
A New Regularization Term for Deep Neural Networks With Applications

to Biological Data

by

Zerotti Woods

(Under the Direction of Juan B. Gutierrez)

Abstract

In this work, we present a new regularization term that penalizes the conditioning of the

weight matrices in a deep neural network. We give a mathematical argument that suggests

that in certain situations, the conditioning number of the weight matrices have a direct

impact on the error in classification. Empirical evidence suggests that improving the weight

matrix associated with the output layer of a matrix improves generalizability when classifying

ECG data from a benchmark data-set, and also a novel malaria infection data-set.

Index words: Deep Learning, Regularization, Artificial Intelligence, Machine
Learning, Computational Biology

A New Regularization Term for Deep Neural Networks With Applications

to Biological Data

by

Zerotti Woods

B.S., Morehouse College, 2014

M.A., The University of Georgia, 2016

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2019

c© 2019

Zerotti Woods

All Rights Reserved

A New Regularization Term for Deep Neural Networks With Applications

to Biological Data

by

Zerotti Woods

Approved:

Major Professor: Juan B. Gutierrez

Committee: Caner Kazanci

Daniel Krashen

Qing Zhang

Electronic Version Approved:

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

May 2019

Dedication

This thesis is dedicated to every teacher, professor, and mentor that had seen things in me

that I did not see in myself. Without each of you, I’m sure this would have been possible.

iv

Acknowledgments

I would like to first thank The Biomathematics Research Group. In particular, I would like

to thank Elizabeth Trippe, Jessica Brady, Tao Sheng, Yi Yan, Diago Moncada, and Saeid

Safaei. Each of these individuals put in countless hours to contribute to this research and

I learned a tremendous amount from each of them. I also would like to acknowledge my

advisor, Dr. Juan B. Gutierrez. He had a vision to put together one of the most diverse labs

that exists at UGA. With his vision came ideas that no one individual or one discipline could

have done alone. Because of the team that Juan assembled, and his leadership as a colleague

and not a boss, I was given the opportunity to grow as a scientist in an environment that

many others did not have.

This project was funded in part by Federal funds from the US National Institute of

Allergy and Infectious Diseases, National Institutes of Health, Department of Health and

Human Services under contract #HHSN272201200031C, 2012-2017, which supported the

Malaria Host-Pathogen Interaction Center (MaHPIC). This work was also supported by the

Defense Advanced Research Projects Agency and the US Army Research Office through the

program Technologies for Host Resilience - Host Acute Models of Malaria to study Experi-

mental Resilience (THoR’s HAMMER), DARPA contract #W911NF-16-C-0008, 2016-2019.

All experiments were performed at the Yerkes National Primate Research Center and are

supported in part by the National Institutes of Health, Office of the Director (P51OD011132).

The content of this work is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institutes of Health or other funding organizations.

I would like to thank all the members of the MaHPIC-HAMMER consortium.

Lastly, I would like to thank my family and friends for all of the support that they gave

me throughout this process.

v

Table of Contents

Page

Acknowledgments . v

List of Figures . viii

List of Tables . x

Chapter

1 Introduction and Literature Review 1

1.1 Background of machine learning 1

1.2 Convolutional Neural Networks 4

1.3 Residual Networks . 8

1.4 Regularization in Neural Networks 10

1.5 Ill conditioning In Neural Networks 18

2 Training Neural Networks with Noisy Data 22

2.1 Statement of the Problem 22

2.2 A Bound on the Relative Error of zi
〈l〉 24

2.3 A New Regularization Term 28

3 Experiments and Results . 30

3.1 Atrial Fibrillation . 30

3.2 PhysioNet Challenge . 32

3.3 Novel Telemetry Data . 38

4 Discussion . 51

4.1 Regularization . 51

vi

4.2 Telemetry Data . 51

5 Conclusion . 53

Appendix . 63

5.1 Physionet Results with l2 and l1 Regularization 63

5.2 Statistics on Development set when training on Data Set

With Random Permutation of Labels 65

5.3 Hourly Classification Statistic for Telemetry Time Series 66

5.4 Code to Train and Evaluate Model 89

vii

List of Figures

3.3 Deep Neural Network Model for ECG Classification 35

3.4 Diagram of Proposed Deep Neural Network Model for ECG Classification . . 36

3.5 Confusion Matrix for Model With Regularization 37

3.6 Confusion Matrix for Model With No Regularization 38

3.7 Malaria Life Cycle: Source: The Center for Disease Control 40

3.10 Telemetry Set Up. Source: Biomathematics Research Group 45

3.12 Diagram of Proposed Deep Neural Network Model for Telemetry Classification 46

3.13 Confusion Matrix for Development Set (10% of Hour 23) 47

3.8 E30 Experiment Set Up: Source: Aurrecoechea C, et al. (2008) 48

3.9 E06 Experiment Set Up: Source: Aurrecoechea C, et al. (2008) 49

3.11 E07 Experiment Set Up: Source: Aurrecoechea C, et al. (2008) 50

5.1 Confusion Matrix for Model With l2 Regularization 63

5.2 Confusion Matrix for Model With l1 Regularization 64

5.3 Confusion Matrix of Development set when training on Data Set With

Random Permutation of Labels . 65

5.4 Confusion Matrix for Hour 0 . 66

5.5 Confusion Matrix for Hour 1 . 67

5.6 Confusion Matrix for Hour 2 . 68

5.7 Confusion Matrix for Hour 3 . 69

5.8 Confusion Matrix for Hour 4 . 70

5.9 Confusion Matrix for Hour 5 . 71

5.10 Confusion Matrix for Hour 6 . 72

5.11 Confusion Matrix for Hour 7 . 73

viii

5.12 Confusion Matrix for Hour 8 . 74

5.13 Confusion Matrix for Hour 9 . 75

5.14 Confusion Matrix for Hour 10 . 76

5.15 Confusion Matrix for Hour 11 . 77

5.16 Confusion Matrix for Hour 12 . 78

5.17 Confusion Matrix for Hour 13 . 79

5.18 Confusion Matrix for Hour 14 . 80

5.19 Confusion Matrix for Hour 15 . 81

5.20 Confusion Matrix for Hour 16 . 82

5.21 Confusion Matrix for Hour 17 . 83

5.22 Confusion Matrix for Hour 18 . 84

5.23 Confusion Matrix for Hour 19 . 85

5.24 Confusion Matrix for Hour 20 . 86

5.25 Confusion Matrix for Hour 21 . 87

5.26 Confusion Matrix for Hour 22 . 88

ix

List of Tables

3.1 Definition of parameters for scoring used in equations. Source: Clifford et al.

(2017) . 33

3.2 Statistics from model without regularization 38

3.3 Statistics from model with regularization . 38

3.4 Statistics from Development Set (10% of Hour 23) 47

5.1 Statistics from model with l2 Regularization 63

5.2 Statistics from model with l1 Regularization 64

5.3 Statistics from Model Development Set When Trained on Data With Ran-

domly Permuted Label . 65

5.4 Statistics from Hour 0 . 66

5.5 Statistics from Hour 1 . 67

5.6 Statistics from Hour 2 . 68

5.7 Statistics from Hour 3 . 69

5.8 Statistics from Hour 4 . 70

5.9 Statistics from Hour 5 . 71

5.10 Statistics from Hour 6 . 72

5.11 Statistics from Hour 7 . 73

5.12 Statistics from Hour 8 . 74

5.13 Statistics from Hour 9 . 75

5.14 Statistics from Hour 10 . 76

5.15 Statistics from Hour 11 . 77

5.16 Statistics from Hour 12 . 78

5.17 Statistics from Hour 13 . 79

x

5.18 Statistics from Hour 14 . 80

5.19 Statistics from Hour 15 . 81

5.20 Statistics from Hour 16 . 82

5.21 Statistics from Hour 17 . 83

5.22 Statistics from Hour 18 . 84

5.23 Statistics from Hour 19 . 85

5.24 Statistics from Hour 20 . 86

5.25 Statistics from Hour 21 . 87

5.26 Statistics from Hour 22 . 88

xi

Chapter 1

Introduction and Literature Review

1.1 Background of machine learning

The promise that has been shown recently for machine learning makes one excited about its

potential. There have been reports of many successes with machine learning in areas such as

computer vision, speech recognition, biology, drug discovery, genomics and a host of other

areas [2, 25, 28, 56]. Machine learning is not a new concept; there are pioneering papers

for the subject that date back as far as the 1950s [58]. The subject seemed to fall out of

favor over the years but, with the advances in computing capabilities in recent years and the

explosion of large datasets, we are now better positioned than we were in the past to explore

the capabilities of machine learning.

One characterization of machine learning is, “a composition of multiple processing layers

to learn representations of data with multiple levels of abstraction” [28]. Neural networks

are popular machine learning models that have been studied extensively throughout the

literature. Figure 1.1 shows a diagram of a fully connected neural network with 2 input

units, 3 neurons on the first hidden layer, 2 neurons on the second hidden layer and one

output unit.

A mathematical description inspired by Saarine et al. (1993) [46] of a two hidden layer

feedforward Neural Network is now given:

• a := Total number of input units.

• b := Total number of first hidden layer neurons.

• c := Total number of second hidden layer neurons.

1

• m := The number of data points.

• n := b(a+ c+ 1) + 2c total number of parameters.

• Nk := The kth neuron 1 ≤ k ≤ b+ c.

We define an a-b-c feedforward neural network as the following:

For the ith data point xi = (xi1, x
i
2, . . . , x

i
a)

Nl = g

(∑
d

w(l−1)(a+1)+1+dx
i
d + w(l−1)(a+1)+1

)
, (1.1)

where 1 ≤ l ≤ b, 1 ≤ d ≤ a and g(•, •) is an ”activation” function of the user’s choosing.

Nb+p = f

(∑
q

wt+(p−1)(b+1)+1+qNq + wt+(q−1)(b+1)+1

)
, (1.2)

where 1 ≤ p ≤ c,1 ≤ q ≤ b, t = p(h+ 1) and f(•, •) is an “activation” function of the users

choosing. So the output of an a-b-c feedfoward neural network for input xi and weight vector

w is

F (xi,w) =
∑
r

wu+rNb+r (1.3)

where u = t+ c(b+ 1) and 1 ≤ r ≤ c.

According to Deng and Yu (2014) [13], a definition of deep learning is “a class of machine

learning techniques that exploit many layers of non-linear information processing for super-

vised or unsupervised feature extraction and transformation, and for pattern analysis and

classification.” Although there are many reports of success for deep learning, the under-

standing of how and why it works so well is still underdeveloped [31]. It is a well-known

result that feedforward neural networks have universal approximating abilities for functions

under reasonable assumptions [4, 11, 20, 31, 39]. In particular Leshno et al. (1993) [30] proved

the following theorem:

Theorem 1.1.1 (Leshno et al. (1993)). Let M denote the set of functions which are L∞ on

any compact subset of Rn and the closure of the set of points of discontinuity have Lebesgue

measure zero.

2

Two Hidden Layer Neural Network with two input units and one output unit

x1
i x2

i

ℱ 𝑥𝑖, ഥ𝑤

w19w18

w3w2 w5 w9w8w6

Bias-w1 N1 Bias-w4 N2 Bias-w7 N3

w11
w12

w13 w15
w16

w17

Bias-w14 N5Bias-w10 N4

Figure 1.1: Two hidden layer feedfoward neural network with 2 input units, 3 neurons on
the first hidden layer, 2 neurons on the second hidden layer, and one output neuron.

3

For any σ ∈M span{σ(w • x + Θ) : w ∈ Rn,Θ ∈ R} is dense in C(Rn) if and only if σ is

not an algebraic polynomial (a.e)

In supervised learning, deep learning usually attempts to learn features of a given data

set, to be able to make predictions on similar data that the system has not yet seen. After

training a model, we usually seek some metric to determine how well a model is performing

on data that it has not been trained on, (commonly called test data). Many times data-sets

are skewed, which makes accuracy (the fraction of predictions that the model got correct of

the entire list of predictions) a misleading metric many times. Consider an example where

we create a model that would classify a data set {x} into two classes {0, 1}. Now assume

that 90% of the data is in the 0 class. If our model predicts that all data belongs to the

0 class, then we get the misleading result that our model is 90% accurate. Many times on

skewed data sets, a better metric to use is the F1 score.

Definition 1.1.2.

Precision =
True Positive

True Positive+ False Positive

Recall =
True Positive

True Positive+ False Negative

F1 =
Precision×Recall
Precision+Recall

The F1 score is the harmonic average of precision and recall. This statistic is used for

binary classifiers but is used many times in multiclass classifiers by calculating the F1 score

for each class individually. The F1 score is a metric that is between 0 and 1 with 0 being the

worst and 1 being the best. Going back to our example of the model that calculated 0 for

every data point in the skewed data set {x} we see that the F1 score is .47. This statistic is

used for scoring models on skewed data-sets throughout the literature [17, 43, 59].

1.2 Convolutional Neural Networks

In 1959, Hubel and Wiesel [21] performed a series of experiments on a cat’s cortex. With the

use of electrodes that were placed on the cat’s brain, they monitored the response of different

4

neurons when the cats were given different visual stimuli. Some of the results that were

observed are that there is a hierarchical organization to the neurons. So there are different

cells responsible for response to different stimuli. For example, there are simple cells that

responded to light, there are complex cells that respond to light, orientation, and movement,

and hypercomplex cells that respond to movement with an endpoint. This brought rise to

the Neurocognitron in 1980 [15]. This model simulated the ideas of Hubel and Wiesel and

created a model that alternated between simple layers and complex layers. The model is

credited to be the first step towards developing the convolutional neural network (CNN)

framework. In 1998 Lecun et al. [29] was the first to demonstrate gradient-based learning on

a CNN.

Because of computational limitations, the popularity of the Convolutional Neural Net-

works didn’t begin to rise until 2012 with “Alexnet” [26]. The purpose of Krizhevsky’s

work was to show that it is possible to efficiently train a deep CNN and also to show that

CNNs could dramatically surpass the state of the art at that time. The vast majority of

the literature for CNNs are in the fields of image processing, computer vision, and natural

language processing. There has also however been many reports of successes in many areas of

human health [8, 17, 42]. A brief explanation of the different components of a convolutional

neural network inspired by Aghdam and Heravi (2017) [16] is now given.

Convolutional Layers

Convolutional layers are the central pieces to a CNN. Convolutional layers take as input a

three-dimensional representation of the data set (width, height, depth). It is easy to extend

to one-dimensional data by making the third dimension of the data 1. The parameters of

the layer include a set of trainable filters (also called kernels) that only look at small bits

of the data at any given time. The language used often is that filters have a small receptive

field. The creator of the CNN decides the amount of data that is considered at any given

5

time by the filters. The filters are convolved across the input volume by computing the dot

product of the elements of the filter and the input volume. The filter then moves over by

an amount that is chosen by the user. The amount that the filter moves is called the stride

of the filter. The smaller the stride, the more overlap a particular filter haves as it passes

through the data. This process produces a two-dimensional activation map. The user also

chooses the number of filters to use in every layer. Each activation map is stacked in the

third dimension, so the output of the convolutional layer is a three-dimensional volume.

After the three dimensional volume if formed the application of a nonlinear activation

function is usually applied to each element in the volume. Rectified Linear Unit (ReLU) is

used many times for CNNs in the literature. ReLU is defined as

f(x) = ReLU(x) = max(0, x). (1.4)

There are many other choices of activation functions including,

f(x) = tanh(x) =
ex − e−x

ex + e−x
, (1.5)

f(x) = |tanh(x)| =
∣∣∣∣ex − e−xex + e−x

∣∣∣∣ , (1.6)

σ(x) = sigmoid(x) =
1

1 + e−x
. (1.7)

Functions (1.5), (1.6), and (1.7) are all saturating nonlinear functions. Krizhevsky et al.

(2012) [26] found that these functions train several times slower than the nonsaturating

function in (1.4). Because of the speed of training that comes with using nonsaturating

activation functions, ReLU has become the activation function of preference in many deep

neural networks.

Convolutional layers have the feature of local connectivity. This is one key difference in

the convolutional neural network from the fully connected neural network. Convolutional

neural networks take advantage of the spatial structure of the data. This idea also comes

from the research that Hubel and Wiesel did [22]. The idea is that spatially close data is

highly correlated. In fully connected neural networks the spatial component is ignored. If

6

the input of a fully connected neural network is rearranged then nothing is affected since the

weights are connected to every input.

