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ABSTRACT 

The American pork industry experiences seasonal losses caused by heat stress. Genomic 

information can help to better identify heat-tolerant animals; however, heat stress evaluation 

requires complicated models. Single-step GBLUP (ssGBLUP) can be used for genomic selection 

with complex models and when only a fraction of the animals are genotyped. This method accounts 

for phenotype, pedigree, and genotype in a unified and simple approach; however, ssGBLUP has 

a limitation on the number of genotyped animals; it relies on direct inversion of the genomic 

relationship matrix (G); however, inverting a matrix has high computing cost, which creates a 

bottleneck.  The number of genotyped animals is increasing at a fast rate for livestock species, and 

ssGBLUP would become unfeasible for more than 150,000 genotyped animals. The objective of 

the first study was to use genomic information to help mitigate problems associated with heat stress 

in the pork industry. Identifying a threshold for heat stress and including genomic information in 

the genetic evaluation increased the accuracy of prediction in production traits; therefore, 

ssGBLUP can be used to help mitigate the impact of heat stress on the US pork industry. The 



objective of the second study was to test a recursive algorithm, called algorithm for proven and 

young animals (APY), to compute the inverse of G in an efficient manner. In APY the genotyped 

population was divided into proven and young, and recursions were based on proven animals. In 

a simulated study with 25,000 genotyped animals, there was no significant difference between 

accuracy of GEBV obtained with regular or APY ssGBLUP, which indicate APY can successfully 

replace the direct inversion of G. A third study aimed to compare genomic predictions from regular 

and APY ssGBLUP for the US Holstein population; 100,000 genotyped animals were used in the 

study. Correlations of GEBV between the methods were greater than 0.99 when at least 10,000 

animals were considered proven in the recursions. In general, genomic information can help 

mitigate problems due to heat stress in livestock species, and when the amount of genomic 

information is large, APY should be used in ssGBLUP to remove computing limitations. 

INDEX WORDS:  Single-step GBLUP, genomic selection, genotype by environment 

interaction, algorithm for proven and young, genomic recursions 
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CHAPTER 1 

INTRODUCTION 

With the advances in genomics during the past decade, both time and cost for genotyping 

individuals were drastically reduced. Dense single nucleotide polymorphism (SNP) chips are now 

more affordable and accessible to industry and producers. When a fraction of a livestock 

population is genotyped, accounting for that information in genetic evaluations allows for more 

accurate evaluations; hence, young animals can be selected earlier, reducing the generation interval 

and increasing genetic change. Since genomic information became available, two main methods 

were developed to account for it: 1) multistep, where results from the traditional genetic evaluation 

are used as input to estimate individual marker effects; after that genomic values are calculated as 

the sum of the effects for markers observed in each animal; and finally, genomic values are blended 

with parent average to compound the genomic EBV. 2) single-step genomic BLUP, where the 

genomic information is combined with phenotypes and pedigree in a unique genetic evaluation. 

Single-step genomic BLUP (ssGBLUP) is the method of choice because of simplicity of use; it is 

just a BLUP that was modified to account for genomic information. Therefore, ssGBLUP uses the 

same models as in traditional evaluations, including multiple-trait, random regression, and 

repeatability models. 

Because of economic impacts and the growing interest in environmental and animal 

welfare issues, seasonal losses due to heat stress are a big concern for the livestock industry. A 
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sustainable, economical, and straightforward way of dealing with this issue is to select robust 

animals, which have better performance and are less stressed in extreme environments. Genomic 

information is now available for nearly all livestock species and can help to more accurately 

identify the best animals for a specific objective like heat tolerance. Yet, genetic evaluation for 

heat stress relies on complex statistical models, such as multiple-trait or random regression. Single-

step GBLUP has been reported as the most appropriate method for genomic evaluations, especially 

in such situations. 

Because of favorable and promising results obtained with genomic selection and further 

reduction in genotyping costs and time, the number of animals with genomic information has been 

increasing drastically, especially in the last three years. This increase has been so large that for 

some populations, US Holstein being the best example, all genotyped animals cannot be included 

in ssGBLUP evaluations because of computational limitations.  Single-step GBLUP relies on 

direct inversion of the genomic relationship matrix (G) and the pedigree-based relationship matrix 

among genotyped animals (A22), but inverting a matrix has a cubic computing cost. Consequently, 

in order use genomics to improve predictions for traits of interest, including performance during 

heat stress in virtually any population, a more efficient algorithm is needed for obtaining the 

inverse of the genomic relationship matrix. Therefore, the objectives of these studies were: 1) to 

use ssGBLUP to perform genomic evaluation for populations experiencing heat stress; 2) to test 

an algorithm that reduces costs of obtaining the inverse of the genomic relationship matrix in 

simulated data; 3) to use the aforementioned algorithm for genomic evaluation in a USA Holstein 

population and compare results with those from regular ssGBLUP. 



3 

CHAPTER 2 

LITERATURE REVIEW 

Using Genomic Information into Genetic Evaluation 

The performance of an individual is a sum of its genotype, the environmental conditions, 

and the interaction between the two. Performance was traditionally improved by selecting 

individuals based on their genetic merit predicted from phenotypes and pedigree. Harvestein et al. 

(2003) showed that the considerable differences in size between a chicken line from 1957 and a 

commercial chicken line in 2001 primarily resulted from genetics. Within the same line of thought, 

Hill (2008) presented a review on the effects of genetic improvement for different traits in several 

species. 

After the first draft of the human genome project in 2001, there was a promise that genomic 

information would became available for livestock species and this information would help to 

improve traditional genetic evaluations using phenotypes and pedigree (Meuwissen et al., 2001). 

Naturally, with the advances in genotyping techniques and cost reduction, genomic information 

can now be widely used in a form of dense single nucleotide polymorphism (SNP) map. Dense 

map information accounts for linkage disequilibrium (LD) between SNP markers and a possible 

causative gene or quantitative trait loci (QTL). Meuwissen et al. (2001) suggested methods for 

marker assisted selection, also known as genomic selection (GS), which consist in estimating 
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genomic breeding values (GEBV) using information on markers in LD with QTL located across 

the entire genome. The advantages of genomic selection include higher accuracy for estimating 

breeding values, especially when not many phenotypes are available (Meuwissen et al., 2001)), 

shorter generation intervals (Konig et al., 2009) and reduced costs for progeny testing (Schaeffer, 

2006). 

Meuwissen et al. (2001) suggested three different methods to predict GEBV, and each 

method assumes a different prior distribution for marker variance. BayesA assumed an inverted 

chi-square distribution for the variance of each marker. Alternatively, BayesB used a similar prior 

for variances, but allowed the distribution to have a large proportion of markers with zero effect. 

The third method assumed a prior of normal distribution and constant variance for all markers in 

a BLUP-like approach1 . 

The aforementioned Bayesian methods were reviewed by Gianola et al. (2009) and 

modifications regarding the priors were proposed. In order to overcome limitations stated by 

Gianola et al. (2009), Habier et al (2011) proposed a method called BayesC, which was similar to 

BayesB except all markers have the same variance. A method that estimates the probability of 

markers with null effect was called BayesCπ. Several authors proposed additional methodologies 

or modifications to existing ones, such as Bayesian Lasso (de los Campos et al., 2009), or variable 

selection (Verbyla et al., 2009). 

The BLUP-like genomic method described in Meuwissen et al. (2001) was later described 

as GBLUP by Habier et al. (2007) and VanRaden (2008). This model is equivalent to a traditional 

1 In Meuwissen et al. (2001) it was named BLUP, but in this document it will be referred to as 

GBLUP. 
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BLUP where the numerator relationship matrix (A) is substituted by a realized relationship matrix, 

based on SNP markers (VanRaden, 2008): 

G =
ZZ'

2 ∑ p
i
(1-p

i
)

where Z is a matrix of genotypes (-1 and 1 for homozygous and 0 for heterozygous) centered by 

twice the observed frequency of the second allele as a difference from 0.5, and 2 ∑ 𝑝𝑖(1 − 𝑝𝑖) is a

scaling factor, which makes G to be analogous to A. 

Different definitions of G were proposed including different scaling factors (Gianola et al., 

2009) and individual markers weights (Leutenegger et al., 2003, Amin et al., 2007, VanRaden 

2008). The genomic relationship matrix is non-positive definite when the number of markers is 

smaller than number of animals, or in the presence of clones (animals sharing the same markers). 

Because of this limitation, usually G is blended with a small portion of A causing the matrix to be 

invertible and can also account for polygenic variability (VanRaden, 2008). Another strategy for 

a full-rank G is to add a constant to the diagonal, so G = G + (Iλ). For blending the usual notation 

is: 

G
*
=(αG+βA)+Iλ, and α=1-β

In general, the above methods can directly utilize only genotyped animals.  Phenotypes on 

ungenotyped animals can be considered indirectly, by creating pseudo-phenotypes for genotyped 

animals. The most common pseudo-phenotypes are de-regressed breeding values (Garrick et al., 

2009) and daughter yield deviations (DYD) (VanRaden and Wiggans, 1991). 
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Genetic Evaluation with genotyped and ungenotyped animals – Single-Step 

Generally, an entire livestock population cannot be genotyped because of cost, availability 

of animals (culling, dead, foreign animals, etc.), and computation burden.  Then, a method that 

jointly considers information on genotyped and ungenotyped animals was developed. Misztal et 

al. (2009) proposed a single-step method were A was augmented by the genomic relationship 

matrix. Legarra et al. (2009) proposed to condition the genetic value of ungenotyped animals 

(index 1) on the genetic value of genotyped animals (index 2); so, the ungenotyped animals could 

benefit from the genotyped animals through pedigree relationships. The observed or realized 

relationship matrix (H) that describes the joint variance of genetic values for genotyped and 

ungenotyped was presented as: 

H= [
A12A22

-1 GA22
-1 A21+A11-A12A22

-1 A21 A12A22
-1 G

GA12A22
-1 G

] 

The inverse of H replaces the inverse of A in the BLUP mixed model equations, and BLUP turns 

into single-step genomic BLUP (ssGBLUP) as shown by Misztal et al. (2009): 

[𝐗′𝐗 𝐗′𝐙
𝐙′𝐗 𝐙′𝐙 +  𝐇−1𝛌

] [
𝐛
𝐮

] = [
𝐗′𝐲

𝐙′𝐲
] 

 where b and u are vectors of fixed effects and random animal effect, X and Z are the incidence 

matrices for the effects contained in b and u. 

Although H is difficult to be obtained, its inverse is very simple and was derived by 

Christensen and Lund (2010) and Aguilar et al. (2010): 
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H
-1=A

-1
+ [

0 0

0 G
-1

-A22
-1 ] 

Among several advantages, ssGBLUP is suitability for multiple trait evaluations, uses raw 

phenotypes instead of pseudo-phenotypes, and avoids double counting of phenotypic and pedigree 

information (VanRaden and Wright, 2013, Legarra et al., 2014). 

In ssGBLUP 𝐆 is scaled to match A22 for a better conditioning of H-1, which improves

convergence rate, reduces bias, and increases accuracies. Including all the possible scaling 

parameters,  𝐇−𝟏 is represented as:

H
-1=A

-1
+ [

0 0

0 τ((αG+βA22)+Iλ)
-1

-ωA22
-1 ] 

where α and β are used to make G positive definite; λ is used to address the non-random genotyping 

strategies due to selection (Vitezica et al., 2011). Additionally, 𝐆−𝟏 and 𝐀22
−1 can be scaled by τ

and ω, respectively, to adjust for different pedigree length for genotyped animals (Misztal et al., 

2013); changing ω to lesser values reportedly improved convergence rates and controlled bias 

(Tsuruta et al, 2013). 

Overall, ssGBLUP has been successfully implemented in different species in several 

countries, such as the US (Tsuruta et al., 2013) and Israeli (Lourenco et al., 2014a) dairy cattle, 

beef cattle (Lourenco et al., 2015), broiler chicken (Chen et al., 2011), and pigs (Lourenco et al., 

2014b), usually with similar or better accuracies than multistep methods. 
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Heat Stress and Genomic Evaluation 

Single-step GBLUP can be applied to problems with complicated modeling and scenarios 

where other GS strategies are hard to apply. A good example for that is when genotype-by-

environment interaction needs to be accounted for by genetic evaluations, which is the case of 

selection for heat tolerance. The heat stress is a major concern in the industry because it causes 

losses estimated between $1.69 and $2.36 billion per year (St-Pierre et al., 2003). The losses may 

increase in the future because of constant selection for production traits and the antagonism 

between production and heat tolerance; as stated by Misztal and Lovendal (2012, p. 291): “The 

more productive a genotype the more sensitive it is to deviation from its optimal environment”. 

Research has been conducted in experimental conditions to account for the impact of heat stress 

in different species and populations; however, predicting the effect of heat stress on livestock 

production in practical conditions is still necessary (Renaudeau et al., 2011). Once the actual 

impact of heat stress is well described, the problem can be addressed by identifying superior sires 

and dams that will transmit genetics to tolerate hot environments to the next generation. 

A heat load function needs to be defined in order to predict the effect of heat stress on 

animals’ performance. The actual measurement of heat stress of an animal could be performed by 

rectal temperature or skin surface temperature, temperature near or inside the farm, or other 

individual measurements, but this information is expensive and/or complicated to measure in large 

populations. Therefore, the impact of heat stress can also be measured on regularly recorded traits, 

such as milk production, body weight, and reproductive traits. A linear regression of phenotypes 

on a temperature index can then be fitted in order to predict the relationship between performance 

and weather conditions. According to Bohmanova et al. (2007) combining relative humidity with 
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temperature index in a temperature humidity index (THI) increases the prediction power of heat 

stress models. Depending on the trait and species, the length of exposure to stressful conditions 

can also affect the heat load function. Dairy cattle milk production in a given day is influenced by 

temperature and humidity in the previous 1 or 2 days (Ravagnolo et al, 2000); on the other hand, 

final weight in pigs can be influenced by temperature and humidity from 10 weeks before the data 

recording day (Zumbach et al, 2008a). 

