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Abstract

This dissertation considers robust estimation of unknown number of components, also

known as the mixture complexity, in finite mixture models and cross-sectional time series

modeling of civilian unemployment rate for all the states in the U.S..

We begin with the problem of finding the mixture with fewest possible components that

provides a satisfactory fit of the data. Finite mixture models provide a natural way of mod-

eling unobserved population heterogeneity, which is often encountered in data sets arising

from biological, physical and social sciences. However, in many applications, it is unreal-

istic to expect that the component densities belong to some exact parametric family. The

mixture of interest may even be contaminated, which causes the estimates such as based

on KL distances to be unstable. To overcome this problem, we develop a robust estimator

of mixture complexity based on the Minimum Hellinger Distance (MHD) when all other

associated parameters are unknown. This estimator is considered in two cases, that is, when

the random variables are continuous and discrete. For each case, an estimator of mixture

complexity of mixture complexity is constructed as a by-product of minimizing a Hellinger

Information Criterion, and this estimator is proved to be consistent for parametric family

of mixtures. Via extensive simulations, our estimator is shown to be very competitive with

several others in the literature when the model is correctly specified and to be robust under



symmetric departures from postulated component normality in terms of correctly identifying

the true mixture complexity robustness.

Next, we consider the problem of modeling civilian unemployment rate for all the states

in the U.S.. Unemployment rate estimates are published by the U.S. Bureau of the Labor

Statistics (BLS) every month for the whole nation, 50 states and DC as well as other areas.

In recent years, the demand for small area statistics has greatly increased. At the national

level, The overall sample size for the Current Population Survey (CPS) is sufficient to produce

reliable estimates of UE rate. However, for smaller domains, the effective sample sizes within

a given domain are so small that standard design-based estimators are not precise enough.

Therefore, there is a need to improve the efficiency for small areas. The overlaps in CPS

samples over time and the availability of other states’ records provide the development of

reliable model-based unemployment rate estimators for the states. To improve the efficiency

for small areas, we turn to explicit small area models that make specific allowance for between

area variation, based on a Seasonal Autoregressive Integrated Moving Average (SARIMA)

model. To carry out estimation of parameters in this random-effects version of time series

model, a Bayesian inference methodology is constructed using Markov chain Monte Carlo

methods. Through examining the model adequacy, and forecasting the last four observations

for all the states, our model is shown to be reliable and efficient.

Index words: Finite mixtures; Hellinger Information Criterion; Threshold;
Consistency; Robustness; Adaptive Density Estimate; Symmetric
Departures;Seasonal Autoregressive Moving Average Model; Bayesian
Analysis; Gibbs Sampling; Metropolis-Hasting sampling; Forecasting;
Model Adequacy
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Chapter 1

ROBUST ESTIMATOR IN MIXTURE MODELS

1.1 INTRODUCTION

Finite mixture models provide a natural way of modeling unobserved population hetero-

geneity, which is often encountered in data sets arising from biological, physical and social

sciences. Over the last two decades or so, there has been a proliferation of literature on

theory and applications of mixture models. A comprehensive account of statistical infer-

ence for mixture models with applications can be found in the books by Everitt and Hand

(1981), Titterington, Smith and Makov (1985), and McLachlan and Basford (1988), while

more recent developments and applications of the subject are documented in Lindsay (1995),

Bohning (1999) and McLachlan and Peel (2000). For a comprehensive editorial on some of

the recent developments in mixture models, see Bohning and Seidel (2003).

If the number of components in a finite mixture model is known, EM algorithm of Demp-

ster, Laird and Rubin (1977) is undoubtedly a useful way to compute maximum likelihood

estimates (MLE) of all the parameters. When there is no data contamination, use of good

starting values for the EM algorithm do lead to ML estimates which overcome some well

known shortcomings of MLE for mixtures. However, when there is a small perturbation in

one of the component densities in the underlying parametric model, even with good starting

values these ML estimates become highly unstable(Aitkin and Wilson 1980).

To address the issue of instability, a variety of minimum distance estimation methods pos-

sessing some degree of automatic robustness (see Donoho and Liu 1988) have been studied

as alternative approaches for mixtures. When only the mixing proportions are unknown,
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some of the distance based estimation methods discussed in the literature include the Wol-

fowitz distance (Choi and Bulgren 1968), the Levy distance (Yakowitz 1969), the Cramer-von

Mises distance (Macdonald 1971), the squared L2 distance (Clarke 1989; Clarke and Heath-

cote 1994) and the Hellinger distance (Woodward, Whitney and Eslinger 1994). For the

general case of estimating all the unknown parameters, the methods considered include Wol-

fowitz distance (Choi 1969) the Cramer-von Mises distance (Woodward, Parr, Schucany and

Lindsay 1984), the squared L2 distance (Clarke and Heathcote 1994), the Kolmogorov dis-

tance (Deeley and Kruse 1968; Blum and Susarla 1977), the Hellinger distance (Cutler and

Cordero-Bran̆a 1996; Karlis and Xekalaki 1998), a distance using kernel density estimate

(Cao, Cuevas, Fraiman 1995) and a penalized minimum-distance (Chen and Kalbfleisch

1996). Other robust estimation approaches for mixtures are discussed in De Veaux and

Krieger (1990), and Windham and Cutler (1994). Robust methods such as M-estimation

are not easily adapted for mixtures and these generally achieve robustness at the cost of

efficiency at the parametric model density.

One way to partially reconcile the conflicting concepts of robustness and efficiency is

to use a density-based minimum Hellinger distance (MHD) estimator introduced by Beran

(1977). Beran showed that MHD estimators achieve efficiency at the model density and simul-

taneously possess desirable robustness properties under gross-error contaminations. Tamura

and Boos (1986) extended Beran’s work to the multivariate setup, while Stather (1981) and

Simpson (1987) studied the efficiency and robustness properties of MHD estimators in the

discrete case. Recently, Sriram and Vidyashankar (2000) constructed an MHD estimator of

the offspring mean in a supercritical Galton-Watson process and established its asymptotic

efficiency and robustness properties. In a sequential sampling context, Lee, Sriram and Wei

(2003) have shown that MHD method can be used to construct robust sequential fixed width

confidence intervals for parametric models.

For finite mixtures with known number of components, Cutler and Cordero-Bran̆a (1996)

developed a minimum Hellinger distance (MHD) estimator for all parameters when the exact
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form of the component densities are unknown but are thought to be close to members of some

parametric family. Cutler and Cordero-Bran̆a (1996) proposed a new computational algo-

rithm, somewhat similar to the EM algorithm, and an adaptive density estimate to compute

the MHD estimates. In addition to studying basic properties, they showed via simulations

that their MHD estimates are also robust to certain departures from the parametric family.

Furthermore, Cordero-Bran̆a and Cutler (1996) (also see Cordero-Bran̆a (1994)) established

the consistency and asymptotic normality of these MHD estimators.

The estimation literature for finite mixture models described above assumes that there

is sufficient apriori information about the number of components, known as the mixture

complexity. In many situations, however, the mixture complexity is also unknown. In these

cases, our objective is to find the mixture with fewest possible components that provides a

satisfactory fit of the data. This is a challenging problem but examples of these scenarios

are plentiful and are discussed in Bogardus et al (1989), McLaren (1991), Roeder (1994),

McLachlan, McLaren and Matthews (1995), McLaren (1996) Richardson and Green (1997),

McLachlan and Peel (1997, 2000). Due to the scope of applications, developing methods

of estimation for mixture complexity has been an area of intense research in the recent

years; see Henna (1985); McLachlan (1987); Roeder (1994); Escobar and West (1995); Chen

and Kalbfleisch (1996); Dacunha-Castelle and Gassiat (1997, 1999); Roeder and Wasserman

(1997); Keribin (2000); Priebe and Marchette (2000); and Ishwaran, James and Sun (2001).

Recently, James, Priebe and Marchette (2001) adopted a semi-parametric approach and

constructed a consistent estimator of mixture complexity when the component densities are

normal. Their estimator is based on Kullback-Leibler (KL) distance and relies on comparing

KL distances between a normal kernel density estimator and the best parametric fit of a

given complexity convolved with a normal density. James et al (2001) showed that their

estimator of mixture complexity is consistent. Through extensive Monte Carlo simulations,

James et al (2001) also assessed the performance of their estimator and showed that their

method compares favorably with other available methods in the literature.
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In many applications, it is unrealistic to expect that the component densities belong to

some exact parametric family. The mixture of interest may even be contaminated, which

causes the estimates based on KL distances to be unstable. We focus on the case when

the exact form of the component densities are unknown but are postulated to be close to

members of some parametric family. For this case, we develop a robust estimator of mixture

complexity based on the MHD approach when all other associated parameters are unknown.

Method of construction of our estimator is motivated by the work of James et al (2001) but

is applicable more generally.

In this chapter, we consider the case when the random variables are continuous and

propose an estimator of mixture complexity using the MHD estimation approach in section

1.2. We propose to establish the consistency of the estimator under certain the regularity

conditions. This result is stated as Theorem 1 in section 1.3. In section 1.4, we give the

details on the computation of our estimator. In the subsections 1.5.1 and 1.5.2, we list a

variety of target densities for which we propose to carry out extensive Monte Carlo studies

to compare the performance of our estimator of mixture complexity with those available in

the literature. In section 1.6, we list contaminated mixtures of our estimator (via simulations)

through which we propose to compare them with those obtained using the KL method of

James et al (2001). Computations for our estimator are carried out using the HMIX algorithm

due to Cutler and Cordero-Bran̆a (1996) and its details are given in section 1.4. In section

1.7, we propose to estimate the mixture complexity for an example concerning hypertension

considered in Roeder (1994).
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1.2 MHD ESTIMATION OF MIXTURE COMPLEXITY: CONTINUOUS

CASE

Consider a parametric family of density functions Fm = {fθm
: θm ∈ Θm ⊆ Rp} for each

fixed m < ∞, such that fθm
can be represented as a finite mixture of the form

fθm
(x) =

m∑
i=1

πif(x|φi), x ∈ X ⊆ R, (1.2.1)

where the component densities f(x|φi) ≥ 0,
∫

f(x|φi)dx = 1, φi ∈ Φ ⊆ Rs, the mixing

proportions πi ≥ 0,
m∑

i=1

πi = 1 for i = 1, . . . , m and θm = (π1, . . . , πm−1, φ
T
1 , . . . , φT

m)T . The

class Fm ⊆ Fm+1 for all m and we denote F =
∞⋃

m=1

Fm.

For each fixed m > 1, a mixture is said to be economically represented if all components

with nonzero mixing proportions are distinct (Redner and Walker 1984). The class Fm is

identifiable if whenever two economically represented mixtures are identical, the two col-

lections of components having nonzero probability are identical. Incidentally, identifiability

of the model family does not imply identifiability of θm, because fθm
(x) is invariant under

permutations of the component labels. Finally, if a mixture with m components can be rep-

resented as a mixture with fewer than m components then it is said to be degenerate and

can be represented in infinitely many ways.

Let X1, . . . , Xn be independent and identically distributed random variables with an

unknown density function g0. For an arbitrary density g, define the index of the economical

representation of g, relative to the family of mixtures defined above, as

m(g) = min{m : g ∈ Fm}.

If indeed g is a finite mixture then m(g) is finite and denotes the true mixture complexity;

otherwise m(g) = ∞. Note that m(g) represents the most parsimonious mixture model

representation for g.

We now describe a robust estimation procedure to estimate m0 = m(g0). To this end, we

follow the approach of Beran (1977) and define the Hellinger distance between two densities
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f and g by

H2(f, g) = ||f 1/2 − g1/2||22 (1.2.2)

where || · ||2 is the L2 norm. Let ĝn be a kernel density estimator of g0 of the form

ĝn(x) =
1

ncn

n∑
i=1

K(
x−Xi

cn

) (1.2.3)

where K is a density on Ω ⊆ R and the bandwidth cn = cn(X1, . . . , Xn) satisfies certain

regularity conditions. For each integer m > 0, define

ĝm = arg min
f∈Fm

H(ĝn, f)

and

gm
0 = arg min

f∈Fm

H(g0, f) (1.2.4)

where g0 is the unknown underlying density. When m > 0 is known, the MHD estimator

θ̂
MHD

n,m of θm is defined as the value of a functional Tm(g) at ĝn, where for any g, Tm(g) is

defined by

Tm(g) = {θm ∈ Θm : H(fθm
, g) = min

tm∈Θm

H(ftm
, g)}. (1.2.5)

Here Tm(g) is the set of solutions and a member of Tm(g) is chosen arbitrarily when a solution

is required. Tm(g) is said to be essentially unique if fθm
is nondegenerate for any θm ∈ Tm(g),

and any other element of Tm(g) can be obtained from θm ∈ Tm(g) by permuting the labels

of the components. Note from (1.2.4) that ĝm = f ˆθ
MHD

n,m

and gm
0 = fTm(g0).

Note that we can express m0 as

m0 = min{m : H(g0, g
m
0 )−H(g0, g

m+1
0 ) ≤ 0}

= min{m : H(g0, g
m
0 ) = 0}, (1.2.6)

because Fm ⊆ Fm+1. Since the family of mixtures is nested, estimation of unknown number

of components can be considered as a model selection problem, that is, selecting the model

that fits a given dataset the best in some sense out of a candidate set of models. Poland

and Shachter (1994) compare three approaches to model selection. Motivated by the classical
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Akaike type of criterion for model selection and third approach of Poland and Shachter (1994)

for model selection involving the Kellback-Leibler distance, a model selection criterion based

on the Hellinger distance may be considered as the form

HIC = H2(ĝn, ĝ
m) + n−1b(n)ν(m), (1.2.7)

where b(n) depends only on n and ν(m) is the number of parameters in the mixture model.

Here, the value of m yielding the minimum HIC specifies the best model. In the context of

minimum Hellinger distance estimation, the statistics H2(ĝn, ĝm) at (1.2.7) can be viewed as

measuring goodness-of-fit of mixture models, and n−1b(n)ν(m) as penalizing the goodness-

of-statistics by a term proportional to the number of parameters in the mixture model. A

simple heuristic to find the best model from a sequence of nested models is to try successive

models, starting with the smallest, and stop with model when the HIC value for model m is

less than that for model (m+1), that is,

H2(ĝn, ĝ
m) + n−1b(n)ν(m) ≤ H2(ĝn, ĝm+1) + n−1b(n)ν(m + 1),

or, equivalently,

H2(ĝn, ĝ
m)−H2(ĝn, ĝ

m+1) ≤ n−1b(n)[ν(m + 1)− ν(m)]. (1.2.8)

Hence, setting αn,m = n−1b(n)[ν(m + 1) − ν(m)] in (1.2.8), an estimator of m0 can be

defined as

m̂n = min{m : H(ĝn, ĝ
m) ≤ H(ĝn, ĝm+1) + αn,m} (1.2.9)

where ĝn is the density estimator in (1.2.3) and {αn,j; j ≥ 1} are positive sequences of

threshold values chosen in such a way they converge to zero as n →∞. We define m̂n = ∞
if the the minimum m in (1.2.9) does not exist for any n. Also, note that the estimator in

(1.2.9), motivated by the HIC model selection criterion, is essentially a sample version of the

representation in (1.2.6). Incidentally, a model selection criterion based on a Kullback-Leibler
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goodness-of-fit statistics can be defined, and it motivates the estimator in James, Priebe and

Marchette (2001). The KL distance between two densities g and f is defined by

KL(g, f) =

∫
g(x)ln

(
g(x)

f(x)

)
dx.

In the next section, we establish the consistency of our estimator of mixture complexity.

1.3 CONSISTENCY OF m̂n

In this section, we establish the consistency of MHD estimator of mixture complexity

defined in (1.2.9) as a theorem. The proof of the theorem is shown in the Appendix using

four lemmas.

Throughout we will assume that, for each m, Θm can be embedded in a compact subset of

Rp, the class Fm is identifiable for θm ∈ Θm and, for almost every x, f(x|φ) is continuous in

φ. Under these conditions, Cutler and Cordero-Bran̆a (1996) established the existence, Fisher

consistency, and continuity of the functional Tm(g) with respect to the Hausdorff metric

(Pollard 1981). Cordero-Bran̆a and Culter (1997) have shown that if Tm(g0) is essentially

unique then θ̂MHD
n,m = Tm(ĝn) is consistent for Tm(g0) where ĝn is as defined in (1.2.3) with

cn satisfying the condition cn + (ncn)−1 → 0 almost surely (a.s.). Under more regularity

conditions, they have also established the asymptotic normality of the MHD estimator when

g0 = fθm
. See Cordero-Bran̆a and Culter (1997) for details.

Theorem 1. Suppose X1, . . . , Xn are independent and identically distributed random vari-

ables with a density function g0. Suppose the bandwidth cn in (1.2.3) satisfies cn+(ncn)−1 → 0

a.s. as n → ∞. If g0 is a finite mixture with mixture complexity m0 ≤ ∞, then for any

sequence αn,m → 0, the estimator m̂n defined in (1.2.9) is strongly consistent, i.e., as n →∞

m̂n → m0 a.s.. (1.3.10)
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1.4 COMPUTATIONAL DETAILS

Given a data set, computation of an estimate of mixture complexity using (1.2.9) is clearly

an iterative procedure. The procedure starts by assuming that the data comes from a mixture

with a single component (m = 1) whose form is known except for the parameter values. After

fitting a nonparametric density estimator to the data, the MHD estimate of the parameter

θ1 is computed, which yields the best parametric fit ĝ1. The Hellinger distance between

the nonparametric density estimator and ĝ1 is then computed. Next, another component

density is added yielding a mixture of two components (m = 2), the best parametric fit

ĝ2 is computed using the MHD estimate of θ2, and the Hellinger distance between the

best parametric fit ĝ2 and the density estimator is computed. The difference between the

two Hellinger distances is compared with the threshold value αn,1. The above procedure of

adding one more component to the previous mixture is repeated until the first value m = k

for which the difference between Hellinger distances computed at k and k + 1 as in (2.7)

falls below the corresponding threshold value αn,k. At this time, the procedure terminates

declaring k as an estimate of the number of components in the mixture.

There are several important computational details to consider in the course of imple-

menting the above iterative algorithm, the first of which concerns the precise nature of the

nonparametric density estimator. When all the mixture parameters are unknown, Cutler

and Cordero-Bran̆a (1996) rightly point out that it is necessary to use some form of adap-

tive density estimate in order to avoid severe bias problems with the scale estimates. The

bias occurs because components with small variance are smoothed too much and those with

large variances are smoothed too little. In our computations, we propose to use the following

adaptive density estimate proposed by Cutler and Cordero-Bran̆a (1996) which is a slight

modification of the one due to Scott (1992):

ĝn,m(x) = n−1

n∑
j=1

m∑
i=1

[ai(Xj)/cn,i]K[(x−Xj)/cn,i] (1.4.11)
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where

ai(Xj) = πif(Xj|φi)/
m∑

l=1

πlf(Xj|φl).

Note that ai(Xj) in (1.4.11) depends on unknown parameters and hence must be esti-

mated using the current parameter estimates. Furthermore, as in Cutler and Cordero-Bran̆a

(1996) we also use the Epanechnikov kernel (Scott 1992, p.140), and the value of cn,i is com-

puted using the one-component empirically optimal formula given by Eslinger and Woodward

(1991); namely, cn,i = 2.283n−0.287σ̂i. The choice of bandwidth in our numerical studies is

motivated by the simulation results in Table of Cutler and Cordero-Bran̆a (1996) where it

is shown that the adaptive density estimate is considerabley less biased than the nonadap-

tive one. It can be verified that ĝn,m in (1.4.11) is a density. Moreover, it is also possible to

establish the almost sure convergence of the adaptive density estimator defined in (1.4.11)

based on some regularity conditions on θ̂m.

Second issue is computation of MHD estimator which requires minimizing the Hellinger

distance ||g̃1/2
n − f

1/2

θm
||2 with respect to θm for a fixed m, subject to the constraint πi > 0,

i = 1, . . . , m and Σπi = 1, where g̃n is a nonparametric density estimate based on the

data. We use the density estimator denfined in (1.4.11) and the HMIX algorithm proposed

in section 4.1 of Cutler and Cordero-Bran̆a (1996). The HMIX algorithm is similar to the

EM algorithm and it naturally leads to the use of the adaptive density estimate defined in

(1.4.11).

Third issue concerns updating adaptive kernel density estimator in (1.4.11) at each iter-

ation of the algorithm, which is somewhat similar to those in section 5 of James et al (2001).

We exploit the nature of adaptive kernel density estimator in (1.4.11) by updating it at each

step of the algorithm using the current MHD estimate, which in turn is used to obtain an

updated MHD estimate at each step. For example, at stage m = k, compute the MHD esti-

mate θ̂n,k(= arg min H(g̃n,k−1, fθk
)), and use it to obtain a new bandwidth cn,i and ai(Xj)

which in turn yields a updated adaptive density estimator g̃n,k. Here, g̃n,k−1 is the updated

adaptive density estimator from the (k− 1)th step where g̃n,0 = ĝn,1. Now obtain a modified
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best k component mixture

g̃k = arg min
f∈Fk

H(g̃n,k, f)

and calculate the Hellinger distance H(g̃n,k, g̃
k). Then, add a component and obtain ĝk+1 =

arg minf∈Fk+1
H(g̃n,k, f). Now, compare the difference H(g̃n,k, g̃

k)−H(g̃n,k, ĝ
k+1) against the

threshold value as in (1.2.9). This modification does not affect the theory but significantly

improves the performance of the algorithm in simulation. More explicitly, the algorithm for

finding m̂n can be described as follows:

1. Step 1: Start with m = 1.

• Compute θ̂n,m, update ˜gn,m−1, and call it ˜gn,m.

• Compute θ̃n,m using g̃n,m and get g̃m = arg minf∈Fm H(g̃n,m, f).

• Calculate HD2(g̃n,m, g̃m).

2. Step 2: Add a component to m.

• Compute θ̂m+1 using g̃n,m and obtain ĝm+1 = arg minf∈Fm+1 H(g̃n,m, f).

• Calculate HD2(g̃n,m, ĝm+1).

• Compute the difference between HD2(g̃n,m, ĝm+1) and HD2(g̃n,m, g̃m) and com-

pare it with a threshold value, αn,m.

- If HD2(g̃n,m, g̃m)−HD2(g̃n,m, ĝm+1) ≤ αn,m then stop, and let m̂n = m.

- Otherwise, go to step 1 and repeat until the condition in (1.2.9) is satisfied.

• Update ĝn,m+1.

Last one is the choice of threshold values αn,m in (1.2.9) which is critical to the estimation

of mixture complexity. It can be seen easily from (1.2.9) that threshold values have a direct

effect on the m̂n values, which increase as αn,m values decrease. In our numerical studies, we

assume normal mixture models with m univariate components which yields ν(m) = 3m− 1

because each component has associated mixing proportion, mean and variance, and the
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mixing proportions are constrained to sum to one. This, in view of (1.2.8), leads to αn,m =

3b(n)/n. Following Akaike Information Criterion, we set b(n) = 1 and obtain a threshold

value of αn,m = 3/n, which is used in our numerical studies. Also, based on the Schwartz

Bayesian Criterion, the set of b(n) = ln(n)/2 leads to αn,m = (3/2)ln(n)/n. Therefore, our

choice of αn,m = 3/n can be viewed as one based on an AIC criterion. Note that James et

al (2001) choose αn,m = 3/n in their algorithm based on the minimum description length

(MDL) penalty of Rissanen (1978).

