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ABSTRACT 

In Computational Science and Parallel Computing research, model equations have been 

developed to assist in solving problems in science and engineering. Such equations have aided 

researchers in developing methods used in the study of weather prediction, optical fiber 

communication systems, water waves, etc... Often, it is the desire of many researchers to further 

develop numerical methods and make these model equations, their numerical simulations and 

plots accessible to users through the Internet. In this thesis, I present a web based graphical user 

numerical simulation interface for nonlinear evolution equations such as the nonlinear 

Schrödinger (NLS), coupled NLS (CNLS), and the complex modified Korteweg-de Vries 

(CMKdV) equations. In addition, the numerical implementation of a proposed numerical scheme 

for the modified CNLS equation is presented. Sequential and parallel algorithms for such 

equations were implemented on sequential and multiprocessor machines. 
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CHAPTER 1 

INTRODUCTION 

 

In Computational Science and Parallel Computing research, equations have been 

developed to assist in solving problems in science and engineering.   Such equations have aided 

researchers in developing methods used in weather prediction, optical fiber communication 

systems, water wave and plasma physics modeling.  In this thesis, I discuss the various methods 

for numerical simulation of nonlinear evolution equations.  These equations include: the 

Nonlinear Schrödinger (NLS) equation, the Dispersed Nonlinear Schrödinger (Dispersed NLS) 

equation, the Coupled Nonlinear Schrödinger (CNLS) equation, the Modified Coupled Nonlinear 

Schrödinger (Modified CNLS) Equation, and the Complex Modified Korteweg-de Vries 

(CMKdV) equation.  

The nonlinear Schrödinger (NLS) and the coupled nonlinear Schrödinger (CNLS) 

equations are of tremendous interest in both theory and applications [6].  Various regimes of 

pulse propagation in optical fibers are modeled by some form of the NLS type equation. The 

CNLS equation is the governing equation for the propagation of two orthogonally polarized 

pulses in monomode birefringent fibers [6].  The complex modified Korteweg-de Vries 

(CMKdV) equation has been used to model the traveling-wave solutions as well as the double 

homoclinic orbits. 

In parallel computation, developers seek ways to improve their algorithms based on 

speedup and efficiency.  Speedup is determined by the execution time of the fastest sequential
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algorithm divided by the execution time on a p processor system.  Efficiency is determined by 

speedup divided by the number of processors.  Therefore, the main goal is to split the 

computation load evenly between the available processors to achieve a better speedup and higher 

efficiency.  The parallel algorithms discussed in this thesis have been simulated and results were 

obtained with this goal in mind. 

With the advancement and success of the Internet, researchers wish to make their 

numerical methods for solving a wide range of mathematical problems available online. In this 

thesis I will concentrate on the nonlinear evolution equations.  The output results of such 

equations contain a very large amount of data, vary based on user input, and are often analyzed 

and interpreted in the form of a graph or plot [1].  In this thesis, I will introduce Equation Server, 

a web based graphical user interface for providing such equations, their results, and plots 

available to users on the web. 

Visualization and profiling tools are very important in the analysis and interpretation of 

numerical methods and simulations.  I present Jumpshot-4, a profiling tool used in the analysis of 

the processor communication within the parallel algorithm implementations presented in this 

thesis. 
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CHAPTER 2 

NUMERICAL SIMULATION OF THE NONLINEAR SCHRÖDINGER (NLS) EQUATION 

 

2.1 Introduction 

 

In this chapter, I present various numerical methods for solving the nonlinear 

Schrödinger (NLS) type equation that are developed by Xu and Taha [6].  A wide class of 

physical phenomena (e. g. modulation of deep water waves, propagation of pulses in optical 

fibers, and self-trapping of a light beam in a color-dispersive system) is modeled by the NLS 

type equation [6].  In their work, the NLS equation is described as: 

,02 =+− uuquiu xxt        (1) 

where u is a complex-valued function and q is a real number. 

 

2.2 Methods for Solving the NLS Equation: 

 

The split-step Fourier (SSF) method proposed by R. H. Hardin and F. D. Tappert is one 

of the most popular numerical methods for solving the NLS equation [6]. Various versions of the 

split-step method have been developed to solve the NLS equation. G. M. Muslu and H. A. Erbay 

also introduced the three different split-step schemes (first-order, second-order, and fourth order 

approximations) for the numerical simulation of the complex modified Korteweg-de Vries 

(CMKdV) equation 
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,02 =++ xxxxt wwww α       (2) 

where w is a complex-valued function of the spatial coordinates x and time t, and α is a real 

parameter.  The numerical simulation of the CMKdV equation will be covered later in Chapter 4. 

Consider a general evolution equation of the form 

),()0,(
,)(

0 xuxu
uNLut

=
+=

       (3) 

where L and N are linear and nonlinear operators, respectively.  In general, the operators L and N 

do not commute with each other.  For example, the NLS equation  

,2 uuiqiuu xxt +−=  

with q a real number, can be rewritten as 

,NuLuut +=  

where 

., 2 uuiqNuiuLu xx =−=  

The solution of equation (3) may be advanced from one time-level to the next by the following 

formula 

),,()](exp[),( txuNLtttxu +Δ=Δ+ &      (4) 

where Δt denotes the time step. It has been shown that this scheme is first order accurate.   

The time-splitting procedure now consists of replacing the right-hand side of (4) by an 

appropriate combination of products of the exponential operators exp(ΔtL) and exp(ΔtN)[6]. An 

answer can be found by considering the Baker-Campbell-Hausdorff (BCH) formula for two 

operators A and B given by 

),exp()exp()exp(
1
∑
∞

=

=
n

n
nZBA λλλ      (5) 
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where 

,1 BAZ +=  

and the remaining operators  are commutators of A and B, commutators of commutators of A 

and B, etc.  The expression for is actually rather complicated, e.g. 

nZ

nZ

],,[
2
1

2 BAZ =
 

where [A, B] = AB − BA is the commutator of A and B, and 

]),],,[[],[,([
12
1

3 BBABAAZ +=
 

From this result, one can get the first-order approximation of the exponential operator in (4) as 

follows  

).exp()exp()(1 tNtLtA ΔΔ=Δ      (6) 

This expression is exact whenever L and N commute. 

It is convenient to view the scheme (6) as first solving the nonlinear equation 

,Nuut =  

then advancing the solution by solving the linear equation 

,Luut =  

employing the solution of the former as the initial condition of the latter. That is, the 

advancement in time is carried out in two steps, the so called split-step method. 

The second-order approximation of the exponential operator 

in (4) is given by 

).
2
1exp()exp()

2
1exp()(2 tNtLtNtA ΔΔΔ=Δ     (7) 

It is symmetric in the sense that 1)()( 22 =Δ−Δ tAtA . 
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The fourth-order approximation of the exponential operator in (4) which preserves the 

symmetry can also be constructed, e.g. 

),(])21[()()( 2224 twAtwAtwAtA ΔΔ−Δ=Δ     (8) 

where  

.
3
22 3 2

13 ++
=ω        (9) 

Note that the operators L and N in (6)–(8) may be interchanged without affecting the order of the 

method. 

The implementation of the above methods will be carried out by using the Fourier 

transform. 

 

The Fourier transform 

 

The Fourier transform is used to decompose a signal into its constituent frequencies. It is 

a powerful tool in linear system analysis. 

 

The discrete Fourier transform 

 

If  is a sequence of length N, obtained by taking samples of a continuous function f 

at equal intervals, then its discrete Fourier transform (DFT) is the sequence  given by 

}{ jf

}{ kF

,0,1 1

0
∑
−

=

− <≤=
N

j

jk
Njk Nkf

N
F ω      (15) 

where N
i

N e
π

ω
2

=  is a primitive N-th root of unity. 
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The inverse DFT flips the sign of the exponent of Nω , and it is defined as 

,0,1 1

0
∑
−

=

<≤=
N

k

jk
Nkj NjF

N
f ω      (16) 

It is the “inverse” of the forward DFT, in the sense that computing the inverse transform after the 

forward transform of a given sequence yields the original sequence. 

After the required values of the complex exponential have been stored in a table, the 

number of arithmetic (multiplication or addition) operations required to implement DFT as in 

(15) is about , and hence it is of order . So is the inverse DFT. 22N 2N

 

The Fast Fourier Transform 

 

As mentioned above, the DFT requires  operations to compute and makes the 

computation potentially burdensome.  Fortunately, there exists an algorithm called fast Fourier 

transform (FFT) that reduces the required number of arithmetic operations to . 

This requires that N can be factored into a product of small integers. The most common case is 

 for an integer q. 

)( 2NO

))(log( 2 NNO

qN 2=

Suppose N can be factored as 21 ppN = , and then the indices j and k in (15) can be 

represented as  

,1,...,0,1,...,0; 2011021 −=−=+= pjpjjpjj  

and 

.1,...,0,1,...,0; 1021021 −=−=+= pkpkkpkk  
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Substitute into the expression (15), we obtain 
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Note that we have used the fact that since . It follows that ,20121 pkj
N

kpj
N

−− = ωω 1=N
Nω

,~1 1

0
,

2

0

0

00∑
−

=

−=
p

j

kj
Nkjk F

N
F ω       (17) 

where 

∑
−

=

−
+=

1

0
,

1

1

201

02100

~ p

j

pkj
Njpjkj fF ω       (18) 

Observe that the number of arithmetic operations has indeed been reduced by this procedure. 

