SCcALABLE COMPOSITION OF WEB SERVICES UNDER UNCERTAINTY
by
HAIBO ZHAO

(Under the direction of Prashant Doshi)

ABSTRACT

Facilitating the assembly of services to form composite services is an important function-
ality in Service-oriented architecture (SOA). In this dissertation, we focus on the problem
of automatically assembling WSs to form compositions that optimize given user preferences.
This problem is often referred to as the automated Web service composition problem. Preva-
lent approaches for automatically composing WSs predominantly utilize planning techniques
to achieve the composition. However, classical artificial intelligence (Al) planning based
approaches are facing the following issues: (1) They are incapable of capturing the uncer-
tainties of Web service behaviors, (2) It is hard for them to provide process optimization
during planning, and (3) Many of them are unable to scale efficiently to large processes. To
address these issues, we present a hierarchical decision-theoretic planning framework for com-
posing Web services, called Haley. Compared to classical Al planners, the decision-theoretic
planning has the ability to capture the uncertainty inherent in WSs and provide a cost based
process optimization. Haley uses symbolic planning techniques that operate directly on first
order logic based representations of the state space to obtain the compositions. As a result,
it supports an automated elicitation of the corresponding planning domain from WS descrip-
tions and produces a compact domain representation in comparison to classical Al planners.
Additionally, it tackles the scalability issue by exploiting the hierarchy found in processes.

Our experiments demonstrate that Haley evaluates favorably in comparison to other WS

composition approaches. We implement Haley and provide a comprehensive tool suite. The
suite accepts WSs described using standard languages such as SAWSDL. It provides process
designers with an intuitive interface to specify process requirements, goals and a hierarchical
decomposition, and automatically generates BPEL processes, while hiding the complexity of
the planning and BPEL from users.

Another emerging research topic is automated REpresentational State Transfer (REST)ful
WS composition. While automating WSDL/SOAP WS composition has been extensively
studied, automated RESTful WS composition is less explored in the research community.
As an early effort addressing this problem, this dissertation discusses the challenges of
composing RESTful WSs and proposes a formal model for describing and automatically
composing RESTful WSs.

INDEX WORDS: Web service composition, RESTful WSs, decision-theoretic planning,
first-order logic, hierarchy

SCcALABLE COMPOSITION OF WEB SERVICES UNDER UNCERTAINTY

by

HAIBO ZHAO

B.E., Xiangtan University, China, 2003

A Dissertation Submitted to the Graduate Faculty
of The University of Georgia in Partial Fulfillment
of the

Requirements for the Degree

DocTOR OF PHILOSOPHY

ATHENS, GEORGIA

2009

© 2009
Haibo Zhao
All Rights Reserved

SCcALABLE COMPOSITION OF WEB SERVICES UNDER UNCERTAINTY

by

HAIBO ZHAO

Approved:

Major Professor: Prashant Doshi

Committee: John Miller
Khaled Rasheed
Amit Sheth

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School
The University of Georgia
August 2009

DEDICATION

To the love of my family

v

ACKNOWLEDGMENTS

First of all, I would like to acknowledge the contributions of my advisor, Prof. Prashant
Doshi, in making this work possible. I would like to gratefully and sincerely thank him for his
visionary, guidance, understanding and patience. Not only did he point out some important
research directions of the initial ideas, but he also encouraged me to explore deeper issues and
challenge harder problems. I have benefited the most from his vision towards my research
work. He has been putting my career in his mind and guiding me along the way. I have
learned numerous things from him, from presentation skills, experimental methods, paper
writing to approaches of conducting research. From the bottom of my heart, I would like to
thank him for making my graduate school study an enjoyable and fruitful experience.

I would like to thank the Department of Computer Science, especially the members of my
doctoral committee for their input, valuable discussions and accessibility. I would also like
to mention my colleagues in the LSDIS lab, John Harney and Yunzhou Wu, who inspired
me during our discussions. These two friends and co-workers also provided for some much
needed humor and entertainment.

Finally, I would like to thank my parents and family, who have been believing my potential
and giving me constant love and support.

This dissertation work was funded by the “Dissertation Completion Award” from the

Graduate School, The University of Georgia.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . .« o o v v e e e e e e s s s s s A%
LiST OF FIGURES e e ix
LIST OF TABLES o o o o o o xi
CHAPTER

1 INTRODUCTION . . . v v v v v e e e e e e e e e s s 1
1.1 WEB SERVICES« v v v v vt s s s s 1
1.2 WSDL/SOAP WEB SERVICE COMPOSITION 4
1.3 RESTFrUL WEB SERVICE COMPOSITION « « v v v v o v .. 10
1.4 CONTRIBUTIONS . . . v v v v v e i e e e e e s s s 11
1.5 STRUCTURE OF THE DISSERTATION« v .« 16
2 MOTIVATING SCENARIOS . . v v v v e e e e s s s s s s s s s s s 19
2.1 ONLINE SHOPPING . . .« v v v v e ittt d s s 19
2.2 ORDER HANDLING SCENARIO IN SUPPLY CHAIN 20
3 BACKGROUND o e s, 23
3.1 MARKOV DECISION PROCESSES 23
3.2 SEMI-MARKOV DECISION PROCESSES 24
3.3 PROBABILISTIC SITUATION CALCULUS 27
3.4 FIRST ORDER MARKOV DECISION PROCESSES 31

4 HALEY: A HIERARCHICAL FRAMEWORK FOR LOGICAL COMPOSITION OF
WEB SERVICES s, 34

vi

4.1 FIRST ORDER SEMI-MARKOV DECISION PROCESSES

4.2 MODEL ELICITATION FROM WEB SERVICE DESCRIPTIONS

4.3 CoMPOSITE FO-SMDPs

4.4 COMPOSITION GENERATION AND EXECUTION

5 IMPLEMENTATION AND PERFORMANCE STUDY

5.1 ARCHITECTURE o v v e v e it s s d s s s

5.2 MODULES o o o o o s e s,

5.3 PERFORMANCE EVALUATION v v o oo

6 RESTFUL WEB SERVICE COMPOSITION« v v v v v v .

6.1 MOTIVATING SCENARIO . . . « v v v v vt i i it s

6.2 MODELING RESTFUL WEB SERVICE « o v v v v v ..

6.3 AutoMATING RESTruL WEB SERVICE COMPOSITION

7 RELATED WORK o e s s s s

7.1 PLANNING BASED WEB SERVICE COMPOSITION

7.2 CONFIGURATION BASED WEB SERVICE COMPOSITION

7.3 WEB SERVICE COMPOSITION T'OOL SUPPORT

7.4 RESTruL WEB SERVICE DESCRIPTION LANGUAGES

7.5 MASHUP o o o e s,

8 CONCLUSIONS

8.1 SUMMARY AND DISCUSSION

8.2 ORIGINAL CONTRIBUTIONS AND SIGNIFICANCE

8.3 FUTURE WORK s s s

BIBLIOGRAPHY . . .

APPENDIX

A EDT-GoLoG

Vil

35
37
38
42

45
45
47
49

95
95
56
67

72
72
77
78
79
80

81
81
83
87

89

99

B PLANNING DOMAINS FOR THE PROCESSES IN THE EXPERIMENTS

B.1 PLANNING DOMAIN FOR THE PROCESS WITH 3 SUPPLIERS

B.2 PLANNING DOMAIN FOR THE PROCESS WITH 15 SUPPLIERS .

C OWL-RESTWS ONTOLOGY

viil

106
106
112

126

1.1
2.1

2.2

3.1

4.1

4.2
4.3
5.1

LisT OF FIGURES

A high-level depiction of Haley’s architecture.
A 3-level hierarchical online shopping scenario in which the service Get-
BookPriceln Yuan and GetShippingCostInYuan are subprocesses. GetBookPri-
ceInDollar in subprocess GetBookPricein Yuan is also a subprocess composed
of WSs.
A 2-level hierarchical order handling scenario as a part of the supply chains
of manufacturers in which the service Verify Order and Select Shipper are
subprocesses themselves. The three suppliers (Inventory, Preferred Supplier
and Spot Market) in this scenario have different costs and probabilities of
order satisfaction. oL
Cases partition the state space. Within a class i, each state unifies with ¢;(s)
(ie., ¢i(s) is true for state s). Here, one case notation partitions the state space
with cases ¢g and ¢; and the other one partitions the state space with cases
1o and ;. The operation on the two case notations takes the cross-product
of their cases.
High-level process in the order handling scenario with low-level sub-processes
is composed using composite FO-SMDP. Low-level processes with only prim-
itive WSs are composed using primitive FO-SMDP.
A WSLA snippet illustrating the specification of inventory availability rate. .
Interleaved composition and execution of a nested WSC in Haley.
Architectural details of Haley. Notice that Haley processes both service descrip-

tions and agreement specifications. Information from these files is used to for-

mulate the planning problem (often called the planning domain) automatically. 46

1X

5.2
5.3

5.4

9.5

6.1
6.2

SAWSDL viewer showing an example SAWSDL described WS CheckCustomer. 47
Hierarchy Modeler with a GUI for intuitively grouping together the WSs par-
ticipating in the composition into a hierarchy. 48
Average rewards on running the compositions generated by HTN, MBP and
Haley for the online shopping example. Haley gathers the most reward because
it models the non-determinism of WSs and provides a cost-based composition
optimization. Performances of all the approaches begin to converge as the
availability approaches 1 signifying that the uncertainty reduces. 50
Average rewards on running the processes generated by the HTN, MBP and

Haley for the supply chain example. It demonstrates similar behaviors of three

approaches as seen in Fig. 5.4 51
A simplified online shopping scenario 56
Identified RESTful WSs 60

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LisT OF TABLES

Run times for generating policies that guide the compositions (Centrino
1.6GHz, 512MB, WinXP). Flat FO-SMDP and Haley perform better than
propositional SMDP and propositional hierarchical SMDP as a result of
using first-order representations. Hierarchical SMDP and Haley have better
run times than their corresponding flat frameworks. This is because the
hierarchical decomposition significantly reduces the planning state space.

Execution times of the WS-BPEL compositions averaged over 100 runs (Cen-
trino 1.6GHz, 512MB, WinXP).
The list of RPC style WSso o
WSRESOURCE Definition
Type I RESTful Web Service
WSRESOURCE-ORDERSET is a WSRESOURCE example. It is mapped to
aset of orders L
RESTWS-ORDERSET is an example of Type I RESTful WS. RESTWS-
ORDERSET is a RESTful WS supporting operations of GET, PUT, DELETE
and POST on WSRESOURCE-ORDERSET
Type I RESTful Web Service
WSRESOURCE-ORDER is another WSRESOURCE example. It is mapped
to an individual ordero
RESTWS-ORDER is an example of Type II RESTful WS. POST is not sup-
ported by Type I RESTful WS.

X1

53

CHAPTER 1

INTRODUCTION

Service-oriented architecture (SOA) aims to provide a loosely coupled integration of services
residing on heterogeneous systems, written using different programming languages and with
other implementation disparities. Popularly considered as the building blocks of SOA, WSs
are self-describing and platform-independent applications that can be invoked over the Web.
Facilitating the assembly of services to form composite services is an important functionality
in SOA. Users may combine and reuse these services toward the production of business
applications. In this dissertation, we focus on the problem of automatically assembling WSs
to form compositions that optimize given user preferences. This problem is often referred to
as the Web service composition problem, although no consensus definition exists.

In this chapter, we introduce two paradigms of WSs — WSDL/SOAP WSs and RESTful
WSs — and briefly describe our proposed solutions to the composition problem of these two
types of WSs. We summarize our contributions in Section 1.4 and list the structure of the

dissertation in Section 1.5

1.1 WEB SERVICES

Generally, there are two paradigms of building WS based applications: operation-centric and
resource-centric. Operation-centric WSs view the application system from the perspective of
operations, that is, what operations to expose in the system. This type of WSs is usually
described using Web Service Description Language (WSDL) [25, 26]. The interaction protocol
is usually Simple Object Access Protocol (SOAP) [90]. In this dissertation, we call WSs of
this type WSDL/SOAP WSs. In contrast, RESTful WSs follow a resource-centric style and

1

view the application system from the perspective of resources, that is, what resources to
expose in the system. We describe the major characteristics and protocols of both kinds of
WSs below:

WSDL/SOAP Web Service has been supported by major enterprise computing solu-
tion providers such as IBM, SUN, Microsoft and Oracle. It is generally considered to be a
“big” [71, 81] and comprehensive solution to system integration in a heterogeneous environ-
ment. Its technology stack includes a series of XML based standards and protocols defined
by World Wide Web Consortium (W3C) [7] and Organization for the Advancement of Struc-
tured Information Standards (OASIS) [4] to ensure inter-operability. The various standards

and protocols are:

e Description Protocol: WSDL describes the functionality (public interfaces and available
operations) of WSs and the XML messages exchanged between service providers and
clients. An interface in WSDL is a set of supported operations, and an operation is
defined by the incoming and outgoing XML messages. The message types are usually
defined using XML Schema [93]. Services in a WSDL file are defined as a collection
of endpoints or ports. Each port is associated with a URI with a binding, where the

operations are bounded with a concrete communication protocol (usually SOAP).

e Communication Protocol: SOAP is the communication protocol for exchanging mes-
sages between different applications. SOAP is the messaging protocol for WSs. It relies
on other application layer protocols (usually HT'TP, but other application protocols like
FTP, SMTP are also possible) to transmit messages. These application layer protocols
are used as options for the underlying transport protocol in SOAP. A SOAP document
is basically an XML document with the following information in its top XML level
element envelope: (1) An optional Header element contains header information, which
includes application-specific information such as authentication, reliability, payment,
etc. (2) A Body element contains call and response information, which is the payload of

the SOAP message. Similar to WSDL, XML Schema is used to describe the structure

of the SOAP message. XML and XML schema based representation makes SOAP an
inter-operable protocol across heterogeneous platforms. (3) An optional Fault element

contains errors and status information.

e Publishing and Discovery Protocol: Universal Description, Discovery and Integration
(UDDI) [60] is an XML-based registry for service providers to list their services by pub-
lishing their descriptions and for users to discover needed WSs. There are three major
components in a UDDI business registration: (1)White Pages that list the address and
other contact information about the service provider; (2)Yellow Pages that list avail-
able WSs by industrial categories based on standard taxonomies; and (3) Green Pages
that give detailed technical information about the particular WS, which can usually

be populated from WSDL descriptions.

e Extension Protocols: The three protocols above form the foundation of building
operation-centric WSDL/SOAP WSs. However, in more complex application envi-
ronments, other advanced needs (such as atomic transactions, security, trust, reliable
messaging, etc.) also have to be accommodated. OASIS has standardized a fairly
comprehensive set of WS-* protocols [9]. For example, WS-AtomicTransaction [66] is
to support atomic transactions in WS interactions; WS-security [63] protocol is to pro-
vide a means for applying security to Web services by using security assertion markup
language (SAML) [62], Kerberos [30], and certificate formats such as X.509 [42]. WS-
Trust [65] is to enable applications to construct trusted SOAP message exchanges, and
WS-ReliableMessaging [61] protocol allows SOAP messages to be reliably delivered

between distributed applications.

RESTful Web Service is another alternative way of building WSs. This type of WS
is gaining increasing attention in the industry and has been widely adopted by leading
Internet companies due to its simplicity and light-weight nature. The key idea of RESTful

Web services is to apply REST principles into the development of WSs. First introduced by

Fielding [33, 34, 35], the principles of REpresentational State Transfer (REST) have backed
the development of the World Wide Web (WWW). The principles of REST include:

e Resource Centric: Conceptual entities and functionalities are modeled as resources

identified by universal resource identifiers (URIs).

e Uniform Interface: Resources are accessed and manipulated via standardized operations
(GET, POST, PUT and DELETE) in the HTTP protocol [91]. GET is a side-effect
free operation to fetch resource representations; POST, PUT and DELETE are used

to create, update and delete resources, respectively.

e State Transfer: Components of the system communicate via these standard interface
operations and exchange the representations of these resources (one resource may
have multiple representations). In a REST system, servers and clients typically transit
through different states of resource representations by following the inter-links between

resources.

Due to the different perspectives of building WSs, the composition problem of WSDL/SOAP
WSs and RESTful WSs are fundamentally different. We present our proposed solutions to
the composition problem of both types of WSs in this dissertation.

In the rest of this chapter, we discuss the motivation and briefly present our proposed
solutions in Section 1.2 and Section 1.3. Additionally, we outline our contributions in Sec-

tion 1.4.

1.2 WSDL/SOAP WEB SERVICE COMPOSITION

We briefly present in this chapter the motivation and our proposed approach to WSDL/SOAP

WS composition: Haley, a hierarchial framework for WS composition at the logical level.

1.2.1 MOTIVATION OF HALEY

Prevalent approaches for automatically composing WSDL/SOAP WSs predominantly uti-
lize planning techniques to achieve the composition because of the similarity of the Web
service composition (WSC) problem to the planning problem in the artificial intelligence
(AI) research. While a variety of such approaches have been proposed [45, 53, 56, 68, 73,
75, 78, 88, 99], many of these fail to appropriately identify the differences between the WSC
problem and Al planning problem. The following characteristics of WSs and compositions

are often not well modeled in existing approaches:

e Uncertainty: Distributed computing environments are inherently uncertain: invoca-
tion of remote WSs may potentially produce unexpected responses. A response could
depend on whether the WS is operating correctly and on external real-world situa-
tions. For example, output from an air ticket reservation WS will depend on whether
the service is working correctly and whether the airline has tickets remaining. Thus,

uncertainty often results from imperfect reliability of WSs and business logic.

e Optimality: Although satisfying the functional requirements is important for building
the WSC, optimization of nonfunctional preferences may be equally crucial, especially
in performance-sensitive application domains. We may wish to build a WSC that min-

imizes the response times and WS costs, and guarantees a basic level of reliability.

e Scalability: The problem size of the composition problem could become very large
due to the increase of the number of component services, the choice of WSs to select
from and the different types of input that a composition can process. In many cases,
the desire for scalability draws a line between “practical” and “impractical” solutions

to a specific SOA application problem.

A large number of the proposed approaches for WSC utilize classical AI planning [45,
56, 68, 73, 75, 88, 99]. While these approaches guarantee compositions that meet the func-
tional requirements, they are unable to provide the previously mentioned characteristics. In

particular, they are:

e Incapable of modeling uncertainty of WS invocations Classical planning
assumes that the actions, used to model WS invocations, are deterministic. In other
words, regardless of the status of the WS or the real-world situation, classical planners
assume that the WS will return the expected result. Thus, these approaches often

ignore service failures and the possibility of multiple service responses.

e Failure to provide QoS based optimality The approaches typically focus on
building WSCs that satisfy the functional requirements. Classical planners do not asso-
ciate cost or rewards with planning states or actions. Therefore, these approaches fail to
distinguish between WSs and compositions with identical functionality but exhibiting
different quality measurements. This limitation prevents classical planning from opti-
mizing compositions with respect to QoS parameters during planning time or it leads
to computational overhead if an additional plan optimization phase is used. In this

document, we focus on the WS QoS parameters of cost, reliability and response times.

e Inability to scale efficiently The inability to scale is due to an inefficient repre-
sentation of the WS planning problem and the complexity of the planning algorithms.
Many planners use propositional logic to represent the planning domains. Propositional
planning is PSPACE-complete, even if operators are restricted to have two positive
(non-negated) preconditions and two postconditions, or if operators are restricted to
one postcondition (with any number of preconditions). It is NP-complete if operators
are restricted to positive postcondition, even if operators are restricted to one precon-
dition and one positive postcondition [20]. Furthermore, handling multiple, different

types of input requires additional propositions.

Consequently, we focus on assembling WSs resulting in a composition that is expected to
optimize the QoS parameters in the context of uncertainty of the WSs.

In order to address some of these issues, we adopt decision-theoretic planning [16] for
composing WSs. Decision-theoretic planners such as Markov decision processes (MDPs) [13]
generalize classical planning techniques to nondeterministic environments where action out-
comes may be uncertain, and associate costs to the different plans thereby allowing the
selection of an optimal plan.

In an early piece of work, Doshi et al. [31] showed how we may use MDPs to compose
WS-based workflows. Compared to classical planners, a decision-theoretic planner models
the uncertainty inherent in WSs using probabilities and facilitates a cost-based process opti-
mization. This approach is especially relevant in the context of SOAs where services may
fail and processes must minimize costs. We examined the application of semi-MDP planning
toward the hierarchical composition of WSs, and demonstrated that decision-theoretic plan-
ning effectively addresses both, the uncertainty and optimality issues outlined previously. As

a further improvement of our work along this line, we developed Haley.

1.2.2 HALEY: A HIERARCHICAL FRAMEWORK FOR LoGcic COMPOSITION OF WEB SER-

VICES

To address the automated composition problem of WSDL/SOAP WSs, we propose a novel
hierarchical, decision-theoretic planning based framework for automatically composing WSs,
which we call Haley. Existing WSC techniques are further plagued by two challenges: ()
As the number of participating WSs increases, there is an explosion in the size of the state
space; (i7) there is a growing consensus among the WS description standards such as OWL-
S [51] and SAWSDL [32] on using first order logic (or its variants) to logically represent the
preconditions and effects of WSs. However, many of the existing planning techniques used
in WS composition do not use the full generality of first order logic while planning. Haley

improves on previous work by allowing WS composition at the logical level. Specifically,

Haley enables composition using the first order sentences that represent the preconditions
and effects of the component WSs. In addition to using a symbolic representation, Haley
promotes scalability by exploiting possible hierarchical decomposition of real-world processes.
In many cases, a business process may be seen as nested — a higher level process may be
composed of WSs and lower level processes — which induces a natural hierarchy over the
process. In order to do this, Haley models each level of the hierarchy using a first order
semi-Markov decision process (FO-SMDP) that extends a SMDP [74] to operate directly
on first order logic sentences, which provide a logical representation of the traditional state
space. In particular, the lowest levels of the hierarchy (leaves) are modeled using a FO-
SMDP containing primitive actions which are invocations of the WSs. Higher levels of the
process are modeled using FO-SMDPs that contain abstract actions as well, which represent
the execution of lower level processes. We represent their invocations as temporally extended
actions in the higher level FO-SMDPs. Since descriptions of only the individual WSs are
usually available, we provide methods for deriving the model parameters of the higher level
FO-SMDP from the parameters of the lower level ones. Thus, our approach is applicable to
WSCs that are nested to an arbitrary depth.

Haley brings three specific contributions toward composing WSs. First, it offers a way to
mitigate the problem of large state spaces by composing at the first order logic level and
preserves the expressiveness of first order logic. Consequently, Haley supports an automated
elicitation of the corresponding planning domain from WS descriptions and produces a com-
pact domain representation in comparison to classical planning based approaches. Second,
Haley offers a way to exploit possible hierarchical decomposition of the WSC problem, thereby
further promoting scalability. Third, Haley generates an optimal composition of WSs at each
level of the hierarchy. Because parameters of abstract actions are derived from those of the
WSs at the lower level, the generated composition is globally optimal under the assumption

that the reliabilities of lower level WSs are independent of each other.

Due to the limitations of the existing approaches mentioned above and the complexity
of the WSC problem itself, few implemented tools exist. We have implemented Haley! and
provide a comprehensive tool suite. The suite accepts WSs described using standard lan-
guages such as SAWSDL. It provides process designers with an intuitive interface to specify
process requirements, goals and a hierarchical decomposition, and automatically generates
Web Services Business Process Execution Language (WS-BPEL) [64], while hiding in the
processes the complexity of planning and of BPEL from users.

We show a high-level architecture of Haley in Fig. 1.1. Details of the approach are pre-
sented in Chapter 4. Our system parses the functional and nonfunctional information from
the input WS descriptions files, takes the composition goal and any hierarchy from the pro-
cess designers, to formulate the WSC problem. The composition problem is then represented
as a stochastic planning problem in first order logic and solved using a Prolog based planner.
The generated plan is converted into WS-BPEL, which may be deployed in a WS-BPEL

implementation.

Web service description
parsing Process

Execution
Process designer
QSpecify goals and
process hierarchy

Planning problem formulation BPEL
& symbolic planning Generator S Or :
o~
=

X

Figure 1.1: A high-level depiction of Haley’s architecture.

We note that our focus is on automatically generating the control flow of the composition
and representing it using BPEL. If inputs for WSs participating in the compositions are
available either from outputs of previous invocations or a priori, the resulting BPEL is
executable. As we discuss later, we do not address the problem of data mediation, which is

a separate and challenging research problem in itself.

'Haley is available for download at http://denali.cs.uga.edu/haley

10

1.3 RESTruL WEB SERVICE COMPOSITION

By applying the principles of REST in Web service development, RESTful WSs [81] are
emerging as the choice for many of the leading Internet companies to expose their internal
data and functionalities as URI identified resources. Some of the advantages of RESTful
WSs include:

Light-weight: RESTful WSs directly utilize HTTP as the invocation protocol which
avoids unnecessary XML markups or extra encapsulation for APIs and input/output. The
response is the representation of the resource itself, and does not involve any extra encap-
sulation or envelopes. As a result, RESTful WSs are easier to develop and consume than
WSDL/SOAP WSs, especially as Web Application Programming Interface (API) [8] in the
Web 2.0 [69, 70] context. Additionally, they depend less on vendor software and mechanisms
that implement the additional SOAP layer on top of HT'TP. RESTful WSs usually deliver
better performance due to the light-weight nature.

Easy-accessibility: URIs used for identifying RESTful WSs can be shared and passed
around to any dedicated service clients or common purpose applications for reuse. The URIs
and the representation of resources are descriptive and thus makes RESTful WSs easily
accessible [92]. RESTful WSs have been widely used to build Web 2.0 applications and
mashups.

Scalability: The scalability of RESTful WSs comes from its ability to naturally sup-
port caching and parallelization/partitioning on URIs. The responses of GET (a side-effect
free operation) can be cached exactly the same as web pages are currently cached in the
proxies, gateways and content delivery networks (CDNs). Additionally, RESTful WSs provide
a simple and effective way to support load balancing based on URI partitioning. Compared
to ad-hoc partitioning of functionalities behind the SOAP interfaces, URI-based partitioning
is more generic and flexible, and could be easier to realize.