Once THI is computed, a heat load function can be calculated. The heat load function 

intends to measure the amount of heat exceeding a given threshold. This threshold value can be 

interpreted as the limit temperature of the thermic comfort zone: 

𝐻𝐿 = max (0, 𝑇𝐻𝐼 − 𝑇𝐻𝐼𝑇) 

where THI was the observed THI value for a given day, 𝑇𝐻𝐼𝑇 was a threshold of THI value, and 

HL the heat load value. Once the heat load is defined, it can be addressed in a genetic analysis in 

mainly two different ways: 

1) In multiple-trait model approach, phenotypes collected under heat stress condition are

addressed as a unique trait, which is correlated with phenotypes collected during cooler 

weather conditions. Heritability may differ by trait, and the genetic correlation between traits 

may be less than unity. This method was used by Zumbach et al. (2008b) for modelling heat 

stress for carcass weight in pigs. This approach has limitations when there are few 

observations for the trait during heat stress or when animals with phenotypes in different 

environments are not well tied through the pedigree, for example. 

2) In reaction norm analysis, the environmental effect is treated as continuous, and phenotypes

are regressed on this continuous scale. In animal breeding and genetic evaluation context, the 
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reaction norm is best used if fitted with a random regression model (Schaeffer, 2004). Random 

regression was tested for evaluation of US dairy cows by Ravagnolo and Misztal (2000) and 

Aguilar et al. (2009), in final weight for pigs in the US by Zumbach et al. (2008b), and for 

production and fertility traits in Nordic dairy cattle by Kolmodin et al. (2002), among other 

studies. For this type of model, it is often necessary to use a large quantity of data to accurately 

estimate genetic values and parameters. 

Genomic selection, as mentioned before, can help to increase accuracy of evaluation and 

to reduce generation interval, which is beneficial for the livestock industry; therefore, using 

genomic information for heat stress evaluation is expected to help to better identify heat tolerant 

animals. Moreover, the two main approaches commonly used to address heat stress and genotype-

by-environmental interactions depend on complex models with repeated measurements, multiple 

traits, and complex (co)variance structure. The suitable methodology of choice for genomic 

evaluation in such cases should be ssGBLUP. 

Single-Step GBLUP with a Large Number of Genotyped animals 

Because of promising results, successful implementation by the industry, and dramatic 

reductions in genotyping cost, genomic selection has become the standard method for genetic 

evaluations. Consequently, the number of animals with genomic information available had an 

explosive increase in last few years (Cooper et al., 2014). In dairy cattle, more than 950,000 US 

Holsteins had been genotyped in the United States as of November 2015 (CDCB; 

https://www.cdcb.us/Genotype/cur_freq.html). Additionally, more than 80,000 Angus cattle have 

already been genotyped in US (Lourenco et al., 2015). The current implementation of ssGBLUP 
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has a limitation regarding the number of genotyped animals that can be used for evaluations with 

a maximum of 150,000 genotypes (Aguilar et al., 2013); therefore, ssGBLUP could not be used 

for the genomic evaluation of economically important traits, including heat stress, in US Holstein 

and in the near future for American Angus as well. 

This limitation exists because ssGBLUP relies on the direct inversion of the genomic 

relationship matrix (G), which has a cubic computing cost based on the number of genotyped 

animals. Several methods where suggested to avoid inverting G: Legarra and Ducroq (2012) 

proposed to use unsymmetric equations; Fernando et al. (2013) suggested a SNP model with 

imputation of genotypes for ungenotyped animals; and Legarra and Misztal (2008), and Liu et al. 

(2014) proposed fitting a model with SNP effects for genotyped animals. None of these methods 

could be implemented due to convergence problems, high computing costs, or programming 

difficulties. 

Recently, Misztal et al. (2014) suggested a recursive method to create G-1 without explicitly 

inverting G. The algorithm was based on dividing the genotyped population into two categories, 

proven and young animals, and had similar procedures as in the method proposed by Henderson 

(1976) and Quaas (1988) to create A-1. This algorithm was called APY (algorithm for proven and 

young animals). 

According to Henderson (1976) and Quaas (1988), the breeding value of an animal i is 

given by the average of its parents’ breeding values plus a random deviation known as Mendelian 

sampling: 

𝑢𝑖 =
𝑢𝑠𝑖 + 𝑢𝑑𝑖

2
+ 𝜑𝑖 



12 

where: ui = breeding value for animal i, usi and udi = breeding values for sire and dam of animal i, 

respectively, and 𝜑𝑖 = Mendelian sampling for animal i. As a result, the breeding value of an 

animal is conditioned solely on the breeding value of its parents: 

𝑢𝑖| 𝑢1, 𝑢2, … , 𝑢𝑖−1 = 𝑢𝑖|𝑢𝑠𝑖, 𝑢𝑑𝑖

Consequently, the inverse of the average relationship matrix is given by the following recursion: 

A
-1

=(I - P)' M-1(I - P)

Where: A-1 = the inverse of average relationship matrix, I = identity matrix, M-1 = the inverse of 

Mendelian sampling diagonal matrix; and P = matrix that relates animals to their parents and has 

2 non-zero elements (for animals’ sire and dam). 

When genotypes are available, the conditional distribution changes because the genomic 

covariance among individuals is built under identical by state rules. In this way, animals that share 

the same alleles are related. Therefore, breeding values of a given genotyped animal are 

conditioned to the breeding values of all previous genotyped animals. When all animals are 

genotyped, i.e. GBLUP, the solutions for a given animal will be given by (Misztal, 2014): 

𝑢𝑖 = ∑ 𝑝𝑖𝑗𝑢𝑗 + 𝜀𝑖

𝑖−1

𝑗=1

 

Where: pij = relationship between animals i and j, and 𝜀𝑖 = Mendelian sampling. 

In GBLUP, animals without phenotypes (called young for this recursion) do not contribute 

to other animals’ breeding values; animals with records were called proven. Therefore, the 
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genotyped population can be split into proven and young, and the breeding value for animal i could 

be written as: 

𝑢𝑖 = ∑ 𝑝𝑖𝑗𝑢𝑗 + ∑ 𝑝𝑖𝑗𝑢𝑗 + 𝜀𝑖

𝑗=𝑝𝑟𝑜𝑣𝑒𝑛

 

𝑗=𝑦𝑜𝑢𝑛𝑔

However, in GBLUP genotyped animal without phenotypes do not contribute and ui can be 

simplified to: 

𝑢𝑖 =  ∑ 𝑝𝑖𝑗𝑢𝑗 + 𝜀𝑖

𝑗=𝑝𝑟𝑜𝑣𝑒𝑛

 

In this way, the breeding value of an animal is conditioned to the breeding value of all proven 

animals; the inverse of the genomic relationship matrix can be written as: 

G
-1 = (I - P)' M-1(I - P)

 The matrix P does not have to be dense anymore, which will lead to a dramatic reduction in 

computational costs, without compromising predictions in GBLUP. Finally, Misztal (2014) 

presented the following formula for APY G-1: 

Gapy
-1  = [Gpp

-1
0

0 0
]+ [-Gpp

-1
Gpy

I
]  Mg

-1 [-GpyGpp
-1

I] 

Where: Gpp
-1  = the inverse of genomic relationship matrix among proven animals, Gpy = partition 

of genomic relationship matrix relating proven and young animals, and mg,i = g
i,i

 - GipGpp
-1
Gpi. 

The inverse of genomic relationship matrix, if well implemented, can have linear and 

quadratic increasing costs for young and proven animals, respectively, which would allow 
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inversion of this matrix for a large number of animals.  If there is small or no loss in GEBV 

accuracy for ssGBLUP using APY instead of the direct inversion of G, ssGBLUP could be the 

method of choice for genetic evaluations with millions of genotyped animals. 
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CHAPTER 3 

GENOMIC SELECTION AS A TOOL TO MITIGATE SEASONAL LOSSES IN SWINE 

PRODUCTION DUE TO HEAT STRESS1 

1 B.O. Fragomeni, D.A.L. Lourenco, S. Tsuruta, Y. Masuda, I. Aguilar, Huang. Y., Grey., K. and 

I. Misztal. To be submitted to Journal of Animal Science1
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ABSTRACT 

ABSTRACT: The purpose of this study was to analyze the impact of seasonal losses due to heat 

stress in different environments and breed combinations, and to evaluate the ability of the 

genomic information to improve accuracy of estimated breeding values. Data were available for 

two different swine populations: purebred Duroc animals raised in Texas and North Carolina, 

and commercial crosses of Duroc and F1 females (Landrace x Large White) raised in Missouri 

and North Carolina; pedigree provided links for animals from different states. Genotypes were 

available for 8,000 purebred animals. Traits were off-test weight for purebred and hot carcass 

weight for crossbred animals. Weather data was collected at airports located close to the farms, 

and a heat load function was calculated based on temperature humidity indices. Non-genetic 

analysis were by regressions of phenotype on heat load or heat load x year. Genetic analyzes 

were either by a single-trait model ignoring the heat stress, by a multiple-trait model with traits 

based on regular and “hot” seasons, or by a reaction norm model based on heat load. Breeding 

values were predicted by BLUP or single-step genomic BLUP (ssGBLUP), when genomic 

information was included. Variance components were estimated by AIREML. For crossbred 

animals, the coefficient of determination with heat load was 0.34 and 0.21 for Missouri and 

North Carolina, respectively, and increased to 0.67 and 0.63 with heat load x year. For purebred 

animals, the coefficient of determination with heat load alone was close to 0, and increased to 

0.44 and 0.46 with heat load x year for North Carolina and Texas, respectively. Heritability for 

crossbred animals was 0.18 in single-trait models and 0.26 in multiple-trait models, with similar 

equivalent heritabilities in reaction norm models. The correlations between regular and “hot” 

traits were close to 1.0 for purebreds and around 0.75 for the crossbreds. Realized accuracies for 

regular and “hot” traits in crossbreds were 0.41 and 0.36 with BLUP, respectively, and 0.44 and 
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0.38 with ssGBLUP. The effect of heat stress is greater in crossbreds than in purebreds and 

varies from year to year. The use of the genomic information increases the accuracy of 

prediction, but the increase with the current genotyping structure is small. 

Key words:  Single-step GBLUP, genomic selection, genotype by environment interaction, heat 

stress 

INTRODUCTION 

Seasonal impacts in livestock production due to heat stress are observed in different species all 

over the globe. The pork industry is especially affected because pig physiology is not adapted to 

dissipate heat by sweating or respiration. In the USA pork industry alone, a loss of $299 million 

is estimated due to heat stress (St-Pierre et al., 2003).  Heat stress can also negatively impact 

animal welfare, possibly affecting the public perception of farmed pigs.  Losses due to heat stress 

are observed for several traits and include smaller carcass value and poor reproductive 

performance over heat load conditions. Also, heat stress causes lower feed intake (Collin et al., 

2001) and reduced muscle/increased fat composition (Bridges et al., 1998), although the 

mechanisms for the different tissue conformation during heat stress are still not clear (Pearce et 

al., 2013). Technological advances were made in order to improve cooling strategies in pig 

farms, however, the impact of heat stress is still present. The amount of heat produced by an 

animal from an improved genetic line is higher than that produced by an “old genetics animal” 

(Brown-Brandl et al., 2001). 

Bloemhof et al. (2012) demonstrated that reproductive traits are affected by heat load in pigs 

from Portugal and Spain. Pigs originated from an efficient “Dutch” line were more susceptible to 
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heat stress than adapted pigs with “Spanish” origin. Bloemhof et al. (2013) estimated genetic 

parameters for heat stress effects on farrowing rate in sows. Animals with higher productivity 

tended to be less heat tolerant; however, selection for heat tolerance was possible. 

Zumbach et al. (2008a) described a heat load function for body weight in pigs in the USA based 

on THI averaged over time. The best function was a sum of THI over 70 degrees during the past 

10 weeks of life. Zumbach et al. (2008b) also showed a possibility of genetic evaluation for heat 

stress. Two models were considered: multiple-trait and a reaction norm, which is equivalent to 

random regression. While the multiple-trait model was simpler, the random regression model 

allowed for better accounting of heat stress. The study pointed out that the accuracy of evaluation 

for heat tolerance was low due to a limited number of phenotypes under heat stress.  

The availability of high-density DNA markers led to development of methods that could utilize 

that information in animal breeding (Meuwissen et al., 2001). With genomic information, it is 

possible to evaluate animals with higher accuracy and earlier in life; reducing generation interval 

and increasing genetic gain (Schaeffer, 2006). Methods initially developed for commercial 

genomic evaluation were based on multiple step procedures (Meuwissen et al., 2001) and could 

not easily be applied to more complex models. Aguilar et al (2010) and Christensen and Lund 

(2010) developed a method called single-step genomic BLUP (ssGBLUP), which is BLUP with 

a relationship matrix that combines the pedigree and the genomic information.   Single-step 

GBLUP can be applied for same models as BLUP including those applied for studies in heat 

stress.  
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 The first objective of the present study was to determine the extent of heat stress in purebred 

nucleus and commercial crossbred animals in different states in US. The second objective was to 

determine the utility of the genomic information to identify heat tolerant individuals. 