1.5 MONTE CARLO SIMULATIONS

In this section, we conduct a variety of simulations to assess the performance of our

estimator of mixture complexity defined in (1.2.9) for moderate to large sample sizes. We

carry out the theses studies in two different scenarios but in both instances the postulated

model is a member of mixture family Fm where the component densities are normal. The first

instance would examine the efficiency of our estimator when the model is correctly specified

while the second would assess the robustness of our estimator against model misspecification.

For the first scenario, we perform the two simulation experiments discussed in James

et al (2001)and compare our findings with five other algorithms for mixture complexity

estimation available in the literature. The first is a Monte Carlo simulation demonstrating

the performance on a target density, which is a three-component mixture of normal densities,

over a variety of sample sizes. The second is a Monte Carlo simulation on target mixtures

2-10 from Marron and Wand (1992) for a fixed sample size.

For the second scenario, we perform four different simulation experiments to assess

the robustness of our estimator under symmetric departures from postulated component

normality. In these simulations, the samples are drawn from mixtures with two components

where the component densities are those of scale and location transformations, respectively,

of a Student’s t random variable with two or four degrees of freedom, or a rescaled t random

variable with three or four degrees of freedom. In addition, we consider varying degrees of
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separation (or equivalently, overlap) between the two component densities. The setup for our

robustness analysis is similar to those described in Woodward et al. (1984) and Markatou

(2001); also see Woodward et al. (1995) and McCann and Sarkar (2000). In each of these

simulations, robustness of our estimator of mixture complexity to model misspecification is

also compared to with the estimator of mixture complexity defined in James et al. (2001).

1.5.1 THREE-COMPONENT MIXTURE

The first simulation demonstrates the performance of (1.2.9) for the target density given

by

f(x) = (1/2)φ(x|(0, 10)) + (1/4)φ(x|(−0.3, 0.05)) + (1/4)φ(x|(0.3, 0.05)), (1.5.12)

where φ denotes the normal density with respective mean and variance identified inside

the parentheses. The first component has a large variance and the other two have small

variances. We implement the computational algorithm described above for sample sizes n =

50, 250, 500 and 1000 drawn from (1.5.12). For each sample size, we perform 100 Monte

Carlo replications of the algorithm, each yielding an estimate of mixture complexity. We

then tallied the estimated number of components (out of 100 replications). These counts are

reported for each sample size in Table 1.1 below where MHDE corresponds to the algorithm

in (1.2.9). In addition, for comparison purposes, we also provide similar counts obtained via

the NKE and MKE algorithm of James et al (2001, see Table 1); Bayesian algorithm of

Roeder and Wasserman (1997) denoted by R&W ; Bootstrap algorithm of McLachlan (1987)

denoted by Bootstrap; and the CDF method of Henna (1985) denoted by Henna. In this

case the true mixture complexity is 3 and we denote only the highest percentage of correct

identifications by an asterisk in (1.5.12).

The simulation results in Table 1.1 show that, for n = 50, only the R&W algorithm

correctly identifies a large percentage of times, while all the other algorithms underestimate

the true mixture complexity. For n = 50, it should be noted that the NKE, the MKE, the
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Bootstrap and the Henna algorithms perform better than our MHDE algorithm, although

all of them underestimate. For n = 250, the R&W and our MHDE algorithms correctly

identify a larger percentage of times than all other procedures, with R&W performing

better than our MHDE. For n = 500, our MHDE algorithm continues to correctly identify a

high percentage of times and performs significantly better than the MKE and all the other

algorithms. For n = 1000, the MHDE and MKE algorithms correctly identify the mixture

complexity substantially higher percentage of times than all other algorithms, with MHDE

performing better than the MKE. It is interesting to note that our MHDE algorithm seldom

overestimates the mixture complexity, while all the others overestimate and this becomes

rather severe in some cases as sample size increases. This is especially true for the R&W

algorithm for all sample sizes. Finally, for n = 1000, the MHDE algorithm underestimates

26% of times, while the MKE underestimates 18% of times and overestimates 19% of the

times. The Bootstrap and Henna algorithms incorrectly yield m̂n = 2 for all n. Overall,

when the model is correctly specified, out MHDE algorithm is very competitive with all the

other algorithms available in the literature.

1.5.2 MARRON AND WAND MIXTURES

Secondly, we propose to investigate the performance of our estimator of mixture com-

plexity when the samples are drown from normal mixtures given if Table 1.2 below. These

mixtures are considered in Marron and Wand(1992) and they exhibit a range of unimodal,

skewed and multimodal densities appropriate for testing the performance of the above algo-

rithms. The densities in Table 1.2 are graphed in as seen in Figure 2.1. As in James et al.

(2001), we compare the performance of all the algorithms mentioned in Table 1.1 above based

on percentage correct identification of the true mixture complexity. The sample size for this

study is n = 1000. The true mixture complexity in each case is denoted by an asterisk in

Table 1.3.
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Table 1.1: Mixture Complexity Estimation results [Target mixture, display (1.5.12), has three
components]

Estimated number of components
1 2 3 4 5 6 7 8

n = 50
MHDE 80 20
NKE 44 56
MKE 44 53 3
R&W 22 7 59* 10 1 1
Bootstrap 0 96 4
Henna 25 68 6 1
n = 250
MHDE 16 39 45*
NKE 0 99 1
MKE 0 87 11 1 1
R&W 0 0 60* 22 18
Bootstrap 0 83 16 1
Henna 0 90 10
n = 500
MHDE 0 35 65*
NKE 0 97 3
MKE 0 58 34 6 2
R&W 0 0 22 12 61 5
Bootstrap 0 74 20 6
Henna 0 85 15
n = 1000
MHDE 0 26 74*
NKE 0 86 14
MKE 0 18 63* 10 2 3 1 3
R&W 0 0 0 1 89 10
Bootstrap 0 79 15 4 2
Henna 0 78 15 5 1 0 1
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When the true m = 2, as in mixtures 4 - 8, all the algorithms perform very well, except

that R & W overestimates considerably in the case of mixture 4. In the case of mixture 2(m =

3), the MHDE algorithm performs somewhat better than all other procedures although it

does not correctly identify the true mixture complexity. In the case of mixture 9(m = 3),

the MKE and MHDE algorithms perform well but the Bootstrap algorithm performs the

best. In the case of mixture 3(m = 8), all the algorithms severely underestimate the mixture

complexity. In the case of mixture 10(m = 6), only MKE and Henna identify correctly a

higher proportion of times. As pointed out in James rt al. (2001, section 5.2), the Bootstrap

does relatively well in many of these cases but is computationally quite intensive. These

once again show that, when the model is correctly specified, the MHDE algorithm provides

a useful way to estimate the mixture complexity for a variety of mixtures.

Table 1.2: The densities in Marron and Wand (1992)
Density fθ(x)

1.Gauss N(0, 1)
2.Skewed unimodal 1

5N(0, 1) + 1
5N(1

2 , (2
3)2) + 3

5N(13
15 , (5

9)2)
3. Strongly skewed

∑7
i=0

1
8N(3{(2

3)i − 1}, (2
3)2i)

4.Kurtotic unimodal 2
3N(0, 1) + 1

3N(0, ( 1
10)2)

5.Outlier 1
10N(0, 1) + 9

10N(0, ( 1
10)2)

6.Bimodal 1
2N(−1, (2

3)2) + 1
2N(1, (2

3)2)
7.Separateed bimodal 1

2N(−3
2 , (1

2)2) + 1
2N(3

2 , (1
2)2)

8. Skewed bimodal 3
4N(0, 1) + 1

4N(3
2 , (1

3)2)
9.Trimodal 9

20N(−6
5 , (3

5)2) + 9
20N(6

5 , (3
5)2) + 1

10N(0, (1
4)2)

10.Claw 1
2N(0, 1) +

∑4
i=0

1
10N(i/2− 1, ( 1

10)2)

1.6 ROBUSTNESS

In this section we demonstrate the performance of the robustness of m̂n. To assess the

robustness, we describe how much our m̂n correctly identifies the true mixture complexity

when the postulated mixture model is misspecified. Usually, the robustness of MHD estima-

tors are examined by using 100α% gross-error contaminated mixture models and α-influenced

functions defined in terms of Hellinger functionals (Beran 1997). To study robustness of MHD
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Table 1.3: Mixture Complexity Estimation results for the Marron and Wand densities, 2-10
Estimated number of components

1 2 3 4 5 6 7 8 9 10
Mixture2
MHDE 0 78 22*
NKE 0 99 1*
MKE 0 99 1*
R&W 3 96 1*
Bootstrap 0 89 11*
Henna 0 100 *
Mixture3
MHDE 0 13 12 49 1 24 1 *
NKE 0 0 96 4 *
MKE 0 1 54 37 8 *
R&W 0 0 0 8 38 25 20 7* 2
Bootstrap 0 0 0 17 59 21 2 1*
Henna 0 0 26 74 *
Mixture4
MHDE 0 100*
NKE 0 99* 1
MKE 0 91* 6 3
R&W 0 0* 0 0 75 18 5 2
Bootstrap 0 95* 5
Henna 0 88* 12
Mixture5
MHDE 0 100*
NKE 0 96* 4
MKE 0 91* 8 1
R&W 0 55* 45
Bootstrap 0 95* 5
Henna 1 97* 1 0 0 0 0 0 1
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Table 1.3 (continued)
Estimated number of components

1 2 3 4 5 6 7 8 9 10
Mixture6
MHDE 0 100*
NKE 0 100*
MKE 0 98* 2
R&W 0 100*
Bootstrap 0 95* 5
Henna 0 97* 3
Mixture7
MHDE 0 100*
NKE 0 100*
MKE 0 96* 4
R&W 0 100*
Bootstrap 0 93* 6 1
Henna 0 96* 4
Mixture8
MHDE 2 97* 1
NKE 0 100*
MKE 0 97* 3
R&W 0 80* 20
Bootstrap 0 93* 7
Henna 0 99* 1
Mixture9
MHDE 0 49 51*
NKE 0 94 6*
MKE 0 38 59* 2
R&W 0 91 9*
Bootstrap 0 13 75* 12
Henna 0 82 18*
Mixture10
MHDE3 84 7 7 1 1 *
NKE 33 51 15 1 *
MKE 33 13 3 6 1 42* 2
R&W 15 0 0 0 0 0* 39 28 17 1
Bootstrap 5 28 15 21 11 11* 5 4
Henna 0 0 5 8 15 33* 14 9 10 6
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Figure 1.1: Mixtures 1-10 normal mixture densities from Marron and Wand(1992)

estimator, Cutler and Cordero-Bran̆a (1996) postulated a two component normal mixture

model fθ2
, and showed that the performance of the MHD estimator of θ2 remains unaffected

even when the data are generated from a 100α% gross-error contaminated mixture model

(1 − α)fθ2
(x) + αδz(x), where δz(x) is the normal density N(8, 1) and α = 0.01. However,

in terms of MHD estimator m̂n, such an approach would be inappropriate. By virtue of its

consistency, our estimator m̂n would (correctly) identify (for sufficiently large n) the number

of components in the mixture from which data are generated, which in the above example
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would be 3 instead of 2. Also, there is no Hellinger function representation of our estimator

of mixture complexity which would facilitate the study of α-influence functions.

In view of these, we consider two different way of assessing the robustness of m̂n when the

postulated model is a mixture of normals but the data are generated from a mixture with

symmetric departure from component normality. The first way is as described in Woodward

et al. (1984) for the estimation of mixing proportions (also see Woodward et al. (1995) and

McCann and Sarkar (2000)). The second setup is as described in Section 29.3.3 of Markatou

(2001); also see section 4 of Markatou (2000). More specifically, for our simulation study, we

consider a mixture with two components given by

fθm
(x) = pf1(x) + (1− p)f2(x), (1.6.13)

where f1 is the density associated with a random variable X1 = aY and f2 is the density

associated with a random variable X2 = Y +b for some a > 0 and b > 0. Here, the postulated

distribution for Y is standard normal but, in the first setup, the samples are generated from

the mixture in (1.6.13) when Y is a Student’s t(df)-random variable with degrees of freedom

df = 2 or 4. For our first setup, we set p = .25, .50 and .75, a = 1 and
√

2, and for each

pair of (p, a) values, we choose the values of b so that the overlap (see Woodward et al. 1984

for definition) between the two t-component densities in (1.6.13) is either 0.10 or 0.03. The

overlap is defined as the probability of misclassification using this rule: Classify an observation

x as being from population 1 if x < xc and from population 2 if x ≥ xc, where xc is the

unique point between µ1 and µ2 such that pf1(xc) = (1−p)f2(xc). These b values are given in

Table 1.4 and Table 1.5 and they are referred to as t-overlap in Table 1.7 and Table 1.8. Note

that the general shapes of such a two-component postulated (normal mixture) model and a

two-component t-mixture model from which the data are generated are markedly different

for some values of p, a and b. For instance, Figure 1.2 presents graphs for the case p = 0.75,

a =
√

2, overlap=0.10, and df = 4 and reveals that the resulting mixture distributions have

quite different shapes. (see, e.g., Figure 1 and Figure 2 in McCann and Sarkar (2000)). In
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addition, the component densities in the sampling model have much heavier tail than those

in the postulated (normal) mixture model.

Our second simulation setup differs slightly from the one above in that the samples are

generated from the mixture in (1.6.13) when Y is a rescaled Student’s t(df)-random variable

with degrees of freedom df = 3 or 4. As in Markatou (2001), by a rescaled Student’s t(df)

we mean a t(df)-random variable that is rescaled to have variance 1. Also, for each pair

of (p, a) values given above, we choose the values of b so that the overlap between the two

normal-component densities in (1.6.13) is either 0.10 or 0.03. That is, we use the b values

that are given in Table 1.6. We will refer to these b values as N -overlap in Table 1.9 and

Table 1.10 below.

The sample size for this study is n = 1000 and we performed 100 Monte Carlo replications

of our MHDE algorithm and the MKE algorithm of James et al. (2001), both with αm,n =

3/n. Table 1.7 to Table 1.10 give a tally of estimated number of components for the MHDE

and MKE algorithms, for each choice of a, p and b given above. In all these cases the true

mixture complexity is 2 and we denote the highest percentage of correct identifications by

an asterisk in Table 1.7 to Table 1.10.

The simulations presented here span over a variety of moderate to more extreme sym-

metric departures from component normality along with two different types and amounts

of separation between the component densities. In all, there are 40 different cases of model

misspecifications considered here, of which our MHDE algorithm significantly outperforms

the MKE algorithm in about 36 cases but the MKE algorithm performs well only in 9

cases in terms of correctly identifying the true mixture complexity m0 = 2. Only when the

t(2) components are poorly separated (t-overlap=0.10) and in the following three cases,

(p, a)=(0.5, 1),(0.5,
√

2) and (0.75,
√

2),Table 1.10 shows that the MKE outperforms our

MHDE algorithm where the latter severely underestimates by practically ignoring an equal

proportion (1− p = 0.5) or small proportion (1− p = 0.25)of second (heavy tail) component

located at values b = 3.771,4.517 and 4.401, respectively. This suggests that in these three
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cases in Table 1.10, the performance of MHDE is affected by poor separation between the two

t(2) components and its inherent tendency to protect against heavy tail distributions,while

it is possible that correct identification by the MKE may be partly due its tendency to

fit a component to extreme values. It is interesting to note from Table 1.10, however, that

even in the extreme departure case with t(2) components, our MHDE algorithm outperforms

the MKE algorithm when the components are well separated (t-overlap=0.03) and both the

algorithms perform well when p = 0.25 and t-overlap=0.10.

In Table 1.1 and Table 1.3 of sections 1.5.1 and 1.5.2, respectively, we noticed that our

MHDE algorithm seldom overestimates the true mixture complexity. However,Table 1.7 to

Table 1.10 show that our MHDE algorithm overestimates rather mildly in some instances but

rather severely in the two cases (p, a)=(0.25,
√

2) and (0.5,1), when sampling from mixtures

with rescaled t(3) components. We do not observe much underestimation with the MHDE

algorithm. However, Table 1.7 to Table 1.10 show that in many instances the MKE algo-

rithm rather severely overestimates or underestimates the true mixture complexity. Given

the extreme nature of symmetric departures from component normality considered in our

simulations, the results in Table 1.7 to Table 1.10 serve as a testament that our MHDE

algorithm is highly robust, while the MKE algorithm is highly unstable.

Table 1.4: Parameter Values for Simulations: t(4)

b
p a Overlap=.10 Overlap=.03

.25 1 2.821 4.965

.50 1 3.066 5.202

.25
√

2 3.175 5.777

.50
√

2 3.672 6.249

.75
√

2 3.570 6.151
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Table 1.5: Parameter Values for Simulations: t(2)

b
p a Overlap=.10 Overlap=.03

.25 1 3.492 7.385

.50 1 3.771 7.793

.25
√

2 3.957 8.546

.50
√

2 4.517 9.354

.75
√

2 4.401 9.185

Table 1.6: Parameter Values for Simulations: Normal

b
p a Overlap=.10 Overlap=.03

.25 1 2.319 3.603

.50 1 2.563 3.762

.25
√

2 2.573 4.203

.50
√

2 3.066 4.522

.75
√

2 2.964 4.456
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Figure 1.2: Comparison of t4 and normal components when the means and variances are equal and
set at the levels for t4 with an overlap of 0.10, a =

√
2, and p = 0.75.
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Table 1.7: Mixture Complexity Estimation results for t(4) components
t-overlap=.10 t-overlap=.03

Estimated number of components Estimated number of components
p a 1 2 3 4 5 1 2 3 4 5

.25 1 MHDE 0 100* 0 100*
MKE 33 60* 7 2 23 75

.25 1 MHDE 0 92* 8 0 100*
MKE 0 74* 26 0 35 64 1

.50 1 MHDE 0 95* 5 0 100*
MKE 97 3 100

.50 1 MHDE 0 100* 0 100*
MKE 94 4 2 99 1

.75 1 MHDE 0 100* 0 100*
MKE 80 19 1 61 8 31

Table 1.8: Mixture Complexity Estimation results for t(2) components
t-overlap=.10 t-overlap=.03

Estimated number of components Estimated number of components
p a 1 2 3 4 5 1 2 3 4 5

.25 1 MHDE 3 97* 0 98* 2
MKE 6 91* 2 1 72 24 4

.25 1 MHDE 0 100* 0 99* 1
MKE 8 89* 1 1 1 79 21

.50 1 MHDE 89 11* 0 100*
MKE 9 77* 14 59 40 1

.50 1 MHDE 77 23 0 100*
MKE 15 76* 9 88 12

.75 1 MHDE 63 35 2 0 100*
MKE 9 86* 2 3 75 24 1
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Table 1.9: Mixture Complexity Estimation results for Rescaled t(3) components
N -overlap=.10 N -overlap=.03

Estimated number of components Estimated number of components
p a 1 2 3 4 5 1 2 3 4 5

.25 1 MHDE 0 97* 3 0 100*
MKE 45 41 14 14 41 45

.25 1 MHDE 0 60* 40 0 100*
MKE 10 63* 20 2 14 44* 38 4

.50 1 MHDE 0 69* 31 0 97* 3
MKE 99 1 97 3

.50 1 MHDE 0 91* 9 0 96* 4
MKE 98 2 98 2

.75 1 MHDE 1 91* 8 0 100*
MKE 80 18 1 1 66 17 17

Table 1.10: Mixture Complexity Estimation results for Rescaled t(4) components
N -overlap=.10 N -overlap=.03

Estimated number of components Estimated number of components
p a 1 2 3 4 5 1 2 3 4 5

.25 1 MHDE 0 99* 0 100*
MKE 35 34 31 0 26 74

.25 1 MHDE 0 88* 12 0 100*
MKE 55 44* 1 0 34* 64 2

.50 1 MHDE 2 98* 0 99* 1
MKE 100 100

.50 1 MHDE 1 99* 9 0 100*
MKE 100 99 1

.75 1 MHDE 23 77* 0 100*
MKE 91 9 56 10 34
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1.7 ROEDER’S EXAMPLE

Here, we revisit Roeder (1994)’s example concerning mixture models for red blood

cell sodium-lithium countertransport (SLC) activity data collected from 190 individuals.

Geneticists are interested in SLC because it is correlated with blood pressure and hence

may be an important cause of hypertension. For this data, Roeder (1994)’s methods based

on graphical techniques and tests supported a three-component normal mixture. Roeder

(1994)’s three-component fit was based on ML estimates, which were calculated assuming

equal component variances. Roeder (1994) also noted that a square-root transformation of

the SLC data pulls in large values and supports a two-component mixture.

Incidentally, for the SLC data, we assumed normal mixture models with unknown means,

unequal variances and mixing proportions, and also obtained a mixture complexity estimate

of m̂n = 2 using the MKE procedure of James et al. (2001) with threshold value αn,m = 3/n.

For comparison sake, we computed the best fitting two component normal mixture density

using updated MKE estimates, as done in our case above. These MKE parameter estimates

are given in Table 1.11 under MKE(m = 2).

It is well known that large values have little impact on MHD estimates. In view of this and

the latter note of Roeder mentioned above, it may be natural to use our MHD algorithm to

determine an estimate of mixture complexity for the SLC data. We use our MHDE algorithm

to estimate mixture complexity for the SLC data. Here, we assume normal mixture models

with unknown means, (unequal) variances and mixing proportions, and use our MHDE

algorithm with threshold value αn,m = 3/n. Our analysis yields an estimate m̂n = 2 of the

mixture complexity for the SLC data.

The SLC example was also discussed in Cutler and Cordero-Bran̆a (1996), where it was

concluded that a three-component mixture based on MHD estimate provides a better fit

than the one based on ML estimates. For comparison sake, values from Table1 of Cutler

and Cordero-Bran̆a (1996) are given in Table 1.11 under MHDE(m = 3) and MLE(m = 3).

Cutler and Cordero-Bran̆a (1996) showed that the fitted density based on ML estimates has
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Table 1.11: Hypertension Parameter Estimates

φ1 φ2 φ3 µ1 µ2 µ3 σ1 σ2 σ3

MHDE(m = 2) .695 .305 .222 .352 .060 .106
MKE (m = 2) .754 .246 .225 .378 .060 .102
MHDE(m = 3) .399 .485 .116 .199 .277 .424 .046 .078 .113
MKE (m = 3) .568 .417 .015 .211 .322 .612 .051 .090 .014

a tiny component for some extreme data values, whereas the one based on MHD estimate

largely ignores these data. Figure 1.3 below shows that our two-component normal mixture

fit given by MHDE(m = 2) and the one given by MKE(m = 2) provide as good a fit as the

three-component normal mixture fit given by MHDE(m = 3).

