
PARALLEL ALGORITHMS FOR MATCHING AND INDEPENDENCE

PROBLEMS IN GRAPHS AND HYPERGRAPHS

by

AARON ANDREW WINDSOR

(Under the Direction of E. Rodney Canfield)

ABSTRACT

We consider the following problem: Given a greedy graph al-

gorithm that seems to be inherently sequential, to what extent can

we expect to speed up the computation by making use of additional

processors? We obtain several positive results for particular prob-

lems, showing that it is theoretically possible to parallelize some

greedy graph algorithms to the extent that their parallel running

times are asymptotically much faster than their sequential running

times. Highlights of our results include:

• A simple proof that a simple algorithm of Luby (“the permu-

tation algorithm”) is an RNC algorithm for finding a maximal

independent set in a graph, and the first known derandom-

ization of that algorithm.

• The first non-trivial upper bound on the deterministic time

complexity of finding a maximal independent set in a hyper-

graph on a PRAM.

• A partial analysis of the permutation algorithm generalized

to hypergraphs, showing that it outperforms the best known

algorithm for finding a maximal independent set in a hyper-

graph in the following sense: For hypergraphs of dimension at

least 6, any set of vertices is at least as likely to be added to the

independent set by an iteration of the permutation algorithm

as it is to be added by an iteration of the other algorithm.

• The first NC algorithm for finding a maximal forest in a hy-

pergraph.

• The first NC algorithm for finding a maximal acyclic set in an

undirected graph.

INDEX WORDS: Parallel algorithms, Maximal Independent Set,

Maximal Acyclic Set, Maximal Forest, Graph,

Hypergraph

PARALLEL ALGORITHMS FOR MATCHING AND INDEPENDENCE

PROBLEMS IN GRAPHS AND HYPERGRAPHS

by

AARON ANDREW WINDSOR

B.S., North Carolina State University, 1999

A Dissertation Submitted to the Graduate Faculty of The

University of Georgia in Partial Fulfillment of the Requirements for

the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2004

c©2004

Aaron Andrew Windsor

All Rights Reserved

PARALLEL ALGORITHMS FOR MATCHING AND INDEPENDENCE

PROBLEMS IN GRAPHS AND HYPERGRAPHS

by

AARON ANDREW WINDSOR

Major Professor: E. Rodney Canfield

Committee: Liming Cai

Ken Johnson

William McCormick

Robert W. Robinson

Electronic Version Approved:

Maureen Grasso

Dean of the Graduate School

The University of Georgia

May 2004

ACKNOWLEDGEMENTS

I sincerely thank Rod Canfield for his encouragement and sup-

port over the past few years. Rod has always given freely of his

time and has consequently had to sit through countless explana-

tions of ridiculous ideas that didn’t end up in this thesis and only

a few ridiculous ideas that, after many months of work, did. He

always did so with the patience of a good teacher. His strikingly

clear explanations have been the ideal that I’ve aspired to achieve

in my teaching and in the communication of my work; hopefully

this thesis is evidence of that. Bob Robinson has also been a great

influence on me during my time at UGA. I learned more from the

courses in Computational Complexity and Combinatorics I took

from him my first year than from any other classes I took as a grad

student. Finally, I thank Liming Cai, Ken Johnson, and William

McCormick for giving their time to be on my committee.

Of course, I also owe a great deal of thanks to my parents. I

would have never even started my Ph.D. were it not for their en-

thusiastic support of my education. But, more importantly, they

have always supported me in all things not related to this thesis,

and for that I’m extremely grateful.

Finally, I thank Phoebe. By far, my time with her over the last

few years has been the best part of my graduate experience. For

iv

believing in me much more than I think she had good reason to, I

owe her the most.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. .iv

LIST OF FIGURES .. viii

CHAPTER

1 INTRODUCTION .. .1

Prerequisites .4

Some Graph Theory and Notation . 5

A Quick Introduction to Parallel Complexity

Theory . 7

Derandomization .19

Overview of Results . 23

2 MAXIMAL INDEPENDENT SETS IN GRAPHS 26

Analysis of the Permutation Algorithm on

Graphs . 27

The Derandomization . 29

Using the MIS Algorithm to Find a Maximal

Set Packing .31

3 MAXIMAL INDEPENDENT SETS IN HYPERGRAPHS .. 33

A Sub-linear Time Parallel Algorithm 34

The Permutation Algorithm Revisited39

4 MAXIMAL ACYCLIC SETS IN GRAPHS 49

Preliminaries . 51

vi

An NC Algorithm for Finding a Maximal Forest

in a Hypergraph .52

An NC Algorithm for Finding a Maximal Acyclic

Set in a Graph . 64

An NC Algorithm for Approximating Maximum

Planar Subgraph .66

5 Open Questions .69

BIBLIOGRAPHY .. 73

APPENDIX . 80

A SOME TECHNICAL LEMMAS .. 80

vii

LIST OF FIGURES

1.1 The permutation algorithm 17

1.2 The clean-up subroutine for the permutation algorithm . 17

2.3 An algorithm that finds a maximal set packing in a hy-

pergraph . 32

3.4 An algorithm that finds an MIS in a hypergraph 37

4.5 An algorithm that finds a maximal forest in a hypergraph 60

viii

Chapter 1 - Introduction

Imagine the set of all of the employees of some company, some

pairs of whom don’t work well together on projects - we’ll call two

employees “incompatible” if this is the case. From all of this com-

pany’s employees, a manager would like to choose a set of employ-

ees to assign to a project such that no two employees on the project

team are incompatible. The manager also wants as many employ-

ees as possible on the project, so the only way an employee should

get out of working on the project is if they are incompatible with at

least one person already working on the project.

One way to select the project team is to line everyone up and,

moving down the line, assign an employee to the project if and only

if they are compatable with everyone already on the project. This

process could take a while if there are a lot of employees, so we’d

like to think about faster ways to select the project team. Clearly,

our first attempt at solving the problem is as fast as possible if we

only allow a single manager to choose the project team. So, could

we speed things up by adding several more managers?

1

It won’t necessarily be any faster to assign small teams of em-

ployees to each of several managers and try to run the selection

process in parallel, since each manager might need to know about

what decisions other managers have made in order to select a set

of employees that are not only all compatible with each other, but

also compatible with all employees selected by other managers. For

example, say there are n employees e1, e2, . . . , en and we use n man-

agers m1,m2, . . . ,mn to do the selection, with employee ei assigned

to manager mi for all i. If, for all i in the range 1 . . . n− 1, employees

ei and ei+1 are incompatible, every manager needs to know what

decision at least one other manager has made before he decides

whether or not to include his employee on the project team. We’ll

need a more sophisticated way to parallelize this process to avoid

simulating the original, slow process of selection in the worst case.

There is a way to select such a group in parallel that is asymp-

totically faster than the original sequential selection process, which

takes time roughly logarithmic in the number of employees using a

number of managers that is bounded by a polynomial in the num-

ber of employees. Chapter 2 of this thesis describes the algorithm

and proves the necessary bounds on time and the number of man-

agers. At its core, however, our project selection example is a spe-

cific instance of a more general problem easily described using the

language of graph theory.

2

Let G = (V,E) be an undirected graph, consisting of a finite

set of vertices V and a set of edges E, each of which is a set of

two vertices. A set S ⊆ V (G) induces a subgraph G[S], which has

vertex set S and edge set {e ∈ E(G) | e ⊆ S}. Let G be the set

of all graphs. We define a graph property π to be a mapping π :

G → {true, false}. A maximal subgraph of G with property π is a

vertex-induced subgraph G[S], for some S ⊆ V (G), such that G[S]

has property π but for any set T that properly contains S, G[T] does

not have property π.

Typically, the graph properties we’ll be interested in are simply

stated, easily testable, non-trivial properties, such as “G has no

edges” or “G contains no cycles”. In either of these cases, there’s

a fairly efficient sequential algorithm to find a maximal subgraph

of G with property π: simply iterate through all of the vertices,

maintaining a set of vertices S as you go, adding any vertex v to

S if and only if G[S ∪ {v}] has property π. After all vertices have

been considered in this manner and if our π is “well-behaved” in

a certain sense that we’ll define in section 1.2, G[S] is a maximal

subgraph of G with property π.

We will define what it means to be a “fast parallel algorithm” in

the next section. For now, the reader is encouraged to think of a

fast parallel algorithm as one that, given access to multiple proces-

sors, can compute a function asymptotically faster than any algo-

3

rithm given access to only a single processor. The central question

of this thesis is, informally, the following:

Given a graph property π, is there a fast parallel al-

gorithm that, given any graph G, computes a maximal

subset S ⊆ V (G) such that G[S] has property π?

The example we started with fits into this framework by taking

V (G) to be the set of all employees, adding an edge to E(G) for each

pair of employees that are incompatible, and setting π to be the

property “E(G) = ∅”. The general question above will be addressed

and resolved in this thesis for various properties π.

1.1 Prerequisites

We expect this thesis to be understandable to any reader with an

undergraduate-level background in theoretical computer science.

We expect the reader to be familiar with basic asymptotic notation

including big-O, big-Θ, and big-Ω notation, basic computational

complexity including the RAM model of computation and the com-

plexity class P, and some basic algebra at the level of understand-

ing what fields and rings of polynomials are. A good background in

probability theory is necessary, although some technical lemmas

are included in the appendix that we’ll use liberally to simplify our

4

probabilistic arguments. Finally, although we review some graph

theoretic concepts in the following section, some prior experience

with basic graph theory and combinatorics is necessary.

1.2 Some Graph Theory and Notation

For any set S, denote by S(k) the set of subsets of S of size k,

and by P(S) the powerset of S, which is the set of all subsets of

S. A graph is an ordered pair (V,E) where V is a finite set and

E ⊆ V (2). A hypergraph is a generalization of a graph, represented

by an ordered pair (V,E) where V is again a finite set and E ⊆

P(V). In this thesis we deal with both graphs and hypergraphs,

and we make the convention that we’ll use the term “graph” only

when we’re specifically interested in excluding hypergraphs from

consideration. When the hypergraph H in question is clear, we’ll

often refer to |V (H)| by n and |E(H)| by m.

An induced subgraph of a hypergraph can be specified by giving

a subset of the vertex or edge set. For a hypergraph H and some

S ⊆ V (H), we define H[S], the subgraph induced by S, as

H[S] = (S, {e ∈ E(H) | e ⊆ S}).

5

For a hypergraph H and some F ⊆ E(H), we define H[F], the sub-

graph induced by F , as

H[F] =

(⋃
e∈F

e , F

)
.

A few special subclasses of hypergraphs will arise in this the-

sis. A hypergraph of dimension d has no edge of cardinality more

than d. A k-uniform hypergraph has only edges of cardinality k.

Finally, a linear hypergraph has the property that no pair of edges

is contained in more than one edge.

For any graph G, Let ΓG(v) = {w ∈ V (G) | {v, w} ∈ E(G)}. We’ll of-

ten drop the subscript and refer to Γ(v) when the graph in question

is clear. d(v) will denote the degree of v, defined as |Γ(v)|.

A hypergraph property π is nontrivial if infinitely many hyper-

graphs satisfy π and at least one hypergraph does not satisfy π. π

is hereditary if, for all S ⊆ V (H) and T ⊆ S, π(H[S]) implies π(H[T]).

Finally, a property π is polynomial-time testable if there exists a se-

quential algorithm that, for any hypergraph H, computes π(H) in

time polynomial in n+m. If a property π is hereditary, then for any

hypergraph H and a subset S ⊆ V (H) such that H[S] has property

π and H[S ∪ {v}] does not have property π for any v ∈ H(G) \ S,

H[S] is a maximal subgraph of H with property π. If a property π is

hereditary, polynomial-time testable, and for any vertex set V , the

6

hypergraph (V, ∅) satisfies π, then there’s always a polynomial time

algorithm to find a maximal subgraph with property π of any graph

that involves a simple iteration through the vertex set.

1.3 A Quick Introduction to Parallel Complexity Theory

Our model of a parallel computer is the PRAM, which assumes

multiple processors working on a shared, random-access memory.

The PRAM is a standard model in the field of parallel algorithms,

although a little controversial because of it neglects issues like syn-

chronization and the cost of communication between processors,

which are major issues in any current parallel computational envi-

ronment. The PRAM does not represent the best tradeoff between

simplicity of analysis and applicability to predicting resource usage

in a real setting; two other popular models that lean more toward

the latter criterion are the BSP [41] and the LogP [14].