MATERIAL AND METHODS 

Data 

Data were available for purebred Duroc animals from nucleus farms and for crossbred animals 

from commercial farms. Crossbred animals were crosses of Duroc sires and F1 Landrace x Large 

White dams. Animals with conflicts in data, outliers (out of the range of 4 standard deviations), 

and without weather information available for the data recording (weigh or slaughter) date were 

removed from the dataset. 

Data from purebred animals were collected at farms in North Carolina (NC) and Texas (TX). 

Phenotypes were available for body weight, collected at age (mean ± standard deviation) of 

170±5.19 days in NC from 2003 to 2014 and 168±5.97 days in TX from 2005 to 2014. 

Data for crossbred animals were collected in packing plants in North Carolina (NC) and Missouri 

(MO). Phenotypes were available for hot carcass weight, collected at age (mean ± standard 

deviation) of 189±13.8 in NC from 2009 to 2014 and 181±11.7 in MO from 2012 to 2014. 

Pedigree and Genomic Information 

Pedigree file was available for 313,121 Duroc animals and 227,043 crossbred animals. For 

crossbred animals, dams were identified but dams’ pedigrees were unavailable.  Even though 

data was available from two states in each dataset, there was a strong relationship among 

animals; 30% of all animals had siblings in different states, and approximately the same 
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percentage of sires had progeny in two states. The detailed information about the number of 

records in each farm is included in Table 1. 

Single nucleotide polymorphism (SNP) information was available for 8,232 purebred Duroc 

animals. In total 4 different SNP chips were used; 4,251 animals were genotyped for 10K chip 

(Genomic Profiler 10k BeadChip, GeneSeek-Neogen, USA), 2,803 animals had information for 

60K (Infinium PorcineSNP60 v2 BeadChip, Illumina Inc., USA), 1,022 had information for 

60KV1 chip (Infinium PorcineSNP60 v1 BeadChip, Illumina Inc., USA) and 160 animals had 

information for 70k chip (PorcineSNP80 BeadChip, GeneSeek-Neogen, USA). Animals were 

imputed to 60KV1 chip, using software Beagle 3.3.2 (Browning and Browning, 2009) from 

October 2011. 

Weather Data 

The R package “WeatherData” (Narasimhan, 2014) was used to collect daily information from 

weather stations near the farms. Weather information was also available from “High Plains 

Regional Climate Center” for MO and “State Climate Office of North Carolina” for NC, As 

correlations of temperatures and humidity between the two sources were above 0.99, only data 

from the “WeatherData” package was used. 

In the “WeatherData” package, the weather information can be either from public weather 

stations or from airports; However, only airport information was used in this study because of 

completeness of data, and because correlations between station and airport were always above 

0.98 (0.99 for average of 30 days intervals). For NC farms, Wilmington airport was the closest 

one, for TX farms, Pampa airport, and for MO Des Moines airport (Iowa) was the closest one. 
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Temperature humidity index (THI) was calculated for each day following the formula (National 

Research Council, 1971): 

𝑇𝐻𝐼 = 𝑡 − (0.55 − (0.0055 × 𝑟ℎ)) × (𝑡 − 14.5) 

where 𝑡 is the observed maximum daily temperature in Celsius , 𝑟ℎ is the observed minimum 

daily humidity, in a 0 to 100 scale and 𝑇𝐻𝐼 is the temperature humidity index for a given day. 

THI was transformed to Fahrenheit scale. 

Once THI was computed, a heat load function was calculated, following the formula: 

𝐻𝐿 = max (0, 𝑇𝐻𝐼 − 𝑇𝐻𝐼𝑇), 

where 𝑇𝐻𝐼 was the observed temperature humidity index for a given day, 𝑇𝐻𝐼𝑇 was a threshold 

of THI value, and 𝐻𝐿 the heat load value. The heat load function intended to measure the amount 

of heat exceeding a given threshold. This threshold value can be interpreted as the maximum 

range of the thermic comfort zone. For testing purposes, this threshold assumed values from 60 

to 77 degrees. 

Heat Load Regression 

Once heat load values were calculated, a linear regression was fitted in order to find a 

relationship between the heat load and the phenotype. Data was split into breed (purebred and 

crossbred) and then into states. Next, average weight (or hot carcass weight) was calculated for 

each day available, and summarized in a file with date, mean weight, and HL. THI values of 60, 

65, 70 and 77 degrees were fitted for heat load. Average HL within 30, 50, and 70 days before 

weighing (or slaughter) date were considered to account for cumulative effects of heat during the 

period prior to data collection. 
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Three different linear models were fitted within each subgroup: 1) regression of phenotypes on 

heat load; 2) regression of phenotypes on heat load nested in year; and 3) regression of 

phenotypes on heat load separately for each year. Additionally, data was also summarized by 

average weight (or carcass weight) for groups of HL value, and linear and quadratic regressions 

were fitted to analyze the relationship between overall weight (or HCW for crossbreds) and HL. 

The HL groups were between 0 and maximum HL for each data set, and a different group was 

specified every 0.5 degree of HL. 

Genetic Analyses 

Analyses were carried separately for purebred and crossbred animals, under similar models. Data 

were first analyzed in a single-trait animal model without heat stress information: 

𝑦𝑖𝑗𝑘𝑙 = 𝑐𝑔𝑖 + 𝑔𝑒𝑛𝑑𝑒𝑟𝑗 + 𝑙𝑖𝑡𝑡𝑒𝑟𝑘 + 𝑏 ∗ 𝑎𝑔𝑒 + 𝑎𝑛𝑖𝑚𝑎𝑙𝑙 + 𝑒𝑖𝑗𝑘𝑙 

where 𝑦𝑖𝑗𝑘𝑙  = phenotype (offtest weight for purebred analysis and hot carcass weight for 

crossbred) of animal l in contemporary group i of gender j in litter k; age = age of the animal in 

weigh in (or slaughter) date in days, b = regression coefficient for age; and 𝑒𝑖𝑗𝑘𝑙 = residual 

effects. The model can be written in matrix notation as: 

𝐲 = 𝐗𝐛 + 𝐖𝐥 + 𝐙𝐚 + 𝐞 

where y is a vector of phenotypes, X is the incidence matrix of fixed effects contained in b: 

contemporary group, gender and age as a covariate; W is the incidence matrix of random litter 

effects contained in l; Z is the incidence matrix of random animal effects contained in a, and e is 

a vector or random residuals. Variances were: 
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𝑣𝑎𝑟 (
𝑎
𝑙
𝑒

) = [

𝐀𝜎𝑎
2 0 0

0 𝐈𝜎𝑙
2 0

0 0 𝐈𝜎𝑒
2

] 

where A is the numerator relationship matrix, I is an identity matrix, and 𝜎𝑎
2, 𝜎𝑙

2, 𝑎𝑛𝑑 𝜎𝑒
2 are

variances for additive genetic direct, litter, and residual effect, respectively.  

In a multiple trait model, trait one was body weight (or hot carcass weight) in heat stress 

conditions defined as average THI for 30 days was above a threshold of 70 or 78 degrees, and 

trait two were the remaining observations. Trait one could be called “under heat stress” and trait 

two could be called as either “regular” or “non-heat stress”. In matrix notation, the multiple-trait 

model was the same as the single-trait model but the variances were: 

𝑣𝑎𝑟 [
𝑙𝐻𝑆

𝑙𝑁𝐻𝑆
] = 𝐈 ⊗ [

𝜎𝑙𝐻𝑆

2 0

0 𝜎𝑙𝑁𝐻𝑆

2 ], 

 𝑣𝑎𝑟 [
𝑎𝐻𝑆

𝑎𝑁𝐻𝑆
] = 𝐀 ⊗ [

𝜎𝑎𝐻𝑆
2 𝜎𝑎𝐻𝑆,𝑁𝐻𝑆

𝜎𝑎𝑁𝐻𝑆,𝐻𝑆 𝜎𝑎𝑁𝐻𝑆
2 ], and 

𝑣𝑎𝑟 [
𝑒𝐻𝑆

𝑒𝑁𝐻𝑆
] = 𝐈 ⊗ [

𝜎𝑒𝐻𝑆
2 0

0 𝜎𝑒𝑁𝐻𝑆
2 ] 

where 𝜎𝑖𝐻𝑆

2 , 𝜎𝑖𝑁𝐻𝑆

2 , 𝜎𝑖𝐻𝑆,𝑁𝐻𝑆
 are variances of effect i of a trait under heat stress, a trait not under

heat stress, and covariance between trait under heat stress and not under heat stress, respectively. 

The third model used only for crossbred animals was a random regression model: 

𝑦𝑖𝑗𝑘𝑙 =  𝑐𝑔𝑖 + 𝑔𝑒𝑛𝑑𝑒𝑟𝑗 + 𝑙𝑖𝑡𝑡𝑒𝑟𝑘 + 𝑏 ∗ 𝑎𝑔𝑒 + ∑ 𝑎𝑙𝑞 ∗ 𝑧𝑙𝑞

2

𝑞=1

+ ∑ 𝑐𝑖𝑞 ∗ 𝑧𝑖𝑞

2

𝑞=1

+ 𝑒𝑖𝑗𝑘𝑙 
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where 𝑦𝑖𝑗𝑘𝑙  = hot carcass weight of animal l in contemporary group i of gender j in litter k; age = 

age of the animal in slaughter date in days, b = regression coefficient for age, 𝑎𝑙𝑞= random 

regression coefficient q on heat load for additive genetic effect on animal l,  𝑧𝑙𝑞= qth order 

polynomial for animal l, 𝑐𝑙𝑞= regression coefficient q on heat load for fixed regression for 

contemporary group i,  𝑧𝑖𝑞= qth order polynomial for contemporary group i, and 𝑒𝑖𝑗𝑘𝑙 = residual 

effects. 

Two different regression coefficients were fitted in the random regression model: 1) ordinary 

polynomial (intercept and linear), which is equivalent to a reaction norm model, and b-spline 

orthogonal polynomials (linear splines with one central knot). The variances were: 

𝑣𝑎𝑟 [
𝑎𝑞1

𝑎𝑞2
] = 𝐴 ⊗ [

𝜎𝑞1
2 𝜎𝑞1,𝑞2

𝜎𝑞2,𝑞1 𝜎𝑞2
2 ] 

where 𝑎𝑞𝑖is the ith random regression coefficient; intercept and linear effect of HL or linear 

spline, with a central knot at 7 degrees of HL.  

For litter and residual variance, variances were the same as for the single-trait model.  

Variance components for all the models were estimated by average information restricted 

maximum likelihood methods (AIREML) using the AIREMLF90 software (Misztal et al., 2002).  

For breeding value estimation the BLUPF90 software (Misztal et al., 2002) was used. Finally, 

genomic estimated breeding values were estimated by ssGBLUP (Aguilar et al 2010; Christensen 

and Lund, 2010), which consisted in replacing the inverse of numerator relationship matrix (A-1), 

in the BLUP mixed model equations, by the inverse of the realized relationship matrix (H-1): 

𝐇−1 = 𝐀−1 + [
𝟎 𝟎
𝟎 𝐆−1 − 𝐀22

−1] 
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where 𝐆−1  is the inverse of the genomic relationship matrix, and 𝐀22
−1 is the inverse of the

numerator relationship matrix for genotyped animals. 

For crossbreds, accuracies were the correlation between “true” and estimated breeding value for 

sires in a testing population. True breeding value had different definitions, all of them were 

calculated using a dataset that included all crossbred phenotypes available, hereby called 

complete dataset; those definitions were: 1) TBV-E: EBV with complete dataset; 2)TBV-G: 

GEBV with complete dataset; 3) PYD-E: Progeny yield deviation (PYD) using pedigree BLUP; 

4) PYD using ssGBLUP. For cross-validation purposes, EBV were calculated with incomplete

data, where phenotypes were removed for animals born in 2013 and later.  Sires in the test 

population were born in 2012 and later, with recorded progeny and with EBV reliability above 

0.75 in the complete dataset; in this way, no phenotypic information of progeny of sires in the 

test population was available when estimated breeding values were computed. PYD was 

calculated according to VanRaden et al. (1991) with complete data. 

For purebred animals, the ability to predict future performance was measured by the correlation 

between the phenotype corrected for the fixed effects (y-Xb) and the breeding value for 

genotyped animals born in 2013 and 2014. Prediction accuracy was calculated as correlation 

divided by the square root of the heritability of the trait (Legarra et al., 2008). 

RESULTS 

Descriptive statistics of data across states and breeds are shown in Table 1. On purebred animals 

small fluctuations on weight were observed, additionally a higher proportion of animals on THI 

above 70 and 77 were observed in Texas when compared to North Carolina.  For crossbred data, 
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animals in North Carolina tend to be slaughtered older than in Missouri, even though their hot 

carcass weight is on average lighter. A higher proportion of animals raised in higher 

temperatures was observed in Missouri. 

THI averaged for 30 days had a similar pattern during the summer in NC, MO, and TX (Figure 

1). During the winter the behavior was fairly different. An arbitrary line at the value of THI 

equal 75 degrees was traced to favor visual inspection of data. 

When a regression of weight on heat load across time was fitted, the best value for R2 was 

achieved for average heat load on 30 days before data collection and above 70 degrees (Figure 

2), in both states for crossbred animals. For purebred animals it was not possible to find any 

reasonable trend or predictive power in those equations (Figure 3). In an extra regression fitted 

with heat load effect nested in year, R2 improved remarkably, for both breeds and across states 

(Figures 4 and 5); best values were still for average HL of 30 days and above 70 degrees. For 

purebred animals an extra regression was fitted with year effect only (Figure 6), which achieved 

R2 values slightly lower than heat load nested in year (Figure 5). When data was divided into 

years and regression was independently fitted (Figure 7), a very similar pattern from Figure 5 

was observed (this analysis was only performed for purebred animals). 