In a recent article, Ishwaran, James and Sun (2001) adopted a Bayesian approach to

estimating mixture complexity and proposed two algorithms called the generalized weighted

Chinese restaurant (GWCR) and blocked Gibbs sampler. Their analysis of SLC data showed

that GWCR supported a three component mixture while the blocked Gibbs sampler based

on Bayes Information Criterion penalty supported a two-component mixture. Note that

the latter result agrees with our answer. All these make a compelling case that our two-

component mixture density based on the MHD (or the MKE) estimates provides a good and

parsimonious fit of the SLC data.

1.8 SUMMARY AND CONCLUSIONS

An information criterion approach based on minimum Hellinger distances is used to

construct an estimator of unknown number of components in finite mixtures, when the form

of component densities are unknown but are postulated to be members of some parametric

family. This estimator is consistent for parametric family of finite mixture models. When

the postulated normal mixture model is same as the model from which samples are drawn,

simulations show that our estimator competes well with other procedures available in the
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Figure 1.3: Fitted three-component normal mixture based on MHDE from Cutler and Cordero-
Bran̆a (1996) and fitted two-component normal mixture based on MHD and MKE algorithms for
SLC data

literature, and particularly well against an estimator based on Kullback-Leibler distance

introduced by James et al. (2001). The most distinguishing feature of our estimator is that

it continues to identify the mixture complexity correctly even when the sampling model is

a (moderate to more extreme) symmetric departure from postulated component normality,

while the estimator of James et al. (2001) becomes highly unstable in these situations. The

HMIX algorithm and the adaptive density estimator of Cutler and Cordero-Bran̆a (1996)

are crucial computational tools in our numerical studies. Updating the adaptive kernel

density estimator at each step of our iterative procedure using the best fitted density further

improves the performance of our estimator. Choice of threshold values αn,m undoubtedly has

an impact on the final estimate of the unknown mixture complexity. In our numerical studies

we motivate our choice of αn,m = 3/n based on the AIC criterion. More work remains to

be done on the choice of αn,m for our estimator, which is both consistent and robust. For

an example concerning hypertension, our estimator and the estimator of James et al. (2001)
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yield a parsimonious mixture model that provides good a fit of the data.
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Chapter 2

ROBUST ESTIMATOR OF MIXTURE COMPLEXITY: DISCRETE CASE

2.1 INTRODUCTION

Data consisting of counts often occur in areas such as public health, epidemiology,

economics, sociology, psychology, engineering and agriculture. However, there are many

instances where count data do not conform to simple mean variance relationships implied in

using Binomial, Poisson or multinomial models. For example, a Poisson model often under-

estimates the observed dispersion. This phenomenon, called overdispersion, occurs because

a single Poisson parameter λ is often insufficient to describe the population. In fact, in many

cases it can be suspected that population heterogeneity which has not been accounted for

is causing this overdispersion. One approach to this problem is to assume that the hetero-

geneity involved in the data can be adequately described by a mixed distribution.

Finite mixtures, in particular Poisson mixtures, have played a very useful role in modeling

overdispersed count data arising in disease mapping and risk assessment (Schlattmann and

Böhning 1993, Böhning 1999, Lawson et al 1999), mutation research and genetics (Beyers

and Shenton 1999), health-care utilization (Mullahy 1997, Deb and Trivedi 1997) and health

planning and management (Xiao, Lee and Vemuri 1999), to name a few. For more examples

of discrete and continuous cases, a detailed description of estimation approaches and exten-

sions to finite mixtures of Poisson regressions for count data, see Everitt and Hand (1981),

Titterington, Smith and Makov (1985), and McLachlan and Basford (1988), Lindsay (1995),

Böhning (1999) and McLachlan and Peel (2000).

EM algorithm of Dempster, Laird and Rubin (1977) is a widely used method to compute

maximum likelihood estimates (MLE) of all the parameters in finite mixture models when

35
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the number of components is assumed to be known. Recently, for Poisson mixtures, Karlis

and Xekalaki (1998) developed a minimum Hellinger distance (MHD) estimator, which is an

appealing alternative to the MLE, especially when the postulated mixture model is incorrect.

Karlis and Xekalaki (1998) also developed an iterative algorithm which facilitates computa-

tion of MHD estimates of Poisson mixture parameters. Furthermore, they showed that the

MHD estimators achieve efficiency at the model density and simultaneously possess desir-

able robustness properties under gross-error contaminations, thus reconciling the conflicting

concepts of robustness and efficiency. Lu, Hui and Lee (2003) considered MHD estimation

for finite mixtures of Poison regression for count data.

Typically, in practice where the mixture model is being used to handle overdispersion

in count data, the number of components in the mixture has to be inferred from the data.

From now on, we will refer to the number of components in a mixture as mixture complexity.

Estimation of mixture complexity is a rather fundamental, yet challenging problem. Correct

identification of mixture complexity followed by an efficient estimation of mixture param-

eters would lead to finding the mixture with fewest possible components that provides a

satisfactory fit of the count data.

A survey of literature shows that, in the continuous and discrete cases, developing

methods to determine mixture complexity has been an area of intense research for many

years. In the continuous case, a variety of approaches for determining the mixture complexity

have been discussed in the literature. See Henna (1985); McLachlan (1987); Roeder (1994);

Escobar and West (1995); Chen and Kalbfleisch (1996); Dacunha-Castelle and Gassiat (1997,

1999); Roeder and Wasserman (1997); Keribin (2000); Priebe and Marchette (2000); James,

Preibe and Marchette (2001); Ishwaran, James and Sun (2001); Woo and Sriram (2004),

and references therein. For instance, James, Preibe and Marchette (2001) used Kullback-

Liebler (KL) distance to construct a consistent estimator of mixture complexity, when the

component densities are assumed to be normal.
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Chapter 1 developed MHD estimation method to determine mixture complexity in the

continuous case. It constructed an estimator of mixture complexity as a by-product of mini-

mizing a Hellinger Information Criterion (HIC) defined in (1.2.7). When the mixture model

is correctly specified, they showed that their estimator of mixture complexity is consistent

and competes well against several other procedures in terms of correctly identifying the mix-

ture complexity, for a variety of target densities. An attractive features of MHD estimator

(1.2.8) in chapter 1 is that it is robust against model misspecification. That is, it continues

to identify the mixture complexity correctly even when the sampling mixture model is a

(moderate to more extreme) symmetric departure from postulated component normality,

while the estimator of James et al. (2001) becomes highly unstable in these situations.

For count data, Schlattmann and Böhning (1993) used the resampling approach of

McLachlan (1987) to decide on mixture complexity in their application of Poisson mixtures

to disease mapping. Also, Pauler et al (1996) used this method to determine the mixture

complexity in their modeling of anticipatory saccade counts from schizophrenic patients and

controls. Karlis and Xekalaki (1999) determined the mixture complexity using a sequential

testing procedure based on likelihood ratio test (LRT) that utilizes a resampling technique.

Via simulations for a variety of target Poison mixtures and examples, Karlis and Xekalaki

(1999) also illustrated the ability of their method to correctly determine the mixture com-

plexity. Dellaportas, Karlis and Xekalaki (1997) used Bayesian analysis to infer the mixture

complexity in Poisson mixtures and applied their results to a financial data. Recently, Karlis

and Xekalaki (2001) developed diagnostics based on Hellinger gradient function in order to

examine the presence of a mixture and obtain a semiparametric MHD estimate of number

of components in Poison mixtures.

In many applications, however, it is unrealistic to expect that the component distribu-

tions are Poisson. More importantly, if one misspecifies the mixture model, which happens

when one postulates a mixture model with Poisson components but the data are generated

from, say, a mixture model with negative binomial components, then the mixture complexity
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estimate based on sequential likelihood ratio tests of Karlis and Xekalaki (1999) may be

unstable. This instability may become more severe if the overdispersion in negative binomial

components becomes more severe.

Clearly, the above scenarios necessitate the development of an estimator of mixture com-

plexity for the count data which performs well whether or not the postulated mixture model

is correct. This chapter uses the methods developed in chapter 1 to construct an estimator

of mixture complexity for count data which is consistent when the exact form of the compo-

nent distributions are unknown but are postulated to be members of some parametric family

and simultaneously robust against model misspecification. Note that our goal is not merely

restricted to finding a consistent and robust estimator of the mixture complexity, but rather

use this approach in fitting the best possible mixture distribution based on MHD estimates,

which are inherently less influenced by small proportions of extreme data values.

In section 2.2, we present the basic framework and propose an estimator of mixture com-

plexity using a Hellinger information criterion. The main theorem concerning the consistency

of the estimator is stated and proved in section 2.3. Computational details concerning our

estimator are given in section 2.4. In section 2.5.1, we carry out extensive Monte Carlo studies

for a variety of correctly specified 2-,3- and 4- component Poisson mixtures and , in each

case, compare the ability of our estimator in correctly determining the mixture complexity

with those given in Karlis and Xekalaki (1999). In section 2.5.2, we examine the robustness

of our estimator through extensive simulations, when postulated mixture model is incorrect.

In section 2.6, we estimate the mixture complexity for three count datasets with overdisper-

sion, two of which with possible zero-inflation. Our estimate of the number of components

to use in these examples are compared with those in the literature. Overall summary and

conclusions are given in section 2.7. We begin with some basic notations and definitions.
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2.2 MHD ESTIMATOR OF MIXTURE COMPLEXITY

Consider a parametric family of probability mass functions (p.m.f.’s) Fm = {fθm
: θm ∈

Θm ⊆ Rp} concentrated on X = {0, 1, 2, . . . } for each fixed m > 0, such that fθm
can be

represented as a finite mixture of the form

fθm
(x) =

m∑
i=1

πif(x|φi), x ∈ X , (2.2.1)

where f(x|φi) is the component p.m.f., φi ∈ R, the mixing proportions πi ≥ 0,
m∑

i=1

πi = 1 for

i = 1, . . . ,m and θm = (π1, . . . , πm−1, φ1, . . . , φm). The class Fm ⊆ Fm+1 for all m and we

denote F =
∞⋃

m=1

Fm.

Let X1, . . . , Xn be independent random variables taking values in X with an unknown

p.m.f. f0 ∈ Γ, where Γ denotes the set of all p.m.f.’s defined on X . For an arbitrary p.m.f.

f ∈ Γ, define the index of the economical representation of f , relative to the family of

mixtures defined above, as

m(f) = min{m : f ∈ Fm}.

If indeed f is a finite mixture then m(f) is finite and denotes the true mixture complexity;

otherwise m(f) = ∞. Note that m(f) represents the most parsimonious mixture model

representation for f . We now describe a robust estimation procedure to estimate m0 = m(f0).

To this end, we follow the approach of Simpson (1987) and define the Hellinger distance

between two p.m.f.’s f, g ∈ Γ by

H2(f, g) =
∞∑

k=0

|f 1/2(x)− g1/2(x)|2

= 2− 2
∞∑

k=0

f 1/2(x)g1/2(x). (2.2.2)

see Simpson (1987), for example. Let f̂n be the empirical mass function which defines the

nonparametric estimator of f0:

f̂n(x) = n−1

n∑
i=1

I{Xi=x}, x = 0, 1, . . . , (2.2.3)
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where IA is the indicator of set A. When m > 0 is known, the MHD estimator θ̂
MHD

n,m of θm

is defined as the value of a functional Tm(f) at f̂n, where for any f , Tm(f) is defined by

Tm(f) = {θm ∈ Θm : H(fθm
, f) = min

tm∈Θm

H(ftm
, f)}. (2.2.4)

Here Tm(f) is the set of solutions, if one exits, and a member of Tm(f) is chosen arbitrarily

when a solution is required. For each integer m > 0, define

f̂m = arg min
f∈Fm

H(f̂n, f)

and

fm
0 = arg min

f∈Fm

H(f0, f) (2.2.5)

where f0 is the underlying mass function. Then, note that f̂m = f ˆθ
MHD

n,m

and fm
0 = fTm(f0).

Note that we can express m0 as

m0 = min{m : H(f0, f
m
0 )−H(f0, f

m+1
0 ) ≤ 0}

= min{m : H(f0, f
m
0 ) = 0}, (2.2.6)

because Fm ⊆ Fm+1. Since the family of mixtures is nested, estimation of unknown number

of components can be considered as a model selection problem, that is, selecting the model

that fits a given dataset the best in some sense out of a candidate set of models. Poland

and Shachter (1994) compare three approaches to model selection. Motivated by the classical

Akaike type of criterion for model selection and third approach of Poland and Shachter (1994)

for model selection involving the Kellback-Leibler distance, a model selection criterion based

on the Hellinger distance may be considered as the form

HIC = H2(ĝn, ĝ
m) + n−1b(n)ν(m), (2.2.7)

where b(n) depends only on n and ν(m) is the number of parameters in the mixture model.

Here, the value of m yielding the minimum HIC specifies the best model. In the context of

minimum Hellinger distance estimation, the statistics H2(ĝn, ĝm) at (2.2.7) can be viewed as
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measuring goodness-of-fit of mixture models, and n−1b(n)ν(m) as penalizing the goodness-

of-statistics by a term proportional to the number of parameters in the mixture model. A

simple heuristic to find the best model from a sequence of nested models is to try successive

models, starting with the smallest, and stop with model when the HIC value for model m is

less than that for model (m+1), that is,

H2(ĝn, ĝ
m) + n−1b(n)ν(m) ≤ H2(ĝn, ĝm+1) + n−1b(n)ν(m + 1),

or, equivalently,

H2(ĝn, ĝ
m)−H2(ĝn, ĝ

m+1) ≤ n−1b(n)[ν(m + 1)− ν(m)]. (2.2.8)

Hence, setting αn,m = n−1b(n)[ν(m + 1) − ν(m)] in (2.2.8) naturally leads to the following

estimator of m0 defined by

m̂n = min{m : H(ĝn, ĝ
m) ≤ H(ĝn, ĝm+1) + αn,m} (2.2.9)

where ĝn is the density estimator in (2.2.3) and {αn,j; j ≥ 1} are positive sequences of

threshold values chosen in such a way they converge to zero as n →∞. We define m̂n = ∞
if the the minimum m in (2.2.9) does not exist for any n. Also, note that the estimator in

(2.2.9), motivated is essentially a sample version of the representation of m0 in (2.2.6).

The equation (2.2.9) actually defines a class of (competing) estimators since the threshold

value αn,m has not been specified precisely yet. It can be seen easily from (2.2.9) that

threshold values directly impact the m̂n values, which increase as αn,m values decrease. Since

an m̂n value determines the final mixture model for a dataset, choice of αn,m values may

also be viewed as a model selection problem. In all our numerical studies we assume Poisson

mixture models with m univariate components, in which case the number of unknown param-

eters is ν(m) = 2m− 1. By the definition of αn,m above, this leads to αn,m = 2b(n)/n. Fol-

lowing Akaike Information Criterion (AIC), if we set b(n) = 1 then this leads to a threshold

value αn,m = 2/n. Schwarz Bayesian Criterion (SBC) which sets b(n) = ln(n)/2 leads to

αn,m = ln(n)/n. These two threshold values are used in all our numerical studies below,
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where, unsurprisingly, we observe that the threshold ln(n)/n based on SBC has a tendency

to select a more parsimonious model than that based on AIC.

2.3 CONSISTENCY OF m̂n

In this section, we establish the consistency of MHD estimator of mixture complexity defined

in (2.2.9) as a theorem. Since the proof of the theorem is very similar to that of the Theorem

1 in chapter 1, we only give a brief sketch of it.

For the consistency result, we will assume the following regularity conditions (see

Simpson(1987) and Karlis and Xekalaki (1998)). Let Γ̃ ⊂ Γ denote the sub-class of p.m.f.’s

defined on X for which the following condition holds (see Simpson (1987), equation (3.3)):

For each m, there is a compact set Cm ⊆ Θm such that for every f ∈ Γ̃,

inf
tm∈Θm−Cm

H(ftm , f) > H(fθ∗m
, f), (2.3.10)

for some θ∗m ∈ Cm. If, for each m, Θm is compact then Cm = Θm. For each m, we will assume

that fθm
(x) is continuous in θm for each x ∈ X and the class Fm is identifiable (see Teicher

(1960,1961)). Under these conditions, Theorem 1 and Corollary of Simpson (1987) imply the

following: For each f ∈ Γ̃, Tm(f) exists, and if Tm(f) is unique, then H(f̂n, f) → 0 implies

that Tm(f̂n) → Tm(f), as n →∞. In particular, θ̂MHD
n,m = Tm(f̂n) is consistent for Tm(f0). See

Karlis and Xekalaki (1998) for a detailed account of MHD estimation for Poisson mixtures.

Theorem Assume that X1, . . . , Xn are independent and identically distributed random vari-

ables with a p.m.f. f0 ∈ Γ̃ and that all the regularity conditions stated above are satisfied.

Then, for any sequence αn,m → 0,

m̂n → m0 a.s.

as n → ∞, for m̂n and m0 defined in (2.2.9) and (2.2.6), respectively. If f0 is not a finite

mixture, then m̂n →∞.

Proof. First note that H2(f̂n, f0) ≤
∑∞

x=0 |f̂n(x)−f(x)|. By the strong law of large numbers,

f̂n → f0 almost surely (a.s.) as n →∞. Therefore, by Glick’s theorem (Devroye and Györfi
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(1985), p.10) we have that
∑∞

x=0 |f̂n(x)− f(x)| → 0 a.s., which implies that H2(f̂n, f0) → 0.

The rest of the proof follows using arguments exactly as for the Theorem in chapter 1, by

replacing integrals with infinite sums.

2.4 COMPUTATIONAL DETAILS

In order to numerically assess the performance of our estimator of mixture complexity

to correctly determine the number of components in a mixture and compare them with

those available in the literature, we restrict our attention to Poisson mixture models. We

assume fθm
(x) in (2.2.1) denotes an m-component Poisson mixture with component means

λi, i = 1, . . . , m, where θm = (π1, . . . , πm−1, λ1, . . . , λm) with 0 ≤ λ1 < . . . < λm. Incidentally,

Poisson mixtures with increasing component means satisfy the assumptions of our main

theorem (see Teicher (1960,1961) and Karlis and Xekalaki (1998,1999)).

Computation of an estimate of mixture complexity using (2.2.9) is clearly an iterative

procedure. The procedure starts by assuming that the data comes from a mixture with single

Poisson component (m = 1) whose mean is unknown. Using the empirical mass function in

(2.2.3), an MHD estimate of the parameter θ1 is computed, which yields the best parametric

fit f̂ 1. The Hellinger distance between the empirical mass function and f̂ 1 is then computed.

Next, another Poisson component is added yielding a Poisson mixture with two components

(m = 2), the best parametric fit f̂ 2 is computed using the MHDE estimate of θ2, and

the Hellinger distance between the best parametric fit f̂ 2 and the empirical mass function is

computed. The difference between the two Hellinger distances is compared with the threshold

value αn,1. The above procedure of adding one more component to the previous mixture is

repeated until the first value m = k for which the difference between Hellinger distances

computed at k and k + 1 as in (2.2.9) falls below the corresponding threshold value αn,k.

At this time, the procedure terminates and declares k as an estimate of the number of

components in the mixture. Note that, at this stage, our procedure automatically provides

the best parametric fit determined by the MHD estimate of θk. For all the datasets considered
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in section 6, we compute the best parametric fit based on the MHD estimate provided at

the termination of our (mixture complexity) computational algorithm.

At each step of iterative procedure, MHD estimates need to be computed. Computa-

tion of MHD estimate of θm, for each fixed m, requires minimizing the Hellinger distance
∑∞

x=0 |f̂ 1/2
n (x) − f

1/2

θm
(x)|2, which is equivalent to maximizing

∑∞
x=0 f̂

1/2
n (x)f

1/2

θm
(x) from the

equality in (2.2.2) with respect to θm, subject to the constraint πi > 0,i = 1, . . . ,m, and
∑

πi = 1, for f̂n defined in (2.2.3). Then, system of estimating equations can be written in

the form
∞∑
i=0

(
f̂n(x)

fθm
(x)

)1/2(f(x|λj)− f(x|λk)) = 0, j = 1, 2, . . . , m− 1, (2.4.11)

∞∑
i=0

(
f̂n(x)

fθm
(x)

)1/2pj(f(x− 1|λj)− f(x|λj)) = 0, j = 1, 2, . . . , m− 1, (2.4.12)

where f(x|λ) = exp(−λ)λx

x!
. An analytical solution of the above system of equations is not fea-

sible, hence numerical methods are required to solve it. Here, we use the numerical algorithm,

known as HELMIX, due to Karlis and Xekalaki (1998) which facilitates the MHD estimation

procedure. See section 4 of Karlis and Xekalaki (1998) for more details on the HELMIX algo-

rithm. Finally, as motivated at the end of section 2.2, we set the threshold values αn,m = 2/n

and ln(n)/n and numerically study the performance of these two thresholds.

2.5 MONTE CARLO SIMULATIONS

In this section, we conduct two simulation studies to assess the performance of our esti-

mator of mixture complexity defined in (2.2.9) for moderate to large sample sizes. In both of

these studies the postulated model is a Poisson mixture. The first numerical study examines

the efficiency of our estimator when the model is correctly specified, that is, the data are

also generated from a Poisson mixture model. The second study examines the robustness of

our estimator against model misspecification, that is, the data are generated from a mixture

model where the component distributions are negative binomial with moderate to more
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extreme overdispersion. These are done in the following subsections.

2.5.1 SIMULATIONS FOR CORRECTLY SPECIFIED POISSON MIXTURES

In order to compare the performance of our estimator with that of Karlis and Xekalaki

(1999), the data is drawn from the 2-,3-, and 4-component Poisson mixtures studied in their

article. As mentioned earlier, Karlis and Xekalaki (1999) used a sequential testing procedure

based on LRT along with bootstrapping to determine the number of components in these

mixtures. More specifically, we consider the following 2-,3- and 4-component Poisson mixtures

given in Table 2.1.

Table 2.1: Poisson mixtures from Karlis and Xekalaki(1998)
Mixture Complexity fθ(x)

.5P (1) + .5P (9)
2 .8P (1) + .2P (9)

.5P (1) + .5P (1.1)

.95P (1) + .5P (10)

.45P (1) + .45P (5) + .1P (10)
3 .4P (1) + .4P (3) + .2P (3.1)

.33P (1) + .33P (5) + .33P (10)

.3P (1) + .4P (5) + .25P (9) + .05P (15)
4 .3P (1) + .3P (1.2) + .2P (5) + .2P (9)

.25P (1) + .25P (5) + .25P (10) + .25P (15)

These Poisson mixtures include models with well separated components and poorly sep-

arated ones (in terms of component means), and models that result in skewed distributions.

For each target mixture, we implemented our computational algorithm described in section

2.4 for four sample sizes n = 50, 100, 500, 1000 and using the two threshold values αn,m = 2/n,

and ln(n). For each sample size and threshold value, we performed 500 Monte Carlo repli-

cations of our algorithm, each yielding an estimate of mixture complexity. Tables 2.2 to 2.4

below correspond to the above mentioned 2-,3-, and 4-component mixtures, respectively.

