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Abstract

Monte Carlo simulations of two different compressible Ising models are presented. One is

an elastic, antiferromagnetic Ising model on a distortable diamond net at constant pressure.

Spins interact via a Stillinger-Weber-like potential, and data were obtained over a wide range

of temperature and magnetic field. The phase boundary is a line of 2nd order transitions

between ordered and disordered states. Our analysis shows that this model shares the same

critical exponents with the rigid 3-D simple-cubic Ising model, despite the difference in

structure and interactions. This implies that they both belong to the same universality class.

We also present a thorough examination of the model’s elastic degrees of freedom. The other

model is a stacked triangular lattice where spins interact via Lennard-Jones potential. This

model features adjustable elasticity. However, analysis shows that the phase transition also

belongs to the rigid 3-D simple-cubic Ising universality. Both results contradict theoretical

predictions.
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Chapter 1

Introduction

The Ising model is among the most important and most intensely studied models of statistical

physics. The original Ising model is defined on a lattice on which each lattice site has a spin

that can be +1 or -1 and that interacts with its nearest neighbors with constant J . The

Hamiltonian typically looks like

H = −J
∑

<i,j>

σiσj − h
∑

i

σi, (1.1)

where σi is the spin value at site i, the summation < i, j > is over all nearest neighboring sites,

and h is the external magnetic field. If J > 0, the system is termed ferromagnetic, meaning

neighboring spins tend to have the same values to minimize the total energy. If J < 0, the

system is called antiferromagnetic, and neighboring spins have a tendency to have opposite

values to lower the total energy. The language of the Ising model – spin, ferromagnetic,

antiferromagnetic, etc. – reflects its original use to describe magnetic systems. However, this

model has far broader applicability for describing systems with binary degrees of freedom.

For example, in binary alloys the “spin” variable represents atomic species, not quantum

mechanical spin.

Ising models have served as fertile testing grounds for enormous projects in statistical

mechanics, in particular phase transitions and critical phenomena. Phase transitions have

been a topic of great interest in many fields of physics, but most realistic models of phase

transitions are beyond analytical solutions. Typical Ising-like transitions include, for instance,

the gas-liquid transition and mixing-unmixing in liquids. One- and two-dimensional ( only

in the absence of external field ) Ising models have been solved analytically [1]: the 1d Ising

1
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model has no phase transition, and the 2d Ising model has a second order phase transition. No

analytical solution has been found for the 3d Ising model. The simplest theoretical treatment

of Ising models is the mean field theory, but the mean field idea was found to be quantitatively

incorrect in the neighborhood of thermodynamic critical points[2, 3, 4]. The source of this

failure is clear. Fluctuations are at the heart of critical phenomena, whereas mean field

theory is based upon the assumption of small fluctuations. Various approaches, including

renormalization group, ε-expansion, series expansion [5, 6, 7, 8], and Monte Carlo simulations

have been used to study the phase transition of the 3d Ising model [9, 10].

Traditional Ising models are rigid: Each lattice site is fixed at some position, and spins

interact with a fixed number of neighbors with fixed interaction constants. While it provides

the advantages of simplicity and high computational speed, this also imposes limitations

on its modeling capabilities for realistic systems, especially when it is used to model binary

alloys. A binary alloy is equivalent to an Ising model in that the up and down spins in an Ising

model are equivalent to the two different atomic species in a binary alloy, and the magnetic

field is proportional to the difference between the two chemical potentials in a binary alloy.

Throughout our discussion we will use the term Ising model interchangeably with binary

alloy. Atoms in alloys move around their equilibrium positions at finite temperature T .

The motion of the atoms can be correlated spatially and contribute significantly to the

thermodynamic properties around critical points, possibly even changing the nature of the

transitions. As a result, compressible Ising models have gained more and more popularity. In

a compressible Ising model, the lattice is elastic and can be deformed. The interaction J is no

longer constant, but depends on the bond lengths and angles between bonds. A compressible

three-dimensional Ising model is even more difficult to deal with than its rigid counterpart.

Many numerical studies have been done on compressible Ising models [11, 12, 13, 14, 15],

mainly driven by growing interest on semiconductor alloys in 1990’s.

The theoretical approaches based on perturbation expansions have been a great success,

but they were found to be unreliable in many cases, especially in frustrated systems with



3

complicated types of magnetic order parameters[16]. Numerical methods such as Molecular

Dynamics and Monte Carlo simulations, on the other hand, suffer from the limitations of

the computer hardware and can only deal with limited system sizes. Therefore, it might be

difficult to see the asymptotic behavior from the numerical results. The choice of numerical

methods rely on the ability to deal with any complicated models. Thanks to the avail-

ability of high-performance computer facilities with ever-growing speed and developments of

computational algorithms such as finite size scaling[17, 18], histogram reweighting[19] and

Wang-Landau sampling [20, 21], Monte Carlo simulations have become one of the most pow-

erful tools in providing accurate information about the nature of the phase transitions of

Ising models.

