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ABSTRACT

Statistical methods for evaluating predictive biomarkers’ clinical utility, reproducibility
and sample size for specific study designs have been slow to develop in response to the surge
of need. In this dissertation, we propose three statistical methodologies: one is develop a
metric Vg using Bayesian decision theoretic framework; the second is propose a sample size
estimation method (SWIRL); and the third is develop a reproducibility metric A,..

A metric ¥z which measures the decrease in the expected event rate as a result of pre-
dictive biomarker guided therapy is proposed using Bayesian decision theoretic framework
for a count clinical end point. Since Phase II data are usually small, maximum likelihood
based estimates are biased and inefficient. This new metric, which also incorporates clin-
ician inputs in the form of a prior however, is informative in making a go-no-go decision
and the study design to choose for Phase III studies. Using toy simulation and a simulation
conducted to mimic asthma clinical trial study, we show the robustness of the method under
different scenarios.

Sample size estimation methods that match the study design and the metric under con-



sideration are key in predictive biomarker clinical utility evaluation process. In this disser-
tation we propose a sample size estimation method, Squared Width Inversion Regression
Line (SWIRL). The SWIRL method is used to estimate a sample size n such that the 95%
confidence interval width of the metric under consideration is smaller than a user defined
length (Wiarg). This is the first sample size method developed for estimating this target
predictive parameter.

During assay development and validation processes, an original clinically validated assay
is required to be modified for a number of different reasons. However, such modification
invalidates the previous biomarker-outcome association studies and would force researcher
to re-run the previous studies under the modified biomarker. This is time consuming and
expensive. Here, we propose a reproducibility metric A, which measures the impact of assay
modification on patient outcome. A combination of both novel equations and simulations

were used to estimate A, and the associated 95% confidence interval.
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Chapter 1

Introduction

Swift advancement in genome sequencing in the last few years is transitioning the "one size
fits all" treatment model to the patient specific treatment model. In this transition stage
biomarkers in general and predictive biomarkers in particular have been playing key roles.
Predictive biomarker are biomarkers used to identify a subgroup of patients who are most
likely to benefit from a given treatment. Treatment negative side effects and costs, however,
are avoided for the rest. However, even though the discovery of such biomarkers has been of
enormous interest in recent years, development of statistical methods to design studies and
assess their clinical utility and reproducibility have not kept pace.

Biomarker by treatment interaction test is still a common statistical method used for
evaluating predictive biomarker performance (Buyse, 2007, Taube et al., 2009, Freidlin et al.,
2010, Tajik et al., 2013). However, it has been shown to be inadequate method for evaluating
predictive biomarker clinical utility (Janes et al., 2011, Huang et al., 2012). Other frequentist
graphical methods and metrics have been suggested as alternatives in the past decade or so
(Song and Pepe, 2004, Gunter et al., 2007, Brinkley et al., 2010, Janes et al., 2011; 2014a).
Detailed review of these methods is in Chapter 2. All these methods however, assume the

drug was already approved and data are collected retrospectively to assess the biomarker



clinical utility. Ideally one often wants biomarker clinical utility evaluation to be done at
the end of phase I clinical trial and make a go-no-go decision about whether the biomarker
can be used in phase III study designs.

However, at the end of phase II, data collected are usually small and result in maximum
likelihood based metrics which are biased and inefficient (Casella and Berger, 2002, Lehmann
and Romano, 2006). On the other hand, it becomes customary to incorporate clinicians’,
biomarker scientists’ and other experts’ knowledge about the biomarker performance in the
evaluation process. Further, drug negative side effects and monetary costs associated with
the treatment need to be quantified since they affect patients’ decision making. The first
part of this dissertation is aimed at developing a metric Wy used for assessing clinical utility
of a predictive biomarker at the end of phase II study using Bayesian decision theoretic
framework. This metric measures the decrease in the expected event rate as a result of
predictive biomarker guided treatment. We focus here on a clinical trial with a count primary
endpoint motivated by a phase II asthma clinical trial study.

During biomarker clinical utility evaluation process, developing a sample size estimation
method that corresponds to the study design and the metric under consideration is key.
Under a slightly different scenario and assumptions for a binary clinical endpoint, Janes et.
al developed the metric © (Janes et al., 2014a). This metric measures the decrease in the
proportion of unfavorable outcomes under biomarker guided treatment. However, there is no
sample size estimation method developed for this metric. In Chapter 4 of this dissertation, we
first develop novel alternative equations to estimate © and propose a sample size estimation
method, Squared Width Inversion Regression Line (SWIRL). SWIRL methods are used to
estimate a sample size n so that the 95% confidence interval mean width for © is less than
a user defined target width (Wa,). R program is made available for its implementation.

A typical biomarker development and validation process follows three stages which are

often interdependent (Ball et al., 2010). Stage one is about the technical development and



assay analytical validation process (Swanson, 2002). Stage two (middle stage) is qualification
process to assess evidence of association between the biomarker and the outcome of interest
(Williams et al., 2006, Koulman et al., 2009). The last stage focuses on clinical validation of
the biomarker which is often a contextual analysis (Williams et al., 2006, Ball et al., 2010).
For a number of different reasons initially promising biomarkers are required to be modified
in the middle stage before moving to the final stage of clinical validation. However, such
modification invalidates any previous studies of biomarker-outcome association and forces
researchers to re-run the investigation under the modified biomarker. This process however is
costly and time consuming and leaves many promising biomarkers in a dead end. In Chapter
5 of this dissertation, we develop a metric A, which is used to directly estimate the impact
of the modified biomarker on the metric of interest (©) using reproducibililty study.

In this dissertation, we aimed to propose three statistical methodologies: one is developing
a metric Up using Bayesian decision theoretic framework; the second is proposing a sample

size estimation method SWIRL; and the third is developing a reproducibility metric A,.

1.1 Motivating examples

1.1.1 Phase II asthma clinical trial study

Asthma is a chronic inflammatory disease of the airways with marked heterogeneity in the
clinical course and in response to treatment (Bel, 2004, Wenzel, 2006, Siddiqui and Brightling,
2007). Despite treatment with inhaled corticosteroids (ICSs), and other controller medica-
tions, a substantial proportion of patients continue to have uncontrolled asthma (Bateman
et al., 2004, Corren et al., 2011). Consequently, part of the current high unmet medical
need in asthma is uncontrolled disease that persists despite conventional treatment with
guidelines-based standard-of-care therapy, which includes ICS therapy plus a second con-

troller medication (Hanania et al., 2015). The Phase II clinical development plan to develop



drug AA was designed to test the efficacy and safety of AA in this patient population with
uncontrolled asthma who have high unmet medical need. The primary end point of the
study was the rate of asthma exacerabations over 52 weeks. Asthma exacerbation is defined
as new or increased asthma symptoms that led to treatment with systematic corticosteroids
or to hospitalization.

With small a data set collected from phase II study and prior information from the
experts, the object is to assess the clinical utility of the predictive biomarker BMK and make a
go-no-go decision on the study design for phase I1I. Existing statistical methods (Byar, 1985,
Song and Pepe, 2004, Buyse, 2007, Janes et al., 2014a) have drawbacks: (1) they are designed
for a binary clinical end point and (2) they are all frequentist methods and do not include
prior information in the analysis. To overcome this gap we propose a statistical method
for assessing the clinical utility of the predictive biomarker BMK using Bayesian decision
theoretic framework where the clinical endpoint is a count. Even though demonstration of
the method is done here using the Asthma clinical trial study, it is applicable for a more

general context.

1.1.2 Oncotype DX predictive biomarker

Oncotype DX test is a genomic test that analyzes the activity of a group of 21 genes from
a breast cancer tissue sample that can affect how a cancer is likely to behave and respond
to treatment. Most early-stage, estrogen-receptor-positive, HER2-negative breast cancers
that haven’t spread to the lymph nodes are considered to be at low risk for recurrence.
After surgery, hormonal therapies such as tamoxifen are prescribed to reduce the risk that
the cancer will come back in the future. Whether or not chemotherapy also is necessary
has been an area of uncertainty for patients and their doctors, especially for women with
cancer that had spread to just one, two, or three lymph nodes. The Oncotype DX test was

designed to offer more information to help women and their doctors make decisions about



chemotherapy. The Oncotype DX test results assign a Recurrence Score, a number between
0 and 100. A score less than 18 indicates that the cancer has a low risk of recurrence. That
is the benefit of chemotherapy is likely to be smaller and will not outweigh the risks of side
effects. If the score is > 31 the cancer has a high risk of recurrence, and the benefits of
chemotherapy are likely to be greater than the risks of side effects (Karapetis et al., 2008,
Gluz et al., 2016).

A metric © which measures the decrease in an unfavorable event rate under marker
guided treatment has been widely advocated as a global predictive biomarker clinical utility
measure (Gunter et al., 2007, Song and Pepe, 2004, Janes et al., 2011, Brinkley et al., 2010,
Janes et al., 2014a). However, there is no sample size calculation method that can be used
to guide a study design for evaluating the biomarker clinical utility performance. To close
this gap, we first developed novel equations and algorithms to get an estimate for © and

proposed the SWIRL sample size estimation method.

1.1.3 Ki67 reproducibility study

An initially clinically validated biomarker X may be modified to biomarker W for a number
of different reasons. This however, invalidates previous study results of the biomarker clinical
utility performance. In breast cancer research, for example, the marker Ki67 has a potential
use for prognosis, prediction and response monitoring (Dowsett et al., 2011, Goldhirsch et al.,
2011, Yerushalmi et al., 2010, Viale et al., 2008). Ki67 is a nuclear proliferation marker used
to determine the growth fraction of a given cell population. Despite the apparent utility
of Ki67, it has been less used due to the lack of reproducibility in measuring it (Harris
et al., 2007). To set a standard guide for Ki67 analysis, Polley et al. (2013) conducted a
reproducibility study. A total of one hundred breast cancer cases where measured in eight
different labs and each had a score for Ki67 recorded.

In the study published by Polley et al. (2013), intraclass correlation coefficient (ICC) was



used as a measure of reproducibility. However, if the objective is to assess the biomarker
clinical utility, existing reproducibililty metrics alone can not be used for two main reasons.
First, a high value of ICC between two biomarkers does not guarantee that the clinical
utility of the two biomarkers will be the same when assessed using the metric ©. This claim
is shown to be true from our simulation studies as depicted in Figure 2.2. Second, assessing
the clinical utility of the marker using ©, we need to observe the outcome Y as well. So,
when the biomarker is modified to W, to directly evaluate the clinical utility performance
of W one has to wait to observe the outcome. However, waiting to observe the outcome
Y under the modified biomarker W is costly and time consuming. This problem stymies
the development of many initially encouraging biomarkers. To solve this, we propose a new
reproducibility metric A, which measures the difference in © when the modified biomarker

W is observed instead of X without the need to wait to observe the outcome Y.

1.2 Research questions and objectives

The phase II asthma clinical trial is a typical example where with a small information about
the biomarker one needs to make a decision before moving to phase III. The oncotype DX
biomarker also exemplify a situation where the metric © can be used to evaluate the clinical
utility of the biomarker but without the appropriate sample size needed for it. In this
dissertation, we aimed to propose three statistical methodologies. Specifically we propose
a metric ¥ using Bayesian decision theoretic framework to address the problems listed in
the asthma phase II clinical trial study. To deal with the problems of sample size estimation
that correspond the metric © we propose the SWILR sample size estimation method.

The rest of this dissertation is organized as follows. In chapter 2, we provide the literature
review for predictive biomarker clinical utility, reproducibility and sample size estimation

statistical methods. Chapter 3 introduce the proposed predictive biomarker utility evaluation



metric Vg using Bayesian decision theoretic framework and its application using a simulation
study done to mimic the phase IT asthma clinical trial study. Our proposed sample size
estimation method SWIRL is presented in Chapter 4. In Chapter 5 we study the proposed
reproducibility metric A, and provide the R program for its implementation. Summarizing

the findings and outlining the future research work, this dissertation concludes in Chapter

6.



Chapter 2

Literature Review

The phase II asthma clinical trial poses an important question. With a small data set and
prior information from expert, how do we proceed to evaluate the predictive biomarker’s
clinical utility performance and recommend a study design for phase III. On the other hand,
when one wants to design a study to evaluate the clinical utility performance such as that
of the Oncotype DX, what sample size should be used to guarantee us enough power? The
Ki67 study, also poses an important research question regarding reproducibility study. A
brief review of the literature regarding statistical methods for evaluating clinical utility and
reproducibility of predicitive biomarkers and sample size estimation methods associated will

be given in this chapter.

2.1 Log Linear Models and Bayesian Methods

2.1.1 Poisson Distribution

The number of occurrences of an event during a fixed time period is modeled using count
data. Count data are encountered commonly in medical and public health research studies

and frequentist statistical methods are typically used to make estimations and inferences



(Du et al., 2011, Lu et al., 2014). Poisson distribution is popular for modeling count data
under three key assumptions: (a) the probability of an event is proportional to the length
of the interval, (b) the number of events between non-overlapping intervals is independent
and (c) for a given small sub-interval, either only one event occurs or no events occur at
all. For a given outcome Y with a mean p, the probability mass function of the Poisson(u)

distribution is:

e MY
P<y:y|l’l’) = y'ILL y:O71727"' (2'1)
such that
E(Y) = pu (2.2)
VYY) = u

2.1.2 Regression Models for Count Outcome

The Poisson regression model for count outcome is a special case of the generalized linear
models (GLM) as detailed in (Nelder and Baker, 1972, McCullagh, 1984). Let the n obser-
vations y1, ¥a, ..., Y, be a realization from an independent Poisson random variable such that
Y; ~ Pois(u;). Further lets assume the mean (y;) depends on the covariates represented by
a vector of x; and is written as a simple linear model as, y; = ;3. Using generalized linear
model with a log link function, the log linear model (Poisson regression model) is finally

written as:

log(p:) = ='B (2.3)



Estimation of the 3 coefficients is then done using principles of maximum likelihood by

writing the likelihood function for the n independent Poisson observations as:

LBY) = ﬁ{em“ y} (2.4)

|
i=1 Yi

I[gnoring the constant involving log(y;!) and taking the logs , log-likelihood function is
log L(B;Y) = > {yilog(m) — pu} (2.5)
i=1

Since p; is written as a function of x; and parameters 3, to get the mle estimates B we take
the first derivatives of the log likelihood function of equation (2.5) and set them equal to

7Zeros.

2.1.3 Overdispersion in Count Data

One common problem encountered when modeling count data is a phenomena called overdis-
persion. Overdispersion occurs when there are more zeros than expected from a an ordinary
Poisson model (McCullagh, 1984, Jang et al., 2010). When this happens, the equality of
mean and variance assumption of the Poisson regression model is violated and hence the
inference that follows becomes invalid. Ideas for adjusting the probabilities of excess zeros in
Poisson regression models date back to (Johnson and Kotz, 1969). The zero-inflated Poisson
(ZIP) model (Lambert, 1992) and Poisson hurdle (PH) model (Mullahy, 1986) are commonly
used as alternatives when there are excess zeros in the model. The observed excess zeros
can be sampling zeros and/or structural zeros. Sampling zeros are zeros that are part of
the Poisson distribution, and it is assumed these zeros are observed by chance. Whereas
structural zeros arise due to a particular structure in the data set (Hu et al., 2011, Hua

et al., 2014). The probability mass function of Y given 7 and p can be written as:
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T+ (1—m)et if y =0
Pr(Y =yl 1) = 2.6)

(1-me~ ify >0

where 7 represent the probability that the observed zero is from the zero-inflated stage and
1 represent the mean for the Poisson count stage provided the observed value is not a zero
inflated.

From equation (2.6) one can clearly see that, the ZIP regression model has two stages:
the zero-inflation stage and Poisson count stage. Depending on the problem at hand, the
covariates in a given data set can be used in both stages to estimate the parameters 7 and pu
simultaneously. Commonly loglinear and logit models are used to relate the covariates with
the parameters m and A. To get the maximum likelihood estimators, similar to the standard
Poisson regression model detailed above, one has to write the log-likelihood function of for
equation (2.6), take the first derivatives with respect to the parameters and equate them to

Z€ero.

2.1.4 Bayesian Methods

Bayesian and frequentist methods overall fall within the same framework. Both approaches
assume there is a population parameter # that we want to make inference about and a
likelihood distribution f(y|f) that determines how likely is one to observe y given 6. The
key difference is while @ is considered as fixed in frequentist methods, in Bayesian 6 is treated
as random with probability distribution g(6).

Bayesian methods in additional to the ease of estimation allow us to incorporate prior
information in the analysis by specifying a prior distribution to 6. Bayesian methods have

increased in popularity since the past twenty years due to advances in the methodology,
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notably the Markov Chain Monte Carlo and the computation power. In Bayesian methods,
the focus is on the posterior distribution 7(6|y) which is the likelihood % and the prior

g(0) product and is written as :

w(oly) = L0 2.)

where

fly) = / £(416)g(8)d6 (2.8)

and is called the marginal likelihood. The marginal likelihood does not depend on € and is
considered as a normalizing constant so that 7(6|y) is proper probability density (Winkel-
mann, 2008). Computing the denominator of equation (2.7) is difficult and becomes more
intractable when 6 is multivariate. However, when the joint posterior distribution and the
prior distribution both are from the same family distribution, a closed form solution of equa-
tion (2.7) is possible. The is a situation which is commonly called conjugacy and such a
prior is know as conjugate prior (Raiffa, 1974, DeGroot, 2005).

When the posterior distribution 7(f|y) of equation (2.7) is complex and a closed form
solution does not exist, a stochastic simulations method such as Monte Carlo approaches is
used. For a multivariate # we get a joint posterior which is high dimension where generating
independent samples becomes non trivial. But we can rather use Markov Chain Monte Carlo
(MCMC) methods to draw dependent samples.

MCMC methods are a very powerful tool to approximate arbitrary probability distri-
bution and their derivations without the need to know the normalization term. MCMC
methods even though they have been around as long as the Monte Carlo techniques, their
importance has been felt truly late (1990s) in the field of statistics (Gelfand and Smith,

1990, Andrieu et al., 2003, Robert and Casella, 2011, Geyer, 2011). In Bayesian analysis the
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distribution of interest, i.e, the posterior distribution is often non-standard or so complex
that we can not directly sample from it (Gilks et al., 1995). Therefore MCMC methods are
used to draw samples from an alternative distribution and then accept certain samples while
rejecting others in order to approximate the distribution of interest (Carlin and Louis, 2008,
Klauenberg and Elster, 2016). This procedure usually produces samples that are dependent
which are often called Markov chain. There are different MCMC methods of which the
Metropolis-Hastings, Gibbs sampler and Hamiltonian Monte Carlo (HMC) are common. A
brief history of the development of Meropolis-Hastings and Gibbs sampler algorithms can
be found in (Tierney, 1994, Robert and Casella, 2011). The Metropolis-Hastings algorithm,
for example, starts by first choosing a proposal distribution ¢. Typically this distribution is
chosen in such a way that it is easy to sample from directly and is a great approximation
for the distribution of interest f. In pseudocode, the Metropolis-Hastings algorithm can be

written as (Robert, 2004):

Algorithm 1 Metropolis-Hasting algorithm
1: select the proposal distribution ¢

2: choose initial value X

3: for i=0,1,.....
e sample point Y from ¢(./X;)
e Take X, =Y with probability a(X;,Y)
e X,.1 = X, otherwise

: Y)a(Xi/Y
where a(X;,Y) = min(1, %)

Another commonly used MCMC method is the Gibbs sampler which has gained a surge
of popularity with Geman and Geman paper (1984) where they used it for image processing

models (Geman and Geman, 1987, Casella and George, 1992, Molenaar, 1997). Gibbs sam-
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pler generated a random variable from a marginal distribution indirectly without needing
to calculate the density using full conditional distributions that are often from the known
statistical distributions (Spiegelhalter et al., 1996, Molenaar, 1997, Lynch, 2007).
Metropolis-Hasting algorithm and Gibbs Sampler, though among the commonly used
MCMC methods, have some difficulty when implementing them. One notable issue with
Metropolis-Hastings algorithm is the choice of a proposal density as the success or failure
of the algorithm depends on it. If the proposal is too narrow for example only the mode of
the target distribution might be visited and on the other hand , choosing a wide proposal
density would result in higher rate of rejection and hence high correlation (Andrieu et al.,
2003, Carlin and Louis, 2008). As Gibbs samples needs a full conditional distribution spec-
ification, it is not always straightforward to obtain proper conditional densities and attain
convergence(Casella and George, 1992). Instead one can use Hamiltonian Monte Carlo which

is faster and can generate less correlated samples (Shahbaba et al., 2014, Brooks et al., 2011).

2.2  Predictive Biomarkers

Biomarkers that predict treatment efficacy hold great potential for improving clinical out-
comes and decreasing medical costs. Treament selection biomarkers are sometimes called
"predictive" (Sargent and Allegra, 2002, Simon and Maitournam, 2004, Simon, 2008) or "pre-
scriptive" (Gunter et al., 2007) markers. If a predictive biomarker can identify which patients
are likely to benefit from a treatment, assignment of the treatment can be limited to this
subgroup of patients. Such an approach will prevent the remaining group of patients the
needless and potentially toxic and costly therapy (Janes et al., 2015).

The Oncotype DX recurrence score, for example, is used to identify a subgroup of women
who are unlikely to benefit from Chemotherapy following breast cancer surgery (Harris et al.,

2016). Similarly, KRAS status is used to identify colorectal cancer patients likely to benefit
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from Epidermal growth factor receptor (EGFR ) inhibitor treatment (Amado et al., 2008,
Mehta et al., 2010). From Figure 1, we can see that patients with a lower biomarker value
will be better off if they avoid treatment assuming the outcome is measuring probability
of unfavorable outcome. However, study designs and evaluation methods that assess the
efficacy of the predictive biomarker need to be developed first, before, the biomarker is used

in a clinical decision making.
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Figure 2.1: Shows the probability of a bad outcome under a given treatment. The marker positivity
threshold is the point where treatment need to be switched. According this picture, subjects with
smaller biomarker values should be advised not take treatment. This is a theoretical biomarker.

2.3 Basic Notations

Let A be a given treatment, A = 1 if a subject is assigned to a treatment group and A = 0 if
assigned to a placebo or standard of care (soc) group. Further lets assume the primary clinical

endpoint is binary and is denoted by Y, such that, Y = 1 represents unfavorable outcome
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(death or recurrence of a disease) and Y = 0 otherwise. Additionally let, X represent a
predictive biomarker which is measured at baseline for each subject. The biomarker X can
be categorical or continuous. However, throughout this dissertation we will assume X is
continuous and has a known probability density function given by f(z).

The natural approach to represent the relationship between the outcome Y and the
covariates (A and X) along the interaction term (A * X)) is using multiple logistic regression

model as:

Pr(Y = 1|A, X)
1— Pr(Y = 1|4, X)

where B = (B, b1, 52, f3) are the logistic model parameters.
Evaluation of predictive biomarker’s clinical utility is often times done by testing the null
hypothesis of no biomarker by treatment interaction (Byar, 1985, Buyse, 2007, Taube et al.,

2009, Freidlin et al., 2010, Tajik et al., 2013). From equation (2.1), this will be to test :

Ho : 63 =0 Ha . ﬁg % 0 (210)

However, the interaction test though a necessary condition, fall short of being a sufficient
condition for evaluating biomarker’s clinical utility (Janes et al., 2011, Huang et al., 2012).
Two predictive biomarkers X; and X, fitted using equation (2.1) can have the same (3 but
perform differently. The scale of (5 also depends on the functional formal of the model under
consideration and measurement unit of the biomarker. This makes biomarker comparison
even more challenging (Huang et al., 2012). There are also settings where the biomarker by
treatment interaction is not significant but the biomarker can be instructive (Song and Pepe,
2004). Additionally, interaction test being an indirect measure, is not easily understood by
non-statistician and make conveying the message to broader audience difficult.

Song et. al (2004) proposed a graphical display, the selection impact(SI) curve which can
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be estimated using parametric and nonparametric methods. The curve shows the proportion
of people who respond to a given treatment as a function of a given predictive biomarker
based treatment selection criteria. Lets assume the treatment policy is given in such a way
that a patient is treated if X > c and not treated if X < ¢, where X is the patient’s biomarker

value. The proportion of people who respond to a given treatment is then calculated as :

0 = PIY=1(X>c and A=1)or (X <cand A =0)] (2.11)

= PY'=1X>P[X >+ PY’=1X < JP[X <]

where Y1 and Y? represent the case of observing the outcome when A = 1 or A = 0
respectively. The value of 6 obtained from equation (2.11) above measures the proportion
of patients who show the outcome of interest when the treatment policy is implemented as
per the biomarker based criteria.

Brinkley et al. (2010) developed a generalized estimator of attributable benefit for an
optimal treatment regime. First an algorithm was defined to assign treatment to patients

according to their bimarker value in such a way that;

gopt(z) =I{P(Y =1|A=1,X)-PY =1A=0,X) <0} (2.12)

Based on equation (2.12), an individual with baseline biomarker value would be assigned to
A=1it PY =1A=1,X) < P(Y = 1]A = 0,X), else assign the individual patient to
A = 0. The I in equation (2.12) indicates a binary indicator for the treatment assignment.
After determining the optimal treatment regime, the attributable benefit for a given gy (z)
is then obtained as:

. P{Y*(gopt('rn = 1}
P(Y =1

ABgp = 1 (2.13)

17



where Y*(g(z)) represent the potential outcome and P(Y = 1) denotes the current default
treatment. AB,, measures the the proportion events that could have been avoided had we
used the optimal treatment as in equation (2.12) to assign treatment to individuals.

Using a similar potential outcome framework, Huang et al. (2012), developed an optimal
rule for classifying individuals to the available treatment options and methods for evaluating
continuous treatment selection markers. Let D = Y(0) — Y(1), represent an individual
patient’s treatment benefit, where Y (0) and Y'(1) are the potential outcomes associated
with a subject being assigned to no treatment and treatment respectively. When being on
treatment does not make a difference, D = 0, otherwise D = 1 when Y (0) > Y'(1). Using a
Bayes’ theorem, for a given biomarker value X, the ratio of risks in the no treatment over

the treatment is shown to be:

P(X|D=0) P(D=0|X)P(D

) P(D=1|X) P(D=1)
P(X|D=1) P(D=1|X)P(D (2.14)

1) 1
0) 1-P(D=1|X)P(D=0)

Under a monotone treatment effect assumption from equation (2.4),an optimal X can
be found such that it maximizes the classification accuracy. After obtaining the optimal
X, Huang et al. (2012) proposed a constrained maximum likelihood method to estimate the
parameters in the risk model they defined which is similar to the one in equation (2.1). How-
ever, despite the progresses made in developing statistical methods for predictive biomarker
evaluation, there was not a unified framework to achieve the intended purpose.

