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ABSTRACT 

 Over the past three decades, timberland has become an increasingly popular alternative 

investment vehicle for institutional investors, because of their unique features, such as high 

risk-adjusted returns, inflation hedging capabilities and diversification potentials. The first part 

of this dissertation aims to assess the risks and returns of optimal portfolios comprised of 

timberland and farmland assets in the United States. The results show that diversification 

potentials of natural resource investments decline, when investment sizes increase and portfolios 

become more constrained. The second part investigates the impacts of forest-related conservation 

easements (CEs) on values of properties in the surrounding area. The results show CE’ positive 

effect on property values in the vicinity after CE’ establishment, and this effect diminishes with 

distance. The third part examines the roles of timberland assets in mixed-asset portfolios using 

both short- and long-period investment returns. The results demonstrate assets’ varying 

diversification potentials as investment horizons lengthen, and show private-equity timberland’s 

superior diversification benefits over public-equity timberland in long-horizon investments. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 

 

Timberland Investments in the United States 

Timberland assets have attracted increasing popularity as an alternative investment 

vehicle among institutional investors since the 1980s in the United States (Waggle and Johnson 

2009), because of unique characteristics, such as inflation hedging capabilities (Wan et al. 2013; 

Washburn and Binkley 1993), high risk-adjusted returns (Cascio and Clutter 2008; Mei 2017) 

and low correlation with other financial assets (Caulfield and Newman 1999; Mei and Clutter 

2010; Sun and Zhang 2001). Traditionally, investments in timberland have been in the forms of 

buying large tracts of timberlands and holding them for long periods of time. However, through 

ownership structure changes in the past twenty years, currently there exist two options for 

timberland investors, namely private- and public-equity timberland investments. Institutional 

investors and wealthy families invest in timberland in private ownership through closed- or 

open-end funds. These private assets are managed by timberland investment management 

organizations (TIMOs). Individual and institutional investors can also access timberland 

investment through buying stocks of publicly traded timber firms or real estate investment trusts 

(REITs), which are liquid and tax efficient (Mendell, Mishra and Sydor 2008). 
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Economic Impacts of Forests 

The United States has abundant forest resources with over 750 million acres covered by 

forestland. Of the total forestland, 57% is privately owned timberland (Smith et al. 2009). 

Forestry-related businesses support over 2.7 million jobs nation-wide (Jefferies 2016). In the 

state of Georgia alone, private forests create $37 billion in annual ecosystem services (GFA 

2017), $32 billion direct revenue and 133,000 jobs (Hafer 2017). In addition to direct economic 

and ecosystem benefits, forests bring about environmental benefits and amenities that are valued 

by people who live close or have access to these open spaces, reflected by changes in property 

values (Chamblee et al. 2011).  

Previous Studies on Financial Performance of Timberland Investments 

A rich array of studies has been done on the financial returns and risks of timberland 

investments. Various models have been applied to model timberland returns, including capital 

asset pricing model, arbitrage pricing theory, Fama-French three-factor model and intertemporal 

capital asset pricing model (Mei and Clutter 2010; Sun and Zhang 2001; Yao and Mei 2015; 

Yao, Mei and Clutter 2014). In addition, a variety of studies have employed portfolio analysis 

under the modern portfolio theory of Markowitz (1952) to evaluate the financial performance 

and diversification benefits of timberland assets (Caulfield 1998; Mills and Hoover 1982; Newell 

and Eves 2009; Thomson 1997). 

Finding appropriate return benchmarks is key to efficient portfolio analysis. The National 

Council of Real Estate Investment Fiduciaries (NCREIF) timberland indices (NTI) are used as 

representatives of returns on private-equity timberland. While most prevalent works rely on NTI, 

alternative indices are proposed or modified based on NTI (Caulfield 1994; Mei 2016; Scholtens 

and Spierdijk 2010). The identification of risk measures is another key to portfolio optimizations. 
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The prevalent optimization framework is the mean-variance framework (M-V), where variance 

or standard deviation (SD) of asset returns reflects asset risk, assuming multivariate normal 

distributions of asset returns. However, financial asset and timberland returns are usually not 

normally distributed (Petrasek et al. 2011; Sheikh and Qiao 2009; Wan et al. 2015). To account 

for this issue, Petrasek et al. (2012) and Wan et al. (2015) propose alternative mean-conditional 

value-at-risk (M-CVaR) framework to perform similar portfolio analysis to study timberland’s 

role in mixed-asset portfolios. 

Motivations of the Dissertation 

NTI has been used as the primary timberland investment return proxy to represent 

private-equity timberland investments on a broad scale, e.g., national or regional. To conduct 

portfolio analysis on a finer level, there is a need for alternative return series. Chapter 2 aims to 

develop such an index at finer geographical levels and conduct portfolio analysis of natural 

resource portfolios comprised of timberland assets and farmland crop types in the United States. 

Forests and other open spaces provide comprehensive environmental benefits to 

surrounding areas. The protection of forests is essential to maintain a viable forest industry and a 

healthy natural environment for future generations to enjoy. Conservation Easement (CE) is a 

widely used tool to keep land forested while maintaining timber harvests. Chapter 3 intends to 

examine and quantify the impacts of forest-related CEs on the values of surrounding properties 

in the metro Atlanta area in the state of Georgia, where urban developments are thriving and 

forestry is an economic pillar. 

Timberland plays an important role in mixed-asset portfolios (Caulfield and Zinkhan 

1998; Wan et al. 2015). Most portfolio studies use single-period optimization frameworks to 

assess performance metrics, i.e., return, risk and correlations of timberland assets. However, 
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timberland investment should be considered with a long-term perspective. Therefore, the 

long-term assessment of timberland performance metrics is essential. Chapter 4 aims to fill this 

void by conducting portfolio analysis based on both single-period and long-horizon performance 

metrics, and compares the roles of private- and public-equity timberland investments in 

mixed-asset portfolios. 

Objectives of the Dissertation 

 The overall purpose of this dissertation is to examine the economic impacts, returns and 

risks of timberland investment in the United States. The objectives are: (1) to evaluate the risks 

and returns of investments in US timberland and farmland assets; (2) to investigate factors that 

contribute to the valuation of properties near CE-protected forests and open spaces; (3) to 

examine the role of timberland investment in mixed-asset portfolios. 

 Chapters 2 – 4 achieve the three objectives, and are formatted as three independent 

journal articles, each with its own sections of introduction, literature review, data description, 

methodologies, results and conclusions. Chapter 5 summarizes the key findings for this 

dissertation and overlay potential topics for future studies. 
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CHAPTER 2 

Assessing the risk and return of optimal portfolios of us timberland and farmland1 

                                                 
1 Zhang, W. and B. Mei. 2018. Submitted to Journal of Real Estate Portfolio Management, 2/12/2018. 
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Abstract 

We apply the modern portfolio theory to optimally construct portfolios of US timberland and 

farmland, and evaluate risks and returns under different investment scenarios. First, we develop a 

set of synthetic timberland return series for 22 sub-regions in the US South over a 17-year time 

horizon (2000-2016) and use the NCREIF data to represent returns of various farm crops. A mix 

of timberland and farmland assets is used to conduct portfolio optimizations under the mean-

conditional value-at-risk (CVaR) framework. Recognizing the limited and discontinuous nature 

of the investable universe of natural resource assets at any given time, we incorporate 

constraining factors and evaluate their impacts, under two investment sizes and find lowered 

diversification effects as investment size increases. The optimal tangency portfolios yield risks of 

0.16% and 0.55%, and returns of 1.42% and 1.38% respectively. Finally, we use Monte Carlo 

simulation to estimate the VaR and CVaR of the optimal portfolios for a 10-year time span for 

each scenario and find increasing risk levels associated with investment of larger scales.  
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Introduction 

Natural resource assets, such as timberland and farmland, are gaining increasing 

popularity among institutional investors in the last three decades in the United States (Waggle 

and Johnson 2009). The use of these natural resource assets is relatively new, first experimented 

by institutional investors in 1980s. Institutional timberland investment came into existence in 

early 1980s and expanded more rapidly in early 1990s (Washburn, Binkley and Raper 1996), 

while institutional farmland investment came into spotlight following the farm crisis after land 

prices stabilized around 1985 (Koeninger and HighQuest Partners 2017). Currently, institutions 

own $77 billion worth of timberland and $10 billion worth of farmland in the US (Campbell 

Global 2017; Gillam 2014). Diversification benefits exist in timberland and farmland 

investments due to their common characteristics, including high risk-adjusted returns (Hennings, 

Sherrick and Barry 2015; Mei 2017), low correlation with traditional financial assets (Caulfield 

and Newman 1999; Lins, Sherrick and Venigalla 1992; Mei and Clutter 2010; Wan et al. 2015), 

and protection against inflation (Dahl 2013; Wan et al. 2013; Washburn and Binkley 1993). 

The National Council of Real Estate Investment Fiduciaries (NCREIF) compiles return 

data for institutionally managed timberland and farmland, i.e., the NCREIF Timberland Index 

(NTI) and the NCREIF Farmland Index (NFI). Most previous studies examining diversification 

benefits of timberland and farmland use these indices. Although NCREIF indices are functional 

in terms of performing asset allocations within mixed-asset portfolios, they are subject to 

smoothing bias (Mei 2016). Furthermore, the NTI and NFI are comprised of broad regional 

returns, with each region encompassing one or more states. Current portfolio analyses tend to 

treat timberland and farmland as homogeneous asset classes and do not make further 
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differentiation within each class. Finally, although farmland return data of individual crop types 

can be queried from the NCREIF, there lack timberland return data at a finer geographical level. 

The purpose of this study is to investigate the risk and return features of diversified 

optimal portfolios of timberland and farmland assets. Two frameworks, mean-variance (M-V) 

and mean-conditional value at risk (M-CVaR), are proposed for the investigation, in which 

standard deviation (SD) and CVaR are two risk measures. To achieve this goal, we need to find 

suitable data to represent asset returns and examine their characteristics. We first develop 

synthetic timberland return series for 22 geographic sub-regions within the southern US, in 

which forests are important contributors to local and national economies (Oswalt and Smith 

2014). In addition, this study only focuses on pine stumpage price data because of the significant 

economic and ecological values of southern pine species in the region (Coyle et al. 2015). We 

then use these synthetic series and return indices of six major farmland crop types from the NFI 

to perform portfolio allocation analysis. Results show that the CVaR better estimates downside 

risks and the M-CVaR is a more efficient optimization framework. Building on that, two 

different hypothetical investment scenarios are proposed to impose physical constraints 

associated with natural resource investment. Finally, we extend the single-period optimization 

results to a ten-year horizon using the VaR and CVaR measures to reflect the increasing risk 

exposure associated with larger investment sizes. 

Literature Review 

Performance benchmarks are needed to represent asset returns. While most studies on 

private natural resource assets rely on NCREIF indices, a number of different indices exist in the 

field of timberland investment research (Mei 2017). Caulfield (1994) introduces the timberland 

performance index based on existing timberland funds managed by a group of investment 
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management companies. He uses the index to study timberland investment and identify 

biological growth as the primary return driver. Thomson (1997) builds a theoretical timber return 

series of Douglas fir and southern pine based on historical price data and derived land values, 

and finds timberland return’s negative correlation with other financial assets over the long run. 

Addressing the smoothing bias, Scholtens and Spierdijk (2010) construct an unsmoothed version 

of the NTI by using the unsmoothing approach outlined by Fisher, Geltner and Webb (1994). In 

a more recent study, Mei (2016) devises a transaction-based timberland index using property 

level transaction data and compares it with the appraisal-based NTI.  

The modern portfolio theory establishes the M-V optimization framework to evaluate 

roles of financial assets in portfolios (Markowitz 1952). Applying the M-V framework in 

mixed-asset portfolios, many studies have examined the roles of natural resource assets. Mills 

and Hoover (1982) first study the performance of natural resource assets. They find that 

timberland assets provide diversification benefits to portfolios whose components also include 

farm options, common stocks and bonds. Newell and Eves (2007) use total NFI, regional NFI 

and sub-indices of two farmland types from 1984Q2 to 2006Q4 to benchmark farmland returns, 

and confirm the portfolio diversification benefits added by farmland. However, they claim that 

farmland contributes less significantly if real estate is already in the portfolio. In a later study, 

they use the NTI and its regional indices from 1987Q1 to 2007Q4 to represent timberland returns 

(Newell and Eves 2009). They find that timberland adds significant values to the portfolios, 

albeit the benefits diminish in the more recent ten-year sub-period. Waggle and Johnson (2009) 

investigate the roles of both timberland and farmland combined with other commercial real 

estates and financial assets. They conclude that timberland bears lower risk compared with other 

assets. In the unconstrained scenario of their study, timberland is heavily weighted in certain 
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scenarios, while farmland is consistently excluded. Scholtens and Spierdijk (2010) use the NTI 

to represent private-equity timberland investment, timber real estate investment trust index to 

represent public-equity timberland investment, and exchange traded securities to represent other 

forestry-related sector indices. They conclude that public-equity timberland investment hardly 

adds diversification benefits, while private-equity timberland assets’ diversification benefits 

diminish when the NTI is unsmoothed. Martinez-Oviedo and Medda (2017) create a portfolio 

with a sovereign wealth fund that invests in a broad spectrum of industries in various 

geographical regions across the world. They use the NTI and NFI as return proxies of natural 

resource assets and find that adding timberland and farmland supplants equity investments. 

The normality of asset returns affects the efficient estimation of downside risk of 

portfolios built under the M-V framework. Nonetheless, this assumption is often violated in the 

real world (Petrasek et al. 2011; Sheikh and Qiao 2009). Therefore, alternative frameworks are 

needed. Bacmann and Gawron (2004) examine the normality assumptions of hedge funds and 

find that assets with fat-tailed and asymmetric returns are better modelled using the M-CVaR 

framework. In the field of natural resource investment, Petrasek et al. (2012) first employ CVaR 

as a risk measure and evaluate the allocation of regional timberland assets in a mixed-asset 

portfolio. Wan et al. (2015) build mixed-asset portfolios with traditional financial assets and 

timberland using both M-V and M-CVaR frameworks. They find that timberland assets are 

generally risk diversifiers and conclude that portfolios built under the M-CVaR framework are 

more efficient than those under the M-V framework. 

In summary, most works rely on NCREIF indices to represent returns of timberland and 

farmland assets. These indices are subject to the “4th quarter” seasonality effect because 

appraisals are typically conducted in the 4th quarter (Mei 2017; Newell and Eves 2007). In 
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addition, most studies perceive timberland and farmland as homogeneous assets, neglecting the 

correlation of timber product prices in different regions and farmland returns from different crop 

types. We aim to address these missing pieces in the previous literature by first focusing on sub-

regional levels in the US South for timberland returns and individual crop types for farmland 

returns, and then incorporating both the M-V and M-CVaR frameworks to conduct portfolio 

analysis. 

Methodology and Data 

Modern portfolio theory 

The idea of modern portfolio allocation comes largely from the M-V efficient portfolio 

theory of Markowitz (1952). All else being equal, investors prefer greater financial returns while 

being exposed to a given risk level. One of the most prevalent ways to achieve this goal is 

through diversification, which spreads the capital allocation among several assets in order to 

have a lower risk than investing in a single asset. Investors build portfolios by changing the 

weights of assets, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇, each generating individual returns, 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛)𝑇. 