One other feature of the convolutional layer is weight sharing. Each filter slides across the

entire input. The filter has the same weights and bias to analyze the entire input dimension,

in contrast to a fully connected neural network where a diferent weight is connected to every

component of the input. This reduces the number of parameters needed to define the layer.

The idea is that if a filter is good at detecting a feature in one part of the data, then it should

also be good at detecting a feature at another part of the data. This feature also gives the

opportunity to train much deeper and complex networks because using fewer parameters

in each layer makes computation cost decrees giving one the opportunity to use computing

power in deeper layers.

Pooling Layer

Another component of CNNs is the pooling layer. The purpose of the pooling layers is to

achieve spatial invariance by reducing the resolution of the feature maps [23]. It is a way to

downsample your data in a non-linear fashion. Max pooling has become the most popular

pooling layer. It partitions the data into subsets, and for each subset, max pooling outputs

the maximum value of the subset. This process is done for every depth slice in the input

volume of the pooling layer, so this leaves the depth of the input volume unchanged. Other

examples of pooling layer include average pooling which partitions the data into subsets and

for each subset outputs the average of each subset, but Hutchison et al. (2010) [23] showed

that max pooling is far superior for capturing invariances, so other pooling layers are not

used as often in state of the art CNNs.

One concern with pooling layers is the quick dimension reduction of the data. This dimen-

sion reduction can be attractive in some sense because it reduces the number of trainable

parameters which speeds up computation, but this can be a concern because information

may be lost too quickly and performance suffers. One way to control this is to zero-pad the

7

borders of the input volume. Zero-padding essentially adds zeros to the borders of the input

volume to make the dimension larger which in turn padding ensures that the output of the

pooling layer does not have a dimension that is so small that important information is lost.

Pooling also improves generalization in neural networks which is also shown in Hutchison et

al. (2010) [23].

Fully Connected Layer

Finally, most CNNs have fully connected layers. They are usually the last layers of a CNN.

At this point, the neurons are not sparsely connected anymore and now go back to being

fully connected. Fully connected layers assist in classification in many CNNs [8, 17, 26, 54,

59]. When faced with a classification problem with k classes throughout the literature the

activation function for the last dense layer is a k dimensional softmax function

softmax(x)j =
exj∑k
i=1 e

xi
, (1.8)

for j = 1, . . . , k and x = (x1, . . . , xk).

1.3 Residual Networks

Works from Simonyan and Zisserman (2015) and also Szegedy et al. (2015) [49, 54] recently

showed evidence that the depth of a neural networks is important to its overall performance.

There are many examples of deep neural networks that enjoy increased performance as

compared to their shallow counterparts [17, 26, 34, 49, 54]. In the work of He et al. [19] the

natural question “is learning better networks as easy as stacking more layers?” was asked.

Counterintuitively the works of He and Sun (2014), He et al. (2014), and Srivastava et al.

(2015) [18, 19, 53] showed that in many instances, neural networks’ performance start to

degrade as the network becomes deeper. Figure 1.2 shows an example of this phenomena.

Consider a shallow neural network F (Θ,x) and its deeper counterpart G(Φ,x) that is

constructed by adding more layers to F (Θ,x). With this construction, it would seem as

8

Training Error and Test Error on CIFAR-10 With 20-Layer and 56-Layer
Network

Figure 1.2: Image taken from He et al. (2015)

though the performance of G(Φ,x) should be no worse then the performance of F (Θ,x)

since we could make all layers in G(Φ,x) that are not in F (Θ,x) the identity map. He

et al. [19] points out that in consideration of this constructive example it seems that the

degradation problem experienced with deep neural networks lies in the optimization of the

network. This example points out that in many cases, gradient descent has a hard time

optimizing deeper networks.

He et al. [19] presents a solution to the above problem. Let H(x) denote the desired

mapping of the input vector x. Instead of trying to find a neural network that produces

H(x) directly, we allow the stacked nonlinear layers to fit the residual mapping

F (x) = H(x)− x. (1.9)

Reformulating the problem, we would like stacked nonlinear layers to fit

H(x) = F (x) + x. (1.10)

We can achieve this with neural networks by introducing skip connections. Figure 1.3 is an

example of skip connections.

Skip connections are the building blocks of Residual Neural Networks (RESNET). He et

9

Skip connections: The Building Blocks of Residual Networks

Figure 1.3: Image taken from He at al. (2015)

al. [19] hypothesized that it is easier to optimize the residual mapping than to optimize the

original mapping. The idea is that if the identity mapping is optimal, then it would be easier

to push the residual to zero then to fit the identity map with stacked nonlinear functions.

One attractive feature of RESNET is that it adds no more parameters to its plain counter

and no more computational complexity.

He et al. (2015) [19] found that RESNET dramatically outperformed its’ plain counter-

parts. This framework also gives the intuitive result that deeper networks perform better

than shallow networks. It also showed that in some cases convergence was faster in RESNET

even when performance was similar in shallow networks. Figure 1.4 shows a comparison of

a RESNET framework compared to a plain deep neural network, and Figure 1.5 shows the

performance of plain networks of different depths compared to RESNET of different depths.

In Figure 1.5 the thin lines represent the training error, and the thicker lines represent the

test errors.

1.4 Regularization in Neural Networks

The generalization ability of a neural network refers to the ability of a neural network to

be able to predict things about a data set that it was not trained on assuming the new

10

Residual Network Compared to Plain Counterparts

Figure 1.4: Image taken from He at al. (2015)

11

Performance Comparison of Residual Network with Plain Networks

Figure 1.5: Image taken from He at al. (2015)

data is similar to the training data. Regularization of a neural network is defined to be

any modification to a neural network to reduce its generalization error. The phenomenon of

achieving low error on a test set and high generalization error is referred to as overfitting.

The study of reducing generalization error without underfitting the model has been of great

interest. The following are algorithms that have been presented in the literature to reduce

overfitting.

L1 and L2 Normalization

The complexity of an unregularized neural network is fairly understood to increase as a

function of its size and depth [35]. A neural network F with parameters Θ is said to shatter

a data-set {x1, x2, . . . , xn} if, for all assignments of labels to those points, there exists a θ such

that the model f makes no errors when evaluating that set of data points. The VC dimension

of a model F is the maximum cardinal D such that a data-set {x1, x2, . . . , xn} of cardinality

D can be shattered by F [48]. With hard-threshold activations, the VC-dimension, of the

class of functions realizable with a feed-forward network is equal, up to logarithmic factors,

to the number of edges in the network which corresponds to the number of parameters [48].

12

The problem with this is that with more complex functions comes more opportunities to

overfit data.

Consider a neural network F (Θ,x) with n neurons and with corresponding loss function

L(Θ,x). Define the hypothesis class H as all possible realizations of F that we are searching

for. A regularization function is a mapping Ω : Rd → R that intuitively measures the

“complexity” of a model. The regularized loss minimization rule produces

argminΘ(L(Θ,x) + Ω(Θ)). (1.11)

Minimizing 1.11 gives a balance between a low cost function and a “less complex” model

according to Shalev-Shwartz and Ben-David (2014) [48]. One function that is used often is

Ω(Θ) := λ||Θ||22, (1.12)

where λ > 0 is a scaler and || • ||2 is the l2 norm given by ||Θ||2 =
√∑

i

∑
j Θ2

i,j. We can look

at the l2 norm of the perameter Θ as a measure of “complexity”. One intuitive way to define

a sequence of nested hypothesis classes H1 ∈ H2 ∈ H3 . . . where Hi is all neural networks

with the same architecture of F (Θ, x) and ||Θ||2 < i. This regularization is called Tikhonov

regularization or weight decay.

Krogh and Hertz (1992), Srivastava et al. (2014), Zeiler and Fergus (2013) [27, 52, 65]

have all shown examples of successes with normalization with weight decay. The speed and

simplicity of the regularization term are what has made it so popular in the past. It has been

useful but in recent times with newer techniques weight decay has not been used so much in

the literature.

A straightforward modification that we can do to the weight decay minimization term

changes the norm from l2 to l1. So we now define

Ω1(Θ) := λ||Θ||1, (1.13)

and analyze

argminΘ(L(Θ, x) + Ω1(Θ)) (1.14)

13

This regularization term is called Lasso and was presented by Tibshirani (1995) [64]. The key

difference presented in the work of Tibshirani (1995) [64] is that Lasso defines a continuous

shrinking operation that can produce coefficients of exactly 0. The result is sparsity in data

and can lead to a sparser representation in the input data set and also a neural network with

fewer neurons. Sparsity is attractive in the sense that it allows for less memory demands

and also gives a better feature selection in the input data. There has been many reports of

lasso outperforming weight decay including Ng (2004), Srivastava (2014), Tibshirani (1996)

[36, 52, 64]. Srivastava (2014) [52] also reported results when they combined lasso and weight

decay.

Dropout

Ensemble methods use multiple learning models to obtain better prediction power than that

of one single model. Ensemble methods have been shown many times to outperform any of the

single classifiers in the ensemble [38, 40, 45]. Srivastava (2014) [52] stated that “with unlim-

ited computation, the best way to regularize a fixed-size model is to average the predictions

of all possible settings of the parameters, weighting each setting by its posterior probability

given the training data.” Also according to Srivastava et al. (2014), [52] ensemble methods

are most useful when models in the ensemble have different architectures and are trained

on different data. This is unfeasible many times in practice because of limited computation

capacity, limited data, and limited time.

Dropout is a technique the prevents overfitting and also approximates combining expo-

nentially many models to increase prediction power. The name ”dropout” comes from drop-

ping out neurons in a stochastic manner while training a neural network. Dropout makes

neuron learn with randomly chosen samples of other neurons. This forces the neuron to learn

more independently and not depend on other neurons to learn because there is no guarantee

that the neuron will remain in the system. A neural network with n neurons in it can be

seen as a collection of 2n “thinned” possible neural networks according to Srivastava (2014)

14

[52]. The idea is to estimate combining these 2n thinned models to make predictions at test

time. Let L be the number of hidden layers in a neural network. Let l ∈ {1, . . . , L}. Let z(l)

be the vector of inputs of layer l. Let y(l) denote the output of layer l with the convention

that y(0) = x is the network’s input, and W (l), b(l) be the trainable weights and bias for layer

l. Then in a standard neural network for any neuron i in layer l we have

zl+1
i = W

(l+1)
i y(l) + b

(l+1)
i , (1.15)

y
(l+1)
i = f(zl+1

i), (1.16)

for some activation function f .

In order to apply dropout we do the following:

r
(l+1)
j ∼ Bernoulli(p), (1.17)

ỹ(l+1) = r(l+1) · y(l+1), (1.18)

zl+1
i = W

(l+1)
i ỹ(l+1) + b

(l+1)
i , (1.19)

y
(l+1)
i = f(zl+1

i). (1.20)

Where r(l) is a vector of independent Bernoulli random variables, each having probability p

of being 1 and • denotes componentwise multiplication. The choice of p is a hyperparameter

however Srivastava (2014) [52] notes that in practice, most times in the earlier parts of the

network p should be close to one and goes down as you get deeper in the network. Notice that

adding dropout to a layer in a neural network effectively eliminates some neurons in that

layer by making them zero. Forward and backpropagation are done in a very similar manner

with the only acceptation that it is done only on the thinned networks. This gives the effect

of training 2n thinned neural networks that share weights but training them very rarely if

any at all. At test time the original neural network is used with the modification that the

weights used in the trained neural network are W
(l)
test = pW (l). This step is an approximation

of averaging the 2n thinned models that ensure that for any neuron the expected output

under the distribution used to drop neurons during training is the same as the actual output

15

at test time.

Dropout was shown to improve generalization performance on a wide range of data

domains. These domains included computer vision, speech recognition, document classifi-

cation, and computational biology [52]. It surpassed the generalizing capabilities of every

regularization technique that used except for Bayesian Neural Networks. This outperfor-

mance was expected because Bayesian Neural Networks takes a more accurate approach for

model averaging. It is important to note that according to Srivastava (2014) [52] Bayesian

Neural Networks are much slower to train and hard to scale to large scale problems.

Batch Normalization

Ioffe and Szeged (2015) [24] described a new technique called Batch Normalization to deal

with the problem of internal covariate shift during the training process of neural networks.

In this work internal covariate shift is defined to be when the input distribution to a learning

system changes. It is a known result from LeCun et al.(1998),Wiesler and Ney (2011) [29, 62]

that when training a neural network that training converge faster if one first whiten the input

values by doing a linear transformation of subtracting the mean and divide by the standard

deviation of the input data and also decorrelating the data.

Consider a neural network that computes

l = F2(F1(x,Θ1),Θ2), (1.21)

with Θ1 and Θ2 being the parameters to optimize with objective function J , and F1 and F2

are some arbitrary activation functions. Wiesler and Ney (2011) [62] showed that the opti-

mization process would benefit greatly by whitening. Ioffe and Szeged (2015) [24] considered

l2 = F2(u,Θ2) (1.22)

as a sub-network of l with u = F1(x,Θ1) as the input of l2. This work pointed out that

using the result of Wiesler and Ney (2011) [62] for l2 we see that the training process also

benefits from whitening u. This work noted that there could be some complications with

16

not allowing the optimization algorithm used to optimize the network to take into account

the normalization step that was described. To address this issue, they wanted to make sure

that for any parameter value, the network always produced activations with the desired

distribution. To achieve this, they considered whitening the layers input in a differentiable

way. This work also noted that trying to whiten the layer’s input is expensive and not

everywhere differentiable. Because of this observation, they introduced two simplifications:

• Instead of whitening the features in layer inputs and outputs jointly, they normalize

each scalar feature independently, by making it have the mean zero and variance 1

• Since mini-batches are used training, each mini-batch produces estimates of the mean

and variance of each activation.

One other thing noted in Ioffe and Szeged (2015) [24] is that simply normalizing each input of

a layer may change the representation power of the layer. An example of this is if we normalize

the inputs of a sigmoid it constrains them to only the linear like part of the nonlinearity

which would lose some of the power of the sigmoid function. To correct this they introduce

to learnable parameters γ〈k〉, β〈k〉 for each activation x〈k〉, where x = (x〈1〉, . . . , x〈d〉). These

parameters scale and shift the normalized value

y〈k〉 = γ〈k〉x̃〈k〉 + β〈k〉, (1.23)

where x̃〈k〉 = x〈k〉−E[x〈k〉]√
V ar[x〈k〉]

Introducing these new parameters allows the model to learn the optimal mean and variance

of the model and restored the capabilities of the layer. Using the above observations Ioffe

and Szeged (2015) [24] created the following algorithm

17

Algorithm 1 Batch Normalization Transform

Input:

Values of x over a mini batch:B = {x1...m}; Parameters to be learned: γ, β, ε(numerical

stability)

Output:

{yi = BNγ,β(xi)}

µβ ← 1
m

∑m
i=1 xi (mini batch mean)

σ2
β ← 1

m

∑m
i=1(xi − µβ)2 (mini-batch variance)

x̃〈k〉 ← x−µβ√
σ2
β+ε

(Normalize)

yi ← γx̃+ β ≡ BNγ,β(xi) (scale and shift)

Ioffe and Szeged (2015) [24] also points out that even though when creating Batch Nor-

malization, regularization of the network in the traditional sense was not the goal, Batch

Normalization regularizes the network. It comes from the fact that noise is introduced in the

system by estimating the mean and variance of the inputs by the means and variances of

mini-batches. In their experiments, they found that when comparing between the ”inception”

model Szeged et al. (2015) [54] and the ”inception” model after Batch Normalization they

were able to gain 2.2% on the training set while dropping the number of epochs tremendously.

1.5 Ill conditioning In Neural Networks

The condition number of a function is defined as:

Definition 1.5.1. The condition number of a differentiable function H(x) : Rn → Rm is

κ(H(x)) =
||x||||J(x)||
||H(x)||

. (1.24)

Such that J(x) is the Jacobian of the function H(x) and || • || is a norm on Rm

Intuitively this measures how much the output of H(x) changes for a small change in x.

