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Abstract

Statistical methods for evaluating predictive biomarkers' clinical utility, reproducibility

and sample size for speci�c study designs have been slow to develop in response to the surge

of need. In this dissertation, we propose three statistical methodologies: one is develop a

metric ΨB using Bayesian decision theoretic framework; the second is propose a sample size

estimation method (SWIRL); and the third is develop a reproducibility metric ∆r.

A metric ΨB which measures the decrease in the expected event rate as a result of pre-

dictive biomarker guided therapy is proposed using Bayesian decision theoretic framework

for a count clinical end point. Since Phase II data are usually small, maximum likelihood

based estimates are biased and ine�cient. This new metric, which also incorporates clin-

ician inputs in the form of a prior however, is informative in making a go-no-go decision

and the study design to choose for Phase III studies. Using toy simulation and a simulation

conducted to mimic asthma clinical trial study, we show the robustness of the method under

di�erent scenarios.

Sample size estimation methods that match the study design and the metric under con-



sideration are key in predictive biomarker clinical utility evaluation process. In this disser-

tation we propose a sample size estimation method, Squared Width Inversion Regression

Line (SWIRL). The SWIRL method is used to estimate a sample size n such that the 95%

con�dence interval width of the metric under consideration is smaller than a user de�ned

length (Wtarg). This is the �rst sample size method developed for estimating this target

predictive parameter.

During assay development and validation processes, an original clinically validated assay

is required to be modi�ed for a number of di�erent reasons. However, such modi�cation

invalidates the previous biomarker-outcome association studies and would force researcher

to re-run the previous studies under the modi�ed biomarker. This is time consuming and

expensive. Here, we propose a reproducibility metric ∆r which measures the impact of assay

modi�cation on patient outcome. A combination of both novel equations and simulations

were used to estimate ∆r and the associated 95% con�dence interval.

Index words: Decision Theory, Bayesian statistics, Hamiltonian Monte Carlo, Sample
size, Reproducibility, Asymptotic distribution, Predictive biomarkers
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Chapter 1

Introduction

Swift advancement in genome sequencing in the last few years is transitioning the "one size

�ts all" treatment model to the patient speci�c treatment model. In this transition stage

biomarkers in general and predictive biomarkers in particular have been playing key roles.

Predictive biomarker are biomarkers used to identify a subgroup of patients who are most

likely to bene�t from a given treatment. Treatment negative side e�ects and costs, however,

are avoided for the rest. However, even though the discovery of such biomarkers has been of

enormous interest in recent years, development of statistical methods to design studies and

assess their clinical utility and reproducibility have not kept pace.

Biomarker by treatment interaction test is still a common statistical method used for

evaluating predictive biomarker performance (Buyse, 2007, Taube et al., 2009, Freidlin et al.,

2010, Tajik et al., 2013). However, it has been shown to be inadequate method for evaluating

predictive biomarker clinical utility (Janes et al., 2011, Huang et al., 2012). Other frequentist

graphical methods and metrics have been suggested as alternatives in the past decade or so

(Song and Pepe, 2004, Gunter et al., 2007, Brinkley et al., 2010, Janes et al., 2011; 2014a).

Detailed review of these methods is in Chapter 2. All these methods however, assume the

drug was already approved and data are collected retrospectively to assess the biomarker
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clinical utility. Ideally one often wants biomarker clinical utility evaluation to be done at

the end of phase II clinical trial and make a go-no-go decision about whether the biomarker

can be used in phase III study designs.

However, at the end of phase II, data collected are usually small and result in maximum

likelihood based metrics which are biased and ine�cient (Casella and Berger, 2002, Lehmann

and Romano, 2006). On the other hand, it becomes customary to incorporate clinicians',

biomarker scientists' and other experts' knowledge about the biomarker performance in the

evaluation process. Further, drug negative side e�ects and monetary costs associated with

the treatment need to be quanti�ed since they a�ect patients' decision making. The �rst

part of this dissertation is aimed at developing a metric ΨB used for assessing clinical utility

of a predictive biomarker at the end of phase II study using Bayesian decision theoretic

framework. This metric measures the decrease in the expected event rate as a result of

predictive biomarker guided treatment. We focus here on a clinical trial with a count primary

endpoint motivated by a phase II asthma clinical trial study.

During biomarker clinical utility evaluation process, developing a sample size estimation

method that corresponds to the study design and the metric under consideration is key.

Under a slightly di�erent scenario and assumptions for a binary clinical endpoint, Janes et.

al developed the metric Θ (Janes et al., 2014a). This metric measures the decrease in the

proportion of unfavorable outcomes under biomarker guided treatment. However, there is no

sample size estimation method developed for this metric. In Chapter 4 of this dissertation, we

�rst develop novel alternative equations to estimate Θ and propose a sample size estimation

method, Squared Width Inversion Regression Line (SWIRL). SWIRL methods are used to

estimate a sample size n so that the 95% con�dence interval mean width for Θ is less than

a user de�ned target width (Wtarg). R program is made available for its implementation.

A typical biomarker development and validation process follows three stages which are

often interdependent (Ball et al., 2010). Stage one is about the technical development and
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assay analytical validation process (Swanson, 2002). Stage two (middle stage) is quali�cation

process to assess evidence of association between the biomarker and the outcome of interest

(Williams et al., 2006, Koulman et al., 2009). The last stage focuses on clinical validation of

the biomarker which is often a contextual analysis (Williams et al., 2006, Ball et al., 2010).

For a number of di�erent reasons initially promising biomarkers are required to be modi�ed

in the middle stage before moving to the �nal stage of clinical validation. However, such

modi�cation invalidates any previous studies of biomarker-outcome association and forces

researchers to re-run the investigation under the modi�ed biomarker. This process however is

costly and time consuming and leaves many promising biomarkers in a dead end. In Chapter

5 of this dissertation, we develop a metric ∆r which is used to directly estimate the impact

of the modi�ed biomarker on the metric of interest (Θ) using reproducibililty study.

In this dissertation, we aimed to propose three statistical methodologies: one is developing

a metric ΨB using Bayesian decision theoretic framework; the second is proposing a sample

size estimation method SWIRL; and the third is developing a reproducibility metric ∆r.

1.1 Motivating examples

1.1.1 Phase II asthma clinical trial study

Asthma is a chronic in�ammatory disease of the airways with marked heterogeneity in the

clinical course and in response to treatment (Bel, 2004, Wenzel, 2006, Siddiqui and Brightling,

2007). Despite treatment with inhaled corticosteroids (ICSs), and other controller medica-

tions, a substantial proportion of patients continue to have uncontrolled asthma (Bateman

et al., 2004, Corren et al., 2011). Consequently, part of the current high unmet medical

need in asthma is uncontrolled disease that persists despite conventional treatment with

guidelines-based standard-of-care therapy, which includes ICS therapy plus a second con-

troller medication (Hanania et al., 2015). The Phase II clinical development plan to develop
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drug AA was designed to test the e�cacy and safety of AA in this patient population with

uncontrolled asthma who have high unmet medical need. The primary end point of the

study was the rate of asthma exacerabations over 52 weeks. Asthma exacerbation is de�ned

as new or increased asthma symptoms that led to treatment with systematic corticosteroids

or to hospitalization.

With small a data set collected from phase II study and prior information from the

experts, the object is to assess the clinical utility of the predictive biomarker BMK and make a

go-no-go decision on the study design for phase III. Existing statistical methods (Byar, 1985,

Song and Pepe, 2004, Buyse, 2007, Janes et al., 2014a) have drawbacks: (1) they are designed

for a binary clinical end point and (2) they are all frequentist methods and do not include

prior information in the analysis. To overcome this gap we propose a statistical method

for assessing the clinical utility of the predictive biomarker BMK using Bayesian decision

theoretic framework where the clinical endpoint is a count. Even though demonstration of

the method is done here using the Asthma clinical trial study, it is applicable for a more

general context.

1.1.2 Oncotype DX predictive biomarker

Oncotype DX test is a genomic test that analyzes the activity of a group of 21 genes from

a breast cancer tissue sample that can a�ect how a cancer is likely to behave and respond

to treatment. Most early-stage, estrogen-receptor-positive, HER2-negative breast cancers

that haven't spread to the lymph nodes are considered to be at low risk for recurrence.

After surgery, hormonal therapies such as tamoxifen are prescribed to reduce the risk that

the cancer will come back in the future. Whether or not chemotherapy also is necessary

has been an area of uncertainty for patients and their doctors, especially for women with

cancer that had spread to just one, two, or three lymph nodes. The Oncotype DX test was

designed to o�er more information to help women and their doctors make decisions about
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chemotherapy. The Oncotype DX test results assign a Recurrence Score, a number between

0 and 100. A score less than 18 indicates that the cancer has a low risk of recurrence. That

is the bene�t of chemotherapy is likely to be smaller and will not outweigh the risks of side

e�ects. If the score is ≥ 31 the cancer has a high risk of recurrence, and the bene�ts of

chemotherapy are likely to be greater than the risks of side e�ects (Karapetis et al., 2008,

Gluz et al., 2016).

A metric Θ which measures the decrease in an unfavorable event rate under marker

guided treatment has been widely advocated as a global predictive biomarker clinical utility

measure (Gunter et al., 2007, Song and Pepe, 2004, Janes et al., 2011, Brinkley et al., 2010,

Janes et al., 2014a). However, there is no sample size calculation method that can be used

to guide a study design for evaluating the biomarker clinical utility performance. To close

this gap, we �rst developed novel equations and algorithms to get an estimate for Θ and

proposed the SWIRL sample size estimation method.

1.1.3 Ki67 reproducibility study

An initially clinically validated biomarker X may be modi�ed to biomarker W for a number

of di�erent reasons. This however, invalidates previous study results of the biomarker clinical

utility performance. In breast cancer research, for example, the marker Ki67 has a potential

use for prognosis, prediction and response monitoring (Dowsett et al., 2011, Goldhirsch et al.,

2011, Yerushalmi et al., 2010, Viale et al., 2008). Ki67 is a nuclear proliferation marker used

to determine the growth fraction of a given cell population. Despite the apparent utility

of Ki67, it has been less used due to the lack of reproducibility in measuring it (Harris

et al., 2007). To set a standard guide for Ki67 analysis, Polley et al. (2013) conducted a

reproducibility study. A total of one hundred breast cancer cases where measured in eight

di�erent labs and each had a score for Ki67 recorded.

In the study published by Polley et al. (2013), intraclass correlation coe�cient (ICC) was
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used as a measure of reproducibility. However, if the objective is to assess the biomarker

clinical utility, existing reproducibililty metrics alone can not be used for two main reasons.

First, a high value of ICC between two biomarkers does not guarantee that the clinical

utility of the two biomarkers will be the same when assessed using the metric Θ. This claim

is shown to be true from our simulation studies as depicted in Figure 2.2. Second, assessing

the clinical utility of the marker using Θ, we need to observe the outcome Y as well. So,

when the biomarker is modi�ed to W , to directly evaluate the clinical utility performance

of W one has to wait to observe the outcome. However, waiting to observe the outcome

Y under the modi�ed biomarker W is costly and time consuming. This problem stymies

the development of many initially encouraging biomarkers. To solve this, we propose a new

reproducibility metric ∆r which measures the di�erence in Θ when the modi�ed biomarker

W is observed instead of X without the need to wait to observe the outcome Y .

1.2 Research questions and objectives

The phase II asthma clinical trial is a typical example where with a small information about

the biomarker one needs to make a decision before moving to phase III. The oncotype DX

biomarker also exemplify a situation where the metric Θ can be used to evaluate the clinical

utility of the biomarker but without the appropriate sample size needed for it. In this

dissertation, we aimed to propose three statistical methodologies. Speci�cally we propose

a metric ΨB using Bayesian decision theoretic framework to address the problems listed in

the asthma phase II clinical trial study. To deal with the problems of sample size estimation

that correspond the metric Θ we propose the SWILR sample size estimation method.

The rest of this dissertation is organized as follows. In chapter 2, we provide the literature

review for predictive biomarker clinical utility, reproducibility and sample size estimation

statistical methods. Chapter 3 introduce the proposed predictive biomarker utility evaluation
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metric ΨB using Bayesian decision theoretic framework and its application using a simulation

study done to mimic the phase II asthma clinical trial study. Our proposed sample size

estimation method SWIRL is presented in Chapter 4. In Chapter 5 we study the proposed

reproducibility metric ∆r and provide the R program for its implementation. Summarizing

the �ndings and outlining the future research work, this dissertation concludes in Chapter

6.
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Chapter 2

Literature Review

The phase II asthma clinical trial poses an important question. With a small data set and

prior information from expert, how do we proceed to evaluate the predictive biomarker's

clinical utility performance and recommend a study design for phase III. On the other hand,

when one wants to design a study to evaluate the clinical utility performance such as that

of the Oncotype DX, what sample size should be used to guarantee us enough power? The

Ki67 study, also poses an important research question regarding reproducibility study. A

brief review of the literature regarding statistical methods for evaluating clinical utility and

reproducibility of predicitive biomarkers and sample size estimation methods associated will

be given in this chapter.

2.1 Log Linear Models and Bayesian Methods

2.1.1 Poisson Distribution

The number of occurrences of an event during a �xed time period is modeled using count

data. Count data are encountered commonly in medical and public health research studies

and frequentist statistical methods are typically used to make estimations and inferences
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(Du et al., 2011, Lu et al., 2014). Poisson distribution is popular for modeling count data

under three key assumptions: (a) the probability of an event is proportional to the length

of the interval, (b) the number of events between non-overlapping intervals is independent

and (c) for a given small sub-interval, either only one event occurs or no events occur at

all. For a given outcome Y with a mean µ, the probability mass function of the Poisson(µ)

distribution is:

P (y = y|µ) =
e−µµy

y!
y = 0, 1, 2, ... (2.1)

such that

E(Y ) = µ (2.2)

V(Y ) = µ

2.1.2 Regression Models for Count Outcome

The Poisson regression model for count outcome is a special case of the generalized linear

models (GLM) as detailed in (Nelder and Baker, 1972, McCullagh, 1984). Let the n obser-

vations y1, y2, ..., yn be a realization from an independent Poisson random variable such that

Yi ∼ Pois(µi). Further lets assume the mean (µi) depends on the covariates represented by

a vector of xi and is written as a simple linear model as, µi = x′iβ. Using generalized linear

model with a log link function, the log linear model (Poisson regression model) is �nally

written as:

log(µi) = x′β (2.3)
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Estimation of the β coe�cients is then done using principles of maximum likelihood by

writing the likelihood function for the n independent Poisson observations as:

L(β;Y) =
n∏
i=1

{
e−µiµyii
yi!

}
(2.4)

Ignoring the constant involving log(yi!) and taking the logs , log-likelihood function is

log L(β;Y) =
n∑
i=1

{yilog(µi)− µi} (2.5)

Since µi is written as a function of xi and parameters β, to get the mle estimates β̂ we take

the �rst derivatives of the log likelihood function of equation (2.5) and set them equal to

zeros.

2.1.3 Overdispersion in Count Data

One common problem encountered when modeling count data is a phenomena called overdis-

persion. Overdispersion occurs when there are more zeros than expected from a an ordinary

Poisson model (McCullagh, 1984, Jang et al., 2010). When this happens, the equality of

mean and variance assumption of the Poisson regression model is violated and hence the

inference that follows becomes invalid. Ideas for adjusting the probabilities of excess zeros in

Poisson regression models date back to (Johnson and Kotz, 1969). The zero-in�ated Poisson

(ZIP) model (Lambert, 1992) and Poisson hurdle (PH) model (Mullahy, 1986) are commonly

used as alternatives when there are excess zeros in the model. The observed excess zeros

can be sampling zeros and/or structural zeros. Sampling zeros are zeros that are part of

the Poisson distribution, and it is assumed these zeros are observed by chance. Whereas

structural zeros arise due to a particular structure in the data set (Hu et al., 2011, Hua

et al., 2014). The probability mass function of Y given π and µ can be written as:
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Pr(Y = y|π, µ) =


π + (1− π)eµ if y = 0

(1− π) e
−µ µy

y!
if y > 0

(2.6)

where π represent the probability that the observed zero is from the zero-in�ated stage and

µ represent the mean for the Poisson count stage provided the observed value is not a zero

in�ated.

From equation (2.6) one can clearly see that, the ZIP regression model has two stages:

the zero-in�ation stage and Poisson count stage. Depending on the problem at hand, the

covariates in a given data set can be used in both stages to estimate the parameters π and µ

simultaneously. Commonly loglinear and logit models are used to relate the covariates with

the parameters π and λ. To get the maximum likelihood estimators, similar to the standard

Poisson regression model detailed above, one has to write the log-likelihood function of for

equation (2.6), take the �rst derivatives with respect to the parameters and equate them to

zero.

2.1.4 Bayesian Methods

Bayesian and frequentist methods overall fall within the same framework. Both approaches

assume there is a population parameter θ that we want to make inference about and a

likelihood distribution f(y|θ) that determines how likely is one to observe y given θ. The

key di�erence is while θ is considered as �xed in frequentist methods, in Bayesian θ is treated

as random with probability distribution g(θ).

Bayesian methods in additional to the ease of estimation allow us to incorporate prior

information in the analysis by specifying a prior distribution to θ. Bayesian methods have

increased in popularity since the past twenty years due to advances in the methodology,
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notably the Markov Chain Monte Carlo and the computation power. In Bayesian methods,

the focus is on the posterior distribution π(θ|y) which is the likelihood f(y|θ)
f(y)

and the prior

g(θ) product and is written as :

π(θ|y) =
f(y|θ)g(θ)

f(y)
(2.7)

where

f(y) =

∫
θ

f(y|θ)g(θ)dθ (2.8)

and is called the marginal likelihood. The marginal likelihood does not depend on θ and is

considered as a normalizing constant so that π(θ|y) is proper probability density (Winkel-

mann, 2008). Computing the denominator of equation (2.7) is di�cult and becomes more

intractable when θ is multivariate. However, when the joint posterior distribution and the

prior distribution both are from the same family distribution, a closed form solution of equa-

tion (2.7) is possible. The is a situation which is commonly called conjugacy and such a

prior is know as conjugate prior (Rai�a, 1974, DeGroot, 2005).

When the posterior distribution π(θ|y) of equation (2.7) is complex and a closed form

solution does not exist, a stochastic simulations method such as Monte Carlo approaches is

used. For a multivariate θ we get a joint posterior which is high dimension where generating

independent samples becomes non trivial. But we can rather use Markov Chain Monte Carlo

(MCMC) methods to draw dependent samples.

MCMC methods are a very powerful tool to approximate arbitrary probability distri-

bution and their derivations without the need to know the normalization term. MCMC

methods even though they have been around as long as the Monte Carlo techniques, their

importance has been felt truly late (1990s) in the �eld of statistics (Gelfand and Smith,

1990, Andrieu et al., 2003, Robert and Casella, 2011, Geyer, 2011). In Bayesian analysis the
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distribution of interest, i.e, the posterior distribution is often non-standard or so complex

that we can not directly sample from it (Gilks et al., 1995). Therefore MCMC methods are

used to draw samples from an alternative distribution and then accept certain samples while

rejecting others in order to approximate the distribution of interest (Carlin and Louis, 2008,

Klauenberg and Elster, 2016). This procedure usually produces samples that are dependent

which are often called Markov chain. There are di�erent MCMC methods of which the

Metropolis-Hastings, Gibbs sampler and Hamiltonian Monte Carlo (HMC) are common. A

brief history of the development of Meropolis-Hastings and Gibbs sampler algorithms can

be found in (Tierney, 1994, Robert and Casella, 2011). The Metropolis-Hastings algorithm,

for example, starts by �rst choosing a proposal distribution q. Typically this distribution is

chosen in such a way that it is easy to sample from directly and is a great approximation

for the distribution of interest f . In pseudocode, the Metropolis-Hastings algorithm can be

written as (Robert, 2004):

Algorithm 1 Metropolis-Hasting algorithm
1: select the proposal distribution q

2: choose initial value X0

3: for i=0,1,.....

• sample point Y from q(./Xi)

• Take Xi+1 = Y with probability α(Xi, Y )

• Xi+1 = Xi otherwise

where α(Xi, Y ) = min(1, f(Y )q(Xi/Y )
f(Xi)q(Y/Xi)

)

Another commonly used MCMC method is the Gibbs sampler which has gained a surge

of popularity with Geman and Geman paper (1984) where they used it for image processing

models (Geman and Geman, 1987, Casella and George, 1992, Molenaar, 1997). Gibbs sam-
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pler generated a random variable from a marginal distribution indirectly without needing

to calculate the density using full conditional distributions that are often from the known

statistical distributions (Spiegelhalter et al., 1996, Molenaar, 1997, Lynch, 2007).

Metropolis-Hasting algorithm and Gibbs Sampler, though among the commonly used

MCMC methods, have some di�culty when implementing them. One notable issue with

Metropolis-Hastings algorithm is the choice of a proposal density as the success or failure

of the algorithm depends on it. If the proposal is too narrow for example only the mode of

the target distribution might be visited and on the other hand , choosing a wide proposal

density would result in higher rate of rejection and hence high correlation (Andrieu et al.,

2003, Carlin and Louis, 2008). As Gibbs samples needs a full conditional distribution spec-

i�cation, it is not always straightforward to obtain proper conditional densities and attain

convergence(Casella and George, 1992). Instead one can use Hamiltonian Monte Carlo which

is faster and can generate less correlated samples (Shahbaba et al., 2014, Brooks et al., 2011).

2.2 Predictive Biomarkers

Biomarkers that predict treatment e�cacy hold great potential for improving clinical out-

comes and decreasing medical costs. Treament selection biomarkers are sometimes called

"predictive"(Sargent and Allegra, 2002, Simon and Maitournam, 2004, Simon, 2008) or "pre-

scriptive" (Gunter et al., 2007) markers. If a predictive biomarker can identify which patients

are likely to bene�t from a treatment, assignment of the treatment can be limited to this

subgroup of patients. Such an approach will prevent the remaining group of patients the

needless and potentially toxic and costly therapy (Janes et al., 2015).

The Oncotype DX recurrence score, for example, is used to identify a subgroup of women

who are unlikely to bene�t from Chemotherapy following breast cancer surgery (Harris et al.,

2016). Similarly, KRAS status is used to identify colorectal cancer patients likely to bene�t
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from Epidermal growth factor receptor (EGFR ) inhibitor treatment (Amado et al., 2008,

Mehta et al., 2010). From Figure 1, we can see that patients with a lower biomarker value

will be better o� if they avoid treatment assuming the outcome is measuring probability

of unfavorable outcome. However, study designs and evaluation methods that assess the

e�cacy of the predictive biomarker need to be developed �rst, before, the biomarker is used

in a clinical decision making.

Figure 2.1: Shows the probability of a bad outcome under a given treatment. The marker positivity

threshold is the point where treatment need to be switched. According this picture, subjects with

smaller biomarker values should be advised not take treatment. This is a theoretical biomarker.

2.3 Basic Notations

Let A be a given treatment, A = 1 if a subject is assigned to a treatment group and A = 0 if

assigned to a placebo or standard of care (soc) group. Further lets assume the primary clinical

endpoint is binary and is denoted by Y , such that, Y = 1 represents unfavorable outcome
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(death or recurrence of a disease) and Y = 0 otherwise. Additionally let, X represent a

predictive biomarker which is measured at baseline for each subject. The biomarker X can

be categorical or continuous. However, throughout this dissertation we will assume X is

continuous and has a known probability density function given by f(x).

The natural approach to represent the relationship between the outcome Y and the

covariates (A and X) along the interaction term (A ∗X) is using multiple logistic regression

model as:

Ln

[
Pr(Y = 1|A,X)

1− Pr(Y = 1|A,X)

]
= β0 + β1X + β2A+ β3AX. (2.9)

where β = (β0, β1, β2, β3) are the logistic model parameters.

Evaluation of predictive biomarker's clinical utility is often times done by testing the null

hypothesis of no biomarker by treatment interaction (Byar, 1985, Buyse, 2007, Taube et al.,

2009, Freidlin et al., 2010, Tajik et al., 2013). From equation (2.1), this will be to test :

Ho : β3 = 0 Ha : β3 6= 0 (2.10)

However, the interaction test though a necessary condition, fall short of being a su�cient

condition for evaluating biomarker's clinical utility (Janes et al., 2011, Huang et al., 2012).

Two predictive biomarkers X1 and X2 �tted using equation (2.1) can have the same β3 but

perform di�erently. The scale of β3 also depends on the functional formal of the model under

consideration and measurement unit of the biomarker. This makes biomarker comparison

even more challenging (Huang et al., 2012). There are also settings where the biomarker by

treatment interaction is not signi�cant but the biomarker can be instructive (Song and Pepe,

2004). Additionally, interaction test being an indirect measure, is not easily understood by

non-statistician and make conveying the message to broader audience di�cult.

Song et. al (2004) proposed a graphical display, the selection impact(SI) curve which can
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be estimated using parametric and nonparametric methods. The curve shows the proportion

of people who respond to a given treatment as a function of a given predictive biomarker

based treatment selection criteria. Lets assume the treatment policy is given in such a way

that a patient is treated ifX > c and not treated ifX ≤ c, whereX is the patient's biomarker

value. The proportion of people who respond to a given treatment is then calculated as :

θ = P [Y = 1|(X > c and A = 1) or (X < c and A = 0)] (2.11)

= P [Y 1 = 1|X > c]P [X > c] + P [Y 0 = 1|X < c]P [X < c]

where Y 1 and Y 0 represent the case of observing the outcome when A = 1 or A = 0

respectively. The value of θ obtained from equation (2.11) above measures the proportion

of patients who show the outcome of interest when the treatment policy is implemented as

per the biomarker based criteria.

Brinkley et al. (2010) developed a generalized estimator of attributable bene�t for an

optimal treatment regime. First an algorithm was de�ned to assign treatment to patients

according to their bimarker value in such a way that;

gopt(x) = I{P (Y = 1|A = 1, X)− P (Y = 1|A = 0, X) < 0} (2.12)

Based on equation (2.12), an individual with baseline biomarker value would be assigned to

A = 1 if P (Y = 1|A = 1, X) < P (Y = 1|A = 0, X), else assign the individual patient to

A = 0. The I in equation (2.12) indicates a binary indicator for the treatment assignment.

After determining the optimal treatment regime, the attributable bene�t for a given gopt(x)

is then obtained as:

ABopt = 1− P{Y ∗(gopt(x)) = 1}
P (Y = 1)

(2.13)

17



where Y ∗(g(x)) represent the potential outcome and P (Y = 1) denotes the current default

treatment. ABopt measures the the proportion events that could have been avoided had we

used the optimal treatment as in equation (2.12) to assign treatment to individuals.

Using a similar potential outcome framework, Huang et al. (2012), developed an optimal

rule for classifying individuals to the available treatment options and methods for evaluating

continuous treatment selection markers. Let D = Y (0) − Y (1), represent an individual

patient's treatment bene�t, where Y (0) and Y (1) are the potential outcomes associated

with a subject being assigned to no treatment and treatment respectively. When being on

treatment does not make a di�erence, D = 0, otherwise D = 1 when Y (0) > Y (1). Using a

Bayes' theorem, for a given biomarker value X, the ratio of risks in the no treatment over

the treatment is shown to be:

P (X|D = 0)

P (X|D = 1)
=
P (D = 0|X)P (D = 1)

P (D = 1|X)P (D = 0)
=

P (D = 1|X)

1− P (D = 1|X)

P (D = 1)

P (D = 0)
(2.14)

Under a monotone treatment e�ect assumption from equation (2.4),an optimal X can

be found such that it maximizes the classi�cation accuracy. After obtaining the optimal

X, Huang et al. (2012) proposed a constrained maximum likelihood method to estimate the

parameters in the risk model they de�ned which is similar to the one in equation (2.1). How-

ever, despite the progresses made in developing statistical methods for predictive biomarker

evaluation, there was not a uni�ed framework to achieve the intended purpose.

