumor

and between dogs?”; and “How is the measurements of hypoxic cells made in the same tumor

affected by different measuring time?”.

Figure 4.8 presents the average fraction of hypoxic cells in each biopsy for each dog.

The x-axis denotes the biopsy label. Biopsies labelled as 1, 2, 3, and 4 were measured at 20

minutes. The fraction of hypoxic cells from biopsies labelled as 5, 6, 7, and 8 were measured

at 24 hours.

We use conventional Bayesian and Bayesian semiparametric random effect models to fit

the above fractional data. Some notations are introduced as follows. Let yijk denote the

fraction of hypoxic cells in kth slide from jth biopsy of ith dog. Time tij is the measuring

time for the jth biopsy from the ith dog, vi is the volume of tumor from the ith dog, di

denotes the random dog effect and bj(i) denotes the random biopsy effect within the ith dog.

To include point mass probabilities for yijk = 0 and yijk = 1, we introduce a latent variable

zijk in the model. Negative zijk is coupled into yijk = 0, and zijk ≥ 1 is coupled into yijk = 1.
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Thus we can proceed with a continuous probability model for zijk. The model is given by

yijk =





0 if zijk ≤ 0

zijk if 0 < zijk < 1

1 if zijk ≥ 1

zijk = β0 + β1tij + β2vi + di + bj(i) + εijk,

εijk
iid∼ N(0, σ2)

i = 1, · · · , 9, j = 1, · · · , 8, k = 1, · · · , 4

The model is completed by specifying the following priors:

β = (β0, β1, β2) ∼ N(µ, Σ)

di
iid∼ N(0, σ2

d)

bj(i)
iid∼ F

The priors for hyperparameters are

1

σ2
d

∼ Ga(0.01, 0.01)

1

σ2
∼ Ga(0.01, 0.01)

We use a normal prior for β with mean 0 and covariance matrix 4I3, where I3 is 3 × 3

identity matrix. Because of small number of dogs, the distribution of random dog effect is

assumed to be normal. Two types of random effects distributions are considered separately

for the distribution of biopsy effect. First, a normal prior, F = N(0, σ2
b ) is specified. Then

the parametric prior assumption is relaxed by specifying a nonparametric prior such as Polya

tree prior, i.e., F ∼ PT (Π,A).

4.3.1 Normal prior for the biopsy effect

Assume bj(i)
iid∼ N(0, σ2

b ) and σ−2
b ∼ Ga(0.01, 0.01).We run the Gibbs sampler for 35000

iterations, with the first 5000 being discarded as a burn-in period. In addition, due to high
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autocorrelation, every 12th iteration was used and the rest discarded, making a total Monte

Carlo sample size of 2500. Convergence of the Gibbs sampler was assessed via Geweke’s

(1992) method, using BOA (Bayesian Output Analysis Version 1.0.1) in R.

The histogram of mean biopsy effects is presented in the left panel of Figure 4.9. The

right panel of Figure 4.9 displays the Q-Q normal plot of mean biopsy effect. It indicates

that the distribution of biopsy effects takes on a multimodal appearance with a great deal

of weight centered around 0. The non-normality may be due to heterogeneity across dogs, or

biopsies, or other covariates, which is not presented here. Meanwhile, with a large dataset,

we may consider to include outliers and sampling uncertainty arising from experiment layout

into the model.

Histograms of β0, β1 and β2 are illustrated in Figure 4.10. Note that the posterior distribu-

tions are reasonably symmetric. Posterior distributions of model parameters are summarized

in Table 4.2. The results indicate that the proportion of hypoxic cell is strongly related to

time but not significantly associated to volume of tumor.

4.3.2 Polya tree prior for the biopsy effect

Suppose the biopsy effect arises from a random probability measure F , and we assume a

Polya tree prior for F . The prior on F was modelled as an infinite Polya tree with centering

distribution F0 = N(0, 32). We place the same priors on fixed effects such as measuring time

and volume of tumor and random dog effects as before. The parameters of the Polya tree

prior are fixed as follows. The partitioning points are chosen to be the percentiles of F0. c is

set at a value of 0.1.