Janes et al. (2014a) proposed a comprehensive statistical framework for predictive biomarker
evaluation. Their framework which included both descriptive summary measures and infer-
ential methods is a comprehensive tool for individual biomarker evaluation and candidate
biomarker comparisons. The descriptive summary measures of (Janes et al., 2014a) are re-
lated to the sub population treatment effect pattern plot of (Bonetti and Gelber, 2004) and

others (Royston and Sauerbrei, 2004, Cai et al., 2010). However, Janes et al. (2014a) use
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percentile scaling of the biomarker to make comparison of candidate markers easy.

The comprehenesive biomarker evaluation metric proposed by Janes et al. (2014a) mea-
sure the decrease in the expected event rate resulting from marker guided treatment and is
represented as ©. This metric is closely related to those previously proposed by (Song and
Pepe, 2004, Gunter et al., 2007, Janes et al., 2011, Qian and Murphy, 2011, Brinkley et al.,
2010, Janes et al., 2014a). Following similar procedures as those of Song and Pepe (2004),
Brinkley et al. (2010), Huang et al. (2012), for a given biomarker X the absolute treatment
effect is given as: A(X)=P(Y =1/A=0,X) - P(Y =1]A =1, X). The treatment rule is
then set in such a way that if A(X) < 0 the subject would be assigned to treatment and to
placebo otherwise. Subject with A(X) < 0 are referred as marker negative and those with
A(X) > as marker positive. For a given specific treatment rule (A(X)), average benefit

among the marker negative is given as:

By = P(Y =1 A=1,A(X)<0)—P(Y =1| A=0,A(X) <0)  (2.15)

= E(-AX)| A(X) <0)

and proportion of subjects who can forego treatment is written as:

Py = P(A=0) (2.16)

The metric © which measures the decrease in the event rate that resulted from marker guided

treatment is then calculated as:

O = PY=1A=1)—[P(Y =1 A= 1,A(X) > 0)P(A(X) > 0) + (2.17)
P(Y =1] A= 0,A(X) < 0)P(A(X) < 0)]

= [P(Y=1A=1,AX)<0)— P(Y =1] A=0,A(X) < 0)]P(A(X) < 0)
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Bneg * Pneg

Janes et al. (2014a) then used empirical and model based methods to get an estimate of )

and which is given by:

~ A~

©° = Bt * Py, (2.18)

= E(-AX)| A(X) <0) *+ E(-A(X)] A(X) > 0)

and

~ ~ ~

0" = BT % P, (2.19)

neg

- / (—AQX) TA(X) < 0)] dFs

such that P,., is the proportion of marker negative subjects and Fi is the CDF of A(X).

2.4 Sample size for predictive biomarker study design

Parallel to developing a metric for the purpose of evaluating a predictive biomarker the task
of determining a sample size n is equally important. Even though the estimation of © starts
with a logistic regression as given in equation (2.1), the functional form used to get the
final estimate for © is different. Therefore, existing sample size estimation methods used
for logistic regression (Whittemore, 1981, Hsieh, 1989, Demidenko, 2007; 2008) can not be
used directly. For a multiple logistic regression with an interaction term, similar to equation
(2.1), Demidenko (2008) suggested a sample size calculation formula for testing, H, : 53 =0
vs Hy: [3#0 as;

(Zlf% + Zp)2

2
3

1% (2.20)

n =
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The major step in calculating sample size using equation (2.20) involves computing V' in
terms of the regression coefficients 3 to 5 given in equation (2.1). Let A = e, B = /1,
G = e” and K = . Additionally let p, = Pr(X = 1]|Z) and p, = Pr(z = 1). Assuming

treatment assignment is dependent of the biomarker value, let

ec+5z
Given D = €® and C = ¢, we can further write
Pz 1- Y2

“1:cDp T 1iC

— Da (2.22)

Letting ¢ = p.(1 4+ D) + p.(1 — D) — 1), we can write equation (2.16) in terms of C as

_ 4+ V@ +4pa(1 —ps)D

¢ 2(1 —p,)D

(2.23)

Finally an an estimate for V' is obtained as; V' = %+ % + % + % The quantities L, R, FandJ

are defined as follows:

I_ A(l —p,) o ABC(1 — p,)
S (1+A2(1+0)  (1+AB)2(1+¢) (2.24)
ABCDGKp, AGp, '

1+ ABGKR(1+CD) '~ 0+ AGP(+CD)

This method of calculating the sample size needed to test the interaction coefficient needs
nine parameters to be specified by the user. Additionally there are two main differences in
the assumptions used from the logistic regression model of equation (2.1). One, this model
assume a binary covariate for the biomarker not a continuous and second this model does
not assume the independence of treatment assignment and biomarker value. Therefore, even

if we want to calculate a sample size n that guarantee enough power to test H, : f3 = 0
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vs Hy: p3 # 0, this will not serve the desired objective of calculating n for ©. Sample
size calculation for a quantitative variable and groups interaction for cox proportial hazard
model was developed by Lachin (2013). This method however depends on weak asymptotic
properties and does not work well often.

Janes et al. (2015) set four criteria choosing n so that biomarker clinical utility evaluation
can be done from a given trial. These four criteria are:
Criterion 1 (Power for Interaction): for a given a-level of no treatment-biomarker
interaction test the study to have a 1 — 3 power.
Criterion 2 (Detecting Improved Outcomes): This is to ensure that the lower bound
(LB) of (1 —ay) % CI for O lies about 0 with high probability,i.e,
Pr(LB > 0|0 = 0,, Hy rejected) > 1 — [,
Criterion 3 ( Precision Estimation of Improved Outcomes: this is to ensure that we
have enough power such that © is estimated with high precision.
Pr(|© — 0,] < 6|0 = 0,, Hy rejected) > 1 — f3, for a specified € > 0
Criterion 4 (Errors in Treatment Rule): this criteria is to make sure that the treatment
effect among the marker negative is sufficiently small, i.e,
Xi = arg maxy 5z AX), P(A(X}) < |0 = 0,4, Ho rejected) > 1 — by

These criteria set by Janes et al. (2015) however, do not provide any direct sample size
calculation formula or algorithm for the parameter of interest ©. Additionally, these criteria
are set under the assumption that biomarker evaluation is a secondary study objective rather
than being primary and lead to a very large sample size. To fill this gap of sample size cal-
culation for the metric ©, in this dissertation we are proposing the Squared Width Inversion
Regression Linear (SWIRL) method. The SWIRL method of sample size determination for
© works in such a way that the 95% confidence interval width of of © is less than a user

defined length (Wig,).
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2.5 Reproducibility Metrics for Predictive Biomarkers

For a binary clinical endpoint, predictive biomarker clinical utility can be quantified strongly
by using the metric ©. For a given assay say X, © will define the reduction in the expected
event rate that results from a biomarker guided treatment in comparison to the default
(biomarker unguided) treatment. However, an initially validated assay like X is required to
be modified say to an assay W for different reasons such as (1) reducing preparation cost, (2)
migrating the assay platform, (3) simplify preparation methods and so on. In such an event,
waiting to observe the outcome associated with the modified assay W is costly and time
consuming as well. This hinders the discovery of many initially promising biomarker since
clinical performance of the modified assay can not be achieved using existing reproducibility
metrics.

One of the most widely used measure of reproducibility between two measurements is the
product-moment correlation coefficient (p). Let the standard deviations associated with the

original assay X and the modified assay W be o, and o,, respectively. Then the correlation

cov(X,W)

OzO0w

coefficient p = . However, p measures the strength of the association between two
measurements rather than the agreement between them (Bland and Altman, 1986, Miiller
and Biittner, 1994). Two observations which seem to have poor agreement can produce a
correlation coefficient which is high (Serfontein and Jaroszewicz, 1978).

Another method which is commonly misused to measure the reproducibility between two

measurements is linear regression(Altman and Bland, 1983). Often testing the hypothesis

for slope equal to one gives a misleading conclusion. This is similar to testing the correlation

Sz
Sw

coefficient equal to zero since the B (slope) = T where r,,, is the correlation coefficient
(X, W), s, and s, are the standard deviations for X and W respectively. A highly repro-
ducible results could result in rejecting to the null (slope=1) due to small standard error

and vice versa when the data is more scattered (Lawrence and Lin, 1989, Obuchowski et al.,

23



2015).

The Bland-Altman plot or sometimes called the difference plot, is another graphical
method which is widely used to compare the agreement of two measurements (Bland and
Altman, 1986; 1999). This method plots the difference between the two measurements
against the average value of the measurements. In scenarios where one is a known "gold
standard" method, the differences are plots against the gold standard (Krouwer, 2008).
Using the Bland-Altman plot, lack of agreement is summarized by calculating the bias and
standard deviation of the differences. Let d and s to be the mean and standard deviation of
the differences between the two measurements. Assuming the differences follow a Gaussian
distribution, 95% of the differences will lie within d 4 1.96 x \/iﬁ The upper and lower bound
of the interval are referred as limits of agreement and a difference which falls within this
interval would be considered clinically not significant.

In medical fields the concordance correlation coefficient (CCC) and intraclass correlation
coefficient (ICC) are by far the most commonly used reproducibility metrics. The CCC was
first developed by Lin (1989). For ¢ = 1,2, ..., n pair of samples (X1, W;;) which are sampled
independently from a bivariate normal with means p, and p, and covariance matrix given

by

[\

(2.25)

)

Orw O,

The CCC between X and W is then calculated as the expected value of their squared

difference as:

E(X =W) = (ke — p)® + (05 + 05 — 205,) (2.26)

= (:uar - Mw)Q + (Jx - Ow)2 + 2(]- - P)ngw
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One notable feature of of the CCC is it contains both measures of accuracy and precision
which are two key characteristics of reproducibility. CCC does not only measure the strength
of the association but also the degree of departure from the 45° line. Even though the
original CCC was developed to assess the repreducibility of two measurements only, later it
was expanded by Chen and Barnhart (2008).

Assessment for reproducibility of measurements between labs, technicians or devices in bio
medical research is also commonly done using intraclass correlation coefficient (ICC)(Bartko,
1966, DONNER, 1979, Gisev et al., 2013). The original ICC which began with the work
of(Fisher, 1925) has been based on the one-way analysis of variance (ANOVA). From one-way
anova study design, ICC can be calculated as

2
Op

o + o2

1CC = (2.27)

where o7 is the between subject variability and o2 is the within subject variability. This
original design of ICC which is commonly referred as IC'C; was further extended to IC'Cy
and ICC3 based on two-way ANOVA with and without interaction respectively (Bartko,
1966, Shrout and Fleiss, 1979, McGraw and Wong, 1996).

However, all the reproducibility metrics mentioned above; pearson correlation coefficient,
regression line, Bland-Altman plot, CCC and ICC are not appropriate for the our purpose.
The main point with all these being, though they can assess the reproducibility between X
and W, none of them can evaluate how © value will change when the original assay is X
is modified to W. High value of ICC between X and W can not be directly translated to

mean W can replace X.
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Figure 2.2: Shows the relationship between ICC and the parameter of interest ©1. X is assumed

to be the gold standard biomarker and the modified assay is W, where W = X + U.The error term
U ~ N(0,02), where we considered different value of o2.

From Figure 2.2 above, it is clear that ICC alone can not capture the effect of the assay
modification on ©, which is our metric of biomarker clinical utility performance. Let ©,
be a measure of the decrease in the proportion of event rate that resulted from biomarker
guided treatment when the observed assay is X. Since the outcome Y associated with X
is observed, O, estimation can be done following Janes et al. (2014a) procedures or the
modified equations we developed in this dissertation. However, since the outcome associated
with the modified assay W is not observed, ©, can not be directly estimated. In this
dissertation, we developed a reproducible metric A, which captures the difference in © when
the modified assay W is observed. Implementation of of our method is demostrated using the
reproducibility data KI67. An R package (RMPB) which stands for Reproducibility Metric

for Predictive Biomarerks is also made available.
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Chapter 3

Bayesian decision theoretic framework
for evaluating the clinical utility of a
predictive biomarker with count

endpoint

Henok G. Woldu and Kevin K. Dobbin

To be submitted to Journal of Statistics in Medicine.
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Abstract

Maximum likelihood based estimators for evaluating the clinical utility of a predictive biomarker
in early phase (I and II) clinical trials are biased and inefficient since they depend on large
sample asymptotic properties. Further it is customary to include prior information about the
biomarker performance, and costs associated with treatment as part of the analysis. This pa-
per proposes a Bayesian decision theoretic framework for evaluating a predictive biomarker
with a count end point. A metric ¥g which measures a decrease in the expected event
rate as a result of marker guided treatment was developed and adjustment for zero inflated
scenarios were studied. Bayesian credible interval was constructed to quantify uncertainty
of the proposed metric Wg. Toy simulation studies were first used to assess the robustness
of this metric under different scenarios followed by a simulation done to mimic the phase II

clinical trial conducted by Genentech to develop a drug for the treatment of Asthma.

Keywords : Decision theory; treatment selection biomarker; biomarker clinical utility;

bayesian analysis
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3.1 Introduction

Existing predictive biomarker evaluation methods are frequentist and retrospective in design
(Song and Pepe, 2004, Brinkley et al., 2010, Janes et al., 2011). They assume the drug
was already approved and data is collected thereafter to assess whether or not a particular
biomarker could be utilized to guide treatment in the future. However, one would often want
the biomarker evaluation to be done at the end of phase IT and make a go-no-go decision
whether or not to include the biomarker as part of the drug development plan. If the decision
is in favor of including the biomarker, a subgroup of patients in Phase 11T would not receive
the treatment because it does not benefit them (Janes et al., 2011, Baker and Kramer, 2015).
This in return will result in better efficacy reports and higher approval chance for the drug
under consideration.

Data available during phase II clinical trials are usually small and the resulting maximum
likelihood based estimators are often biased and inefficient since they depend on large sample
asymptotic properties (Casella and Berger, 2002, Lehmann and Romano, 2006). Further,
the confidence intervals constructed from the maximum likelihood based methods are often
misrepresented as probabilities that the unknown parameter of interest will be included in
the interval, though this interpretation of the confidence interval aligns with the Bayesian
view (Liu and Powers, 2012, Gelman et al., 2014). In this paper, a metric Up, used for
quantifying clinical utility of a predictive biomarker during early phases of clinical trials
is developed under Bayesian decision theoretic framework. Prior information about the
biomarker performance and costs associated with a given treatment( negative side effect of
the drug and monetary costs) are also included as part of the evaluation process.

The past few years has seen great hope and optimism in the shift from the one-size-fits-all
treatment of a disease with drugs to a treatment which is restricted only to the subgroup of

patients deemed to benefit from it. The task of identifying those likely to benefit from the
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available treatment is mainly based on one or more biomarker measures obtained from each
patient (Ru et al., 2011, Bossuyt and Parvin, 2015). These biomarkers commonly called
treatment selection markers or predictive biomarkers (Janes et al., 2011, Baker and Kramer,
2015) in addition to helping patients get effective treatment, also help to minimize medical
costs and improve the approval chance of a clinical drug in pipeline development. In an
era where evidence-based decisions are predominant, a meaningful quantitative measure for
the performance of a treatment selection marker is of paramount importance. Commonly,
predictive biomarker evaluation involves testing for the relationship between the outcome
and the marker by treatment interaction (Green, 1982, Yusuf et al., 1991, Buyse, 2007,
Freidlin et al., 2010). However, statistical significance of an interaction test, is not a sufficient
condition by itself to make a conclusion about the clinical utility of a biomarker (Janes et al.,
2011, Huang et al., 2012).

Alternative assay performance metrics were developed in the last two decades such as the
selective impact curve (Song and Pepe, 2004), Attributable Benefit (Brinkley et al., 2010),
and the metric © (Janes et al., 2011). These metrics however, are derived retrospectively
from phase III prospective Randomized Clinical Trials (RCTs) and don’t take existing com-
pelling evidence about the biomarker’s clinical utility performance into consideration, nor
does this paradigm fit as part of a drug development plan. Therefore, developing a metric
that quantifies the clinical utility of an assay prior to phase III is of great importance. Hav-
ing a metric to assess the assay performance prior to phase III, would help one to restrict
treatment to patients who are likely to benefit from it during phase III randomization and
produce better treatment efficacy results of the molecule under study.

Steve et al. (1978) introduced a decision analysis framework in clinical settings in the
1970s. Decision theory allows one to make use of both quantitative and qualitative inputs to
make logically reproducible decisions (Ball et al., 2010). Decision analysis requires the person

in charge of making the decision to break down the components of the decision into parts
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and clearly specify the assumptions involved. The list of all available choices is then charted
in to a decision tree. Decision tree is graphical representation for all the possible decisions
made and their possible consequences. Finally, mathematical models are used to evaluate
the likely outcomes of each choice. When using biomarker information to assign treatment,
the decision one has to make is binary in nature, i.e, either to treat or not treat a subject.
Using an appropriate mathematical model, one then can assess the risk associated with
each decision and make the appropriate choice. The aforementioned predictive biomarker
performance metrics all involve parameter estimation which is a decision theory problem
since one has to select a particular value from a set of possible values. However, these
methods do not take the prior belief or information one has about the performance of the
assay under consideration.

A Bayesian decision theoretic framework, can help address many of the common con-
cerns that arise in the process of evaluating the clinical utility of a predictive biomarker.
Clinicians, assay developers and others who have expertise working with the molecule under
consideration may have more information to provide about the assay performance than what
is available in the data at hand. A key feature of the Bayesian approach is its ability to incor-
porate the subjective belief one has as part of the analysis in the form of a prior. Choosing
a prior is daunting and there is not a straightforward procedure for this. However, if the
existing information is used appropriately to construct the prior, the parameter estimates
obtained from the Bayesian method are contained within a reasonable range of values and
help the stability of MCMC algorithm used for Bayesian inference (Korner-Nievergelt et al.,
2015, Brooks et al., 2011). In our setting, we bring into play the best scientific guess of the
experts to construct our priors. A set of equations is developed first to change the clinician
inputs to model parameters which were used as centers of the prior distributions considered.
These beliefs are later updated using data collected during Phase II to develop the posterior

metric used to assess the clinical utility of the predictive biomarker.
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In this paper, we propose a Bayesian decision theoretic framework design for evaluating
the clinical utility of a predictive biomarker prior to phase III and develop a metric used
to quantify the net benefit of this biomarker. This metric (V) which we termed Bayesian
Biomarker Net Benefit (BBNB) measures the decrease in the expected unfavorable event
rate as a result of biomarker guided treatment. This metric is closely related to the one
developed by Janes et al. (2011) but permits wider range of loss functions and incorporates
existing belief as prior during estimation. Even though, the development in this paper is
done assuming a count endpoint, extensions to scenarios with continuous, binary or time to
event could follow directly. In dealing with count data, overdispersion is a typical problem,
overdispersion adjustment using the zero-inflated Poisson and negative binomial models were

further considered.

3.2 Motivational Context

Asthma is a chronic inflammatory disease of the airways with marked heterogeneity in the
clinical course and in response to treatment (Bel, 2004, Wenzel, 2006, Siddiqui and Brightling,
2007). Despite treatment with inhaled corticosteroids (ICSs), and other controller medica-
tions, a substantial proportion of patients continue to have uncontrolled asthma (Bateman
et al., 2004, Corren et al., 2011). Consequently, part of the current high unmet medical
need in asthma is uncontrolled disease that persists despite conventional treatment with
guidelines-based standard-of-care therapy, which includes ICS therapy plus a second con-
troller medication (Hanania et al., 2015). The Phase I clinical development plan to develop
drug AA was designed to test the efficacy and safety of AA in this patient population with
uncontrolled asthma who have high unmet medical needs. The primary end point of the
study was the rate of asthma exacerabations over 52 weeks. Asthma exacerbation is defined

as a new or increased asthma symptoms that led to treatment with systematic corticosteroids
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or to hospitalization. Our objective here is to propose a statistical method for assessing the
clinical utility of the predictive biomarker BMK using a Bayesian decision theoretic frame-
work. Even though demonstration of the method is done here using the Athma clinical trial

study, it is applicable in a more general context.

3.3 Settings and Notations

Let the outcome of interest be Y, asthma exacerbation rate ( average number of asthma
exacerbations over a time period t) which is a count, such that, Y € {0,1,2,...}. Further
let the input variables be represented by a vector x such that x = (x3, A) where x; denote
the biomarker BMK level measure taken at baseline from each subject and A denote the
treatment assignment such that A = 1 if the subject is assigned to active treatment and
A = 0 otherwise. Additionally, # € © will represent the parameter subspace that relates the
outcome Y with the inputs x. The natural approach to represent the relationship between
the outcome Y and the vector of input x is through a log linear model, which can be written

as,
I{EYi|Xi, Ai)} = Bo+ BiXi+ BoAi + B3 XiA; (3.1)

such that i =1,2,....... n where n represent the number of subjects in the study. To address
the problem at hand through the principles of decision theory, one first needs to thoroughly
define the three spaces which are core to decision theory (Robert, 2007, Berger, 2013). The
true state of the world, the decision space and the consequence of a particular action. Let
O represent the space for the true state of the world, D for the decision space and R for the

consequence of the action. These three spaces together are linked by a loss £ function which
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is defined as:

L:OXD—R (3.2)

Clearly, a loss function £ is a benchmark used for assessing a possible act 6 € D, for
a given true state of the world § € ©. The loss function then takes values in the space
of consequences R. The objective of the problem therefore is to minimize the loss L, by

choosing an optimal decision 6*, which is defined as,

0" := argminIE[L(6, )] (3.3)

0eD

In Bayesian context we pre-specify a prior distribution for # € ©. Applying the principles
of decision theory, let £(6,d) be the loss only due to the increase in the expected number of
exacerbations in the asthma condition. If we let o represent the decision made to assign all

subjects to treatment, then the loss associated with this decision can be written as,

L(0,6r) = E[Y|X,,A=1] (3.4)

= pr(x)

pr(x) is the mean exacerbation rate to be calculated from the log linear model of equation
(3.1) when subjects are assigned to treatment group and 6 = (5o, 1, B2, 83). Similarly, loss
function associated with the decision to assign all subjects to the placebo (standard of care),

can be written as,

L£(0,6p) = E[Y|X1,A=0] (3.5)
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where pp(x) is the mean exacerbation rate to be calculated from the log linear model of
equation (1) when subjects are assigned to placebo. After clearly specifying the loss and

decision functions, the Bayesian risk functions is finally defined as:

Ro(r(0).5) = | /y £(0, 5)p(y 0)(0)dydt (3.6)

where £(6,6) will be the expected loss, p(y|f) is the likelihood function of the long linear
model in equation (3.1) with mean given by p(x) and () is the prior distribution for the

unknown states of the world.

3.4 Non-crossing Risk Curves

In many clinical trial settings, a simple endpoint like exacerbation rate does not fully cap-
ture the consequences associated with the treatment. Treatment related toxicity and cost
incurred from the treatment play a key role in making a final decision when evaluating the
clinical utility of a predictive biomarker. The aforementioned two factors and others have
an important influence in making an optimal treatment decision and optimal decision about
how to design the phase III trial. In the simplest case, all the treatment related costs can be
assumed to be constant, say c, regardless of individual subject’s biomarker values. However,
this can further be extended in an event where there is enough evidence to suggest that treat-
ment related toxicity is dependent on subject’s biomarker value. Figure 3.1 demonstrates
a scenario where treatment related costs was set to constant (¢ =0.25). The plot in the
left shows risk curve of each treatment arm without taking the treatment related costs into
account, but plot on the right show the same risk curves with treatment linked costs taking
in to consideration. Looking at the left plot, one can conclude that no matter the biomarker

value of the subject, one would decide to treat all the subjects. However, if we look at the
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plot in the right which takes the drug negative side effect and cost in to consideration, the

optimal decision would be to recommend treatment only for subject with a biomarker value

above the 50th percentile value.
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Risk curves for each treatment arm as a function of biomarker percentile value.

The left-hand plot shows risk curves estimated without taking the treatment related cost into
consideration while the right-hand plots takes the treated related cost into account. Treatment
related cost was assumed to be constant regardless of the subjects biomarker value and was set to
c¢=0.25. This cost was added only for those subjects assigned to the treatment group.

3.5 Optimal Treatment Decision Rule

Let the loss function £ associated with the decision dr and the slope parameters of the log

linear model 3 be written as,

E(ﬁ,(ST) =

Ely]

= E,E[Y|r,A=1]

_ / {eap{Bo+ Bt + BoA + Bor AY}f(2)de
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where (s are obtained either using frequentis or Bayesian approach, f(x) is the probability
distribution of the biomarker X and the constant c is used to quantify the cost and negative
side effect of the drug. Similarly the loss function associated with the decision dp can be

written as,

L(B,0p) = E[Y] (3.8)
= E,E[Y|z,A=0

_ / {exp{Bo+ Bra}}f(x)de

From equations 3.8 and 3.9 above, one can see that, the loss associated with the decision to
assign subjects to treatment group is equal to the loss associated with the decision to assign

subjects to placebo group if and only if,

{Ba+ B3z} = 0

From equation(3.10), assuming 83 > 0, a subject will be better off if he/she is assigned to
treatment provided that X < % and to placebo if X > % when (3 < 0 treatment
assignment will be the reverse. Therefore, the optimal decision d,, which minimizes the

expected loss is written as:

L(B,0opt) = / {exp{fo + Pix+ oA+ B3z A}}f(x)dx (3.9)

X1

+ /X{exp{50+ Gz}t f(x)dx

where d,, is the optimal decision, X} € {X : X < _ﬁ—fi?} and Xy € {X : X > _6—532}
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3.6 Biomarker Net Benefit (BNB)

Here we define a new metric, Biomarker Net Benefit (BNB), which will be represented by W.
The metric ¥ measures the decrease in expected event rate as a result of using an optimal
decision rule d,,; which has a value in the positive real line, i.e, ¥ € [0, 0c]. If the expected
loss function L(B,CS) is estimated using a frequentist approach, we will call it Frequentist
Biomarker Net Benefit (FBNB) and represent it by ¥r. However, when Bayesian approach
is used to estimate the expected loss function, we will call it Bayesian Biomarker Net Benefit

(BBNB) and represent it as Wg. In this section we will lay out the steps for estimating Up.