Janes et al. (2014a) proposed a comprehensive statistical framework for predictive biomarker

evaluation. Their framework which included both descriptive summary measures and infer-

ential methods is a comprehensive tool for individual biomarker evaluation and candidate

biomarker comparisons. The descriptive summary measures of (Janes et al., 2014a) are re-

lated to the sub population treatment e�ect pattern plot of (Bonetti and Gelber, 2004) and

others (Royston and Sauerbrei, 2004, Cai et al., 2010). However, Janes et al. (2014a) use
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percentile scaling of the biomarker to make comparison of candidate markers easy.

The comprehenesive biomarker evaluation metric proposed by Janes et al. (2014a) mea-

sure the decrease in the expected event rate resulting from marker guided treatment and is

represented as Θ. This metric is closely related to those previously proposed by (Song and

Pepe, 2004, Gunter et al., 2007, Janes et al., 2011, Qian and Murphy, 2011, Brinkley et al.,

2010, Janes et al., 2014a). Following similar procedures as those of Song and Pepe (2004),

Brinkley et al. (2010), Huang et al. (2012), for a given biomarker X the absolute treatment

e�ect is given as: ∆(X) = P (Y = 1|A = 0, X)− P (Y = 1|A = 1, X). The treatment rule is

then set in such a way that if ∆(X) < 0 the subject would be assigned to treatment and to

placebo otherwise. Subject with ∆(X) < 0 are referred as marker negative and those with

∆(X) > as marker positive. For a given speci�c treatment rule (∆(X)), average bene�t

among the marker negative is given as:

Bneg = P (Y = 1| A = 1,∆(X) < 0)− P (Y = 1| A = 0,∆(X) < 0) (2.15)

= E(−∆(X)| ∆(X) < 0)

and proportion of subjects who can forego treatment is written as:

Pneg = P (A = 0) (2.16)

The metric Θ which measures the decrease in the event rate that resulted from marker guided

treatment is then calculated as:

Θ = P (Y = 1|A = 1)− [P (Y = 1| A = 1,∆(X) > 0)P (∆(X) > 0) + (2.17)

P (Y = 1| A = 0,∆(X) < 0)P (∆(X) < 0)]

= [P (Y = 1| A = 1,∆(X) < 0)− P (Y = 1| A = 0,∆(X) < 0)]P (∆(X) < 0)
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= Bneg ∗ Pneg

Janes et al. (2014a) then used empirical and model based methods to get an estimate of Θ̂

and which is given by:

Θ̂e = B̂e
neg ∗ P̂neg (2.18)

= E(−∆̂(X)| ∆̂(X) < 0) ∗ E(−∆̂(X)| ∆̂(X) > 0)

and

Θ̂m = B̂m
neg ∗ P̂neg (2.19)

=

∫
(−∆̂(X) I[∆̂(X) < 0)] dF̂∆

such that P̂neg is the proportion of marker negative subjects and F̂∆ is the CDF of ∆(X).

2.4 Sample size for predictive biomarker study design

Parallel to developing a metric for the purpose of evaluating a predictive biomarker the task

of determining a sample size n is equally important. Even though the estimation of Θ starts

with a logistic regression as given in equation (2.1), the functional form used to get the

�nal estimate for Θ is di�erent. Therefore, existing sample size estimation methods used

for logistic regression (Whittemore, 1981, Hsieh, 1989, Demidenko, 2007; 2008) can not be

used directly. For a multiple logistic regression with an interaction term, similar to equation

(2.1), Demidenko (2008) suggested a sample size calculation formula for testing, Ho : β3 = 0

vs H1 : β3 6= 0 as;

n =
(Z1−α

2
+ Zp)

2

β2
3

V (2.20)
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The major step in calculating sample size using equation (2.20) involves computing V in

terms of the regression coe�cients β0 to β3 given in equation (2.1). Let A = eβ0 , B = eβ1 ,

G = eβ2 and K = eβ3 . Additionally let px = Pr(X = 1|Z) and pz = Pr(z = 1). Assuming

treatment assignment is dependent of the biomarker value, let

P (X = 1|Z) =
ec+δz

1 + ec+δz
(2.21)

Given D = eδ and C = ec, we can further write

1− px =
pZ

1 + CD
+

1− pz
1 + C

(2.22)

Letting q = px(1 +D) + pz(1−D) − 1), we can write equation (2.16) in terms of C as

C =
q +

√
q2 + 4px(1− px)D
2(1− px)D

(2.23)

Finally an an estimate for V is obtained as; V = 1
L

+ 1
R

+ 1
F

+ 1
J
. The quantities L,R, FandJ

are de�ned as follows:

L =
A(1− pz)

(1 + A)2(1 + C)

R =
ABCDGKpz

(1 + ABGK)2(1 + CD)

F =
ABC(1− pz)

(1 + AB)2(1 + c)

J =
AGpz

(1 + AG)2(1 + CD)

(2.24)

This method of calculating the sample size needed to test the interaction coe�cient needs

nine parameters to be speci�ed by the user. Additionally there are two main di�erences in

the assumptions used from the logistic regression model of equation (2.1). One, this model

assume a binary covariate for the biomarker not a continuous and second this model does

not assume the independence of treatment assignment and biomarker value. Therefore, even

if we want to calculate a sample size n that guarantee enough power to test Ho : β3 = 0
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vs H1 : β3 6= 0, this will not serve the desired objective of calculating n for Θ. Sample

size calculation for a quantitative variable and groups interaction for cox proportial hazard

model was developed by Lachin (2013). This method however depends on weak asymptotic

properties and does not work well often.

Janes et al. (2015) set four criteria choosing n so that biomarker clinical utility evaluation

can be done from a given trial. These four criteria are:

Criterion 1 (Power for Interaction): for a given α-level of no treatment-biomarker

interaction test the study to have a 1− β1 power.

Criterion 2 (Detecting Improved Outcomes): This is to ensure that the lower bound

(LB) of (1− α2) % CI for Θ lies about 0 with high probability,i.e,

Pr(LB > 0|Θ = Θa, H0 rejected) ≥ 1− β2

Criterion 3 ( Precision Estimation of Improved Outcomes: this is to ensure that we

have enough power such that Θ is estimated with high precision.

Pr(|Θ̂−Θa| ≤ ε1|Θ = Θa, H0 rejected) ≥ 1− β4 for a speci�ed ε > 0

Criterion 4 (Errors in Treatment Rule): this criteria is to make sure that the treatment

e�ect among the marker negative is su�ciently small, i.e,

Xt = arg maxY : ˆ∆(X)<0∆(X), P (∆(Xt) < ε2|Θ = Θa, H0 rejected) ≥ 1− β4.

These criteria set by Janes et al. (2015) however, do not provide any direct sample size

calculation formula or algorithm for the parameter of interest Θ. Additionally, these criteria

are set under the assumption that biomarker evaluation is a secondary study objective rather

than being primary and lead to a very large sample size. To �ll this gap of sample size cal-

culation for the metric Θ, in this dissertation we are proposing the Squared Width Inversion

Regression Linear (SWIRL) method. The SWIRL method of sample size determination for

Θ works in such a way that the 95% con�dence interval width of of Θ is less than a user

de�ned length (Wtarg).
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2.5 Reproducibility Metrics for Predictive Biomarkers

For a binary clinical endpoint, predictive biomarker clinical utility can be quanti�ed strongly

by using the metric Θ. For a given assay say X, Θ will de�ne the reduction in the expected

event rate that results from a biomarker guided treatment in comparison to the default

(biomarker unguided) treatment. However, an initially validated assay like X is required to

be modi�ed say to an assayW for di�erent reasons such as (1) reducing preparation cost, (2)

migrating the assay platform, (3) simplify preparation methods and so on. In such an event,

waiting to observe the outcome associated with the modi�ed assay W is costly and time

consuming as well. This hinders the discovery of many initially promising biomarker since

clinical performance of the modi�ed assay can not be achieved using existing reproducibility

metrics.

One of the most widely used measure of reproducibility between two measurements is the

product-moment correlation coe�cient (ρ). Let the standard deviations associated with the

original assay X and the modi�ed assay W be σx and σw respectively. Then the correlation

coe�cient ρ = cov(X,W )
σxσw

. However, ρ measures the strength of the association between two

measurements rather than the agreement between them (Bland and Altman, 1986, Müller

and Büttner, 1994). Two observations which seem to have poor agreement can produce a

correlation coe�cient which is high (Serfontein and Jaroszewicz, 1978).

Another method which is commonly misused to measure the reproducibility between two

measurements is linear regression(Altman and Bland, 1983). Often testing the hypothesis

for slope equal to one gives a misleading conclusion. This is similar to testing the correlation

coe�cient equal to zero since the β̂(slope) = rxw
sx
sw
, where rxw is the correlation coe�cient

(X, W ), sx and sw are the standard deviations for X and W respectively. A highly repro-

ducible results could result in rejecting to the null (slope=1) due to small standard error

and vice versa when the data is more scattered (Lawrence and Lin, 1989, Obuchowski et al.,
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2015).

The Bland-Altman plot or sometimes called the di�erence plot, is another graphical

method which is widely used to compare the agreement of two measurements (Bland and

Altman, 1986; 1999). This method plots the di�erence between the two measurements

against the average value of the measurements. In scenarios where one is a known "gold

standard" method, the di�erences are plots against the gold standard (Krouwer, 2008).

Using the Bland-Altman plot, lack of agreement is summarized by calculating the bias and

standard deviation of the di�erences. Let d̄ and s to be the mean and standard deviation of

the di�erences between the two measurements. Assuming the di�erences follow a Gaussian

distribution, 95% of the di�erences will lie within d̄ ±1.96∗ s√
n
. The upper and lower bound

of the interval are referred as limits of agreement and a di�erence which falls within this

interval would be considered clinically not signi�cant.

In medical �elds the concordance correlation coe�cient (CCC) and intraclass correlation

coe�cient (ICC) are by far the most commonly used reproducibility metrics. The CCC was

�rst developed by Lin (1989). For i = 1, 2, ..., n pair of samples (Xi1,Wi1) which are sampled

independently from a bivariate normal with means µx and µw and covariance matrix given

by

 σ2
x σxw

σxw σ2
w

 (2.25)

The CCC between X and W is then calculated as the expected value of their squared

di�erence as:

E[(X −W )2] = (µx − µw)2 + (σ2
x + σ2

w − 2σxw) (2.26)

= (µx − µw)2 + (σx − σw)2 + 2(1− ρ)σxσw
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One notable feature of of the CCC is it contains both measures of accuracy and precision

which are two key characteristics of reproducibility. CCC does not only measure the strength

of the association but also the degree of departure from the 45o line. Even though the

original CCC was developed to assess the repreducibility of two measurements only, later it

was expanded by Chen and Barnhart (2008).

Assessment for reproducibility of measurements between labs, technicians or devices in bio

medical research is also commonly done using intraclass correlation coe�cient (ICC)(Bartko,

1966, DONNER, 1979, Gisev et al., 2013). The original ICC which began with the work

of(Fisher, 1925) has been based on the one-way analysis of variance (ANOVA). From one-way

anova study design, ICC can be calculated as

ICC =
σ2
b

σ2
b + σ2

e

(2.27)

where σ2
b is the between subject variability and σ2

e is the within subject variability. This

original design of ICC which is commonly referred as ICC1 was further extended to ICC2

and ICC3 based on two-way ANOVA with and without interaction respectively (Bartko,

1966, Shrout and Fleiss, 1979, McGraw and Wong, 1996).

However, all the reproducibility metrics mentioned above; pearson correlation coe�cient,

regression line, Bland-Altman plot, CCC and ICC are not appropriate for the our purpose.

The main point with all these being, though they can assess the reproducibility between X

and W , none of them can evaluate how Θ value will change when the original assay is X

is modi�ed to W . High value of ICC between X and W can not be directly translated to

mean W can replace X.
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Figure 2.2: Shows the relationship between ICC and the parameter of interest Θ1. X is assumed

to be the gold standard biomarker and the modi�ed assay is W , where W = X +U .The error term
U ∼ N (0, σ2

e), where we considered di�erent value of σ2.

From Figure 2.2 above, it is clear that ICC alone can not capture the e�ect of the assay

modi�cation on Θ, which is our metric of biomarker clinical utility performance. Let Θx

be a measure of the decrease in the proportion of event rate that resulted from biomarker

guided treatment when the observed assay is X. Since the outcome Y associated with X

is observed, Θx estimation can be done following Janes et al. (2014a) procedures or the

modi�ed equations we developed in this dissertation. However, since the outcome associated

with the modi�ed assay W is not observed, Θw can not be directly estimated. In this

dissertation, we developed a reproducible metric ∆r which captures the di�erence in Θ when

the modi�ed assayW is observed. Implementation of of our method is demostrated using the

reproducibility data KI67. An R package (RMPB) which stands for Reproducibility Metric

for Predictive Biomarerks is also made available.
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Abstract

Maximum likelihood based estimators for evaluating the clinical utility of a predictive biomarker

in early phase (I and II) clinical trials are biased and ine�cient since they depend on large

sample asymptotic properties. Further it is customary to include prior information about the

biomarker performance, and costs associated with treatment as part of the analysis. This pa-

per proposes a Bayesian decision theoretic framework for evaluating a predictive biomarker

with a count end point. A metric ΨB which measures a decrease in the expected event

rate as a result of marker guided treatment was developed and adjustment for zero in�ated

scenarios were studied. Bayesian credible interval was constructed to quantify uncertainty

of the proposed metric ΨB. Toy simulation studies were �rst used to assess the robustness

of this metric under di�erent scenarios followed by a simulation done to mimic the phase II

clinical trial conducted by Genentech to develop a drug for the treatment of Asthma.

Keywords : Decision theory; treatment selection biomarker; biomarker clinical utility;

bayesian analysis
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3.1 Introduction

Existing predictive biomarker evaluation methods are frequentist and retrospective in design

(Song and Pepe, 2004, Brinkley et al., 2010, Janes et al., 2011). They assume the drug

was already approved and data is collected thereafter to assess whether or not a particular

biomarker could be utilized to guide treatment in the future. However, one would often want

the biomarker evaluation to be done at the end of phase II and make a go-no-go decision

whether or not to include the biomarker as part of the drug development plan. If the decision

is in favor of including the biomarker, a subgroup of patients in Phase III would not receive

the treatment because it does not bene�t them (Janes et al., 2011, Baker and Kramer, 2015).

This in return will result in better e�cacy reports and higher approval chance for the drug

under consideration.

Data available during phase II clinical trials are usually small and the resulting maximum

likelihood based estimators are often biased and ine�cient since they depend on large sample

asymptotic properties (Casella and Berger, 2002, Lehmann and Romano, 2006). Further,

the con�dence intervals constructed from the maximum likelihood based methods are often

misrepresented as probabilities that the unknown parameter of interest will be included in

the interval, though this interpretation of the con�dence interval aligns with the Bayesian

view (Liu and Powers, 2012, Gelman et al., 2014). In this paper, a metric ΨB, used for

quantifying clinical utility of a predictive biomarker during early phases of clinical trials

is developed under Bayesian decision theoretic framework. Prior information about the

biomarker performance and costs associated with a given treatment( negative side e�ect of

the drug and monetary costs) are also included as part of the evaluation process.

The past few years has seen great hope and optimism in the shift from the one-size-�ts-all

treatment of a disease with drugs to a treatment which is restricted only to the subgroup of

patients deemed to bene�t from it. The task of identifying those likely to bene�t from the
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available treatment is mainly based on one or more biomarker measures obtained from each

patient (Ru et al., 2011, Bossuyt and Parvin, 2015). These biomarkers commonly called

treatment selection markers or predictive biomarkers (Janes et al., 2011, Baker and Kramer,

2015) in addition to helping patients get e�ective treatment, also help to minimize medical

costs and improve the approval chance of a clinical drug in pipeline development. In an

era where evidence-based decisions are predominant, a meaningful quantitative measure for

the performance of a treatment selection marker is of paramount importance. Commonly,

predictive biomarker evaluation involves testing for the relationship between the outcome

and the marker by treatment interaction (Green, 1982, Yusuf et al., 1991, Buyse, 2007,

Freidlin et al., 2010). However, statistical signi�cance of an interaction test, is not a su�cient

condition by itself to make a conclusion about the clinical utility of a biomarker (Janes et al.,

2011, Huang et al., 2012).

Alternative assay performance metrics were developed in the last two decades such as the

selective impact curve (Song and Pepe, 2004), Attributable Bene�t (Brinkley et al., 2010),

and the metric Θ (Janes et al., 2011). These metrics however, are derived retrospectively

from phase III prospective Randomized Clinical Trials (RCTs) and don't take existing com-

pelling evidence about the biomarker's clinical utility performance into consideration, nor

does this paradigm �t as part of a drug development plan. Therefore, developing a metric

that quanti�es the clinical utility of an assay prior to phase III is of great importance. Hav-

ing a metric to assess the assay performance prior to phase III, would help one to restrict

treatment to patients who are likely to bene�t from it during phase III randomization and

produce better treatment e�cacy results of the molecule under study.

Steve et al. (1978) introduced a decision analysis framework in clinical settings in the

1970s. Decision theory allows one to make use of both quantitative and qualitative inputs to

make logically reproducible decisions (Ball et al., 2010). Decision analysis requires the person

in charge of making the decision to break down the components of the decision into parts
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and clearly specify the assumptions involved. The list of all available choices is then charted

in to a decision tree. Decision tree is graphical representation for all the possible decisions

made and their possible consequences. Finally, mathematical models are used to evaluate

the likely outcomes of each choice. When using biomarker information to assign treatment,

the decision one has to make is binary in nature, i.e, either to treat or not treat a subject.

Using an appropriate mathematical model, one then can assess the risk associated with

each decision and make the appropriate choice. The aforementioned predictive biomarker

performance metrics all involve parameter estimation which is a decision theory problem

since one has to select a particular value from a set of possible values. However, these

methods do not take the prior belief or information one has about the performance of the

assay under consideration.

A Bayesian decision theoretic framework, can help address many of the common con-

cerns that arise in the process of evaluating the clinical utility of a predictive biomarker.

Clinicians, assay developers and others who have expertise working with the molecule under

consideration may have more information to provide about the assay performance than what

is available in the data at hand. A key feature of the Bayesian approach is its ability to incor-

porate the subjective belief one has as part of the analysis in the form of a prior. Choosing

a prior is daunting and there is not a straightforward procedure for this. However, if the

existing information is used appropriately to construct the prior, the parameter estimates

obtained from the Bayesian method are contained within a reasonable range of values and

help the stability of MCMC algorithm used for Bayesian inference (Korner-Nievergelt et al.,

2015, Brooks et al., 2011). In our setting, we bring into play the best scienti�c guess of the

experts to construct our priors. A set of equations is developed �rst to change the clinician

inputs to model parameters which were used as centers of the prior distributions considered.

These beliefs are later updated using data collected during Phase II to develop the posterior

metric used to assess the clinical utility of the predictive biomarker.
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In this paper, we propose a Bayesian decision theoretic framework design for evaluating

the clinical utility of a predictive biomarker prior to phase III and develop a metric used

to quantify the net bene�t of this biomarker. This metric (Ψ) which we termed Bayesian

Biomarker Net Bene�t (BBNB) measures the decrease in the expected unfavorable event

rate as a result of biomarker guided treatment. This metric is closely related to the one

developed by Janes et al. (2011) but permits wider range of loss functions and incorporates

existing belief as prior during estimation. Even though, the development in this paper is

done assuming a count endpoint, extensions to scenarios with continuous, binary or time to

event could follow directly. In dealing with count data, overdispersion is a typical problem,

overdispersion adjustment using the zero-in�ated Poisson and negative binomial models were

further considered.

3.2 Motivational Context

Asthma is a chronic in�ammatory disease of the airways with marked heterogeneity in the

clinical course and in response to treatment (Bel, 2004, Wenzel, 2006, Siddiqui and Brightling,

2007). Despite treatment with inhaled corticosteroids (ICSs), and other controller medica-

tions, a substantial proportion of patients continue to have uncontrolled asthma (Bateman

et al., 2004, Corren et al., 2011). Consequently, part of the current high unmet medical

need in asthma is uncontrolled disease that persists despite conventional treatment with

guidelines-based standard-of-care therapy, which includes ICS therapy plus a second con-

troller medication (Hanania et al., 2015). The Phase II clinical development plan to develop

drug AA was designed to test the e�cacy and safety of AA in this patient population with

uncontrolled asthma who have high unmet medical needs. The primary end point of the

study was the rate of asthma exacerabations over 52 weeks. Asthma exacerbation is de�ned

as a new or increased asthma symptoms that led to treatment with systematic corticosteroids
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or to hospitalization. Our objective here is to propose a statistical method for assessing the

clinical utility of the predictive biomarker BMK using a Bayesian decision theoretic frame-

work. Even though demonstration of the method is done here using the Athma clinical trial

study, it is applicable in a more general context.

3.3 Settings and Notations

Let the outcome of interest be Y, asthma exacerbation rate ( average number of asthma

exacerbations over a time period t) which is a count, such that, Y ∈ {0, 1, 2, ...}. Further

let the input variables be represented by a vector x such that x = (x1,A) where x1 denote

the biomarker BMK level measure taken at baseline from each subject and A denote the

treatment assignment such that A = 1 if the subject is assigned to active treatment and

A = 0 otherwise. Additionally, θ ∈ Θ will represent the parameter subspace that relates the

outcome Y with the inputs x. The natural approach to represent the relationship between

the outcome Y and the vector of input x is through a log linear model, which can be written

as,

ln{E(Yi|Xi, Ai)} = β0 + β1Xi + β2Ai + β3XiAi (3.1)

such that i = 1, 2, .......n where n represent the number of subjects in the study. To address

the problem at hand through the principles of decision theory, one �rst needs to thoroughly

de�ne the three spaces which are core to decision theory (Robert, 2007, Berger, 2013). The

true state of the world, the decision space and the consequence of a particular action. Let

Θ represent the space for the true state of the world, D for the decision space and R for the

consequence of the action. These three spaces together are linked by a loss L function which
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is de�ned as:

L : Θ×D 7→ R (3.2)

Clearly, a loss function L is a benchmark used for assessing a possible act δ ∈ D, for

a given true state of the world θ ∈ Θ. The loss function then takes values in the space

of consequences R. The objective of the problem therefore is to minimize the loss L, by

choosing an optimal decision δ∗, which is de�ned as,

δ∗ := argmin
δ∈D

IE[L(θ, δ)] (3.3)

In Bayesian context we pre-specify a prior distribution for θ ∈ Θ. Applying the principles

of decision theory, let L(θ, δ) be the loss only due to the increase in the expected number of

exacerbations in the asthma condition. If we let δT represent the decision made to assign all

subjects to treatment, then the loss associated with this decision can be written as,

L(θ, δT ) = E[Y |X1, A = 1] (3.4)

= µT (x)

µT (x) is the mean exacerbation rate to be calculated from the log linear model of equation

(3.1) when subjects are assigned to treatment group and θ = (β0, β1, β2, β3). Similarly, loss

function associated with the decision to assign all subjects to the placebo (standard of care),

can be written as,

L(θ, δP ) = E[Y |X1, A = 0] (3.5)

= µP (x)
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where µP (x) is the mean exacerbation rate to be calculated from the log linear model of

equation (1) when subjects are assigned to placebo. After clearly specifying the loss and

decision functions, the Bayesian risk functions is �nally de�ned as:

RB(π(θ), δ) =

∫
Θ

∫
Y
L(θ, δ)p(y|θ)π(θ)dydθ (3.6)

where L(θ, δ) will be the expected loss, p(y|θ) is the likelihood function of the long linear

model in equation (3.1) with mean given by µ(x) and π(θ) is the prior distribution for the

unknown states of the world.

3.4 Non-crossing Risk Curves

In many clinical trial settings, a simple endpoint like exacerbation rate does not fully cap-

ture the consequences associated with the treatment. Treatment related toxicity and cost

incurred from the treatment play a key role in making a �nal decision when evaluating the

clinical utility of a predictive biomarker. The aforementioned two factors and others have

an important in�uence in making an optimal treatment decision and optimal decision about

how to design the phase III trial. In the simplest case, all the treatment related costs can be

assumed to be constant, say c, regardless of individual subject's biomarker values. However,

this can further be extended in an event where there is enough evidence to suggest that treat-

ment related toxicity is dependent on subject's biomarker value. Figure 3.1 demonstrates

a scenario where treatment related costs was set to constant (c =0.25). The plot in the

left shows risk curve of each treatment arm without taking the treatment related costs into

account, but plot on the right show the same risk curves with treatment linked costs taking

in to consideration. Looking at the left plot, one can conclude that no matter the biomarker

value of the subject, one would decide to treat all the subjects. However, if we look at the
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plot in the right which takes the drug negative side e�ect and cost in to consideration, the

optimal decision would be to recommend treatment only for subject with a biomarker value

above the 50th percentile value.

Figure 3.1: Risk curves for each treatment arm as a function of biomarker percentile value.

The left-hand plot shows risk curves estimated without taking the treatment related cost into

consideration while the right-hand plots takes the treated related cost into account. Treatment

related cost was assumed to be constant regardless of the subjects biomarker value and was set to

c=0.25. This cost was added only for those subjects assigned to the treatment group.

3.5 Optimal Treatment Decision Rule

Let the loss function L associated with the decision δT and the slope parameters of the log

linear model β be written as,

L(β, δT ) = E[y] (3.7)

= ExE[Y |x,A = 1]

=

∫
{exp{β0 + β1x+ β2A+ β3xA}}f(x)dx
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where βs are obtained either using frequentis or Bayesian approach, f(x) is the probability

distribution of the biomarker X and the constant c is used to quantify the cost and negative

side e�ect of the drug. Similarly the loss function associated with the decision δP can be

written as,

L(β, δP ) = E[Y ] (3.8)

= ExE[Y |x,A = 0]

=

∫
{exp{β0 + β1x}}f(x)dx

From equations 3.8 and 3.9 above, one can see that, the loss associated with the decision to

assign subjects to treatment group is equal to the loss associated with the decision to assign

subjects to placebo group if and only if,

{β2 + β3x} = 0

From equation(3.10), assuming β3 > 0, a subject will be better o� if he/she is assigned to

treatment provided that X < −β2
β3

and to placebo if X ≥ −β2
β3

. when β3 < 0 treatment

assignment will be the reverse. Therefore, the optimal decision δopt which minimizes the

expected loss is written as:

L(β, δopt) =

∫
X1

{exp{β0 + β1x+ β2A+ β3xA}}f(x)dx (3.9)

+

∫
X0

{exp{β0 + β1x}}f(x)dx

where δopt is the optimal decision, X1 ∈ {X : X < −β2
β3
} and X0 ∈ {X : X ≥ −β2

β̂3
}.
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3.6 Biomarker Net Bene�t (BNB)

Here we de�ne a new metric, Biomarker Net Bene�t (BNB), which will be represented by Ψ.