The mean returns are denoted as 𝑟̅ = (𝑟1̅, 𝑟2̅, … , 𝑟𝑛̅)𝑇. The portfolio return is the weighted sum of 

individual asset returns, 𝑤𝑇𝑟̅ = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑟𝑖̅. The risk of a portfolio is a function of asset weights 

and covariance matrix, and can be generically expressed as ℜ(𝑤, 𝑐𝑜𝑣(𝑟)). The portfolio then can 

be optimized by solving the following risk minimization problem: 

 Min
𝑤

ℜ(𝑤, 𝑐𝑜𝑣(𝑟))   

 s.t. 𝑤𝑇𝑟̅ = 𝑢 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 (1) 
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Risk measures 

SD 

While the overall portfolio return is simply the weighted sum of individual asset returns, 

the overall portfolio SD is less than the weighted sum of individual asset return SDs. 

Markowitz’s theory proposes that the interactions between assets within a portfolio, represented 

by the covariance, play an important role in determining the variance, 𝜎𝑝
2, of a diversified 

portfolio (Rubinstein 2002): 

 𝜎𝑝
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗

𝑛
𝑗=1

𝑛
𝑖=1  (2) 

where 𝜎𝑖 and 𝜎𝑗 are standard deviations of assets i and j, 𝜌𝑖𝑗 is the correlation between the returns 

of assets i and j. In other words, 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 is the covariance of between assets i and j. This shows 

that correlations among assets determine the overall portfolio variance. When there is less-than-

perfect correlation, i.e., when 𝜌𝑖𝑗 < 1, overall portfolio risk is reduced. The portfolio can then be 

optimized, under the M-V framework, by estimating portfolio σp
2 by sp

2 solving the problem: 

Min
𝑤

s𝑝
2  

 s.t. 𝑤𝑇𝑟̅ = 𝑢 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 (3) 

The portfolio SD estimator, s𝑝, is simply the square-root of the portfolio variance.  

CVaR 

CVaR is a relatively recent risk measure (Rockafellar and Uryasev 2000). First, the loss 

function of a portfolio is denoted as a function of asset weights and returns, 𝑓(𝑤, 𝑟), where 𝑟 

follows a probability density function, 𝑝(𝑟). Following that, the cumulative distribution function 

of the loss associated with the weights, 𝑤, and maximum loss level, 𝛶, can be formulated as: 

 Ψ(𝑤, 𝛶) = ∫ 𝑝(𝑟)
 

𝑓(𝑤,𝑟)≤𝛶
𝑑𝑟 (4) 
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The VaR at a confidence level, 1 − 𝛼, VaRα is: 

 VaR𝛼(𝑤) = 𝑚𝑖𝑛{𝛶 ∈ ℜ: Ψ(𝑤, 𝛶) ≥ 𝛼} (5) 

and the CVaRα is: 

 CVaR𝛼(𝑤) =
1

1−𝛼
∫ 𝑓(𝑤, 𝑟) 𝑝(𝑟)𝑑𝑟

∞

𝑓(𝑤,𝑟)≤VaR𝛼(𝑤)
 (6) 

The portfolio can then be optimized, under the M-CVaR framework, by solving the problem: 

Min
𝑤

CVaR𝛼(𝑤)  

 s.t. 𝑤𝑇𝑟̅ = 𝑢 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 (7) 

All through our analysis, VaR and CVaR are calculated at the 5% quantile of the return 

distributions. 

CVaR-deviation (CVaRΔ) 

The portfolio SD and CVaR value cannot be directly compared. SD measures the width 

of a return distribution, whereas the CVaR of a portfolio is the value of the portfolio’s loss at the 

“worst-case” scenario. To better compare the two risk measures, we translate the CVaR of a 

portfolio to the corresponding CVaRΔ, which measures the distance between the CVaR and the 

mean return. Under a normal distribution, CVaRΔ =2.06×SD at the 5% level (Xiong and Idzorek 

2010). 

Return data 

Timberland return 

For timberland investment returns, we devise a synthetic return series for 22 sub-regional 

areas within the US South from 2000Q1 to 2016Q4 with price data from TimberMart-South 

(TMS 2017). This definition of areas divides each of the 11 Southern states into two sub-regions 

(Figure 1). This return series includes income and capital appreciation components. The cash 
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flow from harvesting is the income component in calculating returns, while the difference in 

timberland values is the capital appreciation component. The return formula for timberland is: 

 𝑅𝑡 =
𝐶𝑉𝑡+𝑁𝐼𝑡

𝐶𝑉𝑡−1
− 1 (8) 

where: 

𝑅𝑡 = total return per acre during period t; 

𝐶𝑉𝑡 = capital value per acre during period t; 

𝑁𝐼𝑡= net income received per acre during period t. 

Capital values are assumed to be correlated with stumpage prices. When calculating the 

capital values, the last 12 quarters of stumpage prices are used to reduce volatility of the return 

series. Another assumption is made that the weights of the three major pine product classes are 

equal so that: 

 𝐶𝑉𝑟𝑡 = 1/78 ∑ (12 − 𝑛)𝑃𝑟(𝑡−𝑛)
11
𝑛=0  (9) 

where: 

 𝑃𝑟𝑡 =
1

3
𝑝𝑝𝑤𝑑$𝑟𝑡 +

1

3
𝑐𝑛𝑠$𝑟𝑡 +

1

3
𝑝𝑠𝑡$𝑟𝑡 (10) 

and 𝑝𝑝𝑤𝑑$𝑟𝑡, 𝑐𝑛𝑠$𝑟𝑡 and 𝑝𝑠𝑡$𝑟𝑡 are the prices reported in TimberMart-South for pine 

pulpwood, chip-n-saw and sawtimber for region r in period t, and 𝑃𝑟𝑡 is therefore the average 

timber price in region 𝑟 during period 𝑡. 

To find net income, a key term Income Rate is needed, which represents the ratio of 

periodic income to capital value of an investment-grade forest, such that:  

 𝑁𝐼𝑟𝑡 = 𝑃𝑟𝑡  ×  𝐼𝑛𝑐𝑜𝑚𝑒 𝑅𝑎𝑡𝑒  (11) 

The Income Rate is estimated as follows. First, a south-wide return series is generated by 

aggregating the 22 sub-regions’ returns series using a subjective Income Rate. Then, this south-
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wide series is compared with the NTI-South series. A recursive algorithm is used to change the 

Income Rate until it finds the smallest sum of squared differences.  

Farmland return 

For farmland investment, we use data queried from the NCREIF and focus on six major 

crop types: Almonds, Apples, Grapes, Corn, Other Annual Crops (OAC) and Other Permanent 

Crops (OPC). OAC includes vegetables such as potatoes. OPC includes walnuts and pecans. 

These are either historically popular farm commodities or attractive crops among investors 

(Retkwa 2014). We choose to diversify farmland investment based on crop types instead of 

regions because of data availability. The NCREIF does not publish data for regions with fewer 

than three data contributors due to confidentiality concerns (NCREIF 2017). These six crop types 

are chosen because only their return data go back to as far as 2000Q1.  

Assumptions, constraints and scenarios 

Building on the unconstrained optimization framework, we attempt to add a few 

assumptions to perform a more sensible portfolio analysis. In practice, investment-grade 

timberland is scarce on the market at any given time in a given area. Institutional investors may 

require capital to be spent acquiring timberland assets in a timely manner, implying that high 

transaction costs, illiquidity and lack of available assets to purchase could render such 

unconstrained allocation impractical (Caulfield and Newman 1999). Therefore, we consider the 

availability of timberland (Table 1) based on USDA Forest Service sampling of corporate private 

timberland in southern states (Miles 2017). With an average timberland transaction price of 

$2,000/acre (Industry Intelligence 2017), total values of investable timberland in each of the sub-

regions can be estimated. Secondly, we approximate farmland price based on regional or state 

averages (NASS 2017). Land prices are $5,370/acre for Almonds, Grapes and OPC, which is the 
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average in California; $3,000 for Apples, which is the average in Washington; and $6,260/acre 

for Corn and $2,910/acre for OAC, which are the average in Corn Belt and Delta regions. 

Mimicking the size of mid- and large-size institutional natural resource investment 

managers, we establish two portfolios worth of US$2 billion and US$10 billion each (Zhang, 

Nagubadi and Butler 2012). Considering their respective market sizes, we constrain the ratio of 

timberland and farmland allocation to be 6:1. Furthermore, we stipulate that farmland allocation 

must be evenly divided between annual crops (Corns and OAC) and permanent crops (Almonds, 

Apples, OPC and Grapes).  

Optimal portfolios 

To compare portfolio performance under different scenarios, we use the Sharpe Ratio 

(Sharpe 1994): 

 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐸[𝑟𝑝]−𝑟𝑓

σp
  (12) 

where 𝐸[𝑟𝑝] is expected portfolio return and 𝑟𝑓 is the risk-free return.2 For the M-CVaR metric, 

the Conditional Sharpe Ratio (CSR) is devised to measure the risk-adjusted performance (Chow 

and Lai 2015): 

 𝐶𝑆𝑅 =
𝐸[𝑟𝑝]−𝑟𝑓

𝐶𝑉𝑎𝑅
  (13) 

Long-term investment simulation 

The simulation provides a long-term outlook of the expected portfolio values and losses 

in the worst scenarios. Using the parametric estimation method (Manfredo and Leuthold 1999), 

we first fit the probability distributions of each asset returns. From the fitted distributions, returns 

are randomly drawn for each asset and then aggregated using the optimal allocation to get the 

                                                 
2 The 90-day Treasury bill rate, 0.26% per quarter, is used in this study. 
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portfolio return for a quarter. This step is repeated for 40 quarters and compounded to generate a 

return series over a 10-year horizon. Returns are multiplied by the initial portfolio value to yield 

a random portfolio value each quarter. This entire process is iterated for 1,000 times, and the 

mean portfolio value, VaR and CVaR are calculated for each of the 10 years based on the 

simulation. 

Results and Discussion 

Descriptive statistics 

Synthetic return series are built for 22 sub-regions within the US South. The Income Rate 

is estimated to be 1.8%. Average quarterly return across 22 sub-regions is 2.30% from 1987Q1 

to 2016Q4 and 1.30% after 2000Q1. In comparison, average NTI-South quarterly return is 

2.25% over the past 30 years and 1.42% from 2000Q1 to 2016Q4. The synthesized return series 

and NTI-South series have a correlation coefficient of 0.49 from 2000Q1 to 2016Q4 (Figure 2).  

The descriptive statistics of the individual timberland regions and farmland crop types are 

displayed in Table 2. Results show that AR.2 and TN.2 have the highest SD (about 4%) and 

quarterly return (about 2%) among timberland assets. Almonds bear the highest SD (about 10%) 

and yield the highest average return among farmland crop types (about 5%). Comparing the two 

risk measures, we notice that CVaRΔ is smaller than SD for Almonds and OPC, indicating that 

these two returns are not normally distributed. Furthermore, while all assets display skewed 

returns, TN.2, Almonds, Corn, OAC and OPC are highly positively skewed. Returns on 

Almonds and OAC show highest excess kurtosis, indicating fat-tailed distributions. Almonds 

have both highly positive skewness and excess kurtosis.  

Results of Jarque-Bera tests show that the null hypothesis of normal distribution is 

rejected at the 5% level for TN.2, VA.1 and all farmland crop types. VA.1 displays heavily left-
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skewed return distribution, Grapes shows slightly right-skewed return distribution, and the other 

six assets display heavily right skewed return distributions (Figure 3). Lastly, the Shapiro-Wilk 

test rejects the null hypothesis of multivariate normality at the 1% level. All these tests suggest 

that the M-CVaR optimization approach is more appropriate. 

Unconstrained portfolio optimization and asset allocations 

The M-V framework yields an optimal portfolio with the Sharpe Ratio at 1.72, SD at 

0.97% and risk-adjusted return at 1.67%. The CVaRΔ of the portfolio is calculated to be 1.75%. 

In comparison, the actual CVaRΔ is smaller than the theoretical one for a normal distribution, 

indicating a potential overestimation of portfolio risks under the M-V framework. Therefore, the 

ensuing discussions will focus on results under the M-CVaR framework. 

The unconstrained M-CVaR efficient frontier of the portfolio allocations shows that by 

altering weights of individual assets, the portfolio risks range from -0.99% to 3.31%, while the 

span of quarterly returns can reach as low as 2.47% and as high as 4.76% (Figure 4). Asset 

prominence3, which is also known as asset persistence, suggests that only eight assets are 

persistently present in the unconstrained scenario (Table 3). Table 3 also shows that the asset 

allocation changes along the efficient frontier. Ranking the efficient portfolios by increasing 

risks in quartiles, we find that the minimum-risk portfolio consists of four timberland assets and 

four farmland assets, while the maximum-risk portfolio consists of Almonds only. In between 

extrema, the allocation shifts from timberland assets towards farmland assets, as risk and return 

increase. 

  

                                                 
3 Asset prominence is calculated by dividing the number of positive allocations by the total number of portfolios on 

the efficient frontier. 
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Constrained portfolio optimization and optimal portfolio allocations 

The increasing investment size makes portfolios more constrained. Only 14 sub-regions 

have binding allocation constraints in the US$2-billion portfolio, while all 22 sub-regions are 

constrained by timberland availability in the US$10-billion portfolio. As shown in Figure 5, the 

M-CVaR efficient frontier shifts downwards and covers a narrower risk range as portfolio size 

increases from US$2 billion to US$10 billion. Therefore, the ability to diversify becomes more 

restricted after the investment size increases beyond the US$2 billion threshold. Specifically, the 

US$2-billion optimal portfolio has a CSR of 9.08, with a corresponding risk of 0.16% and a 

return of 1.42%, whereas the US$10-billion optimal portfolio has a reduced CSR of 2.50, an 

increased risk of 0.55% and a lower return of 1.38% (Table 4). 

Acreages allocated to timberland regions and farm crop types also change each time the 

investment requirement is stricter as shown by the changing composition of the portfolios. There 

are eight timberland sub-regions with positive allocations in the US$2-billion scenario, compared 

to 15 sub-regions in the US$10-billion scenario. On the farmland side, Corn, OAC and OPC are 

consistently positively allocated assets, indicating their superior return-risk ratios among 

farmland assets. For timberland, asset prominence suggests persistent allocations on regions in 

North Carolina, Tennessee and Virginia, which are outside of highly sought-after timber 

markets. For farmland, asset prominence suggests persistent allocations on OAC and OPC. 

Long-horizon portfolio VaR and CVaR values  

The long-term commitment of capital to natural resource investments, especially 

timberland investments, posts additional risks to investors. The portfolio VaR and CVaR values 

over the 10-year holding period represent the “worst-case” portfolio values. They are estimated 

based on fitted distribution parameters and weight allocations of the optimal tangency portfolios 
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for the US$2- and US$10- billion scenarios. The exposure to long-term risks is shown by the 

widening gaps between mean portfolio values and “worst-case” values (Figure 6). For the 

portfolio with US$2 billion initial value, the mean portfolio value at the end of the 10-year 

horizon is US$3.89 billion, while the “worst-case” value is US$1.73 billion, indicating a 14% 

loss of the original investment. For the US$10 billion portfolio, the mean portfolio value after 10 

years is US$20.57 billion, while the “worst-case” scenario suffers a 16% loss. 

Correlations of asset returns 

The correlation among assets based on historical returns may not hold into the future. To 

better examine whether correlations of asset returns change over time, we fit a multivariate 

generalized autoregressive heteroskedasticity (GARCH) model and compare historical 

correlations with forecasted ones. We use only regional timberland returns considering the 

completeness and availability of historical data. With TimberMart-South data going back to 

1987Q1, we are able to generate 120 quarterly return series in the 22 regions. In addition, the 

historical correlations in the sub-period of most recent 68 quarters, the sample period of this 

study, are singled out to be separately compared with the forecast. Two sample t-tests determine 

that, at the 5% level, the predicted correlations are significantly different from the overall 

historical correlations, but not significantly different from the correlations in the last 68 quarters. 

