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ABSTRACT 

Solar radiation forecasting models were developed in order to determine the specific times 

during a given day that solar panels could be relied upon to produce energy sufficient to meet the 

demand of the energy provider, Georgia Power. These models, which consisted of multilayer 

perceptrons (MLP), model averaged neural networks (MANN) and alternating model trees 

(AMT), were constructed to forecast solar radiation an hour into the future, given 2003-2012 

solar radiation data from the Griffin, Georgia weather station for training and 2013 data for 

testing. A literature review of the most prominent hourly solar radiation models was performed 

and normalized root mean square error was calculated for each.  The results demonstrate that 

MANN and AMT models outperform or parallel the highest-performing models within the 

literature.  MANN and AMT are thus promising forecasting models that may be further 

improved by forming an ensemble of these models with the top performing within the literature. 
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CHAPTER 1 

HOURLY SOLAR RADIATION FORECASTING  

 

1.1 INTRODUCTION 

With the advent of efficient and affordable solar energy technology, there is an increasing 

demand to determine how these technologies can be managed, in order to maximize the energy 

harvested.  One method for optimizing energy production, from the perspective of energy 

providers, is to predict how much energy they can expect to collect from solar panels at a given 

time of day. With this information, an energy provider can dynamically adjust which energy 

sources to draw upon to deliver energy to their customers, with the intent of minimizing the use 

of non-renewable energy sources as often as possible.  Thus, it is not surprising that the search 

query, “solar radiation prediction,” returns 1,200,000 results on Google Scholar1.  With a 

sufficiently accurate solar radiation prediction model, energy providers can reduce their use of 

expensive, non-renewable energy sources, and thus reduce pollution.  In contrast, a poor 

performing model that predicts more solar radiation than actually occurs can mislead energy 

providers into reducing use of other energy sources, such that the energy needs of customers are 

not met.  A model that predicts less solar radiation than actually occurs causes energy providers 

to miss opportunities to reduce usage of other energy. Therefore, it is imperative to develop a 

solar radiation prediction model that leverages state-of-the-art algorithms in time-series 

forecasting in order to maximize the benefits to be gained through solar energy.  

                                                 
1 No analysis was performed to determine how many of the results returned actually pertain to solar radiation prediction 
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The objective of the current study was to develop a model of solar radiation forecasting 

capable of predicting the amount of solar radiation that would make contact with the surface of 

the earth an hour or more into the future.  This endeavor was commissioned by Georgia Power 

with the intent of integrating the predictive model into the control system regulating which 

energy sources are drawn upon to meet the demand of their customers at a given time.  Southern 

Company, the parent company of Georgia Power, currently operates facilities capable of 

generating over 1,400 MW from solar energy. These facilities were constructed in accordance 

with Southern Company’s Advanced Solar Initiative (GPASI) and Integrated Resource Plan 

(IRP) [1]. One of the most recent initiatives undertaken by Georgia Power has been the 

installation of a solar farm on the University of Georgia-Athens campus, which is capable of 

generating 1 MW of solar energy [2].  Georgia Power and the University of Georgia have plans 

to continue their partnership by constructing a 3 MW solar farm on the Tifton campus [3].  Thus, 

a predictive model capable of forecasting the amount of solar radiation that will occur an hour or 

more into the future could allow Georgia Power to reduce their usage of non-renewable energy 

sources when the solar energy is predicted to be sufficient at a given time, while also providing 

the company with returns on their investment. 

Data from the Georgia Automated Environmental Monitoring Network’s (GAEMN)2 

Griffin weather station from 2003-2013 were used to construct the predictive models.  In order to 

standardize performance, all models were trained with data from 2003-2012 and tested on 2013 

data.  Solar radiation values ranged from 0 – 1200 W/m2. Observations were collected at 15 

minute intervals over the duration of each year for a total of 35040 observations per year.  Forty-

three data fields were observed, though only a subset of these fields was used for solar radiation 

                                                 
2 Information about GAEMN can be accessed at http://www.georgiaweather.net/ 
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prediction: year, day of year, time of day, air temperature (°C), humidity (%), dew point (°C), 

vapor pressure (kPa), barometric pressure (kPa), wind speed (m/s), solar radiation (W/m2), total 

solar radiation (KJ/m2), photosynthetically active radiation (umole/m2s), and rainfall (mm). In 

subsequent studies, only the current solar radiation amount, SRt and the previous n solar radiation 

values, SRt-n, …, SRt-2, SRt-1, were used as input to predict solar radiation an hour into the future, 

SRt+4.  

The hourly solar radiation forecasting models are characterized in Chapters 2 and 3 as 

follows: Chapter 2 describes an artificial neural network model that utilized air temperature, 

humidity, solar radiation (SR), total solar radiation (TSR), photosynthetically active radiation 

(PAR) and rainfall as the input fields in order to achieve a mean square error (MSE) of 0.0042, 

which is equivalent to a root mean squared error of 77.77 W/m2.  In addition, several models of 

direct normal irradiance (DNI) were constructed, which explicitly calculate an expected amount 

of solar radiation through empirically derived formulas pertaining to solar radiation, including 

local solar time, hour angle, declination angle, solar elevation angle, air mass, and absolute air 

mass. These models are adapted from prominent DNI models with the solar radiation literature 

and include WGEN [4], Hoogenboom’s model [5], Yang's model [6], Iqbal’s model [7], and 

ESRA2 [8]-[9].  These models utilize barometric pressure, latitude, and vapor pressure, in 

addition to observations of aerosol optical depth, water vapor, and Angstrom's coefficient taken 

from AERONET (http://aeronet.gsfc.nasa.gov) at the Georgia Tech site, in order to estimate 

DNI.  The results from this study demonstrate that the same neural network trained with air 

temperature, humidity, SR, and the DNI calculated from the WGEN model, was able to attain the 

same MSE as the model trained with air temperature, humidity, solar radiation (SR), total solar 

radiation (TSR), photosynthetically active radiation (PAR) and rainfall. 
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The neural network model described in Chapter 3 improves upon the neural network 

characterized in Chapter 2 through two important innovations: first, significantly more previous 

solar radiation values (i.e. a significantly greater lag) were used as input for training the model, 

while the other input fields, such as rainfall and air temperature, were discarded.  Second, each 

neural network within the ensemble was initialized with the same architecture as the previous 

study (except the number of input units), but with distinct weight vectors within their hidden 

layers, and was trained until demonstrating a decline in performance on the test set. Once trained, 

the predictions of these networks on a given input were averaged together in order to calculate a 

final prediction for solar radiation at time t + 1.  This model, referred to as a model averaged 

neural network (MANN) [12], attained a RMSE of 62.81 W/m2 when trained on solar radiation 

values with a lag of 96 (i.e. 96 previous solar radiation values collected in 15 minute intervals, 

totaling to 24 hours).   

Furthermore, although decision tree-based models are rare within the solar radiation 

forecasting literature, a state-of-the-art decision tree, known as an alternating model tree (AMT), 

was also implemented in this study.  AMTs are composed of two types of nodes: splitter nodes, 

where numeric attributes are split at the median value of the attribute, and predictor nodes, which 

utilize linear regression to predict the numeric output at that node [11]. In addition, an AMT is 

grown via forward stage-wise additive modeling, where the residual errors made by the current 

AMT are fitted to a base learner (e.g. a decision stump or a linear regression model), after which 

the fitted base learner is added into the regression predictions made by the AMT. The AMT is 

tuned by specifying the number of iterations to grow the tree for (i) as well as the shrinkage (λ), 

which dampens the predictions of each base learner within the additive model towards predicting 

the mean of the target series. Thus, an AMT was deemed appropriate for the domain of solar 
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radiation, as the replacement of constant values with linear regression models at the leaf nodes of 

the decision tree allow AMTs to model nonlinear curves in a piecewise fashion.  The AMT 

model with a lag of 96 attained an RMSE of 62.7 W/m2.  These results suggests that the AMT 

parallels the performance of the MANN and thus warrants further investigation as a solar 

radiation forecasting model.  

