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Abstract

Optimizations play an increasingly indispensable role in financial decisions and financial

models. Many problems in mathematical finance, such as asset allocation, trading strategy,

and derivative pricing, are now routinely and efficiently approached using optimization. Not

until recently have stochastic approximation methods been applied to solve optimization

problems in finance.

This dissertation is concerned with stochastic approximation algorithms and their appli-

cations in financial optimization problems. The first part of this dissertation concerns trading

a mean-reverting asset. The strategy is to determine a low price to buy and a high price to sell

so that the expected return is maximized. Slippage cost is imposed on each transaction. Our

effort is devoted to developing a recursive stochastic approximation type algorithm to esti-

mate the desired selling and buying prices. In the second part of this dissertation we consider

the trailing stop strategy. Trailing stops are often used in stock trading to limit the maximum

of a possible loss and to lock in a profit. We develop stochastic approximation algorithms

to estimate the optimal trailing stop percentage. A modification using projection is devel-

oped to ensure that the approximation sequence constructed stays in a reasonable range.

In both parts, we also study the convergence and the rate of convergence. Simulations and



real market data are used to demonstrate the performance of the proposed algorithms. The

advantage of using stochastic approximation in stock trading is that the underlying asset is

model free. Only observed stock prices are required, so it can be performed on line to provide

guidelines for stock trading. Other than in stock trading, stochastic approximation methods

can also be used in parameter estimations. In the last part of this dissertation, we consider a

regime switching option pricing model. The underlying stock price evolves according to two

geometric Brownian motions coupled by a continuous-time finite state Markov chain. Recur-

sive stochastic approximation algorithms are developed to estimate the implied volatility.

Convergence of the algorithm is obtained and the rate of convergence is also ascertained.

Then real market data are used to compare our algorithms with other schemes.

Index words: Stochastic Approximation, Stochastic Optimization, Financial
Optimization, Trading Strategy, Parameter Estimation, Option Pricing,
Trailing Stop, Mean-reverting



Stochastic Approximation Methods And

Applications in Financial Optimization Problems

by

Chao Zhuang

B.S., Fudan University, China, 2001

MSc., The University of Hull, UK, 2004

MA., The University of Georgia, 2007

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2008



c© 2008

Chao Zhuang

All Rights Reserved



Stochastic Approximation Methods And

Applications in Financial Optimization Problems

by

Chao Zhuang

Approved:

Major Professor: Qing Zhang

Committee: Edward A. Azoff

Andrew Sornborger

Jingzhi Tie

Robert Varley

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

August 2008



Dedication

To my parents,

Yuzhen Zhang and Chenzhao Zhuang,

and in memory of my grandfather,

Gongwu Zhuang,

whose support and encouragement made this possible.

iv



Acknowledgments

I would like to express my sincere thanks to my advisor, Professor Qing Zhang, for the guid-

ance, encouragement, and support through my years at the University of Georgia, without

whose enthusiastic support, I could have never completed this dissertation. I also wish to

thank Professor Robert Varley for commenting and proofreading my dissertation. He is

always there when I need him. I am grateful for his kindness and support.

I would like to thank my other committee members, Professor Edward A. Azoff, Professor

Andrew Sornborger, and Professor Jingzhi Tie, for commenting on my dissertation and

serving on my committee. I would also like to thank Professor George Yin who introduced

me to this interesting field of stochastic approximation, whose comments and helps make

the dissertation possible.

I am very grateful to Dr. Reza Kamaly and the Necessity and Chance LLC for providing

data derived from the Berkeley Options Data Base. I am also full of gratitude to all the

authors whose papers have been used in this dissertation.

Finally, I would also like to thank all my friends and peers at University of Georgia for

enjoying life with me and making my life to be immensely richer.

v



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Mean-Reverting Asset Trading . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Numerical Demonstration . . . . . . . . . . . . . . . . . . . . 28

2.6 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Recursive Algorithms for Trailing Stop . . . . . . . . . . . . . . . 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Interval Estimates . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Parameter Estimation in Option Pricing with Regime Switching 67

vi



vii

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Figures

2.1 Demonstration of Mean-Reverting Type Stock Price . . . . . . . . . . . . . . 6

2.2 The Prices of Wal-Mart from Jan 2, 2002 to Dec 31, 2007 . . . . . . . . . . . 34

2.3 The Prices of Home Depot from Jan 2, 2002 to Dec 31, 2007 . . . . . . . . . 35

3.1 The 200 Days Prices of Coca Cola from Jan 12, 1998, to October 15, 1998 . 38

3.2 Optimal trailing stop percentage using Monte Carlo Method against stock

price volatility given different expected rate of return µ. . . . . . . . . . . . . 60

3.3 Optimal trailing stop percentage using Monte Carlo Method against expected

rate of return given different stock price volatilities σ. . . . . . . . . . . . . . 61

3.4 The objective function J(h) against the trailing stop percentage h for fixed

expected rate of return and volatility at µ = 20% and σ = 35%. . . . . . . . 62

3.5 The objective function J(h) against the trailing stop percentage h for fixed

expected rate of return and volatility at µ = 12% and σ = 25%. . . . . . . . 63

3.6 The prices of Cadence Design Systems Inc from March 15, 1995, to December

2, 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Estimates with different initial estimates. Horizontal axis represents the

number of iterations; vertical axis represents the volatility σ . . . . . . . . . 86

4.2 BS error and RS error distributions. Horizontal axis represents the estimation

error; vertical axis represents the percentage of occurrence. . . . . . . . . . . 89

viii



List of Tables

2.1 (θ1, θ2) with varying b: average error = 0.01511, average relative error = 0.0102 29

2.2 (θ1, θ2) with varying a: average error = 0.0413, average relative error = 0.0216 30

2.3 (θ1, θ2) with varying σ: average error = 0.0339, average relative error = 0.0158 31

2.4 (θ1, θ2) with varying ρ: average error = 0.0638, average relative error = 0.0310 32

2.5 (θ1, θ2) with varying K: average error = 0.0656, average relative error = 0.0316 33

2.6 Trading Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Optimal trailing stop percentage using Monte Carlo Method for given

expected rate of return µ and volatility σ. . . . . . . . . . . . . . . . . . . . 59

3.2 Estimates using stochastic approximation with averages of samples (SA1) for

fixed expected rate of return and volatility at µ = 10% and σ = 20%, where

MC is the optimal trailing stop percentage calculated by Monte Carlo Method. 64

3.3 Estimates using stochastic approximation without averages of samples (SA2)

for fixed expected rate of return and volatility at µ = 10% and σ = 20%,

where MC is the optimal trailing stop percentage calculated by Monte Carlo

Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Average Rate of Returns from Different Trading Strategies . . . . . . . . . . 65

4.1 Samples of Market Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Initial values for σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Mean and standard deviation of BS and RS. . . . . . . . . . . . . . . . . . . 87

4.4 Mean and standard deviation errors. . . . . . . . . . . . . . . . . . . . . . . 88

ix



Chapter 1

Introduction

Stochastic approximation (SA) concerns recursive estimations of quantities based on noise-

corrupted observations. The basic stochastic approximation algorithms were introduced in

the early 1950s by Robbins and Monro and by Kiefer and Wolfowitz. Robbins and Monro [32]

proposed procedures to find roots of certain unknown functions observed in situations with

noises. Kiefer and Wolfowitz [25] provide algorithms that aim to find extrema of such func-

tions. Since then, stochastic approximation methods have been the subject of an enormous

literature, both theoretical and applied.

The basic paradigm is a stochastic recursive algorithm such as θn+1 = θn + εnXn, where

θn takes its value in some Euclidean space, Xn is a random variable, and εn is known as a

step size and might go to 0 as n→ ∞. In this simple form, if θ denotes an exact parameter

of a system, Xn is the noise-corrupted observed value of an unknown function when the

parameter θ is set to θn. One recursively adjusts the value of θn so that some goal is achieved

asymptotically. This dissertation focuses on the applications of such recursive algorithms in

the field of finance and their qualitative and asymptotic properties.

The original work in Robbins and Monro [32] was motivated by the problem of finding a

root of a continuous unknown function f(θ). The value of the function f(θ) can be observed

with noise at any desired value of θ. If f is known and continuously differentiable, then the

problem becomes a classical problem in numerical analysis and Newton’s method can be

used to find the root. The values f(θ) are not known, but the noise-corrupted observations

can be measured at any given values of θ. Due to the observation noise, Newton’s method

cannot be used. Robbins and Monro [32] propose the following algorithm to recursively find

1
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the root of the function f(θ):

θn+1 = θn + εnYn, (1.0.1)

where εn is the appropriate step size and Yn is the noisy estimate of the value of f(θn). A

major insight of Robbins and Monro is that, if the step sizes in the above algorithm go to

0 in an appropriate way as n → ∞, then there is an implicit averaging that eliminates the

noisy effects in the long run. With some requirements on the function f , the convergence of

the algorithm (1.0.1) can be obtained. The asymptotic behavior of the above algorithm can

be approximated by the asymptotic behavior of the solution to an ODE.

Other than root finding, in application, one often faces the optimization problem, i.e.,

to find extrema of an unknown function F (·). It is well known that extrema of F occur at

the root set of its gradient DF , although it may be only in the local sense. If the gradient

DF can be observed with or without noise, then this optimization problem can be solved

by Newton’s method or the Robbins and Monro algorithm mentioned above. Kiefer and

Wolfowitz [25] propose an algorithm to solve the optimization problem for the case where

the noise-corrupted observations of the function F itself rather than its gradient DF (·)

can be taken. The classical Kiefer-Wolfowitz algorithm [25] uses the finite differences as the

estimates of the partial derivatives. To be precise, let θn be the nth estimate for an extremum

of F (θ) and define

Y ±
n = F̃ (θn ± δn, ξn), (1.0.2)

where δn is the finite difference sequence satisfying δn → 0 as n → ∞, ξn is the sequence of

collective noise and F̃ (θn) is the observed value of F (θn) with noise ξn. Then the nth gradient

estimate is given by

DF̃ (θn, ξn) = (Y +
n − Y −

n )/(2δn). (1.0.3)

With the above definitions, the algorithm

θn+1 = θn + εnDF̃n(θn, ξn) (1.0.4)
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is called the Kiefer-Wolfowitz algorithm. With certain conditions on the function F (·) and

the noise, the convergence of the algorithm (1.0.4) is obtained in [25].

Since the introduction of stochastic approximation algorithms in the early 1950s, they

have found applications in many diverse areas, such as signal processing, communications,

and adaptive control. New challenges have arisen in applications to the finance area. To the

author’s best knowledge, the first application of stochastic approximation in finance was

introduced by Yin, Liu and Zhang [37], where they use a class of recursive algorithms to

determine the timing of stock liquidation. Their trading strategy is to sell a stock if its price

drops below a predetermined low price to stop loss or to sell it if its price rises up to a high

price to lock in the profit. The analytic solution of this problem was obtained in Zhang [39]

where the stock price is subject to two geometric Brownian motions (GBM) coupled by a

two-state Markov chain. However, it is hard to implement the results in [39] in practice due

to the difficulty of determining the values of parameters used in the stock price model in [39].

Using the stochastic approximation method, [37] proposes a class of recursive algorithms to

calculate the threshold values. Further numerical and asymptotic properties are obtained in

Yin et al. [35].

Chapter 2 considers the application of stochastic approximation to stock trading. Unlike

[37], we now take the timing of buying stocks into account. Although we do not assume any

model on stock price to implement the algorithm in practice, we assume that the stock prices

are subject to mean-reverting processes. That means the stock price will eventually converge

to the equilibrium level. The strategy used is called the buy-low-and-sell-high strategy (see

Zhang and Zhang [40]), in that one buys a stock when its price hits the preset low price

and sells it when its price exceeds the preset high price. The objective is to maximize the

discounted reward function. Zhang and Zhang [40] provide a closed-form solution to this

problem. However, their solution is difficult to use in practice because many parameters

need to be determined. We propose a stochastic approximation algorithm to compute the

optimal buying and selling price. The asymptotic properties are analyzed. Simulations and
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real market data are also used to demonstrate the efficiency of the proposed algorithm. One

distinct feature of this method is that it only requires the historical stock price to yield

sound estimations. And due to its simple recursive form, it can be easily used for online

stock trading.

Chapter 3 offers a study on a different stock trading tool, trailing stop. Trailing stop

maintains a stop-loss order at a precise percentage below the market price. As the market

price advances, so does the stop price. Should the market price drop, the stop price does

not change, and one decides to sell the stock whenever the stop price is reached. This order

is used to limit the maximal possible loss and to lock in a profit. Deciding the value of the

trailing stop percentage is crucial in the successful application. However, there was not a

rigorous mathematical analysis on the choice of the trailing stop percentage until Glynn and

Iglehart [17] first provided mathematical discussion on this topic based on an unrealistic

model, in which stock price is allowed to be negative. It is difficult to extend their results to

a reasonable market model and to use their results in practice. In this chapter, we design a

stochastic recursive algorithm to compute the optimal trailing stop percentage. Unlike the

algorithm used in Chapter 2, we use a projection to constrain the iterates to remain in a

bounded region. It is clear that the trailing stop percentage should be in the interval [0, 1].

Therefore, if the iterate is less then 0, we force it to be 0. Likewise, if the iterate exceeds 1,

we force it back to be 1. The convergence of this projection algorithm is also obtained.

Another technique used in Chapter 3 is interval estimation, which provides a stopping

rule for the stochastic recursive algorithms. The classical stop criterion for the stochastic

approximation algorithm is when the number of iterations reaches a predetermined upper

bound. However, in practice it may be difficult to decide this upper bound. The interval

estimates can be used to provide a stopping criterion. The algorithm stops when the difference

in the estimates from current and previous iterations is small enough, i.e., when |θn+1−θn| <

α, where α is a preset accuracy level. We show that with large probability (probability close to

1), a sequence of scaled and centered estimates and a stopped sequence both converge weakly
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to diffusion processes. Based on this result, we then can build confidence intervals for the

iterates. Results of simulations and numerical experiments are also reported. Our algorithm

is a sound procedure for estimating optimal trailing stop percentages and systematically

yields useful guidelines for stock trading. One major advantage of this approach is its model

free feature.

Other than in stock trading, stochastic approximation algorithms can also be used in

option trading. There is a large body of literature studying the pricing problem of options.

Among them, Yao, Zhang and Zhou [34] use a switching GBM model to price European

options. A closed-form solution is obtained assuming that the underlying Markov chain

jumps at most once. To use their result in practice, it is necessary to estimate various

parameters. One of the parameters to be estimated is the implied volatility. A standard

approach is to employ the least squares method using a large number of observations. How-

ever, in view of real-time trading, the least squares method is too slow and requires too

many observations to meet the practical needs. Alternatively, in Chapter 4, we develop a

stochastic approximation algorithm to estimate implied volatility first. Then we use the esti-

mated implied volatility to price options. Since the volatility generally lies in a bounded

interval, we also use a projection algorithm to force all iterates to remain in a reasonable

bounded set. The convergence is obtained and the rate of convergence is ascertained under

certain conditions. As demonstrated by using real market data, this algorithm provides good

estimates for implied volatilities in real time by using only 20 to 30 observations. Together

with the regime switching model in [34], the proposed procedure provides more accurate

prices than that of the traditional Black-Scholes model and it can be easily implemented for

online option trading due to its simple recursive form.



Chapter 2

Mean-Reverting Asset Trading

2.1 Introduction

This chapter is concerned with developing a systematic numerical procedure for trading a

mean-reverting asset. The trading strategy consists of two ingredients, buy and sell. One

wishes to buy low and sell high. Nevertheless, it is challenging to be able to correctly iden-

tify these low and high prices in practice. The purpose of this chapter is to develop and

implement an easy systematical procedure to determine the buying and selling prices when

the underlying asset price is subject to a mean-reverting process.

Figure 2.1: Demonstration of Mean-Reverting Type Stock Price

A mean-reverting model is often used in financial and energy markets to capture the

price movements that will eventually move back to an “equilibrium” level. Figure 2.1 shows

a sample path of mean-reverting stock prices. Empirical studies on mean-reverting stock

6
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prices can be traced back to the 1930s (see Cowles and Johns [12]). The research was carried

further in many studies. Among them, Fama and French [16] and Poterba and Summer

[31] were the first to provide direct empirical evidence that mean reversion occurs in U.S.

stock market over the long horizon. Balvers, Wu and Gilliland [2] provided international

evidence to support mean-reverting stock prices in 18 countries during the period 1969 to

1996. Conrad and Kaul [9] found mean reversion in short-horizon expected returns. Other

than stock prices, mean-reverting models are also used to characterize stochastic volatility

(Hafner and Herwartz [19]) and asset price in the energy market (Blanco and Soronow [1]).

There is a large body of literature studying trading rule in financial markets for many

years, especially on the sell side. For example, Zhang [39] studies a selling rule when the stock

price evolves according to a series of geometric Brownian motions (GBM) coupled with a

continuous-time finite state Markov chain. An investor makes a selling decision whenever the

stock price exceeds the target price or hit the stop-loss price. The objective is to determine

these threshold prices by maximizing a discounted expected reward function, and the optimal

threshold values are obtained by solving a set of two-point boundary value problems. In [17],

Glynn and Iglehart considered the trailing stop strategy for two models for stock prices:

a discrete-time random walk and continuous-time Brownian motion. A trailing stock order

maintains a stop price at a precise percentage below the market price. For both models,they

discuss the question of optimizing the percentage from the current price to the stop. In Guo

and Zhang [18], the optimal selling rule was considered for stock price under a switching

GBM model and the optimal stopping problem is solved by using a smooth-fit technique.

Pemy, Yin and Zhang [30] considered the liquidation problem of a large block of stocks. Other

than these analytical results, various numerical methods have been developed to compute

these threshold. In Yin, Liu and Zhang [37], a stochastic approximation technique was used

to obtain the optimal selling rule. Further numerical and asymptotic results were obtained

in Yin et al. [35]. In addition, a liner programming approach was developed in Helems [20]

and fast Fourier transformation was used in Liu, Zhang and Yin [28]. Furthermore, capital
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gain taxes and transaction costs in stock selling were considered in Cadenillas and Pliska [6],

Constantinides [11] and Dammon and Spatt [13], among others.