Therefore, we deem our portfolio allocation analysis to be valid and robust. 

Conclusion 

This study aims to examine the risk and return features of diversified portfolios of 

timberland and farmland assets. To investigate timberland assets at a finer geographical level, 

synthesized return series are first constructed using regional timber price data. This is preferable 

than directly using the NTI and regional indices because our synthesized series can be more 
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frequently updated using timber price data than existing indices, which are based on annual 

appraisals and subject to the smoothing bias (Mei 2017). These series combined with the NFI 

crop type return indices enable us to build hypothetical portfolios under the M-V and M-CVaR 

frameworks. Results show that SD in the M-V framework overestimates downside risk, while the 

CVaR in the M-CVaR framework more precisely estimates the downside risk and thus allows for 

improved optimization efficiency. 

Practicality becomes a restricting factor when portfolio sizes increase. Given the size of 

institutional portfolios of natural resource assets, optimal portfolios can only be built after 

considering land availability in each sub-region and imposing practical and sensible portfolio 

construction constraints. Our hypothetical multi-billion-dollar portfolio optimizations show that 

as the size of investment increases, the portfolio becomes more constrained, the diversification 

benefit lowers, the portfolio risk increases, and the portfolio return decreases. The long-term 

VaR and CVaR simulations also support this conclusion. 

This diminishing diversification benefit is in contrast to the finding from conventional 

real estate portfolio studies (e.g., Byrne and Lee 2003). This might result from the lack of 

available less-correlated, investment-grade natural resource assets, which makes larger portfolios 

more constrained. The dominance of timberland allocation to unlikely regions is probably due to 

favorable historical return-risk ratios in these regions, which makes them more attractive under 

the purely theoretical optimization framework. Further efforts are needed to find more practical 

constraints, such as local market conditions and actual business practices. Finally, static 

correlation pattern in the past may not carry over into the future. An appropriate selection of 

historical data for valid future inferences becomes an issue. Additional studies are needed in this 

aspect as natural resources investment often requires long time horizons. 
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Table 2.1. Available corporate private timberland acreages and values in 22 regions. 

Region Available acreage Total value 

AL.1 1,033,325 2,066.65 

AL.2 1,529,535 3,059.07 

AR.1 1,681,657 3,363.31 

AR.2 6,494 12.99 

FL.1 853,960 1,707.92 

FL.2 584,400 1,168.80 

GA.1 277,046 554.09 

GA.2 2,689,902 5,379.80 

LA.1 1,424,600 2,849.20 

LA.2 153,531 307.06 

MS.1 786,219 1,572.44 

MS.2 1,375,513 2,751.03 

NC.1 47,167 94.33 

NC.2 1,543,174 3,086.35 

SC.1 1,430 2.86 

SC.2 103,031 206.06 

TN.1 207,278 414.56 

TN.2 56,906 113.81 

TX.1 88,621 177.24 

TX.2 1,317,037 2,634.07 

VA.1 63,195 126.39 

VA.2 749,275 1,498.55 

Total 16,573,298 33,146.60 

Note: Timberland values are in US$ millions.   
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Table 2.2. Summary statistics of asset returns: quarterly data from 2000 to 2016. 

Region or 

crop type 

Average 

return 
SD CVaRΔ Skewness 

Excess 

kurtosis 

Jarque-Bera 

test 

AL.1 0.81 1.81 3.07 0.01 -0.51 0.69 

AL.2 0.86 1.63 3.06 0.01 -0.58 0.62 

AR.1 1.06 2.14 3.55 0.41 0.04 0.37 

AR.2 2.03 3.93 6.93 0.08 -0.10 0.95 

FL.1 1.40 1.73 2.94 0.19 -0.74 0.37 

FL.2 1.33 1.80 3.26 0.11 -0.73 0.44 

GA.1 0.97 2.19 4.42 -0.35 -0.69 0.25 

GA.2 1.09 1.84 2.98 0.28 -0.62 0.36 

LA.1 1.31 1.94 3.61 0.04 -0.58 0.61 

LA.2 1.18 1.38 2.70 -0.08 -0.52 0.66 

MS.1 0.52 1.77 2.77 0.26 -0.55 0.44 

MS.2 0.86 1.49 2.58 0.33 0.06 0.52 

NC.1 1.64 2.26 4.56 0.02 0.29 0.89 

NC.2 1.53 1.68 3.04 0.41 0.36 0.30 

SC.1 1.20 1.43 2.35 0.26 -0.77 0.29 

SC.2 1.35 1.40 2.27 0.25 -0.97 0.18 

TN.1 1.90 5.12 7.61 0.35 -1.00 0.12 

TN.2 1.65 4.28 6.18 1.27 2.72 0.00 

TX.1 1.19 2.41 4.05 0.39 0.05 0.41 

TX.2 1.37 2.34 4.91 -0.09 -0.14 0.92 

VA.1 1.80 2.11 4.80 -0.83 2.68 0.00 

VA.2 1.55 1.45 2.83 -0.12 -0.69 0.47 

Almonds 5.02 10.11 8.06 3.99 20.79 0.00 

Apples 1.61 7.30 13.89 0.74 1.42 0.00 

Corn 2.81 2.89 3.59 1.37 1.35 0.00 

OAC 3.05 3.19 3.28 2.40 6.95 0.00 

OPC 3.90 6.11 5.90 1.55 1.39 0.00 

Grapes 2.52 4.31 7.09 0.74 0.07 0.04 

       

Shapiro-

Wilk test 
0.00      

Note: All returns and deviation measures are in percentages. JB test and SW test report p-

values from hypothesis tests. OAC stands for other annual crops. OPC stands for other 

permanent crops.  
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Table 2.3. Quartile portfolios’ allocation under the M-CVaR framework and statistics for the 

unconstrained scenario. 

Region or 

Crop type 
Minimum 1st Quartile 2nd Quartile 3rd Quartile Maximum 

Asset 

prominence 

AL.1 - - - - - - 

AL.2 - - - - - - 

AR.1 - - - - - - 

AR.2 2.82 0.8 - - - 26.92 

FL.1 6.23 - - - - 11.54 

FL.2 - - - - - - 

GA.1 - - - - - - 

GA.2 - - - - - - 

LA.1 - - - - - - 

LA.2 - - - - - - 

MS.1 - - - - - - 

MS.2 - - - - - - 

NC.1 11.78 4.04 1.10 - - 46.00 

NC.2 - - - - - - 

SC.1 - - - - - - 

SC.2 - - - - - - 

TN.1 - - - - - - 

TN.2 1.07 - - - - 19.23 

TX.1 - - - - - - 

TX.2 - - - - - - 

VA.1 - - - - - - 

VA.2 - - - - - - 

Almonds 1.46 7.66 30.33 54.03 100.00 100.00 

Apples - - - - - - 

Corn 35.30 33.77 - - - 38.46 

OAC 36.46 38.66 56.51 14.99 - 80.77 

OPC 4.89 15.06 12.06 30.98 - 100.00 

Grapes - - - - - - 

       

Exp. Return 2.47 2.93 3.48 4.12 4.76  

CVaR (5%) -0.99 -0.70 -0.15 1.05 3.31  

Note: Asset allocation, prominence, portfolio returns and risks are in percentages. OAC stands 

for other annual crops. OPC stands for other permanent crops.  
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Table 2.4. Optimal portfolio allocations under the M-CVaR framework and statistics for the 

US$2-billion and US$ 10-billion portfolios 

 US$ 2 billion US$ 10 billion 

Region or 

Crop type 
Optimal allocation Asset prominence Optimal Allocation Asset Prominence 

AL.1 - - - - 

AL.2 - - - - 

AR.1 - - - - 

AR.2 0.65 46.34 0.13 100.00 

FL.1 47.16 90.24 17.08 100.00 

FL.2 - 21.95 11.69 100.00 

GA.1 - - - - 

GA.2 - - 12.10 84.00 

LA.1 - - 11.13 98.67 

LA.2 13.60 53.66 3.07 86.67 

MS.1 0.30 12.20 - 30.67 

MS.2 - - 6.95 57.33 

NC.1 4.72 100.00 0.94 100.00 

NC.2 13.46 80.49 2.95 100.00 

SC.1 0.14 36.59 0.03 98.67 

SC.2 - 9.76 2.06 100.00 

TN.1 - 29.27 0.20 69.33 

TN.2 5.69 100.00 1.14 100.00 

TX.1 - - - - 

TX.2 - - - 1.33 

VA.1 - 80.49 1.26 100.00 

VA.2 - 58.54 14.99 100.00 

Almonds - 85.37 - 42.67 

Apples - - - - 

Corn - - - - 

OAC 7.15 100.00 7.15 100.00 

OPC 4.43 65.85 7.15 84.00 

Grapes 2.71 36.59 - 1.33 

     

Exp. Return 1.42  1.38  

CVaR (5%) 0.16  0.55  

CSR 9.08  2.50  

Note: Asset allocation, prominence, portfolio returns and risks are in percentages. OAC stands 

for other annual crops. OPC stands for other permanent crops. CSR stands for the conditional 

Sharpe Ratio.  
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Figure 2.1. TimberMart-South southern states delineation of 22 sub-regions.
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Figure 2.2. Comparison of synthetic, south-wide timberland return series with NCREIF 

south-wide timberland return series.  



 

28 

 

Figure 2.3. Histograms of returns of eight assets with significant Jarque-Bera normality test.  
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Figure 2.4. M-CVaR efficient frontier based on the unconstrained optimization framework.
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Figure 2.5. Comparison of the M-CVaR efficient frontiers under US$2-billion and US$10-

billion scenarios.
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Figure 2.6. Expected portfolio values and their 5% VaR and CVaR over a 10-year horizon, with 

initial values of US$2 billion and US$10 billion.  
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CHAPTER 3 

Impact of forest-related conservation easements on contiguous and surrounding property values4 

                                                 
4 Zhang, W., B. Mei and R. Izlar. 2017. Accepted by Forest Policy and Economics, 05/08/2018. Reprinted here with 

permission of the publisher, 07/01/2018 



 

33 

Abstract 

We apply the hedonic pricing method to analyze the effects of conservation easements (CEs) on 

surrounding vacant land parcel prices within the Metropolitan Atlanta Statistical Area (MASA).  

First, we collected data on forest related CEs in 30 counties in MASA and randomly sampled 

312 land parcels from these same counties for information related to land parcels. The distance 

between each property and the nearest CE, and between each pair of properties, are calculated 

and used to find spatial dependence. Results show that the proximity to CE-protected open space 

after the CEs are established have positive price effects on the surrounding properties, and this 

effect diminishes with distance.  
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Introduction 

The United States has abundant forest resources with one third of the country’s land area, 

or 751 million acres, covered by forestland. Of the total, about 57% of forestland is privately 

owned (Smith et al. 2009). The ongoing development pressure, however, has increased land 

values and thus property taxes, which makes it more expensive for forest landowners to keep 

their land intact. Conservation Easement (CE) is a widely used tool to preserve land for 

conservation purposes by organizations, such as land trusts, whose missions are to protect natural 

resources (Fisher 2015). Protection of working forests is among the top ten priorities for land 

trusts in the US (Chang 2016). CEs are a private land conservation mechanism that protects open 

space from being developed, while helping landowners keep their land (Farmer et al. 2015). A 

working forest conservation easement is specifically designed to allow operations on forestland, 

such as harvesting and silvicultural practices, without the risk of losing the forestland due to 

development pressures (Tesini 2009). Currently, CEs are protecting more than two million acres 

of private forestland and the total acreage has been increasing over time, according to the Forest 

Legacy Program, administered by the US Forest Service (USFS 2015). All states in the US have 

passed statutes enabling working forest CEs (Ebers and Newman 2014). 

The impacts of CEs are multi-faceted. CEs’ purpose of preserving natural land brings 

about many environmental and social benefits, including open space for recreational activities 

and wildlife habitat, that are valued by the public (Geoghegan, Lynch and Bucholtz 2003). These 

benefits may also help increase property values surrounding the CEs. From a different 

perspective, in addition to keeping their land, CEs benefit landowners from a tax standpoint. 

Landowners engaged in CEs are considered to have donated a part of their rights for a charitable 

cause and thus are entitled to enjoy income tax deductions and lower property taxes, to be 
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compensated for public goods provision (Chamblee et al. 2011; Fava 2013). Legislatively, many 

states have passed laws that mandate lower tax valuation for properties with conservation 

restrictions (Stockford 1990).  

Protecting forests and other open space from increasing development and growing 

population is challenging. About 6,000 acres of open space are lost daily (USFS 2017). In light 

of the growing development pressure on forestland and the tax implications of CEs, we 

investigate the price effects of CEs on surrounding land in the Metropolitan Atlanta Statistical 

Area (MASA) (Figure 1). The reason for choosing the MASA region is because of the 

relationship among land conversion, forestland conservation and increasing developmental 

pressure observed in this region. Being one of the fastest growing metropolitan areas in the US, 

Metro Atlanta has seen its population grow significantly over the past decade. In terms of Gross 

Domestic Product growth, Atlanta has the second fastest economic growth in the US (BEA 

2017). The enormous pressure from the urban sprawl and economic development activities 

within the region make MASA an appropriate study target. In the state of Georgia, where MASA 

is located, working forests and private forests are important to the state’s economy, as they 

provide raw materials to the forest industry in the state. Georgia is among the nation’s leading 

forestry states (GFC 2011). Private forests alone create $37 billion in annual ecosystem services 

in Georgia (GFA 2017). In terms of direct economic impacts, in 2015, a total revenue of $32.2 

billion and 133,000 jobs were provided by the forest industry in Georgia (Hafer 2017). CE 

programs help the industry to protect raw material sources, and more importantly, help private 

forest landowners keep their forests. The fastest growing metropolitan area coupled with a 

leading forest industry creates a unique situation and hence makes MASA an interesting target 

area to study.  
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This study investigates factors that contribute to the valuation of properties near forests 

and open spaces encumbered with CEs. We use CE records and property sales data obtained 

from public sources to examine the price effects of CEs across different counties in MASA. A 

hedonic pricing model is used to explore the effects of characteristics of properties and CEs in 

determining property values.  

Literature Review 

A number studies have been conducted to identify the effects on property values brought 

by the proximity to open spaces, such as agricultural land and forests. Geoghegan, Lynch and 

Bucholtz (2003) use parcel-level data of residential properties to construct a pricing model for 

three counties (Calvert, Carroll and Howard) in Maryland. They find that in two of the three 

counties, residents living next to preserved open spaces value the environmental benefits, e.g., 

better air and water quality, brought by open spaces. On top of the environmental benefits, 

natural amenities such as better views and the access to nature are also factors that help increase 

surrounding residential property values. It is also noted that residents in Carroll County value 

open spaces less because they have more of them in the county. Sander and Polasky (2009) 

estimate the value of views and open space in Ramsey County, Minnesota and similarly 

conclude that the access to and the view of natural open spaces, such as water and grassy areas, 

have positive effects on home sale prices in the study area. Other open spaces, such as parks and 

trails, are also highly valued by home buyers. In a study focusing on undeveloped land, Zygmunt 

and Gluszak (2015) find similar effects on undeveloped real estate values near Las Wolski Forest 

in Poland. They collect data from 355 real estate development transactions in this area during 

2002-2011, and use three estimation models. Their results indicate positive price effects of the 
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proximity to this forest, with land values decreasing by 3% every one-hundred-meter further 

away from the forest.  

