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Abstract

For visual approaches to simultaneous localization and mapping, the use of visual keypoint

features is a popular choice. Certain areas of the environment, however, may contain am-

biguous architecture or areas of repetition, which may cause keypoints to be matched well

at multiple locations; it would be useful to consider other sources of evidence in addition

to keypoints to make decisions. We propose a system that samples from varying layers of

a location’s signature, from global or simple properties such as color and straight lines, to

texture related characteristics in keypoints, to symbolic, human characteristics and semantic

information such as text recognition and object detection and recognition. We propose how

these visual feature “ridges” can be associated together and utilized to form our version of

a visual “fingerprint” of a place, how these fingerprints can be compared for localization,

and how they can be linked together to form a topological map of the environment. This

new approach is called SPLINTR: Spatial Place Recognition in a Topologically Mapping

Robot.
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Chapter 1

Introduction and Motivation

Autonomous localization and mapping for a mobile robot is a difficult task; to accomplish

this goal, the robot must have a way of storing a representation of its environment while

it explores, as well as using information from its current scene to compare with locations

in its map to form a hypothesis on its whereabouts within the map. Certain approaches

in the appearance-based domain of simultaneous localization and mapping (SLAM) involve

the use of keypoints, that is, interesting texture points or patches within an image. While

this may be useful in textured areas of the environment, what about areas with less texture,

such as smooth colored walls of a hallway or office wall? True, keypoint extraction is still

possible, but what are these keypoints telling us? They may be easily matched to other,

similar areas of the environment, like similar areas of brick walls or cement blocks. What

about when areas of an environment are similar but differing in color, which may not be

detected as different when using a single feature extractor? These situations call for a more

robust approach.

What are the benefits of having a robot discover where it is and make a map as it

explores? Being able to extract features and intelligent representations of an environment

is useful in military or police exercises, such as deploying a robot into a hostile building.
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Given such a situation, the robot could perform tasks based on its location or extract useful

visual information as it explores, all without the danger of losing a human life. Further

benefits exist within service robotics. For robots to be aware of their location and to form

connections between locations, they could autonomously roam a person’s home and perform

tasks, search for items in specific locations, or fetch or deliver items to locations. Such actions

could also be useful to provide assistance to the elderly and the disabled. Furthermore, when

information such as semantic text and objects is extracted from the environment, it opens

the door for higher level reasoning, including intelligent searching, place classification and

planning.

The domain we are interested in is an office environment. Such an environment, however,

can be repetitive – there may only be subtle differences between one location in a hallway

versus another hallway location. When using keypoint extraction, we may run into issues of

“common” keypoints, those features extracted from repetitious architectural features such

as corners of nameplates on a door, crevices between blocks in the wall, or areas between a

door and a keycard scanner (which may indeed form a keypoint feature, but may appear next

to many different doors). What about being able to distinguish locations that are similar

visually except different in other regards, such as the text on a sign or a differing logo on a

poster or sticker?

The robot may encounter areas where relying on one set of features is not sufficient (and

ill-advised). Corridors may have similar texture but be distinguishable in other regards,

such as color, text, objects or other characteristics. These issues can be addressed when we

include other sources for decision making on localization, if another source offers differing (or

corroborating) evidence. We chose other features to provide distinguishing dimensions, in-

cluding symbolic or semantic information that humans use in the environment. Our method

of semantic mapping uses these features not only to populate and annotate the map, but to

localize as well. Furthermore, if areas are lacking in texture, features may still be extracted
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even though they may be generic in nature. Therefore, our system also extracts generic

image features like color distribution information and statistics from detected lines.

We report here what we have done toward the realization of our goal of simultaneous

localization and topological mapping.

1.1 Applications to Semantic SLAM

For this research and experimental application, we mainly focus on an indoor environment,

particularly areas with semantic context. A location can be composed of a variety of visual

features, be it objects, texture, structure and lines, color, and alphabetical and numeric text.

To be able to sample over this gamut of visual clues what features are present at a certain

location would greatly increase an autonomous robot’s ability to recognize where it is and

store where it has been, along with being able to connect differing locations – the essentials

of topological localization and mapping.

There may be locations within the environment where the robot needs more than key-

points alone to make a decision. Consider the environments constructed for everyday use,

such as our homes, our places of work, our commercial businesses, places of worship, and

museums to name a few. Various locations within these buildings could contain building

specific objects, logos or symbols, text features, straight lines resulting from the architecture

of the environment and surroundings, as well as texture and color schemes, and each may

vary location to location within the environment. We would like an intelligent robot to use

more than one source of visual evidence and to utilize a more intelligent representation of

space as well, calling upon the extraction and use of various features as visual evidence of

location. With other layers to provide support, we produce a more robust system, build

a more intelligent representation of space, and allow the robot to utilize multiple sources

of visual evidence to recognize and map locations. Furthermore, we as humans usually do
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Figure 1.1: Locations in the Boyd Graduate Student Research Center building, illustrating
areas of repetition but differing in certain regards to the visual signature.

not depend on a single source of information to make decisions on our location or to form

relationships between places. We draw from multiple visual cues like text and signs, struc-

tural architecture and the straight lines that result, color schemes of the surroundings, and

the objects recognized in an environment. Therefore, we formulated a visual mapping and

localization method similar to how humans recognize places, relying upon multiple machine

vision features to sample from different layers of the visual representation/structure of a

place – a location’s signature.

We chose different feature extractors in order to sample from various segments of this

notion of a location signature. To capture interesting details existing in textured regions

of an image, we use a keypoint feature extractor. Keypoint features can also be used to

recognize objects, so object recognition was added to the system, providing a labeling to

be applied to certain sets of keypoints. We also added object detection, which employs

the use of boosted classifiers [76, 38] to detect instances of objects within a scene. We
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added text recognition to the system, as text can be found rather ubiquitously in man-made

environments, both indoors and out. To cope with areas with fewer interesting features, the

system creates a color histogram to capture the color distribution. Straight line statistics

are used as the final technique, collecting information on line lengths, orientation and color.

Similar to how the patterns of friction ridges on the tips of fingers form human fingerprints

[63], these visual feature “ridges” form our version of location “fingerprints.” When these

features are encapsulated into location fingerprints, they can be associated together to form

a topological map and compared with one another for localization. We call our system

SPLINTR, Spatial Place Recognition in a Topologically Mapping Robot.

If the robot is to use these visual signatures in an intelligent way to build a map, and if

the robot is to be able to assess if it is in unexplored territory or if it is traveling within the

confines of its map, it needs a way of estimating the similarity between visual fingerprints.

Based on the evidence presented in the images of the robot’s surroundings, how can it

measure how close the evidence comes to the data within its map? Briefly introducing this

subject, to compare different locations’ fingerprints, we compare their individual ridges and

then combine the individual ridge feature comparison results together into one overarching

similarity measure. Details on how we compare each ridge, and how they are combined to

form one single matching result are discussed later in the Localization chapter, specifically

section 4.1.

1.2 Contributions of this Work

• We present a unique approach to place representation for an autonomous mobile robot,

combining a novel mix of visual feature extraction, forming a new way to allow robots

to recognize and record locations.
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• This project attempts a style of visual feature fusion. We propose an approach to

represent locations in a manner not attempted before, combining features from different

visual complexity levels (from lines and color distribution to texture keypoints, objects

and text).

• We present our method of comparing various genres of visual features, separately

comparing each ridge and combining the results into a single numerical similarity

score between fingerprints.

• We apply a multi-resolution focus of attention process in the text detection/recognition

pipeline, combining the results of text detection pixel classification to provide better

input to the text recognition engine.

• We adapt a text detection algorithm and an open-source Optical Character Recog-

nition (OCR) engine for use in scene text extraction, using heuristics and dictionary

validation to reduce erroneous text results.

• We introduce our approach to measuring similarity using keypoints, and to temper

this based on the average number of keypoints extracted.

• We also contribute to the ideas of maintenance of location hypotheses and topological

map building methodology, using off the shelf data structures such as vectors and

graphs and the evidence presented by visual fingerprints.

• We use existing tools in a specialized way, to extract features and semantic information

from specific layers of the visual representation of a place, which we refer to as the

signature of a location.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we discuss research related

to topological and semantic localization and mapping, as well as analyze related topics such
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as visual features, data representation and comparison measures. Chapter 3 details our

visual feature fingerprints, describing the extraction methodology of each ridge. In Chapter

4, we cover how to compare the individual fingerprint ridges and examine SPLINTR’s use in

robotic localization. In Chapter 5, we discuss using the SPLINTR fingerprints for topological

SLAM. And in Chapter 6, we conclude the dissertation with a summary of contributions

and discussion of future work.
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Chapter 2

Related Work

There are important aspects to keep in mind when designing an appearance-based topological

fingerprint mapping system. One issue is the choice of visual features; what machine vision

techniques could be used for localization and mapping? How will the features represent

locations; in what manner are the topological nodes and individual layers of those nodes to

be represented and stored on the robot? Once the features are stored, how are we to measure

the similarity between the features of the current scene and those in the map? How should

we combine the individual feature set similarity scores to get a score between entire nodes?

In this chapter, we discuss various machine vision techniques that have been employed by

others to address the problems of recognition, localization and mapping, as well as methods

used to compare features and represent locations.

2.1 Topological and Semantic Mapping

FAB-MAP [20] is, as the authors describe it, an “appearance-only SLAM” technique, where

an input scene is classified as either a place visited before (from the map) or a new location.

Appearance-based SLAM appears to be a topological localization and mapping approach,
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since the map is composed of discrete, individual locations. These locations are represented

in their probabilistic bag-of-words model, with the bag-of-words vocabulary consisting of

keypoint features. The representation of locations is probabilistic in that they use a prob-

ability distribution over the vocabulary of features. In FAB-MAP 2.0 [21], Cummins and

Newman extend the FAB-MAP method by approximating their previous model in order to

implement an “inverted index” representation of visual vocabulary words at locations in

order to support large scale mapping trajectories (approximately 1,000 kilometers in their

experimentation). When localizing, the FAB-MAP system does not return a similarity mea-

sure, but instead returns the probability that the scene and location(s) in the map came

from the same place. Their probabilistic function incorporates a method to suppress non-

distinctive locations, those that look similar and common, such as scenes containing shrub

bushes or brick walls. In their calculation of the probabilistic location given observations,

the normalizing term is divided into probabilities that the observation came from the map

and the probability the observation came from an unmapped portion of the environment.

This second probability is estimated with a sampling method that creates random location

models; if the place is distinctive, then it is less likely that they can randomly sample a place

with equal or higher probability, but if it is a less distinctive location, then it is more likely

that they can build up a similar random location model. This would create a larger denomi-

nator in their normalizing factor, and therefore a lower probability of the scene coming from

a mapped location, thus handling perceptual aliasing.

Vasudevan et al. [74] created combination metric/topological maps of the environment,

with metrical measures encoding object locations, recognized based on SIFT features. In

this work, doors represent the separation between locations, and recognized objects are used

to classify the place the robot is in. Similarity between a map location and the robot’s

current location is measured by matching the recognized objects and relationships (distance

and angle measurements) among those objects.
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Case et al. [16] manually drove a robot around to create a map using the GMapping

SLAM tool of the Robot Operating System (ROS). Once the map was created, images were

collected from a set of locations to visit. The authors attempted to extract only signposts

of room numbers and names, simplified by using the ADA guidelines for signpost placement

within an office building. Text detection was done by extracting a set of image features,

including local pixel variance, local edge strength, and vertical and horizontal edge strength.

They trained a logistic regression classifier using the maximum, minimum and average values

within a 10 x 10 pixel window of these extracted image features (thus they classify one 10

x 10 box of pixels at a time, then move the window 3 pixels and classify again). The

window is applied over the image to output the probability of containing text, and then

the image was thresholded and binarized. After heuristically thinning the detection results,

each text detected region (after connected component labeling) was binarized using nine

different thresholds, with each applied through the Tesseract engine, and the result with the

highest confidence score (a value returned by Tesseract) was kept as the text resulting from

the region. For text extracted within the same 3D location (within a certain distance), the

authors attempted to merge these texts using the Needleman-Wunsch sequence alignment

algorithm [50]; if two texts have an alignment score exceeding a certain threshold, then the

two text pieces were replaced with the optimally aligned text. The authors’ goals here were

slightly different than our own. Instead of using the text to localize and form a map, the

text was used to annotate an already built map. Furthermore, they did not use a dictionary

or rules to validate words. However, they did include a user query interface where a user

can type in a name or room number, and using the Smith-Waterman alignment score [68],

the robot navigated to the best match in the map.

Posner et al. [55] developed a system for semantic image retrieval. They applied text

detection and recognition to street view images acquired from a mobile robot. The authors

trained a cascade of boosted classifiers for text detection, combined with Tesseract OCR for
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recognition. They applied a probabilistic model to spelling corrections for recognized text;

the incorporation of the prior probability of a word occurring in an image is accomplished

by using the word frequencies provided in the British National Corpus [18]. The authors

mentioned that use of this approach, especially on their dataset which included French names,

may lead to false corrections of spelling. The authors also provided a probabilistic model to

return subject-related images when provided a subject query, and conversely to provide an

image’s subject given its set of text detections.

Rogers et al. [59] used textual semantic information in their SLAM approach. They used

door sign text to represent the desired semantic objects to extract from the environment.

In order to create their door sign detector, they first applied a saliency operator [28] to

extract image regions. These regions were hand labeled, and a rescaled version was used

to train a Support Vector Machine (SVM) on the result of extracting the Histogram of

Oriented Gradients (HOG) feature from these regions. The map created is in the form of

a graph map, which stored measurement locations of wall and text data extracted from the

environment as they were situated relative to the robot’s pose. By including text as well as

the location of the text within the map, they found that they could correct errors within

their map, such as when a robot is lost within its map due to pose errors. By matching text

extracted from a door sign in the environment with that stored in its map, the robot can

reduce its pose error and correct its map. They used GoogleGoggles rather than an onboard

text recognition engine, thus this approach would require network or cellular connectivity.

They also limited text extraction strictly to door signs, rather than scene text in general,

and assumed a certain number-text pattern on the door signs.
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2.2 Visual Features In Location Recognition and Map-

ping

In this section, we review visual features used for localization and mapping, including rather

simple machine vision results, interesting keypoints, color histograms, and recognition of

text.