MCMC posterior simulation was run for 38000 iterations, with the first 4000 being dis-

carded as burn-in period. Due to high autocorrelation, every 20th iteration was used and

the rest discarded. Convergence of the posterior distributions of parameters was assessed via

Geweke’s (1992) method. The parameter estimates of β are presented in Table 4.2. Results
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Table 4.2: Posterior median and central 95% posterior intervals for various parameters from
the parametric normal model and Polya tree model. Here, β0 is the intercept, β1 is the slope
over time, β2 is the volume of tumor effect, σ is the error standard deviation, σd is the
standard deviation of dog effect, and σb is the standard deviation of biopsy.

Parameter Normal model Polya tree model
β0 0.303(0.127, 0.507) 0.347(0.173, 0.553)
β1 0.113(0.019, 0.212) 0.054(-0.051, 0.169)
β2 -0.001(-0.003, 0.003) -0.001(-0.003, 0.002)
σ 0.093(0.085, 0.103) 0.093(0.085, 0.102)
σd 0.252(0.154, 0.527) 0.263(0.158, 0.510)
σb 0.197(0.163, 0.241)

suggest that Polya tree prior introduces high uncertainty to the model, especially for the

estimate of time effect.

The posterior distributions for β0, β1 and β2 are shown in Figure 4.10. The posterior

mean of F is shown in Figure 4.11, which indicates high between biopsy variability. It is

noted that this is a fairly tight distribution about 0 as we would expect.

4.4 Microarray data

4.4.1 Introduction

In this section we develop a nonparametric Bayesian alternative to the popular empir-

ical Bayes method (Efron et al. 2001) for inference about differential gene expression in

microarray experiments. Subsection 4.4.2 provides some background on the data format and

the nature of the experiments. Section 4.4.3 reviews some of the existing methods and how

they relate to the proposed novel nonparametric Bayesian approach. In the following sections

4.4.4 and 4.4.5, we then proceed to introduce a nonparametric Bayesian model based on PT
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priors and show how to implement posterior simulation in the proposed model. Finally, sec-

tion 4.4.6. illustrates the proposed method in a simulation example and in a data set of colon

cancer tissue samples.

Central to the empirical Bayes method is the notion of unknown distributions f0 and f1

of difference scores for non-differentially expressed genes and differentially expressed genes

respectively. Details are discussed below, in section 4.4.4. The empirical Bayes method pro-

ceeds by using clever ad-hoc point estimates for f0 and f1 (actually for a ratio of unknown dis-

tributions). In contrast, a nonparametric Bayesian approach proceeds by explicitly acknowl-

edging f0 and f1 as unknown quantities and assuming a prior probability model for them.

The required model is a probability model on the unknown probability distributions f0 and

f1, i.e., a nonparametric Bayesian model. We use a PT prior and proceed with posterior

updating essentially as described in earlier chapters of this thesis. A minor complication

arises from the fact that sampling involves an additional level of mixture. Genes are not

known initially to be differentially or non-differentially expressed, leading to a sampling

model that is a mixture of f0 and f1. The deconvolution of this mixture is the formalization

of the scientific research question of identifying differentially expressed genes.

4.4.2 Background

The expression of thousands of genes are measured simultaneously using microarrays. This

technology has been recognized by biomedical scientists as a powerful tool for gene discovery,

expression profiling, as well as for the diagnosis and classification of cancers and other dis-

eases. Microarrays measure mRNA concentrations by labelling the sample with a dye and

then hybridizing them to spots on the array.

There are two main types of arrays: oligonucleotide arrays and cDNA arrays. In an

oligonucleotide array, 14 to 20 probe pairs are used to interrogate each gene, each probe
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pair has a Perfect Match (PM) and Mismatch (MM) signal, and the average of the PM-

MM differences for all probe pairs in a probe set (called ”average difference”) is used as an

expression index for the target gene.