The questions addressed in this thesis, however, are of the form

“Given a problem π, could we ever hope for a parallel algorithm to

solve π that is asymptotically faster than any sequential algorithm

to solve π?”, and we feel the PRAM is the best choice for answering

questions of this nature. By ignoring aspects of the computation

that are specific to the parallel environment being used, we are able

to focus on whether or not a problem is parallelizable in what we

7

hope is some deeper sense than one can obtain by using a more

(currently) realistic model. Furthermore, the PRAM can be simu-

lated without much overhead by uniform circuit families that are

“wide” and “shallow”, which makes it the model of choice to ap-

proach complexity-theoretic questions.

The four main variants of the PRAM arise from deciding whether

to allow two or more processors to read or write concurrently to

a single memory location. These variants are the EREW, CREW,

ERCW, and the CRCW PRAM, where EREW stands for “exclusive

read, exclusive write”, CRCW stands for “concurrent read, concur-

rent write”, and the other two models are in between these two ex-

tremes. The distinction between these four models is more or less a

formality in the context of the problems we wish to solve, since the

CRCW PRAM model can be simulated by the EREW PRAM with only

a logarithmic factor slow-down in time using a polynomial number

of processors, and the general goal of this dissertation is to answer

questions of the form “Is it possible to solve problem X on a PRAM

in poly-logarithmic time on a polynomial number of processors?”.

For readers unfamiliar with the PRAM model and wanting a

thorough introduction, we suggest the survey by Karp and Ra-

machandran [24]. For our purposes, it will be sufficient in most

cases to notice that a few fundamental problems can be solved

asymptotically more efficiently on a PRAM with multiple proces-

8

sors than on a single processor. We conclude this section with a

short overview of two such fundamental problems.

Let ◦ be any associative binary operator. Then the value x0 ◦

x1 ◦ . . . ◦ xn−1 can be computed by a PRAM using O(n) processors in

time O(log n), by way of a “binary tree” computation. We imagine

all xi’s as the leaves of a binary tree, each node in the tree as a

PRAM processor, and the computation moving from the leaves to

the root of the tree. During the first parallel computation step, for

all i from 0 to bn
2
c−1, we combine x2i and x2i+1 to form a parent con-

taining x2i ◦ x2i+1. Continuing in this manner, we arrive at the root

in O(log n) steps, and the root contains x0 ◦x1 ◦ . . .◦xn−1. This means

that taking the sum, product, min, max, and many other simple

functions of n elements can be done efficiently on a PRAM. Using

O(n3) processors, this idea can also be used to obtain a O(log2 n)

time algorithm for multiplication of two n× n matrices.

Sorting can also be done efficiently on a PRAM. Cole [9] has

proven that sorting can be accomplished in time O(log n) using

O(n) processors on a PRAM. A much simpler classical algorithm

by Batcher [3] is another alternative, running in time O(log2 n)

with O(n) processors. Many of our algorithms deal with sets, and

most set operations can be done efficiently in parallel using sorted

lists. Testing for set membership can be done in O(log n) time

using a single processor and binary search, but also unions, in-

9

tersections, and many other binary operations on sets can be ac-

complished in O(log n) time by concatenating the two lists, sorting

them, then dealing with consecutive duplicates appropriately by

examining consecutive pairs of elements in parallel.

1.3.1 NC and RNC

Given a hypergraph function f , an NC algorithm for f is an

algorithm that, for any hypergraph H with n vertices and m edges,

computes f(H) in time O(logk(n + m)) on a PRAM with O((n + m)c)

processors for fixed c, k > 0.

Algorithms are sometimes simpler, faster, or both if they are

supplied with a source of random bits and allowed to execute cor-

rectly with some probability less than 1. The random bits supplied

turn the resources used by an algorithm (time, space, etc.) or even

the output of the algorithm into a random variable. In this thesis,

the randomness used by algorithms will cause the worst-case run-

ning time of the algorithm to become a random variable. In our

analysis, we’ll want to make a statement of the form “Algorithm

A computes function f on any input of size n in time O(t(n)) us-

ing O(p(n)) processors on an EREW PRAM with probability at least

1/2”, which hides a few details that we’ll explain presently.

10

First, we imagine the algorithm A taking, as one of its inputs, a

string of r random bits, where r is bounded by some polynomial in

n. For concreteness, we can think of r as c · t(n)p(n), for some con-

stant c, since we’ll never be able to use more random bits than the

total number of computation steps we use. Our probability space,

then, is the set of all 2r bitstrings with the uniform distribution.

For some constant c′, after running A for c′ · t(n) steps, we stop A

and ask for its output, and if A has finished its computation and

can provide us with the correct answer it does so, otherwise A will

indicate that it has not finished the computation. The former case

must occur with probability at least 1/2. Even though the algo-

rithm may not be finished when time is called, it will never output

an incorrect answer.

In this setting, the constant 1/2 is quite arbitrary and in fact

we could substitute any constant 0 < ε < 1 and end up with the

same class of algorithms. Given an algorithm A that computes

f on an input of size n in time O(t(n)) with probability at least

ε > 0, we can run A 1/ε times, in which case A still has execution

time O(t(n)), and A succeeds iff at least one of those 1/ε iterations

succeed. The probability that A has failed every iteration is now at

most (1− ε)1/ε < e−1 < 1/2.

Given a hypergraph function f , an RNC algorithm for f is an

algorithm that, for any hypergraph H with n vertices and m edges,

11

computes f(H) with probability at least 1/2 in time O(logk(n + m))

on a PRAM with O((n+m)c) processors for fixed c, k > 0.

Although it’s clear that NC ⊆ RNC and NC ⊆ P , it’s not known

whether any other inclusions among these complexity classes hold.

RNC and P are incomparable, to the best of our current knowledge,

since there are problems in P that are not known to be in RNC (the

P-complete problems, discussed below) and, perhaps more supris-

ingly, problems in RNC that are not known to be in P [32].

1.3.2 P-Completeness

Any NC algorithm can be simulated by a single processor in

polynomial time, since the product of processors used and time

taken by an NC algorithm is always bounded from above by a

polynomial. However, whether or not any algorithm that runs in

polynomial time on a single processor can be simulated by an NC

algorithm is a major open question in computational complexity

theory. Analogous to the much more famous, and also unsolved,

question of whether NP ⊆ P, in parallel complexity we ask whether

P ⊆ NC.1
1The way we’ve defined NC, P ⊆ NC doesn’t make much sense, since P is clas-

sically defined in terms of decision problems, i.e. functions mapping to the range
{0, 1}, and we’ve defined NC in terms of function problems, with arbitrary ranges.
Everything turns out okay, though, since P is the same class whether you de-
fine it in terms of function problems or decision problems, although the same

12

In parallel complexity theory, much like sequential complexity

theory, we have a notion of complete problems. A P-complete prob-

lem is one that is computable by a single processor in polynomial

time and also has the property that if an NC algorithm exists for

that problem, P ⊆ NC. Therefore, P-complete problems are those

problems in P that are least likely to have NC algorithms. The

text by Greenlaw, Hoover, and Ruzzo [19] is a good introduction

to the subject of P-completeness and contains a laundry list of P-

complete problems.

Now is a good time to restate, more specifically and with better

vocabulary, the fundamental question of this thesis:

Given a non-trivial, hereditary, polynomial-time testable

hypergraph property π, is there an NC algorithm for com-

puting a maximal subgraph with property π of any hyper-

graph?

As mentioned earlier, this problem is always in P. The subgraph

computed by the polynomial-time sequential algorithm is called the

lexicographically first maximal subgraph with property π.

Miyano [30] has proven the following general result:

equivalence between decision problems and function problems is not known to
be true of NC.

13

Theorem 1 (Miyano) For any non-trivial, hereditary, polynomial-time

testable graph property π, the problem of finding the lexicographi-

cally first maximal subgraph with property π is P-complete.

Clearly, Miyano’s Theorem is still true if we replace the word

“graph” by “hypergraph.” The major properties considered in this

thesis (independence and acyclicity) are non-trivial, hereditary, and

polynomial-time testable, so by Miyano’s result, there’s little hope

in simulating the corresponding sequential algorithms. However,

this result does not mean that we can’t obtain some sort of par-

allelization of these “inherently sequential” algorithms. Miyano’s

Theorem can be interpreted as follows: Given a non-trivial, hered-

itary, polynomial-time testable hypergraph property π, fix an or-

dering of the vertices of a graph. Then there probably is no NC

algorithm that can always find the same maximal subgraph with

property π that the sequential algorithm would find based on that

ordering. But, what about an NC algorithm that always finds a

maximal subgraph that the sequential algorithm would have found

based on some ordering of the vertices? This is exactly the sort of

algorithm that we’ll be able to find in many cases. These NC al-

gorithms, although usually fairly simple to describe, look nothing

like their sequential counterparts.

14

1.3.3 The Permutation Algorithm

As an introduction to PRAM algorithms and our algorithmic no-

tation, we present a simple parallel algorithm for finding a maximal

independent set in a hypergraph which we call “the permutation al-

gorithm.” Chapter 2 and much of Chapter 3 of this thesis focus on

this algorithm. Luby [28] was the first to notice that this method of

finding a maximal independent set was perfectly suited for parallel

applications.

For any hypergraph H, the permutation algorithm computes a

maximal set S ⊆ V (H) such that E(H[S]) = ∅. Such a maximal set is

called a maximal independent set (MIS). The property of indepen-

dence (E(H) = ∅) is hereditary, non-trivial, and polynomial-time

testable, so Miyano’s Theorem applies to tell us that finding the

lexicographically first MIS in a graph is P-complete (and therefore,

the problem of finding the lexicographically first MIS in a hyper-

graph is also P-complete.) We start with an informal description of

the permutation algorithm, then present our algorithmic notation

using the permutation algorithm as an example.

Given a hypergraph with n vertices, the algorithm first discards

any edge e that properly contains another edge f , since f not being

induced by the independent set chosen implies that e will not be

induced. Then, each vertex is independently assigned a rank cho-

sen uniformly at random from the set {1, 2, . . . , n3}. With probability

15

1−O(1
n
), no two vertices receive the same rank, so when analyzing

the algorithm we’ll assume that a permutation of the vertices has

been chosen uniformly at random. All vertices initially consider

themselves “marked.”

Each edge now unmarks the maximum ranked vertex it con-

tains. All vertices that remain marked are removed from the vertex

set and put in the independent set. In the graph induced by the

remaining vertices, any vertex that is left in an edge by itself is re-

moved from the vertex set and discarded, since it can never join

the independent set. These steps constitute one iteration of the al-

gorithm, which is repeated on the remaining graph until there are

no edges remaining in the hypergraph, at which point all remaining

vertices are added to the independent set. Our algorithmic notation

for this algorithm is shown in figures 1.1 and 1.2.

In our algorithmic notation, we always express scope by using

indentation. The only clue that our algorithm is a parallel algo-

rithm is the construct “for each x ∈ S pdo”, which means that for

each x ∈ S, a unique processor is allocated to perform all steps in

the scope of the for statement on x.

The correctness of the permutation algorithm can be deduced

after a few simple observations:

• For a set I ⊆ V (H), I is an MIS in H iff I is an MIS in

CleanUp(H). This is because (1) the only edges removed from

16

Algorithm PermutationAlgorithm(H)

(1) I ← ∅
(2) while E(H) 6= ∅ do
(3) H ← CleanUp(H)
(4) for each v ∈ V (H) pdo
(5) Set π(v) to a random number in [n3]
(6) Mark v
(7) for each e ∈ E(H) pdo
(8) Unmark any v ∈ e with π(v) = max{π(v) | v ∈ e}
(9) for each marked v pdo
(10) I ← I ∪ {v}
(11) V (H) ← V (H) \ {v}
(12) return I ∪ V (H)

Figure 1.1: The permutation algorithm

Algorithm CleanUp(H)

(1) for each {e, f} ⊆ E(H) pdo
(2) if e ⊂ f then
(3) E(H) ← E(H) \ {f}
(4) else if f ⊂ e then
(5) E(H) ← E(H) \ {e}
(6) for each e ∈ E(H) pdo
(7) if |e| = 1 then
(8) V (H) ← V (H) \ e
(9) return H[V (H)]

Figure 1.2: The clean-up subroutine for the permutation algorithm

17

H during clean-up are those that properly contain other edges

in H, so none of these edges can be induced by an MIS in H,

and (2) the only vertices removed from H during clean-up are

those that are in an edge by themselves, so these vertices can’t

possibly be added to an MIS in H.

