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Abstract

Control charts were devised to evaluate offices within the Intel Corporation. These control

charts were used to determine whether or not that particular office had too many expense

report errors. If so, this would indicate a need to conduct an investigation. Therefore, a

set of statistical limits, as provided by the control chart, must be used to detect these

occurrences. Several different control charts are discussed with this analysis, with the most

emphasis placed on the EWMA control chart. Problems that then arose when the data

exhibited autocorrelations were also examined. Control charts under both dependence and

independence are examined and applied to the Intel data with examples and conclusions

presented.
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Chapter 1

Introduction

1.1 The Intel Data

The data come from 126 different offices within the Intel Corporation. For each of these

offices the number of expense report errors is recorded over the three-year period from 2000

to 2002. The errors are classified into two categories: travel errors and non-travel errors, with

travel errors being the more severe of the two.

Table 1.1: Data Description

STE CD REV NM INTEL WW INTEL MO INTEL QTR INTEL YR
A01 Travel WW 34 8 (August) Quarter 3 2000
A01 Travel WW 42 10 (October) Quarter 4 2000
A01 Travel WW 47 11 (November) Quarter 4 2000
A01 Travel WW 50 12 (December) Quarter 4 2000
A01 Travel WW 17 4 (April) Quarter 2 2001
A01 Travel WW 23 6 (June) Quarter 2 2001
A01 Travel WW 27 7 (July) Quarter 3 2001
A01 Travel WW 35 9 (September) Quarter 3 2001
A01 Travel WW 36 9 (September) Quarter 3 2001
A01 Travel WW 37 9 (September) Quarter 3 2001
A01 Non-Travel WW 37 9 (September) Quarter 3 2001

Note: For security purposes, this description is a representative disguise of the data.

Each office is represented by a site code under the column heading STE CD. Column

REV NM gives the type of reported error. The time of the error is reported in four for-

mats: INTEL WW, which is the workweek in the particular year that the error occurred;

INTEL MO, which is the month that the error occured; INTEL QTR, which is the quarter

1
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of the year that the error occurred; and finally INTEL YR, which is the year that the error

occurred. Because non-travel expense report errors are considered less severe than travel

errors, they are given a weight of 0.5 or half that of a travel error. The cumulative number

of errors per office range from only one to a maximum of 106.

The objective is to devise a statistical method for determining if an office has enough

errors to warrant investigation. Therefore, there has to be a set of statistical limits that

alerts the main office when a limit has been exceeded; in that case the offending office will

be audited to determine the cause of the problem. This objective can be attained through

the use of control charts.

1.2 Significance of Control Charts

What is quality control? Quality can be defined as fitness for use. Fitness can be divided

into two categories, which are quality of design, the intentional variation of a product; and

quality of conformance, how well the product conforms to the required specifications. A more

modern definition describes quality as being inversely proportional to variability. Control,

according to Shewhart (1931), “is a controlled phenomenon when, through the use of past

experiences, we can predict, at least within limits, how the phenomenon may be expected

to vary in the future. Here it is understood that prediction means that we can state, at

least approximately, the probability that the observed phenomenon will fall within the given

limits”.

Therefore, quality control can be defined as a means of reducing the variability of a

product through the use of past experiences to predict future occurrences. The purpose of

quality control is to produce quality improvement, which is the reduction of variability in

processes and products. It should be noted that quality improvement does not include the

inherent variation of all products or processes (chance variations) but those that are not part

of chance variation (assignable causes).
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Statistical Process Control (SPC) is used to achieve process stability and improve the

capability of a product or process through the reduction of variability. SPC is a collection of

primarily seven problem-solving tools that can be used to achieve this goal. Of the so-called

“magnificent seven” which includes the following: Histogram or stem-and-leaf display, check

sheet, pareto chart, cause and effect diagram, defect concentration diagram, scatter diagram,

and the control chart; the control chart is the most important and widely used.

Dr. Walter Shewhart first introduced the theory of control charts in 1931. The control

chart contains a centerline, which represents the average value, or target value, of a quality

characteristic corresponding to the in-control state (that is, only chance causes are present in

an in-control process). The chart also contains two other horizontal lines, the upper control

limit (UCL) and the lower control limit (LCL). They are chosen so that nearly all of the

sample points fall between them if the process is in-control. However, if a point plots outside

of either control limit or if the plots behave in a nonrandom manner the process is said to

be out-of-control.

The major objectives of the control chart are to alert the user when a process is out-of-

control so that the process may be improved. Process improvement is achieved when, if a

process is deemed out-of-control, assignable causes are investigated and eliminated. These

concepts and others will be examined throughout this discussion. We will begin by examining

some basic concepts of the Shewhart control charts followed by more complex ones such as

the EWMA and CUSUM control charts, which will be used to analyze the Intel data.

1.3 General Types of Control Charts

1.3.1 Control Charts for Variables

If the quality characteristic one is interested in controlling is quantitative, it is called

a variable. Control charts for central tendency and variability are called variables control

charts. Shewhart control charts (Shewhart, 1931) are used to monitor the process mean and

variability and to alert the user when the process mean shifts to another level. There are
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two methods by which these charts are developed: the first of these is developing the control

chart with known values of the process mean and standard deviation, µ and σ; and the

second develops the chart through estimation of these parameters.

Control charts for x̄, which follows the process mean, and R, which follows the pro-

cess variability using the range, are developed under the assumption that the data follows

a normal distribution. If µ and σ are known and come from a process that is normally

distributed, and if x1, x2, . . . , xn is a sample of size n, then the average of this sample is

x̄ =
1

n

n
∑

i=1

xi

where x̄ is normally distributed with mean µ and standard deviation σx̄ = σ√
n
. Therefore,

if µ and σ are known, we have a 100(1-α%) chance that our sample mean will fall between

these upper and lower confidence limits.

Upper: µ + Zα

2

σ√
n

Lower: µ − Zα

2

σ√
n

.

These upper and lower confidence limits can be used as upper and lower control limits for

monitoring the process mean with the centerline being the process mean. Therefore the

control chart would be of the form

UCL = µ + Zα

2

σ√
n

CL = µ (1.1)

LCL = µ − Zα

2

σ√
n

The assumption of normality is often not a valid one in practice. Therefore, we rely on

the Central Limit Theorem that says that the distribution of averages from samples of size

n taken from a stable process is approximately normal, with mean µ and standard deviation

σ√
n

as n → ∞. The α
2

point of the normal distribution is commonly replaced with 3 in the

above formula, since a standard normal random variable Z will almost always be between

-3 and 3. Using these values of Z we find that P (−3 < Z < 3) = .9973.
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In practice it is very rare that µ or σ are known. As a result, they must be estimated from

preliminary samples or subgroups, typically 20 to 25, taken when the process is thought to

be in control. Suppose there are m samples each containing n observations of the specified

quality characteristic. Let x̄1, x̄2, . . . , x̄m be the average of each of the samples. Then, a good

estimator of the process average is the grand average

¯̄x =
1

m

m
∑

i=1

x̄i.

This value will become the centerline on the control chart.

Now an estimate of the standard deviation must be found. This is done using either the

sample standard deviation method or the sample range method. We will first examine the

latter. If we have a sample of size n, x1, x2, . . . , xn then the range of that sample would be

R = xmax − xmin.

Let R1, R2, . . . , Rm be the ranges of m samples. Then the average range is

R̄ =
m

∑

i=1

Ri.

The control limits on the x̄ chart are then

UCL = ¯̄x + aR̄

CL = ¯̄x (1.2)

LCL = ¯̄x − aR̄,

where a is tabulated for values of m and n in Chandra (2001).

We may also monitor the process variability by plotting values of the sample range on a

control chart. These calculations are:

UCL = b1R̄

CL = R̄ (1.3)

LCL = b2R̄
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where again, b1 and b2 are tabulated for various values of m and n in Chandra (2001)

As seen above, when values for the mean and standard deviation are known we can

construct a control chart for the process mean. We may also construct a control chart to

monitor process variance based on the sample range. To construct this chart we must first

recall that σ̂ = R
dn

, where dn is the mean of the distribution of the relative range. The

standard deviation is σR = dσ, where d is the standard deviation of the distribution of the

relative range. This gives us the following chart to monitor the process’s standard deviation.

UCL = dnσ + 3dσ

CL = dnσ (1.4)

LCL = dnσ − 3dσ

Define the constants

D1 = dn − 3d

D2 = dn + 3d.

Then the parameters of the R chart for a known value of the standard deviation given

becomes

UCL = D2σ

CL = dnσ (1.5)

LCL = D1σ

where the constants D1 and D2 are tabulated in Ledolter and Burrill (1999).

Using the range method to estimate the standard deviation is useful primarily because of

ease of calculation. However, with today’s use of computers this is no longer a consideration.

The sample standard deviation method, as one might expect, is preferable in estimating

standard deviation. Although it can be shown that for sample sizes of n = 4, 5, or 6, the

sample range and sample standard deviation methods are similar, Derman & Ross (1997)
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point out that R̄
dn

is not a reasonable estimator of the standard deviation when the underlying

distribution is not normal.

The construction of control charts based on x̄ and S, the sample standard deviation, is

somewhat different than the x̄ and R charts. First, for each sample we must calculate the

sample average x̄ and the sample standard deviation S. We know that if σ2 is the unknown

variance of a probability distribution, then the unbiased estimator of σ2 is the sample variance

S2 =

n
∑

i=1
x2

i −
(

n
∑

i=1

Xi)
2

n

n − 1
.

But, Si is not an unbiased estimator of σ. If the underlying distribution is normal, then S

actually estimates cnσ, where cn is a constant that depends on the sample size n. Therefore,

the standard deviation of S is σ
√

1 − c2
n.

To construct these control charts we will consider two cases. The first is the case when a

standard value of σ is given. The chart will be of the form

UCL = cnσ + 3σ
√

1 − c2
n

CL = cnσ (1.6)

LCL = cnσ − 3σ
√

1 − c2
n.

Define the constants

B1 = cn − 3
√

1 − c2
n

B2 = cn + 3
√

1 − c2
n.

Therefore, the parameters of the S chart with a standard value for σ given becomes

UCL = B1σ

CL = cnσ (1.7)

LCL = B2σ

where B1 and B2 are tabulated for various sample sizes in Chandra (2001).
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Equation 1.1 would still be used to monitor the process mean.

The second case is when there is no known value for σ. It must then be estimated by

analyzing past data. If m samples are given, each of size n, then Si is the standard deviation

of the ith sample. The average of these m samples is

S̄ =
1

m

m
∑

i=1

Si.