In a cDNA microarray, the kind featured in this thesis, one base sequence matching all or

part of a gene is printed on a glass slide. Two or more different fluorescent dyes label different

samples. For example, the experimental sample is labelled with red dye and hybridized on

the slide. A reference sample is labelled with green dye and hybridized on the same slide.

By doing so, one can monitor multiple samples on the same array simultaneously. The log

(red/green) intensity of RNA hybridization at each spot is measured.

In this section, we use the term ”expression level” to refer to a summary measure of

relative red to green channel intensities in a cDNA array or a summary difference of the PM

and MM scores from an oligonucleotide array. See Wu (2001) for an introductory review of

microarray technologies.

4.4.3 Methods

A common task in analyzing microarray data is to determine which genes are differentially

expressed across two kinds of tissue samples or in general, samples obtained under any

two experimental conditions. Specifically, it is of interest to detect genes with differential

expression under the two conditions. Each gene has replicated measurements of expression

levels under each condition.

A straightforward method is to use a traditional two-sample t-test for each gene (Devore

and Peck 1997). Newton et al. (2001) proposed a parametric Bayesian modeling approach.

Efron et al. (2001) discussed an empirical Bayes approach through the use of density

estimates to approximate the distribution of expression levels for differentially and non-

differentially expressed genes. They computed the posterior probability of differential

expression by substituting estimates of relevant parameters and (ratios of) densities based
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on the empirical distribution of expression levels. Pan et al. (2001a) suggested a mixture

model approach, which follows the basic idea of Efron et al. (2001). They estimated the

distribution of a t-type test statistic and its hull statistic using finite normal mixture

models. A likelihood test is used to compare two distributions in order to identify genes

with significantly changed expression.

Newton et al. (2004) proposed a semiparametric hierarchical mixture model and obtained

gene-specific posterior probabilities of differential expression. Do et al. (2004) assume that

the observed expression scores are generated from a mixture of two distributions that can

be interpreted as distributions for affected and unaffected genes, respectively. They choose

Dirichlet process models to represent the probability model for the unknown distributions.

Analogous to the above methods, we assume the unknown distributions of gene expres-

sion for differential and non-differential genes to have Polya tree priors. The marginal joint

density of gene expression can be evaluated in a close form after integrating out the unknown

distributions.

4.4.4 A mixture model for gene expression data

Suppose that Zi is the difference score for gene i, summarizing the difference across samples

observed under the biological conditions. See, e.g. Efron et al. (2001) for a possible difference

of scores. In this example we will use 2-sample t-test statistics, but we do not make any

assumption on this statistics. Gene i can be either differentially or non-differentially expressed

under the condition of interest. We write the distribution of difference score Zi as a mixture

of two densities, f0 and f1, representing the density under differential and non-differential

conditions, respectively. Thus, for Z ∈ {Zi, i = 1, · · · , n}, we assume Z ∼ f(Z) with

f(Z) = p0f0(Z) + (1− p0)f1(Z) (4.1)

where p0 is the probability that a gene is not differential in both experimental conditions.
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By computing difference scores based on samples under the same biological condition,

one could have additional samples of scores that are known to arise from f0 by construction.

This is essential to estimate f0 with less uncertainty in the final inference.

Using Bayes’ rule for given (f0, f1, p0), the probability of differential expression

P1(Z | f0, f1, p0) = (1− p0)f1(Z)/f(Z) (4.2)

Equivalently, (4.1) can also written as

Zi | ri ∼




f0(Zi) if ri = 0

f1(Zi) if ri = 1

Pr(ri = 0) = p0, P r(ri = 1) = 1− p0, i = 1, · · · , n

(4.3)

In the context of the hierarchical model (4.3) we can now recognize (4.2) as

P1(Z | f0, f1, p0) = Pr(ri = 1 | Z, f0, f1, p0) (4.4)

Our goal here is to estimate the probability of differential expression, that is, Pr(ri = 1 | Z).

This is the marginal of (4.4), marginalizing with respect to f0, f1 and p0.