2.2.1 Use of Simple Visual Features

There has been work in the area of location recognition using simple image features. In

his work, Braunegg [14] extracted straight-line segments from stereo images as features to

build occupancy grid maps (locations of the features in the scene) of rooms of the robot’s

environment. In [34], Lamon et al. used a robot to localize itself using location “fingerprints”

represented as strings of characters. Each character in the string fingerprint represented a

detected color patch or a vertical straight line edge. For each feature detected in the image,

its representative character was recorded in the string fingerprint in the order it was detected

at that location. Locations within the map were also represented as strings. The robot would

then try to localize by string-matching the resulting character-based fingerprint of the current

location to one in the map. In [70], Tapus and Siegwart extended the string fingerprint to

also include corners detected from laser scans. This time the string fingerprints were used for

topological mapping (as opposed to the localization method of [34]), with new nodes in the

topological map created based on a “dissimilarity” threshold. Also, each node was created

from an average of similar, nearby fingerprints.

12



2.2.2 Use of Histograms

Work has also been done to apply histograms to localizing a mobile robot. Blaer and Allen

[10] used histograms and an omnidirectional camera for coarse localization in their AVENUE

project, where the histogram localization is used as a precursor to reduce the set of regions

the robot could be in and thin the search space for a finer visual localization module. Rañó

et al. [57] estimated color histograms using self-organizing maps (SOM), with regions of a

limited sequence of previous images used to train the SOM on the fly. The distance measures

between the obtained histogram of the current location and the histograms of stored locations

in the map decided the location of the robot.

2.2.3 Use of Text Recognition

We have introduced previously some related works involving text recognition and robotics.

Furthermore, Tomono and Yuta [72] equipped a robot with the ability to navigate to a

specific room within a hallway corridor. The robot could detect doors through vertical edges

and color matching; once a door is detected, the robot could maneuver itself to recognize

room number plates and use character matching to recognize the room number. Liu et al.

[40] also enabled a mobile robot to follow directions from a starting point to a goal location

within the environment, as well as to extract text landmarks of Japanese characters from

the environment as part of their localization and mapping technique.

2.2.4 Use of Feature Keypoints

In [23], Filliat combined SIFT points with hue and grayscale histograms of the image in an

interactive localization and mapping technique. To compute the histograms, Filliat divided

the image into smaller windows and computed the hue and grayscale histograms for each

window. Murillo et al. [49] used Speeded Up Robust Features (SURF) [8] in their method
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of topological and metric localization. In their localization method, Botterill et al. [12]

utilized SURF combined with small hue histograms around each feature point for added

depth to the feature descriptors. Also, Neubert et al. [51] implemented FastSLAM [47]

using SURF features. In their localization system, Wang et al. [77] detected features using

the Harris-Laplace feature detector [45], and they represented those feature points using the

SIFT feature descriptor format. Cummins and Newman [20] used SIFT features to represent

locations in their original FAB-MAP research, introduced previously. The authors discussed,

however, that FAB-MAP is formulated to not be keypoint specific, as FAB-MAP 2.0 [21]

used SURF features. They also discussed that it can be used with other sensor input as well,

not just with images.

2.3 Methods of Representing Data andMeasuring Sim-

ilarity

In this section, we analyze various data representation techniques used for localization and

mapping, or related problems such as image retrieval and landmark recognition. We further-

more discuss various methods used in comparing features to calculate a similarity or distance

measure.

2.3.1 Maintaining Information with Ontologies

One possible means of storing location information is to incorporate the use of an ontology

or some semantic storage facility. Maillot and Thonnat [42] used an ontology to hold var-

ious visual concepts and hierarchies of those concepts, including texture, color, and spatial

information such as geometrical shape and size. This hierarchical descriptive framework was

used to separate concepts and subsequently train classifiers to be used to classify objects.
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Durand et al. [22] used an ontology to structure and relate the objects they needed to rec-

ognize from satellite imagery and to hold value ranges of attributes of the objects. After

segmentation, features of those regions were extracted, and the regions extracted from the

images were matched against the concepts and values contained in the ontology. Similarity

scores were calculated between the features of the regions and the attribute value ranges

within the ontology.

2.3.2 Locations Represented Using Histograms

As introduced earlier, a simple structure to represent images or locations is the use of his-

tograms. Ulrich and Nourbakhsh [73] used a robot for place recognition, with omnidirectional

camera images converted into six one-dimensional color histograms, one for each channel in

HSL (hue, saturation, luminance) and RGB (red, green, blue) color spaces. For the environ-

mental map, they hand labeled images from the environment as specific locations, with each

location getting n reference images. To compare the environmental map’s color histograms

with the input images, they tested several metrics in comparing histograms, including χ2,

and found that the Jeffrey divergence gave them the best results. They give the Jeffrey

divergence as

d(H,K) =
∑
i

(
hi log

2hi

hi + ki
+ ki log

2ki
hi + ki

)
when comparing two histograms H and K, with entries hi and ki. They only consider

the hypothesized location and its neighbors as matching candidates with the input image.

Each color channel votes for the best matching location (via the smallest matching distance

from the Jeffrey divergence measure). Each color channel (or color band) also calculates a

confidence measure cb to accompany the vote, cb = 1 - minimum Jefferey divergence measure

distance/ second minimum Jefferey divergence measure distance. Thus the distance between

the closest and second closest histogram matches determines the confidence (a similar method
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is employed by Lowe [41] for matching individual SIFT features, as matches must be a certain

distance from the next nearest match). Each channel’s confidence must be above a threshold

to cast a vote for a location, and all confident votes must be unanimous to update the robot’s

belief of its location. Otherwise, the system does not classify the input image, and the robot’s

location belief remains at the last confident classified location.

In [11], Blaer and Allen extended the system employing only histograms for localization

[10] to include signal strengths of wireless networks as well. Their histograms were also

changed to multiresolution histograms of RGB color channels (blurred and downsampled to

create the histogram resolutions). The histograms were normalized so that they affect the

difference measure equally. They used a histogram difference measure, where bins between

the two histograms are compared, and the absolute value difference between each bin is

summed, and the difference of each bin of each channel is summed. Their histogram dif-

ference appears to be the L1 distance measure, but modified to sum up the bin differences

of each channel and each resolution. This value represented the distance measure between

the histograms. The histogram difference was normalized to a range 0 to 1. Access point

strengths were normalized from a range of about -80 dBm to -20 dBm to a range 1 to 50. The

access point strength sets for the current location and the database entry were compared,

and the absolute differences between the strengths were summed to represent the difference

measure. The result was again normalized to be within a 0 to 1 range, and the overall

difference was a weighted sum of the two difference measures (color and wireless network

strength). The authors mentioned that the overall difference measure value could be used

as a confidence measure of the location estimate of the robot. This method is used to find

which region a robot is in (which they divided part of the Columbia University campus into

13 regions in their experimentation of outdoor localization).
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2.3.3 Locations as SIFT Feature Sets

Kosecka and Yang [29] represented the map of the environment as a database of “views,” or

one to four representative images of individual locations, with each view represented by SIFT

features. Localization is done by voting of feature matches between the query image and all

views of the map. They also attempted to capture relationships between adjacent locations

using a Hidden Markov Model, an n x n adjacency matrix to represent the probability of

locations being next to each other for the n locations, and an observation likelihood calculated

by the number of matches between a location and the query image divided by the sum of

the matches amongst all locations.

Regarding representation, the global map of [65] was composed of local, smaller maps

represented by sets of SIFT features that the authors call “SIFT fingerprints.” As for

similarity matching, SIFT fingerprints of the robot’s input images were only matched with

fingerprints within an uncertainty area of the robot. Within that area, SIFT features were

compared based on Euclidean distance, nearest neighbors were selected as matches, and

outliers were eliminated with RANSAC. Their matching score for fingerprints was a weighted

sum of the number of matches with the ratio of inliers to outliers. When a loop is detected

using SIFT fingerprint matching, Epipolar geometry was used to update the map of features.

2.3.4 Feature Vocabularies and Data Structures

Another means of location representation is to represent places or images using weights or

frequencies of a list of visual features. The choice of representation in [12] was a bag-of-words

approach of SURF descriptors combined with color histograms on the SURF patches (a small

11x11 Gaussian weighted patch around the SURF keypoint). In this bag-of-words approach,

features were mapped to their nearest representative visual word in a dictionary, so each

image can be represented based on visual word frequencies within the image. Similarity of
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images can then be analyzed by comparing the vector of frequencies, which [12] weighted

by the log of the ratio of frequency over total words, and compared using L1 (Manhattan)

distance. For the authors, pairing the hue histogram with the SURF keypoints improved

recognition. To compare the histograms, they found best results using χ2 and L2 metrics,

but they were comparing relatively sparse histograms. They searched the database on each

input image query as opposed to creating an inverse file. As briefly introduced earlier, in

[77], their database of locations was represented as a “visual vocabulary,” with weights of

that vocabulary at each location. They used the Harris-Laplace feature detector, with each

feature described by the SIFT descriptor format. Weights were based on a term frequency

multiplied by the inverse document frequency, w = tf ∗ idf . Term frequency is the number

of occurrences of term i in location j divided by the total terms at location j, while the

IDF, or inverse document frequency, is the log of (the number of locations in their model

/ number of locations containing term i). To evaluate the similarity between the vectors of

term frequencies (extended to also include orientation of the features), they used the cosine

of the angle between the query vector and the target vector from their model. This “coarse”

localization result was used to rank the matches, and the best five were considered for “fine”

localization. In their fine localization method, SIFT point sets are compared between the

current scene and possible locations, and SIFT point matches cast a vote. The location

with the most votes was considered the winning location, which was further verified if votes

between locations were too close by using RANSAC and discarding the outliers.

2.3.5 Mixture of Features

Next, we outline representations that use multiple features, sometimes consisting of rather

simple machine vision results, to represent locations and images. The following reviews are

organized according to the end use of the mixture of features – for localization and landmark

recognition and for image retrieval, a related problem to localization.
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Localization and Landmark Recognition

Zhou et al. [80] combined various image features to represent locations. They combined

color histograms of RGB and HSV (hue, saturation, and value) color channels with the zero

crossing and texture measures used by Argramon-Engelson [6]. Further features were added,

including a measure of gradient magnitude and pixel rank, where pixel rank is a count of

pixel intensities less than a pixel within a local neighborhood. These features were combined

into a multi-dimensional histogram to represent locations. To compare histograms between

the robot’s current location and the database, they used the Jeffrey divergence. The authors

cut down on searching the entire database by taking advantage of topological map node

adjacency and searching nearby nodes to a previously matched location.

In a kind of combination between localization and image retrieval, Hays and Efros [25]

provided a localization technique based on how similar a query image is to their database

of GPS-tagged images. Their IM2GPS system [25] involved matching scenes of images with

a large GPS-tagged image database (6 million images), and using nearest neighbor results,

they created a probability density over the Earth of the likelihood of the image coming from

locations on the Earth. They tested several image features, and the most useful in their image

GPS endeavor were gist [52], color histograms, and texton histograms [43]. Gist images,

formed from responses to a set of filters applied to the image, were useful for scene matching,

and thus could be considered in the future as an additional layer to SPLINTR. They also

created small, 5x5 color (CIE L∗a∗b∗) images as a feature. Furthermore, color histograms are

already used in our project, but specifically the color space they used for their histograms

was CIE L∗a∗b∗ color space, separating colors into lightness (L∗), a magenta/green range

(a∗, negative is green, positive is magenta) and yellow/blue range (b∗, blue is negative,

yellow is positive) [19], with 4x14x14 bins in L∗, a∗, and b∗ respectively. For the distance

measure between the color histograms, they chose the χ2 distance. They also formed a

texton dictionary [43], or small texture structures, by clustering responses of the database
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of images to a set of filters. They also used χ2 distance to compare texton histograms.

Furthermore, they extracted line features and formed a histogram of angles and lengths of

the lines, compared using L1 distance. The authors indicated that line features were useful

for separating natural and man-made scenes as well as for determining similar vanishing

points between images. They scaled feature distances to bring their standard deviations

to be approximately the same so that each feature has equal effect on ranking the scene

matches. For a query image, the combined feature distances were used to find the nearest

neighbors from the image database, of which the GPS tags were used to find geological

location on the Earth. Other features were tested but discarded for experimentation due to

their lack of discriminatory ability, including “geometric context” (classifying image regions

into categories like sky, ground and “vertical,” or parts of the image coming up from the

ground) [27] and small 16x16 images.

Image Retrieval

The work of Rahman et al. [58] focused on image retrieval by comparing the contents of a

query image to a database and retrieving similar photographs. The three features on which

they focused included color, texture and edge features. Color of the image was represented

in a 108 dimensional color histogram in the HSV color space (12x3x3 for HSV respectively).

Texture features were extracted from co-occurrence matrices at four different orientations,

resulting in a 20 dimension vector of texture values. Edges were produced from the Canny

edge detector, and edge direction values were stored as a 72-bin histogram, 5 degrees to

each bin and normalized by the number of edge points. They reduced the high dimensional

feature vector using principal component analysis. The authors compared different similarity

measures for comparing the query features to a database of images, including Bhattacharyya

(with which they had the best results), Mahalanobis, and Euclidian (with which they had

the worst results) distances.
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The Multimedia Analysis and Retrieval System (MARS) [53] allows a user to specify,

for example, the characteristics of the desired image or set of images to retrieve from a

database. Using MARS, one can query the system to return images that have both the color

characteristics similar to one image as well as the texture characteristics similar to another.

They used hue-saturation color histograms with 8x4 bins. To measure similarity between

two two-dimensional histograms, they used the intersection similarity, which they defined as

similaritycolor =
∑N

i=1

∑M
j=1 min(H1(i, j), H2(i, j)) with H1 and H2 being the two histograms,

and N and M being the number of bins representing hue and saturation respectively. They

used normalized histograms, where each bin holds the percentage of pixel values within that

HS bin’s range of values.

To represent texture, they used standard deviations of the coefficients of wavelet filters

that they applied to the image, resulting in a 10 dimensional texture feature. To compare

their texture features, they used the Euclidean distance between the vectors, which was also

normalized and converted into a similarity value.

A key aspect to take away is their normalization of the feature similarity and distance

values, which converts the comparison values to have a zero to one range. Much like in

our project, the feature representations in [53] vary, as the authors have features stored as

vectors, histograms, and a “modified Fourier descriptor” representation for shape boundaries.

2.4 Summary

There were various techniques employed to represent location and maintain data. Some

extracted sets of keypoints to represent location, such as Kosecka and Yang’s use of SIFT

sets called “views” [29] or Schleicher et al.’s “SIFT fingerprints” [65], while others relied on

global image features such as histograms [73]. Others made use of ontologies to organize

data or value ranges [42, 22]. Others represented locations as a bag-of-words [12] or a
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visual vocabulary [77]. Another approach was the mixture of various features [80]; in [25],

they used various features to identify possible locations on the Earth from which query

images could have been taken. A related approach to localization is image retrieval [53],

as the methods used to compare features to retrieve similar images from a database is

highly akin to comparing image features from a robot’s location to the image features stored

in the robot’s map. It seems that different researchers used different statistical similarity

or distance measures depending on their own experiments, and they used the ones that

worked best for their individual projects. Some of the statistical measures used and tested

in the works for image retrieval and localization included Jeffrey divergence, χ2, intersection,

Manhattan distance and Euclidean distance. We furthermore discussed approaches used for

appearance-based SLAM [21] and topological mapping [70]. A related and important subject

is semantic mapping. Certain features used for semantic mapping included objects [74] and

text information [16, 59].
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Chapter 3

Visual Fingerprints

Considering one of the goals of this research is to sample from the various visual layers of

a location, SPLINTR uses multiple machine vision methods with which to extract features.