The above definition is canonical if given a small change in x, we think of the ratio of the

18

relative change in output of H(x), [||H(x + δx) −H(x)||/||H(x)||] and the relative change

in x [||δx||/||x||], doing so we get

||x||
||H(x)||

||H(x + δx)−H(x)||
||δx||

. (1.25)

If we take the limit as ||δx|| → 0 we get (1.24).

When considering the linear equation

Ax = b. (1.26)

with A ∈ Rn×n and x,b ∈ Rn. The conditioning number gives a bound on the inaccuracy

of the solution x in approximation. In the linear case, the conditioning number is defined to

be the maximum ratio of the relative error in x to the relative error in b. If we assume that

A is nonsingular and let e be the error in b when we approximate x, then the error in the

approximation of x is A−1e. Taking the ratio of the relative errors in x and in b yields,

	A−1e	
	A−1b	
	e	
	b	

=

(
||A−1e||
||e||

)(
||b||
||A−1b||

)
. (1.27)

So we would like to find the max of 1.27 over all non zero e and b.

maxe,b6=0

{(
||A−1e||
||e||

)(
||b||
||A−1b||

)}
= (1.28)

maxe6=0

{(
||A−1e||
||e||

)}
maxb6=0

{(
||b||
||A−1b||

)}
= (1.29)

maxe 6=0

{(
||A−1e||
||e||

)}
maxx 6=0

{(
||Ax||
||x||

)}
= (1.30)

||A−1|| · ||A||. (1.31)

This derivation shows that the conditioning number of a matrix A is defined as
κ(A) = ||A−1|| · ||A|| det(A) 6= 0

∞ det(A) = 0.

(1.32)

It can be shown immediately that

κ(A) = ||A−1|| · ||A|| ≥ ||A−1 · A|| = ||I|| ≥ 1 (1.33)

19

The generalization of the conditioning number to non square matrices is also of interest. Let

A ∈ Rm×n with the range of A denoted by RA. Define the dual norm of a vector x ∈ Rn as

follows

||x||D = sup{xT z : ||z|| = 1}. (1.34)

Also define

α(A) := min{||ATx||D : x ∈ RA, ||x||D = 1} (1.35)

Demko (1986) [12] defines the generalized conditioning number of the rectangular matrix A

as

κ(A) = ||A|| · α(A). (1.36)

It is easily verifiable that if A is a square matrix, then the generalized conditioning number is

the same as the conditioning number defined in 1.32. It is also important to notice that when

using the l2 norm as defined in 1.12 then α(A) = A† where A† is called the Moore-Penrose

inverse. A† has the following properties:

AA†A = A (1.37)

A†AA† = A† (1.38)

(AA†)∗ = AA† (1.39)

(A†A)∗ = A†A (1.40)

There have been studies on the conditioning number and the way it relates to neural

networks. Saarinen (1993), Sjoberg and Viberg (1997) [46, 51] showed that the Jacobian

of neural networks can be ill-conditioned and that this ill-conditioning often happens in

specific neural network architectures. This ill-conditioning leads to slow training because the

ill-conditioning in the Jacobian causes any optimization algorithm that uses the Jacobian for

search directions, to only use partial information of the possible search directions. Saarinen

20

(1993) [46] proposed changes in architecture to deal with the problem of ill-conditioning in

the Jacobian, while Sjoberg and Viberg (1997) [51] presented a new optimization technique

that would assist in speeding up training with ill-conditioned neural networks.

Singh et al. [50] presented empirical evidence that the conditioning of the weight matrices

in neural networks can help in the performance of a neural network on adversarial data. A

new regularization term is presented to influence the weight matrices to become orthonormal.

They showed positive results in most cases when training models on the MNIST [1] and F-

MNIST [1] handwriting data-set.

The goal of this work is to present an argument that well-conditioned weight matrices

assist in the classification of noisy data. This work also presents a new regularization term

that influences the weight matrices to have better conditioning numbers but not try to

make them orthonormal. The remainder of this work is structured as follows: chapter 2

is a presentation of an argument that better-conditioned weight matrices lead to better

classification on noisy data, as well as present a new regularization term to influence the

weight matrices to have better conditioning numbers. Chapter 3 gives results as well as

outline experiments performed to test the regularization term as well as give a description

of a benchmark data set and a novel data used in the experiments. Chapter 4 is a discussion

and future work, and chapter 5 is the conclusion.

21

Chapter 2

Training Neural Networks with Noisy Data

2.1 Statement of the Problem

In any data set there is understood to be some element of noise that comes in the data.

Assume that we have a data set {xi} 1 ≤ i ≤ m with m data points. So assume that our

data set is of the form

xi = gi + εxi (2.1)

such that gi is the true signal and εxi is the associated noise. Assume that we have a fully-

connected neural network to classify our data set into k classes. So we have

F (xi,w) : Rn → Zk (2.2)

F (xi,w) = fv(W
〈v〉fv−1(W 〈v−1〉fv−2(W 〈v−2〉fv−2(. . . f1(W 〈1〉xi + γi) . . .) + γv−2) + γv−1) + γv),

(2.3)

with fl being an activation function of the users choice and W 〈l〉 is the weight matrix asso-

ciated with the lth layer 1 ≤ l ≤ v.

Notice that we execute a linear operator in every layer of the neural network before

executing an activation function. Let the output of layer l be defined as follows:

zi
〈l〉 = W 〈1〉ai

〈l−1〉 + γl, (2.4)

where ai
〈l−1〉 = f〈l−1〉(zi

〈l−1〉) for some activation function f〈l−1〉 of user’s choice. For l = 1

we will have the convention that zi
〈0〉 = ai

〈0〉 = xi

When training this network, since the data has noise in it, we also get a perturbation in

the weight vector, the z′s and the a′s. Let

22

• hi
〈l〉 be the target output of layer l,

• εzi〈l〉 be the perturbation of the output of the lth layer,

• Ω〈l〉 be the target weight matrix associated with layer l,

• εW 〈l〉 be the perturbation of the weight matrix associated with the lth layer,

• bl be the target bias for layer l,

• εγl be the perturbation of the bias vector associated with layer l,

• ζi〈l−1〉 be the target activation of layer l − 1 (by applying an activation to the output

of layer l − 1),

• εai
〈l−1〉 be the perturbation of the activation vector associated with layer l − 1.

So we have:

zi
〈l〉 = hi

〈l〉 + εzi〈l〉 , (2.5)

ai
〈l−1〉 = ζi

〈l−1〉 + εai
〈l−1〉 , (2.6)

W 〈l〉 = Ω〈l〉 + εW 〈l〉 , (2.7)

γl = bl + εγl , (2.8)

with our target system being

hi
〈l〉 = Ω〈l〉ζi

〈l−1〉 + bl. (2.9)

But because of noise our system gives us

zi
〈l〉 = hi

〈l〉 + εzi〈l〉 (2.10)

= W 〈1〉ai
〈l−1〉 + γl (2.11)

= (Ω〈l〉 + εW 〈l〉)(ζi
〈l−1〉 + εai

〈l−1〉) + bl + εbl . (2.12)

A natural question is can we bound the relative error of zi
〈l〉?

23

2.2 A Bound on the Relative Error of zi
〈l〉

One can assume with out loose of generality that γl = 0 by subtracting γl on both sides of

equation (2.4) and analyzing the resulting vector. So by setting γ = 0 equation 2.4 yields,

zi
〈l〉 = hi

〈l〉 + εzi〈l〉 = (Ω〈l〉 + εW 〈l〉)(ζi
〈l〉 + εai

〈l〉), (2.13)

with the corresponding target system being,

hi
〈l〉 = Ω〈l〉ζi

〈l−1〉. (2.14)

Consider the case when we assume that Ω〈l〉 is an invertible square matrix. So by left mul-

tiplying both sides of equation (2.14) by the inverse of Ω〈l〉 equation (2.14) implies that

(Ω〈l〉)−1hi
〈l〉 = ζi

〈l−1〉. (2.15)

Similar to above we will assume that W 〈1〉 is an invertable square matrix. When we use

the form in equation 2.7 after multiplication we will get,

(W 〈1〉)−1 = (Ω〈l〉 + εW 〈l〉)
−1 (2.16)

Miller (1981) [33] proved the following 2 lemmas and theorem,

Lemma 2.2.1 (Miller). Let G and G + H be nonsingular matrices where H is of rank one.

Let g = tr(HG−1). Then g 6= −1 and

(G + H)−1 = G−1 − 1

1 + g
G−1HG−1.

Lemma 2.2.2 (Miller). Let G and G + H be invertible matrices. If H has positive rank r,

then there exist a decomposition of H = E1 + E2 + · · ·+ Er such that Ek has rank one for

all 1 ≤ k ≤ r and the ”partial sums” Ck+1 = G + E1 + E2 + · · ·+ Ek is nonsingular with

C1 = G.

Theorem 2.2.3 (Miller). Let G and G + H be non singular matrices and let H have positive

rank r. Let H = E1 + E2 + · · ·+ Er and Ck+1 = G + E1 + E2 + · · ·+ Ek as described in

Lemma 2.2.2 Then

C−1
k+1 = C−1

k − νkC−1
k EkC−1

k

24

for k = 1, . . . , r

with νk = 1
tr(C−1

k Ek)

and in particular

(G + H)−1 = C−1
r − νrC

−1
r EkC−1

r .

A simple corollary of Theorem 2.2.4 is now presented.

Corollary 2.2.4. Let G, G + H, Ek, and Ck+1 be as defined in Theorem 2.2.4. Then

((Ck+1)−1 = G−1 + Γ

for some matrix Γ that will have dependency on Ek

Proof. We proceed by induction. When k = 1

C−1
2 = G−1 − ν1G−1E1G−1.

Assume true for arbitrary k = m− 1

C−1
m+1 = C−1

m − νkC−1
m EmC−1

m

= G−1 + Γ1 − νkC−1
m EmC−1

m .

Choosing Γ to be Γ1 − νkC−1
m EmC−1

m we obtain the result.

Returning to equation (2.17) we see that since the only matrix over the real numbers with

rank 0 is the 0 matrix we have,

(Ω〈l〉 + εW 〈l〉)
−1 = (Ω〈l〉)−1 + Γ (2.17)

Where Γ will have dependency on the decomposition of (Ω〈l〉)−1 and the matrix εW 〈l〉 .

Definition 2.2.5.

εΩ〈l〉 := Γ

25

We are interested in the relative error of z
〈l〉
i . Notice that

zi
〈l〉 = (2.18)

hi
〈l〉 + εzi〈l〉 = (2.19)

((Ω〈l〉 + εW 〈l〉)(ζi
〈l−1〉 + εai

〈l−1〉) (2.20)

Left multiplying equation 2.20 and 2.21 by the inverse of (Ω〈l〉 + εW 〈l〉) results in

((Ω〈l〉 + εW 〈l〉))
−1(hi

〈l〉 + εzi〈l〉) = (2.21)

((Ω〈l〉)−1 + εΩ〈l〉)(hi
〈l〉 + εzi〈l〉) = (2.22)

(Ω〈l〉)−1hi
〈l〉 + εΩ〈l〉hi

〈l〉 + ((Ω〈l〉)−1 + εΩ〈l〉)εzi〈l〉 = (2.23)

ζi
〈l−1〉 + εzi〈l−1〉 (2.24)

Solving for ((Ω〈l〉)−1 + εΩ〈l〉)εzi〈l〉 gives the result

((Ω〈l〉)−1 + εΩ〈l〉)εzi〈l〉 = (2.25)

(W 〈1〉)−1εzi〈l〉 = (2.26)

ζi
〈l−1〉 + εai

〈l−1〉 − εΩ〈l〉hi
〈l〉 − (Ω〈l〉)−1hi

〈l〉 (2.27)

We will now invert (W 〈1〉)−1 to put it back on the right side of the equal sign

εzi〈l〉 = (2.28)

((W 〈1〉)(ζi
〈l−1〉 + εai

〈l−1〉 − εΩ〈l〉hi
〈l〉 − (Ω〈l〉)−1hi

〈l〉) (2.29)

26

In order to find a bound on the relative error, we enter norm space.

∥∥εzi〈l〉∥∥ = (2.30)∥∥∥((W 〈1〉)(ζi
〈l−1〉 + εai

〈l−1〉 − εΩ〈l〉hi
〈l〉 − (Ω〈l〉)−1hi

〈l〉)
∥∥∥ ≤ (2.31)∥∥((W 〈1〉)

∥∥∥∥∥(ζi
〈l−1〉 + εai

〈l−1〉 − εΩ〈l〉hi
〈l〉 − (Ω〈l〉)−1hi

〈l〉)
∥∥∥ ≤ (2.32)∥∥((W 〈1〉)

∥∥(∥∥∥(ζi
〈l−1〉 − (Ω〈l〉)−1hi

〈l〉)
∥∥∥+

∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥)= (2.33)

∥∥(Ω〈l〉 + εW 〈l〉)
∥∥(∥∥∥(ζi

〈l−1〉 − (Ω〈l〉)−1hi
〈l〉)
∥∥∥+

∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥)= (2.34)

∥∥((Ω〈l〉)−1 + εΩ〈l〉)
−1
∥∥(∥∥∥(ζi

〈l−1〉 − (Ω〈l〉)−1hi
〈l〉)
∥∥∥+

∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥)= (2.35)∥∥∥∥(Ω〈l〉)− (Ω〈l〉)

(
((Ω〈l〉)−1 + εΩ〈l〉)− (Ω〈l〉)−1

)
((Ω〈l〉)−1 + εΩ〈l〉)

−1

∥∥∥∥(∥∥∥(ζi
〈l−1〉 − (Ω〈l〉)−1hi

〈l〉)
∥∥∥+

∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥)= (2.36)∥∥(Ω〈l〉)− (Ω〈l〉)εΩ〈l〉((Ω

〈l〉)−1 + εΩ〈l〉)
−1
∥∥(∥∥∥(ζi

〈l−1〉 − (Ω〈l〉)−1hi
〈l〉)
∥∥∥+

∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥)≤ (2.37)(∥∥(Ω〈l〉)

∥∥+
∥∥(Ω〈l〉)εΩ〈l〉

∥∥∥∥((Ω〈l〉)−1 + εΩ〈l〉)
−1
∥∥)(∥∥∥(ζi

〈l−1〉 − (Ω〈l〉)−1hi
〈l〉)
∥∥∥+

∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥) (2.38)

By subtracting equation 2.37 and 2.40 by equations
∥∥(Ω〈l〉)−1εΩ〈l〉

∥∥∥∥((Ω〈l〉)−1 + εΩ〈l〉)
−1
∥∥,

using equation 2.15, and dividing by appropriate terms, 2.37-2.40 is equivalent to the fol-

lowing inequality:

∥∥((Ω〈l〉)−1 + εΩ〈l〉)
−1
∥∥(∥∥∥εai

〈l−1〉 − εΩ〈l〉hi
〈l〉
∥∥∥)≤ (2.39)∥∥(Ω〈l〉)

∥∥
1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥) (2.40)

27

To analyze the relative error of zi
〈l〉 we divide both sides by the norm of hi

〈l〉∥∥εzi〈l〉∥∥∥∥∥hi
〈l〉
∥∥∥ ≤ (2.41)

∥∥(Ω〈l〉)
∥∥

1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥∥εai
〈l−1〉 − εΩ〈l〉hi

〈l〉
∥∥∥∥∥∥hi

〈l〉
∥∥∥

)
≤ (2.42)

∥∥(Ω〈l〉)
∥∥

1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥εai
〈l−1〉

∥∥+ ‖εΩ〈l〉‖
∥∥∥hi

〈l〉
∥∥∥∥∥∥hi

〈l〉
∥∥∥

)
≤ (2.43)

∥∥(Ω〈l〉)
∥∥

1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥εai
〈l−1〉

∥∥∥∥∥hi
〈l〉
∥∥∥ +

‖εΩ〈l〉‖
∥∥∥hi

〈l〉
∥∥∥∥∥∥hi

〈l〉
∥∥∥

)
= (2.44)

∥∥(Ω〈l〉)
∥∥∥∥(Ω〈l〉)−1

∥∥
1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥εai
〈l−1〉

∥∥
‖(Ω〈l〉)−1‖

∥∥∥hi
〈l〉
∥∥∥ +

‖εΩ〈l〉‖
∥∥∥hi

〈l〉
∥∥∥

‖(Ω〈l〉)−1‖
∥∥∥hi

〈l〉
∥∥∥
)
≤ (2.45)

∥∥(Ω〈l〉)
∥∥∥∥(Ω〈l〉)−1

∥∥
1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥εai
〈l−1〉

∥∥∥∥∥(Ω〈l〉)−1hi
〈l〉
∥∥∥ +

‖εΩ〈l〉‖
‖(Ω〈l〉)−1‖

)
= (2.46)

∥∥(Ω〈l〉)
∥∥∥∥(Ω〈l〉)−1

∥∥
1− ‖(Ω〈l〉)εΩ〈l〉‖

(∥∥εai
〈l−1〉

∥∥∥∥∥ζi〈l−1〉
∥∥∥ +

‖εΩ〈l〉‖
‖(Ω〈l〉)−1‖

)
(2.47)

We notice that one thing that we can do to try to make the relative error of zi
〈l〉 on the same

magnitude as the relative error of ζi
〈l〉 and (Ω〈l〉)−1 is to make the conditioning number of

(Ω〈l〉) to be as small as possible.