On the other hand, most work on the buying side of trading is qualitative. For example,

contrarian and momentum strategies were studied in Bondt and Thaler [4], Conrad and Kaul

[10], and Jagadeesh and Titman [22, 23, 24]. Not until recently was a rigorous mathematical

analysis on the buying side provided in Zhang and Zhang [40], in which they considered

buying and selling for assets governed by mean-reverting processes. The objective is to buy

and sell the underlying asset sequentially to maximize the discounted reward function when

the slippage cost is taken into account. [Slippage cost usually refers to the difference between

the estimated price and the actual price paid.] In [40], the optimal buying and selling prices

were obtained using a dynamic programming approach and the associated HJB equations

for the value functions. One makes a buy decision when the market price hits the buying

price and makes a sell decision when the market price exceeds the selling price. In order to

implement the strategy in [40], one needs to know the values of parameters in the mean-

reverting processes in oder to compute the optimal threshold values. In practice, it is difficulty

to determine those values. Taking this point into consideration, in [33], Song, Yin, and Zhang

proposed a stochastic approximation algorithm to solve the problem for buying and selling

the asset once. Instead of solving two quasi-algebraic equation, the problem is formulated as a

stochastic optimization procedure. The algorithm is model free and uses observed stock prices

only. In this chapter, we further develop the algorithm that allows buying and selling to take

place a multiple number of times. The essential feature of our approach is the use of stochastic

approximation methods (see Kushner and Yin [27] and Chen [8] for up-to-date development

of stochastic approximation algorithms). The proposed stochastic approximation algorithm

allows us to deal with the general model free case and use only observed stock prices to

determine the optimal buying and selling prices. Therefore the proposed method can be

easily implemented in practice.
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The rest of the chapter is arranged as follows. Section 2.2 offers a precise formulation of the

problem and the description of algorithm. Section 2.3 proceeds with the study of asymptotic

properties of the underling algorithm; convergence is obtained. The rate of convergence is

ascertained in Section 2.4. To demonstrate the feasibility and efficiency of the algorithm,

numerical experiments using simulations and real market data are given in Section 2.5. We

demonstrate that the proposed algorithm provides sound estimated optimal threshold values;

they can be easily implemented in real time and provide guidelines for stock trading. We

conclude this chapter with some further remarks in Section 2.6.

2.2 Problem Formulation

In Zhang and Zhang [40], they assume that X(t) ∈ R is a mean-reverting process governed

by

dX(t) = a(b−X(t))dt+ σdW (t), X(0) = x, (2.2.1)

where a > 0 is the rate of reversion, b is the equilibrium level, σ > 0 is the volatility, and

W (t) is a standard Brownian motion. Then the asset price is given by

S(t) = exp(X(t)). (2.2.2)

Implied by the mean-reverting process (2.2.1), when X(t) > b, the drift term a(b−X(t))dt

is negative, pulling X(t) back down toward the equilibrium level. When X(t) < b, the drift

term is positive, resulting in a pull back up to the equilibrium level. The rate of reversion

a determines the reversion speed of X(t). The greater the value of a, the fast the X(t)

converges to the equilibrium value. And due to the stochastic term σdW (t), the value of

X(t) tends to oscillate around the equilibrium level.

In our formulation, we do not require the asset price S(t) be any specific stochastic process

or follow any specific distribution. We only assume that the asset price can be observed. Based

on the observed stock price, two sequences of stopping times τ {bi} and τ {si} with

0 ≤ τ {b1} ≤ τ {s1} ≤ τ {b2} ≤ τ {s2} ≤ · · ·
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are considered. One makes a buying decision at time τ {bi} and makes a selling decision at

time τ {si}, with i = 1, 2, .... Suppose that 0 < K < 1 is the percentage of slippage per

transaction and ρ > 0 is the discount factor. We aim to find the optimal buying and selling

prices that maximize a suitable reward function. Thus the formulation is

Problem P :





Find argmax Φ(θ) = E[J(θ)], where

θ = (θ1, θ2)′ ∈ (0,∞) × (0,∞) is a column vector,

J(θ) =
∞∑

i=1

[exp(−ρτ {si})S(τ {si})(1 −K) − exp(−ρτ {bi})S(τ {bi})(1 +K)],

(2.2.3)

where

τ {b1} = inf{t > 0, S(t) ≤ exp(θ1)},

τ {bi} = inf{t > τ{si−1}, S(t) ≤ exp(θ1)}, for i ≥ 2,

τ {si} = inf{t > τ{bi}, S(t) ≥ exp(θ2)}, for i ≥ 1.

Note that τ {bi} and τ {si} denote the stopping times for buying and selling respectively, θ1

and θ2 denote the buying and selling threshold values respectively, and S(t) is the stock price

at time t.

The analytic solution is obtained in Zhang and Zhang [40] when S(t) is governed by

(2.2.2). However, the solution depends on the values of a and b in (2.2.1), which are difficult to

determine in practice. Our contribution is to devise a optimization procedure that estimates

the optimal threshold value θ and only requires observed stock prices. We will use a stochastic

approximation procedure (SA) to resolve the problem by constructing a sequence of estimates

of the optimal threshold value θ, using

θn+1 = θn + {step size}{gradient estimate of Φ(θ)} (2.2.4)
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Let us begin with a simple noisy finite difference scheme. The only provision is that S(t)

can be observed. Associated with the iteration number n, denote the threshold value by θn.

Let us begin with an arbitrary initial guess θ0, we construct a sequence of estimates {θn}

recursively as follows. Then we can determine stopping times τ
{bi}
n and τ

{si}
n , buying times

and selling times as

τ {b1}n = inf{t > 0, S(t) ≤ exp(θ1
n)},

τ {bi}
n = inf{t > τ{si−1}

n , S(t) ≤ exp(θ1
n)}, for i ≥ 2,

τ {si}
n = inf{t > τ{bi}

n , S(t) ≥ exp(θ2
n)}, for i ≥ 1.

Define a combined process ξn that includes the random effect from S(t) and the stopping

times τ
{bi}
n and τ

{si}
n as

ξn = (S(τ {b1}n ), S(τ {s1}
n ), S(τ {b2}n ), S(τ {s2}

n ), ..., τ {b1}n , τ {s1}
n , τ {b2}n , τ {s2}

n , ...)′. (2.2.5)

We call ξn the sequence of collective noise. Let Φ̃(θ, ξ) be the observed value of the objective

function Φ(θ) with collective noise ξ. When the threshold value is set at θ, take random

samples of size n0 with sequence {ξ±n,l}n0

l=1 such that

Φ̂(θ, ξ±n )
def
=

Φ̃(θ, ξ±n,1) + · · ·+ Φ̃(θ, ξ±n,n0
)

n0
. (2.2.6)

We assume that

EΦ̂(θ, ξ±n ) = Φ(θ) for each θ. (2.2.7)

Then for each θ, Φ̂(θ, ξ±n ) is an estimate of Φ(θ). In the simulation study, we can use inde-

pendent random samples to estimate the expected value of Φ(θn). The law of large numbers

implies that Φ̂(θ, ξ±n ) converges to Φ(θ) w.p.1 as n0 → ∞. We will not assume independence

in the proof of convergence theorem. In lieu of using (2.2.6) with Φ̂(θ, ξ±n,l), we will use the

form Φ̂(θ, ξn).
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To obtain the desired estimate, we construct a stochastic approximation procedure with

finite difference gradient estimates. Define Y ±
n = (Y ±,1

n , Y ±,2
n ) as

Y ±,ι
n (θ, ξ±n ) = Φ̂(θ ± δneι, ξ

±
n ), for, ι = 1, 2, (2.2.8)

where eι is the standard unit vector with e1 = (1, 0)′ and e2 = (0, 1)′, ξ±n are two different

collective noises taken at threshold values θ ± δneι, respectively, and δn is the a difference

sequence satisfying δn → 0 as n→ ∞. We write Y ±
n = Y ±

n (θ, ξ±n ). For simplicity, henceforth,

we often use ξn to represent ξ+
n and ξ−n if there is no confusion. The gradient estimate at

iteration n is given by

DΦ̂(θn, ξn)
def
= (Y +

n − Y −
n )/(2δn). (2.2.9)

Then the recursive algorithm is

θn+1 = θn + εnDΦ̂(θn, ξn), (2.2.10)

where εn is a sequence of real numbers known as step size. A frequently used choice of step

size and finite difference sequences is εn = O(1/n) and δn = O(1/n1/6). Throughout this

chapter, this is our default choice of step size and finite difference sequences.

To proceed, we define

λn = (Y +
n − Y −

n ) −En(Y +
n − Y −

n ),

ηι
n = [EnY

+,ι
n − Φ(θn + δneι)] − [EnY

−,ι
n − Φ(θn − δneι)], ι = 1, 2,

βι
n =

Φ(θn + δneι) − Φ(θn − δneι)

2δn
− Φθι(θn), ι = 1, 2,

(2.2.11)

where En denotes the conditional expectation with respect to Fn, the σ-algebra generated

by {θ1, ξ±j : j < n}, Φθι(θ) = (∂/∂θι)Φ(θ), and Φθ = (Φθ1(·),Φθ2(·))′ denotes the gradient of

Φ(·). In the above, ηι
n and βι

n for ι = 1, 2 represent the noise and bias, and λn is a martingale

difference sequence. It is reasonable to assume that after taking the conditional expectations,
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the resulting function is smooth. Thus we separate the noise into two parts, uncorrelated

noise λn and correlated noise ηn. In what follows, we write ηn = (η1
n, η

2
n)

′ and βn = (β1
n, β

2
n)′,

and note that ηn = ηn(θn, ξn) With the above definitions, algorithm (2.2.10) becomes

θn+1 = θn + εnΦθ(θn) + εn
λn

2δn
+ εnβn + εn

ηn(θn, ξn)

2δn
. (2.2.12)

2.3 Convergence

This section studies the convergence of the recursive algorithm. We will show that θn defined

in (2.2.10) is closely related to an ordinary differential equation (ODE). The stationary points

of the ODE are the optimal buying and selling prices that we are seeking.

To carry out the study of convergence, we define the following:





tn =
n−1∑

i=1

εi, m(t) = max{n : tn ≤ t},

θ0(t) = θn for t ∈ [tn, tn+1), θ
n(t) = θ0(t+ tn),

Nn = min{i : tn+i − tn ≥ T}, for an arbitrary T > 0.

(2.3.1)

Note that θ0(·) is a piecewise constant process and θn(·) is its shift. With the above definition,

the interpolated process θn(·) becomes

θn(t) = θn+

m(tn+t)−1∑

j=n

εjΦθ(θj)+

m(tn+t)−1∑

j=n

εj
λj

2δj
+

m(tn+t)−1∑

j=n

εjβj+

m(tn+t)−1∑

j=n

εj

2δj
ηj(θj , ξj). (2.3.2)

We need the following conditions:

(A2.1) The second derivative Φθθ(·) is continuous.

(A2.2) For each compact set G,

(a) supnE|Y ±
n I{θn∈G}|2 <∞.
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(b) For each θ belonging to a bounded set,

sup
n

n+Nn−1∑

j=n

E
1

2 |Enηj(θ, ξj)|2 <∞, lim
n

sup
0≤i<Nn

E|γ̃n
i | = 0, (2.3.3)

where γ̃n
i =

1

εn+i

n+Nn−1∑

j=n+i

εj

2δj
En+i[ηj(θn+i+1, ξj) − ηj(θn+i, ξj)], i ≤ Nn − 1.

Remark 2.3.1. Our default choice of step size and finite difference sequences is εn = O(1/n)

and δn = O(1/n1/6). It follows that the sequences {εn} and {δn} satisfy 0 < εn → 0,
∑

n εn = ∞, 0 < δn → 0, and εn/δ
2
n → 0 as n→ ∞. Moreover,

lim sup
n

sup
0≤i≤Nn−1

εn+i

εn

<∞, lim sup
n

δn+i

δn
<∞,

lim sup
n

[
(εn+i/δ

2
n+i)

(εn/δ2
n)

]
<∞.

For simplicity, we use a mixing condition. Assume that ξ±n = g0(ζ
±
n ) where g0(·) is a real-

valued function, {ζ±n,`} are homogeneous finite-state Markov chains whose transition matrices

are irreducible and aperiodic. Thus the noise is bounded since the Markov chain takes only

finite values. Then ξ±n,` are φ-mixing sequences with exponential mixing rates ([3, p.167]),

i.e., $(j) = c0$
j for some c0 > 0 and some 0 < $ < 1. Using the exponential mixing rates,

conditions (A2.2)(a) and (A2.2)(b) are easily verified.

To obtain convergence, we first prove the tightness of θn(·) (2.3.2) and then extract its

weak limit(see Kushner [26] and Kushner and Yin [27]). We will use a truncation device. Let

b be a fixed but otherwise arbitrary positive real number, and ψb(·) be a smooth function

with compact support satisfying ψb(h) = 1 when |θ| ≤ b, and ψb(θ) = 0 when |θ| ≥ b + 1.

Corresponding to (2.2.12), {θb
n} is defined recursively by θb

1 = θ1 and

θb
n+1 = θb

n +

[
εnΦθ(θ

b
n) +

εn

2δn
λn + εnβn + εn

ηn(θb
n, ξn)

2δn

]
ψb(θ

b
n), n ≥ 1. (2.3.4)

Similar as θ0(t) and θn(t), we define the interpolation as θ0,b(t) = θb
n for t ∈ [tn, tn+1)

and θn,b(t) = θ0,b(tn + t). Note that θn,b(t) = θn(t) until the first exit from the b-sphere
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Sb = {θ ∈ R
2 : |θ| ≤ b}. Thus, θn,b(·) is a b-truncation of θn(·) (see [26, p. 43] and [27, p.

268]).

In light of (A2.1), the continuity of Φθθ(·) implies the boundedness of Φθθ(θ) for θ in a

bounded set. Thus, for each ι = 1, 2,

βι
nψb(θ

b
n) =

[
Φ(θn + δneι) − Φ(θn − δneι)

2δneι
− Φθι(θn)

]
ψb(θ

b
n)

= O

( |Φθθ(θ
+
n )|δ2

n

2δn

)
= O(δn),

(2.3.5)

where θ+
n is on the line segment connecting θb

n − δneι and θb
n + δneι.

In light of (2.3.2) and (2.3.4), the truncated process {θn,b(·)} can be rewritten as:

θn,b(t) = θb
n +

m(tn+t)−1∑

j=n

(
εjΦθ(θ

b
j) +

εj

2δj
λj + εjβj +

εj

2δj
ηj(θ

b
j , ξj)

)
ψb(θ

b
j).

In the process of averaging,
∑m(tn+t)−1

j=n (εj/(2δj))ηj(θ
b
j , ξj)ψb(θ

b
j) is difficult to deal with.

We claim that this term has weak limit 0. To proceed, define

∆n,i =
n+i∑

j=n

εj

2δj
ηj(θ

b
j , ξj)ψb(θ

b
j), i ≤ Nn − 1,

∆n(t) = ∆n,i for t ∈ [tn+i, tn+i+1),

Γn
i =

n+Nn−1∑

j=n+i

εj

2δj
En+iηj(θ

b
n+i, ξj)ψb(θ

b
n+i), i ≤ Nn − 1,

γn
i =

1

εn+i

n+Nn−1∑

j=n+i

εj

2δj
En+i

[
ηj(θ

b
n+i+1, ξj)ψb(θ

b
n+i+1) − ηj(θ

b
n+i, ξj)ψb(θ

b
n+i)

]
, i ≤ Nn − 1.

(2.3.6)

Note that Γn
i and γn

i are introduced to add some perturbations so as to eliminate certain

un-wanted terms. This follows from the use of perturbed test function methods, which have

been successfully used in stochastic systems after introduction to treat problems arising in

partial differential equations. (see Kushner and Yin [27]).
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Lemma 2.3.2 Under (A2.1)–(A2.2), ∆n(·) converges weakly to 0.

Proof. Define lκn = n+ min{i : |∆n,i| > κ}, for each κ > 0. We first obtain the weak limit of

the truncated sequence {∆n,κ(·)}, which is defined by

∆n,κ(t) =

(m(tn+t)−1)∧lκn∑

j=n

εj

2δj
ηj(θ

b
j , ξj)ψb(θ

b
j),

where (x ∧ y) = min(x, y).

Define

∆κ
n,i =

(n+i)∧lnκ∑

j=n

εj

2δj
ηj(θ

b
j , ξj)ψb(θ

b
j), i ≤ Nn − 1. (2.3.7)

Then

sup
0≤i≤Nn−1

|∆κ
n,i| ≤ κ+ sup

1≤j≤Nn−1

εn+j

2δn+j

|ηn+j(θ
b
n+j, ξn+j)ψb(θ

b
n+j)|. (2.3.8)

By virtue of Remark 2.3.1, applying Chebyshev’s inequality yields that for 0 ≤ j ≤ Nn − 1,

and for any µ > 0,

P

(
sup

0≤j<Nn

εn+j

2δn+j
|ηn+j(θ

b
n+j , ξn+j)ψb(θ

b
n+j)| ≥ µ

)

≤
Nn−1∑

j=0

P

(
εn+j

2δn+j
|ηn+j(θ

b
n+j, ξn+j)ψb(θ

b
n+j)| ≥ µ

)

≤ KT

µ2
O(
εn

δ2
n

)
Nn−1∑

j=0

εn+j lim sup
n

(εn+j/δ
2
n+j)

(εn/δ2
n)

→ 0 as n→ ∞.

(2.3.9)

Thus for each κ, {∆n,κ(·)} is bounded in probability in view of of (2.3.8) and (2.3.9).

Next we apply the perturbed test function method of Kushner and Yin [27, Theorem

7.4.3]. Let π(·) ∈ C2
0 (the space of real-valued C2 functions with compact support). Note

that by definition (2.3.7), En+i

[
π(∆κ

n,i+1) − π(∆κ
n,i)
]

= 0 for n + i ≥ lnκ . Thus we need only

consider n+ i < lnκ in what follows. For n + i < lnκ ,

En+i

[
π(∆κ

n,i+1) − π(∆κ
n,i)
]

= π′
h(∆

κ
n,i)

εn+i

2δn+i
En+iηn+i(θ

b
n+i, ξn+i)ψb(θ

b
n+i)

+O

(
ε2

n+i

δ2
n+i

) ∣∣En+iηn+i(θ
b
n+i, ξn+i)ψb(θ

b
n+i)

∣∣2 .
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Define a perturbed test function by

πn
i = π(∆κ

n,i) + π′
θ(∆

κ
n,i)Γ

n
i ,

where Γn
i is defined by (2.3.6). Note that

En+i

[
π′

θ(∆
κ
n,i)Γ

n
i+1 − π′

θ(∆
κ
n,i)Γ

n
i )
]

= En+i

[
π′

θ(∆
κ
n,i+1) − π′

θ(∆
κ
n,i)
]
Γn

i+1 + En+iπ
′
θ(∆

κ
n,i)[Γ

n
i+1 − Γn

i ],

since

En+i[πθ(∆
κ
n,i+1) − π′

θ(∆
κ
n,i)]Γ

n
n+i ≤ KEn+i|(∆κ

n,i+1 − ∆κ
n,i)Γ

n
i+1|

≤ K
εn+i

2δn+i
En+i|ηn+i(θ

b
n+i, ξn+i)ψb(θ

b
n+i)||Γn

i+1|,

and

En+i[Γ
n
i+1 − Γn

i ] = εn+iπ
′
θ(∆

κ
n,i)γ

n
i − εn+i

2δn+i
En+iηj(θ

b
n+i, ξn+i)ψb(θ

b
n+i).

