Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This chapter will focus on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals. In chapter 3, we report findings that implicate the steroid hormone ecdysone in regulating cyst cell differentiation and genetic interaction with EGF signaling. In the fourth and concluding chapter, we discuss possible mechanisms and interactions of EcR signaling in testes and future experiments that can reveal details of how ecdysone influences somatic niche cells in male Drosophila melanogaster.

Details

PDF

Statistics

from
to
Export
Download Full History