2.3 A New Regularization Term

Let Lclass be the original loss function associated with a neural network F (x,Θ). We will

make the strong assumption that
∥∥(Ω〈l〉)

∥∥ ≤ ∥∥W 〈l〉
∥∥ and also

∥∥(Ω〈l〉)−1
∥∥ ≤ ∥∥(W〈l〉)−1

∥∥.

This assumption equates to the error term associated with the weights and the error term

associated with inverse, having a positive correlations with the weight matrix and inverse. In

the case of the l2 operator norm, the error term shifts the singular values of the weight matrix

and inverse matrix in a significant way. We suggest a regularization term to be added to the

system’s loss function to penalize large conditioning number of W 〈l〉, and by our assumption,

28

this penalizes the conditioning number of (Ω〈l〉)

Lcond = λlκ(W 〈l〉), (2.48)

Where λl are hyperparameters to the system and can differ from layer to layer. We only

analyzed the case in which the weight matrix is square. This means that we only add regu-

larization to a layer that meets our conditions. To meet this, we must have 2 layers l, l + 1

of F (x,Θ) that are fully connected and both layers have the same number of neurons in it.

In this case, W〈l+1〉 is a square matrix, and this is the matrix that we influence to have a

good conditioning number. Our total lost is now defined as follows:

Ltotal = Lclass + Lcond (2.49)

29

Chapter 3

Experiments and Results

3.1 Atrial Fibrillation

According to Lip et al. (2016)[32] atrial fibrillation (AF) is a disorder of the hearts electrical

conduction system that leads to fast and irregular heart rhythms. It is the most common

sustained cardiac arrhythmia, occurring in 12% of the general population according to Deng

and Yu (2014) [14]. According to the Center of Disease Control and Prevention, there are an

estimated 2.7-6.1 million people in the United States that live with AF and as the population

grows older with advancements in medicine, the number of people living with AF is expected

to increase. Adults that are 40 years or older have a one in four risk of developing AF in a

lifetime. The complications associated with AF include a four- to fivefold increased risk of

stroke [63] and a two- to threefold increased risk of heart failure [60]. The Symptoms of AF

include palpitations, fatigue, dizziness, light-headedness, and dyspnoea but many patients

are asymptomatic [47].

Diagnosing AF is often done through the readings of an Electrocardiogram (ECG). An

ECG is a noninvasive test where electrodes are placed on the skin to detect the electrical

activity of the heart. The heart works as a pump to deliver blood through out the body.

Each beat of your heart is triggered by an electrical impulse that is generated at the top

of the heart in the sinoatrial node and then travels to the atrioventricular node. Then the

signal travels through the bundle of His to the ventricles at the bottom of the heart. An

electrocardiogram records the timing and strength of these signals as they travel through

your heart. Figure 3.1 gives a diagram of the heart. The ECG features that are associated

with AF are complete irregularity of the RR intervals, an absence of P-waves and coarse or

30

Figure 3.1: Image source: John Hopkins University

fine fibrillation waves in the baseline [32]. A comparison between a patient with a normal

heart beat and a patient with AF is given in Figure 3.2.

The diagnosis of AF has also proven to be difficult when absent from symptoms because

AF is often paroxysmal [32]. This means that the irregularities in the heart can be short-lived

and many times overlooked. Clifford et al. (2017) [9] point out that AF detection remains

problematic for numerous reasons. The limitations of other studies to classify AF include the

only classification of normal and AF because many non-AF rhythms exhibit irregular RR

intervals that may be similar to AF, picking data that is often clean and can’t be applied

in real life scenarios, and only using data from a small number of patients. The following

challenge was given in 2017 to encourage research in trying to classify AF reliably.

31

Figure 3.2: Comparison of Normal and AF ECG images. Image source: Li and Yuan (2017)

3.2 PhysioNet Challenge

The PhysioNet Challenge [9] data-set consists of a total of 12,186 ECG recordings that

were donated by AliveCor. Each recording was from a self-administered ECG reading which

leaves room for user error. The recordings ran for a mean of 32.5 seconds, a minimum

length of 9 seconds and a maximum length of 61 seconds. The data is stored at 300hz and

converted into MATLAB V4 files (each including a .mat file containing the ECG and a

.hea file containing the waveform information.) Four classes of data were considered for this

challenge: normal rhythm, AF rhythm, other rhythms, and noisy recordings. Initially, 10%

of the labels were visually verified by the challenge organizers. They found that there were

discrepancies in the labels, and with a “Mid -Challenge Bootstrap” algorithm along with the

help of 8 independent expert ECG analysts the challenge organizers the final version of the

labels were agreed upon. The test data was distributed to the public and contained 8,528

32

Normal AF Other Noisy Total
Normal Nn Na No Np

∑
N

AF An Aa Ao Ap
∑
A

Other On Oa Oo Op

∑
O

Noise Pn Pa Po Pp
∑
P

Total
∑
n

∑
a
∑
o

∑
p

Table 3.1: Definition of parameters for scoring used in equations. Source: Clifford et al. (2017)

records with similar features as the entire data-set, and the test data has been kept private

and contains 3,658 records with similar features as the entire data-set. The training data

contained 5,154 ECG readings of normal heartbeats, 771 readings of AF, 2,557 readings that

were other rhythm types, and 46 readings that are classified as noise.

The data set is skewed heavily towards normal ECG signals. Because of this, the scoring

in this challenge was done with a F1 measure. In the following are the definition of the four

types of F1 were taken from Clifford et al. (2017) [9] and Table 3.1 gives the definition of

each parameter.

Normal : F1n =
2Nn∑
N +

∑
n

(3.1)

AF : F1a =
2Aa∑
A+

∑
a

(3.2)

Other : F1o =
2Oo∑
O +

∑
o

(3.3)

Noise : F1p =
2Pp∑
P +

∑
p

(3.4)

The final score for an entry in the challenge was

F1 =
F1n + F1a + F1o

3
(3.5)

The winner of this challenge was the work described in Teijeiro et al. [57]. The final F1 score

was .83. In this work extensive preprocessing and area expertise was used to extract clinical

meaningful features for classification. Hannun et al. (2019) [17] reported an F1 score on the

33

Physionet challenge of .83 as well. The difference with the two approaches is substantial. In

the approach in Hannun et al. (2019) [17] they use no area expertise and no prepossessing.

This is an end-to-end deep learning approach to deep learning that has become more popular

in the previous years. The method used a deep convolutional neural network that takes data

of any length and no other ECG features. The network have shortcut connections similar

to that of Residual Neural networks. The network has 34 layers that consist of 16 residual

blocks with 2 convolutional layers per block. The convolutional layers all have filter length

16. Each convolutional layer have 32 · 2k filters where k starts at zero and increases by one

every 4th residual block. Batch noramlization was applied to every convolutional layer. Every

other residual block has a maxpooling layer to sub sample the data by a factor of 2. Finally

dropout with p = 0.2 was added between the convolution layers and after the activation

function was applied. The final layer was a fully connected layer with a soft-max activation

to predict the 4 classes. Figure 3.3 shows the diagram given in the original work of the model.

To test our new regularization term we made a few modifications to the model in Hannun

et al. (2019) [17]. We first added another residual block to the network. Adding the block

seemed to improve on the result presented in the original paper. We also added another

dense layer before the output layer that has the same dimensions as the output layer. The

activation function used on this layer was relu. This last modification gives us a square weight

matrix that we added our regularization term to. We added another skip connection between

the two dense layers. Figure 3.6 gives a diagram of the proposed neural network.

34

Figure 3.3: Deep Neural Network Model for ECG Classification

Image source: Image taken from Hannun et al. (2019)

35

Figure 3.4: Diagram of Proposed Deep Neural Network Model for ECG Classification

36

To train the model we used 90% of the Physionet training data and 10% for the develop-

ment set. The norm that we choose was the l2 norm. We only regularized the output layer,

so we used λ = .1. We saved the model after every epoch for the regularized model and also

for the model that is not regularized, and took the best model in both instances. To measure

the performance of the models, we plotted the confusion matrix, we took the F1 as defined

in the challenge on the development set and also submitted the models to be tested on the

private data from the challenge.

Figure 3.5: Confusion Matrix for Model With Regularization

When taking the combined F1 score as done in the challenge on the development we got

.8554. Using the same model without regularization we get a combined F1 score of .8496.

Tables 3.2 and 3.3 gives different statistics for the different labels of the data-set. Figure

3.5 and 3.6 gives the confusion matrices for the model with regularization and without

regularization.

37

Figure 3.6: Confusion Matrix for Model With No Regularization

Precision Recall F1score Support
Normal .901 .918 .909 486
AF .919 .792 .851 72
Other .758 .822 .789 259
Noise .786 .314 .449 35

Table 3.2: Statistics from model without regularization

Precision Recall F1score Support
Normal .905 .938 .921 486
AF .824 .847 .836 72
Other .816 .803 .809 259
Noise .789 .429 .556 35

Table 3.3: Statistics from model with regularization

3.3 Novel Telemetry Data

The World Health Organization [7] reported that in 2017 an estimated 219 million cases

of malaria occurred worldwide with a 95% confidence interval of 203-262 million. Fifteen

countries in sub-Saharan Africa and India account for 80% of the global malaria burden.

In 2017 an estimated 435,000 deaths were caused by malaria with about 61% of the deaths

38

being from children ages 5 and below. In 2017 an estimated 3.1 billion dollars was invested

in malaria control and elimination.

Malaria is a disease that affects humans and other animals and is caused by parasites that

are transmitted to humans through the bites of infected mosquitoes. Malaria is caused by

Plasmodium parasites. The parasites are spread through the female Anopheles mosquitoes.

These mosquitoes mainly bite from dusk to dawn. Five parasite species cause human malaria:

• Plasmodium falciparum

• Plasmodium vivax

• Plasmodium malariae

• Plasmodium ovale

• Plasmodium knowlesi

Plasmodium falciparum and Plasmodium vivax are the most common according to the World

Health Organization and Plasmodium falciparum is the most deadly. Plasmodium knowlesi

is a parasite of old world monkeys and was thought to be rare in humans until recent reports

[10, 61]. Partial immunity is developed over multiple exposures, which reduces the risk of

severe complications in malaria. This is one explanation of why the highest mortality rate

for malaria is with children under the age of 5.

Symptoms in a non-immune individual usually appear 7 days or more after the infectious

bite. The first symptoms of malaria symptoms include fever, headache, chills, and vomiting.

These symptoms may be mild and hard to recognize as malaria. In children, one or more of

the following symptoms are common with a severe malaria infection according to the World

Health Organization: severe anemia, respiratory distress concerning metabolic acidosis, or

cerebral malaria. When partial immunity is present malaria can also become asymptomatic.

As described by the Center for Disease Control and Prevention [41] the life cycle of

malaria involves cyclical infection of humans and Anopheles mosquitoes. The cycle begins

39

with the mosquito injecting a human with anticoagulant saliva together with the parasite.

The parasite immediately migrates to the liver where it grows and multiplies for an estimated

5-7 days in humans. After this, the parasites come out of the liver, and the blood stage begins.

The blood stage is when the onset of symptoms happens. Parasites began to invade red blood

cells where they grow and multiply destroying the red blood cell and releasing parasites to

continue this process. During this process, the parasites become gametocytes, which occur in

male and female forms. Another mosquito comes and bites the infected human. This makes

make the mosquito pick up both male and female forms of the parasite. The parasites mate

in the mosquito’s gut, and after 10-18 days the parasite migrates to the mosquito’s saliva

glands in the form of sporozoites to began the cycle again. A diagram of this cycle is given

in Figure 3.7

Figure 3.7: Malaria Life Cycle: Source: The Center for Disease Control

The World Health Organization reports that early diagnosis and treatment of malaria

reduces the disease and prevents death. The best-known treatment for malaria is artemisinin-

based combination therapy (ACT) [5, 37] which are combinations of an artemisinin derivative

and another structurally unrelated and more slowly eliminated antimalarial. To diagnose

malaria the World Health Organization recommends microscopy or rapid diagnostic tests.

Polymerase chain reaction (PCR) is also a method to detect malaria and has been reported

40

to be slightly more sensitive than smear microscopy, but because the results from PCR take

longer than microscopy, PCR is usually used as a way to confirm that a patient has malaria

and not as a diagnostic tool. Current techniques that are used by clinicians to diagnose

malaria are used after symptoms arise [55]. There has been considerable interest in the

study of the liver stage of malaria [44]. This stage is clinically silent, so there is no presence

of symptoms yet. Diagnostic tools for the liver stage will change the landscape for treating

malaria and give rise to the opportunity of treating malaria before symptoms are present.

2012 the Malaria Host-Pathogen Interaction Center (MaHPIC) was established to char-

acterize host-pathogen interactions during malaria infections of non-human primates (NHP)

and clinical studies. MaHPIC collects and analyzes comprehensive data on how a Plas-

modium parasite infection produces changes in host and parasite gene expression, proteins,

lipids, metabolism, and the host immune response. The experiment design for three novel

malaria experiments provided in [3] are now given

Experiment 30: A Pilot experiment for Macaca mulatta infected with Plas-

modium knowlesi Malayan strain sporozoites to produce and integrate clin-

ical, hematological, parasitological, omics, telemetric and histopatholog-

ical measures of acute primary infection.

Telemetry devices (DSI, model L11) were surgically implanted in two malaria-naive, male

Macaca mulatta non-human primates that were approximately 3 years old. The telemetry

devises had blood pressure sensors, accelerometer, temperature sensors and electrocardio-

gram (ECG) leads. After a resting period of two weeks, the telemetry devices were turned

on, and physiological data was captured continuously. In this experiment, ECG and blood

pressure were collected at a rate of 1kHz. Temperature was collected at 1hz, and three per-

pendicular axes of accelerometer data were collected all at a rate of 10hz. Two weeks after

the devices were turned on the mulattas were inoculated intravenously with cryopreserved P.

knowlesi Malayan strain salivary gland sporozoites, obtained from Anopheles dirus infected

41

with parasites from the Pk1A+ clone. The P. knowlesi sporozoites were produced, isolated

and cryopreserved at the Centers for Disease Control and Prevention. After inoculation, the

macaques were profiled for clinical, hematological, parasitological, immunological, functional

genomic, lipidomic, proteomic, metabolomic, telemetric and histopathological measurements.

The experiment was designed for pathology studies, with terminal necropsies 8 days

apart. The anti-malarial drug artemether was sub curatively administered selectively to one

subject during the primary parasitemia to suppress clinical complications. Capillary blood

samples were collected daily for the measurement of complete blood counts, reticulocytes,

and parasitemias. Capillary blood samples were collected every other day to obtain plasma

for metabolomic analysis. Venous blood and bone marrow samples were collected at five

timepoints for functional genomic, proteomic, lipidomic, and immunological analyses. Phys-

iological data were continuously captured via telemetry. The Emory University Institutional

Animal Care approved the experimental design and protocols for this study and Use Com-

mittee (IACUC) and the MRMC Office of Research Protection Animal Care and Use Review

Office (ACURO). A figure for experimental design is given in Figure 3.8.