Finally, linear and quadratic regressions of heat load on weight were fit. A decay in body weight 

was observed as heat load increased in both farms for crossbred animals (Figure 8), but for 

purebred animals it was only noticeable in NC (Figure 9). The best fit was achieved with 

quadratic regression. 

Heritability estimates from a single-trait model was 0.24 for purebred and 0.18 for crossbred 

animals. For the two-trait model that accounted for heat stress, an increase in heritability for the 
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trait under heat stress was observed when the threshold was above 78 degrees in crossbreds 

(Table 2). When the threshold for THI was lower than 78 degrees or analyses were performed in 

purebred data, heritability was similar in both traits or slightly lower for the heat stress trait. 

Genetic correlations were lower when higher threshold for heat stress were tested. 

For linear random regression models, similar variances were observed; which led to initial 

decrease in heritability and posterior increase, after a minimum at heat load equal to 7; as both 

results were similar only results with b-splines are shown (Figure 10). Likewise, genetic 

correlations had similar values in both analyses, where two clusters were observed (Figure 11). 

Prediction accuracy for single-trait analysis was higher for genomic EBV (GEBV) than EBV 

(Table 3). With two-trait analysis, there was a trend of GEBV to achieve higher accuracy than 

EBV, but it changed as the definition of TBV for the trait under heat stress changed. For the trait 

under regular weather conditions, prediction accuracy of GEBV was always higher than of EBV. 

For the random regression model, accuracies were higher for GEBV when TBV was calculated 

with genomic information (Figure 12); an increase of EBV accuracy was observed as heat load 

also increased when TBV was based on traditional analysis. In general, accuracy increased with 

heat load. For purebred animals, the predictability increased from 0.19 with traditional BLUP to 

0.60 with ssGBLUP. 

DISCUSSION 

The graphs of temperature humidity indexes suggest that there are periods of possible heat stress 

during the summer in all investigated states and years. Bohmanova et al. (2006) described THI 

affecting production in dairy cattle, with a similar behavior from what is described here. Huyn et 
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al. (2005) showed physiological changes in fattening pigs starting at 22oC and Quiniou et al. 

(2001) showed that 24oC was the lower critical temperature; these results slightly differ from 

21oC (THI=70) in the present study, mainly because we considered a 30 days average THI 

instead of the actual temperatures. Zumbach et al. (2008a) in a similar study modeled the heat 

load curve with THI above 65. Values in the present study are slightly different from the 

literature, however, they are in the range described by different authors; nevertheless it was 

expected as temperature and humidity were not collected on farm sites. Also, information about 

the actual indoor climate the animals were exposed to was not available, but it is likely to be 

highly correlated to data collected from airport or weather stations, yet THI from on-site data 

might be lower due to cooling strategies used inside the buildings.  

It was possible to observe a decrease in hot carcass weight (crossbred data) during the summer 

when phenotype is plotted over time: there is a valley coinciding with each summer (Figure 2). 

On the other hand, it was not possible to find any visual association with the purebred data 

because other effects might be masking the heat load effect. For crossbred animals it was 

possible to predict phenotypes based only on heat load values. Best fit in equations, measured by 

R2, was calculated by using the average heat load for 30 days (results for 50 and 70 days were 

not shown). This finding differs from those of Zumbach et al. (2008a), where the best period was 

70 days.  

The threshold temperature for calculating heat load with the highest R2 was 70 degrees. For 

purebred data, HL effect alone could not predict phenotypes, and R2 values were close to 0 in all 

analyses (Figure 3). Nesting HL within year helped to increase the R2 value of all regressions for 

both crossbreds (Figure 4) and purebreds (Figure 5), indicating that the effect of heat stress 
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varies by year. For crossbred animals, when HL was nested within year, 65 degrees had a better 

fit for animals in MO, however, differences from other HL definitions were negligible. Findings 

for crossbreds are similar to those by Zumbach et al. (2008a) with a different heat load function 

and length. In Zumbach et al. (2008a) and in the present study, the differences in R2 between 

different thresholds and length of heat load were modest. For purebreds it was possible to predict 

the weight loss based on HL nested within year, but it is not clear whether the fit was due to the 

interaction of year and HL or year alone. 

Year effect was fitted alone for purebred animals (Figure 6) to compare with HL nested within 

year. There was a substantial difference when HL was included in the model, but for some years 

there was a positive effect of HL, which was not expected. In order to isolate this effect, a 

different regression of phenotype on HL was fitted for each year. It can be observed that in some 

years, (2005, 2008, 2011, and 2013 in Texas and 2004, 2008, and 2013 in North Carolina), HL 

had a positive or null effect (Figure 7); therefore it is still not possible to affirm that there is a 

consistent heat stress effect acting on purebred animals across different years; furthermore, some 

of the negative heat load effects in Figure 7 cannot be considered as heat stress effect, but instead 

an artifact of the model or due to unknown circumstances. 

As expected, a decrease in HCW for crossbred animals was observed as HL increased (Figure 8). 

The slope was sharper when HL was above 3 degrees; it explains the best fit of quadratic 

regression in comparison to linear regression. For purebreds there was a difference in results 

from TX and NC: for the former, once again, no heat stress or relationship between HL and body 

weight was observed, on the other hand, for the latter, the trend was similar to crossbred’s trend. 

This was not expected, given that the prior analysis did not find an unequivocal heat stress effect 
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for purebreds. It is unclear whether heat stress effect is masked on animals from Texas or if there 

is some spurious association for North Carolina data; genetics should be similar across farms and 

THI information does not differ much. 

Animals from higher production lines (e.g., purebreds) are expected to be more susceptible to 

environmental and heat stress effects (Bloemhof et al. 2013). However, the impact of heat stress 

can be voided by management practices in the nucleus farms. Farms in different states may have 

different cooling strategies or technologies, which may be reasons for the differences between 

TX and NC for purebred animals. 

Heritabilities from single-trait analysis for HCW were higher than those described by Dufrasne 

et al. (2013) and similar to those computed by Zumbach et al. (2007). For body weight in 

purebred Duroc lines, heritabilities were in the range described by Zumbach et al (2007). For the 

multiple-trait analysis accounting for heat stress in crossbreds, an increase was observed in 

heritability for the trait under heat stress, similar to what was observed by Zumbach et al. 

(2008b). Working with heat stress in dairy cattle, Ravagnolo et al. (2000) and Aguilar et al. 

(2009) showed that traits under heat stress tend to have higher additive genetic variance, 

probably because selection is based on the trait under regular weather conditions. Bloemhof et al. 

(2012), showed high variability between daughter-groups of sires in response to high 

temperatures, which can also be related to the observed increase in heritability for the trait under 

heat stress. The genetic correlation in this case was positive and moderate to high, but still 

indicating a difference in the genetic component underlying the phenotypes. 

The magnitude of stress should be taken into account when creating the “heat” and “non-heat” 

traits. In this study we found that using 78 degrees was more appropriate than 70 because the 
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stress caused on phenotypes at 70 degrees was not of high enough magnitude; lower thresholds 

did not show differences in heritability and had higher genetic correlation. For purebred animals 

heritability was not different when observations were divided in two traits, and genetic 

correlations were very high. With multiple trait model, observations having lower and higher 

level of heat stress (say 1 and 10 degrees above the threshold) are treated the same. 

Random regression approach takes into account differences in the magnitude of heat stress. 

Subsequently it is possible to better account for the effect of heat stress and plot 

heritability/correlations as a function of THI above the threshold. In dairy cattle population, 

Ravagnolo et al. (2000) and Aguilar et al (2009) had similar trends in random regression models 

for heat stress, where heritability increased with THI. Genetic correlations described by 

Ravagnolo et al (2000) had a similar pattern with the findings in the present study. Models using 

splines and linear regressions showed similar curves, but the model with splines is more flexible. 

When genomic information was included, the realized accuracies in the single-trait model 

increased; the increase was greater in purebreds. In general, the increase in accuracy with the 

genomic information can be large for genotyped but small for ungenotyped animals (Lourenco et 

al., 2015). In this study only purebred animals were genotyped. 

Realized accuracies in the multiple-trait heat stress model were expected to be lower for the heat 

stress trait as less information was available. However, the opposite was found. This may be due 

to definition of true breeding values. When little phenotypic information is available, the 

accuracies are based on similar parent averages. Therefore, TBV for heat stressed animals needs 

to be treated carefully. Especially when data is scarce, prediction accuracy for heat stress trait 

may not be reliable. PYD seems to be the most reliable source for computing accuracy as it 



37 

reduces the overestimation of accuracy on the trait under heat stress, especially when EBV from 

complete data is used as the definition of TBV. 

In the random regression model, the realized accuracies increased with HL (results not shown). 

This increase was observed in both definitions of TBV and was even stronger for BLUP when 

TBV is considered EBV with complete data. This supports the claim of overestimation of 

accuracy under heat stress conditions. It was also evident that the correlation between EBV and 

GEBV increased with the heat load. There was a sharp increase in the correlation when HL was 

above 7 degrees, which is the critical temperature for heat stress according to the two trait model. 

As observations with HL above 7 degrees are few, the results might be an artifact of b-splines. 

CONCLUSION 

We found an evidence of heat stress in both purebred and crossbred animals. The effect of heat 

stress is stronger in commercial farms and its magnitude changes from year to year. The best 

way to analyze the pig data under heat stress is by a reaction norm model, possibly using splines. 

While the accuracy of selection for heat stress is moderate due to relatively few animals under 

severe heat stress, that accuracy can be improved with availability of the genomic data. 
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TABLES 

Table 1.1 – Descriptive statistics for purebred Duroc animals in North Carolina and Texas and 

crossbred Duroc X F1(Landrace x Large white) in North Carolina and Missouri  

Purebred Duroc Crossbred Duroc x F1 

State North Carolina Texas North Carolina Missouri 

N 151,336 55,897 141,756 86,435 

Weight (kg) 117.3 (13.0) 115.0 (13.0) 92.68 (9.5) 95.1 (8.2) 

Age 169.9 (5.2) 168.3 (5.9) 188.63 (13.9) 180.5 (10.7) 

N THI > 70 75,457 41,122 64,319 22,855 

N THI > 78 22,897 10,759 31,723 5,858 

N = number of animals, N THI > 70 and N THI > 78 are the number of animals with data 

collected with THI value above the mentioned numbers. 
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Table 1.2 – Heritabilities and genetic correlations for purebred and crossbred data obtained by 

AIREML in single-trait analysis and two multiple trait analysis, with heat stress definition of 70 

or 78 degrees Celsius.  

Purebred Crossbred 

Heritability Genetic 

Correlation 

Heritability Genetic 

Correlation 

Single trait 0.24(0.01)  ------------------- 0.18(0.01) ------------------ 

HS70 0.23(0.01) 
0.98(0.01) 

0.18(0.01) 
0.77(0.02) 

NHS70 0.25(0.01) 0.22(0.01) 

HS78 0.23(0.01) 0.99(0.01) 0.26(0.02) 
0.72(0.03) 

NHS78 0.24(0.01) 0.19(0.01) 

For multiple traits: HS = Heat stress, NHS = non-heat stress, 
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Table 1.3 – Accuracies as correlation between true breeding value (TBV) and (genomic) 

estimated breeding value ((G) EBV) for single-trait and multiple-trait analyses. Where TBV 

definitions were EBV with complete data (TBV-E), GEBV with complete data (TBV-G), 

progeny yield deviation using genomic (PYD-G) and with traditional BLUP (PYD-E). For the 

multiple-trait results, trait1 (Hot) is the trait under heat stress and trait 2 (regular) is the trait 

under regular weather conditions. 

