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Abstract

Because treatments can be compared on the same subject and fewer subjects are
needed to obtain the same number of observations as in a parallel trial, crossover
designs have been applied extensively in various fields. With the development and
application of crossover designs, researchers realized that one serious potential
problem involved in their use is the presence of carryover effects.

In this dissertation, in order to capture the variabilities due to different direct and
carryover treatments, we propose a model that includes interactions of subject by
treatment and subject by carryover effects. We assume subject effects to be random,
and therefore take these interaction terms to be random too. We study the identifia-
bility properties of the corresponding variance components and the conditions under
which the parameters of the model are identifiable. The REML estimation method
for those variance components and other model parameters is also considered. Some
special cases and practical applications of this model are studied as well.

A second objective of this dissertation is to investigate appropriate ways to
handle baseline measurements in crossover studies in different situations. Four dif-
ferent methods are considered to incorporate the baseline measurements in the 2×2
crossover design for both single measurements and repeated measurements. Analyt-
ical expressions of variances of the estimators of the treatment contrast from those
methods are derived and compared under different scenarios. Simulation studies are
conducted to evaluate the performance of each method when the variance compo-
nents are unknown. For the case of repeated measurements, graphical methods are
discussed to study the change in treatment effect over time; different types of base-
lines and different assumptions for the random error terms are also considered. The
methods are applied to real data analysis. Designs with more than two treatments
are discussed briefly.

Index words: Crossover design; carryover effect; identifiability; REML
estimate; baseline measurements; single measurements;
repeated measurements.
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Chapter 1

Introduction

A crossover design, also called change-over design, is a repeated measurements design

such that each subject receives different or identical treatments during different time

periods (Hedayat and Afsarinejad, 1975; Cheng and Wu, 1980; Bishop and Jones,

1984; Matthews, 1988).

Because treatments can be compared on the same subject and fewer subjects are

required to obtain the same number of observations as in a parallel trial (Grieve,

1985; Stufken, 1996), crossover designs have been applied extensively in various

fields, such as animal husbandry, food science, biological research, sensory testing,

marketing, psychological experiments, social engineering, educational studies as well

as medical sciences. Among these, the most prevalent use is no doubt in pharma-

ceutical studies and clinical trials in medical research (Brown, 1980), especially in

small clinical trials (Matthews, 1994).

With the development and application of crossover designs, researchers realized

that one serious potential problem involved in their use is the presence of carryover

effects, which are the lingering effects of treatments given in one of the previous

periods. Many different models have been introduced to incorporate these undesired

effects.

The simplest model with carryover effects is the traditional model (Cheng and

Wu, 1980; Hedayat and Afsarinejad, 1978), which assumes, starting from the second

1



2

period, that a carryover effect from the treatment in the previous period (a first-

order carryover effect) always exists, and that it is additive and constant for that

treatment (Jones and Kenward, 2003).

The validity of this assumption has been questioned by many authors, for

example, Fleiss (1989) and Senn (2002). Perhaps in reaction to these criticisms,

Afsarinejad and Hedayat (2002) introduced self and simple mixed carryover effects,

allowing for two different carryover effects from each treatment depending on

whether the treatment is followed by itself or by another treatment. Bose and

Mukherjee (2000) studied the model with higher-order carryover effects and all

interactions between direct treatments and carryover treatments. Kempton, Ferris

and David (2001) considered a model with carryover effects that are proportional

to the direct treatment effects.

All of those papers emphasized theoretical derivations or identification and con-

struction of optimal designs under the model being focused on. But there is little

evidence based on data to support any of these models. In medical studies, some

treatments have obvious effects on some patients, but less on others; moreover, the

lingering effects also affect different patients differently. We would like to have a

model that captures this variability.

Jones, Kunert and Wynn (1992) tried a model with random carryover effects,

which were assumed to be randomly distributed with mean 0 and variance σ2
ε . How-

ever, in practice, since there is no infinite population of carryover effects from which

one is sampling, but just one carryover effect for each treatment in the design, this

formulation is rather questionable.

Instead, we propose a model that includes subject by treatment and subject by

carryover interactions. We assume subject effects to be random, and therefore take

these interaction terms to be random too.
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Thus the model has three random terms in addition to the random error. First,

the identifiability properties of these variance components are investigated, and the

conditions under which the parameters of the model are identifiable are also deter-

mined. Next, some special cases and practical applications of this model are studied

as well. Finally, the estimation methods for those variance components and other

model parameters are considered. Thus, studying the new model which incorporates

the subject by carryover interaction is one of the objectives of this dissertation.

A second objective of this dissertation is to investigate appropriate ways to handle

baseline measurements in crossover studies in different situations.

By far the most prevalent crossover design in clinical trials is the 2 × 2 design (a

definition will be given in Chapter 2). However, it is also regarded by many statis-

ticians as particularly problematic because of the carryover effects and aliasing of

several effects (Senn, 2002; Jones and Kenward, 2003). Using baseline measurements

at the beginning of each period is introduced as a technique to rescue the AB/BA

design from its deficiencies and to provide additional information to eliminate nui-

sance effects from the treatment effects (Patel, 1983; Kenward and Jones, 1987).

But, contrary to some authors’ intuition and initial purposes, using baseline

measurements before each period to eliminate the carryover effects receives serious

criticism in many papers (Fleiss, Wallenstein and Rosenfeld, 1985; Willan and Pater,

1986; Fleiss,1989). Of course, the conclusions depend on different models, methods

and assumptions considered and all of those papers considered carryover effects on

the wash-out period. In a strict sense, the measurements from the wash-out period

are not true baselines, if they were affected by the treatments from the previous

period. Therefore, some authors, for example, Senn (2002), considered measurements

obtained prior to the second treatment period as baselines only when wash-out

periods are long enough to eliminate any carryover effects, and study how to use the

information provided by the baseline measurements effectively.
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In clinical trials, the 2 × 2 design is often used with a long enough wash-out

period to ensure no carryover effects. If baseline measurements are made, they may be

obtained at one time point or multiple time points (single measurements or repeated

measurements) before each period, which leads to the question of how to use this

information effectively. Four different methods are considered to incorporate the

baseline measurements for both single measurements and repeated measurements.

Analytical expressions of variances of the estimators of the treatment contrast from

those methods are derived and compared under different scenarios. For the case of

repeated measurements, different types of baselines and different assumptions for

the random error terms are considered.

Thus, this dissertation is organized as follows. Chapter 2 gives a literature review

of crossover designs: the traditional model and its limitations are presented; defini-

tions, terminology and special design issues for crossover designs are also discussed.

In particular, various models that incorporate carryover effects are investigated in

detail; different methods to handle baseline measurements in crossover studies are

reviewed. In Chapter 3, we propose a new model for carryover effects; the identifi-

ability problem for its variance components is investigated, flexibility of the model

is pointed out, and parameter estimation of the model is considered. A simulation

study is conducted to estimate the parameters for particular designs and to check

whether the new model performs better. At the end of Chapter 3, a real data example

is used to illustrate the results. We study the use of baseline measurements for the

2× 2 crossover design for both single measurements and repeated measurements in

Chapter 4 and Chapter 5, respectively. Potential methods are proposed, variances

for estimators of a treatment contrast for each method are derived and compared. A

simulation study is conducted to evaluate the performance of each method, and real

data sets are used to illustrate our results. In addition, Chapter 5 gives a graphical

method to study the change in treatment effect over time if the treatment by time
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interaction is significant. We present studies for selected designs with more than two

treatments in Chapter 6.

1.1 References

1. Afsarinejad, K. and Hedayat, A. S. (2002). Repeated measurements designs

for a model with self and simple mixed carryover effects. Journal of Statistical

Planning and Inference 106, 449-459.

2. Bishop, S. H. and Jones, B. (1984). A review of higher order crossover designs.

Journal of Applied Statistics 11, 29-50.

3. Bose, M. and Mukherjee, B. (2000). Cross-over designs in the presence of higher

order carry-overs. Australian and New Zealand Journal of Statistics 42, 235-

244.

4. Brown, B. W. (1980). The crossover experiment for clinical trials. Biometrics

36, 69-79.

5. Cheng, C. S. and Wu, C. F. (1980) Balanced repeated measurements designs.

The Annals of Statistics 8, 1272-1283.

6. Fleiss, J. L. (1989) A critique of recent research on the two-treatment crossover

design. Controlled Clinical Trials 10, 237-243.

7. Fleiss, J. L, Wallenstein, S. and Rosenfeld, R. (1985) Adjusting for baseline

measurements in the two-period crossover study: a cautionary note. Controlled

Clinical Trials 6, 192-197.

8. Grieve, A. P. (1985). A bayesian analysis of the two-period crossover design in

clinical trials. Biometrics 41, 979-990.



6

9. Hedayat, A. and Afsarinejad, K. (1975). Repeated measurements designs, I.

In a survey of Statistical Design and Linear Models (J.N. Srivastava, Ed.)

229-242. North-Holland, Amsterdam.

10. Hedayat, A. and Afsarinejad, K. (1978). Repeated measurements designs, II.

The Annals of Statistics 6, 619-628.

11. Jones, B. and Kenward, M. G. (2003). Design and Analysis of Cross-Over

Trials. Second Edition, CRC press.

12. Jones, B., Kunert, J. and Wynn, H. P. (1992). Information matrices for mixed

effects models with applications to the optimality of repeated measurements

designs. Journal of Statistical Planning and Inference 33, 261-274.

13. Kempton, R. A., Ferris, S. J. and David, O. (2001) Optimal change-over

designs when carry-over effects are proportional to direct effects of treatments.

Biometrika 88, 391-399.

14. Kenward, M. G. and Jones, B. (1987) The analysis of data from 2 × 2 cross-

over trials with baseline measurements. Statistics in Medicine 6, 911-926.

15. Matthews, J. N. S. (1988). Recent developments in crossover designs. Interna-

tional Statistical Review 56, 117-127.

16. Matthews, J. N. S. (1994). Modeling and optimality in the design of crossover

studies for medical applications. Journal of Statistical Planning and Inference

42, 89-108.

17. Patel, H. I. (1983). The use of baseline measurements in the two-period cross-

over design. Communications in Statistics A12, 2693-2721.

18. Senn, S. (2002). Crossover Trials in Clinical Research. Second Edition, U.K.

Wiley.



7

19. Stufken, J. (1996). Optimal crossover designs. Handbook of Statistics. Vol.13,

Ghosh, S. and Rao, C. R. (Eds), 63-90. Amsterdam: North Holland.

20. Willan, A. R., and Pater, J. L. (1986). Using baseline measurements in the

two-period crossover clinical trial. Controlled Clinical Trials 7, 282-289.



Chapter 2

Literature Review

2.1 Introduction

As mentioned in Chapter 1, in a crossover design, subjects are exposed to a sequence

of different or identical treatments. This design is different from a parallel design

under which each subject receives only one treatment during the entire experiment

(Grieve, 1990; Vonesh and Chinchilli, 1997; Jones and Kenward, 2003).

The subjects in a crossover design could be patients in clinical trials, animals

in animal husbandry experiments, plots of land in agricultural science, and so on.

The order of treatments assigned to a subject in a crossover experiment is called a

treatment sequence, with the first treatment to be used in the first period, the second

treatment in the second period, and so on. Normally, the treatments are denoted by

capital Latin letters, such as A, B, C, ect.

Typically, the main purpose of an experiment that uses a crossover design is the

comparison of treatment effects.

The simplest and most popular design in the crossover family is for two treat-

ments in two periods, which is also called a 2 × 2 crossover design and is sometimes

denoted by AB/BA. In that design, subjects randomized to the AB sequence receive

treatment A in the first period and treatment B in the second period, whereas sub-

jects randomized to the BA sequence receive the treatments A and B in reverse

order. This design has been applied in clinical trials extensively (Grizzle, 1965; Hills

and Armitage, 1979; Brown, 1980).

8
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Crossover designs were first applied in agricultural science, and can be traced

back to 1853 when Laws and Liebig applied the crossover idea on nutrition of crop

plants (Jones and Kenward, 2003). Since then, crossover designs have been widely

used in all kinds of fields. Nowadays the most common application of crossover

designs is in pharmaceutical studies and clinical trials in medical research. Detailed

description, explanations, discussion and examples can be found in several books,

such as Ratkowsky et al. (1992), Senn (2002), Jones and Kenward (2003); for models

and analysis, the reader may refer to the papers by Grizzle (1965) and Brown (1980);

Grieve (1985, 1994, 1995) used Bayesian methods to study crossover designs in clin-

ical trials. Good review papers for crossover designs include those by Hedayat and

Afsarinejad (1975); Hedayat (1981); Bishop and Jones (1984); Matthew (1988, 1994);

Afsarinejad (1990); Stufken (1996); Jones and Deppe (2001).

A compelling reason for using crossover designs is that different treatments can be

compared on the same subject, which, in general, facilitates more precise comparisons

of the treatments. This property makes crossover designs especially important when

there is large variability between subjects (Kershner and Federer, 1981).

Secondly, fewer subjects might be required in a crossover design in order to obtain

the same level of statistical power, precision and efficiency as in a parallel design.

So crossover designs are appealing for practical reasons when subjects are scarce or

costly. For example, a crossover design could be a better choice in a clinical trial,

when it is difficult and expensive to recruit more patients.

Thirdly, if the intent is to find the effect of different sequences of treatment

applications as in drug, nutrition or learning experiments, or to discover whether or

not a trend can be seen by successive applications of several treatments on the same

subject, crossover design is a natural choice (Hedayat and Afsarinejad, 1978).

Although crossover designs possess attractive advantages, they also have some

potential shortcomings.
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First of all, the application of crossover designs in clinical trials has some lim-

itations: it can be applied only if the treatments do not cure a disease but merely

alleviate its condition (Vonesh and Chinchilli, 1997).

Secondly, crossover designs tend to take longer to complete compared to parallel

designs (Stufken, 1996). The longer the duration of the experiment, the larger the

chance of a subject dropping out, which complicates the analysis and adversely

affects the information obtained.

In addition, the most serious disadvantage of a crossover design is the possibility

that the effect of a treatment given in one period is still present in a subsequent

period. This effect is called a carryover effect or residual effect. For example, in the

2 × 2 design, the observation in the second period for a subject that receives the

AB sequence could be affected by treatment B assigned in the second period, but

also by a carryover effect from treatment A from the first period. Sufficiently long

wash-out periods between treatment periods may be used to eliminate the carryover

effects. But it is not always possible to know what “sufficiently long” means or to

have long enough wash-out periods due to practical or ethical reasons.

Assuming subject effects to be random effects, Grizzle (1965) suggested a pre-

liminary test for the equality of carryover effects in the 2 × 2 design, and to use

observations from both periods only when there is no evidence of significant carryover

effects. But Freeman (1989) found that the power for this preliminary test is low;

also we would only use observations from the first period and lose the advantage of

the crossover design when carryover effects exist. Under certain model assumptions,

Willan and Pater (1986) observed that baseline measurements at the beginning of

each period can be used to eliminate the carryover effects, but it can also raise other

concerns.

Many authors even advise that a crossover design should not be used if carryover

effects may be present (Brown, 1980; Fleiss, 1989; Senn, 2002). Therefore, inves-
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tigators should make every effort to avoid these undesirable effects in the design

stage, but it is not always possible. Furthermore, carryover effects should not pro-

hibit experimenters from ever using a crossover design since the design’s advantages

may outweigh its flaws. Therefore, it is necessary and meaningful to use appropriate

models to study the carryover effects, and also study optimal and efficient designs

for models including carryover effects.

Among the papers that try to identify optimal or efficient crossover designs in

the presence of carryover effects we mention Cheng and Wu (1980), Magda (1980),

Kunert (1984, 1987), Sen and Mukerjee (1987), Matthews (1988, 1994), Afsarinejad

(1989, 1990), Hedayat and Zhao (1990), Carrière and Reinsel (1993), Stufken (1996),

Kushner (1998), Bose and Mukerjee (2000, 2003), Kempton, Ferris and David (2001),

Kunert and Stufken (2002), Afsarinejad and Hedayat (2002), Hedayat and Stufken

(2003) and Hedayat, Stufken and Yang (2006).

On the other hand, baseline measurements before each period are often available

for a simple 2 × 2 crossover trial. Different methods are used to incorporate the

baseline measurements in the analysis, including methods discussed by Patel (1983),

Fleiss, Wallenstein and Rosenfeld (1985), Willan and Pater (1986), Kenward and

Jones (1987), Grieve (1994), Senn (2002), Jones and Kenward (2003).

In this chapter, we present different ideas in the literature for modeling carryover

effects and different ways to handle baseline measurements in crossover studies. We

also provide a discussion about the traditional model and definitions, terminology

and special design issues of crossover trials. The response variable here is assumed

to be continuous. For the binary response case, the reader may refer to Koch (1972);

Armitage and Hill (1982); Farewell (1985); Jones and Kenward (2003).
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2.2 Definitions, terminology and design issues in crossover designs

Similar to other areas, crossover studies have their own special definitions and ter-

minology. Following are some basic concepts and terminology.

The effect that a treatment has on the response of a subject during the period in

which it is applied is called the direct treatment effect, also referred to as the direct

effect or treatment effect. An effect of a treatment that lasts beyond the period

of application is called a carryover or residual effect (Kershner and Federer, 1981).

First-order carryover effect refers to the effect from the treatment in the previous

period, second-order carryover effect to the effect from the treatment given two

periods ago, and so on.

A wash-out period is an intermittent, inactive period between two active periods,

which may be used to eliminate or reduce carryover effects.

A crossover design is said to be uniform on subjects, if each treatment appears

the same number of times for any subject; and it is said to be uniform on periods

if each treatment is assigned to the same number of subjects within each period.

If a crossover design is uniform on both subjects and periods then it is said to be

uniform.

A crossover design is said to be balanced with respect to first-order carryover

effects (or balanced for short), if each treatment immediately precedes every other

treatment the same number of times, and no treatment is immediately preceded

by itself. A design is said to be strongly balanced with respect to first-order carry-

over effects (or just strongly balanced) if each treatment immediately precedes every

treatment the same number of times, including itself. For a uniform balanced design

with an equal number of periods as treatments, a strongly balanced design can be

constructed by repeating the last period. For example, AB/BA is a uniform, bal-
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anced design, and ABB/BAA is the strongly balanced design obtained by repeating

the last period in the balanced design.

Optimality criteria used for crossover designs are usually a function of the infor-

mation matrix for the treatment effects or of the variance-covariance matrix V of

(t − 1) orthogonal and normalized contrasts between the t treatments (Jones and

Kenward, 2003). A small value of this function of V is an indicator of a good design.

Some of the functions commonly used include:

D-optimality : A D-optimal design minimizes the determinant of V;

A-optimality : An A-optimal design minimizes the average variance of the best

linear unbiased estimator of all pairwise treatment comparisons;

E-optimality : An E-optimal design minimizes the maximum among the

variances of the best linear unbiased estimators for all nomalized

treatment contrasts.

If we use Cd and C̃d to denote the information matrices for the direct and car-

ryover effects when a design d is used, then d is called Φ-optimal for direct or

carryover effects if it minimizes Φ(Cd) or Φ(C̃d) respectively, where Φ is a function:

βt,0 → (−∞,∞), and βt,0 is the collection of t × t nonnegative definite matrices

with zero row and column sums (Cheng and Wu, 1980).

Kiefer (1975) introduced the concept of universal optimality, which is an opti-

mality criterion that includes many other criteria as special cases. He also provided

sufficient conditions for a design d to be universally optimal. It suffices that d max-

imizes trace (Cd) (trace (C̃d)) in addition to Cd ( C̃d) being completely symmetric,

where a completely symmetric matrix is a matrix for which all the diagonal elements

are equal and all off diagonal elements are equal.

By the definition of universal optimality, it can be shown that a universally

optimal design is also D-, A-, and E-optimal.
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2.3 Traditional model and notation

Let the collection of all crossover designs, which are based on t treatments, n subjects

and p periods, be denoted by Ωt,n,p. If d is a design in Ωt,n,p, let d(i, j) denote the

treatment assigned by d to the jth subject in the ith period.

For the traditional model for crossover designs, it is assumed that the np obser-

vations from p periods and n subjects results from a continues random variable Yij,

which yields observed values yij for the jth subject in the ith period; furthermore, the

data are assumed to be uncorrelated with common variance σ2
ε . The model has been

introduced many years ago, the idea underlying this model was used by Cochran,

Autrey and Cannon (1941) to analyze the data from a crossover trial of different

feeds for dairy cattle, and the model can be written as

Yij = µ + αi + βj + τd(i,j) + γd(i−1,j) + εij, (2.1)

i = 1, . . . , p , j = 1, . . . , n, γd(0,j) ≡ 0 ∀j.

Here µ is an overall mean, αi is an effect due to the ith period, βj is an effect due

to the jth subject, τd(i,j) is a treatment effect due to treatment d(i, j), γd(i−1,j) is a

first-order carryover effect due to treatment d(i− 1, j), and the εij are random error

terms, which are assumed to be i.i.d.N(0, σ2
ε ).

Let 1a and 0a indicate a × 1 vectors of 1’s and 0’s respectively, and let Ia indicate

the a × a identity matrix. We write Model 2.1 in matrix notation as:

Y = µ1pn + X1α + X2β + Xd3τ + Xd4γ + ε.

Here Y = (Y11, Y21, ..., Ypn)′, α = (α1, ..., αp)
′, β = (β1, ..., βn)′, τ = (τ1, ..., τt)

′,

γ = (γ1, ..., γt)
′, ε = (ε11, ε21, ..., εpn)′, the matrices X1(pn × p) and X2(pn × n) are

given by
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X1 =




Ip

...

Ip




= 1n ⊗ Ip, X2 =




1p 0p . . . 0p

0p 1p . . . 0p

...
...

. . .
...

0p 0p . . . 1p




= In ⊗ 1p

(⊗ denotes the Kronecker product) and the matrices Xd3 and Xd4, both pn× t, are

of the form

Xd3 =




Xd31

Xd32

...

Xd3n




, Xd4 =




Xd41

Xd42

...

Xd4n




,

where Xd3j is the p× t period-treatment incidence matrix for subject j under design

d with Xd4j = LXd3j, and L is the p× p matrix defined as

L =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0




.

Optimal designs for this traditional model have been studied extensively, such

as in Hedayat and Afsarinejad (1975, 1978), Cheng and Wu (1980), Kunert (1983,

1984), Stufken (1991, 1996), Kushner (1998) and Hedayat and Yang (2003, 2004).

However, the traditional model has been criticized for being too simplistic in

assumptions about the carryover effects and the random error terms. Moreover,

there are many other concerns about the model. For example, the model assumes the

subject effects are fixed, which is inappropriate if these subjects are to be thought of

as representatives of a larger population; the model does not include any interaction
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terms, whose effects may be significant in some situations. Furthermore, if baseline

measurements are available at the beginning of each period, which is not uncommon,

then we would like to use a model and analysis that facilitate the incorporation of

such additional information.

2.4 Different models to handle carryover effects and corre-

sponding optimal designs

For reasons mentioned in the last section, many different models have been pro-

posed to relax the implicit or explicit assumptions in the traditional model for dif-

ferent situations. For example, models with random subject effects have been studied

widely (Brown, 1980; Carrière and Reinsel, 1993; Jones and Kenward, 2003; Hedayat,

Stufken and Yang, 2006); models in which the errors are assumed to follow an autore-

gressive structure have been investigated extensively (Bora, 1984, 1985; Gill, 1992;

Bellavance and Stephens, 1996; Kunert and Martin, 2000) since first proposed by

Williams (1952).