Now, we have S̄
cn

as an unbiased estimator of σ. The chart will be of the form

UCL = S̄ + 3
S̄

cn

√

1 − c2
n

CL = S̄ (1.8)

LCL = S̄ − 3
S̄

cn

√

1 − c2
n

We can define these constants

B3 = 1 − 3

cn

√

1 − c2
n

B4 = 1 +
3

cn

√

1 − c2
n

Then for the S chart we have

UCL = B4S̄

CL = S̄ (1.9)

LCL = B3S̄.

where the constants B3 and B4 are tabulated in Chandra (2001). The corresponding x̄ chart

is of the form

UCL = ¯̄x + aS̄

CL = ¯̄x (1.10)

LCL = ¯̄x − aS̄

where the constant a = cn√
n
. The origins of the constant involved may be found in Bowker

and Lieberman (1972).
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Also, some have suggested using

√

√

√

√

k
∑

i−1

S2
i

k
, the average standard deviation of k subgroups,

as a better estimator of σ. For a discussion of this method see Derman and Ross (1997).

The interpretation of the preceding control charts is done primarily by determining if

one or more of the points fall outside of the control limits. This is not the only indication of

an out-of-control process. If the pattern of the points exhibits any nonrandom or systematic

behavior, the process is said to be out-of-control. For a better discussion of the interpretation

of these patterns see the Western Electric Statistical Quality Control Handbook (1956).

It should also be noted that the control chart that monitors the standard deviation, R or

S control charts, should be examined before we examine the corresponding x̄ control chart

since the R or S control chart must first be in control for the x̄ control chart to have any

meaning. Therefore, if the R or S control chart is out-of-control, those assignable causes

must be eliminated before going on to the x̄ control chart.

The ability of the x̄ control chart to detect a shift in the process mean can be described by

their operating characteristic (OC) curves. If a standard value for σ is known and constant,

the OC curves can be constructed for the x̄ chart. Suppose the mean shifts from some in-

control value µ to another value µ + kσ. Then, the β-risk or the probability of not detecting

this shift on the first subsequent sample is

β = P bLCL ≤ x̄ ≤ UCL|µ = µ0 + kσc.

Given that x̄ ∼ N(µ, σ√
n
),

β = Φ(L − k
√

n) − Φ(−L − k
√

n)

where L = 3, the usual 3-sigma limits and Φ denotes the standard normal cumulative

distribution function. The probability of detecting the shift on the rth sample is

βr−1(1 − β).

The expected number of samples required before the shift is detected is the Average Run

Length (ARL), which equals 1
1−β

. Therefore the out-of-control ARL, denoted ARL1, is of
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the form

ARL1 =
1

1 − β

which gives us the number of samples required in order for a shift in the mean to be detected

given that the system is out-of-control. Likewise, we can also calculate the ARL for the

in-control process; this ARL is of the form

ARL0 =
1

α
.

This gives us the number of samples, on average, in which an out-of-control signal occurs

even when the process is really in-control.

Although the x̄, R, and S control charts are the most common control charts applied to

variable data, there are others that deserve attention. The first of these is the S2 control

chart, which is based directly on the sample variance. The S2 control chart has the form

UCL =
S2

n − 1
χ2

α

2
n−1

CL = S2 (1.11)

LCL =
S2

n − 1
χ2

1−(α

2
),n−1

where χα

2

2 and χ2
1−(α

2
)n−1 are the upper and lower α

2
percentage points of the chi-square

distribution with n− 1 degrees of freedom. The control limits are determined using the fact

that the distribution of (n− 1)S2
i /σ

2 is chi-squared with n− 1 degrees of freedom. This fact

is also the reason behind E[Si] = cnσ from the previous section and that S̄
cn

is an unbiased

estimator of σ. A known value σ2 could replace the S̄2 in Equation 1.11 if available. One

should also note that Equation 1.11 could be used to get the false alarm probability of an S

chart in agreement with that of a x̄ chart. Recall that the probability of a false alarm (the

probability of having a value outside the control limits when the process is in control) for

an x̄ chart with 3-sigma limits is .0027. The same cannot be said of the S chart. Even if the

data comes from a normal distribution the sample standard deviation will not be normally

distributed.
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For instance, it can be shown that for a subgroup size of n = 5 the probability of a

false alarm equals .0040. This implies that our ARL0, or average number of samples for an

out-of-control signal to occur even if the process is in control, for the S-chart with n = 5 is

1
.0040

= 250 compared to the value of 1
.0027

= 370 one might have expected with the x̄ chart.

Using Equation 1.11 we can choose the in-control ARL, 370 say, and then choose the control

limits to meet this goal. For 0 < α < 1, let χ2
n,α be such that P{χ2

n > χn,α2} = α. Therefore,

if we want the false alarm probability to be .0027, or equal probabilities of .00135 of having

an S-value above and below the control limits, we can use the fact that

P{χ2
n > χn,.00135} = .00135

and

P{χ2
n < χ2

n,.99865} = .00135.

If the system is in control throughout the process with probability of .0027 it will be true

that

χ2
n−1,.99865 < (n − 1)

S2
i

σ2
< χn−1,.00135

Therefore our limits on the S2 chart would now become

LCL =
S2

n − 1
χ2

n−1,.99865

UCL =
S2

n − 1
χ2

n−1,.00135 (1.12)

The same rules apply for interpretation of the S2 as for the previous charts.

The second control chart we will examine in this section is an individual measurement

control chart. This chart deals with situations where the sample size used to monitor the

process is n = 1. These charts are primarily used in situations where the repeated mea-

surements on the process differ only because of analysis error, such as those of the chemical

industry, and in industries where every unit manufactured are inspected. This procedure

uses the moving range of two successive observations to estimate the process variability. The
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individual measurement chart is of the form

UCL = x̄ +
3

dn

mr

CL = x̄ (1.13)

LCL = x̄ − 3

dn

mr

where mri = |xi − xi−1| and d are tabulated in Montgomery (1997) for different values of n.

Note that n denotes the number of observations for which the moving average is calculated.

A control chart on the moving range may also be constructed. This chart is of the form

UCL = D4mr

CL = mr (1.14)

LCL = D3mr

where D3 and D4 are tabulated in Montgomery (1997) for different values of n. The interpre-

tation of the individual measurement chart is interpreted in the same manner as an ordinary

x̄ chart. The interpretation of the moving range chart is more difficult to interpret because

the moving ranges are correlated, and this correlation may exhibit a pattern of runs or cycles

on the chart. The individual measurements on the x̄ chart are assumed to be uncorrelated,

but any pattern on this chart should still be investigated.

The variable control charts that we have discussed, x̄, R, S, S2 and individual measure-

ment, were not used in the analysis of the Intel data. The primary reason for this is because

these charts require a target value µ and σ and if those are not available, they may be

estimated from a process that was thought to be in control. In this case, target values are

unknown, and there is no past in-control process from which these parameters could be esti-

mated. The Individual Measurement control chart could not be used for this reason also,

in addition to the fact that this chart.s performance is greatly affected if the process is not

normally distributed.
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1.3.2 Control Charts for Attributes

There are often occasions where the quality characteristic of interest cannot be represented

numerically. Instead the quality characteristic is qualitative, and can be described as either

conforming or nonconforming. Characteristics of this type are called attributes, and control

charts may be derived for attribute data.

The first attribute chart to be examined is the control chart for the fraction noncon-

forming, or the p chart. When a system is in control, the probability that each item processed

will be independently defective is p. If we let X denote the number of defectives items in

a random sample of n items then, assuming the system is in control, X will be a binomial

random variable with parameters n and p:

P{X = x} =









n

x









px(1 − p)n−x x = 0, 1, . . . , n

with

E[X] = np and V ar(X) = np(1 − p).

The sample fraction nonconforming (the ratio of the number of nonconforming units to the

sample size n) in a sample is therefore,

p̂ =
X

n
.

The distribution of p̂ can be obtained from the binomial. The mean and variance are

µ = p

and

σ2
p̂ =

pq

n

where q = 1 − p.

If a standard value is known or specified we can use the preceding equations to construct

a control chart. Therefore, the p chart for fraction nonconforming is of the form

UCL = p + 3

√

pq

n
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CL = p (1.15)

LCL = p − 3

√

pq

n
.

The operation of the chart involves plotting the p̂ statistic on the control chart. If a standard

value is not given for p, then it must be estimated from observed data. We first select m

preliminary samples, each of size n. If there are X nonconforming units in sample i, then

the fraction nonconforming in the ith sample is pi = Xi

n
i = 1, . . . ,m, and p̄ =

m
∑

i=1

p̂i

m
. This p̄

is used to estimate the unknown p. We now have a p chart of the form

UCL = p̄ +

√

p̄q̄

n

CL = p̄ (1.16)

LCL = p̄ −
√

p̄q̄

n
.

These control limits should be regarded as trial control limits. The trial control limits should

be used to determine if the process was in control when the preliminary data was collected.

If there are any points that exceed the control limits, these points should be investigated.

If assignable causes are discovered, these points should be discarded and new control limits

should be calculated. One should note that these trial control limits are not necessary if a

standard value is given for p.

In many situations it is not convenient to consider subgroups of fixed size. Therefore, our

control chart will be based on the number of nonconforming units as opposed to the fraction

nonconforming. This chart is often called an np control chart. Suppose that when in control,

each item will be defective independently with probability p. Then, if the subgroup is of size

n, the np control chart is of the form

UCL = np + 3
√

np(1 − p)

CL = np (1.17)

LCL = np − 3
√

np(1 − p)
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If p is unknown it can be estimated by

p̄ =

m
∑

i=1
p̂i

m

where m is the number of samples.

In some situations with the fraction nonconforming chart, there may be a variable sample

size. Or, in general, a different number of units may be produced in each period. There are

three main methods used to handle this situation; Constructing control limits based on the

specific sample size, average sample size, and standardized control charts. For more on these

methods see Montgomery (1997).

The O-C curves for the fraction nonconforming chart is found by calculating the proba-

bility of a Type II error, or probability of incorrectly declaring the process in control. These

probabilities may be calculated from

β = P{p̂ < UCL|p} − P{p̂ ≤ LCL|p}

= P{D < nUCL|p} − P{D ≤ nLCL|p}

This is obtained from the cumulative binomial distribution. The ARLs for the fraction non-

conforming chart may also be calculated either directly from the binomial distribution or

from an OC curve. The formulas

ARL0 =
1

α

and

ARL1 =
1

1 − β

are the same for any Shewhart control chart.

There are situations where there are nonconformities in a unit of product, but there

still may not be enough nonconformities to be classified as nonconforming or inadequate.

In these situations we would construct a control chart on the number of nonconformities

per unit, rather than the fraction nonconforming. These are sometimes called c charts. If

the probability of a nonconformity is small and constant, the number of opportunities for
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nonconformities is infinitely large, and the inspection unit is the same for each sample, then

the data values will be approximately Poisson with mean = λ. As long as the departures

from these conditions are not severe, the Poisson model is still appropriate. If Xi is the ith

data value then the mean and variance equal λ when the process is in control. Also, when

in control, each data value will be within 3 standard deviations with high probability (if

λ ≥ 10, then by the Central Limit Theorem the probability will be very close to .0027).

