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ABSTRACT 

Human activities are generated due to physiological, psychological and economic needs, 

and have spatial, temporal, and social elements. In the era of big data, geo-tagged social media 

are becoming new platforms that influence human behaviors in space and time, and are also 

serving as new channels for geographers to observe human interactions and social connections at 

fine scales. Traditional geographical representation and analysis methods in GIS are not 

sufficient to tackle the much more complex nature of the location-based social media activity. 

The convergence of GIS and social media has resulted in data avalanche and requires new 

theories in GIScience. This dissertation has developed methods and tools to represent and 

analyze location-based social media activates (LBSMA) in GIS in three perspectives: (1) this 

research has proposed a conceptual framework of location-based social media activity to model 

human activities in spatial-temporal-social dimension , and has implemented this data framework 

to organize LBSMA in GIS and produce practical tools to calculate useful measurements; (2) this 

research has developed a random walking algorithm to characterize urban road networks by 

calculating the possibility distribution of human locations over time; and (3) this research has 



 

introduced location-based social connections to visualize and quantify social connections in 

spatial-temporal dimension. In addition, this research has established a dedicated website 

(www.lbsoical.net) to extract and analyze the real-world social media data, and provide 

visualization and analysis function for various studies. The developed methods and tools in this 

research can organize, visualize, simulate and analyze human activities in spatial-social-temporal 

dimension. Those methods have added to our understanding of human interactions by providing 

innovative and applicable measures for places, social connections and human activities. The 

findings from this research have yielded new insights regarding human activities in virtual and 

physical space, and have enhanced technical capabilities for social media analysis in GIS. The 

developed methods can help identify place-based or people-based strategies, e.g., urban 

planning, traffic planning, commercial advertising or energy communicating. The proposed 

framework will pave new avenues for future research, such as public health, transportation, 

urban geography and social science. 
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 

Background 

Geography is the science of discovering, investigating and understanding nature, as well 

as humans and their interactions; it is the discipline that studies the social and environmental 

phenomena of geographic space (Goodchild 2010). Geographic Information Science 

(GIScience), a branch of geography, describes, analyzes, models, reasons about, and makes 

decisions on phenomena distributed on the surface of the earth (Wright, Goodchild, and Proctor 

1997). Research on human activities plays an important role in geography. People in GIS are 

resource contributors and a study target, and the average citizen is both a consumer and a 

producer of geographic information (Goodchild 2010). Location awareness is embedded in the 

use of mobile phones, handheld devices and laptops (Licoppe and Inada 2008). Meanwhile, 

location-based and people-based data organization has been applied in time geography to model 

human activities in physical space (Miller 2003). Human activities in virtual space (the use of 

computers or telephone to communicate) also gains interests from the study of virtual geography 

(Batty 1997). 

Human activities in physical space and virtual space can influence each other (Yu and 

Shaw 2008). With the popularization of location-based social networking, social media has 

moved from virtual space to physical place. The convergence of GIS and social media has 

resulted in data avalanche and requires new theories in GIScience, e.g., real-time monitoring, 

formalizing place and multimedia representation (Sui and Goodchild 2011). Cyber geography 

has been introduced to investigate interconnected spatial patterns and relationships between 
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cyberspace and the real world. In the conceptual framework of cyber geography , place, which 

can also be considered as a spatial-temporal construct (Yao 2010), combines temporal 

information and social media content (Tsou and Leitner 2013); a message from social media is 

considered an extension of the human mind (Tsou and Leitner 2013).  

Research Objectives 

This research defines the location-based social media activity (LBSMA) as a subset of 

human activity, which occurs in the real world with the contents advertised on social media 

(Figure 1-1). The location-based social activities not only inhabit geographical and temporal 

positions, but also embody semantic messages and social associations of human activities. In 

addition to answering where and when in traditional human activities, the location-based social 

activities can reveal what and who, and potentially indicate why and how of human activities. 

This research has answered the question: how to represent and analyze the location-based social 

activities in GIS? 

 

Figure 1-1 Definition of Location-Based Social Media Activities (LBSMA) 

Human Activity 

Physical Space 
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Overarching Research Goal: representing and analyzing location-based social media activity 

(LBSMA) in GIS 

 Objecvite-1: This research has developed a framework of LBSMA data that provides 

theoretical and technical foundations for the representation of LBSMA in GIS. 

Connected with social media data, LBSMA can provide additional information on human 

activities in a spatial-temporal-social dimension. A comprehensive data conceptualization of 

location-based social activity is required to effectively and efficiently organize such kind of data 

in GIS. A spatial-temporal-social dimensional data model of LBSMA has been developed in 

order to provide the theoretical and technical foundation for analysis of LBSMA. 

 Objecvite-2: This research has analyzed human activity in spatial, temporal, and social 

dimension, and provided innovative and feasible measures of places, people and social 

connections. 

Road networks are essential components of urban places. The relationships between road 

networks and human activities are mutually dependent. This research has developed a simulation 

algorithm that can mimic behaviors of human activities to calculate the possibility location of 

human activities in spatial-temporal dimension. The calculated values can serve as measurements 

of urban areas in terms of spatial importance indicators that are associated with social-economic 

characteristics of surround areas. 

Substantial measures of human activities are also needed in GIS to handle the emerging 

social media data. The measurement of social association in traditional social network analysis, 

for instance, is only a simple indicator of a static network parameter. Based on the proposed 

LBSMA model, the social connections have been quantified in a spatial-temporal dimension 
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where human activities can be visualized and analyzed based on time, location and features of 

social interaction.  

Significance of Study 

Innovative Model of LBSMA Data  

This research has filled the blank of a suitable data representation model for human 

activity in a spatial-temporal-social dimension. This project has designed an innovative data 

model for LBSMA analysis by integrating the social networks model with the human activity 

model. Previous studies only focus on one aspect of human behavior, either physical movements 

in the spatial-temporal dimension or structure and interaction exploration in the social networks. 

However, human activities are generated due to physiological, psychological and economic 

needs and have spatial, temporal, and social elements (Ronald et al. 2012) . Human activities are 

constrained by physical and social conditions. Mobile positioning data cannot answer why 

people move that way (Torrens, Li, and Griffin 2011). Therefore, by connecting the spatial-

temporal dimension of human activities to their corresponding social association, this research is 

able to provide a comprehensive LBSMA data model that can represent and analyze human 

activities in a spatial-temporal-social dimension. 

Applicable Methods for LBSMA Analysis 

People produce voluminous location-based data and valuable information in social 

media. Although several attempts were made to analyze the location-based social media data 

(ESRI 2013; Geofeedia 2014), systematic and substantial methodologies for social media data in 

GIS are absent. This research has developed ways to make use of LBSMA data for different 

purposes. The research has employed spatial-temporal analysis, semantic extraction and machine 

learning technics to create a taxonomy and classification system of LBSMA. New measurements 
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of human activities and places are proposed by incorporating the social contents and social 

interactions from social media. Potential position of human activities under spatial-temporal-

social constraints can be simulated to quantify spatial importance of road networks. Such 

simulation is valued in different scenario planning practices. 

Literature Review 

A set of word clouds of a 5-year interval in Figure 1-2 conceptually summarizes the 

related topics from the literature since the 1990s. In the first 5-year interval, spatial database 

structure and corresponding data mining/ knowledge discovery are the major topics. Network 

analysis gained concentration at the second stage where research centers on structure and 

relationship analysis of social network. Starting from the 2000s, mobile phones connected with 

GPS and the Internet became popular, which triggered the studies of real-time tracking and 

modeling of human activities. In the 2010s, the possibility of harvesting data from social media 

motivates the new research interests of social events, i.e., virtual activities in social media.  

 

Figure 1-2 Word Cloud from Literature by 5-year Interval 
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Human Activity 

Research of human behavior holds an important position in the geographic study. The 

study of human spatial behavior covers a wide range of topics, including travel and way-finding, 

migration and residential mobility, decision making and choice behavior, as well as spatial 

cognition and environmental perception (Kwan 2010). Space, time and space-time have been 

recognized as complex social and cultural constructions as well as geometric dimensions in 

geography (Merriman 2012). Time, space and social differentiation are frequently examined in 

critical geography (Schwanen and Kwan 2012). 

The location-based organization of data of GIS fits with the place-based theories and 

models of transportation and urban form but ignores the basic spatial-temporal conditions of 

human activities. Time geography offers a people-oriented extension to place-based tools in GIS 

(Miller 2003). 

 Time Geography 

Time consciousness was discussed in human ecology (time space diagrams), Marxism 

(internalized sense of time discipline) and the ideology of everyday time practice (documents or 

texts/ devices or instruments/ disciplining or drilling people to routinize a set of practices) (N. J. 

Thrift 1996). All time is relative and rooted in the context in which people observe or experience 

it (Dodgshon 2008). However, traditional regional geography, a science of exploring the 

interaction of environment and human behavior, cannot answer the following question: What is 

the need of social distribution? Meanwhile, social organization and micro-level technology of 

individual behavior were also neglected (Hägerstrand 1970).  There were only abstract 

parameters of time that were devoid of all differentiating content or sequence in the 1960s 

(Dodgshon 2008). 
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Hägerstrand, therefore, introduced the time coordination in regional geography to resolve 

those problems in the 1970s. He argued that an individual has only one role, occupies one 

location in a given time duration, and the time scale is continuous. Accordingly, a time-space 

model had been constructed in which three constraints were proposed: capability constraints 

limited by biological constructions or tools, coupling constraints limited by communication 

among people, and authority constraints consisted in a hierarchy of domains (Hägerstrand 1970).  

Anderson also proposed a concept of time budget in which the time-budget diary incorporates 

the timing, duration and location of an individual's activities (Anderson 1970). Individual 

movement implies a trade-off between the inseparability and scarce nature of space and time, 

and is conditioned by various constraints and opportunities. These ideas became known as time 

geography (Kuijpers et al. 2010). Time geography is not an attempt to predict exact travel 

behavior but indicates individual travel possibilities (Neutens et al. 2008). 

Hägerstrand’s space-time geographies had a significant impact on geographical thinking 

(Merriman 2012). However, the space-time analysis in which time is both experientially and 

spatially referenced didn’t say how the space and time involved were constructed or experienced 

(Dodgshon 2008). Schwanen and Kwan also demand a comprehensive and systematic analysis of 

mutual implication among space, time and social differentiation, and a pluralistic approach in 

terms of theory and methodology. They argue that time, space and social differentiation should 

be coupled in the study of practices or phenomena in critical space-time geographies (Schwanen 

and Kwan 2012). For example, Information Communication Technology (ICT) uses leads  for 

the relaxation of some of the space-time constraints that limit people's mobility and activity 

space, and creates new topologies of spatial interaction of human activities (Kwan 2007). 

 Representation of Human Activity in GIS 
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GIS is considered as digital electronic data storage that produces spatial representations. 

Two central characteristics of GIS are the storage of digital data and the production of electronic 

spatial representations. Therefore, GIS can be regarded as a set of tools, technologies, 

approaches and ideas that are vitally embedded in broader transformations of science, society 

and culture (Pickles 1995). 

Geographic data models must serve as an acceptable reflection of the real-world 

phenomena. GIS, therefore, requires a critical theory reflecting sustained interrogation of the 

ways in which the use of technology, and its products reconfigure broader patterns of culture or 

political relations (Pickles 1995). GIS visualization, for instance, can establish important 

connections between large-scale phenomena and the everyday lives of individuals.  Critical 

agency of GIS users can play a significant role, for example in the subjectivities of GIS 

practitioners, and the ability of GIS to understand individual experiences (Kwan 2002). 

The ontological issues of time in GIS include linear or cyclic views of time, multiple 

times (world time, valid time, user defined time), continuous or discrete change, branching time 

and alternative timelines, etc. (Peuquet 2001). The first in-depth analytical treatment of time-

geography was conducted by Lenntorp in the late 1970s. The geo-computation method has been 

adopted in most time-geography research on individual accessibility. 3D geo-visualization is also 

widely used to facilitate the identification and interpretation of spatial patterns and relationships 

(Kwan 2004). 

Time geography is a constraint-oriented approach for understanding human activities in a 

spatial and temporal dimension. Human activity was presented based on the necessary conditions 

of human participation in physical or virtual space (Miller and Bridwell 2009). 
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Three core entities are defined in GIS to represent human activities: space-time prisms, 

space-time path and potential path areas (Figure 1-3). Space-time path traces an individual's 

movements in space with respect to time. It reveals the varying constraints and activity space of 

individuals. Space-time prism delimits possible locations for the space-time path during a period 

of potential activity participation. Potential path areas, on the other hand,  are the projection of a 

space-time prism to the geographical plane (Neutens et al. 2008). They are direct measures of 

individual accessibility to an environment and available resources (Miller and Bridwell 2009). 

 

Figure 1-3 Space-Time Path, Prism and Potential Path Area (Neutens et al. 2008) 

GIS is able to facilitate the exploration of spatiotemporal patterns in a large dataset. 

Rooted in Hägerstrand’s time geography, Shaw, Yu and Bombom presented a generalized space-

time path approach for visualization and exploration of spatiotemporal changes of individuals by 

identifying spatial cluster centers of observations and connecting those centers according to the 

temporal sequence (Shaw, Yu, and Bombom 2008). Those cluster algorithms in temporal GIS 

include k-means, Clara and genetic algorithms (Adnan et al. 2010). Shaw and Yu also extended 
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their work by incorporating the human activities in virtual spaces (Shaw and Yu 2009). Chen et 

al proposed an Activity Pattern Analyst Extension in ArcGIS which is able to generate, filter 

segment and query space-time path and perform spatial-temporal density and path clustering 

analysis (Chen et al. 2011).  

The time-space prism/path has arbitrary spatial and temporal resolutions and  is explicit 

with respect to informational assumptions (Tavakoli and Fakhraie 2011). Accordingly, some 

improved time-space methods have evolved. For example, by arguing that classic time  

geography only admits uniform travel velocities, Miller and Bridwell have developed an 

analytical time geographic model in which travel velocities vary continuously across space 

(Miller and Bridwell 2009). Kuijpers et al. also criticize classic space-time prism which assumes 

that the start and end points, i.e., anchors, of an individual are perfectly known or fixed. 

Accordingly, they have generalized the concept of anchor points to anchor regions to allow 

prism anchors to be uncertain or flexible, and hence  increase the pliability of observations of 

anchor points (Kuijpers et al. 2010).  Yu and Shaw have extended Hagerstand’s spatial-temporal 

model by incorporating the concept of virtual space, namely a place where cyber-communication 

or interaction occurs. A prototype model of adjusted space-time prism has been implemented for 

analyzing potential human activities, e.g., available opportunities under specific space/time 

constraints (Yu and Shaw 2008). 

In the 1990s, the emphasis of resource management shifted from inventory toward 

maintenance. How to represent geographical phenomena in time, as well as in space, became a 

problem in GIS. Several data models were built to represent temporal relationship and patterns of 

change, including snapshot images and variable-length lists (Peuquet and Duan 1995). All those 

models are location based. In addition, an event-based spatial data model was devised by 
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Peuquet and Duan in which time line had recorded the changes of a single thematic domain. The 

advantage of such a model was the increased ability to perform temporal manipulations (Peuquet 

and Duan 1995). A Spatiotemporal Triad Framework was also devised by Peuquet which adopts 

a triad representational framework including object based representation, location based 

representation and time based representation (Peuquet 1994). 