Besides those alternatives, particular attention has been paid to the simplistic

assumptions about the carryover effects, with a number of different models with

alternative assumptions having been proposed in the literature. We will review those

models and corresponding optimal designs in the next subsections. However, for

detailed results on optimal designs, the reader should refer to the original papers.

The reader should be aware that no design is good for all models and for each

model there could be many good designs (Afsarinejad and Hedayat, 2002).

All of the terms in the models in the following subsections have the same inter-

pretation as they do in the traditional model, unless explicitly stated otherwise.
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2.4.1 Circular and non-circular models

If carryover effects exist in the initial period and these effects are thought to come

from the treatments in the last period, then a model that includes such kind of

carryover effects is called a circular model; models discussed so far are non-circular.

Carryover effects in the first period may sound unreasonable intuitively, but

Magda (1980) argued that there are practical situations where the carryover effects

in the first period come from the treatments in the last period. For example, in

agricultural experiments, if the same experiment is conducted repeatedly on the

same land, then the carryover effects in the first period can be assumed to come

from the treatments in the last period of the previous experiment (Hedayat, 1981).

Moreover, if no such effects exist in the first period, a pre-period (or period 0) could

be introduced in which treatments are given to the subjects only for the carryover

effects for the first period. If the treatments in this pre-period are taken to be the

same as in the last period, the carryover effects from the treatments in the last period

will be observed during the first period.

Magda (1980) studied circular models in the presence or absence of period and

subject effects, i.e. he considered the following four different models:

Yij = αi + βj + τd(i,j) + γd(i−1,j) + εij, (2.2)

Yij = αi + τd(i,j) + γd(i−1,j) + εij, (2.3)

Yij = βj + τd(i,j) + γd(i−1,j) + εij, (2.4)

Yij = τd(i,j) + γd(i−1,j) + εij, (2.5)

γd(0,j) = γd(p,j) ∀j.

Thus, instead of assuming γd(0,j) ≡ 0 in the traditional model, we now have

γd(0,j) = γd(p,j).
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Let d∗1, d∗2, d∗3 and d∗4 (δ∗1, δ∗2, δ∗3 and δ∗4) denote a circular strongly balanced (bal-

anced) uniform crossover design, a circular strongly balanced (balanced) crossover

design that is uniform on subjects, a circular strongly balanced (balanced) crossover

design that is uniform on periods, and a circular strongly balanced (balanced)

crossover design, respectively. Here circular strongly balanced and circular balanced

are defined similarly as strongly balanced and balanced in Section 2.2, except that a

treatment in the last period has now carryover effect on a measurement in the first

period. Magda (1980) proved that whenever designs d∗1, d∗2, d∗3 and d∗4 exist, they are

universally optimal for the estimation of direct as well as carryover effects over the

collection of designs with the same parameters under Models 2.2, 2.3, 2.4 and 2.5,

respectively; whenever designs δ∗1, δ∗2, δ∗3 and δ∗4 exist, they are universally optimal

for the estimation of direct as well as carryover effects over the collection of designs

with the same parameters and the restriction that no treatment precedes itself under

Models 2.2, 2.3, 2.4 and 2.5 respectively.

Hedayat (1981) restated Magda’s results in a review paper, and discussed the

practical applicability of the four models in detail. Afsarinejad (1989) provided con-

structions of the circular balanced uniform designs.

The circular models avoid lack of carryover effects in the first period by assuming

a seemingly artificial carryover effect incurred from the last period, which brought

some technical advantages in proving results. But introducing a “pre-period” before

the first treatment period just for the carryover effects and without collecting or

using the data generated seems wasteful in practice. “In the medical context, it

would not only appear bizarre to clinical colleagues but would be ethically dubious”

(Matthews, 1994).
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2.4.2 Models with interaction between the direct treatment and

the carryover treatment

In the traditional model, a carryover effect depends only on the treatment assigned

in the previous period, no matter which treatment provides the direct effect. Con-

ceivably, in some situations, there could be an interaction between the treatment

in current period and the treatment from the previous period (i.e., an interaction

between the direct treatment and the carryover treatment).

Sen and Mukerjee (1987) considered a model with interaction between direct and

carryover treatment, such that each treatment is allowed to have a different carryover

effect depending on the treatment in the next period. They looked at both circular

and non-circular models:

Yij = µ + αi + βj + ξd(i,j)d(i−1,j) + εij, (2.6)

Yij =





µ + αi + βj + τd(i,j) + εij, i = 1,

µ + αi + βj + ξd(i,j)d(i−1,j) + εij, i = 2, . . . , p,

(2.7)

where ξd(i,j)d(i−1,j) is the sum of a direct treatment effect, a carryover effect and an

interaction.

They investigated whether the optimality results under the traditional model

(Cheng and Wu, 1980) and the circular model (Magda, 1980) remain valid when the

interaction of the direct and carryover treatment is taken into account. They showed

that a strongly balanced uniform crossover design under the non-additive circular

model is still universally optimal over Ωt,n,p for the estimation of direct treatments

as well as for carryover effects. For the traditional model, this conclusion holds also

for the estimation of direct treatments, but for the estimation of carryover effects,

additional conditions on the design are needed. Furthermore, it is shown that the

optimality results for balanced uniform crossover designs are no longer valid under

this non-additive model.
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This model has however been criticized for containing too many parameters to

be practically useful, especially when the number of treatments is large.

2.4.3 Model with self and simple mixed carryover effects

Instead of allowing each treatment to have a different carryover effect depending

on the treatment in the next period, Afsarinejad and Hedayat (2002) allowed each

treatment to have two different types of carryover effects, the self and simple mixed

carryover effect. Here a self-carryover effect refers to a carryover effect that applies if

the treatment providing the direct effect is the same as that providing the carryover

effect, while a simple mixed carryover effect refers to a carryover effect that applies

if the two treatments are different.

The model used for the self and simple mixed carryover effects can be formulated

as

Yij =





αi + βj + τd(i,j) + χd(i−1,j) + εij, if d(i, j) = d(i− 1, j),

αi + βj + τd(i,j) + ρd(i−1,j) + εij, if d(i, j) 6= d(i− 1, j),

(2.8)

where χl and ρl are the self-carryover effect and simple mixed carryover effect of

treatment l, respectively.

As Afsarinejad and Hedayat (2002) pointed out, studying and estimating the

self and simple mixed carryover effects can be very important in many fields. For

example, it will be very helpful to know the impact of the simple mixed-carryover

effects to arrange the best crop rotation schedule in agricultural science, and it will

be very meaningful to know the self-carryover effect of the drug for a patient in a

single drug study in medical science.

Afsarinejad and Hedayat (2002) were the first to investigate this model for two-

period crossover designs with two or more treatments. By using a statistical tool

developed by Hedayat and Zhao (1990), they connected the problem of optimal two-

period crossover designs with optimal block designs. They showed that if a study is
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designed properly, then unbiased and efficient estimators of all contrasts in direct

treatment effects can be obtained if t ≥ 3. However, the contrasts in both the

direct treatment effects and the simple mixed carryover effects cannot be unbiasedly

estimated if t = 2. Furthermore, if all treatments happened at least once for subjects

with the same treatment in the two periods, then all contrasts in self-carryover effects

are estimable.

Kunert and Stufken (2002) studied the same model for designs with more than

two treatments, and they showed that this model leads for t > 3 to optimal designs

for direct treatment effects that have the attractive feature that they avoid pairs of

consecutive identical treatments.

So far the results we discussed for the self and simple mixed carryover effects are

for designs with more than two treatments. Results for two treatments are studied

by Kunert and Stufken (2007). They pointed out that the model with self and

simple mixed carryover effects for only two treatments is equivalent to the model

with interaction of the direct and carryover treatments. They identified the optimal

designs for the case of two treatments under this model. Meanwhile, they are very

strict about the model for the design with only two treatments and two periods,

since there is no unbiased estimator for the treatment contrast.

2.4.4 Model with carryover effects proportional to direct treat-

ment effects

During crossover experiments, it seems plausible that a treatment with a large direct

effect should generally have a larger carryover effect. Based on this phenomenon,

Patterson and Lucas (1962) considered a model where carryover effects are propor-

tional to the direct treatment effects. They provided a test for common values of the

proportionality parameter for all the treatments. Sen and Sinha (1986) applied this

model for data analysis based on situations whether the proportionality parameter
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λt is known or unknown, and equal or unequal for all treatments t. Kempton, Ferris

and David (2001) studies the optimality of this model, where they assumed that the

proportionality parameter λ is unknown. The model may be given by

Yij = µ + αi + βj + τd(i,j) + λτd(i−1,j) + εij, (2.9)

where λτ is the carryover effect and λ is the constant of proportionality. It would

normally be expected that |λ| ≤ 1.

The complication of this model is that it is nonlinear for the direct treatment

effects and the constant of proportionality. Kempton, Ferris and David (2001) con-

sidered least squares estimation for the parameters and used a linear approximation

of the model at the true values of the parameters. By using a combination of analyt-

ical results and computer search, they identified optimal designs for the estimation

of direct effects based on some extensions of the A-optimality criterion.

Bose and Stufken (2007) considered the same model but assumed that the con-

stant of proportionality λ is a known constant. By doing so, they avoided the problem

raised by the nonlinearity of the direct treatment effects and the constant of propor-

tionality. They used the sufficient conditions introduced by Kiefer (1975) to search

for universally optimal designs, and gave a list of optimal designs for different com-

binations of the number of treatments and periods for 2 ≤ p ≤ 4.

However, in practice, it is impossible that the constant of proportionality λ is

known. Considering the average performance over a distribution of unknown param-

eter τ0 and small absolute value for λ0, Bailey and Kunert (2006) studied this model

in determination of an Ā-optimal design, where a Ā-optimal design is a design that

minimizes the A-criterion averaged on the distribution of the unknown parameter

τ0.
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2.4.5 Models with higher-order carryover effects

The models we have considered so far include only first-order carryover effects; some

authors have considered models that also include higher-order, often second-order

carryover effects (Kershner and Federer, 1981).

Carryover effects of each treatment on all succeeding periods were studied by

Lakatos and Raghavarao (1987), while Bose and Mukherjee (2000) introduced a

general model for possible carryover effects up to the kth order and interactions

among the successive treatments applied on a subject. Their model may be written

as

Yij =





µ + αi + βj + ξd(i,j),d(i−1,j),...,d(1,j) + εij, if 1 ≤ i ≤ k − 1,

µ + αi + βj + ξd(i,j),d(i−1,j),...,d(i−k+1,j) + εij, if k ≤ i ≤ p,

(2.10)

where ξh1,h2,...,hm(1 ≤ m ≤ k) stands for the effect due to the treatment h1 being

applied in the current period, h2 in the previous period, . . ., hm in the (m − 1)th

preceding period (1 ≤ h1, h2, . . . , hm ≤ t). Thus, the term ξh1,h2,...,hm is then modeled

as the direct treatment effect of h1, the first-order carryover effect of h2, . . . , the

(m− 1)th order carryover effect of hm, together with interactions of these m factors.

This model can be viewed as a generalization of the traditional model by incor-

porating higher-order carryover effects and interaction between direct and carryover

treatment. It is more flexible in the sense that an experimenter can choose an appro-

priate value for k to allow carryover effects of different order and their interactions in

the model. By applying the calculus for factorial arrangements, Bose and Mukherjee

(2000) obtained a class of optimal designs under this model; they also provided one

method of constructing these optimal designs.

Bose and Mukherjee (2003) extended this model by considering random subject

effects, thereby relaxing a major assumption of the traditional model. They identified

some universally optimal designs under this model.
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Even if higher-order carryover effects exist, the modeling of such effects as in

Model 2.10 may be too simplistic. If the models are good approximations, we may

still wind up with rather inefficient estimators of the direct treatment effects (which

are typically of most interest) due to the presence of so many nuisance parameters.

Therefore, we should do everything possible at the design stage to avoid having to

deal with higher-order carryover effects.

The above is a brief review of the literature concerning various ways to model

carryover effects. There is also a considerable literature on the use of baseline mea-

surements in crossover trials; we consider this topic in the next section.

2.5 Use of baseline measurements in crossover studies

Baselines are measurements made on the subjects to give general or background

information during non-treatment periods. These can be used to improve infer-

ences for direct treatment effects (Senn, 2002). Baseline measurements can often

be obtained before the beginning of each treatment period. Most of the research

done on baseline measurements in crossover trials is for two-period crossover trials.

Different models and methods have been introduced to use the information provided

by the baseline measurements. We review several of them in this section.

First, let us look at the different models that incorporate the baseline measure-

ments in the literature. The differences between those models can be characterized

by the different assumptions about fixed effects and random effects. Therefore, they

can be described by cell means and variance-covariance structures. In a two-period

crossover design, if baseline measurements are available at the beginning of each

period, each subject yields four measurements, and the corresponding time periods

may be referred to as the run-in period, the first treatment period, the wash-out

period and the second treatment period, respectively.
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Willan and Pater (1986) assumed that period effects of the run-in period are the

same as for the first treatment period, the wash-out period is the same as the second

treatment period, and carryover effects in wash-out period are identical to those in

the second treatment period. In addition to assuming random subject effects, they

also allowed for an interaction between subjects and periods. Fleiss, Wallenstein and

Rosenfeld (1985) had the same assumption for the period effects, but they allowed

for different carryover effects in the wash-out period and the second treatment period

and assumed the variance-covariance structure for observations on the same subject

to be compound symmetric. Different from those models, Chi (1993) and Kenward

and Jones (1987) assumed that the period effects in the periods of run-in, first

treatment, wash-out and second treatment are all different, and Chi (1993) assumed

that the carryover effects are the same in both wash-out period and second treatment

period, while Kenward and Jones (1987) made no assumption about the equality of

the carryover effects from those two periods. In addition to the random subject

effects, Chi (1993) considered an error structure following an autoregressive process

for each subject, while Kenward and Jones (1987) used an unstructured variance-

covariance matrix for the measurements from each subject. Kenward and Jones

(1987) also included a sequence effect in their model.

To summarize, we illustrate the cell means and variance-covariance structures

for these models in Tables 2.1 and 2.2, where we denote models proposed by Willan

and Pater (1986), Fleiss, Wallenstein and Rosenfeld (1985), Chi (1993) and Kenward

and Jones (1987) by models I, II, III and IV, respectively.
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Table 2.1 Cell Means for Models that Incorporate Baseline Measurements
Period 1 Period 2

Model Sequence Run-in First Treatment Wash-out Second Treatment
I AB µ + π1 µ + π1 + τ µ + π2 + λ µ + π2 − τ + λ

BA µ + π1 µ + π1 − τ µ + π2 − λ µ + π2 + τ − λ

II AB µ + π1 µ + π1 + τ µ + π2 + θ µ + π2 − τ + λ

BA µ + π1 µ + π1 − τ µ + π2 − θ µ + π2 + τ − λ

III AB µ + π1 µ + π2 + τ µ + π3 + λ µ + π4 − τ + λ

BA µ + π1 µ + π2 − τ µ + π3 − λ µ + π4 + τ − λ

IV AB µ + γ + π1 µ + γ + π2 + τ µ + γ + π3 + θ µ + γ + π4 − τ + λ

BA µ− γ + π1 µ− γ + π2 − τ µ− γ + π3 − θ µ− γ + π4 + τ − λ

µ: overall mean πi: ith period effect θ: carryover effect in wash-out period

γ: sequence effect τ : treatment effect λ: carryover effect in the second treatment effect

Table 2.2 Covariance Structures for Models that Incorporate Baseline Measurements
Model Covariance Structure

I σ2
s




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 + σ2

sp




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 + σ2

ε




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




II σ2
s




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 + σ2

ε




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




III σ2
s




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 + σ2

ε




1 ρ ρ1+w ρ2+w

ρ 1 ρw ρ1+w

ρ1+w ρw 1 ρ

ρ2+w ρ1+w ρ 1




IV no assumptions about the covariance structure

σ2
s : variance of subject σ2

sp: variance of subject by period interaction σ2
ε : random error

ρ: autocorrelation parameter w: time units for the wash-out period
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Next, let us look at the different methods which use the information provided by

the baseline measurements.

Based on their assumptions for the period effects, carryover effects as well as

random effects, Willan and Pater (1986) considered the analyses based on the out-

comes only as well as on the change from baselines. They obtained estimators for

the treatment contrast and their variances from both methods, and showed that

the analysis of change from baselines can eliminate the carryover effects for the

treatment comparison under their model and assumptions. However, after further

investigation of the power for the test of a difference in treatment effects and the rel-

ative precision of the estimators of the treatment contrast in terms of mean squared

error (MSE) under both methods, they concluded that the analysis of change from

baselines reduces the power and precision under many situations. They also derived

a condition to decide whether or not to include the baseline measurements in the

analysis.

Assuming that carryover effects are not equal in the wash-out period in two

sequences, but the total time duration until the end of the second treatment period

is long enough to eliminate any carryover effects, Fleiss, Wallenstein and Rosenfeld

(1985) showed that the analysis of change from baselines may produce different

carryover effects, when none actually exist if one analyzes the data from outcomes

only. Therefore, they also concluded that use of baseline measurements from both

periods should be undertaken cautiously.

Patel (1983) suggested that baseline measurements be used for a number of

preliminary tests to determine the validity of test of treatment contrast. If all of

the null hypotheses are not rejected, then one may use the baseline measurements

as a covariate in making inferences about the treatment effects. He also compared

the variances for the estimators of the treatment contrast from different methods.

However, his results for the method of using baseline measurements as a covariate
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were based on the assumption that the random terms from the two periods are

independent. When, actually, they are correlated under the model assumptions.

However, all the analyses discussed considered carryover effects on the wash-out

period. Therefore, in a strict sense, the measurements from the wash-out period are

not true baselines; they were affected by the treatments from the previous period.

Fleiss (1989) pointed out some problems with including baseline measurements made

at the start of the second period in the analysis. Kenward and Jones (1987) also

mentioned that there is no satisfactory statistical analysis for the 2 × 2 crossover

trial if there is any possible presence of carryover effects. Therefore, some authors, for

example Senn (2002), consider measurements obtained prior to the second treatment

period as baselines only when wash-out periods are long enough to eliminate any

carryover effects. We will also consider this case in Chapters 4-6.
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Chapter 3

Models with Subject by Carryover Interaction

3.1 Introduction

Crossover designs, in which various treatments are applied to each subject over

different time periods of the study, have been widely used in different fields. The

primary goal of an experiment that uses crossover designs is typically to compare

the different treatment effects, which can be done on the same subject with these

designs. This characteristic makes crossover designs attractive especially when there

is substantial variability among the subjects.

The traditional model for crossover designs, which includes period, subject, direct

treatment and carryover effects, has been introduced in the early 40’s. In this model

carryover effects are assumed to exist only from the treatment in the previous period,

and it is assumed that they do not depend on the treatment applied in the current

period. This model has been adopted by many authors during the last four or five

decades, and optimal designs for this model have also been studied extensively by a

number of authors after the initial work of Hedayat and Afsarinejad (1978), Cheng

and Wu (1980), and Magda (1980).

However, more recently, this model has been criticized by many authors, espe-

cially for its simplistic and unrealistic assumptions about the carryover effects (Fleiss,

1989; Senn, 2002). Partly in reaction to these criticisms, several models with more

complicated assumptions about carryover effects have been investigated recently, for

36
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example, Kempton, Ferris and David (2001), Afsarinejad and Hedayat (2002) and

Bose and Mukherjee (2000, 2003).

But their contributions focused on theoretical aspects of the models or on iden-

tification and construction of optimal designs under these models. There is little

evidence based on data to support any of these models. In medical studies, some

treatments have obvious effects on the response in the current period or subsequent

periods for some patients, but less for others. It may be of importance to know that

treatment and carryover effects are different for different subjects.

Matthews (1988, 1994) mentioned that the interaction of subject by treatment

could be of interest, however he presented no further discussion about any research

on this topic. Chinchilli and Esinhart (1996), Ghosh and Fairchild (2000) and Ghosh

and Crosby (2005) studied the model with treatment by subject interactions, but

consideration of different carryover effects in different subjects does not seem to have

received any attention in the literature.

Jones, Kunert and Wynn (1992) considered a model with random carryover

effects, which were assumed normally distributed with mean 0 and variance σ2, and

independent of the random errors. In their argument, crossover designs should only

be applied when carryover effects are small; treating carryover effects as random can

provide more efficient estimates in the sense of avoiding over-correcting for them.

However, their assumption seems to be rather ad hoc, since, conceptually, there is no

large or infinite population of carryover effects from which those in the experiment

were randomly selected. This paper, too, focused mostly on theoretical derivations.

In order to capture the mentioned variabilities, we formulate a model which

assumes random subject effects, and includes subject by treatment and subject

by carryover interactions. Since subject effects are assumed to be random, so are

these interactions. This yields a more general variance-covariance structure for the

responses from each subject.
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By introducing several additional random effects, we must deal with model iden-

tifiability. Estimation of the model parameters is another problem that we face, as

is a study of the flexibility and practical applicability of the model.

Our main goal in this chapter is to investigate basic statistical properties of this

model, demonstrate its flexibility, show its practical usefulness, and discuss methods

estimating the relevant parameters associated with the model.

This chapter is organized as follows. In Section 3.2, we propose models to incor-

porate the subject by carryover interaction and study identifiability of the random

components. The flexibility of the models is established in Section 3.3. Maximum

likelihood based estimations of the model parameters are discussed in Section 3.4.

In Section 3.5, a simulation study is conducted for particular designs to evaluate

the performance of REML estimation, and the AIC model selection criterion is used

to compare the models with and without the random interaction terms. A data set

available in the literature is used to illustrate the methods in Section 3.6. Finally,

we provide a brief discussion in Section 3.7.

3.2 Statistical models and their properties

Consider a crossover experiment in which t treatments are allocated to n subjects in

p time periods. The response from the jth subject in the ith period will be denoted by

Yij. A possible model to incorporate subject by carryover and subject by treatment

interactions may be written as:

Yij = µ + πi + τd(i,j) + γd(i−1,j) + sj + (sτ)jd(i,j) + (sγ)jd(i−1,j) + εij, (3.1)

i = 1, . . . , p ; j = 1, . . . , n; γd(0,j) ≡ 0 ∀ j; (sγ)jd(0,j) ≡ 0 ∀ j,

where µ, πi, τd(i,j), γd(i−1,j), sj and εij are, respectively, an overall mean, the ith

period effect, a treatment effect due to the treatment assigned to the jth subject in

the ith period (i.e., treatment d(i, j)), a first-order carryover effect due to treatment
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d(i − 1, j), the jth subject effect, and a random error term. Terms (sτ)jd(i,j) and

(sγ)jd(i−1,j) are the subject by treatment interaction and the subject by carryover

interaction, respectively.

In the most general form of the model, we assume that sj, (sτ)jd(i,j), (sγ)jd(i−1,j)

and εij are distributed as N(0, σ2
s), N(0, σ2

sτ ), N(0, σ2
sγ) and N(0, σ2

ε ), respectively,

and that the only non-zero covariances are those shown in the following variance-

covariance matrix:

var




sj

(sτ)j1

...

(sτ)jt

(sγ)j1

...