This chapter describes our approach to multi-layered visual fingerprints, including the feature

choices made and their implementation methodology within SPLINTR.

3.1 Introduction

We introduced earlier this idea of multiple types of visual features possible to specify a

location – the signature of a location – and the benefits of enabling a mobile robot to sample

over this set of visual clues. Such a technique produces a more intelligent representation of

space and provides a robust set of features to use for topological localization and mapping.

The layers of the signature we wish to sample from include the scene’s texture, rudimentary

image properties such as color and straight lines, and symbolic and human features, such as

text and objects present in the environment.

The fingerprint metaphor has been used previously in literature, including Lamon et

al. [34], Tapus et al. [71], Tapus and Siegwart [70], and the term “SIFT fingerprints” for
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Figure 3.1: The layered ridges representing a fingerprint in SPLINTR.

sets of SIFT features used by Schleicher et al. [65]. As SPLINTR was initially a change

and improvement to the string fingerprints of Tapus and Siegwart [70], we also adopted

the fingerprint metaphor. The fingerprint term applies a label to the nature of our location

descriptor, as it uses multiple features combined together to make up a location’s topological

node; calling the visual feature layers “ridges” serves to complete the metaphor between the

pattern of friction ridges forming the human fingerprint and the various visual features

encompassing our location fingerprint.

The following sections describe each of the chosen ridges for our approach to visual

fingerprinting and how they are implemented for use in SPLINTR. We describe each ridge

in detail, what features are extracted, and how each ridge is represented in SPLINTR.
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3.2 Keypoint Ridge

The Keypoint Ridge of our visual feature fingerprint contains the extracted keypoint features

from the image (or images) representing the robot’s current scene and location. What we

gain from keypoint extraction is essentially tens or hundreds of patches from the scene

image; we can think of these features as landmark patches of the scene, though there will

be “common” keypoints found in the environment. Such common keypoints may exist as

features from repetitious architecture in the environment, like the corners of doors; a corner

of a door frame is indeed an interesting feature due to its contrasting corner nature of a

frame against a wall, however it may appear at multiple locations in the environment due

to the usual presence of multiple doors in a hallway. Since we do not want to adorn one

particular keypoint extraction method as the solution here (and a check of literature will

produce multiple choices of keypoint extraction methods), the idea we wish to portray is

to produce a result of interesting points resulting from texture of a location, since keypoint

features are indeed a powerful feature to use for localization and mapping. Furthermore,

keypoints will be stored with other features extracted from a location, thus forming a more

intelligent representation and utilizing more information available from the environment.

3.2.1 Discussion of Keypoint Extraction Methods

This subsection discusses various methods of extracting and representing keypoints, inter-

esting locations within an image, be it characteristic patches or corners. In the discussion,

we will use the terms “detector” and “descriptor.” The term “detector” refers to the method

or algorithm of extracting or finding keypoint features within an image. The term “descrip-

tor” refers to the method of representing the feature as data, so that it can be stored or

compared with other keypoints; often this quantization takes the form of a vector of values,

with the values, range and vector size depending on the particular descriptor method used.
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These terms should become clearer as the section progresses. Particularly, some keypoint

extraction methods may represent both a detector algorithm and a descriptor, such as the

Scale Invariant Feature Transform (SIFT) [41]. In [41], Lowe discusses the algorithm for

detecting SIFT features, along with the means of representing the features as data in its de-

scriptor, and what those descriptor values represent. As is discussed later in the comparison

measure of the keypoint ridge, we make use of the orientation of a keypoint feature, but not

all keypoint detectors produce an orientation as part of the extraction method.

FAST - Features from Accelerated Segment Test

The FAST feature detector [60] is used for locating corner features within an image. To

classify a pixel p as a corner, the FAST feature detector examines the pixel intensities on

a circle surrounding p. If n consecutive pixels lying on the circle are all brighter than

the candidate center pixel p plus a threshold t, or alternatively are all darker than p minus

threshold t, then p is classified as a corner. The feature vector is composed of the pixel values

comprising the circle, and the features can be classified by whether the feature is made up of

pixels brighter than p (“positive”) or darker than p (“negative”); thus in matching, positive

features are compared with positives and negative features to negatives. Features are sorted

by average intensity, and the feature with the closest average value is compared with the

query feature using the Sum of Squared Differences (SSD). Certain heuristics are used to

terminate SSD computation early for mismatches. In [61], this feature detector is sped up

using a machine learning technique; particularly they employed a decision tree, thus training

a more efficient feature detector which reduced the number of average checks to classify

a pixel as a corner. The FAST feature detector is advantageous in regards to extraction

speed, but it does not produce an orientation associated with the feature and thus is not

rotation invariant. FAST also does not produce as rich a feature vector as say SIFT, with
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the proposed FAST feature vector limited to the circumference of the pixel values lying on

a Bresenham circle (of radius size 3) surrounding the feature.

SURF - Speeded Up Robust Features

Bay et al. [8] proposed both a feature detection algorithm as well as a representative descrip-

tor method for extracted features. They constructed a feature detector based on approxi-

mating the Hessian matrix, a matrix that holds the values of the second order derivatives

over a location in the image. To approximate the Hessian matrix values, they used a set

of weighted box filters and approximated the determinant of the Hessian matrix, and to

calculate the results of the weighted filters quickly, they used integral images. Briefly, an

integral image, introduced by Viola and Jones [76], is a precomputed image where the pixel

value at (x,y) represents the original pixel value at (x,y) plus all the pixel values to the

left and above it. The integral image thus becomes a lookup table and used in the quick

calculations of pixel values over regions of the image, including the computation of Haar

wavelet filters and the weighted box filters. For detecting features at differing scales, rather

than computing an image pyramid of downsized and blurred images (as SIFT does in [41]),

they increase the size of their box filters, which does not increase computation time due to

the use of integral images. Maximum determinants within a localized window in location

and scale (a 3x3x3 neighborhood according to the authors) are determined, including their

location in the image and approximate position based on scale.

Orientation of the feature is estimated based on results of applying Haar wavelets in the

x and y directions and gauging their responses. Maximum response from sliding a wedge-

shaped orientation window around the feature determined the angle. From a square grid

around the feature point, the descriptor is composed of directional Haar wavelet responses

(Gaussian weighted, with its center on the feature point location) summed over the regions

in the grid. The summation of the responses in the x and y direction at sample points over
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the regions, combined with the summation of the absolute values of the responses, form four

values for each region. Since they used 4x4 regions, the full descriptor vector contains 64

values.

The authors used the sign of the Laplacian for quicker matching; this allowed for com-

paring light features on a dark background with features of similar contrasting qualities, and

dark features on light background with similar characteristics. The authors indicated that

due to the mechanism of extracting their descriptor and the underlying method the descrip-

tor values represent, SURF is less prone to noise than SIFT. In comparing SURF [8] with

SIFT [41] and the Harris-Laplace and Hessian-Laplace [46] keypoint extractors, they found

SURF to be comparable or better than other keypoint feature extraction methods while also

being quicker to extract.

CenSurE - Center Surround Extremas

In [4], Agrawal, Konolige and Blas described the CenSurE feature extractor. CenSureE (Cen-

ter Surround Extrema) applies an approximation to the Laplacian using “center surround”

filter responses; according to Lowe [41] and reiterated in [4], approximating the Laplacian is

easier than the Hessian, and the Laplacian is better at feature extraction across scales [45].

To approximate the Laplacian, they explored using Difference of Boxes and Difference of

Octagons, where the filter is represented by concentric shapes, that is, a shape (they tested

use of a square and octagon) inside of a larger shape (hence, center surround). Within their

difference filters, the smaller shape is weighted opposite of the larger shape, particularly they

used the weights 1 and -1; these responses can be calculated quickly using an integral image

(though modified to use the integral image for the octagon-shaped filter). They applied

non-maximal suppression, filtered out weaker responses, and used the Harris measure [45]

to filter out features located along edges, which according to the authors works better than

using the Hessian, as SIFT used to eliminate edge features.
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CenSurE also differs from SIFT in that the scale feature detection is not accomplished by

incremental blurring and shrinking of the image, rather the feature detector is applied over

every pixel at every scale. The authors apply this method for greater accuracy in feature

detection at larger scales.

The CenSurE descriptor is a modified version of the SURF descriptor; the grid is altered

to allow for regions to overlap and subregions to have Gaussian weighting (centered on

the subregion), weighting the Haar wavelet response values before being summed into the

four values representing a subregion, as in SURF. These modifications of SURF were inspired

from SIFT; they were used to suppress descriptor values fluctuating as information may shift

from being represented in one sampling area to a neighboring area. Thus, the overlapping

regions and weighting are used to account for these boundary issues within the descriptor.

Their implementation of the modified SURF descriptor ran faster in their experimental

results as well (which they point out that they do not have a clear idea as to why, though

they do mention certain C++ techniques such as the use of shorts and quick descriptor

matching using “compiler vectorization”). Since the features are signed, dark features and

light features can be distinguished, thus trimming matching time, similar to SURF.

The authors showed two experimental image sequence results, one in which CenSurE

outperformed the other detectors tested, including SIFT and SURF, and one sequence in

which it did not perform as well as its competitors. In another experiment concerning visual

odometry, however, CenSurE (octagon version) performed better than competitors including

SIFT, SURF, FAST and Harris corners [24].

Recent Contributions – BRIEF and ORB

Some of the recent contributions to the keypoint descriptor and detector research include

BRIEF [15] and ORB [62]. First, BRIEF (Binary Robust Independent Elementary Features)

is a descriptor, and it therefore requires a mechanism with which to detect keypoints. Once
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a detector is applied to an image resulting in keypoint locations within that image, each

keypoint must be quantified by a descriptor. Consider an NxN sized window around the

keypoint location, which is first smoothed by a Gaussian. Within the window, BRIEF first

requires two sets of sampling points; when considered together, the two sets form the pairs

of pixel comparison locations within the patch used to form the descriptor’s binary string.

When a pair of pixels within the patch is compared, the test’s corresponding bit receives a 1

if the first pixel has a value less than the second pixel, 0 otherwise. This process of choosing

a pair of pixels and comparing them continues in order to fill the BRIEF descriptor of a

chosen size. From their experiments, they received the best results by choosing pairs of test

pixels by choosing sampling locations from a Gaussian distribution.

Since the descriptor is composed of bits representing pixel comparisons from a distribution

within the patch, they employ the Hamming distance when comparing two keypoints. Thus,

BRIEF offers descriptor size advantages, depending on the number of bit comparisons used,

as well as speed in comparing keypoints. Their method, however, does not account for

orientation differences, and thus this is not orientation invariant (though they point out that

it can withstand a small amount of orientation difference).

ORB (Oriented FAST and Rotated BRIEF) [62], combines improvements made upon

the FAST corner detector and the BRIEF feature descriptor. ORB builds on FAST by

adding an orientation; the orientation is calculated based on the centroid of the corner. The

orientation angle is formed from the line connecting the center of the corner feature window

to the centroid. Rather than using BRIEF’s method of selecting a set of test locations based

on a Gaussian distribution, the authors learned a set of test locations for the purpose of

decreased correlation and increased variance among the tests. The benefits of these two

characteristics: uncorrelated tests allow contribution of each test to the end result, high

variance allows for more discriminative binary features [62]. This learned set of test locations

for BRIEF descriptors (and a lookup table to determine test locations based on orientation),
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combined with orientation calculated from FAST corners contribute to the formation of the

ORB feature detector. ORB is applied to a pyramid of scaled images, thus allowing for

detection of features at various scales.

The authors compared their ORB feature detector to SIFT and SURF, for which it

performed similarly or better, and it particularly did better on a set of images that gave

CenSurE difficulty. Since CenSurE is an improvement upon SURF, it would have been nice

to see how ORB faired against CenSurE. The authors also discussed a hashing technique

for fast descriptor matching. ORB does improve upon its predecessors of FAST (by adding

orientation) and BRIEF (better distribution of test locations and rotating the descriptor

values based on orientation), while also keeping the quickness offered by the FAST detector

over other more computationally intensive detectors of SIFT and SURF. However, one must

decide if the features extracted using corner detection suffices for its intended end use.

Concluding Remarks

We use keypoints to sample the texture of an image, with the idea that a certain slice of the

signature of the image (in this case texture) could be estimated from the application of a

feature detector. Lowe’s SIFT keypoint extractor [41] is a gold standard to detect interesting

locations/patches within an image with both scale and rotation invariance. Theoretically,

the Keypoint Ridge of SPLINTR could utilize a keypoint detection and descriptor method

best suited for its task, and, as we have described above, certain methods offer strengths

in the areas of descriptor size, extraction speed, comparison methods and accuracy; use of

SIFT could be replaced in future work, though since we depend upon orientation, and SIFT

comes equipped with both scale and orientation invariance, there is a reason new detectors

compare themselves against it and a reason it has been used and utilized for over a decade.

Other keypoint detectors may be geared toward specific applications or end use devices.

For instance, since ORB offers both a quick feature detector and a speedy descriptor for
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matching, in addition to testing on an image dataset and for object recognition, the authors

demonstrated its use in tracking features on a mobile device. CenSurE improved upon

the SURF detector and descriptor, though they showed in experimentation that it is not

perfect. They demonstrated results on a dataset (involving testing rotation and zoom) in

which it did not perform better than competitors SIFT or SURF. However, the authors did

show CenSurE’s better performance over competitors in the application of visual odometry.

FAST, and by extension its oriented brother ORB, use corner detection, and we would like

to be able to detect more texture features than corners alone. Being able to dynamically and

intelligently choose which detector/descriptor to use would be useful future work. Somewhat

related to this future work is ReIn (Recognition Infrastructure) [48], an architecture with

a defined interface which allows the use of multiple object recognition schemes within the

same system, intended for use in robotics. ReIn is implemented for use with ROS, the

Robot Operating System. When object detectors are wrapped to use the ReIn interface, it

allows the benefit of data sharing when appropriate, and the use of multiple algorithms to

be switched between, run in parallel, or pipelined. In [48], Muja et al. used ReIn to combine

two of their object detectors, a gradient based object detector called BiGGPy and a 3D point

cloud based object detector called VFH. One detector was used to over-detect for objects in

a scene, and the second was used to verify the detections and reduce the over-detected false

positives. They showed the combination of the two working in sequence was better than

using the BiGGPy detector alone, which was allowed by using the ReIn framework.