Efron et al. (2001) propose to estimate p0 by an empirical Bayes approach, substituting

point estimates for f0/f1 and p0. To derive a point estimate for p0 they observe that nonneg-

ativity of P1 implies p0 ≤ minZf(Z)/f0(Z), and propose to substitute the bound as point

estimate p̂0 ≡ minZf(Z)/f0(Z).

Do et al.(2004) proposed a fully model-based Bayesian approach that introduces a proba-

bility model on (f0, f1, p0). They use Dirichlet process mixture models to define prior models

for f0 and f1, that is

fj(z) =

∫
N(z; ν, σ2)dGj(ν) and Gj ∼ DP (M, G?

j), for j = 0, 1. (4.5)

For the base measure G?
j they use

G?
0 = N(b, σ2

0) G?
1 = 0.5N(−b1, σ

2
1) + 0.5N(b1, σ

2
1). (4.6)
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In words, the base measure for the non-differential gene scores is unimodal and centered at 0.

The base measure for the differential gene scores is symmetric bimodal, reflecting the prior

belief that differential expression (on the log scale) is equally likely on either direction.

Do et al. (2004)’s approach replaced the empirical estimates for f0 and f1 proposed by

Efron et al. (2001) by posterior averages with respect to the posterior p(fj|Z), j = 0, 1. Using

the Dirichlet process mixture model in (4.5) and (4.6), a latent variable νi was introduced to

break the DP mixtures assumed for f0 and f1. A stochastic size mixture of location problem

arises in MCMC simulation. Another shortcoming of DP mixture is the computation intensive

nature.

In this section, we follow Do et al. (2004)’s framework, but we will propose Polya tree

priors for the unknown distributions f0 and f1. The posterior probability Pr(ri = 1 | Z) can

easily be evaluated in closed form as discussed in Chapter 3.

Suppose that f0 ∼ PT (Π0,A) and f1 ∼ PT (Π1,A). Since the centering distribution

plays a similar role as the base measure in Dirichlet process, for the construction of par-

tition sequences for both Polya trees, we choose F0 = N(0, σ2
0) and F1 = 0.5N(−b1, σ

2
1) +

0.5N(b1, σ
2
1) to be the centering distributions for the non-differential gene expressions and

the differential gene expressions, respectively. The corresponding probability density func-

tions are g0 and g1, respectively. For the choice of Polya tree parameters αε1...εm in A, we

take αε1...εm = cm2 at the mth level with a fix value of c, e.g. c = 0.1. We assume a Beta

prior p0 ∼ Beta(a, b).

4.4.5 Posterior inference

Posterior simulation in the proposed model is carried out using MCMC simulation (Tierney

1994). The implementation is greatly simplified after marginalizing out the the unknown

random measures f0 and f1. The algorithm is discussed as follows.
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Given ri, the posterior distribution of p0 is a Beta distribution with parameters a + n0

and b + n− n0, where n0 =
∑n

i=1 I(ri = 0), the number of genes which are not differential.

For i = 1, · · · , n, we find (see below for the definition of ZΓ0,i
):

p(ri = 0 | r−i, p0, Z) ∝ p(ri = 0 | p0)p(Zi | ri = 0, r−i, p0, Z−i)

∝ p0p(Zi | ri = 0, ZΓ0,i
) = πi0

Similarly, we have

p(ri = 1 | r−i, p0, Z) ∝ (1− p0)p(Zi | ri = 1, ZΓ1,i
) = πi1

where ZΓ0,i
= {Zj : j 6= i, rj = 0}, ZΓ1,i

= {Zj : j 6= i, rj = 1}, and r−i is the vector

(r1, · · · , rn) except the ith element. According to (3.1), we have

p(Zi | ri = k, ZΓk,i
) = gk(Zi) lim

M→∞
2M−1

M∏
m=1

cm2 + nε(m,Zi)(ZΓk,i
)

2cm2 + nε(m−1,Zi)(ZΓk,i
)

(4.7)

for k = 0, 1, where nε(m,Zi)(ZΓk,i
) is the number of Zj’s in ZΓk,i

falling into the same subin-

terval with Zi at the mth level. As discussed in Chapter 3, the right side of (4.7) can be

approximated by the limit of product.