Depending on the default treatment, BBNB can be estimated as,

A

Up, = L(Bp,0p) — L(Bp,dop) (3.10)

when the default treatment is to assign all subjects to placebo (standard of care), and
Up, = L(Bs,0r) — L(Bs, dop) (3.11)

when the default treatment is to assign all subjects the current active treatment. The
subscripts B, P and T represents for Bayesian, Placebo & Treatment. Here we will first
demonstrate how to get the Bayesian estimates of the slope parameters Bs and then proceed

to show the derivations for ¥, and Wp, respectively.

3.6.1 Bayesian For Count Data

Maximum likelihood (MLE) estimators are appealing and in common use as they have the
necessary asymptotic properties. Such estimators are assumed to be consistent, efficient, and
have a normal distribution as the sample size n — oo (Casella and Berger, 2002, Lehmann

and Romano, 2006). However, it not uncommon to see such assumptions being violated
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because the sample size is small. Early phase (I and II) clinical trials, for example, are
usually small. Further, maximum likelihood methods naturally quantify uncertainty of the
MLE by constructing confidence intervals which are often misinterpreted as probabilities
that the unknown parameter of interest will be contained within the interval.

However, this confidence interval interpretation is rather inline with the Bayesian view
(Carlin and Louis, 2010, Liu and Powers, 2012, Gelman et al., 2014). Bayesian analysis
methods, in additional to incorporating prior information in the analysis, address the afore-
mentioned drawbacks of the maximum likelihood methods by allowing us to write the full
joint probability distribution of all the parameters of interest that takes into consideration the
various sources of uncertainty which provides a commonsense interpretation of the Bayesian

credible intervals (Gelman et al., 2014).

3.6.1.1 Bayesian For Standard Poisson Regression Model

Here we first layout the Bayesian framework for the Standard Poisson Regression(SPR) model
(without overdispersion). Using a SPR model, the relationship between our outcome variable
Y and the input variables X &A is expressed as in equation (3.1). Let A(z) = X', p(z) =
@)y ~ Pois(u(x)), where, x = {x1, A}, such that x; = {x;,......, 2,1} represents the
predictive biomarker measured at baseline for each subject and A the treatment assignment,
such that, A = 1 if a subject is assigned to treatment and A = 0 if assigned to the standard
of care.

The likelihood function associated with the SPR model is then written as:

n efex:“vﬁ e(x;ﬁ)yi
LY = [[{&——

|
i=1 Yi

Introducing independent Gaussian priors on the slope parameters of the SPR model, such

that, 8; ~ N (ug,, a%j), where j = 0, ..., p, the joint probability distribution function of 3 is
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given as:

{ ~(Bj-np,)? }
b, (3.12)

& 1
m(8) = 1210 N

where 3 is a vector of length p such that p represents the number of parameters the SPR
model of equation(1). Finally given data {x,y}, using Bayes’ rule, the unstandardized joint

posterior distribution of 3 is proportional to:

T(Blx,y) o< flylx,B)m(B) (3.13)
/ ) —(ﬁj—ulg.ﬂ
n _exlﬁ (x’-ﬂ)yl P 1 {21}
e e\ 20%
I e
i=1 L j=0 271'05]_

3.6.1.2 Bayesian For Zero Inflated Poisson Regression Model

When modeling a count data, it is not uncommon to encounter data with an excess of zeros.
These data are usually called zero-inflated (ZI) outcome data. With ZI outcome data the
number of observed zeros is greater than one would expect from a standard Poisson model
(Jang et al., 2010). This in turn leads to violation of the common Poisson model, where the
variance is equal to the mean. As a result, the zero-inflated Poisson (ZIP) model (Lambert,
1992) and Poisson hurdle (PH) model (Mullahy, 1986) have been developed to overcome
the difficulties that arise from the ZI outcome data. When the outcome data contains both
excess sampling zeros and structural zeros, ZIP models are typically used. Sampling zeros
are zeros that are part of the Poisson distribution, and it is assumed these zeros are observed
by chance. Whereas structural zeros arise due to a particular structure in the data set (Hu
et al., 2011, Hua et al., 2014) such that asking person the number of cigarettes he/she smoked
in the past week though that person is not a smoker. In this subsection we lay out the steps

to obtain a Bayesian estimates of the slope parameters for a ZIP regression model. When
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dealing with ZI count data, one can think of the observed counts as two different outcomes:
(1) those which are inflated ( more than those expected) zeros and (2) those which are in
agreement with the underlying Poisson distribution. The probability mass function of Y

given 7 and A\ can be written as:

7+ (1—m)e? if y=0
Pr(Y =y|m, ) = (3.14)

(1-me= if y >0

where 7 represent the probability that the observed zero is from the zero-inflated stage and
A represents the mean for the Poisson count stage provided the observed value is not zero
inflated. From equation (3.14) one can clearly see that, the ZIP regression model has two
stages: the zero-inflation stage and Poisson count stage. Depending on the problem at hand,
the covariates in a given data set can be used in both stages to estimate the parameters 7
and A simultaneously. Commonly loglinear and logit models are used to relate the covariates
with the parameters 7 and \. In this particular case, assume all the covariates are used to

in estimating 7 and A, such that,

log(\) = X181 = B0 + BuiX + fraA + P13 X A
T
lOg(E) = X502 = Pao + B X + PonA + P X A

With a little algebric simplification, we can express the equations above and write A = X151

and 7 = 1fxéi2ﬁ2. The likelihood function for the random variable Y ~ ZIP(\, ) is finally

expressed as

m ex/2:32 exlg,@2 <} By
f(Ylﬁla/BZ) = H{—x’z + <1 - —x/2> 6_6 b } (315)
T+ e 2P 1+ ex2B

1=
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n X582 o x1B1\yi
X H L — ; e “ o (SN
1+ ex2P2 y;!

i=k+1

where from the n total number of observations, the first m subjects who responded have
zero value and the rest have nonzero values. To proceed with Bayesian analysis, one first
needs to elicit a prior distribution for the 3; and 35 coefficients. If an independent Gaussian
prior is assumed for each coefficient of B, and B such that, 51; ~ N (pgs,,, a%Qj) and [a; ~

N (1845 0§2j) , then we can write the joint prior distribution as:

(3.16)

Using the likelihood function in equation (3.15) and the joint prior distribution functions
given equation (3.16), applying Bayes rule, the unstandardized joint posterior distribution

for a ZIP regression model written as:

k eX2P2 X282 By
9(B1,B2]Y) H{— + (1 — —) et } (3.17)

L1114+ ex2pe 1+ ex2h2
1=
n x/ , X/ i
" H {(1 B eX2B2 ) 6_6,(131 (6 151)1/ } y
x5 3 |
i1 14 e*2P2 Y-

*(ﬁlj*ﬂﬁlj)z 3 *(52_7*;%2].)2
1 202 1 202
- ¢ B H —— ¢ F2j
0 2102 =0 210
J= B J= B2;

A closed form solution for equation (3.13) and equation (3.17) is analytically unobtainable

e

because of the lack of conjugacy between the standard Poisson likelihood function and the
Gaussian priors as well as between the ZI Poisson likelihood function and the Gaussian prior.
Instead we will use a Markov Chain Monte Carlo (MCMC) methods called Hamiltonian

Monte Carlo (HMC) to get the posterior mean estimates and the 95% credible intervals
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(CIs) of the 8's which in turn are used to estimate our metric of interest W.

3.6.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that
avoids the random walk behavior and sensitivity to correlated parameters that plague many
MCMC methods by taking a series of steps informed by first-order gradient information
(Hoffman and Gelman, 2014, Brooks et al., 2011). To implement Hamiltonian Monte Carlo,
one first needs to write the Hamiltonian which is an energy function for the joint state of

"position", ¢, and "momentum", p as:

H(q,p) = U(q)+ K(p) (3.18)

where U(q) is the potential energy and K(p) is the kinetic energy. Further ¢ and p are
assumed to be independent and each has a canonical distribution. In what follows we will use
q to represent the variable of interest, and p will be introduced to implement the Hamiltonian
principle. In the Bayesian context, the posterior distribution of the model parameters is the
target of the analysis. These parameters take the position of ¢ and using the potential
energy concept we can express the posterior distribution as a canonical distribution U(q) =
—log[r(q)L(q/D)], where 7(q) is the prior density, and L(q/D) is the likelihood function
given data D. The kinetic energy K(p), is mainly taken to be the negative log probability
density of a Gaussian distribution with mean zero and convariance matrix, M and is written
as
B T M 1p

K(p) =—5— (3.19)
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where M is a symmetric, positive-definite "mass matrix". The partial derivatives of H(q, p)

determine how ¢ and p change over time, according to Hamiltonian equations:

dq

— = i 2
0= My (3.20)
dt N 86]2‘

To implement HMC on the computer, we first need to approximate the Hamiltonian
equations by discretizing time into increments of €, where € is small. Let the Hamiltonian
be H(5,w) = U(B) + K (w) where we replace ¢ by 5 and p by w to reflect the parameters of

interest and the moment variables respectively. Further assume that M is a diagonal matrix

2
d w;

with diagonal elements given as my,...mq4, which leads to K(w) = >_;_, T

. Approximate

solutions for systems of differential equations are better obtained using the leap-frog method:

ou

wi(t+€/2) = wi(t)+ (6/2)8/@,3(25) (3.21)
Bi(t) = Bit)+ ew
wi(t+e¢€) = wi(t+e/2)—(e/2)§gﬂ(t+e)

where the derivatives with respect to time are obtained from equation(3.20). The basic idea
here is, if we start with 3;(0) and w;(0) at ¢ = 0, we can use equation (3.21) above iteratively
to get the trajectory values of position and momentum at times ¢, 2¢, ..., and the final values
for () and w(r). The total number of steps then will be Z. Let % be the current value

of the parameter §. The leap-frog Hamiltonian Monte Carlo algorithm is:
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Algorithm 2 Hamiltonian Monte Carlo algorithm
1: Sample w ~ Ny(0, D) > where D is the covariance Matrix

2: Using leapfrog method, simulate Hamiltonian dynamics on location 3) and momentum
w for L steps with stepsize €. Let these updated value be §* and w*.

3: set f0+Y) = 3* with probability min{1,r(3®, 3*)} such that

(B9, 37) = p(ﬂfIy p(w'

Otherwise set S0+ = g7,

3.6.3 Prior Elicitation From Clinician Inputs

One of the major concerns when fitting a Bayesian model is prior elicitation. Here we outline
first how the best clinician guesses or inputs can be converted into hyperparameters which
are incorporated during prior elicitation. Lets say Ki, Ko, K3 and K, are expected asthma
exacerbation rates given the 25" and 75" percentile value of the biomarker for the standard
of care and active treatment groups respectively. The K values reflect the best judgment of
the experts about the likely outcome of the disease under consideration give the predictive
biomarker value. Further, letting Z; and Z, representing the 25" and 75" percentile value
of the biomarker, with a little algebra manipulation, we can use the following equations to

get the Poisson model parameters (Details of the derivation is given in Appendix A.0.3).

Kl*Zl—K]_*ZQ

= 3.22
Bo 77 (3.22)
P ¢

Zy — Zy
Kl*ZQ—KQ*Zl—Kg*Z2+K4*Zl
Bo =
Zy — Zy
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Ky — Ky + K3 — Ky
Zy — Zsy

By =

where In(Ky) = Bo+51X.,, In(Ky) = Bo+ 51X, In(K3) = Bo+ 52+ (P1+03) X, and In(Ky) =
Bo + B2+ (1 + P3)X.,. Priors of the normal distribution centered around the §'s obtained
from the above equations were used. To assess the effect of variance specification on the
main parameter of interest Wp,,, priors were elicited from being vague to more informative.
Vague priors are priors with a high variance used to express the probability mass is spread
out over a large plausible values instead of concentrating in specific values. On the other
hand, informative priors are priors with a smaller variance express a strong belief one has

about the parameters of interest before the data collection.

3.6.4 Estimation of V3 (BBNB)

Assume the default treatment is "treat none (standard of care)". After getting the estimated
B values as posterior means applying the Bayesian framework method mentioned in detail

in the previous subsections (5.1 and 5.2), we can use equation (3.10) to get an estimate of

the BBNB (Up,) as:

A

Vg, = L(Bs,0p) — L(Bs, bopt) (3.23)

= [tentin dapysonie—{ [ femmtint ot d + haaan feyte )
- [ et ha) st

= [ tentho aty syt~ { [ tesph fro+ ia+ o)) s

= /X1 {exp{Bo + fix} — {e:cp{@o + Pz + BoA + Bsz A} + c}} fla)da

where L refers to the loss incurred for a given g, § a treatment decision, g posterior mean

estimates of 8s’ , f(x) the probability density function of the biomarker under study and
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X e{X X< %} provided B3 > 0. If we assume, for example, the biomarker under study

has a Ula, b], then equation (3.23) can be simplified further to have a closed form as:

d
A A A A A 1
\I/Bp = / {Gl’p{ﬁo + ﬁll’} — 65(7]){60 + 611’ + /BQA -+ 531’14}} b_ adl’
1 630+d51 630+a31 650-&-524-61(51-&-53) 630+B2+a(ﬁ1+/3’3)
b—a e B Br + B B1 + B

such that 51 # 0, (81 4+ f3) # 0 and d = _B_iz d is the cut-off value used under the
optimal treatment rule as obtained in equation (3.9). Similarly, when the biomarker under

consideration has a N (u, 02) distribution, Wy, is obtained as:

‘i’BP = / {6371?{30 + le} — GI'P{BO + Bz + BrA+ B&}»’UA}} f(x)dx
Xy

1 —(a—p)?

e 202 dx
vV 2mo?

= /X {elUP{Bo + le} - el’P{Bo =+ le + B2A + 533714}}

When the default treatment is "treat all", an estimates of the Wy, which can be obtained

following similar steps is provided in Appendix.

3.7 Simulation Study

To demonstrate our method, we used two different simulation studies. The first is a toy-
simulation while the second a simulation that was done to mimic the phase II clinical trial
conducted by Genentech to develop drug AA for the treatment of asthma. For the toy-
simulation, we generated data from the standard Poisson regression model of equation (3.1).

This simulation was done under the following scenarios:
e Randomization was 1 : 1;

e Biomarker was assumed to have a know probability distribution: Uniform or Normal;
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and

e Different biomarker performance scenarios (see Figure 3.2): Strong , moderate and

weak.
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Figure 3.2: Plots showing the expected event rate of each treatment arm for a given biomarker
and different combination of K values. For the plot in the left (strong biomarker), K; = 0.6, Ky =
3.5,K3 = 3.5 and K4 = 0.6. The plot in the middle (moderate biomarker) has K; = 0.6, Ky =
3.5, K3 = 2.5 and K4 = 1.5 while the plot in the left (weak biomarker) has K7 = 0.6, Ko = 3.5, K3 =
0.8 and K4 = 3.0. The biomarker is assumed to have a standard uniform distribution.

For the purpose of specifying the priors, we considered different sets of the K values and
converted them into the /s using equation (3.22). These 's in turn were used as mean
values when we specified a normal prior for each parameter of the model. The variances
of the priors were set in such a way that they reflect a weak and strong prior belief of the
clinicians about the performance of the biomarker under consideration before data collection.
A weak prior belief was reflected in our simulation studies by assigning a large variance to
each of the normal priors we considered and vise versa to show a strong prior belief.

Our second simulation was conducted to mimic the phase II clinical trial study conducted
by Genentech to develop drug AA used for the treatment of asthma. As per the protocol

of the study we used 1:1 randomization to assign half of the subject to placebo and the
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rest half to treatment (taking any of the the three doses of drug AA). A biomarker was
generated from a normal distribution to mirror the log of the BMK biomarker measured at
baseline for each patient. BMK was the predictive biomarker under consideration to assign
treatment for patients with uncontrolled Asthma. It was previously claimed that drug AA
works more effectively for patients with high pretreatment BMK values (Corren et al., 2011).
The high-BMK subgroup was defined as patients with baseline BMK level greater or equal
to the median value. By specifying the 5’'s that mimic results of the phase II clinical trial, we
generated data from a standard Poisson regression model. To set the normal priors we took
into consideration the results of the previous study when setting up the K values and used
different variances to reflect the clinician belief on the performance of the BMK biomarker
as predictive biomarker.

Regardless of the prior picked, conducting a sensitivity analysis to assess the effect of
elicitation of different priors and other features of the model on the posterior inferences
is a customary practice when fitting models using Bayesian methods to assess robustness.
In the context of our method, we investigated the sensitivity of the metrics 0 By and 0 Bp
using three different approaches. In the first case, we considered a range of values for the
hyperparameter agj associated with each 3;, such that, j = 1,...,p, where p is the number
of coefficients in the model and computed the posterior means and the 95% credible interval
(CI) for \i/BT and ‘ifBP. In case two, we centered the priors at different values and computed
the posterior means and 95% ClIs for 0 By and 0 Bp- Finally, as over-dispersion is a common
phenomenon when fitting a Poisson regression models, we assessed how robust the estimated
mean posterior values of v By and Uy » can be during over /under dispersion. For this purpose,
we compared the Bayesian estimates of ] By and ] B, under standard Poisson, zero-inflated

Poisson and negative binomial regression models.
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3.8 Results

Results of the first simulation are presented in Table 3.1 where the biomarker was assumed to
have a U(0, 1) distribution. In all the toy simulations conducted, a sample size of n = 350,
5000 iterations with 4 chains was used. Three different scenarios were taken to reflect
the prior belief of the experts by specifying different combination of K-values. These K-
values were chosen in such a way that they show a strong, moderate and weak biomarker
performance. As stated previously, we used a Gaussian prior for each of the coefficients with
a mean specified by converting the Ks to fs. To assess the effect of the variance assigned
to each coefficient, we investigated three different cases: in case 1 02 = 0.5; case 2 ag =10
and case 3 ag = 100. Under a strong biomarker performance assumption (scenario 1) we
set K1 = 0.6, Ky = 3.5, K3 = 3.5 and K, = 0.6. Further setting O’é = 0.5 in order to
reflect a more informative prior, the posterior mean and standard error of \i/BP and W Br
were estimated to be 0.603(se = 0.079) and 0.549(se = 0.072) with their respective 95%
credible intervals given by (0.460,0.766) and (0.419,0.679). In Table 3.1, in addition to
the poster mean estimates, standard error and credible intervals for \TJBP and \TJBT, three
other estimated metrics are presented. The soc (standard of care) refers to the posterior
estimated mean even rate when all the subjects are assigned to the control arm regardless
of their biomarker values. The act (active treatment) when all subjects are assigned to
treatment arm and the opt (optimal treatment) when subjects are assigned treatment based
on their biomarker value. Further to make sure that the posterior estimated means are not
far from what one would expect, we first simulated a large data set of sample size 10,000 and
estimated Up and Uy (0.584 and 0.506 respectively). Similarly under the prior belief only
Up and Uy were calculated to be (0.687 and 0.691 respectively). If we look at scenario 1 of
Table 1, when ag = 0.5 for example, as one would expect U Bp and 0 B, have values that fall

between what one can get using only the data and the prior belief. As it can be seen from
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Table 3.1, as the prior becomes less informative (ag gets larger) the posterior estimates of

A

Vg, and \ifBT get closer to the estimated values one could obtain using only the data.

The sensitivity of the Up, and Up,  estimates to misspecification of the prior means
was assessed and results are presented in Table 3.1. The means of the [ priors were set to
different values in scenario 1, scenario 2 and scenario 3. Generally the posterior estimates of
0 Bp and O B, showed a slight variation when a very informative priors were used (i.e) setting
ag = 0.5. Looking at \ifBP for example, its values changed from 0.603 under scenario 1 to
0.549 under scenario 2 and to 0.468 under scenario 3 while ag was fixed to 0.5. Nevertheless,
under less informative priors (when 02 = 10 and 02 = 100) ¥, and Up, did not display a

noticeable change under the three scenarios. Density plots for the posterior estimates of 0 Bp

and Wy under a standard Poisson model for the three different priors is shown in Figure

3.3.
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Figure 3.3: Shows the posterior density plots of Up » and 0 By under a standard Poisson regression
model for three different priors.

From Table 3.1, we can further see how robust the estimators \iJBP and \iJBT are to
misspecifying a wrong variance for each prior. For this purpose we set aéj to 0.5,10 and

100. The posterior estimate of \i/BP for example changed from 0.603 when ag = 0.5 to
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0.576 when o3 = 10 but remain unchanged when o was further increased to 100 under
scenario 1 of Table 3.1. This trend was consistent in all the three scenarios considered. A
slight decrease in the posterior means was observed as ag was increased from 0.5 to 10 but
remained constant when 0% was further increased to 100. The posterior density plots for T Bp
and U By under scenario 1 are shown in Figure 3.4. An important point from this simulation
is that, generally the posterior estimates of v Bp and 0 By Teasonably seems to be robust to

the miss specifying a wrong variance to the priors.

Density
Density

Figure 3.4: Shows the posterior density plots of \ilBP and \i!BT under scenario 1, setting O'% to
different values. The density with red color corresponds to case where a§:0.5, the blue density for
0/23:10 and the green density for 03:100.

As overdispersion is a common phenomena when fitting a log linear model, further ro-
bustness check of the ¥ Bp and T By estimators was conducted by estimating these metrics
using a Bayesian zero-inflated Poisson and negative binomial regression models. The results
are provide in Table 3.2 ( for ZIP model) and Table 3.3 (for negative binomial modes).
Taking scenario 1 and the setting where 0[23 = 0.5 for example, the estimated value of \i/BP
was 1.07 under the standard Poisson regression model, 1.09 under negative binomial model,

and 1.08 under ZIP model. Similar results are observed under the other two scenarios and
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other setting where ag was set to 10 and 100. A similar simulation was further conducted
assuming a A (0,1) and results are presented as supplementary in Table S1, Table S2 and
Table S3. The key point is, both U Bp and U B, Were reasonably robust to misspecification

of the prior means, variances and models ( standard Poisson, ZIP or negative binomial).

Density
Density

0.2 0.4 06 0.8 0.2 0.4 06 0.8

M
Vg, W,

Figure 3.5: Shows the posterior density plots of o Bp and 0 B, for standard Poisson regression
model (spm), zero-inflated regression Poisson model (zip) and negative binomial regression model
(negbin).

The second simulation was done to mimic the phase II clinical trial study conducted by
Genetech to develop drug AA for asthma treatment. A logarithmic transformation was first
used to normalize the BMK biomarker assumed to be measured at baseline for each subject,
such that, it has a N'(3.89,0.21) distribution. Taking the coefficients associated with a SPR,
model fit from previous studies, a data of sample size 460 was simulated to mirror the phase
IT clinical trial study. This is somewhat large for a randomized phase II study. Figure 3.6,
shows the exacerbation rate per year as a function of the percentile biomarker (log of BMK)
value for the active treatment and standard of care groups. The left plot shows the expertise
prior belief about the relationship between exacerbation rate and and log of the BMK values

while the right plot shows the posterior relationship after updating the priory belief using
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data collected from the phase II clinical trial study.
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Figure 3.6: Plot showing the relationship between exacerbation rate per year and the percentile
values of the biomarker for each arm, the treatment group and the standard of care group. For the
plot in the left only prior information was used while for plot in the right the prior information was
updated using phase II data.

The posterior mean estimates of W, and Up, were found to be 0.276(se=0.044) and
0.011 (se=0.005) with the prior for each of the §’s assumed to have a Gaussian distribution
such that By ~ N(=3.72,0.5), #1 ~ N(0.78,0.5), B2 ~ N (5.01,0.5) and 3 ~ N (—1.27,0.5)
under scenario 1 of Table 3.3 where a standard Bayesian Poisson regression model was
fitted. From Table 3.3, Table S5 and Table S6, one can look at scenario 1, scenario 2
and scenario 3 fixing o3 to 0.5 or 10 or 100 to assess the sensitivity of Up, and Up, to a
change in the mean value of the priors. To evaluate robustness of @Bp and ¥ By to model
misspecification (standard Poisson, ZIP or negative binomial) one can look at scenario 1
and a setting where a§:0.5, for example, and compare the values from Table 3.3, Table S5
and Table S6. Generally misspecification of prior means and models have less impact on
the estimated values of Wy, and Wy . However, we observed a deviation in the estimated
value of W, and Wy, when the prior variance was changed from 0.5 to 10( or 100). This

difference is not far from expected. Since setting 0§:0.5 (very informative prior) puts a lot
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of weight on the prior belief, it is customary to see the values of 0 Bp and \PBT deviating a

little from what one could have expected from the information available in the data only.

3.9 Discussion

Our method, the Bayesian decision theoretic framework for evaluating clinical utility of
predictive biomarker, is used to estimate the expected reduction in an event rate under a
biomarker guided treatment with a count endpoint. This design enable assessing a treat-
ment selection biomarker at the end of phase IT by incorporating experts (clinicians, assay
developers or/and biomarker scientists) believe about the biomarker performance as part
of the evaluation method under a more general circumstance. Our approach, in addition
to integrating prior belief about the predictive biomarker performance, take the biomarker
distribution in to consideration. From a biomarker development design point of view, one
would expect to have a clear picture about the biomarker distribution at the end of phase
II. Further data from the phase I studies can be used to get an understanding about the
biomarker distribution.

Frequentist designed metrics for evaluation treatment selection biomarker have been pre-
viously proposed (Song and Pepe, 2004, Brinkley et al., 2010, Janes et al., 2011). The metrics
\i/BP and \TIBT are closely related to the metrics ©¢ and ©; proposed by (Janes et al., 2011)
respectively. Our Bayesian decision theoretic framework however, extends the existing meth-
ods in a number of ways. One notable difference is the ability of our method to incorporate
expertise belief about the biomarker performance in the analysis in the form of a prior and
integrating the biomarker distribution in the analysis are other additions in our proposed
method.

