ENHANCING WORKFLOW FAULT TOLERANCE

USING REPLICATION TECHNIQUE
by
XIAOLIANG ZHU

(Under the direction of Krzysztof J. Kochut)

ABSTRACT

ORBWork is a scalable distributed runtime system of the METEOR workflow
management system. This thesis investigates providing fault tolerance through repli-
cation in workflow systems. The passive and active replication models are imple-
mented using Sun Jini technology and applied to ORBWork. Our experiments show
that replication can greatly enhance the fault tolerance of the workflow system.
Especially, the system can tolerate fatal failures including server crashes.

INDEX WORDS: Workflow, Replica, Fault Tolerance, Computer, Reliability,
Availability, Exception, Java, RMI, Jini

ENHANCING WORKFLOW FAULT TOLERANCE

USING REPLICATION TECHNIQUE

by

XIAOLIANG ZHU

B.S., The University of Science and Technology of China, China, 1998

A Thesis Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2002

© 2002
Xiaoliang Zhu
All Rights Reserved

ENHANCING WORKFLOW FAULT TOLERANCE

USING REPLICATION TECHNIQUE

by

XIAOLIANG ZHU

Approved:

Major Professor: Krzysztof J. Kochut

Committee: Amit P. Sheth
Daniel M. Everett

Electronic Version Approved:

Gordhan L. Patel

Dean of the Graduate School
The University of Georgia
August 2002

ACKNOWLEDGEMENTS

I am extremely thankful to my major professor, Dr. Krzysztof Kochut for his invalu-
able guidance and encouragement throughout my entire research and academic years.
I would also like to thank Dr. Amit P. Sheth and Dr. Daniel M. Everett for serving
on my advisory committee, and for their advice and guidance. I also apprepriate Dr.
Robinson for serving on my advisory committee although he could not attend my
final defense due to schedule conflict.

My sincere gratitude is extended to my wonderful and loving parents, who have
been very supportive and encouraging. My friends, including but not limited to,
Lirong Cheng, Albert Fu, Yangrong Ling, Cejun Liu, Guangliang Pan, Feng Sun,
Fugao Wang, Qun Wang, Xuemei Wang, Yunzhou Wu, Hanjin Yan, Jie Zhang,
Weicheng Zhang, Wenduo Zhou, have also been very helpful to me both in life and

in research.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . .« v v v oo e e e i s s s iv

LiST OF FIGURES o i s s s viii

LIST OF TABLES« . o o o o oo ix
CHAPTER

1 INTRODUCTION o o o o i i e st s s s, 1

2 WORKFLOW SYSTEMS . .« v v v v v e i i i i i s s s s s, 4

2.1 INTRODUCTION o v o o et st s 4

2.2 ORBWORK/METEOR ARCHITECTURE 6

2.3 WORKFLOW TRANSPORT PROTOCOL 10

2.4 THE JAvA RMI IMPLEMENTATION OF ORBWORK 11

2.5 METEOR PROCESS DEFINITION 14

2.6 WSFL . . . s 19

2.7 EXCEPTION HANDLING 20

2.8 FAULT TOLERANCE o v v i it i s 22

3 FAULT TOLERANCE IN DISTRIBUTED SYSTEMS « « « 23

3.1 INTRODUCTION o v v v e i st s, 23

3.2 FAILURES IN DISTRIBUTED SYSTEMS 24

3.3 PROVIDING FAULT-TOLERANCE IN DISTRIBUTED SYSTEMS 25

3.4 FAULT TOLERANCE THROUGH REPLICATION 27

3.5 SYSTEM MODEL AND GROUP COMMUNICATION 29
3.6 FAULT-TOLERANT SERVICES 35
3.7 SUMMARY . . .« o v v v et e e e e e e 39
4 INTRODUCING FAULT TOLERANCE TO ORBWORK 40
4.1 INTRODUCTION TO JINI 40
4.2 THE REPLICA PACKAGE 42
4.3 FAuLT TOLERANCE IN ORBWORK 43
4.4 FAULT TOLERANT TRANSITIONS 46
4.5 FAILURE HANDLING« o v v ittt e e 52
5 IMPLEMENTING PASSIVE REPLICATION MODEL 56
5.1 REPLICA OBJECT o v v v i it 57
5.2 REPLICA MANAGER« . oo 59
5.3 REPLICA LOCATOR 64
5.4 DISCUSSIONS v v vttt 67
6 EXPERIMENTS o vt i i i e et e e e e 69
6.1 SETUP OF THE ENACTMENT SYSTEM 69
6.2 SIMPLEFLOW WORKFLOW 70
6.3 REGISTRY SERVER FAILURE 71
6.4 MONITOR SERVER FAILURE 71
6.5 DATA SERVER FAILURE 72
6.6 ORBWORK MANAGER FAILURE. 72
6.7 ORBWORK SERVER AND TASK SCHEDULER FAILURE 74
6.8 WORKLIST SERVER FAILURE 74
6.9 SUMMARY« . v v it e e 76

7 CONCLUSIONS AND FUTURE WORK . . . v v v v v v i i it i i . 77

BIBLIOGRAPHY

Vil

79

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Li1sT OF FIGURES

METEOR Architecture 7
ORBWork System 8
Interaction among ORBWork Components 9
WFTP Architecture 11
Sequence Diagram of Method Call 12
Task Realization Hierarchy 16
The General Architecture of Replication Model 30
Passive (primary-backup) Replication 35
Active Replication 38
Class Diagram of Replicated ORBWork Components 46
Normal execution sequence of SimpleFlow 48
ORBWork Manager Coordination 49
Transition between ORBWork manager and SimpleFlow 50
Transition between SimpleFlow and Start o1
Transition between Start and Process 52
Transition between Process and Stop 53
Transition between Stop and SimpleFlow 54

Viil

2.1

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

LisT oF TABLES

Naming Convention for ORBWorkManager

Convenience Classes in the Replica Package

The initial system configuration
The distribution of task schedulers and managers
The system configuration after a registry server crashes
The system configuration after a monitor crashes
The system configuration after a data server crashes
The system configuration after an ORBWork manager crashes
The distribution of task schedulers after an ORBWork server crashes
The system configuration after an ORBWork server crashes

The system configuration after a worklist server crashes

1X

CHAPTER 1

INTRODUCTION

A workflow is an activity involving the coordinated execution of multiple tasks per-
formed by different processing entities [KS95]. A Workflow Management System
(WFMS) is a set of tools providing support for the necessary services of workflow
creation (which includes process definition), workflow enactment, and administration
and monitoring of workflow processes [SK98|. Typical workflow examples include
billing and loan approval in financial corporations, claim processing in insurance
companies, and patient admittance in a health care organization [SWK97].

The current state-of-the-art in WFMSs is dictated by the commercial market
[SK98|. Today’s business enterprise must deal with global competition, reduce cost,
and rapidly develop new services and products. To address these requirements enter-
prises must constantly reconsider and optimize the way they do business and change
their information systems and applications to support evolving business processes.
Workflow technology facilitates these by providing methodologies and software to
model business process as workflow specifications, reengineer business process to
optimize specified processes, and automatically generate workflow implementations
from workflow specifications [GHS95]. The demand for workflow systems has grown
so rapidly that in just a few years several hundred products have appeared in the
market [AH00, GHS95].

To increase the availability, scalability and reliability, people have turned to dis-
tributed systems to decentralize workflow systems. This decentralization is also jus-

tified by the fact that the information resources of many modern corporations can

1

2

best be characterized as a collection of widely heterogeneous, largely distributed,
and loosely coupled computing environments. Many current trends reinforce this
characterization: the decentralization of the corporation and of decision making,
the emphasis on client-server architectures, the relevance of federated systems, and
the increasing availability of distributed-processing technologies such as the Web,
CORBA, Object Linking and Embedding, Java, Video Conference, to mention a few.
All these trends promote the deployment of large and heterogeneous distributed exe-
cution environments where interrelated tasks can be efficiently executed and closely
monitored [Alo00].

However, despite the overall success in workflow systems, fault-tolerance has been
a challenging issue. Most existing commercial workflow products lack the redundancy
and flexibility to replace failed components [AH00], and have poor performance
in case of failures, such as network partition and host crashes. A single point of
failure can bring the whole system down, and there are no mechanisms for keeping
the system functioning without interruption. Much research has been done in the
area of exception/failure handling [DKM96, Wor97, WSR98, HA98, Koc98, MOK99,
LSKO00]. Most of the research concentrated on introducing the transactional concepts
into workflow management [DKM96, WSR98, MOK99], or applying the combination
of database transaction concepts and exception signal/handler concepts in program-
ming languages to workflow systems [HA98, Koc98]. Another effort is to handle task
exceptions within a more precise context [Wor97, LSK00]. However, the issue of pro-
viding redundancy in workflow systems has not been addressed adequately. The IBM
Exotica project provides high availability through replication [KAG95, MAG95], but
it mainly replicates the underlying databases, instead of workflow components. This
thesis is dedicated to providing redundancy and adding fault tolerance to workflow

systems. In particular, our contributions include:

e Creating a framework for supplying fault tolerance to a workflow system.

e Developing a replication package that is reusable for general replication pur-

poses.
e Implementing fault tolerance as an enhancement to METEOR/ORBWork.

The rest of the thesis is organized as follows. Chapter 2 presents an overview
of WEMS, especially the architecture and implementation of METEOR/ORBWork
in our lab. In Chapter 3, we give background on fault tolerance in distributed sys-
tems, as METEOR/ORBWork is also classified as a distributed system. In Chapter
4, we describe how fault tolerance was provided in our METEOR/ORBWork
system (ORBWorkgr). Chapter 5 gives detailed algorithms implementing replica-
tion models. Chapter 6 contains description of a series of experiments to test the
fault tolerance of the ORBWorkgr. Conclusions and future work are provided in

Chapter 7.

CHAPTER 2

WORKFLOW SYSTEMS

2.1 INTRODUCTION

Every business organization has some procedures which need to be followed to pro-
vide efficiency, consistency and quality in the entire work process. Workflow man-
agement systems are used to coordinate and streamline business processes. However,
there is little agreement as to what workflow is and which features a workflow man-

4

agement system must provide [GHS95]. Under the umbrella of the term “workflow”,
which is often used casually, people may be referring to a business process, specifi-
cation of a process, software that implements and automates a process, or software
that simply supports the coordination and collaboration of people that implement a
process [GHS95]. The variety in workflow definition has leads to poor interoperability
among workflow products. Many efforts have been done to promote interoperability
of workflow management systems. The Workflow Management Coalition (WfMC)
provided a workflow reference model [WMC95]. Aalst et al. addressed systemati-
cally workflow requirements and concluded 26 workflow patterns [ABHO00].

In general, workflow tools represent business processes as workflow processes —
that is, as computerized models of the business process where all aspects necessary
for executing the process are specified. These aspects include defining each individual
step in the process, the order and conditions in which the steps must be executed, the

data flow between steps, identifying who is responsible for each step. These steps are

called tasks. A typical business process is then comprised of multiple cooperating

4

5
tasks. A WFMS can thus be seen as the set of tools used to design and define
workflow processes, the environment in which these processes are executed, and the
corresponding set of interfaces to the users and applications [AHO0]. In other words,
WEFMS provides support in the areas of process definition, workflow enactment,
administration and monitoring of workflow processes [Hol94].

The process model describes the structure of the business process in the real
world. Each business process has different paths that need to be taken based on
different rules. The process model is responsible for describing all the possible paths
in a business process along with the different rules that lead to the different paths
and also details out the necessary actions that need to be performed in each path.
Process instances are created based on the defined process model. Each instance is
a single thread of execution of the process.

Any process consists of a number of steps that contribute toward the completion
of a process. An activity is a logical step or description of such a piece of work. It
could be either a manual process like filling out a form, or an automated task like
updating the records in a database. A workflow is a process consisting of a collection
of activities across time and space. It provides a framework for the integration and
coordination of distributed resources, tasks and individuals.

A task is considered to be the smallest atomic unit of a workflow, representing
some kind of work to be done. Tasks can be categorized as manual, which are per-
formed by a human, or automated, which are done by programs. The execution of
tasks by different processing entities can be controlled by a human coordinator or

can be automated by Workflow Management System (WFMS).