The metric Ψ measures the decrease in expected event rate as a result of using an optimal

decision rule δopt which has a value in the positive real line, i.e, Ψ ∈ [0,∞]. If the expected

loss function L(β̂, δ) is estimated using a frequentist approach, we will call it Frequentist

Biomarker Net Bene�t (FBNB) and represent it by ΨF . However, when Bayesian approach

is used to estimate the expected loss function, we will call it Bayesian Biomarker Net Bene�t

(BBNB) and represent it as ΨB. In this section we will lay out the steps for estimating ΨB.

Depending on the default treatment, BBNB can be estimated as,

Ψ̂BP = L(β̂B, δP )− L(β̂B, δopt) (3.10)

when the default treatment is to assign all subjects to placebo (standard of care), and

Ψ̂BT = L(β̂B, δT )− L(β̂B, δopt) (3.11)

when the default treatment is to assign all subjects the current active treatment. The

subscripts B,P and T represents for Bayesian, Placebo & Treatment. Here we will �rst

demonstrate how to get the Bayesian estimates of the slope parameters β̂s and then proceed

to show the derivations for Ψ̂BP and Ψ̂BT respectively.

3.6.1 Bayesian For Count Data

Maximum likelihood (MLE) estimators are appealing and in common use as they have the

necessary asymptotic properties. Such estimators are assumed to be consistent, e�cient, and

have a normal distribution as the sample size n → ∞ (Casella and Berger, 2002, Lehmann

and Romano, 2006). However, it not uncommon to see such assumptions being violated
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because the sample size is small. Early phase (I and II) clinical trials, for example, are

usually small. Further, maximum likelihood methods naturally quantify uncertainty of the

MLE by constructing con�dence intervals which are often misinterpreted as probabilities

that the unknown parameter of interest will be contained within the interval.

However, this con�dence interval interpretation is rather inline with the Bayesian view

(Carlin and Louis, 2010, Liu and Powers, 2012, Gelman et al., 2014). Bayesian analysis

methods, in additional to incorporating prior information in the analysis, address the afore-

mentioned drawbacks of the maximum likelihood methods by allowing us to write the full

joint probability distribution of all the parameters of interest that takes into consideration the

various sources of uncertainty which provides a commonsense interpretation of the Bayesian

credible intervals (Gelman et al., 2014).

3.6.1.1 Bayesian For Standard Poisson Regression Model

Here we �rst layout the Bayesian framework for the Standard Poisson Regression(SPR) model

(without overdispersion). Using a SPR model, the relationship between our outcome variable

Y and the input variables X &A is expressed as in equation (3.1). Let λ(x) = x′β, µ(x) =

eλ(x), y ∼ Pois(µ(x)), where, x = {x1,A}, such that x1 = {xi1, ......, xn1} represents the

predictive biomarker measured at baseline for each subject and A the treatment assignment,

such that, A = 1 if a subject is assigned to treatment and A = 0 if assigned to the standard

of care.

The likelihood function associated with the SPR model is then written as:

L(β;Y) =
n∏
i=1

{
e−e

x′iβ e(x′iβ)yi

yi!

}

Introducing independent Gaussian priors on the slope parameters of the SPR model, such

that, βj ∼ N (µβj , σ
2
βj

), where j = 0, ..., p, the joint probability distribution function of β is
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given as:

π(β) =

p∏
j=0

 1√
2πσ2

βj

e

{
−(βj−µβj )

2

2σ2
βj

} (3.12)

where β is a vector of length p such that p represents the number of parameters the SPR

model of equation(1). Finally given data {x,y}, using Bayes' rule, the unstandardized joint

posterior distribution of β is proportional to:

π(β|x, y) ∝ f(y|x, β)π(β) (3.13)

∝
n∏
i=1

{
e−e

x′iβ e(x′iβ)yi

yi!

}
p∏
j=0

 1√
2πσ2

βj

e

{
−(βj−µβj )

2

2σ2
βj

}
3.6.1.2 Bayesian For Zero In�ated Poisson Regression Model

When modeling a count data, it is not uncommon to encounter data with an excess of zeros.

These data are usually called zero-in�ated (ZI) outcome data. With ZI outcome data the

number of observed zeros is greater than one would expect from a standard Poisson model

(Jang et al., 2010). This in turn leads to violation of the common Poisson model, where the

variance is equal to the mean. As a result, the zero-in�ated Poisson (ZIP) model (Lambert,

1992) and Poisson hurdle (PH) model (Mullahy, 1986) have been developed to overcome

the di�culties that arise from the ZI outcome data. When the outcome data contains both

excess sampling zeros and structural zeros, ZIP models are typically used. Sampling zeros

are zeros that are part of the Poisson distribution, and it is assumed these zeros are observed

by chance. Whereas structural zeros arise due to a particular structure in the data set (Hu

et al., 2011, Hua et al., 2014) such that asking person the number of cigarettes he/she smoked

in the past week though that person is not a smoker. In this subsection we lay out the steps

to obtain a Bayesian estimates of the slope parameters for a ZIP regression model. When
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dealing with ZI count data, one can think of the observed counts as two di�erent outcomes:

(1) those which are in�ated ( more than those expected) zeros and (2) those which are in

agreement with the underlying Poisson distribution. The probability mass function of Y

given π and λ can be written as:

Pr(Y = y|π, λ) =


π + (1− π)e−λ if y = 0

(1− π) e
−λ λy

y!
if y > 0

(3.14)

where π represent the probability that the observed zero is from the zero-in�ated stage and

λ represents the mean for the Poisson count stage provided the observed value is not zero

in�ated. From equation (3.14) one can clearly see that, the ZIP regression model has two

stages: the zero-in�ation stage and Poisson count stage. Depending on the problem at hand,

the covariates in a given data set can be used in both stages to estimate the parameters π

and λ simultaneously. Commonly loglinear and logit models are used to relate the covariates

with the parameters π and λ. In this particular case, assume all the covariates are used to

in estimating π and λ, such that,

log(λ) = x′1β1 = β10 + β11X + β12A+ β13XA

log(
π

1− π
) = x′2β2 = β20 + β21X + β22A+ β23XA

With a little algebric simpli�cation, we can express the equations above and write λ = ex
′
1β1

and π = ex
′
2β2

1+ ex
′
2β2

. The likelihood function for the random variable Y ∼ ZIP (λ, π) is �nally

expressed as

f(Y |β1, β2) =
m∏
i=1

{
ex
′
2β2

1 + ex
′
2β2

+

(
1 − ex

′
2β2

1 + ex
′
2β2

)
e−e

x′1β1

}
(3.15)
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×
n∏

i=k+1

{(
1 − ex

′
2β2

1 + ex
′
2β2

)
e−e

x′1β1 (ex
′
1β1)yi

yi!

}

where from the n total number of observations, the �rst m subjects who responded have

zero value and the rest have nonzero values. To proceed with Bayesian analysis, one �rst

needs to elicit a prior distribution for the β1 and β2 coe�cients. If an independent Gaussian

prior is assumed for each coe�cient of β1 and β2 such that, β1j ∼ N (µβ1j , σ
2
β2j

) and β2j ∼

N (µβ2j , σ
2
β2j

) , then we can write the joint prior distribution as:

h(β1,β1) =
3∏
j=0

 1√
2πσ2

β1j

e

{
−(β1j−µβ1j )

2

2σ2
β1j

}
3∏
j=0

 1√
2πσ2

β2j

e

{
−(β2j−µβ2j )

2

2σ2
β2j

}
(3.16)

Using the likelihood function in equation (3.15) and the joint prior distribution functions

given equation (3.16), applying Bayes rule, the unstandardized joint posterior distribution

for a ZIP regression model written as:

g(β1,β2|Y) ∝
k∏
i=1

{
ex
′
2β2

1 + ex
′
2β2

+

(
1 − ex

′
2β2

1 + ex
′
2β2

)
e−e

x′1β1

}
(3.17)

×
n∏

i=k+1

{(
1 − ex

′
2β2

1 + ex
′
2β2

)
e−e

x′1β1 (ex
′
1β1)yi

yi!

}
×

3∏
j=0

 1√
2πσ2

β1j

e

{
−(β1j−µβ1j )

2

2σ2
β1j

}
3∏
j=0

 1√
2πσ2

β2j

e

{
−(β2j−µβ2j )

2

2σ2
β2j

}
A closed form solution for equation (3.13) and equation (3.17) is analytically unobtainable

because of the lack of conjugacy between the standard Poisson likelihood function and the

Gaussian priors as well as between the ZI Poisson likelihood function and the Gaussian prior.

Instead we will use a Markov Chain Monte Carlo (MCMC) methods called Hamiltonian

Monte Carlo (HMC) to get the posterior mean estimates and the 95% credible intervals
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(CIs) of the β′s which in turn are used to estimate our metric of interest Ψ.

3.6.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) algorithm that

avoids the random walk behavior and sensitivity to correlated parameters that plague many

MCMC methods by taking a series of steps informed by �rst-order gradient information

(Ho�man and Gelman, 2014, Brooks et al., 2011). To implement Hamiltonian Monte Carlo,

one �rst needs to write the Hamiltonian which is an energy function for the joint state of

"position", q, and "momentum", p as:

H(q, p) = U(q) +K(p) (3.18)

where U(q) is the potential energy and K(p) is the kinetic energy. Further q and p are

assumed to be independent and each has a canonical distribution. In what follows we will use

q to represent the variable of interest, and p will be introduced to implement the Hamiltonian

principle. In the Bayesian context, the posterior distribution of the model parameters is the

target of the analysis. These parameters take the position of q and using the potential

energy concept we can express the posterior distribution as a canonical distribution U(q) =

−log[π(q)L(q/D)], where π(q) is the prior density, and L(q/D) is the likelihood function

given data D. The kinetic energy K(p), is mainly taken to be the negative log probability

density of a Gaussian distribution with mean zero and convariance matrix, M and is written

as

K(p) =
pTM−1p

2
(3.19)
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where M is a symmetric, positive-de�nite "mass matrix". The partial derivatives of H(q, p)

determine how q and p change over time, according to Hamiltonian equations:

dq

dt
= [M−1pi] (3.20)

dpi
dt

= −∂U
∂qi

To implement HMC on the computer, we �rst need to approximate the Hamiltonian

equations by discretizing time into increments of ε, where ε is small. Let the Hamiltonian

be H(β, w) = U(β) +K(w) where we replace q by β and p by w to re�ect the parameters of

interest and the moment variables respectively. Further assume that M is a diagonal matrix

with diagonal elements given as m1, ...md, which leads to K(w) =
∑d

i=1
w2
i

2mi
. Approximate

solutions for systems of di�erential equations are better obtained using the leap-frog method:

wi(t+ ε/2) = wi(t) + (ε/2)
∂U

∂βi
β(t) (3.21)

βi(tε) = βi(t) + ε
wi(t+ e/2)

mi

wi(t+ ε) = wi(t+ ε/2)− (ε/2)
∂U

∂βi
β(t+ ε)

where the derivatives with respect to time are obtained from equation(3.20). The basic idea

here is, if we start with βi(0) and wi(0) at t = 0, we can use equation (3.21) above iteratively

to get the trajectory values of position and momentum at times ε, 2ε, ..., and the �nal values

for β(τ) and w(τ). The total number of steps then will be τ
ε
. Let β(i) be the current value

of the parameter β. The leap-frog Hamiltonian Monte Carlo algorithm is:
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Algorithm 2 Hamiltonian Monte Carlo algorithm
1: Sample w ∼ Nd(0, D) . where D is the covariance Matrix

2: Using leapfrog method, simulate Hamiltonian dynamics on location β(i) and momentum

w for L steps with stepsize ε. Let these updated value be β∗ and w∗.

3: set β(i+1) = β∗ with probability min{1, r(β(i), β∗)} such that

r(β(i), β∗) =
p(β∗|y
p(β(i)|y

p(w∗

p(wi)

=
p(y|β∗)p(β∗)
p(y|β(i))p(β(i))

Nd(w∗; 0, D)

Nd(w(i); 0, D)

Otherwise set β(i+1) = βi.

3.6.3 Prior Elicitation From Clinician Inputs

One of the major concerns when �tting a Bayesian model is prior elicitation. Here we outline

�rst how the best clinician guesses or inputs can be converted into hyperparameters which

are incorporated during prior elicitation. Lets say K1, K2, K3 and K4 are expected asthma

exacerbation rates given the 25th and 75th percentile value of the biomarker for the standard

of care and active treatment groups respectively. The K values re�ect the best judgment of

the experts about the likely outcome of the disease under consideration give the predictive

biomarker value. Further, letting Z1 and Z2 representing the 25th and 75th percentile value

of the biomarker, with a little algebra manipulation, we can use the following equations to

get the Poisson model parameters (Details of the derivation is given in Appendix A.0.3).

β0 =
K1 ∗ Z1 −K1 ∗ Z2

Z1 − Z2

(3.22)

β1 =
K1 −K2

Z1 − Z2

β2 =
K1 ∗ Z2 −K2 ∗ Z1 −K3 ∗ Z2 +K4 ∗ Z1

Z1 − Z2
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β3 =
K2 −K1 +K3 −K4

Z1 − Z2

where ln(K1) = β0+β1Xz1 , ln(K2) = β0+β1Xz2 , ln(K3) = β0+β2+(β1+β3)Xz1 and ln(K4) =

β0 + β2 + (β1 + β3)Xz2 . Priors of the normal distribution centered around the β′s obtained

from the above equations were used. To assess the e�ect of variance speci�cation on the

main parameter of interest ΨBP , priors were elicited from being vague to more informative.

Vague priors are priors with a high variance used to express the probability mass is spread

out over a large plausible values instead of concentrating in speci�c values. On the other

hand, informative priors are priors with a smaller variance express a strong belief one has

about the parameters of interest before the data collection.

3.6.4 Estimation of ΨB (BBNB)

Assume the default treatment is "treat none (standard of care)". After getting the estimated

β̂ values as posterior means applying the Bayesian framework method mentioned in detail

in the previous subsections (5.1 and 5.2), we can use equation (3.10) to get an estimate of

the BBNB (ΨBP ) as:

Ψ̂BP = L(β̂B, δP )− L(β̂B, δopt) (3.23)

=

∫
{exp{β̂0 + β̂1x}}f(x)dx−

{∫
X1

{exp{β̂0 + β̂1x+ β̂2A+ β̂3xA}}f(x)dx

}
−
∫
X0

{exp{β̂0 + β̂1x}}f(x)dx

=

∫
X1

{exp{β̂0 + β̂1x}}f(x)dx−
{∫
X1

{exp{β̂0 + β̂1x+ β̂2A+ β̂3xA}}f(x)dx

}
=

∫
X1

{
exp{β̂0 + β̂1x} −

{
exp{β̂0 + β̂1x+ β̂2A+ β̂3xA}+ c

}}
f(x)dx

where L refers to the loss incurred for a given β̂B, δ a treatment decision, β̂B posterior mean

estimates of βs' , f(x) the probability density function of the biomarker under study and
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X1 ∈ {X : X < −β2
β3
} provided β3 > 0. If we assume, for example, the biomarker under study

has a U [a, b], then equation (3.23) can be simpli�ed further to have a closed form as:

Ψ̂BP =

∫ d

a

{
exp{β0 + β1x} − exp{β̂0 + β̂1x+ β̂2A+ β̂3xA}

} 1

b− a
dx

=
1

b− a

{[
eβ̂0+dβ̂1

β̂1

− eβ̂0+aβ̂1

β̂1

]
−

[
eβ̂0+β̂2+d(β̂1+β̂3)

β̂1 + β̂3

− eβ̂0+β̂2+a(β̂1+β̂3)

β̂1 + β̂3

]}

such that β1 6= 0, (β1 + β3) 6= 0 and d = −β2
β3

. d is the cut-o� value used under the

optimal treatment rule as obtained in equation (3.9). Similarly, when the biomarker under

consideration has a N (µ, σ2) distribution, Ψ̂BP is obtained as:

Ψ̂BP =

∫
X1

{
exp{β̂0 + β̂1x} − exp{β̂0 + β̂1x+ β̂2A+ β̂3xA}

}
f(x)dx

=

∫
X1

{
exp{β̂0 + β̂1x} − exp{β̂0 + β̂1x+ β̂2A+ β̂3xA}

} 1√
2πσ2

e
−(x−µ)2

2σ2 dx

When the default treatment is "treat all", an estimates of the Ψ̂BT which can be obtained

following similar steps is provided in Appendix.

3.7 Simulation Study

To demonstrate our method, we used two di�erent simulation studies. The �rst is a toy-

simulation while the second a simulation that was done to mimic the phase II clinical trial

conducted by Genentech to develop drug AA for the treatment of asthma. For the toy-

simulation, we generated data from the standard Poisson regression model of equation (3.1).

This simulation was done under the following scenarios:

• Randomization was 1 : 1;

• Biomarker was assumed to have a know probability distribution: Uniform or Normal;
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and

• Di�erent biomarker performance scenarios (see Figure 3.2): Strong , moderate and

weak.

Figure 3.2: Plots showing the expected event rate of each treatment arm for a given biomarker

and di�erent combination of K values. For the plot in the left (strong biomarker), K1 = 0.6,K2 =
3.5,K3 = 3.5 and K4 = 0.6. The plot in the middle (moderate biomarker) has K1 = 0.6,K2 =
3.5,K3 = 2.5 and K4 = 1.5 while the plot in the left (weak biomarker) has K1 = 0.6,K2 = 3.5,K3 =
0.8 and K4 = 3.0. The biomarker is assumed to have a standard uniform distribution.

For the purpose of specifying the priors, we considered di�erent sets of the K values and

converted them into the β′s using equation (3.22). These β′s in turn were used as mean

values when we speci�ed a normal prior for each parameter of the model. The variances

of the priors were set in such a way that they re�ect a weak and strong prior belief of the

clinicians about the performance of the biomarker under consideration before data collection.

A weak prior belief was re�ected in our simulation studies by assigning a large variance to

each of the normal priors we considered and vise versa to show a strong prior belief.

Our second simulation was conducted to mimic the phase II clinical trial study conducted

by Genentech to develop drug AA used for the treatment of asthma. As per the protocol

of the study we used 1:1 randomization to assign half of the subject to placebo and the
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rest half to treatment (taking any of the the three doses of drug AA). A biomarker was

generated from a normal distribution to mirror the log of the BMK biomarker measured at

baseline for each patient. BMK was the predictive biomarker under consideration to assign

treatment for patients with uncontrolled Asthma. It was previously claimed that drug AA

works more e�ectively for patients with high pretreatment BMK values (Corren et al., 2011).

The high-BMK subgroup was de�ned as patients with baseline BMK level greater or equal

to the median value. By specifying the β′s that mimic results of the phase II clinical trial, we

generated data from a standard Poisson regression model. To set the normal priors we took

into consideration the results of the previous study when setting up the K values and used

di�erent variances to re�ect the clinician belief on the performance of the BMK biomarker

as predictive biomarker.

Regardless of the prior picked, conducting a sensitivity analysis to assess the e�ect of

elicitation of di�erent priors and other features of the model on the posterior inferences

is a customary practice when �tting models using Bayesian methods to assess robustness.

In the context of our method, we investigated the sensitivity of the metrics Ψ̂BT and Ψ̂BP

using three di�erent approaches. In the �rst case, we considered a range of values for the

hyperparameter σ2
βj

associated with each βj, such that, j = 1, ..., p, where p is the number

of coe�cients in the model and computed the posterior means and the 95% credible interval

(CI) for Ψ̂BT and Ψ̂BP . In case two, we centered the priors at di�erent values and computed

the posterior means and 95% CIs for Ψ̂BT and Ψ̂BP . Finally, as over-dispersion is a common

phenomenon when �tting a Poisson regression models, we assessed how robust the estimated

mean posterior values of Ψ̂BT and Ψ̂BP can be during over/under dispersion. For this purpose,

we compared the Bayesian estimates of Ψ̂BT and Ψ̂BP under standard Poisson, zero-in�ated

Poisson and negative binomial regression models.
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3.8 Results

Results of the �rst simulation are presented in Table 3.1 where the biomarker was assumed to

have a U(0, 1) distribution. In all the toy simulations conducted, a sample size of n = 350,

5000 iterations with 4 chains was used. Three di�erent scenarios were taken to re�ect

the prior belief of the experts by specifying di�erent combination of K-values. These K-

values were chosen in such a way that they show a strong, moderate and weak biomarker

performance. As stated previously, we used a Gaussian prior for each of the coe�cients with

a mean speci�ed by converting the Ks to βs. To assess the e�ect of the variance assigned

to each coe�cient, we investigated three di�erent cases: in case 1 σ2
β = 0.5; case 2 σ2

β = 10

and case 3 σ2
β = 100. Under a strong biomarker performance assumption (scenario 1) we

set K1 = 0.6, K2 = 3.5, K3 = 3.5 and K4 = 0.6. Further setting σ2
β = 0.5 in order to

re�ect a more informative prior, the posterior mean and standard error of Ψ̂BP and Ψ̂BT

were estimated to be 0.603(se = 0.079) and 0.549(se = 0.072) with their respective 95%

credible intervals given by (0.460, 0.766) and (0.419, 0.679). In Table 3.1, in addition to

the poster mean estimates, standard error and credible intervals for Ψ̂BP and Ψ̂BT , three

other estimated metrics are presented. The soc (standard of care) refers to the posterior

estimated mean even rate when all the subjects are assigned to the control arm regardless

of their biomarker values. The act (active treatment) when all subjects are assigned to

treatment arm and the opt (optimal treatment) when subjects are assigned treatment based

on their biomarker value. Further to make sure that the posterior estimated means are not

far from what one would expect, we �rst simulated a large data set of sample size 10,000 and

estimated Ψ̂P and Ψ̂T (0.584 and 0.506 respectively). Similarly under the prior belief only

Ψ̂P and Ψ̂T were calculated to be (0.687 and 0.691 respectively). If we look at scenario 1 of

Table 1, when σ2
β = 0.5 for example, as one would expect Ψ̂BP and Ψ̂BT have values that fall

between what one can get using only the data and the prior belief. As it can be seen from
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Table 3.1, as the prior becomes less informative (σ2
β gets larger) the posterior estimates of

Ψ̂BP and Ψ̂BT get closer to the estimated values one could obtain using only the data.

The sensitivity of the Ψ̂BP and Ψ̂BT estimates to misspeci�cation of the prior means

was assessed and results are presented in Table 3.1. The means of the β priors were set to

di�erent values in scenario 1, scenario 2 and scenario 3. Generally the posterior estimates of

Ψ̂BP and Ψ̂BT showed a slight variation when a very informative priors were used (i.e) setting

σ2
β = 0.5. Looking at Ψ̂BP for example, its values changed from 0.603 under scenario 1 to

0.549 under scenario 2 and to 0.468 under scenario 3 while σ2
β was �xed to 0.5. Nevertheless,

under less informative priors (when σ2
β = 10 and σ2

β = 100) Ψ̂BP and Ψ̂BT did not display a

noticeable change under the three scenarios. Density plots for the posterior estimates of Ψ̂BP

and Ψ̂BT under a standard Poisson model for the three di�erent priors is shown in Figure

3.3.

Figure 3.3: Shows the posterior density plots of Ψ̂BP and Ψ̂BT under a standard Poisson regression

model for three di�erent priors.

From Table 3.1, we can further see how robust the estimators Ψ̂BP and Ψ̂BT are to

misspecifying a wrong variance for each prior. For this purpose we set σ2
βj

to 0.5, 10 and

100. The posterior estimate of Ψ̂BP for example changed from 0.603 when σ2
β = 0.5 to
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0.576 when σ2
β = 10 but remain unchanged when σ2

β was further increased to 100 under

scenario 1 of Table 3.1. This trend was consistent in all the three scenarios considered. A

slight decrease in the posterior means was observed as σ2
β was increased from 0.5 to 10 but

remained constant when σ2
β was further increased to 100. The posterior density plots for Ψ̂BP

and Ψ̂BT under scenario 1 are shown in Figure 3.4. An important point from this simulation

is that, generally the posterior estimates of Ψ̂BP and Ψ̂BT reasonably seems to be robust to

the miss specifying a wrong variance to the priors.

Figure 3.4: Shows the posterior density plots of Ψ̂BP and Ψ̂BT under scenario 1, setting σ2
β to

di�erent values. The density with red color corresponds to case where σ2
β=0.5, the blue density for

σ2
β=10 and the green density for σ2

β=100.

As overdispersion is a common phenomena when �tting a log linear model, further ro-

bustness check of the Ψ̂BP and Ψ̂BT estimators was conducted by estimating these metrics

using a Bayesian zero-in�ated Poisson and negative binomial regression models. The results

are provide in Table 3.2 ( for ZIP model) and Table 3.3 (for negative binomial modes).

Taking scenario 1 and the setting where σ2
β = 0.5 for example, the estimated value of Ψ̂BP

was 1.07 under the standard Poisson regression model, 1.09 under negative binomial model,

and 1.08 under ZIP model. Similar results are observed under the other two scenarios and
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other setting where σ2
β was set to 10 and 100. A similar simulation was further conducted

assuming a N (0, 1) and results are presented as supplementary in Table S1, Table S2 and

Table S3. The key point is, both Ψ̂BP and Ψ̂BT were reasonably robust to misspeci�cation

of the prior means, variances and models ( standard Poisson, ZIP or negative binomial).

Figure 3.5: Shows the posterior density plots of Ψ̂BP and Ψ̂BT for standard Poisson regression

model (spm), zero-in�ated regression Poisson model (zip) and negative binomial regression model

(negbin).

The second simulation was done to mimic the phase II clinical trial study conducted by

Genetech to develop drug AA for asthma treatment. A logarithmic transformation was �rst

used to normalize the BMK biomarker assumed to be measured at baseline for each subject,

such that, it has a N (3.89, 0.21) distribution. Taking the coe�cients associated with a SPR

model �t from previous studies, a data of sample size 460 was simulated to mirror the phase

II clinical trial study. This is somewhat large for a randomized phase II study. Figure 3.6,

shows the exacerbation rate per year as a function of the percentile biomarker (log of BMK)

value for the active treatment and standard of care groups. The left plot shows the expertise

prior belief about the relationship between exacerbation rate and and log of the BMK values

while the right plot shows the posterior relationship after updating the priory belief using
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data collected from the phase II clinical trial study.

Figure 3.6: Plot showing the relationship between exacerbation rate per year and the percentile

values of the biomarker for each arm, the treatment group and the standard of care group. For the

plot in the left only prior information was used while for plot in the right the prior information was

updated using phase II data.

The posterior mean estimates of Ψ̂BP and Ψ̂BT were found to be 0.276(se=0.044) and

0.011 (se=0.005) with the prior for each of the β's assumed to have a Gaussian distribution

such that β0 ∼ N (−3.72, 0.5), β1 ∼ N (0.78, 0.5), β2 ∼ N (5.01, 0.5) and β3 ∼ N (−1.27, 0.5)

under scenario 1 of Table 3.3 where a standard Bayesian Poisson regression model was

�tted. From Table 3.3, Table S5 and Table S6, one can look at scenario 1, scenario 2

and scenario 3 �xing σ2
β to 0.5 or 10 or 100 to assess the sensitivity of Ψ̂BP and Ψ̂BT to a

change in the mean value of the priors. To evaluate robustness of Ψ̂BP and Ψ̂BT to model

misspeci�cation (standard Poisson, ZIP or negative binomial) one can look at scenario 1

and a setting where σ2
β=0.5, for example, and compare the values from Table 3.3, Table S5

and Table S6. Generally misspeci�cation of prior means and models have less impact on

the estimated values of Ψ̂BP and Ψ̂BT . However, we observed a deviation in the estimated

value of Ψ̂BP and Ψ̂BT when the prior variance was changed from 0.5 to 10( or 100). This

di�erence is not far from expected. Since setting σ2
β=0.5 (very informative prior) puts a lot
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of weight on the prior belief, it is customary to see the values of Ψ̂BP and Ψ̂BT deviating a

little from what one could have expected from the information available in the data only.