This dissertation also attempts to test the theoretical work by B. Dünweg. Inspired by

Monte Carlo studies[13, 14], Dünweg [22] conducted a systematic theoretical investigation

on phase transitions of elastic Ising models with generic Landau-Ginzburg-Wilson (LGW)

Hamiltonians. He identified 4 distinct cases:

1. A ferromagnetic system at constant pressure: a mean-field phase transition

2. A ferromagnetic system at constant volume: two first-order phase transitions ending

in critical points

3. An antiferromagnetic system at constant pressure: a first-order phase transition from

an ordered to disordered phase

4. An antiferromagnetic system at constant volume: a second-order phase transition with

Fisher renormalized exponents, from an ordered to disordered phase

The first prediction agrees with the simulational results reported in Ref. [14]. However, the

second one doesn’t even agree qualitatively with more recent simulational results[23], which

raised questions about the validity of the last two predictions. On the other hand, very little

work has been done in the area of elastic antiferromagnets. The first part of this dissertation

will concentrate our simulational results for the third case, i.e., elastic antiferromagnet at



4

constant pressure. To the best of our knowledge, nobody has done any simulational research

on this model – antiferromagnet on a distortable diamond net with Stillinger-Weber (SW)

potential. This diamond model is carefully chosen so that it is only slightly different from its

ferromagnetic counterpart – the SiGe alloy, in the hope that it can be compared with earlier

numerical results [14] and theoretical predictions.

The diamond model has a drawback: its elasticity is hard to assess, and the coupling

strength between the elasticity and the Hamiltonian is unclear. The second model, a ferro-

magnet on a stacked triangular lattice with Lennard-Jones (LJ) potential, has been studied

by a French group [24, 25]. We study this model because we find their results questionable,

and mainly because it features adjustable elasticity.

The rest of this dissertation is organized as follows. The simulational and theoretical

backgrounds will be presented in Chapter 2. The compressible diamond model, including

interactions, structures and simulational details will be described in Chapter 3. In Chapter 4

the simulation results for the diamond models will be reported, and the effect of the elasticity

in the distortable diamond net will be discussed in Chapter 5. In chapter 6 the stacked

triangular lattice model and simulation results will be presented. Finally, the dissertation

will conclude in Chapter 7.



Chapter 2

Background

2.1 Phase Transitions

Let’s start with a general discussion of phase transitions in Ising models [26]. For a typical

rigid Ising model, the energy of the system is:

H{σ} = −J
∑

<r,r′>

σ(r)σ(r′) − h
∑

r

σ(r), (2.1)

where J is the interaction constant, σ(r) = ±1 is the spin at lattice site r, {σ} is a configura-

tion of all spins. the summation in the first term is over all distinct pairs of nearest-neighbor

spins, and h is the magnetic field. All thermodynamic properties are defined by the partition

function Z,

Z(T ) =
∑

{σ}

exp[−H{σ}/kBT ] =
∑

{σ}

exp [−βH{σ}] (2.2)

where kB is the Boltzmann constant, T is the absolute temperature, and β = 1/kBT . If we

define two parameters

K1 = h/kT = βh (2.3)

K2 = J/kT = βJ. (2.4)

and two extensive operators

S1 =
∑

r

σ(r) (2.5)

S2 =
∑

<r,r′>

σ(r)σ(r′) (2.6)

5
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Then we have

−βH{σ} = K1S1 + K2S2. (2.7)

In general, we utilize the notation Sα for the αth extensive operator in the theory, and K for

the parameter set (K1, K2). In terms of these quantities, we can define a free energy density

f(K) as

f(K) =
1

N
ln Z(K) =

1

N
ln

∑

σ

e−βH{σ} (2.8)

The average of any function of the spins θ{σ} is given by

θ{σ} =
1

Z

∑

{σ}

θ{σ} exp(−βH{σ}) (2.9)

The magnetization is defined as the average (over all lattice sites) value of σ(r)

m(K) =< σ(r) >=
∂f(K)

∂K1

(2.10)

In two or higher dimensions, the Ising system may undergo phase transitions by changing

temperature T or magnetic field h. Fig. 2.1 shows the phase diagram in h − T space. When

T < Tc, most spins point up (σ = +1) for h > 0 and point down (σ = −1) for h < 0. Along

the path A → B → C, there is a first order phase transition at B. There is no transition

along A → D → C. The first order line (or phase boundary) ends at Tc, where it becomes

2nd order. The most natural parameters to use in the description of the critical behavior of

the Ising model are the magnetic field variable h and the reduced temperature

t =
T − Tc

Tc

,

where Tc is the infinite lattice critical temperature. Note that the direction of increase of h

is perpendicular to the phase boundary, while that of increase of t is parallel to it. Generally

speaking, phase transition problems can be defined in terms of these two fields:

(a) A field h, which drives the system across the phase boundary and vanishes at criticality;