Declarative: In contrast to imperative services from the perspective of operations,

RESTful WSs take a declarative approach and view the applications from the perspective

11

of resources. Being declarative means that RESTful WSs focus on the description of the
resources themselves, rather than describing what the functions are performed. Declarative
style brings the fundamental differences between RESTful WSs and WSDL/SOAP WSs to
the forefront. While building services for a particular system, the declarative approach focuses
on what resources need to be exposed and how these resources can be represented; impera-
tive approach focuses on what operations need to be provided and what are the input/ouput
of these operations. Declarative approach is considered to be a better choice [97] to build
flexible, scalable and loosely-coupled SOA systems.

The characteristics of RESTful WSs mentioned above make automated RESTful Web
service composition a fundamentally different problem than the composition problem
of WSDL/SOAP WSs. Although the research community has put significant effort on
automating WSDL/SOAP WSs, automated RESTful Web service composition problem, to
the best of our knowledge, is less explored.

In Chapter 6, we outline the challenges of this particular problem and present our initial
effort towards the problem of automating RESTful Web service composition. Our main
contribution in this regard is the introduction of a formal description of the RESTful Web
service composition problem [106]. While analyzing the differences and challenges involved
in this problem, we propose a formal model for classifying and describing RESTful WSs,
and present a situation calculus [52, 80] based state transition system for composing them

automatically. More details will be presented in Chaper 6.

1.4 CONTRIBUTIONS

Facilitating the assembly of services to form composite services is an important functionality
in SOA. Users may combine and reuse WSs toward the production of new applications. In
this dissertation, we focus on the problem of automatically assembling WSs to form composi-
tions with emphasis on modeling WS uncertainty, optimizing the process and improving the

scalability. Two related challenges involved in automated Web service composition problem

12

are the automatic construction of the service flow and mediating the data heterogeneity. Our
approach focuses on automatically constructing the control flow based on the functional and
non-functional requirements of the composition. It may be extended using a data mediation
module capable of handling data heterogeneity issues.

Generally speaking, our research focuses on WSDL/SOAP WS composition and RESTful
WS composition. We have performed an extensive study of the existing Web service compo-
sition research and identified some of the key issues needed to be solved by WSC approaches.
We have proposed a novel hierarchical, symbolic decision-theoretic planning based framework
and empirically evaluated the framework through its applications. Our approach investi-
gates some of the issues that have not been addressed before and demonstrates many unique
advantages over prevalent approaches. In this section, we summarize our contributions in the

dissertation, and present more detailed description in the later chapters of this dissertation.

1.4.1 HIiERARcCHICAL SMDP BASED APPROACH

We adopt decision-theoretic planning for composing WSs into processes. Decision-theoretic
planners such as Markov decision processes (MDPs) [13] generalize classical planning tech-
niques to nondeterministic environments where action outcomes may be uncertain, and asso-
ciate costs to the different plans thereby allowing the selection of an optimal plan. Previously,
Doshi et al. [31] showed how we may use MDPs to compose WS-based workflows. Compared
to classical Al planners, a decision-theoretic planner probabilistically models the uncertainty
inherent in WSs and facilitates a cost-based process optimization. Being stochastic, MDPs
bring in the ability to model uncertain behaviors of WSs with non-deterministic actions, and
they associate costs (or rewards) to the different outcomes of actions and resulting states.
These techniques are especially relevant in the context of SOAs where services may fail and
processes must minimize costs.

While the previous work [31] demonstrated that decision-theoretic planning addresses

both the uncertainty and optimality issues, the scalability issue remains unresolved. To deal

13

with this issue, we examine the application of hierarchical semi-MDP planning toward the
hierarchical composition of WSs [104]. We present a hierarchical approach for composing
processes that may be nested — some of the components of the process may be sub-processes
themselves. The major contributions of this work are listed below:

Contributions

e In order to represent the invocation of lower level processes whose execution times
are uncertain and different from simple service invocations, we model WS invocations
using actions in Semi-Markov decision process (SMDP) [74] that generalizes MDPs by

allowing actions to be temporally extended.

e Many real world processes are amenable to a hierarchical decomposition into lower level
processes and primitive service invocations. We present a new hierarchical framework
for modeling, composing, and executing large scale processes by exploiting such a
hierarchy. We model the compositions with only primitive WSs as primitive SMDPs

and the ones with sub-processes as composite SMDPs.

e A method of constructing the primitive SMDP planning problem from the Web service
composition problem is proposed, and more importantly we provide ways for deriving

the parameters of the composite SMDPs from the lower level ones.

1.4.2 Haley: HIERARCHICAL FIRST-ORDER SMDP BASED APPROACH

Although hierarchical SMDP based approach promotes scalability, along with existing WSC
techniques, it is further plagued by two challenges:
(7) As the number of WSs increases, there is an explosion in the size of the state space;
(77) There is a growing consensus among the WS description standards such as OWL-
S [50] and SAWSDL on using first order logic (or its variants) to logically represent the

preconditions and effects of WSs.

14

However, many of the existing planning techniques used for WS composition do not use
the full generality of first order logic while planning. We propose a first-order hierarchical
decision-theoretic planning framework, which we call Haley [105], for WSC problems. Haley
improves on previous work by allowing WS composition at the logical level. Specifically,
Haley enables composition using the first order sentences that represent the preconditions
and effects of the component WSs. In addition to using a symbolic representation, Haley
promotes scalability by exploiting the hierarchical decomposition of real-world processes.
Similar to the idea of hierarchical decomposition in hierarchical SMDP based approach, we
extend it to the hierarchical decomposition of first-order SMDP (FO-SMDPs).

Contributions

e Haley offers a way to mitigate the problem of exponentially growing state spaces by
composing at the logic level and preserves the expressiveness of first order logic. Haley
operates directly on first order logic based representations of the state space to obtain
the compositions. As a result, it supports an automated elicitation of the corresponding
planning domain from Web service descriptions and produces a much more compact

domain representation than classical Al planners.

e Haley models each level of the hierarchy in the process using a FO-SMDP that extends
a SMDP to operate directly on first order logic sentences, which provide a logical
representation of the traditional state space. In particular, the lowest levels of the
hierarchy (leaves) are modeled using a FO-SMDP containing primitive actions which
are invocations of the WSs. Higher levels of the process are modeled using FO-SMDPs
that contain abstract actions, which represent the execution of lower level processes.

We represent their invocations as temporally extended actions in the higher level FO-

SMDPs.

e Since descriptions of only the individual WSs are usually available, we provide methods

for deriving the model parameters of the higher level FO-SMDP from the parameters

15

of the lower level ones. Thus, our approach is applicable to WSCs that are nested to

an arbitrary depth.

e Our experiments demonstrate the advantages of a hierarchical decomposition and logic
based representation. The hierarchical approach consumes less planning time than
the flat approach; and the first order representation produces more compact planning

domains.

1.4.3 AN END-TO-END WS COMPOSITION TOOL SUITE

Due to the limitations of the existing approaches mentioned previously and the complexity of
the WS composition problem itself, few implemented tools exist, although many approaches
have been proposed in the literature. We have implemented Haley? and provide a comprehen-
sive tool suite. The suite accepts WSs described using standard languages such as SAWSDL.
It provides process designers with an intuitive interface to specify process requirements, goals
and a hierarchical decomposition, and automatically generates executable BPEL processes,
while hiding the complexity of planning and BPEL from users.

Contributions

e We have designed a general first-order SMDP based decision-theoretic planner, eDT-
GOLOG, which may be used independently of Haley. eDT-GOLOG is used as the
planning engine in Haley to generate the plan based on WS descriptions and user-

specified goals.

e To help process designers view the functionalities of individual WSs, we designed a
SAWSDL viewer to visualize the IOPE —Input, Output, Preconditions and Effects —
of WSs. To the best of our knowledge, this is the first graphical viewer for SAWSDL
described WSs.

2Haley is available for download at http://denali.cs.uga.edu/haley

16

e A process hierarchy modeler to help process designers specify the hierarchy in the
processes. Process designers may utilize this tool to form hierarchies by grouping WSs

in an intuitive way.

e An integrated environment for the process designers to (1) import candidate WSs
and their description files, (2) specify process hierarchies, initial state and goals, (3)
generate the planning domain, (4) generate the plan and (5) convert the plan into the

corresponding BPEL file.

1.4.4 AN AUuTOMATED RESTFUL WEB SERVICE COMPOSITION APPROACH

Automated RESTful WS composition is much less studied in the WS research community
than WSDL/SOAP WS composition. We have put our initial efforts into RESTful WS
modeling and composition. We are hoping our research will attract more interests and engage
more researches from the WS research community:.

Contributions

e As an early research effort towards automated RESTful WS composition, we introduce
and formally define this problem. In addition, we analyze the differences between auto-
mated WSDL/SOAP WS composition and automated RESTful WS composition. We

identify a set of challenges for addressing automated RESTful WS composition.

e To facilitate automated RESTful WS composition, we classify and formally model
RESTful WSs. A situation calculus based state transition system has been studied to

automate the composition of RESTful WSs.

1.5 STRUCTURE OF THE DISSERTATION

This dissertation covers two closely connected topics: automated WSDL/SOAP WS compo-

sition and RESTful WS composition. While sharing a similar objective and some common

17

properties in the context of SOA application, these two composition problems are funda-
mentally different due to the two different perspectives of building WSs. With this in our
mind, this document is structured so that we present in the early chapters our proposed
framework solving the automated WSDL/SOAP WS composition problem, and introduce
our effort towards the automated RESTful WS composition problem. Challenges and solu-
tions to these two composition problems have been discussed and compared in the later
chapters.

We briefly summarize the structure of the dissertation below:

We describe two motivating scenarios in Chapter 2, both of which exhibit nested structure
with 2 levels and 3 levels respectively. The second scenario will be used as a running example
to illustrate our approach to automated WSDL/SOAP WS composition.

In Chapter 3, we introduce the background knowledge of Markov Decision Processes
(MDPs), Semi-Markov Decision Processes (SMDPs) and First Order MDPs (FO-MDPs). In
addition, we discuses probabilistic situation calculus using specific examples. Probabilistic
situation calculus is the representation language used in FO-SMDPs.

We present in Chapter 4 the theoretical framework of Haley. We introduce First Order
Semi-Markov Decision Processes (FO-SMDPs) and explain a hierarchical FO-SMDP based
decision-theoretic planning framework. This planning framework is used in Haley as the
planning engine to automatically compose WSs into processes. We will detail how Haley
approaches an order handling scenario (Fig. 2.2) in this chapter.

In Chapter 5, we present the system modules and implementation details. We also dis-
cuss the generation and the execution algorithms of processes. Experiment results will be
presented and analyzed in detail.

Detailed description of our approach to automated RESTful WS composition is presented
in Chapter 6. We introduce a classification based formal model for describing RESTful WSs.
A state transition system approach is proposed to automate the composition of RESTful

WSs.

18

In Chapter 7, we survey existing planning based approaches and configuration based
approaches to WS composition and briefly compare them with Haley. In addition, we cover
the related proposals for modeling RESTful WSs. Mashup is also mentioned and compared
to RESTful WS composition.

Finally, we conclude our work in Chapter 8 with a summary of original contributions and

present some future research directions.

CHAPTER 2

MOTIVATING SCENARIOS

In order to illustrate our framework, we briefly describe two motivating scenarios that exhibit
hierarchical structures. We intend to form WSCs that meet the goal using the specified input,
output, precondition and effect (IOPE) for each WS. Furthermore, in the first scenario,
we will optimize over the traditional QoS parameters advertised for the WSs (interface
parameters) such as response time, invocation cost and reliability. However, the structure of
a WSC may not depend on the interface parameters alone. Hence, in the second scenario,
we will additionally optimize over domain parameters such as the cost of the service and

availability of the products.

2.1 ONLINE SHOPPING

In the first scenario, we study a typical online shopping process (Fig. 2.1). A Chinese college
student would like to know the total cost of buying a textbook from the US portal of Amazon
because the desired textbook is not published in China. The total cost includes the book’s
price and the price of shipping it to China, both of which are, of course, in US dollars. A
currency conversion WS is utilized to convert US dollars into Chinese currency, Yuan. Two
of the components, GetBookPricelnYuan to get the price of the book and, GetShipping-
CostInYuan to get the shipping cost, are actually subprocesses composed of primitive WSs.
To make this scenario realistic, we obtain these WSs from actual Web application sites such

as the USPS web tools [5], Amazon WSs [1] and WebserviceX.net [6].

19

20

4
-

GetBookPrice _ C2E Translation

InDollar

GetBookName GetBookPrice Currency
InChinese InYuan Conversion
CalculateTotalCost I

I GetShipping

e

il

BookNameToISBN

—————————p-

QueryBookPrice

[e)
e

S

VerifyAddress ZipCodelLookup

Calculate Currency
Shipping Conversion

1l

N ——————

[- S —

\,

o o e e

Figure 2.1: A 3-level hierarchical online shopping scenario in which the service GetBookPri-
ceInYuan and GetShippingCostInYuan are subprocesses. GetBookPricelnDollar in subpro-
cess GetBookPriceinYuan is also a subprocess composed of WSs.

2.2 ORDER HANDLING SCENARIO IN SUPPLY CHAIN

Our second example is typical of scenarios for handling orders that are parts of the supply
chains of manufacturers (Fig. 2.2). This scenario will be used as a running example to
illustrate our approach throughout the document.

An instance of the business process is created when a customer sends in an order. The
order specifics first need to be verified, in that the customer needs to be checked and her
payment needs to be processed. Subsequently, the manufacturer checks for supplies that are
required to complete the order. In this step, he may choose to check his own inventory first
and then ask his preferred supplier, if his own inventory is deficient. Alternately, he may
elect to directly ask his preferred supplier for goods, since he does not expect his inventory
to satisfy the order. A final resort is the spot market which is guaranteed to fulfill his order.

On receiving the supplies, the manufacturer will ship the completed order to the customer.

21

\

]

]

1

1

; 1
ReceiveOrder VerlfyOrder ______ .| Verify Payment i
i

i

]

1

1

Check Check Check | HNN
Inventory Preferred Supplier Spot Market
GetGoods SelectShipper - Get Speed Get Price
Regirement Regirement
ShipGoods Check Check
Post Carrier Express Carrier

L ————

~,

Figure 2.2: A 2-level hierarchical order handling scenario as a part of the supply chains
of manufacturers in which the service Verify Order and Select Shipper are subprocesses
themselves. The three suppliers (Inventory, Preferred Supplier and Spot Market) in this
scenario have different costs and probabilities of order satisfaction.

Note that the three candidate suppliers differ in their probabilities and costs of order
satisfactions. In particular, while the inventory exhibits a low cost of satisfying the order, the
spot market is the most expensive among the three. However, it is also guaranteed to satisfy
the order, while the inventory has the least probability of doing so. This particular scenario
illustrates that not only are the WS interface parameters (IOPE and QoS) important factors
while composing WSC, but other domain-specific service parameters such as order cost and
the rate of satisfying orders also need to be considered while determining the composition.

In this case, we may combine the WS invocation cost and the order cost to produce the
total cost of using the WSs. The availability of each service is determined by two probabili-
ties: the WS interface reliability and the probability of order satisfaction. For example, the
probability that the Preferred Supplier is available to satisfy the order is a product of the

probability that the preferred supplier’s WS is working properly and the probability that

22

this order can be satisfied by it. In other words, order satisfaction is contingent on both, the

WS is working properly and the preferred supplier has sufficient products in stock.

CHAPTER 3

BACKGROUND

In this section, we briefly describe Markov decision processes (MDPs) [74] and semi-Markov
decision processes (SMDP) [74], a temporal generalization of MDP. MDPs and SMDPs are
well-known framework for decision-theoretic planning [15, 17]. And then we focus on first-
order extension of MDPs (FO-MDPs) that allow planning on first order logic representations

expressed with situation calculus.

3.1 MARKOV DECISION PROCESSES

MDPs [74] model the process environment as a tuple,

MDP = (S, A, T, R, so) where

S is a set of states with each state often factored into variables

A is a set of actions

o T :5xA — A(Y), is the transition function representing the uncertain effects of

actions where A(-) is the set of probability distributions

R : S x A — C is the reward function representing the reward/cost of performing

actions

So € S is the start state

23

24

Solution of an MDP results in a policy, which is a mapping from states to actions. In
order to solve the MDP, we associate with each state a value, V"(s), that represents the
expected cost of performing an optimal sequence of actions from that state. We define this

value using the following equation, which forms the basis for value iteration [13]:

V™(s) = mag R(s,a) + Z T(s'|s,a)V" (s (3.1)
s’'esS

Standard solution technique involves iterating over Eq. 3.1 until V"(s) converges. The con-
verged value is the maximal utility for each state, and the corresponding mapping from states
to actions that maximizes utilities is the optimal policy. The optimal action(s) to perform

from a state is then the one which results in the lowest expected cost. An application of

MDPs to WSC is given in [31].

3.2 SEMI-MARKOV DECISION PROCESSES

A semi-Markov decision process (SMDP) [74] is a temporal generalizations of MDP. Instead
of assuming that the durations of all actions are identical and therefore ignoring them while
planning, SMDPs explicitly model the system evolution in continuous time and model the
time spent in a particular state while performing an action as following a pre-specified
probability distribution. Analogous to an MDP, solution to a SMDP produces a policy. The
policy assigns to each state of the WSC action(s) that is expected to be optimal over the
period of consideration. We formally define a SMDP that models the composition problem
as a tuple:

A SMDP is defined as a tuple,
SMDP = (S,A,T,R, K, F,C, sg)

e S = II'", X" where S is the set of all possible states factored into a set, X, of n
variables, X = {X! X2 ... X"}

e A is the set of all possible actions

25

e T is the transition function, 7' : S x A — A(S), where A(-) specifies a probability
distribution. The transition function captures the uncertain effect of performing an

action on particular variables

e K is the lump sum reward, K : A — R. This specifies the reward (or cost) obtained

on performing an action

e [is the sojourn time distribution for each action, F' : A — A(t), where t € [0, Tpnaz),
Tz is the maximum time duration of any action. Given the action, a, the system will
remain in the state for a certain amount of time, ¢, which follows a density described by
f(tla). Note that the sojourn time distribution may also depend on the current state.

This distribution represents the varying response times of WS invocations;

e (' is the cost accumulating rate, C': A — R, which specifies the rate at which the cost

accumulates on performing a temporally extended action.
e 50 € S is the start state of the process

We may describe an example evolution of a SMDP as follows: At time ¢y, the system
occupies state sg, and the WSC chooses action ag based on a particular policy. Consequently,
the system remains in sq for t; time units after which the system state changes to s;, and the
next decision epoch occurs. The WSC performs action as, and analogous sequences of events
follow. The sequence {to, so, ag, t1, $1, a1, ..., tn, Sp} denotes the history of SMDP up to the
n'* decision epoch. {tg,t1,ts,...,t,} are the sojourn times between two consecutive decision
epochs. While in a MDP, these times are fixed, in a SMDP, the time durations follow certain
probability distributions given by F'.

In order to solve the SMDP, we define the following:
Tmaz
R(s,a) = RS(s) — (K(a) + C(a) / ¢~ £ (t]a)dt) (3.2)
0

Notice that we subtract the expected cost of performing the action, a, from the reward

obtained at the state, s. We model the total expected cost using two parts — state dependent

26

reward RS(S) and action dependent costs. f(t|a) is the probability density function of the
sojourn time distribution.
Analogous to MDPs, we associate a value function, V' : § — R, with each state. This

function quantifies the desirability of a state over the long term.

Vi(s) = max R(s,a)+ Z M(s'|s,a)V" (s (3.3)
s'eS
where:
Tmaz
M(s'|s,a) = / e MT(s'|s,a) f(t|a)dt (3.4)
0

Standard SMDP solution techniques [13] for arriving at the optimal policy involve repeat-
edly iterating over Eq. 3.3 until the function, V', approximately converges. Another technique
for computing the policy requires formulating and solving a linear program (LP).

Traditionally, the state in MDPs and SMDPs is represented using propositions and a
combination of all possible values of the propositions becomes the state space. Notice that
the size is exponential in the number of propositions. In order to solve MDPs or SMDPs, we
must explicitly enumerate over all pairs of states and actions. This becomes a computational
challenge when composing large processes.

In addition, WS description standards such as OWL-S and SAWSDL seek to express the
preconditions and effects of WSs using first order logic based languages such as RuleML [39].
The traditional MDP based approach [31] composes these WSs by grounding and proposi-
tionalizing the WS descriptions. It fails to scale to large WS composition problems because
the size of the state space grows exponentially with the number of objects.

Efforts have been proposed to logically represent MDPs and solve them symbolically to
avoid an explicit enumeration of the states. These approaches include symbolic dynamic
programming [18] using situation calculus, fluent calculus based value iteration [40] and a
relational bellman algorithm (Rebell) [43]. Automated WS composition needs for a decision-
theoretic planning framework that operates symbolically on first order logic descriptions.

In [18], Boutilier et al. introduced first order MDPs (FO-MDPs) that use a probabilistic

27

variant of first order situation calculus to logically represent the domain and use symbolic

value iteration to solve the FO-MDP. We cover the details about FO-MDP in Section 3.4.
Before we describe FO-MDPs, we introduce situation calculus using the supply chain

example(See Figure 2.2). Probabilistic Situation Calculus is the representation language

used in FO-MDPs.

3.3 PROBABILISTIC SITUATION CALCULUS

Situation calculus [52, 79] is a first order logic based framework for representing dynamic
environments and actions, and reasoning about them. It uses situations to represent the
state of the world, and fluents to describe the changes from one situation to the other caused
by the actions. We briefly explain the components of the probabilistic variant of situation

calculus:

e Actions are first order terms, A(Z), each consisting of an action name, A, and its argu-
ment(s), Z. For example, the action of receiving an order from the customer can be denoted
as ReceiveOrder(o); the action of checking inventory can be denoted as C'heckInventory(o),

where o is a variable denoting the order.

e A situation is a sequence of actions describing the state of the world and usually
represented by symbol do(a, s). For example, do(ReceiveOrder(o),sy) denotes the situa-
tion obtained after performing ReceiveOrder(o) in the initial situation sy (s¢ is a special
situation which is not represented using a do function). Situation do(ChargeMoney(o),
do(VerifyPayment (o), do(CheckCustomer (o), s9))) represents the situation obtained after
performing the action sequence (CheckCustomer(o), VerifyPayment(o),

ChargeMoney(o)) in so.

28

e Fluents are situation-dependent relations and functions whose truth values vary from
one situation to another. For example, HaveOrder(o, s) means the process has received an
order denoted by o in situation s; ValidCustomer(o,s) means the customer identified in o

has been validated in s.

e Nature’s choices: Situation calculus in its original form is restricted to deterministic
actions, while MDPs allow stochastic actions and are designed to make decisions under
uncertainty. To model stochastic actions in situation calculus, we decompose a stochastic
action, A(Z), into a set of deterministic actions, n;(Z), each of which is selected randomly. We
assume that this choice may be made by nature. For example, an action invoking a WS that
has multiple effects could be decomposed into deterministic actions for each effect. Nature’s
choices, introduced in [18], support stochastic actions in situation calculus. A stochastic
action is decomposed into deterministic actions under Nature’s choice - it chooses the deter-
ministic action with some specified probability, that actually gets executed when an agent
performs a stochastic action. We give nature’s choices intuitive meanings in our framework.
As we mentioned previously, we assign a probability to each possible WS invocation outcome
including the positive outcome and negative outcomes like service failure. For example:

choice(CheckCustomer (o), a) = a = CheckCustomerS(o) V a = CheckCustomerF(o)

choice(CheckPre ferredSupplier(o),a) = a = CheckPreferredSupplierS(o) V

a = CheckPreferredSupplierF (o)

where CheckCustomerS(o) and CheckCustomerF (o) denote the deterministic actions

that succeed (customer validated) or fail, respectively.

e Probabilities for nature’s choices: For each possible outcome, n;(Z), associated with
stochastic action, A(Z), we specify the probability, Pr(n;(Z), A(Z), s) with which the outcome

will occur, given that A(Z) was performed in situation s. For example:

29

Pr(CheckCustomerS(o), CheckCustomer(o), s) = 0.9
Pr(CheckCustomerF (o), CheckCustomer(o),s) = 0.1

Pr(CheckPreferredSupplierS(o), CheckPreferredSupplier(o), s) = 0.72
Pr(CheckPreferredSupplier F (o), CheckPreferredSupplier(o), s) = 0.28

To calculate Pr(CheckPreferredSupplierS(o), CheckPreferredSupplier(o),s), we
need to take into account both the service availability and the probability of order satisfac-
tion. If the service availability of Preferred Supplier WS is 0.9, and its probability of order
satisfaction is 0.8, the overall probability that Preferred Supplier WS returns YES is 0.72.

While four classes of axioms are used in situation calculus to axiomatize a domain, we
additionally focus on the precondition and successor state axioms that are important for
FOMDPs.

e Action precondition axioms: We define one axiom for each action: Poss(a(Z),s) =
I1(Z, s), which characterizes the precondition of the action. For example, the precondition

axiom of action C'heckCustomer(o) is:

HaveOrder(o, s) = Poss(CheckCustomer(0), s)

where Poss denotes the possibility of performing the action.

e Successor state axioms(SSA) are axioms that describe the effects of actions on fluents.
Hence there is one such axiom for each fluent. Successor state axioms provide a way to
address the frame problem — the problem of representing all the things that stay the same
on performing an action. Action effects are compiled into successor state axioms, where the

truth value of a fluent is completely determined by the current situation s and the action to

30

be performed. There is one such axiom for each fluent:

F(Z,s): F(%,do(a,s)) = ®r(Z,a,s). Pr(Z, a,s) =~ (%, a,s)V (F(Za) Ny (Z,a,s))

where /= (&, a, s) contains all the combinations of actions and conditions that would
make fluent F true/false respectively. For instance of our example domain, the successor

state axiom for ReceiveOrder(o):

Poss(a, s) = HaveOrder(o,do(a, s)) < a = ReceiveOrderS(o)V(HaveOrder(a, s)\a #
CancelOrderS(o))

In other words, we have the order in the situation that results from performing the
action if and only if we performed the ReceiveOrderS(o) action or we already have it in the
current situation and do not perform an action that will cancel the order. We give two more

example SSAs in the example domain for Fluent ValidCustomer(o) and ValidPay(o):

Poss(a, s) = ValidCustomer(o,do(a, s)) < a = CheckCustomer(o)V(ValidCustomer(o, s)

Poss(a, s) = ValidPay(o,do(a, s)) < a = VerifyPayment(order) V (validPay(order, s)

e Regression: Regression is a mechanism for proving consequences in situation calculus.
It is based on expressing a sentence containing the situation do(a, s) in terms of a sentence
containing the action a and the situation s, without the situation do(a, s). The regression of
a sentence ¢ through an action a is ¢’ that holds prior to a being performed iff ¢ holds after
a. Successor state axioms support regression in a natural way [18]. Suppose that a fluent F’s
successor state axiom is F(Z, do(a, s)) < ®r(7, a, s), we inductively define the regression of

a sentence whose situation arguments all have the form do(a, s):

31

(F(Z, do(a, s))) = ¢r(Z,a,s)

(F (=) = ~Regr(v)

Regr(F (11 A1) = Regr(¢r) A Regr(i)
(£(

F(3z¢) = (3x)Regr(v)

Regr
Regr(F

Regr

3.4 FIRST ORDER MARKOV DECISION PROCESSES

We briefly present First Order Markov Decision Processes (FO-MDP) formalism and the
symbolic dynamic programming solution using the supply chain example. We refer the reader
to [18, 83] for more details.