Each of the N elements in (18), 
00 ,

~
kjF , requires  arithmetic operations, for a total of  

operations. Each  in (17) requires additional  operations. Thus the number of arithmetic 

operations to obtain all the is

12 p 12Np

kF 22 p

kF )( 21 ppN + . 

If  and  are factorable then the procedure can be repeated. In fact, if 1p 2p

,321 ... mppppN =  

then the entire process applied recursively in this manner requires 

)...(2 21 mpppN +++  

operations. For  ,...21 pppp m ====

NpN plog2  

operations are needed. In particular, for p = 2, which is the most common case, a total of 

 arithmetic operations are required to compute the DFT. NN 2log4
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The Fastest Fourier Transform in the West 

 

The Fast Fourier Transform in the West (FFTW) was developed by Matteo Frigo and 

Steven G. Johnson at MIT.  FFTW is a C subroutine library for computing the discrete Fourier 

transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex 

data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST).  FFTW 

features also include strided transforms and parallel transforms.  The FFTW library is portable to 

any platform with a C compiler and contains documentation in HTML and other formats.  It also 

contains both C and Fortran interfaces and its own data types and routines for the successful 

implementation of FFTW programs.  Currently, the FFTW package and documentation are freely 

available on the Internet (www.fftw.org/download.html). 

According to FFTW developers, FFTW’s benchmark performance has shown to be 

typically superior to that of other publicly available FFT software, and is even competitive with 

vender-tuned codes, however, FFTW’s performance is portable; the same program will perform 

well on most architectures without modification [4].    

FFTW proves to be a valuable enhancement over the basic Fast Fourier Transform (FFT) 

library.  To accomplish this, FFTW automatically adapts the DFT algorithm to details of the 

underlying hardware (cache size, memory size, registers, etc.). The inner loop of FFTW is 

generated automatically by a special-purpose compiler. The FFTW begins by generating 

codelets.  A codelet is a fragment of C code that computes a Fourier transform of a fixed small 

size (e.g. 16 or 19). A composition of codelets is called a plan which depends on the size of the 

input and the underline hardware. At runtime, the FFTW’s planner finds the optimal 

decomposition for transforms of a specified size on your machine and produces a plan that 
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contains this information. The resulting plan can be reused as many times as needed. Many 

transforms of the same size are computed in typical high performance applications. This makes 

the FFTW’s relatively expensive initialization acceptable [6]. 

FFTW also includes a shared-memory implementation on top of POSIX threads, and a 

distributed-memory implementation based on MPI (Message Passing Interface).  The FFTW’s 

MPI routines are significantly different from the ordinary FFTW because the transformed data 

are distributed over multiple processes, so that each processes gets only a portion of the 

transform data [4].  The distributed-memory implementation based on MPI (FFTW-MPI) was 

incorporated into the parallel algorithms used for solving the various model equations presented 

throughout this thesis.  

 

Message Passing Interface 

 

Message Passing Interface (MPI) is a method by which data from one processor memory 

is copied to the memory of another processor.  MPI developers have provided a standard library 

of functions, data types, and routines for writing message-passing programs, and it was proposed 

as a standard by a broadly based committee of vendors, implementers, and users.  MPI offers 

portability, standardization, high performance, rich functionality, and many high quality 

implementations.  It was designed for high performance on both massively parallel machines and 

on workstation clusters and is a paradigm used widely on certain classes of parallel machines, 

especially those with distributed memory.  Processes running on such machines communicate 

through these messages.   
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Each MPI implementation must set up the MPI environment by incorporating MPI 

environment routines in the implementation.  These environment routines include MPI_Init, 

MPI_Comm_size, and MPI_Comm_rank, and MPI_Finalize.  Each MPI routine consists of a 

communicator argument, MPI_COMM_WORLD.  A communicator consists of a group of 

processes participating in the parallel job.  MPI_Init initializes the MPI execution environment 

and must be called only once.    MPI_Comm_size determines the number of processors 

associated with a communicator.  MPI_Comm_rank uniquely identifies the rank of the calling 

process within the communicator.  Typically, the root processor is given the rank of 0.  

MPI_Finalize terminates the MPE execution environment. 

Due to the sending and receiving of data between the processes, MPI has developed its 

own data types that are consistent with primitive data types used in programming languages such 

as C.  MPI data types include MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG, 

MPI_FLOAT, MPI_DOUBLE, and MPI_LONG_DOUBLE.  It is also possible to pass arrays 

between processes using the provided MPI routines. 

To communicate between processes, MPI provides a set communicator routines.  These 

communicator routines include MPI_SEND, MPI_RECV, MPI_ISEND, MPI_IRECV, 

MPI_BCAST, MPI_Gather, MPI_Scatter, and MPI_Reduce.  MPI also provides reduction 

routines such as SUM, MAX, MIN, etc… 

MPI_SEND and MPI_ISEND are blocking and non-blocking routines that sends data to 

other processes.  MPI_RECV and MPI_IRECV are blocking and non-blocking routines that 

receives data from other processes.  MPI_BCAST broadcasts values from the root process to the 

other processes of the group.  MPI_Gather gathers together values from processes in a group.  

Each process sends the contents of its send buffer to the root process, which then receives those 

11 



messages and stores them in its receive buffer according to the rank order of the sender.  

MPI_Scatter sends data from one task to all other tasks in a group.  It performs the reverse 

operation of the MPI_Gather routine.  Each process receives a segment from the root and places 

it in its receive buffer.  MPI_Reduce combines data from all processes in the communicator and 

returns it to one process. 

MPI also includes routines that provide the capability of creating and managing 

subgroups, which are a subset of the MPI_COMM_WORLD communicator handle.  Such 

routines include MPI_Comm_split, MPI_Comm create, MPI_Group_incl, MPI_Group_excl, 

MPI_Group_range_incl, MPI_Group_range_excl, MPI_Group_union, and MPI_Group 

intersection. 

MPI_Group_incl and MPI_Group_excl include and exclude specific members of the 

group.  MPI_Group_range_incl and MPI_Group_range_excl include and exclude a range of 

members of the group.  MPI_Group_union and MPI_Group_intersection creates a new group 

from two existing groups.   

As mentioned above, the MPI package provides a wide variety of subroutines to assist in 

the successful implementation of various parallel algorithms.  The MPI subroutines successfully 

facilitated communication between processes for the parallel algorithms covered in this thesis.  

In chapter 7, I will present, Jumpshot-4, a profiling tool useful in the analysis and interpretation 

of the communication occurring between parallel algorithms.   
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Numerical Implementation of the NLS equation 

 

 The following example is based on a presentation given by Xu and Taha on nonlinear 

evolutionary equations [6]. 

 Consider the following NLS equation 

,2 2 uuuiu xxt +=        (19) 

where u is a complex-valued function. The exact one-soliton solution of (19) on the infinite 

interval is 

),82(sec]}
2

)(42[exp{2),( 00
22 xtxhtxitxu −−++−−−= ξηηπφηξξη  (20) 

where 00 ,,, φξηx  are constants. 

They studied the NLS equation (19) with the initial condition given by 

),2(sec]}
2

2[exp{2)0,( xhxixu ππη +−=      (21) 

where η = constant. It was assumed that u(x, t) satisfies a periodic boundary condition with 

period [−p, p], p is half the length of the interval.  

If the spatial period is normalized to [0, 2π], then equation (19) becomes 

,2 2
2

2

uuu
p

iu xxt +=
π      (22) 

and X =π(x + p)/p. They divide the interval [0, 2π] into N equal subintervals with grid spacing 

ΔX = 2π/N, and denote NjXjX j ,...,1,0, =Δ= as the spatial grid points. 

The solution of NLS may be advanced from time t to the next time-level t+Δt by the 

following two steps. 
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(1) Advance the solution using only the nonlinear part: 

,2 2 uuiut =         (23) 

through 

).,(}),(2exp{),(~ 2
tXuttXuittXu jjj Δ−=Δ+     (24) 

(2) Advance the solution according to the linear part: 

,2

2

xxt u
p

iu π
=         (25) 

by means of computing 

,)),(~(),(ˆ kjk ttXuFttXu Δ+=Δ+      (26) 

followed by 

),,(ˆ}exp{),( 2

2
2 ttXu

p
tikttXu kk Δ+Δ=Δ+
π(      (27) 

and 

,)),((),( 1
jkj ttXuFttXu Δ+=Δ+ − (       (28) 

where Δt denotes the time step, and F  and 1−F  are the discrete Fourier transform and its inverse 

respectively.  This is the split-step Fourier method corresponding to the first-order splitting 

approximation (6). 

