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the impact of sparse data, due to different field test designs, on the estimation accuracy for 
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CHAPTER 1 

INTRODUCTION 

Diagnostic classification models (DCMs) are multidimensional latent variable models 

that can provide categorical feedback about examinees’ knowledge states (Rupp and Templin, 

2008). In recent years, DCMs have received increased attention among educational researchers 

and psychometricians. These models are suitable to analyze the multidimensional content of 

various assessment tools to provide information about examinees’ knowledge components. 

Although DCMs have been proposed as viable models for practice (e.g., Bradshaw et al. 2014; 

Rupp & Templin, 2008; Rupp, Templin, & Henson, 2010), few practical applications of these 

models exist. Mostly, data from large-scale assessments that were designed as unidimensional 

have been used for applications of DCMs. 

Designing multidimensional assessments from the ground up introduces new challenges 

for educational assessment. One challenge is how to design a field test for gaining initial 

empirical evidence about the statistical properties and diagnostic quality of newly developed 

items that comprise the assessment. While field testing is an essential step in creating 

assessments, field test designs that constructed under planned missingness will yield sparse data 

conditions that may impose calibration challenges for already-complex multidimensional 

assessments. The impact of sparse data conditions on estimation for DCMs has not yet been 

studied. In this study, I will investigate the impact of sparse data on estimation accuracy for 

DCMs. The planned missing designs will be created based upon different, realistic, field test 
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designs—those that are relevant to practice. I will seek answers to key questions about designing 

a field test for a multidimensional diagnostic assessment in practice. These questions include: 

(1) How many items, per dimension, does an examinee participating in the field test 

need to answer to get a stable calibration of the model parameters? 

(2) From how many dimensions does an examinee participating in the field test need 

to answer items to get stable calibration of the model parameters? 

(3) How many responses per item are required for stable calibration under various 

testing scenarios? 

Based on results from a set of simulation studies, I will provide recommendations to 

practitioners for how to design field tests that will yield sufficiently accurate and precise 

estimates of item parameters, attribute levels, and attribute correlations. 
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CHAPTER 2 

LITERATURE REVIEW 

This investigation of field testing in DCMs is based on literature in field testing, missing 

data, and diagnostic classification models. I begin with a description of field testing and methods 

to conduct a field test. Since field testing results in missing data, I, then, review missing data 

mechanisms and planned missing data designs. In the last section of this chapter, I introduce 

DCMs and describe a general DCM, the log-linear cognitive diagnosis model (LCDM; Henson, 

Templin, & Willse, 2009), in detail. 

FIELD TESTING 

Once test items have been developed, reviewed, and revised, they are put through field 

testing under conditions that reflect the actual test. Field testing is often referred to as item 

tryouts. The main purpose of field testing, in which new items are administered to examinees 

prior to operational use, is to ensure that items perform as expected. Field testing can indicate 

that there is a flaw in an item or the item is confusing. After field testing the items, item analysis 

is conducted to determine statistically effective items. Statistics such as item difficulty and item 

discrimination are calculated from response data to identify potentially problematic items. If 

items are either too easy or too difficult, and/or don’t discriminate between high and low ability 

levels, they may be revised or removed. Field testing helps to determine the systematic error 

within an item. Design decisions, such as revising or removing items, can be made based on the 

results from field testing to minimize the errors. 
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Field testing is also essential for generating various forms of the test in static testing or 

creating the item pool in adaptive testing. Establishing statistical properties of items based on 

field testing helps to select which items will be used in future operational tests. For static tests, 

items are placed in an item pool when they are judged to be acceptable, and then items that meet 

the content and statistical criteria for the tests are then chosen from this pool to construct test 

forms. Test forms may seek to balance content representation and also statistical properties of the 

items such as difficulty and discrimination. For adaptive tests, acceptable items are also placed in 

the item pool, and then items may be selected according to different statistical features according 

to the algorithm the test is using to select items. 

Types of Field Test Designs 

Welch (2006) explain two methods to field test items, embedded field testing and 

standalone field testing. Field tested items do not count toward the examinees’ test scores; the 

results, instead, are used for test development purposes. In an embedded field test, the actual test 

includes new items. Examinees do not know which items count and which do not. Thus, their 

motivation to solve the actual items and field test items is expected not to differ. Since the same 

examinees take the new items and the operational items, this method helps ensure that the sample 

size is adequate and represents the population well.  

While representation and motivation effects are advantages of the embedded field test 

design, this method may yield some problems. Embedding items within a test either makes the 

test longer by adding additional items or keeps the test length the same by replacing some of the 

actual items with field test items. When field test items are added to the test, the overall testing 

time is expanded. Both time and fatigue effects might negatively affect examinee performance 

(Kirkpatrick & Way, 2008). The latter method of replacing items may bring up the question 
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whether the content was covered adequately in the operational test (Wendler & Walker, 2006). 

Limited content coverage may decrease the amount of information gathered from the operational 

test. In both situations, since examinees do not know which items will count, they may spend too 

much time on field test items that are more likely to have confusing wording or some issue that 

examinees struggle to understand. Moreover, Wendler and Walker (2006) point out that 

embedded designs on operational assessments, using one item type, do not allow field testing 

different item types because examinees may recognize the field test items. For example, on an 

operational assessment using only multiple choice item types, innovative item types such as 

technology enhanced items (TEIs) may be recognized by examinees as field test items.  

In stand-alone field tests, items are included in separate tests that require additional 

testing sessions. Stand-alone designs allow trying out many items at once because the whole test 

form the examinee is taking is made up of field test items, in contrast to a few field test slots that 

would appear on an embedded field test design. When employing this method, however, it might 

be difficult to motivate examinees. Examinees taking the field test know that results from the test 

do not count toward their score. Since they know that field test items do not count, they may not 

try as hard as they would on an actual test, and thus results may be inaccurate. To avoid 

misleading results, some incentives, such as money, and gift cards, or discounted operational 

assessment services, may be given to examinees or their schools to increase their motivation. 

Another difficulty of administering a stand-alone field test is to find a representative 

sample for the test-taking population. While some testing companies distribute the field test 

forms on the same day that examinees take the actual test, most of them administer it other than 

the actual test day. In both settings, examinees voluntarily attend the field testing sessions so that 

obtaining an adequate sample size may be more challenging. Because stand-alone field testing 
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requires a special testing session, additional test forms have to be developed, and often financial 

incentives are given, it is more expensive than embedded field testing. While developing new 

assessments that differ from the current assessments, it would be better to administer all new 

items to examinees via the stand-alone field testing. Since the new assessment would differ 

according to the content, item types, and other practical issues, stand-alone field testing allow to 

practice all those differences at once. On the other hand, if new items are required for an existing 

program, then embedded field test design is an effective way to administer items to examinees.  

Examples of Field Test Designs: National and International Testing Programs 

Large-scale testing programs such as the Trends in International Mathematics and 

Science Study (TIMSS), the Progress in International Reading Literacy Study (PIRLS), and The 

National Assessment of Educational Progress (NAEP) design assessments in such a way that 

each examinee is administered a specific combination of the items from a larger item pool. 

Although these large-scale testing programs reuse most of the items from the previous 

assessments, they update the instruments for each new cycle by adding a percentage of new 

items. Before new items can appear on the operational versions of the test, the items must be 

field tested.  

The TIMSS and PIRLS both use standalone field tests. They arrange meetings to develop 

new items based on the subject area, topics in that area, and existing items from the previous 

assessment. Twice the number of items needed are developed and field tested to ensure the field 

test yields a sufficient number of items that are adequate for future operational testing. Each 

year, approximately 40% of the assessment items on the operational test are new items, which 

were field tested and selected to be used as operational items. Thus, a large number of items are 

field tested each year. For example, the TIMMS 2015 assessment required developing and field 
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testing 792 new items in total: 287 items for the fourth grade assessments, 354 items for eight 

grade assessments, and 151 items for TIMMS Numeracy (Mullis et al., 2016, pp. 1.2). The 

TIMSS designed the field test in 2015 to be performed in about 30 schools per country yielding 

at least 200 examinees for each item in each country. Each field test item was evaluated by using 

approximately 10,000 responses from more than 40 countries. As another example, the PIRLS 

2016 assessment developed and field tests 18 new passages and item sets: 12 passages including 

203 items for the PIRLS 2016, and 6 passages including 173 items for the PIRLS Literacy 

(Mullis & Prendergast, 2017, pp. 1.9). Four out of 12 passages were common between PIRLS 

and PIRLS Literacy. The field testing was conducted in approximately 30 schools in each 

country. Approximately 9,000 responses to each PIRLS items and 1,000 for each PIRLS Literacy 

item were collected from all countries to evaluate properties of each item.  

While TIMMS and PIRLS conduct standalone field testing, NAEP conducts both 

standalone and embedded field testing. Mostly, embedded field testing is used by including 

newly developed items in the NAEP operational tests. NAEP conducts two types of field tests: 

pilot testing and field testing (“Overview of NAEP Pre-Test Administration Types,” 2011). 

Before items are used in operational NAEP tests, they are pilot testing to obtain information 

about clarity, difficulty levels, and timing. Field testing is the second step and conducted one 

year before the operational test. The purpose of it is to improve the analysis of the operational 

test by pre-calibrating items. Although the information about the number of items pilot testing or 

field testing is not given, it is reported that approximately 500 examinees are assigned to each 

pilot item, and 2,000 for each field test item that allow to perform precalibration. 

Features of Field Test Designs 

A field test can be designed in many ways; however, two main factors play a critical role 
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in the design: how to sample items and examinees. Sampling of items is required because a 

single examinee typically cannot complete all of the field test items; nearly always, more items 

need to be field tested than can be given on a single test form, whether the field test is embedded 

or standalone. Thus, a key decision is to determine how many field test items should be placed on 

each form; for a standalone field test, this is a question of test length and for an embedded field 

test, this is a question of how many field test slots will be included on the operational form. 

Another key decision is which collection of items with respect to content should appear on the 

same form. Greater number of field test slots and longer standalone forms allow each examinee 

to see a more representative sample of content on their field test and is also more cost effectives 

because fewer forms need to be developed. With fewer field test slots or shorter standalone 

forms, the test developer also needs to recruit a larger overall sample of examinees to participate 

in the field test. These benefits, though, must be weighed with issues of fatigue and motivation 

discussed above which worsen as the number of field test items the examinee sees increases. 

Sampling of examinees is required because as many examinees as are needed to get 

stable item statistics and model calibration should take the time to complete the field test items, 

but not more. So all examinees will not need to take all field test items. Thus it is important to 

figure out which examinees will see which items and how many examinees should see each item. 

Field testing the items with a representative sample of the examinee population should give the 

best predictions about the operational use of items (Welch, 2006). Standard 3.8 of the testing 

standards by AERA, APA and NCME (2014) emphasizes that the sample should reflect the 

characteristics of the population from which they are selected. 

When item tryouts or field tests are conducted, the procedures used to select the 

sample(s) of test takers for item tryouts and the resulting characteristics of the sample(s) 
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should be documented. When appropriate, the sample(s) should be as representative of 

the population(s) for which the test is intended. (p. 44)  

The adequacy of the sample has a significant effect on the inferences about item quality 

and item parameter estimates. If the item parameters are obtained from a small sample, results 

may be a misleading basis for estimating item parameters (Hambleton & Jones, 1993). 

MISSING DATA DUE TO FIELD TEST SAMPLING 

Because of the two types of sampling described above, field testing results in sparse data: 

Not all the items from the item pool are included in a test form, and not all of the examinees 

complete each test form. Compared to a full data set, it is well known that calibrating a 

psychometric model is more difficult with a data set with missing data. Missing data is defined 

as the absence of data value for a variable. It may cause a variety of problems. The lack of data 

decreases statistical power, can cause bias in parameter estimates, and reduce the 

representativeness (Rubin, 2004). Missing data may lead to invalid conclusions based on the 

missingness.  

On the other hand, a researcher may intentionally want to collect missing data by using 

planned missingness. Item and examinee sampling in field test designs is planned missingness. 

In the following sections I review planned missing data designs and then discuss types of field 

test sampling that produce different patterns of missing data.  

Planned Missing Data Designs 

Planned missing data designs (PMDD) enable researchers to collect incomplete data from 

participants by using randomized process (Graham et al., 2006; Little & Rhemtulla, 2013). This 

method involves intentionally omitting a subset of the data that is predetermined before data 

collection. By definition, it results in missing completely at random (MCAR) data (Rubin, 1976). 
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Data are missing completely at random (MCAR) when the probability for a data point to be 

missing is not related to other variables nor it is related to the missing variable itself. The missing 

data are a simple random sample of the complete data (Schafer, 1997). It is rare to see MCAR 

data in uncontrolled environments. The two modern missing data analysis techniques that are 

highly recommended are multiple imputation (MI) and maximum likelihood (ML) procedures. 