Actions in FO-MDPs are the stochastic actions decomposed into nature’s choices. To
simply the presentation, FO-MDPs introduce case notation to represent the transition and
cost functions. A case notation is defined as, case[p1(s),t1;...;0n(S),t,] where ¢, i =1...n
represents a first order logic sentence in situation calculus, t; is the corresponding term. We
note that the case notation partitions the state space into n classes; within a class ¢ each
state unifies with ¢;(s) (ie., ¢;(s) is true for state s).

Let A(Z) be a stochastic action with choices, ni(%), ..., ng(Z), then the choice proba-
bilities are specified as: pCase(n; (), A(Z),s) = case[p1(s),pl; .. .; dn(s), pi]. Note that we

will have one such pCase for each j. For example,

pCase(CheckCustomerS(o), CheckCustomer(0), s) = case[true,0.9]
pCase(CheckCustomerF (o), CheckCustomer(o), s) = case[true, 0.1]

The reward function may be represented in case notation:

rCase(s) = caselé1(s),r1;...;&n(s),rn)]. For example,

rCase(s) = case[ValidCus(o) A ValidPay(o) A Charged(o),10; —(V alidCus(o) A ValidPay(o) A

32

Charged(o)), 0]

Intuitively, an operation on two case notations takes the cross-product of their cases (parti-
tions) and performs the corresponding operation on the terms of the paired partition. The

following operations are defined in case notations:
case[pi, t; 11 < n| @ case[y;,t; 1 j < m| = case[p; NY;,ti+t; i <n,j < m]
caselp;, t; 11 < n| S case[th;,t; 1 j < m] = case[p; NYj,ti —t; i <n,j <m]

caselp;, t; 1 1 < n| @ case[;,t; 1 j < m] = case[p; Nt -t i <n,j <ml

We illustrate how cases partition the state space and an operation on case notations in

Fig. 3.1.
Do ®oAWol| dorw
Q%) Wo || W+ —>
(OX D10 || 1Ay
State space partitioned State space partitioned
by cases {®o, 1} by cases {Wo, W1}

Figure 3.1: Cases partition the state space. Within a class i, each state unifies with ¢;(s)
(ie., ¢;(s) is true for state s). Here, one case notation partitions the state space with cases
¢o and ¢ and the other one partitions the state space with cases 1y and ;. The operation
on the two case notations takes the cross-product of their cases.

On representing the FO-MDP parameters in case notation and axiomatizing action
preconditions and effects, we may perform symbolic value iteration to solve the FO-MDP.
We briefly introduce the idea here and refer the readers to [18, 83] for more details. We first

define first order decision-theoretic regression (FODTR) as:

FODTR(vCase(s), A(Z)) = v - [®; pCase(n;(Z), s) ® Regr(vCase(do(n;(Z), s)))]

33

Here, vCase is the case notation for the value function, V™.

Regr(vCase(s), A(Z)) = rCase(s) ® FODTR(vCase(s), A(T)) (3.5)

where Regr on the left regresses the value function through action, A(%), and produces a case
notation with action parameters as free variables. The parameters may be removed from con-
sideration through existential quantification: Regr(vCase(s), A) = 3% Regr(vCase(s), A(Z))
The optimal value, analogous to Eq. 3.1, is given by the action that maximizes the action-
value pair:

Regr(vCase(s)) = max s Regr(vCase(s), A)

CHAPTER 4

HALEY: A HIERARCHICAL FRAMEWORK FOR LoOGICAL COMPOSITION OF WEB

SERVICES

Many real world business processes are amenable to a hierarchical decomposition into lower
level processes and primitive service invocations. We present a new framework, which we call
Haley, for modeling, composing, and executing large WSCs by exploiting such a hierarchy.
Our approach is to use first order semi-Markov decision processes (FO-SMDPs), which are
temporal generalizations of the FO-MDPs mentioned in Section 3.4 to perform the compo-
sition. Specifically, they allow temporally extended actions of uncertain durations, which we
call abstract actions. The actions are used to represent the invocations of lower level WSCs.

Haley models the lowest level service composition problem using primitive FO-SMDPs,
while higher level compositions are modeled using composite FO-SMDPs (Fig. 4.1). We also
show how the model parameters of the composite FO-SMDPs in the case of abstract actions
may be derived from the parameters of the primitive FO-SMDPs that signify the actions.
Parameters of the primitive FO-SMDPs are, of course, obtained directly from the relevant
WS descriptions. To the best of our knowledge, Haley is the first framework that combines
hierarchical decomposition with logic (knowledge) level composition of WSs, thereby offering

a scalable approach capable of operating directly on first order logic based descriptions of

WSs.

34

35

Level 0 process only involving

Start primitive WSs, modeled
ar using primitive FO-SMDP

ReceiveOrder

]
1
1
1
1
1
1
1
1
1
1
1
13
1
1
1
1
T
1
1
oo o e
<
[0}
3.
2
o
(']
s
E
[0}
=
T pp———

Check
Preferred Supplier

Check
Inventory

GetGoods

Get Speed Get Price

Regirement Regirement
Check Check

Post Carrier Express Carrier

Level 0 process only involving

R p———Y

4
(]
1
1
:
SeIeCtShipper r— ____________ .--I
i
1
\

ShipGoods

primitive WSs, modeled
using primitive FO-SMDP

<
o
=
=
Q
[0)
=
A
\
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
U
4

First-level process involving primitive WSs and low-level
compositions, modeled using composite FO-SMDP

Figure 4.1: High-level process in the order handling scenario with low-level sub-processes
is composed using composite FO-SMDP. Low-level processes with only primitive WSs are
composed using primitive FO-SMDP.

4.1 FIRST ORDER SEMI-MARKOV DECISION PROCESSES

Standard solution of the SMDP involves repeatedly iterating over Eq. 3.3 for the desired
number of steps or until the function, V', approximately converges. The optimal policy from
each state is then the action which results in the maximum value of that state.

We now extend the classical SMDPs described in Section 3.2 to first order SMDPs, in
a manner similar to Section 3.4. This not only avoids an enumeration over all state-action
pairs but also allows us to operate directly on first order logic based descriptions of WS

preconditions and effects.

36

Analogous to FO-MDPs, we adopt the probabilistic situation calculus to logically rep-
resent the FO-SMDP. The parameters S, A, T, and R of the FO-SMDP are as defined in
Section 3.4 using case notation. We give the case notations for the new parameters specific

to SMDPs next.

The lump sum cost function, K(A(Z)), may be represented in case notation as:
kCase(A(Z)) = case[f1(A(X)), k1;. .. ;5|A‘(A(f)), k‘A|]

where |A| is the number of actions. Similarly the accumulating rate, C'(A(Z)), represented

in case notation is:
cCase(A(#)) = case[B (AF)), c1; - .. B (AD)), a]
The sojourn time distribution, F(A(Z)), in case notation is:
fCase(A(Z)) = case[B1 (A(T)), f1(1); - - 84 (A(@)), fla/(D)]

Here (3;(A(%)) is defined as, G;(A(%)) : A(Z) =a; i=1,2,...,]A|. Intuitively, K, C, and

I have different values or functions for each action. For example,

kCase(A(Z)) = case|lA(¥) = CheckCustomer(o), 2; A(Z) = VerifyPayment(o), 3; A(Z)

= ChargeMoney(o), 2]

cCase(A(Z)) = case[A(Z) = CheckCustomer(o), 0.2; A(Z) = VerifyPayment(o), 0.2; A(¥) =

ChargeMoney(o), 0.2]

fCase(A(Z)) = case[A(Z) = CheckCustomer(o), N(1,0.8;t); A(Z) = VerifyPayment(o),

N(1,1;t); A(Z) = ChargeMoney(o), N(2,2;t)]

where N (1, 0;t) is a probability density over time ¢ > 0 of form Gaussian with mean p and

standard deviation o.

37

Define the notation for the total expected cost as:

tcCase(A(T)) = kC’ase(A(f))@(cCase(A(f))(@fonw e~ fCase(A(%))dt) = case[B1(A(F)), (ki+
1 fOTm‘”” e~ fi(t)dt); ... Bla(A(D)), (kja + ¢a fonax e fla(t)dt]

The case notation for the total expected reward, Eq. 3.2, becomes:
rCase(s, A(Z)) = rsCase(s) © tcCase(A(X)) (4.1)
Next, we define the case notation for Eq. 3.4:

mCase(n;(Z), A(Z), s) = fOTm‘”” e *"pCase(n;(Z), A(Z), s) @ fCase(A(Z))dt (4.2)

where n;(Z) is a deterministic decomposition of the stochastic action, A(Z). Thus there are
as many such cases as the number of deterministic actions.

Given Egs. 4.1 and 4.2, we may solve FO-SMDPs using symbolic value iteration, in a
manner similar to FO-MDPs (Section 3.4). Specifically, we replace the rCase and pCase in

Eq. 3.5 with trCase and mCase, respectively.

4.2 MOoDEL ELICITATION FROM WEB SERVICE DESCRIPTIONS

We briefly mention ways in which the model parameters of the above mentioned primitive
FO-SMDP are obtained. The actions, A(¥), are the atomic operations in WSs that compose
the WSC. Preconditions for performing the actions are directly obtained from the precondi-
tions of WSs specified using RuleML, in their OWL-S or SAWSDL descriptions. Successor
state axioms are compiled from the first order effect sentences in the WS descriptions. For

example, consider the description of the following WS operation:

Web service operation: ChargeMoney(o)
Precondition: ValidCustomer(o) AND Valid Payment(o)
Effect: Charged(o)

38

The precondition axiom for action ChargeMoney(o) is:
ValidCustomer(o, s) A\ ValidPayment(o, s) = Poss(ChargeMoney(o), s)
The successor state axiom becomes:
Poss(a, s) = Charged(o,do(a, s)) < a = ChargeMoneyS(o) V Charged(o, s)

Some examples of compiling successor state axioms from DAML-S [29] WS descriptions can
be found in [53]. The probabilities of the different responses or effects from service invocations
that make up the probabilities in pCase may be found in either the service Parameter section
of the OWL-S description of the WS or in the SLAparameter section of the WSLA specifi-

cation [48](see Fig. 4.2). These probabilities quantify contracted service reliability rates.

<ServicelLevelObjective name="InventoryAvailabilityRate">
<Expression>
<Predicate xsi:type="Equal">
<SLAParameter>InventoryAvailability</SLAParameter>
<Value>0.4</Value>
</Predicate>
</Expression>

<ServicelLevelObjective>

Figure 4.2: A WSLA snippet illustrating the specification of inventory availability rate.

The costs in kC'ase, which represents the parameter, K, may also be obtained from
the serviceParameter section of the OWL-S description or from the agreement between the
service users and providers. The values in the case notation of the sojourn time distribution,

F', and the cost rate, C', are typically selected by the system designer from past experience.

4.3 CoMPOSITE FO-SMDPs

For the lowest levels of the WSC, Haley uses the FO-SMDP, defined in Section 7?7 to model the
composition problem. Let us label these FO-SMDPs as primitive. In primitive FO-SMDPs,
actions are WS invocations, and sojourn times are the response times of the WSs. We com-

pose the higher levels of the WSC using a composite FO-SMDP (C-FOSMDP). Within a

39

C-FOSMDP, the actions are either abstract and represent lower level WSCs which in turn
are modeled using either composite or primitive FO-SMDPs, or simple WS invocations. For
example, VerifyOrder in the supply chain example (Section 6.1) is modeled as an abstract
action because it represents a lower level process composed of three actions CheckCustomer,
VerifyPayment and ChargeMoney, each of which is a primitive WS invocation.

We use a to represent a primitive action and a to represent an abstract action. The
elicitation of the C-FOSMDP model parameters contingent on primitive actions is similar
to that of the primitive FO-SMDP as shown in Section 4.2. However, model parameters for
abstract actions are not directly available and must be derived from the model parameters
of the corresponding primitive FO-SMDP that models the lower level WSC.

For the sake of simplicity, we focus on deriving the model parameters for a composition
that is singly-nested. Our methods generalize to a multiply-nested composition in a straight-
forward manner. We utilize the correspondence between the high-level abstract action and
the corresponding low-level primitive actions. For illustration, we take the abstract action
VerifyOrder(o) as the example to explain how we derive the logical representations of the
model parameters for abstract actions. Specifically, in addition to the successor state axioms,
we need to derive the pCase, kCase, cCase, and fCase, for the abstract action.

While the underlying methods for computing the parameters for the abstract action are
the same as in [104], we adapt them to the use of case notation. Thus, we will add a new
case in each of the case notations of the C-FOSMDP for the abstract action.

e pCase statements for abstract action: As VerifyOrder(o) is a stochastic action,
we decompose it into two deterministic actions, each representing the nature’s choice. Let
VerifyOrderS(o) and VerifyOrderF (o) be nature’s choices denoting a validated and failed
order, respectively. Notice that for the order to be valid, the customer and payment should

be valid and the money charged. Thus,

Pr(VerifyOrderS(o), VerifyOrder(o),s) = Pr(CheckCustomerS(o), CheckCustomer(o),s) X

40

Pr(VerifyPaymentS(o), VerifyPayment(o),s) x Pr(ChargeMoneyS(o),ChargeMoney(o),s)

=09 x 0.8 x 098 =0.71

Pr(VerifyOrderF (o), VerifyOrder(o),s) = 1 - Pr(VerifyOrderS(o), VerifyOrder(o),s) = 0.29

These probabilities are added as cases in the pCase for the C-FOSMDP:

pCase(VerifyOrderS(o), VerifyOrder(o),s) = [true;0.71]

pCase(VerifyOrderF (o), VerifyOrder(o),s) = [true;0.29]

e Successor state axiom for abstract action: Recall that a successor state axiom

describes the effect of an action on a fluent. Let ValidOrder(o,s) be the fluent affected by

VerifyOrder(o). Then,

Poss(a,s) = ValidOrder(o,do(a,s)) < a = VerifyOrderS(o) V ValidOrder(o, §)

In order to ground the successor state axiom for VerifyOrder(o), we note the following

relationship between the fluent, ValidOrder(o, 5) and the fluents of the corresponding prim-

itive actions:

ValidOrder(o,) = ValidCustomer(o, s1) A ValidPayment(o, s2) A Charged(o, s3)

In addition, as we mentioned before,

VerifyOrderS(o) = CheckCustomerS(o) A VerifyPaymentS(o) A ChargeMoneyS (o)

The successor state axiom for VerifyOrder(o) becomes:

41

Poss(a,s) = ValidOrder(o,do(a, §)) < [a = CheckCustomerS(o) A\ a = VerifyPaymentS(o) A

a = ChargeMoneyS(0)] V [ValidCustomer(o, s1) A ValidPayment(o, s2) A Charged(o, s3)]

e kCase statement for abstract action: The lump sum cost of an abstract action is a

summation of the lump sum costs of the associated low-level primitive actions:

kyo = kCase(CheckCustomer(o)) + kCase(VerifyPayment(o)) + kCase(ChargeMoney(o))

We add a statement to the kCase of the C-FOSMDP: (A(Z) = VerifyOrder(o), kvo)

e fCase statement for abstract action: Let the sojourn times of the low-level primitive
actions follow Gaussian distributions with means pce, pvp, and pey, and corresponding
standard deviations ogc, oyp, and ocy. The sojourn time distribution of the abstract

action VerifyOrder(o) also follows a Gaussian defined as: fio(t) = N (uyo,ovo;t) where:

fvo = pec + pve + plom and ovo = \/0ko + obp + 02y

We add a statement to the fCase of the C-FOSMDP: (A(%) = VerifyOrder(o), fvo(t))

e cCase statement for abstract action: We note that the accumulated cost of an abstract
action is the total accumulated cost of all the corresponding primitive actions. Using the
sojourn time distributions of the primitive actions, we compute the expected sojourn time

E,, of each, and use it to derive the rate:

c _ cCase(CheckCustomer(o))x Ecc+cCase(VerifyPayment(o)) x Ey p+cCase(ChargeMoney(o)) X Ec
Vo = Ecct+Evp+Ecu

where: E,, = [tf(t|a;)dt; a; is the primitive action; f(t[a;) is the sojourn distribution

42

of the primitive action.We add the following statement to the cCase of the C-FOSMDP:
(A(Z) = VerifyOrder(o), cyo)

After deriving the logical representations for abstract actions, the C-FOSMDP is well
defined and may be solved just like a primitive FO-SMDP using the symbolic value iteration
as mentioned previously. By providing general methods for deriving the C-FOSMDP model
parameters from those of the lower level ones, we allow C-FOSMDPs at any level to be
formulated and solved using the standard solution methods.

Having described the theoretical framework, we present the architecture and modules of

our implementation of Haley as a tool suite to support WSC.

4.4 COMPOSITION GENERATION AND EXECUTION

Solving the C-FOSMDPs and primitive FO-SMDPs defined previously generates a policy
at each level of the hierarchy. A policy, 7, itself in case notation, 7Case, maps first order
sentences, which represent regions of the state space where the sentences are true, to WS
invocation(s). The action is expected to be optimal over the period of consideration. Our
policy based approach of generating a WS composition is robust — no matter what the

outcome of the WS invocation is, the policy will prescribe the next WS to invoke.

4.4.1 ALGORITHM

Haley generates and executes a WSC top-down, using the policy prescriptively to guide the
selection of the next WS to invoke. If the policy prescribes an abstract action, Haley utilizes
the policy and start state of the lower level WSC. In order to generate the composition,
we need a way to find out which of the case conditions in the policy is entailed at each
step. We do this by maintaining a first order logic based KB implemented in Prolog. The
KB is initialized using the initial state of the high level WSC. Using the ASK operator,

the KB is queried to find out which of the case conditions in the corresponding mCase is

43

entailed. ! Given the entailed case statement, the WS prescribed by the policy is invoked and
its responses interpreted as effects update the KB using the TELL operator. We additionally
tell the KB that the action representing the WS has been performed. This procedure is
repeated until the KB entails the terminal condition or the specified number of steps have
been performed.

We deploy the higher level policy as a WS-BPEL composition and wrap the KB as
a WS. Each of the lower level policies is described using WS-BPEL files of their own. The
preconditions and effects of the WSs are described using first order RuleML. Haley's algorithm

for generating and executing WS compositions is shown in Fig. 4.3.

Note that only a single case condition will be entailed because the case statements form a
partition of the state space.

Algorithm for Composing and Executing Nested Web Process
Input: wCase //policy in case notation form
so //logical description of the initial state of Web process

S < S0
initialize(K B, sg) //initialize KB with the initial state
while KB £ logical description of the terminal states
for each case statement ¥; in policy case notation mCase
if ASK(KB, ¥,)
s« U, //s is the case statement entailed by KB
break
end if
end for
a — wCase(s) // a is the optimal action
if @ is a primitive action then
Invoke WS representing a and get response of WS
TELL(KB, Effect(a)) //Update KB with effect of invocation
else //a is an abstract action
Sinitial < initial state of the lower level process
7/Case « corresponding policy case notation
Recursively call this algorithm with 7' Case, Sinitial
Get response of the lower level Web process
TELL(KB, Effect(a)) //Update KB with effect of invocation
end if
end while
if mCase is not the policy for the top-level FO-SMDP then
return invocation response
end if
end algorithm

Figure 4.3: Interleaved composition and execution of a nested WSC in Haley.

44

CHAPTER 5

IMPLEMENTATION AND PERFORMANCE STUDY

Haley is implemented as a suite of freely-available Eclipse ! plug-ins and a stand-alone Eclipse
rich client platform (RCP) application. It is provided under the Eclipse public license version
1.0. 2 Some of the technologies used in developing Haley are Draw2d, Eclipse modeling frame-
work (EMF) [3], graphical modeling framework (GMF) [2], Prolog and ActiveBPEL APT 3.
Haley also contributes several independent tools and experiences to the SOA community: (7)
SAWSDL (semantic annotations for WSDL) viewer is a complete and independent Eclipse
plug-in and is the first viewer for SAWSDL files. (i) eDT-GOLOG may be used as a general
stand-alone decision-theoretic planner. The system is compliant with the Eclipse plug-in
standards and can be integrated with other Eclipse based tools like Web tools platform
(WTP), WSDL editor, and ActiveBPEL simulator and designer in case process designers

want to customize the generated BPEL code.

5.1 ARCHITECTURE

Haley is composed of four major components:

1. WS and goal specification This component is responsible for parsing service description
files including SAWSDL and WSLA (WS level agreements) files. It also provides ways

for the process designer to specify the WSC hierarchy and goal.

'Eclipse platform: http://www.eclipse.org
2Haley is available for download at http://denali.cs.uga.edu/haley
3 ActiveBPEL: http://www.activevos.com/bpel.php

45

46

Integrated WSC Deployment &
BPEL Generation KB based Execution

First Order
KB

Update
KB With
effects

WS and Goal Specification Decision-theoretic Planning

SAWSDL
Viewer

Query KB
For the
current
status

Function
Component Decriptions
Service
SAWSDL

Plannin LOgiC
i < -
Nonfunction bomain’ | Decision | Conditional

Decriptions Planni_ng File Theoretic Plan BPEL BPEL WS-BPEL
WSLA _»a_) Domain —> Bannes Generator Engine

Generator
(eDT-GOLOG))
E@?%;

—

Executable

R _’[*Prncess Goals

Hierarchies

Legend
—» Flow
(] system Component

Figure 5.1: Architectural details of Haley. Notice that Haley processes both service descrip-
tions and agreement specifications. Information from these files is used to formulate the
planning problem (often called the planning domain) automatically.

2. Decision-theoretic planning This component is responsible for producing a planning
problem formulation from the information gathered by the previous component. It

generates a policy using the decision-theoretic planner.

3. Integrated BPEL generation This component transforms the generated policy into

executable BPEL code; and

4. WSC deployment and KB based execution This component is responsible for deploying
the generated BPEL and monitoring the execution. We show the architecture in Fig.

5.1 and further describe the main components of Haley below.

47

5.2 MODULES

The modularized architecture of Haley enables support for future improvements and exten-
sions. For example, Haley could support other types of service description specifications such
as OWL-S and WS-Agreement by simply plugging new parsing modules for these descrip-

tions. We describe the current modules individually:

() PreCondition

registeredCustomer{Order, Custamer)|
@3 CustomerChecker] # checkCustomer

validCustomer{Order, Customer)
5] checkCustomerRequest checkCustomer

EFFy
211 checkCustomerResponse checkCustomerResponse| (B)EED
|5] validCustomer{Order, Customer)|

[La CustomerCheckerService|

= CustomerChecker

CustomerChecker.sawsdl | Yisualization

Figure 5.2: SAWSDL viewer showing an example SAWSDL described WS CheckCustomer.

¢ SAWSDL Parser and Viewer SAWSDL extends WSDL by allowing semantic anno-
tations in the form of model references and schema mappings. In addition to specifying the
inputs and outputs of a service, SAWSDL also allows the specification of preconditions and
effects, which are useful for composing services. However, the current SAWSDL specifica-
tion does not ground preconditions and effects using any language. We therefore extend
SAWSDL to support preconditions and effects specified using SWRL, a popular semantic
Web rule language. 4 In addition to parsing SAWSDL using the SAWSDL4J API, Haley
provides a new Eclipse plug-in for graphically viewing SAWSDL based service descriptions.
We show a snapshot of the viewer in Fig. 5.2.

e WSLA Parser Web service level agreements (WSLA) specify the non-functional quality
of service (QoS) parameters of WSs such as response times, costs and availability percent-
ages. Haley is not limited to any particular service agreement specification and can be easily
extended to support WS-Agreement or other agreement specifications. QoS considerations
are often neglected while manually designing BPEL processes as well as by many other auto-

mated composition techniques. Haley uses a decision-theoretic planner for the composition

4SWRL: http://www.w3.org/Submission/SWRL

48

that provides an intuitive way to model the QoS parameters and optimize them over the

long term.
B 7 A Ry k. — i E‘\-C' of - E"T’u. 7 " | E'
|[[] supplyChain halsyprocssshierarchy_diagram 53 < [2) supplychain.haleyprocesshiererchy | sl
——Palette — }
'S : ~ [T select
< rootProcess_SupplyChan @), 200
- - =2 Note
P 2
L /I 4 Add BPEL Process
\'—' — < Add Web Service
< Add Process Goal
(4 subProcess_VerifyOrder A 4 subProcess_SelectShipper)
+ CustomerChecker | [4 CreditCardVerifier 4 SpeedRequirement | [+ PriceRequirement
4 MoneyCharger 4 USPS Post Carrier 4 Express Carrier
. J N ~
4 ReceiveOrder| 4 Check Inventory | |4 Check Preferred Supplier | < Check SpotMarket
4 GetGoods [+ ShipGoods
L J 1

Figure 5.3: Hierarchy Modeler with a GUI for intuitively grouping together the WSs partic-
ipating in the composition into a hierarchy.

e Process Hierarchy Modeler Service composition methods often do not scale well
to many services, which makes it difficult to use them in real-world applications. Haley
promotes scalability by exploiting the hierarchies usually found in real-world processes. To
facilitate this, Haley provides an intuitive GUI (see Fig. 5.3) to construct a WSC hierarchy
by importing component WSs at each level. The modeler may also be used to specify the
start states, multiple goals and associated priorities at each level of the hierarchy. All of this
information is written into an XML file for input to the planner.

e Planning Domain Generator Given the functional and non-functional descriptions of
individual WSs and goal descriptions for the target composition, we automatically generate
a corresponding planning problem domain file. The planning problem contains a first order
logical description of the operations and their inputs, outputs, preconditions and effects as
well as the goals.

e eDT-GOLOG Planner As an extension of DT-GOLOG [19, 87], we designed eDT-

GOLOG to support first-order SMDP based decision-theoretic planning which is applicable

49

to situation calculus and decision theory. In addition to being expressive, eDT-GOLOG
allows us to model the uncertainty of WS operations, QoS measures and provide guaran-
tees of optimality while preserving efficiency of planning as much as possible. The planner
takes as input the planning domain file and produces a policy or a conditional plan for the
composition.
e BPEL Generator Haley transforms the conditional plan output by the planner into
an executable WS-BPEL file. Manually designing a BPEL process requires designers to
specify namespaces, variables, partner links, and the control flow of the activities. Haley
programmatically generates an executable BPEL using the ActiveBPEL API and deploys it
in an ActiveBPEL engine. This saves time and effort, and avoids common grammatical and
logical errors while designing BPEL processes.
e KB based Process Monitor In order to determine which branches to take while exe-
cuting the BPEL, service operations once performed are asserted in a first order logic KB.
The KB is implemented using an embedded Prolog engine wrapped in a WS. The KB is
updated with the effects of the operations and queried for the next operation to perform.
In summary, Haley automatically composes an executable WS-BPEL process given com-
ponent services described using SAWSDL and service agreement files, using a first-order logic

based planner that is both scalable and expressive.