Prior elicitation is a major hurdle when implementing a Bayesian framework. To ease this

problem, we developed easy to use equations to convert experts belief into § coefficients which
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are in turn used as hyperparameters. Further, we conducted extensive sensitivity analysis
to assess on how misspecification of the priors’ means, variances and the model in general
could affect the estimated values of ¥ Bp and 1 By- Results from our simulation indicate that
our proposed metrics are generally less sensitive to the aforementioned misspecifications.
However, a slight difference was observed when using very informative and less informative
priors. But this is in line with the Bayesian analysis methodology.

To make conclusions regarding the biomarker performance based on Wp, and Wp, es-
timates could be challenging. A high value of @Bp or \ilBT is shows a better biomarker
performance. However, the question of how large the values of \TIBP or \TJBT need to be to
consider the biomarker as clinically valid for the purpose of guiding treatment for patients,
depend on many factors. The type of disease under consideration, the time in which the
event rate is being estimated (per week /month /year etc) and others. Once a clinically mean-
ingful value of Wp, or Wy, is defined consulting expert clinicians, making a valid inference
would follow straight forward based on the 95% credible intervals associated with Up, or

A

Up,.
The Bayesian decision theoretic framework described here, even though the setup was
done for a count end point, extension should be straightforward if one want to consider a
binary, continuous or time-to event endpoints. In the event of binary and time-to event
endpoint, the boundaries of \iJBP or ¥ By would be [0,1] and ease the challenge in the in-
terpretation of the results. Our method considered only a continuous uniform and normal
biomarker, but cases with a discrete biomarker and biomarkers with other distributions could
be handled with a slight modification in the equations developed to estimate Up, or Up, .
Further, this method, though it was set up with an intention of making a treatment selection

biomarker in phase II for a 1:1 randomized clinical trial design, can be generalized to other

study designs as needed.
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Table 3.1: Posterior mean, standard error and 95% credible intervals of v Bp and ‘i/BT fitting
a standard Poisson regression model assuming a U(0,1) biomarker. Data was generated from a
standard Poisson model with sample size of 350. Coefficients used for data simulation are: Gy =
—0.40, 51 = 2.75,8, = 1.45 and 3 = —3.00.

Scenario 1: K-values K, =06 Ky =35 K3=35 K;=06

18, Bo~ N(=0.50,07) By~ N(1.76,07) o~ N(1.76,07) fs~ N(=3.5,07)

O'? 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.535(0.084) (1.385,1.680) | 1.548(0.086) (1.394,1.693) | 1.549(0.086) (1.393,1.694)
Act 1.481(0.094) (1.313,1.677) | 1.486(0.096) (1.315,1.684) | 1.486(0.096) (1.315,1.686)
Opt 0.932(0.053)  (0.822,1.045) | 0.969(0.068) (0.815,1.117) | 0.970(0.068) (0.814,1.119)
Uy, 0.603(0.079)  (0.460,0.766) | 0.576(0.086) (0.420,0.767) | 0.578(0.086) (0.419,0.768)
Up, 0.549(0.072)  (0.419,0.679) | 0.516(0.085) (0.363,0.652) | 0.516(0.086) (0.363,0.651)
Scenario 2: K-values K; =0.6 Ky =35 K;=25 Kys=15

i3, Bo ~ N(=0.50,02) B~ N(1.76,0%) B2 ~ N(1.42,03) B3~ N(—2.27,0%)

o2 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.538(0.084)  (1.388,1.681) | 1.548(0.086) (1.395,1.694) | 1.549(0.086) (1.394,1.694)
Act 1.477(0.094)  (1.311,1.675) | 1.486(0.096) (1.315,1.685) | 1.486(0.096) (1.314,1.685)
Opt 0.989(0.054)  (0.877,1.107) | 0.970(0.068) (0.815,1.119) | 0.970(0.068) (0.814,1.119)
Uy, 0.549(0.079)  (0.401,0.713) | 0.578(0.089) (0.419,0.768) | 0.578(0.089) (0.422,0.768)
Uy 0.489(0.072)  (0.359,0.621) | 0.515(0.086) (0.361,0.651) | 0.515(0.086) (0.363,0.651)
Scenario 3: K-values K; =0.6 Ky =35 K;=038 K,s=30

18, Bo ~ N(—O.SO,JJZ) B1 ~ N(1.76,a?) By ~ N(0.28,032) P3 ~ N(—0.44, UJQ.)

02 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.556(0.085)  (1.406,1.700) | 1.548(0.085) (1.394,1.693) | 1.549(0.085) (1.394,1.694)
Act 1.459(0.095)  (1.292,1.659) | 1.486(0.096) (1.315,1.685) | 1.486(0.095) (1.314,1.685)
Opt 1.088(0.056) (0.971,1.211) | 0.971(0.068) (0.815,1.119) | 0.970(0.068) (0.814,1.118)
Uy, 0.468(0.080)  (0.313,0.637) | 0.578(0.089) (0.419,0.768) | 0.578(0.089) (0.419,0.769)
Uy 0.371(0.071)  (0.246,0.499) | 0.515(0.086) (0.362,0.651) | 0.516(0.086) (0.363,0.653)
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Table 3.2: Posterior mean, standard error and 95% credible intervals of U Bp and /] B, fitting a
standard Poisson regression model assuming a N (4.8,3.24) biomarker. Data was generated from a
standard Poisson model with sample size of 350. Coefficients used for data simulation are: Gy =
—0.10, 51 = 0.08,8, = 0.65 and 55 = —0.15.

Scenario 1: K-values K, =06 Ky, =35 K3=35 K,=06

15, Bo ~ N(=0.15,02) Bi ~ N(0.11,02)  fo ~ N(1.04,02)  f5 ~ N(—0.22,0?)

a? 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
s0C 1.292(0.071)  (1.156,1.426) | 1.334(0.076) (1.189,1.472) | 1.334(0.076) (1.189,1.471)
Act 1.254(0.071) (1.122,1.379) | 1.263(0.074) (1.126,1.409) | 1.263(0.074) (1.126,1.410)
Opt 1.081(0.048)  (0.993,1.168) | 1.132(0.066) (1.009,1.244) | 1.133(0.066) (1.009,1.246)
@BP 0.211(0.073) (0.101,0.342) | 0.202(0.081) (0.076,0.338) | 0.201(0.081) (0.078,0.339)
\ifBT 0.173(0.043) (0.102,0.269) | 0.131(0.065) (0.028,0.273) | 0.131(0.065) (0.028,0.273)
Scenario 2: K-values K, =06 Ky =3.0 K3 =25 K,=0.6

18, Bo ~ N(—0.18, 032-) p1 ~ N(0.10, a?) Bs ~ N(0.80, OJQ») P3 ~ N(—0.18, 0]2.)

o2 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc¢ 1.301(0.072) (1.161,1.436) | 1.334(0.076) (1.191,1.471) | 1.334(0.076) (1.189,1.470)
Act 1.239(0.071)  (1.108,1.365) | 1.263(0.075) (1.126,1.409) | 1.263(0.075) (1.126,1.410)
Opt 1.102(0.049) (1.011,1.189) | 1.132(0.066) (1.009,1.244) | 1.133(0.066) (1.009,1.244)
Up, 0.199(0.076)  (0.087,0.336) | 0.202(0.081) (0.078,0.340) | 0.201(0.081) (0.076,0.339)
Uy 0.138(0.041)  (0.072,0.234) | 0.131(0.064) (0.025,0.272) | 0.131(0.065) (0.025,0.273)
Scenario 3: K-values K, =06 Ky =3.0 K3=038 Ky=25

18, Bo~ N(=0.18,07) By ~ N(0.10,07) [~ N(0.19,07) 3~ N(-0.03,07)

o2 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.329(0.073)  (1.185,1.459) | 1.334(0.076) (1.190,1.472) | 1.334(0.076) (1.190,1.472)
Act 1.208(0.072)  (1.083,1.333) | 1.263(0.074) (1.126,1.409) | 1.263(0.075) (1.126,1.410)
Opt 1.149(0.054)  (1.045,1.241) | 1.133(0.065) (1.010,1.243) | 1.133(0.066) (1.009,1.248)
Up, 0.179(0.085)  (0.056,0.334) | 0.201(0.081) (0.076,0.339) | 0.201(0.081) (0.076,0.338)
Uy 0.058(0.033)  (0.015,0.147) | 0.130(0.065) (0.029,0.272) | 0.131(0.065) (0.028,0.273)
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Table 3.3: Posterior mean, standard error and 95% credible intervals of v Bp and ‘i/BT fitting
a standard Poisson regression model to mirror the AA clinical trial study. Data was generated
from a standard Poisson model with sample size of 460. Coefficients used for data simulation are:
Bo = —9.85, 81 = 2.20,83 = 5.33 and f[3 = —1.52.

Scenario 1: K-values K, =0.10 Ky, =2.50 K3 =1.50 K, =0.40

g, Bo~ N(=3.72,07) p1~ N(0.78,07) B2~ N(5.01,07) fs~ N(—-1.27,07)

0? 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.445(0.043)  (0.359,0.524) | 0.462(0.040) (0.385,0.540) | 0.462(0.040) (0.386,0.541)
Act 0.179(0.029)  (0.122,0.248) | 0.205(0.031) (0.150,0.276) | 0.205(0.031) (0.151,0.276)
Opt 0.169(0.025) (0.119,0.224) | 0.155(0.026) (0.110,0.219) | 0.154(0.027) (0.109,0.219)
Uy, 0.276(0.044)  (0.199,0.353) | 0.307(0.037) (0.231,0.377) | 0.308(0.037) (0.231,0.378)
Up, 0.011(0.005)  (0.003,0.025) | 0.050(0.018) (0.020,0.092) | 0.051(0.019) (0.021,0.094)
Scenario 2: K-values K; =0.10 Ky =2.50 K3 =1.00 K, =10.30

18, Bo ~ N(=3.72, 032-) p1 ~ N(0.78, a?) Po ~ N(4.24, OJQ») Ps ~ N(—1.07, 0]2.)

o2 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.446(0.043) (0.359,0.524) | 0.462(0.040) (0.385,0.541) | 0.462(0.040) (0.386,0.540)
Act 0.179(0.029)  (0.121,0.247) | 0.205(0.031) (0.151,0.276) | 0.205(0.031) (0.151,0.277)
Opt 0.172(0.027) (0.119,0.229) | 0.155(0.026) (0.110,0.219) | 0.154(0.027) (0.109,0.219)
Uy, 0.274(0.046)  (0.196,0.353) | 0.307(0.037) (0.231,0.377) | 0.308(0.037) (0.231,0.378)
Uy 0.007(0.004)  (0.002,0.018) | 0.049(0.018) (0.020,0.092) | 0.051(0.019)  (0.020,0.093)
Scenario 3: K-values K;=0.1 Ky =250 K3 =040 Kys=1.25

18, Bo~ N(=3.72,07) B ~N(0.78,07) 2~ N(2.30,07) 3~ N(-0.51,07)

02 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.448(0.045)  (0.356,0.527) | 0.462(0.040) (0.385,0.541) | 0.462(0.040) (0.386,0.540)
Act 0.176(0.029)  (0.118,0.243) | 0.205(0.031) (0.150,0.276) | 0.205(0.031) (0.151,0.276)
Opt 0.175(0.029)  (0.116,0.239) | 0.156(0.026) (0.111,0.220) | 0.154(0.027) (0.109,0.219)
Uy, 0.273(0.048)  (0.188,0.357) | 0.307(0.037) (0.229,0.376) | 0.308(0.037) (0.231,0.378)
Uy 0.001(0.001)  (0.000,0.005) | 0.049(0.018) (0.019,0.091) | 0.051(0.019) (0.021,0.092)
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Abstract

Sample size calculations that supplement the study design for biomarker evaluation are key
part of the process. With the recent surge of new biomarker discoveries, statistical methods
for assessing the clinical utility of these biomarkers have also been advancing. In the past
few years, a metric that measures the decrease in the population event rate under biomarker
guided therapy has been advocated as a global predictive biomarker clinical utility measure.
However, there has not been a sample size estimation method developed that compliment this
metric. In this paper we (1) developed alternative mathematical equations for estimating
this metric, compare these to existing estimators, and present the asymptotic properties.
(2) Propose a sample size estimation method, Squared Width Inversion Regression Linear
(SWIRL) for this metric. Our SWIRL method is used to estimate a sample size n such that
the 95% CI mean width of this metric is smaller than a user defined length (Wi,,,). An R

program for the sample size calculation is made available.

Keywords : SWIRL ; sample size ; predictive biomarker ; clinical utility
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4.1 Introduction

Sample size calculation is key when we develop a study design for biomarker evaluation.
For a randomized control trial study design with a binary clinical end point, a metric ©
which measures the decrease in the expected proportion of events under biomarker guided
therapy has been been advocated as a measure of biomarker utility performance. However,
none of the existing sample size calculation methods can be used to calculate a sample size
n that guarantees enough power for the metric © in order to make a decision about the
biomarker performance. Therefore, a sample size calculation method that supplements ©
and the intended study design is required to enhance biomarker evaluation process.

Swift advancement in genome sequencing is rendering the reality that a patient specific
care will be our future treatment model. As such, currently, biomarker discovery, valida-
tion, regulatory acceptance and qualification are areas of enormous interest and need (Amur
et al., 2015). Predictive biomarkers, for example, are used to enhance drug and biologics
development and to guide treatment for patients (Fine and Amler, 2009, Janes et al., 2015,
La Thangue and Kerr, 2011, Lavezzari and Womack, 2016).

A number of predictive biomarkers are already guiding therapy for cancer patients. K-
RAS mutation status, is being used to pinpoint colorectal cancer patients likely to benefit
from Epidermal Growth Factor Receptor (EGFR ) inhibitor treatment (Amado et al., 2008,
Mehta et al., 2010, Karapetis et al., 2008). Oncotype DX recurrence score also helps to guide
whether a patient takes adjuvant chemotherapy or not after breast cancer surgery (Albain
et al., 2010, Gluz et al., 2016, Harris et al., 2016). However, parallel to the innovations in
biomarkers discovery, statistical methods for evaluating their clinical utility have not kept
pace.

Biomarker evaluation has three critical components according to the framework set by

the Institute of Medicine (IOM) per the US Food and Drug Administration (FDA) request:
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analytical validity, evidentiary qualification and utilization analysis (Ball, et. al 2010). Uti-
lization is a concept of use (COU), where a specific proposed intended use for the biomarker
needs to be prespecified. In the drug development plan, a predictive biomarker can be used
in selecting patients for phase III studies. Also, in medical settings, a predictive biomarker
can be utilized to advise for or against a given treatment. These biomarkers, however, need
to be evaluated for whether their use produces a positive net health impact, i.e, quantifying
their utilization according to COU.

Often times, biomarker utility qualification, is done by testing a null hypothesis of no
biomarker by treatment interaction. (Buyse, 2007, Taube et al., 2009, Freidlin et al., 2010,
Tajik et al., 2013). However, though a necessary condition, the interaction test is not suffi-
cient to evaluate biomarker’s utility working (Janes et al., 2011, Huang et al., 2012). Two
biomarkers (X; & X3), can have the same interaction coefficient but, behave differently in
guiding treatment. Besides this, the scale of an interaction coefficient depends on functional
form of the model and biomarker measurement unit. This adds another challenge and makes
comparing different biomarkers difficult. (Huang et al., 2012). Interaction test, being an
indirect measure, is also hard to comprehend by non-statisticians.

Graphical biomarker utility assessment tools, marker-by-treatment predictiveness curves
(Janes et al., 2011) and selective impact curve (Song and Pepe, 2004) have been proposed
as alternatives to an interaction test. More recently however, Janes et al. (2014a) presented
a comprehensive summary of the previous work and proposed a metric (©) as a measure of
biomarker utility performance. © measures the decrease in an unfavorable event rate under
marker guided treatment. This measure (©) is widely advocated as a global predictive
biomarker clinical utility measure (Gunter et al., 2007, Song and Pepe, 2004, Janes et al.,
2011, Brinkley et al., 2010, Janes et al., 2014a). With a binary end point, for example,
© measures the reduction in population event rate under biomarker guided treatment in

comparison to the standard (biomarker unguided) treatment. These procedures, however,
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assume we already have a data set collected. In pharmaceutical industries, for example, a
decision about inclusion of a biomarker as part of a drug development plan has to be made
prior to phase IIT most of the time. With little data at hand, prospectively evaluating clinical
utility of a biomarker at that stage becomes impractical.

In this paper, we first develop simple tools to convert clinician inputs to model parameters
that would help to evaluate a biomarker’s clinical utility. In addition to the clinician inputs,
we further assume a distribution of the biomarker under study. As utility evaluation is
done at a later biomarker stage, it suffices to make an assumption about its distribution at
this stage. Adding the assumption about the biomarker, we develop alternative equations
for estimating the metric ©. Sample size estimation methods that correspond to the study
design and metric under consideration are key to the biomarker utility evaluation process.
There is no previously developed sample size estimation method for the metric ©. In this
paper we propose a sample size estimation method, Squared Width Inversion Regression
Line (SWIRL). Our SWIRL method is used to estimate a sample size n such that the 95%
CI mean width of O is smaller than the user defined length (W,,,).

The rest of this paper is organized as follows: In Section 2 we first set the scenario
and briefly introduce the notations. Then mathematical derivation of the marker positivity
criteria and development of the equations used to estimate the parameter © follow. In Section
3, we present the approach used to change clinician defined inputs to slope parameters.
Sample size estimation using our proposed SWIRL approach for two study designs (biomarker
stratified design and biomarker strategy design) are briefly discussed in Section 4. Various
bootstrap methods we used to estimate the 95% CI width of © are presented in Section 5.

The paper then concludes in Section 6 with simulation results.
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4.2 Methods

4.2.1 Settings and Notations

Let the clinical endpoint or accepted surrogate endpoint of interest be Y, with a known
probability distribution and values that can be continuous (survival/relapse time ) or binary
(cure/death). The focus of this paper is on a clinical endpoint which is binary. In many
cancer studies for example, Y = 1 would represent death or relapse before time t and Y =0
for a cure or relapse beyond time t. Additionally, let T" represent the available treatment:
T = 1 if a subject is in the active treatment arm and 7" = 0 if in the standard of care
(SOC) or placebo arm. Further, let the biomarker of interest be X which is continuous and
measured for each subject at baseline. For now, we will assume the biomarker X has a
known probability density function f(z).

Given a binary response, it is customary to assume Y has a binomial distribution with
success probability w. With this, the natural approach to represent the relationship be-
tween the binary clinical endpoint, treatment, biomarker and interaction of treatment and
biomarker would be a multiple linear logistic regression. In addition to the common logistic
model assumptions, we will further assume in our case: (1) the outcome explains all the
impact of the assigned treatment and no other factor has any additional influence on the
outcome (Janes et al., 2011). However, if we assume other clinical variables have a potential
to influence the outcome, this assumption can be loosened and the method is expanded to
accommodate this situation. (2) The Stable Unit Treatment Value Assumption (SUTVA)
of Rubin (1986) holds (Brinkley et al., 2010, Rubin, 1974). This assumption states that the
value of the potential outcome for a patient does not depend on the treatment assignment

of other patients.
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4.2.2 Biomarker Guided Treatment Strategy

As stated above, the relationship between the outcome Y € {0, 1} and the covariates (T and
X) along with the interaction term (7" * X) is commonly represented using multiple logistic
regression as:

Pr(Y =1|T, X)
1— Pr(Y =1|T, X)

where (31, B2 and (3 in the model represent the biomarker, treatment and biomarker by treat-
ment interaction effects respectively. Now let the biomarker X have a known probability
density function given by f(z) where X € (—o0,00) or narrower depending on the minimum
or maximum values of the biomarker under study. By the time we want to evaluate the
clinical utility of the biomarker, we will have some information about the distribution of the
biomarker, assuming the biomarker has already gone through the initial two stages: valida-
tion and qualification. Therefore, making an assumption about the biomarker distribution
at this stage is more realistic. Incorporating the biomarker’s distributional information, now

we can modify the model in equation (4.1) as:

ebotbiz
eBo+Ba+(Br+P3)x
PrY =T =1) = /{1 +€ﬁo+ﬂ2+(6l+ﬁg)x}f(a:)dm (4.3)

Both equations (4.2) and (4.3) calculate the probability of unfavorable outcome, assuming
all subjects are assigned to SOC or active arm respectively. However, our objective is to
evaluate the clinical utility of the biomarker. With this, we would want to use the biomarker
information to assign available treatment to patients or use that information to recruit

patients for phase III clinical trial studies. However, determining a biomarker cut-off point
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to make the intended decision is never a straightforward decision. Many factors like cost of
the medication, side effects of the medication, etc., have to be taken into consideration. For
now, lets assume that the outcome of interest captures all factors which are likely to affect

it. Using equation (4.1), it is straightforward to show that:

Odds(Y =1|T=1,X =x) - exp{fo + B2+ (B1 + B3)z}

Odds(Y =1|T =0,X = x) exp{fo + iz}
= exp{fs + Psx} (4.4)

From equation (4.4) it is clear that, the odds of an unfavorable outcome are greater among
subjects in the active arm than the SOC arm if 85 + f3x > 0. Based on this, the biomarker

guided treatment decision (T,,) can be set in such a way that :

Lux—n) = § AT (1.5

T=0 :B3x> ()

Individuals who respond to a given treatment are generally referred as marker positive and
assigned to the active arm (7" = 1) while those who do not are called as marker negative
and assigned to SOC (T' = 0). Depending on the sign of the interaction (33) coefficient a

threshold for the marker guided therapy can be written as:

T=1: «>72
Topt(X =) =1if : f3<0

-0 - —B2
T=0: =< 7

T=1: x<_ﬁ—i2
Topt(X =) =1if : f3>0

-0 - —B2
T=0: x> 5

This way of specifying the biomarker threshold value used for guiding treatment matches

the one used by Song and Pepe (2004), Brinkley et al. (2010), and Janes et al (2014a). Let
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Ay ={z: B3z < (—f2)}, and Ay = R\ A; (where “\" is the set difference symbol). The limit
values for A; & Ag will vary depending on the support of the probability density function
for X. For X ~U(0,1) a table of all possible combinations is presented in Appendix A.0.2.
Once the biomarker cut-off point is determined, the probability of unfavorable outcome under

biomarker guided treatment is shown to be:

eBo+Ba+(Br+ps)x
PT(Y - HTOpt) - /«41 { 1 4+ ePotBa+(Br+83)x } f(l')d.iL‘ +

ebotbBix
/A {w} f(l')dl’ (46)

Under the expression in equation (4.6), a subject will be treated if he/she is marker positive

and will skip treatment if marker negative.

4.2.3 Development of Equations for Estimating ©

Biomarker ulitility evaluation is a COU. With intended purpose of using the biomarker for
guiding treatment selection, let the parameter of interest be © as proposed by Janes et. al
(2014). With a binary clinical endpoint, © measures the average decrease in the population
unfavorable event rate under biomarker guided treatment. The biomarker unguided treat-
ment will be either “Treat All” or “Ireat None” depending on the current default treatment.
We will use ©, if current default treatment is “Treat All” i.e T = 1 and ©y when default

treatment is “ITreat None" i.e T'= 0. Then,

O, = Pr(Y =1T =1)— Pr(Y = 1|Ty)

ePotBa+(B1+P3)z cPotpPiz
— /.AO {1 + eBotBa+t(Br+ps)x - 1 + cPothrz } f((E)d:E (4‘7)
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and

0y = Pr(Y =1|T =0)— Pr(Y = 1|T}y)

eﬁO‘i’ﬂl:U @ﬂ0+ﬁ2+(61+ﬁ3)$
N /A1 { 1 + efothry B 1 4+ ePotBa+(B1+83)x } f(x)dx (4.8)

Now let’s assume the biomarker X has a uniform distribution on the unit interval [0, 1].
If the original biomarker value is not uniformly distributed, we can transform X to F,-(z*)
where F,« is the cumulative distribution function (CDF) of the transformed variable X.
Further assume the current default treatment (standard care) is “Treat None”, and A; €

la, b], then ©¢ will be:

b ePothiz ePotB2+(B1+83)x
O = / { 1+ efothiz T ehotPat(Bitha)z } f(@)de (4.9)
( (b—a) (1+::;£}3;)6(i2_26/30) 1 =0,8=0
(b—a)i%s — it /=00 #0
%ln[%]—(b—a)% 01+ B3=0
| FinlEre] - gl : otherwise

If the current default treatment is “Treat All”, and A, € [c, d],then

0, = Pr(Y =1T=1)— Pr(Y =1|Ty)

eBo+Ba+(Br+P3)x oPothiz
= [40 {1 + eBo+B2+(B1+B3)z o 1 + ebothriz } f(x)dflf (410)
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(d o) ey = 0,05 =0

1+efo+62)(1+€P0)

Bo+B2+B3d
éln<11252+ﬁz+ﬁzc) : 61 - O7ﬁ3 7£ 0
Bo+B2 1 14ePotB1d X
(d - C) 1_T_eﬂo+/32 - Eln( 11250‘”310) . 61 + 53 % 0

Ly (1+ef30+/32+(ﬂ1+/33)d) o ﬁ—lan(lJreﬁOH;ld)

| s T TrPoTPre : otherwise

In case we have a normally distributed biomarker with mean p and variance o2 and the limit
integrals defined as A; € [a,b] and Ay € [c,d] , the equations for estimating ©, and O, are

respectively given as:

o)
-

b e/BOJrﬁléL“ 650+52+(51+,33)x 1 -
0 = - e2 5 dx
0 . 1 + ebotbiz 1+ eBo+B2+(B1+8s)x \/W

o _ d eBotB2+(B1+Ps)z ebotpiz 1 %(U)Qd
L= . 1 + eBotBa+(B1+p3)x 1 + ebothiz | /271-0.26 7 &

There is no analytical solution when the biomarker distribution is normal and numerical

integration is used to get the estimated value of ©((0).