• The vertices marked after execution of line (8) of the permuta-

tion algorithm form an independent set in the current hyper-

graph. This is because lines (7) and (8) ensure that no edge

is induced by marked vertices. Line (8) ensures that, even if

the ranking function is not a permutation, at least one vertex

from each edge is unmarked.

• The vertices marked after execution of line (8) of the permu-

tation algorithm, together with the vertices in I, form an in-

dependent set in the original hypergraph. Assume otherwise,

that there is an edge e = {v1, v2, . . . , vk} in the original hyper-

graph that is induced by I along with the marked vertices after

line (8). Since both of these sets are assumed to be indepen-

dent sets by themselves, part of e, say v1, v2, . . . , vi, must be in

I, and the other part of e, vi+1, . . . , vk, must be marked. But

now, vi+1, . . . , vk should all be in an edge together in the cur-

rent hypergraph and therefore would not be induced by the

current vertex marking.

18

• The independent set returned by the permutation algorithm is

maximal, since the only vertices not added to the independent

set are those that appeared in an edge by themselves at some

point.

Each of the for loops in the permutation algorithm and its clean-

up subroutine can be implemented by NC algorithms. The only

question remaining is how many times the main while loop in the

permutation algorithm executes. We’ll answer this question for

graphs in Chapter 2 and partially answer the question for hyper-

graphs in Chapter 3.

1.4 Derandomization

The existence of an RNC algorithm for a problem doesn’t nec-

essarily imply the existence of an NC algorithm for the same prob-

lem2, but there are some nice settings where we can make exactly

this conclusion based solely on the analysis of the RNC algorithm.

We call this a derandomization of the randomized algorithm. The

simplest way to derandomize an algorithm is to replace the sam-

ple space being used by one that’s much smaller but has similar
2Although by using the trick in section 1.3.1 for reducing the error prob-

ability of a randomized algorithm, we can obtain a polynomial-processor,
polylogarithmic-time algorithm that fails with probability at most 2−100, which
is a lot smaller than the probability of a hardware failure or even getting struck
by lightning while compiling your program.

19

properties, and then search the smaller sample space exhaustively.

Constructions of small sample spaces with good probabilistic prop-

erties have been extensively developed and applied to derandomiza-

tions in the past decade.

1.4.1 k-wise Independence

Let X1, X2, . . . , Xn be random variables, all taking values from a

common set S. X1, X2, . . . , Xn are k-wise independent if, for any set

of k distinct random variables {Y1, Y2, . . . , Yk} ⊆ {X1, X2, . . . , Xn} and

any a1, a2, . . . ak ∈ S

Pr

[
k∧
i=1

Yi = ai

]
=

k∏
i=1

Pr[Yi = ai] (1.1)

The notion of k-wise independence is a restricted form of the

familiar “full” independence of random variables, where the prob-

ability of an intersection of any number of events is equal to the

product of the probabilities of all of the events. The point of mak-

ing the distinction between full independence and k-wise indepen-

dence is that although we usually assume full independence when

we analyze randomized algorithms, we often only need k-wise in-

dependence, for some constant k, and sample spaces that are only

k-wise independent can be much smaller than fully independent

20

sample spaces. In fact, if k is a constant, k-wise independent sam-

ple spaces can be created that have size polynomial in n, which is

small enough so that it’s not prohibitively expensive to exhaustively

search the sample space for a good point.

The construction of a k-wise independent sample space that will

be important to us in this thesis is the following:

Proposition 2 Let q be a prime power, Fq be the field with q ele-

ments, and Fq[x]<k be the set of all polynomials in Fq[x] of degree less

than k. Take Fq[x]<k to be a probability space with the uniform distri-

bution. Let X0, X1, . . . , Xq−1 be random variables, where for any point

f ∈ Fq[x]<k, Xi(f) = f(i). Then the random variables X0, X1, . . . , Xq−1

are k-wise independent.

Proof: To see that equation 1.1 holds for this sample space,

notice that the left-hand side is the probability that any f ∈ Fq[x]<k

evaluates to k particular values on k distinct points. Consider a

“generic” polynomial in Fq[x]<k of the form
∑k−1

i=0 cix
i, where the ci’s

are variables. There are qk polynomials in Fq[x]<k, since we can

specify any polynomial of degree less than k by fixing each of the

ci’s to be values in Fq. Since any polynomial of degree less than k

is uniquely determined by its values on k distinct points, the left-

hand side is then just 1/qk. We now need to show that, for any Xi

and fixed a ∈ Fq, Pr[Xi = a] = 1/q, since then the right-hand side of

21

1.1 will match the left. So, how many of the polynomials in Fq[x]<k

evaluate to a on i? We can force a polynomial to evaluate to a on i

by setting the variables ck−1, ck−2, . . . , c1 arbitrarily to any values in

Fq, then solving for c0. Since Fq is a field, there’s a unique solution

for c0. So, there are qk−1 polynomials in Fq[x]<k that evaluate to a on

i, and hence, for any fixed a, the probability Xi = a is qk−1/qk = 1/q.

1.4.2 Indyk’s Permutation Family

Let Pn be the set of all permutations of [n]. We create a probabil-

ity space out of Pn by giving Pn the uniform distribution. Given a set

X ⊆ [n] and a distinguished element a ∈ X, a simple computation

shows that

Pr
π∈Pn

[π(a) = min(π(X))] =
1

|X|
.

|Pn| = n!, which is too large to search exhaustively, so for the pur-

poses of derandomization we’d like to be able to construct a family

of functions F that has similar properties to Pn but has size poly-

nomial in n.

A set F of functions all mapping the set [n] to [n] is called ε−min-

wise independent if, when F is given the uniform measure, for any

22

set X ⊆ [n] and a ∈ X,

1− ε
|X|

≤ Pr
f∈F

[f(a) = min{f(X)}] ≤ 1 + ε

|X|
(1.2)

Indyk [21] has proven the following theorem, which we will rely

upon to derandomize an algorithm in Chapter 2:

Theorem 3 (Indyk) There exist constants c, c′ > 1 such that for any

0 < ε < 1, any c′ log(1/ε)-wise independent set of functions satisfies

(1.2) for any |X| ≤ εn/c.

If we’re not concerned with exactly what the range of these func-

tions is, we can easily adapt Indyk’s construction to satisfy inequal-

ity (1.2) for any X ⊆ [n] by taking F to be an ε-min-wise independent

set of functions on the set [dcn/εe]. To extract a set of ε-min-wise

independent functions on [n] from this construction, we just ignore

the largest dcn/εe − n elements from the domain.

So, by Proposition 2 and Theorem 3, there exist constants c, c′ >

1 such that given any 0 < ε < 1, for any n > 0 we can create a set of

ε-min-wise independent functions F with domain [n] by taking F to

be the set of all polynomials of degree less than c′ log(1/ε) over the

field Fp, where p is the first prime greater than dcn/εe. By Bertrand’s

Postulate (cf. [20], Theorem 418, p. 343), for any n ≥ 2 there exists

a prime p with n < p ≤ 2n, so the set F has size polynomial in n.

23

1.5 Overview of Results

We conclude the introduction with a statement of the results

covered in this thesis, now that we have the language to describe

them.

Luby [28] proved in 1985 that a maximal independent set in a

graph could be found by a remarkably simple RNC algorithm, but

used a different algorithm and pairwise independence to obtain

an NC algorithm. In Chapter 2, we give a much simpler proof

that the simple algorithm is an RNC algorithm. Our simpler proof

has the added advantage that it can easily be derandomized into

an NC algorithm, whereas no derandomization of the permutation

algorithm was previously known to exist.

In Chapter 3, we consider the MIS problem on hypergraphs. We

first present a sub-linear time deterministic parallel algorithm for

finding an MIS in a hypergraph. Then, we consider the permutation

algorithm on hypergraphs of dimension at least 6and compare it to

a similar algorithm for finding an MIS in a hypergraph of bounded

dimension that is known to be an RNC algorithm, showing that

during any particular iteration, the probability a set X is chosen

by the permutation algorithm for addition to the independent set is

strictly greater than the probability that the known RNC algorithm

adds that same set to its independent set.

24

In Chapter 4, we give the first known NC algorithm for finding a

maximal acyclic set in a graph, or, equivalently, a maximal forest in

a hypergraph. This problem had previously been studied by multi-

ple researchers, with sub-linear time parallel algorithms for special

cases presented by Chen and He [10], Chen and Uehara [11], Chen

and Zhang [12], and Uehara [40]. Our main subroutine for solving

this problem turns out to be, conveniently enough, a variant of an

algorithm for finding an MIS in a graph. We also present two appli-

cations of this result to approximating NP-complete optimization

problems using NC algorithms.

Finally, we present some open problems in Chapter 5. In the-

ory, Chapters 2, 3, and 4 are independent of each other given the

material presented in this introduction, but we feel they are best

digested in the order given.

25

Chapter 2 - Maximal Independent Sets in Graphs

An independent set in a graph G is a set I ⊆ V (G) such that G[I]

has an empty edge set. A maximal independent set (MIS) is an in-

dependent set not properly contained in any other independent set.

Karp and Widgerson [26] gave the first RNC algorithm for finding

an MIS in a graph and provided a derandomization of their algo-

rithm. Following their proof, both Luby [28] and Alon, Babai, and

Itai [1] discovered simpler proofs and found more general settings

for the derandomization of randomized parallel algorithms. Gold-

berg and Spencer later presented more efficient NC algorithms for

the MIS problem in [17] and [18].

In this chapter, we present a quick analysis of Luby’s permuta-

tion algorithm (figure 1.1) on graphs, which gives a short proof that

the MIS problem is in NC. Our proof that the permutation algo-

rithm on graphs is an RNC algorithm is much simpler than Luby’s

original proof and has the advantage that it admits a straightfor-

ward derandomization, whereas the original RNC algorithm pre-

26

sented by Luby was not previously known to have a derandomiza-

tion.

2.1 Analysis of the Permutation Algorithm on Graphs

Since each iteration of the permutation algorithm can be im-

plemented by an NC algorithm, we wish to bound the number of

iterations needed to produce a graph with no edges. Once a graph

contains no edges, all remaining vertices can be added to the inde-

pendent set and the algorithm terminates. We begin by considering

the expected number of edges removed by a single iteration.

Lemma 4 Let X be the number of edges removed from a graph G by

one iteration of the permutation algorithm. Then E[X] ≥ |E(G)|/2.

Proof: Let I be the set of vertices that remain marked during a

single iteration of the permutation algorithm after the execution of

step (8). Let M(v, S) be the event that v’s rank is less than the rank

of all other vertices in the set S. With this notation, v is added to the

independent set during an iteration of the permutation algorithm

27

iff the event M(v,Γ(v)) occurs. Now,

E[X] =
∑

{u,v}∈E(G)

Pr {u ∈ I ∪ Γ(I) or v ∈ I ∪ Γ(I)}

≥ 1

2

∑
{u,v}∈E(G)

Pr {u ∈ I ∪ Γ(I)}+ Pr {v ∈ I ∪ Γ(I)}

=
1

2

∑
v∈V (G)

d(v) Pr { v ∈ I ∪ Γ(I) }

≥ 1

2

∑
v∈V (G)

d(v) Pr { v ∈ Γ(I) }

=
1

2

∑
v∈V (G)

d(v) Pr

 ⋃
w∈Γ(v)

M(w,Γ(w))

 (2.3)

≥ 1

2

∑
v∈V (G)

d(v) Pr

 ⋃
w∈Γ(v)

M (w,Γ(w) ∪ (Γ(v) \ {w}))

 (2.4)

=
1

2

∑
v∈V (G)

d(v)
∑
w∈Γ(v)

Pr {M(w,Γ(w) ∪ (Γ(v) \ {w}))} (2.5)

=
1

2

∑
v∈V (G)

d(v)
∑
w∈Γ(v)

1

d(v) + d(w)
(2.6)

=
1

2

∑
v∈V (G)

∑
w∈Γ(v)

d(v)

d(v) + d(w)
= |E(G)|/2

Where (2.4) follows from the fact that M(w,Γ(w) ∪ (Γ(v) \ {w})) ⊆

M(w,Γ(w)), and (2.5) follows from noticing that all events in the

union in (2.4) are pairwise disjoint.