In addition supi<Nn
|Γn

i | → 0 in probability by virtue of (A2.1)–(A2.2). We can write

En+i[π
n
i+1 − πn

i ]

= εn+iO

(
εn+i

δ2
n+i

|ηn+i(θ
b
n+i, ξn+i)ψb(θ

b
n+i)|2

)

+
εn+i

δn+i
O

(
∣∣En+iηn+i(θ

b
n+i, ξn+i)ψb(θ

b
n+i)

∣∣
∣∣∣∣∣

n+Nn∑

j=n+i+1

εj

2δj
En+i+1ηj(θ

b
n+i+1, ξj)ψb(θ

b
n+i+1)

∣∣∣∣∣

)

+εn+iπ
′
θ(∆

κ
n,i)γ

n
i ψb(θ

b
n+i).

(2.3.10)

By virtue of (A2.2), use of the truncation function ψb(·) yields that {|ηn(θb
n, ξn)|ψb(θ

b
n)}

is uniformly integrable. Together with εn/δ
2
n → 0, this implies that the term on the second
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line of (2.3.10) goes to 0 in mean uniformly in 0 ≤ i ≤ Nn −1. Again, using (A2.2), the term

on the third line also tends to 0 in mean uniformly in 0 ≤ i ≤ Nn − 1 and the expectation

of the last term is bounded by O(εn/δ
2
n) → 0 uniformly in 0 ≤ i ≤ Nn − 1. Thus, in light of

Kushner and Yin [27, Theorem 7.4.3], the weak limit of κ-truncated sequence {∆n,κ(·)} is

a zero process. Finally, [27, Theorem 7.3.6] implies that the original un-truncated sequence

{∆n(·)} also converges to the zero process. �

Theorem 2.3.3. Assume that (A2.1)–(A2.2) and that {θn} is tight in R
2. Then θn(·) con-

verges weakly to θ(·), the solution to the differential equation

θ̇ = Φθ(θ), (2.3.11)

which has a unique solution for each initial condition.

Proof. The proof is divided into three steps. We will first prove that {θn,b(·)} is tight and

thus derive its weak convergence. Using this truncated process, we can obtain the convergence

of θn(·)

Step 1: We proceed to obtain the tightness of {θn,b(·)}. For any ν > 0, t > 0, and

0 ≤ s ≤ ν, using(2.3.4), it is straight forward to see that

θn,b(t+ s) = θn,b(t) = θ̃n,b(t+ s) − θ̃n,b(t) + on(1), (2.3.12)

where

θ̃n,b(t+ s) − θ̃n,b(t) =

m(tn+t+s)−1∑

j=m(tn+t)

εj

[
Φθ(θ

b
j) +

λj

2δj
+ βj

]
ψb(θ

b
j), (2.3.13)

and on(1) converges weakly (or in probability) to 0 as n→ ∞. By virtue of Kushner [26, p.

50, Lemma 5], to obtain the tightness of {θn,b(·)}, we just need to prove {θ̃n,b(·)} is tight.
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Denote by En
t the conditional expectation with respect to Fn

t = σ{θn(s) : s ≤ t}; then

En
t

∣∣∣θ̃n,b(t+ s) − θ̃n,b(t)
∣∣∣
2

≤ KEn
t

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

εjΦθ(θ
b
j)ψb(θ

b
j)

∣∣∣∣∣∣

2

+KEn
t

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

εj
λj

2δj
ψb(θ

b
j)

∣∣∣∣∣∣

2

+KEn
t

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

εjβjψb(θ
b
j)

∣∣∣∣∣∣

2

≤ O






m(tn+t+s)−1∑

j=m(tn+t)

εj




2

+

m(tn+t+s)−1∑

j=m(tn+t)

ε2
j

4δ2
j




2

,

Thus limν→0 lim supnEE
n
t |θ̃n,b(t+ s) − θ̃n,b(t)|2 = 0. The tightness criterion (see Ethier and

Kurtz [15, Section 3.8, p. 132] and Kushner [26, p. 47]) implies that {θ̃n,b(·)} is tight and so

is {θn,b(·)}.

Step 2: We will extract the weak limit of {θn,b(·)}. Because of the tightness of {θn,b(·)},

we can extract a convergent subsequence, and for simplicity, still denote it by θn,b(·).

Since {λn} is a martingale difference sequence,

E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

εj

2δj
λjψb(θ

b
j)

∣∣∣∣∣∣

2

=

m(tn+t+s)−1∑

j=m(tn+t)

ε2
j

4δ2
j

E|λjψb(θ
b
j)|2 → 0 as n→ ∞.

Hence, the second term in square brackets of (2.3.13) goes to 0 in probability uniformly in t

as n→ ∞.

For t, s > 0, in view of(2.3.5), let n→ ∞,

E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

εjβjψb(θ
b
j)

∣∣∣∣∣∣
≤ K




m(tn+t+s)−1∑

j=m(tn+t)

εj


O(δm(tn+t)) → 0.

Thus the last term in square brackets of (2.3.13) has limit 0.
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To deal with the first term in square brackets of (2.3.13). Take a sequence of positive real

numbers {ςn} such that

ςn → 0, and
1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

εj → 1 as n→ ∞.

Note that

m(tn+t+s)−1∑

j=m(tn+t)

εjΦθ(θ
b
j)ψb(θ

b
j) =

∑

l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

εjΦθ(θ
b
j)ψj(θ

b
j).

By the smoothness of Φθ(·) and ψb(·), the limit of 1
ςn

∑m(tn+t+(l+1)ςn)−1
j=m(tn+t+lςn) εjΦθ(θ

b
j)ψb(θ

b
j) is

the same as that of

1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

εjΦθ(θ
b
m(tn+t+lςn))ψb(θ

b
m(tn+t+lςn))

as n→ ∞. Fix ũ and let tm(tn+t+lςn) → ũ as n→ ∞, we only need to verify that

1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

εjΦθ(θ
b
m(tn+t+lςn))ψb(θ

b
m(tn+t+lςn)) → Φθ(θ

b(ũ))ψb(θ
b(ũ)) (2.3.14)

in probability as n→ ∞. For each ν > 0, select a finite number of disjoint sets Aν
ι , ι = 1, . . . , r

such that the range of {θb
n} is contained in ∪r

ι=1A
ν
ι and

P (θn,b(ũ) ∈ ∂Aν
ι ) = 0, and diam(Aν

ι ) ≤ ν, (2.3.15)

where ∂Aν
ι denotes the boundary of Aν

ι . Pick a point θν
ι in Aν

ι ; then we can approximate

the term on the left-hand side of (2.3.14) by using a small ν > 0 via

r∑

ι=1

I{θn,b(eu)∈Bν
ι }

1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

εjΦθ(θ
ν
ι )ψb(θ

ν
ι ).

In light of the choice of ςn together with the interpolation, we have

∑

l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

εjΦθ(θ
b
j)ψb(θ

b
j) →

∫ t+s

t

Φθ(θ
b(ũ))ψb(θ

b(ũ))dũ.

Therefore, we conclude that θn,b(·) converges weakly to θb(·) as n→ ∞ such that

θb(t+ s) − θb(t) =

∫ t+s

t

Φθ(θ
b(ũ))ψb(θ

b(ũ))dũ.
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Therefore mean ODE θ̇b(t) = Φθ(θ
b(t))ψb(θ

b(t)) is obtained.

Step 3: We will prove the convergence of θn(·).

Indeed, we only need to show that for each T > 0,

lim sup
b→∞

lim sup
n→∞

P (θn,b(t) 6= θn(t) for some t ≤ T ) = 0.

This follows immediately from the argument in [27, Chapter 8]. The details are not shown

here. �

Corollary 2.3.4. Suppose that (2.3.11) has a unique stationary point θ∗ that is globally

asymptotically stable in the sense of Liapunov, and that {sn} is a sequence of real numbers

such that sn → ∞. Then θn(sn + ·) converges weakly to θ∗ as n→ ∞.

Proof. Let T > 0 and choose a convergent subsequence {(θn(sn + ·), θn(sn − T + ·))} with

limit (θ(·), θT (·)). It is straight forward to show that θ(0) = θT (T ). Even though the value

of θT (0) may not be known, the collection of possible {θT (0)} over all T and all convergent

subsequences belongs to a tight set. In view of the stability of the ODE, for any ν > 0 there

is a 0 < Tν < ∞ such that for all T > Tν , P (θT (T ) ∈ B(θ∗, ν)) ≥ 1 − ν, where B(θ∗, ν) is a

neighborhood of θ∗ with radius ν. Thus the desired result follows. �

2.4 Rate of Convergence

This section is devoted to the rate of convergence of the algorithm (2.2.10). For simplification,

we take εn = 1/n and δn = δ/n1/6. We assume all the conditions of Theorem 2.3.3 hold.

Define un = n1/3(θn − θ∗). The rate of convergence study aims to exploit the asymptotic

properties of this scaled sequence. We shall show that the weak limit of the interpolation of

un is a diffusion process. To proceed, let us state conditions needed in what follows.

(A2.3) Assume θn → θ∗ in probability, and Φθθθ(·) exists and is continuous in a neighborhood

of θ∗. In addition, assume
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(a) {un} is tight;

(b) all eigenvalues of Φθθ(θ∗) + (1/3)I have negative real parts;

(c) for each θ,

ηn(θ, ξ) = ηn(θ∗, ξ) +ηn,θ(θ∗, ξ)(θ − θ∗)

+

(∫ 1

0

[ηn,θ(θ∗ + (θn − θ∗)s, ξ) − ηn,θ(θ∗, ξ)]ds

)
(θ − θ∗);

(d) the sequence {ηn(θ∗, ξn)} is stationary φ-mixing such that E|ηn(θ∗, ξn)|2+∆ < ∞

for some ∆ > 0 and Eηn(θ∗, ξn) = 0 and that the mixing measure $(·) is

given by $(j) = supA∈Fn+j E(1+∆)/(2+∆)|P (A|Fn) − P (A)|(2+∆)/(1+∆), satisfying
∑∞

j=1 ($(j))∆/(1+∆) <∞.

Remark 2.4.1. Applying perturbed Liapunov function methods, (A2.3)(a) can be verified.

(see Kushner and Yin [27, Section 10.4]). The existence and continuity of Φθθθ(·) in a neigh-

borhood of θ∗ allows us to linearize Φ(·) about θ∗. Conditions (A2.3) (c) and (d) concern

the sequence ηn(θ, ξ). Let us examine these conditions in conjunction with (2.2.6) and using

independent samples and noises {ξ±n,l}. It is important to note that due to the use of the

stopping times τ {bi} and τ {si}, Φ̂(θ, ξ) defined in (2.2.6) may not be continuous in θ. However,

we can assume that its expectation is smooth.

Take for instance, Φ̃(θ, ξ) = Φ(θ) + f0(θ)ξ, where f0(θ) is a bounded and continuous

function. Suppose that for a positive integer m0, {ξ±n,l} are m0-dependent sequences (see

Billingsley [3, p.167]). For example, ξ±n,l =
∑m0

j=0 cjζ
±
n−j,l, where {ζ±n,l} are martingale difference

sequences satisfying E|ζ±n,l|2 <∞. Then they are mixing processes and the mixing measures

satisfy $(j) = 0 for all j > m0. For each θ belonging to a bounded set, it is easily verified

that E
∣∣∣ 1
n0

∑n0

l=1[Φ̃(θ + δneι, ξ
±
n,l)]
∣∣∣
2

< ∞. Thus E|Y ±,ι
n |2 < ∞. In addition, for each j > n,

En[ηj(θ, ξj)] = En{[EjY
+,ι
j (θ, ξj) − Φ(θ + δn)] − [EjY

−,ι(θ, ξj)j − Φ(θ − δn)]} = 0. It is easy

to see that ηn(θ∗, ξn) is a zero mean sequence and is φ-mixing (in fact n0-dependent). Thus

(A2.3)(d) is verified.
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Let

λ∗,ιn = Φ̂(θ∗ + δneι, ξ
+
n ) − Φ̂(θ∗ − δneι, ξ

−
n )

and

λ∗n = (λ∗,1n , λ∗,2n )′ be a column vector.

Together with (2.2.8), the integrability and the convergence of θn to θ∗ imply that

E|λn − λ∗n|2 → 0 as n→ ∞. (2.4.1)

Lemma 2.4.2. Assume (A2.1)–(A2.3).

(a) The following inequalities hold:

|Eηj(θ∗, ξj)ηk(θ∗, ξk)| ≤ K ($(j))∆/(1+∆) ,

E
∣∣E(ηn+j(θ∗, ξn+j)

∣∣Fn)
∣∣ ≤ K ($(j))∆/(1+∆) ;

(2.4.2)

(b) The weak limit of the sequence
∑m(tn+t)−1

j=n (ηj(θ∗, ξj)+λ
∗
j )/

√
j is an R

2-valued Brownian

motion w̃(·) with covariance Σt,

Proof. Part (a) of the lemma follows that of Ethier and Kurtz [15, Propositions 7.2.2 and

7.2.4]; part (b) can be proved similarly to [15, Theorem 7.3.1]. We omit the details here.

�

In what follows, we shall show that the interpolation of un(·) is tight and extract its weak

limit.

Using (2.2.10), (A2.1), and δn = δ/n1/6, we obtain

θn+1 − θ∗ = θn − θ∗ +
1

n
Φθθ(θ∗)(θn − θ∗) +

1

n
5

6

λn

2δ
+

1

n
βn +

1

n
5

6

ηn(θn, ξn)

2δ

+
1

n

(∫ 1

0

(θn − θ∗)
′Φθθθ(θ∗ + (θn − θ∗)s)ds

)
(θn − θ∗).

(2.4.3)
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Without loss of generality, assume that {un} is bounded, otherwise, we can use a truncation

device as in the proof of the convergence of the algorithm in the previous section. Then

we show that the truncated process converges, and finally conclude that the un-truncated

process also converges. Since

(
n+ 1

n
)

1

3 = 1 +
1

3n
+O(

1

n2
),

by virtue of (A2.3) we arrive at

un+1 = un +
1

n
(Φθθ(θ∗) + (

1

3
)I)un +

1

n
(n

1

3βn) +
1√
n

1

2δ
(ηn(θ∗, ξn) + λ∗n)

+

(
n+ 1

n

) 1

3 1

n

(∫ 1

0

u′nΦθθθ(θ∗ +
s

n
1

3

un)ds

)
un

+

(
n+ 1

n

) 1

3 1

n
7

6

(∫ 1

0

[ηn,θ(θ∗ +
s

n
1

3

un), ξn) − ηn,θ(θ∗, ξn)]ds

)
un

+

(
n+ 1

n

) 1

3 1√
n

1

2δ
(λn − λ∗n) +

1

n
o(1 + |un|).

(2.4.4)

Define a piecewise constant interpolation

u0(t) = un, t ∈ [tn, tn+1), and un(t) = u0(tn + t).

It can be demonstrated that using the definition of interpolation in (2.4.4), the following

three terms

m(tn+t+s)−1∑

j=m(tn+t)

(
j + 1

j

) 1

3 1

j

(∫ 1

0

u′jΦθθθ(θ∗ +
s

j
1

3

uj)ds

)
uj,

m(tn+t+s)−1∑

j=m(tn+t)

(
j + 1

j

) 1

3 1

j
7

6

(∫ 1

0

[ηj,θ(θ∗ +
s

j
1

3

uj), ξj) − ηj,θ(θ∗, ξj)]ds

)
uj,

m(tn+t+s)−1∑

j=m(tn+t)

1

j
o(1 + |uj|)
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are asymptotically unimportant and contribute a limit 0 in distribution. Furthermore, note

that {λn − λ∗n} is a martingale difference sequence

E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

(
n+ 1

n

) 1

3 1√
j
(λj − λ∗j )

∣∣∣∣∣∣

2

=

m(tn+t+s)−1∑

j=m(tn+t)

(
n+ 1

n

) 2

3 1

j
E|λj − λ∗j |2 → 0 as n→ ∞

by (2.4.1). This leads to

un(t+ s) − un(t) =

m(tn+t+s)−1∑

j=m(tn+t)

1

j
(Φθθ(θ∗) + (

1

3
))uj +

m(tn+t+s)−1∑

j=m(tn+t)

1

j
(j

1

3βj)

+

m(tn+t+s)−1∑

j=m(tn+t)

1√
j

1

2δ
(ηj(θ∗, ξj) + λ∗j ) + o(1),

(2.4.5)

where o(1) → 0 in probability uniformly in t.

To proceed, let us state the following lemma.

Lemma 2.4.3. Under (A2.1-A2.3),the sequence un(·) is tight.

Proof. Under the boundedness of {un} for each ν > 0, t, s > 0 with s < ν, we obtain

En
t |un(t+ s) − un(t)|2

≤ KEn
t

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1

j
(Φθθ(θ∗) + (

1

3
)I)uj

∣∣∣∣∣∣

2

+KEn
t

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1

j
(j

1

3βj)

∣∣∣∣∣∣

2

+KEn
t

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1√
j
(ηj(θ∗, ξj) + λ∗j)

∣∣∣∣∣∣

2

+ o(1)

≤ Ks2 +K

m(tn+t+s)−1∑

j=m(tn+t)

∑

k>j

1√
j

1√
k
|En

t [ηj(θ∗, ξj) + λ∗j ][Ej+1(ηk(θ∗, ξk) + λ∗k)]| + o(1),

(2.4.6)
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where o(1) → 0 as n→ ∞. Using (2.4.2) leads limν→0 lim supn→∞EEn
t |un(t+s)−un(t)|2 = 0.

Hence the tightness follows. �

Theorem 2.4.4. Assume that (A2.3) holds. Then un(·) converges weakly to a diffusion

process u(·) that is a solution of the stochastic differential equation

du =





(
Φθθ(θ∗) +

I

3

)
u+

δ2

3!