5.3 PERFORMANCE EVALUATION

We empirically evaluated the performance of Haley in comparison with two other well-known
WS composition techniques: HTNs augmented with information gathering actions [99] and
MBP [73] (used in the Astro project). We performed the evaluation on the two applica-
tion scenarios mentioned in Section 6.1. In Figs. 5.4 and 5.5, we show the average rewards
obtained by executing the WSCs using each of the three approaches as we vary the uncer-
tainty of the composition environment. For our experiments, we varied the non-functional

parameter, availability, of the USPS WS in Fig. 5.4, and the probability with which the

90

inventory satisfies the manufacturer’s order in Fig. 5.5 . Each data point is the average of
1000 executions of the composition where each execution involves running the WSC until

the compositions are successfully completed or it is unable to move forward.

65
MBP —+—

60 L HTN —<—

t Haley —%—

55 ¥

50 |

45 %

Average Reward

40 |

35 |

0.6

30:....I....I... PR [T T TR TN NN SN T T TR A SO SO S’
0.3 0.4 0.5 0.7 0.8 0.9 1

Prob. of USPS Web service Availability

Figure 5.4: Average rewards on running the compositions generated by HTN, MBP and
Haley for the online shopping example. Haley gathers the most reward because it models the
non-determinism of WSs and provides a cost-based composition optimization. Performances
of all the approaches begin to converge as the availability approaches 1 signifying that the
uncertainty reduces.

For the online shopping application scenario (Fig. 5.4), we observe that the composition
generated by HTN performs the worse. HI'N-generated WSC performs poorly because the
execution of the composition stops prematurely when the WS is unavailable to take requests.
For lower rates of WS availability, this happens frequently, and is responsible for the lower
average reward of the composition. We observe that there is a sudden decrease of the average
reward when the probability of USPS availability is around 0.68. This is where the change
in the optimal choice occurs. As the availability of USPS WS increases, the optimal choice
becomes the USPS WS as opposed to the FEDEX WS. Although the cost of using USPS
is lower than using FEDEX, the FEDEX WS availability is still higher than the USPS
WS availability at this point. Hence, the overall reward of the process is lower. The MBP-

generated process performs better because its execution, similar to Haley, is also guided by

51

°
©
= L
Q L
x L
q) L
o
@ f
m -
> L
< k—
75_— o
70 |
TR R SRR B L1 N R B
0.4 0.5 0.6 0.7 0.8 0.9 1

Prob. of Inventory Availability

Figure 5.5: Average rewards on running the processes generated by the HTN, MBP and
Haley for the supply chain example. It demonstrates similar behaviors of three approaches
as seen in Fig. 5.4

a policy [28]. However, even at low probabilities of USPS WS availability the composition
invokes the USPS for satisfying the order. This is because MBP does not associate costs
with actions and fails to distinguish between candidate WSs of similar functionality (USPS
and FedEx) but with different non-functional parameters. Haley chooses to bypass USPS and
utilizes FedEx, which is responsible for its better performance. As the USPS WS availability
improves, Haley switches to checking inventory and its performance becomes close to that of
the MBP.

Analogous to the online shopping problem, in the order handling application scenario, we
observe similar behaviors (Fig. 5.5). HTN-generated WSC performs the worse because the
execution of the composition often stops prematurely when the inventory or the preferred
supplier is unable to satisfy the order. This could happen when the WS is not functioning or
there are not enough products to satisfy the order. As the inventory availability improves,

it becomes the optimal choice. The lower reward is due to its availability being lower than

52

the preferred supplier at this point. The MBP-generated process performs better because
its execution is guided by a policy. However, it is not able to distinguish between candidate
WSs with similar functionality but different QoS parameters. Thus, even at low probabilities
of inventory availability the composition repeatedly invokes the inventory for satisfying the
order. Haley chooses to bypass the inventory and utilizes the preferred supplier, which is
responsible for its better performance. As the inventory availability improves, Haley switches
to checking inventory and its performance becomes close to that of the MBP and HTNs.

The performance of the WSC approaches is determined by the capability of the planner.
HTN planning does not model uncertainties in WSs, nor does it associate costs with planning
states or actions. MBP is capable of planning with non-deterministic actions, but it does not
associate probabilities with different outcomes and it does not associate costs with planning
states or actions either. Therefore, both these approaches have limited ability to perform
optimization during the planning phase.

In Table 5.1, we demonstrate the advantages of a hierarchical decomposition and logic
based representation using the time taken in generating the plans. We compare between
approaches that utilize a hierarchy such as the hierarchical formulation for SMDPs [104] and
Haley and their counterparts that do not. We also compare between approaches that utilize
a logical representation such as FO-SMDP and Haley and those that utilize the traditional
propositional state space representation.

For the first application scenario of online shopping, hierarchical approaches consume
significantly less time than their flat counterparts. For the second scenario, we also varied
the number of distinct types of orders handled by the supply chain to see how first-order
logic representation reduces the size of the state space. Different types of orders differ in the
probabilities of fulfilling them and their costs. In propositional approaches, a distinct order
type would be included as a new proposition in the state space. In first order logic, this
is equivalent to grounding the variable o in the predicates with the corresponding number

of the type. We observe that the flat SMDP whose states are obtained by grounding and

93

Table 5.1: Run times for generating policies that guide the compositions (Centrino 1.6GHz,
512MB, WinXP). Flat FO-SMDP and Haley perform better than propositional SMDP and
propositional hierarchical SMDP as a result of using first-order representations. Hierarchical
SMDP and Haley have better run times than their corresponding flat frameworks. This is
because the hierarchical decomposition significantly reduces the planning state space.

Scenarios Flat SMDP | Hier. SMDP | Flat FO-SMDP | Haley
Online shopping 251.49s 0.241s 34.19s 0.54s
Order types
1 741.83s 0.46s 82.95s 0.93s
Order handling 2 * 1.5s 82.95s 0.93s
3 * 15.27s 82.95s 0.93s
5 * 695.02s 82.95s 0.93s
Order handling * * 3183.29s 159.67s
with 15 suppliers

propositionalizing is computationally most expensive. This is because its state space grows
exponentially as the supported number of order types increases. In contrast, FO-SMDP takes
significantly less time. In both scenarios, the effectiveness of the hierarchical decomposition
is evident from the fact that the hierarchical approaches consumed significantly less time
than the others. This is because the decomposition leads to smaller state spaces, and the
planning at the different levels could occur in parallel.

We further tested scalability by increasing the number of suppliers in the order han-
dling scenario to 15, resulting in a total of 24 WSs in the composition. As we may expect,
propositional approaches failed to generate a solution in a reasonable amount of time. While
FO-SMDP generated a plan, it took an order of magnitude time greater than Haley in doing
SO.

Finally, we show the execution times of running the WS-BPEL based compositions gen-
erated by Haley and the other approaches, in Table 5.2. All WSs were deployed in an Axis
1.2 implementation, while the WS-BPEL files were executed using the ActiveBPEL engine.

The executions times of the hierarchical approaches are greater than the flat approaches due

o4

Table 5.2: Execution times of the WS-BPEL compositions averaged over 100 runs (Centrino
1.6GHz, 512MB, WinXP).

Scenarios Flat SMDP | Hier. SMDP | Flat FO-SMDP Haley
Online shopping 240.95ms 420.25ms 429.86ms 1137.94ms
4+ 62.1ms + 76.4ms + 69.4ms + 138.4ms
Order handling 255.52ms 335.05ms 436.49ms 970.88ms
+ 109.2ms 4+ 60ms 4+ 109ms 4+ 136.1ms

to the overhead incurred while invoking the lower level WS-BPEL compositions. In compar-
ison, the flat WS-BPEL files invoke WSs only. The algorithm for interleaved composition
and execution in Haley (Fig. 4.3) requires the use of ASK statements on a first order logic
KB. While in the worst case this could be semi-decidable [82, 89], the execution times for
Haley demonstrate that the ASK statements typically entail simple and quick inferences in
practice. However, as we may expect, interactions with the KB lead to execution times that
are greater than those of the traditional propositional approaches.

In summary, Haley generates WS compositions significantly faster than comparative,
traditional propositional approaches. Furthermore, it is able to compose processes much
larger while simultaneously modeling the uncertainty of WSs and optimizing QoS parameters.
On the other hand, executing the compositions takes longer due to the interleaved interaction

with the KB for determining the logical state of the composition and applicable actions.

CHAPTER 6

RESTrFuUL WEB SERVICE COMPOSITION

We have covered our proposed approach to automated WSDL/SOAP WS composition in the
previous chapters. In this Chapter, we discuss another paradigm of building WSs, RESTful
WSs, and present our approach to the automated RESTful WS composition problem accord-
ingly.

Emerging as the popular choice for leading Internet companies to expose internal data
and resources, RESTful WSs are attracting increasing attention in the industry. While
automating WSDL/SOAP based Web service composition has been extensively studied in
the research community, automated RESTful Web service composition in the context of SOA
is less explored. Due to the differences between WSDL /SOAP bases WSs and RESTful WSs,
the composition problem of these two types of WSs are fundamentally different.

As early effort addressing this problem, we discusses, in this chapter, the challenges of
composing RESTful WSs and propose a formal model for describing individual WSs and
automating the composition. It demonstrates our approach by applying it to a real-world

RESTful Web service composition problem.

6.1 MOTIVATING SCENARIO

In this section, we introduce a simplified online shopping scenario. Registered customers place
orders to the system, and one customer may have multiple orders in the system. Orders are
not handled until the payment is received. Once the payment is verified, the system processes

the order and ships the order to the customer. This system is intended to be implemented

25

o6

using WSs so that it can be used by external business partners or third party Web 2.0

applications. We would like to expose each of the functional components using WSs.

4)
PlaceOrder »/m m\

AR B ED
kk SubmitPayment ’

o
CUSTOMERS

<
N y \ ORDERS /

ShipOrder

Figure 6.1: A simplified online shopping scenario

An imperative approach of handling this application would start with functionality
decomposition. One solution could be to expose Remote Procedure Call (RPC) style WSs

as below:

6.2 MODELING RESTrFuUL WEB SERVICE

In this section, we introduce a classification of RESTful WSs, and present a conceptual
modeling approach to describe the identified types of WSs. Unlike WSDL/SOAP based
WSs, there is no commonly recognized model or description language available for RESTful
WSs. To facilitate automated composition, we present an ontology based formal model for
RESTful WSs, this model is at the conceptual level and may be bounded with ontology

languages.

o7

Table 6.1: The list of RPC style WSs

WSDL/SOAP WSs and Interfaces
Description: | get customer informat
getCustomer Input: customer id
Output: customer information
Description: | get order information
getOrder input: order id
output: order information
Description: | place a new order
placeOrder Input: customer id, order
Output: success or failure
Description: | submit a payment
SubmitPayment | Input: order id, payment
Output: success or failure
Description: | ship the order
ShipOrder Input: order id
Output: success or failure

6.2.1 CLASSIFICATION OF RESTFuL WSs

Most resources associated with RESTful services can be directly mapped to domain resources
— either a set of resources or individual resources. Besides these two types, we identify a
third type of RESTful WSs — these services consume some resources or manipulate related
resources, they can not be directly mapped to domain resources or resource collections. We
call them transitional RESTful WSs. This type of RESTful WSs are less declarative than
the other two types, and we should minimize the use of this type of services when we adopt a
resource-centric approach to design WSs. But in some cases, we do need transitional RESTful
WSs as we show using application scenario mentioned in Section 6.1.

Type I: Resource Set Service This type of services is mapped to a set of domain
resources. In the online shopping scenario, resource related to a set of customers and a set
of orders can be both considered of this type. We name them CustomerSet and OrderSet

respectively. Type I RESTful Web service may be utilized to capture the concept level

o8

resources or the set of instance resources. This type of services support all four HTTP
operations(GET, PUT, DELETE and POST).

Type II: Individual Resource Service Individual domain resources can be modeled
with this type of services that represent the individual resources in the resource set. For
example, in the scenario, individual customer and individual order are mapped to this type.
Individual payment and shipment are also considered of this type associated with orders and
customers. Type IT RESTful Web service may be utilized to capture instance level resources,
and it supports three HTTP operations(GET, PUT, DELETE). Operation POST is not
applicable here since the URI identified individual resource is already created.

Type III: Transitional Service Although most of RESTful WSs are mapped to the
domain resources or resource sets, some of the services are more transition or transformation
oriented. The functionality of this type of services is loosely defined as services that consume
resources, create resources and update or transform the states of the related resources. For
example, SubmitPayment and ShipOrder in the scenario are of this type. When we invoke
SubmitPayment with the order information, we create a new resource payment associated
with this order, and we update the isPaid property, denoting the payment status, of the order
resource from “false” to “true”. Similar steps need to be done for the Web service ShipOrder
as well. Type III Web service may be utilized to capture transition-oriented functionalities,
and it only supports POST operation.

In the next sub-section, we provide a detailed modeling approach to describe these types

of WSs identified above.

6.2.2 MODELING RESTFuUL WSs

By identifying these types of RESTful WSs, we take a resource-centric look at the original
scenario. A list of the declarative WSs needed to model the online shopping scenario are

presented in Figure 6.2. In the rest of this section, we propose an ontology based conceptual

99

model to describe these identified RESTful WSs. This model will be used to build our

automated composition framework in Section 6.3.

Figure 6.2: Identified RESTful WSs

RESTful WSs

TYPE: Type 1
CustomerSet | URL: http://some.com/Customers

Supported Operations: | GET, PUT, DELETE, POST
TYPE: Type I

OrderSet URL: http://some.com/Customers/[Customer_id] /orders
Supported Operations: | GET, PUT, DELETE, POST
TYPE: Type 11

Customer URL: http://some.com/Customers/[Customer_id|
Supported Operations: | GET, PUT, DELETE
TYPE: Type 11

Order URL: http://some.com/customers/[customer_id] /orders/[order_id]

Supported Operations: | GET, PUT, DELETE
TYPE: Type 11

Payment URL: http://some.com/customers/[customer_id]/orders/|order_id] /payment
Supported Operations: | GET, PUT, DELETE
TYPE: Type 111

Shipment URL: http://some.com/customers/[customer_id] /orders/[order_id] /shipment
Supported Operations: | POST
TYPE: Type III

SubmitPayment | URL http://some.com/customers/[customer_id] /orders/[order_id] /submitpayment

Supported Operations: | POST
TYPE: Type I11

ShipOrder URL: http://some.com/customers/[customer_id] /orders/[order_id] /shipOrder

Supported Operations:

POST

09

61

To expose resources as RESTful WSs for a particular domain, it is intuitive to create
the association between Web service resources and domain ontology resources. The idea is
that a declarative RESTful approach models each service as a resource, so the description of
WSs is essentially the description of the resources and the “state transfer” of these resources.
As we classify RESTful WSs into three classes, we explain the specific modeling for them
respectively. Generally speaking,

(1) Type I RESTful Web service is a set of ontology instances of the same concept, and
the “set” itself could be also considered as a resource as well. While applying GET, DELETE
and PUT operations to Type I RESTful Web service, it will fetch, remove and update the
representation of this concept resource respectively; Applying POST operation will add into
the resource set a new instance resource of this concept.

(2) Type II RESTful Web service is directly mapped to an ontology instance. Type I and
Type II RESTful WSs are modeled directly using mapped resources in ontology. Applying
GET, DELETE and PUT operations to Type II RESTful Web service will fetch, remove
and update the representation of the corresponding instance resource based on the standard
semantics of these HT'TP operations. POST operation is not applicable for Type II service.

(3) Type III RESTful Web service is transition-oriented, and we describe them as
“state transfer” of resources using transition rules. We adopt Semantic Web Rule Language
(SWRL) [41] to formally describe these rules. SWRL is a formal language to describe rules
based on OWL and RuleML. It has been widely used to describe semantic rules in the
ontology context. In our modeling framework, services of Type I and II are mapped to
ontology resources; services of Type III are described by the transition rules of ontology
resources. Consequently, SWRL becomes an appropriate choice to describe the rules associ-
ated with Type III RESTful WSs.

To define the formal semantics of these three types of WSs, we define two new classes:
WSRESOURCE, RESTWS. WSRESOURCE describes the resources RESTful WSs repre-

sent. WSRESOURCE is either mapped to an individual ontology instance (Type II) or a set

62

Table 6.2: WSRESOURCE Definition

Def WSRESOURCE:

has_name: onto:wsresource#name
has_description: onto:wsresource#description
map: onto:set(onto:resource)

Table 6.3: Type I RESTful Web Service
Def RESTWS I:

has_name: onto:restws#ws-name
has_description: onto:restws#description
has_URI: onto:restws#uri
has_type: onto:restws#type
has_wsresource: onto:wsresource
onGET: onto:opn:Supported
onPUT: onto:opn:Supported
onDELETE: onto:opn:Supported
onPOST: onto:opn:Supported

of ontology instances (Type I). RESTWS is used to describe the RESTful WSs, RESTWS
contains its associated WSRESOURCE. Type I & II RESTful WSs has only one associ-
ated WSRESOURCE, Type III RESTful Web service may have multiple associated WSRE-
SOURCE:s.

We describe the formal semantics of the universal HTTP operations (GET, POST, PUT
and DELETE) on these three types of RESTful WSs. We use onto as the name space for
the associated domain ontology, and swrl as the name space for SWRL.

Modeling Type I Web service Type I Web service is mapped to a set of instances of

the same concept in ontology.

63

Table 6.4: WSRESOURCE-ORDERSET is a WSRESOURCE example. It is mapped to a

set of orders
Example: WSRESOURCE-ORDERSET

has_name: order set
has_description: the wsresource representing order set
map: {onto:instance | isA(onto:instance, onto:ORDER)}

Table 6.5: RESTWS-ORDERSET is an example of Type I RESTful WS. RESTWS-
ORDERSET is a RESTful WS supporting operations of GET, PUT, DELETE and POST

on WSRESOURCE-ORDERSET
Example: RESTWS-ORDERSET

has_name: orderset-restws

has_description: RESTful WS serving the order set
has URI: http://some.com/[customer_id]|/orderset
has_type: type |

has_wsresource: onto:#WSRESOURCE-ORDERSET
onGET: onto:opn:Supported

onPUT: onto:opn:Supported

onDELETE: onto:opn:Supported

onPOST: onto:opn:Supported

Let’s take the service serving the list of ORDERS as an example. The description of its
corresponding WSRESOURCE and RESTWS is as follows:

Modeling Type IT Web service Similar to defining Type I WSs, we define the WSRE-
SOURCE first in the ontology, then associate the Web service with the defined WSRE-
SOURCE. WSRESOURCE of type II Web service is mapped to a particular ontology
instance.

Let’s take the service providing ORDER information as an example. This WS supports
three operations: (1) GET returns the detailed order representation, (2) PUT updates the
order representation and (3) DELETE deletes the order representations. The description of
its corresponding WSRESOURCE and RESTWS in Table 6.7 and Table 6.8:

Def RESTWS II:

Table 6.6: Type II RESTful Web Service

has_name:
has_description:
has_URI:
has_type:
has_wsresource:
onGET:
onPUT:
onDELETE:
onPOST:

onto:restws#ws-name
onto:restws#description
onto:restws#uri
onto:restws#type
onto:wsresource
onto:opn:Supported
onto:opn:Supported
onto:opn:Supported
onto:opn:NotSupported

64

Table 6.7: WSRESOURCE-ORDER is another WSRESOURCE example. It is mapped to

an individual order

Example: WSRESOURCE-ORDER

has_name: order-wsresource
has_description: the wsresource representing [order_id]
map: onto:#|order_id]

Table 6.8: RESTWS-ORDER is an example of Type II RESTful WS. POST is not supported

by Type II RESTful WS.
Example: RESTWS-ORDER

has_name: order-restws
has_description: Web service serving order infor
has URI: http://some.com/[customer_id]/[order_id]

has_type: type II

has_wsresource: onto:WSRESOURCE-ORDER
onGET: onto:opn:Supported

onPUT: onto:opn:Supported

onDELETE: onto:opn:Supported

onPOST: onto:opn:NotSupported

65

Modeling Type III Web service transitional RESTful WSs support only POST
operation which causes “state transfer” between resources. In other words, the state of the
resources will change themselves based on the request and state of other related resources,
guided by certain rules. We use SWRL [41] rules to describe the functionality of this type
of RESTful Web service. SubmitPayment and ShipOrder in the scenario(Figure 6.2) are of

this type.

Def RESTWS III:

has_name: onto:restws#ws-name
has_description: onto:restws#description
has_URI: onto:restws#uri

has_type: onto:restws#type
has_wsresource: onto:set(onto:wsresource)
onGET: onto:opn:NotSupported
onPUT: onto:opn:NotSupported
onDELETE: onto:opn:NotSupported
onPOST: swrl:rule

For the instance of the service ShipOrder,

Example: WSRESOURCE-SHIPMENT

has_name: shipment-wsresource
has_description: wsresource [shippment_id]

map: onto:#[shippment _id]

Example: RESTWS-SHIPORDER

has_name: ShipOrder-restws

has_description: shipment service

has_URI: http://.../[shippment_id] /shiporder
has_type: type 111

has_wsresource: {onto:WSRESOURCE-ORDER,
onto:WSRESOURCE-SHIPMENT}

onGET: onto:opn:NotSupported

onPUT: onto:opn:NotSupported

onDELETE: onto:opn:NotSupported

onPOST:

<ruleml: Imp>
<ruleml:body rdf:parseType="Collection">
<swrl:ClassAtom>
<swrl:classPredicate
rdf :resource="#onto:0rder"/>
<swrl:argumentl rdf:resource="#o" />
</swrl:ClassAtom>
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate
rdf :resource="#onto:isPaid"/>
<swrl:argumentl rdf:resource="#o0" />
</swrl:IndividualPropertyAtom>
<uleml:body>
<ruleml:head rdf:parseType="Collection">
<swrl:IndividualPropertyAtom>
<swrl:propertyPredicate
rdf :resource="#onto:isShipped"/>
<swrl:argumentl rdf:resource="#o0" />
</swrl:IndividualPropertyAtom>
</ruleml:head>
</ruleml: Imp>

66

The rule associated with action shipOrder is that: if the input is an order and the order

has been paid, the state of the order should be updated as “isShipped” after this action is

completed successfully.

67

6.3 AUTOMATING RESTFUL WEB SERVICE COMPOSITION

By establishing the model for describing RESTful WSs as ontology resources and “state
transfer” of ontology resources, we form a conceptual model which can be used to facilitate
automated composition of RESTful WSs. In this section, we present a situation calculus [52,
80] based sate transition system (STS) to automate the composition process of RESTful
WSs.

6.3.1 SITUATION CALCULUS BASED STATE TRANSITION SYSTEM

Situation calculus is a first order logic based framework for representing changes and actions,
and reasoning about them. It uses situations to represent the state of the world, and fluents
to describe the changes from one situation to the other caused by the actions. We briefly

explain the components of situation calculus:

e Actions are first order terms, A(Z), each consisting of an action name, A, and its argu-
ment(s), . In our STS, the actions are the HTTP operations (GET, PUT, POST and
DELETE) applied to RESTful WSs. We use service name and HTTP operation (service-
Name_operation) to represent the action name, and the argument(s) of the HT'TP operations

as the argument(s) of the action. We list the possible operations in the table below:

68

Actions:

TYPE I RESTWS + GET
TYPE I RESTWS + PUT
TYPE I RESTWS + POST
TYPE I RESTWS + DELETE
TYPE II RESTWS + GET
TYPE II RESTWS + PUT
TYPE II RESTWS + DELETE
TYPE III RESTWS+ POST

For example,

(1)The action of getting the order information is denoted as RESTWS-ORDER_GET().

(2)The action of placing a new order is denoted as RESTWS-ORDERSET_POST(o),

where o is a variable denoting the resource representation of order.

(3)The action of submitting payment information to an order can be denoted as
RESTWS-SUBMITPAYMENT_POST(p, o), where p is a variable denoting the resource

representation of payment.

(4)The action of cancel a payment to an order can be denoted as

RESTWS-PAYMENT_DELETE(p, o)

e A situation is a sequence of actions describing the state of the world and usually repre-

sented by symbol do(a, s). For example,

(1)do (RESTW S — ORDERSET_POST(0), s9) denotes the situation obtained after
performing RESTW S — ORDFERSET_POST(0)) in the initial situation sy (so is a special

69

situation which is not represented using a do function).