Standard arguments from probability theory can now be used

to show that the permutation algorithm on graphs is an RNC al-

gorithm. Using Lemma 22, we see that if the expected number of

28

edges removed in any iteration is at least |E(G)|/2, the probability

that less than |E(G)|/3 edges are removed in an iteration is at most

5/6. Call an iteration “successful” if it removes at least |E(G)|/3

edges, and notice that we need O(log n) successful iterations until

we’re left with the empty graph. Corollary 24 then tells us that,

for any c, we need only c log n iterations to guarantee (c/2) log n suc-

cessful iterations with probability 1− o(1).

2.2 The Derandomization

Luby’s proofs that both the permutation algorithm on graphs

and another algorithm for finding an MIS in a graph are RNC algo-

rithms both follow the same computation as our proof of Lemma 4

up until (2.3), when the probability of a union of events is encoun-

tered. The Bonferroni inequalities, one of which states that

Pr

[⋃
i

Ei

]
≥
∑
i

Pr[Ei]−
∑
i6=j

Pr[Ei ∩ Ej],

are then used to lower bound this probability. To derandomize the

result, one then needs a probability space that has size bounded

by a polynomial in n and gives some sort of guarantee about what

Pr[Ei ∩ Ej] is, for arbitrary events Ei and Ej, i 6= j. For example, in

Luby’s other algorithm for finding an MIS in a graph, each event Ei

29

simply indicates that a particular weighted coin flip came up heads.

These events are simple enough that a small pairwise independent

probability space can be used, where Pr[Ei ∩ Ej] = Pr[Ei] · Pr[Ej]

for each pair of events. However, in the permutation algorithm, the

events Ei indicate that a particular vertex is a local minimum under

the permutation, and no construction of a small probability space

with good bounds on Pr[Ei ∩ Ej] is known. Our simpler proof of

Lemma 4 that avoids using the Bonferonni inequalities is therefore

critical to obtaining a derandomization since we avoid terms that

involve pairwise intersections of events altogether.

To derandomize the permutation algorithm, we use Indyk’s con-

struction of a family of ε-min-wise independent functions described

in Section 1.4.2. The only change needed in our proof of Lemma 4

is that equation (2.6) is replaced by a lower bound of

1

2

∑
v∈V

d(v)
∑
w∈Γ(v)

1− ε
d(v) + d(w)

which tells us that the expected number of edges removed by a sin-

gle iteration of the permuatation algorithm using ε-min-wise inde-

pendent functions to rank vertices is at least (1−ε)|E(G)|/2. This set

of ε-min-wise independent functions can now be searched exhaus-

tively in parallel for a function that removes at least (1− ε)|E(G)|/2

30

edges, the only downside being that there is a polynomial blow-up

in the number of processors needed to execute the algorithm.

2.3 Using the MIS Algorithm to Find a Maximal Set Packing

Karp and Widgerson [26] noticed that an NC algorithm for find-

ing an MIS in a graph could be used to implement an NC algorithm

for what they called the Maximal Set Packing problem. Their ver-

sion of the Maximal Set Packing problem takes as input a set S

of m subsets of a ground set of size n, and outputs a maximal set

P ⊆ S such that for any two distinct x, y ∈ P, x ∩ y = ∅. We define

a generalized version of this problem and show how it can be re-

duced to finding an MIS in a graph. Our version will be essential

to our solution of the Maximal Acyclic Set problem in Chapter 4.

For our purposes, we’ll need to add an additional parameter to

the Maximal Set Packing function. Our function takes a hyper-

graph H and a set X ⊆ V (H) as input parameters, and returns a

maximal set S ⊆ E(H) such that for any two distinct edges m,n ∈ S,

m ∩ n ⊆ X. If X = ∅, this reduces to the same definition used by

Karp and Widgerson.

Figure 2.3 gives a high-level description of how to use an NC

algorithm for finding an MIS in a graph to find a Maximal Set Pack-

ing in a hypergraph. It follows directly from the definition of an MIS

that the algorithm in figure 2.3 computes a maximal set packing in

31

Algorithm MaximalSetPacking(H,X)
(1) V (G) ← E(H)
(2) E(G) ← ∅
(3) for each pair {m,n} ⊆ V (G) pdo
(4) if m ∩ n ⊆ X then
(5) E(G) ← E(G) ∪ {m,n}
(6) return MIS(G)

Figure 2.3: An algorithm that finds a maximal set packing in a
hypergraph

a hypergraph, and the graph G created sent to the MIS subroutine

has |E(H)| vertices and
∑

v∈V (H)

(
d(v)

2

)
edges. The reduction used

takes constant time using
∑

v∈V (H)

(
d(v)

2

)
processors. We’ll return to

this algorithm when we use it as a subroutine in Chapter 4.

32

Chapter 3 - Maximal Independent Sets in Hypergraphs

With the question of the parallel complexity of finding an MIS

in a graph resolved, we now turn to the generalization of the MIS

problem to hypergraphs. Recall that an MIS M in a hypergraph H

is a maximal set such that no edge e ∈ E(H) is contained in M .

Finding an MIS in a hypergraph is a much more difficult problem

than finding an MIS in a graph, and despite a great deal of effort

by many researchers, not much is known about the parallel com-

plexity of computing an MIS in a hypergraph.

Dahlhaus, Karpinski, and Kelsen [15] extended an NC algorithm

of Goldberg and Spencer [17] for finding an MIS in graphs to an

NC algorithm for finding an MIS in hypergraphs of dimension 3.

Beame and Luby [6] presented two algorithms that they conjec-

tured were RNC algorithms for finding an MIS in a hypergraph,

and Kelsen [27] completed their analysis for one of the algorithms

under the assumption that the dimension of the hypergraph was

O(1). Łuczak and Szymańska [29] proved that the problem of find-

ing an MIS in a linear hypergraph is in RNC, and Szymańska [37]

33

later derandomized their result to obtain an NC algorithm. Re-

cently, Shachnai and Srinivasan[36] showed that the permutation

algorithm on hypergraphs always finds a ”large” MIS in k-uniform

hypergraphs (hypergraphs where all edges are of size k) and deran-

domized the algorithm for two special cases of hypergraphs with

degree constraints.

In section 3.1, we give the first non-trivial upper bound on the

deterministic parallel complexity of finding an MIS in a hypergraph.

In section 3.2, we revisit the permutation algorithm used for find-

ing an MIS in a graph and compare it to the algorithm proven to be

an RNC algorithm for finding an MIS in hypergraphs of bounded

dimension by Beame, Kelsen, and Luby. Both algorithms are iden-

tical except for the procedure used to mark vertices to be added

to the independent set, and we show that the probability that any

set of vertices is marked by the permutation algorithm is strictly

greater than the probability that the RNC algorithm marks that

same set of vertices.

3.1 A Sub-linear Time Parallel Algorithm

There are two known non-trivial upper bounds for the problem

of finding an MIS in a hypergraph on a PRAM. Karp, Widgerson,

and Upfal [25] gave a randomized parallel algorithm that finds a

34

maximal independent set in a hypergraph in time O(
√
n · (log n +

logm)) using mn processors, and Kelsen [27] was able to deran-

domize his RNC algorithm for finding an MIS in a hypergraph of

dimension d into a complicated deterministic algorithm that runs

in time (log n)O(1) · o(n(2d)2dε) using nO(1/ε) processors, for any ε ≥

2d+1 · (log log n/ log n). Neither one of these algorithms gives a deter-

ministic sublinear time bound for finding an MIS in a hypergraph:

the upper bound of Karp, Widgerson, and Upfal only applies to ran-

domized algorithms and the upper bound of Kelsen only applies to

hypergraphs of bounded dimension.

In this section, we give the first non-trivial upper bound on the

deterministic time complexity of finding an MIS in a hypergraph

on a PRAM. We present a simple deterministic algorithm for find-

ing an MIS in any hypergraph that runs in time O(logk(m + n) ·

max{m1−ε+δ, n2(ε+δ), n1−δ}) for some fixed k > 0 and any ε, δ > 0. As

long as 0 < δ < ε ≤ 1/4, this algorithm runs in sub-linear time in

the size of the input.

The central idea in our upper bound is the elimination of an

edge in a hypergraph. Elimination of an edge e = {v1, v2, . . . , vk} in

the hypergraph H involves adding all but one of e’s vertices (say,

v1, v2, . . . , vk−1) to the independent set we’re currently maintaining

and replacing H by Cleanup(H ′), where CleanUp is the subroutine

35

defined in figure 1.2 and H ′ is defined by

H ′ = (V (H) \ e, E(H) \ {e ∈ E(H) | vk ∈ e}).

The justification for this step is that vk can never be added to the

independent set at any later step in the algorithm, since it would

then cause e to be induced by the independent set, but since vk

will never be added, any edge that contains vk cannot possibly be

induced by any set of vertices chosen by the algorithm. We will

refer to the vertex vk that is not added to the independent set as

the discarded vertex of an eliminated edge.

We can also eliminate several edges at once, but here we must

be a little more careful - for example, if we chose to eliminate {a, b}

and {c, d} by adding a and c to the independent set, we’d need to

know that {a, c} 6∈ E(H). In our algorithm below, we’ll avoid this

difficulty by eliminating a set of edges S such that no two edges in

S meet each other or both intersect a common third edge. Such a

set of edges can clearly be safely eliminated.

Our algorithm is described in figure 3.4. The subroutine MIS

used by the algorithm is any one of the NC algorithms for finding

an MIS in a graph. The correctness of our algorithm can be verified

by noticing that edges are only added to the independent set by

being eliminated, and the only time a set of edges is eliminated

36

Algorithm MISH(H)
(1) while ∃e ∈ E(H) such that |e| ≥ nδ

(2) eliminate e from H
(3) while ∃v ∈ V (H) such that d(v) ≥ nε

(4) eliminate exactly one e 3 v from H
(5) while E(H) 6= ∅
(6) V (G′) ← E(H)
(7) for each pair {u, v} ⊆ V (G′) pdo
(8) for each w ∈ V (G′) pdo
(9) if u ∩ w 6= ∅ and v ∩ w 6= ∅ then
(10) E(G′) ← E(G′) ∪ {u, v}
(11) M ← MIS(G′)
(12) for each e ∈M pdo
(13) eliminate e from H

Figure 3.4: An algorithm that finds an MIS in a hypergraph

37

is when the set M is eliminated, but M is, by construction, a set

such that no two edges in M intersect each other or a common

third edge.

As for the time complexity, we’ll analyze each while loop sepa-

rately. The first while loop removes nδ vertices from V (H) each time

it’s executed, so it can execute at most n1−δ times before V (H) = ∅.

Each iteration can be accomplished by an NC algorithm.

The second while loop removes a vertex from at least nε edges

each time it executes, so it removes at least nε from the sum
∑

e∈E(H) |e|,

which is at most m · nδ. This can be done at most m · nδ−ε ≤ m1+δ−ε

times (Here we assume that m ≥ n, but if this isn’t true, we get an

even better bound of at most n1+δ−ε iterations.) Each iteration can

again be accomplished by an NC algorithm.

The final while loop constructs a graph with a vertex for each

edge in the original hypergraph and graph edges between any two

edges in the original hypergraph that either meet each other or

both meet a common third edge. An MIS subroutine is then called

on this graph. Since each edge in the hypergraph at this point

meets at most nδ+ε other edges, the maximum degree in this graph

is n2(δ+ε). Any MIS in a graph with n vertices and maximum de-

gree ∆ must have size at least n/(∆ + 1), since each vertex in the

MIS excludes at most ∆ other vertices. So, the call to the MIS

subroutine here returns a set of at least Ω(m/n2(δ+ε)) edges that

38

can safely be eliminated concurrently. We can eliminate this many

edges O(logm · n2(δ+ε)) times before there are no edges left.

Each iteration of the while loop starting at line (5) can be imple-

mented by an NC algorithm, since both the double for loop starting

on line (7) and the for loop starting on line (12) can be implemented

in constant time if O(m3) processors are available, and we know al-

ready that MIS is an NC algorithm.

Putting everything together, we see that the bodies of each of the

while loops are NC algorithms and the while loops execute O(n1−δ),

O(m1−ε+δ), and O(logm ·n2(ε+δ)) times, respectively. This gives us the

following result:

Theorem 5 An MIS in a hypergraph can be computed on a PRAM in

time O(logk(m + n) max{m1−ε+δ, n2(ε+δ), n1−δ}) using O(m3) processors,

for some fixed k > 0 and any ε, δ > 0.