Therefore, the control limit would be

UCL = λ + 3
√

λ

CL = λ (1.18)

LCL = λ − 3
√

λ.

Note, that if these calculations lead to a negative value for LCL, then set LCL=0. When no

standard is given we should estimate λ by

λ̄ =
m

∑

i=1

λi/m

where m is the number of samples. The chart will now be of the form

UCL = λ̄ + 3
√

λ̄

CL = λ̄ (1.19)

LCL = λ̄ − 3
√

λ̄.

As stated before, if there is no standard given for λ, then the control limits should be seen as

trial control limits. Any point falling outside these limits should be examined. It must then

be decided if the system is temporarily out of control or if no statistical control has been

established. In the latter case, the control limits should be recalculated. If the mean number

of defects per unit is small when the process is in control, then the units should be combined

and the data should consist of the number of defects in a given number of units. The sum

of these Poisson random variables remains a Poisson random variable with a larger mean
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nλ. It is often useful to combine these units when the mean number of defects per unit is

less than 25 when the system is in control. For a discussion on the advantages of combining

these units see Derman and Ross (1997).

In products such as trucks, computers, and radios, there are often many different types

of nonconformities. All nonconformities are not equally important. A product with several

minor nonconformities may not be classified as nonconforming, but a product with one

serious nonconformity may be deemed nonconforming. Therefore, there must be a system

that classifies nonconformities by severity and assigns weights accordingly. One of the more

common methods to deal with this product is to comprise a demerit scheme based on four

classes of nonconformities, with class A being very serious, class B being serious, class C

being moderately serious, and class D being minor. If each class is independent then a Poisson

distribution models the occurrence of nonconformities in each class. Therefore, the number

of demerits in the inspection unit is

di = 100CiA + 50CiB + 100ciC + CiD

Where ciA, ciB, ciC and ciD correspond to the number of Class A, Class B, Class C, and

Class D nonconformities, respectively, in the ith inspection unit. Though this is a common

weighting method, it is not the only method. Any reasonable set of weights will work for

one’s specific problem.

The attribute control charts (p, np ,c charts) were also not used in the analysis of the

data because in order to construct these charts one needs to know the total number of items

in the population. In this case, the population is the total number of possible errors, not the

number of expense reports (which may contain multiple errors). Clearly, such information is

unavailable, but these charts would be ideal if it were.

1.3.3 Other Control Charts

The Shewhart control charts and the CUSUM and EWMA charts to be discussed in

Chapter 2 are the most popular and widely used. But, there have been recent developments
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added to improve or modify these charts to fit other situations of interest. Among these are

control charts for short production runs and multivariate control charts.

The control chart for short production runs can be applied using the standard x̄ and

R charts with some modifications. These charts use as their basis the deviation from the

target value as the variable on the control chart. These charts rely on assumptions such as:

the process standard deviation is approximately the same for all parts; and the process will

work best when the sample size is constant for all part numbers. When the first assumption

is violated one should use standardized x̄ and R charts. Attribute control charts for short

production runs are handled similarly. Again, standardized control charts are used instead of

the common control charts for attributes. For more information on control charts for short

production runs see Farnum (1992).

There are situations in which a product has many different features that, when put

together, constitutes a good working product. In such cases it is possible to monitor these

processes simultaneously. Monitoring the processes simultaneously is favored over monitoring

the processes independently because independent monitoring can be misleading, since the

probabilities of the Type I and Type II errors are distorted. In general, this distortion

increases as the number of quality characteristics being monitored increases. If there are

d independent quality characteristics and the probability of a Type I error equals α on each

chart, then the true probability of a Type I error for the joint procedure is

α1 = 1 − (1 − α)d

and the probability that all d means simultaneously plot inside the control limits given that

the process is in control is

(1 − α)d.

Clearly this distortion can be severe.

This difficulty was handled with the introduction of the multivariate control charts which

were first introduced by H. Hotelling (1947). Some of the more useful multivariate control
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charts are the Chi-square and the Hotelling T 2 control charts. The Chi-square control chart

assumes that two quality characteristics have a bivariate normal distribution and uses other

parameters to create a chi-square distribution, from which the control chart is constructed. A

discussion on the Chi-square control procedure can be seen in Nelson (1987). The Hotelling T 2

control charts are just a variation of the Chi-square procedure. Other multivariate methods

involving the EWMA and the CUSUM are also in wide use. See Crosier (1988), Lowry et al.

(1992), and Alt (1985) for discussions on these charts.

One of the disadvantages of the Shewhart control charts is that they only consider infor-

mation from the last plot and not information from subsequent plots. Thus, these charts

ignore information given by the entire sequence of points. As a result, Shewhart charts are

less sensitive to small process shifts of ≤ 1.5σ, say. In the next section we will consider con-

trol charts which consider all points and not just points in relation to those around them.

The two charts we will use as an alternative to the Shewhart chart are the cumulative-sum

(CUSUM) and the exponentially weighted moving-average (EWMA) control chart.



Chapter 2

Control Charts for the Intel Data under Independence

2.1 Exponentially Weighted Moving Average Control Chart

Earlier we pointed out that the Shewhart control charts were not effective in detecting

small shifts in the mean. One control chart commonly used to detect small shifts in the

process mean is the exponentially weighted moving average (EWMA) control chart.

S.W. Roberts first introduced the EWMA control chart in 1959. The EWMA chart reacts

to small shifts in the mean by using all of the information in the data set, as opposed to only

the preceding data value. The EWMA statistic for the ith observation xi, is

Zi = λxi + (1 − λ)Zi−1 (2.1)

where λ is called the smoothing constant and lies between 0 and 1 and z0 = µ0, which is the

in-control mean (or the estimated mean, sometimes the average x̄ of preliminary data). The

statistic plotted on this chart, Zi, is a weighted average of all previous observations. To see

this, write zi as

Zi = λXi + (1 − λ)[λXi−1 + (1 − λ)Zi−2]

= λXi + λ(1 − λ)Xi−1 + (1 − λ)2Zi−2

= λXi + λ)Xi−1 + (1 − λ)2[λXi−2 + (1 − λ)

= λXi + λ(1 − λ)Xi−1 + λ(1 − λ)2Xi−2 + (1 − λ)3Zi−3

...

= (1 − λ)iZ0 + W1X1 + W2X2 + . . . + Wi−1Xi−1 + W1X1

20
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Or in general

Zi = λ
i−1
∑

j=0

(1 − λ)jxi−j + (1 − λ)iZ0 (2.2)

where the weight given to the jth observation xj is λ(1 − λ)j.

Since 1 − λ < 1, the weights decrease exponentially with the age of the observation. If λ

is small, then the weights decrease very slowly and the EWMA statistic is really an average

of all the previous observations. For example if λ = 0.3, then the weight given to the current

sample is 0.3 and the preceding weights are .21, .147, .1029, and so on. Note that these

weights sum to one since

λ
i−1
∑

j=0

(1 − λ)j = λ[
1 − (1 − λ)i

1 − (1 − λ)
]

= 1 − (1 − λ)i (2.3)

The EWMA chart is ideal for individual observations because it is very robust to the

normality assumption. This robustness is due to the fact that zt is the weighted average of

past and current observations. For more on the robustness of the EWMA control chart to

the normality assumption see Borror, et. al (1999).

If the observations xi are independent and normally distributed with mean µ and variance

σ2, then zi is the sum of independent normal variables and is itself normally distributed. Thus

the mean of zi is

E[Zi] = µ[λ + λ(1 − λ) + λ(1 − λ)2 + . . . + λ(1 − λ)i−1 + (1 − λ)i]

= µ

and the variance of zi is

V ar[Zi] = λ2σ2[1 + (1 − λ)2 + (1 − λ)4 + . . . + (1 − λ)2(i−1)]

=
λσ2[1 − (1 − λ)2i]

2 − λ

Plotting zi versus the sample number i (or time) and using the results for the expected

mean and variance , the EWMA control chart is of the form



22

UCL = µ0 + cσ

√

λ

(2 − λ)
[1 − (1 − λ)2i]

CL = µ (2.4)

LCL = µ0 − cσ

√

λ

(2 − λ)
[1 − (1 − λ)2i]

where c is the width of the control limits. How to choose c will be discussed shortly. If no

standard value is given for the mean so that it must be estimated by past data, replace µ0

with x̄. One should also note that if i is moderately large,

(1 − λ)2i ≈ 0

and the quantity [1 − (1 − λ)2i] approaches unity as i gets larger. Therefore, after several

time periods, the upper and lower control limits will be steady at

UCL = µ0 + Cσ

√

λ

(2 − λ)

LCL = µ0 − Cσ

√

λ

(2 − λ)
(2.5)

The construction of the EWMA control chart requires that the smoothing constant λ and

the control coefficient c be specified. This is accomplished using the ARL.

The ARL of the EWMA for independent sample averages can be expressed as the solution

to an integral equation. If the EWMA starts at u then the ARL is given by

L(u) = 1 +
1

λ

∫ UCL

LCL
L(y)f{[y − (1 − λ)µ]/λ}dy (2.6)

where f(x) is the N(µ, σ2/n) density function, µ is the process mean, σ is the nominal process

standard deviation, and n is the sample size for each sample. Crowder (1989) suggests using

the ARL in the following steps in constructing the EWMA control chart.

1) Choose the smallest acceptable ARL for the case in which the process shift is zero

(fixing the Type I error);
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2) Decide the magnitude of the shift in the process to be detected, and choose λ to

produces a minimum ARL for that shift size;

3) Once λ is chosen, find the control limit constant c which satisfies Step 1;

4) Perform a sensitivity analysis by comparing out-of-control ARLs for the optimal (λ, c)

combination to other combinations of (λ, c) producing the same in-control ARL. From

these choices pick the combination with the most desirable performance overall in terms

of Type II errors.

In general, it is a good idea to use smaller values of λ to detect smaller shifts. Values of

λ between 0.05 and 0.25 are the most commonly used in practice. Higher values of c work

well with higher values of λ and lower values of c work well with low values of λ. Tables and

graphs of the ARL for different values of λ and c can be seen in Lucas and Saccucci (1990)

and Crowder (1989).