(sγ)jt




=




σ2
s 0 . . . . . . 0 0 . . . . . . 0

σ2
sτ θsτ . . . θsτ 0 . . . . . . 0

. . . . . .
...

...
. . .

...

σ2
sτ θsτ

...
. . .

...

σ2
sτ 0 . . . . . . 0

σ2
sγ θsγ . . . θsγ

. . . . . .
...

σ2
sγ θsγ

σ2
sγ




.

Thus, θsτ and θsγ are the covariances for different subject by treatment inter-

actions and subject by carryover interactions, respectively, belonging to the same

subject.

In matrix notation, Model 3.1 may be written as follows:

Y = µ1pn + X1π + Xd1τ + Xd2γ + Z1s + Zd1(sτ) + Zd2(sγ) + ε,

where

X1 =




Ip

...

Ip




= 1n ⊗ Ip, Xd1 =




Xd11

Xd12

...

Xd1n




, Xd2 =




Xd21

Xd22

...

Xd2n




,
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Z1 =




1p 0p . . . 0p

0p 1p . . . 0p

...
...

. . .
...

0p 0p . . . 1p




= In⊗1p, Zd1 =




Xd11 0 . . . 0 0

0 Xd12 . . . 0 0

...
...

. . .
...

...

0 0 . . . Xd1(n−1) 0

0 0 . . . 0 Xd1n




,

Zd2 =




Xd21 0 . . . 0 0

0 Xd22 . . . 0 0

...
...

. . .
...

...

0 0 . . . Xd2(n−1) 0

0 0 . . . 0 Xd2n




.

Here Xd1j is the period-treatment incidence matrix for subject j under design d,

and Xd2j = LXd1j, where L is the matrix defined as

L =




0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0




.

Based on the assumptions, we obtain that E(Y ) = µ1pn + X1π + Xd1τ + Xd2γ

and

var(Y ) =




Σ1 0 . . . 0 0

0 Σ2 . . . 0 0

...
...

. . .
...

...

0 0 . . . Σn−1 0

0 0 . . . 0 Σn




,



41

where

Σj = σ2
sJp + σ2

sτXd1jX
T
d1j + σ2

sγLXd1jX
T
d1jL

T + σ2
ε Ip

+θsτ (Jp −Xd1jX
T
d1j) + θsγ(LJpL

T − LXd1jX
T
d1jL

T ),

j = 1, 2, . . . , n.

Since the model contains more than one random component, we will study

the identifiability problem for those variance components. If any two different sets

of values for the variance components result in two different variance-covariance

matrices, then the variance components of the model are identifiable. If we consider

the variance components of Model 3.1 as σ2
s , σ2

sτ , σ2
sγ, σ2

ε , θsτ and θsγ, then it is

easy to see from the variance-covariance structure that the sum of the coefficients

for σ2
sτ and θsτ is equal to the coefficient for σ2

s for any design. This implies that

two different sets of values for the variance components could result in the same

variance-covariance matrix, which indicates that the variance components in Model

3.1 are not identifiable for any design.

To alleviate this problem, we add constraints to the model:

Yij = µ + πi + τd(i,j) + γd(i−1,j) + sj + (sτ)jd(i,j) + (sγ)jd(i−1,j) + εij, (3.2)

where
∑p

i=1 πi = 0,
∑t

l=1 τl = 0,
∑t

l=1 γl = 0,
∑t

l=1(sτ)jl = 0 ∀ j,
∑t

l=1(sγ)jl =

0 ∀ j.

As before, we assume that Var((sτ)jl) is constant and that the covariance of any

two of these terms is constant if they belong to the same subject. A similar assump-

tion is used for the subject by carryover interaction. Random effects pertaining

to different subjects are assumed to be uncorrelated. With these assumptions, we

obtain:

cov(sj, sj′) =





σ2
s if j = j′

0 otherwise

,
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cov((sτ)jl, (sτ)j′l′) =





σ2
sτ if j = j′, l = l′

−σ2
sτ/(t− 1) if j = j′, l 6= l′

0 if j 6= j′

,

cov((sγ)jl, (sγ)j′l′) =





σ2
sγ if j = j′, l = l′

−σ2
sγ/(t− 1) if j = j′, l 6= l′

0 if j 6= j′

.

Thus, the variance-covariance structure for the random effects for any subject is:

var




sj

(sτ)j1

...

(sτ)jt

(sγ)j1

...

(sγ)jt




=




σ2
s 0 . . . . . . 0 0 . . . . . . 0

σ2
sτ − σ2

sτ

(t−1)
. . . − σ2

sτ

(t−1)
0 . . . . . . 0

. . . . . .
...

...
. . .

...

σ2
sτ − σ2

sτ

(t−1)

...
. . .

...

σ2
sτ 0 . . . . . . 0

σ2
sγ − σ2

sγ

(t−1)
. . . − σ2

sγ

(t−1)

. . . . . .
...

σ2
sγ − σ2

sγ

(t−1)

σ2
sγ




,

and the variance for Y is:

var(Y ) =




Σ1 0 . . . 0 0

0 Σ2 . . . 0 0

...
...

. . .
...

...

0 0 . . . Σn−1 0

0 0 . . . 0 Σn




, (3.3)

where

Σj = σ2
sJp + σ2

sτ (
t

t−1
Xd1jX

T
d1j − 1

t−1
Jp) + σ2

sγ(
t

t−1
LXd1jX

T
d1jL

T − 1
t
LJpL

T ) + σ2
ε Ip.
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Theorem 3.2.1 All the variance components in Model 3.2 are identifiable if and

only if the design contains a sequence with repeated treatments.

Proof: Since the variance-covariance structure is a block diagonal matrix with

each block corresponding to one subject, we focus on an arbitrary subject j. Con-

sider two sets of variance components, σ2
s , σ2

sτ , σ2
sγ, σ2

ε and σ̃2
s , σ̃2

sτ , σ̃2
sγ and σ̃2

ε .

If σ2
sJp + σ2

sτ (
t

t−1
Xd1jX

T
d1j − 1

t−1
Jp) + σ2

sγ(
t

t−1
LXd1jX

T
d1jL

T − 1
t
LJpL

T ) + σ2
ε Ip =

σ̃2
sJp + σ̃2

sτ (
t

t−1
Xd1jX

T
d1j − 1

t−1
Jp) + σ̃2

sγ(
t

t−1
LXd1jX

T
d1jL

T − 1
t
LJpL

T ) + σ̃2
ε Ip implies

that σ2
s = σ̃2

s , σ2
sτ = σ̃2

sτ , σ2
sγ = σ̃2

sγ and σ2
ε = σ̃2

ε , then all the variance components

are identifiable, and vice verse.

Therefore, suppose that σ2
sJp+σ2

sτ (
t

t−1
Xd1jX

T
d1j− 1

t−1
Jp)+σ2

sγ(
t

t−1
LXd1jX

T
d1jL

T−
1
t
LJpL

T )+σ2
ε Ip = σ̃2

sJp+σ̃2
sτ (

t
t−1

Xd1jX
T
d1j− 1

t−1
Jp)+σ̃2

sγ(
t

t−1
LXd1jX

T
d1jL

T− 1
t
LJpL

T )+

σ̃2
ε Ip, from the first and second diagonal element of the variance-covariance structure,

we have (a) σ2
s+σ2

sτ+σ2
ε = σ̃2

s+σ̃2
sτ+σ̃2

ε and (b) σ2
s+σ2

sτ+σ2
sγ+σ2

ε = σ̃2
s+σ̃2

sτ+σ̃2
sγ+σ̃2

ε .

Subtracting (a) from (b), we obtain σ2
sγ = σ̃2

sγ. Then we can ignore the terms σ2
sγ and

σ̃2
sγ from now on. If the design contains a sequence with repeated treatments, from

the off diagonal elements, once considering two observations for the same treatment

and once two observations for distinct treatments, we have (c) σ2
s + σ2

sτ = σ̃2
s + σ̃2

sτ

and (d) σ2
s − 1

t−1
σ2

sτ = σ̃2
s − 1

t−1
σ̃2

sτ , respectively. Subtracting (d) from (c), we obtain

σ2
sτ = σ̃2

sτ , and substituting that into (d), we also have σ2
s = σ̃2

s . From (a) we now

also obtain σ2
ε = σ̃2

ε .

Thus, we showed that all the variance components are identifiable if the design

contains a sequence with repeated treatments. However, if there is no such sequence

in the design, then we do not have (c), and we cannot obtain σ2
s = σ̃2

s , σ2
sτ = σ̃2

sτ ,

and σ2
ε = σ̃2

ε , so that not all of the variance components are identifiable in that case.

Therefore, we emphasize that investigators should know objectives of the exper-

iment at the design stage. If one of the objectives of the crossover experiment is to
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estimate and compare all the variance components, then investigators should use a

crossover design with repeated treatments.

3.3 Some special cases of Model 3.2

Model 3.2 contains several other models used in the literature as special cases. For

example, if σ2
sγ = 0, then Model 3.2 reduces to:

Yij = µ + πi + τd(i,j) + γd(i−1,j) + sj + (sτ)jd(i,j) + εij, (3.4)

which is the model with only an interaction between subjects and treatments. If, in

addition, it is assumed that σ2
sτ = 0, then Model 3.2 becomes:

Yij = µ + πi + τd(i,j) + γd(i−1,j) + sj + εij. (3.5)

For Model 3.5, we consider two extreme cases. If it is assumed that σ2
s = 0,

then the model corresponds to the situation of no subject effects. Conceptually, this

case may be thought of as the subjects being carbon copies of each other (Hedayat,

Stufken and Yang, 2006). The second case, σ2
s →∞, is considered in the next result.

Theorem 3.3.1 The traditional model, i.e., the model with fixed subject effects, is

obtained from Model 3.5 for σ2
s →∞.

Proof: Model 3.5 can be written in matrix notation as Y = µ1pn + X1π + Xd1τ +

Xd2γ+Z0s+ε. Based on the model assumptions, we have var(Y ) = σ2
ε Inp+σ2

sZ0Z
′
0 =

V . We rewrite the above model as Y = Dη + Xd1τ + Z0s + ε, where η combines

the overall mean, and the period and carryover effects, while D is the corresponding

design matrix for those parameters. Then the information matrix Cd for the direct
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treatment effects τ under Model 3.5 can be expressed as

Cd = (V − 1
2 Xd1)

′pr⊥(V − 1
2 D)V − 1

2 Xd1

= X ′
d1{V −1 − V −1D(D′V −1D)−D′V −1}Xd1

= X ′
d1{(σ2

ε Inp + σ2
sZ0Z

′
0)
−1 − (σ2

ε Inp + σ2
sZ0Z

′
0)
−1

D(D′(σ2
ε Inp + σ2

sZ0Z
′
0)
−1D)−D′(σ2

ε Inp + σ2
sZ0Z

′
0)
−1}Xd1,

where pr⊥(X) = I − pr(X) and pr(X) = X(X ′X)−X ′.

The information matrix for τ under the model with fixed subject effect is

Cdfix
= X ′

d1pr
⊥([D,Z0])Xd1

= X ′
d1pr

⊥(D)Xd1 −X ′
d1pr

⊥(D)Z0(Z
′
0pr

⊥(D)Z0)
−Z ′

0pr
⊥(D)Xd1.

Based on Proposition 1 of Jones, Kunert and Wynn (1992),

(σ2
ε Inp + σ2

sZ0Z
′
0)
−1 − (σ2

ε Inp + σ2
sZ0Z

′
0)
−1D(D′(σ2

ε Inp + σ2
sZ0Z

′
0)
−1D)−D′(σ2

ε Inp +

σ2
sZ0Z

′
0)
−1 = pr⊥(D) − pr⊥(D)Z0(

1
σ2

s
In + Z ′

0pr
⊥(D)Z0)

−1Z ′
0pr

⊥(D), which goes to

pr⊥(D) − pr⊥(D)Z0(Z
′
0pr

⊥(D)Z0)
−Z ′

0pr
⊥(D) if σ2

s → ∞. The result follows now

immediately.

3.4 Estimation of the parameters

In this section, we discuss the estimation procedures for Model 3.2. Our interest lies

in estimating the variance components and the fixed effects for the direct treatment

and the carryover effects.

Since Model 3.2 is a linear mixed model, and the random terms are assumed

to be normally distributed, the commonly used efficient estimation methods are

the likelihood-based methods, such as, Maximum Likelihood (ML) and Restricted

Maximum Likelihood (REML) estimation. The validation of the ML and REML

estimation methods in the setting of a crossover design is discussed by Vonesh and

Chinchilli (1997). We also consider these methods to estimate the parameters for

Model 3.2.
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To distinguish the subjects in different sequences, in this and the next section,

instead of using j as the only index for the subjects, we use both j and k to denote

the kth subject in the jth sequence. So the outcome of the response variable for the kth

subject in the ith period in the jth sequence is denoted by Yijk, where i = 1, 2, . . . , p,

j = 1, 2, . . . , s, and k = 1, 2, . . . , nj. Here s denotes the number of distinct sequences

in the design, and nj is the number of subjects in the jth sequence.

Let Yjk = [Y1jk Y2jk . . . Ypjk]
′ denote the p-vector of responses for the kth

subject in the jth sequence. Based on the normality assumptions, we obtain that

Yjk ∼ Np(µj, Σj), j = 1, 2, . . . , s; k = 1, 2, . . . , nj,

where µj = (E(Ȳ1j.), E(Ȳ2j.), . . . , E(Ȳpj.))
′ and Σj is as in Equation 3.3.

Observations from different subjects are independent, so the joint density for Y

is
s∏

j=1

nj∏

k=1

1

(2π)(p/2)|Σj|(1/2)
e−

1
2
(Yjk−µj)

′Σ−1
j (Yjk−µj),

and, thus, the log-likelihood function is

s∑
j=1

nj∑

k=1

[
−p

2
log(2π)− 1

2
log(|Σj|)− 1

2
(Yjk − µj)

′Σ−1
j (Yjk − µj)

]
. (3.6)

The ML estimates for the parameters can be obtained by maximizing 3.6. But

the ML estimation takes no account for the degrees of freedom lost in estimating

the fixed effects when estimating the variance components, and we will instead use

Restricted Maximum Likelihood (REML) estimation. REML estimation was intro-

duced by Patterson and Thompson (1971), and is also referred to as a modified

maximum likelihood method. It improves ML estimators of the variance components

by taking into account the loss of degrees of freedom associated with estimating the

fixed effects parameters. Their ideas about using the error contrast instead of all the

data had been adapted by Harville (1977). Following Harville (1977), the restricted
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log-likelihood function can be written as

s∑
j=1

nj∑

k=1

[
−p

2
log(2π)− 1

2
log(|Σj|)− 1

2
(Yjk − µj)

′Σ−1
j (Yjk − µj)

]

−1

2
log(|X̃ ′Σ−1

j X̃|),

where X̃ is any n × rank(X) matrix such that C(X̃) = C(X) with X as the design

matrix [1pn|X1|Xd1|Xd2] for the fixed effects and C(X) as the column space of X.

Unfortunately, it is difficult to derive a closed form for the estimators of the

variance components for our model. Thus, the Newton-Raphson iteration algorithm

is applied to obtain the estimates.

3.5 Simulation study

In this section, we consider designs AB/BA and ABB/BAA. AB/BA is a balanced

uniform design without repeated treatments; ABB/BAA is a strongly balanced

design with repeated treatments, which is formed by repeating the treatments in

the last period of the popular design AB/BA. For design AB/BA, if the carryover

effects from the two treatments are not equal, then we cannot obtain unbiased esti-

mators for the treatment contrast, so we consider the situation that the carryover

effects from the two treatments are equal in the simulation study. In addition, as

we proved in Section 3.2, since design AB/BA has no repeated treatment, there

is an identifiability problem for the variance components. We will therefore focus

on estimating functions of these variance components that are identifiable. Design

ABB/BAA is advocated by several authors to ameliorate the deficiencies of design

AB/BA.

The outcome of the response variable for the kth subject in the ith period for the

jth sequence is denoted by Yijk, where i = 1, 2 for design AB/BA and i = 1, 2, 3 for
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design ABB/BAA, j = 1, 2 and k = 1, 2, . . . , nj. The notation is illustrated in Table

3.1.

Table 3.1 Layout of Design ABB/BAA

Period 1 Period 2 Period 3

A B B

Sequence 1 Y111 . . .Y11n1 Y211 . . .Y21n1 Y311 . . .Y31n1

B A A

Sequence 2 Y121 . . .Y12n2 Y221 . . .Y22n2 Y321 . . .Y32n2

the layout of design AB/BA can be obtained from Table 3.1 by discarding Period 3.

A dual design refers to a design which contains a sequence and its dual, which

is formed by interchanging the treatment labels, equally often. It is clear that both

AB/BA and ABB/BAA are dual designs. According to assumptions of Model 3.2,

the variance-covariance matrix for the response variable from both designs is a block

diagonal matrix with the same block along the diagonal. The block under Model 3.2

with design AB/BA and ABB/BAA can be expressed as

Σ = Σjk =


σ2

s + σ2
sτ + σ2

ε σ2
s − σ2

sτ

σ2
s − σ2

sτ σ2
s + σ2

sτ + σ2
sγ + σ2

ε




and

Σ = Σjk =




σ2
s + σ2

sτ + σ2
ε σ2

s − σ2
sτ σ2

s − σ2
sτ

σ2
s − σ2

sτ σ2
s + σ2

sτ + σ2
sγ + σ2

ε σ2
s + σ2

sτ − σ2
sγ

σ2
s − σ2

sτ σ2
s + σ2

sτ − σ2
sγ σ2

s + σ2
sτ + σ2

sγ + σ2
ε




,

respectively.

Due to the identifiability problems for the estimation of variance components for

design AB/BA, we estimate only the terms σ2
s+σ2

sτ+σ2
ε , σ

2
s−σ2

sτ and σ2
s+σ2

sτ+σ2
sγ+σ2

ε

for that design, which can be interpreted as the variance for the observation for a

subject in the first period, the covariance between observations for a subject in the

first and second period, and the variance for an observation for a subject in the
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second period, respectively. For design ABB/BAA, we estimate σ2
s , σ2

sτ , σ2
sγ and σ2

ε

individually.

We use the REML estimation method discussed in Section 3.4 to estimate those

variance components, as well as the fixed effect contrasts, τA − τB and γA − γB.

Tables 3.2 - 3.4 present the results of the mean and variance of the estimates for 500

simulations for different numbers of subjects. The numbers in parentheses are the

true values, and n denotes the common number of subjects for each sequence.

Table 3.2 Simulation Results under Model 3.2 for Design AB/BA

σ2
s + σ2

sτ + σ2
ε σ2

s − σ2
sτ σ2

s + σ2
sτ + σ2

sγ + σ2
ε τA − τB γA − γB

(4.61) (-0.23) (6.3) (-1.0) (0.0)

mean var mean var mean var mean var mean var

n=20 4.4385 0.8715 -0.2516 0.8098 6.5660 1.8362 -1.0174 0.4256 -0.0047 0.9851

n=30 4.4742 0.5850 -0.2369 0.4927 6.5183 1.1698 -0.9981 0.3282 0.0055 0.6847

n=50 4.5259 0.4110 -0.2110 0.2992 6.3661 0.6796 -1.0068 0.1787 0.0002 0.4430

n=100 4.5887 0.2289 -0.2168 0.1497 6.2997 0.3640 -0.9909 0.0930 -0.0092 0.2014

Table 3.3 Simulation Results for Random Effects for Design ABB/BAA

σ2
s σ2

sτ σ2
sγ σ2

ε

(1.21) (1.44) (1.69) (1.96)

mean var mean var mean var mean var

n=20 1.1480 0.2650 1.4243 0.3125 1.6743 0.4945 2.0328 0.9919

n=30 1.1806 0.2091 1.4240 0.2325 1.6943 0.3653 1.9991 0.8041

n=50 1.1909 0.1531 1.4367 0.1766 1.6836 0.2928 2.0109 0.7147

n=100 1.2266 0.0873 1.4354 0.0949 1.6954 0.1685 1.9868 0.4835
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Table 3.4 Simulation Results for Fixed Effects for Design ABB/BAA

τA − τB γA − γB

(-1.0) (-0.5)

mean var mean var

n=20 -0.9999 0.2170 -0.5003 0.2949

n=30 -1.0065 0.1452 -0.4937 0.1776

n=50 -1.0021 0.0788 -0.5035 0.1087

n=100 -0.9976 0.0404 -0.4923 0.0538

From the results of Tables 3.2 - 3.4, the estimates of both the random and fixed

terms for design ABB/BAA are fairly close to the true values, but the estimates of

the functions of the variance components for design AB/BA is not very close to the

true values. On average, the larger the sample size, the more precise the estimates.

To show that the model with subject by treatment and subject by carryover inter-

actions is better than the model without those terms, we should test the hypothesis

that σ2
sτ = σ2

sγ = 0. However, this hypothesis is on the boundary of the parameter

space and distribution under the null for the likelihood ratio test statistic is compli-

cated. Therefore, it is difficult to use standard statistical methods to test whether

one of the variance components is equal to 0. Instead, we use the model selection

criterion AIC to compare Model 3.2 with Models 3.4 and 3.5 for design ABB/BAA.

The results are presented in Table 3.5.

Table 3.5 Model Selection Results under Design ABB/BAA

σs σsτ σsγ σε AICdiff1 < 0 AICdiff2 < 0

1.1 0.8 0.9 1.4 129/500 100/500

1.1 1.2 1.3 1.4 226/500 245/500

1.1 2.2 2.3 1.4 420/500 475/500

Note, AICdiff1 is the difference in AIC values between Model 3.2 and Model

3.4, and AICdiff2 is the difference in AIC values between Model 3.2 and Model 3.5.
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The number below “/” is the total number of tries, and the number above “/” is the

number of times that the difference of AIC is less than zero, which indicates Model

3.2 is better than Model 3.4 or Model 3.5.

From the results of Table 3.5, we can see that when the variances of the interac-

tion terms are smaller, there is no evidence that Model 3.2 is better based on the AIC

criterion. However, when the variance of the interaction terms become larger, then

there is evidence to show that the models with the interaction terms perform better.

These results also tell us that in order for the model with the interaction terms to

be selected as the best model by AIC criterion, the variance of the interaction terms

should be relatively large.

3.6 Numerical example

The data set in this example consists of systolic blood pressure measurements from

a trial on hypertension using a two-treatment three-period crossover design. In

the original study, subjects were randomly assigned to the four sequence groups

ABB/BAA/ABA/BAB. Each treatment period lasted for six weeks, and there

were no wash-out periods for ethical reasons. These data have been used by dif-

ferent authors as an example for the design ABB/BAA by only considering the

observations from the first two sequences (Ebbutt, 1984; Matthews, 1989; Jones and

Kenward, 2003). The complete data set can be found in Jones and Kenward (2003,

pages 232-233).

We also only use the observations from the first two sequences of this data set,

and the number of subjects in each sequence is 22. We obtain the following results

by fitting the data to Models 3.2, 3.4 and 3.5:
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Table 3.6 Summary of the Results for A Numerical Example

Estimates of Variance Components Model Selection Criteria

σ̂2
s σ̂2

sτ σ̂2
sγ σ̂2

ε -2LogL AIC

Model 3.2 185.5166 35.6118 41.8076 88.1132 858.5978 876.5978

Model 3.4 162.0344 7.7089 - 167.4737 858.9144 874.9143

Model 3.5 160.7905 - - 177.1573 859.0850 873.0850

From the results in Table 3.6, we can see that Model 3.2 has a slightly smaller

−2LogL value than Models 3.4 and 3.5, but that all are very close. Since Model 3.2

has one more parameter than Model 3.4. and two more parameters than Model 3.5,

after taking account of the parameter penalty, Model 3.2 has a larger AIC value.