3.2 The Permutation Algorithm Revisited

Using the structure of the permutation algorithm from section

1.3.3 as a general outline, one can devise other parallel algorithms

for finding an MIS in a hypergraph by simply replacing lines (4)

through (8) in the permutation algorithm (figure 1.1) with any other

39

procedure that marks an independent set in a hypergraph3. Al-

though they may not perform as well as the permutation algorithm,

other selection procedures can be designed so that they are easier

to analyze - particularly if all vertices are marked using indepen-

dent, identically distributed random variables..

In [6], Beame and Luby describe an alternative to the permu-

tation algorithm called the maximum degree algorithm that uses

a modified marking procedure and analyze the maximum degree

algorithm on hypergraphs of bounded dimension. Their incom-

plete analysis of the maximum degree algorithm was completed by

Kelsen [27], who showed that the algorithm is indeed an RNC algo-

rithm for finding an MIS in hypergraphs of bounded dimension. To

describe their algorithm, we will need to introduce some notation.

For a set S ⊆ E(H) and integer i, define di(S), the ith degree of

S, as

di(S) = |{e ∈ E(H) | S ∩ e 6= ∅, |e \ S| = i}|.

Under the same conditions, we define ∆i(S), the normalized ith

degree of S, to be

∆i(S) = di(S)
1
i .

3Provided, of course, that the selection process either always chooses at least
one vertex, or if it is randomized, always chooses at least one vertex with positive
probability.

40

Furthermore, define ∆(S) as

∆(S) = max
i
{∆i(S)} .

Finally, define ∆H on a hypergraph of dimension d as

∆H = max
S⊆V (H)
1≤|S|≤d

{∆(S)} .

Let H be a hypergraph of dimension d. The selection step in the

maximum degree algorithm can be described simply as follows:

Each vertex independently marks itself with probabil-

ity 1/(2d+1∆H). If any edge has all of its vertices marked,

it unmarks all of those vertices.

Since the vertices that remain marked after this step form an in-

dependent set, this is a valid marking procedure. Notice, however,

that ∆H can be close to n in dense hypergraphs, so this mark-

ing procedure may execute several times before a single vertex is

marked, whereas the permutation algorithm always marks at least

one vertex. Beame and Luby go on to prove that the probability that

a set of vertices gets added to the independent set, given that they

were marked, is at most 1/2. This gives us the following lemma:

41

Lemma 6 (Beame and Luby) Let X be any set of vertices not con-

taining any edge of H. Then the probability that the maximum

degree algorithm chooses X during its selection step is at least

1/(2 · (2d+1∆H)|X|).

In this section, for any set X ⊆ V (H), we wish to compare the

probability that the permutation algorithm selects X during a se-

lection step with the probability that the maximum degree algo-

rithm selects X during a selection step. Let Sv be the event that v

stays marked after the selection step in the permutation algorithm,

that is, v is not the minimum of any of the edges it’s contained in.

We will prove the following result:

Lemma 7 Let X be any set of vertices not containing any edge of H.

Then

Pr

[⋂
v∈X

Sv

]
>

1

d(2de∆(X))|X|

For d ≥ 6 and any set of vertices X that doesn’t induce an edge

in the current hypergraph, the probability the permutation algo-

rithm will select the set X is strictly greater than the probability

that the maximum degree algorithm would have selected X. For

d < 6, the lower bound from lemma 7 only falls below the lower

bound in lemma 6 by a small constant factor. It would seem that

this, along with the fact that the maximum degree algorithm is an

42

RNC algorithm would be enough to imply that the permutation al-

gorithm is an RNC algorithm for finding an MIS in a hypergraph.

However, Kelsen’s analysis of the maximum degree algorithm con-

sists of the application of a highly technical upper tail bound on the

sum of small products of independent, identically distributed ran-

dom variables, and this bound does not necessarily carry over to

the probability space of all permutations. Thus, we consider lemma

7 very good evidence that the permutation algorithm is an RNC al-

gorithm for finding an MIS in a hypergraph of bounded dimension

although the true complexity of the permutation algorithm on such

hypergraphs remains open.

Call a vertex v ε-large under a permutation π if

{w ∈ V (H) | π(w) < π(v)} ≥ (1− ε)n.

Let Lv,ε be the event that v is ε-large. We will need the following

technical lemma to prove lemma 7:

Lemma 8 Let e ∈ E(H), Y ⊆ e, X ⊆ V (H) \ e, and v ∈ e. Then

Pr

[
v = min(e)

⋂
y∈Y

Ly,ε ∩
⋂
x∈X

Lx,ε

]
≤ Pr

[
v = min(e)

⋂
y∈Y

Ly,ε

]

43

Proof: First,

Pr

[
v = min(e)

⋂
y∈Y

Ly,ε

]
=

(
εn
|e|

)
(|e| − 1)!(n− |e|)!

n!
·

(
n
|Y |

)(
εn
|Y |

)
=

1

|e|
·

(εn)(|e|)

n(|e|)
·
n(|Y |)

(εn)(|Y |)

=
1

|e|
·

(εn− |Y |)(|e|−|Y |)

(n− |Y |)(|e|−|Y |)
. (3.7)

Also,

Pr

[
v = min(e)

⋂
y∈Y

Ly,ε ∩
⋂
x∈X

Lx,ε

]

=

(
εn
|e|

)
(|e| − 1)!

(
εn−|e|
|X|

)
|X|!(n− |X| − |e|)!
n!

·

(
n

|X|+|Y |

)(
εn

|X|+|Y |

)
=

1

|e|
·

(εn)(|e|)(εn− |e|)(|X|)

n(|X|+|e|)
·
n(|X|+|Y |)

(εn)(|X|+|Y |)

=
1

|e|
·

(εn)(|X|+|e|)

n(|X|+|e|)
·
n(|X|+|Y |)

(εn)(|X|+|Y |)

=
1

|e|
·

(εn− |X| − |Y |)(|e|−|Y |)

(n− |X| − |Y |)(|e|−|Y |)
(3.8)

So, to prove the lemma, we need (3.8) ≤ (3.7), which is true iff

for any i ≥ j, ε ∈ (0, 1], the inequality (εn− i)/(n− i) ≤ (εn− j)/(n− j)

holds. A little manipulation shows that this is indeed the case.

We’re now in position to prove lemma 7:

44

Proof:[of lemma 7] To get a good lower bound on Pr[
⋂
v∈X Sv], we

first get an upper bound on the complement of this event, condi-

tioned on all of the vertices in X being ε-large. The idea here is

that, for ε sufficiently small, ε-large vertices are very unlikely to be

the minimum of any of the edges they are in, and therefore unlikely

to get unmarked.

Pr

[⋃
v∈X

Sv
⋂
v∈X

Lv,ε

]
= Pr

[⋃
v∈X

⋃
e3v

v = min(e)
⋂
v∈X

Lv,ε

]

≤
∑
v∈X

∑
e3v

Pr

[
v = min(e)

⋂
v∈X

Lv,ε

]
(3.9)

Since there may be vertices in X that are not in e, we use lemma

8 to upper bound (3.9) with

45

∑
v∈X

∑
e3v

Pr

[
v = min(e)

⋂
v∈X∩e

Lv,ε

]
=

∑
v∈X

∑
e3v

(
εn
|e|

)
(|e| − 1)!(n− |e|)!

n!
·

(
n
|X∩e|

)(
εn
|X∩e

)
=

∑
v∈X

∑
e3v

1

|e|
·

(εn)(|e|)

n(|e|)
·
n(|X∩e|)

(εn)(|X∩e|)

≤
∑
v∈X

∑
e3v

1

|e|
(ε)|e\X|

=
∑
e∈E(H)
e∩X 6=∅

|e ∩X|
|e|

(ε)|e\X|

=
d∑
j=2

j−1∑
i=1

∑
e∈E(H)
|e|=j,|e∩X|=i

i

j
(ε)j−i

=
d∑
j=2

j−1∑
i=1

i

j
dj−i(X) (ε)j−i

Where the index in the second sum of the penultimate term

above only runs up to j − 1 because our set X doesn’t contain any

edge e ∈ E(H). Setting ε = 1/(2d∆(X)) at this point will yield a

decent bound:

46

d∑
j=2

j−1∑
i=1

i

j
dj−i(X)

(
1

d∆(X)

)j−i
=

d∑
j=2

j−1∑
i=1

i

j

(
1

2d

)j−i

≤ 1

d

d∑
j=2

1

j · 2j
j−1∑
i=1

i · 2i

=
1

d

d∑
j=2

(
1− 2

d
+

1

d2d−1

)

≤
(
d− 1

d

)2

For d ≥ 2, using the identity
∑n

i=1 i2
i = (n− 1)2n+1 + 2.

So, Pr
[⋃

v∈X Sv
⋂
v∈X Lv,1/(2∆(X))

]
≤ (d − 1)2/d2 and therefore the

complement of this event occurs with probability strictly greater

than 1/d. Computation of the probability of the event we’re condi-

tioning on shows

Pr

[⋂
v∈X

Lv,1/(2∆(X))

]
=

(
n/(2∆(X))
|X|

)(
n
|X|

) ≥
(

n

2∆(X)|X|
· |X|
ne

)|X|
=

(
1

2e∆(X)

)|X|

using the well-known inequalities
(
n
k

)k ≤ (n
k

)
≤
(
ne
k

)k. We now com-

plete the proof by noticing that

47

Pr

[⋂
v∈X

Sv

]
≥ Pr

[⋂
v∈X

Sv ∩
⋂
v∈X

Lv,1/(2∆(X))

]

= Pr

[⋂
v∈X

Sv
⋂
v∈X

Lv,1/(2∆(X))

]
· Pr

[⋂
v∈X

Lv,1/(2∆(X)

]

>
1

d(2de∆(X))|X|

48

Chapter 4 - Maximal Acyclic Sets in Graphs

Let G = (V,E) be an undirected graph with m edges and n ver-

tices. A cycle in G is a sequence of vertices v1, v2, . . . , vk where k > 2,

{vi, vi+1} ∈ E(G) for i in the range 1 ≤ i ≤ k−1, and {vk, v1} ∈ E(G). A

graph is acyclic if it contains no cycles. An acyclic set in the graph

G is a set A ⊆ V (G) such that the induced graph on A is acyclic,

and, of course, a maximal acyclic set (MAS) is an acyclic set that

isn’t properly contained in another acyclic set.

Acyclicity is hereditary, non-trivial, and polynomial-time testable,

so by Miyano’s Theorem finding the lexicographically first MAS is

P-complete. The sequential algorithm for finding the lexicograph-

ically first MAS can be implemented to run in time O(m · α(m,n)),

where α is a slow-growing inverse of the Ackerman function, using

the classic union-find data structure with path compression and

union-by-rank (See [38], Ch. 2, for a good presentation of this data

structure.)

An MAS in a graph is similar to a spanning forest in a graph,

the former being a maximal vertex-induced forest and the latter a

49

maximal edge-induced forest. Finding a spanning forest in a graph

has been studied extensively in the context of parallel algorithms

and many efficient NC algorithms for finding spanning forests are

known (see, e.g. [13], [22], [34], [35]), but finding an MAS even in

a graph of bounded degree was not previously known to be in NC.

Following Pearson and Vazirani’s [33] work on finding maximal bi-

partite subgraphs in parallel, Chen and He [10] considered the MAS

problem and gave several EREW PRAM algorithms for finding an

MAS in special cases, including an NC algorithm for planar graphs

and a O(
√
n log3 n) time, O(n2) processor algorithm for graphs with

bounded degree. Chen and Zhang [12] later extended the results

from [10] to obtain an NC algorithm for finding an MAS in K3,3-free

graphs. Chen and Uehara [11] gave NC algorithms for finding a

maximal set of vertices that induces an acyclic graph with max-

imum degree 2. Finally, Uehara [40] has shown that finding an

MAS in a k-chordal graph (every cycle of length greater than k has

a chord) is in NC for k = 3 and RNC for fixed k > 3.

In this chapter, we present the first NC algorithm for finding an

MAS in any graph, running in time O(log4 n) with O((m2 + n)/ log n)

processors on an EREW PRAM. Our algorithm uses a reduction of

the problem of finding an MAS in a graph to the problem of finding

a maximal forest in a hypergraph. Our NC algorithm for finding

a maximal forest in a hypergraph may be of independent interest,

50

since the problem has not been previously addressed in the liter-

ature on parallel algorithms. We conclude the chapter with some

applications of the MAS subroutine to approximating NP-complete

problems with NC algorithms.