3.9 Discussion

Our method, the Bayesian decision theoretic framework for evaluating clinical utility of

predictive biomarker, is used to estimate the expected reduction in an event rate under a

biomarker guided treatment with a count endpoint. This design enable assessing a treat-

ment selection biomarker at the end of phase II by incorporating experts (clinicians, assay

developers or/and biomarker scientists) believe about the biomarker performance as part

of the evaluation method under a more general circumstance. Our approach, in addition

to integrating prior belief about the predictive biomarker performance, take the biomarker

distribution in to consideration. From a biomarker development design point of view, one

would expect to have a clear picture about the biomarker distribution at the end of phase

II. Further data from the phase II studies can be used to get an understanding about the

biomarker distribution.

Frequentist designed metrics for evaluation treatment selection biomarker have been pre-

viously proposed (Song and Pepe, 2004, Brinkley et al., 2010, Janes et al., 2011). The metrics

Ψ̂BP and Ψ̂BT are closely related to the metrics Θ0 and Θ1 proposed by (Janes et al., 2011)

respectively. Our Bayesian decision theoretic framework however, extends the existing meth-

ods in a number of ways. One notable di�erence is the ability of our method to incorporate

expertise belief about the biomarker performance in the analysis in the form of a prior and

integrating the biomarker distribution in the analysis are other additions in our proposed

method.

Prior elicitation is a major hurdle when implementing a Bayesian framework. To ease this

problem, we developed easy to use equations to convert experts belief into β coe�cients which
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are in turn used as hyperparameters. Further, we conducted extensive sensitivity analysis

to assess on how misspeci�cation of the priors' means, variances and the model in general

could a�ect the estimated values of Ψ̂BP and Ψ̂BT . Results from our simulation indicate that

our proposed metrics are generally less sensitive to the aforementioned misspeci�cations.

However, a slight di�erence was observed when using very informative and less informative

priors. But this is in line with the Bayesian analysis methodology.

To make conclusions regarding the biomarker performance based on Ψ̂BP and Ψ̂BT es-

timates could be challenging. A high value of Ψ̂BP or Ψ̂BT is shows a better biomarker

performance. However, the question of how large the values of Ψ̂BP or Ψ̂BT need to be to

consider the biomarker as clinically valid for the purpose of guiding treatment for patients,

depend on many factors. The type of disease under consideration, the time in which the

event rate is being estimated (per week/month/year etc) and others. Once a clinically mean-

ingful value of Ψ̂BP or Ψ̂BT is de�ned consulting expert clinicians, making a valid inference

would follow straight forward based on the 95% credible intervals associated with Ψ̂BP or

Ψ̂BT .

The Bayesian decision theoretic framework described here, even though the setup was

done for a count end point, extension should be straightforward if one want to consider a

binary, continuous or time-to event endpoints. In the event of binary and time-to event

endpoint, the boundaries of Ψ̂BP or Ψ̂BT would be [0,1] and ease the challenge in the in-

terpretation of the results. Our method considered only a continuous uniform and normal

biomarker, but cases with a discrete biomarker and biomarkers with other distributions could

be handled with a slight modi�cation in the equations developed to estimate Ψ̂BP or Ψ̂BT .

Further, this method, though it was set up with an intention of making a treatment selection

biomarker in phase II for a 1:1 randomized clinical trial design, can be generalized to other

study designs as needed.
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Table 3.1: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting

a standard Poisson regression model assuming a U(0, 1) biomarker. Data was generated from a

standard Poisson model with sample size of 350. Coe�cients used for data simulation are: β0 =
−0.40, β1 = 2.75,β2 = 1.45 and β3 = −3.00.

Scenario 1: K-values K1 = 0.6 K2 = 3.5 K3 = 3.5 K4 = 0.6

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(1.76, σ2
j ) β3 ∼ N(−3.5, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.535(0.084) (1.385,1.680) 1.548(0.086) (1.394,1.693) 1.549(0.086) (1.393,1.694)

Act 1.481(0.094) (1.313,1.677) 1.486(0.096) (1.315,1.684) 1.486(0.096) (1.315,1.686)

Opt 0.932(0.053) (0.822,1.045) 0.969(0.068) (0.815,1.117) 0.970(0.068) (0.814,1.119)

Ψ̂BP 0.603(0.079) (0.460,0.766) 0.576(0.086) (0.420,0.767) 0.578(0.086) (0.419,0.768)

Ψ̂BT 0.549(0.072) (0.419,0.679) 0.516(0.085) (0.363,0.652) 0.516(0.086) (0.363,0.651)

Scenario 2: K-values K1 = 0.6 K2 = 3.5 K3 = 2.5 K4 = 1.5

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(1.42, σ2
j ) β3 ∼ N(−2.27, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.538(0.084) (1.388,1.681) 1.548(0.086) (1.395,1.694) 1.549(0.086) (1.394,1.694)

Act 1.477(0.094) (1.311,1.675) 1.486(0.096) (1.315,1.685) 1.486(0.096) (1.314,1.685)

Opt 0.989(0.054) (0.877,1.107) 0.970(0.068) (0.815,1.119) 0.970(0.068) (0.814,1.119)

Ψ̂BP 0.549(0.079) (0.401,0.713) 0.578(0.089) (0.419,0.768) 0.578(0.089) (0.422,0.768)

Ψ̂BT 0.489(0.072) (0.359,0.621) 0.515(0.086) (0.361,0.651) 0.515(0.086) (0.363,0.651)

Scenario 3: K-values K1 = 0.6 K2 = 3.5 K3 = 0.8 K4 = 3.0

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(0.28, σ2
j ) β3 ∼ N(−0.44, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.556(0.085) (1.406,1.700) 1.548(0.085) (1.394,1.693) 1.549(0.085) (1.394,1.694)

Act 1.459(0.095) (1.292,1.659) 1.486(0.096) (1.315,1.685) 1.486(0.095) (1.314,1.685)

Opt 1.088(0.056) (0.971,1.211) 0.971(0.068) (0.815,1.119) 0.970(0.068) (0.814,1.118)

Ψ̂BP 0.468(0.080) (0.313,0.637) 0.578(0.089) (0.419,0.768) 0.578(0.089) (0.419,0.769)

Ψ̂BT 0.371(0.071) (0.246,0.499) 0.515(0.086) (0.362,0.651) 0.516(0.086) (0.363,0.653)
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Table 3.2: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting a

standard Poisson regression model assuming a N (4.8, 3.24) biomarker. Data was generated from a

standard Poisson model with sample size of 350. Coe�cients used for data simulation are: β0 =
−0.10, β1 = 0.08,β2 = 0.65 and β3 = −0.15.

Scenario 1: K-values K1 = 0.6 K2 = 3.5 K3 = 3.5 K4 = 0.6

µβj β0 ∼ N(−0.15, σ2
j ) β1 ∼ N(0.11, σ2

j ) β2 ∼ N(1.04, σ2
j ) β3 ∼ N(−0.22, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.292(0.071) (1.156,1.426) 1.334(0.076) (1.189,1.472) 1.334(0.076) (1.189,1.471)

Act 1.254(0.071) (1.122,1.379) 1.263(0.074) (1.126,1.409) 1.263(0.074) (1.126,1.410)

Opt 1.081(0.048) (0.993,1.168) 1.132(0.066) (1.009,1.244) 1.133(0.066) (1.009,1.246)

Ψ̂BP 0.211(0.073) (0.101,0.342) 0.202(0.081) (0.076,0.338) 0.201(0.081) (0.078,0.339)

Ψ̂BT 0.173(0.043) (0.102,0.269) 0.131(0.065) (0.028,0.273) 0.131(0.065) (0.028,0.273)

Scenario 2: K-values K1 = 0.6 K2 = 3.0 K3 = 2.5 K4 = 0.6

µβj β0 ∼ N(−0.18, σ2
j ) β1 ∼ N(0.10, σ2

j ) β2 ∼ N(0.80, σ2
j ) β3 ∼ N(−0.18, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.301(0.072) (1.161,1.436) 1.334(0.076) (1.191,1.471) 1.334(0.076) (1.189,1.470)

Act 1.239(0.071) (1.108,1.365) 1.263(0.075) (1.126,1.409) 1.263(0.075) (1.126,1.410)

Opt 1.102(0.049) (1.011,1.189) 1.132(0.066) (1.009,1.244) 1.133(0.066) (1.009,1.244)

Ψ̂BP 0.199(0.076) (0.087,0.336) 0.202(0.081) (0.078,0.340) 0.201(0.081) (0.076,0.339)

Ψ̂BT 0.138(0.041) (0.072,0.234) 0.131(0.064) (0.025,0.272) 0.131(0.065) (0.025,0.273)

Scenario 3: K-values K1 = 0.6 K2 = 3.0 K3 = 0.8 K4 = 2.5

µβj β0 ∼ N(−0.18, σ2
j ) β1 ∼ N(0.10, σ2

j ) β2 ∼ N(0.19, σ2
j ) β3 ∼ N(−0.03, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.329(0.073) (1.185,1.459) 1.334(0.076) (1.190,1.472) 1.334(0.076) (1.190,1.472)

Act 1.208(0.072) (1.083,1.333) 1.263(0.074) (1.126,1.409) 1.263(0.075) (1.126,1.410)

Opt 1.149(0.054) (1.045,1.241) 1.133(0.065) (1.010,1.243) 1.133(0.066) (1.009,1.248)

Ψ̂BP 0.179(0.085) (0.056,0.334) 0.201(0.081) (0.076,0.339) 0.201(0.081) (0.076,0.338)

Ψ̂BT 0.058(0.033) (0.015,0.147) 0.130(0.065) (0.029,0.272) 0.131(0.065) (0.028,0.273)
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Table 3.3: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting

a standard Poisson regression model to mirror the AA clinical trial study. Data was generated

from a standard Poisson model with sample size of 460. Coe�cients used for data simulation are:

β0 = −9.85, β1 = 2.20,β2 = 5.33 and β3 = −1.52.

Scenario 1: K-values K1 = 0.10 K2 = 2.50 K3 = 1.50 K4 = 0.40

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(5.01, σ2
j ) β3 ∼ N(−1.27, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.445(0.043) (0.359,0.524) 0.462(0.040) (0.385,0.540) 0.462(0.040) (0.386,0.541)

Act 0.179(0.029) (0.122,0.248) 0.205(0.031) (0.150,0.276) 0.205(0.031) (0.151,0.276)

Opt 0.169(0.025) (0.119,0.224) 0.155(0.026) (0.110,0.219) 0.154(0.027) (0.109,0.219)

Ψ̂BP 0.276(0.044) (0.199,0.353) 0.307(0.037) (0.231,0.377) 0.308(0.037) (0.231,0.378)

Ψ̂BT 0.011(0.005) (0.003,0.025) 0.050(0.018) (0.020,0.092) 0.051(0.019) (0.021,0.094)

Scenario 2: K-values K1 = 0.10 K2 = 2.50 K3 = 1.00 K4 = 0.30

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(4.24, σ2
j ) β3 ∼ N(−1.07, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.446(0.043) (0.359,0.524) 0.462(0.040) (0.385,0.541) 0.462(0.040) (0.386,0.540)

Act 0.179(0.029) (0.121,0.247) 0.205(0.031) (0.151,0.276) 0.205(0.031) (0.151,0.277)

Opt 0.172(0.027) (0.119,0.229) 0.155(0.026) (0.110,0.219) 0.154(0.027) (0.109,0.219)

Ψ̂BP 0.274(0.046) (0.196,0.353) 0.307(0.037) (0.231,0.377) 0.308(0.037) (0.231,0.378)

Ψ̂BT 0.007(0.004) (0.002,0.018) 0.049(0.018) (0.020,0.092) 0.051(0.019) (0.020,0.093)

Scenario 3: K-values K1 = 0.1 K2 = 2.50 K3 = 0.40 K4 = 1.25

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(2.30, σ2
j ) β3 ∼ N(−0.51, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.448(0.045) (0.356,0.527) 0.462(0.040) (0.385,0.541) 0.462(0.040) (0.386,0.540)

Act 0.176(0.029) (0.118,0.243) 0.205(0.031) (0.150,0.276) 0.205(0.031) (0.151,0.276)

Opt 0.175(0.029) (0.116,0.239) 0.156(0.026) (0.111,0.220) 0.154(0.027) (0.109,0.219)

Ψ̂BP 0.273(0.048) (0.188,0.357) 0.307(0.037) (0.229,0.376) 0.308(0.037) (0.231,0.378)

Ψ̂BT 0.001(0.001) (0.000,0.005) 0.049(0.018) (0.019,0.091) 0.051(0.019) (0.021,0.092)
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Abstract

Sample size calculations that supplement the study design for biomarker evaluation are key

part of the process. With the recent surge of new biomarker discoveries, statistical methods

for assessing the clinical utility of these biomarkers have also been advancing. In the past

few years, a metric that measures the decrease in the population event rate under biomarker

guided therapy has been advocated as a global predictive biomarker clinical utility measure.

However, there has not been a sample size estimation method developed that compliment this

metric. In this paper we (1) developed alternative mathematical equations for estimating

this metric, compare these to existing estimators, and present the asymptotic properties.

(2) Propose a sample size estimation method, Squared Width Inversion Regression Linear

(SWIRL) for this metric. Our SWIRL method is used to estimate a sample size n such that

the 95% CI mean width of this metric is smaller than a user de�ned length (Wtarg). An R

program for the sample size calculation is made available.

Keywords : SWIRL ; sample size ; predictive biomarker ; clinical utility
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4.1 Introduction

Sample size calculation is key when we develop a study design for biomarker evaluation.

For a randomized control trial study design with a binary clinical end point, a metric Θ

which measures the decrease in the expected proportion of events under biomarker guided

therapy has been been advocated as a measure of biomarker utility performance. However,

none of the existing sample size calculation methods can be used to calculate a sample size

n that guarantees enough power for the metric Θ in order to make a decision about the

biomarker performance. Therefore, a sample size calculation method that supplements Θ

and the intended study design is required to enhance biomarker evaluation process.

Swift advancement in genome sequencing is rendering the reality that a patient speci�c

care will be our future treatment model. As such, currently, biomarker discovery, valida-

tion, regulatory acceptance and quali�cation are areas of enormous interest and need (Amur

et al., 2015). Predictive biomarkers, for example, are used to enhance drug and biologics

development and to guide treatment for patients (Fine and Amler, 2009, Janes et al., 2015,

La Thangue and Kerr, 2011, Lavezzari and Womack, 2016).

A number of predictive biomarkers are already guiding therapy for cancer patients. K-

RAS mutation status, is being used to pinpoint colorectal cancer patients likely to bene�t

from Epidermal Growth Factor Receptor (EGFR ) inhibitor treatment (Amado et al., 2008,

Mehta et al., 2010, Karapetis et al., 2008). Oncotype DX recurrence score also helps to guide

whether a patient takes adjuvant chemotherapy or not after breast cancer surgery (Albain

et al., 2010, Gluz et al., 2016, Harris et al., 2016). However, parallel to the innovations in

biomarkers discovery, statistical methods for evaluating their clinical utility have not kept

pace.

Biomarker evaluation has three critical components according to the framework set by

the Institute of Medicine (IOM) per the US Food and Drug Administration (FDA) request:

62



analytical validity, evidentiary quali�cation and utilization analysis (Ball, et. al 2010). Uti-

lization is a concept of use (COU), where a speci�c proposed intended use for the biomarker

needs to be prespeci�ed. In the drug development plan, a predictive biomarker can be used

in selecting patients for phase III studies. Also, in medical settings, a predictive biomarker

can be utilized to advise for or against a given treatment. These biomarkers, however, need

to be evaluated for whether their use produces a positive net health impact, i.e, quantifying

their utilization according to COU.

Often times, biomarker utility quali�cation, is done by testing a null hypothesis of no

biomarker by treatment interaction. (Buyse, 2007, Taube et al., 2009, Freidlin et al., 2010,

Tajik et al., 2013). However, though a necessary condition, the interaction test is not su�-

cient to evaluate biomarker's utility working (Janes et al., 2011, Huang et al., 2012). Two

biomarkers (X1 & X2), can have the same interaction coe�cient but, behave di�erently in

guiding treatment. Besides this, the scale of an interaction coe�cient depends on functional

form of the model and biomarker measurement unit. This adds another challenge and makes

comparing di�erent biomarkers di�cult. (Huang et al., 2012). Interaction test, being an

indirect measure, is also hard to comprehend by non-statisticians.

Graphical biomarker utility assessment tools, marker-by-treatment predictiveness curves

(Janes et al., 2011) and selective impact curve (Song and Pepe, 2004) have been proposed

as alternatives to an interaction test. More recently however, Janes et al. (2014a) presented

a comprehensive summary of the previous work and proposed a metric (Θ) as a measure of

biomarker utility performance. Θ measures the decrease in an unfavorable event rate under

marker guided treatment. This measure (Θ) is widely advocated as a global predictive

biomarker clinical utility measure (Gunter et al., 2007, Song and Pepe, 2004, Janes et al.,

2011, Brinkley et al., 2010, Janes et al., 2014a). With a binary end point, for example,

Θ measures the reduction in population event rate under biomarker guided treatment in

comparison to the standard (biomarker unguided) treatment. These procedures, however,
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assume we already have a data set collected. In pharmaceutical industries, for example, a

decision about inclusion of a biomarker as part of a drug development plan has to be made

prior to phase III most of the time. With little data at hand, prospectively evaluating clinical

utility of a biomarker at that stage becomes impractical.

In this paper, we �rst develop simple tools to convert clinician inputs to model parameters

that would help to evaluate a biomarker's clinical utility. In addition to the clinician inputs,

we further assume a distribution of the biomarker under study. As utility evaluation is

done at a later biomarker stage, it su�ces to make an assumption about its distribution at

this stage. Adding the assumption about the biomarker, we develop alternative equations

for estimating the metric Θ. Sample size estimation methods that correspond to the study

design and metric under consideration are key to the biomarker utility evaluation process.

There is no previously developed sample size estimation method for the metric Θ. In this

paper we propose a sample size estimation method, Squared Width Inversion Regression

Line (SWIRL). Our SWIRL method is used to estimate a sample size n such that the 95%

CI mean width of Θ is smaller than the user de�ned length (Wtarg).

The rest of this paper is organized as follows: In Section 2 we �rst set the scenario

and brie�y introduce the notations. Then mathematical derivation of the marker positivity

criteria and development of the equations used to estimate the parameter Θ follow. In Section

3, we present the approach used to change clinician de�ned inputs to slope parameters.

Sample size estimation using our proposed SWIRL approach for two study designs (biomarker

strati�ed design and biomarker strategy design) are brie�y discussed in Section 4. Various

bootstrap methods we used to estimate the 95% CI width of Θ are presented in Section 5.

The paper then concludes in Section 6 with simulation results.
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4.2 Methods

4.2.1 Settings and Notations

Let the clinical endpoint or accepted surrogate endpoint of interest be Y , with a known

probability distribution and values that can be continuous (survival/relapse time ) or binary

(cure/death). The focus of this paper is on a clinical endpoint which is binary. In many

cancer studies for example, Y = 1 would represent death or relapse before time t and Y = 0

for a cure or relapse beyond time t. Additionally, let T represent the available treatment:

T = 1 if a subject is in the active treatment arm and T = 0 if in the standard of care

(SOC) or placebo arm. Further, let the biomarker of interest be X which is continuous and

measured for each subject at baseline. For now, we will assume the biomarker X has a

known probability density function f(x).

Given a binary response, it is customary to assume Y has a binomial distribution with

success probability π. With this, the natural approach to represent the relationship be-

tween the binary clinical endpoint, treatment, biomarker and interaction of treatment and

biomarker would be a multiple linear logistic regression. In addition to the common logistic

model assumptions, we will further assume in our case: (1) the outcome explains all the

impact of the assigned treatment and no other factor has any additional in�uence on the

outcome (Janes et al., 2011). However, if we assume other clinical variables have a potential

to in�uence the outcome, this assumption can be loosened and the method is expanded to

accommodate this situation. (2) The Stable Unit Treatment Value Assumption (SUTVA)

of Rubin (1986) holds (Brinkley et al., 2010, Rubin, 1974). This assumption states that the

value of the potential outcome for a patient does not depend on the treatment assignment

of other patients.
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4.2.2 Biomarker Guided Treatment Strategy

As stated above, the relationship between the outcome Y ∈ {0, 1} and the covariates (T and

X) along with the interaction term (T ∗X) is commonly represented using multiple logistic

regression as:

Ln

[
Pr(Y = 1|T,X)

1− Pr(Y = 1|T,X)

]
= β0 + β1X + β2T + β3TX. (4.1)

where β1, β2 and β3 in the model represent the biomarker, treatment and biomarker by treat-

ment interaction e�ects respectively. Now let the biomarker X have a known probability

density function given by f(x) where X ∈ (−∞,∞) or narrower depending on the minimum

or maximum values of the biomarker under study. By the time we want to evaluate the

clinical utility of the biomarker, we will have some information about the distribution of the

biomarker, assuming the biomarker has already gone through the initial two stages: valida-

tion and quali�cation. Therefore, making an assumption about the biomarker distribution

at this stage is more realistic. Incorporating the biomarker's distributional information, now

we can modify the model in equation (4.1) as:

Pr(Y = 1|T = 0) =

∫ {
eβ0+β1x

1 + eβ0+β1x

}
f(x)dx (4.2)

Pr(Y = 1|T = 1) =

∫ {
eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

}
f(x)dx (4.3)

Both equations (4.2) and (4.3) calculate the probability of unfavorable outcome, assuming

all subjects are assigned to SOC or active arm respectively. However, our objective is to

evaluate the clinical utility of the biomarker. With this, we would want to use the biomarker

information to assign available treatment to patients or use that information to recruit

patients for phase III clinical trial studies. However, determining a biomarker cut-o� point
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to make the intended decision is never a straightforward decision. Many factors like cost of

the medication, side e�ects of the medication, etc., have to be taken into consideration. For

now, lets assume that the outcome of interest captures all factors which are likely to a�ect

it. Using equation (4.1), it is straightforward to show that:

Odds(Y = 1|T = 1, X = x)

Odds(Y = 1|T = 0, X = x)
=

exp{β0 + β2 + (β1 + β3)x}
exp{β0 + β1x}

= exp{β2 + β3x} (4.4)

From equation (4.4) it is clear that, the odds of an unfavorable outcome are greater among

subjects in the active arm than the SOC arm if β2 + β3x > 0. Based on this, the biomarker

guided treatment decision (Topt) can be set in such a way that :

Topt(X = x) =

 T = 1 : β3x < (−β2)

T = 0 : β3x ≥ (−β2)
(4.5)

Individuals who respond to a given treatment are generally referred as marker positive and

assigned to the active arm (T = 1) while those who do not are called as marker negative

and assigned to SOC (T = 0). Depending on the sign of the interaction (β3) coe�cient a

threshold for the marker guided therapy can be written as:

Topt(X = x)⇒ if : β3 < 0


T = 1 : x > −β2

β3

T = 0 : x ≤ −β2
β3

Topt(X = x)⇒ if : β3 > 0


T = 1 : x < −β2

β3

T = 0 : x ≥ −β2
β3

This way of specifying the biomarker threshold value used for guiding treatment matches

the one used by Song and Pepe (2004), Brinkley et al. (2010), and Janes et al (2014a). Let
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A1 = {x : β3x < (−β2)}, and A0 = <1\A1 (where �\" is the set di�erence symbol). The limit

values for A1 & A0 will vary depending on the support of the probability density function

for X. For X ∼ U(0, 1) a table of all possible combinations is presented in Appendix A.0.2.

Once the biomarker cut-o� point is determined, the probability of unfavorable outcome under

biomarker guided treatment is shown to be:

Pr(Y = 1|Topt) =

∫
A1

{
eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

}
f(x)dx+∫

A0

{
eβ0+β1x

1 + eβ0+β1x

}
f(x)dx. (4.6)

Under the expression in equation (4.6), a subject will be treated if he/she is marker positive

and will skip treatment if marker negative.

4.2.3 Development of Equations for Estimating Θ

Biomarker ulitility evaluation is a COU. With intended purpose of using the biomarker for

guiding treatment selection, let the parameter of interest be Θ as proposed by Janes et. al

(2014). With a binary clinical endpoint, Θ measures the average decrease in the population

unfavorable event rate under biomarker guided treatment. The biomarker unguided treat-

ment will be either �Treat All� or �Treat None� depending on the current default treatment.

We will use Θ1 if current default treatment is �Treat All� i.e T = 1 and Θ0 when default

treatment is �Treat None" i.e T = 0. Then,

Θ1 = Pr(Y = 1|T = 1)− Pr(Y = 1|Topt)

=

∫
A0

{
eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x
− eβ0+β1x

1 + eβ0+β1x

}
f(x)dx (4.7)
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and

Θ0 = Pr(Y = 1|T = 0)− Pr(Y = 1|Topt)

=

∫
A1

{
eβ0+β1x

1 + eβ0+β1y
− eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

}
f(x)dx (4.8)

Now let's assume the biomarker X has a uniform distribution on the unit interval [0, 1].

If the original biomarker value is not uniformly distributed, we can transform X to Fx∗(x∗)

where Fx∗ is the cumulative distribution function (CDF) of the transformed variable X.

Further assume the current default treatment (standard care) is �Treat None�, and A1 ∈

[a, b], then Θ0 will be:

Θ0 =

∫ b

a

{
eβ0+β1x

1 + eβ0+β1x
− eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

}
f(x)dx (4.9)

=



(b− a) eβ0 (1−eβ2 )

(1+eβ0+β2 )(1+eβ0 )
: β1 = 0, β3 = 0

(b− a) eβ0

1+eβ0
− 1

β3
ln[ 1+eβ0+β2+β3b

1+eβ0+β2+β3a
] : β1 = 0, β3 6= 0

1
β1
ln[ 1+eβ0+β1b

1+eβ0+β1a
]− (b− a) eβ0+β2

1+eβ0+β2
: β1 + β3 = 0

1
β1
ln[ 1+eβ0+β1b

1+eβ0+β1a
]− 1

β1+β3
ln[ 1+eβ0+β2+(β1+β3)b

1+eβ0+β2+(β1+β3)a
] : otherwise

If the current default treatment is �Treat All�, and A0 ∈ [c, d],then

Θ1 = Pr(Y = 1|T = 1)− Pr(Y = 1|Topt)

=

∫
A0

{
eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x
− eβ0+β1x

1 + eβ0+β1x

}
f(x)dx (4.10)
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=



(d− c) eβ0 (eβ2−1)

(1+eβ0+β2 )(1+eβ0 )
: β1 = 0, β3 = 0

1
β3
ln(1+eβ0+β2+β3d

1+eβ0+β2+β3c
) : β1 = 0, β3 6= 0

(d− c) eβ0+β2

1+eβ0+β2
− 1

β1
ln(1+eβ0+β1d

1+eβ0+β1c
) : β1 + β3 6= 0

1
β1+β3

ln(1+eβ0+β2+(β1+β3)d

1+eβ0+β2+(β1+β3)c
)− 1

β1
Ln(1+eβ0+β1d

1+eβ0+β1c
) : otherwise

In case we have a normally distributed biomarker with mean µ and variance σ2 and the limit

integrals de�ned as A1 ∈ [a, b] and A0 ∈ [c, d] , the equations for estimating Θ0 and Θ1 are

respectively given as:

Θ0 =

∫ b

a

{
eβ0+β1x

1 + eβ0+β1x
− eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

}
1√

2πσ2
e
−1
2

(x−µ
σ

)2dx

Θ1 =

∫ d

c

{
eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x
− eβ0+β1x

1 + eβ0+β1x

}
1√

2πσ2
e
−1
2

(x−µ
σ

)2dx

There is no analytical solution when the biomarker distribution is normal and numerical

integration is used to get the estimated value of Θ0(Θ1).