4.2.4 Monte Carlo Evaluation of the Equations for ©

To ensure the exactness of the formulas we used in section 4.2.3 to calculate ©((©,), a
large Monte Carlo simulation was used. The estimates for the probabilities of unfavorable
outcomes under a default treatment ("Treat AIl" or "Treat None") and biomarker guided

treatment were obtained as: Pr(Y = 1|T) = #&=L1)

T e where # represents for the number

of patients.
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4.3 From Clinician Inputs to Model Parameters

The two stage procedure of estimating © we outlined above, assume that we already have
data. In that case, estimating © will be straightforward using the equations we developed.
First fit the multiple logistic model stated, take the estimated coefficients, plug them in equa-
tions (9) and (10), assuming the biomarker has a uniform distribution and get an estimated
value of © (Song and Pepe, 2004, Brinkley et al., 2010, Janes et al., 2011). However, when
we don’t have any data or have only a little data at hand, setting the slope parameters is not
intuitive. In drug development for example, a decision about a biomarker has to be made
prior to phase III or sometimes phase II. During these stages, the data we have is mainly
from preclinical and early phase studies. However, such data is barely enough to fit a model
and help us to make a go-no-go decision about the biomarker.

Instead of being stranded by the absence of data, we can use clinician’s best guess about
the likely outcome of the disease under study and biomarker’s distributional assumption
information to move forward. Let the clinician give us the expected proportion of unfavorable
outcomes K1, Ky, K3 and K, given the 25" and 75" percentiles value of the biomarker for
the SOC and active arms respectively. Specifying the K's , requires clinicians’ best judgment
taking the disease and study drug in to consideration. Setting K, K5 will be intuitive as they
are related to the existing treatment. In drug development, K3 and K, will be the clinicians’
best guess about the performance of the new drug in pipeline as compared to existing drug.
Given this information, we developed equations to convert the clinician inputs to model
parameters. These model parameters are in turn used to generate the data and proceed to
estimate ©. Detailed derivation of this is given in Appendix A.0.3. The final closed form

expression for the parameter values are given below:

Ko x 21 — K1 % 29

Bo

21 — 22
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K - Ky

B =
21 — 292
3 _Kl*Zg—KQ*ZQ—K3*22+K4*Zl
2 21 — 22
Ky — K1+ K3 — K4
f3 =
21 — 29

_ P(Y=1|A=0,2=F~1(0.25 _ P(Y=1|A=0,2=F~1(0.75
where K = Ln [1—P(Y:1\A:0,z:F*(1(0.2)5)))] Ky =Ln [1—}(3(Y:|1|A:0,m:F*(1(0.7)5)))}

. P(Y=1|A=1,2=F~1(0.25 . P(Y=1|A=1,2=F~1(0.75
K3 =ILn |:17P(Y=1|A=1,1'=F7(1(0~2)5)))i| K4 =1Ln [lfé(Y:‘”A:l,Z:F*(l(0.7)5))):|

21 =F750.25) and 2, = F~1(0.75)
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Figure 4.1: Risk curves that correspond each treatment arm for a given clinician input values.

4.4 SWIRL Sample Size Estimation Method

Existing logistic sample size estimation methods (Whittemore, 1981, Hsieh, 1989, Demi-
denko, 2007; 2008) are not applicable to estimate sample size needed to ensure adequate

power for the metric ©. Primarily, the functional form of © is different from the logistic
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regression model of equation (4.1) with which we start. Secondly, the existing methods could
estimate sample size needed to guarantee the test for 53 # 0 with enough power. However, a
test of B3 # 0 does not insure a test for © # 0 (Janes et al., 2014a). In this paper we propose
the squared width inversion regression linear (SWIRL) sample size estimation method for
the metric ©.

With SWIRL method, a sample size n is chosen, such that, the 95% CI mean width
of © is smaller than a user defined target length (wag). The SWIRL method is easy to
implement and depends on the assumption that, there is a very strong linear relationship
between sample size n and inverse of the 95% CI mean width squared for the parameter
©. We have developed the asymptotic properties of ©, from which this assumption can
be justified. Additional simulation studies were conducted to investigate this relationship
for three distributions (uniform, normal and gamma) and did not encounter any violation.
Details of the asymptotic development of © are provided in Appendix B.0.1. Plots showing
the linear relationship between n and inverse of the 95% CI mean width squared for © are
also provided in the supplementary material.

Our proposed method requires a Monte Carlo simulation of m trials with sample size
ranging from nq,ns, ......n,, in increments of ¢ to get a 95% CI mean width (W) that corre-

spond with each sample size. Then an ordinary least square regression is fitted as:

n=ag+aW? (4.11)

Finally the sample size that guarantees the 95% CI mean width of the parameter ©,(0;) to

be less than a user defined target (Wy,,,) is estimated as:

n = dy+ daW,? (4.12)

where ay and @, are the OLS estimates of equation (4.11). The steps required for imple-
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menting the SWIRL method are summarized in Algorithm 3 below.

Algorithm 3 SWIRL Sample Size Estimation Method

1:
2:
3:

For K1, ..., K, calculate the values of (5, ...., 83.

Fori=1,....,m generate X1, ....... , Xin, iid r.vs from a distribution with pdf f(z).
For i = 1,....,m, sample at random n/2 integers from 1,.....,n , calling this set 7} and
assign all a value (=1) and the rest Tj assign a value (=0).

Simulate m trials using Monte Carlo Simulation with sample size ranging from
N1, Ng, .....N,, in increment of ¢ using the model

Pr(Y = 1|T, X)

L
"1 PrY = 1T, X)

= fo+ B X + (o1 + B3TX

For i = 1,.....,m Calculate ©; and the 95% CI mean width (W;) associated with ©;

: Using Ordinary Least Square Regression fit :

n=oy+ o W32
For user defined length (Wi,,,), the sample size n is then estimated as :

PO o T2
n=aoy+ alwm,,g

If n falls outside the range of nq,....,n,, , then go to step 1 and add another simulation
instead by increasing the sample size such that n,, = 2 % n.

4.5 Bootstrap for Estimating the 95% CI Width of ©

Our SWIRL sample size estimation method requires estimating the 95% CI mean width

of © as first step. For this purpose and assessing the coverage probability of our method

of estimating ©, we used the normal and percentile bootstrap confidence interval methods.

Here we assume the current default treatment is “treat all", but this procedure can be

extended in a similar manner if current default treatment is “treat none". Let O7 be the

bootstrap estimates. The first bootstrap we used is based on the assumption that our

estimated parameter ©; has a normal distribution. Then the (1—a)100% confidence interval
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is evaluated as:

Percentile bootrap, which is very similar to the the basic bootstrap but uses percentiles
of the bootstrap distribution and a different formula, is the second bootstrap method con-
sidered. Davison and Hinkley (1997, equ. 5.18 p. 203) and Efron and Tibshirani (1993,
equation 13.5 p. 171) could be referred for further explanation of this procedure. The

confidence interval formula is:

where 6* is the p'* percentile of the bootstrap estimates.

Results of these confidence interval for © are compared with results from treatment
selection R package of Janes (2014) . In terms of coverage probability both methods work
almost equally. However the mean width of the confidence interval in our method is slightly
narrower. This can be attributed mainly due the fact that our method of estimating ©

assumes a distribution about the biomarker.

4.6 Simulation Results

Monte Carlo simulation and methods from Janes et al. (2014) were used to ensure our
proposed formulas to calculate ©y and ©; are valid. In Table 4.1, simulation results with
sample size of 100,000 are presented for 4(0,1) and N(0,1) distributed biomarkers. We
considered different combinations of clinician input K values. Results obtained using our
developed formulas agree with those of the simulation and Jane’s regardless of the biomarker

distribution. Further investigation was done assuming a gamma(2,2) distribution for the
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biomarker and all results match each other (results not presented). The simplicity of our
approach is that, depending on the clinician inputs K; — K, values, one can proceed to
calculate the clinical utility of the biomarker even in the absence of data.

Tables 4.2 and Table S7 (supplementary) depict the 95% confidence interval (CI), cov-
erage probability and width of the CI for the estimator ©; assuming /(0,1) and N(0,1)
distributed biomarkers respectively. We used the two bootstrap techniques explained in
section 5 for our method and compared these with the corresponding results of Janes em-
pirical and model based percentile bootstrap methods. In Table 4.2, results for uniformly
distributed biomarker and five different K combination values are presented. Output from
the two bootstrap estimate of ©; using our methods and Janes empirical and model based
match in their coverage probability, almost all being > 94% , except in one where the cover-
age is 93%. Generally, the Janes method CI mean width is slightly larger than ours. Similar
results are shown in Table S8 (supplementary) for normally distributed biomarker and for
©p (result not shown here).

Table 4.3 shows the sample size estimates for ¢(0, 1) and N (0, 1) distributed biomarkers,
respectively, using our proposed SWIRL method for two biomarker study designs: biomarker
stratified and biomarker strategy designs. Details about these two study designs are in the
paper published by (Freidlin et al., 2010). As expected the estimated sample size is larger for
biomarker strategy design than for biomarker stratified design. Monte Carlo simulations were
further performed to check how closely the estimated 7 was able to achieve the desired W4,4.
As the results show, W,,,, was achieved with high precision in almost all cases regardless of
the study design and biomarker distribution.

To assess robustness, we looked at how a change in the assumed link function of the
model affects the sample size results. For given clinician input values K; to K4, estimated
sample size results under probit and logit link functions were similar. Specifically, when

the estimated sample size n is within the range of the sample sizes used in the simulation
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to estimate the 95% CI widths results are adequate. However, when the estimated sample
size falls out of the initial range (> n,,), the results deviate a little. This could be mainly
due to extrapolation. In such a scenario, as per Algorithm 3, the program should be rerun
by increasing the range of the initial sample size. The effect on biomarker distributional
assumption can be assessed by looking at the results in Table 4.3. The sample size estimates
obtained using SWIRL under a standard uniform and standard normal is relatively similar
except in one of our simulations. Further we investigate how deviation from the normality
assumption for the biomarker distribution affects the sample size estimate . A moderate
skewness overall has a small effect on the estimated sample size. However, for a highly
skewed distribution, it is recommended that one use an appropriate transformation before
using the SWIRL method. The Janes method of estimating © on the other hand does not

depend on the marginal distribution of the biomarker.

4.7 Discussion

Development of statistical methods used for evaluating the clinical utility of predictive
biomarkers is of great interest. A metric (©) which measures the decrease in the popu-
lation event rate under biomarker guided therapy has been advocated in recent years. In
this paper we developed alternative mathematical equations for estimating ©, compare these
to existing estimators, proposed a sample size estimation method for © and provided the
accompanying computer program to perform the sample size estimation. The sample size
estimation method, Squared Width Inversion Regression Linear (SWIRL), is used to esti-
mate a sample size n such that the 95% CI mean width of © is less than a user defined
length(Wiarg). An R code used to implement the SWIRL method is made available with
this publication. Additionally, the asymptotic results of © were provided which in turn are

used to guarantee the linear relationship between sample size and the 95% CI mean width
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assumed under the SWIRL method. Through simulation, we found this method to work well
and provide a proper sample size for © for a given 95% CI target width (Wi,).

Previous predictive biomarker clinical utility performance evaluation methods assume
that data needed for fitting the proposed model is available (Song and Pepe, 2004, Janes
et al., 2011, Brinkley et al., 2010, Janes et al., 2014a). However, in many circumstances ( like
drug development plan and sample size planning), biomarker evaluation has to be performed
prior to a stage where data were made available. Additionally these methods do not take the
biomarker’s probability distribution into consideration and fail to incorporate this additional
information in the process. From a design perspective, it suffices to make an assumption
about the biomarker distribution and use this information in designing the study. In this
paper, we developed simple tools to convert clinician inputs to model parameters, and used
to estimate © and the sample size. Our focus in this paper was on sample size estimation for
the parameter © that guarantee the 95% CI mean width. Such criterion has been previously
used for sample size determination (Zou, 2012, Dobbin and Ionan, 2015).

In this paper, we have focused on two biomarker study designs: biomarker stratified and
biomarker strategy designs (Freidlin et al., 2010) and two biomarker distributions, uniform
and normal. However, all the methods developed here could easily be extended to accom-
modate other study designs and biomarker distributions. Getting closed form equations for
estimating © might not be always possible so we have to use numerical integration with
integral limits subject of the support of the biomarker distribution under consideration.

The procedures used for estimating the sample size using SWIRL in this paper takes the
marginal distribution of the biomarker into consideration. Therefore, when the underlying
assumptions about the biomarker distribution are violated, the 95% CI mean width might not
be the correct mean width. In such a scenario, we recommend (1)appropriate transformation
to be performed or (2) use the Janes method to get the 95% CI mean width first and then

use the SWIRL method.
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Table 4.1: Comparison of Op and 05 using Our formula , Janes (2014) method and Monte Carlo
simulation. Sample size used, n = 100, 000

Biomarker has standard Uniform distribution

K, K, K3 K; Estim. Our Formula Janes Emp. Janes Mod. MC Sim

0.25 0.75 0.75 0.25 O 0.232 0.221 0.221 0.221
0O, 0.233 0.227 0.231 0.228
0.10 0.90 0.90 0.10 ©o 0.345 0.341 0.341 0.341
N 0.346 0.342 0.344 0.342
0.10 0.55 0.90 0.45 ©o 0.095 0.097 0.097 0.099
0O, 0.433 0.434 0.431 0.436
0.25 0.75 0.50 0.50 O 0.116 0.109 0.109 0.109
©, 0.116 0.111 0.113 0.112
0.90 0.45 0.10 0.55 O 0.433 0.433 0.433 0.436
0O, 0.095 0.096 0.094 0.099

Biomarker has standard Normal distribution

K, Ky, K3 K; Estim. Our Formula Janes Emp Janes Mod MC Sim

025 0.75 0.75 0.25 ©o 0.245 0.25 0.25 0.249
0O, 0.248 0.250 0.248 0.248
0.10 0.90 0.90 0.10 O 0.345 0.355 0.355 0.353
O, 0.348 0.352 0.352 0.349
0.10 0.55 0.90 0.45 O 0.125 0.130 0.130 0.127
0, 0.441 0.439 0.438 0.437
0.25 0.75 0.50 0.50 Oo 0.123 0.129 0.129 0.128
6, 0.124 0.124 0.119 0.124
0.90 045 0.10 0.55 ©o 0.441 0.439 0.439 0.437
N 0.125 0.130 0.129 0.127
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Table 4.2: Confidence interval width and coverage probability comparison for our method and
Janes method using bootstrap: 1000 Monte Carlo each with 1000 sample size. Biomarker has a
standard uniform distribution U(0,1).

K, K, K3 K4 6, Method 95% CI CI Width Coverage
0.25 0.75 0.75 0.25 0.233 Boot Norm. (0.196 , 0.265) 0.071 0.940
Boot Perc.  (0.196 , 0.266) 0.071 0.950
Janes Emp. (0.1838 , 0.272) 0.083 0.960
Janes Mod. (0.193 , 0.271) 0.077 0.950
0.10 0.90 0.90 0.10 0.347 Boot Norm. (0.317, 0.370) 0.054 0.970
Boot Perc.  (0.318 , 0.372) 0.054 0.960
Janes Emp. (0.306 , 0.382) 0.077 0.940
Janes Mod. (0.309 , 0.381) 0.072 0.970
0.10 0.55 0.90 0.45 0.433 Boot Norm. (0.393, 0.464) 0.072 0.970
Boot Perc.  (0.394 , 0.467) 0.072 0.980
Janes Emp. (0.386 , 0.476) 0.090 0.970
Janes Mod. (0.389 , 0.473) 0.084 0.970
0.25 0.75 0.50 0.50 0.117 Boot Norm. (0.078, 0.153) 0.076 0.930
Boot Perc.  (0.079 , 0.155) 0.076 0.950
Janes Emp. (0.073 , 0.157) 0.084 0.950
Janes Mod. (0.079 , 0.156) 0.077 0.930
0.90 0.45 0.10 0.55 0.095 Boot Norm. (0.070, 0.125) 0.056 0.950
Boot Perc.  (0.072, 0.127) 0.056 0.950
Janes Emp. (0.067 , 0.133) 0.067 0.970
Janes Mod. (0.070 , 0.128) 0.058 0.980
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Table 4.3: Sample size estimation using SWIRL method for biomarker stratified and biomarker
strategy designs. Biomaker has U(0,1) and N(0, 1) distributions.

Biomarker stratified design Uniform (0,1) Normal (0,1)

K K, Ky Ky Wua, SWIRLA 95% CI72 SWIRL 2 95% CI
025 0.75 0.75 025  0.20 119 (109 , 129) 114 (104 , 125)
0.15 215 (207 , 223) 197 (188 , 207)
0.10 489 (484 , 494) 436 (430 , 442)
0.10 0.90 0.90 0.10  0.20 64 (50 , 78 ) 80 (71, 89)
0.15 120 (107 , 133) 132 (124 , 140)
0.10 280 (270, 290) 281 (275 , 288)
0.10 0.55 0.90 045  0.20 127 (119, 135) 129 (120 , 138)
0.15 230 (224 , 238) 230 (222 , 237)
0.10 527 (522 , 531) 516 (511, 521)
025 0.75 050 050  0.20 142 (132, 151) 133 (120 , 145)
0.15 257 (249 , 264) 236 (226 , 246)
0.10 584 (579 , 589) 533 (526 , 539)
0.90 045 0.10 055  0.20 78 (63, 94) 58 (43, 72)
0.15 137 (122, 151) 106 (92, 119)
0.10 303 (292 , 313) 242 (231 , 253)
0.60 0.40 050 050  0.20 340 (301 ,378) 130 (97 , 161)
0.15 477 (446 , 508) 246 (220 , 272)
0.10 870 (823 , 917) 580 (562 , 597)
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Table 4.4: Sample size estimation using SWIRL method for biomarker stratified and biomarker
strategy designs. Biomaker has U(0,1) and N(0, 1) distributions.

Biomarker Strategy Design Uniform (0,1) Normal (0,1)

K, Ky K; Ky Wiwg SWIRL 72 95% CIn SWIRLn 95% CIn

025 0.75 0.75 025  0.20 166 (154 , 179) 152 (140 , 165)
0.15 203 (283 , 303) 262 (252, 273)
0.10 655 (647 , 663) 557 (570 , 584)
0.10 0.90 0.90 0.10  0.20 90 (68 , 113) 108 (93, 123)
0.15 166 (146 , 186) 176 (162 , 188)
0.10 382 (368 , 395) 369 (359 , 378)
0.10 0.55 0.90 045  0.20 181 (165 , 197) 175 (166 , 184)
0.15 318 (305 , 330) 307 (300 , 314)
0.10 709 (698 , 719) 684 (678 , 689)
025 0.75 050 050  0.20 187 (168 , 206) 160 (145 , 174)
0.15 325 (310 , 340) 284 (272, 296)
0.10 719 (706 , 733) 637 (628 , 646)
0.90 0.45 010 055  0.20 124 (103, 144) 84 (69 , 99)
0.15 198 (180 , 216) 147 (134 , 160)
0.10 412 (399 , 424) 326 (316, 336)
0.60 0.40 050 050  0.20 469 (429 , 509) 167 (136 , 199)
0.15 707 (662 , 751) 318 (294 , 342)
0.10 138 (1258 , 1513) AT (724 , 769)
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Table 4.5: Monte Carlo evaluation of the SWIRL sample size estimation method.

Biomarker stratified design. Biomarker has Uniform (0,1) distribution

K, K, K; K, SWIRL#A W, Est.Width Width Range Width IQR
025 0.75 0.75 0.25 119 0.20 0.201 (0.154 , 0.262)  (0.191 , 0.213)
215 0.15 0.151 (0.129, 0.176)  (0.144 , 0.159)
489 0.10 0.101 (0.084 , 0.117)  (0.095 , 0.105)
0.10 0.90 0.90 0.10 64 0.20 0.209 (0.129 , 0.319)  (0.175 , 0.236)
120 0.15 0.154 (0.091 , 0.209)  (0.140 , 0.167)
280 0.10 0.101 (0.074 , 0.131)  (0.093 , 0.107)
0.10 0.55 0.90 0.45 127 0.20 0.202 (0.154 , 0.271)  (0.182 , 0.218)
230 0.15 0.154 (0.119, 0.193)  (0.144 , 0.166)
527 0.10 0.101 (0.084 , 0.117)  (0.096 , 0.105)
0.25 0.75 0.50 0.50 142 0.20 0.205 (0.121 , 0.309)  (0.186 , 0.222)
257 0.15 0.151 (0.104 , 0.190)  (0.142 , 0.163)
584 0.10 0.100 (0.077 ,0.119)  (0.096 , 0.104)
0.90 0.45 0.10 0.55 78 0.20 0.286 (0.122, 0.913)  (0.187 , 0.248)
137 0.15 0.156 (0.105 , 0.696)  (0.134 , 0.159)
303 0.10 0.104 (0.074 ,0.263)  (0.093 , 0.107)
0.60 0.40 0.50 0.50 340 0.20 0.214 (0.102 , 0.567)  (0.159 , 0.258)
477 0.15 0.166 (0.091 , 0.379)  (0.123, 0.193)
870 0.10 0.097 (0.067 , 0.183)  (0.082, 0.108)
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Table 4.6: Monte Carlo evaluation of the SWIRL sample size estimation method.

Biomarker strategy design. Biomarker has Normal (0,1) Distribution

K, K, K; K, SWIRL#A W, Est.Width Width Range Width IQR
025 0.75 0.75 0.25 152 0.20 0.201 (0.140 , 0.338(  (0.180 , 0.219)
262 0.15 0.150 (0.116 , 0.197)  (0.138 , 0.160)
557 0.10 0.103 (0.086 , 0.125)  (0.096 , 0.108)
0.10 0.90 0.90 0.10 108 0.20 0.190 (0.100 , 0.397)  (0.152 , 0.213)
176 0.15 0.149 (0.092 , 0.209)  (0.129 , 0.160)
369 0.10 0.098 (0.072 ,0.131)  (0.088 , 0.107)
0.10 0.55 0.90 0.45 175 0.20 0.206 (0.139, 0.291)  (0.179 , 0.225)
307 0.15 0.149 (0.112, 0.189)  (0.138 , 0.159)
684 0.10 0.100 (0.081 , 0.125)  (0.094 , 0.106)
0.25 0.75 0.50 0.50 160 0.20 0.200 (0.084 , 0.311)  (0.176 , 0.226)
284 0.15 0.149 (0.108 , 0.209)  (0.136 , 0.159)
637 0.10 0.099 (0.075, 0.134)  (0.092 , 0.105)
0.90 0.45 0.10 0.55 84 0.20 0.203 (0.094 , 0.385)  (0.173 , 0.228)
147 0.15 0.146 (0.101 , 0.207)  (0.129 , 0.158)
326 0.10 0.101 (0.082 , 0.127)  (0.093 , 0.107)
0.60 0.40 0.50 0.50 167 0.20 0.205 (0.092 , 0.335)  (0.167 , 0.246)
318 0.15 0.150 (0.066 , 0.227)  (0.127 , 0.172)
747 0.10 0.102 (0.044 , 0.291)  (0.090 , 0.113)
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Abstract

An originally validated predictive biomarker often undergoes a modification stage for nu-
merous reasons. This nullifies previous outcome-biomarker relationship studies and man-
dates researchers to repeat the process. However, this is costly and time consuming and
leads many initially promising biomarkers into a dead end. In this paper, we propose a
reproducibility metric A, that measures the difference in clinical performance between the
original biomarker and the modified biomarker. This metric does not require that one ob-
serve the outcome associated with the modified biomarker and makes the evaluation process
easy and less expensive. Proofs for the asymptotic results of A, are provided. Monte Carlo
methods are used to construct 95% CI for A,. Ki67 reproducibility data is used to show its

application. An R package RMPB is made available via Github for its implementation.

Keywords : reproducibility; Monte Carlo; ICC; CCC ; Rao-Blackwellization
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5.1 Introduction

Initially validated predictive biomarker are often modified in the middle of the develop-
ment stage. Platform migration, addition of laboratories, cost reduction, sample prepara-
tion simplification, and change in reagents are a few among the many reasons that result in
biomarker modification. Biomarker modification however, causes all the earlier biomarker
clinical performance studies to be invalid. To evaluate the clinical performance of the modi-
fied biomarker researchers must "make a fresh start", but this process is hardly feasible since
it needs repeating the study which is time consuming and very expensive. This puts many
initially promising biomarkers in a dead end. To the best of our understanding, currently
there are no statistical methods to assess the impact of biomarker modification on patient
outcome.

Predictive biomarkers also called treatment selection biomarkers are used to identify a
subgroups of patients who are more likely to respond to a given treatment (Sargent and
Allegra, 2002, Simon and Maitournam, 2004, Simon, 2008). Once the clinical utility of a
predictive biomarker is validated, it can help physicians for recommending the best treatment
for patients thereby improving the health of a patient. Among colorectal cancer patients
for example, the KRAS status of a patient is used to identify whether the patient will
benefit from Epidermal growth factor receptor (EGFR) inhibitor treatment or not (Amado
et al., 2008, Mehta et al., 2010). Similarly, the OnctotypeDX assay is used to recommend if
chemotherapy will benefit them after breast cancer surgery (Harris et al., 2016). However,
these biomarkers need biostatical methods used to evaluate them more easily and quickly
before they can be used in the clinical setting for making treatment decisions.

For a binary clinical endpoint, the relationship between a predictive biomarker and out-
come is assessed using metrics like sensitivity, specificity, negative and positive predictive

values and the area under receiver operating characteristic (ROC) curve (AUC) (Sgreide,
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2009, Bharti and Bharti, 2009). Biomarker by treatment interaction has also been a com-
monly used metric for assessing predictive biomarker performance (Byar, 1985, Buyse, 2007,
Taube et al., 2009, Freidlin et al., 2010, Tajik et al., 2013). However, none of these have a
clear clinical interpretation in terms of the health gain for a patient. To close this gap, a met-
ric ©, which measures the decrease in the expected event rate that results from a biomarker
guided treatment was developed (Song and Pepe, 2004, Vickers et al., 2007, Brinkley et al.,
2010, Janes et al., 2014a).

A predictive biomarker whose clinical utility was initially validated using the metric O,
often goes through modification for the aforementioned reasons and others in the middle
stage before being used in the final stage. If the original assay is changed for any reason,
we call it a modified assay. This modification leads each patient to have two or more
measurements and leaves unanswered the question on whether the biomarker performance
will still be similar under the modified assay or not. In the medical field, assessing the
agreement between two or more measurements is commonly known as reliability or inter-
rater agreement (Kottner et al., 2011) while in engineering it is called a gauge repeatability
and reproducibility study (Burdick et al., 2005, Ruiz Espejo, 2006).