Similarly, the advancement in time from t to t+Δt by the split-step Fourier method using 

the second-order splitting approximation (7) can be carried out by the following three steps: 

(1’) Advance the solution using the nonlinear part (23) through the following scheme 

).,(}
2
1),(2exp{)

2
1,(~ 2

tXuttXuittXu jjj Δ−=Δ+
 

(2’) Advance the solution according to the linear part 
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(25) by means of the discrete Fourier transforms 

))).
2
1,(ˆ(}(exp{)

2
1,( 2

2
21 ttXuF

p
tikFttXu jk Δ+Δ=Δ+ − π(

 

(3’) Advance the solution using the nonlinear part (23) through the following scheme 

).
2
1,(}

2
1

2
1,(2exp{),(

2

ttXutttXuittXu jjj Δ+ΔΔ+−=Δ+ ((

 

The split-step method based on the fourth-order splitting approximation scheme (8) is 

described as follows. First, they advanced in time from t to t+ωΔt by the second-order split-step 

Fourier method described above with  

.
3
22 3 2

13 ++
=ω

 

Then they advance in time from t+ωΔt to t+(1 − ω)Δt by the second-order split-step  

Fourier method. Finally, they advance in time from t + (1 − ω)Δt to t + Δt by the second-order 

split-step Fourier method, and obtain approximations to u(x, t+Δt). 

 

Numerical experiments 

 

In the numerical experiments, Xu and Taha calculated the  norm,   norm at the 

terminating time T = 1. They also calculated the relative errors, , of the following two 

conserved quantities 

∞L 2L

21, ii

∫
+∞

∞−
= ,2

1 dxuI        (29) 

and 

∫
∞+

∞− ∂
∂

−= ,)||( 24
2 dx

x
uuI       (30) 

15 



respectively. The two conserved quantities are calculated by means of the Simpson’s rule, and 

the derivatives in (30) are calculated using Fourier method. 

They showed that the first order split-step Fourier method converges linearly in time. The 

convergence rates in time for the second-order and fourth-order split-step Fourier method are 

second-order and fourth-order, respectively. Moreover, they showed that the computational cost 

of the second-order scheme is 1.2 times of the first-order scheme, whereas the computational 

cost of the fourth-order scheme is about 3 times of the second-order scheme.  They also showed 

that all of the three split-step Fourier methods converge exponentially in space.  

 

Parallel Implementation 

 

For first-order split-step Fourier method, each of the four computational steps arise in 

(24) and (26)–(28) are parallelized. 

Let A, of size N, be the approximate solution to u at time t. Suppose there are p 

processors in a distributed memory parallel computer. Parallelizing (24) and (27) are 

straightforward. The array A is distributed among P processors. Processor n, 0 ≤ n ≤ P − 1, 

contains array elements A[nN/P] to A[(n+1)N/P−1]. Each of the P processor works on its own 

subarrays independently without communicating with others. The FFTW’s MPI routines are 

employed to implement parallel discrete Fourier transforms to parallelize the computations in 

stages (26) and (28). 

The parallel algorithms for the second-order and fourth-order split-step Fourier methods 

can be developed in a straightforward manner. 
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Parallel algorithms of the split-step Fourier methods are implemented on the IBM Sp2 

machine and taha 4 processor machine.  The results from Xu and Taha are shown on Tables 

(2.2.1 - 2.2.3).  The speedup  is defined by pS

processorsponcodeMPItheruntospentTime
processoroneoncodeMPItheruntospentTimeS p =

.  

 

 

Table 2.2.1 CPU time and speedup for the parallel first-order scheme using FFTW 

p N = 4096 

NS = 2000 

Speedup N = 16384 

NS = 500 

Speedup N = 65536 

NS = 125 

Speedup 

1 11.4 1.0 11.4 1.0 12.9 1.0 

2 9.7 1.2 9.5 1.2 9.5 1.4 

4 7.6 1.5 5.6 2.1 6.2 2.1 

 

 

Table 2.2.2 CPU time and speedup for the parallel second-order scheme using FFTW 

p N = 4096 

NS = 2000 

Speedup N = 16384 

NS = 500 

Speedup N = 65536 

NS = 125 

Speedup 

1 12.3 1.0 12.5 1.0 13.8 1.0 

2 10.2 1.2 9.6 1.3 10.2 1.4 

4 7.3 1.7 6.1 2.1 6.4 2.2 
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Table 2.2.3 CPU time and speedup for the parallel fourth-order scheme using FFTW 

p N = 4096 

NS = 2000 

Speedup N = 16384 

NS = 500 

Speedup N = 65536 

NS = 125 

Speedup 

1 45.5 1.0 45.0 1.0 48.1 1.0 

2 34.1 1.3 34.0 1.3 35.3 1.4 

4 24.5 1.9 20.2 2.2 21.8 2.2 

 

 

From the results, it is clear that the speedup increases as the problem size N becomes 

larger for a fixed number of processors p. For small problem sizes the 

computation/communication ratio is small, thus speedup is small. For fixed p, we can also see 

that the fourth-order scheme has a better speedup than the second-order scheme, whereas the 

second-order scheme has a slightly better speedup than the first-order scheme. This is due to the 

fact that the fourth-order scheme is more computational intensive than the second-order scheme, 

whereas the second-order scheme is more computational intensive than the first-order scheme. 

For large N, the speedups achieved on the multiprocessor computer running the parallel codes 

are considerable. 

 

Perturbed nonlinear Schrödinger equation 

 

In this section, they examine the perturbed NLS equation of the form: 
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2
1 2
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x
wtDiwt      (33) 
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where D(t) represents dispersion, which is given by the following periodic function 
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and g(t) relates to effective nonlinearity, which is given by the periodic function 
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In their numerical experiments, they have chosen 11 =D , 12 −=D , θ = 0.8, the map period 

, the damping coefficient Γ = 4, and the amplifier spacing 1.0=mt 1.0=at . 

They studied equation (33) with periodic boundary condition of period [−20, 20], and 

initial condition of the form 

)34(]},)[exp{)]([sec),( 22
0 ϕ+−Ω−Ω−= tAixtxAhAxtw  

with t = 0, amplitude A = 1, velocity Ω = 2, initial position 00 =x , and phase 0=ϕ . 

 

Modified nonlinear Schrödinger equation 

 

The pulse propagation in a dispersion exponentially decreasing fiber can be described by 

the modified NLS equation 

,
2
1

6
1)(

2
1 2

3

3

32

2

2 UiUU
x
Ui

x
UtiUt αγββ −=+

∂
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−
∂
∂

−   (35) 

where U is the normalized field envelope; )(2 tβ is the second-order dispersion; 3β  is the third-

order dispersion; effcAn /2ωγ = , where  is the Kerr coefficient, ω is the carrier frequency, c is 

the velocity of the light in vacuum, and  is the effective fiber cross section; 

2n

effA α  is the fiber 

loss. 
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)(2 tβ  be a periodic function In their numerical experiments, they let 

01.00),0()( 22 <≤= − tforet tββ α
, 

where 5.0)0(2 −=β . Other parameters are taken to be 14.03 =β , 55.1/2.3=γ , and 2.0=α . 

They study equation (35) with periodic boundary condition of period [−10, 10], and the 

initial condition 

.)(sec)0,( ixexhxU =      (36) 
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CHAPTER 3 

NUMERICAL SIMULATION OF THE COUPLED NONLINEAR SCHRÖDINGER (CNLS) 

EQUATION 

 

3.1. Introduction 

 

In this chapter, we discuss the numerical simulations for the coupled nonlinear 

Schrödinger (CNLS) equation introduced by Xu, Ismail and Taha [8].  This equation was 

implemented using two methods: 1) Split-step Fourier Method and First Order (BCH) 

Approximation to the Exponential Operator and 2) Crank Nicolson Method. These methods were 

studied and simulated.  In the next sections, we present these two methods. 

 

3.2 Methods for solving the CNLS Equation 

 

The CNLS equation is of tremendous interest in both theory and applications. The 

governing equation for the propagation of two orthogonally polarized pulses in monomode 

birefringent fibers is given by a CNLS equation. 

Consider a CNLS equation of the form: 
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where 1ψ  and 2ψ  are the two polarized waves, μ is a real parameter, 1−=i , and δ is the 

normalized strength of the linear birefringence. 

In general, the CNLS equation with arbitrary coefficients is not integrable. For μ = 1, 

equation (37) reduces to the Manakov equation which is integrable. 