These techniques provide unbiased estimates with MCAR data (Baraldi & Enders, 2010). 

PMDDs are used to reduce participant burden, the length of the test form, and the cost of 

data collection (Graham et al., 2006; Graham, Taylor & Cumsille, 2001; Raghunathan & Grizzle, 

1995). This is done by dividing the item pool into subset of the items and then administering 

these subsets to examinees. Field testing items and constructing test forms also require a planned 

missing data designs. After field testing items, data is expected to be MCAR because examinees 

are randomly administered to test forms, each including different subset of the items. In general, 

while field testing items, it is practical to use these designs because a researcher desires to collect 

data with a large number of variables but the time, examinee burden, and fatigue are concerns. 

Several ways have been used to assign item sets into test forms. Graham, Hofer, and 

Piccinin (1994) suggested the three-form design where items are divided into four item sets. In 

the three form design, one of the sets is included in each form with two of the remaining sets. 

Then, examinees are randomly assigned to one of the test forms. Including a common set that 

appears in each form helps to estimate the relationship between variables in different forms. 

Those designs that allow to link item responses from different test forms are advantageous in 

terms of dealing with missingness. The higher the correlation between forms, the more 

information can be gathered for the estimation of missing data. Besides including a common set 

in each form, a researcher can use another type of design allowing each item set to be appeared 
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in more than one test form. While each item set appears on different test forms, it also helps to 

link the examinees’ answers from different forms. The forms are administered randomly so that 

the groups of examinee for each test form are approximately equivalent in terms of ability 

One of the versions of the planned missing data designs is referred to as multiple matrix 

sampling (Shoemaker, 1973) and has been applied in educational assessment to develop test 

forms (Sirotnik & Wellington, 1977; Beaton & Zwick, 1992; Zeger & Thomas, 1997). While 

large-scale assessments often aim to cover a broad content domain to measure knowledge and 

skills of the examinees, a limited number of items can be given to an examinee in an available 

testing time. Matrix sampling approach creates the test forms, each of them is missing a subset of 

items. After items from the item pool are divided into subset of the items, different combinations 

of the item sets are randomly assigned to examinees. This approach ensures that all items are 

taken by a specified number of times without placing a lot burden on examinees in a reasonable 

testing time.  

Johnson (1992) suggested the balanced incomplete blocks (BIB) design which allows to 

estimate means for all item parameters, and correlations for all pairs of item parameters.  BIB 

designs are a variant of multiple matrix sampling, and called incomplete when the number of 

item sets consisting of items from the item pool used in the form is smaller than the overall 

number of sets, and balanced because each item set and each pair of item sets are administered to 

an equal number of examinees (Frey et al., 2009). Johnson (1992) developed a much larger BIB 

design with 13 item sets and 26 forms including 3 item sets that has been used in educational 

assessment literature (Linden, Veldkamp & Carlson, 2004). Table 2.1 shows an example of a 

BIB design including a total of seven item sets and seven forms each containing three item sets. 

The BIB part of the method refers to assigning item sets into test forms. The forms can be 
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randomly administered to an equal number of examinees by spiraling them among the 

examinees. Spiraling involves alternating the test forms when distributing them to examinees. 

The National Assessment of Educational Progress (NAEP) uses BIB design to develop 

the assessments so that an examinee is randomly administered a subset of the items from the item 

pool. To assign items into forms, NAEP uses two types of BIB designs called focused balanced 

incomplete block (BIB) spiraling and focused partially balanced incomplete block (PBIB) 

spiraling (Allen et al., 2001). The focused part of the method refers answering items from only 

one subject area. In a BIB design, each item set is paired with every other item set within the 

same subject so that inter-item correlations can be estimated. Every item set appears once in each 

possible position on a form resulting in a number of different test forms. In a PBIB design of 

NAEP, each item set appears twice in each of the two positions. Unlike a BIB design, each item 

set is not required to be paired an equal number of times with every other item set in this design 

(Johnson, 1992). For the item sets including items from a content area each of them is paired 

with every other item set. However, for item sets from different content areas, each item set is 

paired with only one item set, including items from the other content area.  

TIMSS and PIRLS use a matrix sampling approach to assemble items into test forms. For 

TIMMS 2015 assessment design (Martin et al, 2013), the item pool was divided into 28 item sets 

in total: 14 sets of mathematics items, and 14 sets of science items. Each set of the items 

included approximately 10-14 items at the fourth grade and 12-18 at the eight grade. While 16 of 

the item sets were from the 2011 assessment, 12 sets of items were newly developed for 2015 

operational test. The 28 item sets were distributed across 14 test forms, and each form consists of 

four sets of items: two sets of mathematics items, and two sets of science items. Each examinee 

completed only one test form. Each item set appeared on two different forms so that the 
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examinees’ answers from different forms can be linked. While distributing item sets across the 

forms, the main goal was to maximize the content coverage with a sufficient number of items 

(Martin et al., 2013). It was also reported that the matrix sampling approach helps to reduce 

examinee burden, complexity of the design process, and cost of the test administration. 

It is important to note that the size of item pool plays an important role in developing 

designs. BIB designs may not be available for any designated item pool size, and may be 

difficult to develop. However, there might be readily constructed BIB designs in that 

neighborhood of the item pool size. Additionally, Messick (1983) suggested that if a balanced 

design cannot be found for a specific situation, then unbalanced designs can be used instead. 

Unbalanced designs allow that item sets appear an unequal number of times in each position. 

Table 2.2 shows an example of balanced and unbalanced matrix design. The upper part of the 

table shows an unbalanced design that does not include a form containing item sets A and C. The 

lower part of the table shows a balanced matrix design where each item sets appears an equal 

number of times. 

FIELD TESTING FOR MULTIDIMENSIONAL ASSESSMENTS 

To this point, practices of field testing items to create a unidimensional assessment were 

reviewed; these practices, however, cannot be expected to be the same for unidimensional and 

multidimensional assessments. The key difference between the two is that in a multidimensional 

assessment, the relationship between dimensions must be estimated. To estimate the relationship 

between two dimensions, some examinees must take items from both dimensions in the same 

field test form. Thus, creating field test forms becomes more complex.  

The primary questions of field testing discussed above remain important, including how 

many responses per item are needed to accurately calibrate the model. The number of responses 
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per item required are expected to vary by the psychometric model used. Thus, multidimensional 

psychometric models cannot be assumed to have the same data requirements as unidimensional 

models. Further, for multidimensional models, a new question arises that impacts the sampling of 

items and examinees in the field test: How many items from a pair of dimensions should appear 

on the same form to accurately estimate their correlations?  

The purpose of this research is to answer these key questions for field testing for a 

particular kind of multidimensional assessment: the kind where each dimension is assumed to be 

categorical, and more specifically, binary. I will examine field test conditions useful for 

diagnostic classification models (DCMs), a family of parametric models under the cognitive 

diagnosis model umbrella. In the following sections, I review DCMs generally and introduce a 

general linear form of this family of models. 

DIAGNOSTIC CLASSIFICATION MODELS (DCMs) 

The No Child Left Behind Act (NCLB; 2001) and the Every Students Succeeds Act 

(ESSA; 2015-2016) state the necessity of fine-grained feedback from state assessments. Fine-

grained and multidimensional feedback is intended to help educators inform their instruction and 

ultimately improve examinee learning. To this point, most large-scale assessments have been 

designed as unidimensional, and IRT models provide the basis reports for examinees, educators, 

and stakeholders. In this approach, one continuous variable is used to represent an overall ability, 

and diagnostic feedback is often based on subscores. Subscores, however, often lack reliability. 

(Haberman & Sinharay, 2010). While IRT models are useful, with the ability of ranking and 

comparing examinees, these models do not generally provide sufficient diagnostic feedback 

about the source of the problem or examinees’ weaknesses and strengths. In contrast, based on 
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the mastery levels of examinees on a set of knowledge components, DCMs are able to classify 

examines into two groups: mastery and non-mastery. 

Diagnostic classification models (DCMs) are confirmatory multidimensional latent 

variable models that can provide diagnostic information about the mastery state of knowledge 

components (Rupp, Templin & Henson, 2010). In DCMs, latent variables are assumed to be 

discrete, unlike commonly used psychometric models assuming continuous latent variables. 

These discrete latent variables have been labeled in the literature as components, attributes, 

skills, abilities, or traits. Rupp and Templin (2008) defined DCMs as: 

Diagnostic classification models (DCM) are probabilistic, confirmatory multidimensional 

latent-variable models with a simple or complex loading structure. They are suitable for 

modelling observable categorical response variables and contain unobservable (i.e., 

latent) categorical predictor variables. The predictor variables are combined in 

compensatory and noncompensatory ways to generate latent classes. DCM enable 

multiple criterion-referenced interpretations and associated feedback for diagnostic 

purposes, which is typically provided at a relatively fine-grain size. This feedback can be, 

but does not have to be, based on a theory of response processing grounded in applied 

cognitive psychology. Some DCMs are further able to handle complex sampling designs 

for items and examinees, as well as heterogeneity due to strategy use. (p. 226) 

 As the definition points out that DCMs are confirmatory models in that latent classes and 

the attribute loading structure are explicit. To determine the latent classes, the attributes to be 

measured by a test need to be specified a priori. The probability of answering an item correctly is 

defined as a function of examinees’ attribute profile representing the latent classes. If a test 

measures A attributes, the attribute profile for examinee e is an A length vector, denoted 
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!"=[!"#, !"%, … , !"'], where each element indicates mastery (!"( = 1) or non-mastery (!"(= 0) 

for attribute a. DCMs probabilistically classify examinees into one of 2A attribute profiles based 

on their mastery of each attribute. For instance, if an examinee is classified into attribute profile 

[0,1,0,1], it is interpreted that the examinee has mastered Attributes 2 and 4, and not mastered 

Attributes 1and 3. An attribute profile is assumed to provide information about examinees’ 

strength and weaknesses in certain attributes. The Q-matrix (Tatsuoka, 1983) is also specified a 

priori and can be seen as the loading structure for DCMs. An item-by-attribute Q-matrix is 

formed to specify whether attribute a is measured by item i, denoted +,=[+,#, +,%, … , +,'], where 

+,(= 1 indicates the item measures attribute a, and  +,(= 0 indicates the item does not measure 

attribute a. Items can be written to measure either one attribute or multiple attributes. Items 

measuring a single attribute are named as simple structure items, and measuring multiple 

attributes are complex structure items. 

As a member of latent class models (LCMs; Lazarsfeld & Henry, 1968), DCMs use item 

responses to group examinees into latent classes. Given an examinee’s class membership, DCMs 

make the assumption that examinee responses to items are conditionally independent. The 

structural model and the measurement model are the two components of the latent class models 

and need to be estimated. The structural component indicates the proportion of examinees within 

each class, and the measurement component denotes the response probabilities under each class. 

In a general LCM, when examinee e giving answers to I items, the probability for the item 

response vector xe is: 

- ./ = 0/ = 12

3

24#

5,2
678

9

,4#

(1 − 5,2)#=678 (1) 
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where - ./ = 0/  is the observed response probability, and the structural component 

represented by the summation part, while the measurement component represented by the 

product part. In Equation 1, 12 is the proportion of examinees who have mastered the attributes 

required by the class c; >", is the observed response to Item i by an examinee e; and  5,2 is the 

probability of answering  Item i correctly by an examinee in latent class c. The product implies 

that item responses are independent within a latent class as a consequence of the local 

independence. The structural component represents latent class membership probabilities which 

provides the base-rate proportion of examinees in Class c.  

A large number of DCMs have been developed based on the ways they parameterize the 

response probabilities. Those models can be categorized as compensatory and noncompensatory 

models. In compensatory models, mastering a subset of the attributes required by the item can 

compensate for the non-mastery of the remaining attributes. In noncompensatory models, 

however, all required attributes need to be mastered to produce a correct response. The 

deterministic input, noisy and gate model (DINA; Junker & Sijtsma, 2001) is an example of a 

noncompensatory model, and the deterministic input noisy or gate model (DINO; Templin & 

Henson, 2006) is an example of a compensatory model. While mastering an additional attribute 

does not increase the probability of giving a correct answer in a noncompensatory model, 

compensatory models allow the increase in the probability as mastering additional attributes. The 

log-linear diagnosis model (LCDM; Henson, Templin, & Willse, 2009), described in the next 

section, provides a general framework for DCMs. By placing constraints on the LCDM 

parameters, both compensatory and noncompensatory core DCMs can be specified.  