The effects of conservation programs on surrounding land values have also been studied 

widely, and in most cases, are found to be positive. Geoghegan (2002) studies the relationship 

between two types of conserved open space and their effects on land prices in Howard County, 

Maryland. She defines these two types of conservation activities as “permanent open space” and 

“developable open space”, whose difference primarily lies in the expected future land use. The 

“permanent open space” category is congruent with the mechanism of CE programs. Results 

indicate that “permanent open space”, such as CE-protected land, has a statistically significant 

positive association with land prices, reflected through the higher housing prices in the 

surrounding area. Anderson and Weinhold (2008) investigate the effects of CEs and attempt to 

value development rights. They collect sales data and characteristics information on 131 

properties with and without CE-restriction in South Central Wisconsin and compare their prices. 

Their results suggest that there is a significantly negative effect of CE restrictions on prices of 

undeveloped land, but not on prices of developed land. In addition, they are unable to 

conclusively establish a significant relationship between CEs and values of surrounding 

properties. In a later study on the relationship between conservation activities and land prices in 

North Carolina, Chamblee et al. (2011) collect data on vacant land transactions in a 12-year time 

span and information on conservation programs in Buncombe County, North Carolina. They 

distinguish conservation programs into two main mechanisms, namely fee-simple conservations 

and CE programs. Their study finds that fee-simple conservation programs increase surrounding 

land values by 46%. CE programs’ positive effects are less substantial, at 11%. They attribute 

this difference to land trusts’ inclination to use CEs to protect only properties with lower 
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development prospects. In addition, they find that there exist non-capitalized benefits enjoyed by 

the residents who live close to, but not adjacent to the conserved land. A similar study done in 

Florida uses data on nine open space projects, called the Florida Forever, sales records of 

surrounding homes, and the hedonic model to investigate the effects of land conservation on 

nearby property values (Beal-Hodges 2012). She finds that when land is placed on the 

conservation acquisition list and considered undevelopable, the surrounding property values 

increase, in some of the study areas.  

On the tax aspect of CE programs, several studies have been conducted to find the 

impacts of conservation activities on property value assessments, since taxes are assessed based 

on values. Stockford (1990) slices through laws and court cases on federal, state and local levels, 

to reveal the challenging factors that complicate the valuation assessment of properties 

encumbered with CEs. He finds that uncertainties exist in various aspects of the valuation 

system, and that easements can increase the market values of nearby properties and thus increase 

tax revenues from the surrounding area accordingly. King and Anderson (2004) sample 29 towns 

in Vermont using the stratified random sampling plan and study the effects on property taxes 

brought by CEs in Vermont. They use data on local communities’ budgets, demographics and 

policies to examine the marginal effects of CEs. An interesting finding of their study is that the 

tax effects on the encumbered properties are positive only in the short-run. Over the long term, 

CEs have either no impact or a diminishing impact on property tax rates in Vermont towns. They 

also find increased appraised values of surrounding properties for governments to have sufficient 

tax revenues to cover essential service expenses. In a study to explore economic models that 

maximize net social benefits of CEs, Gustanski and Wright (2011) conduct case studies on three 

CE projects in Montana and New Mexico, facing three different levels of development pressures: 
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low, moderate and high. They conclude that acquisition costs associated with CEs increase as 

development pressure heightens. More importantly, they note that having an effective valuation 

model for CEs is essential to the efficient use of public tax money to subsidize conservation 

activities. Mittal (2014) conducts a study on the effects on home prices of nearby conservation 

activities, including both fee-simple conservation and CEs in Worcester, Massachusetts. He 

collects sales data on single-family detached houses and information on conservation projects. 

Through an OLS-based hedonic model, he finds that homes surrounding CE-encumbered 

parcels, especially homes with visual access to these parcels are priced higher. He concludes that 

CE-protected lands render surrounding homes more attractive to buyers and investors, and 

therefore drive prices higher. The higher values of homes surrounding CEs in turn provide more 

tax revenues to the local government and community.  

In summary, numerous work has been done to study the relationship among natural open 

spaces, conservation programs and property values. Most studies find positive price effects of 

conservation activities and open spaces, but with varying degrees among different regions. Most 

of the reviewed literature either focuses primarily on values of residential properties, or targets 

only a few areas with variable development pressure. There lacks a localized study to 

particularly investigate the effects of CE programs on parcels with a variety of land uses. 

Especially, there has not been any study in MASA, where the development pressure is among the 

highest in the nation. We aim to fill that void by examining the price effects of CEs on 

surrounding properties by including different property types, i.e., vacant agricultural, 

commercial, industrial and residential parcels. We expect to address the emerging conflicts 

between environmental conservation and development pressure by sampling property transaction 

records and conservation program information in the rapidly urbanizing MASA. 
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Method and Data 

This study uses a hedonic pricing model that is similar to a number of recent studies 

(Chamblee et al. 2011; Geoghegan 2002; Geoghegan, Lynch and Bucholtz 2003; Zygmunt and 

Gluszak 2015). The hedonic model aims to separate the various price effects related to the 

properties’ physical features and characteristics of CEs in the surrounding area, and the model is 

defined as follows, 

 𝑃𝑖 = 𝑆𝐼𝑍𝐸𝑖
𝛼𝐸𝑥𝑝[𝛽𝐗𝑖 + 𝛿𝐂𝑖 + 𝜀𝑖] (1) 

where 

𝑃𝑖  is the price of the ith land parcel in dollars; 

𝑆𝐼𝑍𝐸 is the size of the ith land parcel in acres; 

𝐗𝒊 is a collection of the physical characteristics of the ith land parcel; 

𝐂𝐢 is a collection of the characteristics of the CEs that are related to ith land parcel; and 

𝜀𝑖 is the error term. 

Both 𝐗𝐢 and 𝐂𝐢 are in vector forms. The model is transformed into a linear form by taking natural 

logs so that an ordinary least squares (OLS) regression can be performed to estimate the 

coefficients 𝛼, 𝛽 and 𝛿: 

 𝒚 = 𝐀𝛼 + 𝐗𝛽 + 𝐂𝛿 + 𝜺 (2) 

where the dependent variable y is a vector of log-transformed land prices, A is a vector of log-

transformed acreage, X and C are collections of log-transformed variables related to land and CE 

characteristics. 

The hedonic pricing model is based on spatially distributed property data, so there is a 

need to investigate the spatial dependences among properties. We investigate the spatial 
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dependence by adding spatial disturbance in the error term, and employ a Spatial Error Model 

(SEM), built on Maximum Likelihood Estimation, by modifying Eq. (2) to: 

 𝒚 = 𝐀𝛼 + 𝐗𝛽 + 𝐂𝛿 +  (3) 

  =  𝛌𝐖 + 𝝐 (4) 

where 𝐖 is a vector of error terms, weighted by spatial distances. 𝛌 is the error coefficient 

vector to be estimated, and 𝝐 is the error vector that captures uncorrelated variability in prices. 

The spatial weight matrix W is a nonnegative 𝑛 × 𝑛 matrix. Binary weights are given based on 

threshold distance:  

[𝑤𝑖𝑗] = { 
   

1

𝑛𝑖
, 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

where 𝑤𝑖𝑗 weighs the Euclidean distance between each pair of sampled properties, and 𝑛𝑖 is the 

number of nearby properties within the threshold of 20 miles. W is standardized so that the sum 

of weighted threshold distances from each property is 1. 

Based on the proposed pricing model, two main sets of data are needed. They are the 

information related to both the properties and CEs. In this study, only vacant land parcels are 

sampled. Information on 312 vacant parcels is sampled from the websites of tax assessor offices 

of all 30 counties in MASA from 2000 to 2016. Information on CEs is available online and 

obtained from the National Conservation Easement Database (NCED 2015). Since there is no 

complete list of all forest CE programs in Georgia, data scrutinizing and cleaning are conducted. 

Given the purpose is to study the impact of working forest conservation easements, we eliminate 

CEs that are held by National Parks, National Forests and National Monuments. Other non-forest 

related CE projects, such as the Atlanta Botanic Garden, are also taken off the list. Nonetheless, 

it is impossible to completely separate forest-related CE projects from the more encompassing 
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category of agricultural conservation programs. A total of 115 CE projects are found in the 

dataset and are located in 24 MASA counties. 

The explanatory variables are compiled in Table 1, accompanied with descriptions and 

statistics. PRICE lists the actual prices of 312 transactions in 30 counties in MASA. We then 

describe the explanatory variables that are related to the properties first. SIZE is the acreage of 

land parcels. 𝐗𝐢 contains the variables that describe the physical features of the land, which are 

property types (PropertyClass) and the Euclidean distance from each property to the 

geographical center of Atlanta (DistATL). PropertyClass is a categorical variable, where 0, 1, 2 

and 3 represent agricultural land, commercial lot, industrial lot and residential lot, respectively.5 

DistATL is measured in miles. We expect it to have a negative sign because urban economic 

theory indicates that property value is positively related to the proximity to a city where 

employment opportunities are amble (Brigham 1965). ATLANTA is a dummy variable that takes 

the value of one if the property is in one of the three counties in the Atlanta-Sandy Spring-

Roswell area, and the value of zero if the property is in other counties within MASA. We expect 

this variable to have a positive sign, since these parcels come with an easy access to a network of 

interstate highways and the world’s busiest airport.  

Variables that are related to the CEs are contained in vector C. For every land parcel sold 

in our sample, we determine the closest CE based on the Euclidean distance, and note this 

distance as CEDist. We expect CEDist to have a negative sign because people value being close 

to open spaces. CESize is the area of the closest CE in acres and expected to have a positive sign 

because the larger the protected area, the greater the environmental benefits and hence the higher 

the property values. In addition, we measure the number of CEs within a ten-mile radius of each 

                                                 
5 PropertyClass 0 is omitted in the regression to avoid the dummy trap. 
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property (CENearby). CENearby is expected to a have positive sign because the greater total 

number of CEs leads to more protected area, which should enhance property values. The dummy 

variable CEPost is zero if a parcel is sold before the closest CE is established, and one if a parcel 

is sold afterwards. We expect CEPost to have a positive sign because property buyers see future 

development to be unlikely if a CE is already in place (Geoghegan 2002). Finally, since we 

expect the amenity values diminish as a property gets further away from the closest CE, we 

include an interaction term CEPostDist. This variable is expected to be negative, which shows 

the decreasing price effect per mile further away from the conserved land.  

Results and Discussion 

Estimation results are shown in Table 2. First, as previously mentioned, the log-

transformation is applied on Eq. (1) to account for the skewed distribution. However, the log-

transformation alone does not guarantee unbiased and efficient estimation. Hence, we employ 

five models to estimate the coefficients: standard OLS, OLS with robust standard errors, random 

effects model, fixed effects model and SEM.  

First, a standard OLS estimation is applied. Among other assumptions, homoscedasticity 

is an important assumption to ensure unbiased OLS estimation. Since properties are dispersed 

across 30 counties and thus may not share a common error structure with a zero mean, there may 

exist heteroscedasticity in the error term. To test for heteroscedasticity, the Breusch-Pagan test is 

performed and returns a statistic of 36.22 with p-value less than 0.01, therefore rejects the 

homoscedasticity null hypothesis. Variabilities within each county may be correlated. This 

correlation is unknown but can be explained by different county’s budgetary concerns and fiscal 

practices. Therefore, we relax the homoscedasticity assumption and recognize the correlation 
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within counties. To account for this within-group correlation, the robust standard errors are 

specified in the second OLS process.  

Furthermore, the first two OLS processes do not allow for unobserved heterogeneity, 

which can be correlated with any of the explanatory variables. Therefore, we include group 

effects at the county level and control for unobserved county heterogeneity, using both the 

random effects model and fixed effects model. We compare the two models using the Hausman 

test. The test statistic is insignificant, suggesting that the random effects model is sufficient. We 

also compare the OLS and random effects models by the Breusch-Pagan test and find that the 

random effects model is significantly more superior. 

Finally, defining group effects by the county level may still not appropriately capture 

heterogeneity. It is very likely to have properties that are close to each other, situated in the same 

neighborhood and but in different counties. Therefore, from that perspective, we define 

neighborhoods by the distances among properties and use the SEM model to account for spatial 

effects. The Moran’s I test presents a p-value of 0.042, indicating that there are spatial 

dependences. So, the following discussion is focused on the SEM model. 

The size of parcels is the most significant in determining prices with a positive coefficient 

of 0.61. This coefficient is the size elasticity of price, and a value between 0 and 1 confirms the 

concave relationship between parcel size and price (Colwell and Munneke 1997). In addition, the 

land type variables for commercial and industrial lots show strong statistical significance. These 

property type variables also have positive coefficients, as expected. If a lot is designated as 

commercial and industrial land, the parcel respectively enjoys 480% and 400% premiums, over 

agricultural land. On the other hand, vacant residential lot shows 0.6% discount with insignificant 

levels. The discount may be due to other features of the lots that are unaccounted for, such as 
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access to utilities, infrastructure and the suitability of the lot to be built on. As expected, the 

distance from the center of Atlanta (DistATL) has a negative impact on prices. One additional mile 

away from Atlanta city center comes with 2% discount in land price. Lastly, all else equal, parcels 

within the Atlanta-Sandy Spring-Roswell area enjoy 85% premiums relative to parcels in other 

MASA counties. 

Regarding CE-related variables, not all of them are significant. Opposite to expectation, the 

sign on CEDist is negative, albeit the magnitude of the effect is small. One additional mile closer 

to a CE-protected open space from a parcel will see 0.2% price reduction. CESize also has a 

negative effect and is statistically significant. Each additional acreage to the closest CE-protected 

area results in a 0.1% land price discount. This is possibly due to the nature of sampled parcels. 

Close to 40% of sampled parcels are not residential lots, while environmental benefits are valued 

more by residents and less by industrial and commercial land owners (Magnan, Seidl and Loomis 

2012). We notice that the effect of CESize is negligible, and suspect that the size of a nearby CE-

protected area does not necessarily affect the perceived value of a nearby industrial property with 

development prospects. This interpretation resonates with the land-use planning process of local 

government. Other studies also find that the prevention of development on one lot does not 

imperatively decrease total development activities in the area (Richardson and Bernard 2011). On 

the other hand, CENearby is positive and significant. This means that each additional CE in the 

surrounding area can lead to a 1.7% price premium.  

Dummy variable CEPost is positive and significant at the 10% level. CEPost indicates 

whether the parcel is sold after a CE is established in its surrounding area or not. The coefficient 

on CEPost shows a 57% premium after an open space is perpetually protected by a CE in the 

neighborhood. In line with our expectation, the interaction term, CEPostDist, is negative and 
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significant. The result suggests that if there is a CE-protected land in the surrounding area, one 

additional mile away from the CE-protected land will see a 6% price reduction, which shows that 

the post-CE premium diminishes with distance.  

Conclusion 

In this study, we examine the effects of CE programs on surrounding property values, using 

information on existing CEs and vacant land sales records in MASA. The estimation models 

explore the price effects of variables related to characteristics of both land parcels and CEs. Since 

the primary objective of this study is to investigate the price effects of CEs, we discuss the results 

on CE-related variables first. These results show that impacts of CEs on property values vary. 

Different from our expectation, the characteristics of the nearest CE has little impact on the 

surround values. However, the total number of CEs in the surrounding area positively enhances 

land values. In addition, the post-CE effects on land values are in line with our expectations, that 

after a CE is established, vacant land parcels within its vicinity increases in value by 57%. We 

conclude from these results that conservation activities’ positive price effects on land values are 

comprehensive and diminishing with distance.  