4.2.4 Monte Carlo Evaluation of the Equations for Θ

To ensure the exactness of the formulas we used in section 4.2.3 to calculate Θ0(Θ1), a

large Monte Carlo simulation was used. The estimates for the probabilities of unfavorable

outcomes under a default treatment ("Treat All" or "Treat None") and biomarker guided

treatment were obtained as: Pr(Y = 1|T ) = #(Y=1,T )
#(T )

, where # represents for the number

of patients.
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4.3 From Clinician Inputs to Model Parameters

The two stage procedure of estimating Θ we outlined above, assume that we already have

data. In that case, estimating Θ will be straightforward using the equations we developed.

First �t the multiple logistic model stated, take the estimated coe�cients, plug them in equa-

tions (9) and (10), assuming the biomarker has a uniform distribution and get an estimated

value of Θ (Song and Pepe, 2004, Brinkley et al., 2010, Janes et al., 2011). However, when

we don't have any data or have only a little data at hand, setting the slope parameters is not

intuitive. In drug development for example, a decision about a biomarker has to be made

prior to phase III or sometimes phase II. During these stages, the data we have is mainly

from preclinical and early phase studies. However, such data is barely enough to �t a model

and help us to make a go-no-go decision about the biomarker.

Instead of being stranded by the absence of data, we can use clinician's best guess about

the likely outcome of the disease under study and biomarker's distributional assumption

information to move forward. Let the clinician give us the expected proportion of unfavorable

outcomes K1, K2, K3 and K4 given the 25th and 75th percentiles value of the biomarker for

the SOC and active arms respectively. Specifying the K ′s , requires clinicians' best judgment

taking the disease and study drug in to consideration. SettingK1, K2 will be intuitive as they

are related to the existing treatment. In drug development, K3 and K4 will be the clinicians'

best guess about the performance of the new drug in pipeline as compared to existing drug.

Given this information, we developed equations to convert the clinician inputs to model

parameters. These model parameters are in turn used to generate the data and proceed to

estimate Θ. Detailed derivation of this is given in Appendix A.0.3. The �nal closed form

expression for the parameter values are given below:

β0 =
K2 ∗ z1 −K1 ∗ z2

z1 − z2
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β1 =
K1 −K2

z1 − z2

β2 =
K1 ∗ z2 −K2 ∗ z2 −K3 ∗ z2 +K4 ∗ z1

z1 − z2

β3 =
K2 −K1 +K3 −K4

z1 − z2

where K1 = Ln
[

P (Y=1|A=0,x=F−1(0.25))
1−P (Y=1|A=0,x=F−1(0.25))

]
K2 = Ln

[
P (Y=1|A=0,x=F−1(0.75))

1−P (Y=1|A=0,x=F−1(0.75))

]

K3 = Ln
[

P (Y=1|A=1,x=F−1(0.25))
1−P (Y=1|A=1,x=F−1(0.25))

]
K4 = Ln

[
P (Y=1|A=1,x=F−1(0.75))

1−P (Y=1|A=1,x=F−1(0.75))

]

z1 = F−1(0.25) and z2 = F−1(0.75)
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Figure 4.1: Risk curves that correspond each treatment arm for a given clinician input values.

4.4 SWIRL Sample Size Estimation Method

Existing logistic sample size estimation methods (Whittemore, 1981, Hsieh, 1989, Demi-

denko, 2007; 2008) are not applicable to estimate sample size needed to ensure adequate

power for the metric Θ. Primarily, the functional form of Θ is di�erent from the logistic
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regression model of equation (4.1) with which we start. Secondly, the existing methods could

estimate sample size needed to guarantee the test for β3 6= 0 with enough power. However, a

test of β3 6= 0 does not insure a test for Θ 6= 0 (Janes et al., 2014a). In this paper we propose

the squared width inversion regression linear (SWIRL) sample size estimation method for

the metric Θ.

With SWIRL method, a sample size n is chosen, such that, the 95% CI mean width

of Θ is smaller than a user de�ned target length (wtarg). The SWIRL method is easy to

implement and depends on the assumption that, there is a very strong linear relationship

between sample size n and inverse of the 95% CI mean width squared for the parameter

Θ. We have developed the asymptotic properties of Θ, from which this assumption can

be justi�ed. Additional simulation studies were conducted to investigate this relationship

for three distributions (uniform, normal and gamma) and did not encounter any violation.

Details of the asymptotic development of Θ are provided in Appendix B.0.1. Plots showing

the linear relationship between n and inverse of the 95% CI mean width squared for Θ are

also provided in the supplementary material.

Our proposed method requires a Monte Carlo simulation of m trials with sample size

ranging from n1, n2, ......nm in increments of c to get a 95% CI mean width (W ) that corre-

spond with each sample size. Then an ordinary least square regression is �tted as:

n = α0 + α1W
−2 (4.11)

Finally the sample size that guarantees the 95% CI mean width of the parameter Θ0(Θ1) to

be less than a user de�ned target (Wtarg) is estimated as:

n̂ = α̂0 + α̂1W
−2
targ (4.12)

where α̂0 and α̂1 are the OLS estimates of equation (4.11). The steps required for imple-
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menting the SWIRL method are summarized in Algorithm 3 below.

Algorithm 3 SWIRL Sample Size Estimation Method
1: For K1, ..., K4 calculate the values of β0, ...., β3.
2: For i = 1, .....,m generate Xi,1, ......., Xi,nm iid r.vs from a distribution with pdf f(x).
3: For i = 1, ....,m, sample at random n/2 integers from 1, ....., n , calling this set T1 and

assign all a value (=1) and the rest T0 assign a value (=0).
4: Simulate m trials using Monte Carlo Simulation with sample size ranging from
n1, n2, .....nm in increment of c using the model

Ln

[
Pr(Y = 1|T,X)

1− Pr(Y = 1|T,X)

]
= β0 + β1X + β2T + β3TX

5: For i = 1, .....,m Calculate Θ̂i and the 95% CI mean width (Wi) associated with Θ̂i

6: Using Ordinary Least Square Regression �t :

n = α0 + α1W
−2

7: For user de�ned length (Wtarg), the sample size n is then estimated as :

n̂ = α̂0 + α̂1W
−2
targ

8: If n̂ falls outside the range of n1, ...., nm , then go to step 1 and add another simulation
instead by increasing the sample size such that nm = 2 ∗ n̂.

4.5 Bootstrap for Estimating the 95% CI Width of Θ

Our SWIRL sample size estimation method requires estimating the 95% CI mean width

of Θ as �rst step. For this purpose and assessing the coverage probability of our method

of estimating Θ, we used the normal and percentile bootstrap con�dence interval methods.

Here we assume the current default treatment is �treat all", but this procedure can be

extended in a similar manner if current default treatment is �treat none". Let Θ∗1 be the

bootstrap estimates. The �rst bootstrap we used is based on the assumption that our

estimated parameter Θ̂1 has a normal distribution. Then the (1−α)100% con�dence interval
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is evaluated as:

CI =
(

Θ̂1 ± Zα
2
∗ ŝeθ∗1

)

Percentile bootrap, which is very similar to the the basic bootstrap but uses percentiles

of the bootstrap distribution and a di�erent formula, is the second bootstrap method con-

sidered. Davison and Hinkley (1997, equ. 5.18 p. 203) and Efron and Tibshirani (1993,

equation 13.5 p. 171) could be referred for further explanation of this procedure. The

con�dence interval formula is:

CI =
(
θ∗1 α

2
, θ∗1(1−α

2
)

)

where θ∗ is the pth percentile of the bootstrap estimates.

Results of these con�dence interval for Θ̂ are compared with results from treatment

selection R package of Janes (2014) . In terms of coverage probability both methods work

almost equally. However the mean width of the con�dence interval in our method is slightly

narrower. This can be attributed mainly due the fact that our method of estimating Θ

assumes a distribution about the biomarker.

4.6 Simulation Results

Monte Carlo simulation and methods from Janes et al. (2014) were used to ensure our

proposed formulas to calculate Θ0 and Θ1 are valid. In Table 4.1, simulation results with

sample size of 100,000 are presented for U(0, 1) and N (0, 1) distributed biomarkers. We

considered di�erent combinations of clinician input K values. Results obtained using our

developed formulas agree with those of the simulation and Jane's regardless of the biomarker

distribution. Further investigation was done assuming a gamma(2,2) distribution for the
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biomarker and all results match each other (results not presented). The simplicity of our

approach is that, depending on the clinician inputs K1 − K4 values, one can proceed to

calculate the clinical utility of the biomarker even in the absence of data.

Tables 4.2 and Table S7 (supplementary) depict the 95% con�dence interval (CI), cov-

erage probability and width of the CI for the estimator Θ1 assuming U(0, 1) and N (0, 1)

distributed biomarkers respectively. We used the two bootstrap techniques explained in

section 5 for our method and compared these with the corresponding results of Janes em-

pirical and model based percentile bootstrap methods. In Table 4.2, results for uniformly

distributed biomarker and �ve di�erent K combination values are presented. Output from

the two bootstrap estimate of Θ1 using our methods and Janes empirical and model based

match in their coverage probability, almost all being ≥ 94% , except in one where the cover-

age is 93%. Generally, the Janes method CI mean width is slightly larger than ours. Similar

results are shown in Table S8 (supplementary) for normally distributed biomarker and for

Θ0 (result not shown here).

Table 4.3 shows the sample size estimates for U(0, 1) and N (0, 1) distributed biomarkers,

respectively, using our proposed SWIRL method for two biomarker study designs: biomarker

strati�ed and biomarker strategy designs. Details about these two study designs are in the

paper published by (Freidlin et al., 2010). As expected the estimated sample size is larger for

biomarker strategy design than for biomarker strati�ed design. Monte Carlo simulations were

further performed to check how closely the estimated n̂ was able to achieve the desiredWtarg.

As the results show, Wtarg was achieved with high precision in almost all cases regardless of

the study design and biomarker distribution.

To assess robustness, we looked at how a change in the assumed link function of the

model a�ects the sample size results. For given clinician input values K1 to K4, estimated

sample size results under probit and logit link functions were similar. Speci�cally, when

the estimated sample size n̂ is within the range of the sample sizes used in the simulation
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to estimate the 95% CI widths results are adequate. However, when the estimated sample

size falls out of the initial range (> nm), the results deviate a little. This could be mainly

due to extrapolation. In such a scenario, as per Algorithm 3, the program should be rerun

by increasing the range of the initial sample size. The e�ect on biomarker distributional

assumption can be assessed by looking at the results in Table 4.3. The sample size estimates

obtained using SWIRL under a standard uniform and standard normal is relatively similar

except in one of our simulations. Further we investigate how deviation from the normality

assumption for the biomarker distribution a�ects the sample size estimate . A moderate

skewness overall has a small e�ect on the estimated sample size. However, for a highly

skewed distribution, it is recommended that one use an appropriate transformation before

using the SWIRL method. The Janes method of estimating Θ on the other hand does not

depend on the marginal distribution of the biomarker.

4.7 Discussion

Development of statistical methods used for evaluating the clinical utility of predictive

biomarkers is of great interest. A metric (Θ) which measures the decrease in the popu-

lation event rate under biomarker guided therapy has been advocated in recent years. In

this paper we developed alternative mathematical equations for estimating Θ, compare these

to existing estimators, proposed a sample size estimation method for Θ and provided the

accompanying computer program to perform the sample size estimation. The sample size

estimation method, Squared Width Inversion Regression Linear (SWIRL), is used to esti-

mate a sample size n such that the 95% CI mean width of Θ is less than a user de�ned

length(Wtarg). An R code used to implement the SWIRL method is made available with

this publication. Additionally, the asymptotic results of Θ were provided which in turn are

used to guarantee the linear relationship between sample size and the 95% CI mean width
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assumed under the SWIRL method. Through simulation, we found this method to work well

and provide a proper sample size for Θ for a given 95% CI target width (Wtarg).

Previous predictive biomarker clinical utility performance evaluation methods assume

that data needed for �tting the proposed model is available (Song and Pepe, 2004, Janes

et al., 2011, Brinkley et al., 2010, Janes et al., 2014a). However, in many circumstances ( like

drug development plan and sample size planning), biomarker evaluation has to be performed

prior to a stage where data were made available. Additionally these methods do not take the

biomarker's probability distribution into consideration and fail to incorporate this additional

information in the process. From a design perspective, it su�ces to make an assumption

about the biomarker distribution and use this information in designing the study. In this

paper, we developed simple tools to convert clinician inputs to model parameters, and used

to estimate Θ and the sample size. Our focus in this paper was on sample size estimation for

the parameter Θ that guarantee the 95% CI mean width. Such criterion has been previously

used for sample size determination (Zou, 2012, Dobbin and Ionan, 2015).

In this paper, we have focused on two biomarker study designs: biomarker strati�ed and

biomarker strategy designs (Freidlin et al., 2010) and two biomarker distributions, uniform

and normal. However, all the methods developed here could easily be extended to accom-

modate other study designs and biomarker distributions. Getting closed form equations for

estimating Θ might not be always possible so we have to use numerical integration with

integral limits subject of the support of the biomarker distribution under consideration.

The procedures used for estimating the sample size using SWIRL in this paper takes the

marginal distribution of the biomarker into consideration. Therefore, when the underlying

assumptions about the biomarker distribution are violated, the 95% CI mean width might not

be the correct mean width. In such a scenario, we recommend (1)appropriate transformation

to be performed or (2) use the Janes method to get the 95% CI mean width �rst and then

use the SWIRL method.
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Table 4.1: Comparison of Θ0 and Θ1 using Our formula , Janes (2014) method and Monte Carlo

simulation. Sample size used, n = 100, 000

Biomarker has standard Uniform distribution

K1 K2 K3 K4 Estim. Our Formula Janes Emp. Janes Mod. MC Sim

0.25 0.75 0.75 0.25 Θ0 0.232 0.221 0.221 0.221

Θ1 0.233 0.227 0.231 0.228

0.10 0.90 0.90 0.10 Θ0 0.345 0.341 0.341 0.341

Θ1 0.346 0.342 0.344 0.342

0.10 0.55 0.90 0.45 Θ0 0.095 0.097 0.097 0.099

Θ1 0.433 0.434 0.431 0.436

0.25 0.75 0.50 0.50 Θ0 0.116 0.109 0.109 0.109

Θ1 0.116 0.111 0.113 0.112

0.90 0.45 0.10 0.55 Θ0 0.433 0.433 0.433 0.436

Θ1 0.095 0.096 0.094 0.099

Biomarker has standard Normal distribution

K1 K2 K3 K4 Estim. Our Formula Janes Emp Janes Mod MC Sim

0.25 0.75 0.75 0.25 Θ0 0.245 0.25 0.25 0.249

Θ1 0.248 0.250 0.248 0.248

0.10 0.90 0.90 0.10 Θ0 0.345 0.355 0.355 0.353

Θ1 0.348 0.352 0.352 0.349

0.10 0.55 0.90 0.45 Θ0 0.125 0.130 0.130 0.127

Θ1 0.441 0.439 0.438 0.437

0.25 0.75 0.50 0.50 Θ0 0.123 0.129 0.129 0.128

Θ1 0.124 0.124 0.119 0.124

0.90 0.45 0.10 0.55 Θ0 0.441 0.439 0.439 0.437

Θ1 0.125 0.130 0.129 0.127
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Table 4.2: Con�dence interval width and coverage probability comparison for our method and

Janes method using bootstrap: 1000 Monte Carlo each with 1000 sample size. Biomarker has a

standard uniform distribution U(0,1).

K1 K2 K3 K4 Θ1 Method 95% CI CI Width Coverage

0.25 0.75 0.75 0.25 0.233 Boot Norm. (0.196 , 0.265) 0.071 0.940

Boot Perc. (0.196 , 0.266) 0.071 0.950

Janes Emp. (0.188 , 0.272) 0.083 0.960

Janes Mod. (0.193 , 0.271) 0.077 0.950

0.10 0.90 0.90 0.10 0.347 Boot Norm. (0.317 , 0.370) 0.054 0.970

Boot Perc. (0.318 , 0.372) 0.054 0.960

Janes Emp. (0.306 , 0.382) 0.077 0.940

Janes Mod. (0.309 , 0.381) 0.072 0.970

0.10 0.55 0.90 0.45 0.433 Boot Norm. (0.393 , 0.464) 0.072 0.970

Boot Perc. (0.394 , 0.467) 0.072 0.980

Janes Emp. (0.386 , 0.476) 0.090 0.970

Janes Mod. (0.389 , 0.473) 0.084 0.970

0.25 0.75 0.50 0.50 0.117 Boot Norm. (0.078 , 0.153) 0.076 0.930

Boot Perc. (0.079 , 0.155) 0.076 0.950

Janes Emp. (0.073 , 0.157) 0.084 0.950

Janes Mod. (0.079 , 0.156) 0.077 0.930

0.90 0.45 0.10 0.55 0.095 Boot Norm. (0.070 , 0.125) 0.056 0.950

Boot Perc. (0.072 , 0.127) 0.056 0.950

Janes Emp. (0.067 , 0.133) 0.067 0.970

Janes Mod. (0.070 , 0.128) 0.058 0.980
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Table 4.3: Sample size estimation using SWIRL method for biomarker strati�ed and biomarker

strategy designs. Biomaker has U(0, 1) and N(0, 1) distributions.

Biomarker strati�ed design Uniform (0,1) Normal (0,1)

K1 K2 K3 K4 Wtarg SWIRL n̂ 95% CI n̂ SWIRL n̂ 95% CI n̂

0.25 0.75 0.75 0.25 0.20 119 (109 , 129) 114 (104 , 125)

0.15 215 (207 , 223) 197 (188 , 207)

0.10 489 (484 , 494) 436 (430 , 442)

0.10 0.90 0.90 0.10 0.20 64 (50 , 78 ) 80 (71 , 89 )

0.15 120 (107 , 133) 132 (124 , 140)

0.10 280 (270 , 290) 281 (275 , 288)

0.10 0.55 0.90 0.45 0.20 127 (119 , 135) 129 (120 , 138)

0.15 230 (224 , 238) 230 (222 , 237)

0.10 527 (522 , 531) 516 (511 , 521)

0.25 0.75 0.50 0.50 0.20 142 (132 , 151) 133 (120 , 145)

0.15 257 (249 , 264) 236 (226 , 246)

0.10 584 (579 , 589) 533 (526 , 539)

0.90 0.45 0.10 0.55 0.20 78 (63 , 94) 58 (43 , 72)

0.15 137 (122, 151) 106 (92 , 119)

0.10 303 (292 , 313) 242 (231 , 253)

0.60 0.40 0.50 0.50 0.20 340 (301 ,378) 130 (97 , 161)

0.15 477 (446 , 508) 246 (220 , 272)

0.10 870 (823 , 917) 580 (562 , 597)
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Table 4.4: Sample size estimation using SWIRL method for biomarker strati�ed and biomarker

strategy designs. Biomaker has U(0, 1) and N(0, 1) distributions.

Biomarker Strategy Design Uniform (0,1) Normal (0,1)

K1 K2 K3 K4 Wtarg SWIRL n̂ 95% CI n̂ SWIRL n̂ 95% CI n̂

0.25 0.75 0.75 0.25 0.20 166 (154 , 179) 152 (140 , 165)

0.15 293 (283 , 303) 262 (252 , 273)

0.10 655 (647 , 663) 557 (570 , 584)

0.10 0.90 0.90 0.10 0.20 90 (68 , 113) 108 (93 , 123)

0.15 166 (146 , 186) 176 (162 , 188)

0.10 382 (368 , 395) 369 (359 , 378)

0.10 0.55 0.90 0.45 0.20 181 (165 , 197) 175 (166 , 184)

0.15 318 (305 , 330) 307 (300 , 314)

0.10 709 (698 , 719) 684 (678 , 689)

0.25 0.75 0.50 0.50 0.20 187 (168 , 206) 160 (145 , 174)

0.15 325 (310 , 340) 284 (272 , 296)

0.10 719 (706 , 733) 637 (628 , 646)

0.90 0.45 0.10 0.55 0.20 124 (103 , 144) 84 (69 , 99)

0.15 198 (180 , 216) 147 (134 , 160)

0.10 412 (399 , 424) 326 (316 , 336)

0.60 0.40 0.50 0.50 0.20 469 (429 , 509) 167 (136 , 199)

0.15 707 (662 , 751) 318 (294 , 342)

0.10 1386 (1258 , 1513) 747 (724 , 769)
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Table 4.5: Monte Carlo evaluation of the SWIRL sample size estimation method.

Biomarker strati�ed design. Biomarker has Uniform (0,1) distribution

K1 K2 K3 K4 SWIRL n̂ Wtarg Est.Width Width Range Width IQR

0.25 0.75 0.75 0.25 119 0.20 0.201 (0.154 , 0.262) (0.191 , 0.213)

215 0.15 0.151 (0.129 , 0.176) (0.144 , 0.159)

489 0.10 0.101 (0.084 , 0.117) (0.095 , 0.105)

0.10 0.90 0.90 0.10 64 0.20 0.209 (0.129 , 0.319) (0.175 , 0.236)

120 0.15 0.154 (0.091 , 0.209) (0.140 , 0.167)

280 0.10 0.101 (0.074 , 0.131) (0.093 , 0.107)

0.10 0.55 0.90 0.45 127 0.20 0.202 (0.154 , 0.271) (0.182 , 0.218)

230 0.15 0.154 (0.119 , 0.193) (0.144 , 0.166)

527 0.10 0.101 (0.084 , 0.117) (0.096 , 0.105)

0.25 0.75 0.50 0.50 142 0.20 0.205 (0.121 , 0.309) (0.186 , 0.222)

257 0.15 0.151 (0.104 , 0.190) (0.142 , 0.163)

584 0.10 0.100 (0.077 , 0.119) (0.096 , 0.104)

0.90 0.45 0.10 0.55 78 0.20 0.286 (0.122 , 0.913) (0.187 , 0.248)

137 0.15 0.156 (0.105 , 0.696) (0.134 , 0.159)

303 0.10 0.104 (0.074 , 0.263) (0.093 , 0.107)

0.60 0.40 0.50 0.50 340 0.20 0.214 (0.102 , 0.567) (0.159 , 0.258)

477 0.15 0.166 (0.091 , 0.379) (0.123 , 0.193)

870 0.10 0.097 (0.067 , 0.183) (0.082 , 0.108)
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Table 4.6: Monte Carlo evaluation of the SWIRL sample size estimation method.

Biomarker strategy design. Biomarker has Normal (0,1) Distribution

K1 K2 K3 K4 SWIRL n̂ Wtarg Est.Width Width Range Width IQR

0.25 0.75 0.75 0.25 152 0.20 0.201 (0.140 , 0.338( (0.180 , 0.219)

262 0.15 0.150 (0.116 , 0.197) (0.138 , 0.160)

557 0.10 0.103 (0.086 , 0.125) (0.096 , 0.108)

0.10 0.90 0.90 0.10 108 0.20 0.190 (0.100 , 0.397) (0.152 , 0.213)

176 0.15 0.149 (0.092 , 0.209) (0.129 , 0.160)

369 0.10 0.098 (0.072 ,0.131) (0.088 , 0.107)

0.10 0.55 0.90 0.45 175 0.20 0.206 (0.139 , 0.291) (0.179 , 0.225)

307 0.15 0.149 (0.112 , 0.189) (0.138 , 0.159)

684 0.10 0.100 (0.081 , 0.125) (0.094 , 0.106)

0.25 0.75 0.50 0.50 160 0.20 0.200 (0.084 , 0.311) (0.176 , 0.226)

284 0.15 0.149 (0.108 , 0.209) (0.136 , 0.159)

637 0.10 0.099 (0.075 , 0.134) (0.092 , 0.105)

0.90 0.45 0.10 0.55 84 0.20 0.203 (0.094 , 0.385) (0.173 , 0.228)

147 0.15 0.146 (0.101 , 0.207) (0.129 , 0.158)

326 0.10 0.101 (0.082 , 0.127) (0.093 , 0.107)

0.60 0.40 0.50 0.50 167 0.20 0.205 (0.092 , 0.335) (0.167 , 0.246)

318 0.15 0.150 (0.066 , 0.227) (0.127 , 0.172)

747 0.10 0.102 (0.044 , 0.291) (0.090 , 0.113)
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Abstract

An originally validated predictive biomarker often undergoes a modi�cation stage for nu-

merous reasons. This nulli�es previous outcome-biomarker relationship studies and man-

dates researchers to repeat the process. However, this is costly and time consuming and

leads many initially promising biomarkers into a dead end. In this paper, we propose a

reproducibility metric ∆r that measures the di�erence in clinical performance between the

original biomarker and the modi�ed biomarker. This metric does not require that one ob-

serve the outcome associated with the modi�ed biomarker and makes the evaluation process

easy and less expensive. Proofs for the asymptotic results of ∆r are provided. Monte Carlo

methods are used to construct 95% CI for ∆r. Ki67 reproducibility data is used to show its

application. An R package RMPB is made available via Github for its implementation.

Keywords : reproducibility; Monte Carlo; ICC; CCC ; Rao-Blackwellization
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5.1 Introduction

Initially validated predictive biomarker are often modi�ed in the middle of the develop-

ment stage. Platform migration, addition of laboratories, cost reduction, sample prepara-

tion simpli�cation, and change in reagents are a few among the many reasons that result in

biomarker modi�cation. Biomarker modi�cation however, causes all the earlier biomarker

clinical performance studies to be invalid. To evaluate the clinical performance of the modi-

�ed biomarker researchers must "make a fresh start", but this process is hardly feasible since

it needs repeating the study which is time consuming and very expensive. This puts many

initially promising biomarkers in a dead end. To the best of our understanding, currently

there are no statistical methods to assess the impact of biomarker modi�cation on patient

outcome.

Predictive biomarkers also called treatment selection biomarkers are used to identify a

subgroups of patients who are more likely to respond to a given treatment (Sargent and

Allegra, 2002, Simon and Maitournam, 2004, Simon, 2008). Once the clinical utility of a

predictive biomarker is validated, it can help physicians for recommending the best treatment

for patients thereby improving the health of a patient. Among colorectal cancer patients

for example, the KRAS status of a patient is used to identify whether the patient will

bene�t from Epidermal growth factor receptor (EGFR) inhibitor treatment or not (Amado

et al., 2008, Mehta et al., 2010). Similarly, the OnctotypeDX assay is used to recommend if

chemotherapy will bene�t them after breast cancer surgery (Harris et al., 2016). However,

these biomarkers need biostatical methods used to evaluate them more easily and quickly

before they can be used in the clinical setting for making treatment decisions.