The Log-Linear Cognitive Diagnosis Model 

The LCDM is a general DCM that provides a framework to model the relationship 
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between item responses and attributes. A key feature of the model is that core DCMs can be 

represented when some parameters are included or constrained in the LCDM, which makes these 

models nested within the LCDM. To explain the item response function, assume an item 

measures Attribute 1 and Attribute 4, Q-matrix entries are +,#= 1 and  +,?= 1. The LCDM item 

response function is 

- .@/ = 0/	|	C/ =
exp	(G,,H + G,,#, # !"# + G,,#, ? !"? + G,,%, #,? !"#!"?)

1 + exp	(G,,H + G,,#, # !"# + G,,#, ? !"? + G,,%, #,? !"#!"?)
 (2) 

 

In Equation 2, Xie is the observed response to item i by examinee e whose attribute 

profile is !". The LCDM item parameters are akin to a dummy-coded ANOVA model with an 

intercept, a main effect for each attribute, and interaction term(s) for combinations of attributes. 

The subscript i on the G parameters represents the item i. The second subscript on the	G 

parameters represents the parameter level: The subscript 0 is for intercept parameters, 1 is for 

main effects, 2 is for two-way interactions, 3 is for three-way interactions, etc. The third 

subscripts are in parentheses and represent the attributes to which the main effects or interactions 

apply. In Equation 1, G,,H is the intercept representing the log-odds of a correct response for 

examinees who have not mastered either Attribute 1 or Attribute 4. G,,#, #  and G,,#, ?  are the 

main effects that represent the increase in log-odds for examinees who possess either Attribute 1 

or Attribute 4. G,,%, #,?  is the two-way interaction term that indicates the change in log-odds of a 

correct response when examinees have mastered both of the attributes.  

While the item measures two attributes in the example above, the LCDM can include 

more that two attributes resulting in additional main effects and interactions. In the LCDM 
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framework, the probability of a correct response to item i is conditional on an examinee e’s 

attribute profile !" = CJ. The general form of LCDM item response function is 

- K," 	= 	1	|C2 =
exp	(G,,H + L@MN CJ, O@ )

1 + exp	(G,,H + L@MN CJ, O@ )
 (3) 

 

In Equation 3,  O@ represents the Q-matrix entries for item i, and G,,H is the intercept parameter as 

described above. L@ is a vector of size (2A - 1)	× 1 containing main effect and interaction 

parameters for item i, and N CJ, O,  is a vector of size (2A - 1)	× 1 representing a set of linear 

combinations of CJ and O@.  L,MN C2, O,  is written as: 

L,MN CJ, O, = 	 G,,#, ( !2(

'

(4#

+,( + G,,%, (,Q !2(!2Q+,(+,Q

'

QR(

	
'=#

(4#

+ ⋯ (4) 

 

where G,,#, (  represents the main effect of Attribute a on the item i, and G,,%, (,Q  represents the 

two-way interaction effect of Attribute a and Attribute b. The right side of the equation includes 

all main effect parameters and all possible interaction parameters. Item parameters are present if 

the linear combination of  CJ and O@ equals 1. For main effects, this only occurs when an 

examinee has mastered the attribute (!"( = 1) and item measures the attribute (+,( = 1). For 

two-way interaction terms, similarly, both attributes are needed to be mastered by an examinee 

(!"( = 1, !"Q = 1) and item measures the attributes (+,( = 1, +,Q = 1). The LCDM models the 

item responses in a similar way with ANOVA; the attributes and attribute mastery in the LCDM 

serve as factors and levels of the factors in an ANAOVA, respectively. Constraints are placed on 

the main effect parameters and interaction terms so that examinees’ correct response 

probabilities increase for DCMs represented by the LCDM (Rupp et al., 2010). 
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CHAPTER 3 

METHODS 

This study will systematically investigate the effects of missing data due to field testing 

on estimation accuracy of diagnostic classification models (DCMs) using simulation. A variation 

of a parametric DCM has been intended to use in three large-scale testing programs: Parcc, Inc. 

Diagnostic (e.g., Bradshaw, 2014), Dynamic Learning Maps (Clark et al., 2014), and in Navvy 

Education’s assessment system (L. Bradshaw, personal communication, October 14, 2017). 

Assessments in each of these systems are administered online. Thus, this study focuses on 

realizable conditions in an online testing environment.  

This study will use the LCDM because it provides the most general framework and 

represents realistic data (e.g., Bradshaw, Izsak, Templin, & Jacobson, 2014). Its modeling 

flexibility allows different item response functions on different items.  

SIMULATION STUDY DESIGN 

I simulated the different designs for conducting a field test in a DCM framework by 

manipulating four key factors: field test slot length resulting from the number of field test items 

per attribute an examinee completes (4 levels; 16, 15, 10, 6 ), the number of dimensions 

measured by the set of items an examinee completes (2 levels; 2 or 3 attributes), the number of 

examinees who respond to each field test item (2 levels; 250, 500), and the design of the 

diagnostic assessment being field tested (i.e., the Q-matrix; 2 levels; Simple and Mixed). 

Crossing these four factors yielded 32 simulation conditions. In addition to these conditions, the 

study included 4 full-data conditions that included no missing data. The purpose of the full-data 
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conditions was for comparison to the missing data conditions. In total, the study contained 36 

conditions.  

Fixed factors 

The attribute correlations for all attribute pairs was fixed at .70. As I assumed the 

relationship between attributes were strong, .70 allows dimensions to be sufficiently distinct. The 

base-rate of mastery was set to be .50 for all attributes, meaning that 50% of examinees were 

masters of each attribute. The diagnostic assessment was designed to measure three attributes 

with a total of 72 items that would need to be field tested. Thus, the design considered a large 

number of items per attribute reflecting item pool sizes that may be required for large-scale 

testing where either (a) several forms are being created for a large population of examinees or (b) 

larger item pools are needed to prohibit over-exposure of items in an online testing environment. 

Manipulated factors 

Tables 3.1 and 3.2 describe the levels of the manipulated factors for each condition. The 

sections below describe those conditions and factors. 

Q-matrix. The first Q-matrix of this study (termed Simple) includes 72 simple structure 

items, each measuring one attribute. Sixteen items measure Attribute 1, 24 items measure 

Attribute 2, and 32 items measure Attribute 3. In the second Q-matrix (termed Mixed), 50% of 

the items measure two attributes and the rest measure one attribute. Of the 36 simple items, 8, 

12, and 16 items measure Attributes 1-3, respectively. Of the 36 complex items, 8 measure 

Attribute 1 and 2, 12 measure Attribute 1 and 3, and 16 measure Attribute 2 and 3.  

Missing Data. Condition 1 to 4 are full data conditions where all 72 items were 

administered to each examinee. In the remaining conditions, a subset of items was administered 

to each examinee yielding different patterns of missing data, depending on the field test form.  



22 

Field test designs. The field test design for each condition is shown in Table 3.3 through 

Table 3.18. Across conditions, test forms included 6, 10, 15, or 16 field test items. Forms with 15 

or 16 items may be reasonable for a standalone field test, while forms with 6 or 10 items would 

be reasonable for embedded field tests. Within a given field test length, either an equal number 

of items per attribute on the form or a number of items per attribute were proportional to the total 

number of items in the item pool for the attribute were administered. For example, an equal 

number of item per attribute on a form with 3 attributes and 15 items would yield 5 items from 

each attribute, even though there are more items from Attribute 3 than Attribute 2 or 1 that need 

to be field tested (see Conditions 5 and 6 in Table 3.1); Conditions 9 and 10 show a more 

proportional number of items per attribute where 4, 5, and 6 items are administered for the three 

attributes, respectively.  

As Table 3.1 shows, the number of dimensions included in a test form differs among 

conditions with either 2 or 3 attributes being administered per form. If a form contains two 

attributes, then items measure either Attribute 1 and 2, Attribute 1 and 3, or Attribute 2 and 3. In 

Conditions 5 to 12, field test designs measured all three attributes in each of the forms. While 

each form in Condition 5, 6, 7, and 8 contained 5 items from each of the three attributes yielding 

a total of 15 items, forms in Condition 9, 10, 11, and 12 contained 4, 5, and 6 items from 

Attributes 1-3, respectively. Conditions 13 through 20 field tested 16 items in total. While 

Conditions 13-16 measured 2 out of 3 attributes with 8 items per attribute in each form, 

Conditions 17-20 measured all three attributes with 5, 5, 6 items from Attribute 1, Attribute 2, 

and Attribute 3, respectively. In Conditions 21 to 24, each form contained 5 items per attribute 

for two attributes which yielded 10 items in total. Examinees either took a form that measured 

Attribute 1 and 2, a form that measured Attribute 2 and 3, or a form that measured Attribute 1 
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and 3. Conditions 25 to 28, however, measured all three attributes by 10 items, 3 for Attribute 1, 

3 for Attribute 2, and 4 for Attribute 3. For the Conditions 29 to 32, I assumed each attribute pair 

was measured by 6 items in total, 3 items for each attribute. Conditions 33 to 36 field tested 6 

items, 2 items for each of the three attributes. 

As demonstrated in Tables 3.3 through Table 3.18, item and examinee sampling used a 

matrix sampling approach. This approach administers a set of items from the item pool in 

different forms, with each examinee completing one form. Each item set was assumed to be 

administered in at least two forms to provide to link among the examinee responses from 

different forms. However, when some of the item sets did not appear in two forms before the 

others did, the other item sets were rotated within the design, resulting in some items sets being 

included in more than two forms. Recall that, when the item sets appear an equal number of 

times in each form, the design is called balanced. Some of the simulation conditions, however, 

did not allow to develop a balanced design because of the rotation; thus, some conditions are 

unbalanced, as noted in Table 3.2. 

Based on the number of field test items from each attribute in a test form and the total 

number of items measuring each attribute, the number of item sets differ among conditions. 

Based on the number of item sets within a form, the total number of forms to be designed also 

differed among conditions. The more slots that were included in a test form, the fewer number of 

test forms needed to be developed. The fewer slots that were included, the more test forms 

required. For example, while the field test Design G in Table 3.9 included 16 items per form (5 

items from Attribute 1, 5 from Attribute 2, and 6 from Attribute 3) and yielded a total of 15 item 

sets and 12 different forms, Design K in Table 3.13 included 10 items per form (3 items from 

Attribute 1, 3 from Attribute 2, and 4 from Attribute 3) and yielded 22 item sets and 16 forms. 
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Table 3.2 presents the details about the designs for each condition. 

To provide a detailed description for one condition, consider Table 3.7 which presents 

field test Design E. In this design, each examinee was assigned to a form that included two item 

sets where the sets measured only two of the three attributes, and each item of the 72 items were 

administered to 250 examinees. The design yielded an overall 1125 sample size, and it required 

developing 9 test forms to field test the 72 simple structure items. The X’s in the table indicate 

the item sets indicated by the columns are included in the forms indicated by rows. Examinee 1 

to 125 were each administered Items 1 through 8 from Attribute 1 and Items 17 through 24 from 

Attribute 2; examinees 126 to 250 are each administered Items 9 through 16 measuring Attribute 

1 and Items 41 through 48 measuring Attribute 3, and so on. The number of item sets each 

attribute belonged in is 2, 3 and 4 for Attribute 1, Attribute 2, and Attribute 3, respectively. Each 

of the item sets were administered twice yielding a balanced design so that they were taken by 

250 examinees. 

Sample size. The sample size for the full data conditions were 250 and 500. In the full 

data condition, all items in the pool (72 items) were taken by each examinee. These conditions 

represent unrealistic conditions in which there is no sparse data; results from these conditions 

were used to indicate the degree to which missing data from the field test designs reflected in the 

other conditions impacted estimation results.  

For each of the conditions mimicking field test designs that yield sparse data, I used two 

sample sizes: 250 and 500 responses per item. For all field test designs, each item set was 

administered into at least two different forms. Thus, for the 250 sample size, each form was 

completed by at least 125 examinees and for the 500 sample size, each form was completed by at 

least 250 examinees. For the unbalanced field test designs, since some item sets included in more 
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than two test forms, it yielded more than 250 or 500 responses per item. In order to yield at least 

250 or 500 expected responses per item, different overall sample sizes were required because 

different conditions had different numbers of item sets and the test forms varied among 

conditions. As shown in Table 3.2, the number of test forms for field test designs ranged from 9 

to 29. When 250 responses were collected for each item, it required sample sizes of 1125 to 4000 

across the conditions. When 500 responses were collected for each item, it required sample sizes 

from 2250 to 8000 for field testing. 

Item Parameters. For simple structure items, item parameters were drawn from intervals 

that allowed the probability of answering an item correctly by an examinee who has not mastered 

the required attribute to range from .20 to .30 and allowed the probability of answering an item 

correctly by an examinee who has mastered the required attribute to range from .65 to .90.  