Φθ1,θ1,θ1(θ∗)

Φθ2,θ2,θ2(θ∗)








dt+
1

2δ
dw̃, (2.4.7)

where w̃(·) is the Brownian motion with covariance Σ1/2(Σ1/2)′t = Σt given by Lemma 2.4.2.

Proof. Since un(·) is tight, we proceed to characterize the limit process u(·). Consider the

bias term βn, by virtue of (A2.1) and (A2.3), a Taylor expansion of βn yields

βn =
Φ(θn + δneι) − Φ(θn − δneι)

2δn
− Φθι(θn)

=
1

3!
Φθιθιθι(θ∗) +

1

3!
(Φθιθιθι(θn) − Φθιθιθι(θ∗)) + o(δ2

n),
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and the last term above goes to 0 in mean and hence in probability as n → ∞. Since

δ2
n = δ2/n1/3, then we have

m(tn+t+s)−1∑

j=m(tn+t)

1

j
j1/3βj =

δ

3!

m(tn+t+s)−1∑

j=m(tn+t)

1

j




Φθ1,θ1,θ1(θj)

Φθ2,θ2,θ2(θj)




+

m(tn+t+s)−1∑

j=m(tn+t)

1

j
o(1)

=
δ

3!

∑

l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

1

j




Φθ1,θ1,θ1(θ∗)

Φθ2,θ2,θ2(θ∗)




+

m(tn+t+s)−1∑

j=m(tn+t)

1

j
o(1)

+
δ

3!

∑

l

ςn
1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

1

j
O(|Φθθθ(θn) − Φθθθ(θ∗)|)

=
δ

3!

∑

l




Φθ1,θ1,θ1(θ∗)

Φθ2,θ2,θ2(θ∗)




ςn


 1

ςn

m(tn+t+(l+1)ςn)−1∑

j=m(tn+t+lςn)

1

j


+ o(1),

where o(1) → 0 in probability as n → ∞ by virtue of θn → θ∗ in probability and the conti-

nuity of Φθθθ(·) (in a neighborhood of θ∗). Moreover, since (1/ςn)
∑m(tn+t+(l+1)ςn)−1

j=m(tn+t+lςn) (1/j) → 1

as n→ ∞, the limit of the next to the last term yields

m(tn+t+s)−1∑

j=m(tn+t)

1

j
j1/3βj → δ2




Φθ1,θ1,θ1(θ∗)

Φθ2,θ2,θ2(θ∗)




s.

Thus the desired result follows. �

Remark 2.4.5. To easily handle real market data, we do not take a sample average as in

(2.2.6). Instead of that, we set n0 = 1 and use Φ̂(θ, ξ±n ) = Φ̃(θ, ξ±n ) without using sample
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averages. The resulting estimate is not expected to be a smooth and the bias will be larger.

Nevertheless, it does provide us a reasonable estimate.

Define Y ±
n as in (2.2.8) and use algorithm (2.2.10). Since conditions concerning the noise

given in Section 2.3 and 2.4 all refer to the function Φ̂(θ, ξn), we obtain the convergence

and rate of convergence of the algorithm just as in the previous sections. We summarize the

above as the following proposition.

Proposition 2.4.6. Let n0 = 1, under the conditions of Theorem 2.3.3 and Theorem 2.4.4,

the conclusions of these theorems continue to hold.

2.5 Numerical Demonstration

In this section, we report our simulation results and numerical experiments. We first use

Monte Carlo simulation and compare our algorithm with the analytic solution obtained in

[40]. Then we test our algorithm using real market data.

2.5.1 Simulation Study

In this section, we compare the results of stochastic approximation algorithm with the closed-

form solution in Zhang and Zhang [40]. We find that the proposed algorithm indeed provides

good approximation results. Recall that the mean-reverting SDE follows

dX(t) = a(b−X(t))dt+ σdW (t), X(0) = x, (2.5.1)

and the stock price is given by S(t) = exp(X(t)). First, we take a = 0.8, b = 2, σ = 0.5,

x = 0, let the slippage rate K = 0.01, and the discount rate ρ = 0.5. In this case, the analytic

solution in [40] gives (θ1
∗, θ

2
∗) = (1.331, 1.631).

We let n0 = 5000, where n0 is the number of random samples used in each iteration; see

(2.2.6). Then we use (2.5.1) to simulate the stock prices and the recursive algorithm (2.2.10)

is applied for 200 iterations. The sequence of ξn and δn are chosen to be ξn = 1/(n+ k0) and

δn = 1/(n1/6 + k1), respectively, where k0 and k1 are some positive constants. The proposed
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algorithm yields the optimal estimation of (θ1, θ2) = (1.3225, 1.6292). The (absolute) error =
√

(θ1 − θ1
∗)

2 + (θ2 − θ2
∗)

2 = 0.0087, and the relative error = error/
√

(θ1
∗)

2 + (θ2
∗)

2 = 0.0041.

Note that the analytic solutions depend on the knowledge of various parameters: a, b,

σ, K and ρ. We next vary one of the parameters at a time and compare the approximation

results with analytic results.

We first vary the values of b, the equilibrium levels of stock price. Then we compute the

threshold values (θ1, θ2) associated with varying b. Intuitively, larger b would result in larger

threshold values (θ1, θ2). Our approximation results confirm this. The detail results are

reported in Table 2.1, where θ1
∗ and θ2

∗ are threshold values calculated by analytic solution

and θ1 and θ2 are threshold values calculated by SA method; see (2.2.10).

b 1 1.5 2 2.5 3

θ1
∗ 0.331 0.831 1.331 1.831 2.331

θ2
∗ 0.631 1.131 1.631 2.131 2.631

θ1 0.3303 0.8211 1.3225 1.8199 2.3127

θ2 0.6504 1.1384 1.6292 2.1403 2.6407

error 0.0194 0.0124 0.0087 0.0145 0.0207

relative error 0.0272 0.0088 0.0041 0.0052 0.0059

Table 2.1: (θ1, θ2) with varying b: average error = 0.01511, average relative error = 0.0102

Next, we vary a. A larger a means fast reversion rate for Xt to reach the equilibrium

level b and thus results in larger reward in short time. Consistently, Table 2.2 shows that

the values of (θ1, θ2) increase in a.
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a 0.6 0.7 0.8 0.9 1

θ1
∗ 1.175 1.264 1.331 1.383 1.425

θ2
∗ 1.375 1.564 1.631 1.683 1.725

θ1 1.146 1.238 1.300 1.367 1.425

θ2 1.497 1.559 1.621 1.685 1.731

error 0.1254 0.0265 0.0326 0.016 0.006

relative error 0.0693 0.0132 0.0155 0.0074 0.0027

Table 2.2: (θ1, θ2) with varying a: average error = 0.0413, average relative error = 0.0216

In Table 2.3, we vary the volatility σ. The larger the σ, the greater the range for the

stock price St = exp(Xt). Table 2.3 shows the values (θ1, θ2) increase in σ.

In Table 2.4, we vary the discount rate ρ. A larger discount rate ρ implies smaller return

and smaller threshold values (θ1, θ2). These are confirmed in Table 2.4.

Finally, we choose different slippage rates K. The results in Tables 2.5 suggest that θ1 is

decreasing slightly in K and θ2 is almost flat. The possible explanation is that larger slippage

cost discourages stock transactions and thus has to be compensated by smaller θ1.

It is clear to see from the above tables that the stochastic approximation constructed in

this chapter indeed provide sound estimates of optimal threshold values (θ1, θ2). Overall, the

average error is 0.0440 and the average relative error is only 0.0220, or 2.20%.
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σ 0.3 0.4 0.5 0.6 0.7

θ1
∗ 1.231 1.275 1.331 1.400 1.481

θ2
∗ 1.531 1.575 1.631 1.700 1.781

θ1 1.213 1.274 1.316 1.360 1.469

θ2 1.496 1.564 1.624 1.732 1.831

error 0.0394 0.0110 0.0166 0.0512 0.0514

relative error 0.0200 0.0055 0.0079 0.0232 0.0222

Table 2.3: (θ1, θ2) with varying σ: average error = 0.0339, average relative error = 0.0158

2.5.2 Tests with Market Data

In this section, we study the performance of the algorithm using real market data. The

proposed algorithm is employed as follows:

Step 1. We collect stock prices during the period January 2, 2002 to December 31, 2007;

Step 2. We divide the whole period into three sub-periods: Period 1, the first 500 trading

days beginning at January 2, 2002; Period 2, the subsequent 500 trading day following

Period 1; and Period 3, the next 500 trading days following Period 2;

Step 3. We run 600 iterations of stochastic approximation algorithm (2.2.10) on stock prices

in the Period 1 and compute the threshold values (θ1, θ2);

Step 4. We use the threshold values (θ1, θ2) obtained in Step 3 to simulate trading the same

stock in Period 2 and compute the overall dollar return. Recall that we buy stocks
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ρ 0.3 0.4 0.5 0.6 0.7

θ1
∗ 1.681 1.456 1.331 1.206 1.081

θ2
∗ 1.781 1.756 1.631 1.506 1.281

θ1 1.604 1.440 1.320 1.181 1.060

θ2 1.901 1.782 1.627 1.521 1.384

error 0.1426 0.0305 0.0117 0.0292 0.1051

relative error 0.0582 0.0134 0.0056 0.0151 0.0627

Table 2.4: (θ1, θ2) with varying ρ: average error = 0.0638, average relative error = 0.0310

whenever stock price S(t) < exp(θ1) and sell stocks whenever stock price S(t) >

exp(θ2);

Step 5. Again, we run 600 iterations of algorithm (2.2.10) on stock prices in the Period 2 and

compute the threshold values (θ1, θ2);

Step 6. We use the threshold values (θ1, θ2) calculated in Step 5 to simulate trading the same

stock in Period 3 and compute the overall dollar return.

In the above procedure, if a stock is bought in any period but the stock price doesn’t

exceed the selling price after buying, we will sell stock at the end of the period regardless

of selling price. Now we choose different stocks to conduct above experiment. For example,

Figure 2.2 is the graph of historical prices of Wal-Mart Stores Inc. during the period January

2nd, 2002 to December 31st, 2007.

Applying the stochastic approximation algorithm to Period 1, the computed buying price
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K 0.001 0.005 0.01 0.015 0.02

θ1
∗ 1.431 1.431 1.331 1.331 1.231

θ2
∗ 1.631 1.531 1.631 1.531 1.631

θ1 1.413 1.351 1.316 1.264 .1252

θ2 1.585 1.619 1.624 1.633 1.634

error 0.0494 0.1189 0.0166 0.1220 0.0212

relative error 0.0228 0.0568 0.0079 0.0602 0.0104

Table 2.5: (θ1, θ2) with varying K: average error = 0.0656, average relative error = 0.0316

is $44.6088 and the selling price is $53.3786. Using these threshold values in Period 2, we

buy stock at $44.46 on Aug 23, 2005 and sell it at $47.12 at the end of Period 2. The dollar

return is $1.7442 in Period 2. Using stock prices during Period 2, the calculated buying price

is $42.2969 and the selling price is $47.8489. Applying these threshold values in Period 3,

we buy stock at $41.73 on Jul 14, 2006 and sell it at $47.92 on Sep 26, 2006, and we buy it

again at $42.06 on Sep 5, 2007 and finally sell it at $48.45 on Dec 5, 2007. The total dollar

return in Period 3 is $10.7784.

We apply the same procedure to Home Depot’s stock; see Figure 2.3 for the daily stock

price during the period January 2, 2002 to December 31, 2007.

Based on the prices of Home Depot in Period 1, after 600 iteration of (2.2.10), the

calculated buying price is $34.0484 and selling price is $38.9126. Using the threshold values

above, we trade Home Depot in Period 2. We first buy it at $33.29 on Sep 2, 2004 and sell it

at $39.45 on Nov 10, 2004. We buy it again at $33.96 on May 10, 2005. However, before the

end of Period 2, the price doesn’t rise above the selling price $38.9126 again. Thus we have
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Figure 2.2: The Prices of Wal-Mart from Jan 2, 2002 to Dec 31, 2007

to sell it on last trading day in Period 2 for $32.77. The total dollar return in Period 2 is

$3.5753. Using the prices in Period 2, the computed selling price is $32.7166 and $38.7353.

Therefore, in Period 3, we buy it at $32.61 on Dec 27, 2005 and sell it at $39.87 on Aug 9,

2007, resulting a total profit of $6.5352.

The same procedure are also applied to other stocks. The detail trading results are shown

in Table 2.6, where buying and selling prices are computed by proposed algorithm. As can

be seen, using the threshold values computed by the proposed algorithm does not necessarily

trigger transactions in every period. However, overall, the proposed algorithm in this chapter

may provide trading guidelines in practice.

2.6 Further Remarks

A stochastic approximation algorithm has been developed for buying low and selling high

strategy in stock trading. Compared with the analytic solution, the simulation results indicate

that this algorithm provides sound estimates for optimal buying and selling prices. One
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Figure 2.3: The Prices of Home Depot from Jan 2, 2002 to Dec 31, 2007

advantage of the proposed method is its simple recursive form. In addition, this method

only requires the observed stock prices. Thus this method can be easily implemented in

practice. As demonstrated by using real market data, the proposed algorithm can provide

useful guidelines for stock trading.

A note of caution is in order. The approximation only works for stocks under mean

reversion. If the stock prices do not revert to an equilibrium level, then the threshold values

provided by the proposed algorithm may make no sense in practice. Thus, before using the

stochastic approximation methods, one needs to check if the mean reversion occurs in stock

prices. Finally, we note that developing a rigorous procedure to identify mean-reverting assets

is a challenging problem and may be added to current literature.
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Period 2 Period 3

Stock Buying Selling Total Buying Selling Total

Price Price Profit Price Price Profit

AIG $52.1486 $63.6487 $13.9529 $52.0795 $59.9433 $9.04

Du Pont $30.3011 $39.50 $0.00 $36.2255 $46.00 $9.0689

Home Depot $34.0484 $38.9126 $3.5753 $32.7166 $38.7353 $6.5352

IBM $54.2993 $82.1306 $0.00 $71.8155 $833755 $10.9796

Intel $12.6282 $28.1449 $0.00 $19.4474 $26.9935 $7.5134

Microsoft $19.8149 $22.2436 $0.00 $21.0327 $26.9364 $5.8964

3M $46.989 $69.2105 $0.00 $69.8979 $80.0914 $20.0621

Verizon $25.6557 $31.5786 $0.0715 $28.8343 $34.4958 $7.6625

Wal-Mart $44.6088 $53.3786 $1.7442 $42.2969 $47.8489 $10.7784

Table 2.6: Trading Results



Chapter 3

Recursive Algorithms for Trailing Stop

3.1 Introduction

Decision in selling a stock is crucial in successfully investing in equity markets. The selling

strategy can be determined by either a target level or a stop-loss limit. In this chapter, we

focus on the stop-loss side of the equation. We refer to O’Neil [29] for some empirical rules.

In equity trading, a stop-loss order is an order placed with a broker to sell once the

stock drops to a certain price. A stop loss is designed to limit the investor’s loss on a

security position. The advantage of a stop-loss order is that one need not monitor the market

constantly on how the a stock is performing. A disadvantage is that the stop-loss order cannot

help the investor to lock in his profits after a substantial rise in price. A key in successful

trading is to “cut the losses and let the profit run.” Such needs give rise to the so-called

trailing stop. The trailing stop maintains a stop-loss order at a precise percentage below the

market price. The stop-loss order is adjusted continually based on fluctuations in the market

price, always maintaining the same percentage below the market price. The trader is then

“guaranteed” to know the exact minimum profit that his or her position will garner.

As the market price rises, the stop price also advances. If the price drops, the stop price

does not change, and the position is closed whenever the stop price is reached. For example,

assume an investor buy the Coca Cola stock (KO) on January 2, 1998 at the price of $57.31.

If he/she sets the trailing stop at 15% below the market price, then the initial stop price is

$48.71 (15% below the market price). If the price rises above $57.31, he or she maintains the

stop price at 15% below the highest price. Otherwise, the stop price would not change. On

August 27, 1998, several days after reaching its maximum value, the market price of KO drops

37
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Figure 3.1: The 200 Days Prices of Coca Cola from Jan 12, 1998, to October 15, 1998

to $64.24, which is below the pre-set stop price. The investor should close his/her position,

resulting in a raw return of 12.09%. The daily closing price of KO and the corresponding

trailing stop levels are given in Figure 3.1. Clearly, trailing stop is an effective tool helping

the investor to lock in the profit when the market moves against his or her position.

Traditionally, a trailing stop percentage is determined based on the trader’s predilec-

tion toward aggressive or conservative trading. In stock investing, deciding what constitutes

appropriate profits (or acceptable losses) is perhaps the most difficult aspect of establishing

a trailing-stop system for your disciplined trading decisions.

Research using mathematical models on trailing stops is scarce in the literature. Glynn

and Iglehart [17] studied the problem in both discrete and continuous time. In their

continuous-time model, they considered a diffusion model and show that the optimal
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strategy is not to sell at all, i.e., h∗ = 100%. This corresponds to the so-called buy and hold

strategy. A drawback is: the stock price can become negative in their model. It appears

difficult to extend their results to a reasonable market model such as the geometric Brownian

motion model.

It is the purpose of this chapter to study optimal trailing stops. Here, the main issue is

to determine the optimal stop percentage h∗. We develop a stochastic approximation (SA)

approach. It provides a systematic way to compute the optimal trailing stop percentage h∗.

The SA approach is effective in real time because of its recursive form. A main advantage of

the SA approach is that there is no price model needed and one only needs the stock prices

to come up with desired percentage.

To some extent, the iterates obtained using the recursive algorithm can be thought of

as a point estimator of the true optimal trailing percentage. It would be nice if we also

provide the quality of the estimation sequence. We do this by considering a confidence

interval estimate. For related work on stopping rules for Robbins-Monro type stochastic

approximation algorithms for root finding, we refer the reader to Yin [36]. Here the purpose

of our interval estimates are two folds. (i) It provides a practically useful range of estimations,

and ensures that the limit confidence level is the desired one. (ii) It gives an implementable

stopping criterion for the iterates; with large probability, the iterates will be terminated when

the criterion is met. Crucial to the development of the confidence estimate is asymptotic

distribution of a scaled sequence of estimation errors. Furthermore, instead of examining

the discrete iterates directly, we focus on continuous-time interpolations leading to diffusion

limits. Among other things, a random time change argument is used to deduce the result

when the deterministic iteration number is replaced by a random variable.