TBV-G TBV-E PYD-G PYD-E 

Single 

Trait 

EBV 0.34 0.28 0.29 0.24 

GEBV 0.43 0.33 0.39 0.30 

Trait1 

Hot 

EBV 0.58 0.56 0.41 0.36 

GEBV 0.63 0.52 0.49 0.38 

Trait 2 

Regular 

EBV 0.55 0.52 0.47 0.41 

GEBV 0.61 0.51 0.55 0.44 
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Figure 1.1 – 30 day average temperature humidity index across airport weather stations when 

data was available, a) for purebred animals in North Carolina and Texas; and b) for crossbred 

animals in North Carolina and Missouri 
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Figure 1.2 – Observed and predicted hot carcass weight by regression of phenotype on heat load, 

across time for crossbred animals in North Carolina (a) and Missouri (b) 
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Figure 1.3 – Observed and predicted offtest body weight by regression of phenotype on heat 

load, across time for purebred Duroc animals in North Carolina (a) and Texas (b) 



46 

Figure 1.4 – Observed and predicted hot carcass weight by regression of phenotype on heat load 

nested in year, across time for crossbred animals in North Carolina (a) and Missouri (b) 
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Figure 1.5 – Observed and predicted offtest body weight by regression of phenotype on heat load 

nested in year, across time for purebred Duroc animals in North Carolina (a) and Texas (b) 
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Figure 1.6 – Observed and predicted offtest body weight by regression of phenotype on year, 

across time for purebred Duroc animals in North Carolina (a) and Texas (b) 
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Figure 1.7 – Observed and predicted offtest body weight by regression of phenotype on heat 

load, across time, within year, for purebred Duroc animals in North Carolina (a) and Texas (b) 
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Figure 1.8 – Observed and predicted hot carcass weight by regression of phenotype on heat load, 

for crossbred animals in North Carolina (a) and Missouri (b) 
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Figure 1.9 – Observed and predicted offtest body weight by regression of phenotype on heat 

load, for purebred Duroc animals in North Carolina (a) and Texas (b) 
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Figure 1.10 – Heritability of hot carcass weight as a function of heat load in a random regression 

model fitting 2 linear splines. 
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Figure 1.11 – Genetic correlation among heat load values for random regression model fitting 2 

linear splines. 
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Figure 1.12 – Accuracy as correlation between (genomic) estimated breeding value and true 

breeding value (TBV) for a1) TBV based on EBV, ordinary linear polynomial, a2) TBV based 

on EBV, two linear splines, b1) TBV based on GEBV, ordinary linear polynomial, b2) TBV 

based on GEBV, two linear splines. 
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CHAPTER 4 

Use of Genomic Recursions and Algorithm for Proven and Young Animals for Single-Step 

Genomic BLUP Analyses – A Simulation Study1

1 B.O. Fragomeni, D.A.L. Lourenco, S. Tsuruta, Y. Masuda, I. Aguilar, and I. Misztal. 

Journal of Animal Breeding and Genetics. 132(5):340-345. Reprinted here with permission of the 

publisher. 
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ABSTRACT 

The purpose of the present study was to examine accuracy of genomic selection via single-step 

genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is 

replaced by an approximation of G-1 based on recursions for young genotyped animals 

conditioned on a subset of proven animals, termed algorithm for proven and young animals 

(APY).  With the efficient implementation, this algorithm has a cubic cost with proven animals 

and linear with young animals. Ten duplicate datasets mimicking a dairy cattle population were 

simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven 

and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows 

with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 

replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When 

genomic information was included, they increased to 0.75 and 0.50. No differences between 

genomic EBV (GEBV) obtained with the regular G-1 and the approximated G-1 via the recursive 

method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51, and 0.59 for 

proven bulls, young males, and young females, respectively) were also higher than those in EBV 

(0.72, 0.35, and 0.49). Again, no differences between GEBV with regular G-1 and with 

recursions were observed. With the recursive algorithm, the number of iterations to achieve 

convergence was reduced from 227, to 206 in the first scenario and from 232 to 209 in the 

second scenario. Cows can be treated as young animals in APY without reducing the accuracy. 

The proposed algorithm can be implemented to reduce computing costs and to overcome current 

limitations on the number of genotyped animals in the ssGBLUP method. 

Key words - single step method, genomic selection, genetic evaluation 
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INTRODUCTION 

The single-step genomic BLUP (ssGBLUP; Aguilar et al. 2010; Christensen and Lund, 

2010) emerged as the preferred method for genomic evaluation. Advantages of the ssGBLUP 

method include simplicity, no double counting of phenotypic information, and possibly, resistance 

to biases due to pre-selection (VanRaden and Wright, 2013; Fernando et al., 2013; Liu et al., 2014; 

Patry and Ducrocq, 2011). A straightforward implementation of ssGBLUP requires explicit 

creation and inversion of the genomic (G) and pedigree (A22) relationship matrices among 

genotyped animals (Aguilar et al, 2010). However, the inversion has a cubic cost and quadratic 

storage with the number of genotyped animals. The current ssGBLUP method has a soft limit on 

software of about 150k genotyped animals (Aguilar et al., 2013). Several approaches were 

proposed to overcome this limit, such as solving unsymmetric equations (Legarra and Ducrocq, 

2012), using a SNP-only model with imputation of ungenotyped animals (Fernando et al., 2013), 

and fitting a model with SNP effects for genotyped animals (Legarra and Misztal, 2008; Liu et al. 

2014). Still, these models have convergence problems, high computing costs, or difficulty for 

programming.   

Recently Misztal et al. (2014) proposed an approximation to the inversion of G based on 

genomic recursions. They presented an algorithm for proven and young animals (APY), where 

genomic EBV (GEBV) of a young genotyped animal is conditioned on GEBV for ancestors of the 

young animal. In this algorithm, the submatrix with relationships among proven animals is inverted 

directly, whereas all other coefficients of G-1 for young animals are calculated recursively. 

Therefore, the G-1 obtained from APY has an L shape, with dense blocks  among proven and 

between proven and young, but has only diagonal elements for young animals. As the inversion is 
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still needed for the subset of proven animals, the cost of APY is cubic with the number of proven 

animals, but can be linear with the number of young animals if preconditioned conjugate gradient 

(PCG) algorithm (Tsuruta et al., 2001) is used with an iteration-on-data technique. Consequently, 

the inverse of G with APY can be calculated for millions of young genotyped animals. 

In a real population, genotypes may be available for high accuracy proven animals, animals 

with only own records (e.g., cows with no progenies), and young animals with no records and no 

progenies. While the number of high accuracy animals is limited, the number of animals with own 

records can be very high. For instance the total number of genotyped US Holsteins was already 

over 600k for the December/2014 evaluation, but only 25k were proven bulls with high accuracy 

breeding values (https://www.cdcb.us/Genotype/cur_density.html). If only young animals (i.e. no 

progeny or records) are treated as “young” and the other animals with records and/or progeny are 

treated as “proven”, APY will have a high computing cost, but when only high accuracy animals 

are treated as “proven”, it will have a low cost. The purpose of this study is to evaluate the APY 

algorithm with a simulated dataset mimicking a dairy cattle population with different groups of 

animals treated as proven and young. 

MATERIALS AND METHODS 

SIMULATION 

Ten duplicate populations were simulated using the software QMSim (Sargolzaei and 

Schenkel, 2009). For each population, about 1.1 million animals were simulated over 20 

generations. Phenotypes (single record) for a trait with heritability of 0.3 were available for females 

in the last 10 generations. In order to mimic a dairy cattle population, a male: female mating ratio 

of 1/25 was assumed; the mating was considered to be random in a closed population. Sire and 

https://www.cdcb.us/Genotype/cur_density.html
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dam replacement rates were 90% and 30%, respectively, and animals were selected based on high 

EBV. In order to simulate elite cows in embryo transfer programs, the litter size was set to 5 or 10 

progenies per litter with a probability of 0.02 or 0.01, respectively; otherwise it was set to 1. 

The simulated genomic data consisted of 45,000 biallelic SNP markers evenly distributed 

along 29 chromosomes with a total length of 2319 cM, which mimicked the bovine genome 

without sex chromosomes. A total of 450 biallelic and randomly distributed QTL affected the trait, 

with effects sampled from a gamma distribution with shape parameter of 0.4 and scale 0.006.  

Genomic information was available only for animals in the past 5 generations. In the first 

scenario, all males with progenies were selected to be the proven genotyped animals that totaled 

7200 animals in each replicate of the simulated population. The average number of daughters per 

genotyped sire was between 4 and 50 with an average of 16.  Additionally, 12,800 genotyped 

males were randomly selected from the last generation as young animals. In the second scenario, 

an extra 5000 genotyped females with phenotypes were randomly selected from the last generation 

as young animals, with the total of 25,000 animals with genomic information. 

ANALYSES 

Traditional (BLUP) and genomic (ssGBLUP) evaluations were performed with the 

simulated datasets, including phenotypes from females in the last 10 generations, complete 

pedigree information from all 20 generations, and 20,000 (or 25,000 in the second scenario) 

genotyped animals. Genomic analyses included the regular ssGBLUP using the direct inversion of 

G and A22, and the ssGBLUP using APY to construct G
-1

 (GAPY
-1

). All the analyses were done for 

each replicated population using the following model: 

y=1μ+Za+e 
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where y is the observation vector, μ is a vector of fixed effect (overall mean), a is the vector of 

additive animal effect, e is the vector of random residual effect and 𝐙 is the incidence matrix for 

the random effect in a.  

It was assumed that a ~ N(0,Hσa
2), in which σa

2 is the additive genetic variance and H is the 

matrix that combines the numerator relationship matrix (A) and G (Legarra et al., 2009), with the 

inverse given by (Aguilar et al., 2010): 

H
-1= A

-1 + [
0 0

0 G
-1 − A22

-1 ] 

where A22
-1

 is the numerator relationship matrix for the genotyped animals. The G matrix was 

blended with a small percentage of the A22 matrix before the inversion, to ensure positive 

definiteness. This blending was performed as αG+βA22with values of α=0.95 and β=0.05. Also, 

G was scaled to match the average of A22, since the matrices are in different bases; the first one is 

in the genotyped population, and the second one is in the base population. The scaling is done by 

adding the average difference between G and A22 to G matrix, which takes into account the effect 

of non-random genotyping caused by selection (Vitezica et al., 2011).  

All ssGBLUP computations were performed using the BLUP90IOD program 

(http://nce.ads.uga.edu/wiki/BLUPmanual), modified to account for genomic information 

(Aguilar et al., 2011). Accuracy of traditional and genomic evaluations was calculated by the 

correlation between estimated and simulated breeding values. Tukey’s honest significant 

difference test (Tukey, 1949) was used to locate the pairwise difference between sample means. 

The difference in correlations means, expressed in standard deviation (SD) units, was also 

calculated in a way of comparing results from BLUP, ssGBLUP, and APY. 

 

http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all1.pdf
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GENOMIC RECURSIONS 

As shown by Misztal et al. (2014), the recursion for the additive genetic effect of animal i 

(ui) can be written as: 

ui|u1…ui-1=∑p
ij
uj+εi

i-1

j=1

[1] 

where:        

p
i,1:1-1 

= g
i,1:i-1

(G1:i-1,1,i-1)
-1

,

Mi,i=mi=var(εi)=g
i,i

-p
i,1:i-1

g'
i,1:i-1

 .

G={g
ij
}

Then, the inverse of G can be created using a formula as in Henderson (1976) and Quaas (1988): 

G
-1

=(I-P)'M-1(I-P)=T'M-1T [2] 

where 

P={p
ij
}

THE APY ALGORITHM. 

Animals in several generations can be partitioned into the categories proven and young, so the 

recursions in [1] would be: 

ui|u1u2,…,ui-1= ∑ p
ij
uj+

j ∈ "proven"

∑ p
ij
uj+εi

j ∈ "young"

[3] 

In GBLUP (BLUP when the left hand side consists only of G), the contributions from young 

animals are 0, so we can rewrite [3] as: 
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ui|u1u2,…,ui-1= ∑ p
ij
uj+

j ∈ "proven"

εi [4] 

Simplifying the recursions in [2] by using the information in [4] will lead to the APY algorithm: 

𝐆𝐚𝐩𝐲
−𝟏 = [

𝐆𝐩𝐩
−𝟏 𝟎

𝟎 𝟎
] + [

−𝐆𝐩𝐩
−𝟏𝐆𝐩𝐲

𝐈
] 𝐌𝐠

−𝟏[−𝐆𝐩𝐲𝐆𝐩𝐩
−𝟏 𝐈]

where 

mg,i=g
i,i

-GipGpp
-1
Gpi 

and  Gpp
-1
, Gpy, Gyp, Gip

, and Gpi are subsets of G
-1

and G.

Thus, the APY algorithm only requires the inversion of G for animals treated as proven, assuming 

no contributions from young animals. Savings in memory and computations are due to a fact that 

Gyy does not have to be computed or stored and Gapy
-1

 is a sparse matrix. 

RESULTS 

In the first scenario (Figure 1), where just males were genotyped, for proven animals, 

accuracies (mean ± standard deviation) for EBV with traditional BLUP (no genomic information) 

(0.72±0.01) were significantly lower (p<0.0001, and difference of 3 SD units) than for GEBV with 

ssGBLUP (0.75±0.01) and APY (0.75±0.01); no differences were found between GEBV with the 

regular ssGBLUP and APY (p>0.05, and no difference in the means). For young animals, the 

pattern of accuracies was the same: accuracy for EBV with traditional BLUP had a significantly 

(p<0.0001, and 7 SD units) lower value (0.35±0.02), and no significant differences (p>0.05, and 1 

SD unit difference) were found between GEBV with ssGBLUP (0.49±0.02) and APY (0.51±0.02). 

The increment in accuracy for adding genomic information for young animals was larger than for 

proven animals. 
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In the second scenario (Figure 2), where extra 5,000 genotyped females with a single record 

were considered young, the accuracy of EBV with traditional BLUP was still the lowest 

(significantly different from GEBV with ssGBLUP at p<0.0001, and 3, 8, and 3 SD units of 

difference in the means) for the three classes (0.72±0.01, 0.35±0.01, and 0.50±0.02 for proven 

bulls, young males, and young females, respectively). No significant differences (p>0.05, no 

difference in the means for the first group, and 1 SD unit in difference for the last two) were 

observed between GEBV with ssGBLUP (0.76±0.01, 0.51±0.02, and 0.59±0.03 for proven bulls, 

young males, and young females, respectively) and APY (0.76±0.01, 0.53±0.02, and 0.57±0.02 

for proven bulls, young males, and young females, respectively). 

The method used to invert the G matrix affected the number of rounds to achieve 

convergence in the ssGBLUP. In the first scenario, with regular G-1, the average (±SD) number of 

rounds was 226.5 (±7.1), whereas this number was reduced to 205.8 (±5.01) with the Gapy
-1

 matrix. 

In the second scenario, this number was 209.4 (±6.27) with the Gapy
-1

 and 231.8 (7.34) with the 

regular G-1. In both scenarios, the difference in numbers of rounds between regular G-1 and 

Gapy
-1  was significant (p<0.001). 