A thorough literature review of the top performing and most frequently cited solar 

radiation prediction models was carried out for comparison with the performance of the models 

developed within this study.  One of the reoccurring problems within the literature on solar 

radiation forecasting is the lack of unity in performance metrics for comparing models. As Hoff 

et al. [10] note, while RMSE and mean absolute error (MAE) are calculated with the same 

equation across studies, their calculations as percentages are not.  In order to remedy this 

problem, normalized root mean square error (NRMSE) is calculated for top solar radiation 

forecasting models with in the literature.  As NRMSE is calculated as a percentage error that is 

relative to the minimum and maximum solar radiation values observed within the respective 

studies, it allows models to be compared across studies. A comparison of the NRMSE of the 

most influential models in the literature, with the models developed in the current study, 

demonstrated that the MANN and AMT models outperform or parallel the performance of the 

models described in the literature. These results suggest the MANN and AMT developed in the 

current study represent the cutting-edge of solar radiation forecasting and merit investigations on 

how these two models can be formed into an ensemble to leverage the strengths of both models. 
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CHAPTER 2 

HOURLY SOLAR RADIATION FORECASTING THROUGH NEURAL NETWORKS AND 

DIRECT NORMAL IRRADIANCE MODELS3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Hamilton, C.R., Potter, W.D., Hoogenboom, G., McClendon, R., & W. Hobbs. 2015. International Journal of Computer, 

Electrical, Automation, Control and Information Engineering. 9(5): 970-975. Reprinted here with permission of the publisher. 
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2.1 ABSTRACT 

 A model was constructed to predict the amount of solar radiation that will make contact 

with the surface of the earth in a given location an hour into the future. This project was 

supported by the Southern Company to determine at what specific times during a given day of 

the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their 

ability as universal function approximators, an artificial neural network was used to estimate the 

nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected 

at the Griffin, Georgia weather station as inputs.  A number of network configurations and 

training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes, 

trained with the resilient propagation algorithm, consistently yielded the most accurate 

predictions. In addition, a modeled direct normal irradiance field and adjacent weather station 

data were used to bolster prediction accuracy. In later trials, the solar radiation field was 

preprocessed with a discrete wavelet transform with the aim of removing noise from the 

measurements. The current model provides predictions of solar radiation with a mean square 

error of 0.0042, which is competitive with many of the models within the solar radiation 

forecasting literature.  

 

2.2  INTRODUCTION 

 Solar radiation forecasting is a problem within time series prediction that has received 

considerable attention, as such predictions can inform the expected yield from crops in a given 

year or the amount of energy that can be produced from a solar panel [1]-[3].  One common 

model for solar radiation prediction is an artificial neural network (for examples, see [4]-[6]), as 

these networks serve as universal function approximators [7].  Although other models and 
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techniques exist for time series prediction such as support vector machines (SVM), hidden 

Markov models (HMM), dynamic Bayesian networks (DBN), and autoregressive integrated 

moving average (ARIMA) models, artificial neural networks (ANNs) have a demonstrated 

history of success in predicting solar radiation.  Furthermore, ANNs are highly customizable in 

how the network can be configured (e.g. how many hidden layers/nodes, feedforward vs. 

recurrent, etc.), and can thus be tailored to a specific problem more readily.  As solar radiation is 

influenced by a number of environmental and atmospheric conditions, an ANN was selected as 

the most appropriate model for the current study. 

In the present study, a model was constructed to predict the amount of solar radiation that 

will make contact with the surface of the earth in a given location an hour into the future. This 

study was supported by the Southern Company with the idea that the model could be used to 

determine at what specific times during a given day of the year solar panels could be relied upon 

to produce energy in sufficient quantities. An artificial neural network was used to approximate 

the nonlinear pattern of solar radiation, which utilized measurements of weather conditions 

collected at the Griffin, Georgia weather station as inputs.  A number of network configurations 

and training strategies were utilized, though a multilayer perceptron with a variety of hidden 

nodes trained with the resilient propagation algorithm consistently yielded the most accurate 

predictions. In addition, a modeled DNI field and adjacent weather station data were used, in an 

effort to reduce prediction error.  In later trials, the solar radiation field was preprocessed with a 

discrete wavelet transform with the aim of removing noise from the measurements.  

 Direct normal irradiance (DNI) is the amount of solar radiation that will make contact 

with a given area under cloudless sky conditions [8].  As the actual amount of solar radiation that 

is measured locally has been subjected to environmental factors (e.g. cloud coverage, 
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atmospheric gases) before it is measured, DNI can serve as a point of comparison when 

analyzing solar radiation data.  Thus, DNI appears to be a useful field to train an artificial neural 

network with for the sake of predicting the actual amount of solar radiation, as the two fields 

should be strongly correlated.  The model in this study utilized a modeled DNI field, in 

conjunction with measured solar radiation, in order to predict solar radiation one hour into the 

future. 

 Discrete wavelet transform (DWT) is a technique commonly used for noise reduction in 

signal processing and data compression [9].  The current study treats the solar radiation field as a 

signal and decomposes the signal into an orthogonal set of wavelets, then reconstructs the signal 

with the noise removed [10].  Thus, preprocessing the solar radiation field with DWT was 

hypothesized to be an effective technique for improving the model’s prediction accuracy.  

Furthermore, adjacent weather station data were added into the models’ input, as prior research 

on solar radiation forecasting performed at UGA demonstrated performance improvements 

through this approach [11].  In sum, the current study aimed to assess some of the most 

successful prediction models and techniques demonstrated within previous studies.  

 

2.3  MATERIALS 

Data from the Griffin, Georgia weather station from 2003-2013 were used to build the 

observations for the input layer to the neural network.  Observations were collected in 15 minute 

intervals over the duration of each year for a total of 35040 observations per year.  Forty-three 

data fields were observed, though only a subset of these fields was used for solar radiation 

prediction: year, day of year, time of day, air temperature (°C), humidity (%), dew point (°C), 

vapor pressure (kPa), barometric pressure (kPa), wind speed (m/s), solar radiation (W/m2), total 
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solar radiation (KJ/m2), photosynthetically active radiation (umole/m2s), and rainfall (mm). In 

later models, measurements of solar radiation from the Williamson, GA weather station - the 

weather station nearest to the Griffin station - were incorporated as input into the neural network, 

as data field measurements from nearby adjacent weather stations have been shown to improve 

performance of solar radiation predictions [11]. 

In order to further reduce prediction error, values for direct normal irradiance (DNI) were 

modelled for each time step.  In addition to the observed fields at the Griffin station, observations 

of aerosol optical depth, water vapor, and Angstrom's coefficient were taken from AERONET 

(http://aeronet.gsfc.nasa.gov) at the Georgia Tech site, and used to calculate DNI across the 

different DNI models implemented.  Five separate models were used to calculate the DNI field: 

WGEN [12], Hoogenboom’s [13], Yang's model [14], Iqbal’s model [15], and ESRA2 [16]-[17]. 

These models were selected as they have been shown to be some of the most efficacious models 

for modeling DNI [8], [18]. 

 

2.4 METHODS 

The fields used for prediction of future solar radiation values were first extracted from the 

raw measurement files from the Griffin station.  For each value of the extracted fields at time 

step t (with the exception of year, day, and time), values from the four previous time steps (t-1,  t-

2, t-3, t-4) were added to the observation file that would serve as input into the input layer of the 

neural network. This is known as the sliding window technique and has been shown to 

significantly increase the performance of time series predictions with neural networks [19].  In 

addition, delta values were calculated for each data field instance by subtracting the previous 

value from the current value, and were added to the observation file as well.  
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 Modeled values of direct normal irradiance (DNI) were then calculated and added to the 

observation file for each time step, in addition to their corresponding previous time step and delta 

values. Although each model varied in the measured and modeled fields used for calculation of 

DNI, there were some common fields utilized in most or all of the models. The most utilized 

fields in calculating DNI were solar declination angle (2.1), hour angle (2.2), solar elevation 

angle (2.3), zenith angle (2.4), and relative air mass (2.5), as shown in equations (2.1)-(2.5): 

𝐷𝐴 =  sin−1 (sin 23.25 × sin ((
360

365
) × (𝑑𝑎𝑦 − 81)))         (2.1) 

𝐻𝐴 = 15 ×  (𝐿𝑆𝑇 − 12), 𝑤ℎ𝑒𝑟𝑒 𝐿𝑆𝑇 𝑖𝑠 𝑙𝑜𝑐𝑎𝑙 𝑠𝑜𝑙𝑎𝑟 𝑡𝑖𝑚𝑒         (2.2) 

𝐸𝐴 = 90 − 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 + 𝐷𝐴             (2.3) 

𝑍𝐴 = 90 − 𝐸𝐴              (2.4) 

𝑚 =  
1

cos𝑍𝐴
                 (2.5) 

After the extracted data fields, the modeled DNI values, and (in later models) the solar 

radiation values from the Williamson station were added to the observation file, each value 

within the file was scaled within a range of 0 to 1, in proportion to the minimum and maximum 

values within their respective fields.  In subsequent models, the scaled values for the solar 

radiation field were extracted from the observation file, processed through a discrete wavelet 

transform (DWT), and inserted back into the observation file.  The JWave Java library was used 

to perform the DWT.  Haars, Coiflet, Daubechie, and Legendre wavelet transforms were 

performed on the solar radiation field in separate trials in 1-D, 2-D, and 3-D. Once the solar 

radiation field was transformed and replaced within the observation file, the scaled fields were 

input into the neural network that was implemented using the Encog Java library. 