Traditionally, measurement of reproducibility has been done using Pearson correlation
coefficient, paired t-test, least square analysis of slope (=1) and intercept (=0) and coefficient
of variation. However, none of these methods can assess the desired reproducibility charac-
teristics, precision and accuracy at the same time (Bland and Altman, 1986, Lawrence
and Lin, 1989, Miiller and Biittner, 1994).

Pearson correlation coefficient only measures the strength the linear relationship between
the two measurements but fails to detect any departure from the 45° line. It is common for
two measurments to have a high values of Pearson correlation coefficient but poor agreement
(Bland and Altman, 1986). Paired t-test as elaborated in Lin (1989) would fail to detect a

poor agreement in pairs of data such as (1,3.5), (2.5,3), (3,3), (4,3) and (5, 3). This data set
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will result in a small test statistic and fail to reject the null hypothesis of good agreement. The
least square approach for testing the slope (=1) and intercept (=0) also gives a misleading
conclusion. More scattered data have a lower chance that the null hypothesis (slope=1
and /or intercept=0) would be rejected. On the other hand, highly reproducible results
could result in rejecting the null hypothesis due to small standard error (Lawrence and Lin,
1989, Obuchowski et al., 2015). The Bland-Altman plot is another graphical method used
to assessed the agreement of two measurements (Bland and Altman, 1986; 1999).

In the medical field the two commonly used reproducibility indices are the concordance
correlation coefficient (CCC) and the intraclass correlation coefficient (ICC). Lin (1989) de-
veloped the concordance correlation coefficient and has been in use a lot since then. The
CCC which assess agreement without the ANOVA assumptions includes precision and ac-
curacy components. For pairs of n samples (X1, X;2), that are independently sampled from

bivariate normal with means p; and ps and respective variances and covariance (7% , 0% , 019,
the CCC = % = pCy. Here C, = [(v+ 1/v + u?)/2]7!, where v = 01/09 and
u = (t1 — f12)/+/0102. The Pearson correlation coefficient p measures the precision compo-
nent (how far each observation deviate from the best fit line) and the C}, component measures
how far the best fit line deviates from the 45° line ( accuracy). This original work was latter
extended to include general situations where there are more than two observers for data
without replication and for data with replication (Chen and Barnhart, 2008).

The intraclass correlation coefficient (Fisher, 1925) is another widely used metric in
biomedical research to assess reproducibility of measurements among raters, labs, techni-

cians, or devices. The original ICC was based on the one-way analysis of variance (ANOVA)

design, where there are only the subjects and observer (or lab or device) effects in the model.

2
9

2 29
oy +o¢

2

From the results of a one-way ANOVA table one can calculate, ICC = where oy is

the between subjects variablility and o2 is the within subject variability. The original ICC

(which we will call it here as IC'C}) was further extended to the second and third ICCs
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(ICCy, ICCs), which are based on two-way ANOVA model with and without interaction
respectively (McGraw and Wong, 1996, Shrout and Fleiss, 1979, Bartko, 1966).

However, all the aforementioned reproducibility metrics, Pearson correlation coefficient,
regression line, the graphical Bland-Altman plot, ICC and CCC cannot be used to assess
the change in © that results when an assay is modified. A high value of ICC between an
original assay and a modified assay does not mean that the two assays will have the same
clinical utility performance as measured by ©. When the original assay is observed along
with the outcome of interest, a method developed by Song and Pepe (2004) and Janes et al.
(2014a) can be used to get an estimate for ©. However, estimating © under the modified
assay is not straight forward because we do not observed a new outcome associated with the
modified assay.

In this paper, we propose a new reproducibility metric A, which is an estimate of the
difference in © under the two scenarios (original assay vs modified assay observed). Im-
plementation of this method is demonstrated using the Ki67 reproducibility study. An R
package Reproducibility Metric for Predictive Biomarkers (RMPB) is made available via
github.

The rest of this paper is organized as follows. A motivational example will be presented in
Section 5.2. In Section 5.3 we set the scenario and introduce the notations. The mathematical
derivation for estimating A, is provided in Section 5.4. In Sections 5.5 and 5.7, simulation
results and application using KI67 reproducibility study are presented respectively. This

paper concludes in Section 5.7 with discussion.

5.2 Motivating Context

In breast cancer research and management, Ki67 has the ability to assess immununohis-

tochemical proliferation (Viale et al., 2008, Dowsett et al., 2011, Goldhirsch et al., 2011).
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Ki67 is a nuclear proliferation biomarker used to identify the growth fraction of a given cell
population (Yerushalmi et al., 2010). However, the potential use of this biomarker in clinical
decision making is still limited due to lack of reproducibility in measurement (Harris et al.,
2007). To set a universal outline for measuring Ki67 and identify the main factors that
are bottle necks for the consistency of the measurment, Polley et al. (2013) conducted an
international reproducibility study of Ki67. In the study, one hundred breast cancer cases
where measured in eight different labs and Ki67 score was recorded for 100 patients in each
of eight labs.

Polley et al. (2013) used the intraclass correlation coefficient (ICC) as a measure of
agreement between the these labs. However, this alone is not a good enough metric to
measure the clinical utility of the biomarks for two main reasons: (1) a high value of ICC
does not mean that the two biomarkers have similar clinical performance when assessed using
the metric © and (2)to directly compare the clinical performance of two biomarkers using ©
we need to observe the outcome associated with each biomarker. Observing an outcome for
a second time, however, is time consuming and costly. Using the metric A, we developed,

we assessed the reproducibility of Ki64 data obtained from the eight labs.

5.3 Settings and Notations

Consider a randomized control trial where half of the subjects are assigned to active treat-
ment and the other half to placebo (or standard of care). For simplicity we will denote the
treatment assignment as A such that A = 1 if the subject is assigned to active treatment
and A = 0 otherwise. Let the clinical end point of interest be a binary indicator denoted
by Y such that Y = 1 represents the occurrence of a bad outcome while Y = 0 for a favor-
able outcome. Further define the continuous candidate biomarker X which is measured at

baseline from each subject.
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5.3.1 Assumptions For Estimating A,

For the purpose of developing the reproducibility metric A, later, the following assumptions
need to be taken into consideration: (a) an observed outcome, whether Y =0 or Y =1 for
a subject 7 is independent of other subjects treatment assignment; (b) treatment assignment
is independent of an individual’s biomarker value, i.e, A L X; (¢) a given treatment is
either useful or of no harm and (d) the relationship between the outcome Y |, the treatment
assignment A, the continuous biomarker X along with the biomarker-treatment interaction

is represented using a multiple logistic regression model as:

Pr(Y = 1|4, X)

L
"1 Pr(y = 1|4, X)

Bo+ 1 X + oA+ B3AX. (5.1)

where B = (B, b1, 52, f3) are the logistic model parameters.

5.3.2 Optimal Treatment Decision Criterion

The first step in predictive biomarker evaluation process is to set the optimal treatment
rule or algorithm. Based on this rule, treatment assignment will depend on the subject’s
biomarker value. Let the absolute treatment effect be represented by A(X) = P(Y =
1|1 A = 0,X) — P(Y = 1]A = 1,X). From this, the optimal treatment is set in such a
way that subjects will be treated if and only if A(X) > 0 but not treated (assigned to
placebo) otherwise. This method of setting the optimal treatment rule was previously used
by Brinkley et al. (2010) and Janes et al. (2014). A simple algebraic manipulation of
equation (5.1) will lead this optimal rule to be: treat a subject if X < =22 and do not treat

B3

a subject if X > _6—”332 assuming 3 > 0. When (3 < 0, the reverse will be true.
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5.4 Assessing Reproducibility Of Two Biomarkers

Let the original biomarker be X, which we will consider it to be the gold standard and
the modified biomarker W, which we call it a "modified assay". Further we will assume
W = X + U where U ~ N(0,0?). Assessing reproducibility of these two biomarkers using
previously developed and studied metrics (like ICC and CCC) is not enough in our context.
A high value of ICC between X and W, does not necessary mean that they both have the
same clinical utility in guiding treatment for patients. From figure 5.1, we can see that
the relationship between ICC and the parameter of interest ©; is not proportional. This
indicates reproducibility assessment of X and W is not be fully captured using metrics like
ICC alone. A modified assay is deemed to reproduce the results of a gold standard biomarker

if it resulted in the same or very similar values of ©; as the gold standard.
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Figure 5.1: Shows the relationship between ICC and ©. The left plot shows a scenario where the
gold standard biomarker (X) is assumed to have a gamma distribution and the one on the right
assuming a normally distributed biomarker. In both cases, the modified biomarker W is simulated
such that W = X + U where U ~ N(0,02) represents the error term.
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5.4.1 Estimating Reproducibility Metric A,

Estimation of A, involves two steps. In step one, assuming the original biomarker X is
observed, we estimate © and denote is as ©,. Assuming the modified assay W is observed,

in step two, we estimate © and denote it as O,,.

5.4.2 Estimating O,

Let the gold standard biomarker be X ~ A (p,,02%) with a probability density function
given by f(z). The probabilities of unfavorable outcomes when the default is “Treat All"

and “Treat None" respectively are given as:

eﬁ0+ﬁl$
PT’(Y = 1’14 = 0) = /Wf(l’)dl’ (52)
/ ePotBa+(Br+P3)z

Pri¥ =1lA=1) = [ mrmeae] @i

The initial step in assessing the performance of a predictive biomarker is specifying a classifier
rule. That is to develop a rule for recommending subjects whether a given treatment will
benefit them or not based on their biomarker values. Let A,(z) represent the absolute

treatment effect. Then A,(z) can be written as:

Ay(z) = PriY =1A=0X=2)—Pr(Y=1A=1,X=1x) (5.4)
ePothrz eBotB2+(B1+Pz)x

1 + ePothBiz 1 4 eBo+Bat(Bi+Bs)z

Based on equation (4), the optimal classifier rule for recommending treatment is, treat a

subject if A, (z) > 0 and recommend against taking a treatment if A, (z) < 0. This treatment

96



decision rule is similar was previous used by Zhang et al. (2012), Brinkley et al. (2010), and
Janes et al. (2014). Assuming the coefficient 83 > 0, the treatment rule of equation (5.4)
is written as: treat a subject if X < %—% and to placebo if X > 7/3—5; After establishing the
classifier rule, the next step in evaluating predictive biomarker performance is to quantify the
decrease in the proportion of unfavorable outcome under established classifier based therapy

which is obtained by estimating ©,. Let the current default treatment be “Treat All" and

the coefficient 83 > 0, then

x

67 = [(P(Y — 1A= 1)}
— [A(Y =1JA=1,A.(2) > 0)P(Ap(z) > 0)+ P(Y = 1|]A = 0, A,(z) < 0)P(Ay(z) < o)}

- (P(y — 1A =1,A,(z) <0) — P(Y = 1|4 = 0, Ay(z) < 0)) P(Au(z) < 0)

o €BO+61I eﬁo+ﬁ2+(31+5’3)1‘

- / T ——— f(x)dx
—Bo/Bs | 1+ ePothiz 1 4 ePotBat(Biths)x
) féo-l-,é’lx /3’0-&-524-(31-&-5’3);(; e
“Ba/Bs |14 ebothiz 1 4 eBotPat(BitBs)e | \/2org?

such that f(z) can be estimated from the normal probability density function given the
biomarker values in the data. The notations in éf are chosen in such a way that superscript
T represent the default treatment assumed is " treat all" and the subscript X represent that
the observed biomarker is X. When the observed biomarker is W the subscript is changed
to W from X and when the default treatment assumed is "treat none" the superscript is

change to P from T

5.4.3 Estimating O,

Let the modified assay W be related to the gold standard biomarker X linearly by the

equation W = g(X) + U where U is randomly distributed independent error term. Further,
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let the absolute treatment effect when W is observed instead of X be A, (w), such that:
Ay(w) = PY=1A=0,)—-PY=1A=1W) (5.6)
Applying the rule of total probability, we can further write A, (w) as

Ay(w) = /OO {PY=1T=0,X=2)—PY =1T=1,X =2)} f(z|w)dx|w

00 650+ﬁ1:p 660+52+(51+53):p
= [" sl 57

If we assume the current default treatment is “ITreat All", the decrease in the proportion of

unfavorable event rate as a result of the marker guided therapy, can be shown to be:

On = (PO/=1T =1,80(w) < 0) = PY = 1|T = 0, Ay(w) < 0)) P(Ay(w) < 0)
o o ePo+bBra oBotBa+(B1+83)x
= / / — — — f(z|w)dz|w f (w)dw
“Ba/B3 =0 | 1 4 ePothiz 1 4 ebotBat(Piths)z
o0 o [ gBothiz oPo+B2+(B1+5s)z
= / / — — — f(z,w)dzdw (5.8)
“Ba/B3 =0 | 1+ ePothiz 1 4 ebotBat(Piths)z

The joint density f(z,w) in equation (5.8) can be estimated using parametric bivariate
density function f(z,w). Let the gold standard biomarker X ~ N (j,02) and the modified
assay be W = X + U. If we assume U ~ N(0,02), then W ~ N (ju,, 02 = 02 + ¢2) and the

joint distribution of X, W will be a bivariate normal such that;

2
X Hox 9 Ozw

W [ Opw O3
(5.9)
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Then equation (5.8) can be further written as:

w - L
—Ba/Bs J—o0

exp {—Q(I_IPQ) [(x;ffz)Q —2p (%) (w;ifm) + (w;ﬁu)Q] }
dxdw

2646w/ 1 — p2

€B°+le 630+32+(,5’1 +B3)x

— — —— 5.10
1+ ebotBriz 1 4 ePotP2t+(Br+B3)z ( )

Estimation of the double integrals as in equation (5.10) can be done numerically or with a

Monte Carlo. The Monte Carlo estimator of equation (5.10) will have the form:

630+Bl$i 630-1-32-&-(31—1—33)%
(5 1 1)

NT _
@w - Z Z { 1+ 650+lei 1+ 63()+32+(B1+53)wi

wy:trt better x;

where w; :trt better represents the optimal treatment under the modified biomarker as stated
in equation (5.7). When the sample n for the assay comparison is not large, the standard
error associated with the estimator might be large since estimating the joint distribution
f(x,w) will be noisy. From our simulation studies we have seen that ICC may be nearly
sufficient, suggesting that we can condition on the correlation coefficient between x and w
in order to reduce the Monte Carlo variation using Rao-Blackwellization method (Robert,
2004, Dobbin and Tonan, 2015).

Let p represent the correlation between X and W. Given the joint distribution of X

and W follows a bivariate normal as in equation (5.9), if we observe W instead of X, the

conditional expectation of X given W is written as;

F o= B[X,|W] (5.12)

0-33
= o+ p—=(Wi = )

w
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The Monte Carlo estimator of ©% in equation (5.11) is then obtained by

650-1-315177 680+32+(31+B3)057:
(5.13)

ol = — — e
w Z { 1 + ePotb1z: 1 + ePot+B2+(B1+03)%:

wy:trt better

where Z; is obtained using equation (5.12). The parameters in equation (5.12) are replaced

by their respective estimators such that p =r and r = ICC.

5.4.4 Estimating A,

Finally the estimates of @f and (:)5 are combined to get an estimator of the reproducibility

metric AL as:

~

AT = // {ﬁ(y — 11X, A) — P(Y = 1|W, A)} (2, w)dzdw (5.14)
or _ @7

Under ideal conditions the modified assay W is said to reproduce the results of the gold
standard biomarker X perfectly if AT = 0. The higher the value A7 is different from
0, the lesser will W be considered as substitutes for X. A confidence interval for A, is
constructed using Monte Carlo methods as in (Robert, 2004) or bootstrap methods (Efron
and Tibshirani, 1994, Davison and Hinkley, 1997). When the default treatment is “Treat
None" and the coefficient g3 < 0, the extension of the above procedures is given in the

supplementary materials.

5.5 Simulation Study

Using equation (5.1) following the steps detailed below, we first generated m data sets each

with sample size n.
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Step 1: Convert the clinician input values K; to K4 to model parameters [, to 3. Details

are given in Appendix (A.0.3).
Step 2: Use randomization to assign subjects to A =0 or A = 1 with probability 0.5
Step 3: Generate the gold standard biomarker X; from a given probability distribution f(z),

i=1,2,..n.

Step 4: Generate the modified biomarker W; = X; + N (0,02),i=1,2,....n.

Step 5: Calculate the probability of an event such that: p = 1ii(;*o+ flﬁf; fi;: - f“}?jx.

Step 6: Generate the outcome Y from a binomial distribution with success probability p

obtained from step 5 above.

Step 7: Under the normality assumption for the biomarker and the error term, get X; such
that: X; = E[X|W;] = pe + pg—i(W; — pz), where p is the correlation between X
and W.

The K7 — K, clinician values are chosen to reflect the biomarker performance and we can use
the equations given in chapters 3 & 4 to convert them to the model parameters 5y — 3. This
step can be skipped if someone has any prior information about the 8s’ to relate the outcome
with the covariates of equation (5.1). If p is not previously known, in step 5, it can replaced
by its estimator p. In our first simulation we generate a biomarker X ~ A(4.8,3.24). This is
done to mimic the OncotypeDX biomarkes as given in (Janes et al., 2014a). Three scenarios
are used to choose different K value combination to reflect differences in the biomarker
clinical utility performance performance. The higher the value of éf the better the biomarker
performance. The modified assay W is given such that, W = X + o2, where the values of o2
are given in the first column of Table 5.1. The estimated value of the reproducibility metric

AT with its standard error and 95% confidence interval are presented for different values of

2

o:.

In Table 5.1 of the first scenario, the value of AT ranges from 2.1% when o2 = 0.3 to 7.7%
when o2 = 1.8. To make a conclusion whether the modified biomarker can be considered as

a substitute for the gold standard biomarker, in addition to the values of ArT, one has to take
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the disease under study into account. A 2.1% difference in the clinical outcome could mean
a lot in cancer research studies but might be of less significance in a non-life threatening
disease. Results of Af under a moderate and weak biomarker performance assumptions are

provided in Tables 5.2 and 5.3 for scenarios 2 and 3 respectively.

5.6 Application to Ki67 Reproducibility Study

The nuclear proliferation marker Ki67 can be utilized for different purposes in clinical breast
cancer management. However, the interlaboratory inconsistency limited its broader appli-
cation. To study the interlaboratory consistency of Ki67, eight laboratories received 100
breast cancer cases, one set stained by the central laboratory (Experiment A) and a second
set stained by the participating laboratory (Experiment B).

In order to assess, the interlaboratory reproducibility in terms of change in ©, the repro-
ducibility metirc Af was estimated. The standard deviation of the Ki67 score was minimum
for laboratory E in both Experiments and we set this lab to be our reference point. The
Ki67 score range from 0 to 100 for each lab. The data have neither outcome nor treatment
assignment covariates. Assuming a random 1:1 treatment assignment and using the Ky — Ky
values, we first generated a binary outcome for each lab. In the result tables, Scenario 1
refers generally to a strong predictive biomarker performance while Scenario 2 be weaker.

Table 5.4 show results for Af, its standard error and 95% confidence interval from Exper-
iment A assuming a stronger biomarker performance. For lab E, ©7(SE) = 0.328(0.057).
We considered this to be © obtained when the observed biomarker is the gold standard.
Measurement of Ki67 score obtained from the rest of the laboratories (A, B, C, D, F, G, H)
are assumed to be measurements of Ki67 under modification. The estimated values of A;:F
range from 0.015 to 0.135. Looking at Table 5.4, the difference in © between the reference

lab (lab E) and lab F is only 1.5% and one could consider the measures from these two labs
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as consistent. On the other hand the difference in © between lab E and lab B is 13.5% which
shows the incosistency in measurement between these two labs. Similar results are presented
in Table 5.5 for a less stronger biomarker.

For experiment B, where the staining was done by each participating laboratory, similar
trends are observed in the estimated values of Af as shown in Table 5.6. For the reference
lab (lab E) under Scenario 1 ©7(SE) = 0.345(0.054). The values of A7 range from 0.021
to 0.189. From these results lab G measurements can be considered more consistent with
the reference lab (lab E) with A7(SE) = 0.021(0.008) and 95% CT = (0.003,0.039). On the
other hand lab B measurments looks less consistent when compared to lab E measurements

AT(SE) = 0.189(0.037). Similar results under the weaker biomarker are shown in Table 5.7.

5.7 Discussion

Evaluating predictive biomarkers in a quick and less costly manner is of great importance
for cancer researchers. A metric © developed by (Song and Pepe, 2004, Brinkley et al., 2010,
Janes et al., 2014a) has been favored as measure of predictive biomarker clinical utility in
the past years. This metric measures how well the biomarker guided therapy in reducing
the expected proportion of population event rate in comparison to the default treatment
(non biomarker guided treatment). However, when the original biomarker is modified for
reasons such as to reduce the cost of assay validation and preparation, previous outcome-
biomarker performance studies became invalid. Biomarker clinical utility evaluation under
the modified biomarker then has to start over which is costly and time consuming as one
needs to wait to observe the outcome again. In this paper we proposed a reproducibility
metric A, which assesses the performance of the modified assay in comparison to the original
assay without needing researcher to wait for new outcome to occur. Confidence intervals for

A, are constructed using Monte Carlo Methods. An R package RMPB (Reproducibility
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Metric for Predictive Biomarker) is made available via Github. Additionally, the asymptotic
results for A are provided.

Assessing the agreement between two measurements in medical research is commonly
done using metrics such as Pearson correlation coefficient, paired t-test, linear regression,
Bald-Altman plot (Bland and Altman, 1986), ICC(Fisher, 1925) and CCC (Lawrence and
Lin, 1989). Using simulation, we have shown that, a high value of ICC between two biomark-
ers does not mean the two biomarkers have similar performance as measured by the metric
©. This was demonstrated by plotting ICC vs ©. Since both ICC and © have values which
range from 0 to 1, we would expect a straight line through the 45° if one metric could be
used as a substitute for the other for the purpose of assessing biomarker performance. For a
binary clinical endpoint, the relationship between a predictive biomarker and outcome have
been assessed also using metrics like sensitivity, specificity, negative and positive predictive
values and area under receiver operating characteristic (ROC) curve (AUC) (Sgreide, 2009,
Bharti and Bharti, 2009). Again we can not use these metrics directly for our intended
purpose because (a) the outcome-biomarker association measured using these metric can
not be directly translated to clinical biomarker performance measure metric © and (b) to
estimate these metrics under the modified biomarker, one also need to wait to observe the
new outcome.

In this paper, we have assumed both the original (gold standard) and the modified
biomarker to have a normal distribution. The modified biomarker is considered as a sum of
the original biomarker plus a normal error term with zero mean. But all the steps followed
to estimate A, under these assumptions could be extended (1) when the biomarker has a
non-normal distribution and (2) when the error term has a distribution which is not normal.
Similarly, even though this paper assumes a binary outcome, the steps outlined in this paper
can be extended easily when clinical outcome of interest is continuous, count and time to

event.
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Table 5.1: An Estimate of AT along its standard error and 95% CI under scenario 1. A 500 Monte

Carlo samples each with 300 sample size were used.

Scenario 1: Ki—0.25 Ko— 0.75 K3—0.75 K,— 0.25
er er AT

o? | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
0.0 | 0.245(0.029) | 0.245(0.029) | 0.000(0.000)

0.3 0.224(0.027) | 0.021(0.009)  (0.004,0.039)
0.6 0.210(0.020) | 0.035(0.012)  (0.012,0.057)
0.9 0.197(0.028) | 0.048(0.137)  (0.021,0.073)
1.2 0.186(0.027) | 0.059(0.015)  (0.029,0.086)
15 0.176(0.028) | 0.069(0.016)  (0.038,0.097)
1.8 0.168(0.027) | 0.077(0.017)  (0.045,0.106)

Table 5.2: An Estimate of AT along its standard error and 95% CI under scenario 2. A 500 Monte

Carlo samples each with 300 sample size were used.

Scenario 2: K1=0.10 ; K2= 0.60 ; K3= 0.45 ; k4= 0.25
or er AT

o? | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
0.0 | 0.178(0.024) | 0.178(0.024) | 0.000(0.000)

0.3 0.164(0.033) | 0.014(0.008)  (0.001,0.031)
0.6 0.153(0.032) | 0.025(0.011)  (0.005,0.049)
0.9 0.144(0.032) | 0.034(0.013)  (0.011,0.062)
1.2 0.136(0.031) | 0.042(0.014)  (0.016,0.073)
1.5 0.129(0.030) | 0.049(0.015)  (0.022,0.082)
1.8 0.123(0.031) | 0.055(0.016)  (0.026,0.089)
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Table 5.3: An Estimate of Al along its standard error and 95% CI under scenario 3. A 500 Monte
Carlo samples each with 300 sample size were used.

Scenario 3: K1= 0.15; K2=0.30 ; K3= 0.25 ; k4= 0.10
er er AT

o? | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
0.0 | 0.072 (0.026) | 0.072(0.026) | 0.000(0.000)

0.3 0.068(0.025) | 0.003(0.006)  (0.000,0.015)
0.6 0.065(0.024) | 0.007(0.008)  (0.001,0.022)
0.9 0.062(0.025) | 0.100(0.009)  (0.001,0.028)
1.2 0.059 (0.025) | 0.012(0.011)  (0.002,0.033)
15 0.057(0.023) | 0.015(0.012)  (0.002,0.038)
1.8 0.055(0.026) | 0.017(0.013)  (0.002,0.041)

Table 5.4: An Estimate of Al along its standard error and 95% CI under scenario 1 from the
Ki67 reproducibility study Experiment A. We used lab E measurements as a gold standard. A 1000
Monte Carlo simulation each with 100 sample size was used to construct the 95% CI for AT .