DISCUSSION 

The gain in accuracy with the addition of the genomic information followed the trends of 

North American Holstein bulls’ reliabilities, as shown in Habier et al. (2007). In their study, young 

animals had a large increase in accuracy due to the inclusion of genomic information, whereas the 

increase for proven bulls was small. The similarity between GEBV in the regular ssGBLUP and 

APY for the first scenario was expected, as young animals do not contribute substantial 

information for the predictions. In fact, GEBV with the APY algorithm were marginally more 
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accurate, although the difference was not statistically different. In the second scenario, GEBV with 

the APY algorithm were also superior for young animals but slightly inferior for cows, again with 

no significant differences. Subsequently, use of Gapy
-1

 as compared to G-1 does not seem to affect 

GEBV much, and in fact, may even increase accuracies for young animals. Such an outcome may 

have a rational as G calculated as in VanRaden (2008) is usually singular and requires blending 

with A22 to facilitate inversion. Different levels of blending have a negligible effect on accuracy 

(Misztal et al., 2010) indicating that the main purpose of blending in ssGBLUP is improving 

numerical properties of G and indirectly G-1.  

Both results suggest that considering only a subset of animals in the recursion is sufficient, 

and subsequently, including all the animals in the recursion may be redundant. In the Henderson 

(1976) algorithm for inverting the numerator relationship matrix, the recursion ignores all animals 

but parents without any loss of accuracy for two reasons. First, the recursion operates on the inverse 

and not on the original relationships. Second, a progeny is expected to inherit 50% of genes from 

each parent, with other relatives contributing through parents only.  Including more than two 

animals in the recursion would add unnecessary coefficients and possibly decrease the accuracy 

of EBV. The regular G computed in this study is an approximation. 

The accuracy of EBV for a young animal in BLUP depends on EBV accuracies of parents 

only, whereas the accuracy of GEBV is a function of accuracies of all the other genotyped animals.  

In a study by Daetwyler et al. (2010), the last accuracy was approximated as a function of 

independent chromosome segments (ICS), with the number of segments for commercial 

populations < 10,000 (Ricards, 2014). Assuming an infinitesimal model (or GBLUP), values of all 

ICS contain all the genomic information in the population from which GEBV of any animal in the 

population can be derived. It is possible that proven (or base) animals in APY in fact indirectly 
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relate to the number of ICS. As long as the number of base animals is greater than the number of 

ICS, the APY algorithm would result in accurate GEBV. It is hard to estimate the number of ICS 

in this study, however, due to similarity of breeding structure to a dairy population it is likely that 

ICS < 20,000, a number used in this study.  A future study will address the concept of ICS in the 

APY algorithm. 

An important decision is which animals should be included in the proven population. For 

dairy cattle, the first approach is to include animals who have reliable breeding values in the 

national program into the reference population (De Roos et al., 2007; VanRaden et al., 2009). The 

second approach is to increase the reference population by including genomic information for 

cows, which resulted in minimal gain in accuracy (Cooper et al., 2014). In our study, the first 

approach was mimicked by selecting just bulls with progeny to be in the proven population. If 

animals are just proxies for ICS, the choice of animals treated as proven may be less important or 

unimportant. 

As the Gapy
-1 matrix is sparser than the regular G-1 matrix, the number of iterations to 

achieve convergence was expected to decrease, which was observed in the present study. Also, the 

storage for nonzero elements in Gapy
-1 is lower than with regular G; for a matrix of 50k animals 

but only 10k treated as proven, the memory requirement is about 5 times lower. This may be 

beneficial in variance component estimation with genotypes where G-1 needs to be stored 

explicitly. Masuda et al. (2014) showed that AI REML can be run successfully in a reasonable 

time when the number of genotyped animals is 20k and the sparse matrix inversion is by 

supernodal techniques. With Gapy
-1, this limit can increase a few fold with little impact on quality 

of estimates. 
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The real impact of the APY formula is for solving large systems of equations with the 

iteration-on-data and PCG algorithm (Tsuruta et al, 2001). In this case, the implicit Gapy
-1 is not 

needed but only its product by a vector. Then we can also rewrite the APY formula to avoid 

building the complete G matrix and use the marker information for young animals. Assuming 

G=ZZ’/q, where Z is a matrix of genotypes and q is a normalizing constant, the APY algorithm 

can be alternatively expressed as: 

Gapy
-1

= [Gpp
-1

0

0 0
] + [-Gpp

-1
ZpZy/q

I
]Mg

-1[-ZyZp/qGpp
-1

I] 

and 

mg,i = gi,i − 𝐳𝐢′𝐙𝐩𝐆𝐩𝐩
−𝟏𝐙𝐩𝐳𝐢/q2

In this case, Z can be stored with low precision to lower memory requirements; savings can be up 

to 8 times when G is stored as double-precision and Z as scaled one-byte integer. Also, the costs 

become approximately linear with the number of genotyped animals.  

CONCLUSIONS 

Genomic breeding values obtained with the proposed genomic recursions are accurate for 

proven and young genotyped animals in a population with a structure that mimics a dairy cattle 

population. Using the algorithm for proven and young animals to invert the genomic relationship 

matrix can reduce the number of iterations to achieve convergence in a single-step genomic BLUP 

analysis. When using the proposed algorithm, animals with a single record and/or with a single 

progeny can be treated as young without harming the evaluations. The positive results in the 

present study should be validated with field data before implementing the algorithm in national 

evaluations. 
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FIGURES 

Figure 4.1. Accuracy means (±standard deviation) on proven and young animals for traditional 

(BLUP) and genomic evaluations using regular ssGBLUP (ssGBLUP) and ssGBLUP with 

genomic recursion to invert G matrix (APY) in the first scenario. 
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Figure 4.2. Accuracy means (±standard deviation) on proven animals, young, and females for 

traditional (BLUP) and genomic evaluations using regular ssGBLUP (ssGBLUP) and ssGBLUP 

with genomic recursion to invert G matrix (APY) in the second scenario. 
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CHAPTER 5 

HOT TOPIC: USE OF GENOMIC RECURSIONS IN SINGLE-STEP GENOMIC BLUP 

WITH A LARGE NUMBER OF GENOTYPES 1 

1 B.O. Fragomeni, D.A.L. Lourenco, S. Tsuruta, Y. Masuda, I. Aguilar, A. Legarra,  T. J. Lawlor, 

and I. Misztal. Journal of Dairy Science.98 (6) :4090-4094. Reprinted here with permission of the 

publisher. 
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ABSTRACT 

The purpose of this study was to evaluate the accuracy of genomic selection in single-step 

genomic BLUP (ssGBLUP) when the inverse of the genomic relationship matrix (G) is derived 

by the APY (Algorithm for Proven and Young). This algorithm implements genomic recursions 

on a subset of “proven” animals. Only a relationship matrix for animals treated as “proven” 

needs   to be inverted, and extra costs of adding animals treated as “young” are linear. Analyses 

involved 10,102,702 final scores on 6,930,618 Holstein cows. Final score, which is a composite 

of type traits, is popular trait in the U.S. and was easily available for this study. A total of 100k 

animals with genotypes were used in the analyses and included 23k sires (16k with more than 5 

progenies), 27k cows, and 50k young animals. Genomic EBV (GEBV) were calculated with a 

regular inverse of G, and with the G inverse approximated by APY. Animals in the “proven” 

subset included only sires (23k), sires + cows (50k), only cows(27k), or sires with more than 5 

progenies(16k). The correlations between GEBV with APY and regular GEBV of genotyped 

animals were 0.994, 0.995, 0.992, and 0.992, respectively. Later, animals in the “proven” subset 

were randomly sampled from all genotyped animals in sets of 2k, 5k, 10k, 15, and 20k; each 

sample was replicated four times. Respective correlations were 0.97 (5k sample), 0.98 (10k 

sample) and 0.99 (20k sample), with minimal difference between samples of same size. Genomic 

EBV with APY are accurate when the number of animals used in the subset is between 10k and 

20k, with little difference between the ways of creating the subset. Due to approximately a linear 

cost of APY, the ssGBLUP with APY can possibly support any number of genotyped animals 

without affecting accuracy. 

(Key words: single-step method, genomic selection, genomic recursion) 
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INTRODUCTION 

Single-step genomic BLUP (ssGBLUP) (Aguilar et al., 2010; Christensen and Lund, 

2010) emerged as a simple yet accurate tool for genetic evaluations. Its main advantages 

compared to multistep methods are simplicity, no double counting, and resistance to pre-

selection bias (Vitezica et al., 2011; VanRaden and Wright, 2013; Legarra et al., 2014). As 

originally defined, ssGBLUP uses classical BLUP mixed equations extended with the inverse of 

the genomic (G) and pedigree (A22) relationship matrices for genotyped animals. With 

algorithms as described in Aguilar et al. (2011), the cost of obtaining these matrices is cubic, and 

currently there is a soft limit of about 150k genotyped animals in the model; however, there are 

over 600k genotyped animals available for US Holsteins 

(https://www.cdcb.us/Genotype/cur_density.html). Several approaches were proposed to 

overcome such a limit (Legarra and Ducrocq, 2012; Liu et al., 2014; Fernando et al., 2014) but 

either they have convergence problems, or are expensive and hard to program and use with data 

and a variety of models such as multiple trait or random regressions.  

Faux et al (2012) attempted to extend the rules used in creation of the numerator 

relationship matrix to approximate the inverse of G. Their method was based on incomplete 

Cholesky factorization where only genomic relationships between close relatives were 

considered. However, the approximation was not accurate enough, and steps proposed to 

increase that accuracy were expensive. 

Recently Misztal et al. (2014) proposed a method based on genomic recursion, where 

genomic breeding value (GBV) of a new genotyped animal is conditioned on GBV of all the 

previous genotyped animals. One of their proposed algorithms was called APY (Algorithm for 
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Proven and Young animals). This algorithm conditioned “young” animals on a small subset of 

“proven” animals. The APY algorithm has a cubic cost with the number of animals treated as 

proven and linear cost with the animals treated as young; direct inversion is required for only a 

small portion of G composed by relationships among animals treated as proven. This algorithm 

was tested with simulated data and with US Holsteins data (Fragomeni et al., 2014). In 

simulations, accuracies with APY were close to those with direct inverted G even when some 

animals with records were treated as young. This suggests that the definition of “proven” is not 

critical and this subset may not need to be composed by parents, animals with records, or possess 

any other special requirement. In US Holsteins with genotypes on 15k proven bulls and 60k 

young bulls, the correlations of GEBV obtained through APY and regular method were >0.99. 

In real data sets, genotyped animals include bulls and cows. While the number of proven 

bulls is limited and rises slowly (~ 2000/year for US Holsteins), the number of cows with 

genotypes can be very high. The purpose of this study is to evaluate the accuracy of GEBV with 

APY for US Holsteins considering genotypes of bulls and cows and treating various groups of 

animals as proven and young. 

MATERIAL AND METHODS 

GENOMIC RECURSIONS 

 The recursion for the additive genetic effect of animal i (ui) can be written as (Misztal et 

al., 2014): 
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where u is an additive genetic effect, p relates animals to all previous individuals, and ε is the 

error term. Calculations can proceed as: 

 

where M is a diagonal matrix of genomic Mendelian sampling and G = {gij} is a genomic 

relationship matrix. Then, the inverse of G can be created using a formula as in Henderson 

(1976) and Quaas (1988): 

𝐆−𝟏 = (𝐈 − 𝐏)′𝐌−𝟏(𝐈 − 𝐏) = 𝐓′𝐌−𝟏𝐓

where T is a triangular matrix, P = {pij}, and I is an identity matrix; if many of its elements are 

very small they can be set to 0 and G-1 may be computed at a low cost.  

THE APY ALGORITHM 

In genomic recursions, contributions from proven and young animals can be separated as: 

However, the contribution of information from young animals to other genotyped animals is 0 in 

GBLUP because young animals do not get information from data. Then, neglecting these 

contributions: 
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As shown in Misztal et al. (2014), the simplified recursions lead to a new formula for an 

approximate inverse of G called APY (algorithm for proven and young):  
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where Gpp is a subset of G relating proven animals, Gpy relates proven and young animals, Gip 

relates the ith young animal with all proven animals, and Mg is a diagonal matrix. While this 

algorithm results in the same GEBV for GBLUP as the regular inversion of G-1, for ssGBLUP 

the APY algorithm leads to an approximation, as a young genotyped animal may provide ties to 

ungenotyped ancestors. This happens if at least one of its parents is not genotyped.  

The APY G-1 is a sparse matrix with non-zero elements forming an L shape, with only a 

diagonal for the submatrix due to young animals; the only direct inversion required is for Gpp. 

Whereas the regular G-1 requires quadratic storage and cubic computations, the APY G-1 requires 

quadratic storage and cubic computations only for animals treated as proven, and linear storage 

and computations for animals treated as young. When the number of animals treated as proven is 

a small fraction of all animals, the APY G-1 has approximately a linear cost and can provide 

large savings in memory and especially in computing time.   
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FIELD DATA 

To check the quality of this approximation for G-1 we tested it using real data. Phenotypic 

data included 11,626,576 records for final score on 7,093,380 cows, with 10,709,878 animals in 

the pedigree provided by Holstein Association USA Inc. (Brattleboro, VT). Final score is a 

weighted linear combination of five major breakdown score for type traits in dairy cattle, and 

was chosen for this study because of availability of records. Genotypes on 42,503 SNP markers 

were available for 569,404 animals. However, in order to have comparisons with the regular 

ssGBLUP where direct inversion of G is used, analyses involved only 100,000 of the genotyped 

animals, which is the limitation of ssGBLUP for the available computer. Thus, genotypes were 

considered for all 23,174 bulls with progeny information, all 27,215 cows with records 

(hereinafter termed “cows”), and additionally 49,611 young animals. 