For comparison purposes, we use a Monte Carlo method to obtain optimal percentage

rates. In addition, we demonstrate our results using real market data.

The rest of this chapter is arranged as follows. Section 3.2 begins with the precise for-

mulation of the problem. We also provide the recursive algorithm and its variations. Section
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3.3 studies the convergence of the underlying algorithm. Section 3.4 concentrates on interval

estimates. To demonstrate the feasibility and efficiency of the algorithms, numerical experi-

ments using simulations and real market data are given in Section 3.5. We show that these

algorithms provide sound estimates of optimal trailing stop percentage; they can be easily

implemented in real time. We conclude this chapter with some further remarks in Section

3.6.

3.2 Formulation

In our formulation, we shall not require that the stock price S(t) be any specific stochastic

process or follow any specific distributions; we only assume the stock price is observable.

Based on the observed stock price, for a given time t, we define the stop price at a trailing

stop percentage h with 0 < h < 1 as

Th(t) = (1 − h)Smax(t), (3.2.1)

where

Smax(t) = max{S(u) : 0 ≤ u ≤ t}. (3.2.2)

Let

τ = inf{t > 0 : S(t) ≤ Th(t)}. (3.2.3)

Then τ is the first time the stock price reaches the stop price and depends on h. We aim

to find the optimal trailing stop percentage h∗ ∈ [a, 1] with a > 0 that maximize a suitable

objective function. Thus the problem is

Problem P : Find argmax J(h) = E[Φ(S(τ)) exp(−ρτ)], h ∈ [a, 1]. (3.2.4)

Here a > 0 is a reasonable lower bound for the trailing stop percentage, ρ > 0 is an appro-

priate discount rate, and the reward function

Φ(S) =
S − S0

S0
.
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Please note that τ depends on the trailing stop percentage h. Therefore J is a function of h.

In general, an analytic solution is difficult to obtain even if S(t) is a specific process,

e.g., a geometric Brownian motion. Our contribution is to devise a numerical approximation

procedure that estimates the optimal trailing stop percentage h. We will use a stochastic

approximation procedure to resolve the problem by constructing a sequence of estimates of

the optimal trailing stop percentage h, using

hn+1 = hn + {step size}{gradient estimate of J(h)}.

Moreover, in accordance with (3.2.4), we need to make sure the iterate hn ∈ [a, 1].

3.2.1 Recursive Algorithm

Let us begin with a simple noisy finite difference scheme. The only provision is that S(t) can

be observed. Associated with the iteration number n, denote the trailing stop percentage

by hn. Beginning at an arbitrary initial guess, we construct a sequence of estimates {hn}

recursively as follows. We figure out τn, the first time when the stock price declines under

the stop price as

τn = inf{t > 0 : S(t) ≤ Thn(t)}. (3.2.5)

Define a combined process ξn that includes the random effect from S(t) and the stopping

time τn as

ξn = (S(τn), τn)′, (3.2.6)

where S(τn) denotes the stock price process S(t) stopped at stopping time τn. Henceforth, we

call {ξn} the sequence of collective noise. Let J̃(h, ξ) be the observed value of the objective

function J(h) with collective noise ξ. With the values h± δn, define Y ±
n as

Y ±
n (h, ξ±n ) = J̃(h± δn, ξ

±
n ). (3.2.7)

ξ±n being the two different collective noises taken at the trailing stop percentages h ± δn,

where δn is the finite difference sequence satisfying δn → 0 as n → ∞. We shall write
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Y ±
n = Y ±

n (h, ξ±n ). For simplicity, in what follows, we often use ξn to represent both ξ+
n and

ξ−n if there is no confusion. The gradient estimate at iteration n is given by

DĴ(hn, ξn)
def
= (Y +

n − Y −
n )/(2δn). (3.2.8)

Then the recursive algorithm is

hn+1 = hn + εnDĴ(hn, ξn), (3.2.9)

where εn is a sequence of real numbers known as step sizes. A frequently used choice of step

size and finite difference sequences is εn = O(1/n) and δn = O(1/n1/6). Recall that this is

also our default choice of step size and finite difference sequences in Chapter 2.

To proceed, define

ρn = (Y +
n − Y −

n ) − En(Y +
n − Y −

n ),

ηn = [EnY
+
n − J(hn + δn)] − [EnY

−
n − J(hn − δn)],

βn =
J(hn + δn) − J(hn − δn)

2δn
− Jh(hn),

(3.2.10)

where En denotes the conditional expectation with respect to Fn, the σ-algebra generated

by {h1, ξ
±
j : j < n}, Jh(hn) = (∂/∂h)J(hn). In the above, ηn and βn represent the noise and

bias, and {ρn} is a martingale difference sequence. We separate the noise into two parts,

uncorrelated noise ρn and correlated noise ηn. It is reasonable to assume that after taking

the conditional expectations, the resulting function is smooth. With the above definitions,

algorithm (3.2.9) can be rewritten as

hn+1 = hn + εnJh(hn) + εn
ρn

2δn
+ εnβn + εn

ηn(hn, ξn)

2δn
. (3.2.11)

3.2.2 Projection Algorithms

The use of projections in the algorithms stems from two reasons. First, for the purpose of

computations, it is more convenient if one uses projections to force the iterates to remain
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in a bounded region. In addition, the problems under consideration may well be constrained

so that the iterates will be in a given set. Current problem under consideration is such an

example (the iterates need to stay in the interval [a, 1]). For example, one might choose a

lowest trailing stop percentage of 10% to ensure the holding position will not be closed due

to the normal fluctuations of daily stock price. Obviously, there is a upper bound for the

optimal trailing stop percentage, 100%. To solve the Problem (3.2.4) with constrains, we

construct the following stochastic approximation algorithm with a projection

hn+1 = Π[hn + εnDJ̃(hn, ξn)], (3.2.12)

where εn = 1/n, δn = δ/(n1/6) and Π[x] is a projection given by

Π[h] =





a, if h < a,

1, if h > 1,

h, otherwise.

As explained in Kushner and Yin [27], The projection algorithm (3.2.12) can be rewritten

as

hn+1 = hn + εnDĴ(hn, ξn) + εnrn. (3.2.13)

where εnrn = hn+1 −hn − εnDĴ(hn, ξn) is the real number with the shortest distance needed

to bring hn + εnDĴ(hn, ξn) back to the constraint set [a, 1] if it is outside this set.

3.3 Convergence

This section is devoted to the study of convergence of the recursive algorithm. We will show

that hn defined in (3.2.12) is closely related to an ordinary differential equation (ODE). The

stationary points of ODE are the optimal trailing stop percentage that we are seeking. The

details asymptotic analysis can be worked out by virtue of the approaches given in Chapter 2

and Yin, Liu and Zhang [37]; see also Kushner and Yin [27, Chapters 5 and 8]. Chapter 4 in
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this dissertation will also provide an approach to prove the convergence for similar problem.

Thus we shall be brief and only summarize the results via the following proposition.

To carry out the study of convergence, we define the following:




tn =
n−1∑

i=1

εi, m(t) = max{n : tn ≤ t},

h0(t) = hn for t ∈ [tn, tn+1), h
n(t) = h0(t+ tn),

r̃0(t) =

m(t)−1∑

j

εjrj and r̃n(t) = r̃0(t+ tn) − r̃0(tn).

(3.3.1)

Note that h0(·) is a piecewise constant process and hn(·) is its shift. Then the interpolated

process hn(·) can be rewritten as

hn(t) = hn +

m(tn+t)−1∑

j=n

εjJh(hj) +

m(tn+t)−1∑

j=n

εj
ρj

2δj
+

m(tn+t)−1∑

j=n

εjβj

+

m(tn+t)−1∑

j=n

εj

2δj
ηj(hj , ξj) +

m(tn+t)−1∑

j=n

εjrj .

(3.3.2)

To proceed, we will use the following assumptions.

(A3.1) The second derivative Jhh(·) is continuous.

(A3.2) For each h belongs to a bounded set, E|Y ±
n |2 < ∞, and the sequence {ηj(h, ξj)} is a

bounded φ-mixing sequence with mixing rate φ̃k such that
∑

k φ̃
1/2
k <∞.

Remark 3.3.1. For our default choice εn = O(1/n) and δn = O(1/n1/6),

lim sup
n

sup
0≤i≤Nn−1

εn+i

εn

<∞, lim sup
n

δn+i

δn
<∞, lim sup

n

[
(εn+i/δ

2
n+i)

(εn/δ2
n)

]
<∞.

Concerning the noise, for the weak convergence alone, we only need a law of large numbers

type result holds. That is, as n→ ∞,

m(tn+t)−1∑

j=n

εj

2δj
Enηj(h, ξj) → 0 in probability. (3.3.3)
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We used a mixing condition for simplicity. Suppose that ξ±n,` = g0(ζ
±
n,`) where g0(·) is a real-

valued function, {ζ±n,`} are homogeneous finite-state Markov chains whose transition matrices

are irreducible and aperiodic. Then, the noise is bounded since the Markov chain takes only

finite values. Then ξ±n,` are φ-mixing sequences with exponential mixing rates ([3, p.167]),

i.e., $(j) = c0$
j for some c0 > 0 and some 0 < $ < 1. Using the exponential mixing rates,

condition (A3.2)(b) is verified.

As far as the noise is concerned, we are dealing with bounded mixing type noises. We

could add an unbounded noise of martingale difference type as follows. Assume that

Y ±
n (h, ξ±n ) = J̃(h± δn, ξ

±
n ) ± ξ̌±n ,

where {ξ̌±n } are sequences of martingale difference noise satisfying supnE|ξ̌±n |2+∆0 < ∞ for

some ∆0 > 0 and J̃(h, ξ±n ) satisfy the conditions stated in (A3.2). It is then easily verified

that supnE|Y ±
n (h, ξ±)|2 < ∞ for each h belongs to a bounded set. Then all subsequent

development goes through. Here for simplicity of notation, we choose a relatively simpler

setting.

The following theorem and its corollary can be proved as in Yin, Liu and Zhang [37]. We

thus omit the details.

Theorem 3.3.2. Assume (A3.1)–(A3.2). Suppose the differential equation

ḣ = Jh(h) + r(t) (3.3.4)

has a unique solution for each initial condition. Then (hn(·), r̃n(·)) converges weakly to

(h(·), r̃(·)), the solution to (3.3.4) with

r̃(t) =

∫ t

0

r(s)ds,

and r(t) = 0 when h(t) ∈ [a, 1].

Corollary 3.3.3. Suppose that (3.3.4) has a unique stationary point h∗ ∈ (a, 1) being glob-

ally asymptotically stable in the sense of Liapunov, and that {sn} is a sequence of real num-

bers such that sn → ∞. Then the weak limit of hn(sn + ·) is h∗.
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Under current setting, we can also obtain the with probability one convergence of algo-

rithm (3.2.13). We use the technique developed in Kushner and Yin [27, Chapters 5 and 6].

We will keep the discussion brief.

Note that {ρn} is a martingale difference. The martingale inequality together with the

Tchbyshev’s inequality implies that for any κ > 0,

P

(
max

n≤j≤m

∣∣∣∣∣

j−1∑

i=n

1

i5/6
ρi

∣∣∣∣∣ ≥ κ

)

≤ 1

κ2
E max

n≤j≤m

∣∣∣∣∣

j−1∑

i=n

1

i5/6
ρi

∣∣∣∣∣

2

≤ 1

κ2
E

∣∣∣∣∣

m−1∑

i=n

1

i5/6
ρi

∣∣∣∣∣

2

≤ 1

κ2

m−1∑

i=n

1

i10/6
Eρ2

i ≤ O(n−2/3) → 0 as n→ ∞.

Thus the asymptotic rate of change (for a definition, see [27, p. 137]) of

A0(t) =

m(t)−1∑

i=1

1

i5/6
ρi

goes to 0 w.p.1.

Next for the bias term, we note that it can be shown that |βn| = O(n−1/3) w.p.1. Thus

we have for any m > n,

∣∣∣∣∣

m−1∑

i=n

1

i5/6
βi

∣∣∣∣∣ ≤ K

m−1∑

i=n

1

i5/6
|βi| ≤ O(n−1/6) w.p.1 as n→ ∞.

So the asymptotic rate of change of B0(t) =
∑m(t)−1

i=0
1

i5/6βi goes to 0 w.p.1 as n→ ∞.
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As for the correlated noise term, the mixing condition together with the Mensov-

Rademacher moment estimate in Kushner and Yin [27, p. 172] imply that for some K > 0,

E max
n≤m≤n+M

∣∣∣∣∣

m∑

i=n

1

i5/6
ηi

∣∣∣∣∣

2

≤ K(log2 4M)
M+n−1∑

i=n

1

i10/6
.

It is easily seen that
∞∑

i=1

(
1

i5/6
log2 i

)2

<∞.

Therefore, the rate of change of

C0(t) =

m(t)−1∑

i=1

1

i5/6
ηi

goes to 0 w.p.1. Combining the estimates obtained thus far and using the results in [27,

Chapter 6], we obtain the w.p.1 convergence of the algorithm. We state the result below.

Theorem 3.3.4 Under the conditions of Theorem 3.3.2, hn(·) converges w.p.1 to h(·) that

is the solution of (3.3.4). Moreover, if (3.3.4) has a unique stationary point h∗ ∈ (a, 1) being

globally asymptotically stable in the sense of Liapunov, and that {sn} is a sequence of real

numbers such that sn → ∞. Then hn(sn + ·) → h∗ w.p.1.

3.4 Interval Estimates

This section is devoted to obtaining interval estimates as well as a practically useful stopping

rule for the recursive computation. Roughly, with prescribed confidence level, we wish to

show that with large probability (probability close to 1), a sequence of scaled and centered

estimates and a stopped sequence converge weakly to a diffusion process. Based on this

result, we will then be able to build confidence interval for the iterates.

To proceed, for simplicity of notation, we take εn = 1/n and δn = δ0/n
1/6. In the analysis

to follow, for simplicity and without loss of generality, we take δ0 = 1. We assume all the
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conditions of Theorem 3.3.2 holds. To carry out the subsequent study, we also assume an

additional condition.

(A3.3)

Jh(h) = Jhh(h∗)(h− h∗) + o(|h− h∗|2),

where Jhh(h∗) − (1/2) < 0. In addition,

k2/3E(hk − h∗)
2 = O(1)

and the bound holds uniformly in k.

Remark 3.4.1 While the first condition in (A3.3) indicates that Jh(h) is linearizable. The

second condition is a moment estimate. Sufficient conditions guaranteeing this can be pro-

vided by means of perturbed Liapunov function methods; see for example in Yin et al. [38]

for liquidation related issues and the more extensive discussion in Kushner and Yin [27] for

general setting. For simplicity, here we assume this condition.

Define

ρ∗n = [Y (h∗, ξ
+
n ) − Y (h∗, ξ

−
n )] − En[Y (h∗, ξ

+
n ) − Y (h∗, ξ

−
n )].

That is, ρ∗n is ρn with the argument hn replaced by h∗. The detailed development of the

interval estimates can be outlined as follows. Suppose that we can show that n1/3(hn − h∗)

is asymptotically normal with mean zero and asymptotic variance σ2. Choose α, such that

0 < α < 1 and 1 − α is the desired confidence coefficient. Given ε > 0, then the asymptotic

normality implies that

P

(
n1/3|hn − h∗|

σ
≤ zα/2

)
→ 1 − α as n→ ∞. (3.4.1)

This will lead to the desired confidence interval estimator. Then we require the length of the

interval |hn −h∗| be small enough in that for any ε > 0, for sufficiently large n, we can make
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σzα/2/n
1/3 < ε or equivalently n > bσzα/2/εc. Define

Mn
ε,α = bσzα/2

ε
c,

µε,α = inf{n : Mn
ε,α ≤ n},

(3.4.2)

where bzc denotes the greatest integer that is less than or equal to z. Then µε,α is a stopping

rule for the iterating sequence {hn}. Denote

Iµε,α =
[
hµε,α − σ

zα/2

n2/3
, hµε,α + σ

zα/2

n2/3

]
.

We shall show that as the length of the interval shrinks, i.e., ε→ 0,

P{h ∈ Iµε,α and |Iµε,α | ≤ ε} → 1 − α,

where |Iµε,α| denotes the length of the interval Iµε,α .

Remark 3.4.2 In view of definition (3.4.2), we obtain the following result. Note that as

ε → 0, Mε,α → ∞ and µε,α → ∞ w.p.1. Moreover, the definitions of Mε,α and µε,α implies

that as ε→ 0, µε,α/Mε,α → 1 w.p.1. This will be used in what follows.

Since h∗ ∈ (a, 1), h∗ is not on the boundary of the projection. Thus we drop the projection

part or the reflection term εnrn in what follows for simplicity. We simply assume that hn ∈

(a, 1) for all n large enough.

To obtain the desired result, our plan is as follows. We first establish an asymptotic

equivalence. Then we define a sequence of interpolated processes and show that the limit of

the interpolation is a diffusion process, and further obtain the diffusion limit for a sequence

involving the µε,α defined above. To proceed, define

vn = n1/3(hn − h∗).

We first establish the following result.
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Lemma 3.4.3 Assume (A3.1)–(A3.3).

vn+1 =

n∑

k=1

1

2k1/2
An,k(ρ

∗
k + ηj(h∗)) + o(1), (3.4.3)

vµε,α+1 =

µε,α∑

k=m

1

2k1/2
Aµε,α,k(ρ

∗
k + ηj(h∗)) + o(1), (3.4.4)

where o(1) → 0 in probability as ε→ 0, and

Ajk =





∏j
l=k+1(I + Jhh(h∗)

l
), if j > k;

I, if j = k.

Proof of Lemma 3.4.3. We will only prove (3.4.4). The proof of (3.4.3) is even simpler.

It follows from the recursion, for some m > 1,

hn+1 − h∗ = hn −h∗ +
Jhh(h∗)

n
(hn − h∗)

+
1

n
[∆(hn) + βn] +

1

2n5/6
[ρn + ηn],

where ∆(h) = O(|h− h∗|2) owing to (A3.3). Thus

vn+1 = vn +
Jhh(h∗)

n
vn +

1

n2/3
[∆(hn) + βn] +

1

2n1/2
[ρn + ηn]

= An,m−1vm +
n∑

k=m

1

k2/3
Ank[∆(hk) + βk] +

n∑

k=m

1

2k1/2
Ank[ρk + ηk].

The above expression in turn yields

vµε,α+1 = Aµε,α,m−1vm +

µε,α∑

k=m

1

k2/3
Aµε,αk[∆(hk) + βk]

+

µε,α∑

k=m

1

2k1/2
Aµε,αk[ρk + ηk].