But that does not necessarily mean that Model 3.2 is not appropriate, since the

estimates of σ2
sτ and σ2

sγ are not even close to zero. Also, notice that the sum of σ̂2
sτ ,

σ̂2
sγ and σ̂2

ε for Model 3.2 is close to the the sum of σ̂2
sτ and σ̂2

ε of Model 3.4 and σ̂2
ε

for Model 3.5, but σ̂2
sτ and σ̂2

sγ are relatively small compared to σ̂2
s and σ̂2

ε . Because

the variances of the interaction terms are relatively small, it is not surprising that

we cannot select Model 3.2 is the best one with the model selection criteria, a result

which is supported by our simulation results.

3.7 Discussion

We introduced a new model which incorporates the interactions of subject by treat-

ment and subject by carryover to capture the variabilities of direct treatment and

carryover effects on different subjects. We showed that the new model can be gen-

eralized to different models including the traditional model, and all of the variance

components for that model are identifiable if there are repeated treatments in the

design. We use model selection criteria AIC to compare the model with and without

the random interaction terms, the reason we do not use BIC is that BIC tends to



53

select too simple or parsimonious model for the data (Fitzmaurice, Laird and Ware,

2004). “In general, we do not recommend the use of BIC for covariance model selec-

tion as it entails a high risk of selecting a model that is too simple or parsimonious

for the data at hand.” However, if based only on the model selection criteria, the

model with interactions can not demonstrate that it is superior to the model without

interactions, if the variability due to the interaction is not significantly great.
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Chapter 4

Use of Baseline Measurements in the 2× 2 Crossover Trial for the

Case of Single Measurements

4.1 Introduction

The 2 × 2 crossover design (two treatments in two periods, using the sequences

AB and BA) is the simplest crossover design and is extremely popular in clinical

trials (Grizzle, 1965; Brown, 1980; Armitage and Hill, 1982). However, it is also

regarded by many statisticians as particularly problematic because of the carryover

effects and aliasing of several effects (Senn, 1994; Jones and Kenward, 2003). Using

baseline measurements at the beginning of each period is introduced as a technique to

rescue the AB/BA design from its deficiencies and to provide additional information

to eliminate nuisance effects from the treatment effects (Patel, 1983; Kenward and

Jones, 1987).

However, contrary to some authors’ intuition and initial purposes, using base-

line measurements at the beginning of each period to eliminate the carryover effects

receives serious criticism in many papers (Fleiss, Wallenstein and Rosenfeld, 1985;

Willan and Pater, 1986; Fleiss,1989). Of course, the conclusions depend on different

models and assumptions considered. For example, Willan and Pater (1986) consid-

ered a model with fixed period, treatment and carryover effects, and random subject

and subject by period interaction effects as well as random error. Assuming that the

carryover effects in the wash-out period and the second treatment period are the

same, they found that analyzing change from baselines can eliminate the carryover

56



57

effects but at the cost of reducing the power and precision for inferences about the

treatment contrast under many situations. Assuming that there is a carryover effect

in the wash-out period but not in the second treatment period and that carryover

effect is proportional to the direct treatment effect, Fleiss, Wallenstein and Rosen-

feld (1985) showed that analysis of change from baselines created a carryover effect

where none would have existed if only observations from treatment period (we use

term outcomes later) had been used. In addition, the contrast of carryover effects is

opposite in sign to the treatment contrast.

According to Ratkowsky et al. (1993) and Kenward and Jones (2003), the mea-

surements taken at the beginning of the second treatment period as discussed in the

previous paragraph are not true baselines, since they are affected by the treatments

in the previous period. Kenward and Jones (1987) also argued that there is no sat-

isfactory statistical analysis for the AB/BA crossover trial if carryover effects from

treatments A and B are different. So, in the pharmaceutical industry, an adequate

wash-out period is usually conducted between two active periods to eliminate any

carryover effects, but investigators often also collect measurements before the active

treatment periods. In that situation, measurements taken at the beginning of both

periods can be viewed as baselines (Senn, 2002). How to incorporate those baseline

measurements in the analysis is the problem we intend to investigate in this chapter.

In a clinical trial in the pharmaceutical industry, data can be collected at a single

time or at different time points (repeated measurements, which will be discussed in

Chapters 5 and 6) before the treatments are assigned (off-drug day) and during the

treatment periods (on-drug day). The data from the off-drug day can be viewed as

baseline measurements, while the data from the on-drug day are outcomes of the

response variable. We assume that the wash-out periods are sufficiently long so that

there is no carryover effect and the baseline measurements are not affected by the

treatments.
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Unlike in parallel design, where it is recommended to collect baseline measure-

ments and to use them as a covariate, there is no general consensus on how to prop-

erly handle baseline measurements in crossover trials. Different models and assump-

tions can lead to different conclusions. In this chapter, we will investigate various

potential methods to handle baseline measurements for the case of measurements at

a single time point in each period, and compare the variances for the estimators of

the treatment contrast under various scenarios by using the relative efficiency (RE).

The RE for a method is defined as the ratio of the minimum standard error (SE) of

the estimators of the treatment contrast from all considered methods and the SE for

the particular method. Since the primary goal of an experiment using a crossover

design is to compare the treatment effects, we will also discuss testing the hypothesis

of equal treatment effects.

This chapter is organized as follows. In Section 4.2, potential methods and models

to handle baseline measurements in crossover studies are discussed, and analytical

expressions of variances of the estimators of the treatment contrast from different

methods are derived and compared. In Section 4.3, a thorough simulation study is

conducted for the AB/BA crossover design to evaluate the performance of different

methods under different scenarios. A real data example is analyzed for illustration

purposes in Section 4.4. We conclude this chapter with a discussion, conclusion and

recommendation in Section 4.5.

We focus on the 2× 2 crossover design in Chapters 4 and 5, and will extend our

study to more general designs in Chapter 6.

4.2 Methods and models

Suppose that we have a single observation for each subject from both the off-drug

day and the on-drug day in both periods in a AB/BA crossover trial. Denote these



59

by Xijk and Yijk respectively, where i = 1, 2, j = 1, 2 and k = 1, 2, . . . , nj are the

indices for period, sequence and subject within the jth sequence, respectively. The

data layout is presented in Table 4.1.

Table 4.1 A Two-period Crossover Trial with Baseline Measurements

Sequence AB Sequence BA

Period 1 off-drug day X111 . . . X11n1 X121 . . . X12n2

on-drug day Y111 . . . Y11n1 Y121 . . . Y12n2

Period 2 off-drug day X211 . . . X21n1 X221 . . . X22n2

on-drug day Y211 . . . Y21n1 Y221 . . . Y22n2

From Table 4.1, each subject has four observations, which are from four different

days (two from each period). Part of the variation can be attributable to differences

in subjects (between subjects), while other parts can result from differences between

periods and days within periods. In order to capture all of these sources of vari-

ability, we include random subject and subject by period interaction effects as well

as random error in the model. As explained in Section 4.1, we assume that there is

no carryover effect, but include other commonly considered fixed effects in crossover

trials, such as an overall mean, period effects and treatment effects, as well as day

effects. A similar model, which includes the carryover effects as well, was considered

by Willan and Pater (1986).

Following the notations from the traditional model, the model for the observa-

tions can be written as

Yhijk = µ + πi + Dhi + hτt(i,j) + sjk + ζijk + εhijk, (4.1)

i = 1, 2, j = 1, 2, k = 1, 2, . . . , nj, h = 0, 1,

where Yhijk corresponds to Xijk when h = 0 and to Yijk when h = 1. The terms µ,

πi, Dhi and τt(i,j) represent an overall mean, the ith period effect, the hth day effect
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in the ith period and the direct treatment effect due to the treatment assigned to

the ith period in the jth sequence, respectively. The remaining three terms sjk, ζijk

and εijkh are random subject effects, subject by period interaction and random error,

and they are assumed to be mutually independently distributed as sjk ∼ N(0, σ2
s),

ζijk ∼ N(0, σ2
sp) and εhijk ∼ N(0, σ2

ε ), respectively.

From the model assumptions, we obtain

Corr(Xijk, Yi′jk) =





(σ2
s + σ2

sp)/(σ
2
s + σ2

sp + σ2
ε ) = ρw/p if i = i′,

σ2
s/(σ

2
s + σ2

sp + σ2
ε ) = ρb/p if i 6= i′,

where ρw/p is a within period correlation, while ρb/p is a between period correlation.

Notice that σ2
sp > 0 indicates ρw/p is greater than ρb/p , which implies that the

correlation between the baseline measurements and the outcomes is greater when

they are from the same period. From the assumptions, the correlation between the

first baseline measurements and the second outcomes is the same as the correlation

between the first outcomes and the second baseline measurements, which is not

unreasonable if the wash-out periods are relatively long compared to the treatment

periods.

For a given subject, the within period correlation can be denoted as ρ =

Corr(Xijk, Yijk|sjk) = σ2
sp/(σ

2
sp + σ2

ε ), and is referred to as partial correlation (Senn,

2002; Jones and Kenward, 2003). Senn (2002) suggested that methods of incorpo-

rating baseline measurements can be chosen based on the value of ρ. We consider

Model 4.1 to retain the baseline measurements as part of the response vector, and

compare it with the other three commonly used methods at different values for ρ.

Therefore, we consider four ways for handling the baseline measurements:

1) Retain the baseline measurements as part of the response vector as described

in Model 4.1.
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2) Ignore the baseline measurements, and use the observations for outcomes only:

Yijk = µ + πi + τt(i,j) + sjk + εijk. (4.2)

3) Use change from baseline measurements as the response variable:

Yijk −Xijk = µ + πi + τt(i,j) + εijk. (4.3)

4) Use baseline measurements as a covariate and model the outcomes conditional

on the covariate:

Yijk = µ + πi + τt(i,j) + βxijk + sjk + εijk. (4.4)

The assumptions for the random effects in Models 4.2-4.4 are identical to those

for Model 4.1. It is clear that Models 4.2 and 4.3 are consistent with the assumptions

for baseline measurements and outcomes postulated by Model 4.1. However, this is

less obvious for Model 4.4. It is however easy to show that Yijk and Xijk in Model

4.1 follow a bivariate normal distribution, and the form of Model 4.4 emerges by

considering the conditional distribution of Yijk given Xijk = xijk, with the value of

β being the ratio of the covariance between Yijk and Xijk and the variance of Xijk.

Assuming that the variance components are known, we can obtain the Best Linear

Unbiased Estimators (BLUE) of the treatment contrast and the corresponding vari-

ances for Models 4.1 - 4.4. We summarize the results in Table 4.2.

Table 4.2 BLUEs and their Variances for Estimating the Treatment Contrast

Model Estimator Variance

4.1 1
2
[Ȳ11. + Ȳ22. − Ȳ12. − Ȳ21. − ρ(X̄11. + X̄22. − X̄12. − X̄21.)]

n1+n2

2n1n2
(1 + ρ)σ2

ε

4.2 1
2
(Ȳ11. + Ȳ22. − Ȳ12. − Ȳ21.)

n1+n2

2n1n2

1
1−ρ

σ2
ε

4.3 1
2
[Ȳ11. + Ȳ22. − Ȳ12. − Ȳ21. − (X̄11. + X̄22. − X̄12. − X̄21.)]

n1+n2

2n1n2
2σ2

ε

4.4 1
2
[Ȳ11. + Ȳ22. − Ȳ12. − Ȳ21. − β(x̄11. + x̄22. − x̄12. − x̄21.)]

n1+n2

2n1n2
(1 + a)σ2

ε

ρ =
σ2

sp

σ2
sp+σ2

ε
, β =

σ2
s+σ2

sp

σ2
s+σ2

sp+σ2
ε
, a =

(σ2
s+σ2

sp)2+σ2
spσ2

ε

(σ2
s+σ2

sp+σ2
ε )2
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It can be shown that ρ ≤ a ≤ 1, and the minimum and maximum value of a can

be obtained when σ2
s = 0 and σ2

ε = 0, respectively. So the differences between the

variances for the estimators of the treatment contrast from different models can be

roughly expressed as a function of the partial correlation ρ.

From Table 4.2, we can see that only the variance from the method of using

baseline measurements as a covariate (Model 4.4) depends on the subject variability

σ2
s , and the value is between the variances for the method of retaining the baseline

measurements as part of the response vector (Model 4.1) and the method of analyzing

change from baselines (Model 4.3). Furthermore, the variance for the method of

retaining the baseline measurements as part of the response vector is the smallest

as long as ρ is not equal to zero. If ρ = 0, then this variance is the same as that

from the method of ignoring baseline measurements (Model 4.2), which is only 50%

of that for the method of analyzing change from baselines. When ρ is equal to 0.5,

the variance for the method of ignoring baseline measurements is the same as that

for the method of analyzing change from baselines, but is almost 25% greater than

that for the methods of retaining the baseline measurements as part of the response

vector and using baseline measurements as a covariate. When ρ is around 1, the

variances for the three methods of using baseline measurements are close to each

other, but ignoring baseline measurements could in that case result in a very large

variance.

4.3 Simulation studies

In the last section, the theoretical derivations and comparisons of the variances for

the different methods under different scenarios for the variance components were

made under the assumption that the variance components are known. However,
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in practice, variance components are typically unknown and need to be estimated

from the data. Thus, in this section, we conduct a simulation study for the AB/BA

crossover design to evaluate the performance of the discussed methods.

As discussed in Section 4.2, we obtain the measurements from both the off-drug

day and the on-drug day within each period, and we analyze the data by the various

methods discussed. The primary purpose of the simulation study is to compare the

relative efficiencies (RE) of the methods for estimating of the treatment contrast at

different values of the partial correlation ρ. Since the main purpose of an experiment

which uses a crossover design is to compare the treatment effects, we may also be

interested in testing the hypothesis of equal treatment effects. Thus, we will compute

the type I error rate for testing τA = τB in the simulation study.

In the simulation study, we generate the data based on Model 4.1. We set

τA − τB = 0 and τA − τB = 0.5 for the evaluation of type I error rate and power,

respectively, for testing H0 : τA = τB. We set µ = 100 and set all other fixed effects

to be zero. The relative efficiencies depend on the relative value of σ2
s , σ2

sp to σ2
ε ,

and we can set σ2
ε = 1. We let the subject variance σ2

s take the values 0.2, 0.5, 1, 2,

5 and 10, which then correspond to the ratio of σ2
s and σ2

ε . For σ2
sp, we select each

time a different value so that the partial correlations ρ between the data from the

off-drug day and on-drug day are 0, 0.2, 0.4, 0.5, 0.6, 0.8. We consider 6, 12 and

24 subjects in each sequence, which are common numbers in phase I clinical trials.

Each scenario is simulated 5000 times.

We analyze the simulated data by using PROC MIXED in SAS with “KR” degree

of freedom adjustment for all the methods mentioned in Section 4.2. We estimate the

treatment contrast τA−τB, compute the standard error (SE) for the estimators of the

treatment contrasts, and convert SE to relative efficiency (RE). We also investigate

the type I error rate and power for testing the hypothesis of equal treatment effects.



64

The results of REs for different methods does not depend on the value of τA−τB,

therefore, we do not present the results from the case of τA − τB here. Table 4.3

presents the results for 24 subjects per sequence when σ2
s/σ

2
ε = 1. In Table 4.3,

τ̂A − τ̂B is the mean of the treatment contrast estimates, SE est is the mean of the

estimated standard errors for τ̂A− τ̂B, and the numbers in parentheses under column

called SE true are theoretical results of the standard errors calculated from Table

4.2 based on the values of the variance components used in the simulation. With

SE MC as the Monte Carlo standard deviation, i.e. the standard deviation of the

5000 estimates of τA − τB, SE rediff is the relative difference between SE est and

SE MC and is computed as SE est - SE MC
SE MC

× 100%. RE is the relative efficiency, which

is the ratio of the minimum SE est of all methods for that scenario and SE est for

that particular method. Type I error rate is calculated by recording the percentage

of times out of 5000 that the test of no treatment difference is rejected at the level

of 0.05.
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Table 4.3 Results for 24 Subjects when σ2
s/σ

2
ε = 1

ρ Methods τ̂A − τ̂B SE est(SE true) SE rediff RE Type I error

0.0 Baselines in response vector -0.0014 0.2064(0.2041) 1.10 98.27 4.96

Ignore baselines -0.0015 0.2028(0.2041) -0.29 100 4.72

Change from baselines -0.0025 0.2880(0.2887) -0.01 70.44 5.24

Baselines as a covariate -0.0022 0.2214(0.2282) -0.99 91.59 5.06

0.2 Baselines in response vector 0.0032 0.2250(0.2236) -0.94 100 5.10

Ignore baselines 0.0039 0.2273(0.2282) -1.44 98.99 5.24

Change from baselines 0.0025 0.2879(0.2887) -0.92 78.15 5.06

Baselines as a covariate 0.0030 0.2334(0.2379) -1.88 96.37 5.12

0.4 Baselines in response vector 0.0042 0.2430(0.2415) -1.20 100 5.46

Ignore baselines 0.0040 0.2625(0.2635) -1.39 92.59 5.86

Change from baselines 0.0052 0.2884(0.2887) -0.41 84.26 5.38

Baselines as a covariate 0.0050 0.2447(0.2487) -2.55 99.30 5.78

0.5 Baselines in response vector 0.0015 0.2509(0.2500) 1.09 99.57 4.98

Ignore baselines -0.0019 0.2868(0.2887) 1.22 87.1 4.56

Change from baselines 0.0047 0.2880(0.2887) 1.84 86.74 4.64

Baselines as a covariate 0.0026 0.2498(0.2546) -0.56 100 4.52

0.6 Baselines in response vector -0.0006 0.2590(0.2582) -0.31 98.66 5.02

Ignore baselines -0.0041 0.3204(0.3227) -0.46 79.75 4.94

Change from baselines 0.0009 0.2879(0.2887) -0.92 88.75 5.00

Baselines as a covariate 0.0002 0.2555(0.2608) -2.61 100 5.28

0.8 Baselines in response vector -0.0037 0.2742(0.2739) 1.42 97.59 4.88

Ignore baselines -0.0054 0.4520(0.4564) -2.34 59.19 5.62

Change from baselines -0.0033 0.2881(0.2887) 1.41 92.86 4.56

Baselines as a covariate -0.0041 0.2676(0.2743) -1.38 100 5.24
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From Table 4.3, we can see that the estimates of the treatment contrast are close

to the true values, and the estimates of the standard errors are close to the theoretical

values under all scenarios. The small value of SE rediff indicates that SE est is

close to SE MC. However, the SE rediff when using the baseline measurements as a

covariate is relatively larger than that for other methods. In addition, SE rediff for

smaller sample sizes is relatively larger (results are not shown here). Furthermore,

we can see that the type I error rate maintains the nominal level of 5%.

We present the pattern of relative efficiencies (RE) at different values of the

partial correlation ρ for different numbers of subjects when σ2
s/σ

2
ε = 1 in Figure

4.1, where REs in the top, middle and lower panel correspond to the REs based on

SE est, SE true and SE MC, respectively.
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Relative Efficiencies Under Different Scenarios
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Figure 4.1: Relative Efficiencies for Each Method at Different Values of the Partial
Correlation for Different Sample Sizes when σ2

s/σ
2
ε = 1 (REs in the top, middle and

lower panel correspond to REs based on SE est, SE true and SE MC, respectively)

For the middle panels (based on the theoretical SE), the REs do not depend on

the numbers of subjects, as is also immediately clear from Table 4.2. The pattern for

RE based on SE MC from the simulation study is closer to the theoretical result than

that based on SE est. This is especially clear at the smaller sample size. This reflects

that it is more difficult to obtain precise estimates for the variance components at

smaller sample sizes. The larger the sample size, the smaller the values for SE rediff,

and the closer SE est is to the theoretical results.

If we look at the RE for one particular sample size in Figure 4.1 (say 24 subjects

per sequence), then the results confirm the theoretical results we derived in Section



68

4.2. For example, we can see that retaining baselines as part of the response vector

has 100% relative efficiency (RE) almost all the time, the RE for baselines as a

covariate and change from baselines increases as the partial correlation ρ increases,

and the RE for ignoring baseline measurements decreases. The RE for baselines as

a covariate is greater than that for change from baselines for all values of ρ.

When the partial correlation ρ is around zero, which indicates that σ2
sp is small

compared to σ2
ε , then the observations on the same subject in the same period are

no more correlated than the observations on the same subject in different periods,

and ignoring baseline measurements has the largest RE, i.e. the smallest standard

error. Retaining baseline measurements in the response vector has a similar RE,

while incorporating baseline measurements as a covariate results in almost 10%

reduction of RE and change from baselines reduces the RE dramatically. The RE

for ignoring baseline measurements is close to that of using change from baselines

as the response variable when ρ is around 0.5, but is smaller than that of using

baseline measurements as a covariate and retaining baseline measurements as part

of the response vector. When ρ is greater than 0.5, all of the methods, which include

baseline measurements in the analysis, has a higher RE than ignoring baselines.

This is especially true when ρ is close to 1, where using baseline measurements has

a significantly larger RE than ignoring baseline measurements. In addition, using

baseline measurements as a covariate and retaining baseline measurements as part

of the response vector are comparable, and both methods have more efficiency than

using change from baselines as the response variable.

Since the variance for baseline measurements as a covariate also depends on

the subject variance, we display the relative efficiencies of the different methods for

different values of σ2
s/σ

2
ε in Figure 4.2.
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Relative Efficiencies Under Different Scenarios
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Figure 4.2: Relative Efficiencies at Different Values for the Partial Correlation for
Six Values of the Ratio of Subject Variance to Random Error

From Figure 4.2, we see confirmation that the general pattern of relative efficien-

cies (RE) for three of the methods is similar for different values of σ2
s/σ

2
ε . However,

the RE for baseline measurements as a covariate depends dramatically on the ratio

of σ2
s/σ

2
ε . The RE for baseline measurements as a covariate decreases as the ratio

increases, especially when the partial correlation ρ is small. When the ratio of σ2
s/σ

2
ε

is larger, we can see that using baseline measurements as a covariate has a similar

efficiency as using change from baselines. That is because β is close to 1 at larger

ratio of σ2
s/σ

2
ε , then these two methods are similar to each other.

Figure 4.3 displays the standard errors of the estimators of the treatment contrast

for different methods at different values of σ2
s/σ

2
ε .
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Standard Errors Under Different Scenarios
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Figure 4.3: Standard Errors for Estimating τA− τB for Different Values of the Ratio
of Subject Variance and Random Error as a function of the Partial Correlation

As expected, the standard errors (SE) from the methods of retaining the baseline

measurements as part of the response vector, ignoring baseline measurements and

analysis of change from baselines remain the same as the ratio of σ2
s/σ

2
ε changes.

However, for the method of using baseline measurements as a covariate, the SE

increases as the ratio of σ2
s/σ

2
ε increases, and the change is more pronounced when

ρ is small, with almost no change when ρ is large. That is why the method of using

baseline measurements as a covariate is not as efficient for large values of the ratio

of σ2
s/σ

2
ε as it is for small values for small ρ.
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4.4 Real data analysis

We now present a real data example for the case of single measurements to illustrate

our methods.