Experiment 06: Macaca mulatta infected with Plasmodium knowlesi sporo-

zoites to produce and integrate clinical, hematological, parasitological,

omics, telemetric, and histopathological measures of acute primary infec-

tion.

Telemetry devices (DSI, model L11) were surgically implanted in four malaria-naive, male

Macaca mulatta non-human primates that were approximately 5 years old. The telemetry

devises had blood pressure sensors, accelerometer, temperature sensors and electrocardio-

gram (ECG) leads. After a resting period of two weeks, the telemetry devices were turned

on, and physiological data was captured continuously. In this experiment ECG was collected

at a rate of 1kH, blood pressure was collected at 500hz, temperature was collected at 1hz,

and three perpendicular axes of accelerometer data were collected all at a rate of 10hz.

42

Two weeks after the devices were turned on, the macaques were inoculated intravenously

with cryopreserved P. knowlesi Malayan strain salivary gland sporozoites, obtained from

Anopheles dirus infected with parasites from the Pk1A+ clone and previously tested in

E30 for their infectivity of macaques. The sporozoite stocks used were produced, isolated

and cryopreserved at the Centers for Disease Control and Prevention, and then stored at

Yerkes. After inoculation clinical, hematological, parasitological, immunological, functional

genomic, proteomic, and metabolomic measurements were taken throughout the experiment.

The experiment was designed with pathology studies and thus terminal necropsies, which

were scheduled at the log phase of the infections or at the peak of parasitemias. Capil-

lary blood samples were collected daily for the measurement of complete blood counts,

reticulocytes, and parasitemias. Capillary blood samples were collected every other day to

obtain plasma for metabolomics analyses. Venous blood and bone marrow samples were col-

lected at five timepoints for functional genomic, targeted proteomic, targeted metabolomics,

and immunological analyses. The Emory University Institutional Animal Care approved the

experimental design and protocols for this study and Use Committee (IACUC) and the

MRMC Office of Research Protection Animal Care and Use Review Office (ACURO). A

figure for experimental design is given in Figure 3.9.

Experiment 07A and 07B: Macaca fascicularis infected with Plasmodium

knowlesi sporozoites to produce and integrate clinical, hematological, par-

asitological, omics, telemetric and histopathological measures of acute

primary infection.

Experiment 07A was an experiment where a cohort was inoculated with P. knowlesi sporo-

zoites but for unknown reasons no blood-stage parasitemia ever occurred. Because of this,

the cohort was reinoculated with cryopreserved P. knowlesi sporozoites. So E07A refers to

the data collected from the failed inoculation and E07B refers to the successful reinoculation.

43

Telemetry devices (DSI, model L11) were surgically implanted in 7 malaria-naive, male

long-tailed Macaca fascicularis non-human primates that were approximately 5 years old.

The telemetry devises had blood pressure sensors, accelerometer, temperature sensors and

electrocardiogram (ECG) leads. After a resting period of two weeks, the telemetry devices

were turned on, and physiological data was captured continuously. In this experiment ECG

was collected at a rate of 1kH, blood pressure was collected at 500hz, temperature was col-

lected at 1hz, and three perpendicular axes of accelerometer data were collected all at a rate

of 10hz. To save battery life after the failed inoculation from E07A the devices were turned

off to preserve battery life. One Macaca mulatta was introduced to the experiment between

E07A and E07B and had no telemetry implant inserted in it. At the start of E07B, the

telemetry devices were turned back on. Ten days after, all animals were inoculated intra-

venously with cryopreserved P. knowlesi Malayan strain salivary gland sporozoites, obtained

from Anopheles dirus infected with parasites from the Pk1A+ clone and previously tested

in E30 for their infectivity of macaques. All experiments were conducted similarly to E30

and E06. A diagram of Experiment E07 is given in Figure 3.11. A diagram of the telemetry

hardware and set up is given in Figure 3.10

44

Figure 3.10: Telemetry Set Up. Source: Biomathematics Research Group

We considered all thirteen subjects from E30, E06, and E07 that had telemetry implants

present during the experiments. We only considered E07B because this was the infection

that had a successful blood stage. We are interested in getting a classification between

pre-infection and the liver stage of the P. knowlesi infection from the three experiments. We

considered only ECG data from each experiment. We considered four days before inoculation

and four days after inoculation for all of the experiments and all of the animals. Each day

was segmented into hourly intervals of data. Finally, we segmented the hour intervals into

10-second intervals, and these are the observations that we feed to our model to try to get a

classification. We used the model that is similar to that in Figure 3.4 with λ = .1 the same

as in the 2017 Physionet challenge. We modified to this data set. Figure 3.12 gives a diagram

of the model.

45

Figure 3.12: Diagram of Proposed Deep Neural Network Model for Telemetry Classification

46

We trained our model using 4 days of hour 23 data before inoculation, and 4 days of liver

stage hour 23 for all of the subjects that had telemetry implants. The data was split into

10-sec increments which gave a total of 11,481 observations. We used a random 90% of these

observations to train a neural network and a random 10% as the development set to see if

we can get classification between pre-infection and liver stage. After 7 epoch an accuracy

of 99% was achieved on the development set with the top performing model. The confusion

matrix and F1 statistics for the development set is given in Table 3.4 and Figure 3.13

Precision Recall F1 score Support
Pre-Infection .998 1.000 .999 642
Liver Stage 1.000 .998 .999 506

Table 3.4: Statistics from Development Set (10% of Hour 23)

Figure 3.13: Confusion Matrix for Development Set (10% of Hour 23)

After training on hour 23 we tested the model on each hour to see which hours have the

best classification power. The confusion matrices and F1 statistics for these experiments are

found in the appendix. The code that was created for this classification problem is also found

in the appendix.

47

F
ig

u
re

3.
8:

E
30

E
x
p

er
im

en
t

S
et

U
p
:

S
ou

rc
e:

A
u
rr

ec
o
ec

h
ea

C
,

et
al

.
(2

00
8)

48

F
ig

u
re

3.
9:

E
06

E
x
p

er
im

en
t

S
et

U
p
:

S
ou

rc
e:

A
u
rr

ec
o
ec

h
ea

C
,

et
al

.
(2

00
8)

49

F
ig

u
re

3.
11

:
E

07
E

x
p

er
im

en
t

S
et

U
p
:

S
ou

rc
e:

A
u
rr

ec
o
ec

h
ea

C
,

et
al

.
(2

00
8)

50

Chapter 4

Discussion

4.1 Regularization

Many regularization terms have as their only goal to make a neural network less complex.

We created a regularization term that would achieve this goal but also has a separate goal

of minimizing the relative error of the output vector in a layer of the system. When com-

bining this with dropout [52], heuristically during training this will sample and train a set

of neural networks that have well-conditioned weight matrices. We compared our regular-

ization method to the l2 regularization and also l1 on the Physionet Data-set. Our method

outperformed both methods. The confusion matrix and also the F1 statistics are given in the

appendix.

The results show that only controlling the norm of the weight matrix is not enough for

regularization. In this work we made an assumption on the weight matrix that
∥∥(Ω〈l〉)

∥∥ ≤∥∥W 〈l〉
∥∥ and also

∥∥(Ω〈l〉)−1
∥∥ ≤ ∥∥(W〈l〉)−1

∥∥. This assumption is strong, but it seems not to

damage the results when applied to data in a meaningful way. The assumption of the weight

matrix being square is also a strong assumption. For future research, it is of interest to see

if this assumption could be relaxed. It is of the author’s opinion that in this case penalizing

the generalized conditioning number would yield similar results.

4.2 Telemetry Data

This work used data only from pre-infection and the early parts of a malaria infection

from two different species of non-human primates. It is important to note that Plasmodium

51

knowlesi is usually fatal within a week of blood stage for Macaca mulatta but Macaca fasci-

cularis usually only experience a mild infection [6]. No information about clinical outcomes

or the severity of the infections was used in this experiment. The question of “if there is

a signature of malaria in the heart” is of interest because the ECG is a nonevasive and

inexpensive process that can be implemented in clinical settings.

Our results seem to suggest that there may be a signature for malaria that exists in the

heart even in the early parts of infection. In the results of this experiment, we see that our

model performed the best on hour 21. We also see that in general, we have more classification

power at night. This phenomenon was expected because during the day the animals had

human interactions. We also speculate that because the animals are moving more during the

day that noises such as muscle contractions and stimulation from other animals caused the

classification power to degrade.

To check the efficacy of our pipeline, we did a random permutation of the labels in hour

23 and proceeded to train on this noised data set. As expected when doing this the model

did not converge giving consistent results that the pipeline is sound. The results of training

on the noised data set is also in the appendix.

Monitoring heart function has become more efficient in recent years. Many smartwatches

can monitor heart function. Algorithms such as that in this work open the door to possibilities

of more efficient early diagnoses of the malaria parasite. In future work, it is of interest to

see what happens when training on different parts on the data set to figure out which hour

is best to train on for classification. It is also of interest to see of this classification could be

present in other diseases that have a clinically silent stage. More clinical experiments of this

nature are needed to obtain more extensive and diverse data-sets.

52

Chapter 5

Conclusion

In deep learning, the task of understanding how to build models with as much generalization

capabilities as possible is still in its early stages. The need for regularization is prevalent

when data sets are particularly small. With computational power increasing at such a rapid

pace, we can build models with really high expressive capabilities. Because of this when

building models for complex yet small data sets, the question of overfitting is always daunting.

Dropout seems to be a regularization that has lots of promise, but as we see throughout the

literature and in this work as well, many times dropout can be improved upon.

In this work, we introduced a new regularization technique that is based on the condi-

tioning number of the weight matrices of a neural network. We also gave a mathematically

rigorous explanation of why this regularization should yield positive results on noisy data

sets. We showed the potential of this regularization term by applying it to a deep neural

network for the classification of ECG signals. In the Physionet challenge, we obtained better

results than that of state of the art.

We also were able to distinguish between pre-infection and the liver stage of a P. knowlesi

infection in two spices of non-human primates. This gives new insight on ways to diagnose

the malaria disease much sooner which aligns with the recommendations of the World Health

Organization on how to effectively treat malaria. This also shows the promise of our method

and the promise of end to end deep learning in computational biology. This approach requires

no expertise in a specific subject because no features were extracted from the data set. This

also reduces the chance of human-imposed biases because it eliminates the opportunity for

one to determine what feature is essential and what feature is not.

53

For future work, it is of interest to test these and similar algorithms on different and larger

data sets. It is also of interest to find ways to relax assumptions made on the structure of the

neural network and the weight matrices. We believe that the generalized conditioning number

will play a role in regularization when weight matrices are nonsquare. This generalization

will make the regularization term presented in this work apply to a broader range of neural

network structures.

54

Bibliography

[1] MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,

B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.

TensorFlow: A system for large-scale machine learning. page 21.

[3] C. Aurrecoechea. PlasmoDB: a functional genomic database for malaria parasites.

Nucleic Acids Res.

[4] A. Barron. Universal approximation bounds for superpositions of a sigmoidal function.

IEEE Transactions on Information Theory, 39(3):930–945, May 1993.

[5] A. Bhattarai, A. S. Ali, S. P. Kachur, A. Mrtensson, A. K. Abbas, R. Khatib, A.-w.

Al-mafazy, M. Ramsan, G. Rotllant, J. F. Gerstenmaier, F. Molteni, S. Abdulla, S. M.

Montgomery, A. Kaneko, and A. Bjrkman. Impact of Artemisinin-Based Combination

Therapy and Insecticide-Treated Nets on Malaria Burden in Zanzibar. PLOS Medicine,

4(11):e309, Nov. 2007.

[6] G. Butcher, G. Mitchell, and S. Cohen. Plasmodium knowlesi infections in a small

number of non-immune natural hosts (Macaca fascicularis) and in rhesus monkeys

(M. mulatta). Transactions of the Royal Society of Tropical Medicine and Hygiene,

104(1):75–77, Jan. 2010.

[7] C. By-Nc-Sa. World malaria report 2018. page 210.

55

[8] Z. Cang and G.-W. Wei. TopologyNet: Topology based deep convolutional and multi-

task neural networks for biomolecular property predictions. PLOS Computational

Biology, 13(7):e1005690, July 2017.

[9] G. Clifford, C. Liu, B. Moody, L.-w. Lehman, I. Silva, Q. Li, A. Johnson, and R. Mark.

AF Classification from a Short Single Lead ECG Recording: the Physionet Computing

in Cardiology Challenge 2017. Sept. 2017.

[10] J. Cox-Singh, T. M. E. Davis, K.-S. Lee, S. S. G. Shamsul, A. Matusop, S. Ratnam,

H. A. Rahman, D. J. Conway, and B. Singh. Plasmodium knowlesi Malaria in Humans

Is Widely Distributed and Potentially Life Threatening. Clinical Infectious Diseases,

46(2):165–171, Jan. 2008.

[11] G. Cybenkot. Approximation by superpositions of a sigmoidal function. page 12.

[12] S. Demko. Condition numbers of rectangular systems and bounds for generalized

inverses. Linear Algebra and its Applications, 78:199–206, June 1986.

[13] L. Deng and D. Yu. Deep Learning: Methods and Applications. May 2014.

[14] Developed with the special contribution of the European Heart Rhythm Associa-

tion (EHRA), Endorsed by the European Association for Cardio-Thoracic Surgery

(EACTS), Authors/Task Force Members, A. J. Camm, P. Kirchhof, G. Y. H. Lip,

U. Schotten, I. Savelieva, S. Ernst, I. C. Van Gelder, N. Al-Attar, G. Hindricks, B. Pren-

dergast, H. Heidbuchel, O. Alfieri, A. Angelini, D. Atar, P. Colonna, R. De Caterina,

J. De Sutter, A. Goette, B. Gorenek, M. Heldal, S. H. Hohloser, P. Kolh, J.-Y. Le Heuzey,

P. Ponikowski, F. H. Rutten, ESC Committee for Practice Guidelines (CPG), A. Vaha-

nian, A. Auricchio, J. Bax, C. Ceconi, V. Dean, G. Filippatos, C. Funck-Brentano,

R. Hobbs, P. Kearney, T. McDonagh, B. A. Popescu, Z. Reiner, U. Sechtem, P. A.

Sirnes, M. Tendera, P. E. Vardas, P. Widimsky, Document Reviewers, P. E. Vardas,

V. Agladze, E. Aliot, T. Balabanski, C. Blomstrom-Lundqvist, A. Capucci, H. Crijns,

56

B. Dahlof, T. Folliguet, M. Glikson, M. Goethals, D. C. Gulba, S. Y. Ho, R. J. M.

Klautz, S. Kose, J. McMurray, P. Perrone Filardi, P. Raatikainen, M. J. Salvador, M. J.

Schalij, A. Shpektor, J. Sousa, J. Stepinska, H. Uuetoa, J. L. Zamorano, and I. Zupan.

Guidelines for the management of atrial fibrillation: The Task Force for the Manage-

ment of Atrial Fibrillation of the European Society of Cardiology (ESC). European

Heart Journal, 31(19):2369–2429, Oct. 2010.

[15] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–

202, Apr. 1980.

[16] H. Habibi Aghdam and E. Jahani Heravi. Guide to Convolutional Neural Networks.

Springer International Publishing, Cham, 2017.

[17] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia,

and A. Y. Ng. Cardiologist-level arrhythmia detection and classification in ambulatory

electrocardiograms using a deep neural network. Nature Medicine, 25(1):65, Jan. 2019.

[18] K. He and J. Sun. Convolutional Neural Networks at Constrained Time Cost.

arXiv:1412.1710 [cs], Dec. 2014. arXiv: 1412.1710.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.

arXiv:1512.03385 [cs], Dec. 2015. arXiv: 1512.03385.

[20] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2(5):359–366, Jan. 1989.

[21] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate

cortex. The Journal of Physiology, 148(3):574–591, 1959.

[22] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154, 1962.

57

[23] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,

M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

D. Tygar, M. Y. Vardi, G. Weikum, D. Scherer, A. Mller, and S. Behnke. Evalua-

tion of Pooling Operations in Convolutional Architectures for Object Recognition. In

K. Diamantaras, W. Duch, and L. S. Iliadis, editors, Artificial Neural Networks ICANN

2010, volume 6354, pages 92–101. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[24] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. arXiv:1502.03167 [cs], Feb. 2015. arXiv: 1502.03167.