4.1 Preliminaries

Although the problem of finding a spanning forest in a graph has

been widely studied in the context of NC algorithms, the general-

ization of this problem to hypergraphs has not. It turns out that

finding a maximal set of edges in a hypergraph that induces an

acyclic hypergraph is equivalent to finding an MAS in a graph; we

prove this equivalence in Section 4.3. For now, we focus on solving

the problem of finding an edge-induced, acyclic sub-hypergraph of

any hypergraph. We first need to extend the definition of a cycle so

that it applies to hypergraphs.

A cycle in a hypergraph is a sequence of distinct vertices v0, v1, . . . , vk−1

and a sequence of distinct edges e0, e1, . . . , ek−1 such that k > 1 and

vi ∈ ei ∩ e(i+1) mod k for all i, 0 ≤ i < k. In the sequel, addition on cycle

indices is implicitly done mod k, where k is the number of vertices

in the cycle.

A forest is a subset of the edge set of a hypergraph that induces

no cycles. A maximal forest of a hypergraph H is a forest that is

51

not contained in any other forest of H. In a graph with no iso-

lated vertices, the fact that a forest is maximal is enough to imply

that the forest covers the vertex set. The same is not true for hy-

pergraphs, however. Take, for example, V (H) = {v1, v2, . . . , vn} and

E(H) = {{v1, v2, vk} : 3 ≤ k ≤ n}, so that any maximal forest of

H consists of a single edge, and therefore covers at most 3 of the

n vertices. The problem of deciding whether or not a hypergraph

containing only edges of size k ≥ 3 even has a spanning forest is

NP-complete [39].

4.2 An NC Algorithm for Finding a Maximal Forest in a

Hypergraph

Our algorithm for finding a maximal forest in a hypergraph is

similar at a high level to a well known parallelization of Borůvka’s

algorithm for finding a minimum spanning tree in a graph [5]. Dur-

ing each step of the algorithm, a forest is found in the hypergraph.

All of the edges in the forest are then contracted and the resulting

hypergraph has a new vertex in place of each connected compo-

nent induced by the forest in the original hypergraph. Any edge

from the original hypergraph that met the vertex set of a single

connected component of the forest in more than two vertices is re-

moved before contraction, so that the only edges remaining in the

52

hypergraph after contraction are those that met each component

in at most one vertex. Throughout the description of the algorithm

and its analysis, we assume that all edges in the hypergraph con-

tain at least two vertices, since any edge containing a single vertex

cannot be part of a cycle and can therefore be added to the forest

in a preprocessing step.

4.2.1 Contraction of Forests

The contraction procedure can be described formally as follows:

Let H be a hypergraph, and let F be a forest in H. Partition F into

F1, F2, . . . , Fk using an equivalence relation between edges defined

as e ∼ f iff e and f are in the same connected component in H[F].

The hypergraph H ′ = Contract(H,F) has vertex set

V (H ′) =

(
V (H) \

⋃
f∈F

f

)
∪ {v1, v2, . . . , vk}

Where v1, v2, . . . , vk are all new labels not appearing in V (H). Define

a function ρ : V (H)→ V (H ′) as

ρ(v) =


vi, if v is covered by Fi, for some i

v, otherwise

53

Each edge e ∈ E(H) naturally corresponds to a subset of V (H ′),

which is {ρ(v) : v ∈ e}. Set ρ̂(e) = {ρ(v) : v ∈ e} for all e ∈ E(H),

and now the edge set E(H ′) can be defined as

E(H ′) = {ρ̂(e) : e ∈ E(H), |e| = |ρ̂(e)| }

Contraction of forests gives a convenient way of computing a

maximal forest iteratively, with only a little awkwardness in the

specification of the algorithm. We would like to repeatedly find a

forest in the hypergraph, contract it, and add it to the set of edges

that will eventually be a maximal forest. But, since the vertex set

is changing during this process, the edges we wish to add during

an iteration may not be edges in the hypergraph we started with.

What’s more, an edge in a contracted hypergraph may correspond

to more than one edge in the original hypergraph, in which case, at

most one of the edges in the original hypergraph corresponding to

a single edge in the current hypergraph may be added to the forest.

To avoid this complication when stating the algorithm, we assume

the use of a function Resolve that maps edges in the current hy-

pergraph to edges in the original hypergraph, choosing a unique

edge in the original hypergraph arbitrarily when there are multiple

candidates.

54

To formalize the fact that repeated contraction using Resolve

to obtain edges from the original hypergraph yields forest in the

original hypergraph is formalized by the next two lemmas. We first

prove a technical lemma, using the function ρ̂ associated with any

hypergraph contraction.

Lemma 9 Let H be a hypergraph. Let F be a forest in H, and let

H ′ = Contract(H,F). For any F1 ⊆ E(H) and F2 ⊆ E(H ′) such that ρ̂

restricted to F1 is a bijection between F1 and F2, then F2 is a forest in

H ′ iff F ∪ F1 is a forest in H.

Proof: Assume that F ∪ F1 induces a cycle in H. Of all of the

cycles induced by F ∪F1, choose a cycle C with the minimum num-

ber of edges from F1. Let e1, e2, . . . , ek be the sequence of edges in

the cycle, and choose distinct vi ∈ ei ∩ ei+1 for all i. By definition of

ρ̂, for each e ∈ F , ρ̂(e) = {v} for some v ∈ V (H ′) \ V (H), and it also

follows from this definition that, for every set of edges X all belong-

ing to the same connected component in H[F],
⋃
e∈X ρ̂(e) = {v} for

some v ∈ V (H ′) \ V (H). Each edge e ∈ F1, however, gets mapped to

a unique edge in F2 of size |e| by ρ̂, since ρ̂ is a bijection between

the two sets. Since F is a forest in H, at least one of the edges in

C must be a member of F1. If only one edge ei from C is in F1, then

since two other edges in the cycle meet ei in two distinct vertices

and all other edges in the cycle map to the same v ∈ V (H ′) \ V (H),

55

|ρ̂(e)| < |e|, contradicting the fact that ρ̂(e) ∈ E(H ′). So, there are at

least two edges from F1 in the cycle.

Call these edges from F1 f1, f2, . . . , fl, labeled in order of their

appearance in the original cycle C. We claim that the sequence of

distinct edges ρ̂(f1), ρ̂(f2), . . . , ρ̂(fl) forms a cycle in H ′, which we’ll

show by finding a sequence of distinct vertices w1, w2, . . . , wl such

that wi ∈ ρ̂(fi)∩ ρ̂(fi+1) for all i. If fi and fi+1 were adjacent in C, then

there is some vi ∈ fi ∩ fi+1 and so ρ(vi) ∈ ρ̂(fi) ∩ ρ̂(fi+1). Otherwise,

fi and fi+1 were separated in C by some sequence of edges from F

that all belong to the same connected component in H[F], so, under

ρ̂, all of these edges from F map to {v} for some v ∈ V (H ′) \ V (H).

This vertex v is clearly in both ρ̂(fi) and ρ̂(fi+1). Proceeding in this

manner, we get a sequence of vertices w1, w2, . . . wl as required, and

the only way that we are forced to choose the same vertex twice is

if wi = wj = v for some i 6= j and v ∈ V (H ′) \ V (H). In this case,

we can replace the sequence of edges fi+1, fi+2, . . . , fj with a path

through the connected component in H[F] induced by edges that

map to {v} under ρ̂, creating a cycle with fewer edges from F1 than

C and contradicting the fact that C was a cycle using a minimum

number of edges from F1.

In the other direction, assume F2 induces a cycle C in H ′. Let

f1, f2, . . . , fl be the sequence of distinct edges and w1, w2, . . . , wl be

the sequence of distinct vertices. Using ρ̂, we can pull the edges

56

f1, f2, . . . , fl back to distinct edges ρ̂−1(f1), ρ̂−1(f2), . . . , ρ̂−1(fl) in H,

and the only way that there does not exist a distinct vi ∈ V (H)

such that vi ∈ ρ̂−1(fi) ∩ ρ̂−1(fi+1) for any i is if wi is the image of a

connected component in H[F]. But, since all wi’s are pairwise dis-

tinct, all of the connected components in H[F] they correspond to

are pairwise distinct as well, so we can form a cycle in H by con-

necting any such pair ρ̂−1(fi), ρ̂−1(fi+1) that don’t share a common

vertex with a path through the connected component that maps to

{wi} under ρ̂.

We now need to formally define the function Resolve used to

map edges from a hypergraph resulting from some sequence of

contractions to edges in the original hypergraph. Given any se-

quence of hypergraphs H0, H1, . . . , Hk+1 and a sequence of forests

F0, F1, . . . Fk such that Fi is a forest in Hi and Hi+1 = Contract(Hi, Fi)

for all i, let ρ̂i be the function associated with the contraction Con-

tract(Hi, Fi). Define a function φi : E(Hi+1) 7→ E(Hi) by associating

each edge e in E(Hi+1) with an edge φi(e) in E(Hi) that maps to e

under ρ̂i. Notice that ρ̂i restricted to the image of φi is a bijection

between the image of φi and E(Hi+1). Now, for any i ≥ j, the func-

tion Resolve(i,j) used to map an edge in the hypergraph Hi to an

edge in the hypergraph Hj is defined as φj ◦ φj+1 ◦ . . . ◦ φi−2 ◦ φi−1,

57

or the identity function if i = j, in either case a bijection between

edges in Hj and some set of edges in H0.

Finally, we can prove the correctness of iterative contraction in

producing a forest using the following lemma:

Lemma 10 Given any sequence of hypergraphs H0, H1, . . . , Hk+1 and

a sequence of forests F0, F1, . . . Fk such that Fi is a forest in Hi for all

i, Hi+1 = Contract(Hi, Fi) for all i, 0 ≤ i ≤ k, and Hk+1 has an empty

edge set,
⋃k
i=0

⋃
f∈Fi Resolve(i,0)(f) is a maximal forest in H.

Proof: We will show that
⋃k
i=j

⋃
f∈Fi Resolve(i,j)(f) is a maxi-

mal forest in Hj by induction on k − j. When k − j = 0, Re-

solve(k,j) is just the identity function on E(Hk) and Fk is clearly

maximal since E(Hk+1) = ∅. For general k − j > 0, assuming that⋃k
i=j

⋃
f∈Fi Resolve(i,j)(f) is a maximal forest in Hj, we wish to show

that
⋃k
i=j−1

⋃
f∈Fi Resolve(i,j−1)(f) is a maximal forest in Hj−1. Set

F ′ =
⋃k
i=j

⋃
f∈Fi Resolve(i,j)(f), and now ρ̂j−1 restricted to φj−1(F ′) is

a bijection between φj−1(F ′) and F ′, so Lemma 9 applies to show

that

φj−1(F ′) ∪ Fj−1 = φj−1

(
k⋃
i=j

⋃
f∈Fi

Resolve(i,j)(f)

)
∪ Fj−1

=
k⋃
i=j

⋃
f∈Fi

Resolve(i,j−1)(f) ∪ Fj−1

=
k⋃

i=j−1

⋃
f∈Fi

Resolve(i,j−1)(f)

58

is a forest in Hj−1, which is maximal in Hj−1 since F ′ was maximal

in Hj.

4.2.2 The Algorithm

For a set of edges S ⊆ E(H) and an edge e ∈ E(H), we define the

following set:

meet(e, S) = {v ∈ e : ∃f ∈ S, v ∈ f} =
⋃
f∈S

(e ∩ f)

One component in our algorithm for finding a maximal forest

in a hypergraph is an algorithm for finding a generalization of a

maximal matching in a hypergraph. A matching M ⊆ E(H) is a

set of pairwise disjoint edges; the matching is maximal iff for any

e ∈ E(H), |meet(e,M)| ≥ 1. Repeatedly finding and contracting just

a maximal matching in a hypergraph, however, is not enough to

guarantee rapid progress towards finding a maximal forest in a hy-

pergraph. For example, if the original hypergraph consisted of m

edges, all of which intersect in a single common vertex, m stages

of matching and contraction would be needed to create a maxi-

mal forest. It turns out that not too much more than a maximal

matching is needed to guarantee rapid progress towards a maxi-

mal forest - each iteration of our algorithm augments a maximal

matching with a few additional edges to create a forest F such that

59

Algorithm MaximalForest(H)

(1) F ← ∅
(2) while E(H) 6= ∅ do
(3) M1 ← MaximalSetPacking(E(H), ∅)
(4) E ′ ← {e ∈ E(H) : |meet(e,M1)| = 1}
(5) M2 ← MaximalSetPacking(E ′,

⋃
m∈M1

m)
(6) F ← F ∪

⋃
m∈M1∪M2

Resolve(m)
(7) H ← Contract(H,F)
(8) return F

Figure 4.5: An algorithm that finds a maximal forest in a hyper-
graph

for each e ∈ E(H), |meet(e, F)| ≥ 2. The difference between such

a forest F and a maximal matching is highlighted by the earlier

example: given m edges all intersecting in a single vertex, the only

such forest F is the entire edge set.