2.2 ORBWORK/METEOR ARCHITECTURE

The METEOR project is an ongoing workflow system in the LSDIS Laboratory of the
University of Georgia. Its objective is to support and enable automated solutions for
enterprise applications. METEOR provides an open system based high-end workflow
management solution along with an enterprise application integration infrastructure
[KSM99]. Tt also provides a very well defined model and language for specifying the
task details in a workflow, compiling the details, and controlling the execution of
workflow processes in a distributed environment. METEOR's architecture comprises
of a collection of services, implemented as separate modules: design and modeling
tools, workflow repository and the enactment system, as shown in Figure 2.1. The
repository service is responsible for maintaining information about workflow def-
initions and associated workflow applications. The workflow designer, a graphical
design tool, communicate with repository service and retrieve, updates, and stores
workflow definitions. It is also capable of browsing the contents of the repository.
The repository service is also available to the enactment service and provides the
necessary information about a workflow application to be started. The enactment
service provides the necessary functionality for running workflow instances, and is
subdivided into scheduling and monitoring. Two different enactment services are pro-
vided by METEOR: ORBWork and WebWork. In this thesis, we only concentrate on
ORBWork. ORBWork has been implemented to support the execution of workflows
in a heterogeneous, autonomous and distributed (HAD) environment. ORBWork
consists of task schedulers, task managers, monitor, ORBWork manager, ORBWork
server, and data servers, as shown in Figure 2.2. Figure 2.3 shows the interaction

among these components [Tri00]. A more detailed description follows.

Design Services

Workflow
Designer

Workflow
Trandator/
Generator

Repository Service

WEBWork
Workflow
Engine

ORBWork
Workflow
Engine

Enactment Service

Figure 2.1: METEOR. Architecture

2.2.1 MONITOR

The monitor is extensively used by other ORBWork components to log all kinds of
event messages. It provides a user interface for the workflow administrator to access

the log information about the workflow system.

2.2.2 WORKFLOW MANAGER

The workflow manager is used to install new workflow processes (schemata), modify
the existing processes, and keep track of the activities of the scheduler. Other ORB-
Work components register themselves with the Workflow manager. It implements a

small subset of the HTTP protocol, and thus implements a light weight local Web

Workflow Scheduler

Figure 2.2: ORBWork System

Server. This enables users and administrators to interact with it. In fact, users always

connect to the ORBWork manager as the first step to access the workflow system.

2.2.3 ORBWORK SCHEDULER

The scheduling information in ORBWork is distributed in a number of schedulers.
One scheduler is created for each activity/task involved in the workflow process.
Thus, ORBWork’s scheduler is composed of a number of small schedulers. The indi-
vidual schedulers are called task schedulers. Task scheduler accesses task specifica-
tions directly from the repository through the HTTP protocol. The task specification
consists of input transitions, output transitions with associated conditions and data

objects sent into and out of the task. Like workflow managers, Task schedulers also

Uses

v
OrbWorkM onitor
OrbWorkManager DataServer
owns
\ w\, ﬁ >
owns] Uses
TaskManager WorkList Task Scheduler
* *
Houses

executes Houses exebutes

- \
Tasks OrbWorkServer Tasks

Uses

Figure 2.3: Interaction among ORBWork Components

implement a small subset of the HT'TP protocol, and thus implement a light weight
local Web Server. This enables an ORBWork administrator to interact with a par-

ticular task scheduler from a common Web browser, and make necessary changes

and modifications to the scheduling information.

2.2.4 TASK MANAGER

The enactment service also contains task managers. Task Managers control the exe-
cution of all non-human tasks. Based on the task type, as a workflow instance pro-
gresses through its execution, individual task schedulers create appropriate task

managers to oversee the execution of associated tasks, unless the task (human task)

has been designed to have a worklist.

10

2.2.5 DATA SERVER

The data server houses the data objects necessary for the execution of any workflow
instance. The data objects are dynamically created and made available to the suc-
cessor tasks. Instead of passing the whole data object, only a reference to it is sent
to the task scheduler needing it. When the task scheduler is ready to run the task,

it accesses the necessary data object and extracts the relevant attribute values.

2.2.6 ORBWORK SERVER

The ORBWork server houses the various task schedulers. As this is a distributed
system, there can exist many ORBWork servers residing on different hosts. Each of

the servers is designed to hold and control a number of task schedulers.

2.2.7 WORKLIST

All the human task instances in the workflow reside on the worklist. The worklist
is a lightweight HT'TP Server and provides a well-constrained subset of the HT'TP
protocol. This allows the end users to interact directly with all the human tasks of
a particular workflow instance that resides in the worklist through a common web

browser.

2.3 WORKFLOW TRANSPORT PROTOCOL

To facilitate the interaction among ORBWork components, Workflow Transport Pro-
tocol (WFTP) has been developed so that users and clients do not have to concern
the implementation details when they use ORBWork services. WFTP also provides
interfaces to interoperate with other workflow enactment services. WFTP interfaces
give developers great flexibility to change and improve the internal implementation

without affecting clients’ code. In this thesis, the WFTP framework also facilitates

11

the implementation of fault tolerance. The WFTP architecture is shown in Figure

2.4.

Component 1 Component 2
Client Application Client Application
WFTP WFTP
RMI RMI
TCP/IP TCP/IP
< >

Figure 2.4: Architecture of the System. Each component implements a WFTP inter-
face

With such an architecture, the method calls are handled as in Figure 2.5. As we
can see, clients only need to interact with WEFTP interfaces. The implementation of
WETP then invokes the corresponding RMI implementation which in turn delegates
to the actual object. The WFTP interfaces act as the front ends for ORBWork
services. Notice that the RMI here refers to general remote method invocation, not

necessarily Java RMI.

2.4 THE JAvA RMI IMPLEMENTATION OF ORBWORK

ORBWork has been implemented using Java RMI technology [Tri00]. Here we will

have a brief overview of this implementation.

Client

WFTP Interface

Remote Interface

Service Implementation

| Service Method

Client Side

Service Method

Through RMI

Service Method

»

Server Side

Figure 2.5: Sequence Diagram of Method Call

2.4.1 INTRODUCTION TO JavA RMI

12

The Java RMI [RMI] architecture is based on the separability between interface

and implementation. RMI allows the code that defines an interface to be separated

from the one that implements that interface and run on a separate JVM. Java

RMI works in a similar fashion as CORBA in that it supplies a transport layer

to handle the details of data transmission (marshaling and unmarshaling), encoding

and call protocols. The server object implements functions and makes them available

to clients through its interface. The server object must be exported via a server

application. Clients obtain a reference to the server object, either by looking up

the object by name with a registry if the server object has been registered, or by

receiving the reference as an argument or a return value. The reference is not the

13

ORBWorkManagerIf A remote interface
RMIORBWorkManagerImpl A server class implementing the remote interface
ORBWorkMgrServer A server program that creates server objects

and binds them to the registry

WFTP_ORBWorkManagerIf

The interface to the clients

WFTP_ORBWorkManagerImpl

A class implementing WEFTP interface,
the client to the remote class

RMIORBWorkMgrImpl_Stub

A stub class that is automatically
generated by the rmic program

RMIORBWorkMgrImpl_Skel

A skeleton class that is automatically
generated by the rmic program

Table 2.1: Naming Convention for ORBWorkManager

actual server object, but a proxy or stub to the actual server object. Clients invoke

the proxy object which delegates the invocation to the actual server object.

The RMI registry is a naming service that maps names to registered remote

objects. A server binds its remote object with a name in the registry, and a client

can then get a reference to the remote object by looking up the service name in the

registry. The registry needs to be started before any objects are bound to it. And

for security reason, a server can only bind its remote object in a registry on a local

host, although it can do a lookup upon registries on any host. We will see later in

this thesis that this requirement no longer exists in Jini.

2.4.2 IMPLEMENTATION

A set of classes come into play in the RMI implementation. It is important to follow

a standard naming convention to make the implementation easier to understand.

Table 2.1 gives the naming convention we have used for the Manager component.

All the other components follow the similar naming convention [Tri00].

14

Below are some main issues when defining and implementing the remote inter-

faces.

e The interface must be declared public.

The interface must extend java.rmi.Remote interface.

Each method in the remote interface must declare java.rmi.RemoteException

in its throws clause.

The implementation must implement a remote interface that extends

java.rmi.Remote.

It should either extend java.rmi.server.UnicastRemoteObject class, or explic-

itly export itself.

The server application is used to create and make the remote object accessible to
clients by registering it with local RMI registry. The class WFTP_ORBWorkManager-
Impl is the client to RMIORBWorkManagerImpl. It obtains a reference to the remote
server objects by looking up the RMI registry, then delegates the method call that
it receives to this reference object. All other components’ implementations follow

this pattern.

2.5 METEOR PROCESS DEFINITION

The latest METEOR specification — Model 3 [Koc98| has incorporated many latest
developments in workflow technology. In METEOR Model 3, a workflow design

consists of three sub-designs:

1. Data: data include components of workflow instance data shipped among tasks,
including portions of the overall data and some additional information, e.g.,

used for scheduling purposes.

15

2. Tasks (with or without associated maps): a task can be regarded as a unit of
work, which is performed by a variety of processing entities, such as a computer
program, a database transaction, or a network of interconnected tasks called

a workflow, depending on the nature of the task.

3. Exception: an exception represents an occurrence of some abnormal event,
and that can be detected by the underlying workflow management system.
An exception is system-specific, known as system exception, if it may occur
during the execution of every workflow, or is application-specific, known as

application exception, if it is restricted to specific workflow applications.

An analogy exists between a programming language procedure and a workflow
task. Like procedures, workflow tasks may have input/output parameters, used to
transfer data in/out of the workflow task, or possibly the whole workflow. Like proce-
dure call, a task may be invoked. A task invocation creates a task instance, involving
specifying required and/or optional parameters. A task with multiple invocations is

analogous to an overloaded procedures.

2.5.1 TASK REALIZATIONS

A task may be realized by a computer program, by a human, or by workflow (net-
work) of other tasks. Task realizations form a hierarchy, as shown in Figure 2.6.
A task may be realized as non-transactional, transactional, or workflow. A human
realization is a special case of a non-transactional realization, which is performed
by a person. A composite realization is a special case of a workflow realization in
which all of the human tasks are performed from the same terminal screen (most
likely by the same person). An Open 2PC realization is a special case of a transac-
tional realization where the participating transactional tasks follow the Open 2PC

protocol.

16

Realization

Non-transactional Workflow Transactional

F N F 8 F 8

Human Composite Open 2PC

Figure 2.6: Task Realization Hierarchy

2.5.2 DESIGNING WORKFLOW NETWORKS

A network represents the core of the workflow activity specification. It is a collection
of tasks and transitions representing a sub-workflow. A transition joins two tasks
and represents a transfer of activity in the workflow from the source task to the
destination task. Precisely, the transition joins one of the final states in the source
task with the initial state of the destination task.

A task may play a role of the source task in any number of transitions. Similarly,
a task may be a destination task for a number of transitions. All of the transitions
for which a task is the destination task are called the input transitions for that
task. Likewise, all of the transitions for which a task is the source task are called its

output transitions. All of the output transitions are further subdivided into success

17
transitions (if the task enters its Done or Commit state) and failure transitions (if

the task enters its Fail or Abort state).

2.5.3 RouTING

A transition may have an associated Boolean condition. The condition serves as a
guard of the transition, i.e. the transition may be activated only if the condition is
true. A path from task T; to task T; is a list of transitions leading from T; to T},
possibly via a number of intermediate tasks. A cycle is a path from task T to itself.

A group of input transitions is called AND-join if all of the participating tran-
sitions must be activated for the task to be enabled for realization. An AND-join is
called enabled if all of its transitions have been activated. The number of transitions
in an AND-join is called its fan-in number. An AND-join with a fan-in of N is said
to absorb N parallel paths.

A group of transitions is said to have a common source if they have the same
source task and all lead either from its success state, or its fail state with the same
thrown exception. A group of common source transitions may form AND-split, OR-
split, loop, or fork.

A group of common source transitions is called an AND-split if each of the
transitions in the group has the condition set to true. It means that all of the
transitions in the group are activated, once the task completes.