(b) A field t, which moves the system along the phase boundary and also vanishes at the

critical point. We will come back to this topic again when we try to reweight a histogram

distribution by field-mixing in the next chapter.
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Tc

h

T

t=(T-Tc)/ Tc

h
hc=0

A

B

C

D

Figure 2.1: The phase diagram of a typical Ising model described by Eq. 2.1. The dashed
line indicates a first order transition line. The dot at the end of the dashed line indicates
the critical point where the transition becomes second order. The arrows originating from
the critical points are the directions of increases of h and t, respectively. The two groups of
parallel arrows indicate the spin orientations.
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Table 2.1: Definition of critical indices
Critical index Definition Condition
β m ' ±(−t)β t < 0 h = 0
γ χ ' t−γ t > 0 h = 0
γ′ χ ' (−t)−γ′

t < 0 h = 0
δ m ' h1/δ t = 0
α Ch ' t−α t > 0 h = 0
ν ξ ' t−ν t > 0 h = 0

2.1.1 Critical Singularities

At the critical point, many thermodynamic quantities exhibit power-law singularities. The

fundamental source of these singularities is the divergence in the correlation length ξ at

criticality. Near criticality, ξ(t) scales as t−ν , ξ → ∞ as t → 0. The definition of the critical

indices ( exponents ) are given in Table 2.1, where m denotes magnetization, χ for suscep-

tibility, andCh for specific heat capacity at external magnetic field h. These exponents are

not independent. The following relationships hold.

2 − α = γ + 2β = γ′ + 2β = β(δ + 1). (2.11)

For further discussion of these relationships and of critical singularities, in general, see Ref.

[26].

2.1.2 Universality

Since critical phenomena arise from long-ranged correlations, it is reasonable to expect that

some of the details of the interatomic potential might be quite irrelevant to the behavior in

the critical region. Thus, for example, it is usually asserted that the values of the critical

indices are independent of interaction details, as in the statement of universality hypothesis.

In its simplest terms, the universality hypothesis is the statement that all critical problems
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may be divided into classes differentiated in part by:

1. The dimensionality of the system;

2. The symmetry group of the system; and

3. Spin dimensionality

Within each class, the critical exponents are supposed to be identical or, at worst, to be a

continuous function of a very few parameters.

2.2 Monte Carlo Simulation

The Monte Carlo simulation method is a stochastic sampling technique, where random num-

bers are generated to mimic the fluctuations that occur in nature, in order to simulate a

model of interest. It was named after Monte Carlo, Monaco, where the primary attractions

are casinos containing games of chance. Monte Carlo simulation has been applied in a broad

range of areas from economics to nuclear physics to regulating the flow of traffic. It has the

advantages of simplicity and power.

In the simulation, the Metropolis importance sampling method is used to generate config-

urations from a previous state with a transition probability which depends on the energy dif-

ference between the initial and final states. The transition probability has to satisfy detailed

balance

Pn(t)Wn→m = Pm(t)Wm→n, (2.12)

where Pn(t) is the probability of the system being in state n, and Wn→m is the transition

rate for n → m. In a classical system that follows the Boltzmann distribution, Pn(t) is given

by

Pn(t) = exp(−En/kBT )/Z, (2.13)
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where Z is the partition function. So we have

Wn→m

Wm→n

=
Pm(t)

Pn(t)
= exp(−∆E/kBT ), (2.14)

where ∆E = Em − En. Any transition rate which satisfies detailed balance is acceptable.

The first choice of rate that was used in statistical physics is the Metropolis form [27]

Wn→m = exp (−∆E/kBT ), if ∆E > 0 (2.15)

= 1, if ∆E < 0 (2.16)

where time unit is set to unity and suppressed in the equations. The recipe for the Metropolis

algorithm follows.

1. Choose an initial state

2. Choose a site i

3. Calculate the energy change ∆E which results if the spin at site i is overturned

4. Generate a uniform random number r in the interval [0, 1].

5. If r < exp (−∆E/kBT ), flip the spin

6. Go to the next site and go to step 3

The “standard measure” of Monte Carlo time is the Monte Carlo step/site (MCS/site) which

corresponds to the consideration of every spin in the system once. After a sufficiently long run,

this algorithm generates states that follow the Boltzmann distribution, i.e., the occurrences

of a state are proportional to Eq. 2.13. Then, the desired average < A >=
∑

n PnAn of a

variable A simply becomes the average over the entire sample of states which is kept.

The Metropolis flipping method is not the unique solution. An alternative method is

known as ‘Glauber dynamics’ [28], uses the single spin-flip transition rate

Wn→m = 1 + tanh (σiEi/kBT ), (2.17)
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where σiEi is the energy of the ith spin in state n. The transition rate is anti-symmetric about

0.5 for Ei → −Ei. In most situations the choice between Glauber and Metropolis dynamics

is arbitrary; but in at least one instance they are different. At very high temperature the

Metropolis algorithm will flip a spin on every attempt because the transition probability

approaches 1 for ∆E > 0. Thus, in one sweep through the lattice every spin overturns, and

in the next sweep every spin overturns again. The system just oscillates between two states

and the process becomes non-ergodic. With the Glauber algorithm, however, the transition

probability approaches 1/2 in this instance and the process remains ergodic. Refer to the

book by Landau and Binder[29] more information about these two methods.