To describe the procedure that finds the additional edges that

augment our original maximal matching, we use the function Max-

imalSetPacking(E,X) defined in Section 2.3. Recall that Maxi-

malSetPacking(E,X) returns a maximal set M ⊆ E such that for

any m,n ∈M , m ∩ n ⊆ X.

Our algorithm for finding a maximal forest in a hypergraph is

given in figure 4.5.

Lemma 11 MaximalForest(H) returns a maximal forest in H.

60

Proof: Assume that during some iteration of the main while

loop, M1 ∪M2 induces a cycle in H. Edges in M1 form a matching

in H, so any cycle in H that is made up of edges from M1∪M2 must

contain at least one edge from M2. But, no edge m ∈M2 can be part

of any cycle, since |meet(m,M1 ∪ (M2 \ {m}))| = 1 by construction.

So, during any iteration, M1 ∪M2 is a forest. At least one edge is

chose per iteration by the first call to MaximalSetPacking, so the

algorithm eventually terminates when E(H) = ∅. The correctness

of the algorithm now follows from Lemma 10.

Given a hypergraph H, let µ(H) be the matching number of H,

defined as the maximum cardinality of any matching on H. The

proof of the following proposition is straightforward, and thus omit-

ted:

Proposition 12 For any hypergraph H and any set S ⊆ V (H) such

that every edge e ∈ E(H) contains at least two vertices from S,

µ(H) ≤ |S|/2.

Lemma 13 The main while loop in MaximalForest(H) executes O(log n)

times.

Proof: Each iteration of the main while loop in MaximalFor-

est finds a forest F in the current hypergraph H, so the entire

algorithm produces a sequence of hypergraphs H0, H1, . . . , Hk and a

sequence of forests F0, F1, . . . , Fk−1 such that Fi is a forest in Hi and

61

Hi+1 = Contract(Hi, Fi) for all i, 0 ≤ i ≤ k − 1. H0 is the original

hypergraph, and Hk is a hypergraph containing no edges.

We now claim that µ(Hi+1) ≤ µ(Hi)/2 for all i, 0 ≤ i ≤ k− 1, which

will prove the lemma since µ(H0) ≤ n/2 and any hypergraph H hav-

ing µ(H) < 1 must have an empty edge set. Let c(Hi) be the number

of connected components in Hi[Fi], for all i. c(Hi) ≤ µ(Hi), since

the set of connected components in Hi[Fi] can be converted into a

matching of size c(Hi) on Hi by choosing one edge per connected

component.

By definition of a maximal matching, |meet(e,M1)| ≥ 1 for any

e ∈ E(H). Set V1 =
⋃
m∈M1

m so that {e \ V1 : e ∈ M2} is a maximal

matching in the hypergraph {e \ V1 : |meet(e,M1)| = 1} and there-

fore any edge e with |meet(e,M1)| = 1 has |meet(e \ V1,M2)| ≥ 1. So,

for any edge e ∈ E(H),

|meet(e, F)| = |meet(e,M1 ∪ M2)| ≥ 2 (4.10)

For any hypergraph H and a forest F in H, the only edges in Con-

tract(H,F) are those edges e ∈ E(H) \ F that intersect each con-

nected component in H[F] in at most one vertex, so from (4.10)

we see that each edge e ∈ E(H) corresponding to an edge e′ in

Contract(H,F) intersects at least two separate connected compo-

nents in H[F]. There are c(H) connected components in H[F], all

62

of which get mapped to distinct vertices in Contract(H,F). These

vertices satisfy the assumptions of Proposition 12, so for any i,

µ(Hi+1) ≤ c(Hi)/2 ≤ µ(Hi)/2.

Theorem 14 MaximalForest(H) runs in time O(log n log3 m) using

O((m+
∑

v∈V (H)

(
d(v)

2

)
)/ logm) processors on an EREW PRAM.

Proof: In Section 2.3, we noticed that the dependency graph

created in the algorithm MaximalSetPacking from a hypergraph H

had |E(H)| vertices and at most
∑

v∈V (H)

(
d(v)

2

)
edges. The algorithm

then finds an MIS in this dependency graph. To find a maximal

indpendent set in a graph, we use an algorithm of Goldberg and

Spencer [17] which runs in time O(log3 n) using O((n+m)/ log n) pro-

cessors. This gives us a O(log3 n) time, O((m +
∑

v∈V (H)

(
d(v)

2

)
)/ logm)

processor EREW PRAM algorithm for finding a maximal set pack-

ing in a hypergraph with m edges. Computing Contract(H,F) in-

volves computing the edge-induced connected components of a hy-

pergraph, which can be accomplished by a reduction to the prob-

lem of finding the connected components of a graph: simply rep-

resent each hyperedge with a path of edges in the corresponding

graph. Identifying connected components in a graph can be done

in time O(log3/2 n) using O(m + n) processors using Karger, Nisan,

and Parnas’s algorithm from [23]. The time and processor bounds

for identifying connected components, as well as performing the

63

other set operations needed during an iteration of MaximalForest

are clearly dominated by those for finding a matching in a hyper-

graph, so the analysis above combined with Lemma 13 gives the

theorem.

4.3 An NC Algorithm for Finding a Maximal Acyclic Set in

a Graph

For a graph G and any v ∈ V (G), let γ(v) = {e ∈ E(G) : v ∈ e}.

The following lemma formalizes the reduction between finding a

maximal forest in a hypergraph and finding an MAS in a graph:

Lemma 15 Let G be a graph, and let H be a hypergraph with vertex

set E(G) and edge set {γ(v) : v ∈ V (G)}. Then A ⊆ V (G) is an

acyclic set in G iff {γ(a) : a ∈ A} is a forest in H.

Proof: Assume there is a cycle induced by vertices in A, so that

there exists a sequence of distinct vertices a0, a1, . . . , ak−1, each ai ∈

A, and a sequence of distinct edges e0, e1, . . . , ek−1, each ei ∈ E(G),

such that k > 1 and ai ∈ ei∩ei+1 for all i. Notice that for any two ver-

tices u, v ∈ V (G), γ(u) ∩ γ(v) ⊆ {{u, v}} with equality iff u and v are

adjacent in G. So, all edges in the sequence γ(a0), γ(a1), . . . , γ(ak−1)

are distinct, since the only way γ(u) = γ(v) for u, v ∈ V (G) is if

both u and v have degree at most 1, in which case they couldn’t

have appeared in the original cycle. Since G is a graph, it must

64

be the case that ei = {ai−1, ai} for all i, so that ei ∈ γ(ai−1) ∩ γ(ai)

for all i, and the sequence e0, e1, . . . , ek of vertices from V (H) and

γ(ak−1), γ(a0), . . . , γ(ak−2) of edges in E(H) forms a cycle in H.

In the other direction, assume there is a cycle in H, so that

there exists a sequence of distinct vertices e0, e1, . . . , ek−1 from V (H)

and distinct edges γ(a0), γ(a1), . . . , γ(ak−1) from E(H) such that k > 1

and ei ∈ γ(ai) ∩ γ(ai+1) for all i. Since ai = aj =⇒ γ(ai) = γ(aj), the

vertices from V (G) in the sequence a0, a1, . . . , ak−1 are all distinct.

Furthermore, since ei ∈ γ(ai) ∩ γ(ai+1) for all i, ei = {ai, ai+1} for all

i, and therefore the sequence of vertices a1, a2, . . . , ak−1, a0 from V (G)

together with the sequence of edges e0, e1, . . . , ek−1 from E(G) forms

a cycle in G.

The construction in Lemma 15 is essentially the construction of

the dual of a hypergraph (cf. [4], p. 390), except that the dual of a

hypergraph is technically a multi-hypergraph and our construction

doesn’t make use of multiple edges.

Our algorithm for finding an MAS in a graph is now straight-

forward - create the hypergraph described in Lemma 15, find a

maximal forest in it, and return the set of vertices corresponding

to the edges in that forest. Since the edge set of the hypergraph

contains no more than |V (G)| edges, this is an efficient reduction,

and we have the following theorem:

65

Theorem 16 There exists an algorithm to find an MAS in any graph

G in O(log4 n) steps using O((m2 + n)/ log n) processors on a EREW

PRAM.

Proof: Set n = |V (G)| and m = |E(G)|. The construction in

Lemma 15 produces a hypergraph H with at most m vertices and n

edges. H is linear (no two edges in the hypergraph intersect in more

than one vertex) and has maximum degree 2. The sum
∑

v∈V (H) d(v)

is therefore initially bounded from above by 2m. Let H ′ be any hy-

pergraph that results from the contraction of any set of edges in H.

H ′ must also have
∑

v∈V (H′) d(v) ≤ 2m, so

∑
v∈V (H′)

(
d(v)

2

)
≤
(∑

v∈V (H′) d(v)

2

)
= O(m2)

Plugging this in to Theorem 14 gives the required bounds.

4.4 An NC Algorithm for Approximating Maximum Planar

Subgraph

Given a graph property π, we have been interested in this thesis

with finding a maximal set with property π, and we could have just

as easily asked for the minimal set with the complement of property

π. The minimal (resp. maximal) solutions can be thought of as local

minimums (resp. maximums), and we now turn to the problem of

computing the global minimum or maximum size set with property

66

π. Unfortunately, for most interesting properties π (independence

and acyclicty included), the problem of finding the global minimum

or maximum size set with property π is NP-complete.

When faced with an NP-complete graph optimization problem

π, one line of attack is the design of an approximation algorithm

for π. A factor-α approximation algorithm for a graph minimization

problem is an algorithm that is guaranteed to return a solution

whose size is at most α times the optimal solution. A factor-α ap-

proximation algorithm for a graph maximization problem is an algo-

rithm that is guaranteed to return a solution whose size is at least

α times the optimal solution. In the case of minimization problems

α will be at least one, and in the case of maximization problems α

will be at most one. In either case, the closer α is to one, the better

the approximation. For a complete introduction to the subject of

approximation algorithms, we suggest the text by Vazirani [42].

Even better than a polynomial time approximation algorithm is

an NC approximation algorithm; recently the importance of parallel

approximation algorithms has begun to be noticed and a textbook

on the young subject has even appeared [16].

The maximum planar subgraph problem is: given a graph G,

find the maximum cardinality subset S ⊆ E(G) such that G′ =

(V (G), S) is planar. In [11], Chen and Uehara describe how to use

a parallel algorithm for finding an MAS in a graph of degree 3 to

67

parallelize the factor 7/18 approximation algorithm of Câlinescu,

Fernandes, Finkler, and Karloff [8] for finding a maximum planar

subgraph in a graph. We outline their approach here and refer the

reader to the original papers for more details.

Chen and Uehara reduce the problem of parallelizing this ap-

proximation algorithm to the following problem: Given a bipartite

graph G with bipartition X, Y , where each vertex in Y has degree

3, find a maximal acyclic set in G that contains X. Our algorithm

for finding an MAS from section 4.3 can be easily adapted to solve

this problem: simply initialize the acyclic set A to X instead of the

empty set at the beginning of the algorithm. The full approximation

algorithm requires two more major computations: finding a span-

ning tree in a graph and identifying the connected components in

a graph, both of which can be done in less time and with fewer

processors on an EREW PRAM than our algorithm for finding an

MAS, so we have the following theorem:

Theorem 17 There exists a factor-7/18 NC approximation algorithm

for the maximum planar subgraph problem that runs in time O(log4 n)

using O((m2 + n)/ log n) processors on an EREW PRAM.

68

Chapter 5 - Open Questions

We close with a few open questions that have been raised by the

work in this thesis.

Borůvka’s Algorithm on Hypergraphs

The following randomized variant of Borůvka’s algorithm for

graphs generalized to hypergraphs is a good candidate for a

simpler algorithm for finding a maximal forest in a hypergraph:

1. Choose a random permutation of the set {1, . . . ,m} and use

this to assign a distinct non-negative integer weight to each

edge. Each vertex then votes for the edge containing it of

least weight.

2. Any edge e that receives at least |e| − 1 votes gets added to the

forest.