The estimation results on variables about physical characteristics of land parcels illustrate 

the challenges faced by conservation efforts, and shed some light on the necessity of publicly 

funded conservation programs, such as CEs. Positive variable coefficients on commercial and 

industrial lots show high price premiums of these land types, and confirms the presence of high 

development pressure in MASA. Increasing land values make it economically attractive for some 

land owners to sell the land to developers, who may convert forests to commercial and industrial 

uses, instead of keeping it for timber production, recreation or wildlife habitat. Moreover, for other 

owners who have an emotional attachment to their land, high property values in their subdivisions 
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make it unaffordable to keep paying high property taxes (Farmer et al. 2015). In addition, higher 

land prices make it more difficult for land trusts to purchase property rights and conserve land that 

are more susceptible to commercial and industrial development (Gustanski and Wright 2011). CEs 

are used by land trusts to help landowners keep their properties from being developed. CE deals 

are often funded by public money and CE-related tax benefits to owners are facilitated by federal 

and state tax laws, essentially making CEs subsidized land conservation. Our study is successful in 

providing a model to properly value the development rights of commercial and industrial land, and 

thus helps with the efficient use of public funds. However, our study does not account for a few 

other questions that are pertinent to the full benefits of CEs. 

First, while this study shows positive post-CE price effects on vacant land parcels, the 

effects have not been studied in full. Our data set does not include sales information on the same 

land parcels both before and after CEs’ establishment. It will require more repeat sales for parcels 

in the sample to better account for unobserved heterogeneity at the property level.  

Secondly, although our model can help value commercial and industrial lots, it may not 

fully capture values of the development right on residential lots. An optimum method of valuation 

can have implications in determining the effectiveness of using public funds in conserving private 

land. Our study touches on the point of land conservation’s impacts on taxation on the local levels. 

While CEs take away development rights from encumbered land, and hence lower taxes 

collectable from the encumbered land, we argue that the spillover effects of CEs enhance property 

values in the surrounding areas, and hence offset tax revenues lost due to CEs. Nevertheless, the 

fair valuation of development rights is still worth more rigorous investigation. Currently, the 
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prevailing appraisal-based CE valuation can be misinforming, subject to appraisal malpractice and 

may lead to legal challenges, thus creating bigger hurdles for private landowners to pursue CEs.6   

The benefits of CEs include the protection of natural landscape and the related ecosystem 

services, as well as steady raw material sources for the forest industry. Nonetheless, it comes with 

changing the tax structure of the government and possibly limiting development opportunities in 

the area. On regional levels, the net overall social benefits of having CEs are still up for more 

investigations. With a more comprehensive list of forest-only conservation programs and a larger 

pool of sampled properties and repeat sales information across time, the dilemma of allocating 

scarce natural resources and forest landscape between economic activities and forest conservation 

can be further examined. 

  

                                                 
6 New England Forestry Foundation, Inc. v. Board of Assessors of Hawley, Commonwealth of Massachusetts 

Appellate Tax Board, 2013 
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Table 3.1. Variable names and definitions. 

  Definitions Units Mean  Std. Dev. 

PRICE Transaction prices in nominal dollars $US 1,354,843 7,582,710 

SIZE Acreage of sample properties Acres 15.41 32.20 

LnSize Natural log of property acreage Acres 1.89 1.23 

PropertyClass 0: Agricultural land - 2.08 1.24 

 1: Commercial lot -   

 2: Industrial lot -   

 3: Residential lot -   
DistATL Distance from the property to the city center of Atlanta Miles 36.64 12.85 

ATLANTA Parcel located within Atlanta-Sandy Spring-Roswell area - 0.11 0.32 

CEDist The distance from the property to the closest CE protected space Miles 6.25 3.75 

CESize The area of the closest CE protected space Acres 122.91 152.26 

CENearby 

Number of CE protected spaces within a 10-mile radius of the 

property - 3.26 3.4 

CEPost Parcel sold after conservation of nearest parcel in CE - 0.57 0.49 

CEPostDist Distance to the nearest CE-protected land and parcel sold after CE Miles 3.61 4.08 
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Table 3.2. Regression results of the Hedonic models. 

 (1) (2) (3) (4) (5) 

 OLS Robust OLS Random Effects Fixed Effects Spatial Error Model 

LnSize 0.57 (0.07) *** 0.57 (0.08) *** 0.59 (0.06) *** 0.59 (0.06) *** 0.61 (0.06) *** 

PropertyClass 1 1.74 (0.28) *** 1.74 (0.46) *** 1.66 (0.26) *** 1.66 (0.26) *** 1.76 (0.27) *** 

PropertyClass 2 1.51 (0.46) ** 1.51 (0.30) *** 1.15 (0.40) ** 1.12 (0.41) ** 1.62 (0.45) ** 

PropertyClass 3 -0.10 (0.21)  -0.10 (0.22)  -0.18 (0.20)  -0.19 (0.21)  -0.01 (0.21)  

DistATL -0.01 (0.01) · -0.01 (0.01)  -0.01 (0.01)  -0.01 (0.01)  -0.02 (0.01) · 

ATLANTA 0.75 (0.29) * 0.75 (0.74)  0.46 (0.59)     0.61 (0.29) * 

CEDist -0.01 (0.03)  -0.01 (0.03)  0.01 (0.03)  0.02 (0.04)  0.00 (0.03)  

CESize 0.00 (0.00) * 0.00 (0.00) * 0.00 (0.00) * -0.01 (0.00) * 0.00 (0.00) * 

CENearby 0.02 (0.03)  0.02 (0.02)  0.04 (0.03) · 0.04 (0.03) · 0.02 (0.30) · 

CEPost 0.28 (0.29)  0.28 (0.49)  0.54 (0.31) · 0.66 (0.34)  0.45 (0.04) · 

CEPostDist -0.04 (0.04)  -0.04 (0.05)  -0.05 (0.04)  -0.05 (0.04)  -0.06 (0.03) * 

CONSTANT 10.90 (0.63)  10.90 (0.63) *** 10.63 (0.59) ***    10.76 (0.49) *** 

H0: Homoscedasticitya  0.00 ***             

H0: RE VS OLSb        0.00 ***       

H0: RE VS FEc          0.99      

H0: No spatial dependenced 
             0.04 *** 

Observations 
 312   312   312   312   312  

Note: Standard errors are presented in parentheses. RE for random effects. FE for fixed effects. a Breusch-Pagan test. b Breusch-Pagan 

test. c Hausman test. d Moran’s I test. · Significant at 10%. * Sigficant at 5%. **Significant at 1%. ***Significant at 0.1%. 
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Fig. 3.1. MASA counties and the city of Atlanta. 

Note: The red dot indicates the location of Atlanta. Green Dots are the sampled property 

locations. 
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CHAPTER 4 

ANOTHER TAKE ON THE ROLE OF TIMBERLAND ASSETS IN A MIXED-ASSET 

PORTFOLIO7 

                                                 
7 Zhang, W. and B. Mei. 2018. Submitted to Journal of Real Estate Research, 3/13/2018. 
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Abstract 

We investigate the role of timberland in a mixed-asset portfolio in the United States, especially 

as investment horizons lengthen. In addition to using conventional single-period returns, this 

study modifies return, volatility and correlation for multi-period and infinite horizons, to account 

for features of long-term investments, and builds mixed-asset portfolios including traditional 

financial assets and timberland, under the mean-variance framework. The constrained 

optimizations prove the diversification benefits of both private- and public-equity timberland 

investments using single-period returns. Long-term optimizations show private-equity 

timberland is a more superior diversifier over public-equity timberland. Infinite-horizon 

optimizations prove private-equity timberland’s persistent roles in mixed-asset portfolios. 
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Introduction 

Timberland assets have received increasing attention from investors over the last three 

decades in the United States (Waggle and Johnson 2009). As an alternative asset class, investors 

seek diversification benefits from holding timberland (Mei 2015a) for its desirable financial 

characteristics, including high risk-adjusted returns (Cascio and Clutter 2008; Mei 2017), low 

correlation with other financial assets (Caulfield and Newman 1999; Mei and Clutter 2010; Wan 

et al. 2015), and the ability to protect against inflation (Wan et al. 2013; Washburn and Binkley 

1993). 

There are generally two options to invest in timberland. First, investors can hold large 

tracts of timberland in private ownership through closed- or open-end funds managed by 

timberland investment management organizations (TIMOs). This approach is typical for 

institutional investors, such as pension funds and university endowments, and high net-worth 

families, and requires significant capital commitment and long holding periods. The other option 

is through investing in publicly-traded timber firms or real estate investment trusts (REITs). This 

option enables an easy access for both institutional and individual retail investors to engage in 

timberland investment without losing liquidity (Mendell, Mishra and Sydor 2008). Overall, 

TIMOs manage over US$77 billion worth of timberland (Campbell Global 2017), while public 

timber firms and REITs own over US$34 billion in market capitalization values (WRDS 2018).  

The return and risk are keys to understand financial performance of an asset. Past 

research uses arithmetic mean and standard deviation (SD) to measure timberland investment 

return and volatility, and focuses on single-period performance under the mean-variance (M-V) 

framework to examine its financial performance assuming independent and identically 

distributed (i.i.d.) returns. However, private real estate returns usually exhibit high 
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autocorrelations, which complicates long-term risk measures (Pagliari 2017). Hence, there is a 

need to investigate long-term performance metrics of timberland investments. 

We aim to examine the three components under the M-V framework, mean, volatility and 

correlation of timberland returns, as the investment horizon lengthens. Results show that using 

long-term volatility captures serial correlations in asset returns. In addition, we prove the key 

roles that timberland assets play in mixed-asset portfolios. Finally, we assess the interplay 

between private- and public-equity timberland investments in both unconstrained and 

constrained scenarios of asset allocations. 

Literature Review 

Numerous work has used the M-V framework to study the financial performance of 

timberland investments. Mills and Hoover (1982) first introduce the concept of M-V portfolio 

optimization framework to measure the performance of investment in forest land, and show that 

timberland assets provide diversification benefits to mixed-asset portfolios that also include farm 

options, stocks and bonds. Thomson (1997) evaluates investments in Douglas fir and southern 

pine using a modified M-V method, and shows that investing in timberland in a limited and 

consistent manner lowers the overall portfolio risk. Caulfield (1998) uses the timberland 

performance index to represent financial performance of existing timberland investment 

management companies and constructs efficient frontiers based on the index. He determines that 

the addition of timberland provides desirable return-enhancing and risk-reduction benefits to 

institutional portfolios.  

A concern of timberland investment under the M-V framework is finding an appropriate 

return index. Most past studies use periodic returns reported in the National Council of Real 

Estate Investment Fiduciaries (NCREIF) Timberland Index (NTI) and regional indices to 



 

56 

represent private-equity timberland returns in portfolio analysis (Mei 2017). Newell and Eves 

(2009) use the NTI to prove that private-equity timberland adds significant diversification benefit 

to a mixed-asset portfolio, which also includes real estate and farmland assets. However, they 

find diminishing diversification potential in the more recent sub-period, as the correlation 

between timberland and other assets strengthens.  

With regards to the statistical characteristics of private timberland investment returns, 

Mei (2015a) uses the BDS test to show that the NTI and most of its regional indices violate the 

i.i.d. assumption under the M-V framework and attributes the non-i.i.d. nature to illiquidity, 

while public-equity timberland does not violate the assumption. He also extends single-period 

M-V portfolio analysis into long-term holding periods using simulation methods and concludes 

that private timberland assets see decreasing return-to-risk ratios as holding periods extend. In a 

later study, he devises a transaction-based index to proxy returns on private timberland 

investment and compares the NTI, and concludes that using different return proxies for private 

timberland results in different portfolio allocations under the M-V framework (Mei 2016). 

On the proxies for public-equity timberland returns, in addition to using weighted stock 

returns of public timber firms, Mei (2015b) proposes a pure-play timberland index to represent 

investment returns attributed to only timberland business segments within securitized timber 

firms. By deleveraging public-equity timber firms and sifting out non-timber segments, he argues 

that the pure-play timberland index better represents returns on securitized timberlands and more 

effectively compares with private-equity timberland returns. 

Different asset pricing methods have been used to model the returns on private- and 

public-equity timberland investments. Sun and Zhang (2001) use capital asset pricing model and 

arbitrage pricing model to compare the returns and risks of several hypothetical portfolios, eight 



 

57 

of which are forestry-related portfolios, including private institutional timberland investment, 

timberland limited partnerships8 and public forest products companies. They conclude that 

timberland-only investments bear lower risks than investments in forest products companies who 

own both timberland and timber processing facilities. Using the same two pricing models, Yao, 

Mei and Clutter (2014) use several indices to represent private- and public-equity timberland 

investment from 1988 to 2011. Their study finds that at the fund level, private-equity timberland 

diversifies portfolio risks, while public-equity timberland displays higher-than-expected returns 

throughout the sample period. 

Mei and Clutter (2010) use the capital asset pricing model and Fama-French three-factor 

model to analyze private- and public-equity timberland investment returns and conclude that 

while private-equity timberland investment displays higher return with lower systematic risk, 

public-equity timberland investment performs similarly to the market. Yao and Mei (2015) 

introduce the intertemporal capital asset pricing model to examine the return-risk relationship 

between forestry-related assets and innovations in state variables, in two sub-periods. They find 

excess returns on both private- and public-equity timberland assets only in the first sub-period, 

and that they respond to shocks in business conditions differently. 

In addition to portfolio analysis under the M-V framework, other methods have been 

employed to study diversification potentials of timberland assets. Sun (2013) assesses the 

diversification potentials of timber REITs using copula modeling method. By comparing stock 

returns of timber REITs before and after REIT conversions, he proves a decreasing 

diversification potential when timberlands are securitized in the form of REITs and show that 

                                                 
8 Timberland limited partnerships are spin-off companies from several forest products firms in the 1980s. They own 

and manage timberland for their partners, who usually are forest products firms that had spun them off in the first 

place. 
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timber REITs may be attractive to institutional investors who are more prepared for higher 

volatilities. La and Mei (2015) employ a cointegration analysis to study the diversification 

potential of investing in timber REITs. They find that there exist imperfect correlations between 

the overall stock market and timber REIT stock returns and that there is limited cointegrating 

relation among timber REITs. Thus, they conclude that each timber REIT is a unique candidate 

for portfolio diversification considerations.  

Addressing the potential violation of the multivariate normality assumption of the M-V 

framework, Wan et al. (2015) build mixed-asset portfolios with timberland and traditional 

financial assets using both M-V and mean-conditional value-at-risk (M-CVaR) frameworks. 

They find that timberland assets are generally risk diversifiers and conclude that portfolios built 

under the M-CVaR framework are more efficient than those under the M-V framework. 

Overall, most current work uses arithmetic mean return and SD to represent an asset’s 

expected return and volatility, and conducts portfolio analysis using single-period M-V models. 

Since timberland investments are intended for long-term, multi-period horizons, it is necessary to 

distinguish between single- and multi-period analytical models. 