Therefore, the posterior probability conditional on the currently imputed p0 that gene i

is differential given data and other parameters is

p(ri = 1 | r−i, p0, Z) =
πi1

πi0 + πi1

(4.8)

Averaging (4.8) across MCMC iterations we estimate the desired posterior probability of

differentially expressed genes.

4.4.6 Simulation study and application

In this section, we first perform a small simulation study to demonstrate the proposed

method. Results are compared with the know true parameter values in the simulation. Then

we analyze the colon cancer data set reported in Alon et al (1999).
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Simulation study

We simulate a sample of n = 400 gene difference scores Zi, i = 1, · · · , n from f = p0f0 +

(1− p0)f1 with f0 = N(0, 1) and f1 = 0.5N(−2, 1) + 0.5N(2, 1) and p0 = 0.5. Following the

above discussion, we assume f0 and f1 are unknown distributions and have PT priors. For

the choices of PT parameters, we choose the centering distributions as F0 = N(0, 1) and

F1 = 0.5N(−2, 1) + 0.5N(2, 1), and parameters αε1...εm = cm2 with c = 0.1.

Figure 4.12 shows the marginal posterior probability P̄1(Zi) = E(Pr(ri = 1 | Z, f0, f1, p0) |
Z) = Pr(ri = 1 | Z) for gene i, i = 1, · · · , n. The structure of the proposed model implies

that this marginal posterior probability of differential expression depends on the gene only

through the observed score Zi. It is meaningful to consider the marginal posterior probability

as a function of Z.

Figure 4.13 shows the marginal posterior distribution p(p0 | Z). It is centered around 0.5,

the true p0.

Similar to Do et al. (2004), we can define the false discover rate (FDR) as

FDR =
(1− ri)δi∑

δi

, (4.9)

the fraction of false rejections, relative to the total number of rejections. Here δi is the indi-

cator for rejecting the ith comparison, i.e., concluding that gene i is differentially expressed.

The posterior expectation of FDR is easily computed as FDR = E(FDR | Z) = {∑(1 −
P̄1(Zi))δi}/

∑
(δi). If P̄1(Zi) > γ?, we may classify gene i as differentially expressed. The

threshold γ? could then be selected to ensure that FDR ≤ α̃ for some prespecified α̃.

Gene expression profile of colon cancer

Gene expression in 40 tumor and 22 normal colon tissue samples was analyzed with an

Affymetrix oligonucleotide array on over 6500 human genes in Alon et al. (1999). These

samples were obtained from 40 patients while 20 patients provided both tumor and normal
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tissue samples. Alon et al. (1999) focus on 2000 genes with highest minimal intensity across

the samples. These 2000 genes comprise our data set. The microarray data set thus has

n = 2000 rows and 62 columns. The data set was rearranged so that the tumors are labelled

1 to 40 and the normals 41 to 62. The first 11 columns report tumor samples collected under

protocol P1 (using a poly detector), columns 12-40 are from tumor samples collected under

protocol P2 (using total extraction of RNA), columns 41-51 are normal samples collected

under P1 from the same patients as columns 1-11, and columns 52-62 are normal samples

collected under protocol P2 from the same patients as columns 12-22.

Before we considered the posterior differential probability for each gene, we processed the

data by taking the natural logarithm of each expression level. We then normalized to data

to have mean zero and unit standard deviation. After normalization, we construct the gene

difference score following the same procedure as Efron et al. (2001) and Do et al.(2004). The

procedure is described as follows.