2.3 Finite-Size Scaling Analysis

Computer simulations can only handle finite size systems, whereas we are interested in the

critical behavior of nearly infinite systems. According to Fisher’s finite-size scaling theory[17,

18], the critical behavior of an infinite system may be extracted from that of finite systems

by examining the size dependence of the singular part of the free energy density. The free

energy of a system of linear dimension L is described by the scaling ansatz

F (L, T, h) = L−(2−α)/νF0(tL1/ν , hL(γ+β)/ν). (2.18)

As a reminder, t = (T − Tc)/Tc (Tc is the infinite-lattice critical temperature) and h is the

magnetic field. The critical exponents α, β, γ, and ν are all the appropriate values for the

infinite system. Based on this scaling ansatz, at zero field, i.e., h = 0, we may obtain the

following scaling form for magnetization per spin

m = L−β/νm̃(xt), (2.19)

where xt = tL1/ν is the temperature scaling variable, and m = 1
N

M = 1
N

∑

j σj is the

magnetization per spin. N is the total number of spins in the system.
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The specific heat capacity C can be calculated from the fluctuations of the internal energy

E

C =
1

N

1

T 2
(< E2 > − < E >2), (2.20)

the finite-lattice susceptibility from the fluctuations of the magnetization m

χ =
N

T
(< |m2| > − < |m| >2), (2.21)

and the Binder cumulant[30]

U4 = 1 − < m4 >

3 < m2 >2
. (2.22)

We also have the following scaling forms for these three quantities:

C = Lα/νC̃(xt), (2.23)

χ(T ) = Lγ/νχ̃(xt), (2.24)

U4(T ) = Ũ(xt). (2.25)

As in Ref. [9], the finite-lattice (or effective) critical temperature Tc(L) is defined to be where

the scaling function reaches maximum. The reciprocal of the effective critical temperature,

or the effective critical coupling, Kc(L) = 1/Tc(L), has the following scaling form

Kc(L) = Kc + λL−1/ν(1 + bL−ω) (2.26)

where Kc is the critical coupling of infinite lattice, and bL−ω is an approximation for the

series of higher order power-law correction terms.

Binder[30] showed that the maximum slope of the cumulant U4 at Kc varies with system

size like L1/ν . Taking into account a correction term, the size dependence becomes

dU4

dK

∣

∣

∣

∣

max

= aL1/ν(1 + bL−ω) (2.27)

The logarithmic derivative of any power of the staggered magnetization

∂

∂K
ln < mn > =

1

< mn >

∂

∂K
< mn >

=

[

< mnE >

< mn >
− < E >

]

, (2.28)
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has the same scaling properties as the cumulant slope. This provides us with additional

estimates for ν and Kc(L).

2.4 Histogram Reweighting Method

The Monte Carlo method suffered from the huge amount of computer resources required for

thorough and accurate results until the introduction of the histogram reweighting method by

Ferrenberg and Swendsen [19]. This method increases the amount of information obtained

from a single simulation, rather than just taking the averages and standard deviations of

thermodynamic quantities. It has proven to be very effective and yields excellent results in

the neighborhood of the point where a sufficiently long MC simulation is performed.

The Hamiltonian for an Ising system is given in Eq. 2.7. The probability distribution of

(S1, S2) ( see Eqns. 2.5 and 2.6) at a point (K1, K2) in the parameter space is given by

P(K1,K2)(S1, S2) =
1

Z(K1, K2)
N(S1, S2) exp(K1S1 + K2S2), (2.29)

where N(S1, S2) is the number of configurations at the point (S1, S2) in the phase space, and

Z(K1, K2) is the canonical partition function given by

Z(K1, K2) =
∑

S1,S2

N(S1, S2) exp(K1S1 + K2S2). (2.30)

From Eq. 2.29, we have

N(S1, S2) = P(K1,K2)(S1, S2) exp(−K1S1 − K2S2)Z(K1, K2). (2.31)

We apply Eq. 2.29 at a new point in parameter space (K ′
1, K

′
2), then we have

P(K′

1
,K′

2
)(S1, S2) =

1

Z(K ′
1, K

′
2)

N(S1, S2) exp(K ′
1S1 + K ′

2S2), (2.32)

∝ P(K1,K2)(S1, S2) exp[(K ′
1 − K1)S1 + (K ′

2 − K2)S2].

The histogram H(S1, S2) at a point (S1, S2) in phase space generated by the MC simula-

tion is proportional to P(K1,K2)(S1, S2). If we normalize the histogram distribution, then we
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should have H(S1, S2) = P(K1,K2)(S1, S2). For normalized probability distribution, we have

P(K′

1
,K′

2
)(S1, S2) =

P(K1,K2)(S1, S2) exp[(K ′
1 − K1)S1 + (K ′

2 − K2)S2]
∑

(S1,S2) P(K1,K2)(S1, S2) exp[(K ′
1 − K1)S1 + (K ′

2 − K2)S2]
(2.33)

The denominator in Eq. 2.33 serves as an estimate for the partition function. We can then

use P(K′

1
,K′

2
)(S1, S2) to calculate the quantities of interest, such as the average internal energy,

without having to do very long (time-consuming) Monte Carlo simulations at (K ′
1, K

′
2). We

will talk more about histogram reweighting in combination with the Hamiltonian of the

model in next chapter.