Methods 

Long-horizon mean returns: Arithmetic versus geometric average 

While arithmetic average of periodic returns, 𝑟̅, is an unbiased measure of the one-period 

return, it overstates the compounded mean return, or the geometric mean (𝑟), over multiple 

periods. The geometric means can be approximated by the arithmetic mean as: 

 𝑟 ≈ 𝑟̅ −
𝜎2

2
 (1) 
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where 𝑟 = √∏ (1 + 𝑟𝑖)
𝑇
𝑖=1

𝑇
− 1, 𝑟̅ =

∑ 𝑟𝑖
𝑇
𝑖=1

𝑇
⁄ , 𝜎2 =

∑ (𝑟𝑖 − 𝑟̅)2𝑇
𝑖=1

(𝑇 − 1)
⁄ , and 𝑇 is the length 

of the holding period. The term 
𝜎2

2
 is known as “variance drain” or “cost of risk” (Arnott 2005; 

Messmore 1995). As 𝑇 approaches infinity, 𝑟̅ and 𝑟 converge (Pagliari 2017), such that 

 lim
𝑇→∞

𝑟̅ = 𝑟 (2) 

Long-horizon volatility 

Generalizing the variance of long-horizon return, 𝜎2 = 𝑉𝑎𝑟[∏ (1 + 𝑟𝑖)
𝑇
𝑖=1 ], Pagliari 

(2017) formulates the variance of any T-period horizon as: 

 𝜎𝑇
2 = 𝑇𝜎2[1 + 2 [

𝜑

1−𝜑
−

𝜑(1−𝜑𝑇)

𝑇(1−𝜑)2 ]] (3) 

where 𝜑 is the autocorrelation coefficient and between 0 and 1. Therefore, the long-horizon 

variance becomes a function of T, 𝜎2 and 𝜑. When there is no autocorrelation, or 𝜑 = 0, 𝜎𝑇
2 is 

simply 𝑇𝜎2, which is the case for independent and identically distributed returns. To produce a 

periodic long-horizon variance, we can rescale 𝜎𝑇
2 by T so that  

 lim
𝑇→∞

(
𝜎𝑇

2

𝑇
) = 𝜎2(

1+𝜑

1−𝜑
) (4) 

Similarly, we can scale long-horizon SD as: 

 
𝜎𝑇

𝑇
=

𝜎

√𝑇
√1 + 2 [

𝜑

1−𝜑
−

𝜑(1−𝜑𝑇)

𝑇(1−𝜑)2
] (5) 

Alternatively, we can employ the family of generalized autoregressive conditional 

heteroskedasticity (GARCH) models to estimate time-varying conditional variances. To 

guarantee a positive sign of the conditional variance, an exponential GARCH(i,j) model is used, 

 𝑟𝑡 = 𝜇 + 𝜑𝑟𝑡−1 + 𝜀𝑡 (6) 

 ln( 𝜎𝑡
2) = 𝜔 + ∑ 𝛾𝑖

𝛼𝑖𝜀𝑡−𝑖+|𝜀𝑡−𝑖|

𝜎𝑡−𝑖
+ ∑ 𝛽𝑗

𝑞
𝑗=1

𝑝
𝑖=1 ln( 𝜎𝑡−𝑗

2 ) (7) 



 

60 

where 𝑟𝑡 is asset return at time 𝑡 (𝑡 = 1, ⋯ 𝑇) and 𝜀𝑡 is the error term. Parameters 𝜇 and 𝜔 are 

constants in the conditional mean and variance equations respectively. Parameter 𝛼 captures the 

leverage effect of shocks on the conditional variance. The effect of 𝜀𝑡−1 is (𝛼𝑖 + 1) 𝜀𝑡−1 when 

𝜀𝑡−1 is positive (i.e., positive market shock), and (𝛼𝑖 − 1) 𝜀𝑡−1 when 𝜀𝑡−1 is negative (i.e., 

negative market shock). If 𝛼 < 0, then a negative shock has greater impacts on the volatility than 

a positive one. Parameter 𝛾 represents the magnitude effect of shocks. Parameter 𝛽 is the 

GARCH term that measures the volatility persistence. To produce periodic long-horizon 

variances, averages of conditional variances are taken every T periods. 

Long-horizon correlation 

Extending the general formula of correlation coefficient (𝜌𝑥,𝑦 =
𝜎𝑥,𝑦

𝜎𝑥∙𝜎𝑦
) between two 

random variables 𝑥 and 𝑦, long-horizon correlation can be calculated as 𝜌𝑥,𝑦|𝑇 =
𝜎𝑥,𝑦|𝑇

𝜎𝑥|𝑇∙𝜎𝑦|𝑇
. The 

infinite-horizon correlation is then expressed as (Pagliari 2017) 

 lim
𝑇→∞

𝜌𝑥,𝑦|𝑇 = 𝜌𝑥,𝑦
1−𝜑𝑥𝜑𝑦

√(1−𝜑𝑥
2)(1−𝜑𝑦

2)
 (8) 

The ratio of the infinite-horizon correlation to the single-period correlation is given as 

 lim
𝑇→∞

𝜌𝑥,𝑦|𝑇

𝜌𝑥,𝑦
=

1−𝜑𝑥𝜑𝑦

√(1−𝜑𝑥
2)(1−𝜑𝑦

2)
 (9) 

which reaches its minimum when 𝜑𝑥 = 𝜑𝑦 and increases as |𝜑𝑥 − 𝜑𝑦| widens. Therefore, assets 

with significantly different single-period autocorrelations may have a ratio higher than two. As 

such, their long-term diversification potential may diminish substantially.  

Alternatively, just as with conditional variances, conditional correlations can be obtained 

from a multivariate GARCH model and then averaged every T periods to produce periodic 

long-horizon correlations. 
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Portfolio optimization frameworks 

The M-V framework 

Under the M-V framework, a mixed-asset portfolio can be optimized by minimizing the 

risk subject to a given target return 𝜇 as: 

 Min
𝑤

𝑤′𝛴𝑤 (10) 

 s.t. 𝑤𝑇𝐸 = 𝜇, ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝑤𝑖 > 0  

where 𝑤 is the weight vector, 𝛴 is the variance-covariance matrix, and 𝐸 is the vector of mean 

returns. The positive weight constraints prohibit short selling. Solving the optimization problem 

by iteratively changing the weights of assets, the M-V efficient frontier presents the return and 

risk combinations of all efficient portfolios. 

The M-CVaR framework 

The M-CVaR framework has been suggested for assets that fail the multivariate 

normality test (Petrasek et al. 2012; Wan et al. 2015). First, the loss function of a portfolio is 

denoted as a function of asset weights and returns, 𝑓(𝑤, 𝑟), where 𝑟 follows a probability density 

function, 𝑝(𝑟). The cumulative distribution function of the loss can be formulated as Ψ(𝑤, 𝛶) =

∫ 𝑝(𝑟)
 

𝑓(𝑤,𝑟)≤𝛶
𝑑𝑟, where 𝑤 is the associated asset weights, and 𝛶  is the maximum loss level. 

Then we can define VaR and CVaR at a confidence level, 𝛼,  

 VaR𝛼(𝑤) = 𝑚𝑖𝑛{𝛶 ∈ ℜ: Ψ(𝑤, 𝛶) ≥ 𝛼} (12) 

and  

 CVaR𝛼(𝑤) =
1

1−𝛼
∫ 𝑓(𝑤, 𝑟) 𝑝(𝑟)𝑑𝑟

∞

𝑓(𝑤,𝑟)≤VaR𝛼(𝑤)
 (13) 
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The portfolio can then be optimized, under the M-CVaR framework, by solving the problem: 

Min
𝑤

CVaR𝛼(𝑤)  

 s.t. 𝑤𝑇𝑟̅ = 𝑢 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 (7) 

Data 

Returns of both private- and public-equity timberland investments from 1987Q4 to 

2017Q3 (120 quarters) are analyzed. Private-equity timberland returns are approximated by the 

NTI, which tracks the gross returns from a large pool of private-equity timberland properties 

specifically held for investment purposes. As of 2017Q3, the NTI accounts for returns on 457 

properties, totaling 14 million acres in size and $25 billion in market value (NCREIF 2017). 

Public-equity timberland investment returns (PUBLIC) are proxied by the value-

weighted quarterly returns on a dynamic portfolio of publicly traded timber firms in the US that 

had or have been managing timberlands, a method previously used by Mei and Clutter (2010). 

Over time, this portfolio has included nine firms, namely Deltic Timber, The Timber Co., IP 

Timberlands Ltd., Plum Creek, Pope Resources, Potlatch, Rayonier, Weyerhaeuser, and 

Catchmark. Potlatch, Rayonier, Weyerhaeuser and Catchmark are existing publicly traded timber 

REITs. Plum Creek was a timber REIT until it merged with Weyerhaeuser in 2016. Deltic 

Timber and Pope Resources are natural resource companies that focus on the ownership and 

management of timberland. The Timber Co. and IP Timberlands Ltd. were timberland limited 

partnerships of Georgia Pacific and International Paper, who sold their timberland holdings to 

private investors in 2001 and 2006, respectively. As of 2017Q3, PUBLIC consists of value-

weighted returns of Potlatch, Rayonier, Weyerhaeuser, Catchmark, Deltic Timber and Pope 

Resources. Market values of these firms are calculated as the products of average stock prices 
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and total shares outstanding at the end of each quarter. Financial data for these firms are obtained 

from the Center for Research in Security Prices (CRSP) through WRDS (2018). 

In addition to timberland investment returns, another six financial assets’ returns are 

included for the same period. These return data include returns of private- and public-equity real 

estate, proxied by NCREIF Property Index (NPI) and National Association of Real Estate 

Investment Trusts (NAREIT) US REITs Index (FTSE 2018), S&P 500 value-weighted returns 

(SP500), 10-year Treasury bonds yield (LTG) (OECD 2018) and Aaa corporate bonds yield 

(LTC) (Moody's 2018). Lastly the 1-month Treasury Bills yield (TB) is used for the risk-free rate 

(WRDS 2018). 

Results 

Testing autocorrelation and normality of returns 

Table 1 shows parameter estimates from the GARCH process which are used to 

determine effects of serial correlations of asset returns. Here we focus the discussion on 

timberland assets. Specifically, estimates of 𝜑 show that both private- and public-equity 

timberlands have considerable positive serial correlations. Parameter 𝛼 shows positive leverage 

effect of shocks on the conditional variance of both timberland asset classes, while estimates on 

𝛾 show that the magnitude of a shock’s impact is negative on private-equity timberland and 

positive on public-equity timberland. Estimates on 𝛽 show that both private- and public-equity 

timberland assets have high volatility persistence. For all assets, estimates of 𝜑 are statistically 

significant at 1% level, except for SP500 whose 𝜑 estimate is significant at 10% level, further 

supporting the need to look at returns from long-term perspectives. Table 1 also lists the p-value 

of the multivariate Shapiro-Wilk test, which rejects the null hypothesis of returns’ multivariate 

normal distribution, and thus suggests a violation of a key assumption of the M-V framework. 
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However, closer examinations on return data lead us to believe that M-V is a more 

practical framework than M-CVaR. The portfolio risk under the M-CVaR framework is the 

portfolio CVaR, or the “worst-case losses”. In the context of this study, quarterly returns for the 

long-term bonds and treasury bills show almost no negative returns throughout the sample 

(Figure 1). This means the “worst-case losses” are still positive gains and indicates that some 

portfolios will have negative risks. While the scenario of negative risks is theoretically possible, 

it hardly makes practical sense. Therefore, for the remainder of this study, we will focus on the 

results from M-V portfolio optimizations. 

Single- versus multi-period investment horizons 

Recognizing the need to examine returns over different horizons, we compare descriptive 

statistics of single-period and multi-period returns. We assume an investment horizon of five 

years (20 quarters) to showcase the characteristics associated with long-term horizons. The 

five-year horizon falls on the low end of the capital requirement for institutional timberland 

investors, which is usually 5-15 years (Caulfield and Zinkhan 1998). In addition, due to limited 

length of available return data, twenty quarters fit the dataset nicely to generate six 

non-overlapping periods. 

Table 2 lists the summary statistics and correlation coefficients for the one-quarter and 

five-year horizons9. Comparing mean returns, arithmetic mean returns are negligibly lower, 

while scaled geometric mean returns stay unchanged as horizon lengthens. The range of 

multi-period SD changes is considerably wide. For example, the SD of NAREIT is reduced by 

7.25% when the five-year horizon is used, while the volatilities of private real estate and long-

term bonds decay more slowly. This is consistent with Equation 5, which can be graphically 

                                                 
9 For summary statistics of multi-period and infinite-horizon returns in this study, all metrics are scaled quarterly, 

thus making it comparable to single-period statistics. 
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illustrated by Figure 2. The SD decays as holding periods lengthen, while the rate of decaying 

(shown by the slopes of curves) depends on assets’ serial correlations. In this case, NAREIT 

shows near-zero serial correlation, so the rate of its long-term volatility decay is a function of 

time, i.e., 
𝜎𝑇

𝑇
=

𝜎

√𝑇
. In contrast, both private real estate and long-term bonds have high serial 

correlations, so their long-horizon volatilities decay more slowly. Also shown in Table 2, the 

Sharpe Ratios illustrate the interaction of changing mean returns and SD as the holding periods 

become longer. The general trend is that the average Sharpe Ratio increases, indicating 

decreasing volatility as the investment horizon lengthens. 

The next comparison is on the correlations among assets. As a crude measure of the 

asset’s diversification potential, an asset’s average correlation coefficients with other assets are 

calculated. The average correlations coefficient of private-equity timberland increases from 0.13 

to 0.46, as investment horizons lengthen from one to 20 quarters, indicating reduced 

diversification abilities. For public-equity timberland investments, the average correlation 

increases by 0.20 as the horizon increases from one to 20 quarters. The correlation between NTI 

and PUBLIC in the absolute term increases from negative to positive when multi-period returns 

are used, suggesting that the substitutability between private and public timberland investments 

increases.  

Infinite-horizon investment 

A logical extension of long holding periods is to assume an infinite investment horizon, 

which represents virtual life spans of most institutional funds (Thaler and Williamson 1994). 

Average returns, volatilities and correlations are approximated from single-period estimations 

following Equations 2, 4 and 8, with summary statistics presented in Panel C of Table 2. While 

this exercise is pushing data to the limits, the results show double-digit SD for private-equity 
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timberland, public-equity timberland and common stocks. This observation is not surprising, as 

these assets have high single-period SD and autocorrelations. Private-equity real estate, which 

has relatively lower single-period SD, and public-equity real estate, which has near-zero 

autocorrelation, both see infinite-horizon SD increase less significantly. With respect to 

correlations, the average correlation coefficients increase from the single-period horizon case for 

most asset classes, indicating reduced diversification potential across assets when the investment 

horizon extends to infinity. 

Unconstrained portfolio optimization using single- and multi-period horizons 

The next step is to incorporate one-quarter, five-year and infinite-horizon returns, 

volatilities and correlations into the unconstrained portfolio optimization framework. The 

efficient frontiers show different portfolio return-and-risk combinations when using different 

holding periods (Figure 3). With the one-quarter horizon, the quarterly portfolio returns range 

from 1.57% to 2.74%, while SD’s span from 0.04% to 3.67%. When the horizon lengthens to 

five years, the efficient frontier slightly shifts towards the right, showing less efficient 

allocations. While the range of returns are unchanged, the SD span now indicates roughly a 1% 

increase as the holding period lengthens. Furthermore, when infinite-horizon returns are used, 

the frontier shifts lower, indicating further reduced efficiency across all risk preferences. This is 

consistent with the change in infinite-horizon SD and correlation patterns. 

The allocations to various asset classes change when investment horizons lengthen. Here 

we divide all efficient portfolios along the frontier to five equal segments by SD’s to produce 

five risk levels, namely low-, low-moderate-, moderate-, moderate-high- and high-risk portfolios. 

Focusing on allocations to timberland assets only. Table 3 illustrates that, when the one-quarter 

returns are used, in low-risk portfolios, private-equity timberland is allocated 37%, with 
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public-equity timberland at 2.5%. As the portfolio risk increases, private-equity timberland 

gradually obtains tractions, while public-equity timberland remains low in allocation. In 

high-risk portfolios, private-equity timberland is allocated nearly 95%, with public-equity 

timberland at less than 1%. 