3.2.2 Our Use of SIFT

To reiterate our plan of using keypoint extraction, we want to sample from the texture

of the robot’s environment, particularly its current scene. To extract keypoints as well

as form a descriptor of those keypoints, we use the Scale Invariant Feature Transform, or

SIFT [41]. The benefits of using the SIFT keypoint extractor and descriptor include its
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invariance to scale changes and orientation changes. Rotation invariance can be used to

exclude some obvious “common” features from matching when they happen to be extracted

at differing locations. Furthermore, according to Lowe [41], SIFT is also partially invariant

to light changes and three-dimensional viewpoint/affine changes, which is important for a

mobile robot which may detect keypoints at varying viewpoint locations while exploring the

environment.

In an introduction to the SIFT feature extraction method, SIFT features are extracted by

filtering the image with the Difference of Gaussian (DoG) function; this function serves as an

approximation to the Laplacian of Gaussian normalized for scale invariance [39]. An image

is convolved with the Gaussian operator in a manner that produces images at increasing

“scales” of smoothed images (that is, the σ differs between scales by a constant factor), and

the DoG images are produced from the difference of these blurred images from neighboring

scales. Images are downsampled and blurred more to produce multiple “octaves” of blurred

images, and the process is repeated. Preliminary SIFT keypoints are the pixels that are

extrema of their neighbors within the same scale and the scale above and below. Further

methods are described in [41] to eliminate poor keypoints, such as those with low contrast, or

keypoints unfortunately located near edges. More specifically, using values calculated from

an approximation to the Hessian matrix, they can estimate the principal curvatures and

eliminate keypoints along edges; edge keypoints are removed because of their instability, for

instance to noise. This process, as pointed out earlier, is different from the use of the Harris

measure to eliminate edge keypoints in CenSurE [4]. An orientation histogram is formed

from gradient information around the keypoint (with input to the bins weighted by the

gradient magnitude and a Gaussian weighted window). Orientation of the keypoint is then

assigned according to the orientation histogram bin with the maximum value; if other bin

values are within 80% of the maximum value, then the keypoint is duplicated and assigned

that additional orientation, repeated for all bins exceeding this 80% threshold. That is, key-
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points are duplicated and assigned different orientations if there are several strong gradient

orientations concerning a particular keypoint. The descriptor of the keypoint is formed from

the orientation histogram values around the keypoint, relative to the keypoint’s assigned

orientation, thereby making it orientation invariant. Values inputted to the histogram are

weighted by gradient magnitude and by a Gaussian circular window scale-weighted particular

to that keypoint’s scale, and furthermore calculated and distributed to adjacent bins to aid

in boundary issues (handling of boundary issues was brought up earlier in the discussion of

CenSurE in Section 3.2.1). Further methods are applied to the descriptor values, including

normalization to unit length, followed by a thresholding (any values greater than threshold

t is replaced by t, which [41] uses a t of 0.2) and normalizing again to unit length.

3.2.3 Keypoint Ridge Representation

In the implementation of our system, we use an open source library of SIFT available for

free from Rob Hess [26]. It is a C implementation of the algorithm described by Lowe, and

it provides the extraction of the SIFT descriptor keypoints and storage within a k-d tree

data structure. Furthermore, Hess’s SIFT library implements the Best-Bin-First keypoint

matching algorithm by Beis and Lowe [9], which returns an input keypoint’s match from a

k-d tree of SIFT descriptors; this algorithm is approximate, though it does provide a quicker

alternative to brute force.

Thus since our keypoint ridge uses the SIFT keypoint extractor, we implement the key-

point ridge using a subridge, a SIFT ridge. The SIFT ridge maintains the SIFT keypoint

features, which are extracted from the scene image of the robot’s location and maintained

within a k-d tree to be used to find keypoint matches. Similarity between keypoint ridges

when comparing two fingerprints is described later in Section 4.1.1.
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3.3 Object Ridge

Within the scene image, the robot may find objects via object detection or object recogni-

tion. Within the context of this research, we consider the difference between the two as the

difference between a generic object (detecting a face) and a specific object (recognizing that

face is Abraham Lincoln’s face). In experimentation, SPLINTR is equipped with a library

of objects it should detect and a library of objects it should recognize. The mechanisms for

how each is implemented in our system are described later in this chapter.

The importance of the object ridge is to ascribe a higher order label to specific surround-

ings of the robot, since we as humans are able to do this very thing. Landmark objects help

us remember locations and places (the door next to the fire extinguisher) and thus are strong

candidates to be included in a localization and mapping project.

3.3.1 Object Recognition/Detection

In order to recognize and detect objects in the environment, SPLINTR needs to take as

input prior knowledge of objects for which it is to find in the environment while exploring.

For recognition, upon startup we can examine our database of objects and extract keypoints

to represent each object within our system (described in more detail in the next section).

For object detection, since we use a set of boosted classifiers to detect objects within the

scene image, these identifiers must be trained in advance.

It is not hard to imagine scenarios in which prior knowledge of objects to recognize

and detect could be provided to the robot. Such cases may include an environment with

a known intended use, such as a specific museum, of which a list of art pieces or artifacts

known to exist within the museum could be provided to the system in advance. Other

times, acquired intelligence involving a military exercise could provide objects particular to

an environment the robot is to explore. Still other times an object list could be acquired
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from domain knowledge of the environment, such as exploring the Institute of Artificial

Intelligence on UGA’s campus; in this case, logos of research projects could be acquired from

the University’s webpage, or AI related images in general from the Internet (for example,

popular or respected research journals such as AAAI) to be found in the environment. Still

even further information of the environment could be acquired from social engineering or

manipulation, but such tactics are outside the field of this research.

Object Recognition

First, we shall describe the use of SIFT keypoints for object recognition. When the system

starts, we use an array of file names to signify the object images for which the system

will be searching and attempting to recognize in the environment. We refer to the set of

images representing objects as our “object database.” These object images are inputted

to the system using OpenCV, and a set of SIFT features is extracted from each object

image to represent that object in the system and to facilitate recognition while the robot

explores. After a set of SIFT keypoints is extracted from each object image to recognize,

it is represented as a k-d tree and stored in an array to be accessed later for recognition.

Therefore, given a list of image names to represent objects to recognize, the object database

is represented in an array of SIFT keypoint k-d trees, one k-d tree per object to recognize.

A separate string array houses the names of the objects. Now that we have a representation

of our objects to recognize, the process to decide whether or not an object is present in the

scene image is described next (for each object).

For each SIFT feature in the input scene image, we attempt to find its match within the

set of object keypoints. If there are enough good matches, we can consider that object as

being present in the scene image presented to the robot.

How do we determine good matches? We adopt some of the Hough voting procedures

used by Lowe [41]. Matches between the object database keypoints and the SIFT keypoints
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from the camera image are used to cast votes on the orientation and location of the object

within the scene image. We can then use these votes to form a consensus on orientation and

location of the object in the scene image, and therefore eliminate bad matches not agreeing

to the consensus.

Why the use of this consensus voting? If an object is indeed within the scene image, the

keypoints can be considered “grouped” together, so that when the object moves and rotates,

the SIFT keypoints likewise move and rotate with the object respectively; if the object is

rotated in the image, we can expect the difference in orientation of the matched keypoints to

differ by similar orientation change, since SIFT keypoints have an associated orientation. We

thus create a histogram of orientation differences between scene keypoints and their matches

within the object model keypoints. The bin of the orientation differences containing the

most votes represents the orientation of the model object in our scene. Adapting the voting

mechanism from [41] for our own purposes, the orientation difference histogram is made up

of 24 bins, and votes are cast into the two nearest bins. The keypoint match is used to cast

a vote for the object’s position in the image; the image area is divided into 80 different cells,

eight cells tall (six on the image, and one above and below the image boundary) and ten cells

wide (again, eight on the image with one bin on either side to catch votes off of the image

range). If the orientation difference and region projection do not agree to the consensus, the

match is discarded.

If there are at least four good matches, we use OpenCV and the matches to form a

homography (RANSAC is used in calculating the homography). We then check the homog-

raphy in order to eliminate those that are poor in quality. One method of identifying poor

homographies is to find those homographies with determinants close to zero [32, 75]. If the

absolute value of the determinant of the homography is too small (below a threshold), the

object is declared not found. Through experimentation, we discovered poor homographies

indicated by a determinant value that is too large, so we also declare the object not found if

37



the determinant is above a certain threshold. Another sign of a poor homography is a large

condition number [54], indicative of an ill-conditioned matrix [17]. Therefore, we check the

condition number of the singular value decomposition (SVD) of the homography, and if the

condition number is above a certain threshold, the object is declared not found. This may

invalidate actual objects from being found in the environment, but provides an extra layer

of protection against including poor object recognition results.

Object Detection

We use OpenCV to detect objects within the scene image. More specifically, we use OpenCV’s

functionality to train and use a set of boosted classifiers, introduced by Viola and Jones [76]

and extended by Lienhart and Maydt [38]. From the description of the work of Viola and

Jones, a cascade of boosted classifiers uses a set of classifiers applied in a “cascading” sequen-

tial manner to classify areas or “sub-windows” of an image as positive or negative instances

of an object. In the training process, simple Haar-like features are selected for use based

on their classifying rate on training data. Sub-windows of the image that pass the initial

classifier of this cascade highlights areas of the image possibly containing that object; that

is, all sub-windows that pass the initial classifier move on through the chain of classifiers to

be further processed. This narrows the focus of attention on certain areas of the image more

likely to contain the object. These initial candidate locations are further verified by applying

the next classifier in the cascade (and as Viola and Jones describe it, each successive classifier

is slightly more complex, thus conserving processing time for the more promising areas). If

a sub-window fails a classifier in the cascade, it is removed from consideration. If it passes

all classifiers in the cascade, then that sub-window is considered a positive instance of the

object in the image. Such a technique is repeated for each object to detect, and at different

sizes to detect objects at different scales.
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To train the cascade of boosted classifiers to be used for object detection, we first use

OpenCV to create training samples from an image of an object to detect; if we used more

than one image of an object for training, we use MergeVec [66] to combine the multiple

sample files into a single file for use by OpenCV. We use OpenCV’s training utility to create

cascade classifiers for object detection. We also use the default boosting algorithm of Gentle

Adaboost; Lienhart et al. [37] showed that Gentle Adaboost outperformed other boosting

algorithms, specifically Discrete and Real Adaboost, in their experimentation.

A set of cascade classifiers is trained offline for each object to be detected in the envi-

ronment. To apply object detection to the scene image, we call OpenCV’s multiscale object

detection function. The function uses the trained cascade of boosted classifiers for a par-

ticular object and returns locations of that object within the image. This function is called

for each object classifier we have trained and that we wish to detect in the environment.

This process results in a set of locations for each object detected in the image, as well as

the count of each object detected. This information can then be used to sort the objects in

their detected left-to-right order, described next.

3.3.2 Object Ridge Representation

Once we have applied object detection, we combine the results (the names of the objects) with

our object recognition results into a single array of char* s. These names are subsequently

sorted in the left-to-right x-axis ordering that they were recognized/detected within the scene

image.

To represent the set of objects recognized and detected within the object ridge, we

actually use a single string representation, an object list “acronym.” The first letter of

each object’s name is stored in the string in the left-to-right sorted order that it was de-

tected/recognized. This might best be illustrated with an example. Suppose in the scene

image the robot detects a “water fountain” and a “fire alarm” in that order; then the object
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ridge representation would be reduced to the string “wf.” This style of representation is

similar to the string fingerprints of [70] and the string map representation of environment

architectural objects in our previous work [79]. The benefit of this representation style is

that, similar to Lamon et al. [34] and Tapus and Siegwart [70], we can now use string

matching techniques to compare the object ridges between two fingerprints, discussed later

in section 4.1.2.

3.4 Recognized Text Ridge

We wish to help represent a place by another mechanism that humans use to assess location,

that is, by the text we can read. The Recognized Text Ridge houses scene text extracted

from a location by SPLINTR. Our pipeline process of text recognition includes the following:

text detection → multi-resolution Focus Of Attention → thresholding → text recognition →

dictionary and rules checking validation. We shall go through each of these segments below.

3.4.1 Text Detection

We use OpenCV in our text recognition pipeline. Given a scene image, in experimentation,

we found that some camera image qualities or environments may call for preprocessing

before executing text detection, since our chosen text detection algorithm is edge-based,

and since it does not call for any steps to ensure uniformity in edge detection with varying

environment lighting conditions. If our experiments make use of preprocessing, we first

applied OpenCV’s histogram equalization, which adjusts the image’s contrast, and then

applied Gaussian smoothing. This process of adjusting contrast makes for a more uniform

distribution of pixels, but due the increased contrast, may cause too strong of a response to

edge detection. Therefore, after histogram equalization of the image, we dampen its effects
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with Gaussian smoothing. This contrast sharpening followed by smoothing is intended to

provide a more uniform input to, and a better response from, the text detection mechanism.

Our goal is to capture scene text, that is, text appearing within the environment. Sama-

rabandu and Liu [64] developed an algorithm to detect scene text. Their algorithm is edge-

based, with emphasis and importance placed upon 90 degree edges. The authors claim that

regions of an image containing text have stronger edge strength (resulting values of direc-

tional edge filter), density (strength of edges within a neighborhood window) and greater

variety of orientation. Our implementation of the text detection algorithm follows closely to

the algorithm laid out by Samarabandu and Liu [64].1

Once the text detection algorithm is applied to an image, we are left with regions of

interest, areas of the image possibly containing text pixels. We have found certain textures

to be tricked by the text detection algorithm, particularly the bump texture of cinder block

walls at close range. Therefore, if a text detected blob’s area is greater than one-third of the

640x480 image (resolution of input image used for detection – may be concatenated with

other images from different rotation angles of the robot to form multi-image detection –

explained more in the Localization experimentation section), it is declared wall texture, a

false text detection area, and the area is filtered out of further text recognition processing

steps.

3.4.2 Multi-resolution Focus of Attention

Next, we describe our method of multi-resolution images for acquiring better text pixel

information. To understand what we mean by “multi-resolution,” as the robot explores the

1We deviate in the details of a few steps. We do not perform an edge thinning that is called for in one
step of the algorithm, which should reduce the edge responses to a width of one pixel; we assume the authors
call for applying a Canny edge detector, since Canny reduces lines to a single pixel width, though we decided
to keep the thicker edge candidates and not perform a thinning operation. Furthermore, in the “feature
clustering” step, after the 7x7 dilation of the operator, we perform a 3x3 closing operation to merge nearby
text detected areas.
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Figure 3.2: Text detection algorithm (Samarabandu and Liu, 2007, [64]) applied to scene
image (top) which returns possible areas containing text, highlighted (bottom).
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environment, images are captured at a high resolution (1600x1200), but downsampled before

being passed to ridge feature extraction. Thus, we can use the lower resolution images to

perform text detection in a faster manner, since fewer pixels are being processed and filtered.