Each gives the relative frequencies (out of 500 replications) of the number of components
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determined by our method for each sample size and threshold value. For comparative pur-

poses, Tables 2.2 to 2.4 also list the relative frequencies from Table 1 in section 4 of Karlis

and Xekalaki (1999), denoted by LRT. Note that we do not list the relative frequencies for

LRT for n = 1000 because this case is not considered in Karlis and Xekalaki (1999). In

Tables 2.2 to 2.4, the percentage (50% above) of correct identifications is given in bold with

an asterisk beside it.

For the three well separated 2-component Poisson mixtures, Table 2.2 shows that our

method correctly determines the number of components for both threshold values and for

all the sample sizes, except in few small sample situations. In the case of .8P (1) + .2P (9)

and n = 50, only the SBC threshold value αn,m = ln(n)/n incorrectly determines the true

mixture complexity. This may be because the SBC based method, in general, has a tendency

to select a more parsimonious model. In the case of .95P (1)+ .5P (10) and small sample sizes

n = 50, and 100, both the threshold values αn,m = 2/n, and ln(n) essentially ignore the

second component, which has a very large mean and a small mixing proportion of .05. The

latter may be attributable to the tendency of MHD to ignore the presence of a component

with a very large mean and a small mixing proportion, especially for small samples. Note

that the LRT method of Karlis and Xekalaki (1999) does will in all the three well separated

cases. For the poorly separated 2-component Poisson distribution(i.e., .5P (1) + .5P (1.1)),

our method incorrectly chooses a simple Poisson distribution for both the thresholds and

for all sample sizes, which incidentally happens with the LRT based procedure of Karlis

and Xekalaki (1999) as well. Overall, the performance of our mixture complexity estimator

is as good as the LRT method of Karlis and Xekalaki (1999), except in few small sample

situations.

For the two well separated 3-component Poisson mixtures, Table 2.3 shows that our

method correctly determines the number of components for large sample sizes (n =

500,1000), except in the case of .45P (1) + .45P (5) + .1P (10) and sample size n = 500,

where the SBC threshold value αn,m = ln(n)/n incorrectly determines a 2-component



47

Poisson mixture. When n = 50, and 100, both the threshold values incorrectly deter-

mine a 2-component Poisson mixture for the case .45P (1) + .45P (5) + .1P (10). For the

cases .45P (1) + .45P (5) + .1P (10) and .33P (1) + .33P (5) + .33P (10), it should be noted

that LRT method of Karlis and Xekalaki (1999) correctly determines the number of com-

ponents when n = 100. For the poorly separated 3-component Poisson mixture (i.e.,

.4P (1)+ .4P (3)+ .2P (3.1) ), neither our method nor the LRT based procedure of Karlis and

Xekalaki (1999) is able to correctly determine the number of components for any sample

sizes. For the 4-component Poisson mixtures, Table 2.4 shows that neither our method nor

the LRT based procedure of Karlis and Xekalaki (1999) is able to correctly determine the

number of components in these cases for any sample sizes.

In conclusion, when the postulated model is correct, our MHD based method is com-

petitive with the LRT method of Karlis and Xekalaki (1999) in that it is very successful in

correctly determining the mixture complexity if the model is well separated and sample sizes

are large enough.

2.5.2 ROBUSTNESS OF m̂n UNDER MODEL MISSPECIFICATION

Here, we describe an approach to assess the robustness of m̂n in terms of its ability

to correctly identify the true mixture complexity, when the postulated Poisson mixture

model is incorrect. Generally, one examines the robustness of MHD estimatos against 100α%

gross-error contaminated mixture models and using α-influence functions defined in terms of

Hellinger functionals (Beran 1977). Karlis and Xekalaki (1998; see section 6.3) postulated a

2-component Poisson mixture model, fθ2(x) = πf(x|λ1) + (1− π)f(x|λ2), where f denotes a

Poisson p.m.f. and θ2 = (π, λ1, λ2) and showed via simulations that the performance of their

MHD estimator of θ2 remains unaffected even when the data are generated from a 100α%

gross-error contaminated Poisson mixture model defined by

fθ2,ε,λ3
(x) = (1− ε)fθ2(x) + εf(x|λ3), (2.5.13)
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Table 2.2: Relative frequencies of estimated number of components based on 500 replications
[Target mixture: 2-component Poisson].

�2 = (0.5, 1, 9)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *1.00 0 *.998 .002 0 *1.00 0 *1.00

ln(n)/n 0 *1.00 0 *1.00 0 *1.00 0 *1.00
LRT 0 *.95 .05 0 *.95 .05 0 *.96 .04

�2 = (0.8, 1, 9)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .302 *.698 0 *.998 .002 0 *1.00 0 *1.00

ln(n)/n .818 .182 .002 *.998 0 *1.00 0 *1.00
LRT 0 *.92 .08 0 *.95 .05 0 *.96 .04

�2 = (0.5, 1, 1.1)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 1.00 .998 .002 1.00 1.00

ln(n)/n 1.00 1.00 1.00 1.00
LRT .96 .04 .93 .07 .94 .05 .01

�2 = (0.95, 1, 10)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .992 .008 .616 .384 0 *1.00 0 *1.00

ln(n)/n 1.00 .946 .054 .006 *.994 0 *1.00
LRT .11 *.83 .06 0 *.93 .07 0 *.95 .05

Table 2.3: Relative frequencies of estimated number of components based on 500 replications
[Target mixture: 3-component Poisson].

�3 = (0.45, 0.45, 1, 5, 10)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .108 .89 .002 0 .966 .034 0 .162 *.838 0 .002 *.998

ln(n)/n .606 .394 0 1.00 0 .846 .154 0 .26 *.74
LRT 0 .62 .36 .01 0 .39 *.58 .02 0 0 *.94 .06

�3 = (0.4, 0.4, 1, 3, 3.1)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .988 .012 .61 .39 0 1.00 0 .996 .004

ln(n)/n 1.00 .95 .05 .138 .862 .002 .998
LRT .42 .56 .01 .14 .82 .03 0 .96 .04

�3 = (0.33, 0.33, 1, 5, 10)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .004 .994 .002 0 .84 .16 0 .018 *.982 0 0 *1.00

ln(n)/n .17 .83 0 .988 .012 0 .462 *.538 0 .026 *.974
LRT 0 .54 .44 .01 0 .30 *.66 .03 0 0 *.94 .06
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Table 2.4: Relative frequencies of estimated number of components based on 500 replications
[Target mixture: 4-component Poisson].

�4 = (0.3, 0.4, 0.25, 1, 5, 9, 15)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4
2/n .066 .934 0 .718 .282 0 0 .956 .044 0 0 .866 .134

ln(n)/n .466 .534 0 .962 .038 0 .06 .94 0 0 .998 .002
LRT 0 .31 .61 .08 0 .09 .78 .13 0 0 .59 .38 .03

�4 = (0.3, 0.3, 0.2, 1, 1.2, 5, 9)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4
2/n .052 .948 0 .998 .002 0 .614 .386 0 .18 .818 .002

ln(n)/n .386 .614 0 1.00 0 .990 .010 0 .922 .078
LRT 0 .78 .21 .01 0 .68 .31 .01 0 .17 .78 .03 .02

�4 = (0.25, 0.25, 0.25, 1, 5, 10, 15)
Sample Size n = 50 n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4
2/n .002 .944 .054 0 .182 .812 .006 0 0 .924 .076 0 0 .794 .206

ln(n)/n .046 .954 0 .718 .282 0 0 1.00 0 0 .998 .002
LRT 0 .17 .76 .07 0 .02 .86 .12 0 0 .59 .40 .01

where ε is the proportion of contamination and the (contaminating) value λ3 is large com-

pared to those of ε1 and ε2.

While it is a common practice to study robustness of MHD estimators against gross-error

contamination models, such an approach would be inappropriate in our context because, by

virtue of its consistency, our estimator m̂n would (correctly) identify (for sufficiently large n)

the number of components in the mixture from which data are generated, which in the above

setup would be 3 instead of 2. Notice also that there is no Hellinger function representation of

our estimator of mixture complexity which would facilitate the study of α-influence functions.

In view of these, we assess the robustness of m̂n when the postulated model is a Poisson

mixture but the data are generated from a Negative Binomial mixture. More precisely, to

assess the robustness, we perform extensive simulation studies when the postulated model

is a 2-component Poisson mixture fθ2(x) defined above with λ1 and λ2 as its component

means, but the data are generated from a 2-component Negative Binomial mixture given by

f(x) = πf1(x) + (1− π)f2(x), (2.5.14)
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where, for i = 1, 2, fi(x) =


r + x− 1

x


 pr

i (1 − pi)
x, x = 0, 1, . . .. Let f1 and f2 be the

p.m.f.s associated with random variables, say, X1 and X2, respectively. Then, it can be

easily shown that the component means and the variances are E(xi) = r(1 − pi)/pi and

V ar(Xi) = r(1 − pi)/p
2
i , for i = 1, 2. It is also well known that if, for each i = 1, 2, r → ∞

and pi → 1 such that r(1 − pi) → λi, then E(Xi) → λi and V ar(Xi) → λi, which agrees

with the component Poisson means and variances. In fact, under these conditions, it can be

shown that the negative binomial family of distributions includes the Poisson distribution

as a limiting case.

The hallmark of the (postulated) Poisson distribution is that the mean is equal to the

variance. However, the component variance of a negative binomial mixture from which the

count data is generated may be more than can be expected on the basis of the postulated

model. This phenomenon, known as overdispersion, in the negative binomial components in

2.5.14 may also be moderate to extreme depending on the values of r and pi, for i = 1, 2.

In our simulation studies, we consider two scenarios. In both the scenarios, we set the

component mean of the sampling model to be the same as that of the postulated model,

that is, r(1 − pi)/pi = λi for i = 1, 2. In the first scenario, we set r = 10 and λ1 = 1, but

vary the values of λ2 from 2 to 7 with a unit increment. The values of pi, i = 1, 2 can be

obtained from the equation pi = r/(λi + r) for i = 1, 2. This setting yields E(X1) = 1 and

V ar(X1) = 1.1 and the values of E(X2) = λ2 and V ar(X2) are listed in the following table.

λ2 2 3 4 5 6 7
V ar(X2) 2.4 3.9 5.6 7.5 9.6 11.9

Notice that the V ar(X2) values in the above table are progressively much larger compared

to the corresponding values of E(X2)(= λ2), thus creating a moderate to more extreme

overdispersion in the second negative binomial component.
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In the second scenario, we set λ1 = 1 and λ2 = 10 (these set E(X1) = 1 and E(X2) = 10),

but vary the values of r from 10 to 45 with an increment of 5. The following table lists the

values of V ar(X1) and V ar(X2):

r 10 15 20 25 30 35 40 45
V ar(X1) 1.1 1.066 1.050 1.040 1.029 1.025 1.022
V ar(X2) 20 16.667 15 14 13.333 12.857 12.222

Note that, as the values of r decrease, the values of V ar(X1) stay close to E(X1) = 1, but

the values of V ar(X2) become much larger compared to E(X2) = 10, thus one again creating

a moderate to more extreme overdispersion in the second negative binomial component.

Finally, in each of these two scenarios, we set π = 0.25, 0.5, 0.75 in 2.5.14.

For each of the above set of parameter values in each scenario, count data is generated

from the appropriate negative binomial mixture in 2.5.14, but the computational algorithm

described in section 2.4 is implemented under the assumption that the class Fm defined in

section 2.2 is a family of Poisson mixtures. Here, we perform simulation studies for three

sample sizes n = 100, 500, 1000 using the two threshold values αn,m = 2/n and ln(n)/n. As

before, for each sample size and threshold value, we performed 500 Monte Carlo replications

of our algorithm, each yielding an estimate of mixture complexity. Tables 2.5 to 2.7 below give

the relative frequencies (out of 500 replications) of the number of components determined

by our method for the first scenario where r = 10 and λ1 = 1 but λ2 values vary, and Tables

2.8 to 2.10 give similar results for the second scenario, where λ1 = 1 and λ2 = 10 but the

values of r vary. In all these tables, the percentage (50% or above) of correct identifications

is given in bold with an asterisk beside it.

The simulations carried out here span over a variety of moderate to more extreme depar-

tures from component Poisson assumption along with two different scenarios of overdisper-

sion in the second component. In all, the results in Tables 2.5 to 2.10 cover 126 different

cases of model misspecification, which span over small to large sample sizes with moderate to

extreme overdispersion. Of these 126 cases, Tables 2.5 to 2.10 show that our procedure based
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on the SBC threshold value αn,m = ln(n)/n correctly determines the number of components

in 104 cases and our procedure based on the AIC threshold value αn,m = 2/n correctly

determines the number of components in 86 cases.

More specifically, Tables 2.5 to 2.7 show that, for some small sample sizes and small values

of λ2, our procedure based on the SBC threshold value αn,m = ln(n)/n underestimates the

true mixture complexity (m0 = 2) but it correctly identifies the true mixture complexity a

large majority of times for small and large samples, even as the overdispersion in the second

component in 2.5.14 increases. These tables show that the situation is somewhat reversed for

our procedure based on the AIC threshold value αn,m = 2/n in that it overestimates the true

mixture complexity in (some) instances where the sample size is large and the overdispersion

is also large.

Tables 2.8 to 2.10 show that our procedure based on the SBC and the AIC threshold

values perform well when n = 100 and for all values of r, including the smaller sample

size n = 500, Table 2.10 shows that our procedure based on the SBC and AIC continue

to correctly identify even for small values of r, whereas Tables 2.8 and 2.9 show that our

procedure based on the SBC performs better than the one based on the AIC. Overall, given

the extreme nature of departure from component Poisson assumption, the results in Tables

2.5 to 2.10 serve as a testament that our MHD based estimate of the mixture complexity is

highly robust under model misspecification.

For the model misspecification setup described in this section, it is possible to calculate

the percentage of correct identification of mixture complexity using the sequential testing

procedure of Karlis and Xekalaki (1999) based on LRT that utilizes resampling techniques.

However, as observed in chapter 1 for the continuous case, we believe that the mixture

complexity estimate based on the sequential LRT of Karlis and Xekalaki (1999) will be

highly unstable, and this instability may be exasperated when the overdispersion in the

second negative binomial component becomes more severe.
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Table 2.5: Relative frequencies of estimated number of components based on 500 replications. Sample from 2 component
Negative Binomial mixture with λ1 = 1,π = .25, and r = 10.

λ2 = 2
Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .908 .092 .218 *.782 .008 *.992

ln(n)/n .998 .002 .888 .112 .474 *.526
λ2 = 3

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .456 *.546 0 *1.00 0 *1.00

ln(n)/n .91 .09 .02 *.98 0 *1.00
λ2 = 4

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .066 *.93 .004 0 *.958 .042 0 *.856 .144

ln(n)/n .45 *.55 0 *1.00 0 *.998 .002
λ2 = 5

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .006 *.978 .016 0 *.724 .276 0 .252 .748

ln(n)/n .078 *.922 0 *.996 .004 0 *.948 .052
λ2 = 6

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.956 .044 0 .292 .708 0 .022 .978

ln(n)/n .006 *.994 0 *.936 .064 0 *.576 .424
λ2 = 7

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.916 .084 0 .068 .932 0 0 1.00

ln(n)/n .002 *.992 .006 0 *.718 .284 0 .112 .888
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Table 2.6: Relative frequencies of estimated number of components based on 500 replications. Sample from 2 component
Negative Binomial mixture with λ1 = 1,π = .5, and r = 10.

λ2 = 2
Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .882 .118 .14 *.86 .002 *.998

ln(n)/n .994 .006 .802 .198 .276 *.724
λ2 = 3

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .264 *.736 0 *.996 .004 0 *.998 .002

ln(n)/n .784 .216 0 *1.00 0 *1.00
λ2 = 4

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .016 *.98 .004 0 *.956 .044 0 *.862 .138

ln(n)/n .182 *.818 0 *1.00 0 *1.00
λ2 = 5

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.992 .008 0 *.808 .192 0 .40 .60

ln(n)/n .006 *.992 .002 0 *1.00 0 *.984 .016
λ2 = 6

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.974 .026 0 *.52 .48 0 .094 .906

ln(n)/n 0 *1.00 0 *.982 .018 0 *.842 .158
λ2 = 7

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.946 .054 0 .234 .766 0 .006 .994

ln(n)/n 0 *.998 .002 0 *.914 .086 0 .474 .526
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Table 2.7: Relative frequencies of estimated number of components based on 500 replications. Sample from 2 component
Negative Binomial mixture with λ1 = 1,π = .75, and r = 10.

λ2 = 2
Sample Size n = 100 n = 500 n = 1000

αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .936 .064 .286 *.714 .02 *.98

ln(n)/n 1.00 .94 .06 .604 .396
λ2 = 3

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .486 *.514 0 *1.00 0 *.998 .002

ln(n)/n .932 .068 .022 *.978 0 *1.00
λ2 = 4

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .098 *.898 .004 0 *.98 .02 0 *.926 .074

ln(n)/n .508 .492 0 *1.00 0 *1.00
λ2 = 5

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n .014 *.98 .006 0 *.934 .066 0 *.75 .25

ln(n)/n .14 *.86 0 *1.00 0 *1.00
λ2 = 6

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.988 .012 0 *.82 .18 0 .474 .526

ln(n)/n .018 *.982 0 *.998 .002 0 *.984 .016
λ2 = 7

Sample Size n = 100 n = 500 n = 1000
αn 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.974 .026 0 *.624 .376 0 .216 .784

ln(n)/n .002 *.998 0 *.994 .006 0 *.948 .052
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Table 2.8: Relative frequencies of estimated number of components based on 500 replications. Sample from 2 component
Negative Binomial mixture with λ1 = 1,λ2 = 10, and π = .25

n = 100
n r = 10 r = 15 r = 20 r = 25

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .002 *.594 .404 0 *.80 .20 0 *.92 .08 0 *.942 .058

ln(n)/n .002 *.942 .056 0 *.986 .014 0 *.996 .004 0 *.998 .002
n r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.978 .022 0 *.982 .018 0 *.99 .01 0 *.988 .012

ln(n)/n 0 *1.00 0 *1.00 0 *1.00 0 *1.00
n = 500

r r = 10 r = 15 r = 20 r = 25
αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 0 .984 .016 0 .018 .982 0 .124 .876 0 .296 .704

ln(n)/n 0 .022 .978 0 .382 .618 0 *.782 .218 0 *.946 .054
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 .476 .524 0 *.67 .33 0 *.766 .234 0 *.82 .18

ln(n)/n 0 *.96 .04 0 *.994 .006 0 *.998 .002 0 *.998 .002
n = 1000

r r = 10 r = 15 r = 20 r = 25
αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 0 .926 .074 0 0 1.00 0 .004 .996 0 .01 .99

ln(n)/n 0 0 1.00 0 .01 .99 0 .192 .808 0 *.542 .458
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 .07 .93 0 .194 .806 0 .282 .716 .002 0 .448 .552

ln(n)/n 0 *.776 .224 0 *.93 .07 0 *.966 .034 0 *.992 .008
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Table 2.9: Relative frequencies of estimated number of components based on 500 replications. Sample from 2 component
Negative Binomial mixture with λ1 = 1,λ2 = 10, and π = .5

n = 100
r r = 10 r = 15 r = 20 r = 25

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.76 .236 .004 0 *.888 .112 0 *.94 .06 0 *.984 .016

ln(n)/n 0 *.984 .016 0 *.996 .004 0 *.998 .002 0 *1.00
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.982 .018 0 *.992 .008 0 *.99 .01 0 *.99 .01

ln(n)/n 0 *1.00 0 *1.00 0 *1.00 0 *.998 .002
n = 500

r r = 10 r = 15 r = 20 r = 25
αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 .006 .984 .01 0 .128 .872 0 .386 .614 0 *.59 .41

ln(n)/n 0 .252 .748 0 *.788 .212 0 *.942 .058 0 *.986 .014
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.71 .29 0 *.824 .176 0 *.896 .104 0 *.91 .09

ln(n)/n 0 *.992 .008 0 *1.00 0 *1.00 0 *.998 .001
n = 1000

r r = 10 r = 15 r = 20 r = 25
αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 0 .962 .038 0 0 .996 .004 0 .04 .96 0 .126 .872 .002

ln(n)/n 0 0 1.00 0 .182 .818 0 *.622 .378 0 *.874 .126
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 .292 .706 .002 0 .488 .512 0 *.608 .392 0 *.706 .294

ln(n)/n 0 *.97 .03 0 *.988 .012 0 *.994 .012 0 *.996 .004
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Table 2.10: Relative frequencies of estimated number of components based on 500 replications. Sample from 2 component
Negative Binomial mixture with λ1 = 1,λ2 = 10, and π = .75

n = 100
r r = 10 r = 15 r = 20 r = 25

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.918 .082 0 *.978 .022 0 *.984 .016 0 *.994 .006

ln(n)/n 0 *.998 .002 .002 *.996 .002 .002 *.998 0 *1.00
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.994 .006 0 *1.00 0 *.99 .01 0 *.996 .004

ln(n)/n 0 *1.00 0 *1.00 0 *1.00 0 *1.00
n = 500

r r = 10 r = 15 r = 20 r = 25
αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 .212 .782 .006 0 *.57 .43 0 *.762 .238 0 *.864 .136

ln(n)/n 0 *.89 .11 0 *.984 .016 0 *.996 .004 0 *1.00
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.902 .098 0 *.946 .054 0 *.97 .03 0 *.972 .028

ln(n)/n 0 *1.00 0 *1.00 0 *1.00 0 *1.00
n = 1000

r r = 10 r = 15 r = 20 r = 25
αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n .008 .006 .962 .024 .002 .10 .894 .004 0 .366 .632 .002 0 *.59 .41

ln(n)/n .008 .376 .616 .002 *.848 .15 0 *.982 .018 0 *.99 .01
r r = 30 r = 35 r = 40 r = 45

αn 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2/n 0 *.74 .26 .002 *.814 .184 0 *.896 .104 0 *.916 .084

ln(n)/n 0 *1.00 .002 *.996 .002 0 *1.00 0 *1.00

2.6 THREE EXAMPLES

Here, we consider three overdispersed count datasets which have been modeled using

Poisson mixtures in Karlis and Xekalaki (1998, 1999 and 2001), respectively. For these three

data sets, we first estimate the number of components using our MHD based estimator m̂n in

(2.2.9) for the SBC and the AIC thresholds. When our MHD based computational algorithm

stops and reports a value m̂n = k, say, it automatically provides the MHD estimate of all the

parameters in the k-component mixture. In all our examples, we use these MHD estimates

to obtain the best fitting k-component mixture.

The first example concerns the number of accidents incurred by 414 machinists over a

period of three months. This count data (see Table 2.13 below) is taken from the classical
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paper of Greenwood and Yule (1920) and has been analyzed by several authors including

Karlis and Xekalaki (1999). Greenwood and Yule noted that the fit provided by single Poisson

distribution to this data is very poor. Using a sequential testing procedure based on likelihood

ratio test (LRT) that utilizes a resampling approach, Karlis and Xekalaki (1999) determined

that a 3-component Poisson mixture provides a better fit to the data. Observe from Table

2.13 below that this data contains excessive number of zeros, indicating that a (Poisson)

mixture model that simultaneously addresses the excess zeros and overdispersion, referred

here as a zero-inflated Poisson (ZIP) mixture model (see definition below), may also be

appropriate for this data. We briefly discuss the estimation of mixture complexity for zero-

inflated (finite) Poisson mixtures below and then fit an appropriate ZIP mixture to this

data.