Scenario 1: K= 0.25 Ko— 0.75 K3—0.75 K,— 0.25
er er AT

LAB 0. | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
E 0.00 | 0.328(0.057) 0.328(0.057) 0.000(0.000)
F 0.92 0.313(0.053) 0.015(0.008)  (0.001,0.030)
A 3.65 0.265(0.050) 0.060(0.019)  (0.024,0.096)
H 3.69 0.264(0.050) 0.061(0.018)  (0.024,0.097)
G 4.61 0.252(0.049) 0.073(0.022)  (0.032,0.115)
D 5.74 0.238(0.048) 0.087(0.025)  (0.041,0.136)
C 8.02 0.213(0.047) 0.112(0.029)  (0.057,0.170)
B 10.58 0.190(0.046) 0.135(0.033)  (0.073,0.203)
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Table 5.5: An Estimate of AL along its standard error and 95% CI under scenario 2 from the
Ki67 reproducibility study Experiment A. We used lab E measurements as a gold standard. A 1000
Monte Carlo simulation each with 100 sample size was used to construct the 95% CIT for AT

Scenario 2: Ki=0.10 Ky=0.60 K3=045 Ky= 0.25
or er AT

LAB 0. | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
E 000 | 0.236 (0.065) | 0.236(0.065) | 0.000(0.000)
F o 0.92 0.223 (0.063) | 0.012(0.006)  (0.002,0.025)
A 365 0.190(0.059) | 0.046(0.018)  (0.015,0.082)
H  3.69 0.189(0.058) | 0.047(0.017)  (0.015,0.082)
G 461 0.179(0.058) | 0.056(0.021)  (0.019,0.099)
D 574 0.168(0.057) | 0.067(0.025)  (0.023,0.116)
C 802 0.149(0.055) | 0.087(0.031)  (0.031,0.146)
B 10.58 0.132(0.054) | 0.106(0.036)  (0.039,0.176)
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Table 5.6: An Estimate of Al along its standard error and 95% CI under scenario 1 from the
Ki67 reproducibility study Experiment B. We used lab E measurements as a gold standard. A 1000
Monte Carlo simulation each with 100 sample size was used to construct the 95% CIT for AT

Scenario 1: Ki=0.25 Ky=0.75 K3=075 Ky= 0.25
or er AT

LAB 0. | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
E 000 | 0.345 (0.054) | 0.345(0.054) | 0.000(0.000)
G 111 0.324(0.049) | 0.021 (0.008)  (0.003,0.039)
A 223 0.302(0.048) | 0.043(0.013)  (0.017,0.072)
F 227 0.291(0.047) | 0.054(0.016)  (0.022,0.089)
C 431 0.268(0.046) | 0.077(0.020)  (0.036,0.122)
D 6.8 0.242(0.045) | 0.102(0.025)  (0.054,0.157)
H 620 0.241(0.045) | 0.101(0.024)  (0.053,0.157)
B 16.17 0.156(0.042) | 0.189(0.037)  (0.118,0.272)
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Table 5.7: An Estimate of AL along its standard error and 95% CI under scenario 2 from the
Ki67 reproducibility study Experiment B. We used lab E measurements as a gold standard. A 1000
Monte Carlo simulation each with 100 sample size was used to construct the 95% CIT for AT

Scenario 2: Ki=0.10 Ky=0.60 K3=045 Ky= 0.25
or er AT

LAB 0. | Estimate (SE) | Estimate (SE) | Estimate (SE) 95% CI
E 0 | 02500.068) | 0.250(0.068) | 0.000(0.000)
G 111 0.234 (0.066) | 0.016(0.007)  (0.002,0.032)
A 223 0.220(0.064) | 0.031(0.012)  (0.008,0.056)
F 227 0.212(0.063) | 0.039(0.015)  (0.010,0.070)
C 431 0.195(0.061) | 0.057(0.021)  (0.016,0.099)
D 6.8 0.175(0.058) | 0.077(0.027)  (0.024,0.133)
H 620 0.175(0.059) | 0.077(0.027)  (0.024,0.133)
B 16.17 0.106(0.054) | 0.145(0.046)  (0.058,0.235)
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Chapter 6

Summary and Future Research

6.1 Summary

In this dissertation we proposed three statistical methodologies for assessing the clinical
utility and reproducibility of predictive biomarkers. One is proposing a metric Vg using
Bayesian decision theoretic framework; the second is proposing a sample size estimation
method SWIRL; and the third is proposing a reproducibility metric A,.

A predictive biomarker utility performance metric ¥ was proposed using Bayesian deci-
sion theory framework. Early phase clinical trial data are usually small and the maximum
likelihood based estimator are biased and inefficient. This on the other hand leads to con-
clusions which are flawed. However, adding experts’ prior information and data collected
from the early phase studies together, Bayesian methods were used to estimate the ¥ and
overcome the problem. Novel equations were used to convert clinician( expert) information
to useful priors. Estimation of ¥ was outlined in a general framework so that monetary
drug costs and negative side effects of the drug can be taken into consideration during the
evaluation process. A more efficient MCMC algorithm Hamiltonian Monte Carlo (HMC) was

used to get estimate for the posterior mean of ¥ along its standard error and 95% credible
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interval.

When the primary goal is to evaluate the clinical performance of a treatment selection
biomarker, sample size determination is a key part of the study design. For a binary clinical
endpoint, © which measures the decrease in the proportion of unfavorable outcomes that
results from biomarker guided therapy has been advocated as a metric for evaluating the
marker’s performance. However, a sample size estimation method was lacking to supplement
the biomarker study design. A novel sample size estimation algorithm, Squared Width
Inversion Linear Regression (SWILR), is proposed to determine a sample size n so that
the 95% CI mean width of © is less than the user defined length (W,,,). This is the first
sample size method developed for estimating the the predictive biomarker clinical utility
performance metric ©. With the SWIRL algorithm, m data sets with an increment of ¢ are
first generated from the multiple logistic regression model given in equation (4.1). Under
each data set, the mean 95% CI width (w) of © is estimated either using the equations we
developed in chapter 4 or using the Janes et. al (2014) method and a linear regression is
then fitted with n as outcome and # as a covariate. The fitted regression line is finally used
to estimate a sample size n for a user defined 95% CI mean width (Wi,,,) of the metric ©.
The linearity assumption for the implementation of the SWIRL algorithm comes from the
asymptotic distribution proof for © which is given in Appendix (A.0.1).

A treatment selection biomarker undergoes three stages of validation and evaluation
before it can be used for decision making. Of the three stages, in the middle development
stage, the biomarker or assay is required to be modified for reasons such as simplification of
its sample preparation, minimizing the cost, migrating the assay platform etc. Modification
of the assay however, invalidates previous outcome-assay performance studies as measured by
metrics such as ©. Under the modified assay, estimating © is not straightforward because we
do not observe the outcome. Existing reproducibility metrics such as the Pearson correlation

coefficient (p), intraclass correlation coefficient (ICC), concordance correlation coefficient
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(CCC) and others are not suitable metrics for this purpose. This is because a high values
of ICC or p between the orginal assay (X) and the modified assay (V) does not directly
translate to ©, and ©,, being equal. To assess the change in © under the modified assay
we proposed a reproducibility metric A,. The key advantage of A, is, it does not need
observation of the clinical outcome under the modified biomarker. This helps biomarker
researchers to assess the effect of assay modification on the clinical performance of the assay

with less time and at a much lower cost.

6.2 Direction for Future Research

Now it is becoming a common practice to use two or more predictive biomarkers’ information
simultaneously to make clinical decision. In the asthma clinical trial for example, three
different biomarkes (fractional exhaled nitric oxide |[FeNO]|, blood eosinophils and periostin)
were initially under consideration (I orenblat et al., 2018). As such the methods proposed
in this dissertation can be extended to take this issue into consideration. Let the outcome
of interest be y, which is binary, such that, y € {0,1}. Further let the input variables be
represented by a vector x such that x = (x1,x2, T) where x; and x2 denote the biomarkers
BMK; and BM K5 respectively which are measured at baseline from each subject and T
for the treatment assignment, placebo or active group. Additionally, § € © will represent
the parameter subspace that relate the outcome Y with the inputs x. The natural approach
to represent the relationship between the outcome Y and the vector of input x is through a

log linear model, which can be written as,

Pr(Y; = 1|Xy;, Xo5. T}
Ln 1 P(T(ZY; — ’1\;u, )2;2“%» = o+ 1 X1 + B2Xoi + B3A; + BaX1iAi + B5 X0 Ai 4+ BeX1:X2;

(6.1)
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where (1, 52, B3, B4, B5 and (g in the model represent the biomarkers, treatment, biomarker
by treatment interaction and biomarker by biomarker interaction effects respectively. Now
let, both biomarkers X; and X5 have a known joint probability density function each given
by f(z1,22) where X; € (—o00,00) and Xy € (—o00,00). The probability of unfavorable

outcome given treatment is written as :

1 4+ ePo+B3+(B1+B4+86 X2) X1+ (B2+85) X2

650+(51+ﬁ6X2)X1+52X2
PT(Y - 1|T - 0) - // { 1 + ePot(Br+BsX2) X1+B2X2 } f<x1’ x2>dx1dm2

eBo+Bs+(B1+Ba+Pes X2) X1+(B2485) X2
PriYy=1T=1) = //{ }f(a:l,xg)dazldxg

6.2.1 Optimal Treatment Assignment

from equation (1) above it is straightforward to show that:

Odds(Y = 1T =1,X = z) _ exp{Bo + Bs + (B1 + Ba + Be X2) X1 + (B2 + B5) X}
OddS(Y = ]_|T = O,X = .ZU) exp{ﬁo —|— (51 + /BGXQ)Xl —|— BQXQ}

= exp{Ps + B1 X1 + 35X} (6.2)

From equation (4.4) it is clear that, odds of an unfavorable outcome are greater among
subjects in the active arm than the SOC arm if f3 + 5, X7 + #5X5 > 0. Based on this, the

biomarker guided treatment decision (T,,;) can be set in such a way that :

To(X = 2) — T'=1 :0:X1+4 B:Xo <03 (6.3)

T=0 :0X1+B:X2>—05

Depending on the sign of () coefficient a threshold for the marker guided therapy can be

written as:
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T=1: X >l
Top(X =2)=1if : 4, <0

T=0: X, < —B3—B5X2

T=1: X<t
To(X =2)=1if : 4, >0

T=0: X,> —B3—B5 X5

6.2.2 Estimation of ©

Once the optimal treatment rule is set as in equation (6.3), one can proceed to estimate ©
using the procedures outlined in chapter 4. If we assume the default treatment is treat all

for example, we can get an estimate of ©; as:

A~

@1 = = HT =1 Xl,XQ) P?”( = 1’Topt7X17X2> (64)
eBo+B3+(Br+Ba+Pe X2) X14(B2485) X2
- // { 1 4+ ePotB3+(Br+Ba+Bs X2) X1+ (B2+85) X2 } f<x1’ x2)d$1dm2 B
trt:all
eBo+B3+(B1+Ba+P6 X2) X1+(B24085) X2
// { 1 + eBo+Bs+(Br+Bat+BsX2) X1+(B2+85) X2 } fl1, 22)dz1dzs

trt:opt

Similarly, when the default treatment is treat none, an estimate of @y can be obtained as:

@0 = = 0|T =1 Xl,XQ) PT’(Y = 1|T0pt7X1,X2) (65)

eBot(B1+P6X2) X1+B2X>
N // 1 + 6’80"_ (B1+B6X2)X1+82X2 f('rla I2>da71dl'2 —

trt:none
ePo+B3+(B1+B1+B6 X2) X1+(B2+P5) X2
// { 1 + ePotBs+(Bi+Ba+B5X2) X1+ (Ba+B5) Xz } F (1, 22)dz1dy

trt:opt
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Appendix A

Chapter 4

A.0.1 Asymptotic Properties of O

Theorem: Let the biomarker X has a standard uniform distribution, i.e, X ~ U(0,1).

1 n _ ePothiX; eBot+B2+(B1+83)X; s
Then ©g = >, A where A; = (555 — [ amrmmx - Note that since X; are

1.1.d. random variables, then A; are 7.i.d. random variables. Also since , —1 < A; < 1, they

have mean and variance. Let the mean and variance of A;s’ be ua and o respectively. Then

E[\/ﬁ(éz—lm)] — 0

Var [\/ﬁ(é\o - #A)] — 05,

as n — Q.

Proof:

(i) Lets first look at the asymptotic claim for the expectation:

E [\/ﬁ(éz - HA)] =F {E [\/ﬁ(é\o — ua)|Bos Br, Ba, 33] }
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Where the inner expectation is taken over the X; and the out expectation is taken over

the parameter estimates. Let

then

FE {E [\/ﬁ(é; - MA)’B(%BDBZ; 33] } =LK [\/ﬁ(no - MA)}

Nothing that 7, is a continous function of the maximum likelihood estimates (MLE), and

the MLE converge to a normal distribution with mean zero, it follows that

E [\/5(770 - HA)] — 0

as n — 0.
(ii) Now lets first look at the asymptotic claim for the variance:

As stated previously:

1 n
O = ~> A
1=n
1< eBo+B1Xi ePot+B2+(B1+P3) X
T on Zz_; { 1 + ePotbrX: I + eBotBat(Bi+B3)Xi }

Lets take the first term of A; from Eq. (13) first.

VarE

1 & eBPot+B1X; eBot+B2+(B1+83) X;
ﬁ Z 1+ PotAXi 1 4 eBotBa+(B1+83)X: T Ha
=n

1 & eBo+B1X; ePotB2+(B1+83) X A A
var % zz;z 1 + ePot+B1X; o 1 + ePotBa+(B1+83)X: N MA"BO’ P, B2, B3

E +
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Var

1 n eBO"‘ﬂlXi 650+52+(51+,@3)Xi o
E %Z 1 +€ﬁo+,6’1Xi o 1 +660+/32+(51+/33)Xi - /’I’A’/BO)ﬁ]J/B2763

=n

(A.2)

Not that, conditional on ,30, BI, ﬁg, Bg,, the sums are sums of independent random variables.

Taking the first term on the right hand side of Equation (14):

1 <& ePotPLX; eBotB2+(B1+83)Xi o
Var %Z { (1 + ePot+B1X; N 1 +@ﬁo+ﬁ2+(51+ﬁ3)X1‘> N ’MAWO’ﬁl’B%B?’) -

ePotp1Xi ePotB2+(B1+83)X:

1< 5 5 5 5
EZVCLT { (1 + ePotBiX; o 1 _|_€,80+52+(,31+/33)X¢> |ﬁ07ﬁ17ﬁ2753}

E

: Bo+81X; Bo-+Ba-+(B1+83)X; : :
Since —1 < (1;%0;51}1, — li:ﬁofﬁﬁ(;ﬁzs);i) < 1, the variance taken over X; is absolutely

bounded.

efotP1Xi ePotB2+(B1+83) X

1 < o )
E n Z Var { (1 + efothXs 14 eﬂo+62+(51+/33)xi) o, 51752753}] — %

Now turning to the second term in Equation (14)

1 <& ePotP1Xi ePotP2+(B1+83)X; o
E {% ; { (1 + ePot+BiX; I + 650+52+(/31+,33)X¢> = 1alBo; By, Bz, 63) }]
= Var {Ln(un - /m)}
NG

= Var [%(Mn - MA)}

Var

Bo+B1X; Bo+B2+(B1+B3) X, 5 4 4 4 5 A A A
where MUn = E { <1—T—e()50+161;(i - 1—T—e(;0+2ﬁ?+(1ﬁl+3ﬁ3);i> |507 /817 ﬂ?a 63} - Mn(ﬂOv ﬂla BQa 63)
The function p, (8o, f1, B2, £3) is continuous in (S5, 1, B2, B3). Therefore, since (By, 51, B2, P3)

is maximum likelihood, under the usual condition s (ref) we have
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Bo Bo 0
B 8 0

\/ﬁ Al — ' — Normal\/ﬁ 72/)’0751,52,53
B2 B 0

) \a)) o _

It follow from (theorem ref) that

V(i — pa) = Normal(0,07,)

where 0, < 00

We have therefore shown that

—~

Var(y/n(©m — pay)] = 0. + 0. = 0,

The proof for ©; follows similarly.
This proof can easily be extended when the biomarker has a distribution other than

uniform (Normal, Gamma etc).

A.0.2 End point calculation under optimal treatment for a biomarker

with standard uniform distribution

Let the biomarker X has a continuous measure with probability density function f(z). In

Eq.(5) section 2.2, we have shown that:

T=1 :B30<(—p)
T=0 :Bx>(—p)

Topp(X =z) =
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Depending on the sign of the coefficient 3, the optimal treatment is further written as:

Tou(X =) = if 1 B3 <0 s

T:1:x<%2
Top(X =) = 1if : f3>0

-0 - —B2
T=0: z> s

Let A; = {z: B3z < (—f2)}, and Ay = R'\A; (where “\" is the set difference symbol). The
value of the end points for A; & Ag will vary depending on the support of the probability
density function for X. Let the end points for A; & Ay are respectively (¢, d) and (a,b) and

X ~U(0,1). Then the possible end point values are as shown below.
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Table A.1: Lower and Upper Integral limits calculation table for biomarker with U (0,1)

Parameters Prob. Of Death/Relapse Picture | End Point Values

B3 >0, 0 <(-Pa/B3) <1 | Lines cross at -0/ [ a = (-fa/B3), b0 =1
T=1 Prob. increase rel. to T=0 |c=0,d = (-52/53)

B3 >0, 0 <(B2/B3) <1 | Lines cross at -B2/53 a =0, b= (B2/fs)

T=1 Prob. increase rel. to T=0 | c =(52/f3) ,d =1

B3 >0, (B2/Ps) <0 T=0 : Always better a—=1, b=20
c=d=1

B3 <0, (B2/Ps) <0 T=1 : Always better a=b=20
c=0, d=

B3 >0, (B2/P3) <1 T=1 : Always better a=D>b=1
c=0, d=

B3 <0, (B2/Ps) <1 T=0 : Always better a=20, b=
c=d=1

Refere to figure 1

Similar development could be followed for other biomarker distributions considered.

A.0.3 Converting clinician inputs to model parameters

The natural approach to represent the relationship between the outcome (Y € {0,1}) and the
covariates (T" and X) along the interaction term (7" * X) is using multiple logistic regression

as.

Pr(Y =1|T =0, X)
L —
"o Pr(Yy =T =0,X) fo+hre
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Bo B =0

Bo+ B B #0

Pr(Y = 1T =1, X)

Ln = Pr(Y = 1[T = 1,X) = Bo+ o+ (B1+ B3)x

Bo + B2 P+ B3 =0
Bo+ B+ (Br+B3)r B+ P3#0

Let the clinician input values be K; to K4. Restricting our focus to the 25 and 75

percentile of the marker value,we can write the following equations:

Kl = Ln _1—P(Y:1’A:07x:F_1(025))'
= 50 + BlFﬁl(_0'25)
[ P(Y=1A=0,2 = F(0.75))
Ky, = ILn _1_P(Y:HA:O’;E‘:F_l(O?E)))_
= [y +61F71(_0'75)
- [ P(Y =1|A=1,z = F~(0.25))
K3 = Ln _]_—P(Y:]-’A:l?x:F_l(OZS))'
= Bo+ P+ (Bi+ PB3)F 1 (—0.25)
[ PY=1A=1a2=F0.75)
K4 = Ln _]_—P(Y:1|A:17‘/E:F_1(075))'
= fo+ P2+ (61 + 53)F_1(_0‘75)

If we let F71(0.25)= z; , and F~1(0.75)= 2z,

Ky = Bo+ Bz
Ky = Bo+ Bz

Ks = po+ B+ (61 + B3)=
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Ky = Bo+ Ba+ (81 + Bs)2

Here we have four equations and four unknowns. Using MATLAB R2015a, the above equa-

tion can be solve in terms of the logistic model parameters as :

0 . K1 = KQ
fo =
KQ*Zl:Kl*ZQ :Kl ?é K2
L 21—29
)
0 K=K,
B = -
| e KPR
)
0 ZKlzKQ,K3:K4
Kixzo—Kox*z . —
e P K # Ky, K3 =Ky
B2 =
Y Y s
Kixzo—Koxz1 —Kga*zo+Ky*xz .
1%22 2;_223 2 4%*21 -Kl%KZ,Kg%K4
\
(
0 ZK1:K2,K3:K4
Ko— K, . _
=t D Ky # Ky, K3 = Ky
B3 = K3—K.
ﬁ :KlZKQ,Kg#Kgl
—Kszif’*m DKy # Ky, K3 # Ky
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Appendix B

Chapter 5

B.0.1 Asymptotic Properties of A,

Theorem 1 : Let the biomarker X has a normal distribution, i.e, X ~ N (p,,02). Using

: NT AT 1 n z z _ _ePothiX;
Monte Carlo, we get an estimator ©, such that ©, = = > 71 Of where O = [“Zrmrs —

eBot+B2+(B1+83)X;

Tty - Note that since X; are i.i.d. random variables, then ©7 are i.i.d. random

variables. Also since , —1 < ©7 < 1, they have mean and variance. Let the mean and

variance of ©Fs’ be g, and oém respectively. Then

B [Va(®f — pe.)| — 0 (B.1)

Var [\/ﬁ(éf - u@m)} — 05, (B.2)

as n — 00.
A detailed proofs of equations (18) and (19) is provided below:
Proof:

(i) Asymptotic convergence of the mean:

~

E |v/n(©f — M@x)] =F {E [\/ﬁ(éf — ne,)|Bo, B, Ba, 33} }

139



where the inner expectation is taken over the X; and the out expectation over the 3 parameter

estimates. Now let,

N = FE @ﬂBO;BbBQaBZS

then

E {E [\/ﬁ(@ﬁb — M@Z)‘Bo, B, 32733} } =F [\/ﬁ(nx — M@z)}

fs are maximum likelihood (MLE) estimates and 7, is a continuous function of these maxi-
mum likelihood estimates. Since maximum likehood estimates converge to a normal distri-

bution with mean zero, it follows that;

B [Viln, — pa)] = 0 (B.3)

as n — 0o.
(ii) Asymptotic convergence of the variance:

We know that,

. 1 < .
@;{:E;@i

eBo+B1Xi ePotB2+(B1+83)X;
} (B.4)

1 n
- n Z { 1 4 eBotBiXi 1 4 eBo+Be+(Bi+8)X;

Then the asymptotic variance of (:)Z; is given as:

1 & ePoth1X; ePotB2+(B1+83) X;
N 1+ PotBiXi 11 gPothat(Biipa)X; | HO=
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1 <& ePo+h1X; eBot+B2+(B1+83)X: o
= B|Var ﬁ i=n 1 + eBotB1X; o 1 4+ eBot+Ba+(B1+Ps)X; ~Ho, "BO’ B, B2, B3 *
1 & ePo+B1X; ePotB2+(B1+83) X; N
Var |E {\/ﬁ ; { (1 + eBot+B1X: a 1 + efot+Ba+(Bi+p3)X: MO |'80’ P1, B2, B3
(B.5)

Conditional on As’ the summations in equations (22) are sums of independent random

variables. Now lets look at the first term of equation (22):

1 <& ePo+B1Xi ePo+B2+(B1+P3)Xi o
Var %Z { (1 + ePotbi Xy 1 +650+52+(51+53)Xi) N M@$|B0761762’63) -

E

ePotP1Xi eBotBa+(Br+P3)Xi

1 S
EZVar{<1+eﬂo+51Xi - 1+650+ﬁ2+(51+53)Xi) \/30,51,52753}

E

: Bo+81X; Bo-+Ba-+(B1+83)X; : :
Since —1 < (lje(;ojﬁl;i — 1-7—@050+252+(151+23);i> < 1, the variance taken over X; is absolutely

bounded.

eBoth1X; eBotB2+(B1+83)Xi

1 — A A A4 9
E EZV&T { (1 4 ePotBiXs ] —|—650+ﬂ2+(51+ﬁ3)Xi) |ﬁ0’51’ﬂ2’63}] — % (B.6)

Now turning to the second term in equation (22)

1 <& eBo+h1X; ePo+Ba+(B1+P3)Xi A
£ % Z { (1 4 ePotBiXi 1 4 €ﬁ0+52+(51+5g)xi) — pte,|Bo, B, Bz, 53)

= Var [—n(ﬂn - Mez)}

Var

= Var [%(Mn - Mex)]

Bo+B1X; Bo-+B2-+(81+83)X; 55 4 4 5 4 A A
where Hn = E { <1j—€050+151;(i - 1j_5(;0+252+(151+353);i> |607 /817 527 53} = Mn(ﬁ()a ﬁla /62a 53)
The function g, (8o, £1, B2, £3) is continuous in (5, £1, B2, B3). Therefore, since (By, 51, B2, P3)

is maximum likelihood, we have
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Bo Bo 0
B 8 0

\/ﬁ Al — ' — NOTmal\/ﬁ 7250751,52,53
B2 B 0

) \a)) o _

It follow from (theorem ref) that

V(i — pe,) = Normal(0,07.) (B.7)

where 0, < 00

Combining equations (23) and (24), we have shown that

—

Var[y/n(©n — pe,| = 0+ 0; = 04, (B.8)

as n — Q.

Theorem 2 : Let the observed biomarker is W instead of X such that W = X + U
where X ~ N (ug,02) and U ~ N(0,02). Since W is the sum of two normal, W ~ N (1., 02)

w

such that 02 = o2 + 2. Using Monte Carlo, we get an estimator ©F such that ©F =

1 n 1 n w w eBo+B1X; eBo+B2+(B1+83)X; ~ A&
a2 > i O} where O = - and T; = pip + Pﬁ(Wz’ — iz)-

i=nn 1+ePo+B1X; 1+4ePo+Ba+(B1+683)X;

Note that since W; are i.7.d. random variables, then O are 7...d. random variables. Also
since , —1 < ©} < 1, they have mean and variance. Let the mean and variance of ©}s’ be

e, and og respectively. Then

B V(O] ~ o) = 0 (B.9)
Var [\/ﬁ(é)g — u@w)] — 05 (B.10)
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as n — oQ.