[25] M. Janzamin, H. Sedghi, and A. Anandkumar. Beating the Perils of Non-Convexity:

Guaranteed Training of Neural Networks using Tensor Methods. arXiv:1506.08473 [cs,

stat], June 2015. arXiv: 1506.08473.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Con-

volutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 25, pages 1097–

1105. Curran Associates, Inc., 2012.

[27] A. Krogh and J. A. Hertz. A Simple Weight Decay Can Improve Generalization. In

J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information

Processing Systems 4, pages 950–957. Morgan-Kaufmann, 1992.

[28] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436, May 2015.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient Based Learning Applied to

Document Recognition. 1998.

[30] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with

a nonpolynomial activation function can approximate any function. Neural Networks,

6(6):861–867, Jan. 1993.

58

[31] Y. Li and Y. Yuan. Convergence Analysis of Two-layer Neural Networks with ReLU

Activation. page 11.

[32] G. Y. H. Lip, L. Fauchier, S. B. Freedman, I. Van Gelder, A. Natale, C. Gianni, S. Nattel,

T. Potpara, M. Rienstra, H.-F. Tse, and D. A. Lane. Atrial fibrillation. Nature Reviews

Disease Primers, 2:16016, Mar. 2016.

[33] K. S. Miller. On the Inverse of the Sum of Matrices. Mathematics Magazine, 54(2):67–72,

1981.

[34] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the Number of Linear Regions

of Deep Neural Networks. page 9.

[35] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-Based Capacity Control in Neural

Networks. page 26.

[36] A. Y. Ng. Feature selection, L 1 vs. L 2 regularization, and rotational invariance. In

Twenty-first international conference on Machine learning - ICML ’04, page 78, Banff,

Alberta, Canada, 2004. ACM Press.

[37] F. Nosten and N. J. White. Artemisinin-Based Combination Treatment of Falciparum

Malaria. The American Journal of Tropical Medicine and Hygiene, 77(6 Suppl):181–

192, Dec. 2007.

[38] D. Opitz and R. Maclin. Popular Ensemble Methods: An Empirical Study. Journal of

Artificial Intelligence Research, 11:169–198, Aug. 1999.

[39] X. Pan and V. Srikumar. Expressiveness of Rectifier Networks. arXiv:1511.05678 [cs],

Nov. 2015. arXiv: 1511.05678.

[40] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems

Magazine, 6(3):21–45, 2006.

59

[41] C.-C. f. D. C. a. Prevention. CDC - Malaria - About Malaria - Biology, Jan. 2019.

[42] T. V. Pyrkov, K. Slipensky, M. Barg, A. Kondrashin, B. Zhurov, A. Zenin, M. Pyat-

nitskiy, L. Menshikov, S. Markov, and P. O. Fedichev. Extracting biological age from

biomedical data via deep learning: too much of a good thing? Scientific Reports, 8, Mar.

2018.

[43] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Lan-

glotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng. CheXNet: Radiologist-Level Pneu-

monia Detection on Chest X-Rays with Deep Learning. arXiv:1711.05225 [cs, stat],

Nov. 2017. arXiv: 1711.05225.

[44] K. E. Rankin, S. Graewe, V. T. Heussler, and R. R. Stanway. Imaging liver-stage malaria

parasites. Cellular Microbiology, 12(5):569–579, 2010.

[45] L. Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1):1–39, Feb.

2010.

[46] S. Saarinen, R. Bramley, and G. Cybenko. Ill-Conditioning in Neural Network Training

Problems. SIAM Journal on Scientific Computing, 14(3):693–714, May 1993.

[47] I. Savelieva and A. J. Camm. Clinical Relevance of Silent Atrial Fibrillation: Preva-

lence, Prognosis, Quality of Life, and Management. Journal of Interventional Cardiac

Electrophysiology, 4(2):369–382, June 2000.

[48] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory

to Algorithms. Cambridge University Press, Cambridge, 2014.

[49] K. Simonyan and A. Zisserman. VERY DEEP CONVOLUTIONAL NETWORKS FOR

LARGE-SCALE IMAGE RECOGNITION. page 14, 2015.

[50] M. Singh, A. Sinha, and B. Krishnamurthy. Neural Networks in Adversarial Setting and

Ill-Conditioned Weight Space. arXiv:1801.00905 [cs, stat], Jan. 2018. arXiv: 1801.00905.

60

[51] J. Sjoberg and M. Viberg. Separable non-linear least-squares minimization-possible

improvements for neural net fitting. In Neural Networks for Signal Processing VII.

Proceedings of the 1997 IEEE Signal Processing Society Workshop, pages 345–354, Sept.

1997.

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

A Simple Way to Prevent Neural Networks from Overtting. page 30, 2014.

[53] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway Networks. arXiv:1505.00387

[cs], May 2015. arXiv: 1505.00387.

[54] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, Boston,

MA, USA, June 2015. IEEE.

[55] N. Tangpukdee, C. Duangdee, P. Wilairatana, and S. Krudsood. Malaria Diagnosis: A

Brief Review. The Korean Journal of Parasitology, 47(2):93–102, June 2009.

[56] A. L. Tarca, V. J. Carey, X.-w. Chen, R. Romero, and S. Drghici. Machine Learning

and Its Applications to Biology. PLOS Computational Biology, 3(6):e116, June 2007.

[57] T. Teijeiro, C. A. Garcia, D. Castro, and P. Flix. Arrhythmia Classification from the

Abductive Interpretation of Short Single-Lead ECG Records. Sept. 2017.

[58] A. M. Turing. Computing Machinery and Intelligence. Mind, New Series, 59(236):433–

460, 1950.

[59] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers. ChestX-ray8:

Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classifi-

cation and Localization of Common Thorax Diseases. 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3462–3471, July 2017. arXiv:

1705.02315.

61

[60] Wang Thomas J., Larson Martin G., Levy Daniel, Vasan Ramachandran S., Leip Eric

P., Wolf Philip A., DAgostino Ralph B., Murabito Joanne M., Kannel William B., and

Benjamin Emelia J. Temporal Relations of Atrial Fibrillation and Congestive Heart

Failure and Their Joint Influence on Mortality. Circulation, 107(23):2920–2925, June

2003.

[61] N. White. Sharing malarias. The Lancet, 363(9414):1006, Mar. 2004.

[62] S. Wiesler and H. Ney. A Convergence Analysis of Log-Linear Training. In J. Shawe-

Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 24, pages 657–665. Curran Associates, Inc.,

2011.

[63] P. A. Wolf, R. D. Abbott, and W. B. Kannel. Atrial fibrillation as an independent risk

factor for stroke: the Framingham Study. Stroke, 22(8):983–988, Aug. 1991.

[64] R. T. R. work(s):. Regression Shrinkage and Selection via the Lasso. Journal of the

Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[65] M. D. Zeiler and R. Fergus. Stochastic Pooling for Regularization of Deep Convolutional

Neural Networks. arXiv:1301.3557 [cs, stat], Jan. 2013. arXiv: 1301.3557.

62

Appendix

5.1 Physionet Results with l2 and l1 Regularization

Figure 5.1: Confusion Matrix for Model With l2 Regularization

Precision Recall F1 score Support
Normal .886 .942 .913 486
AF .855 .653 .740 72
Other .795 .807 .801 259
Noise .765 .371 .500 35

Table 5.1: Statistics from model with l2 Regularization

63

Figure 5.2: Confusion Matrix for Model With l1 Regularization

Precision Recall F1 score Support
Normal .874 .930 .901 486
AF .814 .792 .803 72
Other .815 .784 .799 259
Noise .875 .400 .549 35

Table 5.2: Statistics from model with l1 Regularization

64

5.2 Statistics on Development set when training on Data Set With Random

Permutation of Labels

Figure 5.3: Confusion Matrix of Development set when training on Data Set With Random

Permutation of Labels

Precision Recall F1 score Support
Pre-Infection .000 .000 .000 642
Liver Stage .441 1.000 .612 506

Table 5.3: Statistics from Model Development Set When Trained on Data With Randomly
Permuted Label

65

5.3 Hourly Classification Statistic for Telemetry Time Series

Figure 5.4: Confusion Matrix for Hour 0

Precision Recall F1 score Support
Pre-Infection .721 .983 .832 3692
Liver Stage .986 .751 .853 5653

Table 5.4: Statistics from Hour 0

66

Figure 5.5: Confusion Matrix for Hour 1

Precision Recall F1 score Support
Pre-Infection .754 .987 .855 3702
Liver Stage .991 .810 .891 6273

Table 5.5: Statistics from Hour 1

67

Figure 5.6: Confusion Matrix for Hour 2

Precision Recall F1 score Support
Pre-Infection .802 .978 .881 5688
Liver Stage .972 .761 .854 5762

Table 5.6: Statistics from Hour 2

68

Figure 5.7: Confusion Matrix for Hour 3

Precision Recall F1 score Support
Pre-Infection .653 .988 .786 4338
Liver Stage .990 .694 .816 7445

Table 5.7: Statistics from Hour 3

69

Figure 5.8: Confusion Matrix for Hour 4

Precision Recall F1 score Support
Pre-Infection .836 .993 .908 6506
Liver Stage .989 .758 .858 5225

Table 5.8: Statistics from Hour 4

70

Figure 5.9: Confusion Matrix for Hour 5

Precision Recall F1 score Support
Pre-Infection .802 .985 .884 5027
Liver Stage .988 .836 .906 7481

Table 5.9: Statistics from Hour 5

71

Figure 5.10: Confusion Matrix for Hour 6

Precision Recall F1 score Support
Pre-Infection .818 .937 .873 4929
Liver Stage .930 .800 .860 5154

Table 5.10: Statistics from Hour 6

72

Figure 5.11: Confusion Matrix for Hour 7

Precision Recall F1 score Support
Pre-Infection .804 .588 .679 4963
Liver Stage .655 .846 .738 4590

Table 5.11: Statistics from Hour 7

73

Figure 5.12: Confusion Matrix for Hour 8

Precision Recall F1 score Support
Pre-Infection .587 .385 .465 5878
Liver Stage .555 .739 .634 6089

Table 5.12: Statistics from Hour 8

74

Figure 5.13: Confusion Matrix for Hour 9

Precision Recall F1 score Support
Pre-Infection .834 .648 .729 4505
Liver Stage .806 .919 .859 7194

Table 5.13: Statistics from Hour 9

75

Figure 5.14: Confusion Matrix for Hour 10

Precision Recall F1 score Support
Pre-Infection .853 .685 .760 4479
Liver Stage .746 .887 .811 4673

Table 5.14: Statistics from Hour 10

76

Figure 5.15: Confusion Matrix for Hour 11

Precision Recall F1 score Support
Pre-Infection .803 .655 .722 3624
Liver Stage .820 .907 .861 6265

Table 5.15: Statistics from Hour 11

77

Figure 5.16: Confusion Matrix for Hour 12

Precision Recall F1 score Support
Pre-Infection .698 .581 .634 2006
Liver Stage .849 .904 .876 5242

Table 5.16: Statistics from Hour 12

78

Figure 5.17: Confusion Matrix for Hour 13

Precision Recall F1 score Support
Pre-Infection .503 .270 .352 2740
Liver Stage .713 .872 .785 5706

Table 5.17: Statistics from Hour 13

79

Figure 5.18: Confusion Matrix for Hour 14

Precision Recall F1 score Support
Pre-Infection .630 .297 .404 3243
Liver Stage .703 .905 .791 5967

Table 5.18: Statistics from Hour 14

80

Figure 5.19: Confusion Matrix for Hour 15

Precision Recall F1 score Support
Pre-Infection .856 .351 .498 4407
Liver Stage .660 .955 .781 5815

Table 5.19: Statistics from Hour 15

81

Figure 5.20: Confusion Matrix for Hour 16

Precision Recall F1 score Support
Pre-Infection .956 .515 .669 4727
Liver Stage .659 .975 .787 4546

Table 5.20: Statistics from Hour 16

82

Figure 5.21: Confusion Matrix for Hour 17

Precision Recall F1 score Support
Pre-Infection .934 .522 .670 4368
Liver Stage .683 .966 .800 4663

Table 5.21: Statistics from Hour 17

83

Figure 5.22: Confusion Matrix for Hour 18

Precision Recall F1 score Support
Pre-Infection .922 .433 .589 4202
Liver Stage .625 .963 .758 4121

Table 5.22: Statistics from Hour 18

84

Figure 5.23: Confusion Matrix for Hour 19

Precision Recall F1 score Support
Pre-Infection .907 .714 .799 4247
Liver Stage .825 .948 .883 6055

Table 5.23: Statistics from Hour 19

85

Figure 5.24: Confusion Matrix for Hour 20

Precision Recall F1 score Support
Pre-Infection .960 .926 .943 4324
Liver Stage .944 .970 .957 5519

Table 5.24: Statistics from Hour 20

86

Figure 5.25: Confusion Matrix for Hour 21

Precision Recall F1 score Support
Pre-Infection .982 .993 .987 4026
Liver Stage .993 .984 .989 4654

Table 5.25: Statistics from Hour 21

87

Figure 5.26: Confusion Matrix for Hour 22

Precision Recall F1 score Support
Pre-Infection .968 .935 .951 4023
Liver Stage .956 .978 .967 5767

Table 5.26: Statistics from Hour 22

88

5.4 Code to Train and Evaluate Model

Create and Train Model

1 import t en so r f l ow as t f

2 from keras import backend as K

3 from keras . l a y e r s import BatchNormal izat ion

4 from keras . l a y e r s import Add

5

6

7 #New Regu l a r i z a t i on Term

8 de f l 2 condsq (weight matr ix) :

9 A 1=t f . nn . l 2 l o s s (we ight matr ix)

10 A 2=t f . l i n a l g . inv (weight matr ix)

11 A 5=.1∗ t f . mul t ip ly (t f . nn . l 2 l o s s (A 2) ,A 1)

12

13

14 re turn A 5

15

16 #Helper Functions to Build Model

17 de f bn r e l u (layer , dropout=0, ∗∗params) :

18 from keras . l a y e r s import BatchNormal izat ion

19 from keras . l a y e r s import Act ivat ion

20 l a y e r = BatchNormalizat ion () (l a y e r)

21 l a y e r = Act ivat ion (params [” conv ac t i va t i on ”]) (l a y e r)

22

23 i f dropout > 0 :

24 from keras . l a y e r s import Dropout

25 l a y e r = Dropout (params [” conv dropout ”]) (l a y e r)

26

89

27 re turn l ay e r

28

29 de f add conv weight (

30 l ayer ,

31 f i l t e r l e n g t h ,

32 num f i l t e r s ,

33 subsample length=1,

34 ∗∗params) :

35 from keras . l a y e r s import Conv1D

36 l a y e r = Conv1D(

37 f i l t e r s=num f i l t e r s ,

38 k e r n e l s i z e=f i l t e r l e n g t h ,

39 s t r i d e s=subsample length ,

40 padding=’ same ’ ,

41 k e r n e l i n i t i a l i z e r=params [” c onv i n i t ”]) (l a y e r)

42 re turn l ay e r

43

44

45 de f add conv laye r s (layer , ∗∗params) :

46 f o r subsample length in params [” conv subsample l engths ”] :

47 l a y e r = add conv weight (

48 l ayer ,

49 params [” c o n v f i l t e r l e n g t h ”] ,

50 params [” c o nv num f i l t e r s s t a r t ”] ,

51 subsample length=subsample length ,

52 ∗∗params)

53 l a y e r = bn r e l u (layer , ∗∗params)

54 re turn l ay e r

55

90

56 de f r e s n e t b l o c k (

57 l ayer ,

58 num f i l t e r s ,

59 subsample length ,

60 block index ,

61 ∗∗params) :

62 from keras . l a y e r s import Add

63 from keras . l a y e r s import MaxPooling1D

64 from keras . l a y e r s . core import Lambda

65

66 de f zeropad (x) :

67 y = K. z e r o s l i k e (x)

68 re turn K. concatenate ([x , y] , ax i s=2)

69

70 de f zeropad output shape (input shape) :

71 shape = l i s t (input shape)

72 a s s e r t l en (shape) == 3

73 shape [2] ∗= 2

74 re turn tup l e (shape)

75

76 sho r t cut = MaxPooling1D (p o o l s i z e=subsample length) (l a y e r)