(2)do (RESTW S — SHIPORDER_POST (o),
do(RESTW S — SUBMITPAY MENT_POST (p, 0),
do(RESTW S — ORDERSET_POST(0),5s0))) represents the situation obtained
after performing the action sequence (RESTW S — ORDERSET_POST (o), RESTWS —
SUBMITPAY MENT_POST(p,0), RESTWS — SHIPORDER_POST(0)) in so.

e Fluents are situation-dependent relations and functions whose truth values vary from one
situation to another. For example, isPaid(o, s) represents if the payment has been submitted
to the order denoted by o in situation s. isShipped(o, s) means the order identified in o has

been shipped in s. In our formal model,

isPaid(o,s) = onto : ORDER(0).isPaid
isShipped(o, s) = onto : ORDER(0).isShipped

e Action precondition axioms: For each action we may define one axiom, : poss(a(Z, s) =
II((x), s), which characterizes the precondition of the action. For example,

the precondition axiom of action RESTW S — SHIPORDER_POST (o) is:

isPaid(o,s) = Poss(RESTWS — SHIPORDER_POST(0),s)

where Poss denotes the possibility of performing the action.

e Successor state axioms are axioms that describe the effects of actions on fluents. Hence

there is one such axiom for each fluent. For example, the successor state axiom for fluent

ReceiveOrder(o) is:

70

Poss(a,s) = isPaid(o,do(a,s)) < a = RESTWS — SUBMITPAYMENT_POST(p) V

(isPaid(o,s) Na # RESTWS — PAYMENT_DELETE(p, o)

In other words, the order is paid in the situation that results from performing the
action if and only if we performed the RESTWS — SUBMITPAY MENT_POST (p)
action or we already have it in the current situation and do not perform an action

RESTWS — PAYMENT _DELETE(p,o0) that will delete the payment.

e Regression: Regression is a mechanism for proving consequences in situation calculus.
It is based on expressing a sentence containing the situation do(a, s) in terms of a sentence
containing the action a and the situation s, without the situation do(a, s). The regression of
a sentence ¢ through an action a is ¢’ that holds prior to a being performed iff ¢ holds after
a. Successor state axioms support regression in a natural way [18]. Suppose that a fluent F’s
successor state axiom is F(Z, do(a, s)) < ®r(7, a, s), we inductively define the regression of

a sentence whose situation arguments all have the form do(a, s):

Regr(F(%,do(a, s))) = ¢r(Z, a, s)

For other properties of regression, see [18].

Regr(F(—¢)) = ~Regr(y)
Regr(F (11 As)) = Regr(¢r) A Regr(i)
Regr(F(Jx1p)) = (3z)Regr(v)

After representing the initial state sy and goal s using situation calculus, the composition

problem is converted into a well-formed state transition problem. And the transition problem

71

can be solved with regression mentioned above, more specific details about solving a situation

calculus based state transition problem can be seen in [52, 80].

CHAPTER 7

RELATED WORK

In the past decade, much research effort [78] has been put on automated approaches to
WSDL/SOAP Web service composition. However, automated RESTful Web service compo-
sition in the context of SOA is much less explored. Since WSDL/SOAP WSs and RESTful
Web service adopt differing styles (imperative against declarative) and view the services
from two different perspectives (operation-centric against resource-centric), the composition
problem of these two kinds of WSs are very different.

WSDL/SOAP Web service composition predominately uses Al planning approaches, and
these approaches focus on functional composition of individual WSs. That is, how to compose
a new functionality out of existing component functionalities. However, RESTful WSs model
the system from the perspective of resources. The composition of RESTful WSs focuses on
the resource composition and “state transfer” between candidate WSs. In this Chapter, we
survey the related work on both WSDL/SOAP based WSC problem and RESTful WSC

problem.

7.1 PLANNING BASED WEB SERVICE COMPOSITION

Several approaches have been proposed to address the WS composition problem with varying
levels of automation. In this section, we survey existing planning approaches to automatic
WSDL/SOAP WSC and briefly compare them with Haley. We position our work in the SOA
context and discuss the limitations of previous research in this area.

SHOP?2 [58], a classical planner based on hierarchical task networks, exploits the hierarchy

for composing WSs as shown in [99, 86]. The authors define a translation from DAML-S(and

72

73

later OWL-S as well) process models to the SHOP2 domains, and from DMAL-S/OWL-S
composition tasks to SHOP2 planning problems. They have implemented the translation and
utilized an extended SHOP2 to do planning over the translated domain, and then executes
the resulting plans. The final plan generated by the approach is a sequence of WS invocations
and fails to account for uncertainties such as WS failures. Improving on this approach, Kutter
et al. [45] attempt to deal with this issue by gathering information during planning, which
may improve the robustness of the plans because information used to generate a plan may
not change much at execution time. In comparison, Haley explicitly models uncertainty in
WS outcomes and generates a policy which specifies a WS to invoke for every state of the
composition.

In [53, 54], Mcllraith et al. transform DAML-S based WS descriptions into situation
calculus and implement the WS descriptions using Con-Golog interpreter [36], an extended
version of Golog, that combines online execution of information-providing services with offline
simulation of world altering services. They propose con-Golog language to enable programs
that are generic, customizable and usable in the context of the Web. Theorem provers are
used to arrive at a plan which is a sequence of WS invocations. We improve on this work by
modeling the uncertain behavior of WSs, first by using a probabilistic variant of situation
calculus and second, by using decision-theoretic planners. Therefore, we offer a way to form
WS compositions that are more robust to WS failures and other events.

Medjahed et al. [56, 55] present a technique to generate composite services from high-level
declarative descriptions of the individual services. The method uses compensability rules,
defining possible WS attributes that could be used in service composition, to determine
whether two services are composable. It provides a way to choose a plan in the selection
phase based on the quality of composition parameters (e.g. rank, cost, etc.). But the final
plan is not a conditional plan; it may fail to adjust properly to the dynamic changes in the

environment.

74

Traverso and Pistore [88, 72| propose a MBP (a model checking planner) based framework
to automate WS composition, where WSs are modeled as having stateful, non-deterministic
and partially observable behaviors. Our approach improves on this line of work in that Haley
not only handles the non-determinism of WSs, but offers a way to scale WS composition
using a hierarchical approach. Pistore et al. [73] improving on their previous work [88] trans-
form composite WSs described using BPEL4AWS into a KB and apply MBP to arrive at a
plan for composing the WSs. While MBP handles non-determinism, the language used for
the KB is restrictive and the final plan does not provide cost guarantees. In addition to
handling uncertainty and providing cost-based optimality, Haley is scalable and allows the
full generality of first order logic based descriptions of WSs.

Oh, Lee and Kumara proposed a forward and backward (bidirectional) search based
approach [67, 68] for WSC. They compared their algorithm with other approaches in two
simplistic WSC benchmarks as part of the WS Challenge !, exhibiting good results in terms
of the speed of composition. Plans produced in this approach are based on the reachability
analysis of input and output variables only. In other words, only the input and output as the
functional description of WSs is considered. This may not be realistic because multiple WSs
with the same input and output often exist and the approach provides no way to choose
between them. In particular, non-functional parameters of WSs are ignored, which typically
allows the selection of a composition among many candidate ones.

Recently, Qiu et al. [76, 77, 75] proposed a context optimization and planning based
approach for semantic WSC. A context-aware planning method comprising of global planning
and local optimization based on context information is utilized. In particular, a framework
is introduced for composing semantic WSs using backward chaining based search to find
candidate services via reasoning in description logics. This is combined with a DAG-based
method to select services and formulate the planning problem, and filtering of inappropriate

services during the DAG generation. Although context is incorporated into planning, this

WS Challenge: http://www.ws-challenge.org/

75

approach does not model the uncertain behaviors of WSs. Furthermore, it does not select
WSs based on QoS or performs process optimization.

In SELF-SERV [84, 14], web services are declaratively composed and then executed in a
dynamic peer-to-peer environment. SELF-SERV compose WSs based on state-charts, gluing
together an operation’s input and output parameters, consumed and produced events. Service
execution is monitored by software components called coordinators, which initiate, control,
and monitor the state of a composite service they are associated with. The coordinators
retrieve the state relevant information from the service’s state-chart and represent it in what
is called a routing table containing pre-conditions and post-processions. This system provides
tools for specifying composite services, data conversion rules, and provider selection policies.
These specifications are then translated into XML documents that can be interpreted by
peer-to-peer inter-connected software components to provision the composite service without
requiring a central authority. ELF-SERV may be classified to be a toolkit for manually
composing WSs rather than an automated Web service composition approach.

Wu et al. [100] presents an automatic approach for Web service composition, while
addressing the problem of process heterogeneities and data heterogeneities by using an
extended GraphPlan planner and a data mediator. An extended GraphPlan algorithm is
employed to generate a BPEL process based on the task specification and candidate Web
services described in SAWSDL. In addition, the authors address the problem of structural
heterogeneities in message schema by having the developer associate mappings using the
Schema Mapping on Web service message (input and output) elements.

Another closely related research topic is automatic workflow composition.

Chun et al. [27] presents a formal model for automatic workflow generation that uses
domain knowledge represented as service ontology, regulatory ontology and a user profile.
Compositional rules consist of selection rules that select obligatory and preference tasks, and

coordination rules that glue tasks together in order. Each rule is represented as Condition-

76

Action pair. The composition algorithm evaluates compositional rules against a user profile,
automatically generating the customized inter-agency workflow.

Korhonen et al. [44] presents a way to use ontology-based reasoning to automatically
combine component workflow instances. The web services workflows are described using
a transactional workflow ontology. The workflow ontology can be used to describe both
component web service workflows and master web service workflows. The authors have also
implemented a workflow engine that runs the workflow instances. A reasoning agent is utilized
to automatically find a composed workflow that fulfills all given constraints. The result from
the inference is a workflow instance that can be executed using the implemented workflow
engine.

Albert, Henocque and Kleiner [12] presents a constrained object model for workflow com-
position, based upon a metamodel for workflows and ontologies for processes and data flows.
This research shows the feasibility of using configuration techniques to achieve automatic
workflow composition. This possibility acknowledges the fact that workflow composition can
be seen as a finite model search problem.

Lu, Bernstein and Lewis [47] extends the semantic correctness theory to modeling and
reasoning about workflows. Specifically, the aurhors develop a formal model in which work-
flows are assumed to be constructed from a library of tasks to promote task reuse. The
semantics of tasks and workflows is specified in terms of pre- and postconditions, and a
sound inference rule is provided to precisely specify each of our workflow constructs. Based
on this model we develop algorithms that automatically: (1) verify if a workflow implemen-
tation satisfies its specification, (2) synthesize a workflow implementation from the workflow
description and a given task-library.

These work [12, 27, 44, 47] on automatic workflow composition focus on the function-
ality synthesis. Many of these approaches propose their own ontologies to describe service
components and rely on the ontology inference to generate a workflow satisfying the given

functional requirements. In contrast, our approach utilizes commonly-accepted WS descrip-

77

tion standards and relies on decision-theoretic planning to generate a composition satisfying
the goals, while taking into account quality measurements such as response time, reliability

and invocation costs.

7.2 CONFIGURATION BASED WEB SERVICE COMPOSITION

METEOR-S [11, 22, 23] aims to support the complete life cycle of semantic Web processes. At
the composition stage, it manually configures the process as a “Semantic Process Template”
and dynamically chooses the candidate WSs for the abstract components in the process. It
presents a constraint driven WS composition tool, which allows the process designers to bind
WSs to an abstract process, based on business and process constraints.

Similar to METEOR-S, Zeng et al. [101, 102, 103] proposes a global planning approach
to optimally select component services during the execution of a composite service. Service
selection is formulated as an optimization problem which can be solved using efficient linear
programming methods. By sharing the similar view of selecting services as an optimization
problem, Canfora and Esposito [21] proposed a lightweight approach for QoS aware ser-
vice composition using genetic algorithms. Also, the paper presents an algorithm for early
triggering service re-planning.

As pointed by Wiesemann et al. [96], many optimization-based approaches to the service
composition problem treat the QoS of a service as deterministic quantities. As a con-
trast, Wiesemann et al. view these QoS parameters as stochastic variables quantified with
average value-at-risk (AVaR). It formulates the service selecting problem as a multi-objective
stochastic program which simultaneously optimizes QoS parameters: duration, service invo-
cation costs, availability, and reliability. The model minimizes the average value-atrisk
(AVaR) of the workflow duration and costs while imposing constraints on the workflow
availability and reliability.

Compared to planning based approaches, these approaches [11, 101, 21, 96] do not auto-

matically compose individual WSs into processes, but focuses on the dynamic selection of

78

candidate WSs for the functional components in the process. The process is assumed to have

been manually configured beforehand.

7.3 WEB SERVICE COMPOSITION TOOL SUPPORT

While a variety of WSC algorithms and approaches have been proposed, few implemented
tools or solutions are available to support automated WSC. This is because of the complex
nature of the WSC problem and the inherent scalability issues in existing Al planners. Two
exceptions are Synthy [10, 24] and the Astro Project ? .

Synthy accepts WSs described in OWL-S and composes the WSs in two stages: The first
stage composes an abstract workflow to satisfy the functional requirements, and the second
stage chooses WS instances for the components in the abstract workflow, based on the QoS
attributes of WS instances. Although Synthy utilizes QoS properties of WSs, it, however,
does not specify how these QoS properties are specified or acquired.

The Astro tool suite offers a way to compose WSs described using abstract BPEL into
business processes. It supports both WSC design and execution. Using abstract BPEL to
describe WSs is an unintuitive choice given the available spectrum of WS description lan-
guages. In particular, designing WSs using abstract BPEL is itself a time-consuming and
cumbersome process. While both Synthy and Astro utilize planning, neither of them address
the scalability issues of Al planning algorithms in any feasible way. This could affect the
adoption of these two tool suites and their use in large business process composition sce-
narios.

To the best of our knowledge, there is no previous attempts towards a formal modeling
of RESTful WSs in terms of facilitating automated service composition. The following two
topics are loosely related to our presented work, although none of these discusses the specific

issue of automated RESTful Web service composition.

2 Astro Project: http://www.astroproject.org/

79

7.4 RESTruL WEB SERVICE DESCRIPTION LANGUAGES

An increasing number of leading Internet companies (such as Google, Yahoo, Amazon and
etc.) are developing REST style services that provide API access to their internal data
and resources. Unlike WSDL/SOAP WSs, these applications are typically described using
informal textual documentation (HTML, PDF, DOC and etc.) supplemented with more
formal specifications such as XML schema for data formats. Although the Web service com-
munity is still debating if RESTful WSs really need a formal description language due to its
simplicity and self-declarative nature, we do need a formal, machine-understandable descrip-
tion language to enable automated RESTful Web service composition. Indeed, we might
not need a formal description document like WSDL to write a client program consuming
RESTful WSs, but if we seek to automate the process of composing RESTful Web service
from the pool of vast amount of candidate RESTful WSs, a formal machine-understandable
description model is needed.

Web Application Description Language (WADL) [38] is designed to provide a
machine process-able description of REST style Web applications. It is targeted to provide a
simple alternative to WSDL for use with REST style Web services. Analogous to WSDL2Java
for WSDL, WADL provides a tool called WADL2JAVA [37] that that generates client side
stubs from WADL files. The focus of WADL is to describe the data format of request param-
eters and response messages. WADL defines both resources and representations, as well as
the HTTP methods that can be used to manipulate the resources. “Resources” in WADL
are abstracts of services, and not associated with domain resources.

Semantic Annotations for REST (SA-REST) [46, 85] is a research effort to seman-
tically describe RESTful WSs by adding annotations to HT'ML pages that describe RESTful
WSs. SA-REST is inspired by the idea of grounding service descriptions to semantic meta
models via model reference annotations from SAWSDL. However, unlike formal descrip-
tion languages like WSDL for traditional WSs, RESTful WSs are usually described by

informal documents like HTML web pages. Consequently, SA-REST uses Resource Descrip-

80

tion Framework-in-attributes (RDFa) [95] and Gleaning Resource Descriptions from Dialects
of Languages (GRDDL) [94] to add semantic annotations.

Web Services Description Language (WSDL) Version 2.0 [26, 49] has enhanced
its support for HT'TP bindings to describe REST style WSs. Unlike WADL or SA-REST,
WSDL 2.0 is the second version of WSDL, of which the original purpose is to describe
traditional operation-oriented style WSs. HT'TP operations in REST is supported in WSDL
2.0 by adding HTTP bindings. All 4 HTTP operations are currently supported in WSDL 2.0
along with other RPC style operations, as well as the input parameters and response messages
are described in the same fashion as the counterparts of operation-oriented operations.

These languages are strongly influenced by existing imperative service description lan-
guages and do not capture well the resource-centric nature of RESTful WSs. They have
focused on the descriptions of input/output as traditional service description languages do,
but ignored the description of the resources and the transitions of these resources. As a
consequence, these languages remain at the interface description level and are not capable
of capturing the “state transfer” between resources. Thus, they can not be directly used to

facilitate automated composition of individual RESTful WSs.

7.5 MASHUP

Mashup is a Web application that combines data from multiple data sources into a single
integrated application. A mashup site must access third party data using APIs, and should
add value to these data during the integration. Data could come from local databases or
various sources across the Internet via different protocols including RSS [98], ATOM [59]
and RESTful WSs. Compared to RESTful Web service composition, a mashup is restricted
at the data-level integration, and most uses of RESTful WSs in mashup are limited to
fetching data from remote sources. It usually does not involve updating or manipulating

remote data sources or other resources.

CHAPTER 8

CONCLUSIONS

In this chapter, we summarize the challenges and our contributions to the problem of auto-
mated WS composition and discuss some open issues and future research directions for WS

composition.

8.1 SUMMARY AND DISCUSSION

In terms of WSDL/SOAP WS composition, this article introduced a hierarchical symbolic
decision-theoretic planning based approach for composing WSs. We focused on addressing
three key challenges faced by contemporary approaches, which make WSC a difficult problem:
(1) Non-deterministic WS behaviors; (2) the benefits of optimality of the WSC; and (3) scal-
ability of the compositions. Haley utilizes a stochastic planner for the composition, thereby
offering a natural way to handle the uncertainty associated with WSs. The composition
process takes into account both functional and non-functional parameters (response time,
invocation cost and reliability) and provides a cost based WSC optimization. It addresses the
scalability issue by adopting a symbolic representation and utilizing a hierarchical approach.
Specifically, symbolic representation helps us address two primary issues: First, is the explo-
sion in the state space as the number of WSs increase impacting the scalability of the
composition methods. Second, is the capability to operate directly on WS descriptions — WS
preconditions and effects which may be represented using first order logic based languages.
This enables Haley to directly elicit a planning problem formulation from service descrip-
tions. Additionally, we observe that many real world business processes are amenable to a

hierarchical decomposition into lower level processes and primitive service invocations. Haley

81

82

utilizes a framework that models the hierarchy often found in processes. Our experimental
evaluation shows that the framework outperforms other approaches in dynamic, stochastic
environments, and is efficient and scalable.

In addition to contributing a theoretical framework for composing WSs, we have imple-
mented it as a working system and provided a set of supporting tools. Haley is available
as a state of the art, end-to-end and scalable solution for WSC. It provides an interface
that hides the complexity of planning and WS-BPEL from process designers. The tool suite
offers unique advantages over manual BPEL process design and other automated approaches
to composition. Development of Haley represents a significant milestone in the research on
WSC, and a contribution to application development in SOA.

An associated challenge is the data mediation problem, which is not addressed in this
dissertation. Specifically, both syntactical and semantic heterogeneity may exist in the input
and output messages exchanged between WSs. In other words, the output of the previous
WSs may not exactly match the required input of the successive WSs. Data mediation pro-
vides a formalized model and mechanism for managing data heterogeneity which may exist in
the component WSs. It is a challenging problem and is beginning to receive renewed research
attention in the semantic Web service community. One proposed approach [57] models the
involved domains using ontologies and relies on the pre-constructed data mappings to solve
the heterogeneity issue. Our framework could be extended in a straightforward manner with
approaches that address the data mediation challenges.

Due to the declarative nature and other characteristics of RESTful WSs such as being
light-weight, easily accessible and scalable, we argued that RESTful WSs have some unique
advantages over traditional WSs in terms of service composition, especially in the context
of building Web 2.0 applications. While RESTful WSs have been widely used in building
mashup applications, we believe RESTful WSs will be playing an increasingly important role

in the context of SOA, where WSDL/SOAP WSs are dominant.

83

The RESTful approach represents a very promising way of building WSs. Although it has
been considered as an important technology to realize programmable Web in the industry,
and potentially adopted as widely as WSDL/SOAP Web service composition, we did not
see research effort towards RESTful Web service composition because it is a relatively new
technology. In this dissertation, we discuss two perspectives of modeling a system using WSs.
We introduce a formal conceptual model for describing individual RESTful WSs (identified
as three types), and present an automated composition framework based on this model. This
work represents our initial efforts towards the problem of automated RESTful Web service
composition. We are hoping that it will draw some interests from the research community
on WSs, and engage more researchers in this challenge.

We outline below the challenges we encountered towards automated RESTful Web service

composition.

e Resource-centric perspective of building services is relatively new, and most of the

claimed RESTful WSs do not fully adhere to REST principles.

e Lack of formal modeling or machine-understandable description languages for RESTful

WSs.

e While integrating RESTful WSs (resources) from multiple parties, data heterogeneity

may become a major obstacle.

8.2 ORIGINAL CONTRIBUTIONS AND SIGNIFICANCE

Our research focuses on two closely related but fundamentally different topics: automated
WSDL/SOAP WS composition and RESTful WS composition. Automated WSDL/SOAP
WS composition problem has been extensively studied in the WS research community, and
many approaches have been proposed. We start our research by analyzing the achievements
and limitations of existing approaches. We have identified some of the key issues, such as

uncertainty, optimality, scalability and etc., needed to be solved by WSC approaches. Our

84

research on WSDL/SOAP WS composition focuses on addressing these key issues. In addi-
tion, our research on automated RESTful WS composition represents early research effort
on this topic in the research community. We propose a classification based formal ontology
model to describe individual WSs, and a state transition system based framework to auto-

matically compose RESTful Web services. We summarize our contribution below

e In order to model uncertainties during WS invocation and optimize QoS requirements,
we introduce the use Decision-theoretic planning in WS composition. Decision-theoretic
planning generalize classical planning techniques to nondeterministic environments
where action outcomes may be uncertain, and associate costs to the different plans
thereby allowing the selection of an optimal plan. Compared to classical Al planners
bases approaches, our approach models the uncertainty inherent in WSs and facili-
tates a cost-based process optimization. These techniques are especially relevant in the

context of SOAs where services may fail and processes must minimize costs.

e Many real world processes are amenable to a hierarchical decomposition into lower
level processes and primitive service invocations. We present a hierarchical approach
for composing processes that may be nested some of the components of the process may
be sub-processes themselves. In particular, the lowest levels of the hierarchy (leaves) are
modeled using a FO-SMDP containing primitive actions which are invocations of the
WSs. Higher levels of the process are modeled using FO-SMDPs that contain abstract
actions as well, which represent the execution of lower level processes. We represent
their invocations as temporally extended actions in the higher level FO-SMDPs. Since
descriptions of only the individual WSs are usually available, we provides methods for
deriving the model parameters of the higher level FO-SMDP from the parameters of
the lower level ones. Thus, our approach is applicable to WSCs that are nested to an
arbitrary depth. The method of constructing the primitive SMDP planning problem
from Web service composition problem is proposed, and more importantly we provide

ways for deriving the parameters of the composite SMDPs from the lower level ones.

85

e Although our hierarchical approach promotes scalability, along with existing WSC
techniques, it is further plagued by two challenges: (i) As the number of WSs increases,
there is an explosion in the size of the state space representation; (i) There is a growing
consensus among the WS description standards such as OWL-S [50] and SAWSDL on
using first order logic (or its variants) to logically represent the preconditions and effects
of WSs. However, many of the existing planning techniques used for WS composition
do not use the full generality of first order logic while planning. We propose a first-
order hierarchical decision-theoretic planning framework, which we call Haley [105],
for WSC problems. Haley improves on previous work by allowing WS composition at
the logical level. Specifically, Haley enables composition using the first order sentences
that represent the preconditions and effects of the component WSs. Haley offers a
way to mitigate the problem of large state spaces by composing at the logic level and
preserves the expressiveness of first order logic. Haley operates directly on first order
logic based representations of the state space to obtain the compositions. As a result,
it supports an automated elicitation of the corresponding planning domain from Web
service descriptions and produces a much more compact domain representation than

classical Al planners.

e Although many approaches have been proposed in the literature, few implemented
tools exist due to the limitations of the existing approaches mentioned above and the
complexity of the WS composition problem itself. We have implemented Haley and
provided a comprehensive tool suite. The suite accepts WSs described using standard
languages such as SAWSDL. It provides process designers with an intuitive interface
to specify process requirements, goals and a hierarchical decomposition, and automat-
ically generates executable BPEL processes, while hiding the complexity of the plan-
ning and BPEL from users. At the core of Haley, we have designed a first-order SMDP
based decision-theoretic planner, eDT-GOLOG, which may be used independent with

Haley. eDT-GOLOG is used as the planning engine in Haley to generate the plan based

86

on WS descriptions and user-specified goals. We also designed a SAWSDL viewer to
visualize the functionalities of WSs. In a nutshell, the tool suite is an integrated devel-
opment environment for the process designers to (1) import candidate WSs and their
description files, (2) specify process hierarchies, initial state and goals, (3) generate the

planning domain, (3)generate the plan and (4) convert the plan into the corresponding

BPEL file.

Our Experiments [104, 105] demonstrate that the advantages of a hierarchical decompo-
sition and logic based representation. The hierarchical approach consumes less planning
time than the flat approach; and the first order representation produces more compact

planning domains.

To the best of our knowledge, automated RESTful WS composition is much less studied
in the WS research community than WSDL/SOAP WS composition. We have put our
initial efforts into RESTful WS modeling and composing. We are hoping our research
will attract more interests and engage more researches from the WS research com-
munity. As an early research effort towards automated RESTful WS composition, we
introduce and formally define this problem. In addition, we have analyzed the differ-
ences between automated WSDL/SOAP WS composition and automated RESTful WS
composition. We have identified a list of challenges of addressing automated RESTful
WS composition. To facilitate automated RESTful WS composition, we have proposed
a classification based formal modeling method to describe RESTful WSs. A situation
calculus based state transition system has been studied to automate the composition

of RESTful WSs.

87

8.3 FUTURE WORK

There are several research directions to further improve or extend our dissertation work. We
divide these directions into two categories: future work of WSDL/SOAP WS composition
and future work of RESTful WS composition.

Future work of WSDL/SOAP WS composition: We have addressed some of the key
issues in our dissertation work, but there are still some open issues and unsolved problems.
To improve Haley, one may consider the following directions:

(1) Data mediation has not been addressed in the Haley framework. Specifically, both
syntactical and semantic heterogeneity may exist in the input and output messages exchanged
between WSs. In other words, the output of the previous WSs may not exactly match
the required input of the successive WSs. Data mediation is a challenging problem and is
beginning to receive renewed research attention in the semantic Web service community. One
may extend our framework by providing a sf Haley plug-in to address the data mediation
challenges.