For the simple structure items in the second Q-matrix, I fixed the true values of the 

intercept to be -1 or -1.25, which allows the probability of answering an item correctly for non-

masters to range from .2 to .3. Main effects were varied between the values of 3, 2.5, 2, and 1.5 

which yielded probabilities of answering an item correctly for examinees who have mastered 

both attributes ranging from .60 to .90. In the item pool, each attribute was measured by at least 

two items with each of the main effect magnitudes. For the complex items, the intercepts were 

fixed to be -1 or -1.25. The main effects and interaction terms were specified to yield the desired 

probability of answering an item correctly for masters of all required attributes from .60 to .90. 

Examinees who has mastered only one of the attributes had between .44 and .88 probability of a 

correct response.  

Analysis 

Data for each field test design was concurrently calibrated using Mplus (Muthén & 
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Muthén, 2012), using marginal maximum likelihood estimation. For each condition, I conducted 

100 replications. Estimation accuracy for the missing data and the full data sets were compared 

for all conditions. Four outcomes were reported for each condition: (1) item statistics consistency 

for item point biserial and difficulty, (2) convergence rate, (3) accuracy of item parameters, and 

(4) examinee classification accuracy.  

Item Statistics Consistency. Field test data is often analyzed using sample summary 

statistics. The summary statistics are produced to flag an item for review by content experts. 

These experts review the content of the item to who determine whether an item needs to be 

revised or removed.  

I evaluated two summary statistics: item difficulty, the proportion of examinees who 

answered the item correctly, and within attribute point biserial, the relationship between the item 

response and the subscore on the attribute. For simple structure items, the subscore is 

straightforward; each item that measures the attribute contributes 1 point towards the subscore. 

For complex items, I calculated the subscore the same way; each item that measured the attribute 

contributed 1 point towards the subscore, even if the item also measured another attribute.   

Item difficulty is the proportion of examinees who answered an item correctly. The item 

difficulty ranges from 0 to 1.0; the item is easier as the value get closer to 1.0. Item difficulty 

provides information on item discrimination, too. If the item is too difficult, and most of the 

examinees answer the item incorrectly, or if the item is too easy and most of the examinees 

answer the item correctly, then the item does not provide much diagnostic information about the 

examinees.  

The within attribute point-biserial values range from -1.00 to +1.00. Within attribute 

positive point biserial values indicate that examinees who scored high on the collection of items 



27 

that measure the attribute are more likely to answer the item measuring that attribute correctly. In 

another words, the item functions similarly to other items that measure the same attribute.  

Consistency. Results from the full data will be compared with the missing data to 

determine the degree to which the field test designs resulting in missing data yield stable item 

statistics. Besides the corresponding sample size in the full data conditions (250 or 500), an 

additional large full data condition with sample size 10,000 was used for comparison. It was 

assumed that the highest sample size full data condition would be a better comparison for item 

analysis consistency. To do so, I will calculate the average absolute difference of the item 

statistics (attribute point biserial and difficulty) between the full data conditions and the missing 

data (field testing) conditions. As this difference increases, the consistency of the item statistics 

decreases. 

Convergence Rate. I reported the percentage of replications (out of 100) that each 

condition converged. It is expected that convergence rate is affected by these factors: the field 

test slot length (4 levels; 16, 15, 10, 6), number of attributes in each form (2 vs. 3), sample size 

(250 vs. 500), and the design of the diagnostic test being field tested (Q-matrix; Simple vs. 

Mixed). I evaluated convergence rates based on these factors. 

Item Parameter Bias.  I evaluated the quality of parameter estimation using the mean 

absolute bias between true and estimated values of the item parameters. I reported the mean 

absolute bias by parameter type: intercepts, main effects, and interaction terms. 

Classification Accuracy. I compared the true attribute mastery states to the estimated 

ones. I reported the attribute classification accuracy as the proportion of examinees whose 

estimated mastery state for each attribute matched their true mastery status. 
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CHAPTER 4 

RESULTS 

In this section, I provide the results of the simulation study according to the analyses 

described in the previous chapter. I will focus on comparing results from the full data conditions 

and missing data conditions. The results from full data conditions will be used to indicate the 

degree to which missing data from the field test designs impacted estimation results. 

SIMULATION STUDY RESULTS 

I report the effect of missing data that results from different field testing designs on four 

outcomes: (1) convergence rate, (2) accuracy of item parameters, (3) item statistics consistency 

and (4) classification accuracy. I analyzed results under full and sparse data conditions. 

Convergence Rates 

 Table 4.1 shows the convergence rates for the 36 conditions. Full data conditions were 

conditions where examinees completed all items, so these conditions always measured 3 

attributes per ‘form’. The corresponding conditions that measured 2 attributes are indicated as 

NA in Table 4.1. The convergence rate for full data conditions with simple structure items 

(Condition 1 and Condition 2) with sample size of 250 and 500 was 1. Full data conditions 3 and 

4 that contained both simple and complex structured items converged less than Condition 1 and 2 

that included only simple structure items. The convergence rates of Condition 3 with 250 sample 

size and Condition 4 with 500 sample size are .29 and .43, respectively.  

For the mixed Q-matrix conditions, convergence rates decreased significantly. In the 

mixed Q-matrix designs, convergence rates are higher when forms contain all 3 attributes instead 
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of only 2. The convergence rates ranged from .9 to .57 for conditions measuring 2 attributes in 

each form with a sample size of 250 and ranged from .14 to .89 for conditions measuring 3 

attributes. Additionally, sample size had a strong effect on convergence rates; larger sample sizes 

of 500 resulted in higher convergence rates. 

Accuracy of Item Parameters 

I examined the degree to which item parameters were accurately estimated with missing 

data from different designs. Table 4.2 shows the mean absolute bias for the intercept and main 

effect estimates for the conditions that had a simple Q-matrix data design with a 250 or 500 

sample size. The missing data conditions had greater bias than the corresponding full data 

conditions Condition 1 and Condition 2. The results showed that the models were reasonably 

well estimated under the missing data conditions.  

The number of field test slots had a large impact on bias. Conditions 29, 30, 33, and 34 

(Design M and Design O) where forms were the shortest (6 items) had greater bias than 

remaining conditions. Bias for these conditions ranged from .06 to .08 for the intercept and .09 to 

.12 for the main effects when the sample size for each item is 250, and ranged from .04 to .05 for 

the intercept and .06 to .08 for the main effects when the sample size is 500. The variability of 

the bias was also greatest for the 6-item conditions. The bias was least for the missing data 

Condition 13 and Condition 14 (Design E) where examinees responded to 16 items.  

Results from Table 4.2 shows that when examinees answer 5 items per dimension 

yielding 15 items in total (Design A), the bias was .044 for intercept and .066 for the main effect. 

Increasing the overall number of items in a test from 15 to 16 items did not change the estimation 

accuracy. When examinees answered 5 items for Attribute 1, 5 for Attribute 2, and 6 for 

Attribute 3 yielding 16 items in total (Design G), the bias was .043 for the intercept and .064 for 



30 

the main effect. On the other hand, the bias considerably increased when examinees answered 10 

items in total; 3, 3, and 4 items for Attribute 1, Attribute 2, and Attribute 3, respectively (Design 

K). Lastly, the bias reached the maximum value among conditions when examinees responded 

the fewest number of items (6 items in total). In that design, examinees answered 2 items per 

dimension (Design O), and the bias was .077 for the intercept and .117 for the main effect. On 

the other hand, when the mixed Q-matrix was used, the overall number of items affected the item 

parameter accuracy. As shown in Table 4.3, while measuring 16 items in a test, the bias was 

ranged from .049 to .051 for intercept, and ranged from .090 to .126 for main effects (Design F 

and H); while measuring 10 items, the bias for the intercept was ranged from .055 to .058 for the 

intercept and from .097 to .144 for the main effects (Design J and L). The bias was highest for 

the design where 6 items included in a test form; the bias was .069 for intercept and ranged from 

.121 to .162 for main effects (Design N and P). 

The sample size also had an impact on bias. The designs with 500 sample size had 

smaller bias than corresponding missing data conditions with 250 sample size. As the number of 

responses per item increases, the bias of estimation decreases. As shown in Table 4.2, the bias 

for 250 sample size conditions with simple Q-matrix was ranged from .041 to .077 for intercept 

and ranged from .061 to .117 for main effect. When the sample size increased to 500 for per 

item, then the bias decreased and ranged from .029 to .052 for intercept and ranged from .043 to 

.079 for main effect. Similar results were obtained from the designs where mixed Q-matrix was 

used for 250 and 500 sample sizes. While the bias for intercept ranged from .049 to .069 for 250 

sample size, it ranged from .037 to .049 for 500 sample size conditions. The bias for main effects 

ranged from .078 to .208 for 250 sample size conditions, it ranged from .062 to .156 for 500 

sample size conditions. 
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The complexity of the Q-matrix had a significant impact on bias. Table 4.3 shows the 

mean absolute bias for the intercept and main effect estimates for the conditions that were 

designed to field test both simple and complex structure items (mixed) with the sample size of 

250 and 500. Overall, the parameters are reasonably well estimated; however, the bias in the 

mixed Q-matrix conditions is greater than the bias in the simple Q-matrix conditions. For 

example, when a test measured 15 items, the bias for intercept was ranged from .031 to .044 for 

simple Q-matrix conditions (Design A and C) and .101 to .135 for mixed Q-matrix conditions 

(Design B and D). Additionally, while the minimum value of bias for intercept was .029 for 

simple Q-matrix conditions (Design E), it was .037 for mixed Q-matrix conditions (Design H).     

The number of attributes measured within a field test form also made a significant 

difference in the bias. When holding the number of field test slots constant, the field test designs 

that included two attributes instead of three in the test form yielded smaller bias. For example, as 

shown in Table 4.3, when the form contained 16 items, the bias for the intercept was .049 for 

form measuring 2 attributes (Design F), and .051 for the form measuring 3 attributes (Design H). 

The bias for the main effects ranged from .078 to .111 for the forms measuring 2 attributes, and 

.090 to .126 for the forms measuring 3 attributes. When test forms contained two attributes, the 

number of items for each attribute in the test form was greater than that of forms contained three 

attributes. For example, when the field test slot length is 16 and the test form contained 2 

attributes, each attribute was measured by either 8 items with simple Q-matrix design or by 12 

items with mixed Q-matrix design. However, when the test form contained 3 attributes, each 

attribute was measured by 5, 5, and 6 items or 7, 8, and 9 items for Attribute 1, Attribute 2, and 

Attribute 3, respectively. 
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Overall, the bias was lowest when the test form included the highest number of items (16 

items), the Q-matrix was simple, the test form included two attributes instead of three, and the 

sample size per item was 500. Based on these results, field test design Design E (Table 3.7) was 

the very best condition. On the other hand, the bias was greatest when the test form included 

overall 6 items, the Q-matrix was mixed, the test form included two attributes instead of three, 

and the sample size per item was 250. Based on these results, filed test design Design N (Table 

3.16) was the very worst condition among others.  

Item Statistics Consistency 

 Full data and missing data conditions were compared to see if the missing data resulting 

from field test designs yielded stable item statistics. Each missing data condition was compared 

with 10,000 sample size full data condition and corresponding sample size in the full data 

conditions (e.g. 250 or 500). 10,000 sample size condition was an additional large full data 

condition that was used for analysis of item statistics consistency. The mean absolute difference 

for the item difficulty and within attribute point biserial values were reported on Table 4.4, Table 

4.5 and Table 4.6.  

The field test designs yielded relatively stable item statistics when the overall number of 

items included in a test is either 15 or 16: While the average p-value (difficulty) differences 

ranged from .033 to .037 for the conditions field-testing 15-16 items with 250 sample size, the 

average point-biserial differences ranged from .060 to .123. Those designs where test forms 

contained 6 items yielded the least stable item statistics for the point-biserial values: While the 

average p-value difference ranged from .030 to .034, the average point-biserial difference ranged 

from .127 to .266. 
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If the consistency is high, then the item statistics for the missing data conditions are 

similar to corresponding full data conditions. The impact of the sample size on the item statistics 

also can be seen from the tables. The consistency is the least when the sample size is 250, 

indicating that summary statistics are more stable with the large sample size of 500. For 

example, while the average p-value difference ranged from .028 to .037 for small sample size, it 

ranged from .02 to .024 for large sample size. Similar results were shown for the average point-

biserial differences; it ranged from .056 to .266 for the smaller sample size and from .047 to .184 

for larger sample size.  

Classification Accuracy 

Next, the impact on classification accuracy was examined. Classification accuracy for 

individual attributes is the proportion of examinees whose estimated mastery state for the 

attribute matched with their true mastery state. Table 4.7 shows the classification accuracy rates 

for the designs where simple structure items were field tested. Accuracy was relatively high in all 

conditions except Conditions 29 and 33 where the test forms included 6 items (Design M and O). 