The explicit form of soliton solution of the equation (37) is given by 
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(38) 

The CNLS equation has the following two conserved quantities 

∫
+∞

∞−
= ,2

11 dxE ψ        (39) 

and 

∫
+∞

∞−
= ,2

22 dxE ψ        (40) 

that remain constant in time. Note that they represent the energy of the system. From the exact 

solution (38), it is easy to show that 

.
1

2
21 α

μ+
== EE       (41) 

Recently, Xu and Taha solved the above equation by using the split-step Fourier method as 

follows: 

Although the CNLS equation (37) is defined over the real line for the numerical 

experiments considered, they assume that the solution of equation (37) is negligibly small 

outside the interval [ ]. The boundaries are far apart enough so that they do not affect the 

propagation of solitary waves. 

rl xx ,
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In the following, they studied the coupled nonlinear Schrödinger equation 
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and assumed that 1ψ  and 2ψ  satisfy the initial conditions 

],,[),()0,(),()0,( 221 rl xxxxgxxgx ∈== ψψ    (43) 

and periodic boundary conditions 
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The space discretization is accomplished by a Fourier method. For convenience, the finite 

interval [ ] is normalized to [0, 2π] by the linear transform rl xx , PxxX l /)( π−= , where P is the 

half length of the interval, i.e. 2/)( lr xxP −= . Equations (42)–(44) may be rewritten as 
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with initial conditions 

],2,0[),(~)0,(),(~)0,( 2211 πψψ ∈== xxgXxgX    (46) 

and periodic boundary conditions 
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The interval [0, 2π] is divided into N equal subintervals with grid spacing ΔX = 2π/N. 

The spatial grid points are denoted by XjX j Δ= , j = 0, 1, . . . , N. Let )(1 tjψ  and )(2 tjψ  be the 
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numerical approximation to ),(1 tX jψ  and ),(2 tX jψ  at time t, respectively. The discrete Fourier 

transform for the sequences  is defined as }{ j
mΨ
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The inverse discrete Fourier transform is given by 
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These transforms can be implemented very efficiently by a fast Fourier transform 

algorithm, e.g. the Fastest Fourier Transform in the West (FFTW). 

They used the split-step Fourier method for the coupled nonlinear Schrödinger equation 

(45). The basic idea is to split the exponential operator exp [Δt(L+N)] using the Baker-

Campbell-Hausdorff formula as discussed in Chapter 1. For instance, the first-order version of 

the split-step method (6) is carried out as the following two steps for the advancement in time 

from t to t+Δt. 

(1) Advance the solution using only the nonlinear part: 
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through the following scheme 
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(2) Advance the solution according to the linear part: 
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by means of computing 
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followed by 
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and 
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where the transform F and its inverse 1−F  are given by (48) and (49), respectively. 

Similarly, the advancement in time from t to t+Δt by the split-step Fourier method using 

the second order splitting approximation (7) is described in the following three steps: 

(1’) Advance the solution using the nonlinear part (50) through the following scheme 
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(2’) Advance the solution according to the linear part (52) by means of the discrete Fourier 

transforms 
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(3’) Advance the solution using the nonlinear part (50) through the following scheme 
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Numerical simulation of the CNLS using the Crank Nicolson Method 

 

The CNLS equation to be considered is 
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M is an integer, say M =10, and nθ  is a uniform random variable in [0, 2π ].  In other 

words, polarization fluctuations happen over shorter scales. The system in (1) can be written as a 

coupled system in the following manner: 
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Initial Conditions:  
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n (the number of solutions), nnnnnn ttAA ϕϕαα ,...,,,...,,...,,,...,,,...,,,..., 111111 ΦΦΩΩ  
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As for values to use, initially, we take: 

- d(z)=1 (constant dispersion), 
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- Gamma= 10,  z_a= 0.1, 

- z_p= 0.01, 

- N=1, A=1, Omega=0, T=0, Phi=0. 

-  Δ 1.0,1.0 ' =Δ= ββ

- propagate up to z_max= 20. 

In this thesis, we take: 

>  beta''' = 0   [no third-order dispersion] 

>  beta'' = d(z)  [dispersion management] 

>  g = 0  and  gamma = g(z) 

>        and         are free parameters. βΔ βΔ

 Ismail and Taha (to be submitted) developed the following Crank Nicholson method for 

solving the CNLS equation:   
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with the Crank Nicolson scheme: 
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and they use the boundary conditions 
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m  where s=0, 1 at the boundaries i.e. at (m=1,N). 

The CNLS equation implementation was originally implemented in FORTRAN.  The 

Fortran code was initially converted to C++ by Shanshan Ding.  However, this version had only 

a few decimal digits of accuracy and the results did not match with the Fortran code.  After 

further updates and revision by Taha and Foster, a final C++ version was developed and the 

results from the C++ and Fortran implementation versions match. 

The process of matching the results of the C++ and Fortran implementations occurred in 

six changes: 

1. The Fortran implementation was edited to declare each variable used by a subroutine.  

If a subroutine has n arguments in its input parameter, then all n arguments were 

declared according to the argument’s specific data type after the specification of the 

subroutine.  The elimination of this change yielded erroneous results.   
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2. The Fortran constant values needed to be converted from floating point to double 

precision data types.  For example, every occurrence of a hard-coded decimal value 

such as 50.0 was converted to the decimal precision format 50.D0 for hard-coded 

values.  This change increased the decimal digit precision of the results considerably.   

3. Later, a logic error was noticed in the C++ code based on the Fortran implementation.  

Upon comparing each algorithm between the implementations, the logic error was 

noticed and corrected.  

4. Upon further testing, it was discovered that the C++ double variable name, CS, used 

within the implementation did not contain the value expected.  Upon changing all 

occurrences of this variable name, the variable then produced the expected value. 

5. To compare the Fortran and C++ in precision based on the output results, both the 

Fortran and C++ implementations were edited to display the output with a specific 

number of decimal digits.  For our purposes, the 14 decimal digits of were chosen to 

be displayed. 

6. To further match the C++ and Fortran results, every output statement, including 

comments, was compared and changed accordingly.  After producing results from 

each implementation to compare, the UNIX diff command was used to display the 

differences in the output results.  Later, these differences, if any, were eliminated.
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CHAPTER 4 

NUMERICAL SIMULATION OF THE COMPLEX MODIFIED KORTEWEG-DE VRIES 

(CMKDV) EQUATION 

 

4.1 Introduction 

 

In this chapter, the numerical methods for solving the complex modified Korteweg-de 

Vries (CMKdV) equation are presented.  

For the CMKdV equation, five numerical schemes by Taha and Liu [2] were simulated.  

These schemes include First Order, Second Order, Fourth Order, IST, and Finite Difference.  

The methods for solving each one will be presented.   

 For this chapter, the following CMKdV equation was considered 

 Ttbaxqqqq xxxxt ≤≤∈=++ 0],,[,06 2  

where q = q(x,t) is a complex valued function.  When this equation is normalized to ]2,0[ π , it 

becomes: 

]2,0[,02 πβα ∈=++ xqqqq xxxxt  

where 3

3

)(
)2(,12
abab −

=
−

=
πβπα . 

 As presented in Chapter 2, the split-step Fourier scheme is then applied, which splits the 

equation into linear and nonlinear sub-equations.   
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The nonlinear sub-equation is given by 

02 =+ xt qqq α  

and the linear sub-equation is given by 

 0=+ xxxt qq β . 

The linear sub-equation can be solved by the discrete Fourier transform (DFT) discussed in 

Chapter 2.  However, the nonlinear sub-equation can be solved by different split-step numerical 

schemes, developed by Muslu and Erbay, which were also introduced in Chapter 2.  The 

numerical schemes that were studied and simulated include: the first-order, second-order, fourth-

order, inverse scattering transform, finite difference, and Taha local scheme.  In the next section, 

I present these numerical schemes. 

 

4.2 Methods for Solving the CMKdV Equation 

 

CMKdV First Order Scheme 

 

 To solve the first-order scheme for the CMKdV equation, the following steps were 

performed: 

1. Set the time step to and solve the nonlinear equation. tΔ

2. Use the discrete Fourier transform to solve the linear equation. 
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CMKdV Second Order Scheme 

 

 To solve the second-order scheme for the CMKdV equation, the following steps were 

performed: 

1. Set the time step to tΔ
2
1  and solve the nonlinear equation. 

2. Use the discrete Fourier transform to solve the linear equation. 

3. Set the time step to tΔ
2
1  and solve the nonlinear equation. 

 

CMKdV Fourth Order Scheme 

 

 To solve the fourth-order scheme for the CMKdV equation, the following steps were 

performed: 

1. Replace with tΔ tΔλ and use the second order scheme to perform the computation. 

2. Replace with tΔ tΔ− )21( λ and use the second order scheme to perform the 

computation. 

3. Once again, replace with tΔ tΔλ and use the second order scheme to perform the 

computation. 

 

CMKdV Inverse Scattering Transform (IST) Scheme 

 

To assist in solving the IST scheme, Taha [5] developed a discretization formula for the 

CMKdV nonlinear sub-equation: 
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 To solve the inverse scattering transform (IST) scheme for the CMKdV equation, the 

following steps were performed: 

1. Use the local IST approximation discussed by Taha [5] to solve the nonlinear 

equation. 