A group of common source transitions is called an OR-split (selection) is an
ordered list of transitions where all but the last transition may have arbitrary con-
ditions. The last transition on the list has the condition set to true. The selection of
the transition to activate is done in the following way. If the condition of the first
transition on the list evaluates to true, it is activated. If not, the second transition’s

condition is evaluated, and so on. Finally, if all of the conditions evaluate to false,

18
the last transition will be used, since its condition is always true. Transitions are
attempted in the same order as they appear on the list.

A loop is a special case of an OR-split, where the list is composed of exactly two
transitions. Structural constraint of a loop requires that all of the paths beginning
with one of the transitions and none of the paths beginning with the other transition
cycle back to the source task. Note that if a loop has both transitions set to true,
the second transition is useless. Such a loop is infinite.

A fork is an ordered list of common source transitions in which the first transition
has the condition set to true, and the remaining transitions may have arbitrary con-
ditions. The semantics of a fork is as follows. Once the source task completes, every
transition in fork for which the condition evaluates to true is activated. Transitions

are attempted in the same order as they appear on the list.

2.5.4 EXCEPTION HANDLERS

An exception handler is a description of action(s) that the workflow enactment
system, or possibly a workflow application, is going to perform in order to respond
the exception. The most typical form of an exception handler is a failure transition
— a transition in a network that leads from a failure state of some task.

It is possible that an abnormal event cannot be detected by any of the components
of the workflow system. For example, a currently running workflow instance is in
violation of a newly introduced business policy. It might be the case that the instance
should fail the next task and continue its execution following one of its alternate
paths. However, at this time neither the workflow application nor the workflow
runtime system is not aware of the abnormal event. Such an abnormal even is called
an external fault. An exception signal may be sent to the workflow system in order to
make an external fault known to the workflow (either the runtime or the application).

The signal may be sent by an external entity, such as a workflow administrator, or

19
a separate program. The workflow administrator may decide to force a particular
workflow instance to fail one of its currently running tasks, and send a suitable
exception to the task manager. Similarly, a process monitoring database updates
may trigger sending an exception signal to the workflow manager. The workflow
system receives the exception signal and continues its operation as if the exception

was detected by the workflow itself.

2.6 WSFL

With the development of the Internet business, many business services are now avail-
able through the Web as Web Services. The Web Services Flow Language (WSFL)
[Ley01] has been proposed by IBM to take advantage of existing web services to build
inter-enterprise workflow systems. WSFL is an XML language for the description of
Web Services compositions as part of a business process definition. It considers two

types of Web Services compositions:

e The first type specifies the appropriate usage pattern of a collection of Web
Services, and the result is typically a description of an executable business pro-
cess known as a Flow Model. This model can be used to build intra-enterprise

business systems.

e The second type specifies the interaction pattern of a collection of Web Ser-
vices, and the result is a description of the overall partner interactions known
as a Global Model. This model is used to build inter-enterprise workflow sys-

tems.

Full description of WSFL can be found in [Ley01].
WSFL is similar to METEOR process specification, and could be used as external

process representation for METEOR if needed.

20

2.7 EXCEPTION HANDLING

Errors are a natural occurrence in any software system and WFMSs are no excep-
tions. The cause of errors in WFMSs are various, such as server crashing, task sched-
uler crashing, and network connection failures. In this chapter, we use exception,
fault and error interchangeably. The usual failure-handling strategy in most sys-
tems is to stop execution and report the failure to the administrator. However, in
large-scale complex workflow systems, this is not feasible due to its high demand of
human resource and slow response time.

One attempt to achieve fault tolerance is to apply database transaction concept to
workflow systems. Wheater et al. implemented the workflow execution environment
as a transitional workflow system that enables sets of inter-related tasks to be carried
out and supervised in a dependable manner [WSR98]. Their system servers as an
example of the use of middleware technologies to provide a fault-tolerant execution
environment for long running distributed applications. Muhlberger et al. found that
backward recovery from the classical and advanced transaction management domains
is applicable to workflow management, and that providing business level backward
recovery is possible in the workflow domain [MOK99]. The transactional concepts
are also used for error detection and recovery [DKMO96] in the METEOR project
[KS95] of our lab discussed in the next chapter. In METEOR, workflow exceptions
are classified as infrastructure errors, workflow system errors, application and user
errors. Unlike most WFMSs that treat task errors as internal within that task and
cannot react based on the type of error that might have been returned by a task (e.g.,
errors resulting from incorrect input formats, logical errors at the task level, etc.),
in METEOR, task errors are modeled and specified at the WFMS level. The error
handling mechanism is based on a hierarchical error model. This makes it possible to

detect and handle critical errors on the per-error basis. Therefore, errors are detected

21
and masked as close to the point of occurrence to prevent their propagation to other
components. With this error model, task errors can be predefined by designers at
build-time and handled at run-time [Wor97].

A recent approach aims at combining database transaction concepts and
programming-language ideas into a coherent paradigm for fault-tolerant work-
flows [HA98|. This concept is based on enhancing the workflow model with new
concepts such as atomic sphere in advanced transaction model, exception signals
and exception handlers in programming languages [Alo00]. Atomic spheres are sets
of activities that must either execute completely or not at all. It allows workflow
designers to model processes as nestings of spheres, each of which can be separately
undone if an error occurs during its execution, thus effectively limiting a failure’s
impact to the scope of that sphere. The concept of exception signals and handlers
are borrowed from general programming languages like C++ and Java. It makes the
workflow model more robust and comprehensible by separating normal control flow
from the failure-handling logic. When an exception occurs in a sphere, the WFEMS
passes control to the appropriate handler, which executes the tasks necessary to
repair the failure — it could abort the sphere, resume execution, or propagate the
exception to the enclosing sphere [Alo00]. This approach is very similar to METEOR
Model 3 discussed in section 2.5.

Defeasible workflow has also been proposed as a framework to support exception
handling [LLSKO00], which gives directions to build exception-aware workflow sys-
tems. Defeasible workflow uses context dependent reasoning, together with a case-
based-reasoning (CBR) mechanism with integrated human involvement, to enhance
the exception handling capability of workflow management systems. This approach

involves reusing the experience captured in prior exception handling cases.

22

2.8 FAULT TOLERANCE

Although many research have been done in the area of exception handling, the redun-
dancy issue has not been addressed adequately. As in other distributed systems, an
important approach to handle exceptions is replication/redundancy. There are some
faults that cannot be handled unless the system is redundant. For example, in case
of server crash, the exception handler on that server is no longer available. For those
critical components, such as a frequently accessed database, redundancy is indispens-
able to achieve reliability, otherwise, a single point of failure from these components
could bring the whole system down. Unfortunately, this is a common characteristic of
current WFMSs. Most systems lack the redundancy necessary to replace failed com-
ponents without interrupting ongoing work. This thesis will exploit fault tolerance
using replication, provide an implementation, and show how the overall availability
of the workflow system is enhanced. In particular, this thesis will contribute in the

following aspects.
e Present a framework for supplying fault tolerance to a workflow system.
e Develop a replication package that is reusable for general replication purposes.
e Implement fault tolerance as an enhancement to METEOR/ORBWork.

ORBWork uses a fully distributed scheduler and thus, introducing fault toler-
ance to this system requires investigation of fault tolerance techniques in distributed

systems.

CHAPTER 3

FAULT TOLERANCE IN DISTRIBUTED SYSTEMS

3.1 INTRODUCTION

Modern workflow products have evolved into complex distributed systems to achieve
reliability, scalability, and support for heterogeneity. In this chapter, we will present
a brief overview of general distributed systems, and then investigate extensively
fault tolerance in distributed systems, as the necessary background to the following
chapters.

A distributed system is one in which components located at networked com-
puters communicate and coordinate their actions only by passing messages [CDKO1].
Distributed systems are everywhere nowadays. A group of computers that share a
high quality laser printer in a lab form a distributed system, where each computer
can communicate with the printer to print files. Actually, sharing resource such as
printers or files is a big motivation for constructing distributed systems. The imple-
mentation of the Google search engine is another good example of a distributed
system, where many component search engines cooperate to perform searches and
later put their results together. Distributed systems are used to accommodate het-
erogeneity, provide scalability, achieve fault-tolerance and high availability. A dis-
tributed system should allow heterogeneous hardware and software coexist; if neces-
sary, the system should be able to expand or shrink in number of components; and

its services should be correct and highly available.

23

24

Our definition of distributed systems leads to the following characteristics of dis-
tributed systems: concurrency of components, and independent failures of compo-
nents [CDKO1]. Concurrency is an intrinsic property of distributed systems. Concur-
rency control is also an important issue when more than one process tries to update
the same data at the same time. Independent failures result from the independence of
components. One component may crash while others continue to function properly.

We will take a closer look at failures in distributed systems, next.

3.2 FAILURES IN DISTRIBUTED SYSTEMS

All computer systems can fail, and we can do little to prevent failures from occurring
entirely. System designers should plan for the consequences and appropriate handling
of possible failures. Distributed systems can fail in many ways. Individual compo-
nent failures, poor network connections, disconnected networks, etc., all contribute
to system failures. Faults in the network result in the isolation of the computers
that are connected to it, but that does not mean that they stop running. In fact
the programs on them may not be able to detect whether the network has failed or
has becomes unusually slow. Similarly, the failure of a computer, or the unexpected
termination of a program somewhere in the system (a crash) is not immediately
apparent to the other components with which it communicates. Therefore, the han-
dling of failures is particularly difficult in distributed systems, in that the failures in
a distributed system are most commonly partial —that is, some components fail while
others continue to function [CDKO01]. For example, in the sharing printer example,
the printer may fail while all computers works properly. A user may not be able to
visit the website outside a LAN due to the crash of the gateway that connects the

LAN with the Internet, although he may still visit any website inside the LAN.

25

3.3 PROVIDING FAULT-TOLERANCE IN DISTRIBUTED SYSTEMS

Any process, computer or network may fail independently. Therefore each component
needs to be aware of the possible ways in which its related components may fail and
be designed to deal with each of these failures appropriately [CDKO01]. Some failures
are detectable, for example, checksums can be used to detect corrupted data in a
messages or a file. In most cases, however, failures are not so obvious, and appropriate
actions must be taken to handle them. Commonly used techniques for dealing with

failures are:

o Masking failures: some failures can be masked and made less severe. Consider

the following two examples:

1. Email messages are re-sent when the deliveries fail.

2. A web browser may simply ignore some unknown or wrong commands in

HTML files.

e recovery from failures: Recovery involves the design of software so that the
state of permanent data updated can be recovered or ‘rolled back’ after a
server had crashed. In general, the computation performed by some programs
will be incomplete when a fault occurs, and the permanent data that they
update (files and other material stored in permanent storage) may not be in
a consistent state [CDKO1]. As an example, in scientific computation, long
running programs usually write checkpoints periodically so that they can start
from the last checkpoint before crash when they are restarted. This technique
is also commonly used in database management where transactions should be

either completely done or not done at all.

26
o Tolerating Failures Using Redundancy: services can tolerate failures if compo-
nents are replicated and a sufficient right algorithm is in place. Consider the

following examples:

1. Yahoo! email services are replicated at multiple servers so that any single

server failure will not bring down the whole system.

2. In the Domain Name System, every name table is replicated in at least

two different servers.

3. A lab may have more than one printer accessible so that users may try

others if the default one crashes.

However, replication also introduces new challenges to the distributed system
design. Replicas need synchronization to stay within a certain degree of consis-
tency, which requires frequent communication for updating replica status and
detecting peer failures, which in turn increases network overhead and response
time. In case of replicating rapidly changing data, the overhead will decrease
the performance a lot just to keep each replica up-to-date. Fault tolerance usu-
ally comes with high availability, since it involves providing services in spite of

failures. Replication is an effective way to provide high availability.

Replication is a key to providing high availability and fault tolerance in distributed
systems. High availability is of increasing interest with the tendency towards mobile
computing and, consequently, disconnected operations. Fault tolerance is an abiding
concern for services provided in safety-critical and other important systems [CDKO1].

The rest of this chapter will concentrate on fault tolerance through replication.