The EWMA can be altered in a manner that will allow for the monitoring of the process

standard deviation. MacGregor and Harris (1993) developed a chart to monitor the process

standard deviation, called the EWMS (Exponentially Weighted Mean Square). Assuming xi

is normally distributed with mean µ standard deviation σ, the EWMS is given by

S2
n =

n
∑

k=1

λ(1 − λ)−k[Yk − µ]2 + (1 − λ)nS2
0

= (1 − λ)S2
n−1 + r[Yn − µ]2 (2.7)

where as before S2
n/σ

2 is a weighted sum of chi-squared random variables, and is approxi-

mately distributed as χ2(ν)/ν where the number of degrees of freedom ν depends upon λ, the

correlation of the Yk’s, and the degrees of freedom associated with S2
0 . Because E[χ2(ν)] = ν

it follows that S2
n is an unbiased estimator of σ2. If the observations are independent the

degrees of freedom are given by ν = (2 − λ)/λ. Now if σ0 is set equal to a target standard

deviation, one can plot Sn on an EWRMS (Exponentially weighted root mean square) control
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chart with control limits given by

UCL = σ0

√

X2v/α/2

V

LCL = σ0

√

X2v/(1 − α
2
)

V
. (2.8)

MacGregor and Harris (1993) point out that the EWMS responds to changes in both the

mean and standard deviation. They suggest that it is sometimes more useful to compute the

EWMV (Exponentially Weighted Moving Variance). The EWMV is obtained by replacing

µ in Equation 2-7 with a mean estimate, µ̂n, at each point in time. In that case,

S2
n = (1 − λ)S2

n−1 + λ[Yn − µ̂n]2 (2.9)

The upper and lower control limits are of the form

UCL = σ0 + C1σ0

LCL = σ0 − C2σ0 (2.10)

where c1 and c2 are the critical values calculated from the Johnson curve approximation or

the gχ2(ν) approximation (Macgregor and Harris (1993)). They also deal with situations in

which the observations are not independent, but are instead autocorrelated.

2.1.1 Cumulative-Sum Control Charts

Cumulative-sum charts were first introduced by E.S. Page in 1954. These charts plot the

cumulative sums of the deviations of the sample value from a target value µ0 by directly

incorporating all the information in the sequence of sample values. This quantity is of the

form

Ci =
i

∑

j=1

(x̄j − µ0) (2.11)

where x̄j is the average of the jth sample.

If the process remains in control about a target value µ0 then the cumulative sum of

Equation 2.11 is a random walk with mean zero. But, if a shift from µ0 to some value
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µ1 = µ0 + k occurs, then an upward drift is said to be present in the cumulative sum.

Likewise if a shift from µ0 to some value µ1 = µ0 − k occurs, then we say that a downward

drift will be present in the cumulative sum. Any trend upward or downward is a possible

sign of an out-of-control system. There are two primary methods by which the CUSUM may

be represented: the tabular CUSUM and the the V-mask CUSUM.

The tabular CUSUM accumulates deviations from µ0 that are above and below target

statistics C+
i and C−

i , respectively. These statistics are

C+
i = max[0, Xi − (µ0 + K) + C+

i−1]

C−
i = max[0, (µ0 − K) − Xi + C−

i−1] (2.12)

with C+
i and C−

i initialized to 0. The value K is referred to as the reference or slack value.

This value is often chosen halfway between the target value µ0 and an out-of-control value

µ1 that one is interested in detecting. If the shift is expressed in standard deviations, such

as µ1 = µ0 + kσ, then K can be expressed as

K =
|µ1 − µ0|

2
or

K

2
σ

This is done primarily because of the similarities between the CUSUM chart and the sequen-

tial probability ratio test (see Johnson (1961)). The system is considered out of control any-

time either of the statistics C+
i or C−

i exceeds the control limits of H, where H is chosen to

be 5σ.

A useful feature of the CUSUM chart is that it indicates when the shift probably occurred.

Let N+ denote the number of consecutive times C+
i > 0 and let N− denote the number of

consecutive times C−
i > 0. Then the system is said to have gone out of control at time N ,

where

N = min{N−, N+}.

That is, if the system exceeds the control limit at some period i then the process probably

went out of control at period i − N . We can also provide an estimate of the new mean µ1,
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when the process has shifted. This calculation is

µ̂ =















µ0 + K +
C+

i

N+ , if C+
i > H

µ0 − K − C−

i

N−
, if C−

i > H
(2.13)

It should also be noted that the run test or pattern test cannot be applied to the CUSUM

chart because the plotted values are not independent.

The optimal design of the tabular CUSUM chart suggested by Gan (1991) requires that

we specify the reference value K and the decision interval H. If K = kσ, k should be chosen

as to minimize the ARL1 at the selected shift for a fixed value ARL0. Usually k is chosen

to be 1
2
δ, where δ is the size of the shift in standard deviations. Once a value for k is chosen

then we must choose h, where H = hσ,to give us the desired ARL0. From there the ARL1

for the (k, h) combinations are compared to other (k, h) combinations that produce the same

ARL1.

If one wants to detect a shift of one standard deviation, then values of h = 5 or h = 4

and k = 0.5 are recommended. One can also choose h and k to have an ARL0 equal to that

of Shewhart charts with three-sigma limits. For ARL values for different (h, k) combinations

see Hawkins (1992) and Woodall and Adams (1993).

There are many methods by which the ARL of a CUSUM chart may be calculated. For a

discussion of some of these procedures see Siegmund (1985) and Fellner (1990). Tables are also

given for certain combinations of h and k in Lucas (1976). All of the calculations suggested

by these authors are computationally intensive. Therefore, a very useful method suggested

by Hawkins (1992) uses an ARL approximation equation. He argued that for the equation

to provide a good fit to the ARL data, a transformation had to be done. The transformation

he used was the inverse normal transformation, and the resulting approximation equation is

Yhk = αh + βk + εhnk + ε∗hn
∗
k (2.14)

where the coefficients α, β, ξ, η, ξ∗ and η∗ were fitted by weighted least squares. Therefore, to

calculate the estimated ARL0, the necessary values of βk, ηk, η
∗
k, αh, ξh, and ξ∗h are obtained
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for the selected h and k. These values can be used to compute Equation 1-26. Finally the

ARL0 is computed by

ARL0 =
1

φ(−Ynk)
(2.15)

where φ stands for the standard normal density function. His approximations were shown to

be typically within 3% of the actual ARL when the process was in control and out-of-control.

Note that he also gives the values with the head start feature, which will be discussed later.

It should also be noted that the formula for finding the ARL here gives us the one-sided

ARL. To get the two-sided ARL, divide the ARL by two. Though this method is useful,

most statistical computer packages compute the ARLs for you.

The CUSUM chart may be adjusted for certain situations. One such adjustment involves

using rational subgroups instead of the usual individual observation. This would be done by

simply replacing xi with x̄ and σ with σx̄ = σ√
n

in Equation 1.24. This is done in situations

where it is more beneficial to take more than one observation at a given time and get the

average of those observations to represent the quality characteristic.

The use of subgroups instead of individual measurements does not usually work as well

with CUSUM charts as it does with Shewhart charts. Another adjustment to the CUSUM

chart is to use a combined CUSUM-Shewhart procedure to detect larger shifts. This process

requires that the Shewhart control limits be located approximately 3.5σ from the centerline.

This improves the ability of the chart to detect larger shifts while only slightly decreasing

the ARL0 (see Lucas (1982)). Finally, one may use a procedure introduced by Lucas and

Crosier (1982) that gives the CUSUM chart a head start, or a fast initial response (FIR).

The process involves setting the starting values C+
0 and C−

0 to H/2 instead of zero. If the

process starts in-control at the target value, the FIR feature has no effect - the CUSUMs

will quickly decline to zero. But, if the process does not start in control the FIR allows us

to detect it more quickly. For the ARLs of CUSUM charts with the head start feature see

Lucas (1985).
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So far in our discussion we have been focused on two-sided CUSUMS, but it is sometimes

useful to only use one-sided CUSUMS. The calculation for this one-sided CUSUM is the

same depending on whether one is interested in the mean shifting above or below some

target value. However, the ARL calculations are not the same. The methods stated earlier

may be applied to the one-sided ARLs also. In fact, the approximation method described

by Hawkins (1992) actually gives us the ARL in terms of a one-sided CUSUM. As stated

above, to get the two-sided CUSUM we just divide by two.

The second method used to represent a CUSUM is the V-Mask procedure. The V-mask

is a graphical tool applied to successive values of the CUSUM statistic

Ci =
i

∑

j=1

yi = yi + Ci−1 (2.16)

where yj is the standardized observation yj = (xi−µ0)/σ. To determine if a process is out-of-

control with the V-mask procedure one must first place the V-mask on the cumulative sum

control chart with the point O on the last value of Ci and the line OP (line from the origin

to the vertex) parallel to the horizontal axis. If any of the cumulative sums lie outside the

arms of the mask, the process is considered to be out-of-control. The V-mask’s performance

depends on the lead distance d and the angle θ shown in Figure 2.1. Equivalence of the

tabular CUSUM and the V-mask procedure can be achieved if

Figure 2.1: V-Mask
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k = A tan θ

and

h = Ad tan(θ) = dk

Tabular CUSUM chart are usually preferred to the V-mask procedure primarily because

interpretation of the V-mask procedure is difficult and one can only do a 2-sided scheme

with the V-mask procedure. For more on the V-mask procedure see Lucas (1976).

CUSUM control charts for monitoring the process variability are also of interest. Hawkins

(1993) suggests creating a standardized quantity

Vi =

√

|yi| − 0.822

0.349
(2.17)

This quantity is derived first by letting xi be normally distributed with mean µ0 and standard

deviation σ. The value of xi is then standardized giving

yi =
(Xi − µ0)

σ

Given that the in-control distribution of νi is approximately normal with mean zero and

standard deviation one, the two one-sided standard deviation CUSUMs are of the form

S+
i = max[0, Vi − K + S+

i−1]

S−
i = max[0, K − Vi + S−

i−1] (2.18)

where S+
0 and S1

0 are set to 0 and h and k are selected as previously discussed for monitoring

the process mean.

Chang and Gan (1995) suggest another scheme to monitor process variability. There

CUSUM chart is based on the logarithmic transformation of the sample variance log(S2).

They argued that because log(S2) is approximately normal the chart parameters could be

obtained using tables constructed for CUSUM charts for monitoring the mean. Their control
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chart for monitoring the standard deviation is of the form

Ct = max{0, Ct−1 + yt − KC}

Dt = min{0, Dt−1 + yt + KD} (2.19)

where kc and kd are constants yt = log(S2
t ), C0 = u for 0 ≤ u < hc, and D0 = ν for

−hD < ν ≤ 0. The one-sided upper CUSUM chart detects increases in σ2 and issues an

out-of-control signal whenever Ct ≥ hc. The one-sided lower CUSUM chart detects increases

in σ2 an issues a signal when Dt ≤ −hD. Chang and Gan (1995) also provide tables for the

ARLs and compare them to the ARL of Shewhart and EWMA charts from the same type

of standard deviation monitoring process.