2.5 Non-linear curve fitting

The curve fittings are done by the Levenberg-Marquardt method[31] which works very well

in practice and has become the standard of nonlinear least-square routines. It can fit any

differentiable function with any number of parameters. The drawback of this method is that

it is sensitive to initial estimate values, i.e., can be trapped in local minima. If the initial

values are chosen to be in the neighborhood of the global minimum, this method can yield

excellent and robust fitting results.



Chapter 3

The Antiferromagnetic Diamond Model

Compressible Ising systems have been studied as models for SiGe binary alloys on the elastic

diamond net under various conditions [13, 14, 23]. Existing codes are readily available as

a result of these works. These codes are efficient and easy to be tailored for new models.

In order to compare with these results and save coding time, we will once again study the

antiferromagnetic compressible Ising model on the diamond net, or to be precise, ordering

binary alloys having the ZnS (zinc sulfur) structure.

3.1 Lattice Topology

To take into account the contribution of bond elasticity and retain the computational effi-

ciency, we assume that spins are always located on the nodes of a diamond network with

fluctuating bonds. This is an intermediate approach between a totally free-moving one and

a lattice-gas-like one. We also neglect vacancies and interstitials because of their vanishing

concentrations in real systems. Although nodes can move stochastically, the topology of the

lattice is fixed. For each node, the 4 nearest neighbors and the 12 next nearest neighbors are

known at the very beginning and are used throughout the simulation.

The diamond network consists of two FCC sublattices. Spins in the two FCC sublattices

are opposite in a totally ordered antiferromagnetic phase. In the simulation, the diamond

network is further decomposed into eight simple cubic(SC) sublattices. No two spins within

the same SC sublattice interact with each other in this model.

Fig. 3.1 shows the structure of a unit cell. Each unit cell consists of 8 spins. If the number

of unit cells is L in each of the x, y and z directions, then the total number of spins N = 8L3.

15
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Table 3.1: The coordinates of spins in a unit cell, relative to the spin in sublattice 1
spin 1 (0, 0, 0) spin 5 (1, 1, 1)
spin 2 (2, 2, 0) spin 6 (3, 3, 1)
spin 3 (2, 0, 2) spin 7 (3, 1, 3)
spin 4 (0, 2, 2) spin 8 (1, 3, 3)

Table 3.2: The nearest neighbor lists for spins in unit cell < i, j, k >.
spin nearest neighbors
< i, j, k, 1 > < i, j, k, 5 > , < i, j − 1, k − 1, 8 > , < i − 1, j − 1, k, 6 > , < i − 1, j, k − 1, 7 >
< i, j, k, 2 > < i, j, k, 5 > , < i, j, k, 6 > , < i, j, k − 1, 7 > , < i, j, k − 1, 8 >
< i, j, k, 3 > < i, j, k, 5 > , < i, j, k, 7 > , < i, j − 1, k, 6 > , < i, j − 1, k, 8 >
< i, j, k, 4 > < i, j, k, 5 > , < i, j, k, 8 > , < i − 1, j, k, 6 > , < i − 1, j, k, 7 >
< i, j, k, 5 > < i, j, k, 1 > , < i, j, k, 2 > , < i, j, k, 3 > , < i, j, k, 4 >
< i, j, k, 6 > < i, j, k, 2 > , < i + 1, j + 1, k, 1 > , < i + 1, j, k, 4 > , < i, j + 1, k, 3 >
< i, j, k, 7 > < i, j, k, 3 > , < i + 1, j, k + 1, 1 > , < i + 1, j, k, 4 > , < i, j, k + 1, 2 >
< i, j, k, 8 > < i, j, k, 4 > , < i, j + 1, k + 1, 1 > , < i, j, k + 1, 2 > , < i, j + 1, k, 3 >

If we set the lower left corner spin as the origin, then the coordinates (x, y, z) of the 8 spins in

the order of sublattice index are listed in Table 3.1, which also shows the ordering scheme of

the SC sublattices. The unit is a quarter of the unit cell side length. The topological nearest

neighbor lists for each of the 8 spins in unit cell < i, j, k > are given in Table 3.2, where i, j,

k run from 1 to L. Spin < i, j, k, s > refers to the sth spin in unit cell < i, j, k >. Table 3.2 is

particularly important for understanding the simulation code and developing visualization

tools.

Each spin in the system is described by four degrees of freedom: The first one is spin

value Si which is either +1 or -1. The other three are the three coordinates of the spin ~ri.
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Figure 3.1: The structure of a unit cell in the diamond (or ZnS if totally ordered) structure.
The red spheres represent the up spin (+1), and the blue ones represent down spins (-1).
The metallic lines connecting spins are nearest neighbor bonds. The black lines connecting
the corners are not bonds. They are used to form the frame of the unit cell.
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3.2 The Hamiltonian

Various empirical interaction models have been proposed[32, 33, 34, 35]. We choose the

Stillinger-Weber (SW) potential for the purpose of comparison with Laradji and Landau’s

work[14] which agrees with the theoretical prediction [22] about the mean-field critical

behavior of the compressible ferromagnet at constant pressure. Keep in mind that the the-

oretical prediction does not depend on the specific potential. The Hamiltonian consists of

four parts.