The second example concerns the number of environmental complaints placed by phone in

an environmental station in Netherlands for the year 1985. A simple Poisson model is clearly

inappropriate for this data (see Table 3 in Karlis and Xekalaki (1998)), since the mean is 22.11

while the variance is 324.08, which is about 15 times greater than the mean. Moreover, the

data is highly skewed with a very long tail. Karlis and Xekalaki (1998) analyzed this data and

illustrated the superiority of the MHD method of estimation over the ML estimation method.

Specifically, for this data they fitted a 3-component Poisson mixture using MHD estimates

as well as ML estimates and showed that the fit based on MHD estimates, compared to the

one based on ML estimates, was much less influenced by relatively few extreme observations.

More precisely, they showed that the fit based on MHD has a smoother right tail whereas

the fit based on MLE has a bump, indicating a stronger influence of few high values on the

ML method.

The third example concerns the number of defaulted installments in a financial institution

in Spain (see Table 2.18 below), a data originally considered in Dionne, Artis and Guillen

(1996). Due to the presence of overdispersion in the data, Karlis and Xekalaki (2001) con-

cluded that a Poisson mixture would be plausible for modeling this data. Based on plots of
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Hellinger gradient function for different values of mixture complexity, Karlis and Xekalaki

(2001) concluded that a semiparametric MHD estimate of the mixing distribution supports

a 6-component Poisson mixture model for the data. Their plots (see Figure 1 of Karlis and

Xekalaki (2001)) also show that their MHD estimate of the mixing distribution cannot sup-

port a Poisson mixture with more than 6 components. In addition to overdispersion, once

again, observe from Table 2.18 below that this data contains excessive number of zeros, indi-

cating that a zero-inflated Poisson mixture (ZIP mixture) model may also be appropriate

for the data. We discuss fitting an appropriate ZIP mixture to this data as well.

For the count data on the number of accidents incurred by 414 machinists, we determined

an estimate of the number components m assuming two slightly different finite mixture

models; namely, (1) the usual m-component Poisson mixture model with means 0 ≤ λ1 <

.... < λm and (2) a m-component ZIP mixture model defined by f ˜θm
(x) = π1δ{0}(x) +

∑m
i=2 πif(x|λi), where π1 is the unknown proportion of zero count, δ{0} is a point mass at

0, f(x|λi) is a Poisson p.m.f. with mean λi satisfying 0 ≤ λ2 < .... < λm, πi ≥ 0 for

i = 1, . . . ,m, and
m∑

i=1

πi = 1. Note that the ZIP mixture models belong to the general family

F̃m = {f ˜θm
: θ̃m ∈ Θ̃m ⊆ Rd} such that f ˜θm

(x) = π1δ{0}(x) +
∑m

i=2 πif(x|φi), where the

m component p.m.f.s are not necessarily Poisson and φi’s are as in (2.2.1). As in section

2.2, for an arbitrary p.m.f. f ∈ Γ, we can once again define the index of the economical

representation of f , relative to the family of mixtures F̃m and also modify those in equations

(2.2.4) to (2.2.9) for the family F̃m. For the sake of clarity, we will denote the estimator

of mixture complexity for the ZIP mixtures as m̃n. Note that the conclusions of our main

theorem would still hold for m̃n. For computations in the case of ZIP mixtures, we will also

appropriately modify the details given in section 2.4.

For model (1), our analysis using the MHD computational algorithm yielded an estimate

of mixture complexity m̂n = 2 for the thresholds αn,m = 2/n and ln(n)/n. For the ZIP

mixture model (2), our analysis using MHD computational algorithm yielded an estimate

of m̃n = 2 for the threshold αn,m = ln(n)/n, while it yielded an estimate of m̃n = 3 for
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the thresholds αn,m = 2/n. We used the MHD estimate of the parameters automatically

provided at the termination of our algorithm and obtained the best fitting 2-component

Poisson mixture and the 3-component ZIP mixture. For comparison purposes, we also used

the HELMIX algorithm and computed the MHD estimate of the parameters in a 3-component

Poisson mixture, which Karlis and Xekalaki (1999) determined to be the best fit. In Table

2.11 below, we give the MHD estimates of the parameters corresponding to the 2- and 3-

component Poisson mixtures along with the values of H2
m = H2(f̂n, f̂

m), which can be used

to assess each of these fitted Poisson mixtures. In Table 2.12 we give the MHD estimate of the

parameters and the H2
m values corresponding to the best fitting 3-component ZIP mixture.

Finally, in Table 2.13, we compare the observed frequencies with the expected frequencies

provided by each of the fitted Poisson mixtures given in Tables 2.11 and 2.12.

Notice from Tables 2.11 and 2.12 that the 3-component ZIP mixture fit is essentially the

same as the 3-component Poisson mixture fit. We conclude from the H2
m values in Tables

2.11 and 2.12, and the nature of fit given in Table 2.13 that our 3-component ZIP mixture

fit (suggested by our AIC threshold) and the 3-component Poisson mixture fit based on

MHD estimates provide the best fit to the data. However, from the point of view of slight

parsimony (because λ1 is set to 0 in the 3-component ZIP mixture), we would prefer the

3-component ZIP mixture fit (based on MHD estimates) for the data. We also computed

expected frequencies based on a 3-component ZIP mixture using ML estimates and found

that they also provided a very good fit to the data.

Table 2.11: MHD estimate of parameters in 2- and 3-component Poisson mixtures for data on the
number of accidents incurred by 414 machinists over a period of three months.

m H2
m π1 π2 π3 λ1 λ2 λ3

2 .00396 .8796 .1204 .22749 2.1859
3 .00283 .42072 .52822 .05105 .0000111 .58567 3.0424



62

Table 2.12: MHD estimate of parameters in 3-component ZIP mixture for number of accidents
data.

m H2
m π1 π2 π3 λ1 λ2 λ3

3 .00284 .42335 .52580 .05084 0 .5896 3.0449

Table 2.13: Observed and expected frequencies (based on MHD estimates) of fitted 2- and 3-
component Poisson mixtures, and 3-component ZIP mixture for number of accidents data.

X 0 1 2 3 4 ≥ 5
Frequency 296 74 26 8 4 6

m = 2 295.66 78.23 20.89 10.32 5.36 3.54
m = 3 296.93 74.38 25.55 8.81 4.20 4.13

ZIP (m = 3) 297.02 74.20 25.62 8.84 4.19 4.13

The second is Karlis and Xekalaki(1998)’s example concerning the number of environ-

mental complaints placed by phone in an environmental station in Netherlands for the year

1985, and it is summarized in Table 2.14 below. For this data, our analysis using MHD

algorithm yielded an estimate of mixture complexity m̂n = 4 for the AIC and the SBC

thresholds. Note that Karlis and Xekalaki (1998) fitted a 3-component Poisson mixture to

this data, whereas our algorithm points to a 4-component Poisson mixture. It should be men-

tioned here that Karlis and Xekalaki (1998)’s decision to fit a 3-component Poisson mixture

model for this data was not based on any prior testing procedure to determine the mixture

complexity for this data, as done in Karlis and Xekalaki (1999).

In Table 2.15 below, we give the MHD estimate of the parameters corresponding to

our 4-component Poisson mixture along with the H2
4 value, and the the MHD estimates

corresponding to the 3-component Poisson mixture from Table 4 of Karlis and Xekalaki

(1998) along with the H2
3 value. It is possible to compare our 4-component Poisson mixture
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fit with the 3-component Poisson mixture fit of Karlis and Xekalaki (1998) in terms of

observed frequencies and the expected frequencies, as done in Table 3 of Karlis and Xekalaki

(1998). Instead, we compare the plot of the two fitted mixtures with the histogram of observed

frequencies for this data in Figure 2.1 below (also see Figure 5 in Karlis and Xekalaki (1998)).

We conclude from the nature of fit in Figure 2.1 and the H2
m values in Table 2.15 that

our MHD based 4-component Poisson mixture provides a better fit than the 3-component

Poisson fit in Karlis and Xekalaki (1998). As noted in Karlis and Xekalaki (1998), we also

found that the 4-component Poisson mixture fit based on MHD estimates largely ignores

the extreme values, while the 4-component Poisson mixture fit based on MLE is very much

influenced by extreme values.

Table 2.14: The number of environmental complaints placed in an environmental station in 1985

x Frequency x Frequency x Frequency
0-4 37 30-34 21 60-64 7
5-9 67 35-39 13 65-69 2

10-14 69 40-44 13 70-79 3
15-19 56 45-49 13 80-89 1
20-24 28 50-54 3 90-99 2
25-29 23 55-59 3 ≥ 100 6

Table 2.15: MHD estimates of parameters in 3-component Poisson mixture taken from Table 4 of
Karlis and Xekalaki (1998) and MHD estimates of parameters in our 4-component Poisson mixture
for the number of environmental complaints data.

m H2
m π1 π2 π3 π4 λ1 λ2 λ3 λ4

3 .13602 .39 .418 .197 7.136 17.331 37.676
4 .10772 .2524 .4287 .2033 .1156 5.3405 13.4953 26.0726 43.3879
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Figure 2.1: Histogram of the observed frequencies, the fitted 3- and 4-component Poisson mixtures
for the number of environmental complaints data.

Finally, we revisit the data on the number of defaulted installments in a financial insti-

tution in Spain discussed in Karlis and Xekalaki (2001). Due to the presence of excessive

number of zeros (see Table 2.18 below) and overdispersion, as in example 1 above, we deter-

mined an estimate of the number components m assuming a m-component Poisson mixture

with means 0 ≤ λ1 < .... < λm, as well as a m-component ZIP mixture defined above. For

the m-component Poisson mixture model assumption, our analysis using the MHD com-

putational algorithm yielded an estimate of mixture complexity m̂n = 3, 4 for thresholds

αn,m = ln(n)/n and 2/n, respectively. Note that our answers differ drastically from Karlis

and Xekalaki (2001)’s answer, which supports a 6-component Poisson mixture for this data.

In Table 2.16 below, we give the MHD estimates of parameters corresponding to 3-, 4-,

5- and 6-component Poisson mixtures along with the H2
m values. Although a 5-component

mixture is not suggested either by our method or by Karlis and Xekalaki (2001), we fit it for

the sake of completeness. In Table 2.16, note that the fit based on the 4-component Poisson



65

mixture has a tiny fourth (Poisson) component with mean 23.18354, the 5-component fit has

tiny fourth and fifth (Poisson) components with means 14.31078 and 28.25839, respectively,

and the 6-component fit has tiny fourth, fifth and sixth (Poisson) components with means

8.90081, 14.32837 and 28.2210445, respectively. Moreover, the 6-component Poisson mixture

fit is not well separated since the 3rd and 4th estimated component means are almost the

same. All these observations and the values of H2
m seem to suggest that the 3-component

Poisson mixture determined by our SBC threshold provides a better fit to the data.

For the ZIP mixture model assumption, our analysis using the MHD computational

algorithm yielded an estimate of m̃n = 4, 5 for the thresholds αn,m = ln(n)/n and 2/n,

respectively. Table 2.17 gives MHD estimates of parameters corresponding to 4-, 5- and 6-

component ZIP mixtures along with the H2
m values. Once again, note in Table 2.17 that the

fit based on the 5-component ZIP mixture has a tiny fifth (Poisson) component with mean

26.0526, and the 6-component ZIP mixture has tiny fifth and sixth (Poisson) components

with means 14.4140 and 28.1969, respectively. Table 2.18 gives the observed frequencies and

the expected frequencies (based on MHD estimates) corresponding to our fitted 4-, 5- and

6-component ZIP mixtures for this data. From the above observations and the H2
m values in

Table 2.17, we suggest that a 4-component ZIP mixture determined by our SBC threshold

also provides a good fit to the data. In view of the presence of high proportion of zeros and

overdispersion, we conclude that the 4-component ZIP mixture provides a better fit for this

data.

2.7 SUMMARY AND CONCLUSIONS

For count data, an information criterion based on minimum Hellinger distances is shown to

naturally yield an estimator of the unknown number of components in finite mixtures, when

the exact form of the component distributions are unknown but are postulated to be members

of some parametric family. This estimator is consistent for parametric family of finite mixture

models. The HELMIX numerical algorithm of Karlis and Xekalaki (1998) provides a useful
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Table 2.16: MHD estimates of parameters in 3-, 4-, 5- and 6-component Poisson mixtures for the
data on number of defaulted installments in a Spanish bank.

m H2
m π1 π2 π3 π4 π5 π6

λ1 λ2 λ3 λ4 λ5 λ6

3 .00434 .74422 .207518 .048256
.152897 4.26022 10.94475

4 .00384 .741979 .204086 .052698 .0012357
.150406 4.15435 10.43217 23.18354

5 .00349 .739226 .193037 .056636 .0105585 .00054105
.1473698 3.958507 8.893600 14.31078 28.25839

6 .00349 .7391723 .193098 .0463737 .0102867 .0105206 .0005486
.1473174 3.958116 8.893728 8.90081 14.32837 28.2210445

Table 2.17: MHD estimates of parameters in 4-, 5- and 6-component ZIP mixtures for the data on
number of defaulted installments in a Spanish bank.

m H2
m π1 π2 π3 π4 π5 π6

λ1 λ2 λ3 λ4 λ5 λ6

4 .00412 .37260 .38536 .19851 .04352
0 .36241 4.51862 11.26306

5 .00361 .32410 .42879 .19875 .04752 .00084
0 .30613 4.3824 10.8486 26.0526

6 .00338 .29174 .45646 .19001 .05159 .00964 .00055
0 .272787 4.1516 9.2107 14.4140 28.1969
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Table 2.18: Comparison of observed frequencies and expected frequencies of fitted 4-component,
5-component and 6-component ZIP mixtures for defaulted installments in a Spanish bank.

x Observed Expected Frequencies x Observed Expected Frequencies

frequencies MHDE frequencies MHDE

m = 4 m = 5 m = 6 m = 4 m = 5 m = 6
ZIP ZIP ZIP ZIP ZIP ZIP

0 3002 3016.21 3013.02 3012.68 18 8 3.484 3.023 3.689
1 502 501.894 504.492 503.127 19 6 2.065 1.798 2.584
2 187 186.455 181.522 182.579 20 3 1.163 1.070 1.783
3 138 166.742 171.423 175.990 21 0 0.624 0.669 1.216
4 233 179.042 182.085 181.329 22 1 0.319 0.469 0.828
5 160 163.424 162.387 157.702 23 0 0.156 0.379 0.574
6 107 127.480 124.431 120.595 24 1 .073 0.342 0.415
7 80 89.449 86.961 86.804 25 0 .033 0.326 0.322
8 59 60.605 59.923 62.936 26 0 .014 0.315 0.268
9 53 43.044 43.988 47.812 27 0 .006 0.298 0.237
10 41 33.659 35.344 37.829 28 1 .002 0.276 0.217
11 28 28.376 29.928 30.225 29 1 .00093 0.24769 0.20015
12 34 24.341 25.258 23.769 30 1 .00035 0.21422 0.18291
13 10 20.292 20.475 18.213 31 1 .00013 0.17994 0.16395
14 13 16.068 15.685 13.616 32 0 .00004 0.14646 0.14337
15 11 11.987 11.303 9.992 33 0 .00002 0.11562 0.12203
16 4 8.417 7.672 7.241 34 1 0 .08859 0.10100
17 5 5.570 4.929 5.196
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tool for the computation of our estimator, which is clearly an iterative procedure. Monte

Carlo simulations for a wide variety of Poisson mixtures show that our estimator is able

to correctly determine the number of components when the postulated mixture model is

the same as the one from which samples are generated. These establish the efficiency of

our estimation method, making it an attractive competitor to other existing methods in

the literature. A distinguishing feature of our estimator is that it continues to correctly

determine the number of components even when the mixture model from which samples are

generated is a moderate to more extreme departure from the postulated mixture model. The

basic construction, being firmly rooted in the minimum Hellinger distance approach, enables

our estimator to naturally inherit the property of robustness under model misspecification

without losing any efficiency when the model is correctly specified.

Simulations and data analysis carried out in this chapter involve implementation of our

algorithm using two different threshold values, selected based on the well known Akaike

and Schwarz information criterion. Numerical studies and data analysis presented here show

that the estimates of mixture complexity provided by these two thresholds agree in some

cases and do not agree in others. Overall, both the AIC and the SBC thresholds provide

sensible and justifiable estimates of mixture complexity for the three overdispersed real

datasets (two with zero-inflation) analyzed in this article, with the SBC threshold generally

providing a more parsimonious fit. When the model is misspecified and/or when there is

extreme overdispersion, we observed that the SBC threshold performs better than the AIC

threshold. The fact that the value of our mixture complexity estimate depends on the choice

of threshold values prompts us to look deeper into the issue of selection of other threshold

values. More research is underway on this subject. In conclusion, it is shown here that our

consistent and robust estimator of mixture complexity can effectively provide guidance in

the search for the best mixture model for a given dataset.
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Chapter 3

MODELING US UNEMPLOYMENT RATES

3.1 INTRODUCTION

In this chapter, we consider the problem of forecasting the civilian unemployment rate

(UE) for each state and the District of Columbia in the United States. Among the important

economic data developed by the Bureau of Labor Statistics (BLS), UE rates for states and

local areas are viewed as key indicators of local economic conditions. These estimates are

produced by state workforce agencies under the Federal-State cooperative Local Area Unem-

ployment Statistics (LAUS) program. The U.S. civilian unemployment rate represents the

percent of labor force that is unemployed. This rate is published every month by the BLS

for the whole nation, as well as for its various geographic and demographic sub-domains.

For example, the UE rate estimates are reported for all states and Washington DC, all

metropolitan statistical areas, all counties (cities and towns in New England), and cities

with a population of 25,000 or more. The unemployment rates are used in regional planning

and fund allocation for states under various federal assistance programs.

The statistical models used for developing statewide LAUS estimates have been replaced

with new, third-generation models, featuring real-time benchmarking to monthly national

Current Population Survey (CPS) employment and unemployment totals. The models pro-

duce seasonally adjusted estimates within the estimation model, as well as non-seasonally

adjusted estimates, and measures of error. The benchmark changes from annual state-level

CPS estimates of employment and unemployment to monthly national-level CPS estimates.

As part of the redesign, the historical series have been revised back to 1976 for various

geographic and demographic sub-domains.

73
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Modeling of the UE rate, including parameter estimation, may be done using the class

of Box-Jenkins models (Box and Jenkins, 1976). Montgomery et al. (1998) presents a com-

parison of forecasting performance for a variety of linear and nonlinear time series models

using the U.S. unemployment rate. They regard the seasonal ARIMA (1, 1, 0)(1, 0, 1)4 model

as a statistical model for the U.S. quarterly UE rate. The overall sample size for the CPS

is sufficient to produce reliable estimates of UE rate at the national level that satisfy cer-

tain pre-specified precision requirements. Each state has been classified as a direct-use state

or an indirect-use state with respect to the available sample size for each state. For states

such as California, Florida, Illinois, Massachusetts, Michigan, New Jersey, New York, North

Carolina, Ohio, Pennsylvania, and Texas, the sample sizes available are large enough to

provide reliable estimates, and those states are classified as direct-use states. However, the

remaining states and the District of Columbia which are classified as indirect-use states don’t

provide adequate samples, so that standard design-based estimators are not precise enough.

Therefore, there is a need to improve efficiency for the states whose sample sizes are not

sufficient.

In order to increase the accuracy of the state-level UE rate estimates, the current BLS

method, developed by Tiller (1992) represents the observed CPS sample estimates Yi,t as

Yi,t = θi,t + εi,t for i = 1, . . . , m, and t = 1, . . . , T , where θi,t is the true UE rate for domain

i at time t , and εi,t is the sampling error. The BLS models θi,t’s using structural time

series with explanatory variables and the εi,t as an Autoregressive Moving average (ARMA)

model in order to capture the autocorrelations. Clearly, the BLS method does not utilize the

information across states and does not provide uncertainty measures of the state estimates.

The focus of our research is to produce reliable forecasts of UE rates for each state by

borrowing strength across states. To this end, it is assumed that each individual series arises

from a distinct stochastic model but that all of these series share the same time-dependence

structure. We also allow for anticipated dependence across the states, and such modeling

allows for improved parameter estimation and forecasting. That is, we directly model the
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sample estimates Yi,t, for state i at time t, as a Seasonal Autoregressive Integrated Moving

Average (SARIMA) model. In order to use the information across states, we assume that

each parameter corresponding to state i in the above model is randomly distributed with a

common mean and variance. To carry out estimation of parameters in this random-effects

version of panel time series data, we use the Bayesian approach.

Seasonal Autoregressive Moving Average (SARMA) models have been widely used in

economics and statistics. There is a considerable literature on inferences for these models

using frequentist approaches, such as least squares or maximum likelihood methods (see

Anderson (1978), and Azzanlini (1981)). A Bayesian modeling framework has the advantage

of being able to incorporate available prior information in a natural way. Recently, Bayesian

inference has been facilitated by the emergence of Markov Chain Monte Carlo (MCMC)

simulation methods such as the Gibbs sampler (see Tanner and Wong (1987), Gelfand and

Smith (1990)) and Metropolis-Hastings (MH) algorithms (Metroplolis et al. (1953), Hastings

(1970), and Tierney (1993)). These methods are powerful tools for simulating intractable

joint distribution of interest. A sample of draws is the output of the simulation, and it can

be used for various purposes such as computing posterior moments and quantiles.

The Bayesian inference for time series regression, especially with autoregressive processes

conditioned on initial observations, was recognized early by Chib (1993), McCulloch and

Tsay (1993) and Albert and Chib (1993). The Bayesian work on ARMA models was spurred

by the approach of Monahan (1983), and Broemeling and Shaarway (1984). Marriott et. al

(1992) discussed an approach to the estimation of ARMA models that is based on sampling

functions of the partial autocorrelations. Chib and Greenberg (1994) developed methods of

analyzing ARMA regression error models in a Bayesian framework by using Gibbs sampling

and Metropolis-Hastings algorithms.

Although a Bayesian perspective for time series has been actively pursued, a full treat-

ment for SARMA model is not available. In section 3.2, we briefly explain the Bayesian

method Chib and Greenberg (1994) developed. In section 3.3, we present a Bayesian infer-



76

ence methodology for SARMA processes using MCMC method. We combine Markov chain

strategies, as has been done by Chib and Greenberg (1994), but with a different class of

candidate-generating densities. In section 3.4, we describe our modeling of the UE rates for

all the states following a multiplicative seasonal ARIMA model. Also, Bayesian fitting and

inference through the Gibbs sampler is discussed. In section 3.4, we perform parameter esti-

mation for the UE rates data using the framework discussed in the section 3.4, including

examination of the model adequacy, and forecast of the last four unused observations for all

the states. Our estimates and forecasts are compared with those in the univariate SARIMA

model. Overall summary and conclusions are given in section 3.6. We begin with the Bayesian

analysis for ARMA model.