(2) While three major quantitative QoS parameters (Response time, reliability and invo-
cation cost) are considered in Haley, other QoS parameters (qualitative QoS parameters)
such as compliance, security, etc. have not been addressed in our approach. These unin-
corporated QoS measurements might be crucial in certain application domains. Since Haley
utilizes a cost-based planning engine, one might quantify these parameters in order to take
into account these qualitative QoS parameters. The three quantitative QoS parameters cur-
rently considered in Haley are combined in a sensible way to produce a single optimization
goal. To incorporate more QoS parameters, one needs to carefully analyze the connections
among the newly included parameters and the old parameters already considered.

(3) Our current approach for optimizing multiple QoS parameters is to combine these
parameters into a single optimization goal, as a consequence, a single optimal policy is pro-

duced. It is also possible to view the problem as a multiple-objective optimization problem.

88

For instance, one might apply the “pareto optimization” idea to Haley and produce a “pareto
policy set”, rather than a single policy.

(4) As far as the tool suite is concerned, Haley may be tested with additional real world
large-scale scenarios and continue to be improved on the usability and reliability of the tool
suite.

Future work of RESTful WS composition: This topic is relatively new to the
researchers in the WS community. Much less research has been done on this problem. Our
work is also still preliminary and may be improved in various ways.

(1) Our current work focuses on the service composition approach and leaves the descrip-
tion of RESTful WSs at a conceptual level, although we have proposed an ontology based
model to describe RESTful WSs and facilitate automated RESTful WS composition. Most
uses of RESTful WSs in the industry follow an ad-hoc approach by looking at the informal
service description document. The informal nature of these documents is a big obstacle to
applying automated service compositions. To further realize the potential of RESTful WSs,
especially in terms of facilitating automated composition, a formal, machine-understandable
description language is needed.

(2) RESTful WSs and WSDL/SOAP WSs have shown advantages and disadvantages in
different application situations. It would be interesting to study how we can automate the

service composition process in an environment mixed with these two WS paradigms.

BIBLIOGRAPHY

[1] Amazon web services. http://aws.amazon.com/.
[2] Eclipse graphical modeling framework (GMF). http://eclipse.org/modeling/gmf/.
[3] Eclipse modeling framework project (EMF). http://eclipse.org/modeling/emf/.

[4] Organization for the advancement of structured information standards (oasis).

http://www.oasis-open.org.
[5] Usps web services. http://www.usps.com/webtools/.
[6] Webservicex. http://www.webservicex.net/ WCF /webServices.aspx.
[7] World wide web consortium (w3c). http://www.w3.org/.
[8] Prgrammable web - api dashboard. http://www.programmableweb.com /apis, 2009.
9] (ws-*) list of web service specifications. http://en.wikipedia.org/wiki/WS-*, 2009.

[10] V. Agarwal, G. Chafle, K. Dasgupta, N. M. Karnik, A. Kumar, S. Mittal, and B. Sri-
vastava. Synthy: A system for end to end composition of web services. Journal of Web

Semantics, 3(4):311-339, 2005.

[11] R. Aggarwal, K. Verma, J. A. Miller, and W. Milnor. Constraint driven web service
composition in meteor-s. In Proceedings of IEEE International Conference on Services

Computing, pages 23-30, 2004.

[12] P. Albert, L. Henocque, and M. Kleiner. A constrained object model for configuration
based workflow composition. In Business Process Management Workshops, pages 102—

115, 2005.

89

[13]

[14]

[15]
[16]
[17]

[18]

[20]

[21]

23]

[24]

90

R. E. Bellman. Dynamic Programming. Dover, 1957.

B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment for web services

composition. IEEE Internet Computing, 7(1):40-48, 2003.

J. Blythe. Decision-theoretic planning. Al Magazine, 20(2).

J. Blythe. Decision-theoretic planning. AI Magazine, 20(2):37-54, 1999.
J. Blythe. An overview of planning under certainty. pages 85-110, 1999.

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order

mdps. In IJCAI pages 690-700, 2001.

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-
level agent programming in the situation calculus. In Proceedings of the Seventeenth

National Conference on Artificial Intelligence and Twelfth Conference on on Innovative

Applications of Artificial Intelligence, pages 355-362, 2000.

T. Bylander. Complexity results for planning. In International Joint Conference of

Artificial Intelligence, pages 274-279, 1991.

G. Canfora and R. Esposito. A lightweight approach for qos-aware service composition.
In Proceedings of the 2nd International Conference on Service Oriented Computing,

pages 36-47, 2004.

J. Cardoso and A. P. Sheth. Semantic e-workflow composition. Journal of Intelligent

Information System, 21(3):191-225, 2003.

J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. Kochut. Quality of service for

workflows and web service processes. Journal of Web Semantics, 1(3):281-308, 2004.

G. Chafle, G. Das, K. Dasgupta, A. Kumar, S. Mittal, S. Mukherjea, and B. Srivas-
tava. An integrated development environment for web service composition. In IEEFE

International Conference on Web Services (ICWS), pages 839-847, 2007.

91

[25] R. Chinnici, J. J. Moreau, A. Ryman, and S. Weerawarana. Web services description

language specification 1.1. http://www.w3.org/TR/wsdl, 2001.

[26] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services descrip-

tion language specification 2.0. http://www.w3.org/TR/wsdl20/, 2007.

[27] S. A. Chun, V. Atluri, and N. R. Adam. Domain knowledge-based automatic workflow
generation. In DEXA, pages 81-92, 2002.

[28] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence, 147(1-2):35-84, 2003.

[29] T. D. S. Coalition. Daml-s specification. http://www.daml.org/services/daml-s/0.9/,
2003.

[30] T. M. K. Consortium. Kerberos: The network authentication protocol.
http://web.mit.edu/Kerberos/, Feb. 2009.

[31] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic workflow composition:

Using markov decision processes. Journal of Web Service Research, 2(1):1-17, 2005.
[32] J. Farrell, H. Lausen, and etc. Sawsdl: Semantic annotations for wsdl, 2006.

[33] R. T. Fielding. Architectural Styles and the Design of Network-based Software Archi-

tecture. PhD thesis, University of California, Irvine, 2000.

[34] R. T. Fielding. A little rest and relaxation. In The International Conference on Java
Technology (JAZOON), June 2007.

[35] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture. In
ICSFE, pages 407416, 2000.

[36] G. D. Giacomo, Y. Lespérance, and H. J. Levesque. Congolog, a concurrent program-

ming language based on the situation calculus. Artif. Intell., 121(1-2):109-169, 2000.

[37]

[38]

[39]

[40]

[41]

[45]

[46]

92

M. J. Hadley. Web application description language (wadl) official site.

https://wadl.dev.java.net, 2006.

M. J. Hadley. Web application description language (wadl) specification.
https://wadl.dev.java.net /wadl20061109.pdf, 2006.

D. Hirtle, H. Boley, B. Grosof, M. Kifer, M. Sintek, S. Tabet, and G. Wagner. Schema

specification of ruleml, 2006.

S. Holldobler and O. Skvortsova. A logic-based approach to dynamic programming.
In In Learning and Planning in Markov Processes-Advances and Challenges-AAAI 0
Workshop, 2004.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. Swrl: A semantic web rule language combining owl and ruleml.

http://www.w3.org/Submission/SWRL/, 2004.

IETF. Public-key infrastructure (x.509). http://www.ietf.org/html.charters/pkix-
charter.html, Aug. 2008.

K. Kersting, M. V. Otterlo, and L. D. Raedt. Bellman goes relational. In Proceedings
of the twenty-first international conference on Machine learning (ICML), volume 69,

page 59, 2004.

J. Korhonen, L. Pajunen, and J. Puustjarvi. Automatic composition of web service

workflows using a semantic agent. In Web Intelligence, pages 566-569, 2003.

U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler. Information gathering during

planning for web serivce composition. Journal of Web Semantics, 3:183-205, 2005.

J. Lathem, K. Gomadam, and A. P. Sheth. Sa-rest and (s)mashups : Adding seman-
tics to restful services. In Proceedings of the First IEEE International Conference on

Semantic Computing, pages 469476, 2007.

[47]

[48]

[49]

[50]

[51]

[56]

[57]

93

S. Lu, A. J. Bernstein, and P. M. Lewis. Automatic workflow verification and genera-

tion. Theor. Comput. Sci., 353(1-3):71-92, 2006.

H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web Service Level Agreeement
Lang. Spec. 2003.

L. Mandel. Describe rest web services with wsdl 2.0. Describe REST Web services
with WSDL 2.0, 2008.

D. Martin, M. Burstein, J. Hobbs, and etc. OWL-S: Semantic Markup for Web Ser-
vices. 2006.

D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, and etc. Bringing semantics to web
services: The owl-s approach. In Proceedings of SWSWPC, pages 26-42, San Diego,
California, USA, July 2004.

J. McCarthy. Situations, actions and causal laws. Technical report, Al Laboratory,

Stanford University, 1963.

S. Mcllraith and T. C. Son. Adapting golog for composition of semantic web services. In
Proceedings of International Conference on Principles and Knowledge Representation

and Reasoning (KR-02), pages 482-496, Toulouse, France, 2002.
S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic web services. 16:45-53, 2001.

B. Medjahed and A. Bouguettaya. A multilevel composability model for semantic web
services. [EEE Transactions on Knowledge Data Engineering, 17(7):945-968, 2005.

B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services on
the semantic web. VLDB Journal, pages 333-351, 2003.

M. Nagarajan, K. Verma, A. P. Sheth, and J. A. Miller. Ontology driven data mediation

in web services. International Journal Web Service Research, 4(4):104-126, 2007.

94

[58] D. S. Nau, T.-C. Au, O. Ilghami, and etc. Shop2: An htn planning system. Journal of
Artificial Intelligence Research (JAIR), 20:379-404, 2003.

[59] M. Nottingham and R. Sayre. The atom syndication format.

http://www.atompub.org/2005/07/11/draft-ietf-atompub-format-10.html, 2006.
[60] OASIS. Uddi specification. www.oasis-open.org/committees/uddi-spec/.

[61] OASIS. Web services reliable messaging, ws-reliability 1.1. Web Services Reliable
Messaging TC WS-Reliability 1.1, Nov. 2004.

[62] OASIS. Saml specification. http://saml.xml.org/saml-specifications, Mar. 2005.

[63] OASIS. Web services security: Soap message security 1.1.
http://www.oasis-open.org/committees/download.php/16790 /wss-v1.1-spec-os-
SOAPMessageSecurity.pdf, Feb. 2006.

[64] OASIS. Web services business process execution language version 2.0.

http://docs.oasis-open.org/wsbpel/2.0/OS /wsbpel-v2.0-OS.html, 2007.

[65] OASIS. Ws-trust 1.3. http://docs.oasis-open.org/ws-sx/ws-trust /200512 /ws-trust-1.3-
os.html, Mar. 2007.

[66] OASIS. Web services atomic transaction (ws-atomictransaction). http://docs.oasis-

open.org/ws-tx/wsat,/2006/06, 2009.

[67] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara. Algorithms for web services discovery
and composition based on syntactic and semantic service descriptions. In The Third

IEEE International Conference on Enterprise Computing, E-Commerce and E-Services

(EEE 2006), page 66, June 2006.

[68] S.-C. Oh, D. Lee, and S. R. T. Kumara. Web service planner (wspr): An effective and

scalable web service composition algorithm. Int. J. Web Service Res., 4:1-22, 2007.

[69]

[70]

[71]

[72]

73]

[74]

95

T. O'Reilly. What is web 2.0. http://www.oreillynet.com/pub/a/oreilly /tim /news/
2005/09/30/what-is-web-20.html, 2005.

T. O’Reilly. Web 2.0 compact definition: Trying again.

http://radar.oreilly.com/archives/2006/12/web-20-compact.html, 2006.

C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. "big” web

services: Making the right architecture decision. In The Proceedings of International

World Wide Web Conference (WWW), Apr. 2008.

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and mon-
itoring web service composition. In Artificial Intelligence: Methodology, Systems, and

Applications, 11th International Conference, AIMSA, pages 106-115, Sept. 2004.

M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated composition of web

services by planning at the knowledge level. In IJCAI pages 1252-1259, 2005.

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley-Interscience, 1994.

L. Qiu, L. Chang, F. Lin, and Z. Shi. Context optimization of ai planning for semantic
web services composition. Service Oriented Computing and Applications, 1(2):117-128,

2007.

L. Qiu and Z. Shi. Context-aware services composition based on ai planning. In

INFORMATIK 20006, pages 345352, Oct. 2006.

L. Qiu, Z. Shi, and F. Lin. Context optimization of ai planning for services composition.
In 2006 IEEE International Conference on e-Business Engineering (ICEBE 2006),
pages 610-617, Oct. 2006.

J. Rao and X. Su. A survey of automated web service composition methods. In

Semantic Web Services and Web Process Composition, pages 43-54, 2004.

[79]

[84]

[85]

[86]

[87]

[38]

[89]

96

R. Reiter. The frame problem in the situation calculus: a simple solution (sometimes)
and a completeness result for goal regression. Artificial intelligence and mathematical

theory of computation: papers in honour of John McCarthy, pages 359-380, 1991.

R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamic Systems. MIT Press, 2001.

L. Richardson and S. Ruby. RESTful Web Services. O'Reilly Media, Inc., 2007.

S. Rusell and P. Norvig. Artificial Intelligence, A Modern Approach. Prentice Hall,
2nd edition edition, 2003.

S. Sanner and C. Boutilier. Approximate linear programming for first-order mdps.

In Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, pages

509-517, 2005.

Q. Z. Sheng, B. Benatallah, M. Dumas, and E. O.-Y. Mak. Self-serv: A platform for
rapid composition of web services in a peer-to-peer environment. In Proceedings of 28th

International Conference on Very Large Data Bases, pages 1050-1054, Aug. 2002.

A. P. Sheth, K. Gomadam, and A. Ranabahu. Semantics enhanced services: Meteor-s,

sawsdl and sa-rest. IEEE Data Eng. Bull., 31(3):8-12, 2008.

E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau. Htn planning for web service

composition using shop2. Journal of Web Semantics, 1(4):377-396, 2004.

M. Soutchanski. High-Level Robot Programming in Dynamic and Incompletely Known

Environments. PhD thesis, University of Toronto, 2003.

P. Traverso and M. Pistore. Automated composition of semantic web services into

executable processes. In International Semantic Web Conference, pages 380-394, 2004.

A. Turing. On computable numbers, with an application to the entscheidungs problem.

Procedings of the London Mathematical Society, (42):230-265, 1936.

97

[90] W3C. Soap version 1.2 specification. http://www.w3.org/TR /soapl2.

[91] W3C. Hypertext transfer protocol - http/1.0.
http://www.w3.org/Protocols/HTTP /1.0 /draft-ietf-http-spec.html, 1996.

[92] W3C. Cool uris don’t change. http://www.w3.org/Provider/Style/URI, 1998.
[93] W3C. Xml schema. http://www.xml.org/xmlschema, 2005.

[94] W3C. Gleaning resource descriptions from dialects of languages (grddl).
http://www.w3.org/TR/grddl/, 2007.

[95] W3C. Rdfa in xhtml: Syntax and processing. http://www.w3.org/TR /rdfa-syntax/,
2008.

[96] W. Wiesemann, R. Hochreiter, and D. Kuhn. A stochastic programming approach for
qos-aware service composition. In IEEE International Symposium on Cluster Com-

puting and the Grid (CCGrid), pages 226-233, 2008.

[97] E. Wilde07. Declarative web 2.0. In Proceedings of the IEEE International Conference

on Information Reuse and Integration, pages 612617, 2007.
[98] D. Winer. Rss 2.0 specification. http://validator.w3.org/feed/docs/rss2.html, 2002.

[99] D. Wu, B. Parsia, E. Sirin, and etc. Automating daml-s web services composition using

shop2. In Proceedings of International Semantic Web Conference, pages 195-210, 2003.

[100] Z. Wu, K. Gomadam, A. Ranabahu, A. P. Sheth, and J. A. Miller. Automatic com-
position of semantic web services using process mediation. In Proceedings of the Ninth

International Conference on Enterprise Information Systems, pages 453-462, 2007.

[101] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven
web services composition. In Proceedings of International World Wide Web Conference

(WWW), pages 411-421, 2003.

102]

[103]

[104]

105

[106]

98

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition. IEEE Transactions on Software

Engineering, 30(5):311-327, 2004.

L. Zeng, A. H. H. Ngu, B. Benatallah, R. M. Podorozhny, and H. Lei. Dynamic
composition and optimization of web services. Distributed and Parallel Databases,

24(1-3):45-72, 2008.

H. Zhao and P. Doshi. A hierarchical framework for composing nested web processes.

In International Conference of Service Oriented Computing, pages 116-128, 2006.

H. Zhao and P. Doshi. Haley: A hierarchical framework for logical composition of web

services. In Proceedings of International Conference on Web Services, pages 312319,

2007.

H. Zhao and P. Doshi. Towards automated restful web service composition. In IEFE

International Conference on Web Services (ICWS), 2009.

APPENDIX A

EDT-GoLoG

/] 3Kk ok ok sk ok sk ok ok ok ok sk ok sk ok ok K ok ok 3 ok K ok ok 3 ok K ok sk 3 ok K ok oK ok ok K ok K ok ok 3 ok K ok K sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok

Tolh

eDT-Golog: an extension of DT-GOLOG

(DT-GOLOG: http://www.cs.toronto.edu/"cebly/Papers/dtgolog-abs.html)
KKK KKK oK K oK K ok K o KoK KoK KK K oK K ok K ok K ok K ok K ok ok o ok ok K ok K ok K ok K ok K ok K ok K ok oK oK KoK KK KK KoK KKk K

/%
To
We
to

*/

dynamic(proc/2) . /* Compiler directives. Be sure x/
set_flag(all_dynamic, on). /* that you load this file first! */
set_flag(print_depth,500) .

pragma (debug) .

op(800, xfy, [&]). /* Conjunction */

op(850, xfy, [v]). /% Disjunction */

op(870, xfy, [=>]). /* Implication */

op(880,xfy, [<=>]). /* Equivalence */

op(950, xfy, [:1). /* Action sequence */

op(960, xfy, [#]). /* Nondeterministic action choice */

handle the representation of time-related reward and cost
need to introduce integral predicates and the predicates
compute the total rewards

integralFunction(Y, X, Mean, Sigma, Alpha, do(A,S)) :-

setAlpha(Alpha),

meanValue (Mean, do(A,S)),

sigmaValue(Sigma, do(A,S)),

Y is (exp(-1xAlpha*X))*

(1/(Sigmaxsqrt (pi))*exp((-1)*(X-Mean) * (X-Mean) / (2*Sigma*Sigma))) .

99

100

integral (Sum, do(A,S)) :- tmaxValue(Tmax, do(A,S)),
(for(X, 0, Tmax),fromto(0,In,Out,Sum)
do integralFunction(Y, X, Mean, Sigma, Alpha,
do(A,S)), Out is In + Y).

reward(TC, do(A,S)) :- rewardValue(R, do(A,S)),
lumpCostValue(K, do(A,S)),
costRate(C, do(A,S)),
integral(Sum, do(A,S)),
TC is R - K - C *x Sum .

/* The predicate bp() is the top level call. Add an end-of-program
marker "nil" to the tail of program expression E , then compute
the best policy that succeeds with probability Prob. The horizon
H must be a non-negative integer number.

*/

bp(E,H,Pol,Util,Prob,File) :- integer(H), H >= 0,
cputime (StartT),
bestDo(E : nil,sO,H,Pol,Val,Prob),
cputime (EndT), Elapsed is EndT - StartT,
Util is float(Val),
open(File, append, Stream),
date(Date),
printf (Stream, "\n\nThis report is started at time %w\n", [Date]),
(proc(E,Body) ->
printf (Stream, "The Golog program is\n proc(%w,\n %w)\n", [E,Bodyl);
printf (Stream, "The Golog program is\n %w\n", [E])
),
printf ("\nThe computation took %w seconds", [Elapsed]),
printf (Stream, "\nTime elapsed is %w seconds\n", [Elapsed]),
printf (Stream, "The optimal policy is \n %w \n", [Pol]),
printf (Stream, "The value of the optimal policy is %w\n", [Util]),
printf (Stream, "The probability of successful termination is %w\n", [Prob]),
close(Stream) .

bp2(E,H,Pol,Util,Prob,File, PolString) :- integer(H), H >= 0,
cputime (StartT),

101

bestDo(E : nil,sO,H,Pol,Val,Prob),
cputime (EndT), Elapsed is EndT - StartT,
Util is float(Val),

term_to_string(Pol, PolString0),
PolString = PolString0,

open(File, append, Stream),
date(Date),
printf (Stream, "\n\nThis report is started at time %w\n", [Date]),
(proc(E,Body) ->
printf (Stream, "The Golog program is\n proc(%w,\n %w)\n", [E,Bodyl);
printf (Stream, "The Golog program is\n %w\n",[E])
),
printf ("\nThe computation took %w seconds", [Elapsed]),
printf (Stream, "\nTime elapsed is %w seconds\n", [Elapsed]),
printf (Stream, "The optimal policy is\n %w \n", [Poll),
printf (Stream, "The value of the optimal policy is %w\n", [Util]),
printf (Stream, "The probability of successful termination is %w\n", [Prob]),

close(Stream).

term_to_string(T, S) :-
open(string(""), write, Stream),
% use the flags which you want
printf (Stream, "%w", [T1),
get_stream_info(Stream, name, S),
close(Stream) .

/* bestDo(E,S,H,Pol,V,Prob)

Given a Golog program E and situation S find a policy Pol of the
highest expected utility Val. The optimal policy covers a set of
alternative histories with the total probability Prob. H is a
given finite horizon.

*/

bestDo((E1 : E2) : E,S,H,Pol,V,Prob) :- H >= 0,
bestDo(E1 : (E2 : E),S,H,Pol,V,Prob).

bestDo(?(C) : E,S,H,Pol,V,Prob) :-= H >= 0,

holds(C,S) -> DbestDo(E,S,H,Pol,V,Prob) ;
((Prob is 0.0) , Pol = stop, reward(V,S)).

bestDo((E1 # E2) : E,S,H,Pol,V,Prob) :- H >= 0,
bestDo(E1 : E,S,H,Poll,V1,Probl),
bestDo(E2 : E,S,H,Pol2,V2,Prob2),
(lesseq(V1,Probl,V2,Prob2), Pol=Pol2, Prob=Prob2, V=V2 ;
greatereq(V1,Probl,V2,Prob2), Pol=Poll, Prob=Probl, V=V1).

bestDo(if (C,E1,E2) : E,S,H,Pol,V,Prob) :- H >= 0,
holds(C,S) -> bestDo(E1l : E,S,H,Pol,V,Prob) ;
bestDo(E2 : E,S,H,Pol,V,Prob).

bestDo(while(C,E1) : E,S,H,Pol,V,Prob) :- H >= 0,
holds(-C,S) -> bestDo(E,S,H,Pol,V,Prob) ;
bestDo(E1 : while(C,E1) : E,S,H,Pol,V,Prob).

bestDo(ProcName : E,S,H,Pol,V,Prob) :- H >= 0,
proc (ProcName,Body) ,
bestDo(Body : E,S,H,Pol,V,Prob).

/* Non-decision theoretic version of pi: pick a fresh value of X
and for this value do the complex action El1 followed by E.
*/
bestDo(pi(X,E1) : E,S,H,Pol,V,Prob) :- H >= 0,
sub(X,_,E1,E1_X), bestDo(E1_X : E,S,H,Pol,V,Prob).

/%

Discrete version of pi. pickBest(x,f,e) means: choose the best value

of x from the finite non-empty range of values f, and for this x,
do the complex action expression e.

*/

bestDo(pickBest (X,F,E) : EF,S,H,Pol,V,Prob) :- H >= 0,
range(F,R),
(R=[D], sub(X,D,E,E_D),

bestDo(E_D : EF,S,H,Pol,V,Prob) ;
R=[D1,D2], sub(X,D1,E,E_D1), sub(X,D2,E,E_D2),
bestDo((E_D1 # E_D2) : EF,S,H,Pol,V,Prob) ;
R=[D1,D2 | Taill], Tail = [D3 | Rest],
sub(X,D1,E,E_D1), sub(X,D2,E,E_D2),
bestDo((E_D1 # E_D2 # pickBest(X,Tail,E))

102

103

EF,S,H,Pol,V,Prob)

bestDo(A : E,S,H,Pol,V,Prob) :- H > 0,
agentAction(A), deterministic(A,S),
(not poss(A,S), Pol = stop, (Prob is 0.0) , reward(V,S) ;
poss(A,S), Hor is H - 1,
bestDo(E,do(A,S) ,Hor,RestPol,VF,Prob),
reward(R,S),

V is R + VF,
(RestPol = nil, Pol = A ;
not RestPol=nil, Pol = (A : RestPol)
)
).
bestDo(A : E,S,H,Pol,V,Prob) :- H > 0,
agentAction(A), nondetActions(A,S,NatOutcomesList),
Hor is H -1,

bestDoAux (NatOutcomesList ,E,S,Hor,RestPol,VF,Prob),
reward(R,S),

V is R + VF,

Pol=(A : senseEffect(A) : (RestPol)).

bestDoAux([N1] ,E,S,H,Pol,V,Prob) :- H >= 0, senseCondition(N1,Phil),
(not poss(N1,S), (Pol= (?(Phil) : stop), (Prob is 0.0) , V is 0) ;
poss(N1,S),

prob(N1,Pr1,S),

bestDo(E,do(N1,S) ,H,Poll,V1,Probl), !,

Pol = 7?(Seg_Start, C_Start, Phil, C_End : Poll, Seg_End),
V is PrixVi,

Prob is Pri1#*Probl).

bestDoAux([N1 | OtherOutcomes],E,S,H,Pol,V,Prob) :- H >= 0,

OtherOutcomes = [Head | Tail], 7% there is at least one other outcome

(not poss(N1,S) -> bestDoAux(OtherOutcomes,E,S,H,Pol,V,Prob)
poss(N1,S),
bestDoAux (0therOutcomes,E,S,H,PolT,VT,ProbT),
senseCondition(N1,Phil),
prob(N1,Pr1,S),
bestDo(E,do(N1,S),H,Pol1,V1,Probl), !,

b

104

Pol = if(Seg_Start, C_Start, Phil, C_End, % then
Poll, % else
(PolT), Seg_End),
V is VT + PrixVi,
Prob is ProbT + Pri#*Probl).

bestDo(nil,S,H,Pol,V,Prob) :-
Pol=nil, reward(V,S), (Prob is 1.0)

bestDo(nil : E,S,H,Pol,V,Prob) :- H > 0, bestDo(E,S,H,Pol,V,Prob).

bestDo(stop : E,S,H,Pol,V,Prob) :-
Pol=stop, reward(V,S), (Prob is 0.0)

bestDo(E,S,H,Pol,V,Prob) :- H =:= 0,
/* E=(A : Tail), agentAction(A), */
Pol=nil, reward(V,S), (Prob is 1.0)
/* —-—-- Some useful predicates mentioned in the interpreter ----- */
lesseq(V1,Probl1,V2,Prob2) :- Pril is float(Probl), (Prl = 0.0) ,
Pr2 is float(Prob2),
((Pr2 \= 0.0) ;
(Pr2 = 0.0) , V1 =< V2
).

lesseq(V1,Probl,V2,Prob2) :-
(Probl \= 0.0) , (Prob2 \= 0.0) , V1 =< V2.

greatereq(V1,Probl,V2,Prob2) :- (Probl \= 0.0) , (Prob2 = 0.0)
greatereq(V1,Probl,V2,Prob2) :-
(Probl \= 0.0) , (Prob2 \= 0.0) , V2 =< V1.

deterministic(A,S) :- not nondetActions(A,S,OutcomesList).

range([D | Tail],[D | Taill). % Tail can be []

/* sub(Name,New,Terml,Term2): Term2 is Terml with Name
replaced by New. */

105

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),
T2 =..[F|L2].
sub_list(X1,X2,[1,[1).
sub_list(X1,X2,[T1|L1], [T2|L2]) :- sub(X1,X2,T1,T2),
sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor
transformations on test conditions. */

holds(P & Q,S) :- holds(P,S), holds(Q,S).

holds(P v Q,S) :- holds(P,S); holds(Q,S).

holds(P => Q,S) :- holds(-P v Q,S).

holds(P <=> Q0,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).

holds(-(P & Q),S) :- holds(-P v -Q,8).

holds(-(P v Q),S) :- holds(-P & -Q,8).

holds(-(P => Q),S) :- holds(-(-P v Q),9).

holds(-(P <=> Q),S8) :- holds(-((P => Q) & (@ => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).

holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */
holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).

holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for all atoms,
including Prolog system predicates. For this to work properly,
the GOLOG programmer must provide, for all atoms taking a
situation argument, a clause giving the result of restoring
its suppressed situation argument, for example:

restoreSitArg(ontable(X),S,ontable(X,S)). *x/

holds(A,S) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) - not (A =-W ; A= (WL & W2) ; A= (W1 =>W2) ;
A= (W1 <=>W2) ; A= (Wl vWw2) ; A=someX,W) ; A=all(X,W)).