During model development, a number of network configurations and training regimes 

were tested, in addition to varying combinations of input fields, in an effort to determine the 
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setup that would yield the most accurate solar radiation predictions. Trials began with a standard 

multi-layer perceptron (MLP) network configuration with 29 input nodes, 57 hidden nodes and 1 

output node that provided the prediction of solar radiation one hour into the future. In subsequent 

trials, the number of hidden nodes was adjusted within a range of 17-257 nodes.  The initial trials 

used air temperature, humidity, dew point, barometric pressure, wind speed, solar radiation, total 

solar radiation, photosynthetically active radiation, and rainfall as the input fields into the neural 

network.  In later trials, various combinations of these fields were used.  Furthermore, the 

backpropagation algorithm was used to train the neural network in the initial trials, but was then 

replaced with the resilient propagation algorithm (iRPROP+) [20]-[21] which consistently 

yielded more accurate predictions across network configurations.  

 As a recurrent neural network is not only dependent on the current input, as a MLP is, but 

is also dependent on previous inputs stored in the context layer [22]-[23].  As such, it was 

hypothesized that an Elman network would yield more accurate results than a MLP network.  An 

Elman network with 57 hidden nodes was configured and trained with a hybrid strategy of 

resilient propagation and simulated annealing (SA). The following trials replaced simulated 

annealing with particle swarm optimization (PSO) for the training strategy.  An incremental 

pruning regime was then implemented, which tested the mean squared error (MSE) for networks 

with successively larger hidden layers until the addition of hidden nodes no longer improved the 

MSE returned.  PSO and SA were then used independently to train the Elman network after a 

hidden layer configuration was determined through incremental pruning. 

 A series of radial basis function networks (RBFNs) were then implemented for solar 

radiation prediction. The initial RBFN was configured with 49 hidden nodes and a Gaussian 

radial basis function. In the trials that followed, the centers and widths of the radial basis 
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functions were randomized. Subsequent networks used a Mexican Hat radial basis function and a 

hidden layer with hidden nodes within the range of 81-196. Singular value decomposition (SVD) 

was then used to train a RBFN with 196 hidden nodes. 

 The network type was then switched to a support vector machine with the same 29 inputs. 

After the SVM trials were carried out, the model was switched back to a MLP neural network 

with 157-207 hidden nodes and trained with the resilient propagation algorithm. Within these 

trials, modeled DNI values and adjacent weather station data were included, in addition to solar 

radiation preprocessing with DWT. 

 

2.5 RESULTS 

A MLP network with 157 hidden nodes was consistently shown to be the network 

configuration that yielded the most accurate solar radiation predictions.  The most accurate 

model achieved an MSE of 0.0042 after 4000 epochs using air temperature, humidity, solar 

radiation (SR), total solar radiation (TSR), photosynthetically active radiation (PAR), and rainfall 

as the input fields (see Table 2.3 for configurations used in the experiments).  The network was 

able to attain the same accuracy after the TSR and PAR fields were removed.  Furthermore, the 

same network setup with air temperature, humidity, SR and DNI (WGEN model) also achieved 

an MSE of 0.0042. These results were obtained without preprocessing the SR data through DWT 

or the adjacent weather station data. The greatest accuracy of the remaining network 

configurations, input field combinations, and training regimes implemented are summarized in 

Table 2.1 and Table 2.2. 
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Table 2.1 

Final MSE without DNI, Adjacent Stations, & DWT 

Net 

Type 

# of Hidden 

Nodes 

Training 

Regime 

Epochs MSE Notes 

 

MLP 

 

57 

 

RPROP/SA 

 

14 

 

0.008 

 

Greedy 

Elman 57 RPROP/SA 250 0.007 Ended 

Elman 57 RPROP/PSO 25 0.012 Ended 

Elman 57 PSO 17 0.06 Ended 

Elman 57 SA 127 0.045 Ended 

Elman 5-75  RPROP, IP 10 epochs per 

node 

0.0125 57 hidden 

nodes  

selected as best 

Elman 57 RPROP 200 0.01 Ended 

RBF 49 RPROP 418 0.0115 Gaussian 

RBF 81 RPROP 243 0.0078 Mex. Hat 

RBF 196 RPROP 716 0.00616 Mex. Hat 

RBF 196 SVD 1 0.0727 Stagnant 

SVM - - 1 0.0065 Stagnant 

 

 

Table 2.2 

Final MSE with DNI, Adjacent Stations, & DWT 

Net 

Type 

# of Hidden 

Nodes 

Training 

Regime 

Epoch MSE Notes 

 

MLP 

 

157 

 

RPROP 

 

2600 

 

0.0043 

 

AT, H, SR,DNI (WGEN) 

MLP 157 RPROP 2540 0.0047 AT, H, SR, DNI 

(Hoogenboom) 

MLP 157 RPROP 3104 0.0043 AT,H,SR,DNI (Yang) 

MLP 207 RPROP 1932 0.0044 A,H,SR, AWS 

MLP 207 RPROP 2500 0.0043 All, AWS,DNI (Iqbal) 

MLP 207 RPROP 3600 0.0048 All, AWS, DNI (ESRA2) 

MLP 207 RPROP 3510 0.0043 Same w/DWT (D2) 

MLP 207 RPROP 255 0.0051 Same w/DWT (H2) 

 

All trials shown in Tables 2.1 and 2.2 use air temperature, humidity, solar radiation and 

rainfall as their input fields, unless otherwise specified.  It is important to note that the trials 

represented in Tables 2.1 and 2.2 were the best results for their respective configurations; trials 
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with less accurate results have not been shown. Trials involving a greedy strategy halted before 

the network could achieve a lower MSE, so this strategy was abandoned in subsequent trials. 

Simulated annealing and particle swarm optimization strategies were relatively slow to train the 

networks they were used upon, and would often halt before the network had completed training. 

The incremental pruning regime selected 57 hidden nodes as the configuration that produced the 

lowest MSE within a range of 5-75 hidden nodes. A larger range of hidden nodes was not tested, 

nor was incremental pruning implemented on a MLP.  Moreover, the application of a support 

vector machine (SVM) showed promise by obtaining an MSE of 0.0065, but was unable to 

demonstrate improvement in subsequent trials. 