77 zero pad = (b lock index % params [” c onv i n c r e a s e channe l s a t ”]) == 0

\

78 and b lock index > 0

79 i f zero pad i s True :

80 sho r t cut = Lambda(zeropad , output shape=zeropad output shape) (

shor t cut)

81

82 f o r i in range (params [” conv num skip”]) :

91

83 i f not (b lock index == 0 and i == 0) :

84 l a y e r = bn r e l u (

85 l ayer ,

86 dropout=params [” conv dropout ”] i f i > 0 e l s e 0 ,

87 ∗∗params)

88 l a y e r = add conv weight (

89 l ayer ,

90 params [” c o n v f i l t e r l e n g t h ”] ,

91 num f i l t e r s ,

92 subsample length i f i == 0 e l s e 1 ,

93 ∗∗params)

94 l a y e r = Add() ([shortcut , l a y e r])

95 re turn l ay e r

96

97 de f g e t n um f i l t e r s a t i n d e x (index , n um s t a r t f i l t e r s , ∗∗params) :

98 re turn 2∗∗ i n t (index / params [” c onv i n c r e a s e channe l s a t ”]) \

99 ∗ num s t a r t f i l t e r s

100

101 de f add r e s n e t l a y e r s (layer , ∗∗params) :

102 l a y e r = add conv weight (

103 l ayer ,

104 params [” c o n v f i l t e r l e n g t h ”] ,

105 params [” c o nv num f i l t e r s s t a r t ”] ,

106 subsample length=1,

107 ∗∗params)

108 l a y e r = bn r e l u (layer , ∗∗params)

109 f o r index , subsample length in enumerate (params [”

conv subsample l engths ”]) :

110 num f i l t e r s = g e t num f i l t e r s a t i n d e x (

92

111 index , params [” c o n v num f i l t e r s s t a r t ”] , ∗∗params)

112 l a y e r = r e sn e t b l o c k (

113 l ayer ,

114 num f i l t e r s ,

115 subsample length ,

116 index ,

117 ∗∗params)

118 l a y e r = bn r e l u (layer , ∗∗params)

119 re turn l ay e r

120

121

122

123 de f add output laye r (layer , ∗∗params) :

124 from keras . l a y e r s . core import Dense , Act ivat ion

125 from keras . l a y e r s . wrappers import TimeDistr ibuted

126 l a y e r = TimeDistr ibuted (Dense (params [” num categor ie s ”])) (l a y e r)

127 l a y e r = BatchNormalizat ion () (l a y e r)

128 sho r t cut=l ay e r

129 l a y e r = Act ivat ion (params [” conv ac t i va t i on ”]) (l a y e r)

130 l a y e r = TimeDistr ibuted (Dense (params [” num categor ie s ”] ,

k e r n e l r e g u l a r i z e r=l2 condsq)) (l a y e r)

131 l a y e r = Add() ([shortcut , l a y e r])

132 re turn Act ivat ion (’ softmax ’) (l a y e r)

133

134 de f add compile (model , ∗∗params) :

135 from keras . op t im i z e r s import Adam

136 opt imize r = Adam(

137 l r=params [” l e a r n i n g r a t e ”] ,

138 cl ipnorm=params . get (” cl ipnorm” , 1))

93

139

140 model . compi le (l o s s=’ c a t e g o r i c a l c r o s s e n t r o py ’ ,

141 opt imize r=opt imizer ,

142 metr i c s=[’ accuracy ’])

143

144 de f bu i ld network (∗∗params) :

145 from keras . models import Model

146 from keras . l a y e r s import Input

147 inputs = Input (shape=params [’ input shape ’] ,

148 dtype=’ f l o a t 3 2 ’ ,

149 name=’ inputs ’)

150

151 i f params . get (’ i s r e g u l a r c o n v ’ , Fa l se) :

152 l a y e r = add conv laye r s (inputs , ∗∗params)

153 e l s e :

154 l a y e r = add r e s n e t l a y e r s (inputs , ∗∗params)

155

156 output = add output laye r (layer , ∗∗params)

157 model = Model (inputs=[inputs] , outputs=[output])

158 i f params . get (” compi le ” , True) :

159 add compile (model , ∗∗params)

160 re turn model

161

162 import j son

163 import keras

164 import numpy as np

165 import os

166 import random

167 import s c ipy . i o as s i o

94

168 de f load ecg mat (e c g f i l e) :

169 re turn s i o . loadmat (e c g f i l e) [’ va l ’] . squeeze ()

170

171

172 STEP=512

173 l a b e l s =[]

174 ecgs =[]

175 de f l o a d a l l (data path) :

176 l a b e l f i l e = data path+ ”/REFERENCE−v3 . csv ”

177 with open (l a b e l f i l e , ’ r ’) as f i d :

178 r e co rd s = [l . s t r i p () . s p l i t (” , ”) f o r l in f i d]

179

180 datase t = []

181 f o r record , l a b e l in r e co rd s :

182 e c g f i l e = os . path . j o i n (data path , record + ” .mat”)

183 e c g f i l e = os . path . abspath (e c g f i l e)

184 ecg = load ecg mat (e c g f i l e)

185 num labels = ecg . shape [0] / STEP

186 datase t . append ((e c g f i l e , [l a b e l]∗ i n t (num labels)))

187 re turn datase t

188

189 de f s p l i t (dataset , d ev f r a c) :

190 dev cut = in t (d ev f r a c ∗ l en (datase t))

191 random . s h u f f l e (datase t)

192 dev = datase t [: dev cut]

193 t r a i n = datase t [dev cut :]

194 re turn t ra in , dev

195 de f make json (save path , datase t) :

196 with open (save path , ’w ’) as f i d :

95

197 f o r d in datase t :

198 datum = { ’ ecg ’ : d [0] ,

199 ’ l a b e l s ’ : d [1] }

200 j s on . dump(datum , f i d)

201 f i d . wr i t e (’ \n ’)

202 de f l o ad da ta s e t (da ta j s on) :

203 with open (data j son , ’ r ’) as f i d :

204 data = [j son . l oads (l) f o r l in f i d]

205 l a b e l s = [] ; ecgs = []

206 f o r d in data :

207 l a b e l s . append (d [’ l a b e l s ’])

208 ecgs . append (l oad ecg (d [’ ecg ’]))

209 re turn ecgs , l a b e l s

210

211

212 data path=r ”/ s c ra t ch /zw89669/ t ra in ing2017 ”

213 datase t=l o a d a l l (data path)

214 random . seed (2018)

215 dev f r a c =.1

216 t ra in , dev = s p l i t (dataset , d ev f r a c)

217 make json (” t r a i n . j son ” , t r a i n)

218 make json (”dev . j son ” , dev)

219

220

221

222 de f da ta gene ra to r (ba t ch s i z e , preproc , x , y) :

223 num examples = len (x)

224 examples = z ip (x , y)

225 examples = sor t ed (examples , key = lambda x : x [0] . shape [0])

96

226 end = num examples − ba t ch s i z e + 1

227 batches = [examples [i : i+ba t ch s i z e]

228 f o r i in range (0 , end , b a t ch s i z e)]

229 random . s h u f f l e (batches)

230 whi le True :

231 f o r batch in batches :

232 x , y = z ip (∗ batch)

233 y i e l d preproc . p roc e s s (x , y)

234

235 c l a s s Preproc :

236

237 de f i n i t (s e l f , ecg , l a b e l s) :

238 s e l f . mean , s e l f . s td = compute mean std (ecg)

239 s e l f . c l a s s e s = sor t ed (s e t (l f o r l a b e l in l a b e l s f o r l in l a b e l)

)

240 s e l f . i n t t o c l a s s = d i c t (z ip (range (l en (s e l f . c l a s s e s)) , s e l f .

c l a s s e s))

241 s e l f . c l a s s t o i n t = {c : i f o r i , c in s e l f . i n t t o c l a s s . i tems

() }

242

243 de f p roce s s (s e l f , x , y) :

244 re turn s e l f . p r o c e s s x (x) , s e l f . p r o c e s s y (y)

245

246 de f p ro c e s s x (s e l f , x) :

247 x = pad (x)

248 x = (x − s e l f . mean) / s e l f . s td

249 x = x [: , : , None]

250 re turn x

251

97

252 de f p ro c e s s y (s e l f , y) :

253 y = pad ([[s e l f . c l a s s t o i n t [c] f o r c in s] f o r s in y] , va l =3,

dtype=np . in t32)

254 y = keras . u t i l s . n p u t i l s . t o c a t e g o r i c a l (

255 y , num classes=len (s e l f . c l a s s e s))

256 re turn y

257

258 de f pad (x , va l=0, dtype=np . f l o a t 3 2) :

259 max len = max(l en (i) f o r i in x)

260 padded = np . f u l l ((l en (x) , max len) , val , dtype=dtype)

261 f o r e , i in enumerate (x) :

262 padded [e , : l en (i)] = i

263 re turn padded

264

265 de f compute mean std (x) :

266 x = np . hstack (x)

267 re turn (np .mean(x) . astype (np . f l o a t 3 2) ,

268 np . std (x) . astype (np . f l o a t 3 2))

269

270 de f l o ad da ta s e t (da ta j s on) :

271 with open (data j son , ’ r ’) as f i d :

272 data = [j son . l oads (l) f o r l in f i d]

273 l a b e l s = [] ; ecgs = []

274 f o r d in data :

275 l a b e l s . append (d [’ l a b e l s ’])

276 ecgs . append (l oad ecg (d [’ ecg ’]))

277 re turn ecgs , l a b e l s

278

279 de f l oad ecg (record) :

98

280 i f os . path . s p l i t e x t (record) [1] == ” . npy” :

281 ecg = np . load (record)

282 e l i f os . path . s p l i t e x t (record) [1] == ” .mat” :

283 ecg = s i o . loadmat (record) [’ va l ’] . squeeze ()

284 e l s e : # Assumes binary 16 b i t i n t e g e r s

285 with open (record , ’ r ’) as f i d :

286 ecg = np . f r om f i l e (f i d , dtype=np . in t16)

287

288 trunc samp = STEP ∗ i n t (l en (ecg) / STEP)

289 re turn ecg [: trunc samp]

290

291 t r a i n = load da ta s e t (” t r a i n . j son ”)

292

293 dev = load da ta s e t (”dev . j son ”)

294

295 preproc =Preproc (∗ t r a i n)

296

297

298

299 de f make save d i r (dirname , experiment name) :

300 s t a r t t ime = s t r (i n t (time . time ())) + ’− ’ + s t r (random . randrange

(1000))

301 s a v e d i r = os . path . j o i n (dirname , experiment name , s t a r t t ime)

302 i f not os . path . e x i s t s (s a v e d i r) :

303 os . makedirs (s a v e d i r)

304 re turn s av e d i r

305

306 s a v e d i r=r ’ / s c ra t ch /zw89669/ECGMODELCP/ ’

307

99

308 de f g e t f i l e n ame f o r s a v i n g (s a v e d i r) :

309 re turn os . path . j o i n (save d i r ,

310 ”{ v a l l o s s : . 3 f }−{va l a c c : . 3 f }−{epoch :03d}−{ l o s s : . 3 f }−{acc

: . 3 f } . j u s t l 1 r e g l i n f . 1 ADDweights512sq . hdf5 ”)

311 checkpo inte r = keras . c a l l b a ck s . ModelCheckpoint (

312 f i l e p a t h=g e t f i l e n ame f o r s a v i n g (s a v e d i r) ,

313 s av e b e s t on l y=False , s ave we i gh t s on ly=True)

314

315

316 params={

317 ” conv subsample l engths ” : [1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 ,

1 , 2 , 1 , 2] ,

318 ” c o n v f i l t e r l e n g t h ” : 16 ,

319 ” c o nv num f i l t e r s s t a r t ” : 32 ,

320 ” c onv i n i t ” : ” he normal ” ,

321 ” conv ac t i va t i on ” : ” r e l u ” ,

322 ” conv dropout ” : 0 . 2 ,

323 ” conv num skip” : 2 ,

324 ” c onv i n c r e a s e channe l s a t ” : 4 ,

325

326 ” l e a r n i n g r a t e ” : 0 . 001 ,

327 ” ba t ch s i z e ” : 16 ,

328

329

330 ” generator ” : True

331 }

332

333

334

100

335 params . update ({

336 ” input shape ” : [None , 1] ,

337 ” num categor ie s ” : l en (preproc . c l a s s e s) })

338

339 model = bui ld network (∗∗params)

340

341

342 s topping = keras . c a l l b a ck s . EarlyStopping (pat i ence=8)

343

344

345 r e du c e l r = keras . c a l l b a c k s . ReduceLROnPlateau (

346 f a c t o r =0.1 ,

347 pat i ence=2,

348 min l r=params [” l e a r n i n g r a t e ”] ∗ 0 . 001)

349

350

351 ba t ch s i z e = params . get (” ba t ch s i z e ” , 32)

352

353

354 MAXEPOCHS = 100

355

356 i f params . get (” genera tor ” , Fa l se) :

357 t r a i n g en = data gene ra to r (ba t ch s i z e , preproc , ∗ t r a i n)

358 dev gen = data gene ra to r (ba t ch s i z e , preproc , ∗dev)

359 model . f i t g e n e r a t o r (

360 t ra in gen ,

361 s t ep s pe r epoch=in t (l en (t r a i n [0]) / ba t ch s i z e) ,

362 epochs=MAXEPOCHS,

363 va l i d a t i on da t a=dev gen ,

101

364 v a l i d a t i o n s t e p s=in t (l en (dev [0]) / ba t ch s i z e) ,

365 c a l l b a c k s =[checkpo inter , r educ e l r , s topping] , verbose=1)

366 e l s e :

367 t ra in x , t r a i n y = preproc . p roc e s s (∗ t r a i n)

368 dev x , dev y = preproc . p roce s s (∗ dev)

369 model . f i t (

370 t ra in x , t ra in y ,

371 ba t ch s i z e=batch s i z e ,

372 epochs=MAXEPOCHS,

373 va l i d a t i on da t a=(dev x , dev y) ,

374 c a l l b a c k s =[checkpo inter , r educ e l r , s topping] , verbose=1)

Evaluate Model

1 import j son

2 import keras

3 import numpy as np

4 import s c ipy . i o as s i o

5 import s c ipy . s t a t s as s s t

6 import os

7 import sys

8 import t en so r f l ow as t f

9 import s c ipy . s t a t s as s s t

10 import sk l e a rn . met r i c s as skm

11 import matp lo t l i b . pyplot as p l t

12 from sk l ea rn . met r i c s import p r e c i s i o n r e c a l l f s c o r e s u p p o r t ,

con fus ion matr ix , c l a s s i f i c a t i o n r e p o r t

13 import sk l e a rn . met r i c s as skm

14 import i t e r t o o l s

15

102

16

17

18 STEP = 256

19 from keras import backend as K

20 from keras . l a y e r s import BatchNormal izat ion

21 from keras . l a y e r s import Add

22 de f bn r e l u (layer , dropout=0, ∗∗params) :

23

24 from keras . l a y e r s import Act ivat ion

25 l a y e r = BatchNormalizat ion () (l a y e r)

26 l a y e r = Act ivat ion (params [” conv ac t i va t i on ”]) (l a y e r)

27

28 i f dropout > 0 :

29 from keras . l a y e r s import Dropout

30 l a y e r = Dropout (params [” conv dropout ”]) (l a y e r)

31

32 re turn l ay e r

33

34 de f add conv weight (

35 l ayer ,

36 f i l t e r l e n g t h ,

37 num f i l t e r s ,

38 subsample length=1,

39 ∗∗params) :

40 from keras . l a y e r s import Conv1D

41 l a y e r = Conv1D(

42 f i l t e r s=num f i l t e r s ,

43 k e r n e l s i z e=f i l t e r l e n g t h ,

44 s t r i d e s=subsample length ,

103

45 padding=’ same ’ ,

46 k e r n e l i n i t i a l i z e r=params [” c onv i n i t ”]) (l a y e r)

47 re turn l ay e r

48

49

50 de f add conv laye r s (layer , ∗∗params) :

51 f o r subsample length in params [” conv subsample l engths ”] :