Dragicevic and Marceau argue that time can only be observed through apparent changes 

of objects and their attributes occurring in space; the paradigm of temporal data representation in 

GIS is still unresolved. One possible means to study a dynamic phenomenon that happened 

during the past is to apply temporal interpolation between consecutive snapshots by simulating 

the change that occurred during the interval based on fuzzy set theory (Dragicevic and Marceau 

2000).  

Neutens et al. argue that classical time-geographic concepts are inadequate for dealing 

with real-world complexities due to the heterogeneous environment. They have advanced a 

hybrid CAD-system utilizing the robust 3D design tools in CAD for model construction and data 

storage. Such a hybrid system can capture the interpersonal variations in accessibility by 

accounting for the individual’s time budget (Neutens et al. 2007, 2008). Kim and Kwan also 

developed an operational method and GIS-based algorithm that better represents the space-time 

characteristics and human behavior by considering opportunities, possible activity duration and 

effect of the transport network (Kim and Kwan 2003). 

Yi et al. focus on the social activities rather than the physical activities. They argue that 

the temporal consideration of a social network, especially the edge attribute (life cycle), is 

necessary. An adjacency matrix representation, namely TimeMatrix, was devised for the 

temporal social network analysis. In the TimeMatrix, two-dimensional cells were designed to 
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represent both temporal and structural attributes of social networks. Different representation 

technologies, e.g., semantic zooming, aggregation and collapsing, overlays and filtering, were 

also adopted (Ji, Niklas, and Lee 2010). Mennis also devised a spatio-temporal raster data 

structure based on multidimensional map algebra (Mennis 2010). 

Goodchild and Cova have introduced an innovative GIS representation model to handle 

some dilemmas in time geography, e.g., discrete vs. continuous or spatial vs. temporal. A geo-

atom was defined as “an association between a point location in space–time and a property”. 

Other concepts, including geo-fields (aggregation of geo-atoms), geo-object (an aggregation of 

points in space–time whose geo-atoms meet certain requirements), geo-dipole (as a tuple 

connecting a property and value not to one location in space–time as in the case of the geo-atom 

but to two) and metamap were constructed based on the geo-atom (Goodchild, Yuan, and Cova 

2007). Such hybrid representation has been implemented lately and is capable of answering the 

questions about relationships among location, time and attributes (Pultar et al. 2010). 

Kwan suggested a hypertext metaphor for modeling human spatial interactions in which 

each individual has several nodes to different social networks while each link represents 

interactive coordination between two individuals (Kwan 2007). 

Human behaviors can also be represented in terms of rules which is an implication of the 

form A B, where A and B are sets of attributes. Mining frequent item-sets and association rules 

in a spatial-temporal dimension are the major challenges (Gidofalvi and Pedersen 2005). 

 Analysis of Human Activity  

Accessibility measurement is one of the major topics in human activity analysis and 

transport planning. Accessibility measures the capacity of a location or object to be reached by, 
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or to reach different, locations (Rodrigue, Comtois, and Slack 2013). Based on the time-space 

path representation of human activities, three complementary perspectives of measuring human 

accessibility in spatial-temporal dimension have been summarized by Miller: constraints-

oriented approach, attraction-accessibility measures and benefit measures (Miller 1999). Kim 

and Kwan measured spatial-temporal accessibility by incorporating the effect of minimum 

activity participation time and the maximum travel time threshold. In their calculation, the 

individual accessibility measure equals the sum of weighted areas of opportunities multiplying 

possible activity participation time of all potential path areas (Kim and Kwan 2003).  

With the prevalence of mobile devices, gathering and recording detailed individuals’ 

activities has become available. Mobile phones are ideal vehicles to study human activities for 

both individuals and organizations (Eagle and Sandy Pentland 2006). The mobile phone data has 

been utilized to classify identifiable routines in people’s daily life (Eagle and Sandy Pentland 

2006), and understand road usage patterns in urban areas (Wang et al. 2012). Human movements 

can also be simulated and predicted by applying a machine learning scheme on collected 

individual behavioral data (Torrens, Li, and Griffin 2011). 

Various simulation models have been developed to imitate human activities and 

responses for better understanding of the complex systems, such as cities (Benenson and Torrens 

2004). Random Walk is a special type of simulation modeling. The concept was initially 

proposed by Prof. Karl Pearson, in 1905, to estimate the probability that after n steps of random 

walks a person is at a distance between r and r + d from his starting point (Pearson 1905). Some 

modified versions of random walks include self-avoiding walks, self-attracting walks and 

correlated random walks (de Smith 2010). This method has gained many interests in a variety of 

research, ranging from electric communication (Leng et al. 2007), social problems (Short et al. 
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2008)  to complex networks (Yang 2005). In time geography, random walk simulation was used 

to predict the probability distribution of an agent's location over time (Winter and Yin 2011). In 

urban studies, the random walk algorithm has been applied to detect community structures (Pons 

and Latapy 2005) and to identify urban isolations (Volchenkov and Blanchard 2007).  

Social Network 

Milgram performed an interesting experiment which reveals a surprising fact: only five 

links are required on average to connect any two people in a social network (Milgram et al. 

1965). Milgram’s experiment invokes the concept of “small-world”, and the model he applied to 

describe the social relationship has been widely adopted and improved in following research 

(Kleinfeld 2002). A social network is a collection of social ties among friends in which people 

are represented as points and acquaintance with others represents links. The Milgram model has 

a similar network structure in which some pairs of these objects are connected by links, and the 

cause-effect relationship can be subtle (Easley and Kleinberg 2010). 

 Social Network Analysis 

A social network is a typical network that traditional network measures from graph 

theory can also apply to social network analysis. The vertex connectivity of large networks 

normally follows a scale-free power-law distribution governed by a robust self-organizing 

phenomenon, e.g., continuous expansion and preferential attachment (Barabasi and Albert 1999). 

Statistical methods can handle millions of vertices and tell what the network looks like (Newman 

2003). Traditional network analysis involves plenty of measures in terms of connectivity, 

centrality and vulnerability, etc. Degree of a vertex in a graph, for example, is the number of 

edges that have this vertex as an end vertex. Centrality indices quantify an intuitive feeling that 

some vertices or edges are more central than others in most networks. In centrality 
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measurements, the betweenness is calculated based on the set of shortest paths in a graph, while 

the closeness is calculated based on the total distance from one vertex to the other entire vertex. 

Eigenvector centrality indicates the central importance of one vertex depending on its neighbors. 

The Connectivity, on the other hand, describes the strength of connections between vertices with 

respect to the number of vertex- or edge-disjoint paths (Brandes and Erlebach 2005). Modularity 

can be applied to distinguish communities of networks by considering the edges that fall within a 

community between a community and the rest of the network (Newman 2006). Strongly 

connected components refer to the nodes within the component that can be reached from every 

other node in the component by following directed links; and weakly connected components are 

the nodes that can be reached from every other node by following links in either direction. If the 

largest component encompasses a significant fraction of the graph, it is then called the giant 

component (Newman 2003). Social networks are highly dynamic objects, which grow and 

change quickly over time. Link-prediction provides such a solution that given a snapshot of a 

social network at a given time, one can predict the edges  that will be added into the network 

during the interval from time to time (Liben-Nowell and Kleinberg 2007). 

A message from social media adds a significant and important dimension of information 

wherein the qualitative semantic data and information embedded in the social media data needs 

further processing and normalization to allow quantitative analyses (Bahir and Peled 2013). The 

semantic message cannot be directly processed. For example, GIS still cannot unambiguously 

recognize and sufficiently perform spatial reasoning with place names in linguistic expressions 

(Vasardani, Winter, and Richter 2013). Additional semantic analysis is required. Mika 

introduced the Flink system to extract, aggregate and visualize social network content. The 

author argues that the first challenge is the extraction, representation and aggregation of social 
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knowledge (Mika 2005). Lampos and Cristinini searched symptom-related statements from 

Twitter and turned the information into a flu-score generated by a machine learning technology 

to monitor the flu pandemic (Lampos and Cristianini 2010). 

 Social Media Research 

From an individual perspective, social media activities can be defined as interactions with 

others through cyber space. Therefore, social activities can be subtracted from the media where 

people interact with others. Different social media leads to different social relationships. For 

example, Twitter fosters an asymmetric network structure where people prefer to broadcast 

individual content, while LinkedIn and Facebook aim to capture pre-existing ties by focusing on 

social interactions among friends (Takhteyev, Gruzd, and Wellman 2012). Previous studies have 

investigated the content and friendship structure on Twitter (Takhteyev, Gruzd, and Wellman 

2012), Facebook (Lewis et al. 2008) and Weibo (Li et al. 2013). The spatial distribution of 

location-based social activities from different social media has also been explored in recent 

studies (Jiang and Miao 2014; Liu et al. 2014). GIS is also considered as a media in terms of 

communicating and sharing knowledge and supporting location-based social networking (Sui 

and Goodchild 2011). For example, Geofeedia is such a website that provides online services of 

location-based streaming, search, monitoring, and analytics of social media content (Geofeedia 

2014). ESRI also provides a GeoEvent Processor Extension which can connect to social media 

providers, process and filter real-time data, monitor assets and update maps (ESRI 2013). 
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Organization of This Dissertation 

This dissertation consists three papers, an introduction chapter and a conclusion chapter.  

The introduction chapter describes the background of studies in human activities and location-

based social media, and addresses the two research objectives. 

Chapter 2 introduces the proposed conceptual data framework of location-based social 

media activity and implemented pilot prototype system in GIS. A dedicated website is 

established to extract and visualize real world location-based data. Those data are organized in 

the proposed data framework, and several tools of visualizing and analyzing location-based 

social activity is implemented in the pilot prototype. The usefulness of the pilot prototype is 

proved in a case study where Facebook data is extracted, organized, and analyzed in spatial-

temporal-social dimension. 

A random walking algorithm is developed in Chapter 3 to characterize the spatial 

importance of urban road networks by calculating the possibility distribution of human activity 

in temporal-spatial dimension. The proposed random walking algorithm can simulate human 

behaviors in traveling with the consideration of physical and topological characteristics of road 

networks and human preferences. The research found that the calculated random walking values 

of road networks are highly correlated to some important social-economic variables, and thus can 

serve as a spatial importance indicator of road networks in urban planning, traffic simulation and 

etc. 

Chapter 4 analyzes location-based social media activity by focusing on the spatial-social 

dimension. With the data collection website, an extracting social connection methodology is 

developed, and a definition of location-based social connections is introduced. Based on the 
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proposed location-based social connection, the social relationships can be spatialized and 

quantified in GIS that can visualize and identify spatial-social clusters in GIS. 

Chapter 5 summarizes the work of this dissertation and addresses the future research of 

representing and analyzing location-based social media activity in GIS. 
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Abstract 

This research develops a conceptual framework and logical models for the representation 

and analysis of location-based social media activity (LBSMA) of human beings in GIS. With 

increasing popularity of location-based social networking, social media, such as Twitter and 

Facebook, have become new channels to observe human activities in physical and virtual world. 

At the same time, there is a shift of some human interactions from the physical space to the 

social space. Traditional geographical representation in GIS is not sufficient to handle the 

increased sophistication of human activities related to, or embedded in, location-based social 

media data. This research proposes a conceptual framework of location-based social media 

activity to model human activities in spatial-temporal-social dimension in GIS. This research 

designs a conceptual model for the representation of LBSMA data in a GIS environment and 

implemented a pilot computer system with application examples of analyzing human activities in 

spatial-temporal-social dimensions. The study develops strategies to collect real-world LBSMA 

data from Facebook and Twitter. A case study with the collected data tests the developed 

prototype. It is demonstrated that the proposed data model enables us to answer the types of 

questions that could not be answered in traditional GIS. 

Introduction 

Understanding human behavior through human activities has been an important 

geographic inquiry in the literature. Researchers have studied human behavior from various 

perspectives. For instance, behavior geography concerns the cognitive process of human 

behavior and draws on other fields as well because human activities are generated due to 

physiological, psychological and economic needs (Ronald et al. 2012). Another closely related 

thread of research examines human activities through visualization, analysis, and modeling of 
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human dynamics in a GIS environment. Our research attempts to contribute to the latter, 

motivated by two fundamental issues. First, the growing popularity of network-based social 

media and the availability of such data provide us an unprecedented opportunity to study human 

activities in new lights. The new types of phenomena and new types of data require new 

conceptualization, new methodologies, and new tools to make the best out of them. Secondly, it 

has been well recognized that social connections play an important role in human behavior. 

However, social network has been ignored or oversimplified in current representations of human 

activities in current off-the-shelf GIS programs. Therefore, this research aims to develop a GIS 

conceptual framework and associated logical model to represent space, time, and social 

connections from location-based social media activity (LBSMA) data in GIS.  

By the nature of the research issue, studying human activities typically requires data at 

individual level, or so called disaggregated data, with fine spatial and temporal granularities. 

However, commonly available data are usually aggregated, such as those from the census.  Thus 

obtaining suitable data is difficult. The availability of location-based social media data provides 

an unprecedented opportunities for this type of research, as such data are inherently entered on 

individual basis and are of high granularities in space and time. In the era of big data, enormous 

attention has been attracted to extracting data from Internet-based platforms to study human 

societies. A message from social media is considered an extension of human mind (Tsou and 

Leitner 2013). Furthermore, location-based social media data provide not only the space and 

time information of activities, but also the social connections among individuals. This is 

particularly advantageous to research of human activities, as the context of social connection is 

considered important to human activities. It has been argued that time, space and social 

differentiation should be coupled in the study of practices or phenomena (Schwanen and Kwan 



31 

 

 

2012). From the relationalism-idealism perspective, the assumed existence of social networks 

sets the scope to which space and time should be conceptualized and analyzed in human activity 

analysis (Yuan, Nara, and Bothwell 2014). In the age of big data, details of human activities can 

now be extracted from the social media to reveal when and where people interact with others, 

collections of such interactions reveal social network among people. Different types of social 

media allow for different types of connections. For example, Twitter fosters an asymmetric 

network structure that people prefer to broadcast individual activities, while LinkedIn and 

Facebook aim to capture pre-existing ties by focusing on social interactions among friends 

(Takhteyev, Gruzd, and Wellman 2012). Previous studies have investigated the content and 

friendship structure on Twitter (Takhteyev, Gruzd, and Wellman 2012; Naaman, Boase, and Lai 

2010), Facebook (Lewis et al. 2008) and Weibo (Li et al. 2013). The spatial distribution of 

location-based social activities from different social media has also been explored in recent 

studies. For example, Cho et al (Cho, Myers, and Leskovec 2011) devised a periodic & social 

mobility model to study the interaction of geographic, temporal and social aspects of human 

mobility. Eagle et al (2009) compared the resulting behavioral social networks with self-reported 

relationships based on mobile phones data and accurately infer friendships based on the 

observational data alone. Cheng et al (2011) analyzed human mobility patterns from Twitter in 

terms of spatial, temporal, social and textual aspects.  