These higher resolution images, however, are passed to the Recognized Text Ridge to be used

to gain better pixels for use in text recognition.

The text detection algorithm [64] classifies pixels within the image as being a text pixel

or background pixel. A connected component labeling algorithm using an OpenCV blob

library, cvBlob [36], is applied which groups the pixels into connected components. These

connected components of text detected pixels are located in the high resolution image by

simple scaling mathematics to find their x-y position and region, forming a pseudo-zoom

function we can use.

We do not pass the high resolution sub-images directly to the recognition engine. We go

through a process of masking, copying, and thresholding first. The text detection highlighted

pixels are resized from the low resolution to a high resolution size; the areas of the high

resolution image corresponding to character pixel classifications in the high resolution mask

image (character pixels are indicated as white in the mask) are copied over into a new

sub-image, leaving areas already classified as background out of the new image. Next, a

threshold value is calculated using just the text detected pixels (those pixels already classified

as background are not used to calculate the threshold value). This produces a more accurate

threshold value to threshold text pixels from background pixels. The process is illustrated

with an example in Figure 3.3. The idea here is that the masked pixels, the pixels copied

over into a new sub-image, may not be free of background pixels, thus we should threshold

to separate text pixels from background. Once we have a binary image, the connected

components are analyzed, and small blobs (less than 15 pixels in area) are considered noise

and removed. We also eliminate blobs that are considered “overhang,” such as part of a

wall captured in the sub-image containing text from a door number. If the wall is white,
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and the text is also white, and the plate is a contrasting color such as black, then pixels of

the wall may be classified as text pixels due to their similar color. We count the number of

blobs whose centroid y is above the average maximum y of all blobs. If this count is one or

two, those one or two blobs are considered noise and eliminated before the image is sent for

processing by the recognition engine. We can eliminate these blobs because we have rules in

place to eliminate small words as noise in the validation check, which is applied next in the

pipeline. Likewise, one or two blobs whose centroid y is below the average minimum y of all

blobs are also eliminated as “underhang.”

A final step to increasing the likelihood of recognizing scene text in the environment is to

orient the sub-image based on the orientation of the text detected blob. Such an approach

of orientation correction based on connected component orientation angles has been used in

the work of [7]. We use cvBlob to calculate the angle of orientation of the text detection

blob. If this angle is within a reasonable range (between -70 and 70 degrees), the sub-image

is rotated to correct for this angle. Our approach is a two dimensional correction to a three

dimensional problem, and future work could use the range data from the Kinect to correct

for 3D pose of scene text in the environment. The sub-image corrected for orientation as well

as the non-corrected sub-image are both sent to Tesseract for recognition. Both returned

sentences are validated. If the oriented image returns more valid text, then that text is kept.

Otherwise, the valid text from the image not corrected for orientation is kept.

3.4.3 Text Recognition and Validation

The sub-image pixels (following thresholding and noise removal explained previously) are

then passed to the recognition engine. Specifically, we use the Tesseract OCR Engine version

3.01 [56], with the option enabling use of the Tesseract/Cube combination. According to

Tesseract’s Release Notes [3], use of Cube in combination with Tesseract should produce

44



(a) (b)

(c) (d) (e) (f) (g) (h) (i)

Figure 3.3: Example of text recognition using text detection pixels as a mask for better
OCR images. (a) Text detection pixels from scene image highlighted. (b) Text detection
results boxed in scene image. (c) Low resolution sub-image (focusing on “515” text box
above the door). (d) High resolution sub-image (focusing on the same “515” text box from
the high resolution image). (e) High resolution sub-image of same area in text detection
results (resized from low resolution text detection results) – used as a mask to copy text
detection pixels into new sub-image. (f) Result of using mask to copy only text detected
pixels to high resolution sub-image (black pixels from masked area ignored for calculating
threshold). (g) Binarized result. (h) Overhang/underhang removed, and sub-image corrected
for orientation. (i) Overhang/underhang removed, but no orientation correction. Both (h)
and (i) are sent to OCR and validated.

45



more accurate text recognition results at the cost of more processing time. In the engine

settings, we also use a whitelist of characters to extract, particularly:

whitelist = 0123456789abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXY Z :; ., \/”!#

After passing the pixel data for the Tesseract engine to process, the engine returns the

text that it recognized from the sub-image.

If one is working in a perfect detection/recognition environment, with perfect detection

and recognition capabilities, one would not need to verify the recognition results. Our

detection and recognition methods are not perfect. We use an implemented version of [64],

though, for detection. We also use an off-the-shelf text recognition engine which may work

best with contrasted characters scanned in from a document or book. We, however, have

adapted it for use in scene text recognition. Our detection process may return false positives,

and our recognition engine may still return “garbage” recognized on a false text detection

area. We need a mechanism for thinning out poor recognition results.

A full response from a region of the image sent through text recognition we describe

as a “sentence.” If there are multiple text detected areas within the image, we then have

multiple sentences returned from that image. First, a sentence is passed through an initial

garbage detector. We have noticed a set of characters and symbols that occur in blocks

of garbage text returned from false positive text detected areas of images. We accumulate

their occurrences into a sum we call an “indicator strength,” and if that indicator strength

is greater than one-third the length of the sentence, then we declare the sentence as garbage.

It is then discarded, and the next sentence is checked.

Once a sentence passes the initial garbage detector, we further verify its contents by

checking the words for validity. Tesseract allows one to check words against a dictionary,

however if using a large dictionary, we found it must be in the format that Tesseract internally

uses rather than a long list of words in a text file. Thus we derived a dictionary from the CMU
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Pronouncing Dictionary v0.7a [2]. To form the dictionary, this CMU Pronouncing Dictionary

(all words in uppercase) was edited down to only the word list, with word duplicates removed.

We then duplicated the list to include sentence case and lower case versions of the words,

and finally a set of numbers from 0 to 9999 was added to the list before being converted to

the format used by Tesseract. Furthermore, we added “UGA” and “uga” to a user-defined

word list which Tesseract checks.

After the garbage check, the sentence is validated using this dictionary and specific rules.

First, the sentence is delimited, and each word is checked for validity in the dictionary.

If a word is returned as invalid, it is still kept as valid if it meets certain criteria. If an

invalid word is in all caps, it is kept as valid. For a word to be in specialized case like this

is useful information. This may indicate that the text recognition may have been slightly

off in recognizing a word (perhaps off by a character), or the word did not appear in the

dictionary, such as a proper name or acronym. Furthermore, if an invalid word is composed

of four characters, the first three of which are numbers and the last a letter, then it is kept

as valid. This is to keep special room numbers with a trailing capital letter. Other such

environment-specific rules may need to be added to the system for a given environment.

After checking individual words for validity within a sentence, we then check to make

sure sentences as a whole pass certain criteria. Sometimes, areas of an image containing a

hallway wall get falsely detected as containing text, and short text sentences may be returned

by the recognition engine analyzing the sub-image. Therefore, we eliminate sentences that

are less than or equal to three characters in length, unless all three are numbers. If all three

characters are numbers, then the sentence is kept; this is to ensure we save door numbers,

which may exist separately and by themselves in the image, but may return the correct

three digits of a room number. Within each sentence, validated words (either by rules or

dictionary check) must also meet one of the following criteria:

1. be composed of 3 or more numbers
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2. be composed of 3 or more letters in all caps

3. be longer than 3 characters

The general idea behind this last set of rules is to keep longer words and eliminate

shorter ones, with the idea being that it would be more difficult for the text recognition

engine to recognize longer valid words from false positive text detection sub-images. These

rules attempt to reduce noisy words while keeping valid data within sentences, even if the

data may itself be imperfect. Smaller word results may end up being noise, but if they follow

a certain pattern, then we keep it, assuming this pattern (indicated by the rules above) is

an indication of validity and importance. If valid words do not meet one of those rules, they

are invalidated.

3.4.4 Representation in the Fingerprint

After each sentence’s words are checked, only validated words (those that pass the dictionary

and/or the rules) remain. The validated sentence is then saved into an array. The Recognized

Text Ridge is represented as this array of validated sentences, one validated sentence per

array slot.

3.5 Color Histogram Ridge

If we wish to capture information on the distribution of color in a location, we can utilize

a color histogram. The theory behind the inclusion of a color histogram is that color dis-

tribution is a generic image feature, and can be useful to distinguish general areas of an

environment. That is, use of a color histogram may distinguish one hallway from another

or locations that may have similar texture but dissimilar color. Information from a color

histogram may be useful when keypoint features show a good match between the current
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Figure 3.4: Tesseract OCR engine v 3.01 results (top). Upon validation check, we get the
results on the bottom. We see a false positive text result passed through the rules.
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location and a location in the map, however the color distribution shows that these locations

are clearly not the same location.

Furthermore, if no other information can be ascertained, that is, no objects, lines, key-

points or text can be extracted, this is the fundamental unit of the fingerprint that can be

used. As long as an image is provided, a color histogram can be formed on the distribution

of color.

The color histogram in SPLINTR is a two-dimensional histogram of the hue and satura-

tion channels of the HSV color space. We use OpenCV to convert the input image from the

RGB color space to HSV color space. This particular mapping can be done with a mathe-

matical formula on the RGB pixel data. The HSV color model separates value into its own

channel, separate from hue and saturation. As noted in the MARS image retrieval system

by Ortega et al. [53], the value channel can be affected by light variations, so they use a

2D color histogram from the hue and saturation channels. Since the value channel may be

affected by the changes of light in the environment, we too build the histogram from the hue

and saturation channels.

The circular representation of hue in the HSV color model has values in degrees, from 0

to 360, though to fit the values in an eight bit format, they are divided by two by OpenCV

and returned in the range 0 to 180. For the 2D hue-saturation histogram used by Ortega et

al. in MARS [53], the authors use eight bins for hue and four bins for saturation. In our 2D

color histogram, the hue dimension is divided into 30 bins and the saturation dimension is

divided into 32 bins; this higher dimensionality follows the number of bins in the histogram

online tutorial of N. Kuntz [33], which is based on the Learning OpenCV book by Bradski

and Kaehler [13].

The representation of the Color Histogram Ridge in SPLINTR is this two-dimensional

hue-saturation histogram.
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3.6 Straight Line Ridge

The theory behind the use of straight lines as a feature in SPLINTR is that it is another

generic environmental feature. Straight lines can be formed from the architecture in the

environment, from doorways, from the lines in the wall, and thus collecting statistics on

these extracted lines can be useful to describe location for the robot as it explores.

First, to extract straight lines, we use OpenCV to transform the input image to grayscale.

Then we preprocess the image with histogram equalization followed by a smoothing oper-

ator. We then apply the Canny operator followed by a version of a probabilistic Hough

Transform. We then represent straight line information in three histograms. One histogram

represents orientation information and one captures length information. How to utilize

extracted straight lines was an early question, but these two representations (length and

orientation) were based on the work of Hayes and Efros [25]. We utilize a third statistical

measure of the lines, that is, information on the color of the lines. For each line, we calculate

its orientation angle and length. Length values are capped at 255 pixels; if a value is greater

than this, it is replaced with 255. The lengths of all lines are then used to form a histogram

of lengths. We use a length histogram of 115 bins. The orientation histogram has 30 bins

for the value range of 0 to a maximum of 180 degrees. To form the line color histogram,

we sample each line in the hue and saturation channels of the image, then accumulate this

data into a cumulative hue-saturation 2D histogram, thereby collecting line color information

from each line, again with 30 hue bins and 32 saturation bins.

In experimentation, we found that line length histograms were not too discriminative

from site to site, so we eliminated them from the experimentation results found herein. Each

line histogram is normalized and stored within the Straight Line Ridge, along with a count

of the line pixels. The line pixel count is used to detect if any lines were extracted from
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the scene image. We discuss the use of such information in the comparison section in the

Localization chapter.

3.7 Combining the Ridges to Form a Location Finger-

print

We have explained the representation of each ridge of our fingerprint model. Each ridge

(and therefore its features extracted and represented in that ridge) is stored as an individual

ridge object within a single Fingerprint object, much like our own human fingerprint ridges

are separate yet when thought of as a whole they form the pattern of our fingerprint.

Within each associated ridge, we maintain certain statistical counts:

1. number of keypoints extracted

2. number of lines

3. number of valid text sentences

4. number of objects recognized/detected

When comparing fingerprints, using these counts, if one ridge or the other has zero

features of that type, we can automatically assign a 0 to that ridge comparison result.

Alternatively, if both ridges contain zero features, we can eliminate that ridge from the

overall fingerprint similarity measure (and distribute its weight to the other ridges). Further

explanations on comparing the fingerprint ridges are explained in the Localization chapter,

Chapter 4.
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Chapter 4

Robotic Localization

Localization is the process of finding oneself on a map. If you are handed a map of a city

and asked to find where you are within the given map, you may start by looking at your

surroundings trying to pick out, say street signs or buildings. This process of being given

a map and the task of finding where you are within that map is a general description of

localization. In robotic localization, the robot is given a map of its environment and must

be able to pick out its location within the map.

4.1 Comparing SPLINTR Fingerprints

So far, we have discussed our implementation of fingerprint ridges. We have discussed the

theory that these ridges sample from various layers of the signature given by a particular

place. Since we now have a way of representing locations, we have a way to 1) represent our

map and 2) assess the features of a particular location visited by a robot to find out where

it is in its map.

To apply our visual feature fingerprints to robotic localization, we need a way of assessing

the similarity between two fingerprints, the fingerprint of our current scene and a fingerprint
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from our map. If we can assess similarity between two fingerprints, we can repeat this process

comparing the input fingerprint with each fingerprint in our map. SPLINTR therefore has a

process of finding the similarity between 1) each ridge of the two fingerprints and combining

each ridge similarity into 2) a similarity between the fingerprints as a whole.

4.1.1 Keypoint Ridge Similarity Measure

Here we describe our formula to compare the keypoint ridges between a fingerprint of the

input, fp Input, and the fingerprint of a mapped location, fp Map. Since we use SIFT

keypoints, for each SIFT feature in the keypoint ridge of fp Input, we extract its nearest

neighbor from fp Map using the SIFT library [26]; now according to the implementation in

[26], for the nearest neighbor to be considered a “match,” its Euclidean distance from the

input SIFT feature must be closer than a certain threshold requirement when compared to

the Euclidean distance between the input SIFT feature and its second closest neighbor.