Although the five models of DNI performed relatively the same, the WGEN consistently 

helped the prediction model attain a slightly lower MSE than the other models. Contrary to 

findings by Li et al. [11], the addition of adjacent weather station SR data did not improve 

prediction accuracy.  Likewise, preprocessing the SR data with a DWT did not improve 

prediction accuracy, and in some cases, hampered it. Trials where SR data were preprocessed 

with Coiflet and Legendre wavelet transforms are not shown, as the resulting MSE was not 

within an admissible range. Tables 2.3 and 2.4 demonstrate the final MSEs obtained with various 

input parameters (e.g. rainfall, humidity, temperature, etc). 
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Table 2.3 

Final MSE for 1-Hr Predictions Using Varying Input Fields 

 

Trial A B C D E F G H I J K 

            

Day x x x x x x x x x x x 

Time x x x x x x x x x x x 

AirTemp  x          

Humid      x    x  

DewPt     x       

BarPress       x     

WindSp        x    

SR x x x x x x x x x x x 

TSR    x       x 

PAR         x  x 

Rainfall   x       x  

            

Prev. & 

Delta 

           

AirTemp  x          

Humid      x    x  

DewPt     x       

BarPress       x     

WindSp        x    

SR x x x x x x x x x x x 

TSR    x       x 

PAR         x  x 

Rainfall   x       x  

Best 

MSE 

(1x10-3)  

4.3 4.3 4.4 4.5 4.5 4.5 4.6 4.8 5.7 4.4 5.0 
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Table 2.4 

Final MSE for 1-Hr Predictions Using Varying Input Fields 

Trial L M N O P Q R S T U V 

            

Day x x x x x x x x x x x 

Time x x x x x x x x x x x 

AirTemp x   x   x  x  x 

Humid x  x  x x x  x  x 

DewPt           x 

BarPress       x    x 

WindSp        x   x 

SR x x x x x x x x x x x 

TSR  x  x x x  x x x x 

PAR  x x x x   x  x x 

Rainfall x x x   x x x x x x 

            

Prev. & 

Delta 

           

AirTemp x   x   x  x  x 

Humid x  x  x x x  x x x 

DewPt           x 

BarPress       x    x 

WindSp        x   x 

SR x x x x x x x x x x x 

TSR  x  x x x  x x x x 

PAR  x x x x   x  x x 

Rainfall x x x   x x x x x x 

Best MSE 

(1x10-3) 

4.2 4.9 5.0 5.2 5.4 6.0 4.3 4.5 6.2 4.2 4.6 

 

2.6 CONCLUSION 

The results of the trials summarized in Tables 2.1-2.4 suggest that the current air 

temperature, humidity, and solar radiation are the most vital inputs for accurately predicting solar 

radiation an hour into the future. This finding is intuitive, as the amount of water molecules 

suspended in the air influences the solar radiation that makes contact with the surface of the 

earth, and air temperature is an indication of the amount of solar radiation that has entered into 

the atmosphere and contacted the earth’s surface.  Rainfall and DNI also serve as accurate 
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predictors of solar radiation, though using both of these fields in combination did not appear to 

improve accuracy any more than using either field in isolation.  

The MLP network with 157+ hidden nodes consistently yielded the most accurate 

predictions, despite other studies which have had success with recurrent networks [23], RBFNs 

[24], and SVMs [25]-[26].  Likewise, the resilient propagation algorithm produced the most 

accurate predictions across trials, in comparison to the other training strategies implemented. 

Despite the success of this network configuration and training regime in regularly attaining an 

MSE below 0.0044, the addition of modeled DNI, adjacent weather station data, and 

preprocessing with DWT did not improve prediction accuracy, despite success demonstrated 

with these techniques within the time series literature [12], [8], [10], [27].  These findings 

suggest that further model development is needed to make sufficiently accurate solar radiation 

predictions. 

 Despite the breadth and diversity of the network configurations, input fields, and training 

strategies used in this study, there are still a number of approaches that may be taken in the 

future in an attempt to improve prediction accuracy.  For one, other measures of error such as 

mean absolute error (MAE) and mean absolute percentage error (MAPE) may be used to 

determine how the current model(s) compare with those within the solar radiation forecasting 

literature.  Second, an autoregressive integrated moving average (ARIMA) and artificial neural 

network hybrid model may be implemented, as such models have demonstrated high 

performance in a number of other time series prediction problems [29], such as the British 

pound/US dollar exchange rate[28], sunspot appearance [31], and water quality [30].  Third, the 

equations used to calculate the modeled DNI value could be adjusted to better fit solar radiation 

prediction.  Fourth, the current model could be tested with data from other weather stations, in 
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order to determine how its predictions generalize to other geographic regions. In conclusion, 

although the accuracy of the model was not improved beyond an MSE of 0.0042, the model 

remains more accurate than many models of solar radiation currently found within the literature. 
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CHAPTER 3 

HOURLY SOLAR RADIATION FORECASTING THROUGH MODEL AVERAGED 

NEURAL NETWORKS AND ALTERNATING MODEL TREES4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
4 Hamilton, C.R., Maier, F., & W.D. Potter. 2016. Accepted by International Conference on Industrial, Engineering & Other 

Applications of Applied Intelligent Systems. Reprinted here with permission of the publisher. 
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3.1 ABSTRACT 

The objective of the current study was to develop a solar radiation forecasting model 

capable of determining the specific times during a given day that solar panels could be relied 

upon to produce energy in sufficient quantities to meet the demand of the energy provider, 

Southern Company.  Model averaged neural networks (MANN) and alternating model trees 

(AMT) were constructed to forecast solar radiation an hour into the future, given 2003-2012 

solar radiation data from the Griffin, GA weather station for training and 2013 data for testing. 

Generalized linear models (GLM), random forests, and multilayer perceptron (MLP) were 

developed, in order to assess the relative performance improvement attained by the MANN and 

AMT models.  In addition, a literature review of the most prominent hourly solar radiation 

models was performed and normalized root mean square error was calculated for each, for 

comparison with the MANN and AMT models. The results demonstrate that MANN and AMT 

models outperform the standard time series forecasting models, as well as most of the highest-

performing models within the literature, while competing with the remaining models. MANN 

and AMT are thus promising time series forecasting models that may be further improved by 

combining these models with the top performing within the literature. 

 

3.2 INTRODUCTION 

With the world population projected to increase to 9.6 billion by 2050 [33], there is an 

urgent need to utilize renewable energy sources. The necessity of harnessing renewable energy is 

more apparent when one considers that the average farm uses 3 kcal of fossil fuel energy to 

produce 1 kcal of food energy before that food is even processed or transported to the market 

[12].  In order to ensure that the energy needs of a population are met, it is vital that there are 
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systems in place for forecasting how much energy can be anticipated in the future, such that 

usage of non-renewable energy resources can be scaled back accordingly. Thus, a highly 

accurate model of solar radiation prediction is imperative as such predictions can inform the 

expected yield from crops in a given year as well as the amount of energy that will be produced 

from a solar panel at a given location and time [12], [16]. The present study proposes a model for 

hourly solar radiation prediction whose performance is competitive with the leading models of 

solar radiation (compare with [3], [29], and [31]).  

With the ability to predict the amount of solar energy that will be produced by a set of 

solar panels, assuming a constant efficiency of the panels, it is possible for energy providers to 

reduce their usage of non-renewable energy resources.  The forecasting model utilized 

measurements of weather conditions collected at the Georgia Automated Environmental 

Monitoring Network’s (GAEMN) Griffin weather station as inputs.  As shown in Figures 3.1 and 

3.2, the overall trend of increasing solar radiation through the spring and summer, and the 

decrease starting in the fall, is present in the solar radiation data from year to year. However, the 

amount of solar radiation occurring on a given day at a given time can vary drastically between 

years, which prevents linear approximation techniques from yielding accurate predictions.  In 

order to model the nonlinearity present within the data, a number of machine learning models 

were implemented including least median squares, random forest, alternating model trees [6], 

and artificial neural networks.  

To further bolster prediction accuracy, model averaged neural networks were constructed 

from combinations of single networks with the same architecture, but with their respective 

weight vectors initialized randomly to distinct sets of values.  It was conjectured that since the 

final weight vector for a network is deterministic, given its initial weight vector, the training set, 
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and the learning algorithm, a greater extent of the search space for the weight vector could be 

explored by creating multiple copies of the same network, but with different initial weights.  It 

was hypothesized that the average of the outputs from these networks would be closer to the 

global optimum, as more of the weight space would be explored by initializing each network 

with a distinct weight vector.  This is to say that by initializing the networks to different weights, 

training each network on the same time series, and averaging their output would help reduce the 

bias inherent in any network’s initial weights. As a consequence, the model averaged neural 

network should have a smaller mean square error for its predictions, in comparison to a single 

neural network [32]. Thus, the model averaged neural network appears to be an effective 

approach for improving the accuracy of continuous value predictions, such as the amount of 

solar radiation to occur, when compared to a single neural network.  