Using the five-year horizon, private-equity timberland remains significantly allocated, 

averaging 33% across all risk levels, while public-equity timberland is excluded in all portfolios. 

In high-risk portfolios, private-equity timberland is allocated over 51% of capital, probably due 

to its relatively lower long-term SD’s (1.03%) among five high-yielding assets10.  

Unconstrained allocations change drastically when investment horizons extend to 

infinity. Private-equity timberland receives consistent allocations (23% on average), with more 

allocations in moderate- and high-risk portfolios. Public-equity timberland is excluded in all 

portfolios. Private-equity timberland’s persistence is somewhat intriguing, because as previous 

pointed out, assets see increased average infinite-horizon correlations, implying lower 

diversification potentials. Nevertheless, looking closely to NTI’s correlations with other 

high-yielding assets, we find these correlations either become more negative or remain low when 

switching from one-quarter to infinite-horizon returns. In addition, private-equity timberland’s 

second highest infinite-horizon Sharpe Ratio (0.17) among high-yielding assets makes it more 

attractive for moderate- and high-risk portfolios.  

Constrained portfolio optimization 

Prudent researchers would question the heavy allocations on timberland assets in the 

unconstrained scenario, because timberland investment usually makes up a small proportion of 

the overall portfolio (Caulfield 1998; Newell and Eves 2009; Wan et al. 2015). Therefore, based 

                                                 
10 In all ensuing discussions, high-yielding assets refer to the collection of timberland assets, real estate assets and 

common stocks, i.e., NTI, PUBLIC, NPI, NAREIT and SP500. 
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on industry practice, we impose a set of maximum allocation constraints, i.e., 2.5%, 5% and 

10%, for both private- and public-equity timberland to make practical assessments of 

timberland’s role in mixed-asset portfolios. 

Table 4 examines the roles of timberland assets in mixed-asset portfolios, given the 

impact of changing timberland constraints across investment-horizons. Private-equity timberland 

is consistently allocated close to the maximum limits across investment-horizons. Public-equity 

timberland, however, is only consistently allocated near limits when using single-period returns, 

and excluded when using long-horizon returns. The constrained optimization results support the 

previous unconstrained results that private-equity timberland is an ideal portfolio diversifier for 

both short- and long-term portfolios, while public-equity timberland is only attracting consistent 

allocations in portfolios with short holding periods. 

Robustness checks 

Robustness check 1: Different investment horizons 

As noted earlier, the five-year horizon is chosen because it reflects long capital 

commitment in practice for private timberland investors, and it fits the length of available dataset 

well. This section is designated to examine the effects on performance metrics by including 

alternative hypothetical investment intervals, namely eight quarters (two years), twelve quarters 

(three years) and twenty-four quarters (six years)11.  

Panel A of Table 5 illustrates the effects of lengthening investment horizons on average 

returns and volatilities. The general trend follows the analytical framework which states that 

arithmetic means approach geometric means when investment horizons lengthen, and SD’s 

                                                 
11 The additional long-term intervals do not reflect private-equity timberland holding periods in practice, but rather 

an exercise to rigorously examine the changes in mean returns, volatilities and correlations associated with changing 

horizons. The alternative intervals of two-, three- and six-year are only used in robustness checks. 
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decay as a function of both autocorrelations and the length of holding periods as previously 

shown in Figure 2. Moving on to correlation patterns, Panel B of Table 5 lists the average 

correlation coefficients of each asset with others and shows no consistent trend when the horizon 

increases from one quarter to infinity. Nevertheless, it confirms that correlation patterns change 

when investment horizons lengthen, and thus necessitates the use long term measures of returns, 

volatilities and correlations. 

Robustness check 2: Varying allocation constraints 

Previous works find that strict applications of portfolio optimizations bear potential 

shortfalls, such that a slight change in the return-risk relationship of one asset may drastically 

change the weights of optimal allocations of all assets (e.g., Green and Hollifield 1992). To 

explore this potential impact and test the robustness of the constrained portfolio analysis, instead 

of placing timberland-only constraints, we extend allocation limits to all asset classes. Starting 

from 40% for each asset, we gradually tighten the limit to 20% in 5% increments12. Moreover, 

we also include other hypothetical long-term returns as in the first robustness check, i.e., 

two-year, three-year and six-year returns. Allocations are again categorized into five risk levels. 

Table 6 reports the results of this robustness exercise. First focusing on private-equity 

timberland, NTI consistently reaches full allocation limits in most high-risk portfolios, regardless 

of investment horizons used. In the low- and low-moderate risk portfolios, NTI’s allocations 

from long-term optimizations are lower than allocations from the one-quarter optimization. 

However, the decline is not monotonic as investment horizons lengthen. Nevertheless, this 

indicates private-equity timberland’s reducing diversification benefits to low-risk investors as 

                                                 
12 Different from the constraints on timberland assets in the previous section, the equal allocation limits in this 

robustness exercise do not reflect industry practice, but rather attempts to rigorously examine the changes in 

portfolio compositions in response to changing horizons, varying limits on assets and different risk levels. 
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holding periods lengthen. Overall, private-equity timberland is a suitable risk diversifier when 

viewed with all short-term and long-term holding perspectives, albeit it has lower diversification 

potentials when holding periods lengthen. 

Moving on to public-equity timberland, PUBLIC is only allocated in portfolios using 

one-quarter returns, negligibly allocated using two-year returns, and completely absent using all 

other horizons. PUBLIC’s one-quarter allocation is mostly in moderate-high- and high-risk 

portfolios, averaging over 21% and 25%. In other risk levels, PUBLIC falls way short of 

maximum allocation limits. When investment horizons lengthen over two years, public-equity 

timberland becomes too risky, even when other assets are tightly constrained. Therefore, 

public-equity timberland is only considered as a suitable candidate in a short-term perceptive for 

investors comfortable with higher risks. 

Robustness check 3: Net-of-fee returns 

Institutional private-equity timberland assets are managed by TIMOs, who generate 

income through a set of management and performance related fees which amount to nearly 1% 

of total assets under management (Mendell 2011). NCREIF releases a sub-index to measure 

returns of a portfolio of timber funds and separate accounts (TFSAI). Here we use the net-of-fee 

returns of TFSAI to substitute gross returns as a proxy of private-equity timberland return in 

portfolio analysis. Table 7 compares private-equity timberland allocations, between the use of 

gross return and net return. Private-equity timberland still maintains significant allocations across 

portfolio risk levels, albeit slightly lower allocations when net returns are used. Hence, using 

returns both before- and after-fees generates similar portfolio analysis results. 
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Conclusions 

The increasing popularity of timberland assets among institutional investors calls for 

more scrupulous examinations on the diversification characteristics of these assets. While it has 

been widely established that timberland investment exhibits high risk-adjusted historical returns 

and low correlations with other financial assets, it is necessary to recognize and investigate the 

implications of its long-term nature. Past works using single-period returns often do not address 

this issue. In our study, we use long horizons to allow data to reveal their long-term behaviors.  

Stretching from a one-quarter view, to a five-year holding period, and eventually to an 

infinite horizon, we examine the three factors of the M-V framework, i.e., return, volatility and 

correlation. First, when the horizon extends from a quarter to five years, the reductions in 

volatilities for most assets are sizeable, hence presenting a different view of return-risk 

characteristics of these assets over long horizons. Besides, the infinite-horizon exercise sheds 

interesting lights on long-term risks, especially that infinite-horizon volatilities of 

highly-autocorrelated assets considerably increase.  

We also assess the roles of timberland assets in mixed-asset portfolios. Private-equity 

timberland is more consistently and heavily allocated over public-equity timberland. In a more 

realistic and constrained framework, both private- and public-equity timberland assets are 

allocated when using single-period returns. However, the long-horizon optimizations show that, 

while private-equity timberland is persistent in all portfolios, public-equity timberland is 

completely excluded. Hence, our results reveal that, private-equity timberland maintains its 

superior diversification roles with both short- and long-term holding periods, while public-equity 

timberland becomes too risky for portfolios with long holding periods. Infinite-horizon results 

suggest that, despite strengthening average correlation, private-equity timberland becomes less 
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correlated with other high-yielding assets, supporting its stable presence in open-end fund 

portfolios as a risk diversifier. 

In this study, we present scenarios where private-equity timberland is allocated 

considerable capital within mixed-asset portfolios. The analyses are limited to the available data 

of timberland returns. In addition, due to high transaction costs, the lack of available timberland 

and long turnover times, the actual allocations to private-equity timberland investment may be 

significantly lower than the results from ex post optimization results. In addition, investors may 

not purely rely on historical results to make forward-looking investments in practice. Future 

studies can again employ the family of GARCH models to explore ex ante portfolio analysis and 

incorporate more robust analysis with various bootstrapping models to extend beyond data 

samples. Nevertheless, this study intends to provide yet another perspective to assess returns and 

risks when it comes to investing in timberland.  
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Table 4.1. Parameter estimations from the exponential GARCH (1,1) process and test statistic 

from the multivariate Shapiro-Wilk normality test. 

Asset  𝜑 𝛼 𝛽 𝛾 

NTI 0.80 0.34 0.95 -0.41 

PUBLIC 0.82 0.03 0.81 0.24 

NPI 0.82 0.09 0.78 1.22 

NAREIT -0.02 -0.18 0.71 0.35 

SP500 0.54 -0.51 0.61 0.25 

LTG 0.91 0.26 0.83 -0.47 

LTC 0.92 0.06 0.41 0.20 

TB 0.95 0.49 0.96 0.96 

Shapiro-

Wilk 0.00    

Note: LTG stands for long-term government bonds. LTC stands for long-term corporate bonds. 

TB stands for Treasury Bills. Shapiro-Wilk test statistic is the p-value of multivariate normality 

test, indicating significant evidence exists to reject the null hypothesis of multivariate normal 

distribution at 1% level. 

 



 

74 

Table 4.2. Summary statistics of selected asset classes using holding periods of one-quarter, five-year and infinite horizons. 
Panel A: Using One-Quarter Returns Correlation Coefficients 

Asset 
Arithmetic 
Mean 

Geometric 
Mean SD 

Sharpe 
Ratio  NTI PUBLIC NPI NAREIT SP500 LTG LTC TB 

NTI 2.82 2.75 3.83 0.55 NTI 1.00        

PUBLIC 3.07 2.43 11.16 0.21 PUBLIC -0.10 1.00       

NPI 1.94 1.92 2.20 0.55 NPI -0.05 0.08 1.00      

NAREIT 2.93 2.48 9.29 0.24 NAREIT -0.08 0.55 0.16 1.00     

SP500 2.04 1.73 7.76 0.17 SP500 0.02 0.68 0.12 0.59 1.00    

LTG 1.21 1.21 0.51 0.94 LTG 0.40 -0.02 -0.11 -0.01 0.02 1.00   

LTC 1.54 1.54 0.43 1.88 LTC 0.36 -0.05 -0.20 -0.05 -0.04 0.98 1.00  

TB 0.73 0.73 0.60  TB 0.36 -0.03 0.10 -0.04 0.06 0.89 0.85 1.00 

     

Average 

Coefficient 0.13 0.16 0.04 0.16 0.21 0.31 0.26 0.31 

Panel B: Using Five-Year Returns Correlation Coefficients 

Asset 
Arithmetic 
Mean 

Geometric 
Mean SD 

Sharpe 
Ratio  NTI PUBLIC NPI NAREIT SP500 LTG LTC TB 

NTI 2.76 2.75 1.03 1.97 NTI 1.00        

PUBLIC 2.44 2.43 6.93 0.25 PUBLIC 0.36 1.00       

NPI 1.92 1.92 1.34 0.89 NPI -0.34 0.26 1.00      

NAREIT 2.50 2.48 2.04 0.87 NAREIT 0.32 0.95 0.52 1.00     

SP500 1.75 1.73 3.05 0.33 SP500 0.41 0.86 0.26 0.87 1.00    

LTG 1.21 1.21 0.39 1.23 LTG 0.87 0.08 -0.33 0.09 0.07 1.00   

LTC 1.54 1.54 0.34 2.38 LTC 0.82 -0.02 -0.37 -0.01 -0.03 0.99 1.00  

TB 0.73 0.73 0.51  TB 0.79 0.04 -0.15 0.11 0.04 0.98 0.98 1.00 

     

Average 

Coefficient 0.46 0.36 -0.02 0.41 0.36 0.39 0.34 0.40 
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Table 4.2. Continued. 
Panel C: Using Infinite-Horizon Returns Correlation Coefficients 

Asset 
Arithmetic 
Mean 

Geometric 
Mean SD 

Sharpe 
Ratio  NTI PUBLIC NPI NAREIT SP500 LTG LTC TB 

NTI 2.75 2.75 11.49 0.18 NTI 1.00        

PUBLIC 2.43 2.43 35.77 0.05 PUBLIC -0.10 1.00       

NPI 1.92 1.92 6.90 0.17 NPI -0.05 0.08 1.00      

NAREIT 2.48 2.48 9.13 0.19 NAREIT -0.14 0.99 0.27 1.00     

SP500 1.73 1.73 14.22 0.07 SP500 0.02 0.78 0.14 0.71 1.00    

LTG 1.21 1.21 2.35 0.21 LTG 0.44 -0.03 -0.12 -0.04 0.03 1.00   

LTC 1.54 1.54 2.10 0.39 LTC 0.41 -0.06 -0.22 -0.13 -0.07 0.99 1.00  

TB 0.73 0.73 3.72  TB 0.46 -0.03 0.12 -0.15 0.10 0.93 0.87 1.00 

     

Average 

Coefficient 0.14 0.23 0.04 0.22 0.25 0.32 0.26 0.33 

Note: LTG stands for long-term government bonds. LTC stands for long-term corporate bonds. TB stands for Treasury Bills. Mean, 

and SD are in percentages. Average coefficients are calculated as the average of correlation coefficients of the target assets with other 

assets, excluding themselves.  
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Table 4.3. Comparison of average allocations to timberland assets on different risk levels with varying investment horizons under 

unconstrained optimizations. 
 Using One-Quarter Returns  Using Five-Year Returns  Using Infinite-Horizon Returns 

Portfolio Risk 

Levels 

NTI PUBLIC Total  NTI PUBLIC Total  NTI PUBLIC Total 

Low 37.37 2.46 39.83  2.61 - 2.61  2.82 - 2.82 

Low-

Moderate 

81.98 4.50 71.39  24.40 - 24.40  14.63 - 14.63 

Moderate 89.01 3.50 92.51  43.26 - 43.26  27.04 - 27.04 

Moderate-

High 

91.85 2.18 94.03  48.33 - 48.33  37.74 - 37.74 

High 94.69 0.86 95.55  51.14 - 51.14  42.37 - 42.37 

Note: All allocations are in percentages. The five portfolio risk levels are obtained by equally dividing the portfolios into five 

segments, along the efficient frontiers ranked by portfolio SD’s.  
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Table 4.4. Comparison of average allocations to timberland assets with different investment horizons, when timberland assets are 

constrained. 