Since SIFT keypoints contain information regarding their orientation, we can use this

information in our system to rule out false matches. Therefore, within SPLINTR, to be a

“good” match, the input keypoint and its preliminary match returned from the SIFT library

must agree within a certain error in the orientation of their descriptors. A gross difference

between orientations is an indicator that this is not the same SIFT keypoint extracted from

an earlier visit; certain keypoints are indeed more distinctive than others, as described by

Lowe [41]. Lowe uses an orientation checker for object recognition [41], and we make use of

orientation difference here in our keypoint ridge similarity measure.

Once all input SIFT features are compared between the keypoint ridges of fp Input and

fp Map, and after all matches are found and classified as good or bad matches as just

described, if the total number of matches is greater than zero, then we calculate the keypoint
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similarity measure as a ratio of good matches to total matches between the two fingerprints:

keypointsSimMsr =
numGoodMatches

numTotalMatches
(4.1)

Now one may note that this similarity measure is advantageous to locations that have few

keypoint features and match well to fingerprints in the map with similar keypoint features

that are also few in number. An example might be a location that has only two matches to a

fingerprint in the map, and both matches are “good” matches based on our orientation error

checker. Therefore, when this similarity result is combined with the other ridge similarity

measures, it is dynamically weighted based on the average number of keypoints the robot

has seen up until the present location. If the current location is richer with keypoints and

extracts more keypoint features than the average, then this ridge’s similarity measure will be

weighted more; if it extracts fewer keypoint features from the location, the similarity measure

will be weighted less, calculated as the ratio of the keypoint extraction count from the input

scene over the average count seen up until now. The dynamic weight pulls equally from

the weights of the other ridges when weighted more, and distributes equally over the other

weights when the keypoint ridge similarity measure is downplayed. This dynamic weight is

capped in experimentation to avoid entirely eliminating the other ridge similarity measures

when calculating the full similarity.

Therefore, we use an interesting approach to measuring similarity of location based on

keypoints that does not rely on the ratio of matches to total number of keypoints extracted,

makes use of orientation to eliminate some matches of commonly occurring keypoints, and

does not solely use match count alone. This ratio of good matches to total matches allows

us to use the calculation as a comparison measure which returns a value within the range

0 to 1. This is done so that we can weight the individual ridges later and return a total

similarity measure with a value 0 to 1.
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4.1.2 Comparison Technique for the Object Ridge

Recall that our object ridge contains objects recognized and detected in a string “acronym” of

recognized/detected objects. This compact representation allows us to use a string matching

algorithm when comparing the object ridges of two fingerprints. We shall first display our

measure for object ridge comparison and then explain its constituent parts. Our object ridge

similarity measure is:

objSimMsr =
numMatches+ (0.5 ∗maxSeqLength)

1.5 ∗maxLength
(4.2)

This function allows us to ascribe a value to objects matching between two strings as

well as matched objects in the right order. This dual value is useful in case the robot missed

detecting/recognizing an object, an object was occluded, or the environment was modified

between visits.

To calculate the objSimMsr, first we count the number of matching objects between the

two strings, numMatches. We compare the minimum length object list to the maximum

length string, and we replace the matching object character with a space in the maximum

length string so that we do not count the same object twice; that is, we do not match

multiple object characters in string 1 with the same object in string 2 (we of course work with

copies of the object string so as not to edit the actual contents of the Object Ridges). The

maxSeqLength is the longest shared sequence between the two strings, that is, the number

of objects in the right order (though they may be separated by other objects not in the right

order). This is implemented with a dynamic programming solution to the longest increasing

subsequence algorithm [5, 67]. Finally the maxLength is the longest string between the two

Object Ridges and represents the most objects the two strings can have in common.

The reason we include an order is to capture a further sense of what the robot got right

and what the robot missed (say, due to an object not being detected or recognized out of a
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set of objects). In future work, the order should account for the heading of the robot, and

the images could instead be from an omnidirectional camera with images aligned to account

for heading.

4.1.3 Similarity Measure for Recognized Text Ridge

First, each Recognized Text Ridge is composed of an array of validated “sentences,” where

each sentence is a specific sub-image result of the text recognition pipeline. Therefore we

needed to assess similarity between two arrays of string sentences. Our first step is to compare

the ridge with the greater number of characters to the ridge with the fewer characters; this

provides a better assessment of similarity. For each sentence in the larger ridge, we find its

best match in the smaller ridge; the best match is determined by the Levenshtein Distance

[35], which is an edit distance, or how many changes it would take to transform one text

sentence into the other. The best match is therefore the string with the minimum Levenshtein

Distance. We sum up the distance results for each string’s best match (minDistanceSum).

We also sum the maximum distances between each string and its match – the maximum

distance between a string and its match is the length of the longest string between the two.

This value forms the maxDistanceSum. The Recognized Text Ridge similarity measure is

then calculated as:

textSimMsr = 1.0− minDistanceSum

maxDistanceSum
(4.3)

4.1.4 Comparison Measure for Color Histogram Ridge

To compare the Color Histogram Ridges between two fingerprints, we used OpenCV’s cor-

relation measure, which when given two histograms Hi and Hm, returns the correlation

as:

correlation(Hi, Hm) =

∑
i(Hi[i]−Hi)(Hm[i]−Hm)√∑
i(Hi[i]−Hi)2(Hm[i]−Hm)2

(4.4)
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where H is the average of H’s histogram values. We confine the correlation results of

normalized histograms to be capped at 1.0 in the maximum and 0.0 at the minimum, if

OpenCV happens to return values outside of that range.1

4.1.5 Ridge Comparison Measure for Straight Line Ridge

To compare the Straight Line Ridges between two fingerprints, since this ridge is composed

of three separate, normalized histograms, we first apply the correlation measure to each

histogram, capping results at 1.0 as the maximum and 0.0 as the minimum. We then average

the results of the three individual histogram correlation measures and return that value as

our similarity measure for the Straight Line Ridge. In experimentation, if using only the

orientation and color from lines, then the average of only those two values is returned.

4.1.6 Comparing Two SPLINTR Fingerprints

When comparing two fingerprints, a fingerprint report object (“fingReport”) is created that

stores the similarity measures for each ridge comparison result. Each ridge is compared

separately following the comparison measures outlined in this chapter, and the results are

stored individually in the fingReport. To get an overall similarity measure between two

fingerprints, we apply a weighted summation of the individual ridge similarity results of the

five ridges:

totalSim = wtKey ∗ keypointsSimMsr + wtObj ∗ objSimMsr

+ wtLines ∗ linesSimMsr + wtText ∗ textSimMsr

+ wtColorHist ∗ colorHistSimMsr (4.5)

1For example, in testing this measure in OpenCV, a strictly dissimilar pair of histograms returned a value
slightly less than 0.0.
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The individual weights are adjusted to follow the dynamic weight of the keypoints. Also,

weights may be increased if ridges are excluded from the measure, as described next.

4.1.7 Fallback Procedure

What does the system do when no features can be extracted from specific ridges? We

outline SPLINTR’s fallback procedure next. Since we have multiple visual feature ridges,

it is possible that, say, no objects are recognized or detected in a particular location. If

there are likewise no objects recognized or detected in the map fingerprint with which we

are comparing, then that ridge similarity measure is excluded from the overall similarity

measure and its weight is evenly distributed to the other ridges. Similarly, if no keypoints

were extracted in the keypoint ridge of our current location, and no keypoints are stored in

the map fingerprint, that ridge similarity is also excluded and its weight distributed to the

other ridge similarities. This same fallback procedure also applies to the Straight Line Ridge

and Recognized Text Ridge. At the minimum, the system defaults to just a single ridge, the

Color Histogram Ridge, as we can always measure the color distribution of an image, even

if the image is pure black.

4.2 Evaluating the Need for Symbolic and Generic Fea-

tures

Next we illustrate validation for branching beyond the use of texture based keypoints and

including multiple visual feature ridges. Systems reliant upon keypoint extraction may ignore

other available information to make an intelligent decision. Even environments that may look

self-similar often have small differences, such as the doors have different room numbers or

name plates, an emergency light or fire extinguisher is present at specific places, or a water
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Figure 4.1: For these outside images, these results were obtained after we turned off the
histogram equalization which adjusts the contrast of the input images. Notice in the top
image set, the rules have eliminated “hrs” (punctuation is delimited during checking) as well
as “24” since it is too short of a word, and in the bottom image set, “CIO” was incorrectly
recognized at “C10” and was eliminated. These two parking spots are located along the
same side of the building, though form two separate parking spots.

fountain is located in a hallway but not in another. We see that as we store and compare

multiple sources of visual evidence, we start to develop a more intelligent representation

of the environment. Assume in the examples below that our threshold for considering two

locations a “match” is set at a total similarity measure of 0.7.

In Figure 4.1, we show images from two parking spot locations outside of the Computer

Services Annex on UGA’s campus. Clearly the two images are different, as can be seen by

the results of the Recognized Text Ridge. According to the SPLINTR comparison measures
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between the ridges of the fingerprints resulting from these two locations,

**************************

sim key: [0.791667]

sim obj: [excl]

sim lines: [0.984120]

sim <lines:ori>: [0.977138]

sim <lines:color>: [0.991102]

sim colorhist: [0.981295]

sim text: [0.277778]

sim TOTAL: [0.758715]

**************************

we see that the ridges agree and are all above our threshold of 0.7 except for the Recognized

Text Ridge. Some rules may be formed to eliminate some wrong matches, or warn if the

robot is about to make a wrong decision. We could implement rules checking for this type

of case, where

key && lines && color && !text → display warning.

We implemented this, and we receive this text warning for this case:

WARNING: Consider disregarding match. Failed “similar texture, dissimilar text” check.

This does require more confidence in the scene text extraction method.

Another case may exist where two locations agree on many ridge comparisons, except in

the ridges/sub-ridges measuring color distribution. For example, in Figure 4.2, we show two

images taken from outside the elevators on the fifth and sixth floors of Boyd. The elevator

area is painted different colors, a pink/orange color on the fifth floor, and a smoky color

on the sixth floor. It may be difficult to distinguish in black and white, and is also hard

to distinguish in the color photographs, but it is rather obvious in person and shows up

differently in the SPLINTR ridges measuring color distribution. Even though they are of
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Figure 4.2: Images from outside the elevators on the fifth and sixth floors of Boyd Graduate
Studies Research Center.

similar locations functionally, the “fifth floor elevator” and “sixth floor elevator” do occupy

two separate locations and meanings.

Below, we see a difference in the Color Histogram Ridge comparison measure and the line

color comparison measure in the Straight Line Ridge (the images were also taken at slightly

different angles, so the line orientations also differ). We see that the keypoint similarity

measure is extremely high. We use SIFT, and SIFT is actually extracted in a grayscale

version of the input images. Since these locations are quite similar, if we were to exclude

color information, we may make a wrong decision. It happens that the other ridges are low

enough to make the total similarity fall below the threshold, but we can form a rule for
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situations such as this, whether Keypoint Ridges agree and color does not, or if most ridges

agree including text, but color does not. Such rules could be executed on the robot, or could

signal for human assistance in making the decision.

**************************

sim key: [0.931035]

sim obj: [excl]

sim lines: [0.357245]

sim <lines:ori>: [0.480306]

sim <lines:color>: [0.234185]

sim colorhist: [0.225892]

sim text: [0.835294]

sim TOTAL: [0.587366]

**************************

Thus, we have identified places, environments, or situations where multiple ridges are

useful. Sometimes these locations are similar enough to still be considered the same location

by our system, though we have identified certain areas where rules can be triggered should

symptoms call for it. These are simple cases using a single directional image for feature

extraction, rather than multiple images from different angles, but does show the possible

mistakes made if relying on a single ridge or the consensus of ridges without considering what

ridges disagreeing with the consensus are trying to tell us. Other rules may be formulated

for other uses of ridge information to rule out mismatching locations, and these rules could

be used to trigger other behaviors, such as ignoring a match, identifying tricky situations,

or signaling for assistance in decision making.
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Figure 4.3: In the localization tests, the map consisted of 46 locations from the Boyd Grad-
uate Studies Research Center’s first floor, indicated as black circles. Test (query) locations
are represented with stars. The test nodes and nearby map nodes are labeled in the figure.
Figure from [78].

4.2.1 Experimental Results

To test for localization using the comparison measures of SPLINTR fingerprints, we used

a map created from images collected from the first floor of the Boyd Graduate Studies

Research Center building on UGA’s campus. The map consisted of 46 discrete locations

approximately one meter apart, navigating the inside hallway of the Institute of Artificial

Intelligence and the outside hallway of the Institute; approximate locations of the map are

depicted in Figure 4.3. These images were inputted to SPLINTR, features were extracted,

and fingerprints were created to form the robot’s “map.” This data was collected from the

point of view of an ER1 robot. To aid in capturing scene text of door numbers and name

plates, the camera was extended above the ER1 approximately three feet and tilted at an

upward angle of about 45 degrees. Though the dataset contains images from all four sides of
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the robot, in the testing we utilized only the left and right images, which were fused into a

single image as depicted in Figure 4.7c. Limiting the number of input images helped conserve

memory space, as well as increased the focus of the topological locations to the sides of the

robot rather than the oncoming and receding areas in front and behind the robot. A test

set of locations was acquired by moving the robot to new locations and collecting images.

In Figure 4.3, the map nodes are depicted with black dots and the test locations with blue

stars; test locations and nearby map nodes are labeled. The map is formed by reading in

the environment images and extracting the visual feature ridges and forming fingerprints on

each location. For the localization tests, the system reads in the test location images, the

scene features are extracted to form a fingerprint, and the test fingerprint is compared with

each fingerprint in the map. Behavior for handling similar localization matches is discussed

in the Topological SLAM chapter.

For objects to be recognized, we provided the system with a list of object images. The use

of these objects could be considered as reconnaissance or “intelligence” information. Other

images were captured and trimmed from cell phone images or webcam images of certain

objects, like the smiling frog, the alarm, the fire extinguisher and exit signs, as shown in

Figure 4.4. These can be read in at runtime, and the SIFT features extracted for use in

matching in the environment. The objects used for detection in the localization experimental

results include the IAI logo, the CASPR logo, an emergency light and exit sign (thus we

have multiple ways of detecting exit signs in the environment). While not all objects may be

detected in the environment (and false positives may get detected), SPLINTR is provided

with the means of handling the objects found for use in localizing.
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Figure 4.4: Object recognition images provided to the system.

Figure 4.5: Object images representing the trained object detection classifiers. We therefore
had multiple methods to extract exit signs from the environment.

4.2.2 Results Discussion

Results of the comparison tests with the map are shown in Figure 4.6. These results use a

threshold of 0.7 on similarity. We see that several tests have results with several locations

above the threshold, and we discuss behaviors to handle such situations in the next chapter.