Comparing Condition 29 and Condition 33 with corresponding full data conditions, the 

classification accuracy decreased by 16-21% and 15-20%, respectively. The sparse data from 

Condition 21 and Condition 25 (Design I and K) also yielded noticeable decreases in 

classification accuracy of 11-17% and 10-13%, respectively. On the other hand, in Conditions 5 

and 9 (Design A and C), test designs yielded strong accuracy rates, and sparse data decreased the 

classification accuracy by 6-8%.  

 Although Conditions 13-17, 21-25, and 29-33 field tested the same number of items in 

each form, the results showed that the design where three attributes are included in a test form 

had greater accuracy than including only a pair of the attributes. The same result was obtained 
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from the Condition 5 measuring 3 attributes with a total of 15 items (Design A) and Condition 13 

measuring 2 attributes with a total of 16 items (Condition E), even though for the attributes only 

5 items per attribute instead of 8 were administered, and the Condition 5 field test design was 

one item shorter.  

These results came from the designs where the number of responses per item was 250 

and did not largely differ from the results of field test designs with 500 sample size. Obtaining 

similar accuracy rates with 250 and 500 responses per items indicates that sample size did not 

significantly affect the classification accuracy. Results also show when all three attributes were 

included in the test form, the overall number of items answered had the largest impact on 

classification accuracy.   

Table 4.8 shows the results for the field test designs where both simple and complex 

structure items are used. Overall, accuracy was high in all conditions; however, it was a little 

lower than the corresponding simple data conditions. For example, Conditions 10 and 12 

measuring 3 attributes with 15 items in total. In Condition 10 (Design C), Attribute 1, Attribute 

2, and Attribute 3 was measured by 4, 5, and 6 simple structure items, respectively. On the other 

hand, each attribute was measured by 7, 7, and 9 simple and complex structure items in 

Condition 12 (Design D). Although the number of items per attribute in Condition 10 is less than 

that of Condition 12, the accuracy in Condition 10 is higher. The accuracy rates for Condition 10 

ranged from 91 to 93%, and for Condition 12 ranged from 89 to 92%. 
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CHAPTER 5 

CONCLUSIONS 

Simulation results demonstrated the impact of sparse data, due to different field testing 

designs, on the estimation accuracy for DCMs. I simulated 36 field testing designs and found 

that sample item statistics, item parameter estimates, and classification accuracy levels varied 

across these designs.  

Convergence results demonstrated that both sample sizes may be too low to yield high 

rates of convergence with mixed Q-matrices. Though, with simple Q-matrices, 250 is a sufficient 

sample size. 

The overall number of items answered in a test had a considerable effect on the 

estimation accuracy. As the number of items increases, the bias of item parameter estimation 

decreases. Additionally, field test designs yielded relatively stable item statistics as the field test 

slot length was getting longer. The item statistics for those designs were similar to corresponding 

full data conditions. Overall, the results from the simulation study indicates that if an attribute is 

measured by 5 items or more, then item parameter estimation achieves reasonable levels of 

accuracy.  

The design of the diagnostic assessment is another factor that affects the estimation. The 

simulation study results show that in a design where both simple and complex structure items are 

field tested, item parameters have greater bias than that of designs field testing only simple 

structure items. The item parameter bias increases when the Q-matrix is mixed. Additionally, 

when the test forms contain two attributes instead of three, the parameter estimates are less 
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biased. Including two attributes in a form yields more items per attribute than including three 

attributes in a form; thus, designing a field test form with a maximum number of attributes 

should not be the goal. Instead, as long as a pair of attributes are included on the test form to 

estimate attribute relationships, it is more important to focus on increasing the number of items 

per attribute taken by an examinee. 

The number of responses per item has a significant impact on item parameter estimates. 

When the sample size increases, the item parameter estimation bias decreases. Sample size per 

item has also a significant impact on the consistency. Large sample size yielded the most stable 

item statistics. However, increasing the sample size from 250 to 500 did not largely affect the 

classification accuracy rates. The overall number of items taken by examinees has a considerable 

impact on classification accuracy rates: as the number of items increases, classification accuracy 

increases. On the other hand, the results from the simulation study shows that when a field test 

design included three attributes instead of two in the test form, classification accuracy increases. 

Results from this study can be used as an initial guide for test developers. Currently test 

developers do not have guidelines for how to structure a field test for a multidimensional 

assessment that uses DCMs. Field testing is a crucial step in creating assessments to gather 

sufficient data to accurately specify the Q-matrix and estimate model parameters. By examining 

various practical conditions, this study aims to help to fill the need for guidelines for test 

developers. 

Limitations and Future Directions 

This study was an initial exploration of designing filed tests for multidimensional 

assessments. The study is limited by some factors, including calculation of the subscores for 

complex items to analyze within point biserial. Subscores for complex items could be calculated 
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in different ways. For example, if an item measures two attributes, then it could count ½ point 

towards each attribute subscore instead of 1 point as done in this study. On the other hand, the Q-

matrices were known and correct. In practice, however, some entries of the Q-matrix may not be 

correct, especially in the field testing stage. 

In addition, designing a filed test design for multidimensional tests depends on the 

interplay of many factors. This study examined a small set of conditions as an initial 

examination. While these practical conditions can help be an initial guide for test developers, 

many variations of field testing exist. As a future study, many other combinations of the factors 

that play an important role in designing field tests can be created to explore. 
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Table 2.1 

An Example Balanced Incomplete Blocks Design 

Item Sets 
Forms A B C D E F G 

1 X X X 
2 X X X 
3 X X X 
4 X X X 
5 X X X 
6 X X X 
7 X X X 

Note. X indicates that the item set is included in the form. 
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Table 2.2 

An Example of Balanced and Unbalanced Matrix Design 

 Item Sets 
Form A B C 

Unbalanced Design 
1 X X  
2  X X 

Balanced Design 
3 X X  
4  X X 
5 X  X 

Note. X indicates that the item set is included in the form. 
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Table 3.1 
Simulation Conditions 

Conditions Attribute Items in Form of Total 
Items per Attribute 

Number of 
Attributes on Form 

Number of Items 
in a Form 

Q-
matrix 

Field Test 
Design 

Expected 
RPI Min 

1-2 1, 2, 3 72 of 72 3 72 Simple NA 250, 500 

3-4 1, 2, 3 72 of 72 3 72 Mixed 
NA 

250, 500 

5-6 
1 
2 
3 

5 of 16 
5 of 24 
5 of 32 

3 15 Simple A 250, 500 

7-8 
1 
2 
3 

8 of 30 
8 of 36 
8 of 42 

3 15 Mixed B 250, 500 

9-10 
1 
2 
3 

4 of 16 
5 of 24 
6 of 32 

3 15 Simple C 250, 500 

11-12 
1 
2 
3 

7 of 30 
7 of 36 
9 of 42 

3 15 Mixed D 250, 500 

13-14 
1 
2 
3 

8 of 16 
8 of 24 
8 of 32 

2 16 Simple E 250, 500 

15-16 
1 
2 
3 

12 of 30 
12 of 36 
12 of 42 

2 16 Mixed F 250, 500 

17-18 
1 
2 
3 

5 of 16 
5 of 24 
6 of 32 

3 16 Simple G 250, 500 

19-20 
1 
2 
3 

7 of 30 
8 of 36 
9 of 42 

3 16 Mixed H 250, 500 

21-22 
1 
2 
3 

5 of 16 
5 of 24 
5 of 32 

2 10 Simple I 250, 500 

23-24 
1 
2 
3 

7 of 30 
7 of 36 
8 of 42 

2 10 Mixed J 250, 500 

25-26 
1 
2 
3 

3 of 16 
3 of 24 
4 of 32 

3 10 Simple K 250, 500 

27-28 
1 
2 
3 

4 of 30 
5 of 36 
6 of 42 

3 10 Mixed L 250, 500 

29-30 
1 
2 
3 

3 of 16 
3 of 24 
3 of 32 

2 6 Simple M 250, 500 

31-32 
1 
2 
3 

4 of 30 
4 of 36 
5 of 42 

2 6 Mixed N 250, 500 

33-34 
1 
2 
3 

2 of 16 
2 of 24 
2 of 32 

3 6 Simple O 250, 500 

35-36 
1 
2 
3 

3 of 30 
3 of 36 
3 of 42 

3 6 Mixed P 250, 500 

Note. RPI= responses per item. The two conditions in the same row correspond to the two sample sizes, 
with other factors being the same. 
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Table 3.2 

Field Test Design Factors 

Conditions Field 
Test 
Design 

Measured 
# of 
attributes 
in a form 

Field test 
slots per 
form 

# of 
item 
sets 

# of 
items 
in item 
set 

# of 
forms 

Type of 
Design 

5-6 A 3 15 16 5 14 Unbalanced 
7-8 B 3 15 12 6,9 16 Balanced 
9-10 C 3 15 15 4, 5, 6 12 Unbalanced 
11-12 D 3 15 11 7, 8 12 Unbalanced 
13-14 E 2 16 9 8 9 Balanced 
15-16 F 2 16 18 8, 8 12 Balanced 
17-18 G 3 16 15 5, 5, 6 12 Unbalanced 
19-20 H 3 16 17 8, 8 12 Balanced 
21-22 I 2 10 16 5 16 Balanced 
23-24 J 2 10 24 5, 5 16 Unbalanced 
25-26 K 3 10 22 3, 3, 4 16 Unbalanced 
27-28 L 3 10 24 5, 5 18 Unbalanced 
29-30 M 2 6 25 3 25 Balanced 
31-32 N 2 6 39 3, 3 26 Balanced 
33-34 O 3 6 36 2 29 Unbalanced 
35-36 P 3 6 39 3, 3 26 Balanced 
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Table 3.3  

Field Test Design A 
 

Note. Each row represents a different form. X indicates that the item set is included in the 
form. Items 1-16 measure Attribute 1; Items 17-40 measure Attribute 2; Items 41-72 measure 
Attribute 3. 

 
 
 
 
 
 
 
 

Examinee       Item  
 Attribute 1 Attribute 2 Attribute 3 
250   500 1-

5 
6-
10 

11-
15 

12-
16 

17-
21 

22-
26 

27-
31 

32-
36 

36-
40 

41-
45 

46-
50 

51-
55 

56-
60 

61-
65 

66-
70 

68-
72 

1-125 1-250 X    X     X       
126-
250 

251-
500 

 X    X     X      

251-
375 

501-
750 

  X    X     X     

376-
500 

751-
1000 

   X    X     X    

501-
625 

1001-
1250 

X        X     X   

626-
750 

1251-
1500 

 X   X          X  

751-
875 

1501-
1750 

  X   X          X 

876-
1000 

1751-
2000 

   X   X   X       

1001-
1125 

2001-
2250 

X       X   X      

1126-
1250 

2251-
2500 

 X       X   X     

1251-
1375 

2501-
2750 

  X  X        X    

1376-
1500 

2751-
3000 

   X  X        X   

1501-
1625 

3001-
3250 

X      X        X  

1626-
1750 

3251-
3500 

 X      X        X 
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Table 3.4 

Field Test Design B 

Note. Each row represents a different form. X indicates that the item set is included in the form. 
S1-S8=Simple structure item sets that include 6 items. C1-C4=Complex structure item sets that 
include 9 items. All S and C sets include items from all 3 attributes. 

Examinee Item Set 
  Attribute 1&2&3 Attribute 1&2&3 

250   500 S1 S2 S3 S4 S5 S6 S7 S8 C1 C2 C3 C4 
1-125 1-250 X X 
126-
250 

251- 
500 

X X 

251-
375 

501- 
750 

X X 

376-
500 

751-
1000 

X X 

501-
625 

1001-
1250 

X X 

626-
750 

1251-
1500 

X X 

751-
875 

1501-
1750 

X X 

876-
1000 

1751-
2000 

X X 

1001-
1125 

2001-
2250 

X X 

1126-
1250 

2251-
2500 

X X 

1251-
1375 

2501-
2750 

X X 

1376-
1500 

2751-
3000 

X X 

1501-
1625 

3001-
3250 

X X 

1626-
1750 

3251-
3500 

X X 

1751-
1875 

3501-
3750 

X X 

1876-
2000 

3751-
4000 

X X 
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Table 3.5 

Field Test Design C 

Note. Each row represents a different form. X indicates that the item set is included in the form. 
Items 1-16 measure Attribute 1; Items 17-40 measure Attribute 2; Items 41-72 measure Attribute 3. 