52 l a y e r = add conv weight (

53 l ayer ,

54 params [” c o n v f i l t e r l e n g t h ”] ,

55 params [” c o nv num f i l t e r s s t a r t ”] ,

56 subsample length=subsample length ,

57 ∗∗params)

58 l a y e r = bn r e l u (layer , ∗∗params)

59 re turn l ay e r

60

61 de f r e s n e t b l o c k (

62 l ayer ,

63 num f i l t e r s ,

64 subsample length ,

65 block index ,

66 ∗∗params) :

67

68 from keras . l a y e r s import MaxPooling1D

69 from keras . l a y e r s . core import Lambda

70

71 de f zeropad (x) :

72 y = K. z e r o s l i k e (x)

73 re turn K. concatenate ([x , y] , ax i s=2)

104

74

75 de f zeropad output shape (input shape) :

76 shape = l i s t (input shape)

77 a s s e r t l en (shape) == 3

78 shape [2] ∗= 2

79 re turn tup l e (shape)

80

81 sho r t cut = MaxPooling1D (p o o l s i z e=subsample length) (l a y e r)

82 zero pad = (b lock index % params [” c onv i n c r e a s e channe l s a t ”]) == 0

\

83 and b lock index > 0

84 i f zero pad i s True :

85 sho r t cut = Lambda(zeropad , output shape=zeropad output shape) (

shor t cut)

86

87 f o r i in range (params [” conv num skip”]) :

88 i f not (b lock index == 0 and i == 0) :

89 l a y e r = bn r e l u (

90 l ayer ,

91 dropout=params [” conv dropout ”] i f i > 0 e l s e 0 ,

92 ∗∗params)

93 l a y e r = add conv weight (

94 l ayer ,

95 params [” c o n v f i l t e r l e n g t h ”] ,

96 num f i l t e r s ,

97 subsample length i f i == 0 e l s e 1 ,

98 ∗∗params)

99 l a y e r = Add() ([shortcut , l a y e r])

100 re turn l ay e r

105

101

102 de f g e t n um f i l t e r s a t i n d e x (index , n um s t a r t f i l t e r s , ∗∗params) :

103 re turn 2∗∗ i n t (index / params [” c onv i n c r e a s e channe l s a t ”]) \

104 ∗ num s t a r t f i l t e r s

105

106 de f add r e s n e t l a y e r s (layer , ∗∗params) :

107 l a y e r = add conv weight (

108 l ayer ,

109 params [” c o n v f i l t e r l e n g t h ”] ,

110 params [” c o nv num f i l t e r s s t a r t ”] ,

111 subsample length=1,

112 ∗∗params)

113 l a y e r = bn r e l u (layer , ∗∗params)

114 f o r index , subsample length in enumerate (params [”

conv subsample l engths ”]) :

115 num f i l t e r s = g e t num f i l t e r s a t i n d e x (

116 index , params [” c o n v num f i l t e r s s t a r t ”] , ∗∗params)

117 l a y e r = r e sn e t b l o c k (

118 l ayer ,

119 num f i l t e r s ,

120 subsample length ,

121 index ,

122 ∗∗params)

123 l a y e r = bn r e l u (layer , ∗∗params)

124 re turn l ay e r

125

126 de f add output laye r (layer , ∗∗params) :

127 from keras . l a y e r s . core import Dense , Act ivat ion

128 from keras . l a y e r s . wrappers import TimeDistr ibuted

106

129 l a y e r = TimeDistr ibuted (Dense (params [” num categor ie s ”])) (l a y e r)

130 l a y e r = BatchNormalizat ion () (l a y e r)

131 sho r t cut=l ay e r

132 l a y e r = Act ivat ion (params [” conv ac t i va t i on ”]) (l a y e r)

133 l a y e r = TimeDistr ibuted (Dense (params [” num categor ie s ”])) (l a y e r)

134 l a y e r = Add() ([shortcut , l a y e r])

135 re turn Act ivat ion (’ softmax ’) (l a y e r)

136

137 de f add compile (model , ∗∗params) :

138 from keras . op t im i z e r s import Adam

139 opt imize r = Adam(

140 l r=params [” l e a r n i n g r a t e ”] ,

141 cl ipnorm=params . get (” cl ipnorm” , 1))

142

143 model . compi le (l o s s=’ c a t e g o r i c a l c r o s s e n t r o py ’ ,

144 opt imize r=opt imizer ,

145 metr i c s=[’ accuracy ’])

146

147 de f bu i ld network (∗∗params) :

148 from keras . models import Model

149 from keras . l a y e r s import Input

150 inputs = Input (shape=params [’ input shape ’] ,

151 dtype=’ f l o a t 3 2 ’ ,

152 name=’ inputs ’)

153

154 i f params . get (’ i s r e g u l a r c o n v ’ , Fa l se) :

155 l a y e r = add conv laye r s (inputs , ∗∗params)

156 e l s e :

157 l a y e r = add r e s n e t l a y e r s (inputs , ∗∗params)

107

158

159 output = add output laye r (layer , ∗∗params)

160 model = Model (inputs=[inputs] , outputs=[output])

161 i f params . get (” compi le ” , True) :

162 add compile (model , ∗∗params)

163 re turn model

164

165

166 de f l o ad da ta s e t (da ta j s on) :

167 with open (data j son , ’ r ’) as f i d :

168 data = [j son . l oads (l) f o r l in f i d]

169 l a b e l s = [] ; ecgs = []

170 f o r d in data :

171 l a b e l s . append (d [’ l a b e l s ’])

172 ecgs . append (l oad ecg (d [’ ecg ’]))

173 re turn ecgs , l a b e l s

174

175

176

177

178 de f l oad ecg (record) :

179 i f os . path . s p l i t e x t (record) [1] == ” . npy” :

180 ecg = np . load (record)

181 e l i f os . path . s p l i t e x t (record) [1] == ” .mat” :

182 ecg = s i o . loadmat (record) [’ va l ’] . squeeze ()

183 e l s e : # Assumes binary 16 b i t i n t e g e r s

184 with open (record , ’ r ’) as f i d :

185 ecg = np . f r om f i l e (f i d , dtype=np . in t16)

186

108

187

188

189 c l a s s Preproc :

190

191 de f i n i t (s e l f , ecg , l a b e l s) :

192 s e l f . mean , s e l f . s td = compute mean std (ecg)

193 s e l f . c l a s s e s = sor t ed (s e t (l f o r l a b e l in l a b e l s f o r l in l a b e l)

)

194 s e l f . i n t t o c l a s s = d i c t (z ip (range (l en (s e l f . c l a s s e s)) , s e l f .

c l a s s e s))

195 s e l f . c l a s s t o i n t = {c : i f o r i , c in s e l f . i n t t o c l a s s . i tems

() }

196

197 de f p roce s s (s e l f , x , y) :

198 re turn s e l f . p r o c e s s x (x) , s e l f . p r o c e s s y (y)

199

200 de f p ro c e s s x (s e l f , x) :

201 x = pad (x)

202 x = (x − s e l f . mean) / s e l f . s td

203 x = x [: , : , None]

204 re turn x

205

206 de f p ro c e s s y (s e l f , y) :

207 y = pad ([[s e l f . c l a s s t o i n t [c] f o r c in s] f o r s in y] , va l =3,

dtype=np . in t32)

208 y = keras . u t i l s . n p u t i l s . t o c a t e g o r i c a l (

209 y , num classes=len (s e l f . c l a s s e s))

210 re turn y

211

109

212 de f pad (x , va l=0, dtype=np . f l o a t 3 2) :

213 max len = max(l en (i) f o r i in x)

214 padded = np . f u l l ((l en (x) , max len) , val , dtype=dtype)

215 f o r e , i in enumerate (x) :

216 padded [e , : l en (i)] = i

217 re turn padded

218

219 de f compute mean std (x) :

220 x = np . hstack (x)

221 re turn (np .mean(x) . astype (np . f l o a t 3 2) ,

222 np . std (x) . astype (np . f l o a t 3 2))

223

224 de f l o ad da ta s e t (da ta j s on) :

225 with open (data j son , ’ r ’) as f i d :

226 data = [j son . l oads (l) f o r l in f i d]

227 l a b e l s = [] ; ecgs = []

228 f o r d in data :

229 l a b e l s . append (d [’ l a b e l s ’])

230 ecgs . append (l oad ecg (d [’ ecg ’]))

231 re turn ecgs , l a b e l s

232

233 de f l oad ecg (record) :

234 i f os . path . s p l i t e x t (record) [1] == ” . npy” :

235 ecg = np . load (record)

236 e l i f os . path . s p l i t e x t (record) [1] == ” .mat” :

237 ecg = s i o . loadmat (record) [’ va l ’] . squeeze ()

238 e l s e : # Assumes binary 16 b i t i n t e g e r s

239 with open (record , ’ r ’) as f i d :

240 ecg = np . f r om f i l e (f i d , dtype=np . in t16)

110

241

242 trunc samp = STEP ∗ i n t (l en (ecg) / STEP)

243 re turn ecg [: trunc samp]

244

245 model path=r ’ / s c ra t ch /zw89669/TELCP/0.104−0.999−028−0.100−1.000. reg2 . 1

ADDweights256sq . hdf5 ’

246

247 t r a i n = load da ta s e t (” t r a i n . j son ”)

248

249 dev = load da ta s e t (”dev . j son ”)

250

251 preproc =Preproc (∗ t r a i n)

252

253 params={

254 ” conv subsample l engths ” : [1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 ,

1 , 2] ,

255 ” c o n v f i l t e r l e n g t h ” : 16 ,

256 ” c o nv num f i l t e r s s t a r t ” : 32 ,

257 ” c onv i n i t ” : ” he normal ” ,

258 ” conv ac t i va t i on ” : ” r e l u ” ,

259 ” conv dropout ” : 0 . 2 ,

260 ” conv num skip” : 2 ,

261 ” c onv i n c r e a s e channe l s a t ” : 4 ,

262

263 ” l e a r n i n g r a t e ” : 0 . 001 ,

264 ” ba t ch s i z e ” : 16 ,

265

266 ” generator ” : True ,

267

111

268 }

269

270

271

272 params . update ({

273 ” input shape ” : [None , 1] ,

274 ” num categor ie s ” : l en (preproc . c l a s s e s) })

275

276

277

278 de f make json (save path , datase t) :

279 with open (save path , ’w ’) as f i d :

280 f o r d in datase t :

281 datum = { ’ ecg ’ : d [0] ,

282 ’ l a b e l s ’ : d [1] }

283 j s on . dump(datum , f i d)

284 f i d . wr i t e (’ \n ’)

285

286

287

288 model = bui ld network (∗∗params)

289

290 model . l oad we ight s (model path)

291 de f l o a d a l l (data path) :

292 l a b e l f i l e = data path+ ”/Refrence . csv ”

293 with open (l a b e l f i l e , ’ r ’) as f i d :

294 r e co rd s = [l . s t r i p () . s p l i t (” , ”) f o r l in f i d]

295 datase t = []

296 f o r record , l a b e l in r e co rd s :

112

297 e c g f i l e = os . path . j o i n (data path , record + ” . npy”)

298 e c g f i l e = os . path . abspath (e c g f i l e)

299 ecg = load ecg mat (e c g f i l e)

300 num labels = ecg . shape [0] / STEP

301 datase t . append ((e c g f i l e , [l a b e l]∗ i n t (num labels)))

302 re turn datase t

303

304

305

306 de f load ecg mat (e c g f i l e) :

307 i f os . path . s p l i t e x t (e c g f i l e) [1] == ” . npy” :

308 ecg = np . load (e c g f i l e)

309 e l i f os . path . s p l i t e x t (e c g f i l e) [1] == ” .mat” :

310 ecg = s i o . loadmat (e c g f i l e) [’ va l ’] . squeeze ()

311 e l s e : # Assumes binary 16 b i t i n t e g e r s

312 with open (e c g f i l e , ’ r ’) as f i d :

313 ecg = np . f r om f i l e (f i d , dtype=np . in t16)

314 re turn ecg

315

316

317 data path = ”dev . j son ”

318

319

320 #For eva lua t ing on t e s t s e t

321 #hour=21

322 #data path=r ”/ s c ra t ch /zw89669/TelemetryData”+s t r (hour)

323 #datase t=l o a d a l l (data path)

324 #make json (” t e s t . j s on ” , datase t)

325 #data path=”t e s t . j s on ”

113

326 data = load da ta s e t (data path)

327

328

329 probs = []

330 l a b e l s = []

331 f o r x , y in z ip (∗ data) :

332 x , y = preproc . p roce s s ([x] , [y])

333 probs . append (model . p r ed i c t (x))

334 l a b e l s . append (y)

335 preds = []

336 ground truth = []

337 f o r p , g in z ip (probs , l a b e l s) :

338 preds . append (s s t .mode(np . argmax (p , ax i s=2) . squeeze ()) [0] [0])

339 ground truth . append (s s t .mode(np . argmax (g , ax i s=2) . squeeze ()) [0] [0])

340 r epor t = skm . c l a s s i f i c a t i o n r e p o r t (

341 ground truth , preds ,

342 target names=preproc . c l a s s e s ,

343 d i g i t s =3)

344 s c o r e s = skm . p r e c i s i o n r e c a l l f s c o r e s u p p o r t (

345 ground truth ,

346 preds ,

347 average=None)

348 CM=con fus i on matr ix (ground truth , preds)

349 pr in t (CM)

350

351 pr in t (r epo r t)

352

353 de f p l o t c on fu s i on mat r i x (cm, c l a s s e s ,

354 normal ize=False ,

114

355 t i t l e=’ Confusion Matrix On Development Set ’ ,

356 cmap=p l t . cm . Blues) :

357 ”””

358 This func t i on p r i n t s and p l o t s the con fu s i on matrix .

359 Normal izat ion can be app l i ed by s e t t i n g ‘ normal ize=True ‘ .

360 ”””

361 i f normal ize :

362 cm = cm. astype (’ f l o a t ’) / cm. sum(ax i s=1) [: , np . newaxis]

363 pr in t (”Normalized con fus i on matrix ”)

364 e l s e :

365 pr in t (’ Confusion matrix , without norma l i za t i on ’)

366

367 #pr in t (cm)

368 f i g = p l t . f i g u r e ()

369 p l t . imshow (cm, i n t e r p o l a t i o n=’ nea r e s t ’ , cmap=cmap)

370 p l t . t i t l e (t i t l e)

371 p l t . c o l o rba r ()

372 t i ck marks = np . arange (l en (c l a s s e s))

373 p l t . x t i c k s (t ick marks , c l a s s e s , r o t a t i on=45)

374 p l t . y t i c k s (t ick marks , c l a s s e s)

375

376 fmt = ’ . 2 f ’ i f normal ize e l s e ’d ’

377 thresh = cm.max() / 2 .

378 f o r i , j in i t e r t o o l s . product (range (cm. shape [0]) , range (cm. shape

[1])) :

379 p l t . t ex t (j , i , format (cm[i , j] , fmt) ,

380 hor i zonta l a l i gnment=” cente r ” ,

381 c o l o r=”white ” i f cm [i , j] > thresh e l s e ” black ”)

382

115

383 p l t . y l ab e l (’ True l a b e l ’)

384 p l t . x l ab e l (’ Pred ic ted l a b e l ’)

385 p l t . t i g h t l a y ou t ()

386 f i g . s a v e f i g (’ COnfusionMatrixregDEV ’)

387

388

389 p l o t c on fu s i on mat r i x (CM, [’ Pre−I n f e c t i o n ’ , ’ L iver Stage ’])

116

	Acknowledgments
	List of Figures
	List of Tables
	Introduction and Literature Review
	Background of machine learning
	Convolutional Neural Networks
	Residual Networks
	Regularization in Neural Networks
	Ill conditioning In Neural Networks

	Training Neural Networks with Noisy Data
	Statement of the Problem
	A Bound on the Relative Error of zi"426830A l "526930B
	A New Regularization Term

	Experiments and Results
	Atrial Fibrillation
	PhysioNet Challenge
	Novel Telemetry Data

	Discussion
	Regularization
	Telemetry Data

	Conclusion
	Appendix
	Physionet Results with l2 and l1 Regularization
	Statistics on Development set when training on Data Set With Random Permutation of Labels
	Hourly Classification Statistic for Telemetry Time Series
	Code to Train and Evaluate Model