Asymptotic mean and variance proofs of equations (26) and (27) are given in detail below:
Proof:

i) Asymptotic convergence of the mean:
g

E [Va(®7 - pe.)| = E{E [VA(O - pe,)|B| }

where B = c(ﬁo,ﬁl,ﬁ}, Bg) The inner expectation is taken over the X; and the out expec-

tation over the B parameter estimates. Now let,

e = E|0fB]

= E[0;]

then

E{E | V(®} - je,)|B| } = B [Viln, - po,)

B is a vector of mle estimates and 7, is a continuous function of these mle estimates. Since

mle estimates converge to a normal distribution with mean zero, it follows that;

E [Vn(nw — pe,)] — 0 (B.11)

as n — 0o.
(ii) Asymptotic convergence of the variance:

We know that,

6L = 1Yy er

i=n i=n
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] e eBot+P1X; eBotB2+(B1+53)X;
= = —— - B.12
n Z Z 1 + efotbrXi 1 + ePot+Ba+(B1+83) X ( )
1=n =N
Then the asymptotic variance of ég is given as:
= Var [\/ﬁ(ég — ,uew)]
1 & Bo+B1Xi Bo+Ba+(B1+83) X
~var[e[ Ly {( -
Vn — 1+ ebotPiXi 1 4 eBot+B2+(B1+83)X;
1 ™ eBotX; eBotB2+(B1+83)Xi .
= B|V — — — | — B
ar { n ; ; { (1 1 ePotPiXi 1 4 ePotBat(BitB3)X: Hou| +
1 & Bo+B1Xi Bo+B2+(B1+03) Xi .
Var |E Z Z ¢ _ — | — peo,|B
Vn e 1 + eBot+B1 X 1 + eBot+Ba+(B1+83)Xs
(B.13)

Conditional on B the summations in equations (30) are sums of independent random

variables. Now lets look at the first term of equation (30):

1 < 6/80"!‘51)21' 660+ﬂ2+(ﬁ1+53)X~L . ]
E |V — — — — | — B =
a { \/ﬁ Z Z { (1 + ePotPiXi 1 + ePot+B2+(B1+83) X 'u®w‘
i=n i=n J
1 o 650+51Xi 6'80+52+(51+ﬁ3))~(i . ]
E |- Z Z Var = — = | |IB
n & £ 1 + ePotbrXi 1 + eBot+Ba+(B1+P3)Xi
i=n i=n .
Since —1 < (ﬁigigjx — 1igig(ﬁgﬁ§xl> < 1, the variance taken over X; is absolutely
bounded.
1] <X ePotB1Xi eBotBat+(B1+03)X; A
E|=>") Var _ —||B}| — o2 (B.14)
n i — 1 + efot+PrXi 1 4+ ePo+Ba+(B1+83)X;
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Now turning to the second term in equation (22)

5 1 i z": ePotB1X; eBotB2+(B1+53) X |B
Vn “ 1 + efotBiX; 1 + ePotB2+(B1+83)X; Hew

1=n i=n

Var

= Var {%n(ﬂwz - /~L9w)1
= Var [%(Nu& - N@w)}

where Ly = E{( eBo+B1X; . eBot+B2+(B1+83)X; > |B} _ ng(B)~

14ePo+B1X; 14ePo+Ba+(B1+83)X;

The function fu,,(B) is continuous in (8y, A1, fa, B3). Therefore, since (B) is maximum

likelihood, we have

vn (B — B) — Normal+/n (0,Xg)

From this we can get;

V(pw, — pe,) = Normal(0,07,) (B.15)

where 0, < 00

From the results of equations (31) and (32), we have shown that

Var[yn(©f — e, ] = 02 +02 = 0o, (B.16)

w1 w2

as n — oQ.

The asymptotic proof fro Af, then follows from equations (20,25,28 and 33).
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6.1 Supplementary Materials

Table S1: Posterior mean, standard error and 95% credible intervals of W, and Wp,. fitting a zero-
inflated Poisson regression model assuming a 2/(0, 1) biomarker. Data was generated from a standard

Poisson model with sample size of 350. Coefficients used for data simulation are:5y = —0.40,

B1 = 2.75,85 = 1.45 and B3 = —3.00.
Scenario 1: K-values K, =006 Ky =35 K3 =35 Ky=0.6
143; Bo ~ N(=0.50,07) 1~ N(1.76,07) o~ N(1.76,07) fs~ N(=3.5,07)
o3 0.5 10 100
Post. mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.579(0.093) (1.421,1.749) | 1.596(0.095) (1.431,1.767) | 1.596(0.095) (1.431,1.767)
Act  1.521(0.097) (1.352,1.724) | 1.529(0.099) (1.358,1.738) | 1.529(0.099) (1.358,1.738)
Opt  0.959(0.056) (0.854,1.075) | 1.003(0.074) (0.853,1.160) | 1.003(0.074) (0.852,1.160)
Up, 0.619(0.084) (0.469,0.801) | 0.594(0.094) (0.425,0.792) | 0.593(0.094) (0.425,0.793)
g, 0.563(0.073) (0.428,0.687) | 0.527(0.088)  (0.366,0.669) | 0.526(0.088) (0.368,0.669)
Scenario 2: K-values K, =06 Ky =35 K3 =25 Ky,=15
pg,  Bo~ N(=0.50,07) [ ~N(1.76,05) [y~ N(1.42,037) [~ N(=2.27,07)
o3 0.5 10 100
Post. mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.584(0.093) (1.422,1.750) | 1.596(0.095) (1.430,1.765) | 1.596(0.095) (1.431,1.765)
Act  1.519(0.098) (1.353,1.724) | 1.529(0.099) (1.358,1.738) | 1.529(0.099) (1.358,1.736)
Opt  1.020(0.058) (0.915,1.139) | 1.003(0.074) (0.851,1.161) | 1.003(0.074) (0.851,1.162)
Up, 0.563(0.083) (0.411,0.738) | 0.593(0.094)  (0.424,0.793) | 0.593(0.095) (0.425,0.792)
g, 0.499(0.074) (0.368,0.628) | 0.526(0.088)  (0.367,0.669) | 0.526(0.088) (0.366,0.667)
Scenario 3: K-values K, =06 Ky=35 K3 =0.8 K,=30
s, Bo~ N(=0.50,07) B~ N(L76,07) B~ N(0.28,07) f5~ N(—0.44,07)
o3 0.5 10 100
Post. mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.609(0.095) (1.438,1.769) | 1.596(0.095) (1.431,1.765) | 1.596(0.095) (1.430,1.767)
Act  1.506(0.099) (1.337,1.716) | 1.529(0.099) (1.359,1.738) | 1.529(0.099) (1.358,1.737)
Opt  1.131(0.062) (1.024,1.259) | 1.003(0.074) (0.852,1.160) | 1.003(0.074) (0.852,1.162)
Up, 0.479(0.084) (0.317,0.652) | 0.593(0.094) (0.424,0.792)) | 0.593(0.094) (0.424,0.793)
g, 0.376(0.073) (0.244,0.515) | 0.526(0.088)  (0.366,0.666) | 0.526(0.088) (0.366,0.668)
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Table S2: Posterior mean, standard error and 95% credible intervals of /] Bp and \TIBT fitting
a negative binomial regression model assuming a (0, 1) biomarker. Data was generated from a
standard Poisson model with sample size of 350. Coefficients used for data simulation are:5y =
—0.40, 5y = 2.75,82 = 1.45 and B3 = —3.00.

Scenario 1: K-values K, =06 Ky =35 K3=35 K;=06

18, Bo~ N(=0.50,07) By~ N(1.76,07) o~ N(1.76,07) fs~ N(=3.5,07)

O'? 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.536(0.084)  (1.386,1.684) | 1.549(0.086) (1.394,1.695) | 1.549(0.086) (1.394,1.696)
Act 1.482(0.093) (1.314,1.677) | 1.486(0.096) (1.315,1.685) | 1.486(0.095) (1.316,1.686)
Opt 0.931(0.053) (0.821,1.046) | 0.970(0.068) (0.815,1.118) | 0.971(0.068) (0.816,1.118)
Uy, 0.605(0.079)  (0.461,0.767) | 0.579(0.089) (0.420,0.771) | 0.578(0.090 (0.419,0.772)
Up, 0.550(0.071)  (0.422,0.679) | 0.516(0.086) (0.364,0.652) | 0.516(0.086) (0.363,0.651)
Scenario 2: K-values K, =06 Ky =35 K3 =25 Ky,=15

i3, Bo ~ N(=0.50,02) B~ N(1.76,0%) B2 ~ N(1.42,03) B3~ N(—2.27,0%)

o2 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.537(0.084)  (1.387,1.682) | 1.549(0.085) (1.394,1.695) | 1.549(0.086) (1.394,1.695)
Act 1.476(0.094)  (1.312,1.674) | 1.486(0.096) (1.315,1.686) | 1.486(0.096) (1.315,1.686)
Opt 0.989(0.054)  (0.879,1.108) | 0.971(0.068) (0.816,1.117) | 0.971(0.068) (0.815,1.118)
Uy, 0.548(0.079)  (0.400,0.712) | 0.578(0.090) (0.421,0.770) | 0.578(0.090) (0.420,0.771)
Uy 0.486(0.071)  (0.358,0.619) | 0.515(0.086) (0.364,0.652) | 0.515(0.086) (0.363,0.652)
Scenario 3: K-values K, =06 Ky =35 K3=038 K,=30

18, Bo ~ N(—O.SO,JJZ) B1 ~ N(1.76,a?) By ~ N(0.28,032) P3 ~ N(—0.44, UJQ.)

02 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.554(0.084)  (1.404,1.699) | 1.549(0.085) (1.394,1.695) | 1.549(0.086) (1.395,1.695)
Act 1.454(0.096)  (1.287,1.656) | 1.486(0.096) (1.316,1.687) | 1.486(0.096) (1.316,1.685)
Opt 1.091(0.056)  (0.975,1.215) | 0.971(0.068) (0.816,1.121) | 0.971(0.068) (0.816,1.118)
Uy, 0.463(0.079)  (0.310,0.629) | 0.578(0.090) (0.419,0.773) | 0.579(0.090) (0.419,0.771)
Uy 0.363(0.071)  (0.239,0.494) | 0.515(0.086) (0.363,0.652) | 0.516(0.086) (0.363,0.651)
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Table S3: Posterior mean, standard error and 95% credible intervals of /] Bp and \TIBT fitting
a zero-inflated Poisson regression model assuming a N(4.8,3.24) biomarker. Data was generated
from a standard Poisson model with sample size of 350. Coefficients used for data simulation are:
Bo = —0.10, 81 = 0.08,82 = 0.65 and F3 = —0.15.

Scenario 1: K-values K, =06 Ky, =35 K3=35 K,=06

15, Bo ~ N(=0.15,02) Bi ~ N(0.11,02)  fo ~ N(1.04,02)  f5 ~ N(—0.22,0?)

a? 0.2 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
S0C 1.330(0.075) (1.189,1.481) | 1.385(0.081) (1.229,1.548) | 1.385(0.081) (1.229,1.548)
Act 1.292(0.073)  (1.151,1.412) | 1.312(0.078) (1.167,1.452) | 1.312(0.078) (1.167,1.452)
Opt 1.114(0.050)  (1.017,1.212) | 1.177(0.083) (1.048,1.297) | 1.177(0.083) (1.048,1.297)
\ifBP 0.217(0.075) (0.101,0.350) | 0.208(0.083) (0.081,0.349) | 0.208(0.083) (0.081,0.349)
\ifBT 0.178(0.044) (0.103,0.2750 | 0.135(0.066) (0.024,0.279) | 0.135(0.066) (0.024,0.279)
Scenario 2: K-values K, =06 Ky =3.0 K3 =25 K,=0.6

18, Bo~ N(=0.18,07) B1 ~ N(0.10,07) 2~ N(0.80,07) 3~ N(-0.18,057)

o2 0.2 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.339(0.075)  (1.196,1.491) | 1.386(0.081) (1.231,1.548) | 1.386(0.081) (1.231,1.549)
Act 1.276(0.073)  (1.139,1.397) | 1.312(0.078) (1.169,1.452) | 1.313(0.078) (1.167,1.452)
Opt 1.135(0.051)  (1.032,1.234) | 1.178(0.069) (1.050,1.299) | 1.178(0.069) (1.048,1.298)
Up, 0.205(0.077)  (0.087,0.343) | 0.208(0.083) (0.079,0.349) | 0.208(0.083) (0.081,0.350)
Uy 0.142(0.042)  (0.074,0.239) | 0.135(0.065) (0.029,0.279) | 0.135(0.066) (0.028,0.281)
Scenario 3: K-values K, =06 Ky =3.0 K3=038 Ky=25

18, Bo ~ N(—0.18, 032-) p1 ~ N(0.10, a?) Po ~ N(0.19, 032) B3 ~ N(—=0.03, UJQ.)

o2 0.2 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.370(0.075)  (1.223,1.523) | 1.386(0.081) (1.231,1.548) | 1.386(0.081) (1.231,1.548)
Act 1.246(0.073)  (1.114,1.365) | 1.312(0.078) (1.167,1.451) | 1.312(0.078) (1.168,1.452)
Opt 1.186(0.056)  (1.069,1.287) | 1.178(0.069) (1.050,1.296) | 1.177(0.069) (1.050,1.296)
Up, 0.184(0.087)  (0.059,0.344) | 0.208(0.083) (0.076,0.349) | 0.208(0.083) (0.075,0.349)
Uy 0.059(0.034)  (0.015,0.151) | 0.135(0.066) (0.027,0.278) | 0.135(0.066) (0.030,0.279)
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Table S4: Posterior mean, standard error and 95% credible intervals of /] Bp and \TIBT fitting

a negative binomial regression model assuming a N(4.8,3.24) biomarker.

Data was generated

from a standard Poisson model with sample size of 350. Coefficients used for data simulation are:
Bo = —0.10, 81 = 0.08,82 = 0.65 and F3 = —0.15.

Scenario 1: K-values K, =06 Ky, =35 K3=35 K,=06

15, Bo ~ N(=0.15,02) Bi ~ N(0.11,02)  fo ~ N(1.04,02)  f5 ~ N(—0.22,0?)

a? 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
s0C 1.291(0.071)  (1.155,1.424) | 1.334(0.076) (1.192,1.471) | 1.335(0.076) (1.192,1.471)
Act 1.253(0.071)  (1.122,1.379) | 1.264(0.075) (1.127,1.410) | 1.264(0.075) (1.127,1.411)
Opt 1.079(0.048)  (0.992,1.166) | 1.132(0.065) (1.009,1.242) | 1.132(0.066) (1.009,1.245)
@BP 0.211(0.073) (0.101,0.340) | 0.202(0.081) (0.077,0.339) | 0.202(0.081) (0.078,0.338)
\ifBT 0.173(0.043) (0.102,0.269) | 0.132(0.065) (0.028,0.274) | 0.131(0.065) (0.029,0.274)
Scenario 2: K-values K, =06 Ky =3.0 K3 =25 K,=0.6

18, Bo~ N(=0.18,07) B1 ~ N(0.10,07) 2~ N(0.80,07) 3~ N(-0.18,057)

o2 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.230(0.071)  (1.161,1.432) | 1.335(0.076) (1.192,1.471) | 1.335(0.076) (1.191,1.473)
Act 1.238(0.071)  (1.109,1.363) | 1.264(0.075) (1.126,1.411) | 1.264(0.075) (1.126,1.411)
Opt 1.100(0.049)  (1.010,1.187) | 1.132(0.065) (1.009,1.242) | 1.132(0.066) (1.009,1.245)
Up, 0.199(0.076)  (0.086,0.336) | 0.202(0.081) (0.075,0.336) | 0.202(0.081) (0.076,0.339)
Uy 0.138(0.041)  (0.072,0.233) | 0.132(0.064) (0.031,0.274) | 0.132(0.065) (0.028,0.274)
Scenario 3: K-values K, =06 Ky =3.0 K3=038 Ky=25

18, Bo~ N(=0.18,07) By ~ N(0.10,07) [~ N(0.19,07) 3~ N(-0.03,07)

o2 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 1.328(0.072)  (1.183,1.458) | 1.335(0.076) (1.191,1.471) | 1.335(0.076) (1.191,1.471)
Act 1.207(0.072)  (1.082,1.332) | 1.262(0.075) (1.126,1.413) | 1.264(0.075) (1.126,1.411)
Opt 1.149(0.054)  (1.044,1.237) | 1.132(0.066) (1.010,1.242) | 1.132(0.066) (1.009,1.246)
Up, 0.179(0.085)  (0.053,0.336) | 0.203(0.081) (0.075,0.339) | 0.202(0.081) (0.076,0.339)
Uy 0.059(0.033)  (0.016,0.146) | 0.132(0.064) (0.031,0.274) | 0.132(0.064) (0.028,0.275)
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Table S5: Posterior mean, standard error and 95% credible intervals of 7 Bp and ] By fitting a
zero-inflated Poisson regression model to mirror the AA clinical trial study. Data was generated
from a standard Poisson model with sample size of 460. Coefficients used for data simulation are:
Bo = —9.85, 81 = 2.20,83 = 5.33 and f[3 = —1.52.

Scenario 1: K-values K, =0.10 Ky =2.50 K3 =1.50 K, =0.40

g, Bo~ N(=3.72,07) p1~ N(0.78,07) B2~ N(5.01,07) fs~ N(—-1.27,07)

o3 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.475(0.044) (0.396,0.555) | 0.501(0.043) (0.418,0.588) | 0.500(0.043) (0.417,0.588)
Act 0.194(0.032) (0.133,0.270) | 0.226(0.035) (0.165,0.306) | 0.226(0.035) (0.166,0.308)
Opt 0.182(0.027) (0.129,0.242) | 0.172(0.030) (0.126,0.245) | 0.171(0.031) (0.124,0.244)
@BP 0.292(0.046) (0.212,0.384) | 0.329(0.039) (0.258,0.404) | 0.330(0.039) (0.258,0.404)
\ifBT 0.012(0.005) (0.003,0.028) | 0.054(0.020) (0.021,0.105) | 0.055(0.021) (0.022,0.107)
Scenario 2: K-values K;=0.10 Ko =250 K3 =1.00 K, =10.30

18, Bo ~ N(—3.72,032-) B1 ~ N(O.?S,a?) Bg ~ N(4.24,0J2) Ps ~ N(—1.07, 0]2.)

o2 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.477(0.044)  (0.396,0.558) | 0.501(0.043) (0.418,0.587) | 0.500(0.043) (0.418,0.588)
Act 0.193(0.032) (0.132,0.268) | 0.226(0.035) (0.166,0.306) | 0.226(0.035) (0.166,0.308)
Opt 0.186(0.029)  (0.130,0.249) | 0.172(0.030) (0.125,0.245) | 0.171(0.031) (0.124,0.244)
Up, 0.201(0.048)  (0.209,0.385) | 0.329(0.039) (0.258,0.404) | 0.330(0.039) (0.258,0.404)
Uy 0.008(0.004)  (0.002,0.021) | 0.054(0.020) (0.021,0.104) | 0.055(0.021) (0.022,0.107)
Scenario 3: K-values K, =01 Ko =250 K5 =10.40 Ky=1.25

18, Bo~ N(=3.72,07) B ~N(0.78,07) 2~ N(2.30,07) 3~ N(-0.51,07)

o2 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.483(0.046)  (0.402,0.568) | 0.501(0.043) (0.418,0.588) | 0.500(0.043) (0.417,0.588)
Act 0.193(0.033) (0.129,0.265) | 0.226(0.035) (0.166,0.307) | 0.226(0.035) (0.166,0.307)
Opt 0.192(0.032)  (0.128,0.262) | 0.173(0.030) (0.125,0.245) | 0.171(0.031) (0.124,0.245)
Up, 0.201(0.052) (0.201,0.393) | 0.328(0.039) (0.257,0.404) | 0.330(0.039) (0.258,0.404)
Uy 0.002(0.001)  (0.000,0.006) | 0.053(0.020) (0.021,0.103) | 0.055(0.021) (0.022,0.107)
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Table S6: Posterior mean, standard error and 95% credible intervals of /] Bp and \TIBT fitting
a negative binomial regression model to mirror the AA clinical trial study. Data was generated
from a standard Poisson model with sample size of 460. Coefficients used for data simulation are:
Bo = —9.85, 81 = 2.20,83 = 5.33 and f[3 = —1.52.

Scenario 1: K-values K, =0.10 Ky, =2.50 K3 =1.50 K, =0.40

g, Bo~ N(=3.72,07) p1~ N(0.78,07) B2~ N(5.01,07) fs~ N(—-1.27,07)

0? 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.438(0.044) (0.349,0.517) | 0.464(0.040) (0.387,0.539) | 0.464(0.040) (0.387,0.539)
Act 0.179(0.029)  (0.122,0.248) | 0.205(0.031) (0.151,0.276) | 0.205(0.031) (0.151,0.276)
Opt 0.169(0.025)  (0.119,0.224) | 0.155(0.027) (0.111,0.220) | 0.154(0.027) (0.110,0.219)
Uy, 0.269(0.044) (0.191,0.344) | 0.308(0.037) (0.231,0.379) | 0.309(0.037) (0.232,0.381)
Up, 0.011(0.005)  (0.004,0.026) | 0.049(0.018) (0.019,0.093) | 0.051(0.019)  (0.020,0.094)
Scenario 2: K-values K;=0.10 Ko =250 K3 =1.00 K, =10.30

18, Bo ~ N(—3.72,032-) B1 ~ N(O.?S,a?) Bg ~ N(4.24,0J2) Ps ~ N(—1.07, 0]2.)

o2 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.439(0.044)  (0.349,0.519) | 0.464(0.040) (0.387,0.539) | 0.464(0.040) (0.388,0.540)
Act 0.179(0.029)  (0.121,0.247) | 0.205(0.031) (0.151,0.277) | 0.205(0.031) (0.151,0.277)
Opt 0.172(0.026)  (0.119,0.229) | 0.155(0.027) (0.111,0.221) | 0.154(0.027) (0.120,0.219)
Uy, 0.267(0.046) (0.187,0.344) | 0.308(0.037) (0.230,0.379) | 0.310(0.037) (0.232,0.380)
Uy 0.007(0.004)  (0.001,0.019) | 0.050(0.018) (0.020,0.093) | 0.051(0.019)  (0.020,0.094)
Scenario 3: K-values K, =01 Ko =250 K5 =10.40 Ky=1.25

18, Bo~ N(=3.72,07) B ~N(0.78,07) 2~ N(2.30,07) 3~ N(-0.51,07)

02 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI
soc 0.439(0.045)  (0.345,0.523) | 0.463(0.040) (0.387,0.540) | 0.464(0.040) (0.388,0.540)
Act 0.177(0.029)  (0.118,0.243) | 0.205(0.031) (0.150,0.276) | 0.205(0.031) (0.151,0.277)
Opt 0.176(0.028)  (0.118,0.239) | 0.156(0.027) (0.112,0.221) | 0.154(0.027) (0.110,0.219)
Uy, 0.264(0.049) (0.179,0.345) | 0.308(0.037) (0.230,0.379) | 0.310(0.037) (0.232,0.381)
Uy 0.001(0.001)  (0.000,0.006) | 0.050(0.018) (0.020,0.092) | 0.051(0.019) (0.020,0.094)
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Table S7: Confidence interval width and coverage probability comparison for our method and
Janes method using bootstrap: 1000 Monte Carlo each with 1000 sample size. Biomarker has a
standard uniform distribution U(0,1).

Estimate  Method 95% CI Width of CI Coverage
025 0.75 075 0.25 0.2353 Boot Nor.  (0.1990 , 0.2668) 0.0677 0.95
Boot Bas.  (0.1986 , 0.2672) 0.0686 0.95
Janes Emp. (0.1909 , 0.2739) 0.083 0.97
Janes Mod. (0.1954 , 0.3702) 0.0766 0.94
0.3456 Boot Nor.  (0.3189 , 0.3700) 0.0511 0.94
Boot Bas.  (0.3183, 0.3702) 0.0519 0.96
Janes Emp. (0.3059 , 0.3824) 0.0771 0.94
Janes Mod. (0.3101 , 0.3819) 0.0712 0.94
085 0.15 0.0595 Boot Nor.  (0.0275 , 0.0926) 0.065 0.94
Boot Bas.  (0.0254 , 0.0912) 0.0657 0.96
Janes Emp. (0.0231 , 0.1007) 0.0775 0.93
Janes Mod. (0.0316 , 0.0962) 0.0646 0.95
0.4286 Boot Nor.  (0.3943 , 0.4651) 0.0688 0.95
Boot Bas.  (0.3937 , 0.4636) 0.0699 0.96
Janes Emp. (0.3839 , 0.4741) 0.0901 0.95
Janes Mod. (0.3890 , 0.4716) 0.0826 0.93
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Table S8: Confidence interval width and coverage probability comparison for our method and
Janes method using bootstrap: 1000 Monte Carlo each with 1000 sample size. Biomarker has a
standard normal distribution N(0,1).

K, K, K3 K4 6, Method 95% CI CI Width Coverage
0.25 0.75 0.75 0.25 0.247 Boot Norm. (0.214, 0.279) 0.065 0.970
Boot Perc.  (0.215, 0.281) 0.066 0.970
Janes Emp. (0.205 , 0.287) 0.082 0.980
Janes Mod. (0.211 , 0.287) 0.076 0.960
0.10 0.90 0.90 0.10 0.348 Boot Norm. (0.322, 0.373) 0.051 0.940
Boot Perc.  (0.323 , 0.375) 0.052 0.940
Janes Emp. (0.309 , 0.386) 0.077 0.950
Janes Mod. (0.314 , 0.386) 0.072 0.940
0.10 0.55 0.90 0.45 0.441 Boot Norm. (0.406 , 0.476) 0.070 0.970
Boot Perc.  (0.406 , 0.477) 0.071 0.970
Janes Emp. (0.398 , 0.487) 0.089 0.980
Janes Mod. (0.401 , 0.486) 0.084 0.970
0.25 0.75 0.50 0.50 0.124 Boot Norm. (0.089 , 0.160) 0.072 0.980
Boot Perc.  (0.089 , 0.163) 0.073 0.970
Janes Emp. (0.081 , 0.167) 0.085 0.980
Janes Mod. (0.089 , 0.165) 0.075 0.980
0.90 0.45 0.10 0.55 0.125 Boot Norm. (0.102, 0.151) 0.049 0.960
Boot Perc.  (0.103, 0.153) 0.049 0.960
Janes Emp. (0.092 , 0.158) 0.066 0.970
Janes Mod. (0.098 , 0.155) 0.057 0.960
0.60 0.40 0.50 0.50 0.056 Boot Norm. (0.019, 0.098) 0.079 0.970
Boot Perc.  (0.026 , 0.105) 0.078 0.970
Janes Emp. (0.015 , 0.105) 0.090 0.970
Janes Mogys (0.025, 0.103) 0.078 0.960