3.2 LITERATURE REVIEW

Chib and Greenberg (1994) developed the procedure to analyzing ARMA(p, q) regression

error models in a Bayesian framework via the Gibbs sampling and Metropolis-Hastings algo-

rithms. They consider the following model where the observation at time t, yt, is generated

by

yt = x′tβ + εt, t = 1, . . . , n

εt = φ1εt−1 + · · ·+ φpεt−p + ut + θ1ut−1 + · · ·+ θqut−q, (3.2.1)

where xt is a k× 1 vector of covariates, β is the k× 1 vector of regression parameters, εt is a

random error, φp 6= 0, θq 6= 0, ut ∼ iid N(0, σ2), σ2 > 0, N denotes the normal distribution,

and εt follows an ARMA(p, q) process. Then, the model in (3.2.1) is equivalent to follows in

state space form (see Harvey, 1981):

yt = x′tβ + z′αt (3.2.2)

αt = Gαt−1 + fut, (3.2.3)



77

where z = (1, 0, . . . , 0)′, αt = (α1t, . . . , αmt)
′, m = max(p, q + 1),

φ1
...

φ2
...

G = φ3
... Im−1

...
...

· · · · · · · · · · · · · · ·
φm

... 0 · · · 0

and f = (1, θ1, . . . , θq)
′. In a Bayesian analysis, they determine moments and other features

of the posterior distribution of Ψ = (β,φ,θ, σ2) under certain assumptions. Let π(Ψ) be

the prior density and f(y|Ψ) the likelihood function. Then, by Bayes theorem the posterior

density is given by f(Ψ|y) ∝ π(Ψ)f(y|Ψ), where the likelihood function is dependent on

the pre-sample errors λ = (ε0, . . . , ε−p+1, u0, . . . , u−q+1). By a consequence of the state space

form of the ARMA model, they showed that the conditional likelihood can be expressed in

terms of only m pre-sample variables α0, not all the p + q elements of λ. They included β,

φ, θ, σ2, and α0 as elements in their MCMC algorithm. To perform a Bayesian analysis,

they make the following assumption as the prior distributions.

Assumption (Prior distributions):

[β,φ, θ, σ2,α0]= [β] [φ] [θ] [σ2] [α0|β, φ, θ, σ2]

=Nk(β|β0, B
−1
β ), Np(φ|φ0, B

−1
φ ) Nq(θ|θ0, B

−1
θ )

×IG(σ2|v0/2, δ0/2) [α0|β,φ,θ, σ2],

where notation, [X] is a distribution of a random variable X, [X,Y ] is a joint distribution of

random variables X and Y , [X|Y ] is a conditional distribution of random variables X given

Y , φ = (φ1, . . . , φp), θ = (θ1, . . . , θq), Ns(·|µ, σ2) is the s-variate normal distribution with

mean µ and variance σ2, and IG(.) is the inverse gamma distribution. The hyperparameters
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β0, φ0, θ0, Bβ, Bφ, , Bθ, v0, and δ0 are known. Also, each parameter is assumed to be indepen-

dently distributed with each other. For the initial state vector, the stationarity assumption

implies that α0, conditioned β,φ,θ, and σ2, has a normal distribution with E(α0) = 0 and

V (α0α
′
0) = Ω, where vec(Ω) = σ2(I −G⊗G)−1vec(ff ′).

In many cases, the posterior density is analytically intractable, therefore a sampling-

based approach to estimate the model parameters has been used. The Gibbs sampling

approach involves sampling from the complete conditional distribution of each parameter

in a systematic manner, conditional on the previous sample values of the other parameters.

Therefore, they included β,φ,θ, σ2, and α0 as elements in their MCMC algorithm, and

simulated these parameters from the conditional densities π(β|y,Ψ−β, α0), π(φ|y,Ψ−φ, α0),

π(θ|y,Ψ−θ,α0), π(σ2|y,Ψ−σ2 ,α0), and π(α0|y,Ψ), where Ψ−φ denotes all parameters in

Ψ but for φ. In order to simulate these in the regression model with ARMA(p, q) errors, the

full conditional distributions are used. The following two results are essential to inducing

the full conditional distributions given by the Proposition 1.

Definition 1. Let the scalars ys = y∗s = 0, and the vectors xs = x∗s = 0, s ≤ 0, and let

αr0 = 0, r > m, where αr0 is the rth element of α0. For t = 1, . . . , n, define

y∗t = yt −
p∑

s=1

φsyt−s −
q∑

i=1

θiy
∗
t−i − φtα10 − αt+1,0

,

x∗t = xt −
p∑

s=1

φsxt−s −
q∑

i=1

θix
∗
t−i

.

With Definition 1, the following lemma can be shown:

Lemma 1. Let y∗ be the n× 1 vector of the y∗t and let X∗ be the matrix with x∗t as its ith

row. Then,

f(y∗|Ψ,α0) = (2πσ2)−n/2exp

[
− 1

2σ2
(y∗ −X∗β)T (y∗ −X∗β)

]
. (3.2.4)
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Definition 2. Let the scalars ys = ȳs = x̄s = 0, s ≤ 0, and the vectors xs = 0, and let

αr0 = 0, r > m. For t = 1, . . . , n, define

ȳt = yt − x′tβ −
q∑

i=1

θiȳt−i − αt+1,0,

x̄t = yt − x′tβ −
q∑

i=1

θix̄t−i.

With Definition 2, the following lemma can be proved:

Lemma 2. Let ȳ be the n× 1 column vector of the ȳt and let X̄ be the matrix given by

α10 0 · · · · · · 0

x̄1 α10 0 · · · 0

x̄2 x̄1 α10 · · · 0

X̄ =
...

...
...

...
...

x̄p−1 x̄p−2 · · · · · · α10

...
...

...
...

...

x̄n−1 x̄n−2 x̄n−3 · · · x̄n−p

Then,

f(ȳ|Ψ,α0) = (2πσ2)−n/2exp

[
− 1

2σ2
(ȳ − X̄φ)T (ȳ − X̄φ)

]
. (3.2.5)

Based on two lemmas above, the full conditional distributions can be showed as the Propo-

sition 1.

Proposition 1: Full conditional distribution

(i) β|y,Ψ−β,α0 ∼ Nk(B
−1
n (Bφβ0 + σ−2X∗T y∗), B−1

n ),

(ii) φ|y,Ψ−φ,α0 ∼ p1(φ)×Np(V
−1
n (Bφφ0 + σ−2X̄T ȳ), V −1

n ),

(iii) σ2|y,Ψ−σ2 , α0 ∼ IG((v0 + n)/2, (δ0 + d1 + d2)/2),

(vi) π(α0|y,Ψ) ∝ Nm(α̂0|n, R0|n),

(v) π(θ|y,Ψ) ∝ p2(θ)×
∏n

t=1 exp[−(1/2σ2)ut(θ)2]× exp[−1
2
(θ − θ0)

T Bθ(θ − θ0)].
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where we let Bn = Bφ + σ−2X∗T X∗, Vn = Bθ + σ−2X̄T X̄, and define the function

p (φ, θ, σ2) = (σ−2)−m/2| Ω(φ, θ)|−1/2exp [−(1/2σ2)αT
0 Ω(φ, θ)α0], which is the prior

density π(α0|β,φ,θ, σ2). For a given value of (θ, σ2), the latter function is denoted as

p1(φ), and for a given value of (φ, σ2), it is denoted as p2(θ). Also, let d1 = ||y∗ − X∗β||2

and d2 = αT
0 Ω(φ,θ)−1α0. Finally, α̂0|n and R0|n are the mean and covariance of the full

conditional distribution of α0, which are obtained from the recursion (see Harvey, 1981).

From the Proposition 1, they show that the full conditional distributions of β, σ2, and α0

are straightforward to compute and belong to standard families of distributions, but those

of φ and θ are more intricate.

3.3 BAYESIAN ANALYSIS FOR SARIMA MODEL

In this section, we consider analyzing a Seasonal ARMA model in a Bayesian framework

via the Gibbs sampling and Metropolis- Hasting algorithms. Let vt denote a univariate time

series generated by a Seasonal ARMA (p, q)(P,Q)s process

ΦP (Bs)φp(B)vt = θq(B)ΘQ(Bs)at, t = 1, . . . , n, (3.3.6)

where ΦP (Bs) = (1 − Φ1B
s − · · · − ΦP BPs), φp(B) = (1 − φ1B − · · · − φpB

p), ΘQ(Bs) =

(1+Θ1B
s + · · ·+ΘQBQs), and θp(B) = (1+θ1B+ · · ·+θqB

q) are autoregressive and moving

average polynomials. Here, we assume that ΦP (Bs),φp(B), θq(B) and ΘQ(Bs) obey the

usual stationarity and invertibility conditions. Let v0 = (v0, . . . , v1−p−s)
T denote the history

of the data process, and a0 = (a0, . . . , a1−q−s)
T denote the history of the error process. For

simplicity, we also assume P ≤ 1, Q ≤ 1, and v0 = (v0, . . . , v−p+1)
T = 0. Then, equivalently,

(3.3.6) can be expressed as:

vt = φ1vt−1 + · · ·+ φpvt−p − Φ(φ1vt−1−s + · · ·+ φpvt−p−s) +

at + θ1at−1 + · · ·+ θqat−q + Θ(θ1at−1−s + · · ·+ θqat−q−s), (3.3.7)
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where φp 6= 0, θq 6= 0, at ∼ i.i.d.N(0, σ2), σ2 > 0, and N denotes the normal distribution.

Also, setting Φ = 0, and Θ = 0 would lead to ARMA models. Let φ = (φ1, · · · , φp)
T ,

θ = (θ1, · · · , θq)
T , v = (v1, · · · , vn)T , and a = (a1, · · · , an)T .

Given the data, along with the parameter vector Ψ = (φ,θ, Φ, Θ, σ2) and pre-sample

errors a0, the Bayesian model specification requires a likelihood function f(v|Ψ, a0) and a

prior density π(Ψ, a0). By the Bayes theorem, we obtain the posterior density as: π(Ψ, a0|v)

∝ f(v|Ψ, a0)π(Ψ, a0). Given the parameter vector Ψ = (φ,θ, Φ, Θ, σ2) and pre-sample

errors a0, the density of v can be expressed as

f(v|Ψ, a0) =
n∏

t=1

(2πσ2)−1/2exp

[
− 1

2σ2
a2

t

]

=
n∏

t=1

(2πσ2)−1/2exp

[
− 1

2σ2
(vt − v̂t|t−1)

2

]
,

where v̂t|t−1 = φ1vt−1 + · · ·+ φpvt−p + Φvt−s − Φ(φ1vt−1−s + · · ·+ φpvt−p−s) + θ1at−1 + · · ·+
θqat−q + Θat−s + Θ(θ1at−1−s + · · · + θqat−q−s) is the one-step-ahead predictor of vt given

information up to time t− 1. For the prior distribution, we make the following assumption.

Assumption (Prior distributions):

[φ,θ, Φ, Θ, σ2, a0]= [φ] [θ] [Φ] [Θ] [σ2] [a0]

=Np(φ|φ0, B
−1
φ ) Nq(θ|θ0, B

−1
θ ) N(Φ|Φ0, V

−1
Φ ) N(Θ|Θ0, V

−1
Θ )

×IG(σ2|v0/2, δ0/2),

that is,

f(φ,θ,Φ,Θ, σ2, a0|φ0, Bφ, Φ0, Bθ,Φ0, VΦ,Θ0, VΘ, v0, δ0)

∝ |Bφ|1/2e{−1/2(φ − φ0)T Bφ(φ − φ0)} × |Bθ|1/2e{−1/2(θ − θ0)T Bθ(θ − θ0)}

×VΦ|1/2e{−1/2(Φ−Φ0)T VΦ(Φ−Φ0)} × |VΘ|1/2e{−1/2(Θ−Θ0)T VΘ(Θ−Θ0)} × σ−v0/2+1e−δ0/(2σ2)

where the hyperparameters φ0, Bφ, θ0, Bθ,Φ0, VΦ, Θ0, VΘ, v0, and δ0 are known, and each

parameter is assumed to be independently distributed with each other.
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It should be noted that the usual normal-inverted gamma distribution has been assumed

for σ2, while those for φ, Φ, θ and Θ are normal. A vague prior information has been assumed

for pre-sample errors a0.

In our Bayesian analysis, we will determine moments and other features of the pos-

terior distribution of Ψ under the assumptions described above. To estimate the model

parameters, we sample those from the complete conditional distribution of each parameter

via the Gibbs sampling. As shown in (3.3.7), two autoregressive polynomials, ΦP (Bs) and

φp(B) are expressed in multiplicative form in the seasonal ARMA(p, q)(P, Q)s model. Also,

the expression of two moving average polynomials, ΘQ(Bs) and θq(B) is multiplicative. To

induce a relationship for φ and Φ, we set v∗t = vt − Φvt−s, v+
t = vt − φ1vt−1 − · · · − φpvt−p,

and θ∗ = (θ∗1, . . . , θ
∗
q+s) = (θ1, . . . , θq, 0, . . . , 0, Θ, θ1Θ, . . . , θqΘ). Then, setting v∗t makes the

seasonal ARMA(p, q)(P,Q)s process of vt be the ARMA(p,Qs+q) process of v∗t , and setting

v+
t be the ARMA(P, Qs + q) process of v+

t , respectively. Using these notations of v∗t and

v+
t above, we obtain the complete conditional distribution of each parameter, following the

framework that Chib and Greenberg (1994) presented as in section 3.2. Two results below

are central to our Bayesian analysis for the seasonal ARMA(p, q)(P, Q)s, (P ≤ 1,Q ≤ 1),

and these simple recursive transformations of the data yield a relationship for φ and Φ.

Definition 3. Let v∗t = vt − Φvt−s. For l < 0, let the scalars ȳl = al, and x̄l = 0, and let

θ∗ = (θ∗1, . . . , θ
∗
q+s) = (θ1, . . . , θq, 0, . . . , 0, Θ, θ1Θ, . . . , θqΘ), where s > q, and the number of

zeros is s− q − 1. For t = 1, . . . , n, define

ȳt = v∗t −
q+s∑
i=1

θ∗i ȳt−i

x̄t = v∗t −
q+s∑
i=1

θ∗i x̄t−i

With this definition, we can show the following by verifying that ȳ1 − x̄
′
1φ = a1, and pro-

ceeding by induction, where x̄
′
1 is the first row of X̄:

f(ȳ|Ψ, a0) = (2πσ2)−n/2exp

[
− 1

2σ2
(ȳ − X̄φ)T (ȳ − X̄φ)

]
, (3.3.8)
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where ȳ is the n× 1 column vector of the ȳt, and X̄ is n× p matrix given by

0 0 · · · · · · 0

x̄1 0 0 · · · 0

X̄ = x̄2 x̄1 0 · · · 0

...
...

...
...

...

x̄n−1 x̄n−2 x̄n−3 · · · x̄n−p

Definition 4. Let v+
t = vt−φ1vt−1−· · ·−φpvt−p. For l < 0, let the scalars ỹl = al, and x̃l = 0.

For t = 1, . . . , n, define

ỹt = v+
t −

q+s∑
i=1

θ∗i ỹt−i

x̃t = v+
t −

q+s∑
i=1

θ∗i x̃t−i

With this definition, we can show the following:

f(ỹ|Ψ, a0) = (2πσ2)−n/2exp

[
− 1

2σ2
(ỹ − x̃Φ)T (ỹ − x̃Φ)

]
, (3.3.9)

where ỹ is the n × 1 column vector of the ỹt, and x̃ = (0, . . . , 0, x̃1, . . . , x̃n−s)
T , here the

number of zeros is s.

Based on the two results above, followings are the full conditional distributions that are

used in our data analysis using a Seasonal ARMA (p, q)(P,Q)s (P ≤ 1,Q ≤ 1) model:

Proposition 2: Full conditional distribution

(i) φ|v,Ψ−φ, a0 ∼ Np(B
−1
1 (Bφφ0 + σ−2X̄T ȳ), B−1

1 ),

(ii) Φ|v, Ψ−Φ, a0 ∼ N(B−1
2 (BΦΦ0 + σ−2x̃T ỹ), B−1

2 ),

(iii) π(θ, Θ|v, Ψ−(θ,Θ)
, a0) ∝

∏n
t=1 exp[−(1/2σ2)at(θ, Θ)2]

×exp[−1
2
(θ − θ0)

T Bθ(θ − θ0)]exp[−1
2
BΘ(Θ−Θ0)

2],
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(iv) σ2|v,Ψ−σ2 , a0 ∼ IG((v0 + n)/2, (δ0 + d1)/2),

(v) π(a0|v,Ψ) ∝ ∏n
t=1 exp[−(1/2σ2)at(a0)

2],

where we let B1 = Bφ + σ−2X̄T X̄, B2 = BΦ + σ−2x̃T x̃, and d1 = ||ȳ − X̄φ||2.

Proof. (i), (ii), and (iv) follow from assumption, (3.3.8) and (3.3.9). (iii) and (v) follow

from the definition of the full conditional distribution, that is, the form π(Ψ, a0|v) ∝
f(v|Ψ, a0)π(Ψ, a0) (see Gelfand and Smith(1990), for details).

Notice that our full conditional distributions are similar to those of Chib and Greenberg

(1994). First thing we note is that our model does not include the parameter vector β, while

their model has the regression parameter vector. Secondly, our model has other parameters

Φ and Θ in multiplicative form. Thirdly, in our Bayesian analysis, the presample errors

(u0, . . . , u−p−Ps+1) are set to be zeros, and presample errors (a0, . . . , a−q−Qs+1) are assumed to

be vague prior information, whereas in their analysis the initial state vector α0 is used as the

history of data, and it is assumed to be normally distributed. Setting (u0, . . . , u−p−Ps+1) = 0

makes computations of the full conditional distributions simplified. In addition, this makes it

possible to calculate v∗t and v+
t for t < (p+Ps) since they are dependent of (u0, . . . , u−p−Ps+1).

Also, the vague prior information of a0 makes computation easier since it does not depend

on other parameters, Ψ, while the prior of α0 depends on Ψ.

In our Bayesian analysis, we will determine the mean and standard deviation of posterior

distribution of Ψ under the assumption described above. We estimate Ψ by the posterior

means, and measure the uncertainty in the estimates of Ψ by the posterior standard devia-

tion. For these computations, we use the Gibbs sampler (Gelman and Rubin (1992), Gelfand

and Smith (1990)).

The Gibbs sampler is a Monte Carlo Markovian updating scheme that gives the marginal,

conditional, and joint distributions of the random variables. The Gibbs sampling algorithm

requires sampling from the complete conditional distributions associated elements of (Ψ, a0)

in some systematic order. In our application, the full conditional distributions of φ, Φ and
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σ2 are standard distributions that can be easily sampled, while those of θ, Θ and a0 are

more intricate, and therefore they are computed in an analogous manner.

To implement the sampling algorithm, we block the parameters into the following

groups: (φ), (Φ), (σ2), (θ, Θ), and (a0). Within each Gibbs iteration, we draw samples

of (φ), (Φ) and (σ2) from the Normal distributions and the inverse Gamma distribution

described above, and use draws based on a Metropolis-Hastings for the groups of (θ,

Θ) and (a0). For (θ, Θ) and (a0), we use the random walk version of the Metropolis-

Hastings (MH) algorithm with appropriate Gaussian proposals to obtain samples from

the required stationary distributions (Hastings, 1970). In the random walk version, new

candidates are chosen by drawing from a distribution conditioned on the current param-

eter value, i.e. by drawing a step away from the current parameter value. More specifi-

cally, let U denote the current value of (θ,Θ). We draw V from the proposal centered at

U . We calculate the ratio α(U, V ) = f(v|φ, Φ, V, a0)π(V )/f(v|φ, Φ, U, a0)π(U). Then,

we move U to V with the probability α(U, V ). Similarly, let U ′ denote the current

value of (a0). We draw V ′ from the proposal centered at U ′. We calculate the ratio

α(U ′, V ′) = f(v|φ, Φ,θ, Θ, V ′)π(V ′)/f(v|φ, Φ,θ, Θ, U ′)π(U ′). Then, we move U ′ to V ′ with

the probability α(U ′, V ′).

Clearly, successful implementation of the MH algorithm requires a suitable proposal

density. Note that, in a Bayesian analysis of ARMA model, Chib and Greenberg (1994)

showed the full conditional distributions of φ, σ2, and α0 belong to standard families

of distributions, and to implement the MH algorithm of θ, they proposed a candidate-

generating density as the truncated normal approximation by expanding ut(θ) around θ+ as

ut(θ) ≈ ut(θ
+)−w′

t(θ−θ+), where θ+ denotes the nonlinear least squares estimate of θ and

w′
t is the ith row of W (θ+) = (∂u(θ)/∂θ′)|θ = θ+. Also note that in a Bayesian analysis of

AR or MA model, Marin at el.(2005) represented the polynomials as the factorized quantity

φp(B) =
∏p

i=1(1 − λiB) or θq(B) =
∏q

i=1(1 − λiB), and used a reversible jump algorithm

that distinguishes between the number of complex roots in the inverse roots, λi. Then, they
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simulated φ or θ from a proposal based on a simple random walk. Our Bayesian analysis in

seasonal ARMA model combines and expands two different methods, Chib and Greenberg

(1994) and Marin at el.(2005).

3.4 BAYESIAN MODELING OF UE RATES DATA

The data consists of 29 years of quarterly observations (1976-2004) on the UE rates for

52 different states including the 51 states and the District of Columbia. The data for state

i at time t is denoted by zi,t, t = 1, . . . , 116, i = 1, . . . , 52. We model these series to share

the same time-dependent structure. However, we expect the parameter estimates to be quite

different across states, and the data for each state to be correlated with those for many other

state. More precisely, following the Box-Jenkins framework of SARIMA model fitting, we fit

a seasonal ARMA (1, 1)(1, 1)4 model to the differenced series vi,t = zi,t − zi,t−1, given by

vi,t = φi,1vi,t−1 + Φivi,t−4 − φi,1Φivi,t−5

+ ai,t + θi,1ai,t−1 + Θiai,t−4 + θi,1Θiai,t−5, (3.4.10)

for t = 1, . . . , n, i = 1, . . . , I, and ai,t ∼ N (0, σ2
i ), where n is the number of time points and

I is the number of states.

For most of states, the seasonal ARIMA (1, 1, 1)(1, 0, 1)4 model is fitted well as a statistical

model for the U.S. quarterly UE rate. Note that the seasonal ARIMA (1, 1, 0)(1, 0, 1)4 model

was suggested for the U.S. quarterly UE rate data at the national level by Montgomery et.

al (1998).