ANALYSES 

Initially, GEBV were calculated using the regular ssGBLUP which applies direct 

inversion for G. Secondly, GEBV were calculated using APY to obtain G-1 recursively (G-1
APY) 

with several different definitions for proven animals: only sires; sires and cows; only cows; sires 

with more than 5 progenies including sons and daughters. Thirdly, previous analyses were 

repeated with “proven” animals randomly sampled from the group of all 100k genotyped animals 

in sets of 2k, 5k, 10k, 15k, and 20k animals; the sampling was replicated 4 times. Evaluations for 

final score were done using a single trait model as described in Tsuruta et al. (2002). All analyses 

were conducted with blup90iod2 (http://nce.ads.uga.edu/wiki/BLUPmanual) program with 

modifications as in (Aguilar et al., 2011).  The quality of approximations was assessed by 

http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all1.pdf
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correlations between GEBV for the almost 50k young animals obtained from ssGBLUP using 

direct inversion of full G (regular ssGBLUP) and ssGBLUP using approximated G-1 from the 

APY algorithm. 

RESULTS AND DISCUSSION 

Table 1 summarizes runs with regular and APY ssGBLUP when the subset of animals 

treated as “proven” were sires, sires + cows, cows, and sires with > 5 daughters. For all subsets, 

the correlations of GEBV obtained with a regular and APY algorithms are > 0.99. In all cases 

except when cows were treated as proven, the convergence rate was close to a regular run, 

indicating good computing properties. The smallest set of proven animals with good predictive 

ability was sires with more than 5 daughters (16,434 animals). Treating more animals as proven, 

i.e., including sires with less than 5 progeny, only marginally affected the correlations.

Computing an inverse for 16k animals (assuming cubic algorithm for inversion) costs about 200-

fold less than for 100k animals and would costs 4000-fold less for 600k animals. 

Surprisingly good correlations were observed with only cows treated as proven although 

the convergence rate was affected, but was still much better than with ssGBLUP with 

unsymmetric equations constructed to avoid the inverse of G. (Aguilar et al., 2013). This means 

that the original definition of animals as young and proven is not necessarily important for 

accuracy of GEBV, only the number of animals in Gpp matters. To tests this hypothesis, 2k, 5k, 

10k, 15k, and 20k animals were chosen randomly from all bulls and cows and treated as proven 

in the APY algorithm. Rounds to convergence increased with the subset size but were lower than 

with the regular algorithm. This suggest that G-1 by APY is well numerically conditioned. The 
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correlations of GEBV with the regular and APY algorithms ranged from >0.94 for 2k animals to 

>0.99 for 20k animals, with very small variations among the replicates (Table 2). This means 

that the choice of animals in Gpp is mostly arbitrary.  

Initially, the last statement seems hard to believe, however, recursions generate very 

similar inverses regardless of the order of animals. The Single Step modifies the pedigree 

relationship matrix (A) towards a realized relationship matrix (H). Possibly, to obtain a good H 

only a good sample of genotyped animals is needed, and several such samples may exist.  

To test whether the presence of sires and cows is crucial for good properties of APY, an 

extra set included 20k animals selected randomly only from young animals. The correlations of 

GEBV for this set were slightly lower than with complete random 20k choice and similar to a 

15k random sample. Also, the convergence rate was slightly worse. In general, we expect better 

properties of APY when animals treated as “proven” are well related to animals treated as 

“young”. While proven sires are well related to the general population, cows and young animals 

may be less so.    

 The Henderson’s algorithm for creating the inverse of the numerator relationship matrix 

(A-1) is based on younger animals conditioned on older animals (Henderson, 1976). In such a 

case, each recursion has at most two nonzero elements, each with a value of 0.5 and due to a 

parent. However, an identical A-1 can be derived with animals in the reverse order (see Appendix 

in Misztal et al., 2014). In such a case, the number of nonzero elements in each recursion can be 

greater than 2 and they can take different values. Assume the following genomic recursion, 

where the additive genetic effect of an animal i is conditioned on the first m animals:  
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where εi(m) is the error term.  While the error term should be smaller with larger m, apparently 

the reduction of εi(m) for m >10k is small.  In an alternate interpretation, the inverse of G created 

with APY is becoming more accurate as m increases; with small improvements beyond m >10k. 

The limited number of animals required in the recursion (< 20k)  suggests that the 

genomic information for a population has a limited dimensionality (< 20k). Nearly all genomic 

information from a reference population is usually assumed to be accounted by SNP solutions 

with a medium size chip (~50k). However, many SNPs are correlated. Pintus et al. (2013) found 

that 15,207 principal components extracted from matrices based on 39,555 SNP markers 

explained 99% of the genetic variation. Thus the real dimensionality of the SNP information may 

be ~15k. Alternately, when the number of QTL is high, the accuracy of GBLUP is dependent on 

the number of independent chromosome segments, with the number of the segments usually < 

10k (Daetwyler et al., 2010). Further research will determine whether the limits based on the 

recursion, eigenvalues, and chromosome segments are related through equivalent models.   

The US Holstein population is very homogenous. In other species, populations may be 

more diverse and a larger subset may be needed. Lourenco et al. (2015) applied APY to genetic 

evaluation of US Angus for 3 traits with 52k genotyped animals. Using 4k and 8k subsets 

generated 84% and 97% of gains in accuracy over BLUP compared to a regular ssGBLUP. A 

detailed analysis on the number and choices of animals treated as “proven” in APY will be a 

topic for a separate study. Further investigations will also look at whether specific subgroups of 

animals are invariant to the selection of the subset of animals defined as “proven”. 
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The original derivation of the APY algorithm was based on labeling animals in the 

recursion as proven. Since the algorithm works with any sufficiently large subset of animals in 

the recursion, the designation of “proven” or “young” may no longer be relevant. In particular, 

the animals can be decomposed into a base genomic relationship group (b) and a conditional 

genomic relationship group (c), e.g., with relevant matrices Gbb and Gbc. 

In this paper we focused on accuracy of ssGBLUP with G-1 calculated by APY. In 

practical implementations, important issues will be memory requirements and computing costs 

for a large number of genotyped animals. Assume a total of n=500k genotyped animals, 

recursion on m=20k animals, and double precision half-storage. The amount of memory 

necessary for APY G-1 is approximately 80 Gbytes (n*m*8=20k*500k*8bytes) or 8% of 1 Tbyte 

(n2/2*8=500k*500k*8 bytes /2) required for a regular half-stored G-1. As current servers have 

memory capacity in the order of terabytes, the memory requirements will not limit the APY 

algorithm. Computing APY G-1 would require approximately m3+2m2(n-p) operations, or about 

0.3% operations (n3) for a regular G-1. Another issue is efficient computations of A22
-1. In 

separate analyses (results not provided), computing this matrix using formulas similar to 

Stranden and Mantysaari (2014) took negligible time and memory. 

CONCLUSIONS 

Inverse of a genomic relationship matrix can be approximated with the APY algorithm 

where actual inversion is applied only to a small subset of genotyped “proven” animals and an 

approximate inversion by recursion is applied on “young” animals. The approximation is very 

accurate when the number of animals in the subset is 10k or greater while storage and computing 
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costs can be dramatically lower. The choice of animals in the subset is arbitrary as various 

definitions including random choices provide similar accuracy. The convergence rate is superior 

to conventional inversion. Costs of APY inversions with a larger number of animals are 

approximately linear making the algorithm potentially suitable for any number of genotypes. 

Single-step GBLUP with APY may be suitable for models with any number of genotyped 

animals. 
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TABLES 

Table 5.1. Correlations between genomic EBV with regular and APY ssGBLUP for young 

genotyped animals and rounds to convergence for different subsets of animals used in recursions  

Definition of subset Animals in subset Correlation 
Rounds to 

convergence 

All 100,000 1.000 567 

Sires 23,174 0.994 432 

Sires + cows 50,389 0.995 428 

Cows 27,215 0.992 797 

Sires > 5 progenies 16,434 0.992 415 
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Table 5.2. Ranges of correlations between genomic EBV with regular and APY ssGBLUP for 

young genotyped animals and rounds to convergence when different numbers of randomly 

sampled animals were used in the subset for recursions 

Number of proven animals Correlation 
Rounds to 

convergence 

2,000 0.943–0.944 351–357 

5,000 0.971–0.972 354–367 

10,000 0.985 391–403 

15,000 0.989–0.990 411–480 

20,000 0.992–0.993 416–425 

20,000* 0.989–0.990 552–556 
*Proven were randomly sampled from the group of young animals.
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CHAPTER 6 

CONCLUSIONS 

It is possible to identify impacts of heat stress on phenotypes in a commercial crossbred 

swine population. The trait under heat stress can be more heritable than under mild conditions 

because of higher genetic variance and lack of selection. Therefore, robust animals can be 

identified and selected for breeding. Including genomic information in a genetic evaluation for 

heat stress can increase accuracy of prediction, helping to mitigate seasonal losses. 

In order to extend mitigation of heat stress impacts to different populations with more 

than a hundred thousand genotyped animals, an efficient method for inverting the genomic 

relationship matrix is required in single-step GBLUP. The algorithm for proven and young 

animals gives the same accuracy as the direct inversion of the genomic relationship matrix, and 

can be used in single-step genomic evaluations for large genotyped populations. 

For a large genotyped population (US Holstein), correlations between genomic EBV 

from single-step with regular inversion and with the algorithm for proven and young are close to 

1 when the number of proven animals is at least 10,000, independent on the choice of proven. 

The number of proven animals may be a function of effective population size. The computing 

cost of this new algorithm increases linearly with the number of young animals, enabling single-

step GBLUP to work with millions of genotyped animals. 
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APPENDIX A 

Changes in variance explained by top SNP windows over generations for three traits in 

broiler chicken 1 

1 Breno de Oliveira Fragomeni, Ignacy Misztal, Daniela Lino Lourenco, Ignacio Aguilar, R. 

Okimoto,  William M Muir Front Genet. 5:332. Reprinted here with permission of the publisher. 
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ABSTRACT 

The purpose of this study was to determine if the set of genomic regions inferred as accounting 

for the majority of genetic variation in quantitative traits remain stable over multiple generations 

of selection. The data set contained phenotypes for five generations of broiler chicken for body 

weight, breast meat, and leg score.  The population consisted of 294,632 animals over 5 

generations and also included genotypes of 41,036 SNP for 4,866 animals, after quality control. 

The SNP effects were calculated by a GWAS type analysis using single step genomic BLUP 

approach for generations 1 to 3, 2 to 4, 3 to 5, and 1to 5. Variances were calculated for windows 

of 20 SNP.  The top ten windows for each trait that explained the largest fraction of the genetic 

variance across generations were examined. Across generations, the top 10 windows explained 

more than 0.5% but less than 1 % of the total variance.  Also, the pattern of the windows was not 

consistent across generations.  The windows that explained the greatest variance changed greatly 

among the combinations of generations, with a few exceptions. In many cases, a window 

identified as top for one combination, explained less than 0.1% for the other combinations. We 

conclude that identification of top SNP windows for a population may have little predictive 

power for genetic selection in the following generations for the traits here evaluated. 

(Keywords: Genomic Selection, genome-wide association study, QTL, ssGBLUP, gene 

identification.) 
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INTRODUCTION 

Past studies of genomics in livestock usually focused either on best estimation of breeding values 

(Calus, 2010) or on identification of major SNP (Goddard and Hayes, 2009).  For the latter, the 

purpose is exploring associations between SNP and phenotypes to better understand the genetic 

architecture of a trait or to use identified major SNP for genetic selection. With important SNP 

identified, the selection can be performed with simple tests for a few SNP. 

Genetic selection using major SNP is successful if they explain a sizeable portion of the genetic 

variation and if their effects change little over time. Earlier simulation studies showed that LD 

identified in one generation decays very slowly over generations (Meuwissen, et al., 2001, Solberg 

et al., 2009). However, under strong selection the decay is much faster (Muir, 2007). Therefore, 

newer studies advocate continuous genotyping and recalculation of SNP effects (Wolc et al., 2011, 

Sonesson and Meuwissen, 2009, Habier et al., 2007). While the selection pressure would act on 

the largest QTLs, it is not clear how this would impact the identification and estimation of values 

for the top SNP that may indicate presence of QTLs.  

Identification of an individual SNP linked to a QTL is difficult because of the high collinearity of 

SNPs.  SNPs may be in LD with a QTL so windows of consecutive SNPs can capture the effect of 

a QTL better than a single SNP (Habier et al, 2011). Also, SNP segments are useful to discriminate 

important effects from statistical noise (Sun et al., 2011). Bolormaa et al. (2010) looked at SNPs 

within 1 Mbp intervals. Peters et al. (2012) used windows of 5 adjacent SNP. In a simulation study, 

effects of individual QTL were best explained by the combined effect of 8 adjacent SNP (Wang et 

al., 2012). The optimal window size may also be a function of effective population size (Goddard, 

2008). 
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There is a shortage in studies searching for stability of marker effects across generations in 

production traits for broiler chicken. Despite this, in a layer population, Wolc et al. (2012) found 

that 1Mbp SNP windows with large effects had consistent effects across generations, but windows 

that explained little variance of the trait were not validated. If a window effect is constant across 

generations or subsets of population, it can be indicative of a causative gene on that trait; however, 

if the effect is not robust, it can correspond to an unstable, sample-specific association that is not 

expected to provide good out-of-sample predictions. 

One common issue on genome association studies is the large number of false positive gene 

discovery. Information from the chicken QTL database (Hu et al., 2013) shows a large number of 

QTL described—2,467 for growth traits, 68 for meat quality traits, and 28 for conformation—but 

few of these have been validated or reproduced by other studies. This can be observed not only in 

chicken, but in studies on all livestock species. In this way, GWAS results should be carefully 

interpreted before considering an association as a causative effect. A possible causative effect 

should be easily accessed in further assays considering similar population structure.  