4.4.1 Comparison of transdermal nitrate and isosorbide dinitrate in

chronic stable angina

Nicholls et al. (1986) carried out a study to compare the treatment effects of trans-

dermal nitrate (TN) with isosorbide dinitrate (ISDN) for angina in a group of 20

patients with chronic stable angina pectoris. Half of the patients were randomly

allocated to the sequence consisting of treatment with TN for 4 weeks followed by

treatment with ISDN for 4 weeks, whereas the other half of the patients received

the treatments in reversed order. Before each treatment period, there was a 2-week

period in which no treatment was administrated to obtain the baseline measure-

ments, so that the trial lasted 12 weeks for each patient. The measurements are the

weekly anginal attack rates and the data are displayed in Table 4.4.

Table 4.4 Weekly Anginal Attack Rates
Period 1 Period 2

Sequence Patient Baseline Outcomes Baseline Outcomes
TN → ISDN 1 1.00 2.00 2.00 1.25

4 41.50 30.00 31.50 27.00
10 20.50 20.50 21.00 25.50
12 15.50 14.50 14.50 13.25
14 16.00 18.00 12.50 9.00
15 2.00 3.50 3.00 2.25
17 10.00 9.00 7.50 5.50
20 10.00 8.50 6.00 4.25
22 14.00 2.00 2.00 1.25
24 5.50 2.50 1.50 2.50

ISDN → TN 3 17.50 19.25 19.00 21.25
5 11.00 6.50 7.50 6.50
7 4.00 2.00 1.50 3.00
9 11.00 16.50 10.00 18.25
13 6.50 4.25 0.50 1.25
16 6.00 3.25 2.00 4.00
18 1.00 0.00 0.00 0.00
21 3.00 0.75 3.00 5.25
23 9.50 1.00 0.50 8.50
25 10.50 14.00 11.00 17.25
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From Table 4.4, it is easy to notice that there is substantial variability among

subjects. Crossover designs are especially important in such situations, since each

subject receives both treatments so that the between-subject variability can be elim-

inated when comparing the treatment effects.

From Nicholls et al. (1986), there was no evidence of any carry-over effects in

the second active treatment period. We analyzed the data by the various methods

discussed in Section 4.2, and we obtained σ̂2
s = 65.3032, σ̂2

sp = 0 and σ̂2 = 8.9099

based on Model 4.1, so the partial correlation ρ = 0/(0 + 8.9099) = 0. Since the

partial correlation equals zero, we would expect that ignoring baseline measurements

will have the smallest variance for the estimator of the treatment comparison.

We present the results from the different methods in Table 4.5, where we also

include a 95% confidence interval and a p-value for the treatment difference between

TN and ISDN.

Table 4.5 Analysis Results for Anginal Attack Rates

95% CI

Method Estimate StdErr RE Lower Upper P-value

1) Baselines in response vector 2.3200 0.9439 90.97 0.4291 4.2109 0.0171

2) Ignoring baselines 2.3200 0.8587 100 0.5159 4.1241 0.0146

3) Change from baselines 1.8450 1.3982 61.41 -0.9881 4.6781 0.1951

4) Baselines as a covariate 1.9387 1.1078 77.52 -0.4013 4.2787 0.0984

From Table 4.5, in terms of the relative efficiency (RE), for ignoring baseline mea-

surements, retaining baseline measurements in the response vector, using baseline

measurements as a covariate and using change from baseline measurements presents

the methods in decreasing order. Using change from baselines as the response vari-

able has only 61% efficiency compared to ignoring baseline measurements, and the
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RE of using baseline measurements as a covariate is also low. This is because the

ratio of σ2
s/σ

2
ε is relatively large for these data, and this observation agrees with our

simulation results. Notice that treatment effect is significant under only two of the

methods. By using Grizzle (1965) and Koch (1972)’s method, Nicholls et al. (1986)

concluded that there are significant differences between TN and ISDN.

In addition, for the method of using baseline measurements as a covariate, based

on the estimated variance components and the formula for β in Table 4.2, β̂ is equal

to 0.8799. Estimating this coefficient directly from the data, we obtain an estimate

of 0.8027, with a standard error 0.08997. This indicates that these two estimates are

close.

4.5 Discussion, conclusion and recommendation

It is common that baseline measurements are obtained prior to each treatment period

in 2× 2 crossover trials in clinical studies. Different methods under various models

have been suggested to incorporate the baseline measurements in the analysis (Hills

and Armitage, 1979; Patel, 1983; Fleiss, Wallenstein and Rosenfeld, 1985; Willan

and Pater, 1986; Kenward and Jones, 1987; Chi, 1993; Grieve, 1994; Grieve and

Senn, 1998).

However, all of these papers allowed for carryover effects in the wash-out period.

Fleiss (1989) pointed out some issues associated with this topic. Moreover, there is a

debate about whether, in the case of carryover effects, such measurements should be

used as baselines at all. That is why Senn (2002) suggested the the second baseline

measurements should be used only when there is no carryover effect from the previous

period. In addition, he suggested to use whether ρ is greater or less than 0.5 to decide

whether to use change from baselines as the response variable or ignore baseline

measurements.
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In clinical trials, the FDA accepts the results of experiments using crossover

designs only when there is no carryover effect. Therefore, long wash-out periods are

usually applied, and data are often obtained on both the off-drug and on-drug days,

because pharmacologists believe that there maybe some diurnal variation. In this

chapter, we studied the problem of how to incorporate the baseline measurements

for this situation. We proposed a method, retaining the baseline measurements as

part of the response variable, which is new in the crossover setting. We compared it

with three other commonly used methods. The variances of the treatment contrast

estimators for the different methods are derived and compared at different values of

ρ in the range from 0 to 1. We also conducted a simulation study to evaluate the

performance of four methods.

Our theoretical results, which were obtained under the assumption of known

variances, are confirmed by our simulation results, which do not make this assump-

tion. From both results, we can conclude that different methods can be compared

based on the partial correlation ρ. Among the four methods, only the variance of the

contrast estimator from the method that uses baseline measurements as a covariate

depends on the subject variance. However, the general pattern of the RE for the

different methods at different partial correlations ρ is consistent for a broad range of

true values of the subject variance. In general, the RE of ignoring baseline measure-

ments decreases as ρ increases, whereas the RE of using baseline measurements, no

matter which method is used, increases as ρ increases. This is not surprising, since

larger values of ρ imply a stronger correlation between the baseline measurements

and outcomes. On average, our new method, retaining baseline measurements as

part of the response vector has the largest RE, as long as ρ is not near 0. If ρ is

very small, then ignoring baseline measurements has a relatively large RE. The RE

of using baseline measurements as a covariate is also high as long as the subject

variance is not large. However, for the analysis of change from baselines, the RE can
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be considerably smaller and it is best to avoid this method. That agrees with the

recommendation in earlier work (Fleiss, 1989; Senn, 2002).

There are some implicit assumptions in our study, and changing those could

lead to different conclusions. For example, the fact that the same effects µ and sjk

are assumed for both baselines and outcomes implies that these measurements are

comparable and on the same scale, which is reasonable for most cases. Moreover,

we assume that the period effect for baselines and the corresponding outcomes are

the same, but we also include the day effects to capture the difference between data

from off-drug and on-drug day. We also assume that the variance of the baseline

measurements is equal to that for the outcomes. For a detailed discussion of the

validation of the assumptions made in the baseline analysis, the reader may refer to

Grieve and Senn (1998).

Based on our results, we formulate the following recommendations:

First, the experimenter must use whatever information is available from earlier

studies with the product (drug) to design the experiment appropriately. For example,

appropriate lengths for treatment wash-out periods should be selected. If significant

unequal carryover effects are suspected, then a crossover design should not be used.

Second, if there is no prior knowledge about the partial correlation from previous

data analysis in past experiences, collect the baseline measurements and retain the

baseline measurements as part of the response vector in the analysis.

Third, if there is evidence from previous data analysis in past experiences that

partial correlation ρ is very small, there is no benefit to collect baselines, including

baseline measurements as a covariate can result in substantial SE inflation especially

when subject variance is large.

Fourth, if baseline measurements are obtained, and the partial correlation is

relatively large and subject variance is relatively small then we should use them
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as a covariate; however, analysis of change from baseline measurements should be

avoided at all times.
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Chapter 5

Use of Baseline Measurements in the 2× 2 Crossover Trial for the

Case of Repeated Measurements

5.1 Introduction

The discussion of baseline measurements in Chapter 4 deals with the case of a single

measurement on each day within each period. However, very often, in practice, the

response in a clinical trial is measured repeatedly over time for each day within each

period. In this case, each subject produces a set of profiles of repeated measurements

in each period. Similar to Putt and Chinchilli (1999), we refer to this as a repeated

measurements crossover design to emphasize that repeated measures are collected

at different time points under the same treatment within each period. A crossover

design with one observation per treatment period has been called a basic crossover

design by Wallenstein and Fisher (1977).

There can be many reasons to collect measurements over time, for example, to

obtain as much information about the effects of the treatments as possible; to inves-

tigate dynamic changes in treatment effects over time, and so on. How to approach

the statistical analysis may depend on the reasons for collecting such data. Jones and

Kenward (2003) observed that summary statistics, such as particular end point, the

area under the profile and the average slope of the profile, may be used to reduce the

repeated measurements crossover design to the basic crossover design. This will sim-

plify the problem, and summary statistics may provide useful information in some

situations. However, it is neither always possible, nor always desirable, depending on

78



79

the objective, to base the analysis on a summary statistic. Direct methods of analysis

for repeated measurements with no baseline measurements in crossover design have

been discussed by many authors. For example, by using the sum and difference of the

observations from two periods, both Wallenstein and Fisher (1977) and Jones and

Kenward (2003) applied the conventional split-plot approach for this design, while

both Patel and Hearne (1980) and Grender and Johnson (1993) discussed a multi-

variate linear model approach. Dunsmore (1981) compared two approaches to study

the repeated measurements crossover design: one applied Wallenstein and Fisher’s

(1977) model, the other adapted Fearn (1975)’s Bayesian analysis of growth curves

for a quadratic curve over time. Putt and Chinchilli (1999) presented a mixed effects

model to analyze repeated measures crossover studies.

However, to our knowledge, the analysis of the repeated measurements crossover

design including the baseline measurements has not been formally described. To

motivate our work, we introduce studies in which data were collected at different

time points on both the off-drug and on-drug day in both periods. We consider

both time-matched baselines and averaged baselines. Time-matched baselines refer

to the situation where each measurement on an off-drug day is the baseline for the

measurement on the on-drug day at the same time point, whereas averaged baselines

refer to the average of the measurements from all time points on an off-drug day as

the baseline for each on-drug day measurement in that period.

The goal of our study in this chapter is twofold. As a preliminary step in the anal-

ysis, we suggest a test for the treatment by time interaction by retaining the baseline

measurements as part of the response vector. If this interaction is statistically sig-

nificant, we wish to develop graphical methods to detect the trend of treatment

changes over time. Alternatively, if this interaction is not significant, we wish to

determine appropriate methods to incorporate the information from the baseline

measurements to compare the average treatment contrast for different methods and
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different types of baselines considered. In repeated measurements crossover designs,

random errors are commonly assumed to be independent, such as in Wallenstein

and Fisher (1977). However, the measurements taken closer together in time could

be more highly correlated than measurements further apart in time, such as for an

autocorrelation structure, or maybe even more complicated. We would like to con-

sider different assumptions for the random errors to study the treatment contrast.

For the theoretical results, we will focus on independent random errors and random

errors that follow an AR(1) structure.

Therefore, this chapter is organized as follows. In Section 5.2, examples are intro-

duced to illustrate the motivation of the study. In Section 5.3, potential models for

the repeated measurements crossover design are discussed, and the effect of treat-

ment by time interaction is tested. If the interaction effect is significant, graphical

methods are discussed in Section 5.4 to visualize the treatment effect changes over

time. Otherwise, different methods and models to handle baseline measurements

are discussed in Section 5.5, and analytical expressions of variances of the estima-

tors of the treatment contrast from different methods are derived and compared.

A thorough simulation study is conducted to evaluate the performance of different

methods. A numerical example discussed in Section 5.2 is analyzed for illustration

purposes. Section 5.6 provides some discussion for this chapter. The proofs for the

results in Section 5.5 are deferred to the Appendix.

5.2 Motivating examples

Numerical examples of repeated measurements crossover experiments from the phar-

maceutical industry are used to motivate our study. Because these data are from real

studies, due to confidentiality issues, we can describe the studies only abstractly, and

we can not report the original data here either.
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The first example (Study I) is from a single-center, randomized, double-blind 2

× 2 crossover trial. In that experiment, 12 healthy males were randomly assigned

to one of two sequences, 6 in each sequence. The subjects in sequence AB received

treatment A first then followed by treatment B; the subjects in sequence BA received

the treatments in the reverse order. Between two periods, there were 14 days of wash-

out period. The data were collected repeatedly at 3 different time points (equally

spaced) before the treatments were assigned (off-drug day) and during the treatment

periods (on-drug day) for both periods.

The second example (Study II) is also from a single-center, randomized, double-

blind, but 4 × 4 crossover trial. There are 4 subjects in each sequences. Since period

effects are not significant, we will extract a 2 × 2 design by using two treatments

only for illustration purpose. So it is realized similarly as Study I except that the

data were collected repeatedly at 10 different time points (not equally spaced) on

both days in each period.

The goal of Study I is to compare the treatment contrast averaged over time,

and the goal of Study II is to detect trend of treatment changes over time. The

question is how to use the information provided by the baseline measurements more

efficiently in such studies.

5.3 Statistical models

For designs described in Section 5.2, in general, we assume that measurements are

obtained at q (m = 1, 2, . . . , q) time points on both off-drug and on-drug days in

both periods in a AB/BA crossover trial, and we denote them by Xijkm and Yijkm

respectively, where i = 1, 2, j = 1, 2, k = 1, 2, . . . , nj and m = 1, 2, . . . , q are

the indices for period, sequence, subject within the jth sequence and time point,

respectively. Schematically, the data can be displayed as in Table 5.1.
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Table 5.1 A Two-Period Crossover Trial with Repeated Measurements

Sequence AB Sequence BA

Period 1 off-drug day time 1 X1111 . . . X11n11 X1211 . . . X12n21

time 2 X1112 . . . X11n12 X1212 . . . X12n22

...
...

...
...

...
...

...

time q X111q . . . X11n1q X121q . . . X12n2q

on-drug day time 1 Y1111 . . . Y11n11 Y1211 . . . Y12n21

time 2 Y1112 . . . Y11n12 Y1212 . . . Y12n22

...
...

...
...

...
...

...

time q Y111q . . . Y11n1q Y121q . . . Y12n2q

Period 2 off-drug day time 1 X2111 . . . X21n11 X2211 . . . X22n21

time 2 X2112 . . . X21n12 X2212 . . . X22n22

...
...

...
...

...
...

...

time q X211q . . . X21n1q X221q . . . X22n2q

on-drug day time 1 Y2111 . . . Y21n11 Y2211 . . . Y22n21

time 2 Y2112 . . . Y21n12 Y2212 . . . Y22n22

...
...

...
...

...
...

...

time q Y211q . . . Y21n1q Y221q . . . Y22n2q

From Table 5.1, each subject has 4q observations, which are from q different

time points on four different days within two different periods. Here we assume

that days are nested in periods, but that times are crossed with days and periods.

So, besides the possible variations discussed in the case of single measurements,

additional sources of random variation may be due to different time points. Possible

additional fixed effects could be time effects and a treatment by time interaction.

Although the primary purpose of an experiment which uses crossover design is to

compare the treatment effects, if the treatment by time interaction is significant, it

is usually not meaningful to compare the average treatment effects. So we consider

a model with a treatment by time interaction to examine the change in treatment
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difference over time. If this interaction is not significant, then we ignore it to study

the average treatment effects. Thus, one possible model, with treatment by time

interaction, for the observations in the case of repeated measurements may be written

as

Yhijkm = µ + πi + Dhi + Tm + hτt(i,j) + h(τT )t(i,j)m (5.1)

+sjk + ζijk + ωjkm + ξhijk + εhijkm,

i = 1, 2, j = 1, 2, k = 1, 2, . . . , nj, m = 1, 2, . . . , q, h = 0, 1,

where Yhijkm corresponds to Xijkm when h = 0 and to Yijkm when h = 1, respectively.

Model 5.1 without treatment by time interaction can be written as

Yhijkm = µ + πi + Dhi + Tm + hτt(i,j) + sjk + ζijk + ωjkm + ξhijk + εhijkm. (5.2)

The terms Tm and (τT )t(i,j)m stand for a fixed time effect and treatment by time

interaction, respectively. The subject by time interaction ωjkm is the random effect

due to the kth subject in the jth sequence at the mth time point, and we assume that

ωjkm ∼ N(0, σ2
st). The term ξhijk is the random effect of the kth subject in the jth

sequence at the ith period on the hth day, and we assume that ξhijk ∼ N(0, σ2
sd). The

random terms sjk and ζijk have same distribution as in Chapter 4. For the random

error terms εhijkm’s, we consider two different assumptions for theoretical derivations.

First, as usual, we assume that the error terms are independently distributed as εhijkm

∼ N(0, σ2
ε ). Second, as discussed in Section 5.1, we assume that random error terms

follow the first-order autocorrelated structure (AR(1)) for the different time points

m (equally spaced) for the same subject on the same day in the same period with

variance σ2
ε and autocorrelation coefficient r. It is assumed that the random errors

and all other random terms are independent to each other. Other model terms have

the same interpretations as in Chapter 4.
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From the model assumptions, we obtain

Corr(Xijkm, Yi′jkm) =





(σ2
s + σ2

sp + σ2
st)/(σ

2
s + σ2

sp + σ2
st + σ2

sd + σ2
ε ) if i = i′,

σ2
s + σ2

st)/(σ
2
s + σ2

sp + σ2
st + σ2

sd + σ2
ε ) if i 6= i′.

5.3.1 Testing for the treatment by time interaction

First, we would like to use Model 5.1 to test for a possible treatment by time inter-

action. We use the motivating examples, and fit the data with different variance-

covariance structures for the random errors. Tables 5.2 and 5.3 present the results.

Table 5.2 Results of Test for Treatment by Time Interaction for Study I

Var-cov F-value ProbF AIC AICC BIC

IND 1.68 0.1656 -142.5* -142.1* -140.1*

AR(1) 1.63 0.1804 -140.6 -139.9 -137.6

CS 1.68 0.1656 -140.5 -139.9 -137.6

TOEP 1.68 0.1684 -140.6 -139.9 -137.6

ANTE(1) 1.57 0.2016 -135.1 -133.7 -130.8

SP(POW)(t) 1.81 0.1395 -140.6 -139.9 -137.6

SP(EXP)(t) 1.28 0.2883 -140.6 -139.9 -137.6

Table 5.3 Results of Test for Treatment by Time Interaction for Study II

Var-cov F-value ProbF AIC AICC BIC

IND 3.77 < .0001 4159.5 4159.6 4162.6

AR(1) 3.21 < .0001 4156.5 4156.6 4160.3

CS 3.77 < .0001 4161.5 4161.6 4165.4

TOEP 3.37 < .0001 4164.7 4165.3 4174.0

ANTE(1) 2.76 0.0004 4170.9 4172.6 4187.9

SP(POW)(t) 3.24 < .0001 4152.1 * 4152.2 * 4156.0 *

SP(EXP)(t) 3.25 < .0001 4152.1 * 4152.2 * 4156.0 *

In Tables 5.2 and 5.3, the abbreviated names of the variance-covariance structure

“IND”, “AR(1)”, “CS”, “TOEP”, “ANTE(1)”, “SP(POW)(t)” and “SP(EXP)(t)”
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stand for “Independent”, “Autoregressive (1)”, “Compound Symmetry”, “Toeplitz”,

“Ante-dependence (1)”, “Spatial Power (t)” and “Spatial Exponential (t)”, respec-

tively. The examples for the structures “ANTE(1)”, “TOEP” and “SP(POW)” can

be displayed as




σ2 σ1σ2ρ1 σ1σ3ρ1ρ2

σ1σ2ρ1 σ2 σ2σ3ρ2

σ3σ1ρ2ρ1 σ3σ2ρ2 σ2
3




,




σ2 σ1 σ2 σ3

σ1 σ2 σ1 σ2

σ2 σ1 σ2 σ1

σ3 σ2 σ1 σ2




and σ2




1 ρd12 ρd13 ρd14

ρd21 1 ρd23 ρd24

ρd31 ρd32 1 ρd34

ρd41 ρd42 ρd43 1




,

respectively, where dij is the absolute distance between the ith and jth observations.

“F-value” and “ProbF” are the values of the test statistic and p-values for tests

for a treatment by time interaction. “AIC”, “AICC” and “BIC” are model selection

criteria. From the tables, models with independent variance-covariance structure for

Study I and Spatial structure for Study II have the smallest AIC, AICC and BIC.

However, different variance-covariance structures lead to the same conclusion for

the significance of treatment by time interaction. Clearly, the treatment by time

interaction is not significant for Study I, but it is for Study II. So we will use Study

II as an example to demonstrate the graphical methods to study the treatment effect

changes over time, and use Study I to study treatment effects averaged over time by

using different methods to incorporate the baseline measurements.

5.4 Graphical methods for treatment effects over time

As seen in Section 5.3, the treatment by time interaction from Study II is significant.

We will use graphical methods to display how the treatment effects change over time.

Most often in repeated measurements crossover designs with no baselines, profile

plots are used of the response versus time points for each period for each individual

(Putt and Chinchilli, 1999; Jones and Kenward, 2003). The latter also mentioned

the possibility of plotting treatment differences from the original data, against the
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different time points for each treatment group, either individually or averaged over

each sequence.

In the presence of the baseline measurements, every subject has four observations

at each time point. By focusing on a fixed time point, we are back to a situation

similar to that in Chapter 4 and estimators obtained there suggest now how to esti-

mate the treatment difference at that time points. As an illustration, we consider the

method of retaining baseline measurements as part of the response vector. Based on

the results from Chapter 4, we use coefficients (ρm,−1,−ρm, 1) and (−ρm, 1, ρm,−1)

for the first and second sequence, respectively, for estimating τB− τA at a particular

time point, where ρm can be obtained by estimating σ2
sp/(σ

2
sp + σ2

ε ), σ2
sp and σ2

ε are

estimated based on the measurements on time point m. These linear combinations

are calculated for each subject at each time point, and the resulting values can be

plotted against time for each subject or averaged over each sequence.
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Treatment Effect Changes over Time for Each Subject
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Figure 5.1: Treatment Effect Changes over Time for Each Subject

Figure 5.1 shows the plot for each subject, where subjects 1-8 belong to sequence

AB and subjects 9-16 to sequence BA. However, from Figure 5.1, it is difficult to

recognize any trend of change in treatment differences over time. Figure 5.2 displays

averages over each sequence.
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Treatment Effect Changes over Time for Each Sequence
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Figure 5.2: Treatment Effect Changes over Time for Each Sequence

From Figure 5.2, there is a clearer pattern of treatment effect change over time.