(3.4.5)
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We shall show that as ε→ 0, the first and the second terms on the right-hand side of (3.4.5)

tend to 0 in probability.

It is easily seen that

|exp (Jhh(h∗)t) | ≤ K1exp (−λ0t) ,

for some λ0 > 0 such that −λ0 + 1
2
< 0. Moreover,

Ank = (I + rnk)exp (Jhh(h∗) log (n/k)) , k ≤ n− 1,

where |rnk| k−→0 uniformly in n > k. Hence

|Aµε,α,m−1| ≤ |I + rµε,α,m−1||exp

(
Jhh(h∗) log

(
µε,α

m− 1

))
|

≤ Kexp

(
−λ0 log

(
µε,α

m− 1

))
.

Now,

|Aµε,α,m−1vm| ≤ K

(
µε,α

m− 1

)−λ0

|vm| ε−→0 w.p.1.

Therefore, the first term on the right-hand side of (3.4.5) tends to 0 in probability.

As for the second term, the w.p.1 convergence implies that for any ν > 0,

P

(
|

µε,α∑

k=m

1

k2/3
Aµε,αk∆(hk)| > ν

)

≤ P

(
µε,α∑

k=m

1

k2/3
|Aµε,αk||∆(hk)| > ν

)

≤ P

(
µε,α∑

k=m

1

k2/3
|Aµε,αk||∆(hk)| > ν,

µε,α

Mε,α
≤ 1

)

+P

(
µε,α∑

k=m

1

k2/3
|Aµε,αk||∆(hk)| > ν,

µε,α

Mε,α

> 1

)

≤ P

(
µε,α∑

k=m

1

k2/3
|Aµε,αk||∆(hk)| > ν,

µε,α

Mε,α
≤ 1

)
+ P

(
µε,α

Mε,α
> 1

)
.

(3.4.6)
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By virtue of Remark 3.4.2,

P

(
µε,α

Mε,α

> 1

)
→ 0 as ε→ 0.

So the last term in (3.4.6) can be discarded.

For the ν > 0 given above, there is a δ > 0, such that |∆(h)| ≤ ν2|h−h∗| for |h−h∗| < δ,

and

P

(
sup
n≥m

|hn − h∗| < δ

)
> 1 − ν.

Consequently, for some K > 0,

P

(
µε,α∑

k=m

1

k2/3
|Aµε,αk||∆(hk)| > ν,

µε,α

Mε,α
≤ 1

)

≤ P

(
µε,α∑

k=m

1

k2/3

(
k

µε,α

)λ0

|∆(hk)| > ν,
µε,α

Mε,α

≤ 1

)

≤ P

(
µε,α∑

k=m

1

k2/3

(
k

Mε,α

)λ0
(
µε,α

Mε,α

)−λ0

|∆(hk)| > ν,
µε,α

Mε,α
≤ 1

)

≤ P

(
Mε,α∑

k=m

1

k2/3

(
k

Mε,α

)λ0

|hk − h∗| >
K

ν
, sup

k≥m
|hk − h∗| < δ

)
+ ν

≤ P

(
1

Mε,α

Mε,α∑

k=m

(
k

Mε,α

)λ0−1

|vk| >
K

ν

)
+ ν

≤ Kν

Mε,α

Mε,α∑

k=m

(
k

Mε,α

)λ0−1

E1/2|vk|2 + ν

≤ Kν.

(3.4.7)

In the above, we used K as a generic positive constant whose value may change for different

usage. From the next to the last line to the last line, we also used

lim
ε→0

1

Mε,α

Mε,α∑

k=m

(
k

Mε,α

)λ0−1

=

∫ 1

0

uλ0−1du = uλ0 |10 <∞

since 0 < λ0 < 1/2.
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By virtue of (3.2.7), the integrability and n2/3E|hn − h∗|2 = O(1), the smoothness of

J(·, ξ) implies that

E|Ĵ(hn ± δn, ξ
±
n ) − Ĵ(h∗ + δn, ξ

±
n )|

≤ K|Ĵhh(h
±
n , ξ

±
n )|

≤ K

n2/3
[n2/3E|hn − h∗|2]

≤ K

n2/3
.

(3.4.8)

As a result, in view of the definition of ρn and ρ∗n,

E

∣∣∣∣∣

µε,α∑

k=m

1

2k1/2
Aµε,α,k[ρk − ρ∗k]

∣∣∣∣∣

≤ K
1

(Mε,α)1/6

1

Mε,α

Mε,α∑

k=m

(
k

Mε,α

)−7/6

|Aµε,α,k|

≤ K
1

(Mε,α)1/6

1

Mε,α

Mε,α∑

k=m

(
k

Mε,α

)−7/6

|AMε,α,k|

→ 0 as n→ ∞.

Thus ρk can be replaced by ρ∗k. The proof of the lemma is concluded. �

By virtue of the above lemma, to get the desired asymptotic distribution, we need only

work with the following expressions

n∑

k=1

1

2k1/2
An,k(ρ

∗
k + ηk(h∗)),

µε,α∑

k=m

1

2k1/2
Aµε,α,k[ρ

∗
k + ηk(h∗)].
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Instead of working with the discrete expression directly, we shall first examine interpolations

of appropriate sequences.

Let W̃n(·) and Wn(·) be defined by

W̃n(t) =

bntc∑

k=1

1

2k1/2
Abntck[ρ

∗
k + ηk(h∗)], for t ∈ [0, 1],

Wn(t) =
1

2
W̃n(t),

(3.4.9)

where bzc denotes the greatest integer which is less than or equal to z. Note that W̃n(·) ∈

D[0, 1] and so is Wn(·), where the D[0, 1] is the space of functions that are right continuous

and have left hand limits endowed with the Skorohod topology (see Kushner and Yin [27,

page 238]). For definitions and general notion of weak convergence, see Ethier and Kurtz [15]

and [27].

We complete the proof by employing the idea of random change of time. As a result,

Wµε,α(·) converges weakly to W (·) is established.

Define

Bn(t) =

bntc∑

j=1

1

j1/2
[ρ∗j + ηj(h∗)].

In view of (3.4.9), a summation by parts yields

W̃n(t) = Bn(t) +

bntc−1∑

k=1

(
Abntck −Abntc (k+1)

)
Bn

(
k

n

)

= Bn(t) + jhh(h∗)

bntc−1∑

k=1

1

(k + 1)
Abntc (k+1)Bn

(
k

n

)
.

(3.4.10)

(A3.4) Bn(·) converges weakly to B(·), a Brownian motion with covariance tσ2
B

Remark 3.4.4 Again, for simplicity, we have assumed this condition, the proof of such

a convergence is available; see for example [27, Chapter 10]. One may also find relevant

information in [15].
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Theorem 3.4.5 Under assumptions (A3.1)–(A3.4), Wn(·) converges weakly to W (·), a dif-

fusion process given by

W (t) =
1

2

∫ t

0

exp (−Jhh(h∗)(log u− log t)) dB(u),

where B(·) is the Brownian motion with covariance tσ2
B.

Proof. The weak limit of the second term on the right hand side of (3.4.10) is the same as

Jhh(h∗)

bntc−1∑

k=1

1

(k + 1)
exp

(
−Jhh(h∗) log

(
k + 1

bntc

))
B

(
k

n

)

= Jhh(h∗)
1

bntc

bntc−1∑

k=1

1
(k+1)
bntc

exp

(
−Jhh(h∗) log

(
k + 1

bntc

))
B

(
k

n

)

→ Jhh(h∗)

∫ 1

0

1

u
exp (−Jhh(h∗) log u)B(ut)du.

(3.4.11)

By virtue of (3.4.11) and (A3.4), we have that Wn(·) converges weakly to W (·) given by

W (t) = B(t) + Jhh(h∗)

∫ 1

0

exp (−(1 + Jhh(h∗)) log u)B(ut)du

=

∫ 1

0

exp (−Jhh(h∗) log u) dB(ut).

(3.4.12)

In (3.4.12), make a change of variable u ∼ ut, the desired result follows. �

Remark 3.4.6 Note that Theorem 3.4.5 allows us to have a handle on the estimation errors.

Note that it follows from Theorem 3.4.5, setting t = 1, we have

(n+ 1)1/3(hn+1 − h∗) ∼ N(0, σ2),
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where σ2 is given by

σ2 = E[W (1)]2 =
σ2

B

4

∫ 1

0

exp (−Jhh(h∗) log u) exp (−Jhh(h∗) log u) du

=
σ2

B

4

∫ ∞

0

exp (−u) exp (Jhh(h∗))u) exp (Jhh(h∗))
u) du

=
σ2

B

4

∫ ∞

0

exp (−2Hu) du

=
σ2

B

8H
,

(3.4.13)

where

H =
1

2
− Jhh(h∗).

The asymptotic variance σ2 together with the scaling factor n1/3 provides us with a rate of

convergence result. We shall show that the weak convergence result still holds if n is replaced

by µε,α.

Theorem 3.4.7 If the conditions of Theorem 3.4.5 are satisfied, then

Wµε,α(t) =
1

4

[µε,αt]∑

k=1

1

k1/2
A[µε,αt]k[ρ

∗
k + ηk(h∗)] converges weakly to W (t). (3.4.14)

Proof. Without loss of generality, we may assume that Mε,α is an integer. Recall that as

ε→ 0, Mε,α → ∞.

Define

ΨMε,α(t) =





t µε,α

Mε,α
, if µε,α

Mε,α
≤ 1;

t, otherwise.

Thus

sup
t

|ΨMε,α(t) − t| ≤ | µε,α

Mε,α

− 1| → 0.

Then ΨMε,α(t) converges in probability to Ψ(t) = t.



57

Recall that

WMε,α(t) =
1

4

[Mε,αt]∑

k=1

1

k1/2
A[Mε,αt]k[ρ

∗
k + ηk(h∗)].

Then Billingsley [3, Theorem 4.4] leads to (WMε,α(·),ΨMε,α(·)) converges weakly to (W (·),Ψ(·)),

and both W (·) and Ψ(·) have continuous sample paths. This leads to that the convergence

in each case is uniform.

sup
t∈[0,1]

|WMε,α(ΨMε,α(t)) −W (Ψ(t))|

≤ sup
t∈[0,1]

|WMε,α(t) −W (t)| + sup
t∈[0,1]

|W (ΨMε,α(t)) −W (Ψ(t))|.

Therefore,

WMε,α(ΨMε,α(·)) converges to W (Ψ(·)) uniformly.

Since W (Ψ(t)) = W (t) for any t ∈ [0, 1], we conclude that WMε,α(ΨMε,α(·)) converges weakly

to W (Ψ(·)) = W (·).

By using the definition of ΨMε,α,

WMε,α(ΨMε,α(·)) = Wµε,α(·), if
µε,α

Mε,α
≤ 1.

Moreover,

P{ µε,α

Mε,α
> 1} → 0 as ε→ 0.

Therefore, Wµε,α(·) converges weakly to W (Ψ(·)) = W (·). Thus, both Wµε,α(·) and WMε,α(·)

have the same weak limit,

Wµε,α(·) converges weakly to W (·) as ε→ 0.

The theorem has been proved. �

Thus, Wµε,α(1) converges in distribution to N(0, σ2) as ε→ 0, and hence,

(µε,α)1/3(hµε,α+1 − h∗) converges in distribution to N(0, σ2),

as ε→ 0, where σ2 is given (3.4.13).
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Remark 3.4.8 In the process of constructing the desired confidence interval, we used a

sequence {σn}, and we assumed that σ2
n → σ2, the asymptotic variance. Here, we illustrate

how a sequence of consistent estimates {σ2
n} can be constructed. In view of the form of

the asymptotic variance, to obtain a sequence of consistent estimates {σ2
n}, we need only

construct two consistent sequences, one for estimating Jhh(h∗), the other one for estimating

σ2
B.

A consistent sequence of estimates for Jhh(h∗) can be constructed by means of two-

sided finite difference scheme similar to the estimate for DĴ(hn, ξn). That is, we construct

a finite difference estimate of the derivative of DĴ(h, ξ) with respect to h. Let assumptions

(A3.1)–(A3.4) be satisfied. Then, a sequence of estimate {Dn} can be constructed, and it is

a sequence of consistent estimates of Jhh(h∗).

In view of the form of σ2
B, define

ζn,i =
1

n

n∑

k=1

YkYk+i i ≥ 0 and ζn = ζn,0 + 2

n∑

i=1

ζn,i.

Recall that if a process is φ-mixing, then it is ergodic. By this ergodicity, noting the noise

involves a martingale difference sequence and a mixing sequence, it can be shown that ζn →

σ2
B as n→ ∞. Moreover, the implementation can be made recursive. Finally, let An = 1

2
−Dn,

with the constructions of Dn and ζn, we can define σ2
n as σ2

n = ζn

8An
.

3.5 Numerical results

In this section, we report our simulation and numerical experiment results. We first compare

our algorithm with the Monte Carlo simulations. Then we test our algorithm using real

market data and compare our results to those using a moving average crossing method,

which is well studied in the literature.

3.5.1 Simulation study

Due to the absence of an analytic solution to Problem (3.2.4), we use Monte Carlo method to

generate optimal trailing stop percentage h. By comparing the results of stochastic approx-
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imation algorithm, we demonstrate that the algorithm constructed indeed provides good

approximation results. Assume that the stock price follows a geometric Brownian motion

(GBM) given by

dS(t)

S(t)
= µdt+ σdw(t), S(0) = S0 initial price, (3.5.1)

where µ and σ represent the expected rate of return and volatility, respectively. Equation

(3.5.1) also refers to Black-Scholes model (see [5]), which is widely used in derivative pricing

to model stock prices because a process that follows a GBM may only take strictly positive

value. The drift term µdt implies that the stock price will eventually grow up and the

stochastic term σdw(t) captures the daily stock price fluctuations.

Using equation (3.5.1), we generate random samples of S(t) for given values of µ, σ, and

S0. Then we compute the optimal trailing stop percentage h. We take S0 = 100. As shown in

Table 3.1, one can see the optimal values of h increase in σ. For example, when µ is fixed at

10%, h rises from 8.00% to 16.75% as σ increases from 10% to 20%. Intuitively, one should

set a higher h to avoid being stopped out (or forced to sell) from a position due to normal

price fluctuations when σ is larger.

On the other hand, the dependence of h on µ is not obvious. For instance, with a fixed

σ at 20%, h varies in the range from 16.00% to 16.75%. These relations are also shown in

Figures 3.2 and 3.3.

σ \ µ 10.00% 11.00% 12.00% 13.00% 14.00% 15.00% 16.00% 17.00%

10.00% 8.00% 7.75% 7.50% 7.50% 7.00% 7.00% 6.75% 6.75%

15.00% 12.25% 12.00% 12.25% 12.00% 11.75% 11.75% 11.50% 11.50%

20.00% 16.75% 17.25% 16.75% 16.50% 16.00% 15.75% 16.25% 16.00%

30.00% 25.25% 25.00% 24.75% 24.50% 24.50% 25.25% 25.00% 25.25%

Table 3.1: Optimal trailing stop percentage using Monte Carlo Method for given expected
rate of return µ and volatility σ.
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We now can draw the graph of objective function J(h) for fixed µ and σ. For example,

the graph of J(h) with µ = 20% and σ = 35% is shown in Figure 3.4. Figure 3.5 is the graph

of J(h) with µ = 12% and σ = 25%. From these two figures, one can see the smoothness of

J(h) and hence our assumption of A3.1 is reasonable.

Figure 3.2: Optimal trailing stop percentage using Monte Carlo Method against stock price
volatility given different expected rate of return µ.

We use the stochastic approximation to compute the optimal values of h. In the fol-

lowing approach, the sequences {εn} and {δn} are chosen to be εn = 1/(n+ k0) and δn =

1/(n1/6 + k1), respectively, where k0 and k1 are some positive integers. We choose k0 = 1,

k1 = 10, ρ = 0.04, and the lower bound a = 5%. When the trailing stop percentage is set at

h, instead of the finite difference approximation of the gradient given in the algorithm, we

may take random samples of size n0 with random noise sequence {ξ±n,l}n0

l=1 such that

Ĵ(h, ξ±n )
def
=
J̃(h, ξ±n,1) + · · · + J̃(h, ξ±n,n0

)

n0
. (3.5.2)

We assume that

EĴ(h, ξ±n ) = J(h) for each h. (3.5.3)
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Figure 3.3: Optimal trailing stop percentage using Monte Carlo Method against expected
rate of return given different stock price volatilities σ.

Then for each h, Ĵ(h, ξ±n ) is an estimate of J(h). In the simulation study, we can use inde-

pendent random samples to estimate the expected value of Φ(S(τn)) exp(−ρτn). The law of

large numbers implies that Ĵ(h, ξ±n ) converges to J(h) w.p.1 as n0 → ∞. Recall that n0 is the

number of random samples used in each iteration (see equation (3.5.2)). The iterates stop

whenever |hn+1 −hn| < 0.0005. Several different initial guesses are used. We take n0 = 1000.

Table 3.2 shows the results for µ = 10% and σ = 20%. The optimal trailing stop percentage

calculated by Monte Carlo method is MC = 16.75%. In Table 3.2, SA1 is the optimal trailing

stop percentage calculated by stochastic approximation with averages of samples.

It can be seen from Table 3.2 that the estimates are insensitive to the initial guesses, the

algorithm leads to accurate estimation of the optimal value. Indeed, for σ ∈ [10%, 70%] and

µ ∈ [5%, 40%], the average value of |MC − SA1| is only 1.34%.
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Figure 3.4: The objective function J(h) against the trailing stop percentage h for fixed
expected rate of return and volatility at µ = 20% and σ = 35%.

Next we use the similar method without averages of samples. In this case, n0 = 1, all other

parameters remain unchanged. The results are shown in Table 3.3, where SA2 denotes the

optimal trailing stop percentage calculated by stochastic approximation without averages

of samples. Again, the estimates are insensitive to the initial guesses. However, the bias

|MC-SA2| is larger. For σ ∈ [10%, 70%] and µ ∈ [5%, 40%], the average value of |MC-SA2|

is 3.10%.

Compared to the Monte Carlo method, the SA methods take much less time to calculate

the optimal trailing stop percentage. We run this algorithm on a Sun Fire 880 serve with

8GB memory, generally, it takes about 30 to 60 seconds to obtain the estimated optimal

trailing stop percentage. With the Monte Carlo method, it takes at least 20 minutes for the

corresponding computation.
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Figure 3.5: The objective function J(h) against the trailing stop percentage h for fixed
expected rate of return and volatility at µ = 12% and σ = 25%.