Alternating model trees (AMTs) were also implemented, due to their demonstrated 

efficacy in time series domains [6].  Two nodes comprise AMTs: splitter nodes, where numeric 

attributes are split at the median value of the attribute, and predictor nodes, which utilize linear 

regression to predict the numeric output at that node. In addition, an AMT is grown via forward 

stage-wise additive modeling, where the residual errors made by the current AMT are fitted to a 

base learner (e.g. a decision stump or a linear regression model), after which the fitted base 

learner is added into the regression predictions made by the AMT. The AMT is tuned by 

specifying the number of iterations to grow the tree for (i) as well as the shrinkage (λ), which 

dampens the predictions of each base learner within the additive model towards predicting the 

mean of the target series. Thus, an AMT was deemed appropriate for the domain of solar 

radiation, as the replacement of constant values with linear regression models at the leaf nodes of 

the decision tree allow AMTs to model non-linear curves in a piece-wise fashion. 
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Figure 3.1. Solar radiation data collected in 15 minute intervals from the Griffin, Georgia weather 

station in 2003. 

 

 

Figure 3.2. Solar radiation data collected in 15 minute intervals from the Griffin, Georgia weather 

station in 2013. 
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3.3 LITERATURE REVIEW 

Sfetsos & Coonick [29] evaluated several model types, including a linear regression 

model, Elman networks (ELM), radial basis function networks (RBF), adaptive neuro-fuzzy 

inference systems (ANFIS), and neural networks trained using backpropagation (BP) and the 

Levenberg-Marquardt (LM) algorithm. Of these algorithms, the LM algorithm attained the 

smallest error, likely due to the fact that it combines gradient descent (backpropagation) and 

Newton’s method, and thus has the strengths of both [8],[19],[21]. The LM algorithm is 

described by equation (3.1): 

𝑊𝑚𝑖𝑛 = 𝑊0 − (𝐻 + 𝜆𝐼)
−1𝑔             (3.1) 

Within equation (3.1), 𝑊0 is the weight matrix of the neural network, 𝐻 is the Hessian 

matrix, 𝜆 is the damping factor, 𝐼 is the identity matrix, and 𝑔 represents the gradients of the 

neural network. Their study indicated that a neural network trained with the LM algorithm 

provided superior predictions to the other models, with an RMSE of 27.58 Wm-2.  

Mellit and colleagues [22] implemented an artificial neural network and Markov 

transition matrix (MTM)5 hybrid model to achieve daily solar radiation predictions with an mean 

absolute percentage error (MAPE) not exceeding eight percent.  Spokas and Forcella’s [30] 

model predicted hourly solar radiation as the sum of direct beam radiation and diffuse solar 

radiation; these values were calculated based upon the angle between the sun’s location and the 

earth’s surface (i.e. the zenith angle), the seasonal variability of the Earth’s tilt (i.e. declination 

angle), the percentage of direct radiation passes through the atmosphere without being reflected 

(i.e. atmospheric transmittance), and the optical air mass number. Spokas and Forcella’s model 

                                                 
5 A Markov transition matrix is a matrix which characterizes the transitions of a Markov chain [1]. For a given element i,j describes 

the probability of moving from state i to state j in one time step. It is also known as a probability matrix, substitution matrix, or 

a stochastic matrix. 
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provided estimations of hourly solar radiation with an RMSE ranging from 77 – 167 Wm-2 (M = 

112 Wm-2) and a mean absolute error from 36 – 92 Wm-2 (M = 57 Wm-2) across 18 sites between 

the years 1996–2005, with a maximum observed solar radiation of 1100 Wm-2 .  Hocaoglu, 

Gerek, & Kurban [9] derived a unique representation of their solar radiation data by converting 

the 1D time series into a 2D image signal. The value for each pixel (x, y) within the image was 

determined as the solar radiation that occurred on the x hour of the yth day of the year. The solar 

radiation values were scaled within the range 0-255, such that the corresponding pixel had a 

value of 0 if no solar radiation occurred and a value of 255 if the maximum amount of solar 

radiation within the dataset occurred. A 3-3-1 neural network was then trained on the resulting 

input representation.  Hocaoglu, Gerek, & Kurban confirmed that the LM algorithm also yielded 

the most accurate predictions of all the training algorithms applied, with a resulting RMSE of 

34.57 Wm-2, given a maximum observed solar radiation of 600 Wm-2. Thus, the 2-D 

representation of the input data was a significant improvement upon the 1-D representation, 

which achieved a RMSE of 43.73 Wm-2 with the same network architecture and training 

algorithm. More recently, the resilient propagation algorithm has been shown to outperform LM 

on some solar radiation data [7].   

Cao & Lin [3] implemented a diagonal recurrent wavelet neural network (DRWNN), 

which is a recurrent neural network that uses wavelet bases as its activation functions. The 

DRWNN was trained on a year of solar radiation data and attained an RMSE of 13.2 Wm-2 when 

tested on a month of data.  Ji and Chee [18] implemented a novel hybrid model that aggregated 

the outputs of an autoregressive moving average (ARMA) model and a time delay neural 

network (TDNN) in order to determine its prediction of hourly solar radiation.   
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One of the reoccurring problems within the literature on solar radiation forecasting is the 

lack of unity in performance metrics for comparing models. As Hoff et al. [11] note, while 

RMSE and mean absolute error (MAE) are calculated with the same equation across studies, 

their calculations as percentages are not. The most apparent case is with calculations of 

normalized RMSE (NRMSE). Equations (3.2) and (3.3) demonstrate the two most common 

formulations of NRMSE: 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥− 𝑦𝑚𝑖𝑛
 =  

√∑ (𝑦�̂�−𝑦𝑖)
2𝑛

𝑖=1
𝑛

𝑦𝑚𝑎𝑥− 𝑦𝑚𝑖𝑛
                    (3.2) 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

�̅�
= 

√∑ (𝑦�̂�−𝑦𝑖)
2𝑛

𝑖=1
𝑛

�̅�
               (3.3) 

It is necessary to calculate a normalized RMSE when comparing models, as RMSE itself is not 

calculated with respect to scale of the predicted value across models.  For instance, suppose 

model A achieves a RMSE of 15 W/m2 on a dataset with an �̅� = 250, ymin = 0 W/m2 and ymax = 

400 W/m2.  In contrast, model B achieves a RMSE of 30 W/m2 on a dataset with an �̅� = 500 

W/m2, ymin = 0 W/m2 and ymax = 1000 W/m2.  If equation (3.2) is used to calculate NRMSE for 

models A and B, then model B will be characterized as the more accurate model as 15/400-0 = 

0.0375 and 30/1000-0 = 0.03, respectively. However, if equation (3.3) is used to calculate 

NRMSE (often referred to as coefficient of variation of the RMSE), models A and B can be said 

to have equal performance as 15/250 = 30/500 = 0.06.  Thus, a single equation should be used to 

calculate NRMSE for the models to be assessed, so that the comparison between them is fair. 

Within the current study, equation (3.2) is used to calculate NRMSE as the maximum and 

minimum values for solar radiation are more readily available within the literature than average 

solar radiation. 
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Table 3.1 

A performance comparison between hourly solar radiation forecasting models prominent within 

the literature, measured as normalized root mean square error (NRMSE) 

Authors Model Type Max W/m2  

Observed 

RMSE W/m2 NRMSE 

(%) 

Sfetsos & Coonick 

(2000) 

ANN trained with LM 1000 27.6 2.8 

Spokas & Forcella 

(2006) 

Clear Sky/ Direct Normal 

Irradiance model 

1100 112 10.2 

Cao & Lin (2008) Diagonal recurrent 

wavelet neural network 

(DRWNN) 

558 13.2 2.4 

Hocaoglu, Gerek, 

& Kurban (2008) 

ANN trained with 2D 

visual representation of 

time series and LM 

600 34.57 5.8 

Reikard (2009) ARIMA 1100 322.3 29.3 

Perez et al. (2010) Cloud motion vectors 

derived from difference 

in consecutive GHI Index 

grids 

1000 87.57 8.8 

Marquez (2011) ANN w/ input selection 

via genetic algorithm 

1000 72 7.2 

Izgi et al. (2012) ANN w/ air temp., cell 

temp., and solar radiation 

as input 

400 55 13.8 

Pedro & Coimbra 

(2012) 

ANN w/ parameter 

optimization via genetic 

algorithm 

1000 131 13.1 

Wang et al. (2012) ANN w/ statistical 

feature parameters 

(ANN-SFP) 

1200 63.5 5.3 

Huang et al. 