Examinee Item Set 
Attribute 1 Attribute 2 Attribute 3 

250   500 1-
4 

5-
8 

9-
12 

13-
16 

17-
21 

22-
26 

27-
31 

32-
36 

36-
40 

41-
46 

47-
52 

53-
58 

59-
64 

65-
70 

67-
72 

1-125 1-250 X X X 
126-
250 

251-
500 

X X X 

251-
375 

501-
750 

X X X 

376-
500 

751-
1000 

X X X 

501-
625 

1001-
1250 

X X X 

626-
750 

1251-
1500 

X X X 

751-
875 

1501-
1750 

X X X 

876-
1000 

1751-
2000 

X X X 

1001-
1125 

2001-
2250 

X X X 

1126-
1250 

2251-
2500 

X X X 

1251-
1375 

2501-
2750 

X X X 

1376-
1500 

2751-
3000 

X X X 
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Table 3.6 

Field Test Design D 

Note. Each row represents a different form. X indicates that the item set is included in the form. 
S1-S6=Simple structure item sets that include 7 items. C1-C5=Complex structure item sets that 
include 8 items. All S and C sets include items from all 3 attributes. 
 
 
 
 
 
 
 
 
 
 
 

Examinee Item Set 
 Attribute 1&2&3   Attribute 1&2&3 
250   500 S1 S2 S3 S4 S5 S6 C1 C2 C3 C4 C5 
1-125 1-250 X      X     
126-
250 

251-
500 

 X      X    

251-
375 

501-
750 

  X      X   

376-
500 

751-
1000 

   X      X  

501-
625 

1001-
1250 

    X      X 

626-
750 

1251-
1500 

     X X     

751-
875 

1501-
1750 

X       X    

876-
1000 

1751-
2000 

 X       X   

1001-
1125 

2001-
2250 

  X       X  

1126-
1250 

2251-
2500 

   X       X 

1251-
1375 

2501-
2750 

    X  X     

1376-
1500 

2751-
3000 

     X  X    
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Table 3.7 

Field Test Design E 

Examinee  Item 
   Attribute 1 Attribute 2 Attribute 3 

250   500 1-8 9-16 17-24 25-32 33-40 41-48 49-56 57-64 65-72 
1-125 1-250 X  X       
126- 
250 

251-
500 

 X    X    

251- 
375 

501-
750 

   X   X   

376- 
500 

751-
1000 

    X   X  

501- 
625 

1001-
1250 

X        X 

626- 
750 

1251-
1500 

 X    X    

751- 
875 

1501-
1750 

  X    X   

876- 
1000 

1751-
2000 

   X    X  

1001-
1125 

2001-
2250 

    X    X 

Note. Each row represents a different form. X indicates that the item set is included in the form. Items 1-16 
measure Attribute 1; Items 17-40 measure Attribute 2; Items 41-72 measure Attribute 3.
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Table 3.8 

Field Test Design F 

Note. Each row represents a different form. X indicates that the item set is included in the form. S1-S12=simple structure item sets, 
C1-C6=complex structure item sets. Each set includes 8 items. S1, S2, S3, and S4 include items from Attributes 1 and 2; S5, S6, S7, 
and S8 include items from Attributes 1 and 3; S9, S10, S11 and S12 include items from Attributes 2 and 3.  C1 and C2 include items 
from Attributes 1 and 2; C3 and C4 include items from Attribute 1 and 3; C5 and C6 include items from Attribute 2 and 3. 

Examinee Item Set 
 Attribute 1&2 Attribute 1&3 Attribute 2&3 Attribute 

1&2 
Attribute 

1&3 
Attribute 

2&3 
250   500 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 C1 C2 C3 C4 C5 C6 
1-125 1-250 X            X      
126-
250 

251- 
500 

 X            X     

251-
375 

501- 
750 

  X          X      

376-
500 

751-
1000 

   X          X     

501-
625 

1001-
1250 

    X          X    

626-
750 

1251-
1500 

     X          X   

751-
875 

1501-
1750 

      X        X    

876-
1000 

1751-
2000 

       X        X   

1001-
1125 

2001-
2250 

        X        X  

1126-
1250 

2251-
2500 

         X        X 

1251-
1375 

2501-
2750 

          X      X  

1376-
1500 

2751-
3000 

           X      X 
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Table 3.9 

Field Test Design G 

Note. Each row represents a different form. X indicates that the item set is included in the form. Items 1-16 measure Attribute 1; Items 
17-40 measure Attribute 2; Items 41-72 measure Attribute 3. 

Examinee Item 
Attribute 1 Attribute 2 Attribute 3 

250   500 1- 
5 

6-
10 

11-
15 

12-
16 

17-
21 

22- 
26 

27-
31 

32-
36 

36-
40 

41- 
46 

47-
52 

53-
58 

59-
64 

65-
70 

67- 
72 

1-125 1-250 X X X 
126-
250 

251-
500 

X X X 

251-
375 

501-
750 

X X X 

376-
500 

751-
1000 

X X X 

501-
625 

1001-
1250 

X X X 

626-
750 

1251-
1500 

X X X 

751-
875 

1501-
1750 

X X X 

876-
1000 

1751-
2000 

X X X 

1001-
1125 

2001-
2250 

X X X 

1126-
1250 

2251-
2500 

X X X 

1251-
1375 

2501-
2750 

X X X 

1376-
1500 

2751-
3000 

X X 
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Table 3.10 

Field Test Design H 

Note. Each row represents a different form. X indicates that the item set is included in the form. S1-S12=Simple structure item sets, 
C1-C5=Complex structure item sets. Each simple and complex structure item sets include 8 items. S1, S2, S3, and S4 include items 
from Attributes 1 and 2; S5, S6, S7, and S8 include items from Attributes 1 and 3; S9, S10, S11 and S12 include items from Attributes 
2 and 3. All Cs sets include items from all 3 attributes. 
 

Examinee Item Set 
 Attribute 1&2 Attribute 1&3 Attribute 2&3 Attribute 1&2&3 

250   500 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 C1 C2 C3 C4 C5  
1-125 1-250 X            X      
126-
250 

251- 
500 

 X            X     

251-
375 

501- 
750 

  X            X    

376-
500 

751-
1000 

   X            X   

501-
625 

1001-
1250 

    X            X  

626-
750 

1251-
1500 

     X       X      

751-
875 

1501-
1750 

      X       X     

876-
1000 

1751-
2000 

       X       X    

1001-
1125 

2001-
2250 

        X       X   

1126-
1250 

2251-
2500 

         X       X  

1251-
1375 

2501-
2750 

          X  X      

1376-
1500 

2751-
3000 

           X  X     
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Table 3.11 

Field Test Design I 

Note. Each row represents a different form. X indicates that the item set is included in the form. Set 1 contains Items 1-5, Set 2 
contains Items 6-10, and the remaining sets continue in this pattern, each containing the next five items in the pool of 72 items. Sets 1-
4 contain items that measure Attribute 1, Sets 5-9 contains items that measure Attribute 2, and Sets 10 to 16 contains items that 
measure Attribute 3.

Examinee Item Set 
Attribute 1 Attribute 2 Attribute 3 

250        500 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1-125 1-250 X    X 
126-250 251-500  X    X 
251-375 501-750   X       X 
376-500 751-1000    X       X 
501-625 1001-1250       X     X 
626-750 1251-1500        X     X 
751-875 1501-1750         X     X 
876-1000 1751-2000 X              X 
1001-1125 2001-2250  X X 
1126-1250 2251-2500     X     X 
1251-1375 2501-2750      X     X 
1376-1500 2751-3000       X     X 
1501-1625 3001-3250        X     X 
1626-1750 3251-3500         X     X 
1751-1875 3501-3750   X            X 
1876-2000 3751-4000    X X 
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Table 3.12 

Field Test Design J 

Note. Each row represents a different form. X indicates that the item set is included in the form. S1-S16=simple structure item sets, C1-
C8=complex structure item sets. Each set includes 5 items. S1, S2, S3, and S4 include items from Attributes 1 and 2; S5, S6, S7, S8, S9, 
and S10 include items from Attributes 2 and 3; S11, S12, S13, S14, S15, and S16 include items from Attributes 1 and 3. C1 and C2 
include items from Attributes 1 and 2; C3 and C4 include items from Attribute 2 and 3; C5 and C8 include items from Attribute 1 and 3. 

Examinee  Item Set 
 Attribute 1&2  Attribute 2&3  Attribute 1&3 Attribute  

1&2 
Attribute 

2&3 
Attribute  

1&3 
250   500 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 C1 C2 C3 C4 C5 C6 C7 C8 
1-125 1-250 X                X        
126-
250 

251-
500 

 X                X       

251-
375 

501-
750 

  X              X        

376-
500 

751-
1000 

   X              X       

501-
625 

1001-
1250 

    X              X      

626-
750 

1251-
1500 

     X              X     

751-
875 

1501-
1750 

      X              X    

876-
1000 

1751-
2000 

       X           X      

1001-
1125 

2001-
2250 

        X           X     

1126-
1250 

2251-
2500 

         X           X    

1251-
1375 

2501-
2750 

          X           X   

1376-
1500 

2751-
3000 

           X           X  

1501-
1625 

3001-
3250 

            X           X 

1626-
1750 

3251-
3500 

             X        X   

1751-
1875 

3501-
3750 

              X        X  

1876-
2000 

3751-
4000 

               X        X 
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Table 3.13 
Field Test Design K

Note. Each row represents a different form. X indicates that the item set is included in the form. Items 1-16 measure Attribute 1; Items 
17-40 measure Attribute 2; Items 41-72 measure Attribute 3. 

Examinee Item 
Attribute 1 Attribute 2 Attribute 3 

250   500 1-
3 

4-
6 

7-
9 

10-
12 

13- 
15 

14-
16 

17-
19 

20-
22 

23-
25 

26-
28 

29-
31 

32-
34 

35-
37 

38-
40 

41-
44 

45-
48 

49-
52 

53-
56 

57-
60 

61-
64 

65-
68 

69-
72 

1-125 1-250 X X X 
126- 
250 

251-
500 

X X X 

251- 
375 

501-
750 

X X X 

376- 
500 

751-
1000 

X X X 

501- 
625 

1001-
1250 

X X X 

626- 
750 

1251-
1500 

X X X 

751- 
875 

1501-
1750 

X X X 

876-
1000 

1751-
2000 

X X X 

1001-
1125 

2001-
2250 

X X X 

1126-
1250 

2251-
2500 

X X X 

1251-
1375 

2501-
2750 

X X X 

1376-
1500 

2751-
3000 

X X X 

1501-
1625 

3001-
3250 

X X X 

1626-
1750 

3251-
3500 

X X X 

1751-
1875 

3501-
3750 

X X X 

1876-
2000 

3751-
4000 

X X X 
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Table 3.14 

Field Test Design L 

Note. Each row represents a different form. X indicates that the item set is included in the form. S1-S16=Simple structure item sets, C1-
C8=Complex structure item sets. Each simple and complex structure item sets include 5 items. S1, S2, S3, and S4 include items from 
Attributes 1 and 2; S5, S6, S7, S8, S9 and S10 include items from Attributes 2 and 3; S11, S12, S13, S14, S15, and S16 include items 
from Attributes 1 and 3. All C sets include items from all 3 attributes. 

Examinee Item Set 
Attribute 1&2 Attribute 2&3 Attribute 1&3 Attribute 1&2&3 

250   500 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 C1 C2 C3 C4 C5 C6 C7 C8 
1-125 1-250 X X 

126-250 251-500 X X 

251-375 501-750 X X 

376-500 751-1000 X X 
501-625 1001-1250 X X 

626-750 1251-1500 X X 

751-875 1501-1750 X X 

876-1000 1751-2000 X X 

1001-
1125 

2001-2250 X X 

1126-
1250 

2251-2500 X X 

1251-
1375 

2501-2750 X X 

1376-
1500 

2751-3000 X X 

1501-
1625 

3001-3250 X X 

1626-
1750 

3251-3500 X X 

1751-
1875 

3501-3750 X X 

1876-
2000 

3751-4000 X X 

2001-
2125 

4001-4250 X X 

2126-
2250 

4251-4500 X X 



54 

Table 3.15  

Field Test Design M 

Note. Each row represents a different form. X indicates that the item set is included in the form. Set 1 contains Items 1-3, Set 2 contains 
Items 4-6, and the remaining sets continue in this pattern, each containing the next three items in the pool of 72 items. Sets 1-6 contain items 
that measure Attribute 1, Sets 7-14 contains items that measure Attribute 2, and Sets 15 to 25 contains items that measure Attribute 3. 