In looking closer at Test 3 results, there were opportunities to extract information for

localization that did not get extracted based on these images and the trained object classifiers

used in these experiments. The location is near a conference poster dealing with text analysis

in schizophrenia, listing author names and the name of the research paper. In the test image,

the keyword “Schizophrenia” was successfully extracted, but it was incorrectly misspelled

(and therefore invalidated) during extraction in the map image. Furthermore, there were

opportunities to extract research group logos which did not get successfully extracted in this

experimental run relating to Test 3. In analyzing Test 3, we see the opportunity SPLINTR
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Figure 4.6: Result graphs using the test fingerprints and map fingerprints shown in Fig.
4.3. The closest fingerprint match from the map and the similarity measure is indicated.
Test 7 shows the closest match as well as the second closest match. We see the location
for Test 2 has several matches above the threshold. Handling of this type of situation when
encountered during SLAM is described in the next chapter.
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has to capitalize on and use for localization, but due to false recognition of text (keyword

“Schizophrenia” extracted in the input but not successfully in map node 15) and missed

detection of logos (two CASPR logos are visible, but only one is detected in the Test 3 image

and none in map node 16), the similarity does not exceed the 0.7 threshold. We received less

than desirable text recognition results in the localization tests. Images were dark. Keypoint

extraction was also muted, but still useful, in these tests. Images used in the topological

SLAM experiment were taken with a different webcam and were also brighter.

Test node 7 is highlighted in greater detail in Figure 4.7. What is shown is the test image

as the top image, and the middle and bottom images are the closest matches according to

the fingerprint comparison results with the map. As shown, using a method of matching

such as counting keypoint matches may cause an incorrect localization decision, as shown in

Figure 4.8.

In discussing some things we learned from the combination of rudimentary features with

semantic features from the environment, there may be areas of the system not fully exercised

given the set of images representing the environment or the path or locations of the robot.

This could be manifested in not providing or having enough objects in the environment

recognized or detected. Furthermore, scene text can be rather sensitive and fragile when

using Tesseract, depending on the sub-image we provide the engine. Some of the noise

returned from Tesseract was curbed through the use of rules, though still better scene text

extraction is an area of future work in this system. Still, within SPLINTR, there are other

layers of the system to help in making a decision, but since objects and text are both

important to localization, false positives can be harmful. Likewise, true positives of an

object or text can help clear up uncertainty on position, such as detecting the emergency

light in the hallway can reduce uncertainty as to which part of the hallway the robot is

located. Test 7 shows a hard problem of localization, but in using multiple visual layers of

the SPLINTR system, Test 7 returned higher quality matches.
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Figure 4.7: (a) The query image, Test 7, (b) The scene image of Test 7’s closest fingerprint
match from the map (Node 45) and (c) the scene image from its second closest match (Node
31). Left and right views from the perspective of the robot are shown. From [78].

Figure 4.8: Fingerprint similarity of Test 7 with the map. Compare this to the number of
keypoint matches. We can see that two locations have high keypoint matches. These two
locations each have a common keypoint that matches well to many different keypoints in the
input image.
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Chapter 5

Topological SLAM

Next, we investigate using the visual fingerprints previously defined in Chapter 3 and com-

pared in Chapter 4 to simultaneously localize and topologically map an environment by an

autonomous mobile robot.

5.1 Topological Mapping Defined

A topological map is essentially a graph of visited locations; places are represented using

nodes in the graph, and paths between locations are represented by graph edges. As Mataric

explains [44] (Ch. 12, page 147), these locations in a topological map can be considered

“landmark” locations. The topological map and its relation to human cognitive maps are

found in the early work of Benjamin Kuipers; such cognitive maps were first comprehensively

studied in Kuipers’s dissertation work of the TOUR model [30]. In the later work of Kuipers

and Byun [31], the TOUR model was applied to robots, with “distinctive places” representing

the nodes in the robot’s topological map, which are connected by “travel edges.” This is

differentiated from metric mapping in that it does not consist of metric placement of walls
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with a legend and scale, similar to what one would see of a blueprint or printed layout of a

building.

5.2 Using SPLINTR for Topological Localization and

Mapping

Topological mapping with SPLINTR involves our already defined visual fingerprints in com-

bination with a graph structure to maintain the connection between locations. To facilitate

localization, we use the fingerprint similarity measure we described in Section 4.1.6. Fur-

thermore, we use vectors to maintain hypotheses on our current position, positions to expect

next, and to facilitate intelligent loop closing.

The motivation behind this work is that we need an intelligent way of attaching together

in the map the places that the robot visits. We cannot iteratively add fingerprint nodes in a

linear string, because this would not be a true representation of the structural layout of the

environment. The robot may turn around and try to map the same area that it just covered,

or travel in a loop and revisit a location already mapped earlier in its exploration. There

needs to be a mechanism for handling these situations and maintaining an up-to-date belief of

where the robot thinks it is in its topological map. Therefore, we identified specific situations

a SPLINTR controlled robot may encounter, and we handle these scenarios accordingly to

build a topological map.

We may use the terms “fingerprint” and “node” interchangeably at times when discussing

our topological SLAM approach. Essentially in our implementation, when we go to save a

fingerprint within our map, we store the fingerprints within a node data structure that can

then be used in the topological graph forming our map. Thus, if we need to compare the

input fingerprint with fingerprints in our map, we can easily use a pointer to the fingerprint

structure within the graph node data structure. The node just wraps the fingerprint so that
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we can associate fingerprints together in the map and connect them with edges. If, say, we

decide to store the fingerprint of our current location within our map, we create a new node

and assign to it the data of our current location’s fingerprint. Therefore, usually we will

talk about the input of our current location, we actually mean the latest input after we have

taken a step from our currentActiveLocation at time t, a known position in our map, to our

next location in the environment at time t + 1. We use the term “currentActiveLocation”

to reference our last known whereabouts within the map, until the current scene is analyzed

and becomes the new currentActiveLocation, and the former currentActiveLocation becomes

previousActiveLocation.

5.2.1 Introduction to SPLINTR’s SLAM Behaviors

Using SPLINTR, the robot begins building its map by first capturing images at its first

location and running ridge feature extraction, extracting keypoints, recognizing and detecting

objects, extracting statistics on straight lines and the color of its surroundings, and extracting

text from the images, and storing these within a fingerprint that represents its current

location. The first case is simple, our map is empty, and thus our first location’s fingerprint

input goes into a node which is stored as the first node of our topological map. The robot

then proceeds forward, captures images, extracts features, and forms the fingerprint fp Input.

Now we must decide what to do with this fingerprint.

Generally speaking when exploring its environment using SPLINTR, the robot will be

executing under three different situational behaviors. While exploring, localizing and map-

ping, the robot will either be following a path, that is, exploring an area that it has already

mapped and following along with its position in its map (further discussed in Navigating a

Topological Path, section 5.2.3); it could have detected multiple loop closure candidates and

is attempting to eliminate false matches (Sequence Landmark Localization, section 5.2.4);

or it could be in unexplored territory and looking through its map to see if it has been at
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this location before (Loop Detection Check, section 5.2.2). We elaborate on each of these

situations, as well as define structures we will need to maintain sets of nodes that represent

1) where we think we could be, 2) which locations are loop match candidates, and 3) which

nodes to expect upon moving again.

We are going to define a few terms to help us illustrate key locations. Let us call the

currentActiveLocation the node in our map at time step t. The robot takes another step,

and has 1) an idea of where it came from (currentActiveLocation) and 2) a new current

location with fingerprint features already extracted (fp Input). We now discuss what to do

with fp Input given the different situational behaviors.

5.2.2 Loop Detection Check

The first situation we discuss handling is when the currentActiveLocation is a new node

added to the map at time step t; thus, the robot is not on a path, not confirming a loop, it

is simply exploring and mapping new territory according to the last time it checked its map.

When it moves again (let us call the robot now at time step t + 1), it must check to see if

fp Input at time step t+1 is a place it has previously visited and mapped. Thus, it iterates

over its map, comparing fp Input to each fingerprint node in its map, to see if it can find

one or more fingerprint node matches in the map. We define a “match” to be a fingerprint

in the map whose similarity measure with fp Input exceeds a certain threshold.

This iterative checking of fp Input to map nodes leads to three possible outcomes: the

robot does not find a match, we find one match, we find multiple matches. We describe

handling each of the three outcomes below.

1. fp Input is unique enough to save to our map. (The robot does not find a match in

its map)

That is, since each similarity measure between fp Input and each node in its map is below

a certain threshold, we now have evidence that this is a unique location, and can create a

73



Figure 5.1: Example of closing the loop, where the current input (which would be node 61)
matches well with node 3, thus the loop is closed and we do not need to save node 61 into
the map. currentActiveLocation is indicated by a red diamond node, and the loop closure
edge indicated by a dashed line.

new node in our map. We therefore create a new node for the fingerprint fp Input, update

currentActiveLocation to now be the previousActiveLocation, set currentActiveLocation to

be the new node, and attach an edge between previousActiveLocation and currentActiveLo-

cation. Once we add the new node to the map, we take another step in the environment and

then repeat Loop Detection Check.

2. fp Input matched a single fingerprint node in our map.

That is, when using our similarity measures to compare visual fingerprints between the

input and each node in the map, we found one single map node similarity that exceeded

the threshold. We take this as evidence to close a loop, illustrated in Figure 5.1. To handle

a simple loop closure event, an edge is added between the last node before loop detection

(which in this case is still set as the currentActiveLocation node) and the winning candidate

match from our map. Our currentActiveLocation node is updated to the winning candidate

match. We then transition to the Navigating a Topological Path behavior.

3. fp Input matched more than one fingerprint node in our map.

That is, we compared our current input fingerprint to each node in the map, and we

found more than one good match in our map; essentially, we should be able to close a
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loop on one of these nodes, but we found more than one node that is a good match, so

we do not know which is the true node with which to close our loop. To help us solve our

problem of multiple loop closing candidate matches, we transition to the Sequence Landmark

Localization behavior.

Special case: If it just so happens that the best match from among the set of loop

closing candidates is the currentActiveLocation node, this is treated as a special case. We

add a loop edge between currentActiveLocation and itself and transition into Navigating a

Topological Path; this takes precedence over Sequence Landmark Localization, and thus even

if more candidate matches exist, we eliminate them immediately in favor of closing the loop

on the currentActiveLocation. Put simply, the input fingerprint fp Input looked like several

locations in our map, but most like the location we just left, and we therefore do not have

enough differentiation between it and our current scene to warrant a new fingerprint node

in the map.

5.2.3 Navigating a Topological Path

When we are following a topological path, our sense of where we are is based on comparison

of our current location’s fingerprint, fp Input, and the nodes we expect one horizon out from

the currentActiveLocation node, which is our last known location in our map. After we take

a step in the environment, extract the fingerprint for the current scene as fp Input, we now

need to decide at which node we are located within the map.

If the robot is following a previously mapped path, then it expects to take a step and still

be on the mapped path. Therefore, from currentActiveLocation, we extract the neighbors

(the set of nodes one horizon out from currentActiveLocation, that is, the predecessors and

successors of the node) into a “look ahead” set of nodes. We also add currentActiveLocation

to the look ahead set. There are a couple of reasons for this. The robot may not move very
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far when it takes a step, and thus the input scene may be very similar to the currentAc-

tiveLocation; furthermore, the robot could have avoided an obstacle while taking a step and

turned to avoid it, and thus may have changed directions part way through a step. Whatever

the case may be, the robot could be at or near the last known location in its map, so we

need to be aware of it to match against fp Input. Taking this into consideration, we expect

to find a good match to fp Input from among this look ahead set. An example is illustrated

in Figure 5.2.

When we use the fp Input and compare it with the nodes from the look ahead set, we

can expect one of three different cases: the robot finds zero matches, it finds one match, it

finds more than one match.

1. If we find zero matches for fp Input among our look ahead set, then either the robot

was kidnapped and placed somewhere else within the environment, or the robot has stepped

off of its path. There is another option as to why it did not find a match, which is that

the next location is indeed close in spatial proximity to one in the look ahead set, but the

fingerprint from the scene still did not match well; the input scene could be different enough

visually to not exceed the threshold, or perhaps something did not extract in the current

scene like it did in the fingerprint in our map. We still treat this as stepping off of the path,

because we encountered a location that was not similar enough to any node from the set we

expected from being on a mapped path.

What do we do when we step off of a path? Update the currentActiveLocation to become

the previousActiveLocation, and make a new node out of fp Input, which now becomes our

currentActiveLocation. Lastly, we add an edge between the previousActiveLocation and

currentActiveLocation in our topological map.

How does SPLINTR handle the kidnapped robot problem? Should the robot not find a

good match from among the look ahead nodes, it reverts to searching the entire topological
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map for a good match. Should it find one, it updates its current location to the match from

its map.1

2. If we find one single good match for fp Input from our look ahead set, we update the

look ahead set to be the neighbors of the good match (along with the good match itself)

and set our current location to the good match. Following this, we remain in the situational

behavior for Navigating a Topological Path.

3. If we find multiple good matches for fp Input from our look ahead set, that is, the cur-

rent location fingerprint matches more than one of our look ahead nodes, then we transition

to the behavior of following an ambiguous path. This situation is essentially like following

a topological pathway, but our look ahead set will be updated with the successors and pre-

decessors from all of the good matches (along with the good matches themselves). Since we

found a good match from our look ahead set (more than one, actually), we are now aware

that our next step could be from the neighbors of more than one node. We save the best

match into a variable so we have a reference to the “most likely” location, but we are still

on a path and thus expect to find our next step from among this special (multiple neighbor)

look ahead set. This ambiguity should work itself out; that is, we stay on the mapped path

and find a single good match within a future look ahead set. If we step off of the path while

following the ambiguous path handling procedure, however, we connect the new node to the

“most likely” location we just described.

5.2.4 Sequence Landmark Localization

Next, we discuss how SPLINTR handles closing a loop when presented with more than one

loop closing candidate node within its map. To solve this problem, we use a technique we

call sequence landmark localization.

1This feature is implemented, but was turned off during experimentation. Should an exercise call for the
use of this behavior, it can be turned on prior to compilation.

77



Figure 5.2: In following the topological path behavior, from current location Node #2, we
expect the next location to be one of: Node#3, Node#1, Node#50, or Node#2 (self).