To incorporate dependence between the series, we assume that each of the parameters

corresponding to state i in the above model is randomly distributed with a common mean

and variance. That is, parameters are assumed to be from common probability distributions

given by

φi,1 ∼ N (φ10, r
−1
φ1

), Φi ∼ N (Φ0, r
−1
Φ ),

θi,1 ∼ N (θ10, r
−1
θ1

), and Θi ∼ N (Θ0, r
−1
Θ ).
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Let vi0 = (vi,0, . . . , vi,1−p−s) and ai0 = (ai,0, . . . , ai,1−q−s) denote the relevant histor-

ical data for the ith series. Let vi = (vi,1, . . . , vi,n) and v = (v1, . . . ,vI). Also let φ =

(φ1,1, . . . , φI,1), Φ = (Φ1, . . . , ΦI), θ = (θ1,1, . . . , θI,1), Θ = (Θ1, . . . , ΘI), σ2 = (σ2
1, . . . , σ

2
I ),

and a0 = (a1,0, . . . , aI,0). For simplicity, we set yi0 = 0.

Given the data, along with the parameter vector Ψ = (φ,θ,Φ,Θ,σ2, a0, φ10, rφ1 , Φ0, rΦ,θ10

, rθ1 , Θ0, rΘ), and pre-sample errors a0, the Bayesian model specification requires a likelihood

f(v|Ψ,a0) and a prior π(Ψ,a0). Given the parameters Ψ and pre-sample errors a0, the

density of v can be expressed as:

f(v|Ψ, a0) =
I∏

i=1

n∏
t=1

(2πσ2
i )
−1/2exp

[
− 1

2σ2
i

a2
i,t

]
(3.4.11)

=
I∏

i=1

n∏
t=1

(2πσ2
i )
−1/2exp

[
− 1

2σ2
i

(vi,t − v̂i,t|t−1)
2

]
,

where v̂i,t|t−1 = φi,1vi,t−1 + Φivi,t−4 − φi,1Φivi,t−5 + θi,1ai,t−1 + Θiat−4 + θi,1Θiai,t−5 is the

one-step-ahead predictor of vi,t given information up to time t − 1. We make the following

assumption for the hyperparameters:

f(φ10, rφ1 , Φ0, rΦ, θ10, rθ1 , Θ0, rΘ, σ2, a0) (3.4.12)

∝ r
1/2b−1
φ1

e−1/2arφ1 × r
1/2d−1
Φ e−1/2crΦ

×r
1/2f−1
θ1

e−1/2erθ1 × r
1/2h−1
Θ e−1/2grΘ

×
I∏

i=1

σ
−v0/2+1
i e−δ0/(2σ2

i ),

where the improper prior distributions are assumed for the hyperparameters φ10, Φ0, θ10, Θ0,

and a0 and the values a, b, c, d, e, f, g, h, v0, and δ0 are known. A vague prior information

can be entertained by setting b, d, f, h, and v0 small positive numbers for rφ1 , rφ,rθ1 , and rθ.

Note that the hyperparameters are assumed to be independent of each other.

To carry out the Gibbs sampling, it is necessary to sample from the full conditional

distributions. As in the previous section, we present the full conditional distribution that
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are used in simulation for the seasonal ARMA models introduced above. These give the

conditional distribution for φi,1, Φi, θi,1, Θi and σ2
i for the ith state under the model shown

above. Hence, to carry out Gibbs sampling in our Bayesian setting across series, it is enough

to compute the full conditional distribution of the hyperparemeters φ10, Φ0, θ10, Θ0, rφ, rΦ,

rθ, and rΘ, in addition to conditional distribution for the φi,1, Φi, θi,1, Θi and σ2
i , i = 1, . . . , I.

Proposition 2 to obtain the full conditional distributions is used in the simulation for the

cross-sectional modeling of UE rates. These are given in proposition 3.

Proposition 3 : Full conditional distributions are given by the following: For i = 1, . . . , I,

(i) φi,1|v,Ψ−φi,1
,a0 ∼ N(B−1

i,1 (Bφi,1
φ10 + σ−2

i x̄T
i ȳi), B

−1
i,1 ),

(ii) Φi|v,Ψ−Φi
, a0 ∼ N(B−1

i,2 (BΦi
Φ0 + σ−2

i x̃T
i ỹi), B

−1
i,2 ),

(iii) π(θi,1, Θi|v,Ψ−(θi,1,Θi),ai,0) ∝
n∏

t=1

exp[−(1/2σ2
i )ai,t(θi,1, Θi)

2]

× exp[−1

2
Bθi,1

(θi,1 − θ10)
2]exp[−1

2
BΘi,1

(Θi −Θ0)
2],

(iv) σ2
i |v,Ψ−σ2

i
,a0 ∼ IG((v0 + n)/2, (δ0 + di,1)/2),

(v) π(ai,0|v,Ψ) ∝
n∏

t=1

exp[−(1/2σ2
i )ai,t(ai,0)

2].

For the hyperparemeters, we have

(vi) φ10|v,Ψ−φ10 , a0 ∼ N(
1

I

I∑
i=1

φi,1, rφ/I),

(vii) Φ0|v,Ψ−Φ0 ,a0 ∼ N(
1

I

I∑
i=1

Φi, rΦ/I),

(vi) θ10|v,Ψ−θ10 ,a0 ∼ N(
1

I

I∑
i=1

θi,1, rθ/I),

(vii) Θ0|v,Ψ−Θ0 ,a0 ∼ N(
1

I

I∑
i=1

Θi, rΘ/I),

(viii) rφ|v,Ψ−rφ
,a0 ∼ IG((b + I)/2, (a +

I∑
i=1

(φi,1 − φ10)
2/2),
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(ix) rΦ|v,Ψ−rΦ
,a0 ∼ IG((d + I)/2, (c +

I∑
i=1

(Φi − Φ0)
2/2),

(x) rθ|v,Ψ−rθ
,a0 ∼ IG((f + I)/2, (e +

I∑
i=1

(θi,1 − θ10)
2/2),

(xi) rΘ|v,Ψ−rΘ
, a0 ∼ IG((h + I)/2, (g +

I∑
i=1

(Θi −Θ0)
2/2),

where we let Bi,1 = Bφi
+ σ−2

i x̄T
i x̄i, Bi,2 = BΦi

+ σ−2
i x̃T

i x̃i, and di,1 = ||ȳi − x̄iφi,1||2,
i = 1, . . . , I. The quantities of x̄i, x̃i, ȳi, and ỹi are defined above; see Definitions 1 and 2.

Proof. (i)-(v) follow from Proposition 2, and (vi)-(xi) follow from (3.4.11), (3.4.12), and the

definition of the full conditional distribution.

As mentioned above, we estimate the vector Ψ defined in section 3.3 by the posterior

means, and measure the uncertainty in the estimates of Ψ by the posterior standard devia-

tion. To generate samples from the posterior distribution using the MCMC method via Gibbs

sampling, we block the parameters into the following groups: (φ), (Φ), (σ2), (θ, Θ), (a0), and

the hyperparameters (φ10), (rφ1), (Φ0), (rΦ), (θ10), (rθ1), (Θ0), and (rΘ). Within each Gibbs

iteration, we draw samples of (φ1,i), (Φi) and (σ2
i ) from the Normal distribution and the

inverse Gamma distribution described above, and use draws based on a Metropolis-Hastings

for the groups of (θi,1, Θi) and (ai,0) for each ith state. For (θi, Θi) and (ai,0), we use a

Gaussian proposal as in the previous section. Conditioned on the currently drawn parameter

values of (φ), (Φ), (σ2), (θ, Θ), and (a0), we generate samples of the hyperparameters (φ10),

(Φ0), (θ10), and (Θ0) from the normal distribution and (rφ1), (rΦ), (rθ1), and (rΘ) from the

inverse Gamma distribution.

3.5 DATA ANALYSIS OF UE RATES DATA

In this section, we fit the Bayesian SARMA model proposed in section 3.4, which includes

parameter estimation, prediction, model adequacy and forecasting of UE rates data.
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Posterior features

In order to estimate the parameter space (Ψ, a0) and measure the uncertainty in the esti-

mates, we use the posterior means and standard deviations, respectively, computed through

Gibbs sampler. All the full conditional distributions are described in Proposition 3, and their

implementation is explained at the end of section 3.4.

To conduct the Gibbs sampler, we choose the values of a, b, c, d, e, f , g, h, v0, and δ0 to

be b = d = f = h = 1, a = c = d = g = 1, v0 = 0, and δ0 = 0. We also tried other values

for these quantities and found that the results remain unchanged. Also, in our computation,

we considered 10,000 replications. To reduce the effects of initial values on the final results,

we delete the first 500 replications as ”burning-in” samples. Moreover, to diminish the serial

correlation of the run, we retain every 10th sample out of the remaining replications.

Estimating values of the hyperparameters φ10, rφ1 , Φ0, rΦ, θ10, rθ1 , Θ0, and rΘ are pre-

sented in Table 3.1, and those for parameters Ψ for each state are summarized in Table 3.2

to Table 3.6. We fit the proposed model for the first 112 observations of UE rates for each

state. The last four observations which are not part of model fitting are used for subsequent

forecast evaluation.

Table 3.1: Summary of fitted hyperparameters

Posterior distribution
hyperparemeter Mean Std. Dev. Median Lower 95% limit Upper 95% limit

φ10 0.5053009 0.0431541 0.5052150 0.4320100 0.5750100
rφ 13.9587299 3.1702190 13.6671100 9.1450600 19.4364500
Φ0 0.0214690 0.0359463 0.0209400 -0.0352200 0.0817800
rΦ 23.9892970 5.2850984 23.3241700 16.1864600 33.1407800
θ10 0.1616375 0.0389555 0.1619150 0.0984400 0.2271300
rθ 18.9767827 4.6651724 18.4747850 12.2883400 27.2483100
Θ0 -0.0244263 0.0297262 -0.0218400 -0.0752100 0.0208600
rΘ 36.5458224 9.1574134 36.1650500 21.8570700 53.0459700

Model adequacy

Here, we assess the model adequacy for the unemployment rates data. From the Bayesian



91

Table 3.2: Summary of fitted parameter φ1,i

Posterior distribution
State Mean Std. Dev. Median Lower 95% limit Upper 95% limit
Alabama 0.49590 0.10891 0.50406 0.29662 0.66623
Alaska 0.36324 0.13267 0.360245 0.1441 0.58781
Arizona 0.53694 0.09554 0.543025 0.36694 0.68675
Arkansas 0.51687 0.12139 0.522585 0.31348 0.70773
California 0.71216 0.07578 0.71627 0.57611 0.82972
Colorado 0.32236 0.12805 0.326865 0.10453 0.52154
Connecticut 0.50828 0.12648 0.507945 0.29774 0.70968
Delaware 0.41945 0.11929 0.42102 0.22534 0.60543
District of Columbia 0.86094 0.05243 0.86421 0.76482 0.94348
Florida 0.42107 0.14949 0.434575 0.15673 0.65359
Georgia 0.28458 0.11984 0.28356 0.08827 0.48051
Hawaii 0.37667 0.19327 0.385705 0.03659 0.66993
Idaho 0.85649 0.05228 0.859305 0.76927 0.94062
Illinois 0.54510 0.10007 0.55068 0.3736 0.7065
Indiana 0.29019 0.17081 0.299825 -0.005 0.5473
Iowa 0.56921 0.14635 0.580115 0.30451 0.78809
Kansas 0.42691 0.11895 0.431705 0.22137 0.61377
Kentucky 0.55402 0.10108 0.56075 0.38135 0.71098
Louisiana 0.46825 0.10673 0.47131 0.28484 0.63827
Maine 0.19314 0.13287 0.194885 -0.02387 0.40489
Maryland 0.42169 0.14027 0.42211 0.18706 0.6567
Massachusetts 0.81690 0.05790 0.815975 0.72065 0.91311
Michigan 0.53447 0.10034 0.539755 0.36877 0.69396
Minnesota 0.53672 0.10627 0.53933 0.35757 0.70101
Mississippi 0.34549 0.12021 0.350625 0.12954 0.53174
Missouri 0.52824 0.09377 0.5327 0.36322 0.67622
Montana 0.76367 0.06664 0.76475 0.65318 0.87578
Nebraska 0.20881 0.15759 0.207035 -0.04686 0.46981
Nevada 0.88749 0.046143 0.88719 0.81073 0.96107
New Hampshire 0.74002 0.08002 0.74101 0.60214 0.86269
New Jersey 0.61734 0.10238 0.61615 0.4483 0.77896
New Mexico 0.84781 0.05014 0.84839 0.76424 0.93033
New York 0.57878 0.10636 0.58665 0.39188 0.73945
North Carolina 0.39870 0.14213 0.407445 0.1537 0.62157
North Dakota 0.25252 0.15928 0.25398 -0.00155 0.50874
Ohio 0.45864 0.12072 0.46397 0.25567 0.64327
Oklahoma 0.25687 0.12246 0.2526 0.06272 0.45544
Oregon 0.35882 0.12723 0.362885 0.13837 0.5515
Pennsylvania 0.61735 0.10033 0.62471 0.44657 0.77199
Puerto Rico 0.11984 0.21750 0.09943 -0.21917 0.48399
Rhode Island 0.90959 0.03943 0.911085 0.84368 0.97234
South Carolina 0.45707 0.13223 0.464385 0.2335 0.67106
South Dakota 0.28624 0.14877 0.29245 0.02806 0.51394
Tennessee 0.91504 0.04009 0.917145 0.84826 0.97717
Texas 0.68325 0.07368 0.6873 0.56149 0.80019
Utah 0.57725 0.09949 0.582015 0.40392 0.73603
Vermont 0.25123 0.11417 0.249095 0.0727 0.43986
Virginia 0.40976 0.09917 0.416205 0.22876 0.5652
Washington 0.55921 0.10563 0.561615 0.37264 0.72441
West Virginia 0.58996 0.09370 0.592175 0.43027 0.73669
Wisconsin 0.34739 0.13434 0.350865 0.1099 0.55874
Wyoming 0.29993 0.12360 0.30274 0.08662 0.51082
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Table 3.3: Summary of fitted parameter φ4,i

Posterior distribution
State Mean Std. Dev. Median Lower 95% limit Upper 95% limit
Alabama 0.02005 0.10443 0.01653 -0.14986 0.1981
Alaska 0.08094 0.09718 0.0822 -0.07432 0.23826
Arizona -0.16780 0.08842 -0.16655 -0.31459 -0.02174
Arkansas 0.03534 0.10787 0.029925 -0.13788 0.21574
California 0.04691 0.11114 0.047175 -0.13168 0.22597
Colorado 0.06594 0.10622 0.06528 -0.10116 0.24177
Connecticut 0.12062 0.10656 0.11624 -0.0542 0.30874
Delaware 0.06582 0.11917 0.06006 -0.13067 0.27045
District of Columbia 0.01736 0.11531 0.01657 -0.1706 0.20454
Florida 0.09342 0.09037 0.09419 -0.05561 0.24371
Georgia 0.02354 0.09956 0.02474 -0.13241 0.19055
Hawaii 0.11008 0.10844 0.106305 -0.05831 0.29053
Idaho -0.16214 0.10933 -0.161475 -0.34249 0.01038
Illinois -0.12089 0.11212 -0.127295 -0.28457 0.06643
Indiana 0.06022 0.10797 0.055275 -0.10671 0.24491
Iowa 0.08535 0.12451 0.08504 -0.1178 0.28831
Kansas -0.08655 0.12246 -0.087955 -0.287 0.11742
Kentucky -0.03561 0.09903 -0.038265 -0.19474 0.12874
Louisiana -0.00775 0.10407 -0.008315 -0.17522 0.16377
Maine 0.24474 0.09015 0.24593 0.08942 0.39345
Maryland 0.09001 0.10567 0.090615 -0.0898 0.25956
Massachusetts 0.13386 0.08664 0.1314 0.00032 0.27556
Michigan 0.01193 0.10764 0.00798 -0.1646 0.19431
Minnesota -0.00867 0.10888 -0.0134 -0.18133 0.17366
Mississippi 0.03415 0.10048 0.035495 -0.13016 0.20705
Missouri 0.11949 0.11100 0.12125 -0.06173 0.29831
Montana 0.03784 0.11416 0.037605 -0.14143 0.218
Nebraska 0.18182 0.10184 0.182175 0.02228 0.34897
Nevada -0.22885 0.12013 -0.22873 -0.42865 -0.032
New Hampshire -0.02493 0.09696 -0.025235 -0.18195 0.14473
New Jersey -0.08125 0.11099 -0.080125 -0.2605 0.10272
New Mexico -0.06304 0.10639 -0.066785 -0.23775 0.12659
New York 0.03927 0.10053 0.033895 -0.11487 0.20793
North Carolina -0.13606 0.09979 -0.140685 -0.30002 0.02822
North Dakota -0.00353 0.10349 -0.00141 -0.17682 0.16077
Ohio 0.06163 0.09314 0.058915 -0.08827 0.21025
Oklahoma -0.02661 0.09735 -0.027465 -0.17892 0.14059
Oregon -0.01513 0.09191 -0.015375 -0.16554 0.13638
Pennsylvania 0.06341 0.08889 0.06308 -0.08099 0.20689
Puerto Rico -0.04433 0.09956 -0.04023 -0.20215 0.10672
Rhode Island -0.02517 0.10482 -0.02738 -0.18984 0.14796
South Carolina -0.08415 0.09299 -0.08701 -0.23351 0.06553
South Dakota -0.17164 0.12199 -0.168485 -0.36481 0.03167
Tennessee -0.05971 0.09391 -0.0678 -0.20274 0.10931
Texas -0.02824 0.12354 -0.02731 -0.24128 0.17371
Utah 0.08518 0.10651 0.08248 -0.08243 0.26742
Vermont 0.36707 0.08529 0.36608 0.22872 0.50643
Virginia 0.15370 0.09751 0.15362 -0.01013 0.31309
Washington 0.09098 0.11684 0.08273 -0.10229 0.27389
West Virginia 0.04726 0.11839 0.045075 -0.14616 0.24841
Wisconsin -0.03340 0.10857 -0.032095 -0.21269 0.14442
Wyoming 0.26834 0.10716 0.27281 0.09593 0.43293
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Table 3.4: Summary of fitted parameter θ1,i

Posterior distribution
State Mean Std. Dev. Median Lower 95% limit Upper 95% limit
Alabama 0.24267 0.12208 0.23855 0.038 0.44963
Alaska 0.09508 0.13888 0.099065 -0.13152 0.30431
Arizona 0.20830 0.10100 0.211145 0.0344 0.36637
Arkansas 0.07339 0.14638 0.07127 -0.15546 0.31452
California 0.18792 0.09450 0.18275 0.04732 0.359
Colorado 0.23060 0.12939 0.23174 0.01021 0.43378
Connecticut 0.07678 0.14226 0.092865 -0.18075 0.27925
Delaware 0.21777 0.12927 0.21906 -0.0101 0.41911
District of Columbia 0.17197 0.08761 0.172875 0.02403 0.31287
Florida -0.04460 0.15558 -0.051355 -0.28507 0.22236
Georgia 0.24743 0.11607 0.254445 0.0447 0.43333
Hawaii -0.15431 0.20863 -0.16564 -0.4802 0.20686
Idaho 0.33174 0.07567 0.336005 0.20226 0.44604
Illinois 0.18985 0.11263 0.191985 -0.0009 0.37642
Indiana 0.04953 0.18216 0.033065 -0.21563 0.3718
Iowa -0.15973 0.14772 -0.15971 -0.40647 0.08677
Kansas 0.09887 0.11185 0.10232 -0.08017 0.28849
Kentucky 0.10609 0.10284 0.10461 -0.058 0.28179
Louisiana 0.13051 0.10062 0.132835 -0.03659 0.29566
Maine 0.34869 0.14937 0.35177 0.10549 0.57985
Maryland -0.05223 0.13446 -0.03958 -0.29545 0.14715
Massachusetts 0.36581 0.07823 0.36945 0.23361 0.48815
Michigan 0.04775 0.09451 0.043665 -0.09644 0.20404
Minnesota 0.04455 0.11018 0.04469 -0.13537 0.23374
Mississippi 0.21240 0.12650 0.214875 0.01318 0.41569
Missouri 0.12893 0.08869 0.132515 -0.02088 0.27207
Montana 0.30606 0.09298 0.31309 0.14667 0.45366
Nebraska 0.19918 0.17350 0.21874 -0.10433 0.46156
Nevada 0.38138 0.06482 0.386255 0.27049 0.48399
New Hampshire 0.16496 0.10711 0.16277 -0.00661 0.35017
New Jersey 0.22483 0.13979 0.229925 -0.01587 0.44748
New Mexico 0.32451 0.06871 0.32564 0.21128 0.43637
New York 0.12508 0.12131 0.124295 -0.0748 0.32654
North Carolina 0.24962 0.16445 0.24547 -0.01592 0.52093
North Dakota -0.00057 0.16625 0.00417 -0.27123 0.26038
Ohio 0.08159 0.12931 0.078115 -0.13156 0.29412
Oklahoma 0.40873 0.14202 0.41683 0.163 0.62153
Oregon 0.24621 0.12308 0.241995 0.05248 0.45469
Pennsylvania 0.00803 0.09955 0.01143 -0.15883 0.17242
Puerto Rico 0.01165 0.19366 0.04108 -0.32525 0.29503
Rhode Island 0.22016 0.06104 0.221525 0.12006 0.32149
South Carolina 0.16102 0.14968 0.14713 -0.0728 0.43094
South Dakota 0.17779 0.15579 0.175735 -0.07277 0.44464
Tennessee 0.31086 0.06889 0.31093 0.19465 0.42603
Texas 0.44782 0.07968 0.45131 0.30857 0.57333
Utah 0.09270 0.10076 0.09871 -0.07054 0.24507
Vermont 0.43144 0.11171 0.441475 0.2398 0.59848
Virginia 0.08228 0.07148 0.07713 -0.01994 0.20563
Washington 0.02144 0.11076 0.021405 -0.16755 0.19172
West Virginia -0.04306 0.08936 -0.045225 -0.18647 0.09756
Wisconsin 0.14729 0.14340 0.14158 -0.07841 0.4027
Wyoming 0.22101 0.12644 0.22087 0.00747 0.42821
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Table 3.5: Summary of fitted parameter θ4,i