27

3.4 FAULT TOLERANCE THROUGH REPLICATION

We will study the replication of data: the maintenance of copies of data at multiple
computers. Replication is a technique for enhancing services. It is a key to the
effectiveness of distributed systems in that it can provide enhanced performance

and fault tolerance [CDKO01].

e Performance enhancement: The replication of Yahoo! email servers reduces
the workload of each individual server by letting each replica server handle a
subset of user requests, and, as a result, user waiting times for response are
reduced. We cannot imagine that a single email server could handle millions
of requests per second and still have a reasonable response time. Replication
of immutable data is trivial: it increases performance with little cost to the
system. Replication of changing data, such as that of the Web, incurs overheads
in the form of protocols designed to ensure that clients receive up-to-date data.
Thus, there are limits to the effectiveness of replication as a performance-

enhancement technique [CDKO1].
o Fault tolerance: Fault tolerance includes two facets:

1. The first facet is availability despite failures. Also known as high avail-
ability. Services should be highly available. That is, the proportion of time
for which the service is accessible with reasonable response times should
be close to 100%. Replication is a technique for automatically maintaining
the availability of data despite server failures. If data are replicated at
two or more failure-independent servers, then client software may be able
to access data at an alternative server, should the default server fail or
become unreachable. That is, the percentage of time during which the ser-

vice is available can be enhanced by replicating server data. If each of n

28
servers has an independent probability p of failing or becoming unreach-
able, then the availability of an object stored at each of these servers

is:
1 — probability(all servers failed or unreachable) =1—p"

For example, if there is a 10% probability of any individual server failure
over a given time period and if there are two servers, then the availability
is

1-0.10°=1-0.01 = 99%
which is a big improvement from the individual availability of 90%.

. The other facet is providing correct results despite certain misbehaviors.
Providing high availability of data may imply decreasing of the correct-
ness of the data. The data may be out of date, as for example, an airline
agent working offline may make reservations for seats that are already
occupied and thus, the reservations must be reconciled when the agent
gets back to online. A fault-tolerant service, by contrast, always guaran-
tees strictly correct behavior despite a certain number and type of faults.
The same basic techniques used for high availability — of replicating data
and functionality across computer hosts — are also applicable to achieve
fault tolerance. If up to NV of N 41 servers crash, then in principle at least
one remains to supply the service. And if up to IV servers exhibit arbitrary
or Byzantine failures — providing incorrect answers, even on purpose, then
in principle a group of 2N + 1 servers can provide a correct service, by
having the correct servers outvote the failed servers (who may supplies
spurious values) [LSP82]. But fault tolerance is subtler than this simple
description makes it seem. The system must manage the coordination of

its components precisely to maintain the correctness guarantees in the

29
face of failures, which may occur at any time. In this thesis, we should

assume that no byzantine failures occur.

A common requirement when data are replicated is for replication transparency. That
is, from the clients’ point of view, there should be only a single copy of logical data,
despite the fact that there actually exist multiple physical copies of data. Clients
only need to identify one item when they request an operation to be performed. And
clients also expect operations to return only one set of values [CDKO01].

The other general requirement for replicated data — one that can vary in strength
between applications — is that of consistency. This concerns whether the operations
performed upon a collection of replicated objects produce results that meet the
specification of correctness for those objects [CDKO01]. Section 3.5 presents a general
architecture for managing replicated data and it introduces group communication
as an important tool. Group communication is particularly useful for achieving fault

tolerance, which is the subject of Section 3.6.

3.5 SYSTEM MODEL AND GROUP COMMUNICATION

The data in our system consist of a collection of items that we call shared objects.
An ‘object’ could be a file, a Java object, or some other data. Each such logical
object is implemented by a collection of physical copies, called replicas. The replicas
are physical objects, each stored at a single computer, with data and behavior that
are tied to some degree of consistency by the system’s operation. The ‘replicas’ of
a given object are not necessarily identical, at least not at any particular point in
time. Some replicas may have received updates that others have not received. In this
section, we provide a general system model for managing replicas. In this model,

replicas are viewed as a group representing a single logical object and each replica

30

plays a role in the group. Then we describe group communication systems, which

are particularly useful for achieving fault tolerance through replication.

3.5.1 SYSTEM MODEL

We make the following assumptions about the system:

1. The system is asynchronous, and processes may fail only by crashing, i.e., there

are no byzantine failures.

2. Operations that a replica manager applies to its replica are recoverable, and
deterministic. This allows us to assume that an operation at a replica manager
does not leave any inconsistent results if it fails part-way through, and every

replica reaches the same state after the same sequence of operations.

Front End Replica Manager

A
A

Replica Manager

A
A

Front End Replica Manager

service

Figure 3.1: The General Architecture of Replication Model

We describe architectural components by their roles and do not mean to imply
that they are necessarily implemented by distinct processes (or hardware). The

model involves replicas held by distinct replica managers (see Figure 3.1), which

31
are components that contain replicas on a given computer and perform operations
upon them directly.

The architecture is open in that replica managers may join or leave the system
at any time. This is a imitation of real system where replica managers may crash
and leave the system, and they may be restarted and join the system again.

The general model of replica management is shown in Figure 3.1. A collection of
replica managers provide service to clients. The clients see a service that gives them
access to objects (for example, diaries or bank account), which in fact are replicated
at the managers. Each client requests a series of operations — invocations upon one
or more of the objects. An operation involves a combination of reads of objects
and updates to objects. Requested operations that involve no updates are called
read-only requests; requested operations that update an object are called update
operations (these may also involve reads) [CDKO01].

Requests from clients are first handled by a component called the front end. The
role of the front end is to communicate by message passing with one or more of
the replica managers, rather than forcing the client to do this itself explicitly. It
is the vehicle for making replication transparent [CDKO1]. The front end may be
implemented on the client side or on the server side.

In general, five phases are involved in the performance of a single request upon
the replicated objects [WPS00]. Depending on the specific system, the actions in each
phase vary. For example, a service that provides high availability behaves differently

from one that provides a byzantine-fault-tolerant service. The phases are as follows:

e The front end issues the request to one or more replica managers. The front end
can communicate with a single replica manager, which in turn communicates
with other replica managers, or it can multicast the request to all the replica

managers.

32

e Coordination: The replica managers coordinate in preparation for executing
the request consistently. They agree, if necessary at this stage, on whether the
request is to be applied (it might not be applied at all if a failure occurs at
this stage or it is a duplicated request that has been performed). They also
decide on the ordering of this request relative to others. Possible orders are as

follows:

— FIFO ordering: if the front end issues request r then request r’, then any

correct replica manager that handles r’ handles r before it.

— Causal ordering: if the issuing of request r happened-before the issuing
of request r’, then any correct replica manager that handles r’ handles r

before it.

— Total ordering: if a correct replica manager handles r before request r’,

then any correct replica manager that handles v’ handles r before it.
Most applications require FIFO ordering.

e Fzecution: The replica managers execute the request, ideally, in such a way

that they can undo its effects later if failures occur.

o Agreement: The replica managers reach consensus on the effect of the request
— if any — that will be committed. For example, in a transactional system, the
replica managers may collectively agree to abort or commit the transaction at

this stage.

e Response: One or more replica managers respond to the front end. In some sys-
tems, one replica manager sends the response. In others, the front end receives
responses from a collection of replica managers and it selects or synthesizes a

single response to pass back to the client. For example, it could pass back the

33
first response to arrive, if high availability is the goal. If tolerance of byzantine
failures is the goal, then the front end could give the client the response that

a majority of the replica managers provides [CDKO01].

3.5.2 GrourP COMMUNICATION

Group communication is a powerful concept for managing replicated data. It is an
application of Object-Oriented Paradigm: replicas are encapsulated within a group
that provides an interface to manipulate these replicas. In a group that manages
replicated data, for example, users may add or withdraw a replica manager, or a
replica manager may crash and thus, need to be withdrawn from the system’s oper-
ation. A full implementation of group communication incorporates a group member-
ship service to manage the dynamic membership of groups [CDKO01]. Three impor-

tant tasks of group membership services are as follows:

e Providing an interface for group membership changes: the membership ser-
vice provides operations to create and destroy process groups and to add or
withdraw a process to or from a group. In most systems, a single process may

belong to several groups at the same time.

e Implementing a failure detector: the service incorporates a failure detector.
The service monitors the group members not only in case they should crash
but also in case they should become unreachable because of a communication
failure. The detector marks processes as Suspected or Unsuspected. The service
uses the failure detector to reach a decision about the group’s membership: it
excludes a process from membership if it is suspected to have failed or to have

become unreachable.

e Notifying members of group membership changes: the service notifies the

group’s members when a process is added, or when a process is excluded.

34
Systems that can adapt without service interruption as processes join, leave and
crash — fault-tolerant systems, in particular — require the more advanced feature
detection and notification of membership changes. A full group membership service
maintains group views, which are lists of the current group members, identified by
their unique process identifiers. A new group view is generated when processes are
added or excluded.

It is important that a group membership service may exclude a process from a
group because it is suspected, even though it may not have crashed. A communica-
tion failure may have made the process unreachable, while it continues to execute
normally. A membership service is always free to exclude such a process. A false sus-
picion of a process and the consequent exclusion of the process from the group may
reduce the group’s effectiveness. The group has to manage without the extra reli-
ability or performance that the withdrawn process could have potentially provided
[CDKO1].

Although this is not its main goal, the Sun Microsystems’ Jini system [Jini] pro-
vides a good facility to implement group communication, fulfilling all three require-

ments above:

1. Leased registration interface: with this interface, replica managers register join
a group by registering their replicas with a registry for a certain period of time,
and renew the registration if it wants to stay in the group. By cancelling or

not renewing its registration, a replica manager leaves the group.

2. Failure Detection: if a replica manager fails to renew its registration, it is

assumed to fail and is removed from the registry, thus excluded from the group.

3. Notifying Membership Changes: if a replica manager registers its interest in

membership changes, it will be notified when a process is added or excluded.

35

3.6 FAULT-TOLERANT SERVICES

In this section, we examine how to provide a service that is correct despite up to
N process failures, by replicating data and functionality at replica managers. For
the sake of simplicity, we assume that communication remains reliable and that no
network partitions occur. Each replica manager is assumed to behave according to a
specification of the semantics of the objects it manages, when they have not crashed.

In other words, no byzantine failures occur.

3.6.1 PASSIVE (PRIMARY-BACKUP) REPLICATION

Front End

Front End

Figure 3.2: Passive (primary-backup) Replication

In the passive or primary-backup model of replication for fault tolerance, at
any one time there is a single primary replica manager and one or more secondary
replica managers — ‘backups’ or ‘slaves’. In the pure form of the model, front ends
communicate only with the primary replica manager to obtain the service, as shown

in Figure 3.2. The primary replica manager executes the operations and sends copies

36
of the updated data to the backups. If the primary fails, one of the backups is
promoted to act as the primary [CDKO01].

The sequence of events when a client requests an operation to be performed is

as follows:

1. Request: the front end issues the request, containing a unique identifier, to the

primary replica manager.

2. Coordination: the primary takes each atomic request, in the order in which it
was received. It checks the unique identifier, in case it has already executed

the request and if so it simply re-sends the response.

3. Ezecution: the primary executes the request, logs the updates if any, and stores

the response.

4. Agreement: if the request is an update then the primary sends the updated
state, the response and the unique identifier to all the backups. Each backup

sends an acknowledgement.

5. Response: the primary responds to the front end, which sends the response

back to the client.

This system obviously implements linearizability if the primary is correct, since
the primary sequences all the operations upon the shared objects. If the primary
fails, then the system retains the linearizability if a single backup becomes the new
primary and if the new system configuration takes over exactly where the last left

off [CDKO1]:

e the primary is replaced by a unique backup (if two clients began using two

backups, then the system could perform incorrectly); and

37
e the replica managers that survive agree on which operations had been per-

formed at the point when the replacement primary takes over.

Consider a front end that has not received a response. The front end retransmits
the request to whichever backup takes over as the primary. The primary may have
crashed at any point during the operation. If it crashed before the agreement state 4,
then the surviving replica managers cannot have processed the request. If it crashed
during the agreement stage, then they may have processed the request. If it crashed
after that stage, then they have definitely processed it. But the new primary does not
have to know what stage the old primary was in when it crashed since it has already
received all the updates. When it receives a request, it proceeds from stage 2 above.
No consultation with the backups is necessary, because they have all processed the
same set of messages.