Examinee Item Set 

Attribute 1 Attribute 2 Attribute 3 

250 500 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
1-125 1-250 X X 
126-250 251-500 X X 
251-375 501-750 X X 
376-500 751-1000 X X 
501-625 1001-1250 X X 
626-750 1251-1500 X X 
751-875 1501-1750 X X 
876-1000 1751-2000 X X 

1001-1125 2001-2250 X X 

1126-1250 2251-2500 X X 

1251-1375 2501-2750 X X 

1376-1500 2751-3000 X X 

1501-1625 3001-3250 X X 

1626-1750 3251-3500 X X 

1751-1875 3501-3750 X X 

1876-2000 3751-4000 X X 

2001-2125 4001-4250 X X 

2126-2250 4251-4500 X X 

2251-2375 4501-4750 X X 

2376-2500 4751-5000 X X 

2501-2625 5001-5250 X X 

2626-2750 5251-5500 X X 

2751-2875 5501-5750 X X 

2876-3000 5751-6000 X X 

3001-3125 6001-6250 X X 
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Table 3.16 

Field Test Design N 
Examinee Item Set 

          Attribute 1&2 Attribute 1&3 Attribute 2&3 Attribute 
1&2 

Attribute 
1&3 

Attribute 
2&3 

250 500 S
1 

S
2 

S
3 

S
4 

S
5 

S
6 

S
7 

S
8 

S
9 

S 
10 

S 
11 

S 
12 

S 
13 

S 
14 

S 
15 

S 
16 

S 
17 

S 
18 

S 
19 

S 
20 

S 
21 

S 
22 

S 
23 

S 
24 

S 
25 

S 
26 

C
1 

C
2 

C
3 

C
4 

C
5 

C
6 

C
7 

C
8 

C
9 

C 
10 

C 
11 

C 
12 

C 
13 

1-125 1-250 X X 

126-250 251-500 X X 

251-375 501-750 X X 

376-500 751-1000 X X 

501-625 1001-
1250 

X X 

626-750 1251-
1500 

X X 

751-875 1501-
1750 

X X 

876-1000 1751-
2000 

X X 

1001-
1125 

2001-
2250 

X X 

1126-
1250 

2251-
2500 

X X 

1251-
1375 

2501-
2750 

X X 

1376-
1500 

2751-
3000 

X X 

1501-
1625 

3001-
3250 

X X 

1626-
1750 

3251-
3500 

X X 

1751-
1875 

3501-
3750 

X X 

1876-
2000 

3751-
4000 

X X 

2001-
2125 

4001-
4250 

X X 

2126-
2250 

4251-
4500 

X X 
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Table 3.16 Continued 

Examinee Item Set 
           Attribute 1&2 Attribute 1&3 Attribute 2&3 Attribute 

1&2 
Attribute 

1&3 
Attribute 

2&3 
250 500 S

1 
S
2 

S
3 

S
4 

S
5 

S
6 

S
7 

S
8 

S
9 

S 
10 

S 
11 

S 
12 

S 
13 

S 
14 

S 
15 

S 
16 

S 
17 

S 
18 

S 
19 

S 
20 

S 
21 

S 
22 

S 
23 

S 
24 

S 
25 

S 
26 

C
1 

C
2 

C
3 

C
4 

C
5 

C
6 

C
7 

C
8 

C
9 

C 
10 

C 
11 

C 
12 

C 
13 

2376-
2500 

4751-
5000 

                   X                  X  

2501-
2625 

5001-
5250 

                    X                  X 

2626-
2750 

5251-
5500 

                     X             X     

2751-
2875 

5501-
5750 

                      X             X    

2876-
3000 

5751-
6000 

                       X             X   

3001-
3125 

6001-
6250 

                        X             X  

3126-
3250 

6251-
6500 

                         X             X 

Note. Each row represents a different form. X indicates that the item set is included in the form. S1-S26=simple structure item sets, C1-
C13=complex structure item sets. Each set includes three items. S1-S8 include items from Attributes 1 and 2; S9-S16 include items from Attributes 
1 and 3; S17-S26 include items from Attributes 2 and 3. C1-C4 include items from Attributes 1 and 2; C5- C8 include items from Attribute 1 and 3; 
C9 and C13 include items from Attribute 2 and 3. 

 

 

 

 

 

 

 

 

 



57 

Table 3.17 

Field Test Design O 

Note. Each row represents a different form. X indicates that the item set is included in the form. Set 1 contains Items 1 and 2, Set 2 contains 
Items 2 and 3, and the remaining sets continue in this pattern, each containing the next two items in the pool of 72 items. Sets 1-8 contain 
items that measure Attribute 1, Sets 9-20 contains items that measure Attribute 2, and Sets 21- 36 contains items that measure Attribute 3. 

Examinee Item Set 

Attribute 1 Attribute 2 Attribute 3 

250 500 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

1-250 1-500 X X X 
251-
500 

501-
1000 

X X X 

501-
750 

1001-
1500 

X X X 

751-
1000 

1501-
2000 

X X X 

1001-
1250 

2001-
2500 

X X X 

1251-
1500 

2501-
3000 

X X X 

1501-
1750 

3001-
3500 

X X X 

1751-
2000 

3501-
4000 

X X X 

2001-
2250 

4001-
4500 

X X X 

2251-
2500 

4501-
5000 

X X X 

2501-
2750 

5001-
5500 

X X X 

2751-
3000 

5501-
6000 

X X X 

3001-
3250 

6001-
6500 

X X X 

3251-
3500 

6501-
7000 

X X X 

3501-
3750 

7001-
7500 

X X X 

3751-
4000 

7501-
8000 

X X X 
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Table 3.18 
Field Test Design P 

Examinee Item Set 

 Attribute 1 &2 Attribute 1&3 Attribute 2&3 Attribute 1&2&3 

250 500 S
1 

S
2 

S
3 

S
4 

S
5 

S
6 

S
7 

S
8 

S
9 

S 
10 

S 
11 

S 
12 

S 
13 

S 
14 

S 
15 

S 
16 

S 
17 

S 
18 

S 
19 

S 
20 

S 
21 

S 
22 

S 
23 

S 
24 

S 
25 

S 
26 

C
1 

C
2 

C
3 

C
4 

C
5 

C
6 

C
7 

C
8 

C
9 

C 
10 

C 
11 

C 
12 

C 
13 

1-125 1-250 X                              X         

126-250 251-500  X                              X        

251-375 501-750   X                              X       

376-500 751-1000    X                              X      

501-625 1001-
1250 

    X                              X     

626-750 1251-
1500 

     X                              X    

751-875 1501-
1750 

      X                              X   

876-1000 1751-
2000 

       X                              X  

1001-
1125 

2001-
2250 

        X                              X 

1126-
1250 

2251-
2500 

         X                 X             

1251-
1375 

2501-
2750 

          X                 X            

1376-
1500 

2751-
3000 

           X                 X           

1501-
1625 

3001-
3250 

            X                 X          

1626-
1750 

3251-
3500 

             X                     X     

1751-
1875 

3501-
3750 

              X                     X    

1876-
2000 

3751-
4000 

               X                     X   

2001-
2125 

4001-
4250 

                X                     X  

2126-
2250 

4251-
4500 

                 X                     X 

2251-
2375 

4501-
4750 

                  X        X             
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Table 3.18 Continued 
Examinee Item Set 

Attribute 1 &2 Attribute 1&3 Attribute 2&3 Attribute 1&2&3 

250 500 S
1 

S
2 

S
3 

S
4 

S
5 

S
6 

S
7 

S
8 

S
9 

S 
10 

S 
11 

S 
12 

S 
13 

S 
14 

S 
15 

S 
16 

S 
17 

S 
18 

S 
19 

S 
20 

S 
21 

S 
22 

S 
23 

S 
24 

S 
25 

S 
26 

C
1 

C
2 

C
3 

C
4 

C
5 

C
6 

C
7 

C
8 

C
9 

C 
10 

C 
11 

C 
12 

C 
13 

2376-
2500 

4751-
5000 

X X 

2626-
2750 

5251-
5500 

X X 

2751-
2875 

5501-
5750 

X X 

2876-
3000 

5751-
6000 

X X 

3001-
3125 

6001-
6250 

X X 

3126-
3250 

6251-
6500 

X X 

Note. Each row represents a different form. X indicates that the item set is included in the form. S1-S26=simple structure item sets, C1-
C13=complex structure item sets. Each set includes 2 items. S1-S8 include items from Attributes 1 and 2; S9-S16 include items from Attributes 
1 and 3; S17-S26 include items from Attributes 2 and 3. All C sets include items from all 3 attributes.



60 

Table 4.1 

Convergence Rates for each Field Test Design Condition 

Q-matrix Number of 
Attribute in 

a Form 

Sample Size Slot Length    
72 16 15     10     6 

Simple    2 
250 

500 

NA 

NA 

1 

1 

NA 

NA 

1 

1 

1 

1 

Simple    3 
250 

500 

1 

1 

.99 

.99 

1 - 1 

1 - 1 

1 

1 

1 

1 

Mixed    2 
250 

500 

NA 

NA 

.57 

.81 

NA 

NA 

.95 

.99 

.16 

.82 

Mixed  3 
250 

500 

.29 

.43 

.79 

.91 

.37 - .35 

.90 - .94 

.41 

.92 

.14 

.17 
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Table 4.2 

Mean Absolute Bias of Item Parameters for Field Test Designs with Simple Q-matrix 

   Note. Standard errors for mean absolute bias are given in parenthesis. 

Q-matrix Sample size Condition Number of Items & 
Attributes in a Form 

Intercept Main Effect 

 1 72 - 3 .011 (.021) .030 (.031) 
5 15 - 3 .044 (.055) .066 (.082) 
9 15 - 3 .043 (.054) .064 (.079) 
13 16 - 2 .041 (.051) .061 (.076) 

Simple 250 17 16 - 3 .043 (.053) .064 (.079) 
21 10 - 2 .047 (.058) .069 (.086) 
25 10 - 3 .047 (.058) .070 (.086) 
29 6 - 2 .059 (.073) .087 (.109) 
33 6 - 3 .077 (.096) .117 (.146) 
2 72 - 3 .006 (.014) .015 (.022) 
6 15 - 3 .032 (.039) .046 (.058) 
10 15 - 3 .031 (.038) .045 (.056) 
14 16 - 2 .029 (.036) .043 (.054) 

Simple 500 18 16 - 3 .031 (.038) .045 (.056) 
22 10 - 2 .033 (.041) .049 (.061) 
26 10 - 3 .033 (.041) .049 (.061) 
30 6 - 2 .041 (.051) .062 (.077) 
34 6 - 3 .052 (.066) .079 (.099) 
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Table 4.3  

Mean Absolute Bias of Item Parameters for Field Test Designs with Mixed Q-matrix  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. Standard errors for mean absolute bias are given in parenthesis. The interaction terms between different pairs of attributes were 
not analyzed separately; thus, results represent the mean across all two-way interactions between each pair of attributes. 

 

 

Q-Matrix Sample  
Size 

Condition Number of 
Items- 

Attributes in 
a Form 

Intercept Main Effect 1 Main Effect 2 Main Effect 3 Interaction 

   3 72 - 3 .024 (.023) .038 (.049) .035 (.043) .035 (.042) .059 (.074) 
  7 15 - 3 .055 (.062) .135 (.121) .097 (.118) .095 (.115) .173 (.200) 
  11 15 - 3 .051 (.059) .126 (.114) .091 (.111) .089 (.108) .158 (.187) 
  15 16 - 2 .049 (.058) .111 (.112) .078 (.110) .091 (.107) .139 (.185) 

Mixed 250 19 16 - 3  .051 (.058) .126 (.113) .091 (.111) .090 (.108) .158 (.187) 
  23 10 - 2 .055 (.063) .133 (.123) .098 (.120) .097 (.116) .170 (.202) 
  27 10 - 3 .058 (.066) .138 (.129) .144 (.125) .135 (.122) .182 (.213) 
  31 6 - 2 .069 (.082) .162 (.162) .125 (.157) .123 (.153) .208 (.268) 
  35 6 - 3 .069 (.080) .159 (.158) .121 (.153) .122 (.149) .204 (.259) 
  4 72 - 3  .027 (.033) .012 (.042) .045 (.046) .022 (.043) .058 (.064) 
  8 15 - 3 .039 (.044) .105 (.085) .068 (.083) .064 (.081) .119 (.140) 
  12 15 - 3 .037 (.041) .101 (.080) .062 (.079) .062 (.076) .112 (.132) 
  16 16 - 2 .038 (.786) .100 (.470) .063 (.754) .062 (.473) .111 (.711) 

Mixed 500 20 16 - 3 .037 (.041) .100 (.080) .063 (.782) .062 (.076) .113 (.132) 
  24 10 - 2 .040 (.044) .106 (.087) .068 (.085) .067 (.082) .120 (.143) 
  28 10 - 3 .042 (.046) .110 (.091) .070 (.089) .070 (.086) .126 (.150) 
  32 6 - 2  .049 (.058) .126 (.114) .087 (.111) . 087 (.108) .156 (.188) 
  36 6 - 3 .047 (.056) .123 (.112) .084 (.108) .087 (.104) .149 (.183) 
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Table 4.4  

Item Statistics Consistency Across Conditions with Simple Q-matrix – Compared with Corresponding Sample Size and 10000 Sample 

Size Full Data Condition 

Note. Standard errors for mean absolute difference are given in parenthesis. 
  