3. Contract all edges added to the forest from step (2), then

repeat from step (1) until the edge set is empty.

It can be shown that the edges added in step (2) form a forest,

which along with Lemma 10 shows the correctness of the

algorithm. We assign weights randomly since one can easily

69

construct hypergraphs with edge rankings that cause this

algorithm to run for O(m) iterations. For example, take

E(H) = {{v1, v2, v3}, {v2, v3, v4}, {v3, v4, v5}, . . . , {vn−2, vn−1, vn}}

with the edges ranked by the index of the smallest vertex they

contain. We conjecture the following:

Conjecture 18 The algorithm above is an RNC algorithm for

finding a maximal forest in a hypergraph.

Maximal Acyclic Sets in Directed Graphs

The ultimate goal of the line of research from Chapter 4 is to find

an NC algorithm for finding a maximal vertex-induced acyclic

subgraph in a directed graph; this problem has applications to

resolving deadlock situations efficiently. Unfortunately, even the

problem of finding a maximal edge-induced acyclic subgraph in a

directed graph is not known to be in NC, although Berger and

Shor [7] have developed an interesting RNC algorithm that is

guaranteed to always find a “large” edge-induced acyclic subgraph

of a directed graph.

The problem of finding a maximal edge-induced acyclic subgraph

of a directed hypergraph (each edge in a directed hypergraph is an

ordered pair of disjoint subsets of the vertex set) is equivalent to

the problem of finding a maximal vertex-induced acyclic subgraph

70

in a directed graph under the same dual-hypergraph

transformation we used in section 4.3 for the maximal acyclic set

problem.

Approximating Weighted Minimum Feedback Vertex Set in

Graphs

Given an acyclic set S ⊆ V (G), the set V (G) \ S is called a feedback

vertex set. The weighted minimum feedback vertex set problem is:

given a graph G and a function f : V (G) 7→ Q, find the feedback

vertex set S ⊆ V (G) such that
∑

v∈S f(v) is minimized. Recently,

Bafna, Berman, and Fujito [2] devised a factor-2 approximation

algorithm for this problem. Their approach involves the repeated

extraction of a minimal feedback vertex set from a series of

vertex-induced subgraphs of the original graph. In light of our

results from Chapter 4, this approximation algorithm may be

amenable to parallelization, since our NC algorithm for finding a

maximal acyclic set in a graph can easily be converted into an NC

algorithm for finding a minimal feedback vertex set in a graph.

The worst case number of stages in the graph decomposition

should be able to be cut from n to log n by sacrificing a little in the

approximation guarantee, which would mean that we would no

longer expect a factor-2 approximation algorithm. We therefore

conjecture the following:

71

Conjecture 19 For any ε > 0, there exists a factor-(2 + ε) NC

approximation algorithm for the problem of finding a weighted

maximum feedback vertex set in a graph.

Finding an MIS in a Hypergraph

There are still many open questions concerning parallel

algorithms for finding an MIS in a hypergraph. Our analysis of the

permutation algorithm in section 3.2 suggests that it performs

much better than an algorithm already known to be an RNC

algorithm, so we conjecture the following:

Conjecture 20 The permutation algorithm is an RNC algorithm for

finding an MIS in a hypergraph of bounded dimension.

Furthermore, we conjecture

Conjecture 21 The permutation algorithm is an RNC algorithm for

finding an MIS in a hypergraph.

72

Bibliography

[1] N. Alon, L. Babai and A. Itai, A Fast and Simple Randomized

Parallel Algorithm for the Maximal Independent Set Problem,

Journal of Algorithms 7 (1986) 567-583.

[2] V. Bafna, P. Berman and T. Fujito, A 2-Approximation

Algorithm for the Undirected Feedback Vertex Set Problem,

SIAM Journal of Discrete Math 12 (1999) 289-297.

[3] K. Batcher, Sorting Networks and Their Applications, In Proc.

AFIPS Spring Joint Computer Conference 32, AFIPS Press,

Reston, VA, (1968) 307-314.

[4] C. Berge, Graphs and Hypergraphs, North-Holland Publishing

Company, Amsterdam, 1973.

[5] O. Borůvka, O jistém problému minimálnı́m. Práca Moravské

Pr̆ı́rodovĕdecké Spolec̆nosti 3 (1926) 37-58.

[6] P. Beame and M. Luby, Parallel Search for Maximal

Independence Given Minimal Dependence, In Proc. First

73

ACM-SIAM Symposium on Discrete Algorithms, ACM Press, New

York, NY, (1990) 212-218.

[7] B. Berger and P. Shor, Tight Bounds for the Maximum Acyclic

Subgraph Problem, Journal of Algorithms 25 (1997) 1-18.

[8] G. Câlinescu, C.G. Fernandes, U. Finkler and H. Karloff, A

Better Approximation Algorithm for Finding Planar Subgraphs,

In Proc. Seventh ACM-SIAM Symposium on Discrete Algorithms,

ACM Press, New York, NY, (1996) 16-25.

[9] R. Cole, Parallel Merge Sort, SIAM Journal on Computing 17

(1988) 770-785.

[10] Z.-Z. Chen and X. He, Parallel Algorithms for Maximal Acyclic

Sets, Algorithmica 19 (1997) 354-368.

[11] Z.-Z. Chen and R. Uehara, Parallel Algorithms for Maximal

Linear Forests. IEICE Transactions on Information and Systems

E80-A (1997) 627-634.

[12] Z.-Z. Chen and S. Zhang, A Tight Upper Bound on the

Number of Edges in a Bipartite, K3,3-free or K5-free graph with

an Application. Information Processing Letters 84 (2002)

141-145.

74

[13] K. Chong, Y. Han and T. Lam, Concurrent Threads and

Optimal Parallel Minimum Spanning Trees Algorithm, Journal

of the ACM 48 (2001) 297-323.

[14] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E.

Santos, R. Subramonian and T. von Eicken, LogP: Towards a

Realistic Model of Parallel Computation, In Proc. Fourth ACM

Symposium on Principles and Practice of Parallel Programming,

ACM Press, New York, NY, (1993) 1-12.

[15] E. Dahlhaus, M. Karpinski and P. Kelsen, An Efficient

Parallel Algorithm for Computing a Maximal Independent Set in

a Hypergraph of Dimension 3, Information Processing Letters 42

(1992) 309-313.

[16] J. Dı́az, M. Serna, P. Spirakis and J. Torán, Paradigms for

Fast Approximability, Cambridge University Press, New York,

NY, 1997.

[17] M. Goldberg and T. Spencer, A New Parallel Algorithm for the

Maximal Independent Set Problem, SIAM Journal of Computing

18 (1989) 419-427.

[18] M. Goldberg and T. Spencer, An Efficient Parallel Algorithm

that Finds Independent Sets of Guaranteed Size, SIAM Journal

of Discrete Mathematics 6 (1993) 443-459.

75

[19] R. Greenlaw, H. Hoover and W. Ruzzo, Limits to Parallel

Computation : P-completeness Theory, Oxford University Press,

New York, NY, 1994.

[20] G. H. Hardy and E. M. Wright, An Introduction to the Theory of

Numbers, Clarendon Press, Oxford, 1965.

[21] P. Indyk, A Small Approximately Min-Wise Independent

Family of Hash Functions, Journal of Algorithms 38 (2001)

84-90.

[22] D. Karger, P. Klein and R. Tarjan, A Randomized Linar-Time

Algorithm to Find Minimum Spanning Trees, Journal of the ACM

42 (1995) 321-328.

[23] D. Karger, N. Nisan and M. Parnas, Fast Connected

Components Algorithms for the EREW PRAM, SIAM Journal of

Computing 28 (1999) 1021-1034.

[24] R. Karp and V. Ramachandran, Parallel Algorithms for

Shared Memory Machines, In J. van Leeuwen, ed., Handbook of

Theoretical Computer Science Vol. A, Elsevier, New York, NY,

1990.

[25] R. Karp, E. Upfal, and A. Widgerson, The Complexity of

Parallel Search, Journal of Computer and Systems Sciences 36

(1988) 225-253.

76

[26] R. Karp and A. Widgerson, A Fast Parallel Algorithm for the

Maximal Independent Set Problem, Journal of the ACM 32

(1985) 762-773.

[27] P. Kelsen, On the Parallel Complexity of Computing a

Maximal Independent Set in a Hypergraph, In Proc.

Twenty-fourth ACM Symposium on Theory of Computing, ACM

Press, New York, NY, (1992) 339-350.

[28] M. Luby, A Simple Parallel Algorithm for the Maximal

Indpendent Set Problem, SIAM Journal of Computing 15 (1986)

1036-1053.

[29] T. Łuczak and E Szymańska, A Parallel Randomized

Algorithm for Finding a Maximal Independent Set in a Linear

Hypergraph, Journal of Algorithms 25 (1997) 311-320.

[30] S. Miyano, The Lexicographically First Maximal Subgraph

Problems: P-Completeness and NC Algorithms, Math. Systems

Theory 22 (1989) 47-73.

[31] R. Motwani and P. Raghavan, Randomized Algorithms,

Cambridge University Press, New York, NY, 1995.

[32] K. Mulmuley, U. Vazirani and V. Vazirani, Matching is as

Easy as Matrix Inversion, Combinatorica 7 (1987) 105-113.

77

[33] D. Pearson and V. Vazirani, Efficient Sequential and Parallel

Algorithms for Maximal Bipartite Sets, Journal of Algorithms 14

(1993) 171-179.

[34] S. Pettie and V. Ramachandran, A Randomized Time-Work

Optimal Parallel Algorithm for Finding a Minimum Spanning

Forest, SIAM Journal on Computing 31 (2002) 1879-1895.

[35] C. Poon and V. Ramachandran, A Randomized Linear Work

EREW PRAM Algorithm to Find a Minimum Spanning Forest, In

Proc. Seventh International Symposium on Algorithms and

Computation, LNCS 1350, Springer-Verlag, Berlin, (1997)

212-222.

[36] H. Shachnai and A. Srinivasan, Finding Large Independent

Sets in Hypergraphs in Parallel, In Proc. Thirteenth Symposium

on Parallelism in Algorithms and Architectures, ACM Press, New

York, NY, (2001) 163-168.

[37] E. Szymańska, Derandomization of a Parallel MIS Algorithm

in a Linear Hypergraph, Proc. ICALP Satellite Workshops,

Carleton Scientific, Waterloo, Ontario, Canada, (2001) 39-52.

[38] R. Tarjan, Data Structures and Network Algorithms,

CBMS-NSF Regional Conference Series in Applied Mathematics

Vol. 44, SIAM, Philadelphia, PA, 1983.

78

[39] I. Tomescu, M. Zimand, Minimum Spanning Hypertrees,

Discrete Applied Mathematics 54 (1994) 67-76.

[40] R. Uehara, Tractable and Intractable Problems on

Generalized Chordal Graphs, IEICE Technical Report,

COMP98-83 (1999) 1-8.

[41] L. Valiant, A Bridging Model for Parallel Computation,

Communications of the ACM 33 (1990) 103-111.

[42] V. Vazirani, Approximation Algorithms, Springer, New York,

NY, 2001.

79

Appendix A - Some Technical Lemmas

Lemma 22 Let α, β be constants with α > β > 0, and let X be a

discrete random variable taking on values from the set {1, 2, . . . , n}.

If E[X] ≥ αn, then

Pr[X ≥ βn] ≥ α− β.

Proof: Let p = Pr[X ≥ βn]. Now,

αn ≤ E[X] ≤ pn+ (1− p)βn

So p ≥ α− β

Lemma 23 (Chernoff Bounds) Let X1, X2, . . . , Xn be independent

0-1 random variables, and define pi for 1 ≤ i ≤ n as pi = Pr[Xi = 1].

Let µ =
∑

i pi, the expectation of the sum of these variables. Then,

for any δ such that 0 < δ ≤ 1,

Pr[X > (1 + δ)µ] <

{
eδ

(1 + δ)(1+δ)

}µ

and

Pr[X < (1− δ)µ] < e−µδ
2/2

80

For a good proof of the Chernoff Bounds, see [31], Chapter 4.

In particular, we point out the following simple corollary of the

Chernoff Bounds:

Corollary 24 Let X1, X2, . . . , Xn be independent 0-1 random

variables and define pi for 1 ≤ i ≤ n as pi = Pr[Xi = 1]. Let µ =
∑

i pi.

If µ = Ω(log n) then

Pr[|X − E[X]| > µ/2] = o(1)

81