Discussion of passive replication

To survive up to N process crashes, a passive replication system requires N + 1
replica managers (such a system cannot tolerate byzantine failures). The front end
requires little functionality to achieve fault tolerance. It needs to be able to look up
the new primary when the current primary does not respond.

Passive replication has the disadvantage of suffering from a relatively large over-
head because much effort has to be done to maintain a single valid primary replica.
The primary replica must be closely monitored so that it can be replaced quickly in

case of failures.

3.6.2 ACTIVE REPLICATION

In the active model of replication for fault tolerance, the replica managers are state
machines that play equivalent roles and are organized as a group. Front ends mul-

ticast their requests to the group of replica managers and all the replica managers

Replica Manager

End

Front [*

e

Front
End

Replica Manager

7
N

Figure 3.3: Active Replication

38

process the request independently but identically and reply, as shown in Figure 3.3.

If any replica manager crashes, then there is no impact upon the performance of

the service, since the remaining replica managers continue to respond in the normal

way. We shall see that the active replication can tolerate byzantine failures, because

the front end can collect and compare the replies it receives [CDKO01].

Under active replication, the sequence of events when a client requests an oper-

ation to be performed is as follows:

1. Request: the front end attaches a unique identifier to the request and multicasts

it to the group of replica managers, using a totally ordered, reliable multicast

primitive. It is assumed that the worst failure of the front end is its crash. It

does not issue next request until it has received a response.

3.7

39

Coordination: the group communication system delivers the request to every

correct replica manager in the same (total) order.

Execution: every replica manager executes the request. Since they are state
machines and since requests are delivered in the same total order, correct
replica managers all process the request identically. The response contains the

client’s unique request identifier.

Agreement: no agreement phase is needed, because of the multicast delivery

semantics.

Response: each replica manager sends its response to the front end. The number
of replies that the front end collects depends upon the failure assumptions and
on the multicast algorithm. If, for example, the goal is to tolerate only crash
failures and the multicast satisfies uniform agreement and ordering properties,
then the front end passes the first response to arrive back to the client and
discards the rest (it can distinguish these from responses to other requests by

examining the identifier in the response).

SUMMARY

In this chapter, we first investigated distributed systems and their fault tolerance

in general. Then we focused on the replication technique in depth, and introduced

the general model and two special models: passive and active replication models.

We will see how these techniques are used to supply fault tolerance to our workflow

system in the rest of the thesis.

CHAPTER 4

INTRODUCING FAULT TOLERANCE TO ORBWORK

In section 3.4 we have investigated in depth the replication techniques in distributed
systems. Also, we have discussed Workflow Management Systems(WFMSs) and, the
ORBWork system in particular. In this chapter, we are going to combine all these
together by applying the replication models to the ORBWork system to achieve
fault tolerance. We will begin with an introduction to Jini, the core implementation

technology we used.

4.1 INTRODUCTION TO JINI

Jini is the name for a distributed computing environment that can offer “network
plug and play”. In a Jini system, there are three main components: a service, such
as a printer, a client, which would like to make use of this service, and a lookup
registry (service locator) which acts as a locator between services and clients [New00].
Obviously, they have to be connected by a network so they can interact with each
other. The service can announce its presence by registering with the lookup. And the
client can locate the service by looking up the service name in the lookup registry.
The Jini architecture suits for any network where some degree of change is desired.

Jini is distinguished by being based on Java, and usually implemented on top
of Java RMI, although this is not specified in Jini architecture. Unlike Java RMI,
Jini lookup registry accepts registrations from all over the network. It also supports

more advanced searches. Clients can use templates to locate the desired services. The

40

41
search result could be a single service, or a set of services, depending the specification
in the template supplied by the client. This is especially useful for replication, where
all replicas register with the same group name, but they may also specify different
values for some attributes, such as whether or not they are the primary replica. Like

in Java RMI, proxy code will be moved around between the three players.

4.1.1 SERVICE REGISTRATION

The server needs to register the service with the lookup service. It must first find a
lookup service. This can be done in two ways: if the location of the lookup service
is known, then the server can use Unicast TCP to connect directly to it. If the
location is unknown, the server will make UDP multicast requests to the default
port 4160, and lookup services will respond to these requests by sending back to
the server a proxy object known as a registrar. The server then uses the registrar to
upload /register all the information necessary for the service, including the service
name and its proxy object.

A server application will internally perform the following steps [New00)]

prepare for discovery

discover a lookup service

create information about a service
export a service

renew leasing periodically

4.1.2 CLIENT LOOKUP

The client goes through the same mechanism to get a registrar from the lookup
service. Then it looks up the service by the service name and gets a service proxy
downloaded to it. With this service proxy, the clients then can make requests of the
service object in its own JVM.

A client application will internally perform the following steps [New(0]

42

prepare for discovery

discover a lookup service

prepare a template for lookup search
lookup a service

call the service

4.1.3 SUPPORT SERVICES

As we have seen above, class definitions for service proxy objects must be download-
able from where the service came from. This is commonly done using an HT'TP or
FTP protocol. So, Jini requires an HTTP/FTP server running on the URL where
the service class files are stored. The other support service is the RMI daemon. A
proxy service gets exported to the client and communicates back to its host service.
There are many ways to do this. One way is the Java RMI system. In order to run
reggie, the lookup service supplied by Sun that exports registrar objects, you have to

start an rmid server, then start reggie on the same machine, and reggie will register

with the RMI daemon.

4.2 'THE REPLICA PACKAGE

Based on the same procedures of registering services and looking up services, a con-
venience package called replica has been developed to facilitate replication. This
convenience package is generally applicable to any kind of replication, and is a con-
tribution of this thesis. Table 4.1 lists all the classes in this package.

Based on the common characteristics between these two replication models, the
interface PassiveReplicalf is a subclass of ActiveReplicalf, and PassiveReplicalmpl
a subclass of ActiveReplicalmpl. For more information about the implementation of

the replica package, see appendix 5.

43

ActiveReplicalf The interface for services that are actively replicated

ActiveReplicalmpl A basic implementation for ActiveReplicalf,
Actively replicated services should extend this class

ActiveReplicaManager | The manager used to manage actively replicated services

ActiveReplical.ocator The locator for actively replicated services

PassiveReplicalf The interface for services that are passively replicated

PassiveReplicalmpl A basic implementation of PassiveReplicalf,
Passively replicated services should extend this class

PassiveReplicaManager | The manager used to manage passively replicated services

PassiveReplical.ocator | The locator for passively replicated services

Table 4.1: Convenience Classes in the Replica Package

4.3 FAULT TOLERANCE IN ORBWORK

ORBWork consists of the monitor, ORBWork manager, ORBWork server, worklist
server, data server, and a number of task schedulers and task managers. All of
these components need to be replicated to provide fault-tolerance. In principle, any
component can be replicated using either the active or passive replication model.
Depending on the semantics, however, we decided to replicate the task schedulers,
ORBWork manager and the monitor using passive replication, and the rest of the
components using active replication. The reason is that we do not want to have
more than one active ORBWork manager governing the system at the same time,
although many backup ORBWork managers can exist besides the primary one. Not
all instances should be executed replicatedly, so the task schedulers are replicated
passively. The monitor is also replicated passively because there is only one log file
specified in the property file, and it will incur inconsistency if all replica monitors
are trying to update the same log file. The rest components are replicated actively

because active replications incur less network overheads.

44
Recall the WE'TP structure from section 2.2. Here, we will see how the replication

is implemented within that structure.
For the passively replicated components, including the task schedulers, ORB-

Work manager and monitor, the replication is done as follows.
e RMI interfaces must extend the replica.PassiveReplicalf directly or indirectly.

e RMI implementations must extend the replica.PassiveReplicalmpl directly or

indirectly.

e Server application should register the remote service object

using replica.PassiveReplicaManager The relevant code snippet is shown

below:

PassiveReplicaManager pmgr=new PassiveReplicaManager();
pmgr.registerObject ("/0RBWork/Admin//Monitor.svc", serviceRef);

e WE'TP implementations should use replica.PassiveReplicaLocator to locate the

primary replica. The relevant code snippet is shown below:

PassiveReplicalocator server = new PassiveReplicalocator();
server.set_criterion("/0RBWork/Admin//Monitor.svc", null);
MonitorIf monitor = (MonitorIf)server.getRef();

try{
monitor.RecordTaskStatus (WorkflowName,
WorkflowInstanceld,
TaskName,
HostName,
state);
}

Similarly, for the actively replicated components, we have

e RMI interfaces must extend the replica.ActiveReplicalf directly or indirectly.

45
e RMI implementations must extend the replica.ActiveReplicalmpl directly or

indirectly.

e Server application should register the remote service object

using replica.ActiveReplicaManager

ActiveReplicaManager amgr=new ActiveReplicaManager();
amgr.registerObject ("/0ORBWork/WorklistMgr.svc", serviceRef);

e WEFTP implementations should use replica.ActiveReplicalLocator to locate the

primary replica. The relevant code snippet is shown below:

ActiveReplicalocator server = new ActiveReplicalocator();
server.set_criterion("/0ORBWork/WorklistMgr.svc", null);
Object[] wlserver=server.getAllRef();

for(int i=0;i<wlserver.length;i++){

try{
((WorklistIf)wlserver[i]) .PostItem(WorkflowId,
WorkflowName,
TaskName,
Data) ;

}catch(Exception e){

}
}//for loop

Note, in the RMI version, all of the RMI components but the data server are
subclasses of RMIORBWorkComponentImpl. Since Java does not allow multiple
inheritance, we simply make RMIORBWorkComponentImpl a subclass of Pas-
siveReplicalmpl. So, the passively replicated components like ORBWork managers
inherit PassiveReplicalmpl indirectly. Since PassiveReplicalmpl is a subclass of
ActiveReplicalmpl, the actively replicated components like ORBWork servers also

inherit ActiveReplicalmpl indirectly. The class diagram is shown in Figure 4.1.

46

ActiveReplicalmpl

T

PassiveReplicalmpl

N

ORBWork Component ‘ ‘

4% DataServer
Uses
|
OrbWorkMonitor |_owns Uses
OrbWorkManager ||
. Uses #*|
\ WorkList Task Scheduler
TaskManager OWNS \
*
/ \ Houses executes
executes Houses
*
Tasks OrbWorkServer Tasks

Figure 4.1: Class Diagram of Replicated ORBWork Components

4.4 FAULT TOLERANT TRANSITIONS

A transition involves two task schedulers, however, in case of replication, it involves
two groups of task schedulers, e.g., a group of predecessor task schedulers and a group
of successor task schedulers. Each group, and each replica play their own role during
this transition. One of the replicas assumes the primary responsibility, sometimes
called the primary replica; the backup replicas assume the backup responsibility.
When a transition is finished, the responsibility is shifted to the successor group and

the predecessor group is relieved of the responsibility. Many failures could happen

47
during this transition, and the following 4 steps are designed to deal with these

failures.

1. The primary predecessor task scheduler requests a transition to the primary
successor. Now, the responsibility is on the group of predecessor replicas. The

primary predecessor assumes the primary responsibility.

2. The primary successor receives the transition input. It checks if this transition
has happened before. If it has, it simply returns. The primary successor notifies
its backups of the transition by passing them the transition input. It then
processes the transition locally, as in non-fault-tolerant ORBWork, putting

the transition into the local processing queue.

3. The primary successor sends back an acknowledgement to the primary prede-

cessor. Now, the successor assumes the responsibility.

4. The primary predecessor then notifies its backups that the transition is done,

and they can release the responsibility now.

These four steps exhibit resemblance with the five steps of processing a request in the
passive replication model. In fact, this is actually an application of that model: the
primary predecessor is the client of the successor task scheduler. If the predecessor
does not receive a response from the primary successor, it tries again. To better
understand these algorithms, we will take the SimpleFlow as an example. SimpleFlow
is a small test workflow, containing three tasks, as well as a single parent task
implementing the whole workflow. The three tasks are Start, Process, and Stop. In
normal execution, an instance will go through the sequence of transitions, as shown in
Figure 4.2. First, the workflow manager starts an instance by invoking the Transition
method of SimpleFlow task scheduler. SimpleFlow then makes a transition (through

a task manager) to Start, then Start to Process, Process to Stop, Stop back to

48

SimpleFlow, finally SimpleFlow notifies the workflow manager that the instance is

processed. Figures 4.3 through Figure 4.8 show how the transitions are done between

ORBWork Manager
1 6
SimpleFlow
2 5
Start 3 Process 4 Stop

Figure 4.2: Normal execution sequence of SimpleFlow

tasks in normal execution.