APPENDIX B

PLANNING DOMAINS FOR THE PROCESSES IN THE EXPERIMENTS

B.1 PLANNING DOMAIN FOR THE PROCESS WITH 3 SUPPLIERS

%% Author: Haibo Zhao
%% Date: 2/14/2008

proc(search, (receiveOrder(Order) : verifyOrder (Order) #
(checkInventory(Order) # checkPreSupplier(Order)

checkSpotMarket (Order))# selectShipper (Order)

getGoods(Order) # shipGoods(Order)) : search).

/* Stochastic actions have a finite number of outcomes:
we list all of them

*/

nondetActions(receiveOrder(Order),S,
[receiveOrderS(0Order), receiveOrderF(0Order)]).
nondetActions(verifyOrder (Order),S,
[verifyOrderS(Order) ,verifyOrderF (Order)]) .
nondetActions(checkInventory(Order),S,
[checkInventoryS(Order) ,checkInventoryF (Order)]) .
nondetActions (checkPreSupplier(Order),S,
[checkPreSupplierS(Order) ,checkPreSupplierF(Order)]) .
nondetActions(checkSpotMarket (Order),S,
[checkSpotMarketS(0Order) , checkSpotMarketF (Order)]) .
nondetActions(selectShipper(Order),S,
[selectShipperS(Order) ,selectShipperF(Order)]).
nondetActions(getGoods(Order),S,

[getGoodsS(0Order) ,getGoodsF (Order)]) .
nondetActions(shipGoods(Order),S,
[shipGoodsS(Order) ,shipGoodsF (Order)]) .

/* Using predicate prob(Outcome,Probability,Situation)
we specify numerical values of probabilities for each outcome

106

107

*/

prob(receiveOrderS(Order), 0.99, S).
prob(receiveOrderF (Order), 0.01, S).
prob(verifyOrderS(Order), 0.99, S).
prob(verifyOrderF(Order), 0.01, S).
prob(checkInventoryS(Order), 0.80, S).
prob(checkInventoryF(Order), 0.20, S).
prob(checkPreSupplierS(Order), 0.90, S).
prob(checkPreSupplierF (Order), 0.10, S).
prob(checkSpotMarketS(Order), 0.99, S).
prob(checkSpotMarketF(Order), 0.01, S).

prob(selectShipperS(Order), 0.99, S). prob(selectShipperF(Order), 0.01, S).
prob(getGoodsS(Order), 0.99, S). prob(getGoodsF(Order), 0.01, S).
prob(shipGoodsS(Order), 0.99, S). prob(shipGoodsF(Order), 0.01, S).

/* We formulate precondition axioms using the predicate
poss(Outcome, Situation) The right-hand side of precondition
axioms provides conditions under which Outcome is possible
in Situation

*/

poss (receiveOrderS(0Order),S) .

poss (receiveOrderF (Order) ,S) .

poss(verifyOrderS(Order),S) :- isOrderReceived(Order,S),

not isOrderVerified(Order,S).

poss(verifyOrderF(Order),S) :- isOrderReceived(Order,S),

not isOrderVerified(Order,S).

poss(checkInventoryS(Order),S) :- isOrderVerified(Order,S),
not isOrderSatisfied(Order,S).

poss(checkInventoryF(Order),S) :- isOrderVerified(Order,S),
not isOrderSatisfied(Order,S).

poss (checkPreSupplierS(Order),S) :- isOrderVerified(Order,S),
not isOrderSatisfied(Order,S).

poss (checkPreSupplierF (Order),S) :- isOrderVerified(Order,S),
not isOrderSatisfied(Order,S).

poss (checkSpotMarketS(Order),S) :- isOrderVerified(Order,S),
not isOrderSatisfied(Order,S).

poss (checkSpotMarketF (Order),S) :- isOrderVerified(Order,S),
not isOrderSatisfied(Order,S).

poss(selectShipperS(Order),S) :- isOrderSatisfied(Order,S),
not isShipperSelected(Order,S) .

poss(selectShipperF(Order),S) :- isOrderSatisfied(Order,S),
not isShipperSelected(Order,S).

108

poss (getGoodsS(Order) ,S) :- isShipperSelected(Order,S),
not isGoodsReceived(Order,S).

poss(getGoodsF(Order),S) :- isShipperSelected(Order,S),
not isGoodsReceived(Order,S).

poss (shipGoodsS(Order),S) :- isGoodsReceived(Order,S),
not isShipped(Order,S).

poss (shipGoodsF(Order),S) :- isGoodsReceived(Order,S),
not isShipped(Order,S).

/* Successor state axioms */

isOrderReceived(Order, do(A,S)) :- A=receiveOrderS(Order);
isOrderReceived(Order,S).

isOrderVerified(Order, do(A,S)) :- A=verifyOrderS(Order);
isOrderVerified(Order,S).

isOrderSatisfied(Order, do(A,S)):- A=checkInventoryS(Order) ;
A=checkPreSupplierS(Order); A=checkSpotMarketS(Order); isOrderSatisfied(Order,S).
isShipperSelected(Order,do(A,S)) :- A=selectShipperS(Order) ;
isShipperSelected(Order,S) .

isGoodsReceived(Order,do(A,S)) :- A=getGoodsS(Order) ;
isGoodsReceived(Order,S).

isShipped(Order,do(A,S)) :- A=shipGoods(Order) ; isShipped(Order,S).

/*Modified Reward functions in Logicx*/
% Discount factor exp(-Alpha) = 0.9
setAlpha(Alpha) :- Alpha is 0.11
reward(0,s0).

lumpCostValue(K,do(A,S)) :- A = receiveOrderF(Order),

(not isOrderReceived(Order,S), K is 10;

isOrderReceived(Order,S), K is 2).

lumpCostValue(K,do(A,S)) :- A = verifyOrderF(Order),
(isOrderReceived(Order,S), not isOrderVerified(Order,S),K is 10; K is 2).
lumpCostValue(K,do(A,S)) :- A = checkInventoryF(Order), K is 12.
lumpCostValue(K,do(A,S)) :- A = checkPreSupplierF(Order), K is 6 .
lumpCostValue(K,do(A,S)) :- A checkSpotMarketF(Order), K is 2.
lumpCostValue(K,do(A,S)) :- A selectShipperF (Order),
(isOrderReceived(0Order,S), isOrderVerified(Order,S),
isOrderSatisfied(Order,S), not isShipperSelected(Order,S),K is 10;K is 2).
lumpCostValue(K,do(A,S)) :- A = getGoodsF(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),
isShipperSelected(Order,S), not isGoodsReceived(Order,S),K is 10; K is 2).
lumpCostValue(K,do(A,S)) :- A = shipGoodsF(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),
isShipperSelected(Order,S), isGoodsReceived(Order,S), not isShipped(Order,S),

109

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = receiveOrderS(Order),
(not isOrderReceived(Order,S), K is 10;
isOrderReceived(Order,S), K is 2).
lumpCostValue(K,do(A,S)) :- A = verifyOrderS(Order),
(isOrderReceived(Order,S), not isOrderVerified(Order,S),
K is 10; K is 2).
lumpCostValue(K,do(A,S))
lumpCostValue(K,do(A,S))

= checkInventoryS(Order), K is 12 .
checkPreSupplierS(Order), K is 6 .
lumpCostValue(K,do(A,S)) = checkSpotMarketS(Order), K is 2.
lumpCostValue(K,do(A,S)) :- A = selectShipperS(Order),
(isOrderReceived(Order,S), isOrderVerified(Order,S),
isOrderSatisfied(Order,S), not isShipperSelected(Order,S),

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = getGoodsS(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),
sisShipperSelected(Order,S), not isGoodsReceived(Order,S) ,

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = shipGoodsS(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),
isShipperSelected(Order,S), isGoodsReceived(Order,S), not isShipped(Order,S),
K is 10; K is 2).

| |
= = >
I

% Specify the accumulating rate, which only depends on the action to be performed

costRate(C, do(A,S)) :— A = receiveOrderS(Order), C is 2 .
costRate(C, do(A,S)) :- A = verifyOrderS(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkInventoryS(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkPreSupplierS(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSpotMarketS(Order), C is 2 .
costRate(C, do(A,S)) :- A = selectShipperS(Order), C is 2 .
costRate(C, do(A,S)) :- A = getGoodsS(Order), C is 2 .
costRate(C, do(A,S)) :- A = shipGoodsS(Order), C is 2 .
costRate(C, do(A,S)) :- receiveOrderF(Order), C is 2 .
costRate(C, do(A,S)) :- A = verifyOrderF(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkInventoryF(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkPreSupplierF(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSpotMarketF(Order), C is 2 .
costRate(C, do(A,S)) :- A = selectShipperF(Order), C is 2 .
costRate(C, do(A,S)) :- A = getGoodsF(Order), C is 2 .
costRate(C, do(A,S)) :- A = shipGoodsF(Order), C is 2 .

i A i
Il

% Specify the maximal sojourn time
tmaxValue(Tmax, do(A,S)) :— A

tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))
tmaxValue(Tmax, do(A,S))

A

i

/» Specify mean of the sojourn

meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))

e -

receiveOrderS(Order), Tmax is 7 .
verifyOrderS(Order), Tmax is 7 .
checkInventoryS(Order), Tmax is 7 .

checkPreSupplierS(Order), Tmax is 7 .

checkSpotMarketS(Order), Tmax is 7 .
selectShipperS(Order), Tmax is 7 .
getGoodsS(Order), Tmax is 7 .
shipGoodsS(Order), Tmax is 7 .
receiveOrderF(Order), Tmax is 7 .
verifyOrderF(Order), Tmax is 7 .
checkInventoryF(Order), Tmax is 7 .

checkPreSupplierF(Order), Tmax is 7 .

checkSpotMarketF (Order), Tmax is 7 .
selectShipperF(Order), Tmax is 7 .
getGoodsF(Order), Tmax is 7 .
shipGoodsF(Order), Tmax is 7 .

time distribution

receiveOrderS(Order), Mean is 3 .
verifyOrderS(Order), Mean is 3 .
checkInventoryS(Order), Mean is 3 .

checkPreSupplierS(Order), Mean is 3 .

checkSpotMarketS(0Order), Mean is 3 .
selectShipperS(Order), Mean is 3 .
getGoodsS(Order), Mean is 3 .
shipGoodsS(Order), Mean is 3 .
receiveOrderF(Order), Mean is 3 .
verifyOrderF(Order), Mean is 3 .
checkInventoryF(Order), Mean is 3 .

checkPreSupplierF(Order), Mean is 3 .

checkSpotMarketF(Order), Mean is 3 .
selectShipperF(Order), Mean is 3 .
getGoodsF(Order), Mean is 3 .
shipGoodsF(Order), Mean is 3 .

% Specify the standard deviation of the sojourn time distribution

sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))

A
A

= e >

receiveOrderS(Order), Sigma is 1.0 .
= verifyOrderS(Order), Sigma is 1.0 .
= checkInventoryS(Order), Sigma is 1.0 .

110

= checkPreSupplierS(Order), Sigma is 1.0 .

= checkSpotMarketS(Order), Sigma is 1.0 .
= selectShipperS(Order), Sigma is 1.0 .

111

sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-
sigmaValue(Sigma, do(A,S)) :-

= getGoodsS(Order), Sigma is 1.0 .

= shipGoodsS(Order), Sigma is 1.0 .

= receiveOrderF(Order), Sigma is 1.0 .

= verifyOrderF(Order), Sigma is 1.0 .

= checkInventoryF(Order), Sigma is 1.0 .

= checkPreSupplierF(Order), Sigma is 1.0 .
= checkSpotMarketF(Order), Sigma is 1.0 .
= selectShipperF(Order), Sigma is 1.0 .

= getGoodsF(Order), Sigma is 1.0 .

= shipGoodsF(Order), Sigma is 1.0 .

= i

rewardValue(R, do(A,S)):- isShipped(Order,S), R is 100 ; R is O .
%goal (Order, S) :-isOrderReceived(Order,S) , isOrderVerified(Order,S).

/* The predicate senseCondition(Outcome,Psi) describes what logical
formula Psi should be evaluated to determine Outcome uniquely

*/

senseCondition(receiveOrderS(Order),isOrderReceived(Order)) .
senseCondition(receiveOrderF (Order), (-isOrderReceived(0Order))).
senseCondition(verifyOrderS(Order) ,isOrderVerified(Order)) .
senseCondition(verifyOrderF (Order), (-isOrderVerified(Order))) .
senseCondition(checkInventoryS(Order), (isOrderSatisfied(Order))).
senseCondition(checkInventoryF (Order), (-isOrderSatisfied(Order))).
senseCondition(checkPreSupplierS(Order), (isOrderSatisfied(Order))).
senseCondition(checkPreSupplierF(Order), (-isOrderSatisfied(Order))).
senseCondition(checkSpotMarketS(Order), (isOrderSatisfied(Order))).
senseCondition(checkSpotMarketF(Order), (-isOrderSatisfied(Order))).
senseCondition(selectShipperS(Order), (isShipperSelected(Order))).
senseCondition(selectShipperF(Order), (-isShipperSelected(Order))).
senseCondition(getGoodsS(Order), (isGoodsReceived(Order))).
senseCondition(getGoodsF(Order), (-isGoodsReceived(Order))).
senseCondition(shipGoodsS(Order), (isShipped(Order))).
senseCondition(shipGoodsF (Order), (-isShipped(Order))).

/* Agent actions vs natures actions: the former are those which can be
executed by agents, the latter (outcomes) can be executed only by nature
*/

agentAction(receiveOrder (Order)) .

agentAction(verifyOrder (Order)) .

agentAction(checkInventory(Order)) .
agentAction(checkPreSupplier(Order)) .
agentAction(checkSpotMarket (Order)) .

agentAction(selectShipper (Order)) .

agentAction(getGoods(Order)) .

112

agentAction(shipGoods(Order)) .

restoreSitArg(isOrderReceived(Order),S,isOrderReceived(Order,S)).
restoreSitArg(isOrderVerified(Order),S,isOrderVerified(Order,S)).
restoreSitArg(isOrderSatified(Order),S,isOrderSatified(Order,S)).
restoreSitArg(isShipperSelected(Order),S,isShipperSelected(Order,S)).
restoreSitArg(isGoodsReceived(Order),S,isGoodsReceived(Order,S)).
restoreSitArg(isShipped(Order),S,isShipped(Order,S)).

B.2 PLANNING DOMAIN FOR THE PROCESS WITH 15 SUPPLIERS

%% Author: Haibo Zhao
%% Date: 2/18/2008

proc(search, (receiveOrder(Order) : verifyOrder (Order)#(checkInventory(Order)
checkPreSupplier(Order) # checkSpotMarket(Order) # checkSupplierO1(Order)

checkSupplier02(0Order) # checkSupplier03(Order) # checkSupplier04(Order)

checkSupplier05(0rder) # checkSupplier06(0Order) # checkSupplier07(Order)

checkSupplier08(0rder) # checkSupplier09(Order) # checkSupplier10(Order)

checkSupplier11(Order) # checkSupplier12(0Order))# selectShipper(Order)

getGoods(Order) # shipGoods(Order)) : search).

/* Stochastic actions have a finite number of outcomes:

we list all of them

*/

nondetActions(receiveOrder (Order),S, [receiveOrderS(0rder), receiveOrderF(Order)]).
nondetActions(verifyOrder (Order) ,S, [verifyOrderS(Order),
verifyOrderF (Order)]) .
nondetActions(checkInventory(Order),S, [checkInventoryS(Order),
checkInventoryF(Order)]) .
nondetActions (checkPreSupplier(Order),S, [checkPreSupplierS(Order),
checkPreSupplierF (Order)]) .
nondetActions (checkSpotMarket (Order) ,S, [checkSpotMarketS(Order),
checkSpotMarketF (Order)]) .
nondetActions(selectShipper(Order),S, [selectShipperS(Order),
selectShipperF(Order)]).
nondetActions(getGoods (Order),S, [getGoodsS(Order) ,getGoodsF (Order)]) .
nondetActions (shipGoods(Order),S, [shipGoodsS(Order) ,shipGoodsF (Order)]) .

/* Using predicate prob(Outcome,Probability,Situation)
we specify numerical values of probabilities for each outcome

*/

113

prob(receiveOrderS(Order), 0.99, S). prob(receiveOrderF(Order), 0.01, S).
prob(verifyOrderS(Order), 0.99, S). prob(verifyOrderF(Order), 0.01, S).

prob(checkInventoryS(Order), 0.80, S). prob(checkInventoryF(Order), 0.20, S).
prob(checkPreSupplierS(Order), 0.90, S). prob(checkPreSupplierF(Order), 0.10, S).
prob(checkSpotMarketS(Order), 0.99, S). prob(checkSpotMarketF(Order), 0.01, S).

prob(selectShipperS(Order), 0.99, S). prob(selectShipperF(Order), 0.01, S).
prob(getGoodsS(Order), 0.99, S). prob(getGoodsF(Order), 0.01, S).
prob(shipGoodsS(Order), 0.99, S). prob(shipGoodsF(Order), 0.01, S).

/* We formulate precondition axioms using the predicate
poss(Outcome, Situation)

The right-hand side of precondition axioms provides conditions
under which Outcome is possible in Situation

*/

poss(receiveOrderS(0Order),S):- not isOrderReceived(Order,S).
poss (receiveOrderF (Order) ,S): not isOrderReceived(Order,S).
poss(verifyOrderS(Order),S) :- isOrderReceived(Order,S),

not isOrderVerified(Order,S).
poss(verifyOrderF(Order),S) :- isOrderReceived(Order,S),

not isOrderVerified(Order,S).
poss(checkInventoryS(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).
poss(checkInventoryF(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).
poss(checkPreSupplierS(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).
poss (checkPreSupplierF (Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).
poss (checkSpotMarketS(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).
poss (checkSpotMarketF(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).
poss(selectShipperS(Order),S) :- isOrderSatisfied(Order,S),

not isShipperSelected(Order,S).
poss(selectShipperF(Order),S) :- isOrderSatisfied(Order,S),

not isShipperSelected(Order,S).
poss (getGoodsS(Order) ,S) :- isShipperSelected(Order,S),

not isGoodsReceived(Order,S).
poss(getGoodsF (Order) ,S) :- isShipperSelected(Order,S),

not isGoodsReceived(Order,S).
poss (shipGoodsS(Order),S) :- isGoodsReceived(Order,S),

114

not isShipped(Order,S).
poss (shipGoodsF(Order),S) :- isGoodsReceived(Order,S),
not isShipped(Order,S).

/* Successor state axioms */
isOrderReceived(Order, do(A,S)) :- A=receiveOrderS(Order); isOrderReceived(Order,S).
isOrderVerified(Order, do(A,S)) :- A=verifyOrderS(Order); isOrderVerified(Order,S).
isOrderSatisfied(Order, do(A,S)):- A=checkInventoryS(Order) ;
A=checkPreSupplierS(Order); A=checkSpotMarketS(Order);

A=checkSupplier01S(0Order); A=checkSupplier02S(0Order);

A=checkSupplier03S(0rder); A=checkSupplier04S(0rder);

A=checkSupplier05S(0rder); A=checkSupplier06S(0rder);

A=checkSupplier07S(0Order); A=checkSupplier08S(0Order);

A=checkSupplier09S(0Order); A=checkSupplier10S(Order);

A=checkSupplier11S(0Order); A=checkSupplier12S(0Order);

isOrderSatisfied(Order,S).

isShipperSelected(Order,do(A,S)) :- A=selectShipperS(Order);
isShipperSelected(Order,S).

isGoodsReceived(Order,do(A,S)) :- A=getGoodsS(Order);
isGoodsReceived(Order,S).

isShipped(Order,do(A,S)) :- A=shipGoods(Order) ;isShipped(Order,S) .

/*Modified Reward functions in Logic*/

% Discount factor exp(-Alpha) = 0.9
setAlpha(Alpha) :- Alpha is 0.11

reward(0,s0).

lumpCostValue(K,do(A,S)) :- A = receiveOrderF(Order),

(not isOrderReceived(Order,S), K is 10;

isOrderReceived(Order,S), K is 2).

lumpCostValue(K,do(A,S)) :- A = verifyOrderF(Order),

(isOrderReceived(Order,S), not isOrderVerified(Order,S),

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = checkInventoryF(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S),

not isOrderSatisfied(Order,S), K is 12; K is 12).

lumpCostValue(K,do(A,S)) :- A = checkPreSupplierF(0Order), (isOrderReceived(QOrder,S),
isOrderVerified(Order,S), not isOrderSatisfied(Order,S),

115

K is 6; K is 6).

lumpCostValue(K,do(A,S)) :- A = checkSpotMarketF (Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), not isOrderSatisfied(Order,S),

K is 2; K is 2).

lumpCostValue(K,do(A,S)) :- A = selectShipperF(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S),

isOrderSatisfied(Order,S), not isShipperSelected(Order,S),

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :-

A = getGoodsF(Order), (isOrderReceived(Order,S),

isOrderVerified(Order,S), isOrderSatisfied(Order,S),

isShipperSelected(Order,S), not isGoodsReceived(Order,S),

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = shipGoodsF(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),

isShipperSelected(Order,S), isGoodsReceived(Order,S), not isShipped(Order,S),

K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = receiveOrderS(Order),

(not isOrderReceived(Order,S), K is 10; isOrderReceived(Order,S), K is 2).
lumpCostValue(K,do(A,S)) :- A = verifyOrderS(Order), (isOrderReceived(Order,S),
not isOrderVerified(Order,S), K is 10; K is 2).

lumpCostValue(K,do(A,S)) :- A = checkInventoryS(Order),
(isOrderReceived(Order,S), isOrderVerified(Order,S),

not isOrderSatisfied(Order,S), K is 12; K is 12).

lumpCostValue(K,do(A,S)) :- A =checkPreSupplierS(Order),
(isOrderReceived(Order,S), isOrderVerified(Order,S),

not isOrderSatisfied(Order,S), K is 6; K is 6).

lumpCostValue(K,do(A,S)) :- A =
checkSpotMarketS(Order) , (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 2; K is 2).

lumpCostValue(K,do(A,S)) :- A =

selectShipperS(0Order), (isOrderReceived(Order,S), isOrderVerified(Order,S),
isOrderSatisfied(Order,S), not isShipperSelected(Order,S), K is 10; K is 2).
lumpCostValue(K,do(A,S)) :- A = getGoodsS(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),
isShipperSelected(Order,S), not isGoodsReceived(Order,S) ,K is 10; K is 2).
lumpCostValue(K,do(A,S)) :- A = shipGoodsS(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), isOrderSatisfied(Order,S),
isShipperSelected(Order,S), isGoodsReceived(Order,S), not isShipped(Order,S),
K is 10; K is 2).

% Specify the accumulating rate, which only depends on the action to be performed

116

costRate(C, do(A,S)) :- A = receiveOrderS(Order), C is 2 .
costRate(C, do(A,S)) :- A = verifyOrderS(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkInventoryS(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkPreSupplierS(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSpotMarketS(Order), C is 2 .
costRate(C, do(A,S)) :- A = selectShipperS(Order), C is 2 .
costRate(C, do(A,S)) :- A = getGoodsS(Order), C is 2 .
costRate(C, do(A,S)) :- A = shipGoodsS(Order), C is 2 .
costRate(C, do(A,S)) :- A = receiveOrderF(Order), C is 2 .
costRate(C, do(A,S)) :- A = verifyOrderF(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkInventoryF(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkPreSupplierF(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSpotMarketF(Order), C is 2 .
costRate(C, do(A,S)) :- A = selectShipperF(Order), C is 2 .
costRate(C, do(A,S)) :- A = getGoodsF(Order), C is 2 .
costRate(C, do(A,S)) :- A = shipGoodsF(Order), C is 2 .