From the data matrix we construct a difference matrix, D, containing all the possible

differences tumor and normal samples with the same protocol (P1 or P2) with the i-th row

of D defined as the vector of all differences for the i-th gene. Meanwhile, in constructing

D, we exclude differences of paired columns corresponding to the same patient. Including

such differences would require the introduction of patient specific random effects to model

the difference in variation between differences of paired and independent columns, respec-

tively. Thus D includes possible effects due to differential expression in tumor versus normal

samples. Specifically, it includes residual error plus a tumor versus normal effect for differen-

tially expressed genes. The goal of the study is to identify those genes that are differentially

expressed across tumor and normal samples.

Alternatively, one can use any other one-dimensional summary statistics of group differ-

ence for each gene. In our inference simulation, we use a traditional two-sample t-statistic.

84



However, it is important to note that we use t-statistics only as a convenience summary for

each gene. We do not make any distribution assumptions on it.

In this example, we construct the difference score Zi for gene i as follows:

Zi =
x̄t,i − x̄n,i

Si

, i = 1, · · · , 2000

where x̄t,i and x̄n,i are the average levels of expression for gene i in tumor and normal samples,

respectively. Si is the standard deviation of repeated expression measurements:

Si =

√∑40
i=1(xt,i − x̄t,i)

40
+

∑22
j=1(xn,j − x̄n,j)

22

Figure 4.14 shows the marginal posterior distribution p(p0 | Z). The posterior probabili-

ties of differential expression P1(Zi) for the 2000 genes ranges from 0.12 to 1.0, corresponding

to |Z| between 0.001 and 7.915, respectively. The first quartile, median, and the third quartile

of the reported P1(Zi) are 0.313, 0.511, and 0.842. Figure 4.15 shows the posterior probability

P1(Z) for each Z.

Our approach provides a relatively easy and straightforward way to identify differentially

expressed genes across the two conditions based on the posterior probabilities. In particular,

there are 192 genes with posterior probabilities greater than 0.99. One hundred twenty-one

genes have posterior probability greater than 0.998, where 119 genes have also been picked

out by Significance Analysis of Microarrays (SAM) method. The smooth muscle gene cluster

(J02854, T60155, M63391, D31885, X74295, X12369) has posterior probabilities of at least

0.998 for each individual gene. Alon et al identified 29 ribosomal protein genes (Table 1 in

Alon et al. 1999) that appear to be related to cellular metabolism such as an ATP-synthase

component and an elongation factor. Results using our approach show that only 10 of them

have estimated posterior probabilities greater than 0.95.
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4.4.7 Conclusion

We have developed a probability model for inference about differentially expressed genes in

a microarray group comparison experiment. The advantages of the proposed nonparametric

Bayesian approach is the introduction of the unknown distributions f0 and f1 of gene dif-

ference scores as random quantities. The implication of this choice is the opportunity to

formally introduce prior information about the nature of f0 and f1. In particular, the intro-

duced priors on f0 and f1 formalize the notion that non-differential expression should lead

to difference scores centered around zero, and that differential expression should lead to dif-

ference scores that are either over-expressed, to the right of zero, or under-expressed to the

left of zero. Posterior inference provides a full probabilistic description of all uncertainties.

This makes it straightforward to report posterior probabilities of false positives and posterior

expected false discovery ratios, allowing to calibrate decisions by the popular false discovery

rate criterion. Implementation of posterior simulation is shown to be straightforward using

the algorithms introduced in earlier sections.

The main limitation of the proposed approach is related to the assumed independence

of the gene difference scores. This is a common technical convenience assumption that sim-

plifies true prior information. Investigators are keenly aware of possible dependencies of

gene expression in well established or hypothesized regulatory networks. Such prior informa-

tion about dependence does not extend over all several thousand genes on the microarray,

but is typically available for genes of specific interest. Another limitation in the proposed

approach is the lack of decision theoretic explicit acknowledgement of the experimental goals.

Microarray group comparison experiments might be carried out as a screening test to identify

as many as possible promising candidates for further exploration, to identify a preferably

small set of possible biomarkers, to provide a pilot data set to design a larger future experi-

ment, and many other reasons. Depending on the goals different summaries of the posterior

probabilities are appropriate. The use of false discovery ratios as defined in equation (4.9)
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can be informally motivated by a 0-1 hypothesis testing loss. This is not always appropriate.