2. Use the Fourier transform to solve the linear equation. 

 

CMKdV Finite Difference (FD) Scheme 

 

 To assist in solving the FD scheme, Taha and Ablowitz [7] developed a finite difference 

approximation for the CMKdV nonlinear sub-equation.  Later, this equation was modified by 

Taha and Liu [2] and is represented by the following: 

 
)}88(
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 To solve the finite difference (FD) scheme for the CMKdV equation, the following steps 

were performed: 
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1. Use the local IST approximation developed by Taha and Alblowitz [7] to solve the 

nonlinear equation. 

2. Use the Fourier transform to solve the linear equation. 

 

The CMKdV equation has been used for simulation with initial conditions related to the 

traveling wave solution and the double homclinic orbit [5]. 

For the traveling-wave solution, the exact solution of the CMKdV equation  

Ttbaxqqqq xxxxt ≤≤∈=++ 0],,[,06 2  

is  

)](exp[),( tkxiatxq ω−=   

where ω satisfies the dispersion relation, 326 kka −=ω and is the complex amplitude.  The 

initial conditions t=0, a = 0.5, and k = 1 were used along with periodic boundary conditions on 

the interval [

a

π4,0 ].  The five numerical schemes discussed above were implemented with 

conditions of the traveling-wave solution.  The double homoclinic orbit can be represented as the 

exact solution of the CMKdV equation 

Ttbaxqqqq xxxxt ≤≤∈=++ 0],,[,06 2  

with initial condition  

),cos1)(exp(),( 0 xiikxatxq nμε+=   

where ππμε 24,/2,1.0,5.0 0 ===== LandLka n  with periodic boundary conditions on the 

interval [ ].  The taha local scheme mentioned next was implemented with conditions of the 

double homoclinic orbit. 

L,0
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Taha developed a numerical scheme, Taha local scheme, for solving the CMKdV 

equation, subject to conditions of the double homoclinic orbit.  This scheme was originally 

implemented in the Fortran programming language.  However, it was the desire of Taha to obtain 

C and C++ versions of this implementation.  After successfully converting the Fortran code to 

C++, I was assigned the task of producing also a C version.  After converting the C++ 

implementation back to C, it was determined that the C++ version of the complex library used in 

the C++ implementation was not compatible with the C implementation.  To accommodate this 

incompatibility, a C version of the complex library was implemented to produce a compilation. 

The conversion of the Fortran code into C and C++ versions was successful.  The output and 

data results from each simulation matched in syntax and decimal digit accuracy.  The final C++ 

version’s simulation output was later converted and formatted for the successful simulation of 

the Taha local scheme of the CMKdV equation on the Equation Server, which will be discussed 

later in Chapter 6.  

 

Numerical Simulation 

 

 All the schemes presented in this chapter were simulated on the Equation Server, which 

will be discussed in Chapter 6.  The following figures contain a gnuplot plot of each scheme 

generated by the Equation Server.    
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Figure 4.2.1 Equation Server gnuplot of CMKdV First Order Scheme (N = 40 and 0 <= t < 

13.5875) 

 

 

Figure 4.2.2 Equation Server gnuplot of CMKdV Second Order Scheme (N = 40 and 0 <= t < 

21.775) 
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Figure 4.2.3 Equation Server gnuplot of CMKdV Fourth Order Scheme (N = 40 and 0 <= t < 

24.3875) 

 

 

 

Figure 4.2.4 Equation Server gnuplot of CMKdV IST Scheme (N = 40 and 0 <= t < 40) 
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Figure 4.2.5 Equation Server gnuplot of CMKdV FD Scheme (N = 40 and 0 <= t < 40) 

 

 

 

 

Figure 4.2.6 Equation Server gnuplot of CMKdV Taha Local Scheme (N = 40 and 0 <= t < 40) 
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CHAPTER 5 

PARALLEL (FFTW-MPI) IMPLEMENTATION OF THE CMKDV EQUATION 

 

5.1 Introduction 

 

In this chapter, we discuss parallel (FFTW-MPI) implementations of the CMKdV 

equation developed by Taha and Liu [2].  These implementations include the parallel algorithms 

for the first-order, second-order, fourth-order, finite difference, and inverse scattering transform 

methods for solving the CMKdV equation.  The Jumpshot-4 profiling tool, which I present in 

chapter 7, was used to analyze the communication between processors that occurred during the 

numerical simulations. 

 

5.2 Parallel Methods for Solving CMKdV Equation 

 

Taha and Lui developed five parallel schemes for the solving the CMKdV equation.   

These schemes include First Order, Second Order, Fourth Order, IST, and Finite Difference.  

These schemes were implemented and utilized FFTW-MPI capability.  Each of these schemes 

were compiled on the taha 4 processor machine and simulated.  Next, I will cover each one.   

To assist in solving these schemes, Taha and Liu developed a parallel version of the 

discrete Fourier transform, Runge-Kutta method, and the finite difference approximation [2].     
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Parallel CMKdV First Order Scheme 

 

 Recall that to solve the first-order scheme for the CMKdV equation, the following steps 

were performed: 

1. Set the time step to and solve the nonlinear equation. tΔ

2. Use the discrete Fourier transform to solve the linear equation. 

To solve the parallel first-order scheme for the CMKdV equation, the following steps 

were performed: 

The master processor distributes the initial values among the processors. Njq j <≤0,0 p

For m = 0 to , Do 1−nT

1. Use the parallel DFT to compute the forward Fourier transform,  ).( m
jk qF

2. The master collects the results of  and computes the product, . )( m
jk qF )( m

jk qikF

3. Use the parallel DFT to compute the inverse transform, ( ))(1 m
jkk qikFF − . 

4. The master collects the results of ( ))(1 m
jkk qikFF − . 

5. Use the parallel Runge-Kutta method for the time integration. 

6. The master collects the solution of the nonlinear sub-equation. 

7. Use the parallel DFT to compute the forward Fourier transform, . )( m
jk qF

8. The master collects the results and computes )( m
jk qF )()exp( 3 m

jk qFtki Δβ . 

9. Use the parallel DFT to compute the inverse transform. 

10. The master collects the solution of the linear sub-equation, which give new values 

. 1+m
jq
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 Steps 1 through 5 solve the nonlinear sub-equation and steps 7 through 9 solve the linear 

sub-equation. 

 

Parallel CMKdV Second Order Scheme 

 

 Recall that to solve the second-order scheme for the CMKdV equation, the following 

steps were performed: 

1. Set the time step to tΔ
2
1  and solve the nonlinear equation. 

2. Use the discrete Fourier transform to solve the linear equation. 

3. Set the time step to tΔ
2
1  and solve the nonlinear equation. 

To solve the parallel first-order scheme for the CMKdV equation, the following steps 

were performed: 

The master processor distributes the initial values among the processors. Njq j <≤0,0 p

For m = 0 to , Do 1−nT

1. Use the parallel DFT to compute the forward Fourier transform,  ).( m
jk qF

2. The master collects the results of  and computes the product, . )( m
jk qF )( m

jk qikF

3. Use the parallel DFT to compute the inverse transform, ( ))(1 m
jkk qikFF − . 

4. The master collects the results of ( ))(1 m
jkk qikFF −  . 

5. Use the parallel Runge-Kutta method for the time integration where the time step 

is replaced by tΔ tΔ
2
1 . 
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6. The master collects the solution of the nonlinear sub-equation. 

7. Use the parallel DFT to compute the forward Fourier transform, . )( m
jk qF

8. The master collects the results and computes )( m
jk qF )()exp( 3 m

jk qFtki Δβ . 

9. Use the parallel DFT to compute the inverse transform. 

10. The master collects the solution of the linear sub-equation. 

11. Repeat steps one through 5. 

12. The master collects the results, which give the new values . 1+m
jq

 Steps 1 through 5 solve the nonlinear sub-equation and steps 7 through 9 and 11 solve the 

linear sub-equation. 

 

Parallel CMKdV Fourth Order Scheme 

 

 Recall that to solve the fourth-order scheme for the CMKdV equation, the following steps 

were performed: 

1. Replace with tΔ tΔλ and use the second order scheme to perform the computation. 

2. Replace with tΔ tΔ− )21( λ and use the second order scheme to perform the 

computation. 

3. Once again, replace with tΔ tΔλ and use the second order scheme to perform the 

computation. 

To solve the parallel fourth-order scheme for the CMKdV equation, the following steps 

were performed: 

 

The master processor distributes the initial values among the processors. Njq j <≤0,0 p
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For m = 0 To , Do 1−nT

1. Call the main body of second-order scheme (steps 1 through 12) with replace 

by 

tΔ

tΔλ . 

2. Call the second-order scheme with tΔ replace by tΔ− )21( λ . 

3. Repeat step 1.  The results give the new values . 1+m
jq

 

Parallel CMKdV Inverse Scattering Transform (IST) Scheme 

 

Recall that to assist in solving the IST scheme, Taha [5] developed a discretization 

formula for the CMKdV nonlinear sub-equation: 
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 Recall that to solve the inverse scattering transform (IST) scheme for the CMKdV 

equation, the following steps were performed: 

1. Using the local IST approximation discussed by Taha [5] to solve the nonlinear 

equation. 