H = H1 + H+
1 + H2 + H3 (3.1)

where H1 and H+
1 are the uniform magnetic field energy and staggered magnetic field energy,

respectively.

H1 = −h
∑

j

Sj (3.2)

H+
1 = −h+

∑

j

S+
j (3.3)

The staggered spin S+
j is defined as

S+
j =







Sj if Sj is in FCC sublattice 1

−Sj if Sj is in FCC sublattice 2

The staggered magnetization M+, also called the order parameter in the antiferro-

magnetic case, is the summation of all S+
j ,

M+ =
∑

j

S+
j . (3.4)

The concentration is the ratio of the number (N+) of spin +1’s to the total number (N)

of spins in the system.

concentration =
N+

N
(3.5)
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The two-body part H2 and three-body part H3 together are the SW potential energy

(see Ref. [14] for details). H2 can be written as follows:

H2 =
∑

<i,j>

ε(Si, Sj)F2

[

rij

σ(Si, Sj)

]

, (3.6)

where the sum is performed over all nearest-neighbor bonds < i, j >. ε(Si, Sj) corresponds to

the binding energies: ε(+1,−1) = ε(−1, +1) = 2.3427eV , ε(+1, +1) = 2.17eV , ε(−1,−1) =

1.93eV . σ(Si, Sj) corresponds to ideal bond lengths: σ(+1, +1) = 2.34779Å, σ(−1,−1) =

2.44598Å, σ(+1,−1) = σ(+1,−1) = 2.396885Å. These parameters come from the SW poten-

tial for the SiGe binary alloy, and are the same as those in Ref. [14], except that ε(+1,−1)

is increased from the original 2.0427eV to 2.3427eV to make the system antiferromagnetic.

The choice of this new value is arbitrary as long as it is sufficiently larger than the binding

energy between two spin +1’s (2.17eV ) and that between two spin -1’s ( 1.93eV ). We will

talk more about the choice of ε(+1,−1) a bit later. The function F2 depends on the rescaled

bond length y = rij/σ(Si, Sj):

F2(y) =











A
[

B
yp − 1

yq

]

eδ/(y−b) for y < b

0 for y ≥ b.
(3.7)

The parameters of the function F2 are: A = 7.049556277, B = 0.6022245584, p = 4, q = 0,

δ = 1, and b = 1.80. F2 reaches a minimum value −1 at y = 21/6.

The three-body interaction is

H3 =
∑

<i,j,k>

[ε(Si, Sj)ε(Sj, Sk)]
1/2 L(Si, Sj, Sk)

×F3

[

rij

σ(Si, Sj)
,

rjk

σ(Sj, Sk)

]

×(cosθijk +
1

3
)2, (3.8)

where the sum is over all triplets < i, j, k > with the vertex at site j (i and k are nearest

neighbors of j). The cosine of the angle between ~rji and ~rjk is given by

cos θijk =
~rji · ~rjk

rjirjk

.



20

If cos θijk = 109.47◦, which is the characteristic bond angle of diamond, then cos θijk = −1
3
;

therefore, the energy contribution from the triplet < i, j, k > becomes zero. This helps the

system stabilize towards a diamond structure. F3 is a non-negative function of the rescaled

bond lengths:

F3(y1, y2) =







eγ/(y1−b)+γ/(y2−b) for y1 ≤ b and y2 ≤ b

0 otherwise,
(3.9)

where the constant γ = 1.20.

The function L is written as follows:

L(Si, Sj, Sk) =
[

λ(Si)λ(Sj)
2λ(Sk)

]1/4
, (3.10)

where λ(+1) = 21.0, λ(−1) = 31.0.

Now we talk more about the choice of ε(+1,−1). For simplicity, we can ignore H3 here

(although it is included in the Monte Carlo simulation) since it is about two orders of

magnitude smaller than H2. Fig. 3.2 shows the comparison of two-spin interactions when

ε(+1,−1) assumes different values. When ε(+1,−1) is only slightly larger than ε(+1, +1)

which is 2.17, say, ε(+1,−1) = 2.18, there is too much overlap between the two energy curves

such that, even around the equilibrium, the system prefers one bond type over the other at

one bond length, and has the opposite preference at a different bond length. The system

would not necessarily prefer to be antiferromagnetic.

Fig. 3.3 shows the energy curves when we further change another parameter σ(+1,−1) to

be equal to σ(+1, +1). In this case, the mixing bonds (+1,-1) is always more preferable than

any pure bond (+1,+1) or (-1,-1) around equilibrium. The system is expected to be more

stable in this case, but I did not try this parameter set because the analysis of parameter

choice was performed after the simulation was done.