1. ORBWork Manager Coordination: as shown in Figure 4.3, the user sends
request to the primary ORBWork manager for a new instance. The primary
ORBWork Managers then notifies all its backups that a transition is to be

done. The responsibility is now on the group of managers.

2. Transition between ORBWork manager and SimpleFlow: as shown in Figure
4.4, the primary ORBWork manager makes a transition to the primary Sim-
pleFlow which notifies the backup SimpleFlows of this transition and sends
an acknowledgement back to the primary ORBWork manager. The primary
ORBWork manager then notifies its backups that the transition is done, and
they are relieved of the responsibility. Now the responsibility is shifted to the

group of SimpleFlow task schedulers.

49

Start Instance

— OrbWork Manager

Simple Flow

[
i

Worklist Server

Start Process Stop

Input Notification Worklist Server

| Daasaver |
Start Process Stop | F*prbWork Manages | Datasarver |
Start Process Stop | Lborbwork Managel Monitor Server
Monitor Server
Simple Flow
Simple Flow

Figure 4.3: ORBWork Manager Coordination

3. Transition between SimpleFlow and Start: as shown in Figure 4.5, the primary
SimpleFlow makes a transition to the primary Start which in turn notifies the
backup Starts of this transition and sends an acknowledgement back to the
primary SimpleFlow. The primary SimpleFlow then notifies its backups that
the transition is done, and they are relieved of the responsibility. Now the

responsibility is shifted to the group of Start task schedulers.

4. Transition between Start and Process: as shown in Figure 4.6, the primary
Start makes a transition to the primary Process which in turn notifies the

backup Processes of this transition and sends an acknowledgement back to the

1.Transition
Simple Flow OrbWork Manager

—

50

Workli st Server

2.|Input Notificaion 3.ACK
Start Process Stop
4.'Done” Natification
Start Process Stop | *OrbWork Manager
Start Process StOp —OrbWork Manage

—» Simple Flow

—» Simple Flow

Workli st Server

Data Server

Data Server

Monitor Server

Monitor Server

Figure 4.4: Transition between ORBWork manager and SimpleFlow

primary Start. The primary Start then notifies its backups that the transition

is done, and they are relieved of the responsibility. Now the responsibility is

shifted to the group of Process task schedulers.

. Transition between Process and Stop: as shown in Figure 4.7, the primary

Process makes a transition to the primary Stop which in turn notifies the

backup Stops of this transition and sends an acknowledgement back to the

primary Stop. The primary Process then notifies its backups that the transition

is done, and they are relieved of the responsibility. Now the responsibility is

shifted to the group of Stop task schedulers.

4. “Done” Notification

Workli st Server

Workli st Server

Data Server

Data Server

Simple Flow OrbWork Manager
&\é&\oo
< (Ot
M %
Start — |Process Stop
2. Input|Notification
Start «| |Process Stop | |OrbWork Manager
Start < |Process Stop OrbWork Manager

Monitor Server

—» Simple Flow

—» Simple Flow

Monitor Server

Figure 4.5: Transition between SimpleFlow and Start

ol

6. Transition between Stop and SimpleFlow: as shown in Figure 4.8, the primary

Stop makes a transition to the primary SimpleFlow saying that the instance is

processed completely. The primary SimpleFlow in turn notifies the backup Sim-

pleFlows of this transition and sends an acknowledgement back to the primary

Stop. The primary Stop then notifies its backups that the transition is done,

and they are relieved of the responsibility. Now the responsibility is shifted

to the group of the SimpleFlow task schedulers. The primary SimpleFlow will

report this message to the ORBWork manager.

52

Simple Flow OrbWork Manager
1. Transition Worklist Server
m—
— Start .——Process— | Stop Worklist Server
3. ACK
4] “Done” Notification 2. Input (Notification
Data Server
— Start Process+| | Stop Data Server
— Start Process+~ | Sto i
p OrbWork Manager Monitor Server
Monitor Server
Simple Flow
OrbWork Manager
Simple Flow

Figure 4.6: Transition between Start and Process

4.5 FAILURE HANDLING

Now let’s take a look at how these algorithms handle failures during a transition.

Possible failures are listed below
1. The primary predecessor crashes before initiating the transition
2. The primary successor crashes before notifying its backups of the transition
3. The primary successor crashes while processing the transition

4. The primary predecessor crashes while waiting from the acknowledgement

Simple Flow

1.Transition

Start

—
Process.

Stop

4. “Done’

3. ACK
notification

OrbWork Manager

2. InputNotification

Start

>

Process

Stop

Start

>

Process

Stop

Simple Flow

Simple Flow

OrbWork Manager

OrbWork Manager

Worklist Server

Worklist Server

Data Server

Data Server

Monitor Server

Monitor Server

Figure 4.7: Transition between Process and Stop

53

5. The primary predecessor crashes before notifying backups of ”Done” message

6. Network partitions

4.5.1 PRIMARY PREDECESSOR CRASHES BEFORE INVOKING PRIMARY SUC-

CESSOR

The replica managers of the predecessor group will establish a new primary prede-

cessor which will recover from the failure point and eventually will come to the point

of making the transition.

2. “Task Done”
Notification

“Done” Notification

Start Process [Stop
Start Process — Stop
OrbWork Manager
—» Simple Flow
OrbWork Manager
—» Simple Flow

54

Workli st Server

Worklist Server

Data Server

Data Server

Monitor Server

Figure 4.8: Transition between Stop and SimpleFlow

4.5.2 PRIMARY SUCCESSOR CRASHES JUST BEFORE NOTIFYING ITS BACKUPS

OF THE TRANSITION

Similarly, the replica managers of the successor group will establish a new primary

successor. Meanwhile, an exception will be caught in the primary predecessor. The

primary predecessor calls replica locator to find the reference to the new primary

successor, and tries to make the transition again.

95

4.5.3 PRIMARY SUCCESSOR CRASHES WHILE PROCESSING THE TRANSITION

Again, an exception will be caught in the primary predecessor. The primary pre-
decessor calls replica locator to find the reference to the new primary successor,
and makes a transition to it. Meanwhile, the newly established primary successor
may already start processing the transition as a recovery step since it does not get
the "done” message, or may be just invoked by the primary predecessor. Either
way works. And the transition will not be duplicated since a duplication check is

performed.

4.5.4 PRIMARY PREDECESSOR CRASHES WHILE WAITING FOR THE ACKNOWL-

EDGEMENT

The newly established primary predecessor will make the transition again. The pri-
mary successor will find out that the transition has already been done and simply

return an acknowledgement.

4.5.5 PRIMARY PREDECESSOR CRASHES JUST BEFORE NOTIFYING BACKUPS OF

"DONE” MESSAGE

Like the previous case, The newly established primary predecessor will make the
transition again. The primary successor will find out that the transition has already

been done and simply return an acknowledgement.

CHAPTER 5

IMPLEMENTING PASSIVE REPLICATION MODEL

In this chapter, we will look at the implementation of replication models in more
detail. We will only talk about the implementation of the passive replication model
because that of the active replication model is much simpler in terms of implemen-
tation. In the passive replication model, there are a number of replicas that can
perform identical services. They form a replica group, and become peers to each
other. Only one of them is designated as the primary at any time, while the rest
are backups. The replication is transparent to clients. Clients can obtain a reference
to the group and invoke the group to perform services. It is left to the group to
decide how each replica responds to the invocation. The backups watch the primary
replica—periodically pinging the primary to see if it is still up. Once the primary
replica crashes, one of the backups is elected as the new primary replica and then
continues from the failure point left by the original primary. Besides the replicas,
there are also several (at least one) lookup registries in the model. All replicas register
with the lookup registries using the same group name upon joining the system. The
group is then identified by the group name. Each replica also has to renew its reg-
istration with registries periodically, otherwise its entry will expire and be removed
from registries. Replicas can locate their peer replicas with the help of registries.
There are two approaches to implement this model. One is to have the replicas
themselves do everything, including group member service (such as registration,

communicating with other replicas, etc.) and performing services. The other is to

o6

57
separate the group member service from performing services. A replica just performs
services, and a replica manager manages the replica by handling group member
service. A replica locator is also provided for clients to find a reference to the group.
Clients only need to specify the group name. This thesis uses the second approach
in the attempt to make as few changes to the original code as possible. The rest of

this chapter will focus on the implementation algorithms.

5.1 REgpPLICA OBJECT

Replica objects are the actual service providers. They are managed by replica man-
agers. All service replica interfaces should extend the PassiveReplicalf interface,
which defines basic methods for replica managers to manage replica objects. All ser-
vice implementations should also extend the PassiveReplicalmpl class, which pro-
vides the basic implementation of a replica. Below is a list of methods defined in

PassiveReplicalf.

1. getID() ,return the registration ID

2. setID(ID) ,used by replica manager to set the registration 1D

3. update(status) ,used by primary replica to notify status changes

4. is_primary () ,return a boolean value to indicate whether it is primary replica

5. set_primary(boolean) ,used by replica manager to set the replica as primary

or backup
6. register(backup) ,used by backups to register themselves with the primary

7. getHost () ,return the host name, used to obtain the host name of the replica

The basic implementation of the interface in class PassiveReplicaImpl follows.

There are two important fields:

o8

1. myRole, true if the replica is primary, false if not, set by replica manager

2. mylD, the registration ID of this replica

5.1.1 CHECK IF A REPLICA IS PRIMARY

This method is provided to check if a replica is primary.

ALGORITHM is_primary
return myRole

5.1.2 SET THE ROLE OF A REPLICA

This method is provided to set the role of a replica. If the replica is set as primary,

it should call the method recover as an attempt to correct the failure if any.

ALGORITHM is_primary(boolean role)
myRole <- role
if myRole is primary
call recover

5.1.3 SET AND GET ID

Like the above two methods, these two methods are straightforward.

ALGORITHM setID(ID)
myID <- ID

ALGORITHM getID()
return myID

5.1.4 UPDATE STATUS AND RECOVERY

The primary replica notifies its backups when it starts or finishes a service. Before

performing a service, or, at the beginning of a method invocation, the primary replica

59
packs the method name and all parameters into a list and passes this list to every
backup by calling the method update. When the service is successfully done, the
primary passes a “done” message to every backup. This is necessary for recovery
purposes. As the backups know the failure point left by the original primary, the
new primary knows from where to recover the failure. If the status says "done”, then
no recovery is necessary. The method update is fairly simple. Just record the status

received from the primary.

ALGORITHM update(status)
my_status <- status
The recover method should be re-implemented by subclasses since the recovery mech-

anism heavily depends on the nature of services.

5.2 REPLICA MANAGER

As mentioned above, the replica managers manage replicas, including registering
them with registries, making sure there is only one primary replica in the group, etc.

There are some important fields listed below.

impl : the replica managed by the replica manager

myID : the registration ID of impl

primary_ref : the reference to the primary replica
primary_id : the registration ID of the primary replica

5.2.1 ANNOUNCE PRESENCE

Upon joining the system, a replica manager announces the presence of impl using

multicast. The pseudo code follows.

ALGORITHM announce_presence
1 Prepare for discovery of lookup registries using multicast.
2 Add a listener to discovery event

60

3 Create information about impl, including group name,
whether primary or backup, and possibly other information.
4 Register impl with every registry with the
same registration ID
5 Record this lookup into a local vector of lookup references
6 Renew the registration periodically to
maintain the entry in the lookup
If a replica manager fails to renew its registration, lookup registries will assume
it has crashed and remove its entry. So, the information in the lookup is always
close to up-to-date. Two issues need to be noticed. First, how does a replica get its
registration ID? Initially the registration ID is null, after registration with the first
registry, a 128-bit random service ID is assigned by the registry. And the replica
manager will use the same ID for all future registration. Since the ID is such a long
random string, we do not have to worry about ID conflicts. Second, how does a
task scheduler know whether it should register as primary or backup? We simply let
each replica firstly be registered as a backup, then if it finds exception as a result of

pinging the primary, a search for a primary replica will be conducted, as described

next.