2. Use the Fourier transform to solve the linear equation. 
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To solve the parallel inverse scattering transform (IST) scheme for the CMKdV equation, 

the following steps were performed: 

The master processor distributes the initial values among the processors. Njq j <≤0,0 p

For m = 0 to , Do 1−nT

1. Use the modified parallel finite difference (FD) approximation to solve the 

nonlinear sub-equation. 

2. The master collects the solution of the nonlinear sub-equation. 

3. Use the parallel Fourier transform to compute the forward Fourier 

transform  ).( m
jk qF

4. The master collects the results  compute ),( m
jk qF )()exp( 3 m

jk qFtki Δβ . 

5. Use the parallel Fourier transform to compute the inverse transform. 

6. The master collects the solution of the linear sub-equation, which give the new 

values . 1+m
jq

 

Parallel CMKdV Finite Difference (FD) Scheme 

 

 Recall that to assist in solving the FD scheme, Taha and Ablowitz [7] developed a finite 

difference approximation for the CMKdV nonlinear sub-equation.  Later, this equation was 

modified by Taha and Liu [2] and is represented by the following: 
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 Recall that to solve the finite difference (FD) scheme for the CMKdV equation, the 

following steps were performed: 

1. Using the FD approximation developed by Taha and Alblowitz [7] to solve the 

nonlinear equation. 

2. Use the Fourier transform to solve the linear equation. 

To solve the Parallel CMKdV Finite Difference (FD) scheme, the following steps were 

performed: 

The master processor distributes the initial values among the processors. Njq j <≤0,0 p

For m = 0 to , Do 1−nT

1. Call the main body of fourth-order scheme to solve the nonlinear sub-equation. 

2. The master collects the solution of the nonlinear sub-equation. 

3. Use the parallel finite difference (FD) approximation to compute the forward 

Fourier transform  ).( m
jk qF

4. The master collects the results  compute ),( m
jk qF )()exp( 3 m

jk qFtki Δβ . 

5. Use the parallel DFT to compute the inverse transform. 

6. The master collects the solution of the linear sub-equation, which give the new 

values . 1+m
jq

 

Numerical Simulation 

 

All the parallel schemes presented in this chapter were simulated through the Equation 

Server, which will be discussed in Chapter 6.  The following tables contain performance results 
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from each scheme simulated on the taha 4 processor machine.  Recall that speedup  is defined 

by 

pS

 
processorsponcodeMPItheruntospentTime
processoroneoncodeMPItheruntospentTimeS p = .   

Efficiency   is defined by pE

 
processorsp

SSpeedup
E p

p =  

The goal of parallel implementation is to achieve efficiency closest to 1.  From my simulations 

of the parallel algorithms of the CMKdV equation, as the value of N increased, efficiency 

increased.  Also, as the number of processors, p, increased, there was an increase in speedup. 

     

 

Table 5.1 CPU time and speedup for the parallel first-order scheme using FFTW 

p N=2048, 

Tn=1000 

Speedup Efficiency N=131072, 

Tn=1000 

Speedup Efficiency 

1 2.262113 1.000000 1.000000 337.890518 1.000000 1.000000 

2 1.732446 1.305734 0.652867 200.162615 1.688080 0.844040 

4 1.419344 1.593774 0.398443 117.609827 2.872979 0.718245 
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Table 5.2 CPU time and speedup for the parallel second-order scheme using FFTW 

p N=2048, 

Tn=1000 

Speedup Efficiency N=131072, 

Tn=000 

Speedup Efficiency 

1 3.143984 1.000000 1.000000 453.475492 1.000000 1.000000 

2 2.484547 1.265415 0.632708 270.967933 1.673539 0.836770 

4 2.003215 1.569469 0.392367 164.930097 2.749501 0.687375 

 

 

Table 5.3 CPU time and speedup for the parallel fourth-order scheme using FFTW 

p N=2048, 

Tn=1000 

Speedup Efficiency N=131072, 

Tn=1000 

Speedup Efficiency 

1 9.028220 1.000000 1.000000 1195.996349 1.000000 1.000000 

2 7.318890 1.233550 0.616775 736.085661 1.624806 0.812403 

4 6.124466 1.474124 0.368531 388.465015 3.078775 0.769694 

 

 

Table 5.4 CPU time and speedup for the parallel FD scheme using FFTW 

p N=2048, 

Tn=1000 

Speedup Efficiency N=131072, 

Tn=1000 

Speedup Efficiency 

1 2.176560 1.000000 1.000000 467.093942 1.000000 1.000000 

2 1.435398 1.516346 0.748173 241.795503 1.931773 0.965886 

4 1.293557 1.682616 0.420654 141.797573 3.294090 0.823522 
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Table 5.5 CPU time and speedup for the parallel IST scheme using FFTW 

P N=2048, 

Tn=1000 

Speedup Efficiency N=131072, 

Tn=1000 

Speedup Efficiency 

1 2.710533 1.000000 1.000000 499.627979 1.000000 1.000000 

2 1.435398 1.516346 0.758173 249.984730 1.998634 0.999317 

4 1.293557 1.682616 0.420654 148.675250 3.360532 0.840133 
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CHAPTER 6 

WEB BASED INTERFACE FOR NUMERICAL SIMULATION 

 

6.1 Introduction 

 

In this chapter, we introduce Equation Server, a web based graphical user interface for 

the numerical simulation of nonlinear evolution equations.  The concept of an equation server 

was suggested by Taha.  After implementing various versions and prototypes, an acceptable 

version of the Equation Server was produced.  In the next section, I will present Equation 

Server’s purpose, architecture and capability. 

 

6.2 Equation Server 

 

It is the desire of many researchers to further develop numerical methods and make these 

equations, their results and plots accessible to users through the internet.  The output results of 

such equations contain a very large amount of numbers, vary based on user input, and are often 

analyzed and interpreted in the form of a graph or plot [1].  Equation Server is a web based 

graphical user interface for solving such equations. 

Equation Server was developed so that it could provide the developer an easier and more 

flexible way of implementing simple, complex, and parallel algorithms on the web than other 

existing web servers and technologies.  The Equation Server consists of two main components: 
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a) the client machine, which is the web browser, and b) the server machine(s) where the Equation 

Solver is installed (Figure 6.2.3). 

A user of the client machine would interact with the Equation Solver through a web 

browser.  The web browser allows the user to select an available equation and provide input for 

that equation.  The user’s input is sent through a TCP/IP connection to the Equation Solver for 

further processing.  Because the Equation Solver obtains input from the user through a web 

browser, the developer has the ability to integrate the Equation Solver into any webpage which 

serves as the graphical user interface (GUI).  This also gives the developer the ability to 

manipulate how the Equation Solver results are displayed to the user.   

The Solver includes: a) the equation input solver, b) the numerical method solver, and c) 

the equation result solver.  As shown in Figure 6.2.3: The equation input solver initializes the 

Equation Solver by sending to the user a web page which asks for an equation selection (Figure 

6.2.1). 

After the user selects an equation, the equation input solver sends the chosen equation’s 

numerical method page back to the user in order to specify the equation’s numerical methods 

available to solve the method (Figure 6.2.2).  After the user selects a numeral method for the 

selected equation, the equation input solver sends the chosen numerical method’s input page 

back to the user in order to specify the equation’s input values (Figure 6.2.4).  After the user 

specifies the input values, they are sent to the numerical method which solves the selected 

equation.   

Since most equation results are displayed in plot form using visualization tools such as 

Matlab, Maple, Mathematica, gnuplot, etc…, gnuplot, an interactive data and function plotting 

utility, was integrated into the Equation Server.  Gnuplot was chosen due to its plotting 
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capability through the use of a command line interface.  The plot produced assists in the 

interpretation and visualization of the data results. 

Gnuplot provides the fantastic ability of plotting data on a variety of data sets.  

Traditionally, two-dimensional plots and three-dimensional plots, along with title and labeling 

capability, can be generated through gnuplot (Figure 6.2.6, Figure 6.2.9).  Gnuplot also provides 

a variety of other tools and features to assist in a plotting task.  Currently, gnuplot is freely 

available on the Internet (www.gnuplot.info). 

After solving the equation, the results (Figure 6.2.5) are passed to gnuplot which 

generates a plot of the data (Figure 6.2.6).  Because the generated results are passed to gnuplot, 

the equation method’s output must be produced in a gnuplot readable format.  The 

implementations of the model equations presented in this thesis were edited to produces results 

in a gnuplot readable format.  These equations were successfully simulated on sequential and 

parallel processor machines (atlas, taha, altix) using the Equation Server. 

The results are then sent back to the user by the equation result solver as a web page 

(Figure 6.2.7). 

The output from the equation and gnuplot are stored in a directory for temporary storage.  

The contents of the directory are deleted based on the developer’s specifications.   Because the 

results are sent back to the user through the Internet, the user has the option to save the results to 

his or her machine.  All web pages sent to the user can be edited according to the developer’s 

specifications.  This allows the developer to incorporate the Equation Solver into any page.  If an 

equation provided by the developer needs to be updated or recompiled, it can be done without 

having to restart the Equation Solver.  The Equation Solver also simplifies the complex task of 
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configuring existing web servers by reducing all configurations into one simple configuration file 

(Figure 6.2.8.) 