There is a long tradition that human activities are visually represented and analyzed, 

particularly in GIS. Starting from the space-time prism (Hägerstrand 1970), trajectories of human 

activities are visually represented as a series of locations in space-time dimensions. Because 

human activities have innate spatial component, geographic information system (GIS) is 

naturally the most desirable environment for the visualization and analysis of it. Sui and 
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Goodchild (2011) suggest that GIS is a media in terms of communicating and sharing knowledge 

and supporting location-based social networking. With increasing popularity of location-based 

social networking technologies and data, scientific investigations have expanded to include data 

about activities in both physical and virtual spaces. Meanwhile, the convergence of geographic 

information systems (GIS) and social media has resulted in a data avalanche that creates new 

challenges in GIScience (Sui and Goodchild 2011). Although location-based social media 

activities have been examined in many studies as discussed previously, a structured GIS 

representation is still absent for all dimensions of space, time, and the context of social 

connections in which activities take place. GIS representation of space and time alone is already 

a critical research theme in the literature, adding more dimensions obviously is not a trivial issue.  

The goal of this paper is to fill the gap by developing a conceptual model and a computer 

prototype to organize location-based social media activity (LBSMA) data in GIS, so that the 

positions and interrelationship of LBSM activities in the spatial, temporal, and social dimensions 

can be represented and analyzed further.  In this research, as highlighted in Figure 2-1, the 

LBSMA data refer to the subset of human activities of which locations can be georeferenced in 

the geographical space and contents are advertised in the networked social media such as 

Facebook, Twitter and others. The scope of the study is limited to human activities that are 

recorded explicitly or implicitly in the LBSMA data, the yellow-highlighted area in Figure 2-1. 
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Figure 2-1 Definition of Location-based Social Media Activity 

The paper is organized as follows. The next section reviews related prior work about 

space-time representation in GIS and those about visual models of human activities in GIS 

environments. Section 3 presents an ontological framework of the concepts and a conceptual 

model for the representation of LBSMA data in GIS. Section 4 introduces a corresponding 

logical model and the pilot implementation of a computer system that can import, organize and 

analyze LBSMA data. A case study is conducted in the prototype to illustrate the feasibility of 

the whole process and the capability of enabling new types of geographic inquiries in such a 

system. The paper is concluded with discussions of major findings and future research in Section 

5.  

Related Work 

This research is related to two threads of research about data modeling in GIS. The first 

thread is about the conceptual and logical data models for space-time representation in GIS, 

while the other thread is the representation of human activities in GIS. 

Geographic Space 
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Space-time Data Modeling in GIS 

Time consciousness has been discussed in many discourses of geographical inquiry 

(Thrift 1996). Depending on the philosophical considerations of space-time representation, space 

and time have been conceptualized in either object view in which space is composed of points 

while time consists of instants, or subject view in which space and time are positional qualities 

attached to objects (Peuquet 1994, 2001; Yuan, Nara, and Bothwell 2014). In the early stage of 

GIS, time was simply considered an abstract parameter that is devoid of any differentiating 

contents or sequences. Gradually, time became both experientially and spatially referenced. 

Excellent examples include those analyses extended from Hägerstrand’s space-time (ST) prism. 

More recently, many researchers believe that geographic data models must serve as an 

acceptable reflection of the real-world phenomena (Pickles 1995) and consequently many ST-

explicit models have been proposed. In the literature, space-time data models in GIS can be 

classified into three categories: spatially focused data models, temporally focused data models, 

and integral data models. The framework of spatially focused data models treats time as an 

additional dimension to the traditional location-based spatial data. Examples include the snapshot 

model (Dragicevic and Marceau 2000), spatio-temporal raster data structure (Mennis 2000), or 

the traditional feature-based spatial data such as amendment vectors and spatial-temporal place 

model (Yao 2010).  The framework of temporally focused data models organizes spatial objects 

according to a time line of spatial object that changes (Peuquet and Duan 1995), evolves 

(Hornsby and Egenhofer 2000), or involves more complex occurrences and relationships 

(Worboys 2005). The family of integral data models combine the location-based or the feature-

based spatial data structure with the temporal coordination in attribute sets. Those integral data 

frameworks include the spatiotemporal triad framework (Peuquet 1994), the three domain model 
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(Yuan 1997), the geo-atom (Goodchild, Yuan, and Cova 2007; Pultar et al. 2010), and the 

unified spatial-temporal data model (Yuan et al. 2010). 

Representation of Human Activities in GIS 

The literature has a wide range of research topics about human activities, such as human 

travel behavior, way-finding, migration and residential mobility, decision making and choice 

behavior, as well as spatial cognition and environmental perception (Kwan 2010). This study 

focuses on the representation of human movement dynamics in GIS.  Up to this point, the most 

widely used are the space-time representations.  

Hägerstrand (1970) introduced the time dimension to the traditionally space-only 

approach to modeling human activities. An individual is located at a specific location in space 

and time, while the individual’s next location in space at in a given time duration is constrained 

by several factors. Hägerstrand addressed three types of constraints, i.e., capability constraints, 

coupling constraints, and authority constraints (Hägerstrand 1970). Almost simultaneously, 

Anderson proposed a similar idea using the concept of time-budget diary which incorporates 

timing, duration and location when modeling individual's activities (Anderson 1970).  Hence 

Kuijpers et al. (2010) argued that an individual movement implies a trade-off between 

inseparability and scarce nature of space and time, and is conditioned by various constraints and 

opportunities. These ideas became known as time geography. Time geography offers a people-

oriented extension to place-based tools in GIS (Miller 2003) that indicates individual travel 

possibilities (Neutens et al. 2008).  

Rooted in time geography, various types of spatio-temporal constructs have been 

developed in GIS environments to represent human activities. Space-time path, space-time 
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prism, and potential path are well-known examples. A space-time path traces an individual's 

movements in space with respect to time, as illustrated in Figure 2-2. A space-time prism 

delimits possible locations for the space-time path during a period of potential activity 

participation. Potential path areas are the projection of a space-time prism to the geographical 

plane (Neutens et al. 2008). Those three ST constructs can be used directly to measure individual 

accessibility to resources (Miller and Bridwell 2009). 

 

Figure 2-2 Space-Time Path Model 

The space-time path model is the most widely adopted approach in the representation of 

human activities in GIS. For instance, it has been applied in the analysis of individual 

accessibility and geo-visualization of human activities (Miller 1999; Kwan 1998; Kim and Kwan 

2003). More recently, to account for human activities by information communication technology 

(ICT), Yu proposed a revised design of spatial-temporal GIS for the analysis of human activities 

in both physical and virtual spaces by using linear referencing and dynamic segmentation (Yu 

2006). Shaw, Yu and Bombom (2008) later presented a generalized space-time path for visual 

exploration of spatiotemporal changes of individual activities. Chen et al (2011) developed 

Time 

Geographic Space 
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ArcGIS Extension named Activity Pattern Analyst that is able to generate, filter, and query 

space-time path and to perform spatial-temporal density and path clustering analysis. Yin et al 

(2011) introduced an extended time-geographic analytical framework to illustrate how human 

interactions opportunities can be impacted under the use of phone communication. Yin and Shaw 

(2015) proposed a spatiotemporal exploratory analysis approach to examine the relationship 

between physical separation and social interactions at the individual level. 

Some criticisms towards the time-space path model are discussed in the literature. It was 

argued that the model use arbitrary spatial and temporal resolutions (Tavakoli and Fakhraie 

2011). In addition, innovative communication technologies, such as location-based social 

networking, relaxes some of the space-time constraints and creates new topologies of spatial 

interaction of human activities (Kwan 2007). A series of improvements of the time-space path 

model have been addressed to tackle various issues (Wang and Cheng 2001; Kwan 2004; 

Raubal, Miller, and Bridwell 2004; Neutens et al. 2007; Yu and Shaw 2008; Shaw and Yu 2009; 

Miller and Bridwell 2009; Kuijpers et al. 2010). However, most human activity models in GIS 

do not incorporate social connections, with few exceptions such as Kwan’s hypertext metaphor 

that considers social network in modeling human spatial interaction (Kwan 2007),  

LBSMA Representation in a GIS environment 

Ontological Framework  

Equipped with geo-referencing capabilities, social media platforms nowadays are not 

only where people interact with others in the virtual space, but also data resources from which 

human physical activities can be recorded and visualized in geographic space. Thus it provides 

an excellent opportunity to connect the social dimension with the space-time dimensions. 
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Traditional GIS conceptual models use either object-based or field-based representation. The 

former distinguishes each spatial object with delineated spatial boundaries, while the latter 

enumerates all spatial locations systematically and stores attribute values for each location. 

However, none of them is able to directly account for social network (or social associations) or 

human activities in the context of such a network. Aiming to have a conceptual underpinning for 

later technical deployment to fill the gap, this paper first develops an ontological framework that 

categorizes related concepts and their relationships in the scope of the study. The ontological 

framework is graphically illustrated in Figure 2-3. 

 

Figure 2-3 Human Activities in the Geographic Space and Social Media Space 

The framework identifies four primary categories for the topic under study. They are 

Person, Activity, Location, and Social Connection. 

 Person 
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Person is represented with red boxes in Figure 2-3. In the LBSMA ontological 

framework, Person refers to an individual who has one or more active accounts in social media 

platforms. A person may have different identifications in both the physical world and virtual 

world of social media. A person can participate in any number of activities and form social 

connections with other persons. 

 Activity 

Activity in this framework is defined as any action of a person in either the physical 

space or the virtual space. For example, visiting, commuting, reading, participating in a party are 

examples of activities in the physical world, while posting a message and following another 

account on Facebook or Twitter are examples of activities in the virtual space. Human activities 

can be further classified based on the number of participants. Because the scope of this study is 

the intersection area of human activities in the physical space and the social media space. It 

means no matter which space the activity took place, it would have been reflected in one or more 

social media platforms and thus is made visible to some or all people. Thus we call it social 

activity.  Specifically, a joint-social activity (green circle in Figure 2-3) is an event participated 

by multiple persons (red box in Figure 2-3) while a solo-social activity (blue circle in Figure 2-3) 

is an action performed by a single person. 

 Location 

A person may conduct a series of activities that occur either in the physical geographic 

space or in the virtual social media space, or in both spaces. Therefore two types of locations are 

distinguished in the framework: the geographic location and the virtual location. For example, 

just like an address can refer to the geographic location of a person’s home, a uniform resource 
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locator (URL) of a user’s profile page refers to the person’s virtual location on social media from 

which the user’s information, such as online activities, can be stored and retrieved. A restaurant 

can be represented as a point with a specific set of latitude and longitude in GIS, and its menu or 

reviews can be retrieved from its public pages on the website. The category of virtual locations 

are important in the framework because they not only facilitate the organization of human 

activities in the virtual world, but also provide the source of rich information about people, 

activities and the context environment. 

 Social Connection 

In the scope of this research, social connections are personal relationships expressed via 

social interactions. It is a mind-dependent construct that can be reflected by mind-independent 

human activities. Social connections can be explicitly expressed or identified through their self-

reported relationships such as kinship, workplace connection, friendship, and so on, which can 

be explicitly indicated in the profiles or connections between profiles on some social media 

platforms. However, many additional social connections can be identified through spatial-

temporal reasoning implicitly. Social connections can be assessed based on the characteristics of 

activities in spatial, virtual and temporal dimensions. For instance, two persons may have or 

develop social connections if they participate in joint-activities that occur in the same temporal-

spatial space or at the same temporal-virtual locations. Frequent joint-activities at the same home 

address suggests close family ties (as shown with thick yellow line in Figure 2-3). Discussing an 

identical football team or related topics on social media suggests common interests in sports. 

Locations also cater various social connections among visitors depending on the characteristics 

of the locations. For example, home or work places can be considered spatial locations where 
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people foster personal or professional relationships respectively, while public space or third 

space (generic designation of public places that host the regular gatherings of individuals beyond 

the realms of home and place) are neutral ground where patrons feel like they are on a level field 

with one another (Humphreys 2007).  Implicit social connections can thus be identified via 

people-based or location-based approaches. People-based social connections construct an 

individual social network that reflects personal social capitals. Location-based social connections 

reveal how the location is experienced by different persons in the physical and the virtual worlds. 

Conceptual Model  

A conceptual data model is designed in the paradigm of object-oriented modeling. The 

model is illustrated in Figure 2-4. The conceptual model consists of five classes: Location, 

Person, Activity, Social Connection, and Common Interest.  

The Location class contains uniquely identifiable referents in the geographic space or the 

social media space, each referent is an instance. Because two types of spaces are of concern, 

there are also two types of locations accordingly. Therefore two subclasses are inherited form the 

superclass of Location, namely Spatial Location and Virtual Location. Theoretically, locations in 

the geographic space can be referents in any traditional GIS georeferencing frame of reference. 

Examples include coordinates, street addresses, city names, etc. As current location-enabled 

digital devices are typically able to provide precise coordinates of locations, we use coordinates 

in the model. But it should be noted that other types of referents are by no means excluded.  

Locations in the social media virtual space can be either the uniform resource locator (URL) or 

identification number (ID) on respective social media platforms.   
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The Person class refer to all individuals who have locations in the social media virtual 

space. Attributes in the class include individual biographic characteristics and virtual locations 

instantiated from the virtual location subclass. Each person is an instance of the class. A person’s 

activities can be retrieved via his/her virtual location on social media. 

The Activity class is the collection of activity objects. An activity is an action in the 

social media space performed by one or more participants who are instances of the Person class. 

Based on the number of participants, two subclasses are defined, namely solo activity which 

involves a single participant and joint activity which includes multiple participants.  Both 

subclasses are inherited from the Activity superclass. The attributes of Activity class include at 

least time, spatial location, virtual location, and the message of this activity. The spatial or virtual 

location attributes are instantiated from the spatial or virtual location subclass separately. The 

message of an activity, which is the related description posted on the social media platform, 

provides implicit literal information about people, location, and the activity itself. Semantic 

analysis of the messages will help understand human behaviors in the real word and the virtual 

world.  

The Common Interest class is designed to represent shared interest that anchor points of 

interest. For instance, if many persons visit a restaurant and mention it in their posts, the place of 

the restaurant is a common interest. If the topic of health reform or a recent movie appear many  

social media activities, the discussed topic could be a common interest. Thus two types Common 

Interest are differentiated, each as a subclass of Common Interest. Each instance of the Place 

subclass indicates a location that is frequently visited in the real world. Place class contains a 

attribute information of the associated spatial location and/or virtual location. Topic class also 
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has an attribute of virtual location because some topics have permanent locations on social 

media. Such attribute information will help researchers to develop methods of connecting the 

social network and locational information. Two global methods are developed to populate the 

Place and Topic subclass. One method extracts hot places from activity class. The other method 

extracts hot topics that are broadly discussed in the virtual social media space. 

Social Connection class store the identified relationship between any pair of persons. 

Social connections between people can be revealed during different social activities. Therefore, 

joint activity subclass has a method to identify social connections among persons. In facebook, 

social connection identified between persons who are tagged in the same joint activity, appear in 

the same geographic place (tagged on photo) or mentioned in the virtual location (tagged in 

status). All instances of joint activity class can be used to identify and populate the Social 

Connection class.  