3.3 The Code Implementation

In the FORTRAN code implementation, the initial state is the ground state of a rigid Ising

system unless a configuration file already exists (from previous runs). The program outputs
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Figure 3.2: The energy curves of the mixing bond (+1,-1) under different values of ε(+1,−1).
For comparison purpose, the energy curves of bond (+1,+1) and bond(-1,-1) are also shown.
The notation “bond(+1,-1)” represent the bond between spin +1 and spin -1. Similar nota-
tions are used for other bond types.
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bond(+1, -1) when σ(+1,−1)=σ(+1,+1) 

Figure 3.3: The energy curves of the mixing bond (+1,-1) under different ideal bond length
σ(+1,−1). The energy curves of bond (+1,+1) and bond(-1,-1) are also shown for compar-
ison.
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an instantaneous configuration every once a while. The output interval can be specified in the

input file. Spins are numbered from 1 to N = 8L3, where L is the lattice size, or the number

of unit cells in each of the x-, y- and z-directions. Spins in FCC sublattice 1 precedes any of

those in FCC sublattice 2. In other words, spins in FCC sublattice 1 are numbered from 1 to

N/2, and those in FCC sublattice 2 are numbered from N/2+1 to N . One of the advantages

of this arrangement is that it simplifies the calculation of staggered magnetization. Since no

two spins in the same SC sublattice are nearest neighbors, no dependency exists between their

states. This makes it possible to update one SC sublattice after another, an ideal candidate

for vectorization. Periodic boundary conditions are assumed, so there are no dangling bonds.

The MC simulation is performed as follows. For spin Sj at position ~rj, we randomly

generate a new spin S ′
j at a slightly altered random position ~rj

′, and then use the Metropolis

rejection method to accept or reject this attempt. S ′
j may or may not be the same as Sj. If

S ′
j 6= Sj, then S ′

j = −Sj, and we call it a spin flip. After sweeping over the entire system,

we allow volume fluctuation by attempting to rescale the system to slightly different linear

sizes L′
x, L′

y, L′
z from current ones: x′ = xL′

x/Lx, y′ = yL′
y/Ly, z′ = zL′

z/Lz. The acceptance

or rejection of this attempt is determined by Metropolis rejection method using the effective

Hamiltonian Heff = H−NkBT ln(LxLyLz). Allowing volume fluctuation keeps the pressure

constant. Due to spin flips, the number of spin +1’s is not constant during simulations,

although the total number of spins are constant. Such a system is called a semi-grand-

canonical ensemble.

A Tausworthe (shift-register) generator [36] is used to generate random numbers, and

the magic numbers are p=1279, q=1063. All floating point quantities are double-precision.

The code is parallelized so that it runs on multiple processors with different random number

sequences simultaneously. The multiple random number sequences diversify the data and

improve the data quality used for histogram reweighting. The system sizes are up to L = 24,

or N = 110, 592, and all simulation runs were over 107 MCS. For the diamond lattice, L = 24

translates to L = 48 for simple cubic lattice. Since this is an elastic Ising model, i.e., spin
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positions are continuous variables, we cannot utilize the same ultrafast multispin coding

algorithm as in Ref. [9], therefore we cannot handle very large systems such as L = 96 for

the simple cubic Ising lattice.

As in standard MC studies, to estimate the errors in our results, we divided data into

several equal-size blocks (between 5 to 10 blocks used), then calculated all quantities of

interest for each block, finally calculated the mean and standard deviation of these quantities.

Additional analysis were done using histogram reweighting and finite size scaling techniques.

3.4 More on Histogram Reweighting

We rewrite the Hamiltonian of the system as follows.

H = −hM − h+M+ + W (3.11)

where W is the SW potential energy, W = H2 + H3. An MC simulation of length n per-

formed at temperature T0, uniform magnetic field h0, and staggered magnetic field h+
0 gen-

erates n configurations with a distribution frequency proportional to the Boltzmann weight,

exp[−K0H], where K0 = 1/T0. To do the reweighting, we need to know the three-dimensional

histogram distribution of (M , M+, W ). The probability distribution of the system is then

Ph0,h+

0
,K0

(M,M+,W ) =
1

Z(h0, h
+
0 , K0)

Ω(M,M+,W )

exp[K0(h0M + h+
0 M+ − W )] (3.12)

where Ω(M,M+,W ) is the number of configuration(density of states) with uniform mag-

netization M , staggered magnetization M+, and SW potential W , and Z(h0, h
+
0 , K0) is the

partition function of the system. Since we already performed n MC steps and have n config-

urations, we can calculate the histogram H(M,M+,W ) for configuration (M,M+,W ). The

we have the probability distribution

Ph0,h+

0
,K0

(M,M+,W ) = H(M,M+,W )/n. (3.13)
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One problem associated with multi-dimensional reweighting is the huge storage required for

the intermediate histogram data. For a L = 20 system, it would need 8 terabytes to store

the histogram, which might be possible nowadays but certainly inefficient and undesirable.