2.2 Application

The major goal in the analysis of the Intel data described in Chapter 1 is to identify which

of the 125 companies had an excessive amount of errors. Those companies with an excessive

amount of errors should be investigated. The errors were examined by month. Because the

data were compiled over three years, January 2000 is the 1st month, January 2001 is the

13th month, and January 2002 is the 25th month. Therefore, the EWMA control charts are

based on 36 months. As mentioned earlier the EWMA and the CUSUM control charts are

very insensitive to departures from normality, but for the sake of putting all numbers on

equal footing the total number of errors in each month is divided by the number of days in

that month to give an average monthly number of errors. For example, the total number of

errors in January is divided by 31, February 2000 by 29, February 2001 by 28, March by

31, and so on. The mean and standard deviation were calculated using all 125 companies.

The results are that the mean, or target value, equals 0.081646 and the standard deviation

equals .047578. Therefore, z0 in Equation 2.1 is initialized at 0.081646.
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The parameters λ and c must be chosen before the analysis stage begins. As noted before,

they should be chosen in order to achieve a desired ARL. Letting λ = 0.1 and c = 2.7. gives

an in-control ARL of approximately 500 and an out-of-control ARL of 10.3.

(Note that all analysis was done with SAS statistical software.)

The first office to be examined is company ‘AS1’. This company has the most expense

report errors of all the companies with 106 over three years. The EWMA chart is given in

Figure 2.2

Figure 2.2: Office ‘AS1’ EWMA

From this illustration it can be seen that this process is clearly out-of-control. It also

shows a continuous upward trend until near October 2001 where it then levels off. The

process seems to go out-of control around the 14th and 15th months. This company should

definitely be investigated for assignable causes.

The next chart to be examined is that of company ‘CR01’. This office has the second

most expense report errors with 103. This chart is given in Figure 2.3

As was the case with office ‘AS1’ this process is obviously out-of-control. It also shows

an upward trend before leveling off near the 22nd month. It seems to go out-of-control near

months 12 and 13. Again, this company should definitely be investigated.
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Figure 2.3: Office ‘CR01’ EWMA

The next office examined is ‘WMNB’, which has 95 errors. It’s plot can be seen in Figure

2.4.

Figure 2.4: Office ‘WMNB’ EWMA

Again we see that this process is deemed out-of-of control.

The first three offices examined had an excessive amount of expense report errors. There-

fore, the fact that they show an out of control process should come as no surprise, so now

those offices with low to intermediate numbers errors will be examined.
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The first of these we will examine is company ‘AHE’. This company has 86.5 total expense

report errors. Recall that a non-travel expense error is not as serious as a travel expense error,

so it is counted as a half-error. This graph is given below in Figure 2.5

It can be seen that this process is also out-of control. It differs from the first two in that

it shows fluctuations for a period of time followed by a trend upward. The process is signaled

to be out-of-control near months 22 and 24. Again, an investigation is needed.

Figure 2.5: Office ‘AHE’ EWMA

The next office is that of office ‘T95-1’ which has a total of 53 errors. It’s graph is

presented in Figure 2.6

This process is clearly in-control. All the values plot well within the control limits. There

is no reason to investigate this company.

Office ‘F18’ with 34 errors fits into that low end of the intermediate category. This

number of errors is expected to be acceptable. Examining Figure 2.7 we see that it is indeed

an in-control process.

The offices seen so far that have out-of-control processes have multiple points that plot

outside the control limits. But, for a process to be labeled out-of control only one point must

plot outside these limits. This can be seen in Figure 2.7. This office, FSG’, has a total of 52

errors.
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Figure 2.6: Office ‘T95-1’ EWMA

Though so far only points that exceed the upper control limit have been seen, it is possible

for a point to exceed the lower control limit as it is in Figure 2.9. Figure 2.9 represents

company ‘WEUZ’ which has 17 errors. Why is it a bad thing to exceed the lower control

limits? The smallest amount of errors might be ideal! If there is a normal amount or slightly

below normal amount of errors everything is fine. But, a very small number of errors should

throw up an alarm: the data may be mistakenly reported, or, more seriously the data could

be fraudently reported to deceive, making the office seem to be in compliance when it is

truly not.

As mentioned earlier the EWMA control chart and the CUSUM control have very similar

detection capabilities. Because the data will be analyzed using both CUSUM and EWMA,

the chosen parameters should give approximately equal ARLs. To obtain an ARL for the

CUSUM chart equivalent to that of the EWMA with λ = 0.1 and L = 2.7, the tabular

CUSUM parameters must be set to h = 5 and k = 0.5. These parameters give an approximate

out-of-control ARL of 500 and an approximate in control ARL of 10.3.
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Figure 2.7: Office ‘F-18’ EWMA

The tabular CUSUM in Table 2.1 is for company ‘AS1’ which was analyzed with the

EWMA chart in Figure 2.2. Figure 2.2 shows that this office exceeded the upper control

limit at around the 14th or 15th months and continues out-of-control from there on. Table

2.l also shows that the upper control limit was exceeded at the 15th month and continues

from there on. These two charts, as expected, are in agreement about the need for this

company to be investigated.

Table 2.2 shows office ‘WMNB’. This table shows that the process exceeded the upper

control limit around month 14 or 15. This is also in agreement with Figure 2.4.

Finally, in Table 2.3 office ‘T95-1’ is seen to be in control, which is in agreement with the

EWMA chart from Figure 2.6. Table 2.3 also doesn’t show any points exceeding the upper

or lower control limits.
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Figure 2.8: Office ‘F-18’ EWMA

As noted earlier, when a process is out-of-control, the tabular CUSUM could indicate

when the shift of the mean occurred that caused the process to go out of control. Recall, to

accomplish this one must first examine the first period for which the upper or lower cusum

decision interval was exceeded. Then one must examine the counters, N+ or N−, which

record the consecutive periods since the CUSUM C+
i or C−

i were above the value of zero.

To see this, look at Table 2.1. It showed that the first period in which the upper decision

interval was exceeded was period 9 (month 15). From Table 2.4, we see prior to period 9, the

number of consecutive periods that the upper CUSUM was above zero is 7. The conclusion

is then that the process was last in control at period 9 − 7 = 2 (month 8), thus the shift

likely occurred between months 8 and 9.

2.3 Alternative Methods of Analysis

As noted earlier the Intel data counted the number of expense report errors in a given

workweek. Those errors were also represented with their respective month and quarter. The

data could have been analyzed using any of the three time variables. Quarter was not chosen
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Table 2.1: Office ‘AS1’

Subgroup Decision
Sample Individual Decision Interval

Month1 Size Value Cusum Interval Exceeded
7 1 0.06451613 0.000000 5.0000
8 1 0.09677419 0.000000 5.0000
9 1 0.16666667 1.278810 5.0000
10 1 0.12903226 1.768229 5.0000
11 1 0.13333333 2.347865 5.0000
12 1 0.16129032 3.513905 5.0000
13 1 0.12903226 4.003324 5.0000
14 1 0.14285714 4.782724 5.0000
15 1 0.16129032 5.948764 5.0000 Upper
16 1 0.15000000 6.877986 5.0000 Upper
17 1 0.12903226 7.367406 5.0000 Upper
18 1 0.20000000 9.345390 5.0000 Upper
19 1 0.17741935 10.849740 5.0000 Upper
20 1 0.19354839 12.692399 5.0000 Upper
21 1 0.23333333 15.369557 5.0000 Upper
22 1 0.12903226 15.858977 5.0000 Upper
23 1 0.16666667 17.137786 5.0000 Upper
24 1 0.12903226 17.627206 5.0000 Upper
26 1 0.10714286 17.657491 5.0000 Upper
27 1 0.16129032 18.823530 5.0000 Upper
28 1 0.13333333 19.403166 5.0000 Upper
29 1 0.12903226 19.892586 5.0000 Upper
30 1 0.20000000 21.870569 5.0000 Upper
31 1 0.06451613 21.006749 5.0000 Upper
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Table 2.2: Office ‘WMNB’

Subgroup Decision
Sample Individual Decision Interval

Month1 Size Value Cusum Interval Exceeded
7 1 0.06451613 0.000000 5.0000
8 1 0.12903226 0.489420 5.0000
9 1 0.13333333 1.069055 5.0000

10 1 0.12903226 1.558475 5.0000
11 1 0.13333333 2.138111 5.0000
12 1 0.16129032 3.304150 5.0000
13 1 0.12903226 3.793570 5.0000
14 1 0.14285714 4.572970 5.0000
15 1 0.16129032 5.739009 5.0000 Upper
16 1 0.13333333 6.318645 5.0000 Upper
17 1 0.12903226 6.808065 5.0000 Upper
18 1 0.16666667 8.086874 5.0000 Upper
19 1 0.09677419 7.899674 5.0000 Upper
20 1 0.06451613 7.035853 5.0000 Upper
21 1 0.06666667 6.217141 5.0000 Upper
22 1 0.12903226 6.706561 5.0000 Upper
23 1 0.13333333 7.286196 5.0000 Upper
24 1 0.16129032 8.452236 5.0000 Upper
25 1 0.09677419 8.265035 5.0000 Upper
26 1 0.14285714 9.044435 5.0000 Upper
27 1 0.16129032 10.210475 5.0000 Upper
28 1 0.10000000 10.090936 5.0000 Upper
29 1 0.12903226 10.580356 5.0000 Upper
30 1 0.16666667 11.859166 5.0000 Upper
31 1 0.06451613 10.995345 5.0000 Upper
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Table 2.3: Office ‘T95-1’

Subgroup Decision
Sample Individual Decision Interval

Month1 Size Value Cusum Interval Exceeded
7 1 0.03225806 0.00000000 5.0000
8 1 0.03225806 0.00000000 5.0000
9 1 0.11666667 0.23004861 5.0000

10 1 0.08064516 0.00000000 5.0000
11 1 0.10000000 0.00000000 5.0000
12 1 0.03225806 0.00000000 5.0000
13 1 0.09677419 0.00000000 5.0000
15 1 0.11290323 0.15110961 5.0000
16 1 0.10000000 0.03157119 5.0000
17 1 0.09677419 0.00000000 5.0000
18 1 0.08333333 0.00000000 5.0000
19 1 0.06451613 0.00000000 5.0000
20 1 0.06451613 0.00000000 5.0000
21 1 0.03333333 0.00000000 5.0000
22 1 0.12903226 0.48941964 5.0000
23 1 0.06666667 0.00000000 5.0000
26 1 0.07142857 0.00000000 5.0000
27 1 0.06451613 0.00000000 5.0000
28 1 0.08333333 0.00000000 5.0000
29 1 0.11290323 0.15110961 5.0000
30 1 0.13333333 0.73074525 5.0000
31 1 0.03225806 0.00000000 5.0000
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Table 2.4: Office ‘AS1’ Counter

Subgroup Number of
Sample Individual Upper Consecutive

Month1 Size Value Cusum Upper Sums >0
7 1 0.06451613 0.000000 0
8 1 0.09677419 0.000000 0
9 1 0.16666667 1.278810 1

10 1 0.12903226 1.768229 2
11 1 0.13333333 2.347865 3
12 1 0.16129032 3.513905 4
13 1 0.12903226 4.003324 5
14 1 0.14285714 4.782724 6
15 1 0.16129032 5.948764 7
16 1 0.15000000 6.877986 8
17 1 0.12903226 7.367406 9
18 1 0.20000000 9.345390 10
19 1 0.17741935 10.849740 11
20 1 0.19354839 12.692399 12
21 1 0.23333333 15.369557 13
22 1 0.12903226 15.858977 14
23 1 0.16666667 17.137786 15
24 1 0.12903226 17.627206 16
26 1 0.10714286 17.657491 17
27 1 0.16129032 18.823530 18
28 1 0.13333333 19.403166 19
29 1 0.12903226 19.892586 20
30 1 0.20000000 21.870569 21
31 1 0.06451613 21.006749 22
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Figure 2.9: Office ‘WEUZ’ EWMA

because with only three years of data there would be only 12 time periods, which would not

be enough for a good analysis. Month was chosen over workweek because the performance

of some of the charts were less than satisfying when workweek was used. Now some of these

and the reasons behind these results will be examined.