For a binary clinical endpoint, the relationship between a predictive biomarker and out-

come is assessed using metrics like sensitivity, speci�city, negative and positive predictive

values and the area under receiver operating characteristic (ROC) curve (AUC) (Søreide,
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2009, Bharti and Bharti, 2009). Biomarker by treatment interaction has also been a com-

monly used metric for assessing predictive biomarker performance (Byar, 1985, Buyse, 2007,

Taube et al., 2009, Freidlin et al., 2010, Tajik et al., 2013). However, none of these have a

clear clinical interpretation in terms of the health gain for a patient. To close this gap, a met-

ric Θ, which measures the decrease in the expected event rate that results from a biomarker

guided treatment was developed (Song and Pepe, 2004, Vickers et al., 2007, Brinkley et al.,

2010, Janes et al., 2014a).

A predictive biomarker whose clinical utility was initially validated using the metric Θ,

often goes through modi�cation for the aforementioned reasons and others in the middle

stage before being used in the �nal stage. If the original assay is changed for any reason,

we call it a modi�ed assay. This modi�cation leads each patient to have two or more

measurements and leaves unanswered the question on whether the biomarker performance

will still be similar under the modi�ed assay or not. In the medical �eld, assessing the

agreement between two or more measurements is commonly known as reliability or inter-

rater agreement (Kottner et al., 2011) while in engineering it is called a gauge repeatability

and reproducibility study (Burdick et al., 2005, Ruiz Espejo, 2006).

Traditionally, measurement of reproducibility has been done using Pearson correlation

coe�cient, paired t-test, least square analysis of slope (=1) and intercept (=0) and coe�cient

of variation. However, none of these methods can assess the desired reproducibility charac-

teristics, precision and accuracy at the same time (Bland and Altman, 1986, Lawrence

and Lin, 1989, Müller and Büttner, 1994).

Pearson correlation coe�cient only measures the strength the linear relationship between

the two measurements but fails to detect any departure from the 45o line. It is common for

two measurments to have a high values of Pearson correlation coe�cient but poor agreement

(Bland and Altman, 1986). Paired t-test as elaborated in Lin (1989) would fail to detect a

poor agreement in pairs of data such as (1, 3.5), (2.5, 3), (3, 3), (4, 3) and (5, 3). This data set
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will result in a small test statistic and fail to reject the null hypothesis of good agreement. The

least square approach for testing the slope (=1) and intercept (=0) also gives a misleading

conclusion. More scattered data have a lower chance that the null hypothesis (slope=1

and/or intercept=0) would be rejected. On the other hand, highly reproducible results

could result in rejecting the null hypothesis due to small standard error (Lawrence and Lin,

1989, Obuchowski et al., 2015). The Bland-Altman plot is another graphical method used

to assessed the agreement of two measurements (Bland and Altman, 1986; 1999).

In the medical �eld the two commonly used reproducibility indices are the concordance

correlation coe�cient (CCC) and the intraclass correlation coe�cient (ICC). Lin (1989) de-

veloped the concordance correlation coe�cient and has been in use a lot since then. The

CCC which assess agreement without the ANOVA assumptions includes precision and ac-

curacy components. For pairs of n samples (Xi1, Xi2), that are independently sampled from

bivariate normal with means µ1 and µ2 and respective variances and covariance σ2
1, σ

2
2, σ12,

the CCC = 2σ12
σ2
1+σ2

2+(µ1−µ2)2
= ρCb. Here Cb = [(v + 1/v + u2)/2]−1, where v = σ1/σ2 and

u = (µ1 − µ2)/
√
σ1σ2. The Pearson correlation coe�cient ρ measures the precision compo-

nent (how far each observation deviate from the best �t line) and the Cb component measures

how far the best �t line deviates from the 45o line ( accuracy). This original work was latter

extended to include general situations where there are more than two observers for data

without replication and for data with replication (Chen and Barnhart, 2008).

The intraclass correlation coe�cient (Fisher, 1925) is another widely used metric in

biomedical research to assess reproducibility of measurements among raters, labs, techni-

cians, or devices. The original ICC was based on the one-way analysis of variance (ANOVA)

design, where there are only the subjects and observer (or lab or device) e�ects in the model.

From the results of a one-way ANOVA table one can calculate, ICC =
σ2
b

σ2
b+σ2

e
, where σ2

b is

the between subjects variablility and σ2
e is the within subject variability. The original ICC

(which we will call it here as ICC1) was further extended to the second and third ICCs
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(ICC2, ICC3), which are based on two-way ANOVA model with and without interaction

respectively (McGraw and Wong, 1996, Shrout and Fleiss, 1979, Bartko, 1966).

However, all the aforementioned reproducibility metrics, Pearson correlation coe�cient,

regression line, the graphical Bland-Altman plot, ICC and CCC cannot be used to assess

the change in Θ that results when an assay is modi�ed. A high value of ICC between an

original assay and a modi�ed assay does not mean that the two assays will have the same

clinical utility performance as measured by Θ. When the original assay is observed along

with the outcome of interest, a method developed by Song and Pepe (2004) and Janes et al.

(2014a) can be used to get an estimate for Θ. However, estimating Θ under the modi�ed

assay is not straight forward because we do not observed a new outcome associated with the

modi�ed assay.

In this paper, we propose a new reproducibility metric ∆r which is an estimate of the

di�erence in Θ under the two scenarios (original assay vs modi�ed assay observed). Im-

plementation of this method is demonstrated using the Ki67 reproducibility study. An R

package Reproducibility Metric for Predictive Biomarkers (RMPB) is made available via

github.

The rest of this paper is organized as follows. A motivational example will be presented in

Section 5.2. In Section 5.3 we set the scenario and introduce the notations. The mathematical

derivation for estimating ∆r is provided in Section 5.4. In Sections 5.5 and 5.7, simulation

results and application using KI67 reproducibility study are presented respectively. This

paper concludes in Section 5.7 with discussion.

5.2 Motivating Context

In breast cancer research and management, Ki67 has the ability to assess immununohis-

tochemical proliferation (Viale et al., 2008, Dowsett et al., 2011, Goldhirsch et al., 2011).
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Ki67 is a nuclear proliferation biomarker used to identify the growth fraction of a given cell

population (Yerushalmi et al., 2010). However, the potential use of this biomarker in clinical

decision making is still limited due to lack of reproducibility in measurement (Harris et al.,

2007). To set a universal outline for measuring Ki67 and identify the main factors that

are bottle necks for the consistency of the measurment, Polley et al. (2013) conducted an

international reproducibility study of Ki67. In the study, one hundred breast cancer cases

where measured in eight di�erent labs and Ki67 score was recorded for 100 patients in each

of eight labs.

Polley et al. (2013) used the intraclass correlation coe�cient (ICC) as a measure of

agreement between the these labs. However, this alone is not a good enough metric to

measure the clinical utility of the biomarks for two main reasons: (1) a high value of ICC

does not mean that the two biomarkers have similar clinical performance when assessed using

the metric Θ and (2)to directly compare the clinical performance of two biomarkers using Θ

we need to observe the outcome associated with each biomarker. Observing an outcome for

a second time, however, is time consuming and costly. Using the metric ∆r we developed,

we assessed the reproducibility of Ki64 data obtained from the eight labs.

5.3 Settings and Notations

Consider a randomized control trial where half of the subjects are assigned to active treat-

ment and the other half to placebo (or standard of care). For simplicity we will denote the

treatment assignment as A such that A = 1 if the subject is assigned to active treatment

and A = 0 otherwise. Let the clinical end point of interest be a binary indicator denoted

by Y such that Y = 1 represents the occurrence of a bad outcome while Y = 0 for a favor-

able outcome. Further de�ne the continuous candidate biomarker X which is measured at

baseline from each subject.
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5.3.1 Assumptions For Estimating ∆r

For the purpose of developing the reproducibility metric ∆r later, the following assumptions

need to be taken into consideration: (a) an observed outcome, whether Y = 0 or Y = 1 for

a subject i is independent of other subjects treatment assignment; (b) treatment assignment

is independent of an individual's biomarker value, i.e, A ⊥ X; (c) a given treatment is

either useful or of no harm and (d) the relationship between the outcome Y , the treatment

assignment A, the continuous biomarker X along with the biomarker-treatment interaction

is represented using a multiple logistic regression model as:

Ln

[
Pr(Y = 1|A,X)

1− Pr(Y = 1|A,X)

]
= β0 + β1X + β2A+ β3AX. (5.1)

where β = (β0, β1, β2, β3) are the logistic model parameters.

5.3.2 Optimal Treatment Decision Criterion

The �rst step in predictive biomarker evaluation process is to set the optimal treatment

rule or algorithm. Based on this rule, treatment assignment will depend on the subject's

biomarker value. Let the absolute treatment e�ect be represented by ∆(X) = P (Y =

1|A = 0, X) − P (Y = 1|A = 1, X). From this, the optimal treatment is set in such a

way that subjects will be treated if and only if ∆(X) ≥ 0 but not treated (assigned to

placebo) otherwise. This method of setting the optimal treatment rule was previously used

by Brinkley et al. (2010) and Janes et al. (2014). A simple algebraic manipulation of

equation (5.1) will lead this optimal rule to be: treat a subject if X < −β2
β3

and do not treat

a subject if X ≥ −β2
β3

assuming β3 > 0. When β3 < 0, the reverse will be true.
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5.4 Assessing Reproducibility Of Two Biomarkers

Let the original biomarker be X, which we will consider it to be the gold standard and

the modi�ed biomarker W , which we call it a "modi�ed assay". Further we will assume

W = X + U where U ∼ N (0, σ2
e). Assessing reproducibility of these two biomarkers using

previously developed and studied metrics (like ICC and CCC) is not enough in our context.

A high value of ICC between X and W , does not necessary mean that they both have the

same clinical utility in guiding treatment for patients. From �gure 5.1, we can see that

the relationship between ICC and the parameter of interest Θ1 is not proportional. This

indicates reproducibility assessment of X and W is not be fully captured using metrics like

ICC alone. A modi�ed assay is deemed to reproduce the results of a gold standard biomarker

if it resulted in the same or very similar values of Θ1 as the gold standard.

Figure 5.1: Shows the relationship between ICC and Θ. The left plot shows a scenario where the

gold standard biomarker (X) is assumed to have a gamma distribution and the one on the right

assuming a normally distributed biomarker. In both cases, the modi�ed biomarker W is simulated

such that W = X + U where U ∼ N (0, σ2
e) represents the error term.
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5.4.1 Estimating Reproducibility Metric ∆r

Estimation of ∆r involves two steps. In step one, assuming the original biomarker X is

observed, we estimate Θ and denote is as Θx. Assuming the modi�ed assay W is observed,

in step two, we estimate Θ and denote it as Θw.

5.4.2 Estimating Θx

Let the gold standard biomarker be X ∼ N (µx, σ
2
x) with a probability density function

given by f(x). The probabilities of unfavorable outcomes when the default is �Treat All"

and �Treat None" respectively are given as:

Pr(Y = 1|A = 0) =

∫
eβ0+β1x

1 + eβ0+β1x
f(x)dx (5.2)

Pr(Y = 1|A = 1) =

∫
eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x
f(x)dx (5.3)

The initial step in assessing the performance of a predictive biomarker is specifying a classi�er

rule. That is to develop a rule for recommending subjects whether a given treatment will

bene�t them or not based on their biomarker values. Let ∆x(x) represent the absolute

treatment e�ect. Then ∆x(x) can be written as:

∆x(x) = Pr(Y = 1|A = 0, X = x)− Pr(Y = 1|A = 1, X = x) (5.4)

=
eβ0+β1x

1 + eβ0+β1x
− eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

Based on equation (4), the optimal classi�er rule for recommending treatment is, treat a

subject if ∆x(x) ≥ 0 and recommend against taking a treatment if ∆x(x) < 0. This treatment
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decision rule is similar was previous used by Zhang et al. (2012), Brinkley et al. (2010), and

Janes et al. (2014). Assuming the coe�cient β3 > 0, the treatment rule of equation (5.4)

is written as: treat a subject if X < −β2
β3

and to placebo if X ≥ −β2
β3

. After establishing the

classi�er rule, the next step in evaluating predictive biomarker performance is to quantify the

decrease in the proportion of unfavorable outcome under established classi�er based therapy

which is obtained by estimating Θx. Let the current default treatment be �Treat All" and

the coe�cient β3 > 0, then

Θ̂T
x =

[
(P̂ (Y = 1|A = 1)

]
−
[
P̂ (Y = 1|A = 1,∆x(x) ≥ 0)P̂ (∆x(x) ≥ 0) + P̂ (Y = 1|A = 0,∆x(x) < 0)P̂ (∆x(x) < 0)

]
=

(
P̂ (Y = 1|A = 1,∆x(x) < 0)− P̂ (Y = 1|A = 0,∆x(x) < 0)

)
P̂ (∆x(x) < 0)

=

∫ ∞
−β̂2/β̂3

[
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
− eβ̂0+β̂2+(β̂1+β̂3)x

1 + eβ̂0+β̂2+(β̂1+β̂3)x

]
f(x)dx

=

∫ ∞
−β̂2/β̂3

[
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
− eβ̂0+β̂2+(β̂1+β̂3)x

1 + eβ̂0+β̂2+(β̂1+β̂3)x

]
1√

2πσ2
e
−1
2

(x−µ
σ

)2 dx (5.5)

such that f(x) can be estimated from the normal probability density function given the

biomarker values in the data. The notations in Θ̂T
x are chosen in such a way that superscript

T represent the default treatment assumed is " treat all" and the subscript X represent that

the observed biomarker is X. When the observed biomarker is W the subscript is changed

to W from X and when the default treatment assumed is "treat none" the superscript is

change to P from T .

5.4.3 Estimating Θw

Let the modi�ed assay W be related to the gold standard biomarker X linearly by the

equation W = g(X) + U where U is randomly distributed independent error term. Further,
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let the absolute treatment e�ect when W is observed instead of X be ∆w(w), such that:

∆w(w) = P (Y = 1|A = 0, )− P (Y = 1|A = 1,W ) (5.6)

Applying the rule of total probability, we can further write ∆w(w) as

∆w(w) =

∫ ∞
−∞
{P (Y = 1|T = 0, X = x)− P (Y = 1|T = 1, X = x)} f(x|w)dx|w

=

∫ ∞
−∞

{
eβ0+β1x

1 + eβ0+β1x
− eβ0+β2+(β1+β3)x

1 + eβ0+β2+(β1+β3)x

}
f(x|w)dx|w

=

∫ ∞
−∞

∆x(x)f(x|w)dx|w (5.7)

If we assume the current default treatment is �Treat All", the decrease in the proportion of

unfavorable event rate as a result of the marker guided therapy, can be shown to be:

Θ̂T
w =

(
P̂ (Y = 1|T = 1,∆w(w) < 0)− P̂ (Y − 1|T = 0,∆w(w) < 0)

)
P̂ (∆w(w) < 0)

=

∫ ∞
−β̂2/β̂3

∫ ∞
−∞

[
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
− eβ̂0+β̂2+(β̂1+β̂3)x

1 + eβ̂0+β̂2+(β̂1+β̂3)x

]
f(x|w)dx|wf(w)dw

=

∫ ∞
−β̂2/β̂3

∫ ∞
−∞

[
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
− eβ̂0+β̂2+(β̂1+β̂3)x

1 + eβ̂0+β̂2+(β̂1+β̂3)x

]
f(x,w)dxdw (5.8)

The joint density f(x,w) in equation (5.8) can be estimated using parametric bivariate

density function f̂(x,w). Let the gold standard biomarker X ∼ N (µx, σ
2
x) and the modi�ed

assay be W = X + U . If we assume U ∼ N (0, σ2
e), then W ∼ N (µx, σ

2
w = σ2

x + σ2
e) and the

joint distribution of X,W will be a bivariate normal such that;

X
W

 ∼ N


 µx

µx

 ,

 σ2
x σxw

σxw σ2
w




(5.9)
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Then equation (5.8) can be further written as:

Θ̂T
w =

∫ ∞
−β̂2/β̂3

∫ ∞
−∞

[
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
− eβ̂0+β̂2+(β̂1+β̂3)x

1 + eβ̂0+β̂2+(β̂1+β̂3)x

]
(5.10)

exp

{
− 1

2(1−ρ̂2)

[(
x−µ̂x
σ̂x

)2
− 2ρ̂

(
x−µ̂x
σ̂x

)(
w−µ̂x
σ̂w

)
+
(
w−µ̂x
σ̂w

)2
]}

2πσ̂xσ̂w
√

1− ρ̂2
dxdw

Estimation of the double integrals as in equation (5.10) can be done numerically or with a

Monte Carlo. The Monte Carlo estimator of equation (5.10) will have the form:

Θ̂T
w =

∑
wi:trt better

∑
xi

{
eβ̂0+β̂1xi

1 + eβ̂0+β̂1xi
− eβ̂0+β̂2+(β̂1+β̂3)xi

1 + eβ̂0+β̂2+(β̂1+β̂3)xi

}
(5.11)

where wi:trt better represents the optimal treatment under the modi�ed biomarker as stated

in equation (5.7). When the sample n for the assay comparison is not large, the standard

error associated with the estimator might be large since estimating the joint distribution

f̂(x,w) will be noisy. From our simulation studies we have seen that ICC may be nearly

su�cient, suggesting that we can condition on the correlation coe�cient between x and w

in order to reduce the Monte Carlo variation using Rao-Blackwellization method (Robert,

2004, Dobbin and Ionan, 2015).

Let ρ represent the correlation between X and W . Given the joint distribution of X

and W follows a bivariate normal as in equation (5.9), if we observe W instead of X, the

conditional expectation of X given W is written as;

x̃i = E[Xi|Wi] (5.12)

= µx + ρ
σx
σw

(Wi − µx)

99



The Monte Carlo estimator of Θ̂T
w in equation (5.11) is then obtained by

Θ̂T
w =

∑
wi:trt better

{
eβ̂0+β̂1x̃i

1 + eβ̂0+β̂1x̃i
− eβ̂0+β̂2+(β̂1+β̂3)x̃i

1 + eβ̂0+β̂2+(β̂1+β̂3)x̃i

}
(5.13)

where x̃i is obtained using equation (5.12). The parameters in equation (5.12) are replaced

by their respective estimators such that ρ̂ = r and r = ICC.

5.4.4 Estimating ∆r

Finally the estimates of Θ̂T
x and Θ̂T

w are combined to get an estimator of the reproducibility

metric ∆̂T
r as:

∆̂T
r =

∫ ∫ {
P̂ (Y = 1|X,A)− P̂ (Y = 1|W,A)

}
f̂(x,w)dxdw (5.14)

= Θ̂T
x − Θ̂T

w

Under ideal conditions the modi�ed assay W is said to reproduce the results of the gold

standard biomarker X perfectly if ∆̂T
r = 0. The higher the value ∆̂T

r is di�erent from

0, the lesser will W be considered as substitutes for X. A con�dence interval for ∆r is

constructed using Monte Carlo methods as in (Robert, 2004) or bootstrap methods (Efron

and Tibshirani, 1994, Davison and Hinkley, 1997). When the default treatment is �Treat

None" and the coe�cient β3 < 0, the extension of the above procedures is given in the

supplementary materials.

5.5 Simulation Study

Using equation (5.1) following the steps detailed below, we �rst generated m data sets each

with sample size n.
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Step 1: Convert the clinician input values K1 to K4 to model parameters β0 to β3. Details

are given in Appendix (A.0.3).

Step 2: Use randomization to assign subjects to A = 0 or A = 1 with probability 0.5

Step 3: Generate the gold standard biomarker Xi from a given probability distribution f(x),

i = 1, 2, ..., n.

Step 4: Generate the modi�ed biomarker Wi = Xi +N (0, σ2
e), i = 1, 2, ..., n.

Step 5: Calculate the probability of an event such that: p = eβ0 + β1X + β2A + β3AX

1+eβ0 + β1X + β2A + β3AX
.

Step 6: Generate the outcome Y from a binomial distribution with success probability p

obtained from step 5 above.

Step 7: Under the normality assumption for the biomarker and the error term, get X̃i such

that: X̃i = E[Xi|Wi] = µx + ρ σx
σw

(Wi − µx), where ρ is the correlation between X

and W .

The K1−K4 clinician values are chosen to re�ect the biomarker performance and we can use

the equations given in chapters 3 & 4 to convert them to the model parameters β0−β3. This

step can be skipped if someone has any prior information about the βs' to relate the outcome

with the covariates of equation (5.1). If ρ is not previously known, in step 5, it can replaced

by its estimator ρ̂. In our �rst simulation we generate a biomarker X ∼ N (4.8, 3.24). This is

done to mimic the OncotypeDX biomarkes as given in (Janes et al., 2014a). Three scenarios

are used to choose di�erent K value combination to re�ect di�erences in the biomarker

clinical utility performance performance. The higher the value of Θ̂T
x the better the biomarker

performance. The modi�ed assay W is given such that, W = X +σ2
e , where the values of σ

2
e

are given in the �rst column of Table 5.1. The estimated value of the reproducibility metric

∆̂T
r with its standard error and 95% con�dence interval are presented for di�erent values of

σ2
e .

In Table 5.1 of the �rst scenario, the value of ∆̂T
r ranges from 2.1% when σ2

e = 0.3 to 7.7%

when σ2
e = 1.8. To make a conclusion whether the modi�ed biomarker can be considered as

a substitute for the gold standard biomarker, in addition to the values of ∆̂T
r , one has to take
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the disease under study into account. A 2.1% di�erence in the clinical outcome could mean

a lot in cancer research studies but might be of less signi�cance in a non-life threatening

disease. Results of ∆̂T
r under a moderate and weak biomarker performance assumptions are

provided in Tables 5.2 and 5.3 for scenarios 2 and 3 respectively.

5.6 Application to Ki67 Reproducibility Study

The nuclear proliferation marker Ki67 can be utilized for di�erent purposes in clinical breast

cancer management. However, the interlaboratory inconsistency limited its broader appli-

cation. To study the interlaboratory consistency of Ki67, eight laboratories received 100

breast cancer cases, one set stained by the central laboratory (Experiment A) and a second

set stained by the participating laboratory(Experiment B).

In order to assess, the interlaboratory reproducibility in terms of change in Θ, the repro-

ducibility metirc ∆̂T
r was estimated. The standard deviation of the Ki67 score was minimum

for laboratory E in both Experiments and we set this lab to be our reference point. The

Ki67 score range from 0 to 100 for each lab. The data have neither outcome nor treatment

assignment covariates. Assuming a random 1:1 treatment assignment and using the K1−K4

values, we �rst generated a binary outcome for each lab. In the result tables, Scenario 1

refers generally to a strong predictive biomarker performance while Scenario 2 be weaker.

Table 5.4 show results for ∆̂T
r , its standard error and 95% con�dence interval from Exper-

iment A assuming a stronger biomarker performance. For lab E, Θ̂T
x (SE) = 0.328(0.057).

We considered this to be Θ obtained when the observed biomarker is the gold standard.

Measurement of Ki67 score obtained from the rest of the laboratories (A, B, C, D, F, G, H)

are assumed to be measurements of Ki67 under modi�cation. The estimated values of ∆̂T
r

range from 0.015 to 0.135. Looking at Table 5.4, the di�erence in Θ between the reference

lab (lab E) and lab F is only 1.5% and one could consider the measures from these two labs
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as consistent. On the other hand the di�erence in Θ between lab E and lab B is 13.5% which

shows the incosistency in measurement between these two labs. Similar results are presented

in Table 5.5 for a less stronger biomarker.

For experiment B, where the staining was done by each participating laboratory, similar

trends are observed in the estimated values of ∆̂T
r as shown in Table 5.6. For the reference

lab (lab E) under Scenario 1 Θ̂T
x (SE) = 0.345(0.054). The values of ∆̂T

r range from 0.021

to 0.189. From these results lab G measurements can be considered more consistent with

the reference lab (lab E) with ∆̂T
r (SE) = 0.021(0.008) and 95% CI = (0.003, 0.039). On the

other hand lab B measurments looks less consistent when compared to lab E measurements

∆̂T
r (SE) = 0.189(0.037). Similar results under the weaker biomarker are shown in Table 5.7.

5.7 Discussion

Evaluating predictive biomarkers in a quick and less costly manner is of great importance

for cancer researchers. A metric Θ developed by (Song and Pepe, 2004, Brinkley et al., 2010,

Janes et al., 2014a) has been favored as measure of predictive biomarker clinical utility in

the past years. This metric measures how well the biomarker guided therapy in reducing

the expected proportion of population event rate in comparison to the default treatment

(non biomarker guided treatment). However, when the original biomarker is modi�ed for

reasons such as to reduce the cost of assay validation and preparation, previous outcome-

biomarker performance studies became invalid. Biomarker clinical utility evaluation under

the modi�ed biomarker then has to start over which is costly and time consuming as one

needs to wait to observe the outcome again. In this paper we proposed a reproducibility

metric ∆r which assesses the performance of the modi�ed assay in comparison to the original

assay without needing researcher to wait for new outcome to occur. Con�dence intervals for

∆r are constructed using Monte Carlo Methods. An R package RMPB (Reproducibility
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Metric for Predictive Biomarker) is made available via Github. Additionally, the asymptotic

results for ∆ are provided.

Assessing the agreement between two measurements in medical research is commonly

done using metrics such as Pearson correlation coe�cient, paired t-test, linear regression,

Bald-Altman plot (Bland and Altman, 1986), ICC(Fisher, 1925) and CCC (Lawrence and

Lin, 1989). Using simulation, we have shown that, a high value of ICC between two biomark-

ers does not mean the two biomarkers have similar performance as measured by the metric

Θ. This was demonstrated by plotting ICC vs Θ. Since both ICC and Θ have values which

range from 0 to 1, we would expect a straight line through the 450 if one metric could be

used as a substitute for the other for the purpose of assessing biomarker performance. For a

binary clinical endpoint, the relationship between a predictive biomarker and outcome have

been assessed also using metrics like sensitivity, speci�city, negative and positive predictive

values and area under receiver operating characteristic (ROC) curve (AUC) (Søreide, 2009,

Bharti and Bharti, 2009). Again we can not use these metrics directly for our intended

purpose because (a) the outcome-biomarker association measured using these metric can

not be directly translated to clinical biomarker performance measure metric Θ and (b) to

estimate these metrics under the modi�ed biomarker, one also need to wait to observe the

new outcome.

In this paper, we have assumed both the original (gold standard) and the modi�ed

biomarker to have a normal distribution. The modi�ed biomarker is considered as a sum of

the original biomarker plus a normal error term with zero mean. But all the steps followed

to estimate ∆r under these assumptions could be extended (1) when the biomarker has a

non-normal distribution and (2) when the error term has a distribution which is not normal.

Similarly, even though this paper assumes a binary outcome, the steps outlined in this paper

can be extended easily when clinical outcome of interest is continuous, count and time to

event.

104



Acknowledgment

We thank Lisa McShane for providing the Ki67 data.

105



Table 5.1: An Estimate of ∆T
r along its standard error and 95% CI under scenario 1. A 500 Monte

Carlo samples each with 300 sample size were used.

Scenario 1: K1= 0.25 K2= 0.75 K3= 0.75 K4= 0.25

ΘT
x Θ̂T

w ∆̂T
r

σ2
e Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

0.0 0.245(0.029) 0.245(0.029) 0.000(0.000)

0.3 0.224(0.027) 0.021(0.009) (0.004,0.039)

0.6 0.210(0.029) 0.035(0.012) (0.012,0.057)

0.9 0.197(0.028) 0.048(0.137) (0.021,0.073)

1.2 0.186(0.027) 0.059(0.015) (0.029,0.086)

1.5 0.176(0.028) 0.069(0.016) (0.038,0.097)

1.8 0.168(0.027) 0.077(0.017) (0.045,0.106)

Table 5.2: An Estimate of ∆T
r along its standard error and 95% CI under scenario 2. A 500 Monte

Carlo samples each with 300 sample size were used.