The configuration file allows the developer to specify: 1) which ports the Equation Solver 

is running on, 2) the URL of the equation solvers, 3) the number of seconds to keep equation 

output results on the server, and 4) available user equations and input requirements. 

Parallel computation is a powerful way to decrease computation time for solving a 

problem.  The general idea is to break the problem under consideration into a number of sub 

problems.  All of these sub problems are solved simultaneously, each on a different processor 

[2].  MPI and OpenMP are two programming libraries which allow developers to implement 

parallel equations on parallel machines.  Systems that provide parallel computing capabilities, 

may require specific input from users upon each use.  The following demonstrates an MPI 

example to run a parallel program, FD_FFTW, using 4 processors through command line. 

mpirun –np 4 ./FD_FFTW 40 163.84 0.0125 

This required input (Ex. mpirun –np, ./FD_FFTW) can be redundant and often varies 

between systems.  The Equation Solver remedies this problem by providing a developer the 

ability to specify only the required inputs (4, 40, 163.84, 0.0125) needed form the user.  The 

developer can then provide the user an equation input page to obtain the input values. 

Throughout the evolution and development of the Equation Server, it has been through a 

variety of transformations.  First, it was implemented as a Java applet.  Due to security 

restrictions of the Java applet interacting with a server and the user having to perform extra 

operations to ensure the full functionality of the Equation Server, it was then implemented as a 

web server using Tomcat and PHP.  This technology could be used to implement the Equation 

Server as it is today.  However, because of more security issues and the discretion of some 
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researchers not having the desire to install and configure extra servers on their machines, the 

Equation Server had to undergo another transformation.  Finally, the Equation Server once again 

has the unique feature of being implemented as a web server, except without the use of existing 

web server technology such as Tomcat, Axis, ASP, PHP, etc… The current version of Equation 

Server is implemented in C++ and basic HTML, and has been tested on single and multiple 

processor machines.  However, any machine installed with a programming language with socket 

and system call capabilities can implement the Equation Server.    

Appendix A of this thesis contains a README file for the installation, configuration and 

deployment of the Equation Server. 

 

 

 

 

Figure 6.2.1: Equation Server equation selection [1] 
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Figure 6.2.2: Equation Server numerical method selection [1] 

 

 

 

 

Figure 6.2.3: Equation Server architecture 
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Figure 6.2.4: Equation Server input specification [1] 

 

 

 

 

Figure 6.2.5: Equation Server equation result data [1] 
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Figure 6.2.6: Equation Server gnuplot 2D plot [1] 

 

 

 

 

Figure 6.2.7: Equation Server web page display [1] 
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Figure 6.2.8: configuration file 

 

 

 

Figure 6.2.9: Equation Server gnuplot 3D plot
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CHAPTER 7 

VISUALIZATION AND PROFILING TOOLS 

 

7.1 Introduction 

 

Numerical visualization and profiling tools have been developed to assist in the analysis 

and interpretation of numerical data generated during the computational process.  A variety of 

numerical visualization and profiling tools exist today such as Matlab, Maple, gnuplot, 

Mathematica, Jumpshot-4, Paragraph, etc….  Each tool has it advantages, disadvantages, and 

performs a certain function.  Jumpshot-4 was chosen as the profiling tool of choice.  Next, I 

present its purpose, capability, and how it assisted in the interpretation of parallel algorithms 

presented in this thesis.  

 

7.2 Jumpshot-4 

 

Parallel computation is a powerful way to decrease the computation time for solving a 

problem.  The general idea is to break the problem under consideration into a number of sub 

problems.  All of these sub problems are solved simultaneously, each on a different processor 

[2].  Jumpshot-4 is a Java-based visualization tool for doing postmortem performance analysis 

[3].  For the parallel algorithm implementations studied and simulated, the parallel FFTW-

Message Passing Interface (MPI) was used.  Jumpshot-4 assisted in profiling and performance 

analysis of these parallel algorithm implementations.  
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Some of Jumpshot-4’s predecessors include Jumpshot-1 through 3, Nupshot and Upshot.  

However, Jumpshot-4 improves the portability, maintainability, and functionalities of the tools 

[3]. 

Jumpshot-4 provides users with a GUI (Figure 7.1.1) with the capability to analyze the 

duration of the profiled program, the various MPI operations and messages used during program 

execution (Figure 7.1.2), the duration of the program on each processor, and the duration of 

every MPI operation used on each processor (Figure 7.1.3) .  It also provides zoom, timeline, 

histogram, and search/scan modules for ease of use (Figure 7.1.4).  These capabilities provide 

great assistance in the optimization and analysis of the parallel implementation. 

Jumpshot-4 requires an input log file (.clog or .slog2) to begin the profiling process.  

These files are produced after the execution of the profiled program.  To produce the required 

*.clog files for Jumpshot-4, the FFTW-MPI equations simulated and studied were updated with 

the required Jumpshot-4 routines provided by the MPI Parallel Environment (MPE) library.  The 

Jumpshot-4 routines include MPE_Start_log(), MPI_Com_rank(), MPI_Com_size(), etc…  After 

the execution of the parallel MPI code, a *.clog file is produced.  The MPE package also 

provides another Java utility, clog2slog2, which converts the .clog file produced from our 

simulations to a .slog2 file.  Jumpshot-4 takes the *.slog2 file as an input file and produces a GUI 

for MPI analysis.  If *.clog files are provided, Jumpshot-4 will prompt the user to convert them 

to *.slog files and proceed with the logfile converter window (Figure 7.1.5).  

Each parallel algorithm for solving the CMKdV equations presented in Chapter 5 was 

profiled using Jumpshot-4.  To produce the Jumpshot input file, a Jumpshot version of each of 

the parallel implementations were produced and simulated. Each numerical method was 
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simulated using one, two, and 4 processors on the taha 4 processor machine.  Next, one parallel 

algorithm’s implementation will be discussed.   

Consider the parallel first-order scheme for solving the CMKdV equation.  Jumpshot-4 

was simulated for this parallel algorithm on the taha 4 processor machine using 1, 2 and 4 

processors (Figures: 7.1.6, 7.1.7, 7.1.8 respectively).  Immediately, from the interface, one can 

determine the number of processors used in the simulation base on the number of rows specified 

and displayed.  Typically, the root processor is designated as having the processor id 0 (SLOG-2 

0). From the figures presented, 7.1.7 and 7.1.8, the current method used in communication can 

also be determined based on its Jumpshot specified color (Green: MPI_Send, Blue: 

MPI_Receive). Such visualization assists in analysis of the communication between the 

processors.  The arrows in the figures represent the messages passed back and forth between the 

connected processors.  Also from the simulation, one can see that the duration of time needed to 

send messages to and from the root processor has been reduced.  Note that the figures presented, 

do not represent complete simulation.    

The Jumpshot-4 profiling results, for the parallel algorithms covered in this thesis, were 

generated on the taha 4 processor machine.  Jumpshot-4 is currently distributed with the MPE 

software package.  The MPE package provides users with: 1) a set of profiling libraries to collect 

information about the behavior of MPI programs, 2) various viewers for the logfiles, 3) a shared-

display parallel X graphics library, 4) a profiling wrapper generator for MPI interface, 5) routines 

for sequentializing a section of code being executed in parallel, and 6) debugger setup routines 

[3].  Currently, the MPE software package and documentation are freely available on the Internet 

(www-unix.mcs.anl.gov/perfvis).    
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Figure 7.1.1 Jumpshot-4 GUI [3] 

 

 

 

 

Figure 7.1.2 Jumpshot-4 Legend window [3] 
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Figure 7.1.3 Jumpshot-4 MPI operation duration window [3] 

 

 

 

 

Figure 7.1.4 Jumpshot-4 Timeline window [3] 
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Figure 7.1.5 Jumpshot-4 Logfile Converter window [3] 

 

 

 

Figure 7.1.6 Jumpshot-4 parallel finite difference (FD) scheme for CMKdV equation on 1 

processor (N=4096) 
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Figure 7.1.7 Jumpshot-4 parallel finite difference (FD) scheme for CMKdV equation on 2 

processors (N=4096) 

 

 

 

 

Figure 7.1.8 Jumpshot-4 parallel finite difference (FD) scheme for CMKdV equation on 4 

processors (N = 4096) 
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CHAPTER 8 

CONCLUSIONS 

 

 In this thesis, we presented various methods used for the numerical simulation of 

nonlinear evolutionary equations.  These equations include: the Nonlinear Schrödinger (NLS) 

equation, the Dispersed Nonlinear Schrödinger (Dispersed NLS) equation, the Coupled 

Nonlinear Schrödinger (CNLS) equation, the Modified Coupled Nonlinear Schrödinger 

(Modified CNLS) equation, and the Complex Modified Korteweg-de Vries (CMKdV) equation.  