Finally, an important limitation is the constraint to two groups, i.e., two biologic conditions

of interest. Most investigators are interested in more than two biologic conditions. Typ-

ical examples are normal tissue versus different types of tumors, taken from different sites,

different microenvironment, patients with different initial performance status, etc.
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Figure 4.9: Histogram and Q-Q plot of mean biopsy effects under the parametric model.
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Figure 4.12: Posterior mean P1(Zi) = E(Pr(ri = 1 | Z, f0, f1, p0) | Z).
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Figure 4.15: Posterior mean P1(Zi) = E(Pr(ri = 1 | Z, f0, f1, p0) | Z) (Alon colon cancer
data).
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Chapter 5

Summary and Extensions

5.1 Summary

The goal of this research is to explore nonparametric Bayesian modelling with Polya trees in

biomedical data. In this dissertation, we have proposed Bayesian nonparametric modelling

for a class of important inference problems arising in biomedical data analysis. Proposed

techniques included specifying a nonparametric prior for the distributions of random effects,

residuals, and the unknown sampling distribution of gene expression. A Dirichlet process

prior or Polya tree prior is specified as a nonparametric prior. We provide appropriate pos-

terior simulation schemes.

The first important contribution of this dissertation is the development of a model and

corresponding inference for repeated fractional data model. We introduced two models. First

we use a fully parametric model. Then we generalize the model to semi-parametric model

with a Dirichlet process prior for the random effect distribution.

The second important contribution is the use of Polya tree priors for the random effect

distribution in the fractional data model. In the fractional data model, Polya tree priors

avoid assuming a specific distribution for random effects. This allows us to estimate the

distribution of random effects which provides insight into particular features of interest. For

example, in the fractional data we obtained an estimate for the distribution of subject to

subject variability.

96



The dissertation explores Polya tree as a prior for the residual distribution in linear

models. It relaxes the normal assumption on residuals, allowing for features such as multi-

modality and skewness. A simulation study shows that the misspecification of the residual

distribution can miss important details of the nature of data. It may lead to incorrect pre-

dictions.

The dissertation develops Polya tree models as priors for the unknown sampling distri-

butions in microarray data. It provides a relatively easy and straightforward way to identify

the differentially expressed genes across different biological conditions based on posterior

probabilities.

The dissertation provides extensive discussion of computation issues for the different

data settings. We provide a general guideline for the selection of Polya tree parameters. We

discuss two posterior simulation schemes, posterior simulation for finite Polya trees and for

Polya tree predictive densities. We developed new algorithms for posterior simulations with

analytically marginalized random probability measure and for the evaluation of the posterior

mean for the random distribution.

Naturally, many important inference problems and data formats remain that have not

been addressed in this thesis. In particular, in this dissertation we did not consider Polya

tree distribution in survival analysis, which is very common in medical studies. We did not

consider Polya tree as a prior for dependent random distributions in meta analysis.

5.2 Future work

Application on survival data

Survival data is a very common format in medical research. Walker and Mallick (1999)

described Polya tree as prior for the error distribution in an accelerated failure time. A finite

Polya tree posterior simulation was used to obtain a predictive distribution for a future

observation. Hanson and Johnson (2002) use a mixture of Polya trees to model regression
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error in an accelerated failure time. We did not touch this field in this dissertation. However,

we should implement the discussed methods to this common format of biostatistical data.

Microarray data

In section 4.3, we consider Polya tree as priors for the unknown distributions of gene expres-

sion under two conditions. In some microarray experiments, it is also of interest to detect

whether genes are differentially expressed under more than two conditions. We will extend

the proposed method to gene expressions measured under more than two conditions. Further-

more, we will generalize the method to the case that the number of conditions is unknown.

The goal is to identify differentially expressed genes. The framework can be described as

follows.