(2013) 

Coupled autoregressive 

dynamical systems 

(CARDS) 

1146 80.6 7 

Benmouiza & 

Cheknane (2013) 

Hybrid k-means and 

NARX neural network 

model 

950 64.3 6.8 

Fidan, Hocaoglu, 

& Gerek (2014) 

ANN w/ periodic Fourier 

series coefficients as 

input 

400 64.3 16.1 

 

Before interpreting the results of these forecasting studies, it is important to note several 

assumptions and caveats associated with the comparison of these studies/models.  First, a number 
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of studies either did not report RMSE explicitly or provided measurements in units other than 

W/m2.  Models that did not have MSE/RMSE calculations within the respective article were 

excluded, as there was generally not enough additional information within these articles to 

calculate RMSE manually. Metrics such as mean absolute percentage error (MAPE), mean bias 

error (MBE), mean absolute error (MAE), and relative absolute error (RAE) occurred within some 

publications, but without enough of a consensus to warrant their use for comparing models. In 

addition, many articles did not specify explicit values for overall RMSE on the test set, but instead 

displayed error trend plots. In these cases, the error trend was averaged over time in order to 

determine a scalar value for RMSE for the model. Furthermore, some studies reported RMSE on 

a seasonal or monthly basis. The assumption was made that there was likely a uniform distribution 

of instances within these subsets, such that the overall RMSE of the model could be calculated as 

the model’s average RMSE on the respective subsets.  

The central difficulty in calculating NRMSE for these models is the rarity in which 

authors explicitly provided values for ymin and ymax.  However, ymin was assumed to be equal to 

zero, while the remaining ymax values for these respective models was either extracted from 

figures within the given publication or from other metrics therein provided.  In addition, some 

publications reported NRMSE, but did not report how normalization was performed.  Future 

publications could be greatly improved not only by providing RMSE calculations, but also the 

range of values for the target variable (i.e. ymin and ymax), the average target value (�̅�), and the 

normalization method/formula used, in addition to other performance metrics. 

Table 3.1 appears to demonstrate that Sfetsos & Coonick’s (2000) feedforward neural 

network trained with the LM algorithm and Cao & Lin’s (2008) diagonal recurrent wavelet 

neural network are the top performing models, as they have achieved the lowest NRMSE, in 



 

36 

comparison to the other models accounted for within the solar radiation forecasting literature.  

However, these models also highlight a further problem with comparing models between studies: 

there are sometimes significant differences in the size of the training and testing sets between 

models.  Both Sfetsos & Coonick and Cao & Lin’s models were tested on a dataset spanning a 

month or less, which suggests it is inappropriate to assume these models accurately predict solar 

radiation for the remaining months of the year, without further evaluation.  In a similar vein, 

there is no sense in which solar radiation data sets across distinct studies can be treated as 

equivalent, as one data set may contain a significant amount of noise, due to recording 

equipment error or other factors, in comparison to another data set. Therefore, in order to further 

ensure the validity of model comparison between studies, standard baseline models such as a 

persistence model, where yt+1 is predicted as equal to yt, should be used for determining how the 

proposed model improves upon the baseline model. In sum, despite the aforementioned 

limitations, these models serve as a basis of comparison to illustrate the efficacy and precision of 

models developed within the current study. 

 

3.4 MATERIALS 

Data from the Griffin, Georgia weather station from 2003-2013 were used to build the 

observations for the input layer to the neural network.  Observations were collected at 15 minute 

intervals over the duration of each year for a total of 35,040 observations per year (350,400 

observations total).  Forty-three data fields were observed, though only a subset of these fields 

was used for solar radiation prediction: year, day of year, time of day, air temperature (°C), 

humidity (%), dew point (°C), vapor pressure (kPa), barometric pressure (kPa), wind speed 

(m/s), solar radiation (W/m2), total solar radiation (KJ/m2), photosynthetically active radiation 
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(umole/m2s), and rainfall (mm). As subsequent tests of the model demonstrated that these fields 

did not bolster forecasting performance, only solar radiation and its respective lag were used as 

inputs within the models of this study. 

 

3.5 METHODS 

The fields used for prediction of future solar radiation values were first extracted from the 

raw measurement files from the Griffin station.  For each value of the extracted fields at time 

step t (with the exception of year, day, and time), values from the n previous time steps (t-1,  t-2, t-

3, …, t-n) were added to the observation file that would serve as input into the input layer of the 

neural network. This is known as the sliding window technique and has been shown to 

significantly increase the accuracy of time series predictions with neural networks [23].   

Trials to determine the optimal network architecture, input fields, and hyperparameter 

configuration began with a standard multilayer perceptron (MLP) network with 57 hidden nodes 

and 1 output node that provided the prediction of solar radiation one hour into the future. The 

number of nodes in the input layer of each network was determined by equation (3.4): 

# 𝑖𝑛𝑝𝑢𝑡 𝑛𝑜𝑑𝑒𝑠 = 𝑛 + # 𝑖𝑛𝑝𝑢𝑡 𝑓𝑖𝑒𝑙𝑑𝑠 𝑢𝑠𝑒𝑑                   (3.4) 

In subsequent trials, the number of hidden nodes was adjusted within a range of 17-257 nodes.  

The initial trials used air temperature, humidity, dew point, barometric pressure, wind speed, 

solar radiation, total solar radiation, photosynthetically active radiation, and rainfall as the input 

fields into the neural network.  Combinations of these fields were then implemented, in order to 

determine which fields consistently provided for predictions with the lowest MSE.  In later trials, 

only solar radiation at t and prior solar radiation values from t-1 to t-n were used as input, as other 
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input fields did not appear to positively influence the models’ performance.  The activation 

function for this network type is formalized as shown in (3.5): 

 𝑎𝑗
𝑙 =  𝜎(∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙
𝑘 )               (3.5) 

In equation (3.5), 𝑎𝑗
𝑙 is the activation of the jth neuron in the lth layer, as determined by 

activation of neurons within the (l-1)
th layer [5].  The sum ∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘  is the total activation of 

each neuron k in the (l-1)
th multiplied by their respective weighted connections to each neuron j in 

the lth layer.  The term 𝑏𝑗
𝑙 is the bias value of neuron j in the lth layer.  For each training instance 

𝑑 within the training set 𝐷𝑡𝑟𝑎𝑖𝑛, where 𝑑 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛, the weights of the network were updated 

through the backpropagation algorithm as shown in equation (3.6) [8]. 

∆𝑤(𝑡) = 𝜖
𝜕𝐸

𝜕𝑤(𝑡)
+ 𝛼∆𝑤(𝑡−1)                         (3.6) 

Thus, the change of a given weight at iteration t (∆𝑤(𝑡)) is equal to the product of the learning 

rate (𝜖) and the gradient (
𝜕𝐸

𝜕𝑤(𝑡)
), in addition to the product of momentum (𝛼) and the change of 

that weight at the previous time step (∆𝑤(𝑡−1)).  

In subsequent trials, the backpropagation algorithm was replaced with the resilient 

propagation algorithm (iRPROP+) [14]-[15].  The RPROP and backpropagation algorithms are 

similar in that gradients must be calculated for each weight, however the gradient used in 

RPROP is the inverse of the gradient used in backpropagation, and the RPROP gradients are 

utilized such that specifying a learning rate and momentum is not required [8],[27].  First, the 

gradient of the current iteration is compared with the gradient of the previous iteration. The 

calculation of sign change is shown in equation (3.7): 

𝑐 =
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
∙
𝜕𝐸(𝑡−1)

𝜕𝑤𝑖𝑗
                              (3.7) 
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The value of 𝑐 is then used to determine the weight change, such that 𝑐 is greater than 0, than the 

weight change is equal to the negative of the weight update value and positive if 𝑐 is less than 0. 

Otherwise, no change is made to the weight. The update value for weight wij is shown in 

equation (3.8): 

∆𝑖𝑗
(𝑡)
=

{
 
 

 
 𝜂+ ∙ Δ𝑖𝑗

(𝑡−1)
, 𝑖𝑓 𝑐 > 0

𝜂− ∙ Δ𝑖𝑗
(𝑡−1)

, 𝑖𝑓 𝑐 < 0

Δ𝑖𝑗
(𝑡−1)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (3.8) 

Within equation (3.8),  𝜂− and 𝜂+ are constant parameters specified prior to training, typically 

with the values 0.5 and 1.2, respectively. As only the sign of the gradient is used to determine the 

weight update value, rather than considering the gradient itself as in backpropagation, RPROP is 

able to train much faster than backpropagation.  