Scenario 2: K1= 0.10 ; K2= 0.60 ; K3= 0.45 ; k4= 0.25

ΘT
x Θ̂T

w ∆̂T
r

σ2
e Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

0.0 0.178(0.024) 0.178(0.024) 0.000(0.000)

0.3 0.164(0.033) 0.014(0.008) (0.001,0.031)

0.6 0.153(0.032) 0.025(0.011) (0.005,0.049)

0.9 0.144(0.032) 0.034(0.013) (0.011,0.062)

1.2 0.136(0.031) 0.042(0.014) (0.016,0.073)

1.5 0.129(0.030) 0.049(0.015) (0.022,0.082)

1.8 0.123(0.031) 0.055(0.016) (0.026,0.089)

106



Table 5.3: An Estimate of ∆T
r along its standard error and 95% CI under scenario 3. A 500 Monte

Carlo samples each with 300 sample size were used.

Scenario 3: K1= 0.15 ; K2= 0.30 ; K3= 0.25 ; k4= 0.10

ΘT
x Θ̂T

w ∆̂T
r

σ2
e Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

0.0 0.072 (0.026) 0.072(0.026) 0.000(0.000)

0.3 0.068(0.025) 0.003(0.006) (0.000,0.015)

0.6 0.065(0.024) 0.007(0.008) (0.001,0.022)

0.9 0.062(0.025) 0.100(0.009) (0.001,0.028)

1.2 0.059 (0.025) 0.012(0.011) (0.002,0.033)

1.5 0.057(0.023) 0.015(0.012) (0.002,0.038)

1.8 0.055(0.026) 0.017(0.013) (0.002,0.041)

Table 5.4: An Estimate of ∆T
r along its standard error and 95% CI under scenario 1 from the

Ki67 reproducibility study Experiment A. We used lab E measurements as a gold standard. A 1000

Monte Carlo simulation each with 100 sample size was used to construct the 95% CI for ∆T
r .

Scenario 1: K1= 0.25 K2= 0.75 K3= 0.75 K4= 0.25

ΘT
x Θ̂T

w ∆̂T
r

LAB σe Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

E 0.00 0.328(0.057) 0.328(0.057) 0.000(0.000)

F 0.92 0.313(0.053) 0.015(0.008) (0.001,0.030)

A 3.65 0.265(0.050) 0.060(0.019) (0.024,0.096)

H 3.69 0.264(0.050) 0.061(0.018) (0.024,0.097)

G 4.61 0.252(0.049) 0.073(0.022) (0.032,0.115)

D 5.74 0.238(0.048) 0.087(0.025) (0.041,0.136)

C 8.02 0.213(0.047) 0.112(0.029) (0.057,0.170)

B 10.58 0.190(0.046) 0.135(0.033) (0.073,0.203)
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Table 5.5: An Estimate of ∆T
r along its standard error and 95% CI under scenario 2 from the

Ki67 reproducibility study Experiment A. We used lab E measurements as a gold standard. A 1000

Monte Carlo simulation each with 100 sample size was used to construct the 95% CI for ∆T
r .

Scenario 2: K1= 0.10 K2= 0.60 K3= 0.45 K4= 0.25

ΘT
x Θ̂T

w ∆̂T
r

LAB σe Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

E 0.00 0.236 (0.065) 0.236(0.065) 0.000(0.000)

F 0.92 0.223 (0.063) 0.012(0.006) (0.002,0.025)

A 3.65 0.190(0.059) 0.046(0.018) (0.015,0.082)

H 3.69 0.189(0.058) 0.047(0.017) (0.015,0.082)

G 4.61 0.179(0.058) 0.056(0.021) (0.019,0.099)

D 5.74 0.168(0.057) 0.067(0.025) (0.023,0.116)

C 8.02 0.149(0.055) 0.087(0.031) (0.031,0.146)

B 10.58 0.132(0.054) 0.106(0.036) (0.039,0.176)
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Table 5.6: An Estimate of ∆T
r along its standard error and 95% CI under scenario 1 from the

Ki67 reproducibility study Experiment B. We used lab E measurements as a gold standard. A 1000

Monte Carlo simulation each with 100 sample size was used to construct the 95% CI for ∆T
r .

Scenario 1: K1= 0.25 K2= 0.75 K3= 0.75 K4= 0.25

ΘT
x Θ̂T

w ∆̂T
r

LAB σe Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

E 0.00 0.345 (0.054) 0.345(0.054) 0.000(0.000)

G 1.11 0.324(0.049) 0.021 (0.008) (0.003,0.039)

A 2.23 0.302(0.048) 0.043(0.013) (0.017,0.072)

F 2.27 0.291(0.047) 0.054(0.016) (0.022,0.089)

C 4.31 0.268(0.046) 0.077(0.020) (0.036,0.122)

D 6.18 0.242(0.045) 0.102(0.025) (0.054,0.157)

H 6.20 0.241(0.045) 0.101(0.024) (0.053,0.157)

B 16.17 0.156(0.042) 0.189(0.037) (0.118,0.272)
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Table 5.7: An Estimate of ∆T
r along its standard error and 95% CI under scenario 2 from the

Ki67 reproducibility study Experiment B. We used lab E measurements as a gold standard. A 1000

Monte Carlo simulation each with 100 sample size was used to construct the 95% CI for ∆T
r .

Scenario 2: K1= 0.10 K2= 0.60 K3= 0.45 K4= 0.25

ΘT
x Θ̂T

w ∆̂T
r

LAB σe Estimate (SE) Estimate (SE) Estimate (SE) 95% CI

E 0 0.250(0.068) 0.250(0.068) 0.000(0.000)

G 1.11 0.234 (0.066) 0.016(0.007) (0.002,0.032)

A 2.23 0.220(0.064) 0.031(0.012) (0.008,0.056)

F 2.27 0.212(0.063) 0.039(0.015) (0.010,0.070)

C 4.31 0.195(0.061) 0.057(0.021) (0.016,0.099)

D 6.18 0.175(0.058) 0.077(0.027) (0.024,0.133)

H 6.20 0.175(0.059) 0.077(0.027) (0.024,0.133)

B 16.17 0.106(0.054) 0.145(0.046) (0.058,0.235)
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Chapter 6

Summary and Future Research

6.1 Summary

In this dissertation we proposed three statistical methodologies for assessing the clinical

utility and reproducibility of predictive biomarkers. One is proposing a metric ΨB using

Bayesian decision theoretic framework; the second is proposing a sample size estimation

method SWIRL; and the third is proposing a reproducibility metric ∆r.

A predictive biomarker utility performance metric Ψ was proposed using Bayesian deci-

sion theory framework. Early phase clinical trial data are usually small and the maximum

likelihood based estimator are biased and ine�cient. This on the other hand leads to con-

clusions which are �awed. However, adding experts' prior information and data collected

from the early phase studies together, Bayesian methods were used to estimate the Ψ and

overcome the problem. Novel equations were used to convert clinician( expert) information

to useful priors. Estimation of Ψ was outlined in a general framework so that monetary

drug costs and negative side e�ects of the drug can be taken into consideration during the

evaluation process. A more e�cient MCMC algorithm Hamiltonian Monte Carlo (HMC) was

used to get estimate for the posterior mean of Ψ along its standard error and 95% credible
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interval.

When the primary goal is to evaluate the clinical performance of a treatment selection

biomarker, sample size determination is a key part of the study design. For a binary clinical

endpoint, Θ which measures the decrease in the proportion of unfavorable outcomes that

results from biomarker guided therapy has been advocated as a metric for evaluating the

marker's performance. However, a sample size estimation method was lacking to supplement

the biomarker study design. A novel sample size estimation algorithm, Squared Width

Inversion Linear Regression (SWILR), is proposed to determine a sample size n so that

the 95% CI mean width of Θ is less than the user de�ned length (Wtarg). This is the �rst

sample size method developed for estimating the the predictive biomarker clinical utility

performance metric Θ. With the SWIRL algorithm, m data sets with an increment of c are

�rst generated from the multiple logistic regression model given in equation (4.1). Under

each data set, the mean 95% CI width (w) of Θ is estimated either using the equations we

developed in chapter 4 or using the Janes et. al (2014) method and a linear regression is

then �tted with n as outcome and 1
w2 as a covariate. The �tted regression line is �nally used

to estimate a sample size n for a user de�ned 95% CI mean width (Wtarg) of the metric Θ.

The linearity assumption for the implementation of the SWIRL algorithm comes from the

asymptotic distribution proof for Θ which is given in Appendix (A.0.1).

A treatment selection biomarker undergoes three stages of validation and evaluation

before it can be used for decision making. Of the three stages, in the middle development

stage, the biomarker or assay is required to be modi�ed for reasons such as simpli�cation of

its sample preparation, minimizing the cost, migrating the assay platform etc. Modi�cation

of the assay however, invalidates previous outcome-assay performance studies as measured by

metrics such as Θ. Under the modi�ed assay, estimating Θ is not straightforward because we

do not observe the outcome. Existing reproducibility metrics such as the Pearson correlation

coe�cient (ρ), intraclass correlation coe�cient (ICC), concordance correlation coe�cient
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(CCC) and others are not suitable metrics for this purpose. This is because a high values

of ICC or ρ between the orginal assay (X) and the modi�ed assay (W ) does not directly

translate to Θx and Θw being equal. To assess the change in Θ under the modi�ed assay

we proposed a reproducibility metric ∆r. The key advantage of ∆r is, it does not need

observation of the clinical outcome under the modi�ed biomarker. This helps biomarker

researchers to assess the e�ect of assay modi�cation on the clinical performance of the assay

with less time and at a much lower cost.

6.2 Direction for Future Research

Now it is becoming a common practice to use two or more predictive biomarkers' information

simultaneously to make clinical decision. In the asthma clinical trial for example, three

di�erent biomarkes (fractional exhaled nitric oxide [FeNO], blood eosinophils and periostin)

were initially under consideration (Korenblat et al., 2018). As such the methods proposed

in this dissertation can be extended to take this issue into consideration. Let the outcome

of interest be y, which is binary, such that, y ∈ {0, 1}. Further let the input variables be

represented by a vector x such that x = (x1,x2,T) where x1 and x2 denote the biomarkers

BMK1 and BMK2 respectively which are measured at baseline from each subject and T

for the treatment assignment, placebo or active group. Additionally, θ ∈ Θ will represent

the parameter subspace that relate the outcome Y with the inputs x. The natural approach

to represent the relationship between the outcome Y and the vector of input x is through a

log linear model, which can be written as,

Ln

[
Pr(Yi = 1|X1i, X2i, Ti)

1− Pr(Yi = 1|X1i, X2i, Ti))

]
= β0 + β1X1i + β2X2i + β3Ai + β4X1iAi + β5X2iAi + β6X1iX2i

(6.1)
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where β1, β2, β3, β4, β5 and β6 in the model represent the biomarkers, treatment, biomarker

by treatment interaction and biomarker by biomarker interaction e�ects respectively. Now

let, both biomarkers X1 and X2 have a known joint probability density function each given

by f(x1, x2) where X1 ∈ (−∞,∞) and X2 ∈ (−∞,∞). The probability of unfavorable

outcome given treatment is written as :

Pr(Y = 1|T = 1) =

∫ ∫ {
eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

1 + eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

}
f(x1, x2)dx1dx2

Pr(Y = 1|T = 0) =

∫ ∫ {
eβ0+(β1+β6X2)X1+β2X2

1 + eβ0+(β1+β6X2)X1+β2X2

}
f(x1, x2)dx1dx2

6.2.1 Optimal Treatment Assignment

from equation (1) above it is straightforward to show that:

Odds(Y = 1|T = 1, X = x)

Odds(Y = 1|T = 0, X = x)
=

exp{β0 + β3 + (β1 + β4 + β6X2)X1 + (β2 + β5)X2}
exp{β0 + (β1 + β6X2)X1 + β2X2}

= exp{β3 + β4X1 + β5X2} (6.2)

From equation (4.4) it is clear that, odds of an unfavorable outcome are greater among

subjects in the active arm than the SOC arm if β3 + β4X1 + β5X2 > 0. Based on this, the

biomarker guided treatment decision (Topt) can be set in such a way that :

Topt(X = x) =

 T = 1 : β4X1 + β5X2 < −β3

T = 0 : β4X1 + β5X2 ≥ −β3

(6.3)

Depending on the sign of (β4) coe�cient a threshold for the marker guided therapy can be

written as:
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Topt(X = x)⇒ if : β4 < 0


T = 1 : X1 >

−β3−β5X2

β4

T = 0 : X1 ≤ −β3−β5X2

β4

Topt(X = x)⇒ if : β4 > 0


T = 1 : X1 <

−β3−β5X2

β4

T = 0 : X1 ≥ −β3−β5X2

β4

6.2.2 Estimation of Θ

Once the optimal treatment rule is set as in equation (6.3), one can proceed to estimate Θ

using the procedures outlined in chapter 4. If we assume the default treatment is treat all

for example, we can get an estimate of Θ1 as:

Θ̂1 = Pr(Y = 1|T = 1, X1, X2)− Pr(Y = 1|Topt, X1, X2) (6.4)

=

∫∫
trt:all

{
eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

1 + eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

}
f(x1, x2)dx1dx2 −

∫∫
trt:opt

{
eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

1 + eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

}
f(x1, x2)dx1dx2

Similarly, when the default treatment is treat none, an estimate of Θ0 can be obtained as:

Θ̂0 = Pr(Y = 0|T = 1, X1, X2)− Pr(Y = 1|Topt, X1, X2) (6.5)

=

∫∫
trt:none

{
eβ0+(β1+β6X2)X1+β2X2

1 + eβ0+(β1+β6X2)X1+β2X2

}
f(x1, x2)dx1dx2 −

∫∫
trt:opt

{
eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

1 + eβ0+β3+(β1+β4+β6X2)X1+(β2+β5)X2

}
f(x1, x2)dx1dx2
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Appendix A

Chapter 4

A.0.1 Asymptotic Properties of Θ

Theorem: Let the biomarker X has a standard uniform distribution, i.e, X ∼ U(0, 1).

Then Θ0 = 1
n

∑n
i=n ∆i where ∆i = eβ0+β1Xi

1+eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi
. Note that since Xi are

i.i.d. random variables, then ∆i are i.i.d. random variables. Also since , −1 ≤ ∆i ≤ 1, they

have mean and variance. Let the mean and variance of ∆is' be µ∆ and σ2
∆ respectively. Then

E
[√

n(Θ̂0 − µ∆)
]
→ 0

V ar
[√

n(Θ̂0 − µ∆)
]
→ σ2

Θ0

as n →∞.

Proof :

(i) Lets �rst look at the asymptotic claim for the expectation:

E
[√

n(Θ̂0 − µ∆)
]

= E
{
E
[√

n(Θ̂0 − µ∆)|β̂0, β̂1, β̂2, β̂3

]}
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Where the inner expectation is taken over the Xi and the out expectation is taken over

the parameter estimates. Let

ηo = E
[
∆i|β̂0, β̂1, β̂2, β̂3

]
= E

[
Θ̂m

]

then

E
{
E
[√

n(Θ̂m − µ∆)|β̂0, β̂1, β̂2, β̂3

]}
= E

[√
n(ηo − µ∆)

]
Nothing that ηo is a continous function of the maximum likelihood estimates (MLE), and

the MLE converge to a normal distribution with mean zero, it follows that

E
[√
n(ηo − µ∆)

]
→ 0

as n →∞.

(ii) Now lets �rst look at the asymptotic claim for the variance:

As stated previously:

Θ0 =
1

n

n∑
i=n

∆i

=
1

n

n∑
i=n

{
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

}
(A.1)

Lets take the �rst term of ∆i from Eq. (13) �rst.

V arE

[
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µ∆

}]
=

E

[
V ar

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µ∆|β̂0, β̂1, β̂2, β̂3

)}]
+
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V ar

[
E

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µ∆|β̂0, β̂1, β̂2, β̂3

)}]
(A.2)

Not that, conditional on β̂0, β̂1, β̂2, β̂3, the sums are sums of independent random variables.

Taking the �rst term on the right hand side of Equation (14):

E

[
V ar

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µ∆|β̂0, β̂1, β̂2, β̂3

)}]
=

E

[
1

n

n∑
i=n

V ar

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
|β̂0, β̂1, β̂2, β̂3

}]

Since −1 ≤
(

eβ0+β1Xi

1+eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi

)
≤ 1, the variance taken over Xi is absolutely

bounded.

E

[
1

n

n∑
i=n

V ar

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
|β̂0, β̂1, β̂2, β̂3

}]
→ σ2

o

Now turning to the second term in Equation (14)

V ar

[
E

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µ∆|β̂0, β̂1, β̂2, β̂3

)}]

= V ar

[
1√
n
n(µn − µ∆)

]
= V ar

[
1√
n

(µn − µ∆)

]

where µn = E
{(

eβ0+β1Xi

1+eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi

)
|β̂0, β̂1, β̂2, β̂3

}
= µn(β̂0, β̂1, β̂2, β̂3).

The function µn(β̂0, β̂1, β̂2, β̂3) is continuous in (β̂0, β̂1, β̂2, β̂3). Therefore, since (β̂0, β̂1, β̂2, β̂3)

is maximum likelihood, under the usual condition s (ref) we have
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√
n





β̂0

β̂1

β̂2

β̂3


−



β0

β1

β2

β3




→ Normal

√
n





0

0

0

0


,Σβ0,β1,β2,β3


It follow from (theorem ref) that

√
n(µn − µ∆)→ Normal(0, σ2

µ)

where σµ <∞

We have therefore shown that

V ar[
√
n(Θ̂m − µ∆)]→ σ2

µ + σ2
o = σ2

Θ0

The proof for Θ1 follows similarly.

This proof can easily be extended when the biomarker has a distribution other than

uniform (Normal, Gamma etc).

A.0.2 End point calculation under optimal treatment for a biomarker

with standard uniform distribution

Let the biomarker X has a continuous measure with probability density function f(x). In

Eq.(5) section 2.2, we have shown that:

Topt(X = x) =

 T = 1 : β3x < (−β2)

T = 0 : β3x > (−β2)
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Depending on the sign of the coe�cient β3, the optimal treatment is further written as:

Topt(X = x)⇒ if : β3 < 0


T = 1 : x > −β2

β3

T = 0 : x ≤ −β2
β3

Topt(X = x)⇒ if : β3 > 0


T = 1 : x < −β2

β3

T = 0 : x ≥ −β2
β3

Let A1 = {x : β3x < (−β2)}, and A0 = <1\A1 (where �\" is the set di�erence symbol). The

value of the end points for A1 & A0 will vary depending on the support of the probability

density function for X. Let the end points for A1 & A0 are respectively (c, d) and (a, b) and

X ∼ U(0, 1). Then the possible end point values are as shown below.
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Table A.1: Lower and Upper Integral limits calculation table for biomarker with U (0,1)

Parameters Prob. Of Death/Relapse Picture End Point Values

β3 >0, 0 <(-β2/β3) <1 Lines cross at -β2/β3 a = (-β2/β3), b0 = 1

T=1 Prob. increase rel. to T=0 c = 0, d = (-β2/β3)

β3 >0, 0 <(β2/β3) <1 Lines cross at -β2/β3 a =0, b= (β2/β3)

T=1 Prob. increase rel. to T=0 c =(β2/β3) , d = 1

β3 >0, (β2/β3) <0 T=0 : Always better a = 1, b = 0

c = d = 1

β3 <0, (β2/β3) <0 T=1 : Always better a = b = 0

c = 0, d = 1

β3 >0, (β2/β3) <1 T=1 : Always better a = b = 1

c = 0, d = 1

β3 <0, (β2/β3) <1 T=0 : Always better a = 0, b = 1

c = d = 1

Refere to �gure 1

Similar development could be followed for other biomarker distributions considered.

A.0.3 Converting clinician inputs to model parameters

The natural approach to represent the relationship between the outcome (Y ∈ {0, 1}) and the

covariates (T and X) along the interaction term (T ∗X) is using multiple logistic regression

as:

Ln

[
Pr(Y = 1|T = 0, X)

1− Pr(Y = 1|T = 0, X)

]
= β0 + β1x
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=

 β0 : β1 = 0

β0 + β1x : β1 6= 0

Ln

[
Pr(Y = 1|T = 1, X)

1− Pr(Y = 1|T = 1, X)

]
= β0 + β2 + (β1 + β3)x

=

 β0 + β2 : β1 + β3 = 0

β0 + β2 + (β1 + β3)x : β1 + β3 6= 0

Let the clinician input values be K1 to K4. Restricting our focus to the 25th and 75th

percentile of the marker value,we can write the following equations:

K1 = Ln

[
P (Y = 1|A = 0, x = F−1(0.25))

1− P (Y = 1|A = 0, x = F−1(0.25))

]
= β0 + β1F

−1(−0.25)

K2 = Ln

[
P (Y = 1|A = 0, x = F−1(0.75))

1− P (Y = 1|A = 0, x = F−1(0.75))

]
= β0 + β1F

−1(−0.75)

K3 = Ln

[
P (Y = 1|A = 1, x = F−1(0.25))

1− P (Y = 1|A = 1, x = F−1(0.25))

]
= β0 + β2 + (β1 + β3)F−1(−0.25)

K4 = Ln

[
P (Y = 1|A = 1, x = F−1(0.75))

1− P (Y = 1|A = 1, x = F−1(0.75))

]
= β0 + β2 + (β1 + β3)F−1(−0.75)

If we let F−1(0.25)= z1 , and F−1(0.75)= z2,

K1 = β0 + β1z1

K2 = β0 + β1z2

K3 = β0 + β2 + (β1 + β3)z1

137



K4 = β0 + β2 + (β1 + β3)z2

Here we have four equations and four unknowns. Using MATLAB R2015a, the above equa-

tion can be solve in terms of the logistic model parameters as :

β0 =


0 : K1 = K2

K2∗z1−K1∗z2
z1−z2 : K1 6= K2

β1 =

 0 : K1 = K2

K1−K2

z1−z2 : K1 6= K2

β2 =



0 : K1 = K2, K3 = K4

K1∗z2−K2∗z1
z1−z2 : K1 6= K2, K3 = K4

−K3∗z2+K4∗z1
z1−z2 : K1 = K2, K3 6= K4

K1∗z2−K2∗z1−K3∗z2+K4∗z1
z1−z2 : K1 6= K2, K3 6= K4

β3 =



0 : K1 = K2, K3 = K4

K2−K1

z1−z2 : K1 6= K2, K3 = K4

K3−K4

z1−z2 : K1 = K2, K3 6= K4

K2−K1+K3−K4

z1−z2 : K1 6= K2, K3 6= K4
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Appendix B

Chapter 5

B.0.1 Asymptotic Properties of ∆r

Theorem 1 : Let the biomarker X has a normal distribution, i.e, X ∼ N (µx, σ
2
x). Using

Monte Carlo, we get an estimator Θ̂T
x such that Θ̂T

x = 1
n

∑n
i=n Θx

i where Θx
i = eβ0+β1Xi

1+eβ0+β1Xi
−

eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi
. Note that since Xi are i.i.d. random variables, then Θx

i are i.i.d. random

variables. Also since , −1 ≤ Θx
i ≤ 1, they have mean and variance. Let the mean and

variance of Θx
i s' be µΘx and σ

2
Θx

respectively. Then

E
[√

n(Θ̂T
x − µΘx)

]
→ 0 (B.1)

V ar
[√

n(Θ̂T
x − µΘx)

]
→ σ2

Θx (B.2)

as n →∞.

A detailed proofs of equations (18) and (19) is provided below:

Proof :

(i) Asymptotic convergence of the mean:

E
[√

n(Θ̂T
x − µΘx)

]
= E

{
E
[√

n(Θ̂T
x − µΘx)|β̂0, β̂1, β̂2, β̂3

]}
139



where the inner expectation is taken over theXi and the out expectation over the β parameter

estimates. Now let,

ηx = E
[
Θx
i |β̂0, β̂1, β̂2, β̂3

]
= E[Θ̂x

m]

then

E
{
E
[√

n(Θ̂x
m − µΘx)|β̂0, β̂1, β̂2, β̂3

]}
= E

[√
n(ηx − µΘx)

]
β̂s are maximum likelihood (MLE) estimates and ηx is a continuous function of these maxi-

mum likelihood estimates. Since maximum likehood estimates converge to a normal distri-

bution with mean zero, it follows that;

E
[√
n(ηx − µ∆)

]
→ 0 (B.3)

as n →∞.

(ii) Asymptotic convergence of the variance:

We know that,

Θ̂T
x =

1

n

n∑
i=n

Θx
i

=
1

n

n∑
i=n

{
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

}
(B.4)

Then the asymptotic variance of Θ̂T
x is given as:

= V ar
[√

n(Θ̂T
x − µΘx)

]
= V ar

[
E

[
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µΘx

}]]
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= E

[
V ar

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µΘx |β̂0, β̂1, β̂2, β̂3

)}]
+

V ar

[
E

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µΘx |β̂0, β̂1, β̂2, β̂3

)}]
(B.5)

Conditional on β̂s′ the summations in equations (22) are sums of independent random

variables. Now lets look at the �rst term of equation (22):

E

[
V ar

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µΘx|β̂0, β̂1, β̂2, β̂3

)}]
=

E

[
1

n

n∑
i=n

V ar

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
|β̂0, β̂1, β̂2, β̂3

}]

Since −1 ≤
(

eβ0+β1Xi

1+eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi

)
≤ 1, the variance taken over Xi is absolutely

bounded.

E

[
1

n

n∑
i=n

V ar

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
|β̂0, β̂1, β̂2, β̂3

}]
→ σ2

o (B.6)

Now turning to the second term in equation (22)

V ar

[
E

{
1√
n

n∑
i=n

{(
eβ0+β1Xi

1 + eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1 + eβ0+β2+(β1+β3)Xi

)
− µΘx|β̂0, β̂1, β̂2, β̂3

)}]

= V ar

[
1√
n
n(µn − µΘx)

]
= V ar

[
1√
n

(µn − µΘx)

]

where µn = E
{(

eβ0+β1Xi

1+eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi

)
|β̂0, β̂1, β̂2, β̂3

}
= µn(β̂0, β̂1, β̂2, β̂3).

The function µn(β̂0, β̂1, β̂2, β̂3) is continuous in (β̂0, β̂1, β̂2, β̂3). Therefore, since (β̂0, β̂1, β̂2, β̂3)

is maximum likelihood, we have
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√
n





β̂0

β̂1

β̂2

β̂3


−



β0

β1

β2

β3




→ Normal

√
n





0

0

0

0


,Σβ0,β1,β2,β3


It follow from (theorem ref) that

√
n(µn − µΘx)→ Normal(0, σ2

µ) (B.7)

where σµ <∞

Combining equations (23) and (24), we have shown that

V ar[
√
n(Θ̂m − µΘx ]→ σ2

µ + σ2
o = σ2

Θ0
(B.8)

as n →∞.