3.5.2 Using real market data

In what follows, we use the SA to compute the trailing stops. We use NASDAQ-100 com-

ponents during the period from January 2,1995 - December 31, 2001. Here we consider two

trading strategies. Since we need the 50-day moving averages of prices, we start our trading

strategies on the fiftieth trading day after January 2, 1995.

Strategy 1. If the stock price on the fiftieth trading day after January 2, 1995 is above

the 50-day moving average, buy the stock. Otherwise, buy the stock when price is up-

crossing 50-day moving averages. And sell stock when price is down-crossing 50-day

moving averages. If the latter doesn’t happen, then sell the stock on the last day of

the period, December 31, 2001.



64

Initial guess 5.00% 17.00% 28.00% 40.00% 50.00%

SA1 16.82% 16.95% 16.94% 16.94% 16.94%

|MC-SA1| 0.07% 0.20% 0.19% 0.19% 0.19%

Table 3.2: Estimates using stochastic approximation with averages of samples (SA1) for fixed
expected rate of return and volatility at µ = 10% and σ = 20%, where MC is the optimal
trailing stop percentage calculated by Monte Carlo Method.

Initial guess 5.00% 17.00% 28.00% 40.00% 50.00%

SA2 18.02% 18.02% 18.02% 18.02% 18.02%

|MC-SA2| 1.27% 1.27% 1.27% 1.27% 1.27%

Table 3.3: Estimates using stochastic approximation without averages of samples (SA2) for
fixed expected rate of return and volatility at µ = 10% and σ = 20%, where MC is the
optimal trailing stop percentage calculated by Monte Carlo Method.

Strategy 2. The entry point is exactly the same as described in Strategy 1. Then use

trailing stop technique with the percentage calculated via the stochastic approximation

method. If price doesn’t hit the stop price before December 31, 2001, sell stock on that

day.

For example, let us assume we started collecting stock prices for Cadence Design Systems

Inc (CDNS) on January 2, 1995. Then March 15, 1995 is the first day we have the 50-day

moving average. It happens the closing price on that day is greater than the 50-day moving

average, therefore we buy the CDNS for the price $5.75. On June 2, 1995, the closing price of

CDNS is $7.33, which is less than the 50-day moving average. Therefore, Strategy 1 suggests
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to sell CDNS at $7.33, resulting a raw return of 27.48%. However, using the trailing stop

technique, Strategy 2 suggest to hold till July 10, 1996. The closing price on that day is

$15.69, resulting a raw return of 172.88%. The daily closing prices, their 50 day moving

average, and the trailing stop curve are plotted in Figure 3.6.

Figure 3.6: The prices of Cadence Design Systems Inc from March 15, 1995, to December 2,
1996

We perform the same experiments for NASDAQ-100 components if prices are available.

Table 3.3 reports the average rate of returns from Strategies 1 and 2. The average rate of

return from Strategy 1 is 11.45% while the average rate of return from Strategy 2 is 71.45%.

It is easy to see that the Strategy 2 outperforms the Strategy 1 on average.

Return from strategy using moving average Return from strategy using trailing stop

11.45% 71.45%

Table 3.4: Average Rate of Returns from Different Trading Strategies
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3.6 Further Remarks

A class of stochastic approximation algorithms has been developed for finding the optimal

trailing stop percentage in stock trading. Due to the absence of the closed-form solutions,

we compare the proposed algorithm to Monte Carlo method and find that our algorithm is

a sound procedure for estimating optimal trailing stop percentage. The approach developed

is simple and systematic yielding useful guidelines for stock trading.

Note that one of the distinct features of the method in this chapter is that no specific stock

price model needs to assumed. Only observed stock price is required in the SA calculation.



Chapter 4

Parameter Estimation in Option Pricing with Regime Switching

4.1 Introduction

This chapter is concerned with parameter estimations in option pricing. In the finance liter-

ature, the celebrated Black-Scholes model is widely used in analysis of option and portfolio

management. Traditionally a geometric Brownian motion (GBM) is used to capture the

dynamics of the stock market by using a stochastic differential equation with a deterministic

expected return and a nonrandom volatility. It gives a reasonably good description of the

market in a short time period. However, in the long run, it fails to describe the behavior of

the stock price. This is mainly due to insensitivity to random parameter changes. In fact,

it is well understood that the stock prices are far away from being a “random walk” in a

longer time horizon. Recognizing the needs, various modifications of the models have been

made. One of the ideas is to use a secondary stochastic differential equation to model the

stochastic volatility.

One of the main factors that affects the option prices in a marketplace is the trend of the

volatility. It is necessary to incorporate such trends in modeling to capture detailed stock

price movements. In a recent paper of Zhang [39], a hybrid switching GBM model, involving

a number of GBMs modulated by a finite-state Markov chain, is proposed. Such switching

processes can be used to represent market trends or the trends of an individual stock.

The above switching GBM model has been used in Yao, Zhang, and Zhou [34] for pricing

European options; a closed-form solution is obtained assuming the underlying Markov chain

jumps only once. To use the result in practice, it is necessary to estimate various parameters.

To accomplish this, it is natural to use market option prices to carry out estimation tasks.
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One of the parameters to be estimated is the implied volatility. Normally, a large number of

observations are needed to derive a meaningful estimator of the parameter. More observa-

tions typically bring better estimates. On the other hand, using more observations will take

longer time to reach the desired result. Thus the time needed for successfully estimating the

parameter is a major concern in applications.

A standard approach is to use the least squares method, which gives a bench-mark for

comparison purposes. However, in view of real-time trading, the least squares method is

too slow to meet the practical needs. In this chapter, we aim to find an alternative feasible

algorithm that can be easily implemented for pricing options in real time. Inspired by the

approach initiated in Yin, Liu, and Zhang [37] for treating stock liquidation, we develop

stochastic approximation algorithms to estimate implied volatility first. Then we use the

estimated parameter to price options.

The rest of the chapter is arranged as follows. Section 4.2 begins with the precise formu-

lation of the problem. The model is given and then the recursive algorithm is proposed. The

advantages include the simple form and systematic nature of the algorithms. In particular, it

is useful for on-line computation. Another nice feature of the proposed algorithm is that only

a few observations are needed. Section 4.3 then proceeds with the study of the asymptotic

properties of the underlying algorithm; the convergence of the algorithm is obtained. The

rate of convergence is ascertained in section 4.4. To demonstrate the feasibility and efficiency

of the algorithms, numerical experiments using real market data are given in Section 4.5.

The experiments indicate the stochastic approximation algorithms indeed provide good esti-

mates of the desired parameter with a reasonably fast convergence speed and predict more

accurately the option price than that of the traditional Black-Scholes model. Finally, we

close this chapter with some further remarks in Section 4.6.
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4.2 Formulation

4.2.1 Hybrid GBM Model

In a regime switching model, one typically uses a finite-state Markov chain α(·) = {α(t) :

t ≥ 0} to capture changes in the rate of return and the volatility of a stock to reflect the

market modes. Let X(t) denote the price of the stock at time t, which is governed by the

following stochastic differential equation,

dX(t) = X(t)[µ(α(t))dt+ σ(α(t))dw(t)], 0 ≤ t ≤ T, (4.2.1)

where X(0) = X0 is the initial stock price at t = 0; µ(i) and σ(i) for each i ∈ M with

M = {1, 2}, represent the expected rate of return and volatility of the stock price at regime

i; w(·) is a standard one-dimensional Brownian motion independent of the Markov chain

α(·). Equation (4.2.1) is also called a hybrid GBM model. The randomness of stock price

is characterized by the pair of (α(t), w(t)), where w(t) is the usual noise involved in the

classical GBM model and α(t) captures the changes in market trend. The above model

implies that the X(t) randomly switches between two GBMs. In practice, this means that

the expected rate of return and volatility of a stock could change in different market regimes.

For instance, the expected rate of return µ in economic expansion is higher than that in the

recession period. Or on the other hand, the volatility of stock price tends to be much higher

during a sharp market downturn. Thus the regime switching model (4.2.1) better captures

the dynamic of stock price.

In this chapter, we consider the case that the Markov chain jumps at most once on [0, T ].

The corresponding generator is Q =




−λ λ

0 0




. That is, state 2 is an absorbing state. If

we take α(0) = 1, then there exits a stopping time τ such that τ is exponentially distributed
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with parameter λ and

α(t) =





1, if t < τ,

2, if t ≥ τ.

(4.2.2)

Therefore, the volatility process σ(α(t)) jumps at most once at time t = τ . Its jump

size is (σ(2) − σ(1)), and the average sojourn time in state 1 (before jumping to state 2) is

1/λ. A closed-form solution for European call option price has been obtained in Yao, Zhang,

and Zhou [34]. In practice, we may already know the market prices for some options. Thus

we may assume that σ(1) is the implied volatility given by Black-Scholes model and λ is

a known constant. We need only estimate the value of σ(2) to calculate the price of a call

option. Our goal here is to estimate the true value of σ(2) given some real option prices.

For convenience, we use σ instead of σ(2) throughout the rest of this chapter if there is no

confusion.

4.2.2 Stochastic Recursive Algorithm

In what follows, we formulate the task of finding the optimal value of σ as a stochastic

optimization problem. We aim to find the optimal value σ ∈ (0,∞) so that a suitable

objective function (the expected error) is minimized. The problem can be written as:

Problem P : Find argmin ϕ(σ) = E[c(σ) − cn]2/2, σ ∈ (0,∞), (4.2.3)

where c(σ) is the option price using model (4.2.1) and cn is the corresponding market price

observed at time n.

To obtain the desired estimate, we construct a recursive procedure

σn+1 = Π
[
σn − εn[c(σn) − cn]cσ(σn)

]
, (4.2.4)

where {εn} is a sequence of nonnegative decreasing step sizes satisfying εn → 0 as n → ∞,

and
∑

n εn = ∞, cσ(·) denotes the derivative of c(·), and Π = Π[0,M ] for some M > 0 is a
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projection operator given by

Π[σ] =





0, if σ < 0,

M, if σ > M,

σ, otherwise.

We have used a projection device to make sure that the estimates are nonnegative. More-

over, we choose M to be a sufficiently large number so the estimate of the volatility stays

bounded. As explained in Kushner and Yin [27], the projection algorithm may be written in

an expanded form as

σn+1 = σn − εn[c(σn) − cn]cσ(σn) + εnRn, (4.2.5)

where εnRn = σn+1 −σn + εn[c(σn)− cn]cσ(σn) is the real number with the shortest distance

needed to bring σn − εn[c(σn) − cn]cσ(σn) back to the interval [0,M ] if it ever escapes from

there.

4.3 Convergence

We proceed to prove the convergence of the algorithm. For simplicity, the step size {εn} is

assumed to be of the form εn = O(1/n) henceforth. We will show that σn defined in (4.2.4) is

closely related to an ordinary differential equation. First, let us state a couple of conditions

needed in what follows.

(A4.1) The derivative cσ(·) is continuous.

(A4.2) There is a c such that

εn

n−1∑

k=0

ck → c w.p.1 as n→ ∞. (4.3.1)

Remark 4.3.1. Our objective here is to minimize the function ϕ(σ) given in (4.2.3). Condi-

tion (A4.1) is satisfied in the context of typical option problems. Next we show that (A4.1) is

satisfied in the case that the Markov chain has only two states for the European call option.
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In particular, we show that for the European option c(σ) is twice continuously differentiable.

As in Yao, Zhang, and Zhou [34], given the risk-free rate r, the current stock price x, the

maturity T , the strike price K, and the volatility vector (σ0, σ, λ), the call option price can

be given as follows. Suppose that the Markov chain initially takes the value α(0) = 1. Then

c(σ) = x

∫ T

0

e−rT (

∫ ∞

−∞
euψ0(t, u+ log x, 2)

×φ(u, (r − σ0/2)t, σ0t)du)λe
−λtdt+ xe−λTψ0(0, log x, 1),

(4.3.2)

where

ψ0(s, y, 1) = e−y−r(T−s)

∫ ∞

−∞
h(ey+u)φ(u, (r − σ0/2)(T − s), σ0(T − s))du,

ψ0(s, y, 2) = e−y−r(T−s)

∫ ∞

−∞
h(ey+u)φ(u, (r − σ/2)(T − s), σ(T − s))du,

φ(u,m,Σ) is the Gaussian density function with mean m and variance Σ,

h(x) = (x−K)+.

It is then easy to see the twice continuously differentiability of c(σ) with respect to σ.

Condition (A4.2) is essentially a law of large numbers condition. Take for instance, εn =

1/n. Then it is precisely the usual ergodicity of the sequence {cn}. Suppose that {cn} is a

stationary φ-mixing sequence. Then it is strongly ergodic. In such a case, (4.3.1) is readily

verified.

To analyze the algorithm, we take a piecewise constant interpolation and work with a

sequence of functions instead of the discrete iterates. To this end, define

t0 = 0, tn =

n−1∑

k=0

εk,

m(t) =





n, tn ≤ t < tn+1, for t ≥ 0,

0, for t < 0.
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Define the continuous-time interpolation σ0(·) on (−∞,∞) by

σ0(t) =





σ0, for t < 0,

σn for t ≥ 0 and tn ≤ t < tn+1.

Define a shifted process σn(·) by

σn(t) = σ0(tn + t), t ∈ (−∞,∞).

Moreover, define

Rn = 0 and [c(σn) − cn]cσ(σn) = 0, for n < 0,

R0(t) =

m(t)−1∑

k=0

εkRk for t ≥ 0,

Rn(t) =





R0(tn + t) − R0(tn) =

m(tn+t)−1∑

k=n

εkRk, t ≥ 0,

−
n−1∑

k=m(tn+t)

εkRk, t < 0.

As in Kushner and Yin [27, Section 4.3], define a set C(σ) as follows. For σ ∈ (0,M), C(σ)

contains only the zero element; for σ = 0 or σ = M , C(σ) is the infinite cone (interval

(−∞, 0) or (M,∞)) pointing to the direction away from [0,M ].

Theorem 4.3.2. Assume conditions (A4.1) and (A4.2). Then w.p.1, (σn(·), Rn(·)) is

equicontinuous in the extended sense (see Kushner and Yin [27, p. 102]). Let (σ(·), R(·))

be the limit of a convergent subsequence of (σn(·), Rn(·)) (still indexed by n for simplicity).

Then it satisfies the projected ordinary differential equation

σ̇(t) = −[c(σ(t)) − c]cσ(σ(t)) + r(t), r(t) ∈ −C(σ(t)), (4.3.3)

where r is the minimal force needed to keep the solution in [0,M ] with

R(t) =

∫ t

0

r(s)ds.
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Proof. Note that (4.2.5) can be written as

σn+1 = σn − εn[c(σn)cσ(σn) − ccσ(σn)] + εn(cn − c)cσ(σn) + εnRn. (4.3.4)

Define

c̃n = −[c(σn) − c]cσ(σn), for n ≥ 0, and c̃n = 0 for n < 0,

ĉn = [cn − c]cσ(σn) for n ≥ 0, and ĉn = 0 for n < 0.

Define the interpolations of c̃n and ĉn as c̃0(·), c̃n(·), ĉ0(·), and ĉn(·) similar to that of R0(·)

and Rn(·). Then

σn(t) = σn + c̃n(t) + ĉn(t), for t ∈ (−∞,∞).

To proceed, we use Kushner and Yin [27, Theorem 6.1.1] to prove the theorem. In this

process, we need only verify an asymptotic rate of change condition holds. For each σ, define

Φ(t)
def
=

m(t)−1∑

k=0

εk(ck − c)cσ(σ).

Recall that the asymptotic rate of change of Φ(t) is said to go to 0 with probability 1 if for

some T > 0,

lim
n

sup
j≥n

max
0≤t≤T

|Φ(jT + t) − Φ(jT )| = 0 w.p.1.

To proceed, define

Dn
def
=

n∑

k=0

[ck − c].

Note that by means of a partial summation,

n∑

k=m

εk[ck − c]cσ(σ) = εn[Dn+1 −Dm]cσ(σ) +
n−1∑

k=m

[Dk+1 −Dm][εk − εk+1]cσ(σ).

Taking m = 0, n = m(t) − 1, we obtain

Φ(t) = εm(t)−1Dm(t)cσ(σ) +

m(t)−2∑

k=0

Dk+1
εk − εk+1

εk
εkcσ(σ).
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Note that (A4.2) implies that εm(t)−1Dm(t)cσ(σ) → 0 as m(t) → ∞ (or n→ ∞) and

m(t)−2∑

k=0

Dk+1
εk − εk+1

εk

εkcσ(σ) =

m(t)−2∑

k=0

Dk+1O(ε2
k)cσ(σ) → 0.

Thus the asymptotic rate of changes of Φ(t) goes to 0 w.p.1. By using Kushner and Yin [27,

Theorem 6.1.1], the desired result then follows. �

Corollary 4.3.3. In addition to the conditions in Theorem 4.3.2, suppose that cσ(σ) 6= 0

for all σ, and that σ∗ is the unique solution of c(σ) − c = 0 with σ∗ ∈ (0,M) such that σ∗ is

in the set of locally asymptotic stable points of the projected ODE. Then σn → σ∗ w.p.1.

Remark 4.3.4. In view of the definition of the cost function, σ∗ is the unique minimizer

of ϕ defined in (4.2.3). Thus the result indicates that the algorithm that we constructed

converges to the unique minimizer of the least squares cost function.

Proof. We merely indicate that by use of the asymptotic stability in the sense of Liapunov

(see Kushner and Yin [27, p. 104]), for any sn → ∞ as n → ∞, using the argument as in

Theorem 4.3.2, σn(· + sn) → σ∗ w.p.1. �

4.4 Rate of Convergence

This section is devoted to the rate of convergence of algorithm (4.2.4). To further simplicity

the matters, we take εn = 1/(n + 1). We assume that all the conditions of Corollary 4.3.3

hold. Since σ∗ is strictly interior to the constrained set [0,M ], without loss of generality, we

will drop the reflection term εnRn throughout this section, and assume that the sequence of

iterates {σn} is nonnegative and uniformly bounded by M .