Using workweek as the time variable, µ = 1.04629 and σ = 0.200818. To outline a problem

with using workweek, office ‘SB2’ will be examined. This office only has 6.5 total errors, yet

from Figure 2.10 the process is clearly out-of-control. With only 10 errors one would surely

expect for this process to be in control. The reason behind this paradox lies in the way that

the EWMA statistic is calculated. Recall that the EWMA statistic is

zi = λxi + (1 − λ)zi−1.

A closer look shows that the errors first occurred at workweek 52, during which there were

2 errors. Therefore, the calculations for the EWMA statistic would be

zi = 0.1(2) + (1 − 0.1)(1.04629)

= 1.14
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Also, the upper control limit, with λ = 0.1 and L = 2.7, would be 1.1005. Therefore, the

first point 1.14 would exceed the upper control limit. Figure 2.11 shows office ‘SB2’ analyzed

by month.

On the other hand, there are also cases where a process will not give an out-of-control

signal even though there are a lot of errors present. For example, Figure 2.12 shows ‘WMNB’.

Office ‘WMNB’ has 95 total errors, and from Figure 2.4 shows that the process is out of

control. But, if we do the analysis based on workweek, in Figure 2.12, we now will conclude

that the process is in control. This is because even though this company has a lot of errors,

none of these errors are occurring in the same week. This will cause the EWMA statistic to

never go out-of-control. Doing the analysis in months instead of workweeks alleviated this

problem by pooling the errors and increasing the sensitivity of the EWMA chart.

Figure 2.10: Office ‘SB2’ by Workweek

Instead of using the number of errors for each month the average number of errors per

day of that month was used. This didn’t change my analysis at all. If you look at Figure

2.13, which is for office ‘T95-1’, there is no difference between this chart and its counterpart

Figure 2.6. The same is evident for Figure 2.14, office ‘AS1’, and its counterpart Figure 2.2.
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The mean is 2.489 and the standard deviation is 1.4469 for the undivided errors per month.

Since months are of different lengths, the average eliminates any possible “false” seasonality.

Figure 2.11: Office ‘SB2’ by Month
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Figure 2.12: Office ‘WMNB’ EWMA
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Figure 2.13: Office ‘T95-1 with total errors per month

Figure 2.14: Office ‘AS1’ with total errors per month



Chapter 3

Control Charts for the Intel Data Under Autocorrelation

A fundamental assumption of the control charts that we have discussed so far is that

the observations are all independent. However, in practice, this assumption is often violated,

and the resulting dependence is called autocorrelation. An investigation of this data showed

that there are 18 companies that exhibit some form of autocorrelation.

In general, autocorrelation means that there are carryover effects from past observations

on the present or future observations. The primary effect that autocorrelation has on control

charts is that it causes an increase in the frequency of false alarms. Many methods have been

suggested to deal with the situation of autocorrelation. Some have suggested that autocorre-

lation has no effect on the performance of a control chart unless the autocorrelation is very

large- for example, over 0.8 (Wheeler, 1991). On the other hand, some suggest that even a

small amount of autocorrelation will have a profound effect on control chart performance.

In section 3.1 we will examine both arguments and present three different views on dealing

with autocorrelation.

3.1 Remedies for Autocorrelated Data

3.1.1 Residual Control Charts

The first and probably most widely used method to deal with autocorrelation is con-

structing a residual control chart. Residual control charts involves fitting an appropriate

times series model to the observations and then applying control charts to the residuals

of the model. The residual can be thought of as the actual data value minus the fitted

value or predicted value. There will always be some amount of error when fitting a time

46



47

series model. The general time series model used is the Box-Jenkins (1976) autoregressive

integrated moving average model (ARIMA). This model is of the form

ϕp(B) 5d Xt = θq(B)at (3.1)

where ϕp(B) = (1−ϕ1B−ϕ2B
2−ϕ3B

3−. . .−ϕpB
p) is an autoregressive polynomial of order

p, θq(B) = (1−θ1B−θ2B
2−θ3B

3−. . .−θqB
q) is a moving average polynomial of order q, 5 is

the backward difference operator, B is the backshift operator, and at
iid∼ N(µ, σ2). If the model

is an appropriately fitted ARIMA model then the residuals at will behave like independent

and identically distributed random variables (Box and Jenkins, 1976). Therefore, control

charts can be applied to these residuals. Of course, the simplicity of the usual Shewhart,

EWMA, or CUSUM control chart is lost when using residual control charts. This is because

fitting an appropriate time series model to the data requires a lot more statistical knowledge

than do the common charts. Though one must posses a lot more statistical knowledge to

implement the residual chart the process can be somewhat simplified because of a special case

of the ARIMA model. This special case, the ARIMA(0,1,1) or integrated moving average,

provides a good approximation for many applications. This last point will be discussed in

greater detail in subsequent sections especially in it’s relation to the EWMA statistic.

3.1.2 EWMA centerline control chart

Another method suggested to deal with the presence of autocorrelation in process was

suggested by Montgomery and Mastrangelo (1991). They used the EWMA statistic as an

approximation to the exact residual model. A closer look at the EWMA statistic reveals that

it is based on a special case of the Box and Jenkins (1976) ARIMA models. This model is

the integrated moving average IMA(1,1), or ARIMA(0,1,1).

Xt = Xt−1 − θat−1 + at or (1 − B)Zt = θBat (3.2)
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Box and Jenkins (1976) use the fact that zt = ẑt−1(1)+ at and describe the forecasting of an

IMA(1,1) process at time t + l with the equation

Zt = λ(λt) + (1 − λ)Zt−1 (3.3)

where λ = 1 − θ. Because the previous forecast ẑt−1(1) falls short of the actual value by at,

it is adjusted by λat. They describe λ as a measure of the proportion of any given shock at,

which is permanently absorbed by the level of the process. They also describe the forecasting

of the IMA (1,1) with the equation

Ẑt(l) = λZt + (1 − λ)Ẑt−1(l) (3.4)

which implies that the new forecast is a linear interpolation at λ. They point out that if λ

is very small, we shall be relying primarily on a weighted average of past data and heavily

discounting the new observation zt. They go on to show that for a IMA(1,1), the forecast for

all future time is an exponentially weighted moving average of current and past z’s. As we

can see the EWMA statistic is based on the IMA(1,1) model. Thus, a EWMA with λ = 1−θ

is the optimal one-step ahead forecast for the process.

What if the process is not exactly IMA(1,1), but is instead modeled by some other

ARIMA model? If the observations from the process are positively autocorrelated and the

process mean doesn’t drift too quickly, the EWMA statistic with an appropriate value for

λ will provide a good one-step-ahead predictor. Just as the case with the residuals, if the

process is modeled correctly the one-step-ahead prediction errors should be independently

and identically distributed with mean zero and some standard deviation σp. These results

are used by Montgomery and Mastrangelo (1991) as the basis for a control procedure based

on the EWMA statistic that is an approximation of the exact ARIMA model approach from

section 4.2.1. This process would consist of plotting these one-step-ahead EWMA prediction

errors on a control chart. This chart would be accompanied by a EWMA centerline control

chart of the original observations on which the forecast is superimposed. These two charts
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would provide information about the state of statistical control and process dynamics to be

visualized.

Before this process is begun, a value for λ and an estimate of σc must be specified. The

value of λ should be selected to minimize the sum of squares of the one-step ahead prediction

errors. Montogomery and Mastrangelo (1991) suggest estimating σc in one of three ways:

1. Divide the sum of squared prediction errors for the optimal λ by n

2. Use the mean absolute deviation or MAD; or

3. Directly calculate a smoothed variance.

The control chart would be

UCLt+1 = Zt + µα/2σP

CL = Zt

LCLt+1 = Zt − µα/2σP . (3.5)

3.1.3 CUSUM

Autocorrelation in process data also has an effect on the performance of the CUSUM

control chart. The two general approaches used to combat this problem are plotting the

residuals from an adequately fit time series model and plotting the original observations on

a standard control chart and adjusting the control limits and process parameter estimation

to account for autocorrelation. These approaches will now be examined with an example.

Lu and Reynolds (2001) studied the properties of these two procedures. Their investi-

gation is done in the case of processes that can be modeled as an AR(1) process plus an

additional random error or equivalently an ARMA(1, 1) process. There model which is used

to model observations from an autocorrelated process is

xk = µk + εk, k = 1, 2, . . . (3.6)
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Where xk is the observation taken at sampling time k and µk is the random process mean

at sampling time k. It is assumed that µk can be described as the AR(1) process

µk = (1 − φ)ε + φµk−1 + αlk, k = 1, 2, . . . (3.7)

where ξ is the process mean, αk is random error, and ϕ is the autoregressive parameter with

−1 < ϕ < 1. The αk’s are assumed to be independent normal random variables with mean

0 and variance σ2
α and independent of the εk’s. It is also assumed that the starting value µ0

follows a normal distribution with mean ξ and variance σ2
X = σ2

α/(1−ϕ2), which means that

the distribution of Xk is constant with mean ξ and variance σ2
X = σ2

µ + σ2
ε . The quantity µk,

mean at time k, is different than the overall process mean ξ = E(µk). The proportion of the

process variance due to µk is defined as

ψ =
σ2

µ

σ2
x

=
σ2

µ

σ2
µ + σ2

ε

(3.8)

which means the proportion of the variance due to εk is 1− ψ. The correlation between two

adjacent observations is

ρ = ϕψ

By studying the performance and ARL properties of the two approaches Lu and Reynolds

concluded that for moderate levels of autocorrelation, both types of CUSUM charts require

about the same amount of time to detect shifts in the process mean. However, for higher

levels of autocorrelation, the two types of CUSUM charts perform similarly for small shifts,

but the residual CUSUM is somewhat better than the CUSUM of observation for large

shifts. Therefore, they concluded that it is satisfactory to use a chart based on the original

observations, rather than the residuals, unless the level of autocorrelation is relatively high.