A model averaged neural network (MANN) was constructed by initializing a number of 

MLPs with identical architectures, but distinct weight vectors, and training these networks in 

parallel using the resilient propagation algorithm.  The MANN was first formalized by Ripley 

[28].  In effect, a MANN is a voting ensemble of MLPs.  The implementation of the algorithm is 

straightforward: first, N neural networks are initialized with the same architecture, and for each 

weight vector wij between layers i and j of network n, the weights are randomized using a 

different seed than what was used to initialize the weight vectors of the other networks.  Each of 

the networks is trained in parallel until the minimum gradient for each network is reached.  

Within the present study, training was configured to continue while: 1. The training error was 

greater than the specified maximum acceptable error, 2. The number of epochs was less than the 

specified maximum number of epochs, and 3. The testing error continued to decrease from the 

previous testing epoch.  A testing iteration was performed every 100 training iterations to ensure 

the network did not overfit.  If any of these three conditions were violated, training of that 
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network was halted.  Once the training of each network was complete, the networks were tested 

as a single MANN.  The error for testing iterations was calculated by averaging the predictions 

of each network and then finding the difference between this average predicted value and the 

actual value of the output for the given testing instance.  After the training of each network is 

complete, predictions from the MANN were simply calculated as the average of the predicted 

output from each network for a given instance in the data.  

It is critical to note that weights of the networks comprising the MANN implemented in 

the current study are not updated based on the error of the MANN’s predicted output value, but 

rather based on each network’s individual error.  Were the weights of each network updated 

based on the error of the MANN’s predicted output value, the weight updates of each network 

would likely not shift the error function of the MANN’s predictions towards a global or local 

minima, as the error of the MANN may differ substantially from an individual network 

comprising it.  For instance, one of the networks comprising the MANN may be predicting 

values lower than the actual values, while another network within the MANN may be providing 

higher than the actual values. Though this example is somewhat of a simplification, it 

demonstrates the need to update networks within the MANN based on their individual error.  

In addition to MANN, generalized linear models (GLM), least median squares (LMS), random 

forests (RF), and alternating model trees (AMT)6 were implemented.  Like the single MLP and 

MANN implemented, variations in the lag input into the respective models was varied to 

minimize prediction error.  To further optimize model performance, the number of trees used in 

the RF models, and the shrinkage (λ) and the number of iterations (i) used in the AMTs were 

varied.  

                                                 
6 A detailed explanation of the alternating model tree algorithm is contained within Frank, Mayo, & Kramer (2015). 



 

41 

3.6 RESULTS 

The MANN architecture consistently outperformed single neural network models in 

predicting hourly solar radiation, as shown in Table 3.2.  However, the number of networks 

within the MANN did not appear to have a significant effect upon the RMSE of predictions 

when forecasts of two or more networks were averaged.  In fact, prediction accuracy marginally 

decreased when the number of networks comprising the MANN exceeded five.  One possible 

explanation for this phenomenon is that larger MANN may overfit the training data, such that 

their performance on the testing data is not improved in comparison to MANN comprised of 

fewer networks. This explanation is supported by observations of MANN comprised of six or 

more networks forecasting with a scaled MSE less than 0.0018 (<50.91 W/m2) on training data, 

while MANN comprised of 5 or less networks forecasting with a scaled MSE greater than 0.0020 

(>53.67 W/m2) on training data. 

Table 3.2 

A comparison of the best performance of single neural networks (MLP) and model averaged 

neural networks (MANN) with varied amounts of lag with respect to solar radiation. The results 

shown are the observations taken from a given model for its best performance over five trials. 

Model Lag Scaled MSE RMSE (W/m2) NRMSE  

(%) 

MLP 16 0.00434 79.05 6.59 

MLP 96 0.00280 63.50 5.29 

MANN(2) 96 0.00274 62.81 5.23 

MANN(3) 96 0.00274 62.81 5.23 

MANN(5) 96 0.00274 62.81 5.23 

MANN(8) 96 0.00275 62.93 5.24 

MANN(10) 96 0.00275 62.93 5.24 
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Figure 3.3. RMSE (Wm-2) of the MANN(3) model with a lag of 96 on the Griffin 2013 data set. 

 

The model achieves an RMSE of 26 Wm-2 on Day 24, which equates to an NRMSE of 2.2%.  In 

addition, the average RMSE for January is 29.8 Wm-2 , which equates to an NRMSE of 2.5%.  The 

performance of the MANN is thus competitive with the top models reviewed: Sfetsos & Coonick 

[29] and Cao & Lin [3].   

Two unexpected observations can be made about the generalized linear model: first, it 

significantly outperformed the MLP with same amount of lag, despite the non-linear nature of the 

data (see Table 3.3). To understand this discrepancy in expectation, it is important to note that the 

GLM implemented ridge regression according to equation (3.9): 

𝛽𝛾 = (𝑍𝑇𝑍 + 𝛾𝐼𝑝)
−1
𝑍𝑇𝑦                                                                                                           (3.9) 

Within equation (2.9) βγ is the vector of coefficients of the model (i.e. the weight vector), Z is the 

standardized (i.e. zero mean, unit variance) training data input matrix, y is the centered training 

data output vector, and γ is the tuning parameter [10].  The tuning parameter thus regularizes βγ 

(i.e. prevents βγ from growing too large), such that the variance of βγ is reduced while some bias 

is introduced, therefore reducing overall prediction error.  

The second observation is the high prediction accuracy of the AMT models in comparison 

to both the neural network and non-neural network models. The AMT with lag=64, the number of 
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boosting iterations (i)=20, and shrinkage (λ)=1.0 attained a marginally lower RMSE (62.7 W/m2) 

than the MLP and MANN models, which utilized a lag of up to 96 time steps. As AMT also tend 

to increase in prediction accuracy with a greater amount of lag used, it is possible that a lower 

RMSE could be attained by further exploring the parameter space defined by i and λ.  

Table 3.3 

A comparison of the performance of generalized linear model (GLM), least median squares 

(LMS), random forest (RF), and alternating model trees (AMT) across varied amounts of lag 

Model Lag MAE RRSE DA RAE MSE RMSE NRMSE 

LMS 12 31.6 105.7 41 103.4 5561.3 74.6 6.22 

GLM 16 34.4 94.9 42.5 112.6 4482.3 66.9 5.58 

RF  

100 

trees 

16 29.9 92.9 63.3 98 4296.1 65.5 5.46 

AMT 

i = 10 

λ = 1.0 

12 27.6 92 67.2 90.4 4209.9 64.9 5.41 

AMT 

i = 10 

λ = 1.0 

16 26.6 91 60.6 87.1 4118.8 64.2 5.35 

AMT 

i = 20 

λ = 1.0 

16 25.9 89.8 60.3 84.9 4014.4 63.4 5.28 

AMT 

i = 10 

λ = 1.0 

24 28.1 90.5 54.2 92.1 4082 63.9 5.33 

AMT 

i =20 

λ = 1.0 

32 26.4 89.1 70.1 86.5 3955.5 62.9 5.24 

AMT 

i = 30 

λ = 0.1 

32 33.6 92.7 49.4 110 4281.4 65.4 5.45 

AMT 

i = 30 

λ = 1.0 

32 26 88.8 69.6 85.2 3929.5 62.7 5.23 

AMT 

i = 20 

λ = 1.0 

64 26.2 88.8 51 85.6 3928.4 62.7 5.23 
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3.7 CONCLUSION 

The model averaged neural network (MANN) and the alternating model tree (AMT) 

models were shown to produce hourly predictions of solar radiation with the least error of the 

models assessed within the current study.  Furthermore, MANN and AMT outperform, or are 

competitive with, the leading models of hourly solar radiation forecasting within the literature. 