Most of the plotted points are greater than zero, which indicates that the effect

of treatment B is larger than the effect of treatment A. In addition, in general, the

treatment effect first increases with time, and then decreases after reaching a peak at

the middle time points. A polynomial growth curve might be appropriate to study

the overall trend of treatment effect changes over time, and the estimates of the

parameters of the growth curves can be obtained by the same approach used in the

analysis of variance for basic designs.
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5.5 Methods to incorporate baseline measurements to study average

treatment effects

5.5.1 Methods and models

If the treatment by time interaction is not significant, we consider Model 5.2 to study

the average treatment effects. Similar to the case of single measurements, we consider

four different methods to incorporate the baseline measurements in the analysis. We

start from Model 5.2, and obtain the corresponding models for the other methods.

In addition, we consider both time-matched baselines and averaged baselines when

using either change from baseline measurements or using baseline measurements as

a covariate in this section.

Thus, the various models are:

1) Retain the baseline measurements as part of the response vector as in Model 5.2;

2) Ignore the baseline measurements, and use the observations for outcomes only:

Yijkm = µ + πi + Tm + τt(i,j) + sjk + ζijk + ωjkm + εijkm (5.3)

3) Use change from baseline measurements as the response variable:

3a) Time-matched baselines:

Yijkm −Xijkm = µ + πi + τt(i,j) + ζijk + εijkm (5.4)

3b) Averaged baselines:

Yijkm − X̄ijk. = µ + πi + Tm + τt(i,j) + ζijk + ωjkm + εijkm (5.5)

4) Use baseline measurements as a covariate and model the outcomes conditional on

the covariate:

4a) Time-matched baselines:

Yijkm = µ + πi + Tm + τt(i,j) + βxijkm + sjk + ζijk + ωjkm + εijkm (5.6)
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4b) Averaged baselines:

Yijkm = µ + πi + Tm + τt(i,j) + βx̄ijk. + sjk + ζijk + ωjkm + εijkm (5.7)

In Models 5.5 and 5.7, the ωjkm’s follow a compound symmetric correlation struc-

ture, while the εijkm’s follow a compound symmetric structure or Toeplitz correlation

structure for an independent or AR(1) structure in Model 5.2, respectively. All other

random terms in Models 5.3-5.7 have the same distribution as they do in Model 5.2.

Assuming that variance components are known, we can obtain the Best Linear

Unbiased Estimators (BLUE) of the treatment contrast for Models 5.2-5.7. The

results are presented in Tables 5.4 and 5.5 for independent and autocorrelated

random errors respectively. The proofs of the results are deferred to the Appendix.

Table 5.4 BLUEs for Estimating the Treatment Contrast

(random error terms are independent)

Model Estimator

5.2 1
2
[Ȳ11.. + Ȳ22.. − Ȳ12.. − Ȳ21.. − ρ(X̄11.. + X̄22.. − X̄12.. − X̄21..)]

5.3 1
2
(Ȳ11.. + Ȳ22.. − Ȳ12.. − Ȳ21..)

5.4 & 5.5 1
2
[Ȳ11.. + Ȳ22.. − Ȳ12.. − Ȳ21.. − (X̄11.. + X̄22.. − X̄12.. − X̄21..)]

5.6 1
2
[Ȳ11.. + Ȳ22.. − Ȳ12.. − Ȳ21.. − β1(x̄11.. + x̄22.. − x̄12.. − x̄21..)]

5.7 1
2
[Ȳ11.. + Ȳ22.. − Ȳ12.. − Ȳ21.. − β2(x̄11.. + x̄22.. − x̄12.. − x̄21..)]

ρ =
σ2

sp

σ2
sp+σ2

sd+σ2
ε /q

, β1 =
σ2

s+σ2
sp+σ2

st

σ2
s+σ2

sp+σ2
st+σ2

sd+σ2
ε
, β2 =

σ2
s+σ2

sp+σ2
st/q

σ2
s+σ2

sp+σ2
sd+(σ2

st+σ2
ε )/q
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Table 5.5 BLUEs for Estimating the Treatment Contrast

(random error terms follow AR(1))

ModelEstimator

5.2 1
2
{∑q

m=1 φm[Ȳ11.m + Ȳ22.m − Ȳ12.m − Ȳ21.m − ρ(X̄11.m + X̄22.m − X̄12.m − X̄21.m)]}
5.3 1

2
{∑q

m=1 φm(Ȳ11.m + Ȳ22.m − Ȳ12.m − Ȳ21.m)}
5.4 1

2
{∑q

m=1 φm[Ȳ11.m + Ȳ22.m − Ȳ12.m − Ȳ21.m − (X̄11.m + X̄22.m − X̄12.m − X̄21.m)]}
5.5 1

2
{∑q

m=1[φm(Ȳ11.m + Ȳ22.m − Ȳ12.m − Ȳ21.m)]− (X̄11.. + X̄22.. − X̄12.. − X̄21..)}
5.6 1

2
{∑q

m=1 φm[Ȳ11.m + Ȳ22.m − Ȳ12.m − Ȳ21.m − β1(x̄11.m + x̄22.m − x̄12.m − x̄21.m)]}
5.7 1

2
{∑q

m=1[φm(Ȳ11.m + Ȳ22.m − Ȳ12.m − Ȳ21.m)]− β2(x̄11.. + x̄22.. − x̄12.. − x̄21..)}

ρ =
σ2

sp

σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε
, φm =





1
q−(q−2)r

if m = 1, q

1−r
q−(q−2)r

if m = 2, · · · , q − 1

,

β1 =
σ2

s+σ2
sp+σ2

st

σ2
s+σ2

sp+σ2
st+σ2

sd+σ2
ε
, β2 =

σ2
s+σ2

sp+σ2
st/q

σ2
s+σ2

sp+σ2
sd+

σ2
st
q

+
(1−r2)q−2r(1−rq)

q2(1−r)2
σ2

ε

When random errors are independent, we can see from Table 5.4 that the BLUE

for the treatment contrast is comparable to the results in Table 4.2, and it is a

linear combination of the averages over subjects and different time points for the

two periods and two sequences. However, when random errors follow the AR(1)

structure, as we can see from Table 5.5, the BLUE of the treatment contrast is no

longer a linear combination of the Ȳij..’s and X̄ij..’s, but becomes a weighted average

of the Ȳij.m’s and X̄ij.m’s. In addition, the weight is 1/[q− (q− 2)r] for the first and

last time points, and is (1− r)/[q − (q − 2)r] for all other points.

Tables 5.6 and 5.7 present the results for the corresponding variances of the

BLUEs for the treatment contrast for independent and AR(1) random errors, respec-

tively.
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Table 5.6 Variances of BLUEs for the Treatment Contrast

(random error terms are independent)

Model Variance

5.2 n1+n2

2n1n2

(2σ2
sp+σ2

sd+σ2
ε /q)(σ2

sd+σ2
ε /q)

σ2
sp+σ2

sd+σ2
ε /q

5.3 n1+n2

2n1n2
(σ2

sp + σ2
sd + σ2

ε /q)

5.4 & 5.5 n1+n2

2n1n2
[2(σ2

sd + σ2
ε /q)]

5.6 n1+n2

2n1n2
[(1− β1)

2σ2
sp + (1 + β2

1)(σ
2
sd + σ2

ε /q)]

5.7 n1+n2

2n1n2
[(1− β2)

2σ2
sp + (1 + β2

2)(σ
2
sd + σ2

ε /q)]

Table 5.7 Variances of BLUEs for the Treatment Contrast

(random error terms follow AR(1))

Model Variance

5.2 n1+n2

2n1n2

(2σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε )(σ2

sd+ 1+r
q−(q−2)r

σ2
ε )

σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε

5.3 n1+n2

2n1n2
(σ2

sp + σ2
sd + 1+r

q−(q−2)r
σ2

ε )

5.4 n1+n2

2n1n2
[2(σ2

sd + 1+r
q−(q−2)r

σ2
ε )]

5.5 n1+n2

2n1n2
[2(σ2

sd + 1+r
q−(q−2)r

σ2
ε )] + n1+n2

n1n2

Pq−1
m=1(q−2m)r(m+1)σ2

ε

q2[q−(q−2)r]

5.6 n1+n2

2n1n2
[(1− β1)

2σ2
sp + (1 + β2

1)(σ
2
sd + 1+r

q−(q−2)r
σ2

ε )]

5.7 n1+n2

2n1n2
[(1− β2)

2σ2
sp + (1 + β2

2)(σ
2
sd + 1+r

q−(q−2)r
σ2

ε )] + n1+n2

n1n2

Pq−1
m=1(q−2m)r(m+1)σ2

ε

q2[q−(q−2)r]

To compare the variances for different models, similar to the case of single mea-

surements, we can write some of variances as a function of ρ in Table 5.8. We also

rewrite the variances that are more complicated and are not easily written as a

function of ρ in the similar forms in Table 4.2 by using a1 − a4.
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Table 5.8 Variances of BLUEs for the Treatment Contrast

Model Independent AR(1)

5.2 n1+n2

2n1n2
(1 + ρ)(σ2

sd + σ2
ε /q)

n1+n2

2n1n2
(1 + ρ)(σ2

sd + 1+r
q−(q−2)r

σ2
ε )

5.3 n1+n2

2n1n2

1
1−ρ

(σ2
sd + σ2

ε /q)
n1+n2

2n1n2

1
1−ρ

(σ2
sd + 1+r

q−(q−2)r
σ2

ε )

5.4 n1+n2

2n1n2
2(σ2

sd + σ2
ε /q)

n1+n2

2n1n2
[2(σ2

sd + 1+r
q−(q−2)r

σ2
ε )]

5.5 n1+n2

2n1n2
2(σ2

sd + σ2
ε /q)

n1+n2

2n1n2
[2(σ2

sd + 1+r
q−(q−2)r

σ2
ε )] + c1

5.6 n1+n2

2n1n2
(1 + a1)(σ

2
sd + σ2

ε /q)
n1+n2

2n1n2
[(1 + a3)(σ

2
sd + 1+r

q−(q−2)r
σ2

ε )]

5.7 n1+n2

2n1n2
(1 + a2)(σ

2
sd + σ2

ε /q)
n1+n2

2n1n2
[(1 + a4)(σ

2
sd + 1+r

q−(q−2)r
σ2

ε )] + c1

c1 = n1+n2

n1n2

Pq−1
m=1(q−2m)r(m+1)σ2

ε

q2[q−(q−2)r]

In Table 5.8, a1-a4 are very complicated and depend on the values of the vari-

ance components. As seen from Tables 5.4 and 5.5, for using change from baseline

measurements, the BLUEs of the treatment contrast for time-matched baselines and

averaged baselines are the same when random errors are independently distributed;

however, they are different when random errors follow an AR(1) structure. This is

also true for the corresponding variances for these estimators. In addition, for the case

of AR(1) random errors, compared to the variance from time-matched baselines, the

variance from averaged baselines has the additional term n1+n2

n1n2

Pq−1
m=1(q−2m)r(m+1)σ2

ε

q2[q−(q−2)r]
.

This additional term can be shown to be nonnegative if r is nonnegative. This indi-

cates that the variance using averaged baselines is larger than the variance using

time-matched baselines. However, for using baseline measurements as a covariate,

the results are more complicated because of different β1 and β2 in Models 5.6 and

5.7.

From Table 5.8, we see that the general patten of the variances is similar to

the case of single measurements in Table 4.2. However, when random errors are

independent, the parameter ρ is σ2
sp/(σ

2
sp + σ2

sd + σ2
ε /q) and σ2

ε in Table 4.2 is now

replaced by σ2
sd+σ2

ε /q. When random errors follow an AR(1) structure, the parameter
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ρ is σ2
sp/(σ

2
sp+σ2

sd+
1+r

q−(q−2)r
σ2

ε ) and σ2
ε in Table 4.2 is now replaced by σ2

sd+
1+r

q−(q−2)r
σ2

ε .

Furthermore, when random errors follows an AR(1) structure, the comparison is

rather complicated because of the additional term for the averaged baselines, though

this is relatively small. Moreover, the ai’s in Table 5.8 are different and complicated.

Therefore, in a repeated measurements crossover design, it is not possible to compare

the variances of different methods simply based on the values of the parameter ρ.

5.5.2 Simulation study

In this section, we conduct a simulation study for an AB/BA crossover design with

repeated measurements to evaluate the performance of the discussed methods for

incorporating the baseline measurements.

As discussed in Section 5.2, we consider two different assumptions for the random

error terms to generate the data. That is, we generate data based on Model 5.2

both for independent and autocorrelated random errors. As in the case of single

measurements, we generate the data by setting µ = 100 and taking other fixed

effects equal to zero. We also set τA − τB = 0 and τA − τB = 0.5 for the evaluation

of type I error rate and power, respectively, for testing H0 : τA = τB. The relative

efficiencies depend on the relative value of σ2
s , σ2

sp, σ2
st and σ2

sd to σ2
ε , and we can

set σ2
ε = 1. We let σ2

s , σ2
st and σ2

sd all take the values 0.1, 1 and 10. Therefore, we

have 27 combinations (see Table 5.9) for the variance components σ2
s , σ2

st, σ2
sd and

σ2
ε . For σ2

sp, we select each time a value so that the parameter ρ is 0, 0.2, 0.4, 0.5, 0.6

and 0.8. If the random error follows an AR(1) structure, then we consider values for

the autocorrelation coefficient r of 0.2, 0.5 and 0.8. We also consider different time

points q of 3, 6 and 10. For each sequence we use 24 subjects.
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Table 5.9 Values of σ2
ε , σ2

s , σ2
st and σ2

sd for the Simulation Study

Case σ2
ε σ2

s σ2
st σ2

sd

1 1 1 1 1

2 1 10 1 1

3 1 0.1 1 1

4 1 1 10 1

5 1 10 10 1

6 1 0.1 10 1

7 1 1 0.1 1

8 1 10 0.1 1

9 1 0.1 0.1 1

10 1 1 1 10

11 1 10 1 10

12 1 0.1 1 10

13 1 1 10 10

14 1 10 10 10

15 1 0.1 10 10

16 1 1 0.1 10

17 1 10 0.1 10

18 1 0.1 0.1 10

19 1 1 1 0.1

20 1 10 1 0.1

21 1 0.1 1 0.1

22 1 1 10 0.1

23 1 10 10 0.1

24 1 0.1 10 0.1

25 1 1 0.1 0.1

26 1 10 0.1 0.1

27 1 0.1 0.1 0.1

Each time the simulated data are analyzed by using PROC MIXED in SAS for

each of the methods discussed in Section 5.2. With 24 subjects in each sequence, we

do not use any degree freedom adjustment. Due to the complication of the variance-

covariance structure, there is a convergence problem. More than 5000 times are
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simulated for each scenario. The results for the first 5000 times in which convergence

occurs for all methods are used as the simulation results.

The results of REs for different methods does not depend on the value of τA−τB,

therefore, we do not present the results from the case of τA − τB here. Table 5.10

presents the results of Case 1 in Table 5.9 for independent random errors when q = 6.

The variables in each column have the same interpretation as they do in the case

of single measurements. Recall from Chapter 4, SE est is the mean of the estimated

standard errors for τ̂A − τ̂B, SE rediff is the relative difference between SE est and

SE MC and is computed as SE est - SE MC
SE MC

× 100%.
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Table 5.10 Results of Case 1 for Independent Random Errors when q = 6

ρ Methods τ̂A − τ̂B SE est SE rediff RE Type I error

0 Baselines in response vector -0.0010 0.2211 -0.25 99.34 4.78

Ignore baselines -0.0005 0.2196 -0.40 100 5.34

Change from baselines (T-match) 0.0018 0.3107 -0.75 70.67 5.52

Change from baselines (Average) 0.0018 0.3104 -0.84 70.74 5.78

Baselines as a covariate (T-match) 0.0005 0.2388 -1.17 91.97 5.62

Baselines as a covariate (Average) 0.0002 0.2412 -1.00 91.05 5.42

0.2 Baselines in response vector -0.0016 0.2393 -2.33 100 6.10

Ignore baselines -0.0017 0.2456 -0.73 97.42 5.68

Change from baselines (T-match) -0.0032 0.3108 -1.73 76.99 5.68

Change from baselines (Average) -0.0032 0.3100 -2.00 77.2 5.88

Baselines as a covariate (T-match) -0.0025 0.2473 -2.33 96.76 6.12

Baselines as a covariate (Average) -0.0024 0.2544 -2.04 94.07 6.20

0.4 Baselines in response vector 0.0018 0.2584 -1.60 100 5.78

Ignore baselines 0.0047 0.2830 -1.28 91.33 5.76

Change from baselines (T-match) -0.0006 0.3106 0.69 83.19 5.04

Change from baselines (Average) -0.0006 0.3095 0.34 83.49 5.36

Baselines as a covariate (T-match) 0.0020 0.2585 -1.11 99.97 5.66

Baselines as a covariate (Average) 0.0009 0.2670 -0.26 96.80 5.38

0.5 Baselines in response vector -0.001 0.2678 -0.74 99.47 5.12

Ignore baselines -0.0041 0.3091 0.04 86.16 5.70

Change from baselines (T-match) 0.0024 0.3110 0.18 85.64 5.00

Change from baselines (Average) 0.0024 0.3103 -0.06 85.84 5.12

Baselines as a covariate (T-match) -0.0012 0.2663 -0.93 100 5.78

Baselines as a covariate (Average) -0.0002 0.2740 0.10 97.20 5.34

0.6 Baselines in response vector 0.0030 0.2766 -0.49 99.90 5.36

Ignore baselines 0.0033 0.3457 -0.25 79.92 5.62

Change from baselines (T-match) 0.0024 0.3107 -0.29 88.93 5.20

Change from baselines (Average) 0.0024 0.3097 -0.62 89.22 5.54

Baselines as a covariate (T-match) 0.0029 0.2763 -0.90 100 5.38

Baselines as a covariate (Average) 0.0029 0.2806 -0.22 98.45 5.44

0.8 Baselines in response vector -0.0012 0.2939 -2.01 100 6.02

Ignore baselines -0.0030 0.4866 -2.15 60.40 5.64

Change from baselines (T-match) -0.0005 0.3107 -1.15 94.58 5.48

Change from baselines (Average) -0.0005 0.3097 -1.48 94.91 5.72

Baselines as a covariate (T-match) -0.0019 0.3100 -3.65 94.82 6.48

Baselines as a covariate (Average) -0.0007 0.2956 -1.61 99.44 6.02
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From Table 5.10, we can see that the averages of the estimates of the treatment

contrast are close to the true value of 0. Small values of SE rediff indicates that

SE est is close to SE MC, and the type I error rate maintains the nominal level of

5%. The estimates of the treatment contrast are the same for time-matched and

averaged baselines when using change from baseline measurements as the response

variable, as anticipated from Table 5.4.

We display the relative efficiencies for the different methods at each combination

of the variance components in Figures 5.3-5.5.

Relative Efficiencies Under Different Scenarios
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Figure 5.3: Relative Efficiencies for Each Method at Different Values of the Param-
eter ρ for the First 9 Cases (σ2

sd/σ
2
ε = 1) in Table 5.9 when q = 6 and Independent

Random Errors



99

Relative Efficiencies Under Different Scenarios
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Figure 5.4: Relative Efficiencies for Each Method at Different Values of the Param-
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ε = 10) in Table 5.9 when q = 6 and Independent

Random Errors
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Relative Efficiencies Under Different Scenarios
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Figure 5.5: Relative Efficiencies for Each Method at Different Values of the Param-
eter ρ for the Last 9 Cases (σ2

sd/σ
2
ε = 0.1) in Table 5.9 when q = 6 and Independent

Random Errors
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From Figures 5.3-5.5, we can see that the relative efficiencies of Models 5.2-5.5

are similar for all 27 choices of the variance components, reflecting that they are

only a function of ρ. The general pattern for these efficiencies is also similar to

what for the case of single measurements, regardless of the different values for the

variance components. It is virtually impossible to recognize the plot for Model 5.4,

since it is coincides with that for Model 5.5. The same performance of time-matched

(Model 5.4) and averaged baselines (Model 5.5) for using change from baselines as the

response variable is as expected. However, the change of REs is complicated for using

baseline measurements as a covariate: time-matched baselines and averaged baselines

demonstrated differently not only at different values for the parameter ρ, but also

for different ratios of the variance components. For example, the RE of using time-

matched baselines as a covariate (Model 5.6) performs similarly for different values of

σ2
sd/σ

2
ε and σ2

st/σ
2
ε , but demonstrates differently for different values of σ2

s/σ
2
ε . The RE

does not change very much at different values of the parameter ρ when σ2
s/σ

2
ε = 1,

but increases significantly as ρ increases when σ2
s/σ

2
ε = 10, and decreases significantly

as ρ increases when σ2
s/σ

2
ε = 0.1. In addition, the RE at small and larger value of ρ

could be relatively small for σ2
s/σ

2
ε = 10 and σ2

s/σ
2
ε = 0.1, respectively. However, the

RE of using averaged baselines as a covariate (Model 5.7) increases as ρ increases,

and it is relatively larger when σ2
sd/σ

2
ε = 10. When σ2

sd/σ
2
ε = 1 and σ2

sd/σ
2
ε = 0.1,

the RE of using averaged baselines increases dramatically as ρ increases except for

Cases 3, 9, 21 and 27.

To see the effect of a different number of time points q, we display the relative

efficiencies for Cases 1, 15 and 27 in Table 5.9 at q =3, 6 and 10 in Figure 5.6.
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Relative Efficiencies Under Different Scenarios
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Figure 5.6: Relative Efficiencies for Each Method at Different Values for the Param-
eter ρ and with Different Number of Time Points for Cases 1, 15 and 27 in Table
5.9

From Figure 5.6, for these particular choices of the random components, we can

see that the relative efficiencies are similar for various methods at different time

points except when using time-matched baselines as a covariate. The RE for using

time-matched baseline measurements as a covariate decreases as the number of time

points increases when ρ is larger for Cases 1 and 27. There is almost no difference

for Case 15.