The ease of interpretation of the original observation control chart makes it the preference of

practitioners. But, when using this chart one should account for the autocorrelation both in

estimating the process standard deviation and in determining the control limits. For higher

levels of autocorrelation it is also advisable to increase k, the slack value, in the CUSUM
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chart of the observation. This in turn makes it easier to detect small shifts in the process

mean in the presence of autocorrelation.

The CUSUMR (Residual CUSUM) of the observation used, by Lu and Reynolds (2001),

is similar to the one used for independent observations in Equation 1-24, except that the

observation Xk is replaced by the residual ek, and the in-control mean µ0 is no longer needed

because the in-control mean of the residuals is zero. Therefore, the two CUSUM control

statistics are

CR+
k = max{0, CR+

k + (ek − kσγ)}

CR−
k = min{0, CR−

k + (e − kσγ)} (3.9)

where kσγ is the reference value. A signal is given if CR+
k falls above an upper control limit

hσγ or if CR−
k falls below a lower control limit - hσγ. The choice of k will not necessarily

be the same as in the case of independent observations because the mean of the residuals is

not constant after the shift of the process mean. Tabulated values of k are presented in Lu

and Reynolds (2001). These tabulated values are all calculated using various values of ψ and

ϕ with a desired shift in the mean δ (all values are tabulated to have an approximate in-

control ARL of 370.4). Their research showed that for relatively low levels of autocorrelation

a moderate value of k around 0.5 would give reasonably good performance over a large range

of shifts for the CUSUM of observations and the CUSUMR. For relatively high levels of

autocorrelation one should use a relatively large value of k, 1.0 say, in the CUSUM of the

observations. However, a moderate value of k such as 0.5 is still a good value for a CUSUM

of the residual. An example is presented in Table 3.1.

Office ‘A06’ was also examined in Section 3.1.3; this application is in agreement with

that chart.

The second approach of Lu and Reynoldss (2001) for dealing with autocorrelation

involves adjusting the control limits and the parameter estimation techniques. However,

these methods can not easily be implemented on the Intel data. For example, to implement
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Table 3.1: Office ‘A06’

Subgroup Decision
Sample Individual Decision Interval

Month1 Size Value Cusum Interval Exceeded
8 1 0.03225806 0.2105120 5.0000
10 1 0.02121721 0.1377388 5.0000
11 1 -.00742150 0.0000000 5.0000
12 1 0.03644057 0.3178265 5.0000
13 1 -.02208172 0.0000000 5.0000
14 1 0.00854439 0.0000000 5.0000
15 1 0.00217711 0.0000000 5.0000
16 1 0.02283011 0.0000000 5.0000
17 1 0.02240280 0.0000000 5.0000
18 1 0.07899355 1.4096465 5.0000
19 1 -.08004415 0.0000000 5.0000
20 1 0.13412043 2.8240865 5.0000
21 1 0.03081721 2.9976292 5.0000
22 1 -.07586164 0.4340165 5.0000
23 1 0.07899355 1.8436630 5.0000
24 1 -.03165706 0.4142472 5.0000
25 1 0.06110753 1.3649759 5.0000
26 1 -.03725099 0.0000000 5.0000
27 1 0.06887036 1.1499065 5.0000
28 1 0.02465377 1.1653083 5.0000
29 1 0.04898810 1.8050780 5.0000
30 1 0.08081721 3.2615157 5.0000
31 1 -.10184594 0.0312004 5.0000
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this method one must estimate certain parameters to account for the process.s autocorre-

lation, such as the process standard deviation. However, their adjustment to the standard

deviation to account for autocorrelation involves the range method for standard deviation

estimation. In this analysis, the standard deviation was estimated directly, and they pre-

sented no methods for this case. Another complication to implementing this method is that

it suggests increasing the control limit to account for autocorrelation. But, if the control

limits are increased this will also effect the ARL properties. This will primarily increase

the out-of-control ARL, which is not an ideal situation. Because of these complications of

dealing with autocorrelation and the problem of plotting residuals (see Section 3.1.4 and

Chapter 4), the CUSUM chart was eliminated as the main control scheme.

3.1.4 EWMAST

The final method discussed was introduced by Zhang (1998). He recommends his chart

as an alternative to the residual control chart for autocorrelated data. He argued that even

though a residual control chart could be applied to any autocorrelated data even if the

data are from a nonstationary process, the nonstationary chart’s signal of an out-of-control

condition only means that the process has some system deviations because a nonstationary

process does not have a constant mean or variance. It was also noted that the detection

capabilities of the residual control chart were poor and that the properties of the residual

charts are different than those of traditional control charts. For more discussion on this see

Wardell, et.al (1992).

As an alternative he suggests using an EWMAST control chart, which is an exponentially

weighted moving average control chart for a stationary or weakly stationary process. When

the process is positively autocorrelated, the control limits of this chart are wider than the

usual EWMA control chart. Given that the EWMA of a stationary process is asymptotically

a stationary process, and that the covariance between zt and zt+1 converges when t is large
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(Zhang 1998), there exists an integer M such that

Cov[Zt, Zt+r] = [λ/(2 − λ)] × σ2
x{

M
∑

k=0

ρ(k + τ)(1 − λ)k[1 − (1 − λ)2(M−k)]

+
γ

∑

k=1

ρ(k − τ)(1 − λ)k[1 − (1 − λ)2M ] +
M+τ
∑

k=τ+1

ρ(k − τ)(1 − λ)k

× [1 − (1 − λ)2(M+τ−k)]} (3.10)

Thus, the approximate variance of zt is

σ2
Z = [λ/(2 − λ)]σ2

x × {1 + 2
M
∑

k=1

ρ(k)(1 − λ)k × [1 − (1 − λ)2(M−k)]} (3.11)

where σ2
x is the target or estimated process variance, and ρ(k) is the autocorrelation of Xt

at lag k. Therefore, the EWMAST chart is of the form

UCL = µ + LσZ

CL = µ (3.12)

LCL = µ − LσZ

Note, the regular EWMA chart is a special case of the EWMAST chart when ρ(k) = 0 for

k ≥ 1. If this is the case, the term in the brackets of Equation 3-13 equals 1, which in turn

reduces Equation 3.13 to Equation 2.5, the steady state variance of the usual EWMA control

chart.

This procedure is simpler to implement than a residual chart because no time series

modeling is needed. It also does not suffer from the same detection capability problems

that the residual chart has. Zhang used the ARL to conclude that the performance of the

EWMAST chart is better than the residual control chart, the EWMA centerline control

chart, x̄ chart, and the regular EWMA chart when the process autocorrelation is not very

positively strong and the mean shifts are small to medium.

3.2 Application

The first office exhibiting autocorrelation to be examined is office ‘A06’. This office

has a total of 63.5 expense report errors. Figure 3.1 shows the usual EWMA control chart
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for this company. It shows an out-of-control process with a gradual increase in the latter

months. But, if one looks at Table 3.2, one sees that there is some correlation between

the observations. The test for white noise, or lack of correlation, is an approximate test,

testing the null hypothesis that the autocorrelations up to a given time lag are 0 against the

alternative hypothesis that some of the autocorrelations up to a given lag are significantly

different than 0. If the p-value is greater than our significance level, 0.05, the null hypothesis

is accepted and the conclusion is that the observations are uncorrelated. But, if the p-value

is less than 0.05 the null hypothesis is rejected and the conclusion is that the observations

are correlated. From Table 3.2 it can be seen that up to lag 6 the p-value is greater than

.05 (.0763), but from lags 13 to 18 the p-value is not greater than 0.05 (0.0095). Therefore,

there is statistical evidence that some of the observations are autocorrelated. Figure 3.2

shows a plot of the 1st differenced autocorrelation and partial autocorrelation functions.

These indicate that the process could possibly be modeled by an ARIMA(0,1,1), which we

mentioned earlier is usually a good approximation for many applications.

Figure 3.1: Office ‘A06’

Table 3.3 and Table 3.4 test for independence of the residuals and for significance of the

moving average parameter, respectively. If the model is a good fit then the residuals should
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Table 3.2: Autocorrelation Check for White Noise

To Chi- Pr >
Lag Square DF ChiSq Autocorrelations
6 11.42 6 0.0763 0.338 0.398 0.303 0.123 0.177 -0.005
12 15.34 12 0.2235 0.101 -0.050 0.100 -0.028 -0.228 -0.099
18 35.00 18 0.0095 -0.163 -0.262 -0.216 -0.230 -0.176 -0.164

behave like independent and identically distributed random variables. It is easily seen that

this is the case because the null hypothesis that the correlations are 0 is not rejected, and

thus the residuals are independent.

Figure 3.2: Office ‘A06’ Autocorrelation Function

A control chart may now be applied to the residuals. The first chart, given in Figure 3.3

is a chart of the residuals applied to a standard x̄ control chart, followed by a chart of the

forecasts. Figure 3.4 is a chart of the residuals applied to a EWMA control chart.

The process now seems to be in control on both charts. Should one now conclude that the

process is really in control and the out-of-control condition of Figure 3.1 using the regular

EWMA control chart was a false alarm? The answer to this question lies in the design of

these residual charts. The residual control charts require the use of the mean and standard



57

Table 3.3: Office ‘A06’ Autocorrelation Check for White Noise of Residuals

To Chi- Pr >
Lag Square DF ChiSq Autocorrelations
6 2.39 5 0.7927 -0.007 0.149 -0.068 0.136 -0.185 -0.046
12 3.67 11 0.9786 -0.046 -0.051 -0.074 0.069 0.097 -0.064
18 16.96 17 0.4573 0.116 0.123 0.140 -0.097 0.280 -0.082

Table 3.4: Office ‘A06’ Parameter estimate

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag
MA1,1 0.56201 0.19581 2.87 0.0092 1

deviation of each office and not the overall (target) values used in the general EWMA. This

means that the residuals cannot be compared to the standard values. If the residuals were

plotted with the target mean of 0.081861 and target standard deviation of 0.04768, the graph

would never show an out-of-control condition because the residual values are much smaller

than the actual values. Unless there is a way of determining a target residual value, the use

of residual control charts in this project should be examined very carefully.

If the view given by Wheeler (1991) that the autocorrelations will only have an impact if

the autocorrelations are greater than 0.8 is accepted, the conclusion is that there is no effect

due to the autocorrelation. Table 3.5 shows the autocorrelation plot of office ‘A06’.