5.2.2 PING THE PRIMARY REPLICA

A replica manager periodically pings the primary replica, and takes appropriate
action if the primary crashes. The pinging is accomplished by invoking the
is_primary method. If the method is invocable, the primary is alive; otherwise, the
primary crashes or becomes unaccessible. Every 5 periods, a verification is performed
to verify that there is one and only one primary in the group. The pseudo code is

given below.

ALGORITHM PING THREAD
1 loop for ever
2 sleep for a period //a period can be specified

© 00 N O O b W

10
11
12

61

sleep_counter <- sleep_counter+l
check if the primary replica is still alive
if exception occurs,

call handle_primary_Failure.

call verify_primary

register impl with the new primary
if the primary is OK

if sleep_counter >=4

call verify_primary
sleep_counter <- 0

5.2.3 HANDLING PRIMARY FAILURE

When the primary replica crashes or does not exist, a new primary will be elected

from the backups. Backups will also update their reference to the new primary.

ALGORITHM handle_primary_failure()

O© 00 NO O WN -

= e
N = O

13
14
15
16
17
18
19
20
21
22
23

//Whenever exception occurs while invoking the primary replica,
//this method should be called to handle all exceptions related
//to primary replica provided that at least one registry exists.

//if there is no registry, this method can do nothing
if no registry found yet
return

//prepare a template. The template contains the group name
Prepare a template for lookup search for all replicas

//the lookup service may fail, too. Try every lookup registry
//before giving up
for each entry in the vector of references to lookup registries
do a lookup for all replicas
if exception occurs
remove the registry from the vector of lookup references
exit the loop
if no replica is found
//Happens when no lookup exists, the whole system is down,
//stay alive for new lookup to appear.
return

//now found all replicas

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

miniID <- registration ID of impl
miniRep<- impl
for each replica rep found
rep_id=rep’s registration ID
if rep is primary //found an existing primary replica
set primary reference to rep
return
else if miniID > rep_id
miniID <- rep_id
miniRep<- rep

//Now no primary replica found
//And has found the replica with minimum registration ID,
//
If Rmin is not equal to the ID of impl
set the reference to primary as miniRep
If Rmin is equal to the ID of impl
register impl as primary with every registry

62

As we can see, the one with minimum registration ID will be elected as new

primary. This eliminates the competition of backups to become a primary. Since

registration IDs are of type long long (up to 128 bits) random strings, this helps to

distribute primary task schedulers for different tasks into different hosts uniformly,

which will balance the load on these hosts.

5.2.4 VERIFICATION

In a real network, there might be various issues to be considered, such as network

latency and short, temporary loss of connectivity. Two replicas could join the group

and announce as the primary replica at the same time. It could also happen that the

primary expires, and backups fail to detect it, therefore no primary is registered. To

avoid these problems, a periodic verification is conducted to make sure there is one

and only primary replica, driven by the ping thread.

ALGORITHM verify_primary()

O© 0 NO O W N -

SO R D WWWWWWWWWWNNNNDNNNDNDNMNNDNNDNNNMNDNRE,ERPRRPR PR P2 B2 2 22
W NP, O OO NOOO P WNEFE, O OWOLONOY”TO P WNE OO0 NO O WwNNE—Oo

//check if the current primary replica is registered
//try every registry before giving up
found<-false
for each registry reg
do a lookup for primary_id
if exception occurs
remove reg
continue
if the replica is not found
continue //maybe has not registered with a new registry
if the replica is found
found <- true
exit the loop
//end of for loop

if (found == false)
primary_ref<-null
call handle_primary_failure to find a primary
return

//at this point, the current primary is registered
for each registry reg
do a lookup for all primary replicas
if exception occurs
remove reg
continue
if no primary found
continue //maybe this is a new registry
exit the loop //if everything is OK
//end of for loop

if only one primary replica is found
return

if no primary replica is found
primary_ref<-null
call handle_primary_failure
return

//at this point, more than one primary replica is found
//select the one with minimum ID as the primary

miniID <- primary_id
miniRep <- primary_ref

63

64

44 for each found primary replica rep

45 check if rep is still primary
46 rep_id <- the ID of rep

47 if rep is not primary

48 continue

49 if rep is primary

50 if miniID > rep_id

51 miniID <- rep_id

52 miniRep <- rep

53

54 if miniID is equal to primary_id
55 return

56 //at this point, minilID < primary_id
57 primary_ref <- miniRep

58 primary_id <- miniID

59

5.3 REPLICA LOCATOR

This class is provided for convenience. Clients can use this class to locate a reference
to a replica group. The reference is actually the reference to the primary replica of
the group. The replica locator class has some similarities with the replica manager in
that both need to first locate registries, then obtain reference to the primary replica.
However, since the replica locator does not manage any replicas, its implementation
is much simpler. Like the replica manager class, it also has the following important

fields.

primary_ref : the reference to the primary replica
primary_id : the registration ID of the primary replica

Here is an example on how to use this class.

set criterion with group name
ref <- group reference
use ref to invoke methods

However, this is not the best way to use Replicalocator. Since the primary replica

of the group may crashes during the invocation, the replica locator should be given

65
more chances to find a new valid group reference. The code below allows 3 failures

while invoking a group.

set criterion with group name
count<-0
if count >= 3
exit loop
get group reference
use ref to invoke methods
if exception occurs
call handle_failure
call verify
count <- count+l
go back to 3

©O© 00 NO O W N -

o
= O

5.3.1 GET REFERENCE TO A REPLICA GROUP

This method is very simple. It returns the value of the primary_ref attribute.

ALGORITHM get_reference
return primary_ref

5.3.2 SET CRITERION — WHICH GROUP TO LOCATE

This method allows clients to specify which group to locate. A group name is passed

in as a parameter.

ALGORITHM set_criterion(group name)

1 //initialization

2 groupName <- group name

3 primary_ref <- null

4 primary_id <- null

5

6 //try to find a reference to the primary

7 call handle_failure to find a primary

8 call verify to make sure this is the right primary
9

10 //if no primary found, wait until it appear
11 loop for ever until primary_ref is not null

12
13
14
15
16
17
18
19
20

66

call handle_failure

call verify

if primary_ref is null

sleep for 3 seconds //there might be no such a group yet
//wait a while and check again

if primary_ref is not null //locate a primary
exit loop

//end of loop

5.3.3 HANDLING FAILURES

It is possible that the primary crashes during invocation. In this case, clients should

call the handle_failure method of the replica locator and invoke the group again.

The number of trials allowed can be specified by clients. After this number of trials,

the group is unable to perform the requested service. This method is responsible to

find a new primary replica.

ALGORITHM handle_failure

O© 0 NO O b W N -

i i e
ad w N~ O

if no registry is found yet, loop for ever until found one
//at this point, there is at least one registry
for each registry reg

do a lookup for all primary replica

if exception occurs
remove the registry

continue

if no primary found
continue //try next replica

if a primary replica is found
primary_ref <- this replica
primary_id <- this replica’s ID
//end of loop

67

5.3.4 PRIMARY VERIFICATION

This method is used to verify that this is the correct primary replica. Its algorithm
is exactly the same as the verify_primary of the replica manager class.

5.3.5 PINGING THE PRIMARY REPLICA

Depending on the frequency of invocation, the replica locator may also start a ping
thread to maintain an up-to-date reference to the primary, as the replica manager
does. Again, it is very similar to the ping thread of replica manager, except that it

does not register any replica with the primary.

5.4 DISCUSSIONS

The main purpose of this model is to tolerate failures that might occur at any
time. There are mainly three types of failures: network latency, expiration latency of
registration and message losses. These issues may cause the system be unstable for
a short period of time. The system of replicas may be in one of the following three

types of states.
1. No primary replica exists.
2. Only one primary is registered.
3. More than one primary is registered.

In a steady stage, there is only one primary replica registered.

5.4.1 NO PRIMARY REPLICA EXISTS OR IS REGISTERED

This might happen at the initialization of the system, or when the primary replica
crashes. In the first case, a null pointer exception is thrown, and a remote exception

is thrown in the second case. The handle_primary_failure method is then invoked

68
to find a new primary replica. And this system will soon (within two ping periods)
enter a steady state with only one primary replica.

If there is no registry in the system, then no replica can become the primary.
The ping threads will keep replicas alive, and once a registry enters the system, all

replicas register themselves and then a primary replica is established.

5.4.2 TWwWO OR MORE REGISTERED PRIMARY REPLICAS EXIST

Due to network latency, two or more replicas may find no primary and register
themselves as primary at about the same time. The solution is to have a verification
periodically, e.g. every 5 ping periods, which is done in the method verify_primary.
If it turns out that only one primary is running, then the verification stops since
it is what it should be. If there are more than one primary, then find the one with
minimum registration ID and set reference to it as primary. In this way, the conflict
is solved within 5 ping periods which is very short as compared to the running time

of the system.

CHAPTER 6

EXPERIMENTS

In this chapter, we will use our fault tolerant ORBWork (ORBWorkgt) to show a
series of examples. We will see their fault-tolerant deployment and how they tolerate
breakups. Any components could crash at any time. Now, we will see, step by step,
how the system responds to these fatal failures. Although servers such as the worklist
servers and the ORBWork servers are all replicated actively, i.e., all replicas are
equivalent, when clients contact these servers, the first one on the lookup list is the
first one contacted. These first servers are denoted as Selected. An optimization is
to contact these servers in a round-robin fashion, so each replica has a chance to be

selected as the first, no matter where it is in the lookup list.

6.1 SETUP OF THE ENACTMENT SYSTEM

As the first step, we started the servers on the hosts listed in Table 6.1. The starting
order was not important. The system configuration is shown in table 6.1. Notice that
every server was replicated. Most of them had two replicas, and the worklist server
had three replicas. In general, the number of replicas for each server is arbitrary, but

it should be at least one.

69

Host Name

Running Servers

jekyll

ORBWork Manager
Worklist Server

greensboro

ORBWork Server
Data Server

fargo

ORBWork Server
Monitor Server (primary)

bainbridge

ORBWork Manager (primary)
Worklist Server

cumming

Worklist Server (Selected)
Data Server
Monitor Server (backup)

chamblee

Registry Server

gemini

Registry Server

Table 6.1: The initial system configuration

6.2 SIMPLEFLOW WORKFLOW

70

We then installed the workflow system SimpleFlow and created several instances

SimpleFlow0 and SimpleFlowl. On station Start, instance SimpleFlow0 was pro-

cessed. The output of ORBWork servers indicated that the one on greensboro was

selected as the first ORBWork server, which meant that the ORBWork manager

always contacted this ORBWork server before it contacted the one on fargo. There-

fore, all task schedulers were installed on greensboro before they were installed

on fargo. Therefore, most primary task schedulers were residing on greensboro. Of

course, as we mentioned earlier, the ORBWork manager could choose in a round-

robin fashion an ORBWork server to install the first, most probably the primary

task scheduler. From the output, we see that the following distribution of schedulers

and task managers as shown in table 6.2

server residing host of primary | residing host of backup
SimpleFlow.scd fargo greensboro
SimpleFlowManager | greensboro fargo

Start.scd greensboro fargo

Process.scd greensbhoro fargo

Stop.scd greensbhoro fargo

Table 6.3: The system configuration after a registry server crashes

Table 6.2: The distribution of task schedulers and managers

Host Name | Running Servers
ekyll ORBWork Manager
Worklist Server
ereenshoro ORBWork Server
Data Server
fargo ORBWork Server .
Monitor Server (primary)
L ORBWork Manager (primary)
bainbridge Worklist Server
Worklist Server (Selected)
cumming Data Server
Monitor Server (backup)
chamblee Registry Server

6.3 REGISTRY SERVER FAILURE

71

We killed the registry server on gemini, and then processed the instance SimpleFlow1

on station Start. There was no noticeable abnormal behavior at all. So the system

tolerated registry crashes. The system configuration is shown in table 6.3

6.4 DMONITOR SERVER FAILURE

We killed the monitor server on fargo which was the primary one, and processed

SimpleFlowO0 all the way through. Again, there was no noticeable abnormal behavior.