Next, we present the results of a simulation study for the case that random

errors follow an AR(1) structure. First, we focus on q = 6 and r = 0.8 for the 27

combinations in Table 5.9. Then we study at different values for q and r for one

particular choice. Table 5.11 presents the results for Case 1 in Table 5.9 when q = 6

and r = 0.8.
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Table 5.11 Results for Case 1 in Table 5.9 for AR(1) Random Errors (q = 6, r = 0.8 )

ρ Methods τ̂A − τ̂B SE est SE rediff RE Type I error

0.0 Baselines in response vector -0.0012 0.2625 -0.03 99.42 5.02

Ignore baselines -0.0009 0.2610 -0.09 100 5.86

Change from baselines (T-match) -0.0007 0.3692 0.11 70.68 4.80

Change from baselines (Average) 0.0000 0.3719 0.17 70.17 5.08

Baselines as a covariate (T-match) -0.0008 0.3193 -2.45 81.72 5.50

Baselines as a covariate (Average) -0.0006 0.2785 -0.38 93.71 5.34

0.2 Baselines in response vector -0.0004 0.2838 -0.90 100 4.86

Ignore baselines -0.0009 0.2907 0.40 97.64 4.94

Change from baselines (T-match) -0.0040 0.3689 -1.11 76.94 5.26

Change from baselines (Average) -0.0049 0.3713 -1.01 76.44 5.38

Baselines as a covariate (T-match) -0.0032 0.3208 -3.31 88.47 5.54

Baselines as a covariate (Average) -0.0027 0.2968 -0.59 95.62 5.40

0.4 Baselines in response vector 0.0045 0.3069 -3.30 100 6.14

Ignore baselines 0.0044 0.3355 -2.23 91.46 6.10

Change from baselines (T-match) 0.0043 0.3691 -2.27 83.13 5.64

Change from baselines (Average) 0.0047 0.3712 -2.38 82.67 5.72

Baselines as a covariate (T-match) 0.0039 0.3241 -4.70 94.70 6.42

Baselines as a covariate (Average) 0.0043 0.3155 -2.46 97.26 5.94

0.5 Baselines in response vector 0.0002 0.3183 -1.45 100 5.52

Ignore baselines 0.0029 0.3684 -0.87 86.41 5.72

Change from baselines (T-match) -0.0013 0.3695 0.09 86.14 5.12

Change from baselines (Average) -0.0014 0.3723 0.13 85.5 5.56

Baselines as a covariate (T-match) -0.0004 0.3273 -2.65 97.25 6.12

Baselines as a covariate (Average) -0.0004 0.3255 -0.49 97.78 5.74

0.6 Baselines in response vector 0.0022 0.3284 -0.23 100 5.52

Ignore baselines -0.0045 0.4105 -1.25 80.00 5.68

Change from baselines (T-match) 0.0063 0.3689 0.99 89.03 4.94

Change from baselines (Average) 0.0061 0.3706 0.41 88.61 5.50

Baselines as a covariate (T-match) 0.0036 0.3292 -1.69 99.76 5.92

Baselines as a covariate (Average) 0.0031 0.3338 0.04 98.37 5.98

0.8 Baselines in response vector -0.0034 0.3492 -0.19 97.76 4.98

Ignore baselines 0.0019 0.5756 -1.29 59.31 5.58

Change from baselines (T-match) -0.0052 0.3692 0.36 92.45 5.02

Change from baselines (Average) -0.0043 0.3717 0.24 91.83 4.94

Baselines as a covariate (T-match) -0.0034 0.3414 -2.25 100 5.74

Baselines as a covariate (Average) -0.0028 0.3537 0.41 96.51 5.00
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As anticipated from Table 5.5, the estimates of the treatment contrast from time-

matched and averaged baselines are different both for using change from baselines as

the response variable and for using baseline measurements as a covariate. When using

change from baselines as the response variable, SE est of time-matched baselines is

slightly smaller than averaged baselines.

We present the relative efficiencies of the different methods at each combination

of the variance components when q = 6 and r = 0.8 in Figures 5.7-5.9.
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Figure 5.7: Relative Efficiencies at Different Values of the Parameter ρ for the First
9 Cases (σ2

sd/σ
2
ε = 1) in Table 5.9 of the Variance Components when q = 6 and

AR(1) Random Errors with r = 0.8
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Relative Efficiencies Under Different Scenarios
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Figure 5.8: Relative Efficiencies at Different Values of the Parameter ρ for the Second
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ε = 10) in Table 5.9 of the Variance Components when q = 6 and

AR(1) Random Errors with r = 0.8
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Relative Efficiencies Under Different Scenarios
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Figure 5.9: Relative Efficiencies at Different Values of the Parameter ρ for the Last
9 Cases (σ2

sd/σ
2
ε = 0.1) in Table 5.9 of the Variance Components when q = 6 and

AR(1) Random Errors with r = 0.8
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From the simulation results, when using change from baseline measurements as a

response variable, SE est of time-matched baselines is slightly smaller than averaged

baselines. However, from Figures 5.7-5.9, we can only recognize the difference for

some cases. That is because that the additional term c1 is too small to be detected

in the figures. This results are confirmed by our theoretical results. For using baseline

measurements as a covariate, the comparison is complicated as already seen for the

case of independent random errors, and the pattern of the REs at different values

of variance components is similar to the pattern in the case of independent random

errors except when σ2
st/σ

2
ε = 1, where the RE of using time-matched baselines also

increases as ρ increases.

Next, we present the relative efficiencies at different values for the number of

time points q for Cases 1 and 27 in Table 5.9 when r = 0.8 in Figure 5.10.
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Figure 5.10: Relative Efficiencies for Each Method at Different Values of the Param-
eter ρ at Different Values for the Number of Time Points
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From Figure 5.10, we cannot see much difference for the general pattern of RE

at different time points for Case 1. However, for Case 27, the RE of using averaged

baselines as a covariate decreases as time points increases at larger values of ρ. For the

method of using change from baseline measurements as a response variable, time-

matched baselines performance slightly better than averaged baselines, especially

when the number of the time points is larger.

Figure 5.11 shows the effect of different autocorrelation coefficients on the RE.

The number of time points and the values of the variance components were fixed at

q = 6 and the combination for Cases 1 and 27 in Table 5.9.
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Figure 5.11: Relative Efficiencies for Each Method at Different Values of the Param-
eter ρ for Different Autocorrelation Coefficients

From Figure 5.11, there is no much difference for the general pattern of RE at

different autocorrelation coefficients r except for using time-matched baselines as a
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covariate. The RE of time-matched baselines increases as r increases at large value

of ρ, and decreases as r increases at small value of ρ for Cases 1 and 27, respectively.

5.5.3 Numerical examples

We return to the numerical example from Study I that we introduced in Section 5.3.

From the results in Section 5.3, the treatment by time interaction is not significant, so

we will compare the discussed methods for incorporating the baseline measurements.

The results in Table 5.2 suggested that independent variance-covariance struc-

ture is the best for the random errors. From the data analysis based on Model

5.2 with independent variance-covariance structure, we obtained σ̂2
s = 0.02235,

σ̂2
sp = 0.00031, σ̂2

st = 0.00033, σ̂2
sd = 0.00085 and σ̂ε

2 = 0.01060. So the parameter

ρ = 0.00031/(0.00031 + 0.00086 + 0.01060/3) = 0.0659, which is close to zero. We

would thus expect that retaining the baseline measurements as part of the response

vector and ignoring baseline measurements would have high relative efficiencies. We

present the results for the different methods in Table 5.12.

Table 5.12 Analysis Results for the Example with Repeated Measurements

95%CI

Methods Estimate SE RE Lower Upper P-value

Baselines in response vector 0.0629 0.0298 93.13 0.0020 0.1238 0.0433

Ignore baselines 0.0618 0.0277 100.00 -0.0000 0.1236 0.0500

Change from baselines (T-match) 0.0787 0.0385 72.04 -0.0014 0.1588 0.0537

Change from baselines (Average) 0.0787 0.0359 77.19 -0.0014 0.1588 0.0533

Baselines as a covariate (T-match) 0.0678 0.0284 97.76 0.0045 0.1312 0.0383

Baselines as a covariate (Average) 0.0758 0.0334 82.96 0.0005 0.1511 0.0487

From Table 5.12, the RE when ignoring baseline measurements is 100 %, while

the REs for retaining baseline measurements as part of the response vector and

for time-matched baselines as a covariate are also high. However, the RE for using
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change from baseline measurements is relatively low for either type of baselines.

The results indicate that we should either ignore the baseline measurements or use

time-matched baselines as a covariate, or retain baseline measurements as part of

the response vector. For this example, the number of time points is 3, which is

relative small; the parameter ρ is also relative small. For the variance components,

the estimates of the ratio of σ2
s , σ2

st and σ2
sd to σ2

ε are around 2, 0.03, and 0.08

respectively. This is close to Case 25 in Table 5.9, and the RE for Case 25 in Figure

5.5 indicates that the time-matched baselines as a covariate has high RE at small

value of ρ. So the results of RE in this study are confirmed from our simulation

results.

5.6 Discussion, conclusion and recommendation

In this chapter, we extended our study in Chapter 4 to accommodate repeated mea-

surements within each period both for the baseline measurements and the response

variable. We introduced a preliminary test for the treatment by time interaction,

and considered different analyses based on whether this interaction term is statisti-

cally significant. When the interaction term is significant, we proposed a graphical

method to study the change in treatment differences over time. Alternatively, if

the interaction term is not significant, we studied different methods to incorporate

baseline measurements for estimating the treatment contrast. We considered two

assumptions for the random error terms.

In general, similar to the case of single measurements, we find that retaining

baseline measurements as part of the response vector has the largest relative effi-

ciency among all the methods as long as the parameter ρ is not vary small. When the

parameter ρ is close to zero, ignoring baseline measurements has a larger relative effi-

ciency. However, when the parameter ρ increases, the relative efficiency for ignoring
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baseline measurements decreases dramatically. When using change from baseline

measurements as the response variable, time-matched baselines perform better than

averaged baselines for an AR(1) random error structure, especially when the number

of time points is large and the autocorrelation coefficient is large. When using base-

line measurements as a covariate, the comparison is complicated, since it depends

on the estimator of β, which in turn depends on σ2
s , σ2

st and σ2
sd. Using baselines

as a covariate can be more or less efficient than other methods depending on the

variance components. Regardless of whether time-matched or averaged baselines are

used, the RE for using change from baselines can be clearly less than for retaining

baselines in the response vector, and is never much more.

In general, if possible, we would suggest to collect the baseline measurements,

and retain them as part of the response vector to do the analysis. Using change from

baseline measurements should be avoided.

Appendix

We now present details for a proof of the results in Table 5.5.

Theorem 5.1 Under the Aitken model E(Y ) = Xβ, V ar(Y ) = σ2V , where V is p.d.,

aT Y is the BLUE of its expected value (i.e., of aT Xβ) if and only if Cov(aT Y, lT Y ) =

0 for all vectors l for which lT Y is an unbiased estimator of 0 (i.e. E(lT Y ) = 0).

Theorem 5.2 For Model 5.2, under the assumptions that the random error terms

follow an AR(1) process, variance components and autocorrelation coefficient r

are known and all the time points are equally spaced, the BLUE of τA − τB is

1
2
{∑q

m=1 φm[Ȳ11.m− Ȳ21.m− Ȳ12.m + Ȳ22.m−ρ(X̄11.m−X̄21.m−X̄12.m +X̄22.m)]}, where

φm =





1
q−(q−2)r

if m = 1, q

1−r
q−(q−2)r

if m = 2, · · · , q − 1

and ρ =
σ2

sp

σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε
.
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Proof: When random error terms follow an AR(1) process, Model 5.2 can be

written in matrix notation as follows:

Y = µ14nq + X1π + X2D + X3T + Xdτ + Z0s + Z1ζ + Z2ξ + Z3ω + ε,

where

X1 = 1n ⊗ I2 ⊗ 12q, X2 = 1n ⊗ I4 ⊗ 1q, X3 = 1n ⊗ 14 ⊗ Iq,

Xd = (XT
d11, X

T
d12, · · ·XT

d2n2
)T⊗1q, Xd1k=


0 1 0 0

0 0 0 1




T

and Xd2k=


0 0 0 1

0 1 0 0




T

;

Z0 = In ⊗ 14q, Z1 = In ⊗ I2 ⊗ 12q, Z2 = In ⊗ I4 ⊗ 1q, Z3 = In ⊗ 14 ⊗ Iq

and s, ζ, ξ and ω are independently normally distributed with their elements being

independently normally distributed with mean 0 and variances σ2
s , σ2

sp, σ2
sd and σ2

st

respectively, V ar(ε) = σ2
ε (In ⊗ I4 ⊗ A). Here the q × q matrix A is given by A

=




1 r ··· rq−1

r 1 ··· rq−2

...
...

...
...

rq−1 rq−2 ··· 1


.

Let the proposed estimator of τA − τB in the statement of Theorem 5.2 be aT Y

with aT =(aT
11, · · · , aT

1n1
, aT

21, · · · , aT
2n2

), where aT
jk = (aT

01jk, a
T
11jk, a

T
02jk, a

T
12jk). Thus

ahijk is the q × 1 vector (ahijk1, · · · , ahijkq)
T with ahijkm = 1

2
λ(−1)(i+j) 1

nj
φm where

λ = 1 for h = 1 and λ = −ρ for h = 0. It is easy to verify that aT Y is a linear

unbiased estimator for τA − τB. To prove that aT Y is also the BLUE of τA − τB, by

Theorem 5.1 we need to show that Cov(aT Y, lT Y ) = 0 for all l such that E(lT Y ) = 0.

Let lT = (lT11, · · · , lT1n1
, lT21, · · · , lT2n2

), where lTjk = (lT01jk, l
T
11jk, l

T
02jk, l

T
12jk) and lhijk

is a q × 1 vector. Based on Model 5.2, we have that E(lT Y ) = 0 if and only if

lT X2 = 0T , lT X3 = 0T and lT Xd = 0T , i.e., we have
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lT X2 = lT (1n ⊗ I4 ⊗ 1q)

=
2∑

j=1

nj∑

k=1

lTjk(I4 ⊗ 1q)

=
2∑

j=1

nj∑

k=1

(lT01jk1q, l
T
11jk1q, l

T
02jk1q, l

T
12jk1q)

= 0T , (5.8)

lT X3 = lT (1n ⊗ 14 ⊗ Iq)

=
2∑

j=1

nj∑

k=1

lTjk(14 ⊗ Iq)

=
2∑

j=1

nj∑

k=1

1∑

h=0

2∑
i=1

lThijk

= 0T (5.9)

lT Xd = lT (XT
d11, X

T
d12, · · ·XT

d2n2
)T ⊗ 1q

=
2∑

j=1

nj∑

k=1

lTjk(Xdjk ⊗ 1q)

=

n1∑

k=1

lT1k(


0 1 0 0

0 0 0 1




T

⊗ 1q) +

n2∑

k=1

lT2k(


0 0 0 1

0 1 0 0




T

⊗ 1q)

= (

n1∑

k=1

lT111k1q +

n2∑

k=1

lT122k1q,

n1∑

k=1

lT121k1q +

n2∑

k=1

lT112k1q)

= 0T . (5.10)
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Based on the model assumptions for the random components and using that

subjects are independent to each other, we have

Cov(aT Y, lT Y )

= aT V ar(Y )l

= σ2
s(a

T Z0Z
T
0 l) + σ2

sp(a
T Z1Z

T
1 l) + σ2

sd(a
T Z2Z

T
2 l) + σ2

st(a
T Z3Z

T
3 l) + σ2

ε [a
T (In ⊗ I4 ⊗ A)l]

= σ2
s [a

T (In ⊗ J4q)l] + σ2
sp[a

T (In ⊗ I2 ⊗ J2q)l] + σ2
sd[a

T (In ⊗ I4 ⊗ Jq)l]

+σ2
st[a

T (In ⊗ J4 ⊗ Iq)l] + σ2
ε [a

T (In ⊗ I4 ⊗ A)l]

=
∑2

j=1

∑nj

k=1{σ2
s(a

T
jkJ4qljk) + σ2

sp[a
T
jk(I2 ⊗ J2q)ljk] + σ2

sd[a
T
jk(I4 ⊗ Jq)ljk]

+σ2
st[a

T
jk(J4 ⊗ Iq)ljk] + σ2

ε [a
T
jk(I4 ⊗ A)ljk]}.

Because a01jkm = −a02jkm and a11jkm = −a12jkm, it is easy to obtain that
∑2

j=1

∑nj

k=1 σ2
s(a

T
jkJ4qljk) = 0 and

∑2
j=1

∑nj

k=1 σ2
st[a

T
jk(J4 ⊗ Iq)ljk] = 0. Furthermore,

we have
∑2

j=1

∑nj

k=1[a
T
jk(I2 ⊗ J2q)ljk]

=
∑2

j=1

∑nj

k=1[(a
T
01jk + aT

11jk)Jq(l01jk + l11jk) + (aT
02jk + aT

12jk)Jq(l02jk + l12jk)]

=
∑2

j=1

∑nj

k=1[(a
T
01jk + aT

11jk)Jq(l01jk + l11jk − l02jk − l12jk)]

=
∑n1

k=1[(a
T
011k + aT

111k)Jq(l011k + l111k − l021k − l121k)]

+
∑n2

k=1[(a
T
012k + aT

112k)Jq(l012k + l112k − l022k − l122k)]

= 1
2n1

∑n1

k=1

∑q
m=1[(1− ρ)(l011km − l021km + l111km − l121km)]

− 1
2n2

∑n2

k=1

∑q
m=1[(1− ρ)(l012km − l022km + l112km − l122km)],

∑2
j=1

∑nj

k=1[a
T
jk(I4 ⊗ Jq)ljk]

=
∑2

j=1

∑nj

k=1[a
T
01jkJql01jk + aT

11jkJql11jk + aT
02jkJql02jk + aT

12jkJql12jk]

=
∑2

j=1

∑nj

k=1[a
T
01jkJq(l01jk − l02jk) + aT

11jkJq(l11jk − l12jk)]

=
∑n1

k=1[a
T
011kJq(l011k − l021k) + aT

111kJq(l111k − l121k)]

+
∑n2

k=1[a
T
012kJq(l012k − l022k) + aT

112kJq(l112k − l122k)]

= 1
2n1

∑n1

k=1

∑q
m=1[−ρ(l011km − l021km) + (l111km − l121km)]

− 1
2n2

∑n2

k=1

∑q
m=1[−ρ(l012km + l022km) + (l112km − l122km)],
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∑2
j=1

∑nj

k=1[a
T
jk(I4 ⊗ A)ljk]

=
∑2

j=1

∑nj

k=1[a
T
01jkAl01jk + aT

11jkAl11jk + aT
02jkAl02jk + aT

12jkAl12jk]

=
∑2

j=1

∑nj

k=1[a
T
01jkA(l01jk − l02jk) + aT

11jkA(l11jk − l12jk)]

=
∑n1

k=1[a
T
011kA(l011k − l021k) + aT

111kA(l111k − l121k)]

+
∑n2

k=1[a
T
012kA(l012k − l022k) + aT

112kA(l112k − l122k)]

= 1+r
q−(q−2)r

{ 1
2n1

∑n1

k=1

∑q
m=1[−ρ(l011km − l021km) + (l111km − l121km)]

− 1
2n2

∑n2

k=1

∑q
m=1[−ρ(l012km + l022km) + (l112km − l122km)]}.

The last equality holds because 1
q−(q−2)r

(1, 1 − r, · · · , 1 − r, 1) × A is equal to

1
q−(q−2)r

{rm−1 + rq−m + (1 − r)[
∑q−1−m

ψ=1 rψ +
∑m−2

ψ=0 rψ]}. By some algebra, we can

show that this is equal to 1
q−(q−2)r

(1 + r, · · · , 1 + r).

Thus,

Cov(aT Y, lT Y )

= σ2
sp(a

T Z1Z
T
1 l) + σ2

sd(a
T Z2Z

T
2 l) + σ2

ε [a
T (I4 ⊗ A)l]

= (σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ){ 1

2n1

∑n1

k=1

∑q
m=1[l111km − l121km − ρ(l011km − l021km)]

− 1
2n2

∑n2

k=1

∑q
m=1[(l112km − l122km)− ρ(l012km − l022km)]}

−σ2
sp{ 1

2n1

∑n1

k=1

∑q
m=1[ρ(l111km − l121km)− (l011km − l021km)]

− 1
2n2

∑n2

k=1

∑q
m=1 ρ[(l112km − l122km)− (l012km − l022km)]}

= [σ2
sp − ρ(σ2

sp + σ2
sd + 1+r

q−(q−2)r
σ2

ε )]{ 1
2n1

∑n1

k=1

∑q
m=1(l011km − l021km)

− 1
2n2

∑n2

k=1

∑q
m=1(l012km − l022km)}

+(σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ){ 1

2n1

∑n1

k=1

∑q
m=1(l111km − l121km)

− 1
2n2

∑n2

k=1

∑q
m=1(l112km − l122km)}

−σ2
sp{ 1

2n1

∑n1

k=1

∑q
m=1[ρ(l111km − l121km)]− 1

2n2

∑n2

k=1

∑q
m=1[ρ(l112km − l122km)]}

= [(1− ρ)σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ]{ 1

2n1

∑n1

k=1[(l
T
111k1q − lT121k1q)] + 1

2n2

∑n2

k=1[(l
T
112k1q − lT122k1q)]}

= 0.

The second to last equality holds because σ2
sp−ρ(σ2

sp +σ2
sd + 1+r

q−(q−2)r
σ2

ε ) = 0 since

ρ = σ2
sp/(σ

2
sp+σ2

sd+
1+r

q−(q−2)r
σ2

ε ). The last equality holds because from Equation 5.8, we
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have
∑2

j=1

∑nj

k=1 lT11jk1q = 0, which indicates that
∑n1

k=1 lT111k1q +
∑n2

k=1 lT112k1q = 0;

from Equation 5.10, we have
∑n1

k=1 lT111k1q +
∑n2

k=1 lT122k1q = 0 and
∑n1

k=1 lT121k1q +
∑n2

k=1 lT112k1q = 0. By separately subtracting each of the latter two equations from

the former, we obtain that
∑n1

k=1(l
T
111k1q−lT121k1q) = 0 and

∑n2

k=1(l
T
112k1q−lT122k1q) = 0.

Therefore, we show that Cov(aT Y, lT Y ) = 0 for all l such that E(lT Y ) = 0. Thus,

aT Y is the BLUE for τA − τB.

Similar arguments can be used to prove the results for the other models.
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Chapter 6

Designs with more than Two Treatments

6.1 Introduction

In Chapters 4 and 5, we focused on the 2 × 2 crossover design. However, in some

applications, it is of interest to compare three or more treatments in a crossover

design with one of them possibly being a placebo. The primary interest of such a

design could be in all pairwise comparisons, in comparing each treatment to the

placebo (Pigeon and Raghavarao, 1987), or in comparing the active treatments first,

and then test whether the active treatments are better than the placebo (Koch et

al., 1989). The optimality and efficiency of designs with purpose of comparing more

than two active treatments and a placebo treatment have been studied by Hedayat

and Yang (2005, 2006), Yang and Park (2007) and Yang and Stufken (2007). Often,

a uniform design with equal numbers of treatments and periods is adopted. In this

chapter, we discuss some of those designs.

As explained above, the analysis of data from a crossover design with more than

two treatments is typically still focused on comparisons between two treatments.

Since we will only consider designs for which the comparison of any two treatments

has the same precision, we will focus on the comparison between treatments A and

B. Furthermore, since the results for single measurements can be obtained as a

special case from the results for repeated measurements, and the results for the

independent random error can be obtained as a special case from the results for an

AR(1) random error, we only consider the repeated measurements with an AR(1)

118
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random error structure in this chapter. In particular, we present the results of BLUE

of the treatment contrast when retaining the baseline measurements as part of the

response vector. Sections 6.2 and 6.3 provide the results for selected 3× 3 and 4× 4

designs, respectively. We provide some discussion in Section 6.4.

6.2 Three treatments in three periods

A uniform design with three periods, three treatments and three sequences must be

one of the following two (rows are sequences):

A B C A C B

B C A or B A C

C A B C B A

.

Following the discussion for the 2× 2 design in Chapter 5, a model for retaining

the baseline measurements as part of the response vector for 3 × 3 designs can be

formulated as:

Yhijkm = µ + πi + Dhi + Tm + hτt(i,j) + sjk + ζijk + ωjkm + ξhijk + εhijkm, (6.1)

i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, . . . , nj, m = 1, 2, . . . , q, h = 0, 1,

where Yhijkm corresponds to Xijkm when h = 0 and to Yijkm when h = 1, respectively.