The purpose of the proposed conceptual model is to organize the data in a reasonable and 

retrievable way, so as to maximize the possibility to study hidden relationships and patterns in 

such rich big data. The most important aspect is to allow information in the spatio-temporal-

social dimensions, expressed either explicitly or implicitly, to be identified and represented in the 

system. The ultimate goal is to facilitate further modeling and analysis of such data. Social 

connections are normally modeled in a network structure in which people are represented as 

nodes and their acquaintance with others are represented as links. All identified social 

connections linked together result in the social network which could evolve over time with 

continuously updated social media data.  Traditional network analysis measures, such as those 

for connectivity, centrality, and vulnerability, can be directly utilized for the analysis of the 
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social network. However, unique properties of the data provide opportunities for researchers to 

mine additional hidden patterns. The underlying social media data for developing social 

connections are usually time-stamped and many of them are location-stamped. When organizing 

the data in spatial, temporal, and social dimensions by the proposed conceptual model, new 

methods can be further developed to analyze multi-dimensional patterns. For instance, by 

extracting the social network based on specific location(S), a location-based social network can 

be constructed and the spatial-social patterns can be explored. By checking the temporal 

signatures of social connections, one can explore the socio-temporal patterns and relationship in 

such data.  
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Figure 2-4 Conceptual Model of LBSMA 
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Pilot Prototype Implementation and Case Study 

Based on the proposed conceptual model, a pilot prototype has been implemented and 

tested. A case study is performed to validate the prototype and most importantly to evaluate the 

usefulness of the proposed framework of LBSMA representation in GIS. Two most popular 

social media platforms, Facebook and Twitter, are used in the prototype and case study. But the 

model itself is equally applicable to other platforms. We started with collecting and tracking 

LBSMA data from Facebook and Twitter, then used the prototype to construct a LBSMA 

database from the collected social media data, and finally showed a few analysis examples that 

are otherwise not possible to be done in the traditional GIS environment. 

LBSMA Data Collection  

Although extracting twitter data is most commonly seen in current research projects due 

to Twitter’s open API, The privacy and access controls make Facebook data much more closed 

(Russell 2013). This case study purposely chooses to extract Facebook data for two reasons. 

First, we want to study more about this more closed, and thus less explored social media 

platform. Second, Facebook is a social-networking type of platform while Twitter is a 

microblogging platform. Thus we will have better chance to observe and model social 

connections with Facebook data.  The collection of users’ location-based Facebook data requires 

a legitimate and secure procedure. A dedicated website for the collection of users’ personal 

Facebook data has been established at www.lbsocial.net. This website obtained the Institutional 

Review Board (IRB) and Facebook App approval, and has gathered participants’ information 

through the Facebook Application Programming Interface (API) with explicit authorizations of 

Facebook users. The website is running on the Google Application Engine. Any Facebook users 

can visit the designated website, read the IRB consent form, and log in with their Facebook 

http://www.lbsocial.net/
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account if they agree with the information provided in the consent form. Those who decide to log 

in become the volunteers for our data collection. The website will automatically record the 

volunteers’ and their friends’ posts that are embed with geo-location information. Those personal 

Facebook contents will be kept in Google App engine Database temperately, and then imported 

in a local GIS database.  

Different from Twitter data which records latitudes and longitudes of users’ tweet 

ubiquitously, Facebook organizes user’s physical locations by using Open Graph protocol, a 

mechanism that enables any web page as an object in Facebook's Social Graph by injecting 

RDFa metadata into the page. The metadata uses a URL to represent any web page, i.e., a 

person, company, product, in a machine-readable way (Russell 2013). Therefore, several 

physical locations are grouped into a unique place, an Open Graph Object that has ID, name, 

coordination, visiting history and descriptions that are publicly available. Although the spatial 

resolution of the users’ location from Facebook is lower, the Open Graph protocol reduces the 

data uncertainty and equips the physical places with both physical and virtual locations that make 

the online resources of places available. Based on the visited places from the Facebook users, a 

places table is established and corresponding description are abstained from Facebook directly 

without users’ authorization. The data collection process is depicted in Figure 2-5. 
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Figure 2-5 LBSMA Data Collection 

Data Organization in GIS 

The collected LBSMA data is then organized and maintained in a PostgreSQL database 

with the PostGIS plugin to provide GIS functions. Presented in Figure 6, this physical model has 

only implemented partial functions of the conceptual model.  The collected posts from personal 

Facebook accounts are kept as records in the Activity table. A Facebook post can be published 

by the user of by the user’s friend. The name and Facebook account ID for both the user and the 

user’s friend are recorded in the Activity table. The other people that are tagged in this post are 

also kept in the Participants field. Since the number of the tagged people is not predictable, this 

data filed utilize the Json format to record all the participants. If the posts are embedded with 

geo-locations, the place name, place ID in Facebook Social Graph, and the latitude and longitude 

are kept in the Activity table. The time field indicates the time of publishing the post on 

Facebook, and the type field distinguishes whether the post is a check-in, a photo or a status. 
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The People table keeps unique users from the Activity table. Based on the participants of 

each activities, a people-based social network is constructed in which all the participants, 

(including user and from user if not tagged in post) in the same activity are assumed friends to 

each other, i.e., form connection in the social network. From the people-based social networks, a 

PeopleSocial table is created to keep some measurements of the social network for each people, 

including number of nodes, number of cliques, network density and etc., by using Networkx 

python library (Hagberg, Schult, and Swart 2008). The number of activities and total travel 

distance are also calculated for each people in the PeopleSocial table. Because people may post 

several photos or status for the same activity on Facebook, the activities with the identical 

participants on the same day at the same locations are treated as a single visit. The number of 

visits for each people is also computed in the PeopleSocial table.  

The Place table contains all the unique places that are identified in the Activity table. 

Based on the Place ID in Facebook Social Graph, the additional information of these places are 

retrieved from Facebook, such as the category of the place, the total number of likes, the total 

number of talking about, and the total number of activities in this place. Some places also publish 

their website on Facebook. Similar to PeopleSocial table, place-based social networks are 

constructed from the participants in the same activity visiting the same place. Different to the 

people-based social network, the place-based social network reveal the social structure of the 

visitors to the spatial locations. Therefore, different sub-social groups are formed for place-based 

social networks. Some measurements of the place-based social network for each place are also 

calculated in the PlaceSocial table. 
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Figure 2-6 Physical Model of LBSMA 

Visualization and Analysis Tools 

A set of visualization and analysis tools for the LBSMA are developed in ArcGIS, 

including visualize activities and places, query people-based social network, create location-

based social network and identify spatial-temporal interactions of activities. 
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 Visualize Activities and Places in GIS 

This tool will read the activity table and place table from PostgreSQL in ArcGIS, and 

display the places and activities on a 2D map. In addition, since the activity records have the 

time coordination, the activities can also be visualized on a 3D map (Figure 2-7) in which the z 

coordination represents the time difference between the days of the publishing and a designated 

date. 

  

Figure 2-7 Visualization of Activities in 3 Dimension 

 Create a Location-Based Social Network  

The Create location-based social network tool allow users to interactively select the 

places in ArcGIS, and create a social network of the visitors from those places. The participants 

in the same activity are connected to each other in the social network. In addition to visualize the 

location-based social network, some network measures, e.g., number of nodes, number of 

cliques, average clustering coefficient and etc. are also reported in the result (Figure 2-8). If the 

user select only one single place, the reported result is identical to the record of this place in the 

PlaceSocial table. 
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Figure 2-8 Result of location-Based Social Network Analysis 

 Query People-Based Social Network  

The third tool (Figure 2-9) allows users to query the people-based social network from 

the PeopleSocial table based on a user-defined SQL sentence. The user can also visualize and 

analyze the social networks for the selected people. 

 

Figure 2-9 Interface of Query People-Based Social Network 

 Identify Spatial-Temporal Interactions 
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The spatial-temporal interactions are identified with the Knox test (Knox and Bartlett 

1964) by using the Pysal python library (Rey and Anselin 2007). This tool (Figure 2-10) will 

report the identified spatial-temporal interaction based on the user-defined spatial (delta) and 

temporal (tau) intervals. 

 

Figure 2-10 Interface of Identification of Spatial-Temporal Interactions 

Case study 

A case study is conducted to test the validity of the proposed LBSMA model. This 

research has recruited several students in the University of Georgia to collect their Facebook 

data. The extracted Facebook data is organized in the implemented LBSMA data model. There 

are 500 unique Facebook accounts and nearly 2,500 posts collected in this case study (Table 

2-1). Among those posts, nearly 900 places have been extracted and 48 place categories are 

identified. The LBSMA database is capable of supporting the analysis of student activities in the 

spatial-temporal-social dimension. 
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Table 2-1 Summary of Collected Data 

Entity kind No. of entities in GAE No. of entities in PostgreSQL 

Activity 2,964 2,467 

People 568 500 

Place  892 

Place Category  48 

People Social  500 

Place Social  892 

 

 Spatial-Temporal-Social Analysis of Human Activities 

Table 2-2 summarizes the correlation of different measures of human activities in spatial, 

temporal and social aspects. The number of human activities and visits and the total travel 

distance of an individual person are positively correlated to the number of friends in people’s 

social network. This finding confirm the hypothesis of previous study that users who travel have 

more chances to meet friends, and thus get involved in more social activities (Cheng et al. 2011). 

In addition, the number of activities and visits are both closely correlated to the number of 

cliques. This is because people who participant in more social activities are more likely to have a 

diverse social relationships, i.e., more closed sub-groups in their social networks. 

Table 2-2 Spatial-Temporal-Social Analysis of Human Activities 

 No. of activities No. of visits Sum of travel distance 

No. of nodes 0.6186* 0.6754* 0.6060* 

No. of cliques 0.8150* 0.8426* 0.5677* 

Network density -0.5510* -0.6506* -0.5181* 

Avg.  Clustering 

Coef. 

0.0757 0.0536 0.0899 

* indicates significant at 5% 
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 Popularity Analysis of Places in Virtual and Physical World 

The popularity of places are measured based on the number of likes, number of talking 

about and the number of activities. The total number of likes is how many times Facebook users 

push the like button on a place’s Facebook page or website, thus can indicate of the popularity of 

places on Facebook. The sum of talking about is the total number of times that a place has been 

mentioned in Facebook user’s posts. It is another popularity indicator of places on Facebook. 

The sum of activities counted the total number of Facebook posts that are embedded the spatial 

location of this place, hence stands for a popularity of places in the physical world. Table 2-3 

demonstrates that the sum of talking about a place has higher correlation with the sum of 

activities than the sum of talking about. Therefore, the sum of talking about is a better indicator 

for the popularities of locations in both virtual and physical world. 

Table 2-3 Comparison of Popularities of Spatial Locations in Virtual and Physical Space 

 Sum of likes Sum of talking about 

Sum of talking about 0.6517* 1 

Sum of activities 0.5102* 0.8029* 

* indicates significant at 5% 
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Figure 2-11 Popularity Analysis of Places in Different Categories 

 

Figure 2-11 summaries the popularities of places in different categories. Local business, 

city and restaurant/café have the most number of places extracted from the collected Facebook 

posts. The only place classified as website is Google which received the most likes among all the 

places and are also frequently talked about in Facebook.  Places of the travel/leisure and sports 

team category are also hot topics on Facebook. The places that are classified as city, country and 

airport received the most physical visits. This demonstrates that people are more like to release 

their physical location on social media when they are traveling to different cities or countries. In 

addition to those three categories, travel/ leisure, sports venue, attractions/thing to do, and 

museum/art gallery are the most popular places in the physical world, because people are more 

likely to release their social activities in public spaces on Facebook. 

 Location-Based Social Network Analysis 

Based on the collected activities, Table 2-4 , Figure 2-12, Figure 2-13, Figure 2-14 and 

Figure 2-15 shows how the location-based social networks vary across space. Different to the 

people-based social network where the number of activities is closely related to the number of 

visits (Table 2-2), the number of activities (Figure 2-12) is moderately related to the number of 

visits (Figure 2-13) for places. This disparity is rooted in the behaviors of Facebook users. Some 
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Facebook users prefer to post a few status or photos for a single visit while others are eager to 

publish lots of Facebook posts for an individual visit. The number of visits to a place is also 

moderately related to the number of visitors (Figure 2-14) but closely related to the number of 

cliques (Figure 2-15), meaning that places foster a diverse society of customers rather than vast 

customers attract more visits. 

Table 2-4 Location-Based Social Network Analysis 

 No. of activities No. of visits 

No. of visits 0.5414* 1 

No. of nodes 0.3926* 0.5417* 

No. of cliques 0.6727* 0.8105* 

Network density -0.4283* -0.5659* 

Avg.  Clustering Coef. 0.0711* 0.0369 

* indicates significant at 5% 

 

Figure 2-12 Hot Spot of Number of Activities 
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Figure 2-13 Hot Spot of Number of Visits 

 

Figure 2-14 Hot Spot of Number of Nodes 
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Figure 2-15 Hot Spot of Number of Cliques 

Conclusion 

Geo-tagged social media activities provide new channels to observe human activities at 

micro and macro scales. The social media data have naturally and sometimes implicitly 

embedded space, time, and social connections in the data itself. However, current GIS 

environment is not suitable for the representation and analysis of such rich data due to its lack of 

capability to represent the key components of the data. In response to the new opportunity and 

research challenge, this research aims to fill the blank by developing an ontological framework 

and a conceptual data model for the representation of social media data in the multiple-

dimensional representational space of geography, time, and social connections. Furthermore, a 

prototype of the conceptual model is implemented in a pilot computer system. Several tools are 

also developed to query, calculate and visualize human activities in spatial-temporal-social 

dimension. People-based and location-based social networks can be created and analyzed based 
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on the proposed LSBMA model to add our understanding of human interactions by providing 

innovative and applicable measures for places, social associations and human activities. The 

validity of LBSMA model is evidenced by a case study by collecting and analyzing Facebook 

data. A dedicated website (www.lbsocial.net) is established to conduct an authentic data 

collection of Facebook data, disseminate aggregated results and significant findings. 

In the era of big data, people and environment interact in the physical space and the 

virtual space (social media) simultaneously. The findings of this research yields new insights 

regarding human activities in virtual and physical space, and will enhance technical capabilities 

for social media analysis in GIS. The developed methods can help identify place-based or 

people-based strategies, e.g., urban planning, traffic planning, commercial advertising or energy 

communicating. The proposed framework paves new avenues for future research, such as public 

health, transportation, urban geography and social science. Based on the proposed model and 

prototype, we believe there are many more potential ways to mine the organized datasets. This 

study has only provided a case study with a couple application examples, both of which asked 

questions that are only related to two dimensions of space, time, and social network. Starting 

from the LBSMA conceptual model, exciting future research avenues include developments of 

new analytical methods and explorations of new application studies, particularly those involve 

all three dimensions of the LBSMA data. 
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CHAPTER 3 THE RANDOM WALK VALUE FOR RANKING SPATIAL 

CHARACTERISTICS IN ROAD NETWORKS 2

                                                 
2 Wei, X., and X. A. Yao. 2014. Geographical Analysis 46 (4):411–434. Reprinted here with permission of 

publisher. 
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Abstract 

This study proposes a new network index at both nodal and link levels to rank the spatial 

characteristics of individual network components. The objective is to create a network metric 

that captures socioeconomic characteristics in urban environments. Because this index is based 

on the random walk simulation modeling strategy, it is coined the Random Walk Value (RWV). 