Suppose there are K conditions of interest, and there may be replicate measurements in

each condition. We assume that some preprocessing technique has been used to adequately

normalize the data so that the measurements can be viewed as approximations of relative

gene expression in the samples. Let us initially consider three conditions (K = 3), with

data xg = (xg,1, · · · , xg,n1) from the n1 replicate measurements in the first condition (C1),

yg = (yg,1, · · · , yg,n2) from the n2 replicate measurements in the second condition (C2), and

zg = (zg,1, · · · , zg,n3) from the n3 replicate measurements in the third condition (C3).

Kendziorski et al (2002) proposed a hierarchical mixture model to account for repli-

cate expression in multiple conditions. They derive the posterior probability of differential

expression under two specific parametric formulations: a model based on Gamma distributed

measurements and one based on log-normally distributed measurements. The method pro-

vides a way to infer patterns of differential expression among two or more conditions, but it

relies on parametric model assumptions and the implementation of numerical optimization

methods. In practice, the distribution of gene expression is usually unknown. A nonpara-

metric Bayesian approach can be easily implemented in this setting.

98



Given three conditions, there includes 5 possible patterns. That is, equivalent expression

across the three conditions, altered expression in just one condition, and distinct expression

in each condition. Thus the marginal distribution od the data is

p0f0(xg, yg, zg) + p1f1(xg, yg, zg) + p2f2(xg, yg, zg) + p3f3(xg, yg, zg) + p4f4(xg, yg, zg)

where f0 is the joint probability density (pdf) for equivalent expression across the three

conditions, f1, f2, f3 are the joint probability density for altered expression in the first, second,

or third condition respectively, and f4 is the joint pdf for genes distinctly expressed in each

condition. pk is the mixing proportion. By Bayes rule, the posterior probability of expression

pattern k may be computed:

P (k | xg, yg, zg) ∝ pkfk(xg, yg, zg)

To complete the model specification, we use Polya tree model to define prior models for

fk, that is, fk ∼ PT (Π,A). We assume a Dirichlet prior (p0, · · · , p4) ∼ Dir(α0, · · · , α4).

Let dg denote the data vector for gene g, that is, dg = (xg, yg, zg) = (dg,1, · · · , dg,N) where

N = n1 + n2 + n3. Then the joint marginal density for the equivalent expression is

f0(dg) = g0(d1)
N∏

i=1

f(di | d1, · · · , di−1)

where g0 is the density of the centering distribution and the predictive density f(di |
d1, · · · , di−1) can be evaluated by equation (3.7)

Additional hierarchical level in repeated measurement model

In the fractional data discussed in the dissertation, the fractional response outcome was

measured at two time points. It also can be the case that the fractional measurements will be

obtained from the same biopsy or sample at more than two time points, or the measurement

will be made at several time points per cycle for multiple cycles for each patient. The proposed
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model will be generalized to incorporate the additional random effects, such as nested cycle

effect.

In the immunobiology study, it is very important to understand the mechanism of direc-

tion action of immunobiologic therapies on the tumor or indirection modulation of the

immune response. The proportions of specific lysis in blood samples are measured through

flow cytometry. The proportions take values in a range between 0 and 1 including 0. The

proposed model can also be applied to this type of data.
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Appendix

APPENDIX

Resampling τ

From (3) we find

zi − xiβ − Uiθi︸ ︷︷ ︸
z?
i

= ei

Then

z?
i ∼ N(0, σ2Ini

)

independently across i. Together with (4),

P (τ | · · · ) = Gamma(a, b)

a =
γ0 +

∑n
i=1 ni

2
(A.1)

b =
λ0 +

∑n
i=1 z?′

i z?
i

2

Resampling θi, i = 1, · · · , n

From (3) we find

zi − xiβ︸ ︷︷ ︸
z?
i

= Uiθi + ei

Then

z?
i ∼ N(Uiθi, σ

2Ini
).

Together with (3),

P (θi| · · · ) = N(m, v)

v = (Σθ + τU ′
iUi)

−1 (A.2)

m = vτU ′
iz

?
i
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