All the random terms have the same distribution as in Model 5.2, and all the fixed

effects have the same interpretation as in Model 5.2 too.

We focus on the design ABC/BCA/CAB to study the BLUEs of τA − τB. The

results for the design ACB/BAC/CBA can be obtained similarly.

Theorem 6.1 For Model 6.1, we assume that the random error terms follow an

AR(1) process, variance components and autocorrelation coefficient r are known

and all the time points are equally spaced. We denote n1, n2 and n3 as the num-

bers of subjects for sequences 1, 2 and 3 respectively and n1 + n2 + n3 = n.
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Then, we can obtain the BLUE of τA − τB for design ABC/BCA/CAB as

1
3(n1n2+n1n3+n2n3)

∑q
m=1 φm

∑3
i=1

∑3
j=1 ψij(Ȳij.m−ρX̄ij.m), where ρ =

σ2
sp

σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε
,

φm =





1
q−(q−2)r

if m = 1, q

1−r
q−(q−2)r

if m = 2, · · · , q − 1

and ψij is shown in Table 6.1.

Table 6.1 Coefficients ψij of the BLUE of τA − τB for Design ABC/BCA/CAB

Period i

Sequence j 1 2 3

1 (ABC) n1(n2 − n1 + n) n1(n1 − n3 − n) n1(n3 − n2)

2 (BCA) n2(n2 − n1 − n) n2(n1 − n3) n2(n3 − n2 + n)

3 (CAB) n3(n2 − n1) n3(n1 − n3 + n) n3(n3 − n2 − n)

Notice here, if n1 = n2 = n3, the BLUE of τA−τB will reduce to 1
3
{∑q

m=1 φm[Ȳ11.m−
Ȳ21.m−Ȳ12.m+Ȳ32.m+Ȳ23.m−Ȳ33.m−ρ(X̄11.m−X̄21.m−X̄12.m+X̄32.m+X̄23.m−X̄33.m)]}.

Proof: For design ABC/BCA/CAB, when random error terms follow an AR(1)

process, Model 6.1 can be written in matrix notation as follows:

Y = µ16nq + X1π + X2D + X3T + Xdτ + Z0s + Z1ζ + Z2ξ + Z3ω + ε, (6.2)

where

X1 = 1n ⊗ I3 ⊗ 12q, X2 = 1n ⊗ I6 ⊗ 1q, X3 = 1n ⊗ 16 ⊗ Iq,

Xd = (XT
d11, X

T
d12, · · ·XT

d3n3
)T ⊗ 1q with

Xd1k=
(

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

)T

, Xd2k=
(

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

)T

and Xd3k=
(

0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0

)T

,

Z0 = In ⊗ 16q, Z1 = In ⊗ I3 ⊗ 12q, Z2 = In ⊗ I6 ⊗ 1q, Z3 = In ⊗ 16 ⊗ Iq

and s, ζ, ξ and ω are independently normally distributed with their elements being

independently normally distributed with mean 0 and variances σ2
s , σ2

sp, σ2
sd and
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σ2
st, respectively. Furthermore, the variance of the random error terms V ar(ε) =

σ2
ε (In ⊗ I6 ⊗ A) and the q × q matrix A is given by A =




1 r ··· rq−1

r 1 ··· rq−2

...
...

...
...

rq−1 rq−2 ··· 1


.

Let the proposed estimator of τA − τB in the statement of Theorem 6.1

be aT Y with aT = (aT
11, · · · , aT

1n1
, aT

21, · · · , aT
2n2

, aT
31, · · · , aT

3n3
), where aT

jk =

(aT
01jk, a

T
11jk, a

T
02jk, a

T
12jk, a

T
03jk, a

T
13jk). Thus ahijk is the q×1 vector (ahijk1, · · · , ahijkq)

T

with ahijkm = 1
3(n1n2+n1n3+n2n3)

λ
ψij

nj
φm, where λ = 1 for h = 1 and λ = −ρ for h = 0.

It is easy to verify that aT Y is a linear unbiased estimator for τA − τB. To prove

that aT Y is also the BLUE of τA − τB, by Theorem 5.1 we need to show that

Cov(aT Y, lT Y ) = 0 for all l such that E(lT Y ) = 0.

Let lT = (lT11, · · · , lT1n1
, lT21, · · · , lT2n2

, lT31, · · · , lT3n3
), where lTjk=(lT01jk, lT11jk, lT02jk,

lT12jk, lT03jk, lT13jk) and lhijk is a q × 1 vector. Based on Model 6.2, we have that

E(lT Y ) = 0 if and only if lT X2 = 0T , lT X3 = 0T and lT Xd = 0T . Similar to the

proof for Theorem 5.2, we have

3∑
j=1

nj∑

k=1

(lT01jk1q, l
T
11jk1q, l

T
02jk1q, l

T
12jk1q, l

T
03jk1q, l

T
13jk1q) = 0T , (6.3)

3∑
j=1

nj∑

k=1

1∑

h=0

3∑
i=1

lThijk = 0T ,

n1∑

k=1

lT111k1q +

n2∑

k=1

lT132k1q +

n3∑

k=1

lT123k1q = 0, (6.4)

n1∑

k=1

lT121k1q +

n2∑

k=1

lT112k1q +

n3∑

k=1

lT133k1q = 0, (6.5)

n1∑

k=1

lT131k1q +

n2∑

k=1

lT122k1q +

n3∑

k=1

lT113k1q) = 0.

Furthermore, Cov(aT Y, lT Y ) =
∑3

j=1

∑nj

k=1{σ2
s(a

T
jkJ6qljk)+σ2

sp[a
T
jk(I3⊗J2q)ljk]+

σ2
sd[a

T
jk(I6⊗Jq)ljk]+σ2

st[a
T
jk(J6⊗Iq)ljk]+σ2

ε [a
T
jk(I6⊗A)ljk]}. Again, it is easy to obtain

that
∑3

j=1

∑nj

k=1 σ2
s(a

T
jkJ6qljk) = 0 and

∑3
j=1

∑nj

k=1 σ2
st[a

T
jk(J6 ⊗ Iq)ljk] = 0 because

the coefficients of the proposed estimator add to zero for each subject.
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Furthermore, after some algebraic manipulations as in the proof for Theorem 5.2

and use the results that ρ =
σ2

sp

σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε
, we have

Cov(aT Y, lT Y )

= 1
3(n1n2+n1n3+n2n3)

[(1− ρ)σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ]

{∑n1

k=1[(n2 − n1 + n)lT111k1q + (n1 − n3 − n)lT121k1q + (n3 − n2)l
T
131k1q)]

+
∑n2

k=1[(n2 − n1 − n)lT112k1q + (n1 − n3)l
T
122k1q + (n3 − n2 + n)lT132k1q)]

+
∑n3

k=1[(n2 − n1)l
T
113k1q + (n1 − n3 + n)lT123k1q + (n3 − n2 − n)lT133k1q)]}

= 1
3(n1n2+n1n3+n2n3)

[(1− ρ)σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ]

{∑3
j=1

∑nj

k=1[(n2 − n1)l
T
11jk1q + (n1 − n3)l

T
12jk1q + (n3 − n2)l

T
13jk1q]

+n(
∑n1

k=1 lT111k1q +
∑n2

k=1 lT132k1q +
∑n3

k=1 lT123k1q)

−n(
∑n1

k=1 lT121k1q +
∑n2

k=1 lT112k1q +
∑n3

k=1 lT133k1q)}
= 0.

The last equality holds because
∑3

j=1

∑nj

k=1 lT11jk1q = 0,
∑3

j=1

∑nj

k=1 lT12jk1q =

0 and
∑3

j=1

∑nj

k=1 lT13jk1q = 0 from Equation 6.3,
∑n1

k=1 lT111k1q +
∑n2

k=1 lT132k1q +
∑n3

k=1 lT123k1q = 0 from Equation 6.4, and
∑n1

k=1 lT121k1q+
∑n2

k=1 lT112k1q+
∑n3

k=1 lT133k1q =

0 from Equation 6.5.

Therefore, we have shown that Cov(aT Y, lT Y ) = 0 for all l such that E(lT Y ) = 0.

Thus, aT Y is the BLUE for τA − τB.

6.3 Four treatments in four periods

For uniform designs with four periods, four treatments and four sequences, we use

the following design as an example (rows are sequences):

A B C D

B C D A

C D A B

D A B C

.
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The model for retaining the baseline measurements as part of the response vector

for this 4× 4 design can be formulated as:

Yhijkm = µ + πi + Dhi + Tm + hτt(i,j) + sjk + ζijk + ωjkm + ξhijk + εhijkm, (6.6)

i = 1, 2, 3, 4, j = 1, 2, 3, 4, k = 1, 2, . . . , nj, m = 1, 2, . . . , q, h = 0, 1,

where Yhijkm corresponds to Xijkm when h = 0 and to Yijkm when h = 1, respectively.

All the random terms have the same distribution as in Model 5.2, and all the fixed

effects have the same interpretation as in Model 5.2 too.

Theorem 6.2 For Model 6.6, we assume that the random error terms follow

an AR(1) process, variance components and autocorrelation coefficient r are

known and all the time points are equally spaced. We denote n1, n2, n3 and

n4 as the numbers of subjects for sequences 1, 2, 3 and 4, respectively and

n1 + n2 + n3 + n4 = n. Then, we can obtain the BLUE of τA − τB for this

design as
∑q

m=1 φm

∑4
i=1

∑4
j=1 ϕjψij(Ȳij.m − ρX̄ij.m), where

ϕj =





1
4(2n1n2n3+2n1n2n4+2n1n3n4+2n2n3n4+n2n2

1+2n3n2
1+n4n2

1+2n1n2
3+n2n2

3+n4n2
3)

if j = 1, 3

1
4(2n1n2n3+2n1n2n4+2n1n3n4+2n2n3n4+n1n2

2+n3n2
2+2n4n2

2+n1n2
4+2n2n2

4+n3n2
4)

if j = 2, 4

,

ρ =
σ2

sp

σ2
sp+σ2

sd+ 1+r
q−(q−2)r

σ2
ε
, φm =





1
q−(q−2)r

if m = 1, q

1−r
q−(q−2)r

if m = 2, · · · , q − 1

and ψij is shown in

Table 6.2.
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Table 6.2 Coefficients ψij of the BLUE of τA − τB for design

ABCD/BCDA/CDAB/DABC

Sequence Period ψij

j=1 i=1 n1(3n1n2 + 4n1n3 + n1n4 + 3n2n3 + 2n2n4 + n3n4 + 2n2
3)

i=2 −n1(n1n2 + 4n1n3 + 3n1n4 + n2n3 + 2n2n4 + 3n3n4 + 2n2
3)

i=3 −n1(n1n2 − n1n4 + n2n3 − 2n2n4 − n3n4 + 2n2
3)

i=4 −n1(n1n2 − n1n4 + n2n3 + 2n2n4 − n3n4 − 2n2
3)

j=2 i=1 −n2(3n1n2 + 2n1n3 + 3n1n4 + n2n3 + 4n2n4 + n3n4 + 2n2
4)

i=2 n2(n1n2 + 2n1n3 + n1n4 − n2n3 − n3n4 − 2n2
4)

i=3 n2(n1n2 − 2n1n3 + n1n4 − n2n3 − n3n4 + 2n2
4)

i=4 n2(n1n2 + 2n1n3 + n1n4 + 3n2n3 + 4n2n4 + 3n3n4 + 2n2
4)

j=3 i=1 −n3(−n1n2 + n1n4 − n2n3 − 2n2n4 + n3n4 + 2n2
1)

i=2 n3(n1n2 − n1n4 + n2n3 − 2n2n4 − n3n4 + 2n2
1)

i=3 n3(n1n2 + 4n1n3 + 3n1n4 + n2n3 + 2n2n4 + 3n3n4 + 2n2
1)

i=4 −n3(3n1n2 + 4n1n3 + n1n4 + 3n2n3 + 2n2n4 + n3n4 + 2n2
1)

j=4 i=1 −n4(n1n2 + 2n1n3 + n1n4 − n2n3 − n3n4 − 2n2
2)

i=2 n4(3n1n2 + 2n1n3 + 3n1n4 + n2n3 + 4n2n4 + n3n4 + 2n2
2)

i=3 −n4(n1n2 + 2n1n3 + n1n4 + 3n2n3 + 4n2n4 + 3n3n4 + 2n2
2)

i=4 −n4(n1n2 − 2n1n3 + n1n4 − n2n3 − n3n4 + 2n2
2)

Notice here, if n1 = n2 = n3 = n4, the BLUE of τA − τB will reduce to

1
4
{∑q

m=1 φm[Ȳ11.m− Ȳ21.m− Ȳ12.m + Ȳ42.m + Ȳ33.m− Ȳ43.m + Ȳ24.m− Ȳ34.m− ρ(X̄11.m−
X̄21.m − X̄12.m + X̄42.m + X̄33.m − X̄43.m + X̄24.m − X̄34.m)]}.

Proof: For design ABCD/BCDA/CDAB/DABC, when random error terms

follow an AR(1) process, Model 6.6 can be written in matrix notation as follows:

Y = µ18nq + X1π + X2D + X3T + Xdτ + Z0s + Z1ζ + Z2ξ + Z3ω + ε, (6.7)

where

X1 = 1n ⊗ I4 ⊗ 12q, X2 = 1n ⊗ I8 ⊗ 1q, X3 = 1n ⊗ 18 ⊗ Iq,
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Xd = (XT
d11, X

T
d12, · · ·XT

d4n4
)T ⊗ 1q with Xd1k=

(
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

)T

,

Xd2k=

(
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

)T

, Xd3k=

(
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

)T

, and Xd4k=

(
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0

)T

,

Z0 = In ⊗ 18q, Z1 = In ⊗ I4 ⊗ 12q, Z2 = In ⊗ I8 ⊗ 1q, Z3 = In ⊗ 18 ⊗ Iq

and s, ζ, ξ and ω are independently normally distributed with their elements being

independently normally distributed with mean 0 and variance σ2
s , σ2

sp, σ2
sd and σ2

st,

respectively. Furthermore, the variance of the random error terms V ar(ε) = σ2
ε (In⊗

I8 ⊗ A) and the q × q matrix A is given by A =




1 r ··· rq−1

r 1 ··· rq−2

...
...

...
...

rq−1 rq−2 ··· 1


.

Let the proposed estimator of τA − τB in the statement of Theorem 6.2 be

aT Y with aT =(aT
11, · · · , aT

1n1
, aT

21, · · · , aT
2n2

, aT
31, · · · , aT

3n3
, aT

41, · · · , aT
4n4

), where

aT
jk =(aT

01jk, aT
11jk, aT

02jk, aT
12jk, aT

03jk, aT
13jk, aT

04jk, aT
14jk). Thus ahijk is the q× 1 vector

(ahijk1, · · · , ahijkq)
T with ahijkm = λϕj

ψij

nj
φm, where λ = 1 for h = 1 and λ = −ρ for

h = 0. It is easy to verify that aT Y is a linear unbiased estimator for τA − τB. To

prove that aT Y is also the BLUE of τA − τB, by Theorem 5.1 we need to show that

Cov(aT Y, lT Y ) = 0 for all l such that E(lT Y ) = 0.

Let lT = (lT11, · · · , lT1n1
, lT21, · · · , lT2n2

, lT31, · · · , lT3n3
, lT41, · · · , lT4n4

), where lTjk=(lT01jk,

lT11jk, lT02jk, lT12jk, lT03jk, lT13jk, lT04jk, lT14jk) and lhijk is a q × 1 vector. Based on Model

6.7, we have that E(lT Y ) = 0 if and only if lT X2 = 0T , lT X3 = 0T and lT Xd = 0T .

Similar to the proof for Theorem 6.1, we have

4∑
j=1

nj∑

k=1

(lT01jk1q, l
T
11jk1q, l

T
02jk1q, l

T
12jk1q, l

T
03jk1q, l

T
13jk1q, l

T
04jk1q, l

T
14jk1q) = 0T , (6.8)

4∑
j=1

nj∑

k=1

1∑

h=0

4∑
i=1

lThijk = 0T ,

n1∑

k=1

lT111k1q +

n2∑

k=1

lT142k1q +

n3∑

k=1

lT133k1q +

n4∑

k=1

lT124k1q = 0, (6.9)
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n1∑

k=1

lT121k1q +

n2∑

k=1

lT112k1q +

n3∑

k=1

lT143k1q +

n4∑

k=1

lT134k1q = 0, (6.10)

n1∑

k=1

lT131k1q +

n2∑

k=1

lT122k1q +

n3∑

k=1

lT113k1q +

n4∑

k=1

lT144k1q = 0, (6.11)

n1∑

k=1

lT141k1q +

n2∑

k=1

lT132k1q +

n3∑

k=1

lT123k1q +

n4∑

k=1

lT114k1q = 0.

We also have

Cov(aT Y, lT Y )

=
∑4

j=1

∑nj

k=1{σ2
s(a

T
jkJ8qljk) + σ2

sp[a
T
jk(I4 ⊗ J2q)ljk] + σ2

sd[a
T
jk(I8 ⊗ Jq)ljk]

+σ2
st[a

T
jk(J8 ⊗ Iq)ljk] + σ2

ε [a
T
jk(I8 ⊗ A)ljk]}

=
∑4

j=1

∑nj

k=1{σ2
sp[a

T
jk(I4 ⊗ J2q)ljk] + σ2

sd[a
T
jk(I8 ⊗ Jq)ljk] + σ2

ε [a
T
jk(I8 ⊗ A)ljk]}.

Similarly, after some algebraic manipulations, we have

Cov(aT Y, lT Y )

= [(1− ρ)σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ]

{∑n1

k=1 ϕ1[(3n1n2 + 4n1n3 + n1n4 + 3n2n3 + 2n2n4 + n3n4 + 2n32)lT111k1q

−(n1n2 + 4n1n3 + 3n1n4 + n2n3 + 2n2n4 + 3n3n4 + 2n32)lT121k1q

−(n1n2 − n1n4 + n2n3 − 2n2n4 − n3n4 + 2n2
3)l

T
131k1q

−(n1n2 − n1n4 + n2n3 + 2n2n4 − n3n4 − 2n2
3)l

T
141k1q]

+
∑n2

k=1 ϕ2[−(3n1n2 + 2n1n3 + 3n1n4 + n2n3 + 4n2n4 + n3n4 + 2n2
4)l

T
112k1q

+(n1n2 + 2n1n3 + n1n4 − n2n3 − n3n4 − 2n2
4)l

T
122k1q

+(n1n2 − 2n1n3 + n1n4 − n2n3 − n3n4 + 2n2
4)l

T
132k1q

+(n1n2 + 2n1n3 + n1n4 + 3n2n3 + 4n2n4 + 3n3n4 + 2n2
4)

T
142k1q]

+
∑n3

k=1 ϕ3[−(−n1n2 + n1n4 − n2n3 − 2n2n4 + n3n4 + 2n2
1)l

T
113k1q

+(n1n2 − n1n4 + n2n3 − 2n2n4 − n3n4 + 2n2
1)l

T
123k1q

+(n1n2 + 4n1n3 + 3n1n4 + n2n3 + 2n2n4 + 3n3n4 + 2n2
1)l

T
133k1q

−(3n1n2 + 4n1n3 + n1n4 + 3n2n3 + 2n2n4 + n3n4 + 2n2
1)l

T
143k1q]}
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+
∑n4

k=1 ϕ4[−(n1n2 + 2n1n3 + n1n4 − n2n3 − n3n4 − 2n2
2)l

T
114k1q

+(3n1n2 + 2n1n3 + 3n1n4 + n2n3 + 4n2n4 + n3n4 + 2n2
2)l

T
124k1q

−(n1n2 + 2n1n3 + n1n4 + 3n2n3 + 4n2n4 + 3n3n4 + 2n2
2)l

T
134k1q

−(n1n2 − 2n1n3 + n1n4 − n2n3 − n3n4 + 2n2
2)l

T
144k1q]}

= [(1− ρ)σ2
sp + σ2

sd + 1+r
q−(q−2)r

σ2
ε ]

{−ϕ4(n1n2 − n1n4 + n2n3 + 2n2n4 − n3n4 − 2n2
3)

∑4
j=1

∑nj

k=1 lT11jk1q

+ϕ3(n1n2 − 2n1n3 + n1n4 − n2n3 − n3n4 + 2n2
4)

∑4
j=1

∑nj

k=1 lT12jk1q

+ϕ2(n1n2 − n1n4 + n2n3 − 2n2n4 − n3n4 + 2n2
1)

∑4
j=1

∑nj

k=1 lT13jk1q

−ϕ1(n1n2 + 2n1n3 + n1n4 − n2n3 − n3n4 − 2n2
2)

∑4
j=1

∑nj

k=1 lT14jk1q

+α1(
∑n1

k=1 lT111k1q +
∑n2

k=1 lT142k1q +
∑n3

k=1 lT133k1q +
∑n4

k=1 lT124k1q)

−α2(
∑n1

k=1 lT121k1q +
∑n2

k=1 lT112k1q +
∑n3

k=1 lT143k1q +
∑n4

k=1 lT134k1q)

−α3(
∑n1

k=1 lT131k1q +
∑n2

k=1 lT122k1q +
∑n3

k=1 lT113k1q +
∑n4

k=1 lT144k1q)},
where α1 = n

4(n1+n3)(n2+n4)
, α2 = n

2(n1n2+2n1n3+n1n4+n2n3+2n2n4+2n3n4)
and α3 =

n2n2
1−2n3n2

1+n4n2
1+n1n2

2+n3n2
2−2n4n2

2−2n1n2
3+n2n2

3+n4n2
3+n1n2

4−2n2n2
4+n3n2

4

4(n1+n3)[n1n2
2+n3n2

2+2n4n2
2+n1n2

4+2n2n2
4+n3n2

4+2(n1n2n3+n1n2n4+n1n3n4+n2n3n4)]
.

By applying Equations 6.8 and 6.9 - 6.11, if follows that the last expression

equals zero. Therefore, we have shown that Cov(aT Y, lT Y ) = 0 for all l such that

E(lT Y ) = 0. Thus, aT Y is the BLUE for τA − τB.

6.4 Discussion

In this chapter, we studied selected 3 × 3 and 4 × 4 uniform crossover designs. We

obtained the BLUEs of a treatment contrast for the method of retaining baseline

measurements as part of the response vector. Similar results can also be obtained for

other methods discussed in Chapter 5. Even though we did not provide a comparison

for the different methods for designs with more than two treatments in this chapter,

we would still expect that retaining baseline measurements as part of the response

vector will have the highest efficiency for most of the scenarios.
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For the designs with three treatments and three periods, we could also use all

six sequences in Section 6.2. However, the closed form for the BLUE of τA − τB for

that design is rather complicated unless that the numbers of the subjects in each

sequence are the same. So, if the numbers of subjects for each sequence are different,

simply using the average from the corresponding observations for the particular

treatment contrast will lead to incorrect results. Of course, nowadays, we can use

PROC MIXED in SAS to obtain the estimate for the treatment contrast of interest,

and SAS will take care of unequal sequence replications.

Lack of balance resulting from unequal numbers of subjects in each sequence is,

however, not uncommon in clinical trials. Even when the design calls for the same

number of subjects for each sequence, we may wind up with unequal numbers due

to dropout of subjects. This is especially true for designs with a larger number of

periods. Thus, crossover designs with large number of periods should be avoided at

the design stage.
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