An algorithm and an associated software tool were developed to calculate the RWVs of network 

components. Compared with other popular network indices, the unique advantage of the RWV is 

that this index considers not only spatial structural or topological characteristics, but also 

physical characteristics of network components. Two case study cities, the Chinese city of 

Wuhan and the United States city of Atlanta, were chosen to test the utility of the RWV. These 

two case studies yield several findings. First, the RWV is highly consistent with some of the 

most widely used network measures, such as closeness and connectivity measures, which was 

evidenced by strong correlations between RWV and other network. Second, the RWV has been 

proven to be a good indicator of spatial importance, and a better predictor of socioeconomic 

variables in urban environments. The RWV outperforms all other network indices in terms of its 

correlations with important socioeconomic variables, and its ability to predict some of them. 

Third, both case studies confirm that the RWV can be a good substitute for some important 

socioeconomic variables, such as population density and job density, in spatial modeling. This 

finding is significant for studies when population and job data are not available, or for studies 

that attempt to predict future scenarios. 
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Introduction  

Road networks are essential components of urban systems that facilitate various types of 

activities in urban life. An urban road structures determine patterns of human movements (Jiang 

and Jia 2011), and the spatial layout of urban streets has a direct impact on human social 

activities (Jiang and Claramunt 2004).  The structure of an urban transportation system and the 

spatial pattern of land use in a city are mutually dependent. The relationships have been well 

established and supported by many studies (Taaffe, Gauthier, and O’Kelly 1996). Dynamic 

relationships between the two subsystems of a city can be partly explained by the spatial 

distribution of network characteristics, which often have been measured by network indices such 

as connectivity and centrality. 

A considerable body of literature supports that network characteristics of urban 

transportation can significantly influence the spatial distributions of socioeconomic 

characteristics. Influences of network structure are seen in a variety of urban characteristics, 

including traffic distribution (Wewal et al. 2010), population density (Chan, Donner, and 

Lämmer 2011), employment growth (Ozbay, Ozmen, and Berechman 2006), distribution of 

public facilities (Aderamo and Magaji 2010), and even economic prospects (Blanchard and 

Volchenkov 2008).  Road networks also have been used as a spatial framework to estimate 

probable locations of heavily trafficked nodes (Horner, Zook, and Downs 2012) or critical 

facilities (Lei 2013). Therefore, a better understanding of urban road network characteristics is 

essential for improved outcomes of research about the spatial distributions of urban 

socioeconomic characteristics.  
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Many scholars posited that people’s perceptions of space determine local movements 

(Hillier 1999; Blanchard and Volchenkov 2010). This study further argues that perception of 

spatial characteristics in a network also determines spatial decisions that ultimately lead to 

spatial patterns of socioeconomic activities. Prior studies already prove that characteristics of 

individual network components can be highly correlated with socioeconomic characteristics of 

each component’s proximal area. A measure of node importance, for instance, provides a basis 

for the identification of urban agglomeration (Song et al. 2011). The Closeness centrality 

measure of nodes has been found to be correlated with both population and employment density 

(Wang, Antipova, and Porta 2011) and the location of economic activities (Porta et al. 2012). 

The Integration network metric, which is based on the theories and techniques of space syntax, 

can help  predict the spatial variations of human movements in an urban environment (Jiang 

2009). The same study also reports that, compared with space syntax metrics, Google’s 

PageRank scores as well as betweenness and degree centrality indices are even better indictors of 

urban traffic volume(Jiang 2009).  

However, existing network measures primarily are based only on the topological 

structure of a network. Physical characteristics of road network components (e.g., intersections 

and road segments) have been almost ignored in these measures. Yet their impacts on an urban 

economy have been intensively investigated in the field of transportation geography. The goal of 

transportation is believed to provide transportability; i.e., ease of movement of passengers, 

freight or information. These physical characteristics determine accessibility and travel costs on 

road networks, and further  impact the location, scale, scope, agglomeration, and density of 

urban economic sectors (Rodrigue, Comtois, and Slack 2013). Based on empirical evidences, 

Wang et al. (2012) argue that road characteristics cannot be defined solely by topological 
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properties, but by topological properties as well as other physical properties related to the usage 

of road segments. Therefore, previous network metrics may not be sufficient to maximally 

capture spatial characteristics of network components so as to use such metrics to predict the 

socioeconomic characteristics of corresponding proximal areas. The absence of a suitable metric 

in the literature may explain why even though correlations were observed between network 

measures and urban socioeconomic variables, few studies, if any, attempted to formally 

investigate the potential of network metrics for the prediction of socioeconomic characteristics. 

This study attempts to fill the blank by developing a new network metric that can be a good 

predictor of socioeconomic characteristics in urban environments. By incorporating both 

topological properties and physical characteristics of network components, we argue that the 

newly developed index can be more theoretically plausible than traditional ones. 

Theoretical Framework 

A network can be represented as a graph in which nodes are connected by links. Many 

concepts and associated quantifiable measures are developed with this node-link representation. 

Each node and link is a component of a network. Therefore, a network component refers to a 

node or a link in this paper. Network components are nodes-and-links will be used 

interchangeably hereafter. Based on such a network representation, various methods have been 

proposed to analyze characteristics of network components. For the convenience of discussion, 

this study groups the previous methods of characterizing network components into two major 

types of approaches, namely index assessment and simulation.  

 Index Assessment 
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In a traditional transportation network, the index assessment approach either measures 

network components characteristics, or summarizes specific characteristics in respective 

proximal areas of network components. The former includes connectivity or centrality measures 

as well as other qualitative attributes of road networks, such as road class and traffic conditions 

(Bono, Gutiérrez, and Poljansek 2010). The latter type of indices can be socioeconomic 

variables, such as population, jobs, income (Song et al. 2011), or urban form variables  such as 

mean NDVI values and land use categories (Lindsey et al. 2007; Vance and Hedel 2008). 

Connectivity and centrality are the most commonly used network indices. Connectivity 

measures the strength of connections between nodes (or links) with respect to other nodes (or 

links) (Brandes and Erlebach 2005). At the nodal (or link) level, the degree of a node (or link) in 

a network can be defined as the number of nodes (or links) that are directly connected to it. The 

concept of centrality concerns the relative importance of a node or a link in a network. As such, a 

link may be said to have higher centrality if it is used more often for traverses. A number of 

indices have been proposed to measure centrality. The four most popular ones are degree, 

closeness, betweenness, and eigenvector centralities. Degree centrality is based on the number of 

direct connections to each component, it essentially is a measure of connectivity as well. 

Closeness centrality of a given node is defined by an inverse function of the sum of distances 

between this node and all other nodes in a network. Betweenness centrality measures the number 

of times a node serves on the shortest paths among all pairs of nodes in a network. Eigenvector 

centrality considers reciprocal relationships between connected neighbors by finding a principal 

eigenvector of the adjacency matrix of a network representation. It assigns relative centrality 

scores to each node with more contributions from higher-scoring neighbors. Although centrality 

measures are generally applied in network science, many studies use these indices to characterize 
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the structural properties of urban street networks (Jiang and Claramunt 2004; Bono, Gutiérrez, 

and Poljansek 2010; Wang et al. 2011; Zhang and Li 2011).   

More recently, the PageRank algorithm was developed to rank the importance of 

webpages and has been used by the Google web search engine (Brin and Page 2012). The 

algorithm has also been applied in transportation network analysis. It is considered a variant of 

the eigenvector centrality measure because it considers not only the number of neighbors, but 

also the quality of each neighbor. The weighted PageRank algorithm, a modified version of the 

original, takes into account the importance of linked pages, and distributes rank scores based on 

the popularity of the pages (Xing and Ghorbani 2004).  Both algorithms have been utilized in 

urban network analysis, and have been found to outperform other metrics in estimating human 

movements or predicting traffic (Jiang 2009; Jiang and Jia 2011). 

Space syntax metrics (Hillier 1999) have been widely adopted to measure network 

characteristics. Space syntax includes a set of new concepts and techniques that can analyze 

spatial configurations. Space syntax metrics, such as connectivity, depth, and integration are 

popular in research (Li and Guo 2003). Connectivity in space syntax refers to the number of 

spatial units connected to a given spatial unit. Depth indicates the minimum number of spatial 

units that are connected to a given spatial unit in a certain step. Integration measures the number 

of turns one has to make from one link to reach other links by way of the shortest paths in a 

network. In street network analysis, many studies show that the space syntax measures are able 

to quantify traffic characteristics such as vehicle traffic volume (Croxford, Penn, and Hillier 

1996) and pedestrian volume (Porras et al. 2002; Baran, Rodríguez, and Khattak 2008). In a 

study that predicted human movements in an urban environment, Jiang (Jiang 2009) found that 
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60 percent of the spatial variation in human movements can be explained by a space syntax 

measure from a topological point of view.  Interestingly, the same study also showed that 

physical characteristics of roads such as road width, and building height as well as the land use 

type of the vicinity area, may account for the other 40 percent of the spatial variations. 

 Simulation models 

Various simulation models have been developed to imitate human activities and 

responses to increase understanding of complex systems, such as cities (Benenson and Torrens 

2004). The literature contains many traffic simulation modeling strategies, including discrete 

agent-based methods (Benenson and Torrens 2004), the grid model method (Miyagawa 2009), 

and continuous traffic flow methods that explore traffic jams or evaluate network configurations 

(Wewal et al. 2010).  

In comparison with the index assessment approach, most simulation models for networks 

predict or estimate traffic dynamics on a network by imitating agent behavior within a network 

configuration. Only a few previous studies along this line of research specifically assess the 

characteristics of network components. In the small number of studies, the random walk method 

has been particularly popular. 

Random Walk is a special type of simulation modeling. The concept initially was 

proposed by Pearson in 1905 to estimate the probability that after n steps of random walks a 

person is at a distance between r and r + d from his/her starting point (Pearson 1905). This 

method has attracted much interest through a variety of research efforts, ranging from electric 

communication (Leng et al. 2007) and social problems (Short et al. 2008), to complex network 

(Yang 2005). In time geography, random walk simulation has been used to predict the 
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probability distribution of an agent's location over time (Winter and Yin 2011). In urban studies, 

the random walk algorithm has been applied to detect community structures (Pons and Latapy 

2005), and to identify isolated urban areas (Volchenkov and Blanchard 2007). Li, Zhao, and 

Yuki (2009) apply the random walk algorithm to rank node importance of each road intersection 

with regard to its likelihood to be visited.  

Although the random walk algorithm shows promise in characterizing network 

components, few studies can be found in the literature and two problems have been uncovered in 

the few available prior studies. First, previous studies only considered un-weighted networks 

(Chen and Chen 2007). The probability of path selection is assumed to be uniform and all of the 

walking distances are set to a fixed value. However, some important characteristics of network 

components, such as capacity, speed limit, and the turning angle at an intersection, may have 

direct or indirect, and significant or minor, impacts on route choices (Behrens and Kane 2004); 

(Watling, Milne, and Clark 2012). Second, previous studies of the random walk algorithm never 

explored its potential to develop characteristic measures of network components. 

Research Design 

The research integrates both topological characteristics and other innate attributes of 

nodes and links in a network to rank the spatial importance of each network component. The 

objective is to establish a new metric for nodes and links that can serve as a significant indictor 

of some socioeconomic characteristics in the proximal area around network components. 

Because the new index is based on the random walk simulation approach, it is dubbed the 

random walk value (RWV). As described in Figure 3-1, the RWV attempts to capture both 

physical and topological characteristics of network components.  Therefore the authors 
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hypothesize that the RWV might more representative and more strongly associated with 

socioeconomic characteristics of the proximal areas of network components.  

 

Figure 3-1. A Conceptual Framework 

The RWV algorithm 

Based on the original idea of random walk simulation, this algorithm makes 

improvements in the following ways. First, it not only considers the topological structure of road 

networks, but it also incorporates the physical characteristics of network components. Secondly, 

it considers the statistical distribution of trip lengths when randomly generating the trip lengths. 

Thirdly, it simulates a large number of walks on a network until a convergence criterion is met.  

The general process is illustrated in Figure 3-2. To start a trip, a node of trip origin is randomly 

selected, and a trip length is randomly generated.  Then the actual path of each trip is 

incrementally formed by choosing a link segment each time a road intersection (or node) is 

visited. A path is complete when the trip length is reached.  The RWV of every traversed 

network component on the trip path increases by 1 when a trip path is generated.  
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Figure 3-2. A Flowchart of the RWV Algorithm 
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Figure 3-3 shows a simulated trip path, which starts with a random point A. A decision of 

the next road segment is to be made at nodes A, B, and C, respectively, until a randomly 

generated trip length l is reached. 

 

Figure 3-3. A Simulated Trip Path 

Apparently, the choice of the next link in a sequence is a critical decision. This also is the 

step in which characteristics of network components are the primary consideration. This process 

basically is about solving a discrete choice problem of choosing one of the several connected 

roads at an intersection. A number of discrete choice models are available, including the most 

popular random utility model (refer to (Train 2009) for more details). Most models establish a 

probability distribution expressed as a function of characteristics of the available choices. The 

rationale here is that the probability for a link selection is proportional to the chosen key 

characteristic of the link. As expressed in Equation (1) and Figure 3-4, this study applies a 

weighted proportional function to estimate the probability for each link to be taken as the next 

step.  In the Figure 3-4 example, a random traveler coming from node N1 and arriving at node N2 
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faces a choice between links l2,3 (link from N2  to N3), l2,4, and l2,5 to continue the trip. The 

probability that this walker selects l2,3 is modeled by Equation (1): 

𝑝𝑙2,3 =
𝑤𝑙2,3

𝑤𝑙2,3+𝑤𝑙2,4+𝑤𝑙2,5

                         (1) 

where p stands for the probability of selecting a link, and w is the value of the weight 

variable of the associated link, such as the width or speed limit of a road segments. Based on p 

values, a Monte Carlo simulation can be performed to make a choice according to the preceding 

probability distribution. The algorithm excludes the incoming link (l1,2 in this case) from the set 

of candidates in order to avoid the occurrence of a meaningless circular path. 

 

Figure 3-4 Link Selection 

After choosing a link and adding it to the simulated travel path, the total length of the 

current journey is updated. On the condition that the total length equals or exceeds the predefined 

threshold trip length, the current random walk trip path is complete, and the RWVs of all nodes 

and links (road segments) on the path are increased by 1. Then the sum of the RWVs for all 

nodes in the network is compared with the sum before this travel path was added. If the relative 

contribution of the new path is smaller than a threshold value (e.g. 0.00001), the RWVs of the 
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network components are considered to be in a stable situation, which signals the conclusion of 

the algorithm. The stopping condition is specified by Equation (2): 

∑𝑅𝑖,𝑡−∑𝑅𝑖,𝑡−1

∑𝑅𝑖,𝑡
≤ threshold             (2) 

where R stands for the RWV scores, subscript i indicates node i, and t is the iteration 

sequence number of the simulation. 

Critical Parameters and a Software Tool 

A software tool was developed to implement the RWV algorithm. The tool is 

programmed in Python in the form of an ArcGIS python toolbox. Figure 3-5 portrays the 

interface of the tool. The python tool creates a net file from an existing road network shape file, 

calculates RWVs and exports the results to a point shapefile for nodes, and to a polyline 

shapefile for links. In the interface, users can define the stopping condition in Equation (2), and 

the two critical parameters, as discussed next.  