Posterior distribution
State Mean Std. Dev. Median Lower 95% limit Upper 95% limit
Alabama -0.02181 0.06964 -0.010625 -0.16561 0.06793
Alaska 0.00203 0.06113 0.005215 -0.08713 0.08572
Arizona 0.00237 0.01068 0.00151 -0.00197 0.00939
Arkansas 0.00178 0.07048 0.004435 -0.1279 0.11018
California -0.20070 0.09058 -0.19471 -0.35912 -0.07034
Colorado 0.00451 0.07264 -0.00654 -0.10652 0.13194
Connecticut -0.07653 0.07390 -0.06834 -0.21146 0.03185
Delaware 0.00817 0.09801 0.01286 -0.15264 0.16311
District of Columbia -0.04360 0.10528 -0.041255 -0.21115 0.12425
Florida -0.01105 0.03773 -0.006825 -0.03661 0.02047
Georgia -0.00085 0.06406 -0.00308 -0.0898 0.11637
Hawaii -0.03185 0.07867 -0.010245 -0.21453 0.03692
Idaho -0.11548 0.10191 -0.101775 -0.29424 0.03352
Illinois -0.01886 0.08671 0.004 -0.20846 0.06259
Indiana 0.00096 0.07569 0.003165 -0.14698 0.10706
Iowa 0.01032 0.09577 0.011275 -0.15113 0.16135
Kansas -0.04279 0.08697 -0.039215 -0.19353 0.0981
Kentucky -0.00530 0.04847 -0.00253 -0.05153 0.04402
Louisiana -0.00644 0.06123 -0.00802 -0.09338 0.08476
Kentucky -0.00530 0.04847 -0.00253 -0.05153 0.04402
Louisiana -0.00644 0.06123 -0.00802 -0.09338 0.08476
Maine 0.01105 0.04188 0.007925 -0.05164 0.08587
Maryland 0.01756 0.09084 0.014695 -0.1376 0.18011
Massachusetts 0.00959 0.04856 -0.00375 -0.01072 0.12422
Michigan 0.01009 0.07145 0.01267 -0.10446 0.11521
Minnesota -0.10706 0.07394 -0.09425 -0.22897 -0.01467
Mississippi -0.01134 0.06604 -0.00379 -0.15638 0.07949
Missouri -0.07278 0.09157 -0.068025 -0.22791 0.06835
Montana -0.04216 0.09732 -0.043945 -0.19626 0.11338
Nebraska -0.02893 0.06180 -0.01714 -0.1517 0.04616
Nevada 0.05127 0.10092 0.051625 -0.10845 0.21951
New Hampshire 0.00802 0.04432 0.00457 -0.05609 0.09065
New Jersey -0.03065 0.07829 -0.024225 -0.16531 0.07847
New Mexico -0.28551 0.10661 -0.27988 -0.4668 -0.11593
New York -0.02802 0.07473 -0.0093 -0.21802 0.01633
North Carolina -0.02935 0.05521 -0.02013 -0.13297 0.02464
North Dakota 0.01222 0.07175 0.018625 -0.11004 0.13834
Ohio -0.00391 0.04675 -0.004065 -0.08096 0.07263
Oklahoma -0.01441 0.05076 -0.00674 -0.09783 0.04437
Oregon 0.00523 0.02965 0.001475 -0.03728 0.06372
Pennsylvania -0.00317 0.02890 -0.009525 -0.03207 0.05799
Puerto Rico 0.00599 0.07439 -0.01448 -0.07515 0.17298
Rhode Island -0.10036 0.09226 -0.09117 -0.2597 0.03296
South Carolina -0.00897 0.03384 -0.001025 -0.05864 0.00804
South Dakota 0.06857 0.08687 0.067635 -0.07072 0.20878
Tennessee -0.14749 0.07315 -0.1433 -0.26936 -0.03474
Texas -0.01697 0.10213 -0.013555 -0.18275 0.14664
Utah -0.04113 0.07245 -0.017015 -0.19523 0.03189
Vermont 0.00350 0.02543 0.00372 -0.03056 0.03854
Virginia -0.06662 0.06227 -0.05691 -0.18433 0.01764
Washington 0.08076 0.10046 0.083615 -0.09553 0.23353
West Virginia 0.04682 0.08746 0.04089 -0.08579 0.19301
Wisconsin -0.05356 0.07361 -0.037035 -0.19355 0.03566
Wyoming 0.01721 0.05938 0.00529 -0.06784 0.11409
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Table 3.6: Summary of fitted parameter σ2
i

Posterior distribution
State Mean Std. Dev. Median Lower 95% limit Upper 95% limit
Alabama 0.09479 0.01316 0.09302 0.07601 0.11967
Alaska 0.11432 0.01693 0.112845 0.08895 0.14551
Arizona 0.15937 0.02121 0.157625 0.12814 0.19687
Arkansas 0.03637 0.00533 0.035915 0.02836 0.0459
California 0.04154 0.00591 0.040895 0.0329 0.05235
Colorado 0.16001 0.02239 0.158295 0.12694 0.20006
Connecticut 0.07983 0.01097 0.078865 0.06349 0.09984
Delaware 0.03869 0.00540 0.038195 0.03116 0.04858
District of Columbia 0.01421 0.00196 0.014055 0.01128 0.01766
Florida 0.09544 0.01267 0.094685 0.07637 0.11897
Georgia 0.07640 0.01108 0.0756 0.05969 0.09631
Hawaii 0.08606 0.01187 0.08509 0.0683 0.10747
Idaho 0.00627 0.00086 0.00619 0.00501 0.0077
Illinois 0.09299 0.01321 0.091535 0.07413 0.11688
Indiana 0.20843 0.02885 0.20578 0.16619 0.26018
Iowa 0.03867 0.00521 0.03823 0.03108 0.04805
Kansas 0.05623 0.00745 0.055655 0.04552 0.06942
Kentucky 0.07460 0.01039 0.07354 0.05887 0.09327
Louisiana 0.14789 0.01999 0.14653 0.11634 0.18236
Maine 0.12322 0.01661 0.121655 0.09818 0.15305
Maryland 0.07091 0.00990 0.070355 0.05608 0.08788
Massachusetts 0.01669 0.00228 0.016515 0.01331 0.02081
Michigan 0.18843 0.02622 0.18564 0.15067 0.23612
Minnesota 0.06051 0.00848 0.05957 0.04844 0.07638
Mississippi 0.18744 0.02576 0.18525 0.15077 0.23235
Missouri 0.07929 0.01126 0.07839 0.06261 0.0986
Montana 0.00499 0.00068 0.00492 0.00395 0.00619
Nebraska 0.07090 0.01008 0.070065 0.05519 0.0889
Nevada 0.01062 0.00146 0.01048 0.00851 0.0133
New Hampshire 0.03650 0.00509 0.03605 0.0291 0.04557
New Jersey 0.04912 0.00657 0.04834 0.03934 0.06117
New Mexico 0.00894 0.00129 0.0088 0.00702 0.0112
New York 0.04863 0.00680 0.048 0.03836 0.06017
North Carolina 0.11562 0.01603 0.114285 0.09195 0.14399
North Dakota 0.06434 0.00886 0.063625 0.05124 0.07924
Ohio 0.14781 0.02030 0.145665 0.11816 0.18409
Oklahoma 0.13604 0.01996 0.133755 0.10814 0.17252
Oregon 0.11860 0.01577 0.117025 0.09451 0.14716
Pennsylvania 0.07307 0.00979 0.072395 0.05875 0.09079
Puerto Rico 0.56225 0.07748 0.55387 0.44721 0.69676
Rhode Island 0.01008 0.00135 0.0099 0.00809 0.01242
South Carolina 0.12841 0.01782 0.12679 0.1031 0.16061
South Dakota 0.02528 0.00338 0.024975 0.02013 0.03134
Tennessee 0.00798 0.00112 0.00785 0.00638 0.01001
Texas 0.02380 0.00339 0.02334 0.01905 0.02991
Utah 0.06126 0.00870 0.0606 0.04808 0.07629
Vermont 0.10327 0.01448 0.101695 0.08214 0.12935
Virginia 0.06454 0.00917 0.0636 0.05124 0.08019
Washington 0.07289 0.00994 0.07208 0.05811 0.09055
West Virginia 0.19273 0.02659 0.19171 0.15157 0.23759
Wisconsin 0.14817 0.01995 0.147185 0.11785 0.18314
Wyoming 0.21072 0.02943 0.208745 0.16721 0.26426
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perspective, model assessment may be carried out using predictive distributions, which

amounts to comparing the predicted values based on the model with the actual observation.

In general, prediction proceeds through the predictive density (Aitkin, 1991). Particularly,

let vobs and vnew be the observed and the generated data. Then the predictive density for

vnew is

f(vnew|vobs) =

∫
f(vnew|vobs,Ψ,a0)π(Ψ,a0|vobs)dΨ, da0. (3.5.13)

Note that the expression (3.5.13) fits natually within our sampling based approach. Let Ψl

and a0,l denote draws from the posterior π(Ψ,a0|vobs) for l = 1, . . . , B, where B is the total

number of Gibbs iterations. Then a sample of predictions from (3.5.13) is created by drawing

a v
(l)
new from f(vnew|vobs,Ψl,a0,l) for each Ψl and a0,l, for l = 1, . . . , B.

To check how well a given model fits the present data, we compare vold and vnew by using

a discrepancy measure denoted by d(v, v̂) (Shinha and Dey (1997)). A discrepancy measure

is a scalar summary of parameters and data that is used as a standard when comparing data

to predictive simulations. If a model adequately fits the observed data, then the generated

new data should be similar to the observed data, and the two values of the discrepancy

measure, d(vold, v̂) and d(vnew, v̂) are similar. In other words, if the model adequately fits

the data, the posterior predictive p value, P{d(vold, v̂) ≥ d(vnew, v̂)|vold} is expected to be

around 0.5. Hence, the p-value is defined as the probability that the generated data could

be more extreme than the observed data, as measured by the discrepancy measure.

To implement the posterior predictive p value using the MCMC output, we generate a

v
(l)
new from f(v

(l)
new|vobs,Ψl, a0,l) for each Ψl and a0,l, and compute d(vold, v̂) and d(v

(l)
new, v̂)

for l = 1, . . . , B. Then, these calculated samples can be used to approximate P{d(vold, v̂) ≥
d(vnew, v̂)|yold} by B−1

∑B
l=1 I{d(vold, v̂) ≥ d(v

(l)
new, v̂)}, where I(.) is an indicator function.

A value close to 0.5 indicates an adequate model, while for an inadequate model, this value

is near 0 or 1. The discrepancy measure we use for our model is given by

d(v, v̂) =
52∑
i=1

112∑
t=1

σ−1
i (vi,t − v̂i,t). (3.5.14)
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The estimated value for our proposed model is 0.5055, which indicates the adequacy of the

model.

Forecasting

Forecasting proceeds via the predictive density. Let vi,F = (vi,n+1, . . . , vi,n+L) denote the L

steps-ahead-forecast for the ith state and vF = (v1,F , . . . , vI,F ). Then, the predictive density

for vF is

f(vF |vobs) =

∫
f(vF |vobs,Ψ,a0)π(Ψ,a0|vobs)dΨ, da0. (3.5.15)

where, by integration with respect to a0, we mean integration with respect to the elements

that define a0 under the chosen model. Here, f(vF |vobs,Ψ, a0) = f(v(n+1)|vobs ,Ψ,a0)·
f(v(n+2)|v(n+1),vobs,Ψ,a0) · · · f(v(n+L)|v(n+1), . . . , v(n+L−1),vobs,Ψ,a0).

In practice, if Ψ(l) and a0,(l) denote draws from the posterior, π(Ψ, a0|vobs), l = 1, . . . , B,

then a sample of forecasts from equation (3.5.15) is created by drawing a vF,l from

f(vF |vobs,Ψ(l),a0,(l)).

Returning to the unemployment rates, we look at the posteriors for the last four obser-

vations which are held out for forecasting, as described above, that is, L = 4, and n = 112.

Figure 1.1 to Figure 1.3 present the forecasting features of the future data vF under our

proposed model. The 90% predictive intervals are shown for each state for the last four

observations vi,113, . . . , vi,116. The intervals capture the last four observations, and the fore-

casts up to four steps ahead are quite good.

As one way of model adequacy using forecasts, we recommend seeing the data we would

obtain if the experiment that produced vobs today were replicated with the same model and

the same value of parameters that produced the observed data. That is, we compare the last

four observations to what we expect to be observed under the same model and the estimates

of Ψ and a0, which are used as the estimates given in Table 3.2 to Table 3.6. We simulate

the 500 four-steps ahead forecasts for all the states under the same model and the estimates
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of Ψ and a0. If the model adequately fits the data, the last four observations are expected

not to be extreme around the generated forecasts.

For many problems, it is useful to examine graphical comparisons of summaries of the

data to those from simulations, as in Figures below. Figure 3.4 to Figure 3.6 display 52 his-

tograms of one-step ahead forecasts, each of which represents 500 draws under our proposed

model and the estimates of Ψ and a0 for each state. Figure 3.7 to Figure 3.9, Figure 3.10 to

Figure 3.12, and Figure 3.13 to Figure 3.15 show those of two-, three-, and four-step ahead,

respectively. For comparison, the last four observations are indicated as the dot mark, and

they are mostly centered in the histogram. Hence, our proposed model is adequate enough

to provide reliable forecasts over all states.

Model Improvement

To evaluate the improvement of our proposed model on performance, an independent series

seasonal ARIMA (1, 1, 1)(1, 0, 1)4 model can be compared for each state. This model does

not combine cross-sectional information across states. To perform the independent series

model, we use the Bayesian algorithm given in section 3.3. Table 3.7 presents the mean and

standard deviation of the marginal posterior distributions for the parameters and forecasts

through the Gibbs sampler. For the evaluation of improvement, two different models are

considered, that is, the independent series model and our proposed model, for two states

Alabama (classified as an indirect-use state) and Massachusetts (classified as a direct-use

state).

We note that, under our proposed model, the posterior means of φ4 and θ4 are more

toward zero for both states. Also, for Alabama, the posterior distributions for all the param-

eters have smaller standard errors, while for Massachusetts, those for φ1 and θ1 have larger

ones. With respect to forecasting, the posterior distributions have smaller standard errors

under our proposed model than under the independent series for both states. As expected,
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incorporating dependencies across states improves inferences and forecasts more for Alabama

than for Massachusetts, because Alabama has fewer sample available than Massachusetts.

Table 3.7: Estimation Results of Alabama and Massachusetts Under the Independent Model
and Our Suggested Model

Posterior distribution
Independent Model Our Suggested Model

State Parameter Mean Std. Dev. Mean Std. Dev.
φ1 0.5195 0.1219 0.49591 0.10891
φ4 0.01436 0.13519 0.02005 0.10443
θ1 0.20424 0.14224 0.24267 0.12208
θ4 0.20827 0.14351 -0.02181 0.06964

Alabama σ2 0.09564 0.01359 0.09479 0.0131
One-step(5.6667) 5.91937 0.77027 5.8494 0.7360
Two-step(5.6000) 5.93609 1.06841 5.8205 1.0020
Three-step(5.5667) 5.95061 1.32009 5.7878 1.237
Four-step(5.4000) 5.96133 1.54103 5.7515 1.453

φ1 0.8224562 0.0554 0.8169 0.5791
φ4 0.16834 0.09044 0.13386 0.08664
θ1 0.39182 0.06681 0.36581 0.07823
θ4 0.39514 0.06241 0.00959 0.04856

Massa- σ2 0.01685 0.00239 0.01669 0.002282
chusetts One-step(5.8900) 5.88287 0.70606 5.890 0.6473

Two-step(5.2000) 5.89454 1.04381 5.8937 0.961
Three-step(5.0000) 5.90732 1.37125 5.8966 1.267
Four-step(4.7667) 5.91934 1.68882 5.9050 1.562

3.6 CONCLUSION

In order to improve parameter estimation and forecasting of the state-level UE rate esti-

mates, especially for the states which do not provide adequate sample sizes, we model the

sample UE rate estimates as a SARIMA model. More specifically, we assume that each

parameter corresponding to a state is randomly distributed with a common mean and vari-

ance. Our Bayesian algorithm which is obtained by combining and expanding the Bayesian

analysis of Chib and Greenberg (1994) in ARIMA model and those of Marin et al. (2005) in

AR model and MA model provides a useful way for fitting our proposed model.
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Data analysis is carried out for the first 112 observations of UE rates for each state using

our Bayesian algorithm based on our proposed model. The last four observations which

are not part of modeling fitting are used for subsequent forecast evaluation. This Bayesian

analysis presented here shows that the estimation of parameters fit nicely. To check how well

our proposed model fits the UE rates, we compare the observed and generated data using

a discrepancy measure. The estimated value, 0.5055 indicates that our proposed model is

adequate. As one way of model adequacy, we see the actual last four observations with what

we would obtain if the experiment was replicated with our proposed model and our estimated

values of parameters that produced the observed data. These simulated 500 four-steps ahead

forecasts are shown not to be extreme around the actual four observations. Once again, the

90% intervals for forecasting the last four observations for each state capture the actual

values. Overall, our proposed model is adequate enough to provide reliable forecasts over all

states. Comparison of an independent series SARIMA model and our proposed model on

performance shows that incorporating dependencies across states improves inferences and

forecasts more for an indirect-use state such as Alabama than a direct-use state such as

Massachusetts because an indirect-use state has fewer sample sizes available than a direct-

use state. It is shown here that our proposed model provides nice fitting of the UE rates for

all states, and our Bayesian algorithm is useful to perform our proposed model.
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The proof of the Theorem stated in section 3 depends on the following four lemmas. The

conclusions of Lemmas 1 to 3 below hold for any unknown density g0.

Lemma 1. Under the conditions of the Theorem, H2(ĝn, g0) → 0 a.s. as n →∞.

Proof. Since ĝn and g0 are densities such that ĝn → g0 a.s., by Devroye and Györfi (1985)

we have that ||ĝn− g0||1 =
∫ |ĝn(x)− g0(x)|dx → 0 a.s. The required result now follows from

the inequality H2(ĝn, g0) ≤ ||ĝn − g0||1. ¤

Lemma 2. Under the conditions of the Theorem, sup
f∈F

|H2(ĝn, f)−H2(g0, f)| → 0 a.s. as

n →∞, where F is the class of densities defined in Section 2.

Proof. Note that H2(g, f) = 2− 2
∫

g1/2(x)f 1/2(x)dx. From this and the Cauchy-Schwarz

inequality

sup
f∈F

|H2(ĝn, f)−H2(g0, f)| ≤ 2H(ĝn, g0) → 0 a.s.

as n →∞ by Lemma 1. ¤

Lemma 3. Under the conditions of the Theorem, for each m > 0, H2(ĝn, ĝ
m) −

H2(ĝn, g
m
0 ) → 0 a.s. as n →∞, where ĝm and gm

0 are as defined in (2.4).

Proof. Write H2(ĝn, ĝm)−H2(ĝn, gm
0 )

= {H2(ĝn, ĝm)−H2(g0, ĝ
m)}+ {H2(g0, ĝ

m)−H2(g0, g
m
0 )}+ {H2(g0, g

m
0 )−H2(ĝn, g

m
0 )}

= (i) + (ii) + (iii).
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The terms (i) and (iii) above converge to zero a.s. by Lemma 2. By (2.4) and that

gm
0 ∈ Fm and ĝm ∈ Fm, it follows that H2(ĝn, ĝm)−H2(ĝn, gm

0 ) ≤ 0 and (ii) ≥ 0. Therefore,

(i) + (iii) ≤ H2(ĝn, ĝ
m)−H2(ĝn, g

m
0 ) ≤ 0.

Since (i) and (iii) converge to zero a.s. we have the required result. ¤

Lemma 4. Let f and g be any two density functions. Then,

∫
f 3/2(x)(g(x))−1/2dx ≥ 1.

Proof. Let K(f, g) denote the Kullback-Leibler distance between two densities f and g

defined by K(f, g) =
∫

f(x)ln(f(x)/g(x))dx. Observe that

0 ≤ K(f, g) = 2

∫
f(x)ln(f 1/2(x)/g1/2(x))dx

≤ 2

∫
f(x)[(f 1/2(x)/g1/2(x))− 1]dx,

which implies the required result. ¤

Proof of the Theorem. Let dm = H2(g0, g
m
0 ) − H2(g0, g

m+1
0 ) for m > 0, where g0 is any

unknown density. Note that, for each m > 0, dm ≥ 0 by (2.4) and that Fm ⊆ Fm+1. We will

first show that for each m > 0

H2(ĝn, ĝ
m)−H2(ĝn, ĝm+1) → dm a.s. (A.1)

as n →∞. To this end, write

H2(ĝn, ĝm)−H2(ĝn, ĝm+1)− dm

= {H2(ĝn, ĝ
m)−H2(ĝn, g

m
0 )}+ {H2(ĝn, g

m+1
0 )−H2(ĝn, ĝ

m+1)}

+ H2(ĝn, gm
0 )−H2(g0, g

m
0 )}+ {H2(g0, g

m+1
0 )−H2(ĝn, gm+1

0 )}. (A.2)

The first two terms on the right side of (A.2) converge to zero a.s. by Lemma 3 and the last

two terms on the right side of (A.2) converge to zero a.s. by Lemma 2. Hence we have (A.1).
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Suppose g0 is not a finite mixture then m0 = ∞. This and (2.6) imply that dm > 0 for

all m > 0. Therefore, by (A.1) and (2.9) it follows that m̂n →∞ a.s.

Suppose g0 is a finite mixture. Then, the required result for m̂n would follow once we

show that dm > 0 for m < m0 and dm = 0 for m ≥ m0.

Case m ≥ m0: Recall that g0 ∈ Fm0 ⊆ Fj for all j ≥ m0. Therefore, by (2.4), for each

j ≥ m0, 0 ≤ H(ĝn, ĝ
j) ≤ H(ĝn, g0) → 0 a.s. by Lemma 1. It now follows from (A.1) that

dm = 0 for m ≥ m0.

Case m < m0: From (2.6) observe that g0 ∈ Fm0 and g0 /∈ Fm for m < m0. Following

the arguments in Leroux (1992) [see proof of (ii), Lemma 3] we will show by a contradiction

argument that dm > 0.

Suppose dm = 0 for m < m0, that is, H2(g0, g
m
0 ) = H2(g0, g

m+1
0 ). This, (2.4) and H2(·, ·) ≥

0 implies that for all f ∈ Fm+1

H2(g0, g
m
0 ) ≤ H2(g0, f). (A.3)

Since gm
0 ∈ Fm, by (2.1) we have that gm

0 (x) = fθ0

m

(x) for some θ0
m. For an arbitrary ε ∈ (0, 1)

and φ ∈ Φ ⊆ Rs, let f̃(x) = (1 − ε)gm
0 (x) + εf(x|φ), where f(x|φ) is a density function.

Then, f̃ ∈ Fm+1 and the inequality in (A.3) holds for the mixture density f̃ . Therefore, by

(A.3) and the definition of Hellinger distance

2

∫
g

1/2
0 (x){[(1− ε)gm

0 (x) + εf(x|φ)]1/2 − (gm
0 (x))1/2}dx ≤ 0 (A.4)

for all ε ∈ (0, 1). Dividing both sides of (A.4) by ε and applying Fatou’s lemma (as ε → 0)

to the resulting expression yields

∫
g

1/2
0 (x)[f(x|φ)(gm

0 (x))−1/2 − (gm
0 (x))1/2]dx ≤ 0

which implies that

∫
g

1/2
0 (x)(gm

0 (x))1/2dx ≥
∫

g
1/2
0 (x)f(x|φ)(gm

0 (x))−1/2dx (A.5)



121

for every φ ∈ Φ. Since g0 ∈ Fm0 we can write g0(x) =
m0∑
i=1

π0
i f(x|φ0

i ) and (A.5) holds for each

φ = φ0
i , i = 1, . . . , m0. Since

m0∑
i=1

π0
i = 1, from (A.5)

∫
g

1/2
0 (x)(gm

0 (x))1/2dx ≥
∫

g
3/2
0 (gm

0 (x))−1/2dx

≥ 1, (A.6)

by an application of Lemma 4 with f = g0 and g = gm
0 . This implies that H2(g0, g

m
0 ) = 0,

which contradicts the fact that g0 /∈ Fm for m < m0. Hence the Theorem. ¤