% Specify the maximal sojourn time
tmaxValue(Tmax, do(A,S)) :- A = receiveOrderS(Order), Tmax is 5 .

tmaxValue(Tmax, do(A,S)) :- A = verifyOrderS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkInventoryS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkPreSupplierS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSpotMarketS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = selectShipperS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = getGoodsS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = shipGoodsS(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = receiveOrderF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = verifyOrderF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkInventoryF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkPreSupplierF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSpotMarketF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = selectShipperF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = getGoodsF(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = shipGoodsF(Order), Tmax is 5 .

% Specify mean of the sojourn time distribution

meanValue (Mean, do(A,S)) :— A = receiveOrderS(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = verifyOrderS(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkInventoryS(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkPreSupplierS(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSpotMarketS(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = selectShipperS(Order), Mean is 3 .

= = = =
|

meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))

meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))
meanValue (Mean, do(A,S))

=

= e >

117

getGoodsS(Order), Mean is 3 .
shipGoodsS(Order), Mean is 3 .

receiveOrderF(Order), Mean is 3 .
verifyOrderF(Order), Mean is 3 .
checkInventoryF(Order), Mean is 3 .
checkPreSupplierF(Order), Mean is 3 .
checkSpotMarketF (Order), Mean is 3 .
selectShipperF(Order), Mean is 3 .
getGoodsF(Order), Mean is 3 .
shipGoodsF(Order), Mean is 3 .

% Specify the standard deviation of the sojourn time distribution

sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))

sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))
sigmaValue(Sigma, do(A,S))

A

= e e e s =

g A

= receiveOrderS(Order), Sigma is 1.0 .

= verifyOrderS(Order), Sigma is 1.0 .

= checkInventoryS(Order), Sigma is 1.0 .

= checkPreSupplierS(Order), Sigma is 1.0 .
= checkSpotMarketS(Order), Sigma is 1.0 .
= selectShipperS(Order), Sigma is 1.0 .

= getGoodsS(Order), Sigma is 1.0 .

= shipGoodsS(Order), Sigma is 1.0 .

= receiveOrderF(Order), Sigma is 1.0 .

= verifyOrderF(Order), Sigma is 1.0 .

= checkInventoryF(Order), Sigma is 1.0 .

= checkPreSupplierF(Order), Sigma is 1.0 .
= checkSpotMarketF(Order), Sigma is 1.0 .
= selectShipperF(Order), Sigma is 1.0 .

= getGoodsF(Order), Sigma is 1.0 .

= shipGoodsF(Order), Sigma is 1.0 .

rewardValue(R, do(A,S)):- isShipped(Order,S), R is 100 ; R is O .

%goal (Order, S) :-isOrderReceived(Order,S) , isOrderVerified(Order,S).

/* The predicate senseCondition(Outcome,Psi) describes what logical
formula Psi should be evaluated to determine Outcome uniquely

*/

senseCondition(receiveOrderS(0Order),isOrderReceived(Order)) .
senseCondition(receiveOrderF (Order), (-isOrderReceived(Order))).

senseCondition(verifyOrderS(Order) ,isOrderVerified(Order)) .
senseCondition(verifyOrderF (Order), (-isOrderVerified(Order))).

118

senseCondition(checkInventoryS(Order), (isOrderSatisfied(Order))).
senseCondition(checkInventoryF (Order), (-isOrderSatisfied(Order))).

senseCondition(checkPreSupplierS(Order), (isOrderSatisfied(Order))).
senseCondition(checkPreSupplierF(Order), (-isOrderSatisfied(Order))).

senseCondition(checkSpotMarketS(0Order), (isOrderSatisfied(Order))).
senseCondition(checkSpotMarketF(Order), (-isOrderSatisfied(Order))).

senseCondition(selectShipperS(Order), (isShipperSelected(Order))).
senseCondition(selectShipperF(Order), (-isShipperSelected(Order))).

senseCondition(getGoodsS(Order), (isGoodsReceived(Order))).
senseCondition(getGoodsF(Order), (-isGoodsReceived(Order))).

senseCondition(shipGoodsS(Order), (isShipped(Order))).
senseCondition(shipGoodsF (Order), (-isShipped(Order))).

/* Agent actions vs natures actions: the former are those which can be
executed by agents, the latter (outcomes) can be executed only by nature
*/

agentAction(receiveOrder (Order)) .

agentAction(verifyOrder (Order)) .

agentAction(checkInventory(Order)) .
agentAction(checkPreSupplier(Order)) .
agentAction(checkSpotMarket (Order)) .
agentAction(selectShipper (Order)).

agentAction(getGoods(Order)) .

agentAction(shipGoods(Order)) .

restoreSitArg(isOrderReceived(Order),S,isOrderReceived(Order,S)) .
restoreSitArg(isOrderVerified(Order),S,isOrderVerified(Order,S)).
restoreSitArg(isOrderSatified(Order),S,isOrderSatified(Order,S)).
restoreSitArg(isShipperSelected(Order),S,isShipperSelected(Order,S)) .
restoreSitArg(isGoodsReceived(Order),S,isGoodsReceived(Order,S)).
restoreSitArg(isShipped(Order),S,isShipped(Order,S)).

nondetActions(checkSupplierO1(Order),S,

[checkSupplier01S(0rder) ,checkSupplier01F (Order)]).
prob(checkSupplier01S(0Order), 0.85, S).
prob(checkSupplier01F(Order), 0.15, S).

poss (checkSupplier01S(Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

poss (checkSupplier01F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).
lumpCostValue(K,do(A,S))
lumpCostValue(K,do(A,S))
costRate(C, do(A,S)) :- A
costRate(C, do(A,S)) :- A

A = checkSupplier01S(Order), K is 12.
A = checkSupplier01F(Order), K is 12.
checkSupplier01S(Order), C is 2 .
checkSupplierO01F(Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier01S(Order), Tmax is 5

tmaxValue(Tmax, do(A,S)) :- A = checkSupplierO1F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier01S(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO1F(Order), Mean is 3 .
sigmaValue(Sigma, do(A,S)) :- A = checkSupplier01S(Order), Sigma is

sigmaValue(Sigma, do(A,S)) A = checkSupplierO1F(Order), Sigma is
senseCondition(checkSupplier01S(0rder), (isOrderSatisfied(Order))).

1.0 .

senseCondition(checkSupplierO1F(Order), (-isOrderSatisfied(Order))).

agentAction(checkSupplier01(Order)) .

nondetActions(checkSupplier02(0Order),S,

[checkSupplier02S(0rder) ,checkSupplier02F (Order)]) .
prob(checkSupplier02S(0rder), 0.85, S).

prob(checkSupplier02F (Order), 0.15, S).

poss (checkSupplier02S(0Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

poss(checkSupplier02F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).
lumpCostValue(K,do(A,S))
lumpCostValue(K,do(A,S))
costRate(C, do(A,S)) :— A
costRate(C, do(A,S)) :— A

A = checkSupplier02S(0Order), K is 12 .
A = checkSupplier02F(Order), K is 12 .
checkSupplier02S(0rder), C is 2 .
checkSupplier02F (Order), C is 2 .

1.0 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier02S(0Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSupplier02F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier02S(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO2F(Order), Mean is 3

sigmaValue(Sigma, do(A,S)) :- A = checkSupplier02S(Order), Sigma is
sigmaValue(Sigma, do(A,S)) :- A = checkSupplierO2F(Order), Sigma is

senseCondition(checkSupplier02S(0rder), (isOrderSatisfied(Order))).

1.0 .

senseCondition(checkSupplierO2F (Order), (-isOrderSatisfied(Order))).

agentAction(checkSupplier02(Order)) .

nondetActions(checkSupplier03(0Order),S,

[checkSupplier03S(0rder) ,checkSupplier03F (Order)]).
prob(checkSupplier03S(0Order), 0.85, S).
prob(checkSupplier03F(Order), 0.15, S).

poss (checkSupplier03S(0rder),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

119

poss (checkSupplier03F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).
lumpCostValue(K,do(A,S))
lumpCostValue(K,do(A,S))
costRate(C, do(A,S)) :- A
costRate(C, do(A,S)) :- A

A = checkSupplier03S(0Order), K is 12 .
A = checkSupplier03F(Order), K is 12 .
checkSupplier03sS(Order), C is 2 .
checkSupplier03F(Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier03S(Order), Tmax is 5

tmaxValue(Tmax, do(A,S)) :- A = checkSupplierO3F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier03S(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO3F(Order), Mean is 3 .
sigmaValue(Sigma, do(A,S)) :- A = checkSupplier03S(Order), Sigma is

sigmaValue(Sigma, do(A,S)) A = checkSupplierO3F(Order), Sigma is
senseCondition(checkSupplier03S(0Order), (isOrderSatisfied(Order))).

1.0 .

senseCondition(checkSupplier03F(Order), (-isOrderSatisfied(Order))).

agentAction(checkSupplier03(Order)) .

nondetActions (checkSupplier04(Order),S,

[checkSupplier04S(0rder) ,checkSupplier04F (Order)]) .
prob(checkSupplier04S(Order), 0.85, S).

prob(checkSupplier04F (Order), 0.15, S).

poss (checkSupplier04S(Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

poss(checkSupplier04F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).
lumpCostValue(K,do(A,S))
lumpCostValue(K,do(A,S))
costRate(C, do(A,S)) :- A
costRate(C, do(A,S)) :— A

A = checkSupplier04S(Order), K is 12 .
A = checkSupplier04F (Order), K is 12 .
checkSupplier04S(Order), C is 2 .
checkSupplier04F (Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier04S(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSupplier04F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier04S(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO4F(Order), Mean is 3

sigmaValue(Sigma, do(A,S)) :- A = checkSupplier04S(Order), Sigma is

sigmaValue(Sigma, do(A,S)) A = checkSupplier04F(Order), Sigma is
senseCondition(checkSupplier04S(0Order), (isOrderSatisfied(Order))).

1.0 .
1.0 .

senseCondition(checkSupplierO4F (Order), (-isOrderSatisfied(Order))).

agentAction(checkSupplier04(Order)) .

nondetActions(checkSupplier05(0Order),S,

[checkSupplier05S(0rder) ,checkSupplier05F (Order)]) .
prob(checkSupplier05S(0rder), 0.85, S).

prob(checkSupplierO5F (Order), 0.15, S).

poss (checkSupplier05S(0rder),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

120

121

poss (checkSupplierO5F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).
lumpCostValue(K,do(A,S))
lumpCostValue(K,do(A,S))
costRate(C, do(A,S)) :- A
costRate(C, do(A,S)) :- A

A = checkSupplier05S(0Order), K is 12 .
A = checkSupplierO5F(Order), K is 12 .
checkSupplier05S(0Order), C is 2 .
checkSupplierO5F (Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier05S(0Order), Tmax is 5
tmaxValue(Tmax, do(A,S)) :- A = checkSupplierO5F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier05S(0Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO5F(Order), Mean is 3 .
sigmaValue(Sigma, do(A,S)) :- A = checkSupplier05S(0Order), Sigma is 1.0 .

sigmaValue(Sigma, do(A,S)) A = checkSupplierO5F(Order), Sigma is 1.0 .
senseCondition(checkSupplier055(0rder), (isOrderSatisfied(Order))).
senseCondition(checkSupplierO5F (Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier05(QOrder)) .

nondetActions(checkSupplier06(0Order),S,

[checkSupplier06S(0Order) ,checkSupplierO6F (Order)]) .
prob(checkSupplier06S(0rder), 0.85, S).

prob(checkSupplier06F (Order), 0.15, S).

poss (checkSupplier06S(0Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

poss(checkSupplierO6F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

lumpCostValue(K,do(A,S)) :- A =checkSupplier06S(Order),
(isOrderReceived(0Order,S), isOrderVerified(Order,S),

not isOrderSatisfied(Order,S), K is 12; K is 12).
lumpCostValue(K,do(A,S)) :- A =
checkSupplier06F (Order) , (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).

costRate(C, do(A,S)) :- A = checkSupplier06S(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSupplierO6F(Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier06S(0Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSupplierO6F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier06S(0Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO6F(Order), Mean is 3
sigmaValue(Sigma, do(A,S)) :- A = checkSupplier06S(Order), Sigma is 1 0 .
sigmaValue(Sigma, do(A,S)) :- A = checkSupplierO6F(Order), Sigma is 1.0 .

senseCondition(checkSupplier06S(0rder), (isOrderSatisfied(Order))).
senseCondition(checkSupplierO6F (Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier06(Order)) .

nondetActions (checkSupplier07(0Order),S,

122

[checkSupplier07S(0rder) ,checkSupplier07F (Order)]) .
prob(checkSupplier07S(0Order), 0.85, S).

prob(checkSupplier07F(Order), 0.15, S).

poss(checkSupplier07S(Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

poss (checkSupplier07F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

lumpCostValue(K,do(A,S)) :- A =
checkSupplier07S(0rder) , (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).

lumpCostValue(K,do(A,S)) :- A =
checkSupplier07F (Order) , (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).

costRate(C, do(A,S)) :- A = checkSupplier07S(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSupplierO7F(Order), C is 2 .
tmaxValue(Tmax, do(A,S)) A = checkSupplier07S(0rder), Tmax is
tmaxValue(Tmax, do(A,S)) A = checkSupplier07F(Order), Tmax is
meanValue (Mean, do(A,S)) A = checkSupplier07S(0rder), Mean is
meanValue (Mean, do(A,S)) A = checkSupplier07F(Order), Mean is .
sigmaValue(Sigma, do(A,S)) A = checkSupplier07S(0Order), Sigma is 1.0 .
sigmaValue(Sigma, do(A,S)) A = checkSupplierO7F(Order), Sigma is 1.0 .
senseCondition(checkSupplier07S(0Order), (isOrderSatisfied(Order))).
senseCondition(checkSupplier07F(Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier07(Order)) .

[T I A |
|
Il

w w o1 o

nondetActions(checkSupplier08(0Order),S,

[checkSupplier08S(0rder) ,checkSupplier08F (Order)]) .

prob(checkSupplier08S(Order), 0.85, S).

prob(checkSupplier08F (Order), 0.15, S).

poss(checkSupplier08S(Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

poss (checkSupplierO8F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

lumpCostValue(K,do(A,S)) :- A =
checkSupplier08S(0rder) , (isOrderReceived (Order,S), isOrderVerified(Order,S),

not isOrderSatisfied(Order,S), K is 12; K is 12).

lumpCostValue(K,do(A,S)) :- A =
checkSupplierO8F (Order) , (isOrderReceived (Order,S), isOrderVerified(Order,S),

not isOrderSatisfied(Order,S), K is 12; K is 12).

costRate(C, do(A,S)) :- A = checkSupplier08S(Order), C is 2 .

costRate(C, do(A,S)) :- A = checkSupplierO8F(Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier08S(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSupplierO8F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier08S(0Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplierO8F(Order), Mean is 3 .

123

sigmaValue(Sigma, do(A,S)) :- A = checkSupplier08S(Order), Sigma is 1.0 .
sigmaValue(Sigma, do(A,S)) :- A = checkSupplierO8F(Order), Sigma is 1.0 .
senseCondition(checkSupplier08S(0rder), (isOrderSatisfied(Order))).
senseCondition(checkSupplierO8F (Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier08(Order)) .

nondetActions (checkSupplier09(Order),S,

[checkSupplier09S(0rder) ,checkSupplier09F (Order)]) .
prob(checkSupplier09S(0Order), 0.85, S).

prob(checkSupplier09F (Order), 0.15, S).

poss (checkSupplier09S(0Order),S) :-

isOrderVerified(Order,S), not isOrderSatisfied(Order,S).
poss(checkSupplier09F (Order),S) :-

isOrderVerified(Order,S), not isOrderSatisfied(Order,S).
lumpCostValue(K,do(A,S)) :-

A = checkSupplier09S(0Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), not isOrderSatisfied(Order,S), K is 12; K is 12).
lumpCostValue(K,do(A,S)) :- A =
checkSupplierO9F (Order) , (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).

costRate(C, do(A,S)) :- A = checkSupplier09S(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSupplierO9F(Order), C is 2 .
tmaxValue(Tmax, do(A,S)) A = checkSupplier09S(0rder), Tmax is
tmaxValue(Tmax, do(A,S)) A = checkSupplierO9F (Order), Tmax is
meanValue (Mean, do(A,S)) A = checkSupplier09S(0rder), Mean is
meanValue (Mean, do(A,S)) A = checkSupplier09F (Order), Mean is .
sigmaValue(Sigma, do(A,S)) A = checkSupplier09S(0Order), Sigma is 1.0 .
sigmaValue(Sigma, do(A,S)) A = checkSupplier09F (Order), Sigma is 1.0 .
senseCondition(checkSupplier095(0rder), (isOrderSatisfied(Order))).
senseCondition(checkSupplierO9F (Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier09(Order)) .

[IR T A ||
|
I
w w o ;o

nondetActions(checkSupplier10(0Order),S,

[checkSupplier10S(0rder) ,checkSupplier10F (Order)]).
prob(checkSupplier10S(0Order), 0.85, S).
prob(checkSupplier10F(Order), 0.15, S).

poss (checkSupplier10S(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).

poss(checkSupplier10F (Order),S) :- isOrderVerified(Order,S), not
isOrderSatisfied(Order,S).

lumpCostValue(K,do(A,S)) :-

A =checkSupplier10S(Order), (isOrderReceived(Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).
lumpCostValue(K,do(A,S)) :-

124

A = checkSupplier10F(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), not isOrderSatisfied(Order,S), K is 12; K is 12).
costRate(C, do(A,S)) :- A = checkSupplier10S(Order), C is 2 .

costRate(C, do(A,S)) :- A = checkSupplier10F(Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier10S(Order), Tmax is 5 .
tmaxValue(Tmax, do(A,S)) :- A = checkSupplier10F(Order), Tmax is 5 .
meanValue(Mean, do(A,S)) :- A = checkSupplier10S(Order), Mean is 3 .
meanValue(Mean, do(A,S)) :- A = checkSupplier10F(Order), Mean is 3 .
sigmaValue(Sigma, do(A,S)) :- A = checkSupplier10S(Order), Sigma is 1.0 .

sigmaValue(Sigma, do(A,S)) A = checkSupplier10F(Order), Sigma is 1.0 .
senseCondition(checkSupplier10S(Order), (isOrderSatisfied(Order))).
senseCondition(checkSupplier10F (Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier10(0Order)).

nondetActions(checkSupplieri1(Order),S,

[checkSupplier11S(0Order) ,checkSupplier11F(Order)]).
prob(checkSupplier11S(Order), 0.85, S).

prob(checkSupplier11F(Order), 0.15, S).

poss (checkSupplier11S(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).

poss (checkSupplier11F(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).

lumpCostValue(K,do(A,S)) :- A =

checkSupplier11S(0rder), (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).

lumpCostValue(K,do(A,S)) :- A =

checkSupplier11F(Order), (isOrderReceived (Order,S), isOrderVerified(Order,S),
not isOrderSatisfied(Order,S), K is 12; K is 12).

costRate(C, do(A,S)) :- A = checkSupplier11S(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSupplier11F(Order), C is 2 .
tmaxValue(Tmax, do(A,S)) A = checkSupplier11S(0Order), Tmax is
tmaxValue(Tmax, do(A,S)) A = checkSupplier11F(Order), Tmax is
meanValue (Mean, do(A,S)) A = checkSupplier11S(0Order), Mean is
meanValue (Mean, do(A,S)) A = checkSupplier11F(Order), Mean is .
sigmaValue(Sigma, do(A,S)) A = checkSupplier11S(Order), Sigma is 1.0 .
sigmaValue(Sigma, do(A,S)) A = checkSupplier11F(Order), Sigma is 1.0 .
senseCondition(checkSupplier11S(0Order), (isOrderSatisfied(Order))).
senseCondition(checkSupplier11F(Order), (-isOrderSatisfied(Order))).
agentAction(checkSupplier11(Order)).

[T I A |
|
Il

w w o1 o

nondetActions(checkSupplier12(Order),S,
[checkSupplier12S(0rder) ,checkSupplier12F(Order)]).

prob(checkSupplier12S(0Order), 0.85, S).
prob(checkSupplier12F(Order), 0.15, S).
poss(checkSupplier12S(Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).

poss (checkSupplier12F (Order),S) :- isOrderVerified(Order,S),

not isOrderSatisfied(Order,S).

lumpCostValue(K,do(A,S)) :-

A = checkSupplier12S(0Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), not isOrderSatisfied(Order,S), K is 12;
lumpCostValue(K,do(A,S)) :-

A = checkSupplier12F(Order), (isOrderReceived(Order,S),
isOrderVerified(Order,S), not isOrderSatisfied(Order,S), K is 12;
costRate(C, do(A,S)) :- A = checkSupplier12S(Order), C is 2 .
costRate(C, do(A,S)) :- A = checkSupplier12F(Order), C is 2 .

tmaxValue(Tmax, do(A,S)) :- A = checkSupplier12S(Order), Tmax is
tmaxValue(Tmax, do(A,S)) :- A = checkSupplier12F(Order), Tmax is
meanValue(Mean, do(A,S)) :- A = checkSupplier12S(0Order), Mean is
meanValue(Mean, do(A,S)) :- A = checkSupplier12F(Order), Mean is
sigmaValue(Sigma, do(A,S)) :- A = checkSupplier12S(Order), Sigma

sigmaValue(Sigma, do(A,S)) A = checkSupplier12F(Order), Sigma
senseCondition(checkSupplier12S(0Order), (isOrderSatisfied(Order))
senseCondition(checkSupplier12F(Order), (-isOrderSatisfied(Order)
agentAction(checkSupplier12(0Order)).

125

K is 12).

K is 12).

w w o1 o

is 1.0 .
is 1.0 .
).
).

APPENDIX C

OWL-RESTWS ONTOLOGY

<?xml version="1.0"7>

<!DOCTYPE rdf:RDF [

<IENTITY owl-restws "http://lsdis.cs.uga.edu/owl-restws-v0.2/owl-restws#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<IENTITY ruleml "http://www.w3.org/2003/11/ruleml#">

<IENTITY swrl "http://www.w3.org/2003/11/swrl#">

1>

<rdf :RDF
xmlns = "http://1lsdis.cs.uga.edu/owl-restws-v0.2/owl-restws#"
xmlns:owl-restws = "http://lsdis.cs.uga.edu/owl-restws-v0.2/owl-restws#"
xml:base = "http://lsdis.cs.uga.edu/owl-restws-v0.2/owl-restws#"
xmlns:owl = "http://www.w3.org/2002/07/owl#"
xmlns:rdf = "http://www.w3.o0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs= "http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd = "http://www.w3.org/2001/XMLSchema#"

xmlns:ruleml= "http://www.w3.0rg/2003/11/ruleml#"
xmlns:swrl= "http://www.w3.org/2003/11/swrl#"

<owl:Ontology rdf:about="">
<rdfs:comment>An OWL ontology for describing RESTful Web services</rdfs:comment>
<rdfs:comment>A preliminary attempt to describe RESTful Web services using
owl</rdfs:comment>
<rdfs:label>0wl Ontology for RESTful Web service </rdfs:label>

</owl:0Ontology>

<owl:Class rdf:ID="WSResource'">
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#name" />
</owl:Restriction>
</rdfs:subClass0f>

126

127

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#description" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:label xml:lang="en">Web service resources</rdfs:label>
</owl:Class>

<owl:Class rdf:ID="Individual-WSResource">
<rdfs:subClass0f rdf:resource="#WSResource" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#domain_resource" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:label xml:lang="en">Individual WS resources</rdfs:label>
</owl:Class>

<owl:Class rdf:ID="Set-WSResource">
<rdfs:subClass0f rdf:resource="#WSResource" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#domain_resource" />
<owl:minCardinality rdf:datatype="&xsd;nonNegativelnteger">1
</owl:minCardinality>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:label xml:lang="en">A set of WS resources</rdfs:label>
</owl:Class>

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="#WSResource" />
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="description">
<rdfs:domain rdf:resource="#WSResource" />
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:0bjectProperty rdf:ID="domain_resource">
<rdfs:domain rdf:resource="#Individual-WSResource" />
<rdfs:range rdf:resource="rdfs:Resource"/>
</owl:0bjectProperty >

<owl:Class rdf:ID="WebService" />

<owl:Class rdf:ID="Restws">
<rdfs:subClass0f rdf:resource="#WebService" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasName" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDescription" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasURI" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#get" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#put" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#delete" />
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#post" />
</owl:Restriction>
</rdfs:subClass0f>

128

129

<rdfs:label xml:lang="en">restws</rdfs:label>
</owl:Class>

<owl:Class rdf:ID="Restws-I">
<rdfs:subClass0f rdf:resource="#Restws" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#associated_set_WSresource" />
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:label xml:lang="en">restws I</rdfs:label>
</owl:Class>

<owl:Class rdf:ID="Restws-II">
<rdfs:subClass0f rdf:resource="#Restws" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#post" />
<owl:hasValue rdf:datatype="&xsd;boolean">false</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#associated_individual_WSresource" />
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1
</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:label xml:lang="en">restws II</rdfs:label>
</owl:Class>

<owl:Class rdf:ID="Restws-III">
<rdfs:subClass0f rdf:resource="#Restws" />
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#get" />
<owl:hasValue rdf:datatype="&xsd;boolean">false</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>

130

<owl:onProperty rdf:resource="#put" />
<owl:hasValue rdf:datatype="&xsd;boolean">false</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#delete" />
<owl:hasValue rdf:datatype="&xsd;boolean">false</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#post" />
<owl:hasValue rdf:datatype="&xsd;boolean">true</owl:hasValue>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#onPost" />
<owl:cardinality rdf:datatype="&xsd;nonNegativelnteger">1</owl:cardinality>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:label xml:lang="en">restws III</rdfs:label>
</owl:Class>

<owl:DatatypeProperty rdf:ID="hasName">
<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasDescription">
<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasURI">
<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="get">

<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;boolean"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="put">
<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="get">
<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="post">
<rdfs:domain rdf:resource="#Restws" />
<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<owl:0bjectProperty rdf:ID="associated_set_WSresource">
<rdfs:domain rdf:resource="#Restws-I" />
<rdfs:range rdf:resource="#Set-WSResource"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="associated_individual_WSresource">
<rdfs:domain rdf:resource="#Restws-II" />
<rdfs:range rdf:resource="#Individual-WSResource"/>
</owl:0bjectProperty>

<owl:0bjectProperty rdf:ID="onPost">
<rdf:type rdf:resource="&owl;FunctionalProperty" />
<rdfs:domain rdf:resource="#Restws-III" />
<rdfs:range rdf:resource="&ruleml;imp" />
</owl:0bjectProperty>

</rdf :RDF>

131