Theorem 2 : Let the observed biomarker is W instead of X such that W = X + U

where X ∼ N (µx, σ
2
x) and U ∼ N (0, σ2

e). SinceW is the sum of two normal,W ∼ N (µx, σ
2
w)

such that σ2
w = σ2

x + σ2
e . Using Monte Carlo, we get an estimator Θ̂T

w such that Θ̂T
w =

1
n

∑n
i=n

1
n

∑n
i=n Θw

i where Θw
i = eβ0+β1X̃i

1+eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1+eβ0+β2+(β1+β3)X̃i
and x̃i = µx + ρ̂ σ̂x

σ̂w
(Wi − µx).

Note that since Wi are i.i.d. random variables, then Θw
i are i.i.d. random variables. Also

since , −1 ≤ Θw
i ≤ 1, they have mean and variance. Let the mean and variance of Θw

i s' be

µΘw and σ2
Θw

respectively. Then

E
[√

n(Θ̂T
w − µΘw)

]
→ 0 (B.9)

V ar
[√

n(Θ̂T
w − µΘw)

]
→ σ2

Θw (B.10)
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as n →∞.

Asymptotic mean and variance proofs of equations (26) and (27) are given in detail below:

Proof :

(i) Asymptotic convergence of the mean:

E
[√

n(Θ̂T
w − µΘw)

]
= E

{
E
[√

n(Θ̂T
w − µΘw)|B̂

]}

where B̂ = c(β̂0, β̂1, β̂2, β̂3). The inner expectation is taken over the X̃i and the out expec-

tation over the B parameter estimates. Now let,

ηw = E
[
Θw
i |B̂

]
= E[Θ̂w

m]

then

E
{
E
[√

n(Θ̂w
m − µΘw)|B̂

]}
= E

[√
n(ηw − µΘw)

]
B̂ is a vector of mle estimates and ηw is a continuous function of these mle estimates. Since

mle estimates converge to a normal distribution with mean zero, it follows that;

E
[√
n(ηw − µΘw)

]
→ 0 (B.11)

as n →∞.

(ii) Asymptotic convergence of the variance:

We know that,

Θ̂T
w =

1

n

n∑
i=n

n∑
i=n

Θw
i
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=
1

n

n∑
i=n

n∑
i=n

{
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

}
(B.12)

Then the asymptotic variance of Θ̂T
w is given as:

= V ar
[√

n(Θ̂T
w − µΘw)

]
= V ar

[
E

[
1√
n

n∑
i=n

n∑
i=n

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
− µΘw

}]]

= E

[
V ar

{
1√
n

n∑
i=n

n∑
i=n

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
− µΘw |B̂

)}]
+

V ar

[
E

{
1√
n

n∑
i=n

n∑
i=n

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
− µΘw |B̂

)}]
(B.13)

Conditional on B̂ the summations in equations (30) are sums of independent random

variables. Now lets look at the �rst term of equation (30):

E

[
V ar

{
1√
n

n∑
i=n

n∑
i=n

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
− µΘw |B̂

)}]
=

E

[
1

n

n∑
i=n

n∑
i=n

V ar

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
|B̂

}]

Since −1 ≤
(

eβ0+β1Xi

1+eβ0+β1Xi
− eβ0+β2+(β1+β3)Xi

1+eβ0+β2+(β1+β3)Xi

)
≤ 1, the variance taken over X̃i is absolutely

bounded.

E

[
1

n

n∑
i=n

n∑
i=n

V ar

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
|B̂

}]
→ σ2

w1
(B.14)
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Now turning to the second term in equation (22)

V ar

[
E

{
1√
n

n∑
i=n

n∑
i=n

{(
eβ0+β1X̃i

1 + eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1 + eβ0+β2+(β1+β3)X̃i

)
− µΘw |B̂

)}]

= V ar

[
1√
n
n(µw2 − µΘw)

]
= V ar

[
1√
n

(µw2 − µΘw)

]

where µw2 = E
{(

eβ0+β1X̃i

1+eβ0+β1X̃i
− eβ0+β2+(β1+β3)X̃i

1+eβ0+β2+(β1+β3)X̃i

)
|B̂
}

= µw2(B̂).

The function µw2(B̂) is continuous in (β̂0, β̂1, β̂2, β̂3). Therefore, since (B̂) is maximum

likelihood, we have

√
n
(
B̂ −B

)
→ Normal

√
n (0,ΣB)

From this we can get;

√
n(µw1 − µΘw)→ Normal(0, σ2

w2
) (B.15)

where σw2 < ∞

From the results of equations (31) and (32), we have shown that

V ar[
√
n(Θ̂T

w − µΘw ]→ σ2
w1

+ σ2
w2

= σ2
Θw (B.16)

as n →∞.

The asymptotic proof fro ∆̂T
r , then follows from equations (20,25,28 and 33).
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6.1 Supplementary Materials

Table S1: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting a zero-

in�ated Poisson regression model assuming a U(0, 1) biomarker. Data was generated from a standard

Poisson model with sample size of 350. Coe�cients used for data simulation are:β0 = −0.40,
β1 = 2.75,β2 = 1.45 and β3 = −3.00.

Scenario 1: K-values K1 = 0.6 K2 = 3.5 K3 = 3.5 K4 = 0.6

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(1.76, σ2
j ) β3 ∼ N(−3.5, σ2

j )

σ2
j 0.5 10 100

Post. mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.579(0.093) (1.421,1.749) 1.596(0.095) (1.431,1.767) 1.596(0.095) (1.431,1.767)

Act 1.521(0.097) (1.352,1.724) 1.529(0.099) (1.358,1.738) 1.529(0.099) (1.358,1.738)

Opt 0.959(0.056) (0.854,1.075) 1.003(0.074) (0.853,1.160) 1.003(0.074) (0.852,1.160)

Ψ̂BP 0.619(0.084) (0.469,0.801) 0.594(0.094) (0.425,0.792) 0.593(0.094) (0.425,0.793)

Ψ̂BT 0.563(0.073) (0.428,0.687) 0.527(0.088) (0.366,0.669) 0.526(0.088) (0.368,0.669)

Scenario 2: K-values K1 = 0.6 K2 = 3.5 K3 = 2.5 K4 = 1.5

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(1.42, σ2
j ) β3 ∼ N(−2.27, σ2

j )

σ2
j 0.5 10 100

Post. mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.584(0.093) (1.422,1.750) 1.596(0.095) (1.430,1.765) 1.596(0.095) (1.431,1.765)

Act 1.519(0.098) (1.353,1.724) 1.529(0.099) (1.358,1.738) 1.529(0.099) (1.358,1.736)

Opt 1.020(0.058) (0.915,1.139) 1.003(0.074) (0.851,1.161) 1.003(0.074) (0.851,1.162)

Ψ̂BP 0.563(0.083) (0.411,0.738) 0.593(0.094) (0.424,0.793) 0.593(0.095) (0.425,0.792)

Ψ̂BT 0.499(0.074) (0.368,0.628) 0.526(0.088) (0.367,0.669) 0.526(0.088) (0.366,0.667)

Scenario 3: K-values K1 = 0.6 K2 = 3.5 K3 = 0.8 K4 = 3.0

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(0.28, σ2
j ) β3 ∼ N(−0.44, σ2

j )

σ2
j 0.5 10 100

Post. mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.609(0.095) (1.438,1.769) 1.596(0.095) (1.431,1.765) 1.596(0.095) (1.430,1.767)

Act 1.506(0.099) (1.337,1.716) 1.529(0.099) (1.359,1.738) 1.529(0.099) (1.358,1.737)

Opt 1.131(0.062) (1.024,1.259) 1.003(0.074) (0.852,1.160) 1.003(0.074) (0.852,1.162)

Ψ̂BP 0.479(0.084) (0.317,0.652) 0.593(0.094) (0.424,0.792)) 0.593(0.094) (0.424,0.793)

Ψ̂BT 0.376(0.073) (0.244,0.515) 0.526(0.088) (0.366,0.666) 0.526(0.088) (0.366,0.668)
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Table S2: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting

a negative binomial regression model assuming a U(0, 1) biomarker. Data was generated from a

standard Poisson model with sample size of 350. Coe�cients used for data simulation are:β0 =
−0.40, β1 = 2.75,β2 = 1.45 and β3 = −3.00.

Scenario 1: K-values K1 = 0.6 K2 = 3.5 K3 = 3.5 K4 = 0.6

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(1.76, σ2
j ) β3 ∼ N(−3.5, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.536(0.084) (1.386,1.684) 1.549(0.086) (1.394,1.695) 1.549(0.086) (1.394,1.696)

Act 1.482(0.093) (1.314,1.677) 1.486(0.096) (1.315,1.685) 1.486(0.095) (1.316,1.686)

Opt 0.931(0.053) (0.821,1.046) 0.970(0.068) (0.815,1.118) 0.971(0.068) (0.816,1.118)

Ψ̂BP 0.605(0.079) (0.461,0.767) 0.579(0.089) (0.420,0.771) 0.578(0.090 (0.419,0.772)

Ψ̂BT 0.550(0.071) (0.422,0.679) 0.516(0.086) (0.364,0.652) 0.516(0.086) (0.363,0.651)

Scenario 2: K-values K1 = 0.6 K2 = 3.5 K3 = 2.5 K4 = 1.5

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(1.42, σ2
j ) β3 ∼ N(−2.27, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.537(0.084) (1.387,1.682) 1.549(0.085) (1.394,1.695) 1.549(0.086) (1.394,1.695)

Act 1.476(0.094) (1.312,1.674) 1.486(0.096) (1.315,1.686) 1.486(0.096) (1.315,1.686)

Opt 0.989(0.054) (0.879,1.108) 0.971(0.068) (0.816,1.117) 0.971(0.068) (0.815,1.118)

Ψ̂BP 0.548(0.079) (0.400,0.712) 0.578(0.090) (0.421,0.770) 0.578(0.090) (0.420,0.771)

Ψ̂BT 0.486(0.071) (0.358,0.619) 0.515(0.086) (0.364,0.652) 0.515(0.086) (0.363,0.652)

Scenario 3: K-values K1 = 0.6 K2 = 3.5 K3 = 0.8 K4 = 3.0

µβj β0 ∼ N(−0.50, σ2
j ) β1 ∼ N(1.76, σ2

j ) β2 ∼ N(0.28, σ2
j ) β3 ∼ N(−0.44, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.554(0.084) (1.404,1.699) 1.549(0.085) (1.394,1.695) 1.549(0.086) (1.395,1.695)

Act 1.454(0.096) (1.287,1.656) 1.486(0.096) (1.316,1.687) 1.486(0.096) (1.316,1.685)

Opt 1.091(0.056) (0.975,1.215) 0.971(0.068) (0.816,1.121) 0.971(0.068) (0.816,1.118)

Ψ̂BP 0.463(0.079) (0.310,0.629) 0.578(0.090) (0.419,0.773) 0.579(0.090) (0.419,0.771)

Ψ̂BT 0.363(0.071) (0.239,0.494) 0.515(0.086) (0.363,0.652) 0.516(0.086) (0.363,0.651)
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Table S3: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting

a zero-in�ated Poisson regression model assuming a N (4.8, 3.24) biomarker. Data was generated

from a standard Poisson model with sample size of 350. Coe�cients used for data simulation are:

β0 = −0.10, β1 = 0.08,β2 = 0.65 and β3 = −0.15.

Scenario 1: K-values K1 = 0.6 K2 = 3.5 K3 = 3.5 K4 = 0.6

µβj β0 ∼ N(−0.15, σ2
j ) β1 ∼ N(0.11, σ2

j ) β2 ∼ N(1.04, σ2
j ) β3 ∼ N(−0.22, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.330(0.075) (1.189,1.481) 1.385(0.081) (1.229,1.548) 1.385(0.081) (1.229,1.548)

Act 1.292(0.073) (1.151,1.412) 1.312(0.078) (1.167,1.452) 1.312(0.078) (1.167,1.452)

Opt 1.114(0.050) (1.017,1.212) 1.177(0.083) (1.048,1.297) 1.177(0.083) (1.048,1.297)

Ψ̂BP 0.217(0.075) (0.101,0.350) 0.208(0.083) (0.081,0.349) 0.208(0.083) (0.081,0.349)

Ψ̂BT 0.178(0.044) (0.103,0.2750 0.135(0.066) (0.024,0.279) 0.135(0.066) (0.024,0.279)

Scenario 2: K-values K1 = 0.6 K2 = 3.0 K3 = 2.5 K4 = 0.6

µβj β0 ∼ N(−0.18, σ2
j ) β1 ∼ N(0.10, σ2

j ) β2 ∼ N(0.80, σ2
j ) β3 ∼ N(−0.18, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.339(0.075) (1.196,1.491) 1.386(0.081) (1.231,1.548) 1.386(0.081) (1.231,1.549)

Act 1.276(0.073) (1.139,1.397) 1.312(0.078) (1.169,1.452) 1.313(0.078) (1.167,1.452)

Opt 1.135(0.051) (1.032,1.234) 1.178(0.069) (1.050,1.299) 1.178(0.069) (1.048,1.298)

Ψ̂BP 0.205(0.077) (0.087,0.343) 0.208(0.083) (0.079,0.349) 0.208(0.083) (0.081,0.350)

Ψ̂BT 0.142(0.042) (0.074,0.239) 0.135(0.065) (0.029,0.279) 0.135(0.066) (0.028,0.281)

Scenario 3: K-values K1 = 0.6 K2 = 3.0 K3 = 0.8 K4 = 2.5

µβj β0 ∼ N(−0.18, σ2
j ) β1 ∼ N(0.10, σ2

j ) β2 ∼ N(0.19, σ2
j ) β3 ∼ N(−0.03, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.370(0.075) (1.223,1.523) 1.386(0.081) (1.231,1.548) 1.386(0.081) (1.231,1.548)

Act 1.246(0.073) (1.114,1.365) 1.312(0.078) (1.167,1.451) 1.312(0.078) (1.168,1.452)

Opt 1.186(0.056) (1.069,1.287) 1.178(0.069) (1.050,1.296) 1.177(0.069) (1.050,1.296)

Ψ̂BP 0.184(0.087) (0.059,0.344) 0.208(0.083) (0.076,0.349) 0.208(0.083) (0.075,0.349)

Ψ̂BT 0.059(0.034) (0.015,0.151) 0.135(0.066) (0.027,0.278) 0.135(0.066) (0.030,0.279)
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Table S4: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting

a negative binomial regression model assuming a N (4.8, 3.24) biomarker. Data was generated

from a standard Poisson model with sample size of 350. Coe�cients used for data simulation are:

β0 = −0.10, β1 = 0.08,β2 = 0.65 and β3 = −0.15.

Scenario 1: K-values K1 = 0.6 K2 = 3.5 K3 = 3.5 K4 = 0.6

µβj β0 ∼ N(−0.15, σ2
j ) β1 ∼ N(0.11, σ2

j ) β2 ∼ N(1.04, σ2
j ) β3 ∼ N(−0.22, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.291(0.071) (1.155,1.424) 1.334(0.076) (1.192,1.471) 1.335(0.076) (1.192,1.471)

Act 1.253(0.071) (1.122,1.379) 1.264(0.075) (1.127,1.410) 1.264(0.075) (1.127,1.411)

Opt 1.079(0.048) (0.992,1.166) 1.132(0.065) (1.009,1.242) 1.132(0.066) (1.009,1.245)

Ψ̂BP 0.211(0.073) (0.101,0.340) 0.202(0.081) (0.077,0.339) 0.202(0.081) (0.078,0.338)

Ψ̂BT 0.173(0.043) (0.102,0.269) 0.132(0.065) (0.028,0.274) 0.131(0.065) (0.029,0.274)

Scenario 2: K-values K1 = 0.6 K2 = 3.0 K3 = 2.5 K4 = 0.6

µβj β0 ∼ N(−0.18, σ2
j ) β1 ∼ N(0.10, σ2

j ) β2 ∼ N(0.80, σ2
j ) β3 ∼ N(−0.18, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.230(0.071) (1.161,1.432) 1.335(0.076) (1.192,1.471) 1.335(0.076) (1.191,1.473)

Act 1.238(0.071) (1.109,1.363) 1.264(0.075) (1.126,1.411) 1.264(0.075) (1.126,1.411)

Opt 1.100(0.049) (1.010,1.187) 1.132(0.065) (1.009,1.242) 1.132(0.066) (1.009,1.245)

Ψ̂BP 0.199(0.076) (0.086,0.336) 0.202(0.081) (0.075,0.336) 0.202(0.081) (0.076,0.339)

Ψ̂BT 0.138(0.041) (0.072,0.233) 0.132(0.064) (0.031,0.274) 0.132(0.065) (0.028,0.274)

Scenario 3: K-values K1 = 0.6 K2 = 3.0 K3 = 0.8 K4 = 2.5

µβj β0 ∼ N(−0.18, σ2
j ) β1 ∼ N(0.10, σ2

j ) β2 ∼ N(0.19, σ2
j ) β3 ∼ N(−0.03, σ2

j )

σ2
j 0.2 5 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 1.328(0.072) (1.183,1.458) 1.335(0.076) (1.191,1.471) 1.335(0.076) (1.191,1.471)

Act 1.207(0.072) (1.082,1.332) 1.262(0.075) (1.126,1.413) 1.264(0.075) (1.126,1.411)

Opt 1.149(0.054) (1.044,1.237) 1.132(0.066) (1.010,1.242) 1.132(0.066) (1.009,1.246)

Ψ̂BP 0.179(0.085) (0.053,0.336) 0.203(0.081) (0.075,0.339) 0.202(0.081) (0.076,0.339)

Ψ̂BT 0.059(0.033) (0.016,0.146) 0.132(0.064) (0.031,0.274) 0.132(0.064) (0.028,0.275)
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Table S5: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting a

zero-in�ated Poisson regression model to mirror the AA clinical trial study. Data was generated

from a standard Poisson model with sample size of 460. Coe�cients used for data simulation are:

β0 = −9.85, β1 = 2.20,β2 = 5.33 and β3 = −1.52.

Scenario 1: K-values K1 = 0.10 K2 = 2.50 K3 = 1.50 K4 = 0.40

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(5.01, σ2
j ) β3 ∼ N(−1.27, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.475(0.044) (0.396,0.555) 0.501(0.043) (0.418,0.588) 0.500(0.043) (0.417,0.588)

Act 0.194(0.032) (0.133,0.270) 0.226(0.035) (0.165,0.306) 0.226(0.035) (0.166,0.308)

Opt 0.182(0.027) (0.129,0.242) 0.172(0.030) (0.126,0.245) 0.171(0.031) (0.124,0.244)

Ψ̂BP 0.292(0.046) (0.212,0.384) 0.329(0.039) (0.258,0.404) 0.330(0.039) (0.258,0.404)

Ψ̂BT 0.012(0.005) (0.003,0.028) 0.054(0.020) (0.021,0.105) 0.055(0.021) (0.022,0.107)

Scenario 2: K-values K1 = 0.10 K2 = 2.50 K3 = 1.00 K4 = 0.30

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(4.24, σ2
j ) β3 ∼ N(−1.07, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.477(0.044) (0.396,0.558) 0.501(0.043) (0.418,0.587) 0.500(0.043) (0.418,0.588)

Act 0.193(0.032) (0.132,0.268) 0.226(0.035) (0.166,0.306) 0.226(0.035) (0.166,0.308)

Opt 0.186(0.029) (0.130,0.249) 0.172(0.030) (0.125,0.245) 0.171(0.031) (0.124,0.244)

Ψ̂BP 0.291(0.048) (0.209,0.385) 0.329(0.039) (0.258,0.404) 0.330(0.039) (0.258,0.404)

Ψ̂BT 0.008(0.004) (0.002,0.021) 0.054(0.020) (0.021,0.104) 0.055(0.021) (0.022,0.107)

Scenario 3: K-values K1 = 0.1 K2 = 2.50 K3 = 0.40 K4 = 1.25

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(2.30, σ2
j ) β3 ∼ N(−0.51, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.483(0.046) (0.402,0.568) 0.501(0.043) (0.418,0.588) 0.500(0.043) (0.417,0.588)

Act 0.193(0.033) (0.129,0.265) 0.226(0.035) (0.166,0.307) 0.226(0.035) (0.166,0.307)

Opt 0.192(0.032) (0.128,0.262) 0.173(0.030) (0.125,0.245) 0.171(0.031) (0.124,0.245)

Ψ̂BP 0.291(0.052) (0.201,0.393) 0.328(0.039) (0.257,0.404) 0.330(0.039) (0.258,0.404)

Ψ̂BT 0.002(0.001) (0.000,0.006) 0.053(0.020) (0.021,0.103) 0.055(0.021) (0.022,0.107)

150



Table S6: Posterior mean, standard error and 95% credible intervals of Ψ̂BP and Ψ̂BT �tting

a negative binomial regression model to mirror the AA clinical trial study. Data was generated

from a standard Poisson model with sample size of 460. Coe�cients used for data simulation are:

β0 = −9.85, β1 = 2.20,β2 = 5.33 and β3 = −1.52.

Scenario 1: K-values K1 = 0.10 K2 = 2.50 K3 = 1.50 K4 = 0.40

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(5.01, σ2
j ) β3 ∼ N(−1.27, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.438(0.044) (0.349,0.517) 0.464(0.040) (0.387,0.539) 0.464(0.040) (0.387,0.539)

Act 0.179(0.029) (0.122,0.248) 0.205(0.031) (0.151,0.276) 0.205(0.031) (0.151,0.276)

Opt 0.169(0.025) (0.119,0.224) 0.155(0.027) (0.111,0.220) 0.154(0.027) (0.110,0.219)

Ψ̂BP 0.269(0.044) (0.191,0.344) 0.308(0.037) (0.231,0.379) 0.309(0.037) (0.232,0.381)

Ψ̂BT 0.011(0.005) (0.004,0.026) 0.049(0.018) (0.019,0.093) 0.051(0.019) (0.020,0.094)

Scenario 2: K-values K1 = 0.10 K2 = 2.50 K3 = 1.00 K4 = 0.30

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(4.24, σ2
j ) β3 ∼ N(−1.07, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.439(0.044) (0.349,0.519) 0.464(0.040) (0.387,0.539) 0.464(0.040) (0.388,0.540)

Act 0.179(0.029) (0.121,0.247) 0.205(0.031) (0.151,0.277) 0.205(0.031) (0.151,0.277)

Opt 0.172(0.026) (0.119,0.229) 0.155(0.027) (0.111,0.221) 0.154(0.027) (0.120,0.219)

Ψ̂BP 0.267(0.046) (0.187,0.344) 0.308(0.037) (0.230,0.379) 0.310(0.037) (0.232,0.380)

Ψ̂BT 0.007(0.004) (0.001,0.019) 0.050(0.018) (0.020,0.093) 0.051(0.019) (0.020,0.094)

Scenario 3: K-values K1 = 0.1 K2 = 2.50 K3 = 0.40 K4 = 1.25

µβj β0 ∼ N(−3.72, σ2
j ) β1 ∼ N(0.78, σ2

j ) β2 ∼ N(2.30, σ2
j ) β3 ∼ N(−0.51, σ2

j )

σ2
j 0.5 10 100

Posterior mean( se) 95% CI mean( se) 95% CI mean( se) 95% CI

soc 0.439(0.045) (0.345,0.523) 0.463(0.040) (0.387,0.540) 0.464(0.040) (0.388,0.540)

Act 0.177(0.029) (0.118,0.243) 0.205(0.031) (0.150,0.276) 0.205(0.031) (0.151,0.277)

Opt 0.176(0.028) (0.118,0.239) 0.156(0.027) (0.112,0.221) 0.154(0.027) (0.110,0.219)

Ψ̂BP 0.264(0.049) (0.179,0.345) 0.308(0.037) (0.230,0.379) 0.310(0.037) (0.232,0.381)

Ψ̂BT 0.001(0.001) (0.000,0.006) 0.050(0.018) (0.020,0.092) 0.051(0.019) (0.020,0.094)

151



Table S7: Con�dence interval width and coverage probability comparison for our method and

Janes method using bootstrap: 1000 Monte Carlo each with 1000 sample size. Biomarker has a

standard uniform distribution U(0,1).

k1 k2 k3 k4 Estimate Method 95% CI Width of CI Coverage

0.25 0.75 0.75 0.25 0.2353 Boot Nor. (0.1990 , 0.2668) 0.0677 0.95

Boot Bas. (0.1986 , 0.2672) 0.0686 0.95

Janes Emp. (0.1909 , 0.2739) 0.083 0.97

Janes Mod. (0.1954 , 0.3702) 0.0766 0.94

0.1 0.9 0.9 0.1 0.3456 Boot Nor. (0.3189 , 0.3700) 0.0511 0.94

Boot Bas. (0.3183 , 0.3702) 0.0519 0.96

Janes Emp. (0.3059 , 0.3824) 0.0771 0.94

Janes Mod. (0.3101 , 0.3819) 0.0712 0.94

0.7 0.3 0.85 0.15 0.0595 Boot Nor. (0.0275 , 0.0926) 0.065 0.94

Boot Bas. (0.0254 , 0.0912) 0.0657 0.96

Janes Emp. (0.0231 , 0.1007) 0.0775 0.93

Janes Mod. (0.0316 , 0.0962) 0.0646 0.95

0.1 0.55 0.9 0.45 0.4286 Boot Nor. (0.3943 , 0.4651) 0.0688 0.95

Boot Bas. (0.3937 , 0.4636) 0.0699 0.96

Janes Emp. (0.3839 , 0.4741) 0.0901 0.95

Janes Mod. (0.3890 , 0.4716) 0.0826 0.93
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Table S8: Con�dence interval width and coverage probability comparison for our method and

Janes method using bootstrap: 1000 Monte Carlo each with 1000 sample size. Biomarker has a

standard normal distribution N(0,1).

K1 K2 K3 K4 Θ1 Method 95% CI CI Width Coverage

0.25 0.75 0.75 0.25 0.247 Boot Norm. (0.214 , 0.279) 0.065 0.970

Boot Perc. (0.215 , 0.281) 0.066 0.970

Janes Emp. (0.205 , 0.287) 0.082 0.980

Janes Mod. (0.211 , 0.287) 0.076 0.960

0.10 0.90 0.90 0.10 0.348 Boot Norm. (0.322 , 0.373) 0.051 0.940

Boot Perc. (0.323 , 0.375) 0.052 0.940

Janes Emp. (0.309 , 0.386) 0.077 0.950

Janes Mod. (0.314 , 0.386) 0.072 0.940

0.10 0.55 0.90 0.45 0.441 Boot Norm. (0.406 , 0.476) 0.070 0.970

Boot Perc. (0.406 , 0.477) 0.071 0.970

Janes Emp. (0.398 , 0.487) 0.089 0.980

Janes Mod. (0.401 , 0.486) 0.084 0.970

0.25 0.75 0.50 0.50 0.124 Boot Norm. (0.089 , 0.160) 0.072 0.980

Boot Perc. (0.089 , 0.163) 0.073 0.970

Janes Emp. (0.081 , 0.167) 0.085 0.980

Janes Mod. (0.089 , 0.165) 0.075 0.980

0.90 0.45 0.10 0.55 0.125 Boot Norm. (0.102 , 0.151) 0.049 0.960

Boot Perc. (0.103 , 0.153) 0.049 0.960

Janes Emp. (0.092 , 0.158) 0.066 0.970

Janes Mod. (0.098 , 0.155) 0.057 0.960

0.60 0.40 0.50 0.50 0.056 Boot Norm. (0.019 , 0.098) 0.079 0.970

Boot Perc. (0.026 , 0.105) 0.078 0.970

Janes Emp. (0.015 , 0.105) 0.090 0.970

Janes Mod. (0.025 , 0.103) 0.078 0.960153