72

Host Name | Running Servers
ekyll ORBWork Manager
Worklist Server
ORBWork Server (Selected)
Data Server
fargo ORBWork Server
ORBWork Manager (primary)

greensboro

bainbridge Worklist Server

Worklist Server
cumming Data Server

Monitor Server (primary)
chamblee Registry Server

Table 6.4: The system configuration after a monitor crashes

So the system tolerated monitor failures. The system configuration is as in table 6.4.

Notice that the monitor on cumming was now the primary monitor server.

6.5 DATA SERVER FAILURE

We killed the data server on cumming, and created a new instance SimpleFlow2 and
processed it on station Start. No abnormal behavior was found. The system tolerated

the crashes of data servers. The system configuration is shown in table 6.5.

6.6 ORBWORK MANAGER FAILURE

We killed the ORBWork Manager (the primary one) on bainbridge. The web browser
was then notified of the failure of the ORBWork Manager server. We connected to
http://jekyll:9002. No changes was found. Two more instances SimpleFlow3 and
SimpleFlow4 were created. On station Start, instance SimpleFlow3 was processed.
Everything went all right. So the system tolerated the crashes of ORBWork Man-

agers. The system configuration is shown in table 6.6.

Host Name | Running Servers
ekyll ORBWork Manager
Worklist Server
ORBWork Server (Selected)
Data Server
fargo ORBWork Server
ORBWork Manager (primary)

greensboro

bainbridge Worklist Server

: Worklist Server (Selected)
CUTITIIE Monitor Server (primary)
chamblee Registry Server

Table 6.5: The system configuration after a data server crashes

Host Name | Running Servers

. ORBWork Manager (primary)
Jekyll Worklist Server

ORBWork Server (Selected)
Data Server

fargo ORBWork Server

bainbridge Worklist Server

Worklist Server (Selected)
Monitor Server (primary)
chamblee Registry Server

greensboro

cumming

Table 6.6: The system configuration after an ORBWork manager crashes

74

server residing host of primary
SimpleFlow.scd fargo
SimpleFlowManager | fargo
Start.scd fargo
Process.scd fargo
Stop.scd fargo

Table 6.7: The distribution of task schedulers after an ORBWork server crashes

6.7 ORBWORK SERVER AND TASK SCHEDULER FAILURE

On station Process, instance SimpleFlow1l was processed. During the processing,
the ORBWork server on greensboro was killed. Since task schedulers reside on the
ORBWork server, all task schedulers on greensboro crashed. The distribution of task
schedulers are shown in table 6.7.

SimpleFlow1l was removed from station Process and appeared on station Stop,
despite the fact that the primary task scheduler Process crashed before SimpleFlow1
was processed successfully. This was exactly what we expected. We created two
new instances SimpleFlowb and SimpleFlow6, and then processed SimpleFlow) all
the way through. This indicated that the system tolerated completely crashes of
ORBWork servers since task schedulers on fargo continued to function. In addition,
it tolerated completely crashes of task schedulers. The system configuration is now

as Table 6.8.

6.8 WORKLIST SERVER FAILURE

We killed the worklist server on cumming which was the first worklist server. In the
web browser, we refreshed the page http://jekyll:9002, then the link was redirected

to the worklist server http://jekyll:9009. The system configuration is as table 6.9.

Host Name | Running Servers

. ORBWork Manager (primary)
Jekyll Worklist Server

greensboro | Data Server

fargo ORBWork Server

bainbridge Worklist Server

Worklist Server (Selected)
Monitor Server (primary)
chamblee Registry Server

cumming

Table 6.8: The system configuration after an ORBWork server crashes

Host Name | Running Servers

. ORBWork Manager (primary)
Jekyll Worklist Server

greensboro | Data Server

fargo ORBWork Server

bainbridge Worklist Server

Worklist Server (Selected)
Monitor Server (primary)
chamblee Registry Server

cumming

Table 6.9: The system configuration after a worklist server crashes

76

On station Start, we successfuly processed SimpleFlow6. We created a new
instance SimpleFlow7, and found that SimpleFlow7 were also processed all the way
through. This indicated that the system could tolerate completely the crashes of

Worklist servers.

6.9 SUMMARY

With the presence of registry servers, the system configuration becomes very flexible.
Only the port numbers, the monitor log directory and the path to the shell command
sed need to be specified. The servers can be started on arbitrary hosts in the arbitrary
order, whereas the original implementation required strict starting order, and that
all servers be installed on a single host that is specified in the property file.

Our system completely tolerates crashes of the registry servers, the monitor
servers, the data servers, the ORBWorkpr managers, the ORBWorkg servers, work-

list servers and the task schedulers.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Our experiment results show that replication can dramatically improve the fault
tolerance of workflow systems. The system configuration becomes highly flexible,
and it tolerates sequencing fault at system startup. Our system completely tolerates
crashes of the registry servers, the monitor servers, the data servers, the ORBWorkpgr
managers, the ORBWorkgr servers, the task schedulers, and the worklist servers.

The system also allows increase of the number of the monitors, the ORBWork
managers and the registry servers, dynamically at runtime. It is expected that other
servers will be allowed to join the system during runtime if new replicas are updated
with full logs upon becoming a member, which is not fully implemented yet.

Optimization is also needed to enhance the performance while retaining fault tol-
erance, including applying asynchrony and using reliable multicast in replica group
coordination. With multicast, task schedulers will be distributed evenly among ORB-
Work servers since commands from ORBWork managers arrive at ORBWork servers
approximately at the same time.

The remote event mechanism supplied by Jini could also be exploited to reduce
the network overheads in the current implementation. With remote event notifica-
tion, backup replicas will be notified when the primary fails, which eliminates the
need for backups to inquire frequently the status of the primary and, therefore,
reduces the network overheads dramatically.

The replica manager and locator classes may be further optimized by providing

static methods and fields that are shared among all instances in a JVM. In the current

7

78

implementation, each replica manager/locator have its own multicast message and
listener, which is easier in implementation and wasteful in resources. By this sharing,
only one multicast message and one listener are needed in a single JVM, which
again cuts the overhead dramatically. With these optimizations, we expect that the
response time of the system will decrease significantly.

Besides the optimizations above, the future work also include providing graphic
tools for configuring the system, such as browsing replicas’ distribution, specifying

the number of replicas for individual components and their residing hosts.

BIBLIOGRAPHY

[ABHO00] Aalst, W., Barros, A., Hofstede, A. and Kiepuszewski, B. (2000) Advanced

Workflow Patterns Conference on Cooperative Information System, 2000

[AHO00] Alonso, G.; Hagen, C.; et al (2000) Enhancing the Fault Tolerance of Work-

flow Management Systems. IEEE Concurrency, 2000.

[Alo00] Alonso, G.; et al (2000) Distributed Processing over Stand-Alone Systems
and Applications. 23rd Int’l Conf. Very Large Databases, Morgan Kaufmann,
San Francisco, 1997, pp.575-579.

[Bac99] Bacon, J. (1999) Special Issue on Workflow Management Systems. IEEE

Concurrency, July-Sep. 1999

[CDKO1] Coulouris, G., Dollimore, J., Kindberg, T. (2001) Distributed Systems. 3rd

ed., published by Addison-Wesley and Pearson Education

[DKM96] Das, S., Kochut, K., Miller, J., Sheth, A., Worah D. (1996) URL:

http://citeseer.nj.nec.com/das96orbwork.html

[GHS95] Georgakopoulos, D., Hornick, M., and Sheth, A. (1995)An Owverview
of Workflow Management: From Process Modeling to Workflow Automation
Infrastructure. Distributed and Parallel Databases, 3, 119-153(1995)

[HA98] Hagen, C.; Alonso, G. (1998) "Flexible Exception Handling in the OPERA
Process Support System” 18th Int’l Conf. Distributed Computing Systems. IEEE
Computer Soc. Press, Los Alamitos, Calif., 1998, pp. 526-533

79

30

[Hol94] Hollinsworth, D. (1994) The Workflow Reference Model. Workflow Manage-

ment Coalition, Tech. Report TC00-1003, Dec. 1994; www.wfmc.org.

[Jini] Sun’s online support for Jini, URL:

http: //www.sun.com/software/jini/overview /index.html

[KAG95] Kamath, M., Alonso, G., Gunthor, R. and Mohan, C. (1995) Providing
High Awvailability in Very Large Workflow Management Systems, Research
Report RJ9967, IBM Almaden Research Center, July 1995

[KFS99] Kang, M., Froscher, J., Sheth, A., Kochut, K., Miller,
J. (1999) A Multilevel Secure Workflow Management — System
http://chacs.nrl.navy.mil/publications/ CHACS/1999/1999kang-CAISE99.pdf

[Koc98] Kochut, K. (1998) METEOR Model Version 3. Technical Report, University

of Georgia

[KS95] Krishnakumar, N. and Sheth, A. (1995) Managing Heterogeneous Multi-
system Tasks to Support Enterprise-wide Operations. Distributed and Parallel
Databases, 3(2):155-186, April 1995

[KSM99] Kochut, K., Sheth, A. and Miller, J. (1999) Optimizing Workflow, Com-
ponent Strategies, Vol. 1, No. 9, 1999, pp. 45-57

[Ley01] Leymann, F. (2001) Web Services Flow Language (WSFL 1.0) 1IBM Soft-

ware Group

[LSK00] Luo, Z., Sheth, A., Kochut, K. and Miller, J. (2000) Ezception Han-
dling in Workflow Systems. Applied Intelligence, Volume 13, Number 2,
September/October, 2000, pp.125-147

81
[LSP82] Lamport, L., Shostak,R. and Pease M. (1982) Byzantine Generals Problem

ACM Transactions Programming Languages and Systems, Vol. 4, No. 3, pp.
382-401

[IMAG95] Mohan, C., Alonso, G., Gunthor, R., Kamath, M. and Reinwald, B. (1995)
An Overview of the Fxotica Research Project on Workflow Management Sys-
tems, Proc. 6th Int’l Workshop on High Performance Transaction Systems,

Asilomar, 9/95

[MOK99] Muhlberger, R., Orlowska, M. and Kiepuszewski, B. (1999) Backward
Step: the Right Direction for Production Workflow Systems, Proceedings of the
Tenth Australasian Database Conference, Auckland, New Zealand, January 18-

21 1999. Springer-Verlag, Singapore.

[New00] Newmarch, J. (2000), URL:

http://pandonia.canberra.edu.au/java/jini/tutorial /Overview.xml

[RMI] Sun’s online tutorial for RMI, URL:

http://java.sun.com/products/jdk/rmi/

[SK98] Sheth, A. and Kochut, K. (1998) Workflow Applications to Research Agenda:
Scalable and Dynamic Work Coordination and Collaboration Systems. Workflow

Management Systems and Interoperability, A. Dogac et al[Eds|, Springer Verlag,
1998, pp.35-60.

[SWK97] Sheth, A., Worah, D., Kochut, K., Miller, J., Zheng, K., Palaniswami,
D., Das, S. (1997) The METEOR workflow management system and its use
in prototyping significant healthcare applications. Proceedings 1997 Toward and
Electronic Patient Record Conference (TEPR '97). Vol. 2, Nashville, TN pp.
267-278

82
[Tri00] Tripathy, S. (2000) WETP: Design and a RMI Implementation of a Workflow

Transport Protocol for ORBWork Master thesis, 2000, University of Georgia.

[WMC95] Workflow Management Coalition’s reference model, URL:

http://www.wfmc.org/standards/docs/tc003v11.pdf

[Wor97] Worah, D. (1997) Error Handling and Recovery for the ORBWork Workflow

Enactment Service in METEOR Master thesis, University of Georgia

[WPS00] Wiesmann, M., Pedone, F., Schiper A., et al, (2000) Understanding repli-
cation in databases and distributed systems Proceedings 20th International Con-

ference on Distributed Computing Systems(ICDCS’2000), Taipei, China, IEEE

[WSRO8] Wheater, S., Shrivastava, S. and Ranno F. (1998) A CORBA Com-
pliant Transactional Workflow System for Internet Applications Preceedings
of the IFIP International Conference on Distributed Systems Platforms and
Open Distributed Proceeding (MIDDLEWARE'98), The Lake District, Eng-
land, September 15-18, 1998