 Using One-Quarter Returns  Using Five-Year Returns  Using Infinite-Horizon 

Returns 
Maximum 

Weight to Any 

Timberland 

Asset 

NTI PUBLIC Total  NTI PUBLIC Total  NTI PUBLIC Total 

2.5% 2.47 2.42 4.89  2.19 - 2.19  2.29 - 2.29 

5.0% 4.92 4.66 9.58  4.34 - 4.34  4.48 - 4.48 

10.0% 9.80 8.61 18.41  8.52 - 8.52  8.55 - 8.55 

Note: All allocations are in percentages. The five portfolio risk levels are obtained by equally dividing the portfolios into five 

segments, along the efficient frontiers ranked by portfolio SD’s.  
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Table 4.5. Summary statistics for the 1-quarter, 2-, 3-, 5- and 6-year holding periods. 
Panel A –Mean and SD 

Arithmetic Means    SD   

Asset 1-Quarter 2-Year 3-Year 5-Year 6-Year  1-Quarter 2-Year 3-Year 5-Year 6-Year 

NTI 2.82 2.77 2.77 2.76 2.76  3.83 1.61 1.32 1.03 0.94 

PUBLIC 3.07 2.47 2.47 2.44 2.44  11.16 8.92 8.11 6.93 6.49 

NPI 1.94 1.93 1.93 1.92 1.92  2.20 1.74 1.58 1.34 1.26 

NAREIT 2.93 2.53 2.51 2.5 2.49  9.29 3.24 2.64 2.04 1.87 

SP500 2.04 1.76 1.77 1.75 1.75  7.76 4.52 3.83 3.05 2.81 

LTG 1.21 1.21 1.21 1.21 1.21  0.51 0.45 0.43 0.39 0.37 

LTC 1.54 1.54 1.54 1.54 1.54  0.43 0.39 0.37 0.34 0.32 

TB 0.73 0.73 0.73 0.73 0.73  0.60 0.56 0.54 0.51 0.49 

Panel B – Average Correlation Coefficients 

 NTI PUBLIC NPI NAREIT SP500 LTG LTC TB 

1-Quarter 0.13 0.16 0.01 0.16 0.21 0.31 0.26 0.31 

2-Year 0.26 0.14 0.04 0.20 0.22 0.31 0.27 0.31 

3-Year 0.34 0.18 -0.10 0.12 0.12 0.31 0.29 0.29 

5-Year 0.46 0.36 -0.02 0.41 0.36 0.39 0.34 0.40 

6-Year 0.21 0.21 -0.15 0.05 0.12 0.31 0.31 0.31 

Note: LTG stands for long-term government bonds. LTC stands for long-term corporate bonds. TB stands for Treasury Bills. Mean, 

and SD are in percentages. Average coefficients are calculated as average of correlation coefficients of the target assets with other 

assets excluding themselves.  
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Table 4.6. Changing constrained allocations to timberland assets under different investment horizons and different risk levels, when all 

assets are constrained. 
 Using One-Quarter Returns 

Maximum 

Weight to 

Any 

Asset 

  
NTI 

  
 

  
PUBLIC 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 30.93 40.00 40.00 40.00 40.00  4.39 10.38 15.71 21.04 25.19 

35% 28.30 35.00 35.00 35.00 35.00  4.33 11.13 15.67 21.00 27.29 

30% 25.47 30.00 30.00 30.00 30.00  4.37 11.43 16.63 21.27 28.69 

25% 22.19 25.00 25.00 25.00 25.00  4.78 11.61 19.96 25.00 25.00 

20% 19.44 20.00 20.00 20.00 20.00  5.27 14.22 20.00 20.00 20.00 
 

Using Two-Year Returns 

Maximum 

Weight to 

Any 

Asset 

  
NTI 

  
 

  
PUBLIC 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 10.65 31.49 40.00 40.00 40.00  0.20 - - - - 

35% 11.51 30.22 35.00 35.00 35.00  0.19 - - - - 

30% 11.83 29.11 30.00 30.00 30.00  0.20 - - - - 

25% 12.73 24.97 25.00 25.00 25.00  0.18 - - - - 

20% 15.37 20.00 20.00 20.00 20.00  0.00 - 0.03 1.04 2.51 
 

Using Three-Year Returns 

Maximum 

Weight to 

Any 

Asset 

  
NTI 

  
 

  
PUBLIC 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 6.37 23.75 36.32 39.80 40.00  - - - - - 

35% 6.78 23.56 34.80 35.00 35.00  - - - - - 

30% 7.22 23.94 30.00 30.00 30.00  - - - - - 

25% 7.59 23.65 25.00 25.00 25.00  - - - - - 

20% 10.56 20.00 20.00 20.00 20.00  - - - - - 
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Table 4.6. Continued. 
 Using Five-Year Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
PUBLIC 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 6.83 25.03 37.77 40.00 40.00  - - - - - 

35% 7.29 25.55 34.02 35.00 35.00  - - - - - 

30% 7.75 25.37 30.00 30.00 30.00  - - - - - 

25% 8.36 22.20 25.00 25.00 25.00  - - - - - 

20% 11.55 19.93 20.00 20.00 20.00  - - - - - 
 

Using Six-Year Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
PUBLIC 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 19.40 38.05 40.00 40.00 40.00  - - - - - 

35% 18.49 33.77 35.00 35.00 35.00  - - - - - 

30% 17.35 29.56 30.00 30.00 30.00  - - - - - 

25% 15.82 25.00 25.00 25.00 25.00  - - - - - 

20% 15.65 20.00 20.00 20.00 20.00  - - - - - 
 

Using Infinite-Horizon Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
PUBLIC 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 4.48 17.52 27.04 37.82 40.00  - - - - - 

35% 5.47 18.53 27.01 34.76 35.00  - - - - - 

30% 6.44 19.40 26.75 30.00 30.00  - - - - - 

25% 7.72 20.29 25.00 25.00 25.00  - - - - - 

20% 10.44 19.99 20.00 20.00 20.00  - - - - - 

Note: Allocation constraints indicate the maximum weights that can be assigned to any one asset class. Starting from 40% allowed to 

each asset, the constraints tightens to 20% in five increments, such that the maximum allocation allowed to each asset declines by 5% 

each time. All allocations and averages are in percentages. 
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Table 4.7. Comparison of allocations to private-equity timberland using gross and net returns. 
 Using One-Quarter Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
TFSAI 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 30.93 40.00 40.00 40.00 40.00  30.12 40.00 40.00 40.00 40.00 

35% 28.30 35.00 35.00 35.00 35.00  27.83 35.00 35.00 35.00 35.00 

30% 25.47 30.00 30.00 30.00 30.00  25.41 30.00 30.00 30.00 30.00 

25% 22.19 25.00 25.00 25.00 25.00  22.31 25.00 25.00 25.00 25.00 

20% 19.44 20.00 20.00 20.00 20.00  19.52 20.00 20.00 20.00 20.00 

Average 25.26 30.00 30.00 30.00 30.00  25.04 30.00 30.00 30.00 30.00 
 

Using Two-Year Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
TFSAI 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 10.65 31.49 40.00 40.00 40.00  9.79 27.23 39.84 40.00 40.00 

35% 11.51 30.22 35.00 35.00 35.00  10.72 27.42 35.00 35.00 35.00 

30% 11.83 29.11 30.00 30.00 30.00  11.30 27.82 30.00 30.00 30.00 

25% 12.73 24.97 25.00 25.00 25.00  12.60 24.91 25.00 25.00 25.00 

20% 15.37 20.00 20.00 20.00 20.00  15.78 20.00 20.00 20.00 20.00 

Average 12.42 27.16 30.00 30.00 30.00  12.04 25.47 29.97 30.00 30.00 
 

Using Three-Year Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
TFSAI 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 6.37 23.75 36.32 39.80 40.00  3.69 15.86 28.79 31.50 33.57 

35% 6.78 23.56 34.80 35.00 35.00  3.70 16.65 29.08 32.59 33.85 

30% 7.22 23.94 30.00 30.00 30.00  4.26 18.33 27.43 30.00 30.00 

25% 7.59 23.65 25.00 25.00 25.00  5.32 21.01 25.00 25.00 25.00 

20% 10.56 20.00 20.00 20.00 20.00  8.80 20.00 20.00 20.00 20.00 

Average 7.70 22.98 29.22 29.96 30.00  5.15 18.37 26.06 27.82 28.48 
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Table 4.7. Continued. 
 Using Five-Year Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
TFSAI 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 6.83 25.03 37.77 40.00 40.00  3.11 19.69 27.08 37.51 40.00 

35% 7.29 25.55 34.02 35.00 35.00  4.19 20.93 25.69 33.93 35.00 

30% 7.75 25.37 30.00 30.00 30.00  5.68 19.80 26.03 29.76 30.00 

25% 8.36 22.20 25.00 25.00 25.00  6.06 18.32 25.00 25.00 25.00 

20% 11.55 19.93 20.00 20.00 20.00  10.44 19.28 20.00 20.00 20.00 

Average 8.36 23.62 29.36 30.00 30.00  5.90 19.61 24.76 29.24 30.00 
 

Using Six-Year Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
TFSAI 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 19.40 38.05 40.00 40.00 40.00  16.74 36.13 40.00 40.00 40.00 

35% 18.49 33.77 35.00 35.00 35.00  16.60 32.06 35.00 35.00 35.00 

30% 17.35 29.56 30.00 30.00 30.00  15.70 28.93 30.00 30.00 30.00 

25% 15.82 25.00 25.00 25.00 25.00  14.44 25.00 25.00 25.00 25.00 

20% 15.65 20.00 20.00 20.00 20.00  15.30 20.00 20.00 20.00 20.00 

Average 17.34 29.28 30.00 30.00 30.00  15.76 28.42 30.00 30.00 30.00 
 

Using Infinite-Horizon Returns 

Maximum 

Weight to 

Any Asset 

  
NTI 

  
 

  
TFSAI 

  

Low Low-

Moderate 

Moderate Moderate-

High 

High  Low Low-

Moderate 

Moderate Moderate-

High 

High 

40% 4.48 17.52 27.04 37.82 40.00  5.23 17.01 23.61 39.07 37.64 

35% 5.47 18.53 27.01 34.76 35.00  6.07 18.23 23.85 35.00 34.87 

30% 6.44 19.40 26.75 30.00 30.00  7.31 19.14 24.26 30.00 30.00 

25% 7.72 20.29 25.00 25.00 25.00  8.96 20.08 25.00 25.00 25.00 

20% 10.44 19.99 20.00 20.00 20.00  12.03 20.00 20.00 20.00 20.00 

Average 7.78 19.14 25.16 29.52 30.00  7.92 18.89 23.34 28.27 28.29 
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Table 4.7. Continued. 

 

Note: The purpose of this comparison is to show decreasing allocations to private-equity timberland, switching from gross return (NTI) to net return (TFSAI). Allocation 

constraints indicate the maximum weights that can be assigned to any one asset class. Starting from 40% allowed to each asset, the constraints tightens to 20% in five increments, 

such that the maximum allocation allowed to each asset declines by 5% each time. All allocations and averages are in percentages.  
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Figure 4.1. Histograms of selected asset return distributions 

Note: The histograms show that returns of two long-term bonds and treasury bills are almost 

exclusively positive, meaning no negative losses even in the worst case for these assets, resulting 

in potential “negative risks” for a mixed-asset portfolio built under the M-CVaR framework. 
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Figure 4.2. Generic illustration of (scaled) long-term SD decay.  

Note: The dotted line shows the SD decay of an asset with i.i.d. returns (i.e., ϕ=0). Lines above 

and below the dotted line aim to illustrate that higher serial correlation slows down decay 

process, and negative serial correlation accelerates decaying. Long-term SD is quarterly scaled to 

be comparable with single-period SD. 
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Figure 4.3. Comparisons of efficient frontiers of mixed-asset portfolio with one-quarter, 

five-year and infinite-horizon returns 
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CHAPTER 5 

DISCUSSIONS AND CONCLUSIONS 

 

Three issues related to the economic impacts, returns and risks of timberland investments 

are examined: (1) the risks and returns of optimal natural resource portfolios comprised of US 

timberland and farmland assets; (2) the impacts of forest-related CEs on surrounding property 

values; (3) the roles of private- and public-equity timberland investments in mixed-asset 

portfolios. 

 Chapter 2 examines the risks and returns of optimal portfolios of US timberland and 

farmland. Using pine product prices in 22 US southern timber regions, synthetic timberland 

return series provide possibilities for portfolio optimization at finer geographical levels and 

another alternative timberland return proxy. Results show that M-CVaR is a more efficient 

framework for portfolio optimizations. US$2 billion and US$10 billion hypothetical portfolios 

are constructed with allocation constraints. The optimal portfolios show that as investment sizes 

increase, natural resource assets become more constrained and thus have reduced diversification 

potentials, with increasing portfolio risk and lower portfolio return. The larger and more 

constrained portfolio also bears the greater risk over the long term, shown by VaR and CVaR 

simulations.  

 Overall, this study provides another perspective to assess risks and returns of natural 

resource investments using portfolio analysis. Potential future studies can be oriented towards 

finding the appropriate allocation constraints to improve the quality of portfolio analysis. In 
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addition, to rigorously examine risks in timberland and farmland assets, other measures of risks 

can be explored and compared with SD and CVaR. 

 Chapter 3 takes an in-depth look at the impacts of CEs on the values of properties 

surrounding CE-encumbered forests and open spaces in Metro Atlanta. The results from the 

hedonic pricing model regression show that CE’s impacts on land values are comprehensive and 

diminishing with distance. The total number of CEs in the vicinity of properties positively 

enhances land values. In addition, vacant land parcels see increased values after CEs are 

established in their neighborhoods. Furthermore, estimation results on physical characteristics of 

properties reflect the challenges faced by conservation activities. High development pressure is 

shown by positive estimates on commercial and industrial land type variables. Increasing values 

consequently makes it more expensive to purchase and conserve forests for timber production, 

natural recreation and wildlife protection. Inflating property valuations also negatively affect 

owner’s ability to pay property taxes on forests.  

 While this study illustrates the economic benefits of CEs on surrounding vacant land 

parcels, the quality of results can be improved by collecting more repeat sales information on the 

same properties to better assess heterogeneity at the property level. Furthermore, the scope of 

future studies can be zoomed in to examine CE’s impacts at smaller geographic scales to arrive 

at more precise conclusions regarding the relationship between CE and local taxation. In 

addition, it would be interesting to examine appraisal values’ trends before and after CEs’ 

establishments, to rigorously investigate the fairness of appraisal-based CE valuation process. 

 In Chapter 4, the role of timberland assets is examined within a mixed-asset portfolio, 

from both single-period and long-horizon perspectives. The study also compares the roles of 
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private-equity and public-equity timberland assets to address the common misnomer that 

TIMO-management timberlands and REITs have similar diversification potentials. 

 Exponential GARCH process results show that both timberland assets are positively 

serially correlated, and therefore, their performance can be misrepresented using only 

single-period return and volatility. Comparisons of portfolio analysis results using 1-quarter, 

5-year and infinite-horizon returns show that both timberland assets are private-equity 

timberland investment dominates mixed-asset portfolios, and are popular among high-risk 

portfolios. On the other hand, public-equity timberland is only present when single-period 

returns are used. Constrained portfolio optimizations support these results. When constrained by 

maximum weight limits, both private- and public-equity timberland assets are allocated to their 

limits in short-term portfolios, while long-term portfolios only invest in private-equity 

timberland assets. 

Chapter 4 provides another look on the role of timberland assets in mixed-asset 

portfolios, by accounting for the serial correlations of asset returns. The results suggest 

timberland’s varying diversification potential as investment horizons lengthen. This is 

particularly applicable for private-equity timberland, since most such investments require 

lengthy capital commitment, which suggests long holding periods. Nevertheless, the comparison 

of allocations to NTI and PUBLIC shows the superior diversification benefits of private-equity 

timberland over long holding periods. Future studies can use various bootstrapping methods to 

expand the long-term analysis beyond the available data sample. In addition, the use of GARCH 

models can improve the analysis to provide important evidence for ex ante portfolio allocations.  
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