 

Figure 3-5. The Interface of the RWV Calculation Tool  

Two critical factors require special attention. The first is about trip distribution in the 

simulation process, and the second is the weight variable. When randomly generating a set of trip 
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lengths, the distribution of the simulated trip lengths needs to conform to observed distributions 

in the real world. Power-law (Clauset, Shalizi, and Newman 2009) and normal distributions are 

the two most popular forms of length distribution for urban trips. A power distribution of trip 

lengths suggests that the corresponding frequency (or probability) y is the power function of the 

trip length x, as shown in Equation (3).  

𝑦 = 𝑥𝑎                               (3) 

In this paper, the exponent a is set to 2.5, which has been widely adopted for urban trips. 

This study applies Newman's (Newman 2005) method for generating trip lengths following a 

power-law distribution. In comparison, the normal distribution of trip lengths means that the 

frequency or probability follows a Gaussian distribution.  

Many possible road characteristics are viable choices for the weight variable for link 

selection. This study tests three representative choices: natural-street which captures angular 

relationships in the network structure, connectivity which measures the centrality of a network 

component from a topological perspective, and road width (or speed limit) which describes a 

physical characteristic of network components.  Natural streets are joined road segments of good 

continuity and often are identified from adjacent street segments that have the smallest deflection 

angles (Liu and Jiang 2012). Subscribing to the Gestalt principle of good continuity, Jiang and 

colleagues (Jiang et al. 2008; Liu and Jiang 2010; Jiang and Jia 2011) argue that drivers often 

prefer to choose natural streets whenever possible. This position seems to be supported by not 

only their empirical studies, but also by the pattern of human travel routes that were identified by 

massive GPS data (Turner 2009). When a natural street was chosen as the weight variable, the 

algorithm prioritizes a connected natural street as the most likely road segment for the next step 

in a simulation.  



80 

 

 

Validation, Sensitivity Analysis, and Case studies  

To test the validity of the developed algorithm and the software tool, a preliminary study 

was performed using a road network dataset for Wuhan, China. The preliminary study also 

evaluated the sensitivity of results to the aforementioned critical parameters of the algorithm. 

After the validation and sensitivity analysis, two case studies were conducted to examine the 

usefulness of the RWV. Wuhan in China and Atlanta in the United State are the two case study 

cities. They are one of the largest metropolitan areas in their respective countries. Both cities are 

characterized by high population density, and both serve an important regional role as economic 

and transportation hubs. In the validation tests and in the case studies, the RWV algorithm was 

run in six different parameter settings, as enumerated in below Table 3-1.  

Table 3-1 The RWV Index Obtained with Different Parametric Settings 

 Weight variable Trip Length Distribution 

RWV1 width (in Wuhan study)  

power-law distribution speed (in Atlanta study) 

RWV2 width (in Wuhan study) normal distribution 

speed (in Atlanta study) 

RWV3 natural street power-law distribution  

RWV4 natural street normal distribution 

RWV5 connectivity power-law distribution 

RWV6 connectivity normal distribution 

 

For comparison, several widely used network indices also were calculated based on the 

same data. Then a correlation analysis was conducted to examine relationships between the 

RWV and these indices, which include centrality measures, space syntax metrics, and PageRank 

scores. Space syntax metrics were computed by the program XWoman (Jiang and Claramunt 
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2002). Centrality measures and PageRank scores were calculated in Python with the NetworkX 

library. All of these measures were estimated for each network component, whenever possible. 

Some indices, such as the PageRank scores, are inherently applicable at the node level only. 

Similarly, the space syntax measures were calculated only for links. Although only the 

correlation analysis is reported for these case studies, significant correlations between the RWV 

and these widely used network metrics also evidence the validity of the algorithm and the 

associated tool.  

Validity and Stability Tests 

Because the RWV algorithm is simulation based, the stability of resulting RWV scores is 

important. To test this stability, the tool of the RWV algorithm is performed six consecutive 

times on the same data with the same parameter setting. Statistics for the six sets of RWVs are 

reported in Table 3-2. They suggest that results from multiple runs are consistent, given the 

inherent randomness of simulation.  

Table 3-2 Descriptive Statistics for Generated RWVs of Nodes for Six Tests 

 Test1 Test2 Test3 Test4 Test5 Test6 

Average 830.59 828.53 829.73 828.80 828.53 829.56 

Standard Error 8.90 8.92 9.05 8.92 8.79 8.85 

Median 779.00 783.00 781.00 780.00 780.00 786.00 

Mode 692.00 630.00 600.00 739.00 853.00 804.00 

S.D. 309.20 309.80 314.27 309.79 305.28 307.46 

Variance 95602.48 95973.40 98766.13 95970.81 93193.89 94529.82 

Range 1802.00 1859.00 1782.00 1839.00 1836.00 1851.00 

Min 140.00 122.00 123.00 117.00 108.00 99.00 

Max 1942.00 1981.00 1905.00 1956.00 1944.00 1950.00 
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Sensitivity Analysis 

An analysis is conducted to test the sensitivity of the results to the two critical 

parameters. Table 3-1shows six parameter settings, each of which is a unique combination of the 

realized choices of the two critical parameters. The corresponding six sets of RWVs are 

calculated using the developed tool. Figure 3-6 is the scatterplot matrix showing relationships 

between each pair of the RWV sets. Results are not sensitive to the parameter of trip length 

distribution. RWV1 and RWV2 are two sets of results based on different forms of trip length 

distribution, but with an identical weight matrix. The scatterplot of RWV1 versus RWV2 follows 

the diagonal line closely, which suggests that the two sets of values are highly similar. The same 

is true for the other two pairs of RWVs that have different types of trip length distribution when 

other parameters are kept the same. However, the simulated RWV results are relatively more 

sensitive to the weight variable parameter. When other parameters are held constant and only the 

weight variable changes, the set of RWVs (e.g., RWV1, RWV3, and RWV5) are more obviously 

dispersed away from the diagonal lines in respective scatterplots. Among them, the choice of 

"Natural Street" yields results that are slightly more different from that of other choices (i.e., 

road width and connectivity).  
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Figure 3-6. Scatterplot Matrix for the Parameter Sensitivity Analysis 

Case Study 1: Wuhan, China 

Wuhan is the capital city of Hubei Province, China and has been considered a 

transportation hub and a center of industry, commerce, and education in Central China. The 

primary data used in the study are from its road network for the year 2000. Population and 

employment census data for the same time period also were obtained. Additionally, the sale 

prices of more than one hundred randomly located houses were collected between 2001 and 

2005.  

RWVs show various degrees of correlation with the other network measures (Table 3-3). 

Particularly, they have the strongest correlations with degree centrality, followed by PageRank 

indices. The choice of the weight variable exerts significant influences on both PageRank scores 
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and RWVs. The RWVs and PageRank scores have a higher correlation if the same weight 

variable is applied.  

Table 3-3 Correlation of the RWV with Other Indices for Wuhan 

Node level RWV1 RWV2 RWV3 RWV4 RWV5 RWV6 

PageRank 0.30* 0.29* 0.26* 0.25* 0.40* 0.38* 

WPageRank1 0.48* 0.46* 0.09* 0.11* 0.17* 0.17* 

WPageRank2 0.30* 0.28* 0.26* 0.25* 0.41* 0.38* 

Degree of 

Centrality 

0.46* 0.45* 0.44* 0.43* 0.58* 0.56* 

Closeness 0.00 0.03 -0.02 0.02 -0.05 -0.05 

Betweenness 0.01 0.03 -0.06* -0.04 -0.07* -0.05 

Eigenvector -0.13* -0.14* -0.16* -0.16* -0.16* -0.17* 

Link level RWV1 RWV2 RWV3 RWV4 RWV5 RWV6 

Connectivity 0.10* 0.12* 0.11* 0.12* 0.32* 0.31* 

Mean Depth -0.05* -0.07* -0.03 -0.07* 0.00 0.01 

Global Integration 0.05* 0.07* 0.02 0.06* -0.01 -0.01 

Local Integration 0.15* 0.17* 0.16* 0.18* 0.37* 0.37* 

Total Depth -0.05* -0.07* -0.03 -0.07* 0.00 0.01 

Local Depth 0.29* 0.31* 0.29* 0.31* 0.48* 0.49* 

* denotes that the correlation is statistically significant at the 95% confidence level  

For PageRank,WPageRank1 is weighted by width, and WPageRank2 is weighted by 

connectivity 

 

Figure 3-7 (a) shows the geographic distribution of  house sale prices from the survey 

data. It reveals that house prices in Wuhan are highest in central urban areas, and decrease 

gradually in the direction toward the outskirts. However, despite the general trend, housing price 

varies across space in a way that cannot simply be explained by distance from the urban center.  

Panels (b) through (f) in Figure 3-7 display the spatial distributions of related attributes.  
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(a) House Prices in Wuhan, China by Natural 

Break Classification 

(b) Road Density by Natural Break 

Classification 

  

(c) Population Density by Natural Break 

Classification 

(d) Job Density by Natural Break 

Classification 

  

(e) RWV1 of Nodes (f) RWV1 of  Links 

Figure 3-7. Spatial Distributions of Selected Socioeconomic and Network Attributes in Wuhan, 

China 
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Figure 3-8 depicts correlations among all the network indices and the social-economic 

variables at the same aggregation level. In the radar charts, each color represents one 

socioeconomic variable. A dot of that color on each radius indicates the correlation between the 

variable and the corresponding network measure that is labeled for the radius. Because 

population and job densities are measured at the TAZ level, all of the network measures were 

also aggregated as averages in the TAZs for consistency. The Figure shows that the RWVs are 

highly correlated with population density, job density, and road densities, with much stronger 

coefficients than all other network measures. Among the six RWVs, all of those with a normal 

distribution of trip lengths (RWV2,4,6) perform slightly, but consistently, better than their 

counterparts with a power law distribution.  

  

(a) Correlations Based on Nodal Indices  (b) Correlations Based on Link Indices 

Figure 3-8. Correlations Between Network Indices and Socioeconomic Variables at TAZ 

Level in Wuhan 

To test the predictive power of RWVs as a surrogate for urban form characteristics, 

housing price is estimated using multivariate regression. The reason for this choice is that 

housing price has been a uniquely important socioeconomic indicator in Chinese cities, and is 

closely associated with not only land values, but also with other urban form characteristics. 
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Previous studies indicate that house prices in China are significantly influenced by both the land 

supply policy (Yu 2010) and locations of houses. The regression analysis was conducted 

separately for node RWV and link RWV measures. The general trends for these two measures 

are very consistent, although the node RWV yields slightly better results.  

Twelve regression models are specified to estimate the house sale price in Wuhan, and 

results are compared. All variables used in the regression, including population density, job 

density, road density, RWV, and centrality indices, were recalibrated as averages in buffers of 

500 meters around all the sample house locations. The reasons are twofold. First, it is to ensure 

consistent spatial units among all variables in the analysis. More importantly, the second reason 

is to test the penetration of influence of network components into its proximal areas.  The spatial 

characteristics of the nearby nodes and links of the network determine the accessibility and other 

characteristics of the proximal areas where the houses are located. 

Table 3-4 summarizes the specifications and results of all twelve models. The first two 

models are the base model which predict house sale price without RWVs. These two models are 

selected best models with a stepwise regression process that considers candidate predictor 

variables including population density, job density, road density, and the year of transaction. 

Because population density and job density are very highly correlated, the inclusion of both in a 

model does not produce better results. So they did not both appear in the two selected best 

model. As suggested by the statistics in Table 4, the problem of multicollinearity in Model-1 is 

of concern because the variance inflation factor (VIF) is larger than 5.  This problem was solved 

in Model-2 by dropping road density at the cost of reduced explanation power of the model.   
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The next six models (Model 3-8) substitute RWV for job density. All of them exhibit 

better explanatory power and better quality, evidenced by the higher R-square scores and lower 

AIC values. Moreover, all of the six models are free of the multicollinearity problem. This 

outcome probably is because the RWVs are embedded with a richer set of information, including 

topological and physical characteristics of the local nodes in the road network, which are 

particularly important to house prices in the Chinese housing market. Among the six models, 

Model-8 is the best because it gives the highest adjusted R-square and the lowest AIC values. 

The corresponding RWV (RWV6) uses connectivity as weight, and adopts normal distribution 

for the simulation of trip lengths. However, the models using RWV5 and RWV2 also give highly 

comparable results. Those RWVs have various parameter choices, including a power law for trip 

length distribution, and the road width for weight. This suggests that the results are not very 

sensitive to the two critical parameters. 

Four additional models (Models 9-12) were calibrated to test the performance of other 

traditional measures including betweenness, degree centrality, and the two weighted PageRank 

(WPR) measures. Betweenness and degree are chosen because they have higher correlations with 

housing price than any of the other traditional network measures (see Figure 3-8). The two 

WPRs are chosen because they have the highest correlations with the RWV (see Table 3-3). 

Unfortunately, all of them, except betweenness, are statically insignificant in the respective 

models (Table 3-4). Therefore, the explanatory power of Models 10, 11, and 12 are merely the 

same as the base model because they cannot receive any contribution from the network 

measures. Betweenness is found to be a significant predictor in Model-9, which helps to improve 

the model. However, with a lower R-square and a higher AIC score, Model-9 still is inferior to 

all of the RWV models in comparison. These consistent results suggest that RWV is a better 
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network index for the substitution and estimation of selected socioeconomic variables in spatial 

analysis. In addition, to examine the effect of spatial autocorrelation in the study, a spatial lag 

model and a spatial error model were constructed. No significant spatial autocorrelation was 

found, and these spatial autoregressive models did not improve results.  

Table 3-4 Regression Results for House price (101 Observations) 

  Std. 

Coef. 

P VIF R-

square 

Adj. R 

Square 

AIC 

Model 1 Average Job Density 0.11 0.5

1 

5.26 0.48 0.47 1851.8

5 

Average Road Density 0.44 0.0

1 

5.17 

Transaction Year 0.36 0.0

0 

1.04 

Model 2 Average Job Density 0.50 0.0

0 

1.04 0.45 0.43 1856.7

6 

Transaction Year 0.35 0.0

0 

0.00 

Model 3 Average Road Density 0.37 0.0

0 

1.47 0.54 0.53 1838.9

1 

Transaction Year 0.35 0.0

0 

1.46 

Average RWV1 0.31 0.0

0 

1.03 

Model 4 Average Road Density 0.35 0.0

0 

1.50 0.55 0.54 1837.2

3 

Transaction Year 0.36 0.0

0 

1.49 

Average RWV2 0.33 0.0

0 

1.02 

Model 5 Average Road Density 0.34 0.0

0 

1.99 0.52 0.51 1844.0

1 

Transaction Year 0.34 0.0

0 

1.97 
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Average RWV3 0.29 0.0

1 

1.04 

Model 6 Average Road Density 0.31 0.0

0 

2.01 0.53 0.52 1841.3

4 

Transaction Year 0.35 0.0

0 

1.99 

Average RWV4 0.33 0.0

0 

1.03 

Model 7 Average Road Density 0.30 0.0

0 

1.73 0.56 0.54 1836.5

0 

Transaction Year 0.35 0.0

0 

1.73 

Average RWV5 0.36 0.0

0 

1.03 

Model 8 Average Road Density 0.28 0.0

0 

1.78 0.56 0.55 1834.3

2 

Transaction Year 0.36 0.0

0 

1.77 

Average RWV6 0.39 0.0

0 

1.02 

Model 9 Average Road Density 0.54 0.0

0 

1.03 0.51 0.49 1846.1

7 

Transaction Year 0.38 0.0

0 

1.03 

Average Betweenness 0.18 0.0

2 

1.01 

Model 

10 

Average Road Density 0.51 0.0

0 

1.08 0.49 0.48 1849.7

5 

Transaction Year 0.39 0.0

0 

1.08 

Average Degree 

Centrality 

0.12 0.1

2 

1.06 

Model 

11 

Average Road Density 0.53 0.0

0 

1.04 0.48 0.46 1852.3

0 

Year of Transaction 0.37 0.0

0 

1.03 
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Average WPG (width) 0.00 1.0

0 

1.03 

Model 

12 

Average Road Density 0.53 0.0

0 

1.07 0.48 0.47 1851.4

6 

Year of Transaction 0.38 0.0

0 

1.05 

Average WPG 

(connect) 

0.07 0.3

7 

1.02 

Note: highlighted variables are NOT statistically significant at the 0.05 level 

Case study 2: Atlanta, GA, the United States (U.S.) 