The increase in performance of the MANN, in comparison to single neural networks, is likely 

due to the capacity for a MANN to explore more of the weight space for units within its hidden 

layers, as it is composed of multiple networks with different initial weights but identical 

architectures.  However, aggregating the predictions of more than two networks did not appear to 

improve prediction performance (i.e. reduce prediction error), though it is possible these 

networks were overfit due to their significantly lower prediction error on the training data.  In 

order to further bolster prediction performance in future studies, a more rigorous stopping 

strategy should be implemented, where a separate weight vector of a given network is saved for t 

time steps, such that if training is permitted to continue for t time steps after the first instance of 

the testing error increasing, the weights of the network can be reverted to their values t time steps 

back from the current time step. Prediction performance may be further improved by using a 

greater lag for both MANN and AMT models, as well as by aggregating these models into an 

ensemble model. As decision trees and neural networks have radically different methods for 

attaining their model, it is likely the aggregation of their predictions will help to alleviate the 

shortcomings of both model types [32]. 
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CHAPTER 4 

CONCLUSION AND FUTURE DIRECTIONS FOR HOURLY SOLAR RADATION 

FORECASTING  

 

4.1 CONCLUSION 

 The results of the primary study characterized in Chapter 2 demonstrate how an artificial 

neural network and a model for direct normal irradiance (DNI) can be combined in order to 

accurately forecast hourly solar radiation.  The DNI model by itself, however, was not sufficient 

for forecasting solar radiation within an acceptable range of error, nor were many of the other 

predictive models constructed, including Elman and radial basis function networks.  In addition, 

methods including the use of solar radiation values from adjacent weather stations, preprocessing 

the data via a discrete wavelet transform, and training the model with the remaining input fields 

not described within the trials of the primary study were unable to bolster the performance of the 

neural network.  In Chapter 3,  the neural network architecture developed within the primary 

study was replicated with an unique initial weight vector multiple times to form an ensemble of 

networks. The networks comprising ensemble were trained in parallel and predictions on the test 

set were calculated as the average between the individual predictions made by each network.  

This voting ensemble method, referred to as a model averaged neural network (MANN) [1], 

attained a significantly lower RMSE (62.81 W/m2), in comparison to a single neural network 

(63.50 W/m2) when both models were input with a lag of 96 solar radiation values (24 hours).  

The proposed explanation for this finding is that by initializing each network’s initial weight 
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vector to be unique in comparison to the other networks comprising the MANN, then the 

networks will necessarily explore different portions of the possible weight space with each 

gradient update performed.  By averaging the predictions of multiple networks together for the 

final prediction, the individual variability within networks is dampened, resulting in a prediction 

with a greater probability of approximating the actual solar radiation value accurately.  

Furthermore, the importance of the lag length cannot be overstated: there is a strong negative 

correlation between the lag length and the prediction error.  The RMSE attained by the single 

network model with a lag length equal to 4 (one hour) was significantly reduced from 77.77 

W/m2 to 63.50 W/m2 when the lag length was extended to 96 (24 hours).  As 96 was the upper 

bound of the lag length assessed, it is possible the prediction error may be further reduced by 

increasing the lag input into future models.  

 The alternating model tree (AMT) [2] exceeded expectations by attaining the lowest 

prediction error at 62.7 W/m2 with a lag of 64.  The efficacy of the AMT suggests that decision 

trees warrant further investigation as a solar radiation forecasting model.  AMTs also have the 

advantage of greater interpretability, as the inequality on which the data are divided is shown at 

each splitter node, so it is clear how the solar radiation at prior time intervals influence the 

prediction of future solar radiation.  Thus, this study demonstrated that the AMT must be 

assessed alongside neural networks and other predictive models when forecasting solar radiation.  

 By calculating a normalized root mean square error (NRMSE) for the top-performing and 

most cited solar radiation forecasting models within the literature, it was shown that the MANN 

and AMT models either outperform or parallel the performance of these models within the 

literature. Sfetsos & Coonick’s [3] feedforward neural network trained with the Levenberg-

Marquardt algorithm and Cao & Lin’s [4] diagonal recurrent wavelet neural network appear to 
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be the top performing models, as they have achieved the lowest NRMSE, in comparison to the 

other models accounted for within the solar radiation forecasting literature as well as the MANN 

and AMT.  However, Sfetsos & Coonick’s  and Cao & Lin’s models also highlight a further 

problem with comparing models between studies: there are sometimes significant differences in 

the size of the training and testing sets between models. Both Sfetsos & Coonick and Cao & 

Lin’s models were tested on a dataset spanning a month or less, which suggests it is 

inappropriate to assume these models accurately predict solar radiation for the remaining months 

of the year, without further evaluation.  Thus, it is imperative that these models are reevaluated 

alongside the MANN and AMT models, in order to determine which model is most appropriate 

for the domain of solar radiation forecasting.   

 

4.2 FUTURE DIRECTIONS 

As the models of Chapter 3 demonstrated, it is necessary to explore how a longer lag 

length can be utilized by these predictive models to reduce prediction error.  In addition to 

assessing individual models against each other, it is vital that the efficacy of ensembles of 

models, such as the MANN and the AMT, are assessed.  As decision trees and neural networks 

have distinct learning processes and architectures, it is likely the aggregation of their predictions 

will help to reduce the bias inherent in both models [5]-[7].  Likewise, the top-performing 

models within the literature should be reassessed using the Griffin data set as well as aggregated 

with the MANN and AMT models, in order to establish a standard basis of comparison between 

models.  Furthermore, it would be ideal to assess each model’s efficacy across a number of 

geographical regions and topologies, in order to determine the generalizability of a given model.  

With respect to the objectives of Georgia Power and its parent company, Southern Power,  future 
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models should be assessed in every location in which a solar collection facility is installed, which 

include areas in California, Georgia, Nevada, New Mexico, North Carolina and Texas [8].  In a 

more general context, it would be advantageous to have a standard solar radiation dataset or 

collection of data sets on which new prediction models could be assessed, in order to directly 

compare models within the literature.  Likewise, future studies should calculate as many 

measures of error as occur within the literature, including but not limited to [normalized] root 

mean squared error, mean bias error, mean absolute error, relative absolute error, direction 

accuracy, and mean absolute percentage error.  In addition, future studies should explicitly state 

the training and testing sets date ranges, the minimum and maximum solar radiation values 

observed, and the mean solar radiation value per observation.  The inclusion of this information 

within reports on future studies will significantly improve the ability to compare solar radiation 

forecasting models and thus will catalyze their improvement.  

As the MANN and AMT models of the current study have demonstrated success in 

hourly solar radiation forecasting, the next objective is to extend the models to forecast solar 

radiation 2-24 hours into the future. These forecasts can be made in one of two ways: the first 

method is to simply shift the training data such that its input remains the current solar radiation 

value and the solar radiation values contained within the specified lag interval, while the target 

value is the solar radiation that occurs n steps ahead. For instance, with the current models, if the 

input contains the solar radiation occurring at 2pm on a given day, the models will be trained to 

predict the solar radiation occurring at 3pm. However, in order to predict the solar radiation at t 

+ 4 (i.e. 6pm), the first four values from the target solar radiation vector should be removed, so 

that the model learns the pattern that exists between the input values at time t and the solar 



 

53 

radiation value at t + 4. Thus, in order to have 24 hours of accurate solar radiation forecasts 

requires training 24 models on solar radiation data modified in this fashion.  

The second method involves adding a closed loop to the output of the model, such that 

input for the model at each time step is the model’s prediction at the previous time step. Thus, if 

at 2pm the model predicted 100 W/m2 as the solar radiation expected at 3pm, then the model 

would utilize 100 W/m2 as the input when predicting solar radiation at 4pm. This methodology 

allows the model to predict an arbitrary number of hours into the future. The drawback of this 

approach, however, is that a prediction error made at an earlier time step will propagate to future 

time steps, such that these predictions become exponentially worse. Therefore, the first method is 

likely the best method of predicting n time steps into the future, despite the complexity of 

developing and maintaining 24 separate models. 

In sum, the individual neural network, the MANN, and the AMT developed within the 

studies characterized in Chapters 2 and 3 all serve as viable solar radiation forecasting models 

for application to dynamically planning energy source distribution within Georgia Power’s 

operations.  Their performance may be improved through aggregating their predictions through 

an ensemble strategy such as voting, long with the predictions from other viable models 

occurring within the literature. The forecast horizon may be extended to 2-24 (or longer) through 

the shifting method or the closed loop methods outlined above. However, due to the 

demonstrated success of the hourly solar radiation forecasting models developed within the 

current study, their utility in managing energy source distribution is predicted to be bright.  
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