Sequence landmark localization (SLL) is a form of loop closing verification; it is our

process to eliminate false loop candidate matches when multiple nodes in our map are good

matches to close a loop. When the comparison results of the scene and the map nodes are not

sufficient to close a loop due to perceptual aliasing, that is, when multiple locations in the

map look similar, the general premise of sequence landmark localization is to use a sequence

of nodes to validate loop closing candidates. SLL is only used when there are multiple loop

closing candidates within the map; the reason is that when the robot closes a loop using

only a single matching node, it may simply be crossing the previously constructed path in

its map, and thus it would not be able to use a sequence of nodes to verify this loop closing

case; therefore it would not be on a previously mapped path (except for that one matching

node). Therefore we are justified in using sequence landmark localization only when there

are multiple loop closing candidates.2

The prerequisite for this situational behavior was discussed previously in section 5.2.2,

regarding the third possibility upon issuing and completing a loop detection check, where

2Future work of including directional information could be useful, or a verification behavior of single
candidate loop closure could be implemented, where further exploration is done in a local neighborhood to
verify loop closure.
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fp Input, the fingerprint of the robot’s location at time t+1, matched more than one finger-

print node in our map.

So what do we do? We put all of the candidate matches into a vector – this allows us to

separately hold and verify all matches as we proceed in the Sequence Landmark Localization

process. The robot remains in this state of limbo, not knowing exactly where it is in its

map, but having multiple good ideas on where it is. We then transition into a topological

pseudo-path following behavior, but path following from several possible locations within the

map; in addition, we will be using the sets of “look ahead” nodes as proof for or against the

validity of candidate loop closing nodes. More specifically, we then fill out what is essentially

“look ahead” sets of nodes for each of these candidate matches; the robot takes a step in the

environment and looks into each candidate’s “look ahead” set with the intention of finding

a good matching fingerprint node to its new input, and thus finding a reason to keep a

candidate match alive. The theory here is that if we were at a particular candidate match

location, and we take another step, we should find the neighbor node that we are now at,

and thus proving we were actually at the candidate match when beginning SLL. Only those

candidates for which we find proof to keep will continue in consideration to close the loop.

The look ahead sets are replaced with the next horizon’s look ahead set, the neighbors of the

nodes for which we found matches, each still associated with the ancestor line of a particular

candidate match. We continue following this process of checking good matches’ neighbor

nodes each horizon out as we continue to move until we come to certain decision points:

1. We eliminate all but one candidate match node.

We have now used sequences of nodes as proof for or against closing a loop at those

specific nodes in the map. The last remaining candidate match becomes the loop closer,

and we transition into navigating a topological path based on our current map position from

using the look ahead nodes as verification.

2. We eliminate all candidate matches from consideration.
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This means we encountered a number of loop false alarms. In this case, sequence land-

mark localization has eliminated the false alarm loop closing candidate locations, and the

locations we have seen between then and now should be added into the map as if we mapped

them sequentially. In this case, all the fingerprints from the time that triggered loop detec-

tion until now are added on sequentially to the node before the loop detection was triggered.

An example of SLL and the handling of this decision point is described in Figure 5.3.

3. We reach a consensus on our present location in our map.

We may reach a consensus on our present location without having eliminated all of the

loop candidate matches. In this special case, we update our current location to be the only

matching look ahead node from our elimination process. Secondly, the loop is closed at the

most likely loop candidate match, the node with the highest similarity from among the map

fingerprints that triggered SLL.

Discussion

We must discuss how we handle an ambiguous intersection with our map. An ambiguous

intersection occurs when the robot intersects with the map at a node that looks like other

nodes but immediately proceeds into unexplored territory. In this situation, we are left with

no way to resolve which spot on the map we actually intersected. This case is indistinguish-

able from a loop detection false alarm. Behavior could be implemented in future work which

could cause the robot to change direction and follow a path in order to perform SLL to verify

the candidate matches.

5.2.5 Implementation and Visualization

In addition to the topological mapping behaviors, we need mechanisms for handling the

structure of the map as well as a visualization process, so that we can visually see the links

between nodes and the beliefs of where the robot has evidence that it is.
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Figure 5.3: As an example, input node 19 looks similar to nodes 16 and 17 of the topological
map (the uncertainty is indicated with the blue diamonds), which initiates sequence land-
mark localization. The next step, Node 20, likewise leaves SPLINTR thinking it could be
at either 16 or 17. Node 21 clears up this uncertainty, since it did not match well to any of
the adjacent nodes considering where we thought we were, and the input nodes that were
accumulated are added sequentially to Node 18.
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For housing the visual fingerprints, and for managing connectivity of the topological

map, we used the graph library within LEDA v6.3, the Library of Efficient Data types

and Algorithms [69]. The graph nodes provided by LEDA essentially wraps around the

fingerprint, allowing us to access to the fingerprint with a pointer as needed.

For visualization purposes, the topological map is simultaneously mimicked with Graphviz

v2.28 [1]. This allows us to color code and apply different shapes to nodes such as the current

active location, ambiguous path following locations, and possible locations we could be at

during sequence landmark localization. It also allows us to visually assess node connectivity.

5.2.6 SLAM Experimental Results

For data collection, we use the iRobot Create, with a Logitech c910 webcam attached to a

tripod, and a Microsoft Kinect to assist in exploration and obstacle avoidance. In our SLAM

experiments involving data collection of the environment, the general behavior (since the

robot is equipped with a single forward-facing camera) is to rotate in place at approximately

90 degree angles, taking images from its front, left, back and right sides, before facing forward

again and moving to the next spot. This process is repeated at approximately one meter

intervals (though the distance is a variable that can be set prior to compilation). This

leaves room for future improvements, such as the use of an omnidirectional camera, multiple

cameras, or other methods. When the robot is not avoiding an obstacle or rotating in place

to collect images of its surroundings, the autonomous exploration behavior is set to move

toward depth in the environment, using depth information from the Kinect.

To illustrate the results of the topological SLAM behaviors of SPLINTR, we collected

data from the first floor of the Boyd GSRC building, as shown in Figure 5.4. The two lengths

of hallways can be noted as being quite textured in the inside hallway (roughly locations

2 through 17 and 60 to 67), and visually ambiguous at locations in the outside hallway

(roughly locations 25 to 53). In Figure 5.5, we see the resulting topological map from
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Figure 5.4: Image locations and numbers from a dataset collected from the first floor of the
Boyd Graduate Studies Research Center building, UGA. This is a different dataset than the
one used in the localization experiments.
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Figure 5.5: The resulting topological map from SPLINTR, when handling the locations in
sequence from location 1 to location 67.
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inputting the images from locations 1 through 67 using a similarity threshold of 0.7. Similar

to the localization experiment, we limited the input images to just the left and right image

data collected from the robot. We see the self-similarity of the outside hallway manifest as a

coil of nodes on the right side of the topological map. The inside hallway is more separable,

and also results in successfully closing the loop, connecting node 60 with node 3. We see the

last node, node 67 did not match well to node 9. In looking into this result, since the data

were collected over multiple exploration sessions, when the scene resulting in node 9 was

taken, the door was only slightly cracked open, but swung farther open when the images for

node 67 were collected. Since the inside hallway is narrow in width, a door being open or

closed can result in a large change in the features extracted, especially when limited to only

the left and right viewpoints of the robot. Since the scenes did not result in similar enough

fingerprints, a new node, node 67, was created in the map. The same objects were used for

object recognition and detection in the SLAM experiment as were used in the localization

tests, though different trained classifiers were used for the IAI and CASPR logos.

Through the progression of the locations in the outside hallway, the fingerprint of node

25 matched well to multiple locations, and therefore node 25 topologically represented mul-

tiple places in the outside hallway. We show node 25 along with one of the locations that

matched well with it (location 38) in Figure 5.6. Below, we show in more detail why the

fingerprint from location 38 (as numbered in the floorplan in Figure 5.4) was matched with

the fingerprint of node 25. Below, we list the number of keypoints detected at location 38,

the resulting weights applied to the ridges, and the similarity measure resulting from com-

paring the fingerprint from location 38 with map node 25.

numKeypointFeaturesDetected: [166]

averageKeypointCount: [886.05]

**************************

wt key: [0.062449]
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Figure 5.6: (Top) The images from the node 25 location. (Bottom) The images from location
38, one of the locations that matched well to (and was “absorbed” by) node 25.

wt obj: [excl]

wt lines: [0.468775]

wt colorhist: [0.468775]

wt text: [excl]

**************************

sim key: [0.833333]

sim obj: [excl]

sim lines: [0.686460]

sim <lines:ori>: [0.422548]

sim <lines:color>: [0.950373]

sim colorhist: [0.952214]

sim text: [excl]
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sim TOTAL: [0.820212]

**************************

Since no text or objects were detected at location 38, the ridge weights among the re-

maining ridges should each be one-third. However, since there were fewer keypoints detected

at 38 than the average up until that point, the keypoint ridge weight was lowered and dis-

tributed to the remaining ridges. Therefore, the generic ridge features were leaned upon

more in localization for the fingerprint at location 38, which produced a high match with

the fingerprint of node 25.
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Chapter 6

Conclusion and Future Work

In this chapter, we discuss the contributions of SPLINTR toward the goal of simultaneous

localization and mapping. We also identify areas of the system needing improvement, and

highlight ideas for future additions to the SPLINTR system.

6.1 Conclusion

Humans use multiple sources of evidence to conclude about location, drawing from the color

and texture of our surroundings, the lines resulting from the architectural structures, and

semantic information like objects and text. Since humans have these intelligent mechanisms,

we can conclude that such techniques would benefit a robot in localization and mapping as

well. A robot that utilizes this mixture of information could better, more intelligently rep-

resent its environment, and have access to multiple layers of visual evidence from which to

draw conclusions about location. With a set of rich visual features and knowledge on how

to connect locations together, it could form a topological map of its environment. In this

dissertation, we have presented our approach to a better, more robust, and more intelligent

representation of places. SPLINTR, Spatial Place Recognition in a Topologically Mapping
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Robot, offers a multi-layered visual fingerprint of places to be used for topological mapping

and localization. Our system combines complex machine vision features with global/generic

image features for various evidence for recording locations and localizing within a topological

map. By using visual features extracted to represent locations as fingerprints of keypoints,

objects, text, line statistics and color information, SPLINTR provides a mobile robot mul-

tiple sources of information with which it could utilize for localization and mapping its

environment.

We discussed the SPLINTR fingerprint structure in Chapter 3, describing in detail the

multiple “ridges” of extracted visual features and the representation methods we use in each

ridge. We furthermore discussed the various rules and validation measures used in our text

recognition pipeline, connecting the text detection method of Samarabandu and Liu [64]

with the Tesseract OCR engine. In Chapter 4, we discussed how to compare individual

ridges between two fingerprints, as well as our method of weighting these individual ridge

similarity results to combine them into a single overall fingerprint similarity measure. We

showed the results of applying SPLINTR to the task of robotic localization, comparing test

locations to a set of fingerprints representing the robot’s map. We analyzed certain locations

that would call for the use of multiple visual features to make a decision and discussed rules

that could be incorporated to keep the robot from making a mistake given similar looking

locations. In Chapter 5, we discussed using these fingerprints and comparison measures to

form a topological map of the environment. We also discussed how we handle situations

during the robot’s explorations, how to maintain hypotheses of its location, and how we

close loops even when presented with multiple loop closing candidates.

We have offered in SPLINTR an approach to include rudimentary image features such

as lines and color, along with features sampling from texture and higher up human elements

including text and objects. Not only do these items populate the nodes of our topological

map, they are utilized for localization as well. We have shown examples where the inclusion
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of more visual information would be useful in certain areas of the environment. This form of

rudimentary image features combined with symbolic/semantic information also has ties to

semantic mapping. We have shown our method of utilizing such data not just for inclusion

in the map, but for use in localization as well. We have shown that combining common

sense rudimentary image features with semantic information provides a robot with more

information with which to localize and form a richer map.

6.2 Future Work

In this section, we discuss areas of future work regarding the SPLINTR system. Some ideas

include useful extensions to the system, but we also identify areas of the system needing

further work in its present form.

6.2.1 Fingerprint Sets

Fingerprint Sets is a proposed idea to modify the way SPLINTR collects nodes in its map.

Presently, if the current location’s fingerprint matches well with one and only one fingerprint

node in the map, no new node is created and our position is updated to the found location

in the map. The fingerprint of the current location from the new visit, however, may contain

additional information not extracted and stored in the mapped fingerprint from the first visit.

That is, it could have extracted more/different text, more/different keypoints, or recognized

or detected more/different objects during its return visit. Within the idea of fingerprint

sets, when SPLINTR finds a fingerprint node match in its map, it starts to add them to

the set, keeping each fingerprint separate, but grouping them together in a fingerprint set

structure. This differs from the mean fingerprint/clustering idea of Tapus and Siegwart [70].

Thus each fingerprint in a fingerprint set could indeed be representing the same location (or

within close proximities), but just more information, or they could be just similar looking
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nodes, such as stretches of a plain hallway. Fingerprint sets would give us better coverage

of our environment, since a single node will not have to represent bigger stretches of the

environment than it is capable of; also the idea is to store more information extracted upon

a revisit of a location, which may help to further differentiate areas. This may be important

in the absence of certain behaviors to account for close-up images of walls, or objects located

higher in the environment than the image can cover.

6.2.2 Extensibility Opportunities of SPLINTR

Opportunities exist to extend the capabilities of the SPLINTR system described thus far.

We describe certain extensions below.

Sound Ridge

Branching out beyond visual appearance fingerprint representations would be beneficial.

Equipping the robot with a means of estimating the audio signature of a location could

further lead to better representation of space and place recognition. The ideas here include

being able to audibly characterize locations, such as the noise in hallways near elevators

compared to the quiet of hallways away from elevators; the noise from a location near a

stairwell versus locations farther away. This would give the robot even further evidence to

differentiate locations, especially those that may lack visual differences but vary in sound

signature differences.

Fingerprint Disk Storage

Many choices within the Fingerprint structure implementation relay well to saving out in-

formation to disk, so that it can be read in later, so that this information can be shared, or

so that the map does not have to be kept all in memory.
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SPLINTR GUI

SPLINTR’s topological map nodes can be extended into a graphical user interface, where

hovering or clicking on nodes can display the stored ridge data of that fingerprint.

Text Detection and Recognition

Further extension of the text recognition ridge is needed to make it more robust given the

environment. We deactivated the camera’s automatic light adjustment feature, as we did not

want the camera affecting the color balance of the image of the environment while exploring.

This allows the color histogram information to change according to the environment and

not the camera. The text detection algorithm would benefit from a learned filter that would

adjust the image before detection to get a uniform response from text detection given the

environment lighting.

Active Camera

The current system uses a single, forward facing camera to collect image data from the

environment. It would be beneficial to the system to include an active camera, one that can

move and scan over areas of the environment, panning, tilting and zooming as needed. This

would allow the capture of objects from various positions and heights within the environment.

Furthermore, equipping SPLINTR with object and text tracking from a continuous image

stream could help with missed detections of text and objects.
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