The Atlanta metropolitan area is one of the top ten most populous areas in the U.S., 

according to the 2010 census data. It also is a world city with important roles in the global 

economic system. The road network data in the study are based on 2010 TIGER road GIS data of 

Atlanta from the U.S. census. In consideration of data volume and computational load, the 

dataset included all highways, primary roads, as well as secondary roads, while other local and 

neighborhood roads were excluded. For socioeconomic data, this study obtained the American 

Community Survey (ACS) 5-Year estimates for time period 2007-2011 from the U.S. census. All 

of the RWVs and other network indices are aggregated at the census tract level in order to be 

consistent with the spatial unit for the available socioeconomic data. For the simulation of trip 

lengths, the average trip length of 10 miles was used according to an online report (Atlanta 

Regional Commission 2004). 

The correlations between the RWVs and other network measures are reported in Table 9 

for measures at the nodal level and at the link level. The Table 3-5 shows that the RWVs have 

the highest correlations with degree centrality, closeness, and weighted PageRank for nodal 

measures, and with mean depth, total depth, and global integration for link measures. 
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Correlations between the RWV and centrality measures as well as space syntax indices are 

higher in Atlanta than those in Wuhan. Such differences may result from the distinct spatial 

structures of road networks in the two cities. 

Table 3-5 Correlation of the RWV with Other Indices for Atlanta 

Node level RWV1 RWV2 RWV3 RWV4 RWV5 RWV6 

PageRank 0.41* 0.44* 0.38* 0.41* 0.47* 0.51* 

WPageRank 

(weighted by speed) 

0.46* 0.49* 0.41* 0.45* 0.49* 0.52* 

WPageRank 

(weighted by 

connectivity) 

0.45* 0.48* 0.41* 0.45* 0.51* 0.55* 

Load 0.14* 0.24* 0.13* 0.22* 0.16* 0.26* 

Degree of Centrality 0.61* 0.65* 0.56* 0.61* 0.66* 0.70* 

Closeness 0.51* 0.60* 0.49* 0.55* 0.50* 0.57* 

Betweenness 0.14* 0.25* 0.14* 0.22* 0.17* 0.26* 

Eigenvector 0.12* 0.14* 0.09* 0.14* 0.10* 0.13* 

Link level RWV1 RWV2 RWV3 RWV4 RWV5 RWV6 

Connectivity 0.13* 0.15* 0.13* 0.14* 0.28* 0.29* 

Mean Depth -0.50* -0.60* -0.46* -0.52* -0.52* -0.60* 

Global Integration 0.48* 0.59* 0.44* 0.51* 0.51* 0.60* 

Local Integration 0.15* 0.17* 0.15* 0.16* 0.29* 0.31* 

Total Depth -0.50* -0.59* -0.46* -0.52* -0.52* -0.60* 

Local Depth 0.29* 0.31* 0.27* 0.28* 0.39* 0.40* 

Note:  * indicates that a correlation is statistically significant at the 0.05 level 

Figure 3-9 depicts correlations between the network measures and socioeconomic 

variables. Overall, all six types of RWVs have much higher correlations with the four 

socioeconomic variables than the traditional network measures do. The immediate second is 

closeness, which also has relatively high correlations. The result echoes findings from previous 
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studies (Wang, Antipova, and Porta 2011) that the closeness centrality is positively correlated 

with population and employment densities. However, the newly developed RWV index clearly 

has a competitive edge over closeness. 

Comparing the six RWVs among themselves, all three types with a power law 

distribution of trip lengths (RWV1, RWV3, and RWV5) have slightly but consistently higher 

correlations with the socioeconomic attributes than their counterparts based on a normal 

distribution. All four socioeconomic variables, namely population density, employment density, 

road density, and household density, consistently have significant correlations with all RWVs. 

  

(a) Correlations Based on Node Indices (b) Correlations Based on Link Indices 

Figure 3-9 Correlations between Network Indices and Socioeconomic Variables at the TAZ 

Level in Atlanta 

Although the findings about strong correlations between RWVs and socioeconomic 

attributes are consistent between the two case studies, housing price in Atlanta is not found to be 

significantly associated with RWVs. It is also found that even population and job densities are 

not good predictors of housing price in Atlanta. This difference may result from differences in 

the two housing markets, in which property laws, people’s travel behavior, transportation 

systems, as well as economic and political contexts, are all different.  
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Discussion  

The cases study results support the contention that the RWV is superior to the traditional 

network measures for ranking spatial characteristics of network components. First, in both 

studies, all RWVs consistently have higher correlations with all tested socioeconomic variables 

than other network measures do. In addition, the regression model for Wuhan's housing prices 

indicates that the RWV can be an excellent predictive factor, because adding it to the base model 

significantly improves the quality of the regression model. The RWV can be an excellent 

substitute for population and job densities in spatial analysis and modeling. In fact, by 

substituting the RWV for job density, the new models are significantly better than the original 

ones, evidenced by higher R-square, lower AIC and resolving the multicollinearity problem in 

the case study of Wuhan. In comparison, most other traditional network measures cannot make 

any contribution to the base model. The only exception is the betweenness network measure. 

However, all RWVs outperform betweenness with regard to the performances of respective 

models. The superiority of the RWV over other traditional network measures has its theoretical 

underpinning. As argued in the first section, a representative network measure should consider 

both topological properties and physical characteristics of network components. Traditional 

measures almost exclusively rely on topological properties only, while the RWV algorithm 

incorporates both topological structure and physical characteristics. Other less significant factors 

also may contribute to the better performance of the RWV. Compared with other network 

measures, the RWV algorithm implicitly incorporates road density for a road network measures 

by limiting the walking length in its calculation. In an urban area, road density is closely related 

to urban development intensity and economic prosperity. 
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The second finding is that the RWV algorithm is not extremely sensitive to the two 

critical parameters, as long as the parameters are chosen from the set of reasonable options. All 

RWVs under various parameter settings consistently outperform other network measures in the 

case studies, suggesting that none of the available parameter settings would dramatically affect 

the general pattern of RWVs. That said, moderate variations are observed among RWVs from 

different parameter settings. For instance, normal distribution of trip lengths was found to be 

slightly but consistently better than power law distribution in the case study of Wuhan. However, 

a power law distribution was found to be a better option for the case study of Atlanta. Such a 

difference in trip length distributions may result from the differences in prevailing travel modes 

and urban forms in the two cities. Therefore, careful choice of parameters is highly 

recommended, and should take into account the social, political, and economic context of a study 

area. 

 Third, the RWV is not always a good predictor for all socioeconomic variables. The 

result really depends on the underpinning spatial processes behind the variables to be estimated. 

For instance, housing price was found to be predictable by the said variables in Wuhan but not in 

Atlanta. This is probably because different mechanisms governing the two housing markets. In 

the Chinese housing market, house values are largely determined by its accessibility to 

socioeconomic resources. However, in the U.S. housing market, where accessibility is generally 

good in cities and the prevailing travel mode is private car, the network related attributes become 

less important, and local neighborhood characteristics may play more important roles. The RWV 

is expected to be a good predictor only when a socioeconomic variable to be predicted  results 

from spatial processes that are closely related to its network characteristics. 
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Conclusion 

This study proposes a new network measure, called the random walk value (RWV), for 

ranking spatial characteristics of network components and associated proximal areas. In general, 

the RWV is consistent with some of the most widely used network measures. Two case studies 

reveal high correlations between the RWV and several popular network indices, such as 

PageRank, closeness, and connectivity. However, these case studies also reveal that RWV 

outperforms all traditional network indices in terms of its correlation with important 

socioeconomic variables, and in its ability to predict other variables. Specifically, both cases 

studies confirm that the RWV tends to be highly correlated with population and job densities, 

and may serve as a powerful substitute for them in spatial analysis models. This finding is 

significant for many studies when population and job distribution data are not available, or for 

studies that predict future scenarios.  

The RWV is more broadly grounded in both topological network structure and physical 

road characteristics. The algorithm considers not only spatial structural characteristics, but also 

physical characteristics of network components. Implicit spatial characteristics, such as natural 

streets, also can be incorporated in the algorithm. The more comprehensive consideration of 

network properties provides a competitive advantage for it, compared with traditional network 

indices that are primarily based on topological properties only.  

Although the newly developed network index is innovative and powerful, the RWV 

algorithm is still young, and can be further refined. Many potential research avenues exist for 

further development and applications. One is discussed here as a starting point. The current 

algorithm for calculating the RWV assumes absolute independence for each simulated trip. In 
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other words, the algorithm does not consider the previously generated trips that have already 

been assigned to road segments. However, in reality, a dynamic relationship exists between trip 

volume and travel speed on a road segment. Traffic congestion may occur when traffic volume 

exceeds road capacity. Research is needed to revise the algorithm in consideration of such a 

dynamic relationship.  
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Abstract 

Human activities include spatial, temporal and social components that should be 

comprehensively analyzed. However, the dynamics of social connections between human 

activities are over simplified, and the spatial characteristics of social connections are seldom 

investigated. Meanwhile, collecting social relationship data is time consuming and always ended 

up with incomplete population. With the availability of location-based social media that enables 

people to publish their social events with geographical positions, participants and time of events, 

this research has introduced an innovative methodology of extracting location-based social 

media activities and organizing those activities in a way that social connections and spatial 

locations of human activities can be integrated. The proposed method is able to visualize and 

measure the dynamics of human connections in spatial-social dimension, and identify spatial-

social clusters of human activities. 

Introduction 

Social relationships are molded in a network structure where points represent individuals 

and edges represent social connection between those individuals (Hanneman and Riddle 2005). 

Such representations of human relationships are solely based on whether or not those individuals 

recognize each other, and generate topological measures of how individuals are embed in social 

networks. However, human activities involve in interacting with other people or visiting 

geographical places at different time periods. Those activities form social connections and 

occupy spatial-temporal positions. Social connections are contingent to surround environment 

which includes human neighborhoods and geographical spaces. 
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The current studies of human activities focus on only one or two aspects of those aspects, 

such as time-space prisms (Kwan 1998) that analyze trajectories of human activities in spatial-

temporal dimension, or TimeMatrix (Ji, Niklas, and Lee 2010) that emphasizes changes of social 

connections over time. How the dynamics of human connections vary over space has been 

seldom investigated. Particularly, the characteristics of human connections are simplified as 

static features in traditional social network analysis (Hanneman and Riddle 2005), and their 

spatial characteristics are neglected.  

In addition, collecting social relationship data between human beings has traditionally 

been a challenging endeavor that requires long hours of observation and interviews (Cranshaw et 

al. 2012). Enabled with GPS functions, many social media platforms allow people to constantly 

publish posts about human activities. Those social media posts include explicit participants and 

precise geographic locations of social events. Therefore, location-based social media has become 

new channels for observing human activities in spatial and social dimensions.  

This research has innovatively extracted human activities from location-based social 

media data where social acquisitions and locations are constantly published by social media 

users (Russell 2013). By constructing social connections from the collected social media data, 

this research proposed a methodology that can integrate social connections among people with 

geographic locations of their activities. The proposed method is able to measure the dynamic of 

social connection in spatial-temporal dimension, and produce useful visualization and analysis 

measurements, such as the identification of spatial-social clusters. 
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Related Works 

Constructing Social Networks from Human Activities 

Social-spatial structure cannot be explained by examining geographic factor or social 

mechanisms only (Scellato et al. 2011). On the one hand, social relations can be inferred from 

human activities in spatial and temporal dimension. On the other hand, social relations constrain 

human activities geographically and temporally (Cheng et al. 2011). Therefore, many studies 

have examined social relations incorporating with geographical locations of human activities. 

The inference about social ties between people is based on the factor those people were in the 

same geographical locations at roughly the same time (Crandall et al. 2010). Eagle et al. 

collected communication information and location data form mobile phones, and have 

successfully inferred 95% of friendships based on the observational data alone (Eagle, Pentland, 

and Lazer 2009). It has also been found that the social relationship can explain 10%-30% of 

human movements (Cho, Myers, and Leskovec 2011). Zhang and Yao applied a spatial-temporal 

analysis to identify social-spatial structural changes in Beijing (Zhang and Yao 2011). Butts et al. 

performed the exploratory simulation to explore the potential implications of geographical 

variability for the structure of social networks (Butts et al. 2012). Hipp et al. measured 

neighborhood boundaries based on the density of social ties among adolescents (Hipp, Faris, and 

Boessen 2012). Emch et al. also found that simultaneous spatial and social network analysis can 

add to the understanding of disease transmissions (Emch et al. 2012).  

Analyzing Social Dynamics from Social Media Data 

With the popularization of location-based social media data, social media feeds are 

becoming increasingly “geosocial” (Croitoru et al. 2013), meaning that social structure and its 

impact on human can be directly observed form social media (Cheng et al. 2011). Some scholars 
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have studied human activities and interactions from different social media, such as Facebook 

(Backstrom, Sun, and Marlow 2010), Twitter (Cheng et al. 2011; Croitoru et al. 2013; 

Padmanabhan et al. 2014), Dodgeball (Humphreys 2007), Foursquare (Scellato et al. 2011), and 

Flickr and YouTube (Croitoru et al. 2013). Several interesting findings are reported, for example: 

the likelihood of friendship with a person is found to be decreasing with distance among persons 

(Backstrom, Sun, and Marlow 2010); people that travels has more chances to meet friends and 

thus gets involved in more social activities (Cheng et al. 2011); persons with more friends tend to 

create triangles with individuals further apart (Scellato et al. 2011). Exchange of social and 

locational information is accelerated in the era of social media that allow persons to make a 

decision about physical movement based on social and spatial information (Humphreys 2007). 

Croitoru et al. identified and mapped connected communities and their structure based on social 

media feeds (Croitoru et al. 2013). Cranshaw et al. introduced a clustering model and research 

methodology for studying the structure and composition of a city on a large scale based on social 

media data (Cranshaw et al. 2012). 

Constructing Social Connections from Facebook 

Data Collection on Facebook 

Facebook is one of the most popular social media that foster close personal relationships 

that are projected from real life (Russell 2013). The research for this dissertation has conducted 

an authentic, transparent, repeatable and accessible data collection mechanism for extracting 

location-based social media activities from Facebook. Because the posts on Facebook are not 

entirely public, this research has applied and obtained the IRB approval from the University of 

Georgia. A dedicated website (www.lbsocial.net) is established for the Facebook data collection 

file:///C:/Users/xuebin/AppData/Roaming/Microsoft/Word/www.lbsocial.net
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(Figure 4-1). In addition to get IRB approval, the website itself is an authentic Facebook 

Application (Facebook 2013). All the collected data items have been reviewed and approved by 

the Facebook Company. Once people log in this data collection website, Facebook will send out 

a confirmation window explicitly explaining the items that will be collected by this website 

(Figure 4-2). 