   Within Attribute Point Biserial  

Q-
Matrix 

Condition Number 
of Items 
in a form 

Attribute1 Attribute 2 Attribute 3 Difficulty 

250 10000 250 10000 250 10000 250 10000 

 5 15  .075 (.058) .083 (.035) .102 (.059) .105 (.044) .123 (.053) .106 (.040) .033 (.021) .022 (.017) 
 9 15  .094 (.070) .108 (.047)  .109 (.058) .111 (.042)  .098 (.053) .080 (.036)  .035 (.022) .027 (.019) 
 13 16  .060 (.043) .056 (.026) .069 (.046) .065 (.035) .080 (.056) .061 (.042) .037 (.058) .029 (.020) 
 17 16  .086 (.058) .086 (.034) .109 (.059) .111 (.048) .098 (.053) .080 (.036) .036 (.022) .027 (.020) 

Simple 21 10   .073 (.067) .083 (.049) .087 (.057) .085 (.051) .122 (.069) .106 (.045) .028 (.025) .019 (.015) 
 25 10   .111 (.080) .129 (.059) .163 (.068) .165 (.053) .151 (.067) .134 (.048) .029 (.025) .019 (.014) 
 29 6  .127 (.077) .143 (.053) .176 (.070) .177 (.050) .189 (.072) .172 (.049) .034 (.027) .028 (.019) 
 33 6  .195 (.091) .213 (.073) .251 (.073) .253 (.058) .266 (.080) .249 (.059) .030 (.029) .019 (.015) 

   500 10000 500 10000 500 1000 500 10000 
 6 15  .079 (.061) .082 (.038)  .109 (.035) .097 (.029) .104 (.051) .103 (.041) .021 (.017) .014 (.012) 
 10 15  .100 (.060) .103 (.040) .103 (.037) .090 (.031) .084 (.043) .082 (.033) .022 (.015) .016 (.011) 
 14 16  .047 (.043) .042 (.032) .067 (.034) .053 (.029) .054 (.038) .052 (.030) .021 (.016) .016 (.012) 
 18 16  .078 (.058) .084 (.038) .104 (.036) .091 (.030) .084 (.043) .081 (.033) .021 (.015) .016 (.010) 

Simple 22 10   .069 (.053) .071 (.035) .101 (.047) .088 (.039) .095 (.036) .094 (.032) .022 (.017) .018 (.012) 
 26 10   .124 (.073) .127 (.050) .187 (.057) .174 (.050) .126 (.047) .127 (.038) .024 (.018) .017 (.012) 
 30 6  .134 (.082) .137 (.061) .184 (.049) .171 (.041) .171 (.056) .172 (.048) .022 (.017) .017 (.011) 
 34 6  .307 (.064) .304 (.045) .272 (.061) .286 (.055) .292 (.074) .291 (.059) .020 (.015) .013 (.010) 
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Table 4.5  

Item Statistics Consistency Across Conditions with Mixed Q-matrix – Compared with Corresponding Sample Size Full Data Condition 

Note. Standard errors for mean absolute difference are given in parenthesis. 

Within Attribute Point Biserial 
Simple Structure Items Complex Structure Items 

Q-
Matrix 

Condition Number 
of Items 

in a 
Form 

Attribute 
1 

Attribute 
2 

Attribute 
3 

Attribute 
1&2 

Attribute 
1&3 

Attribute 
2&3 

Difficulty 

Attribute1 Attribute2 Attribute1 Attribute3 Attribute2 Attribute3 

7 15  .066 (.053) .074 (.054) .065 (.051) .093 (.050) .101 (.039) .058 (.038) .070 (.052) .054 (.053) .069 (.037) .028 (.020) 
11 15  .075 (.058) .098 (.051) .077 (.044) .087 (.051) .097 (.042) .099 (.060) .094 (.063) .062 (.057) .056 (.043) .034 (.028) 
15 16  .048 (.021) .069 (.055) .066 (.044) .093 (.039) .095 (.036) .065 (.055) .071 (.067) .069 (.049) .059 (.044) .029 (.024) 
19 16  .067 (.037) .101 (.064) .068 (.053) .058 (.021) .051 (.034) .045 (.057) .061 (.050) .048 (.034) .050 (.033) .030 (.024) 

Mixed 23 10   .059 (.048) .092 (.064) .080 (.054) .120 (.051) .118 (.035) .089 (.058) .082 (.046) .077 (.043) .083 (.054) .029 (.019) 
27 10   .104 (.024) .123 (.075) .097 (.040) .134 (.055) .108 (.052) .103 (.059) .064 (.044) .084 (.069) .058 (.034) .029 (.022) 
31 6 .124 (.056) .116 (.067) .132 (.062) .187 (.062) .154 (.041) .155 (.092) .131 (.081) .110 (.068) .098 (.055) .033 (.027) 
35 6 .322 (.065) .243 (.110) .304 (.095) .271 (.082) .263 (.057) .299 (.077) .296 (.072) .303 (.066) .300 (.069) .031 (.020) 
8 15  .075 (.050) .052 (.036) .057 (.047) .053 (.035) .079 (.031) .049 (.030) .061 (.034) .064 (.030) .059 (.031) .022 (.017) 
12 15  .107 (.026) .087 (.042) .082 (.035) .052 (.036)  .067 (.027) .068 (.055) .059 (.034) .057 (.031) .050 (.033) .027 (.022) 
16 16  .054 (.038) .036 (.019) .059 (.029) .041 (.041) .066 (.039) .051 (.037) .058 (.035) .028 (.024) .036 (.026) .027 (.021) 
20 16  .086 (.037) .075 (.040) .068 (.044) .048 (.031) .023 (.011) .057 (.033) .037 (.023) .032 (.028) .041 (.031) .027 (.022) 

Mixed 24 10   .088 (.047) .062 (.046) .074 (.043) .081 (.050) .090 (.043) .077 (.053) .075 (.048) .075 (.048) .076 (.048) .024 (.016) 
28 10   .133 (.066) .085 (.053) .092 (.050) .087 (.050) .081 (.050) .091 (.060) .057 (.035) .077 (.040) .050 (.037) .024 (.017) 
32 6 .148 (.089) .099 (.042) .109 (.057) .140 (.045)  .130 (.044)  .155 (.068) .133 (.058) .116 (.067) .098 (.052) .022 (.017) 
36 6 .299 (.090) .301 (.057) .304 (.073) .310 (.067) .293 (.040) .289 (.081) .287 (.070) .325 (.063) .323 (.067) .022 (.017) 
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Table 4.6  

Item Statistics Consistency Across Conditions with Mixed Q-matrix – Compared with 10000 Sample Size Full Data Condition 

Note. Standard errors for mean absolute difference are given in parenthesis. 

                                            Within Attribute Point Biserial 
   Simple Structure Items Complex Structure Items 

Q-
Matrix 

Condition Number 
of Items 

in a 
Form 

Attribute  
1 

Attribute  
2 

Attribute  
3 

Attribute 
1&2 

Attribute 
1&3 

Attribute 
2&3 

Difficulty 

   Attribute1 Attribute2 Attribute1 Attribute3 Attribute2 Attribute3  

 7 15  .077 (.026) .044 (.036) .049 (.042) .068 (.040) .076 (.025) .047 (.036) .065 (.040) .054 (.030) .061 (.026) .018 (.014) 
 11 15  .088 (.033) .071 (.038) .064 (.040) .064 (.042) .071 (.040) .097 (.049) .089 (.050) .064 (.032) .057 (.027) .024 (.020) 
 15 16  .049 (.024) .046 (.029) .047 (.035) .060 (.039) .070 (.029) .047 (.042) .063 (.047) .068 (.033) .066 (.041) .020 (.017) 
 19 16  .080 (.024) .073 (.034) .052 (.043) .045 (.030) .035 (.024) .046 (.041) .060 (.040) .041 (.029) .033 (.027) .020 (.018) 

Mixed 23 10   .072 (.036) .056 (.035) .067 (.033) .096 (.046) .093 (.046) .087 (.049) .083 (.061) .077 (.034) .057 (.036) .020 (.015) 
 27 10   .118 (.017) .095 (.036) .087 (.047) .110 (.040) .082 (.040) .103 (.057) .062 (.040) .090 (.061) .061 (.043) .022 (.016) 
 31 6  .137 (.071) .090 (.046) .120 (.054) .162 (.047) .129 (.041) .153 (.081) .128 (.065) .116 (.063) .110 (.050) .028 (.021) 
 35 6  .309 (.078) .271 (.075) .313 (.098) .295 (.056) .288 (.049) .300 (.064) .300 (.077) .297 (.056) .293 (.059) .019 (.015) 
 8 15  .068 (.024) .053 (.034) .049 (.029) .073 (.029) .087 (.029) .051 (.035) .069 (.030) .070 (.038) .063 (.035) .013 (.010) 
 12 15  .100 (.028) .087 (.041) .062 (.042) .063 (.038) .074 (.030) .077 (.049) .068 (.037) .071 (.038) .053 (.043) .019 (.014) 
 16 16  .045 (.016) .037 (.023) .044 (.025) .058 (.025) .067 (.028) .048 (.036) .063 (.034) .037 (.025) .045 (.035) .017 (.015) 
 20 16  .079 (.013) .078 (.032) .058 (.033) .033 (.030) .029 (.019) .051 (.031) .041 (.023) .031 (.031) .035 (.026) .017 (.014) 

Mixed 24 10   .082 (.030) .062 (.033) .059 (.033) .102 (.036) .098 (.038) .085 (.053) .073 (.054) .090 (.042) .067 (.038) .019 (.014) 
 28 10   .127 (.047) .085 (.047) .082 (.038) .099 (.044) .091 (.048) .100 (.056) .065 (.044) .084 (.042) .054 (.040) .015 (.012) 
 32 6  .137 (.068) .100 (.044) .103 (.033) .162 (.034) .137 (.035) .163 (.068) .141 (.065) .129 (.066) .111 (.058) .015 (.012) 
 36 6  .306 (.070) .301 (.057) .309 (.054) .288 (.066) .286 (.057) .281 (.075) .279 (.068) .306 (.064) .304 (.070) .014 (.011) 
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Table 4.7 

Classification Accuracy Percentages Across Conditions with Simple Q-matrix 

Q-matrix Sample 
Size 

Condition Number of 
Items in Form 

Number of 
Attributes 
in Form 

Classification Accuracy % 

Attribute 1 Attribute 2 Attribute 3 

 1 72 3 99.56 99.71 99.95 
5 15 3 93.71 91.29 91.90 
9 15 3 91.90 91.32 93.48 
13 16 2 84.72 88.35 90.74 

Simple 250 17 16  3 89.82 91.11 93.41 
21 10 2 82.18 84.17 88.90 
25 10 3 88.98 86.58 89.93 
29 6 2 79.14 80.50 84.03 
33 6 3 84.74 82.61 83.15 
2 72 3 99.53 99.75 99.97 
6 15 3 93.76 91.22 92.04 
10 15 3 91.95 91.29 93.50 
14 16 2 84.68 88.36 90.78 

Simple 500 18 16 3 90.06 91.13 93.44 
22 10  2 82.21 84.19 88.90 
26 10  3 89.02 86.64 89.90 
30 6 2 79.88 81.15 84.58 
34 6 3 84.76 81.39 83.60 
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Table 4.8 

Classification Accuracy Percentages Across Conditions with Mixed Q-matrix 

Q-matrix Sample 
Size 

Condition Number of 
Items in a 

Form 

Number of 
Attributes 
in a Form 

Classification Accuracy % 

Attribute 1 Attribute 2 Attribute 3 

3 72 3 98.69 99.59 99.74 
7 15 3 89.92 91.10 90.68 
11 15 3 89.71 90.59 92.89 
15 16 2 87.66 87.92 87.82 

Mixed 250 19 16  3 90.33 91.27 91.43 
23 10 2 82.92 84.76 86.96 
27 10 3 85.18 87.00 88.08 
31 6 2 78.84 81.60 81.35 
35 6 3 81.20 83.22 83.73 
4 72 3 98.80 99.56 99.84 
8 15 3 89.82 91.29 90.69 
12 15 3 89.81 90.66 92.96 
16 16 2 87.69 87.88 87.75 

Mixed 500 20 16 3 90.45 91.05 91.46 
24 10  2 83.00 84.89 86.99 
28 10  3 86.14 90.11 85.11 
32 6 2 78.94 81.34 81.66 
36 6 3 81.28 82.95 83.93 
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