Define un =
√
n + 1(σn − σ∗). The rate of convergence study aims to exploit the asymp-

totic properties of this scaled sequence. We shall show that the interpolation of un converges

to a diffusion limit. One of the key points here is to use linearization and local analysis. First
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note that from (4.2.5) with the reflection term dropped, we can write

un+1 =

√
n+ 2

n+ 1
un − 1

n + 1

√
n+ 2

n+ 1
c2σ(σ∗)un +

√
n+ 2

n+ 1

1√
n+ 1

(cn − c)cσ(σ∗)

+

√
n + 2

n + 1

1

n + 1
(cn − c)g(un) +

1

n+ 1
o(|un|),

(4.4.1)

where g(·) is a continuous function and g(u) = O(|u|). Since

√
n+ 2

n+ 1
= 1 +

1

2(n+ 1)
+O

(
1

(n + 1)2

)
, (4.4.2)

to study the asymptotics of un, we need only consider an auxiliary process vn defined by

v0 = u0,

vn+1 = vn − 1

n + 1

(
c2σ(σ∗) −

1

2

)
vn +

1√
n+ 1

(cn − c)cσ(σ∗)

+
1

n+ 1
(cn − c)g(vn) +

1

n+ 1
o(|vn|).

(4.4.3)

(A4.3) The {cn − c} is a stationary φ-mixing sequence with 0 mean and mixing rate φk

satisfying
∑∞

k=0 φ
1/2
k <∞. In addition, suppose c2σ(σ∗) > 1/2.

Remark 4.4.1. Under (A4.3), it can be shown (see Kushner and Yin [27, Chapter 7])

that
∑m(t)−1

k=0
1√
k+1

(ck − c) converges weakly to a real-valued standard Brownian motion with

variance ς2t, where

ς2 = E(c0 − c)2 + 2

∞∑

k=1

E(ck − c)(c0 − c).

Moreover, by using the well-known mixing inequality (see [3, p. 166]), we obtain

E

∣∣∣∣∣

n−1∑

k=0

1√
k + 1

(ck − c)

∣∣∣∣∣

2

≤ K

for some K > 0.
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Lemma 4.4.2. In addition to the conditions of Corollary 4.3.3, assume (A4.3) holds. Then

{vn} is tight.

Proof. We claim that supnE|vn| <∞. To this end, define

Ank =





n∏

j=k+1

(
1 − c2σ(σ∗) − 1

2

j + 1

)
, if k < n,

1, if k = n.

Then

vn+1 = An0
v0 +

n∑

k=0

1√
k + 1

Ank(ck − c)cσ(σ∗)

+
n∑

k=0

1

k + 1
Ank(ck − c)g(vk) +

n∑

k=0

1

k + 1
Anko(|vk|).

Note that in view of (A4.3), E|ck − c||g(vk)| ≤ KE|vk|. Thus, we obtain

E|vn+1| ≤ |An0
|E|v0| + E

∣∣∣∣∣

n∑

k=0

1√
k + 1

Ank(ck − c)cσ(σ∗)

∣∣∣∣∣+K

n∑

k=0

1

k + 1
|Ank|E|vk|. (4.4.4)

It is easily verified that by (A4.3),

n∑

k=0

1

k + 1
|Ank| =

n∑

k=0

1

k + 1
Ank <∞.
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Using the mixing inequality [3], we have

E

∣∣∣∣∣

n∑

k=0

1√
k + 1

Ank(ck − c)cσ(σ∗)

∣∣∣∣∣

≤ E
1

2

∣∣∣∣∣

n∑

k=0

1√
k + 1

Ank(ck − c)cσ(σ∗)

∣∣∣∣∣

2

=

(
n∑

k=0

n∑

j=0

1√
k + 1

1√
j + 1

AnkAnj(ck − c)(cj − c)c2σ(σ∗)

) 1

2

≤ K

(
n∑

j=0

1

j + 1
A2

nj

n∑

k>j

E(ck − c)(cj − c)c2σ(σ∗)

)1

2

≤ K

(
n∑

j=0

1

j + 1
A2

nj

n∑

k>j

|E(ck − c)(cj − c) −E(ck − c)E(cj − c)|
)1

2

≤ K

(
n∑

j=0

1

j + 1
A2

nj

n∑

k<j

φk−j

) 1

2

≤ K <∞.

Recall that we use K as a generic positive constant, whose value may change for different

appearances. Combining the above estimates, we arrive at

E|vn+1| ≤ K +K

n∑

k=0

1

k + 1
|Ank|E|vk|. (4.4.5)

An application of the Gronwall’s inequality leads to

E|vn+1| ≤ K <∞ and sup
n
E|vn| <∞.

The desired tightness then follows from the well-known Markov inequality

P
(
|vn| ≥ K̃

)
≤ supnE|vn|

K̃
.

The lemma is proved. �

Lemma 4.4.3. Under the conditions of Lemma 4.4.2, limnE|vn − un| = 0.
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Proof. We merely use the expansions in (4.4.2), and the definitions of un and vn in (4.4.1)

and (4.4.3), respectively. Detailed calculation yields the desired result. �

Consider the sequence {vn}. Define a piecewise constant interpolation v0(t) and its shift

vn(t) as in the previous section. We then have

vn(t+ s) − vn(t) =

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1

(
c2σ(σ∗) −

1

2

)
vj

+

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

(cj − c)cσ(σ∗)

+

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
(cj − c)g(vj)

+

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
hjvj .

(4.4.6)

Our next result shows that the scaled sequence vn(·) converges weakly to v(·), a diffusion

process.

Theorem 4.4.4. The sequence of interpolated estimation errors {vn(·)} converges weakly

to v(·), which is a solution of the stochastic differential equation

dv =

(
c2σ(σ∗) −

1

2

)
vdt+ ςcσ(σ∗)dw, (4.4.7)

where w(·) is a real-valued standard Brownian motion.

Proof. The proof is naturally divided into two steps. The first step establishes the tightness,

whereas the second step characterizes the limit process.

Step 1): Show that the sequence {vn(·)} is tight in D[0,∞) the space of functions that

are right continuous, have left limits, endowed with the Skorohod topology (see Kushner and

Yin [27, page 238]). To this end, we apply the tightness criterion in [27]. Without loss of

generality and for notational simplicity, assume that {vn} is bounded (otherwise, we can use

a truncation device as in [27]).
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Then we obtain that for any t > 0, η > 0, and any 0 < s ≤ η,

E|vn(t+ s) − vn(t)|2 ≤ I1 + I2 + I3 + I4, (4.4.8)

where Ii for i = 1, 2, 3, 4 are four terms on the right-hand side of (4.4.6). By virtue of the

boundedness of {vk},

I1 = E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1

(
c2σ(σ∗) −

1

2

)
vj

∣∣∣∣∣∣

2

≤ K

m(tn+t+s)−1∑

j=m(tn+t)

m(tn+t+s)−1∑

k=m(tn+t)

1

j + 1

1

k + 1

≤ Ks2 ≤ Kη2.

(4.4.9)

Thus, taking lim supn followed by limη→0, the limit is 0.

The mixing inequality implies that

I2 = E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

(cj − c)cσ(σ∗)

∣∣∣∣∣∣

2

≤ Ks ≤ Kη.

(4.4.10)

Thus, the double limits of this term also goes to 0. Likewise,

I3 + I4 ≤ E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

(cj − c)g(vj)

∣∣∣∣∣∣

2

+ E

∣∣∣∣∣∣

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

hjvj

∣∣∣∣∣∣

2

≤ Kη.

(4.4.11)

Combining the estimates above, we arrive at

lim
η→0

lim sup
n

E|vn(t+ s) − vn(t)|2 = 0. (4.4.12)

Therefore, {vn(·)} is tight.

Step 2) Characterization of the limit process. By Prohorov’s theorem, we can extract a

convergent subsequence and still denote it by {vn(·)} for notational simplicity. Denote the
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limit by v(·). By the Skorohod representation, without changing notation, we may assume

that the sequence vn(·) converges to v(·) w.p.1 and the convergence is uniform in any bounded

time interval. We proceed to establish that the limit is nothing but the desired diffusion

process.

We shall show that v(·) is a solution of the martingale problem with operator

Lf(v) =
1

2
ς2c2σ(σ∗)

d2f(v)

dv2
+

(
c2σ(σ∗) −

1

2

)
v
df(v)

dv
, (4.4.13)

where f(·) is a C2 function with compact support. To this end, we show that

f(v(t+ s)) − f(v(t)) −
∫ t+s

t

Lf(v(τ))dτ is a martingale.

To do so, for any bounded and continuous function ρ(·), any t, s > 0, any positive integer κ,

and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tκ ≤ t, we will show

Eρ(v(ti) : i ≤ κ)
[
f(v(t+ s)) − f(v(t)) −

∫ t+s

t

Lf(v(τ))dτ
]

= 0.

First, by the weak convergence and the Skorohod representation, it is readily seen that

Eρ(vn(ti) : i ≤ κ)[f(vn(t+ s)) − f(vn(t))]

→ ρ(v(ti) : i ≤ κ)[f(v(t+ s)) − f(v(t))] as n→ ∞.

(4.4.14)

Let δn be a sequence a positive real numbers satisfying δn → 0 and select an increasing

sequence {m`(n)} such that m(tn + t) = m1(n) < m2(n) < · · · ≤ m(tn + t+ s)− 1, and that

for m(tn + t) ≤ m` ≤ m`+1 ≤ m(tn + t+ s) − 1,

1

δn

m`+1(n)−1∑

j=m`(n)

1

j + 1
→ 1 as n→ ∞.

In what follows, for notational simplicity, we suppress the n dependence in m`(n) and write it

asm` instead. Denote by Im the index set satisfying m(tn+t) ≤ m` ≤ m`+1 ≤ m(tn+t+s)−1.
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Using the notation defined above, we have

f(vn(t+ s)) − f(vn(t)) =
∑

`∈Im

[f(vm`+1
) − f(vm`

)]

=
∑

`∈Im

df(vm`
)

dv

[m(tn+t+s)−1∑

j=m(tn+t)

(vj+1 − vj)
]

+
∑

`∈Im

1

2

d2f(vm`
)

dv2

[m(tn+t+s)−1∑

j=m(tn+t)

(vj+1 − vj)
]2

+ o(1),

(4.4.15)

where o(1) → 0 in probability uniformly in t.

It follows that

Eρ(vn(ti) : i ≤ κ)
∑

`∈Im

df(vm`
)

dv

[m(tn+t+s)−1∑

j=m(tn+t)

(vj+1 − vj)
]

= Eρ(vn(ti) : i ≤ κ)
∑

`∈Im

df(vm`
)

dv
Em`

[
−

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
(c2σ(σ∗) −

1

2
)vj

+

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

(cj − c)cσ(σ∗)

+

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
(cj − c)g(vj)

+

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
hjvj

]
.

(4.4.16)

Then

lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

df(vm`
)

dv

[
−

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
(c2σ(σ∗) −

1

2
)vj

]

= lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

df(vm`
)

dv

[
−

m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
(c2σ(σ∗) −

1

2
)vm`

]

= Eρ(v(ti) : i ≤ κ)
[
−
∫ t+s

t

df(v(τ))

dτ
(c2σ(σ∗) −

1

2
)v(τ)dτ

]
.

(4.4.17)
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As for the next term, using the mixing property,

lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

df(vm`
)

dv

[
−

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

(cj − c)cσ(σ∗)
]

= lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

df(vm`
)

dv

[
−

m(tn+t+s)−1∑

j=m(tn+t)

1√
j + 1

Em`
(cj − c)cσ(σ∗)

]
= 0.

(4.4.18)

Using the continuity of g(·), detailed calculation also shows that

lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

df(vm`
)

dv

[m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
(cj − c)g(vj)

]
= 0,

lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

df(vm`
)

dv

[m(tn+t+s)−1∑

j=m(tn+t)

1

j + 1
hjvj

]
= 0.

(4.4.19)

Likewise, similar estimates lead to

lim
n
Eρ(vn(ti) : i ≤ κ)

∑

`∈Im

1

2

d2f(vm`
)

dv2

[m(tn+t+s)−1∑

j=m(tn+t)

(vj+1 − vj)
]2

= Eρ(v(ti) : i ≤ κ)
[1
2

∫ t+s

t

d2f(v(τ))

dv2
ς2c2σ(σ∗)dτ

]
;

(4.4.20)

we omit the details for brevity. Thus the desired result follows. �

Remark 4.4.5. Likewise, we can also construct an SA algorithm using constant step size

σn+1 = Π
[
σn − ε[c(σn) − cn]cσ(σn)

]
. (4.4.21)

Convergence of corresponding algorithm can also be obtained.

4.5 Numerical Results

In this section, we report certain numerical experiment results. We first show that our algo-

rithm is insensitive to the initial values. Then we test our algorithm using real market data

and compare our results to that of the traditional Black-Scholes, where the dividend is the

total dividend paid during the life of the option.
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4.5.1 Data Description

Here our numerical experiments are done using the data derived from Berkeley Options

Data Base. We use OEX (SP100) call option data during the period from January 4, 1988

to December 30, 1988. The set of data is listed in Table 4.1.

Strike Transaction Exp. Days to Option Volume Stock Interest Dividend

Price Time Exp. Price Price Rate

$285.00 1/4/88 13:01 1/16/88 12 $0.13 50 $247.55 6% $0.024319

$255.00 1/4/88 13:03 1/16/88 12 $3.13 15 $248.20 6% $0.024315

Table 4.1: Samples of Market Data

Note that OEX call options are American type and (4.3.2) only gives us the price for

European call option. Nevertheless, if a stock does not pay dividend, the American call option

on this stock should have the same price as its European counterpart. When a company

declares a dividend, it specifies a date when the dividend is payable to all stockholders,

called the holder-of-record date. Two business day before that day is called the ex-dividend

date. One must buy the stock by the ex-dividend data so that he/she can be recorded as

stockholder by the holder-of-record date. The stock price tends to drop by the amount of

the dividend on the ex-dividend date. Therefore, the call price drops as the stock goes to ex-

dividend. However, the option price could never falls by more than the stock price changes,

i.e., the dividend.

An American option holder may avoid this loss by early exercising the option immediately

before the ex-dividend date. This is the only time the American call option should be early

exercised. Note that there is a situation in which one should not take an early exercise action

for an American call option even if a stock goes ex-dividend. If the present value of all the

dividends over the life of this call option is less than K(1 − e−rT ), then the option should

never be exercised early because the loss of interest from paying out the exercise price early
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Initial σ 0.05 0.1 0.15 0.2 0.25 0.3

Optimal σ 0.237682 0.237681 0.237681 0.237681 0.237681 0.237681

Table 4.2: Initial values for σ.

cannot be covered by the dividends. In such a case, the American call option on the dividend-

paying stock should have the same price as its European counterpart. We checked our data

and it turns out that OEX data satisfy the above condition.

4.5.2 Numerical Testing

In what follows, the sequence {εn} and {δn} are chosen to be εn = 1/(n + 1000) and

δn = 1/(n + 1000)1/6. After calculating the volatility for S&P100, we choose [0.05, 0.5] as

the boundary for σ. We show the result on the transaction date March 17, 1988. In this

experiment we choose the first 25 transactions as our observations, thus the total number of

iterations is 25. Several different initial values of σ are used. Table 4.2 shows that for different

initial values, the iterates using the proposed algorithm always reach the same optimal value

of σ. This means the estimates are insensitive to the initial value of σ. Figure 4.1 demon-

strates the convergence of the algorithm for two starting points, one from below and the

other one from above the optimal point.

Compared to the least squares method, the proposed method takes much less time to

calculate the parameter estimates. We run this algorithm on a Sun Fire 880 server with 8GB

memory, it takes about 35 seconds to obtain the estimated σ value. With the least squares

method, one can obtain a similar value but consumes at least 2 minutes for the corresponding

computation.



86

0 5 10 15 20 25 30
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

 

 

Series1
Series2

Figure 4.1: Estimates with different initial estimates. Horizontal axis represents the number
of iterations; vertical axis represents the volatility σ

4.5.3 Comparing to Black-Scholes method

In this section, we use the proposed algorithm to calculate the optimal σ, and then use this

optimal σ to price the OEX option with real market data. This method can be divided into

three steps:

Step 1. We chose one day data, and use the market price to estimate the implied volatility by

Black-Scholes model for each observation. Then use the average of all implied volatili-

ties as our σ(1).

Step 2. We divide daily data into 2 parts: One part is used for estimation of σ = σ(2) and the

other part reserved for testing. Generally, we use at least 20 observations for estimation.

Step 3. Using the estimated value of σ and (4.3.2), we compute the option prices. Then we

compare the resulting price with the actual price from the testing data. Such error is

referred to as RS error. To compare our result with the Black-Scholes formula, we also
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Strike Transac. Days to Volume Market RS BS RS BS

Price Time Exp. Price Price Price Error Error

$250.00 2/24/88 13:01 18 5 $8.88 $8.3515 $8.4186 5.95% 5.20%

$260.00 2/24/88 13:01 18 5 $3.5 $3.6444 $3.7112 4.13% 6.03%

$260.00 2/24/88 13:03 18 3 $3.63 $3.6481 $3.7149 0.50% 2.34%

Mean 5.40% 6.09%

Standard Deviation 4.52% 3.08%

Table 4.3: Mean and standard deviation of BS and RS.

compute the price obtained by plugging the implied volatility derived earlier into the

Black-Scholes option pricing formula. We call the corresponding price the BS price.

In addition, we term the difference between this price and the actual price from the

testing data the BS error. Table 4.3 shows part of testing result for February 24, 1988.

From the above table, it is seen that our method performs better than that of the Black-

Scholes method in estimating the option prices on the given date. Since we need at least 20

observations for each day, not all of the daily data satisfy this condition. We chose 20 days on

which we have enough observations. Table 4.4 shows the testing result for total 411 testing

options. It is easy to see that not only does the proposed method have a smaller average

error but also it has a smaller deviation. We also plot the error distributions in Figure 4.2.

It can be seen from Figure 4.2 that the RS errors are mostly concentrated near 0.03 while

the BS errors are distributed more evenly along the horizontal axis.
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RS Error BS Error

Mean 5.19% 6.55%

Standard Deviation 5.97% 7.86%

Table 4.4: Mean and standard deviation errors.

4.6 Further Remarks

A stochastic optimization algorithm has been developed for choosing optimal value of

volatility in option pricing. As demonstrated by using real market data, this algorithm

provides a sound procedure for estimating volatility in real time just by using twenty to

thirty observations. A regime switching model is used here and it provides more accurate

prices than that of the usual Black-Scholes model. The approach developed is simple and

systematic. It can be used for on-line option pricing and provides useful guideline for option

transactions.

The advantage of the proposed method is its simple recursive form. Compared with

the least squares method, it does not require as many observations. The simple recursive

algorithm often takes only seconds to reach the optimal value. Further effort may be devoted

to improve the efficiency and to reduce the variance and bias.
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