 

Figure 4-1 Interface of Data Collection Website 

   

Figure 4-2 Approved Items by Facebook Company 
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The website is built in a Python environment on the Google App Engine (Google 2013), 

and is accessible to all users from the entire world to log in and collect data for their own 

purposes. Meanwhile, the website is customizable that can support collecting data from other 

social media platform, or transform data into a different format. The current version of the 

website fully supports Facebook API (Facebook 2013) and Twitter API (Twitter 2013) that can 

extract location-based Facebook posts or Tweets. 

This research project implemented a Snow-ball data collection mechanism to extract 

social relationships on Facebook (Figure 4-3).  The researcher invited several volunteers who 

have valid Facebook accounts to log into this website. Those volunteers become the seed 

Facebook users in this snow-ball data collection. Once the volunteers agreed with the IRB 

approved consent and logged in the website, the website will retrieve all the Facebook friends of 

the seed users, and collect the Facebook posts, such as status and photos that are embedded with 

geographic locations, for every Facebook friend of those seed users. Those Facebook friends of 

the seed users are egos (Hanneman and Riddle 2005) in the collected social relations because all 

the information is directly related to them. For each Facebook post, the website has recorded the 

time, the textual description, the tagged Facebook users on photos or status, and geographic 

locations where the post is published. Those tagged Facebook users are actors in the social 

relations since they all have direct connections to the ego Facebook users. The collected data is 

maintained in local GIS database for further analysis. 
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Figure 4-3 Snow Ball Data Collection of Social Relationships  

Constructing Social Connection 

With 50 seed Facebook users logged in the data collection website, 1,213 ego Facebook 

users and their location-based posts are recorded into the database (Table 4-1). For each single 

post, all the tagged participants are the Facebook friends of the collected Facebook user, and 

have physically (photo post) presented or literately (status post) mentioned in the Facebook post. 

Therefore, each participant mentioned in this post is assumed as a friend in the real world to all 

the other participants, and form social connections with all the other participants.  

There are 16,612 actors identified from those 1,213 egos. In addition, 103,232 social 

connections are formed from those 19,756 location-based Facebook posts. Figure 4-4 depicts the 

locations and traveling paths of the collected Facebook posts all over the world. Those Facebook 

posts are published at 6,027 different places that have been classified into 520 categories by the 

Facebook Company.  
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Table 4-1 Summary of Collected Facebook Data 

Type Number 

Seed Facebook User 50 

Ego Facebook User 1,213 

Actor Facebook User 16,612 

Connection 103,323 

Post  19,756 

Photo 15,167 

Status 4,589 

Place 6,027 

Place Type 520 

 

Figure 4-4 Location-based Facebook Posts 

All the collected actors have visited 6027 different places (Table 3-1). Those places have 

been classified into 520 sub-categories by Facebook. Figure 4-5 illustrates the top 10 most 

popular place types. The most visited places are cities, following by the college and university, 
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and local business. The type of places provides additional information about the activities and 

the social connection that happening at those places.  

 

Figure 4-5 The Top 10 Place Types 

For each place, Facebook provided the total number of likes that this place has received 

on line; the total number of times this place has been mentioned in Facebook posts; and the 

actual number of check-ins at this place. Those measurements can serve as popularity indices for 

places in the virtual world and the physical world. For example, Figure 4-6 shows how those 

measures vary across geographical space in Atlanta. The places in downtown are more popular 

in terms of receiving likes, talking about or check-ins. 
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Figure 4-6 Places in Atlanta 

The textual descriptions of the Facebook posts provide contextual information of the 

location-based human activities in both the physical world and the virtual world. From the word 

cloud of the Facebook posts (Figure 4-7), it is easy to find that most posts on Facebook are 

discussing positive activities, evidenced by the high frequency of the joyful vocabularies. 



119 

 

 

 

Figure 4-7 Word Cloud from Facebook Posts 

Social Network Analysis from the Constructed Social Connections 

The way of defining social connection in this paper provides a flexible method to 

construct social networks for different purposes or at different scales. For example, the entire 

social network has been constructed that comprises all the egos and their connections to other 

actors. Figure 4-8 depicts the structure of the entire social network. The different colors 

distinguish the persons into different communities.  
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Figure 4-8 The Entire Social Network 

Table 4-2 reports the statistics of the entire social network. The degree of a node is the 

number of the other directly connected nodes to this node. On average, each person who is 

mentioned the collected Facebook posts interacted with 12 other actors, and most persons have 

less than 40 direct connections (Figure 4-9). The density of a network is the proportion of all 

possible links that actually presents. Since the seed Facebook users and the ego Facebook users 

are from all over the world, their collected Facebook friends don not overlap with each other, 

resulting a low density of 0.001. The modularity and the connected components identify groups 

of nodes that are closely connected to each other within the group. Those persons consist of 376 

separated sub-groups, i.e., connected components within which members of each group do not 

interact with members outside of their sub-groups. Among those components, 417 communities 

are identified. The modularity and the average clustering coefficient measure the average 

densities of neighborhoods or communities of all the nodes. Therefore, within each communities, 



121 

 

 

persons almost know every other persons that is evidenced by the high modularity and the high 

average clustering coefficient. The sizes of the most communities are less than 50 (Figure 4-10), 

indicating that there less than 50 individuals in those identified groups. Those findings prove that 

the human interactions reflected on Facebook are constrained in small but close groups. 

Table 4-2 Measurement of the Entire Social Network 

Measurement Value 

Average Degree 12.440 

Density 0.001 

Modularity 0.983 

Number of Communities 417 

Connected Components 376 

Average Clustering Coefficient 0.915 

 

Figure 4-9 Degree Distribution of the Entire Social Network 
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Figure 4-10 Community Size Distribution of the Entire Social Network 

For each ego Facebook user, the ego-actors network is constructed to investigate the 

social structure at an individual level. In addition to calculate the basic network measures of each 

ego network, the total travel distance of each ego is also computed. Meanwhile, if an ego 

Facebook user publishes several posts at a same geographic place with same actors on a same 

day, those posts are counted as a single visit to this place. Therefore, the number of visits for 

each ego Facebook user is calculated as well. Table 4-3 summarizes how those measures 

correlated with each other. The high correlations among the number of nodes, the number of 

posts, the number of visits and the total travel distance confirm the hypothesis of previous study 

(Cheng et al. 2011) that people travel a lot will have more friends and get involved in more 

social activities. 
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Table 4-3 Summary of the Ego Networks 

 Number of Node Number of Post Number of Visit 

Number of Post 0.6788* 1  

Number of Visit 0.7258* 0.8741* 1 

Number of Clique 0.7495* 0.6068* 0.6270* 

Density -0.7024* -0.5997* -0.6368* 

Average Clustering Coefficient -0.0879* -0.1567* -0.1600* 

Sum of Travel Distance 0.5071* 0.5969* 0.6907* 

* indicates statistical significant at 5% 

 

Location-Based Social Connection 

Visualization of Location-Based Social Connection 

The social connections can be quantified and spatialized based on the connection 

formation from the collected Facebook posts. For example, if user A published more posts 

tagging act user or B than posts tagging user C, it is fair to conclude that user A has stronger 

social connections with user B than with user C. Therefore, the strength of ono-to-one social 

connection can be defined as the times of the formation of such one-to-one social connections in 

different social activities. In addition, because in each location-based Facebook post tagged 

participants and geographical location are well known, the social connections between user A 

and user B can be further distinguished based on the geographical locations. This research has 

modified the social network in the way that each social connection includes (and thus is 

distinguished by) the latitude and longitude where the post is published. Those social 

connections embed with geographical locations are called location-based social connection. 

Such location-based social connections can be visualized in GIS. Figure 4-11 displays the 

location-based social connections in Atlanta where each point represents a single social 
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connection between two people, and the size of the point indicate the times of this location-based 

social connection occurs at this place, i.e., strength of the location-based social connection. 

 

Figure 4-11 Visualization of Social Connections in Atlanta 

Spatial-Social Clusters 

Based on the location-based social connections, social connections can be geographically 

analyzed.  For example, the local Moran’s I of the location-based social connections based on the 

connection strength can identify clusters of social interactions. Since local Moran’s I can 

determine the cluster points where high values are surrounded by other high values, the positions 

where strong social connections locating nearby the other strong social connections can be 

identified, i.e., the social-spatial clusters of activities indicating the place where those users 

involved in those activities are socially and spatially close.  
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In the example of Figure 4-12, several sets of location-based social connections are 

distributed on two places. Most of the connections are relative strong evidenced by the great size 

of the connection points. The local Moran’s I identified at least 4 of those connections as H-H 

clutters, because they are strong social connections located within shorter distance, namely 260 – 

5422, 260 – 1281, 492 – 4928, and 492 – 1120. Figure 4-13 illustrates how the social network 

looks like from the Figure 4-12 example. User 260 knows both user 1281 and User 5422, and 

forms very strong social connections with the both users at the same location. It is also highly 

possible that user 1281 will form social connection with user 5422 given that their social 

interactions are spatially clustered, and both have strong social connection to user 260. 

 

Figure 4-12 Example of Spatial-Social Clusters at Fine Scale 
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Figure 4-13 Social Network of Figure 4-12 Example  

Those spatial-social clusters can be visualized spatially (Figure 4-14) and socially (Figure 

4-15). The red points in Figure 4-14 indicate the geographical locations of those spatial-social 

clusters and the red links in Figure 4-15 illustrate how those spatial-social clusters are embedded 

in the social network. Figure 4-16 combines the information from Figure 4-14 and Figure 4-15 

demonstrating how people (node) are interacted with others with the spatial-social connections 

(edge). This visualization integrates persons and their social connections in a spatial-social 

dimension that can generate meaningful information regarding human activities. For example, by 

retrieving several persons, the spatial-temporal paths or interactions can be visualized and 

analyzed. In addition, by selecting a specific spatial-social cluster, the involved users can be 

identified and visualized. 
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Figure 4-14 Clusters of Social Connections in Atlanta 

 

 

Figure 4-15 Social Connections in Atlanta 
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Figure 4-16 Visualization of Node-Edge Link in Atlanta (Partial) 

Discussion and conclusion 

Human activities are essentially spatial and social. Traditional surveying method of 

gathering social relationship is time consuming, resulted in incomplete and non-independent 

sample data. Location-based social media not only provides new platforms of communicating 

that influence the decision making of human geographical behaviors, but also serves as new 

channels for observing and analyzing human activities in spatial-social dimension at fine scales. 

This research provides a data collecting mechanism and social connection constructing method 

that are able to extract massive location-based social media activities in an authentic, transparent, 

repeatable and accessible way. Based on the proposed concept of the location-based social 

connection, human interactions can be visualized and analyzed in a spatial-social dimension, and 

spatial-social clusters can be identified and visualized in GIS. The proposed method can be 

applied to many areas, such as simulation and analysis disease spread, and traffic analysis, etc. 
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CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 

Conclusion 

People are social creatures that inhabit in the physical world and interact with others in 

the social world. With the popularization of location-based social media, people can 

communicate their geographical locations and interactions of social events with others. Such 

location-based social media data provides theoretical and technical challenges in GIScience to 

model human activities in a comprehensive way.  

To represent and analyze location-based social media activity, this research has extracted 

and examined real-world LBSMA data, and organized the data in an effective and efficient way 

that support the analysis of human activities in the spatial-social-temporal dimension. 

Specifically, this paper has developed the first conceptual model and associated logical model to 

represent LBSMA data in GIS, implemented a pilot computer system, and formulated applicable 

methods for visualization and utilization of LBSMA data in spatial-temporal and social 

dimension. Chapter 2 elaborates the proposed conceptual framework and associated pilot 

prototype where the location-based social media activities can be efficiently organized and 

effectively analyzed. A case study is conducted to prove the usefulness of the proposed data 

model and the developed tools. Chapter 3 and Chapter 4 introduce the methods of quantifying 

places and social connections in different aspects. In Chapter 3, a simulation methodology that 

mimics human activities in spatial-temporal dimension, i.e., random walking algorithm, is 

developed to characterize urban road networks. It is found that the random walking algorithm is 
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able to quantify the spatial features of urban road networks and their surrounding areas in terms 

of their correlations to social-economic characteristics. This method can thus be applied in 

assessing important areas of urban areas when spatial connectivity or social-economic 

importance are of interests. Chapter 4 focuses on the spatial-social dimension of human activities 

where location-based social media activities are employed again to construct social relations at a 

fine scale. The constructed social connections can be re-defined by coupling with geographical 

information, i.e., the location-based social connections, in which social connection can be 

geographically visualized, and spatial-social clusters can be identified. This method is valued in 

the analysis of disease spread, information transmission, and localized advertisement. 

However, there are some limitations in this doctoral research. First of all, the location-

based social media activities cannot reflect the whole picture of the human interactions in the 

real world. A large number of people are not used to share their information online. In addition, 

people may have different preferences on distinct social media platforms. Studies that focus on 

one social media data may result in biased conclusions. Secondly, the definition of the one-to-

one social connections in this research are based on the assumption that two people who are 

Facebook friends and physically presented in the same social events are friends in the real world. 

This assumption should be verified by comparing the detected social connections with the survey 

data. Finally, the geographical presences of persons are determined from all Facebook posts. 

However, if no further information are provided, only the photos that capture human faces 

should be used to extract the spatial presences of persons in different activities. 
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Future Research 

Location-based social media provides unprecedented opportunities for geographers to 

observe human activities in the spatial-temporal-social dimension. Based on this research, new 

theories, analysis methods and data collection technologies can be further investigated or 

explored. For example, the definition of place can be re-considered where the virtual world and 

the physical world are tightly connected on the location-based social media. Places are not static 

objects but rather dynamic systems that can be defined in terms of contexts (Adams 1998). A 

new representation of the place that incorporates information in the geographic space and the 

virtual space is thus significant for the study of location-based social media activities. 

 To analyze location-based social media activity, effective approaches are required to 

fully understand the purposes and the dynamics of human interactions. For example, semantic 

analysis of online posts from Facebook or Twitter can generate meaningful information 

regarding the purpose and the content of human activities. The location-based social media 

activities provide preferences and social strengths of human interactions in the spatial-temporal-

social dimension. Such information forms a complex system in which random walking algorithm 

can be improved to calculate more measurements of human activities by imitating human 

interaction under those spatial-social-temporal constraints. 
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Figure 5-1The Next Generation of LBSocial.net 
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Finally, authentic and transparent data collection system is needed to extract social media 

data while protecting users’ privacy. Since people constantly publish their interactions and 

activities on different social media, the next generation of the LBSocial (Figure 5-1) website 

(www.losbcial.net ) will continue supporting the collection of location-based social media data 

that serve as one of the open source data for different studies. In addition, the spatial, social, 

temporal and semantic analysis can be performed online for non-expert users. By utilizing the 

cutting edge of visualization techniques and incorporating spatial, temporal, social and sematic 

tools, additional online visualizing and spatial analysis functions will be provided for non-GIS 

users to explore their interested social media data. 
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