Clearly, none of the autocorrelations are near 0.8. In fact, the greatest autocorrelation is

0.39815. This problem will be revisited later in relation to the Intel data.

Some examples of the EWMAST chart applied to some of the autocorrelated offices are

presented next. The first example is that of office ‘A06’, which was analyzed earlier with a
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Table 3.5: Office ‘A06’ Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.0028717 1.00000 | |********************|

1 0.00096971 0.33768 | . |*******. |

2 0.0011434 0.39815 | . |********. |

3 0.00087057 0.30315 | . |****** . |

4 0.00035210 0.12261 | . |** . |

5 0.00050744 0.17670 | . |**** . |

6 -0.0000135 -.00470 | . | . |

7 0.00028927 0.10073 | . |** . |

8 -0.0001424 -.04959 | . *| . |

9 0.00028766 0.10017 | . |** . |

10 -0.0000793 -.02762 | . *| . |

11 -0.0006560 -.22844 | . *****| . |

12 -0.0002852 -.09930 | . **| . |

13 -0.0004683 -.16308 | . ***| . |

14 -0.0007535 -.26240 | . *****| . |

15 -0.0006198 -.21582 | . ****| . |

16 -0.0006610 -.23017 | . *****| . |

17 -0.0005042 -.17558 | . ****| . |

18 -0.0004698 -.16359 | . ***| . |

19 -0.0005410 -.18838 | . ****| . |

20 -0.0003861 -.13444 | . ***| . |

21 -0.0003016 -.10502 | . **| . |

22 0.00002563 0.00892 | . | . |



59

Figure 3.3: Office ‘A06’ Residual Chart

residual chart. Figure 3.5 is the EWMAST chart for this company. It shows an in-control

process, which is the same conclusion reached by the residual chart.

Figure 3.6 shows the EWMA chart for office ‘CR01’, which has a total of 103 errors. Figure

3.7 shows the corresponding EWMAST chart for office ‘CR01’. As expected, the process is

out-of-control. Examining these charts in comparison to the regular EWMA control chart it

is apparent that the limits are wider to allow for autocorrelation. In fact, from Equation 2-4
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Figure 3.4: Office ‘A06’ EWMA Residual

Figure 3.5: Office ‘A06’ EWMAST

the control limits are

UCL = .08186 + 2.7 ∗ .04768 ∗
√

0.1

2 − 0.1
= 0.1114

LCL = .08186 − 2.7 ∗ .04768 ∗
√

0.1

2 − 0.1
= 0.0523

which is thinner than the EWMAST’s limits of UCL=0.1294 and LCL=0.0343. In the case

of Figure 3.7, the wider limits of the EWMAST chart decreases the number of false alarms.
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Figure 3.6: Office ’CR01’ EWMA

Figure 3.7: ‘CR01’ EWMAST



Chapter 4

Conclusion

Throughout this discussion many forms of process control has been presented in the form

of control charts. Because of the nature of the Intel data only a small number of these charts

were chosen for demonstration. Of those, the EWMA control chart was chosen as the focus

because of its sensitivity, robustness to the normality assumption, and for its forecasting

ability.

This thesis also dealt with the problem of autocorrelation in process data in the EWMA

control chart using the EWMAST chart. But, autocorrelation of process data is a problem

that has an effect on every control chart. There are many papers that deal with this problem,

for example, see (Balkin and Lin (2001) for a discussion of the effect of autocorrelation on

the Shewhart charts, and Johnson and Bagshaw (1974) for the effect of autocorrelation on

CUSUM control charts.

Autocorrelation is not the only problem that can arise when dealing with control charts.

Many of the control charts assume normality, and if this assumption is violated it can some-

times have a negative effect on the performance of a control chart. The popular x̄ chart has

been shown by many, such as Schilling and Nelson (1976), to be robust to departures from

the normality assumption as long as the population isn’t extremely nonnormal. The EWMA

control chart was shown by Border, et. al (1999) also to be robust to departures from the

normality assumption. They also discuss how greatly the ARL of the Shewhart control chart

for individuals is affected by nonnormality and how little the ARL of the EWMA control

chart is affected.

62
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Earlier, it was noted from Zhang (1998) that if a process is stationary or weakly stationary

with not very strong positive autocorrelation and small to medium shifts of the mean then an

EWMAST control chart should be used, but if the process is stationary or near nonstationary

with strong positive autocorrelations then a residual control chart is preferable. Zhang’s

method was used for this analysis instead of residuals because having to fit a correct time

series model is a drawback especially for those not trained in time series analysis. When using

the approximate time series model ARIMA(0,1,1) there are two problems that may arise:

first, this approximate model will not leave independent residuals on many processes; and

second, if the plotted residuals come very close to the control limits one will not know if that

point would exceed that limit if the correct model had been used. Also, the lack of a common

mean and standard deviation to analyze each office gives some doubt about its conclusions.

One problem that could be encountered with the EWMAST chart is the interpretation of the

terms “weakly” stationary and “almost” nonstationary. These terms could mean different

things to different people. What one thinks is stationary or weakly stationary another may

think is stationary or almost stationary. Therefore, careful consideration should be exercised

before declaring the stationarity of a process.

Some believe that if the autocorrelation is not very high then there will be no effect

on the performance of the control chart. In this analysis, none of the autocorrelations were

very high. When the lag-one autocorrelations were moderate- 0.5887, or 0.644451, say- the

autocorrelations of the subsequent lags usually die off very quickly. When examing the usual

EWMA chart, the residual chart, and the EWMAST chart there seems to be very little

difference in the detection performance. Only those processes that were borderline out-of-

control in the first place showed a difference. Though some of the autocorrelated offices were

shown to be in control the question still should be asked: Why are the errors dependent?

These offices should be examined also to determine the origin of this condition.
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Table 4.1: Complete Results of all Offices

STE CD Total Errors Analysis Type Autocorrelated Control Limit Decision Exceed
A01 20.5 EWMA no lower audit
A02 71 EWMAST yes upper audit
A03 29 EWMA no none o.k.
A04 30.5 EWMA no none o.k.
A05 17 EWMA no none o.k.
A06 63.5 EWMAST yes none borderline
A11 84.5 EWMA no upper audit
A13 76 EWMA no upper audit
A17 2 EWMA no none o.k.
A22 1 EWMA no none o.k.
A23 79.5 EWMAST yes upper audit
A24 24.5 EWMA no none o.k.
A25 25.5 EWMAST yes none o.k.
A27 21 EWMA no none o.k.
A3B 30 EWMA no none o.k.
A3P 12 EWMA no none o.k.
ACS 19 EWMA no none o.k.
ADJ 37 EWMA no none o.k.
AGB 23 EWMA no none o.k.
AHE 86.5 EWMA no upper audit
AK4 90 EWMA no upper audit
AME 17 EWMA no none o.k.
AMH 14 EWMA no none o.k.
API 39 EWMA no none o.k.
APL 87 EWMA no upper audit
AS1 106 EWMA no upper audit
ASE 68.5 EWMAST yes none borderline
AT1 11 EWMA no none o.k.
ATW 30.5 EWMA no none o.k.
CN01 26 EWMA no none o.k.
CR01 103 EWMAST yes upper audit
D1C 1 EWMA no none o.k.
D1F 11 EWMA no none o.k.
D2F 20.5 EWMA no none o.k.
DBF 20.5 EWMA no none o.k.
F07 2 EWMA no none o.k.
F08 9 EWMA no none o.k.
F11 25.5 EWMA no none o.k.
F12 41.5 EWMA no none o.k.
F14 49.5 EWMA no none o.k.
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F17 2 EWMA no none o.k.
F18 34 EWMA no none o.k.
F22 12 EWMA no none o.k.
F23 5.5 EWMA no none o.k.
FET 13 EWMA no none o.k.
FNC 24.5 EWMA no none o.k.
FSG 52 EWMA no upper o.k.
FX6 25 EWMA no none o.k.
HK01 1 EWMA no none o.k.
IR01 1 EWMA no none o.k.
MHT 23 EWMA no none o.k.
NL01 4 EWMA no none o.k.
NL02 23 EWMAST yes none o.k.
NL03 5 EWMA no none o.k.
NULL 6 EWMA no none o.k.
PC2 26.5 EWMA no none o.k.
PC4 3 EWMA no none o.k.
PC5 1 EWMA no none o.k.
PC6 6 EWMA no none o.k.
S03 4 EWMA no none o.k.
S1C 2 EWMA no none o.k.
S23 4.5 EWMA no none o.k.
SB2 10 EWMA no none o.k.
SD1 10.5 EWMA no none o.k.
SD2 24 EWMA no none o.k.
SDB 3 EWMA no none o.k.
SF7 2 EWMA no none o.k.
SF8 24 EWMA no none o.k.
SG01 35 EWMA no none o.k.
SHK 20 EWMA no none o.k.
ST1 3 EWMA no none o.k.
SX1 15.5 EWMA no none o.k.
SX2 5 EWMA no none o.k.
SX4 12 EWMA no none o.k.
SX6 3.5 EWMA no none o.k.
SX7 2 EWMA no none o.k.
SX8 18.5 EWMA no none o.k.

T11-1 2 EWMA no none o.k.
T11-2 6.5 EWMA no none o.k.
T17-1 40 EWMAST yes none o.k.
T17-2 2 EWMA no none o.k.
T27-1 4 EWMA no none o.k.
T27-2 4.5 EWMA no none o.k.
T3-1 52 EWMA no none o.k.
T31-1 87 EWMA no upper audit
T31-2 65 EWMA no none borderline
T3-2 33 EWMA no none o.k.
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T33-1 30 EWMAST yes lower audit
T33-2 57 EWMAST yes none o.k.
T5-1 15.5 EWMA no none borderline
T5-2 57 EWMAST yes none o.k.
T66-1 86 EWMA no upper audit
T66-2 53.5 EWMA no none o.k.
T9-1 17 EWMA no none o.k.
T9-2 47 EWMAST yes none o.k.
T93-1 86.5 EWMAST yes upper audit
T93-2 65.5 EWMA no upper audit
T94-1 18.5 EWMA no none o.k.
T94-2 48.5 EWMA no none o.k.
T95-1 53 EWMA no none o.k.
T95-2 39.5 EWMA no none o.k.
TB2 2 EWMA no none o.k.

TD1-1 13 EWMA no none o.k.
THY 1 EWMA no none o.k.
TT1-1 6 EWMA no none o.k.
TT1-2 3 EWMA no none o.k.
TW01 10 EWMA no none o.k.
US03 65 EWMAST yes none borderline
US05 26 EWMA no none o.k.
US06 8 EWMA no none o.k.
US10 51 EWMA no upper audit
US12 1 EWMA no none o.k.

WCHA 103 EWMAST yes upper audit
WCHB 6 EWMA no none o.k.
WEUA 20 EWMA no none o.k.
WEUZ 17 EWMA no none o.k.
WJPA 17 EWMA no none o.k.
WJPB 5 EWMA no none o.k.
WJPZ 7 EWMA no none o.k.
WMNA 5 EWMA no none o.k.
WMNB 95 EWMA no upper audit
WMYA 98 EWMAST yes upper audit
WORA 84 EWMAST yes upper audit
WPNA 2 EWMA no none o.k.
WPNB 77 EWMAST yes upper audit
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