The purpose of this study was to identify SNP windows that explain major portions of genetic 

variance and see if those values are preserved during a course of selection for growth in chicken. 

MATERIALS AND METHODS 

The data was provided by Cobb-Vantress Inc. (Siloam Springs, AR). A total of 294,632 

phenotypes from a pure line of broiler chicken collected across five consecutive generations (G1, 

G2, G3, G4, and G5) were used in this study. This was the sire line, selected mainly for growth 

rate, meat yield, feed conversion and livability, and secondarily for reproduction traits. The 

numerator relationship matrix included 297,017 animals. For the first two generations, animals 
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were selected for genotyping based on body weight and conformation scores; leg defects were very 

unlikely. The remaining animals (from G3 to G5) were randomly selected for genotyping. The 

number of animals in each generation are shown in Table 1. The number of observations, means, 

and standard deviation for all the traits are shown in Table 2. 

Initially, genotype information from 4,922 animals in a chip with 57,635 SNPs was available 

(Groenen et al., 2011). The genomic data was subject to a quality control (QC) before the analysis. 

This QC removed SNPs with minor allele frequency < 0.05, with call rates < 0.9, and 

monomorphic SNPs.  It also removed genotypes with call rates < 0.9. After QC, the genotype file 

had 4,866 animals genotyped for 41,036 SNPs. 

 

 

SNP solutions were estimated by ssGWAS (genome-wide association study using a single-step 

BLUP approach) (Wang et al., 2012; Dikmen et al., 2013). In this methodology, the data was 

initially analyzed by a multi-trait single-step genomic BLUP (ssGBLUP; Aguilar et al, 2010) with 

the same model as used for BLUP analyses (Chen et al., 2011). Effects in the model included sex, 

contemporary group, animal additive, and maternal permanent environmental effects. Concerning 

the genomic information, the genomic relationship matrix (G) was scaled for the average of the 

numerator relationship matrix for the genotyped animals (A22), which took into account the effect 

of non-random genotyping caused by selection (Vitezica et al., 2011). Subsequently, EBV for 

genotyped animals (GEBV) were converted to SNP effects and weights of SNP effect were refined 

iteratively. The procedure followed the S1 scenario described in Wang et al. (2012), with GEBV 

computed once and SNP weights refined through 3 iterations. The equation for predicting SNP 

effects using weighted genomic relationship matrix was (Wang et al., 2012): 
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𝐮̂ = 𝐃𝐙′[𝐙𝐃𝐙′]−𝟏𝐚̂𝐠

In which: 𝐮̂ is the vector with estimated SNP marker effects, 𝐃 is a diagonal matrix of weights for 

variances of SNP effects, 𝐙 is a matrix relating genotypes of each locus to each individual, and 

𝐚̂𝐠 is the additive genetic effect for genotyped animals.

The individual variance of SNP effect (the same as in 𝐃) was estimated as (Zhang et al., 2010): 

σ̂u,i
2 = ûi

22pi(1 − pi)

In which: ûi
2
 is the square of the ith SNP marker effect, p

i
 is the observed allele frequency for the

second allele of the ith marker in the current population. 

When windows of n adjacent SNPs were used; the variances attributed to them were calculated by 

summing the variance of the next n SNPs, for each SNP. Next, the combination that contained the 

highest values for exclusive windows was chosen to avoid double counting. It could happen that 

some windows had less than n SNPs if they were between two windows explaining more variance 

or in a window at the end or beginning of a chromosome. However, those smaller windows do not 

explain significant part of the variance. 

The analyses were performed in four scenarios: complete data set; only genotypes and phenotypes 

from generations G1, G2 and G3; generations G2, G3 and G4; and from generations G3, G4 and 

G5. Numerator relationship matrix was complete in all scenarios. All ssGWAS computations were 

performed using the BLUPF90 family programs (Misztal et al., 2002) modified to account for 

genomic information (Aguilar et al., 2010). 

The choice for ssGWAS was due to its ability to support phenotypes from ungenotyped animals 

directly, to handle multiple trait models, and to avoid spurious solutions on SNP effects due to 

sampling. Sampling in Bayesian alphabet family models is strongly dependent on priors and may 

produce spurious SNP estimates (Gianola et al., 2009, van Hulzen et al., 2012). Comparing GWAS 
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models in a simulated population, Wang et al. (2012) showed that ssGWAS was the most accurate 

method to capture the effect of potential QTLs; windows of SNP effects were used in their study. 

 

RESULTS 

 

Preliminary results showed small individual SNP variances for all three traits, with just a few SNPs 

explaining more than 0.5% of the variance of the trait (Figure 1). Experiments with different SNP 

window sizes exhibited large noise with small sizes and absence of peaks with large sizes. 

Subsequently, windows of 20 SNP were chosen as a reasonable size.  

The variance explained by each SNP window is shown in Figures 2-4 (corresponding to body 

weight, breast meat, and leg score, respectively); also, the 10 largest points were marked with a 

red vertical line. It is possible to see that all those traits are mainly affected by many regions with 

small effects, with few regions that explain more variance. These regions tended to change across 

the generations, but some of them retain a consistent value among the top 10 regions in all the 

scenarios, even though, the variance explained by those windows did not contribute significantly 

to the genetic variability of the trait.  

For body weight, there were three regions that persisted among the top 10 in all the scenarios 

(Figure 2). Although these top three regions have been described before, the percentage of variance 

explained was small; only one region was above 2.5% and all the others were below 1.6%. The 

total variance explained by the top 10 windows summed up to 7.63%.  

For breast meat, two regions were consistent among the scenarios (Figure 3). The window with 

larger effect for this trait explained 1.14% of the total variance, in the subset containing generations 
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3 to 5. The other windows explained at most 1%. The total variance explained by the top 10 

windows was 6.26%. 

For leg score, the value of just one region was constant across the analysis in chromosome 7 

(Figure 4), the variance explained by this windows was 1.12% in the subset containing generations 

3 to 5. All the other windows explained less than 1% of the genetic variance for this trait. The total 

variance explained by the sum of the top 10 windows was 6.01%. 

DISCUSSION 

In our study, the three persistent regions observed for body weight could be related with QTLs 

previously described in the literature. The region in chromosome 1 was consistent with the one 

described by Carlborg et al. (2003) that associated this with a QTL responsible for body weight. 

The region in chromosome 4 can be related with those found by Carlborg et al. (2004), Ikeobi et 

al. (2004), and Ankra-Badu et al. (2010), all of whom detected a QTL for body weight in this 

region. The region in chromosome 14 was close to that described by Jennen et al. (2004) and 

Carlborg et al. (2003) for body weight. For breast meat, the region in chromosome 3 was close to 

those reported by Ikeobi et al. (2004) and Uemoto et al. (2009) for pectoralis muscle mass, and to 

those found by Gao et al. (2011) for chest width. The other region, in chromosome 8, was related 

by Ikeobi et al. (2004) to the pectoralis muscle mass trait. For leg score, the region in chromosome 

7 had no relationship with any QTLs described previously in the literature for this trait in chicken. 

Nevertheless, there is a sequence of homeobox genes in the region around 16Mbp in the same 

chromosome in the chicken genome. These homeobox genes (HOXD4, HOXD8, HOXD9, 

HOXD11, HOXD12, and HOXD13) are related with regulation of anatomical development, and 
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might have a relationship with the leg disease score (Hillier et al., 2004). Thus, the findings in the 

current research are in concordance with Hayes and Goddard (2010), that a small number of 

markers with validated associations would explain a small portion of the genetic variance in the 

trait. 

Wolc et al. (2012) found that for egg traits in layer chicken most of the SNPs with large effect 

were consistent across six generations, in both training and validating datasets. These findings 

could not be supported by the present results. Even though variances from three windows for body 

weight, two for breast meat, and one for leg disease score in the present study were stable across 

generations, for the other regions the results were different; it is possible that the lack of regions 

with larger effect on these traits, as illustrated in Figures 2 to 4, is the reason for the difference in 

findings. Another possible reason is the method used by the aforementioned authors; they used the 

BayesB method, which assumes large effect for a few markers and is highly influenced by the 

prior information (Gianola et al., 2009, van Hulzen et al., 2012). In addition, the generation interval 

in layer chicken is a few times longer than in broiler chicken so their generations may have been 

overlapping. Yet, the genetic architecture could be different among the traits in the present study 

and in the aforementioned work. 

Large changes in the variance explained by SNP windows could be indirectly due to small effective 

population size and subsequent low number of independent chromosome segments. According to 

Daetwyler et al. (2008) and supported by Goddard (2009), the number of such segments (q) is 

equal to 2NeL/log(4NeL), where Ne is the effective population size and L is the length of 

chromosome in Morgans. Assuming Ne=50 (lower range showed in Andreescu et al., 2007) and 

L=39, q=435. Subsequently there are > 100 SNP per 1 chromosome segment, if we apply the 

formula to this dataset. This causes collinearity and possibly a high variance inflation factor for 
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the estimators, amplified by changes to the effective population size during the selection. While 

435 segments suggest that 435 SNP could explain nearly all variation, this is not so as the boundary 

between segments is fluid.  

Meuwissen et al. (2001) have found a small decay in accuracy as the relationship between 

prediction and training generations decreases in a simulation study.  According to the authors this 

decrease was small enough to maintain the success of breeding schemes after 6 generations without 

re-estimation of SNP effects, however, their simulation assumed random mating. Also in a 

simulation study, Sonensson and Meuwissen (2009) found that re-estimating the genomic effects 

in every generation can maintain the accuracy of the predictions of breeding values constant. 

Solberg et al. (2009) also found a decrease in accuracy in further generations.  They observed that 

with a denser panel the decay was smaller, which is probably a consequence of a higher LD 

between the markers and the simulated QTL. All above mentioned studies did not simulate 

selection in the data. 

Muir (2007) showed that directional selection caused a great decline in accuracy of GEBV, 

demonstrating that high accuracies in the training generations were not maintained in future 

generations under selection. This can be a sign that the LD between marker and QTL can be lost 

across generations under selection, and can result in the changes observed in the present study.  

Alternatively, the QTL with largest effects are rapidly fixed by selection leaving SNPs with small 

effects remaining.  In a real dataset from layer chicken, Wolc et al. (2011) demonstrated that the 

decay in accuracy was large enough to require a retrain of the model in every generation. Accurate 

estimations of genomic breeding value depend on the consistency of LD between markers and 

QTLs across generations (Calus 2009), as well as proper SNP effect estimation. The LD is created 

and maintained by the selection process, among other factors (Lynch and Walsh, 1998). On the 
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other hand, if a change in the allele frequency of two different loci is observed, which can be 

caused by selection, the LD between them can decrease (Calus, 2009). The results shown in those 

studies clearly display a loss of genomic prediction accuracy due to the decay of LD. This could 

also be extended to GWAS, and the negative impact LD decay might have on the accuracy of 

associations. The variation in the estimates of SNP variance in the present study can be related 

with those findings, because using values estimated in a different generation would lead to low 

predictive power if they are not constant. 

The small values for SNP effect and percentage of variance explained that were obtained in this 

study can be related to the findings on Muir et al. (2008). The authors found significant absence 

of rare alleles in commercial chicken lines. Such findings were related to high inbreeding and 

consequently to a considerable number of alleles missing, which will reduce the allelic and genetic 

variability. This narrowed genetic variability can result in weaker associations for the markers, 

since important alleles could be lost in the process. 

The short-term decay in accuracy depends more on the decrease of genomic relationships captured 

by markers rather than on LD (Habier et al., 2007).  Therefore, the accuracy of genomic evaluation 

is mainly controlled by genomic relationships (Daetwyler et al., 2012, Wientjes et al., 2013). In 

particular, Daetwyler et al. (2012) found that 86% of the accuracy in genomic selection was 

retrieved by using SNP from a single chromosome. Subsequently, windows with large effects in 

Manhattan plots may be an artifact of relationships and not due to LD. The reason why the accuracy 

does not collapse completely in further generations is that some LD still persists over time, even 

though selection process and divergence can erode LD. Thus, the observed changes in the SNP 

effects across the generations in the present study can be a consequence of the changes in the 

relationship structure across different generations more than decay in LD. 
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CONCLUSION 

Except for a few regions, the variation explained by the top SNP windows changes over 

generations. Therefore, even if SNP windows with large variance are detected in a particular data 

set, their usefulness for genomic selection over many generations is limited. The variance 

explained by an individual window is not enough to lead selection decisions based on the top 

regions for the studied traits. 
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TABLES 

Table A.1 – Number of animals with phenotypes and genotypes in each generation. 

Generation Phenotypes Genotypes 

G1 95,770 1,142 

G2 72,795 1,165 

G3 66,241 754 

G4 52,808 801 

G5 7,018 1,004 

Total 294,632 4,866 
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Table A.2 – Number of observations, mean, and standard deviation for the three traits. 

Trait Observations Mean Standard Deviation 

Body Weight 294,632 92.66 17.2 

Breast Meat 75,377 45.68 7.22 

Leg Score 294,632 1.17 0.38 
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Figure A.1 Variance explained by the top 5 individual SNPs based on the combined results for 

all datasets for each trait. 
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Figure A.2 Manhattan plots for percentage of variance explained for Body Weight, performed 

for all the data set, and the subsets of generations. 
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Figure A.3 Manhattan plots for percentage of variance explained for Breast Meat, performed for 

all the data set, and the subsets of generations. 
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Figure A.4 Manhattan plots for percentage of variance explained for Leg Score, performed for all 

the data set, and the subsets of generations. 