The various numerical methods used to solve them include the sequential and parallel first-order, 

second-order, fourth-order split-step Fourier method, local inverse scattering transform 

approximation, and finite difference approximation.  

Also, I introduced and presented Equation Server, a web based graphical user interface 

for the simulation of these nonlinear evolutionary equations.  A gnuplot plot for the numerical 

methods used for solving the CMKdV equation were produced and displayed.  Performance 

results were also generated, analyzed and presented.   

In addition, the Jumpshot-4 visualization and profiling tool was presented which assisted 

in the interpretation and analysis of processor communication during simulation of the parallel 

algorithms used to solve the CMKdV equation. 
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APPENDIX A 

EQUATION SERVER README 

 

 This appendix contains the README file for the installation, configuration and 

deployment of the Equation Server.  Deviations from the README file should be avoided. 

 

README 

 

I. Contents 

II. Directions 

A. Setup 

1. The Source 

2. The Configuration 

3. The HTML 

4. The Equations 

5. The Makefile 

6. The Browser 

B. Compilation 

C. Execution 

D. Termination 
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E. Install Checklist 

III. Requirements 

 

I. Contents 

A. src      // directory 

1. equationinputsolver.cpp  // source code 

2. equationoutputsolver.cpp  // source code 

3. equationresultsolver.cpp  // source code 

4. MyConnection.cpp   // source code 

5. MyConnection.h         // source code 

6. ESequation.cpp   // source code 

7. ESequation.h         // source code 

8. ESgnuplot.cpp    // source code 

9. ESgnuplot.h         // source code 

B. equations      // directory 

C. html      // directory 

1. index.html    // html file 

2. not_found.html    // html file 

3. bad_request.html   // html file 

4. http_version_not_supported.html // html file 

D. results      // directory 

E. README.txt     // README file 

F. Makefile      // Makefile 
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G. ESequation.config    // configuration file 

H. ESresult.html     // result html file 

I. install      // install checklist file 

II. Directions 

A. Setup 

1. The Source - ./src/* 

Equation Server 2.0+ no longer requires the developer to edit the source 

code.  The configuration file (./ESequation.config) was created to specify 

what is needed by the source code.   

2. The Configuration - ./ESequation.config 

In Equation Server 2.0+, the configuration file allows the Equation Solver 

to be configured easily without editing the source code.  In the configuration 

file, the following is specified: 

- The address and port of equation input, output, and result solvers: 

<address port> 

- The url of the equation input, output, and result solvers: 

<url>  

- The number of seconds to remove the results: 

<seconds> 

- The equation name, number of variables, variable names, and 

variable type. 

<space> 

<equation name> 
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<N# of variables> 

<variable1 name and type> 

<variable2 name and type> 

... 

<variableN name and type> 

Note: Follow the format specified in the configuration file. Variable types 

include: real and integer. 

3. The HTML - ./html/index.html 

The html file (./html/index.html), where the user selects an equation, 

should specify the equations available to the user and forward the user's 

equation selection to the equation input solver's address and port: 

<form method="get" action="http://equation input solver address:port"> 

<select name="Equation"> 

<option value="EQUATION1" />EQUATION1 

<option value="EQUATION2" />EQUATION2 

</select> 

4. The Equations 

Executable equations (EQUATION.exe), which are to be made available 

to users, should be placed in the equation's directory and compiled.  The 

equation's specific html file (EQUATION.html) and gnuplot compatible file 

(EQUATION.deguignu) should also be placed in the equation's directory.  

Follow the directory and file format specified: 

./equations/EQUATION/EQUATION.exe 
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./equations/EQUATION/EQUATION.html 

./equations/EQUATION/EQUATION.deguignu 

The html file will be displayed when the user selects the equation.  The 

input from the user should be forwarded to the equation output solver's 

address and port in the same order as specified in the configuration file.   

<form method="get" action="http://equation output solver address:port"> 

<input type="hidden" name="Equation" value="EQUATION" /> 

<input type="text" name="ARG1" size="10" /> 

<input type="text" name="ARG2" size="10" /> 

... 

<input type="text" name="ARGN" size="10" /> 

The executable equation should be able to print its results to the screen 

based on the command line input arguments. 

Equation Server 3.0 allows the developer to edit the gnuplot file's 

(EQUATION.deguignu) contents without editing the Equation Server's source 

code.  Because the executable equation's results are dynamic, the developer 

must follow the example format explained below: 

Example gnuplot file (EQUATION.deguignu): 

set nokey 

set title 'Equation' 

set ylabel 'y Axis' 

set xlabel 'x Axis' 

set terminal png 
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set output '[gnuplot image file]' 

plot \ 

'[gnuplot index data file]' using 1:3 with linespoints 

quit 

Note: The Equation Solver will dynamically fill in what is needed for 

the [gnuplot image file] and [gnuplot index data file] sections.  Without 

these two labels, a gnuplot plot of the executable equation's results would 

not be generated; They should not be editted by the developer. 

The gnuplot file will be used when the equation is executed.   

The printed results should be readable by gnuplot, which produces a plot of the 

equation's results. 

All output from the executable equations and gnuplot are placed in the 

results directory.  The output is deleted after a period of time, which is 

specified in the configuration file (II.A.2).  

If an executable equation needs to be recompiled, it can be done so 

without recompiling the Equation Server. 

5. The Makefile - ./Makefile 

After the Equation Solver has been configured, the Makefile is used to 

easily compile (II.B) and execute (II.C) the Equation Server. 

The Makefile may need to be changed to specify the C++ compiler and 

libraries on your system. 

6. The Browser 
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After executing the Equation Server source code (II.C), with a web 

browser, browse to the html file (II.A.3) where the user can select which 

equations to use: 

http://<input solver address:port> 

Note:  The Equation Server was designed so that it could be also 

incorporated into existing web pages.  Doing so may require extra web design 

knowledge and/or experience. 

The html file mentioned above can be bypassed if the equation is known.  

The equation's html file (./equations/EQUATION/EQUATION.html) can be 

accessed by pointing your web browser to: 

http://<equation input solver address:port>/?Equation=<EQUATION> 

The equation's html file mentioned above can also be bypassed if the 

equation, its arguments, and its argument values are known.  The result html 

can be accessed by pointing your web browser to: 

http://<equation output solver 

address:port>/?Equation=<EQUATION>&<ARG1>=<VAL1>&<ARG2>

=<VAL2>...&<ARGN>=<VALN> 

Equation Server 3.0 allows the developer to edit the result html file's 

(ESresult.html) contents without editing the Equation Server's source code.  

This gives the developer the ability to edit the result html file like a webpage.  

Because the executable equation's results are dynamic, therefore making the 

result html page dynamic, developers must follow the example format 

explained below: 

76 



 

Throughout the original result html file (ESresult.html), the following 

sections are specified: 

1. [equation server home url] - url of the equation input solver, which is 

specified in the configuration file (II.A.2). 

2. [equation server equation] - name of the equation, which is specified 

in the configuration file (II.A.2). 

3. [equation server input] - input obtained from the user for the 

executable equation (II.A.4). 

4. [equation server result image] - plot of the result data generate by 

gnuplot (II.A.4). 

5. [equation server result data] - data generated by the executable 

equation (II.A.4). 

 

The Equation Solver will dynamically fill in what is needed for these 

sections.  The use and location of these sections can be changed by the 

developer.   

Note: Without the [equation server input], [equation server result image], 

and [equation server result data] sections, the user input, gnuplot plot of the 

executable equation's results and the result data will not be visible to the user; 

They should not be edited by the developer. 

The result html file is the final webpage displayed to the user through a 

web browser. 
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B. The Compilation 

The Equation Server can be compiled with the Makefile using: 

% make 

Executables can be removed by using: 

% make clean 

If compilation is unsuccessful, the Makefile will need to be edited.  Make sure the 

correct c++ compiler and libraries are specified for your system.  

C. Execution 

The Equation Server can be executed with the Makefile using:  

% make run 

When the Equation Server is executed, three solvers are run: the 

equationinputsolver, equationoutputsolver, and equationresultsolver.  These solvers 

bind to three different ports.  If any of these three ports are occupied, a new port will 

need to be specified in the configuration file (II.A.2).  Perform steps II.D., II.A., 

II.B., and II.C. 

D. Termination 

To terminate the Equation Server, you will need to end each process created by 

the execution of the three solvers (C): 

1. equationinputsolver 

2. equationoutputsolver 

3. equationresultsolver 

You can view your processes by using: 

%ps -ef | grep <developer user name>  
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-or- 

%ps -u <developer user name> 

 

Once you find the process ids of the processes you wish to terminate, you can stop 

them using: 

%kill -9 <process id ... process id> 

If you wish to restart the Equation Server after terminating it, wait a few seconds 

for the solvers to release the ports previously used. 

E. Install Checklist 

To assist in installing the Equation Server, an install checklist file (install) was 

created.  The install checklist can be started by making it executable and using: 

%install 

The README file should be consulted for further assistance. 

III. Requirements 

1. C++ compiler with a socket library. 

2. gnuplot 4.0 
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