Fortunately, all we need is to find the average values for various properties, and we can

obtain them without explicitly calculating the histogram at all. Through simple derivation,

the expectation value of a quantity A at a slightly different parameter set (K,h, h+) is given

by

< A >K,h,h+ =
1

Z

∑

j

A(Mj,M
+
j ,Wj)

× exp[(Kh − K0h0)Mj

+ (Kh+ − K0h
+
0 )M+

j

− (K − K0)Wj]

where

Z =
∑

j

exp[(Kh − K0h0)Mj

+ (Kh+ − K0h
+
0 )M+

j

− (K − K0)Wj]

and j runs over all the instantaneous configurations generated by the simulations. This

form of histogram reweighting eliminates the storage needs of histogram files that can be

huge in multi-dimensions. It also avoids dividing the continuous energy space into bins and

losing precision due to numerical discretization. The histogram reweighting can, therefore,

be done in one scan of the configuration files. If we fix h = 0 and h+ = 0, and reweight over

temperature, then the expectation value of a quantity A at K = 1/T is given by

< A >K=
1

Z

N
∑

j

A(Wj) exp[−(K − K0)Wj],

where

Z =
N

∑

j

exp[−(K − K0)Wj]
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In histogram reweighting, it is necessary to check the histogram distribution. The

reweighted mean internal energy should not be too faraway from the center (or the location

where the histogram distribution reaches the maximum value Hmax). Otherwise, systematic

errors will prevail. In practice, we require that the histogram value (normalized probability)

H at the reweighted mean internal energy satisfy

H(reweighted mean internal energy) ≥ 0.22Hmax

This guarantees that the reweighted mean internal energy is within two standard deviations

from the center of the histogram.

Besides obtaining mean values, histogram reweighting can also provide a whole reweighted

distribution at a different condition. Algorithm 1 reweights the magnetization distribution

at a different temperature.

The distribution obtained above can be further rescaled to unit variance so it might be

compared to the universal distribution of its universality class.

Now, one can adjust the temperature until the difference between the reweighted distribu-

tion and the universal one is minimal. This “magic” temperature is the critical temperature

that we are looking for. This method is implemented in Algorithm 2.

One can also plot H(M)σM/δM vs. M/σM and compare it with the universal distribution.

As a matter of fact, the mean field universal distribution is a Gaussian function whose unit-

variance form is:

P (m) =
1√
2π

exp−m
2

2 ,

and for the 3d Ising universality class, the universal distribution is given in Ref. [37]. Algo-

rithm 3 is an easy-to-use version. It originates from the 32× 32× 32 lattice in Ref. [37] and

is included in the implementation of the class Fit Universal Histogram.

The simple Ising model has time reversal symmetry, and its phase diagram is symmetric

about the temperature axis, as shown in Fig. 2.1. In more realistic models, such as the

distortable antiferromagnetic diamond net in this dissertation, this symmetry is lost. Fig.
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Algorithm 1 Reweight the distribution of magnetization at a different temperature

1: //Notations:
2: //W : potential energy due to spin-spin interactions
3: //M : magnetization
4: //δM : the resolution of M, the size of a bin when discretizing magnetization
5: //H(M): the histogram value at M
6: //Z: partition function
7: //β: 1/T
8: //initialization:
9: Z = 0

10: for all indexM do

11: H(indexM) = 0
12: end for

13: //loop
14: for All MC data output (M,E) in data files do

15: //do the reweighting
16: e = exp(−(β − β0)W )
17: indexM = M/δM
18: H(indexM) = H(indexM) + e
19: Z = Z + e
20: end for

21: //normalize the histogram
22: for all M from the minimum M to the maximum M do

23: H(M) = H(M)/Z
24: end for
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Algorithm 2 Scale a distribution to unit variance and compare with its universal distribu-
tion

1: //Univ: the function used to calculate the universal distribution
2: //find the standard deviation of M
3: avgM1= 0
4: avgM2= 0
5: //loop over all M
6: for all M from the minimum M to the maximum M do

7: avgM1= M ∗ H(M)
8: avgM2= M2 ∗ H(M)
9: end for

10: σM =
√

avgM2 − avgM1 ∗ avgM1
11:

12: //calculate the difference weighted by probability
13: diff= 0
14: for all M from the minimum M to the maximum M do

15: prob=Univ(M/σM) //calculate the universal value
16: h = H(M)σM/δM //rescale the histogram to unit variance
17: print M/σM , h //print out results
18: diff=diff+prob∗(h − prob)2 //weighted sum
19: end for

Algorithm 3 Calculate the 3d Ising distribution value

1: //parameters from PRE 62, 73 (2000) for L=32x32x32 3d Ising system
2: const int N32=32*32*32;
3: const double a=0.1553;
4: const double c=0.7776;
5: const double M0=0.18180;
6: const double M02=M0*M0;
7: const double ML=1.0965*0.3914688;
8: const double dev32 =5255.354508087;
9:

10: double Ising3d( double M)
11:

12: double tmp=M*dev32/N32;
13: double M2=tmp*tmp;
14: double root=M2/M02-1.0;
15: return ML*exp(-root*root*(a*M2/M02+c));
16:
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Figure 3.4: An illustrative example of a phase diagram where the boundary is not parallel
to either of the two axes. This is not the phase diagram for the present diamond model.
The phase boundary consists of a first order transition line ending with a critical point. The
direction of one scaling field t is along the tangent line at the end of the phase boundary.
The direction of the other scaling field g does not have to be perpendicular to t.
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3.4 shows a phase diagram that forms a non-zero angle with the field axes. The critical point

of the antiferromagnetic diamond model is described by two non-trivial parameter values,

the critical coupling Kc = 1/Tc and the critical magnetic field hc. The scaling fields which

are appropriate for describing the critical behavior of the system contain linear combinations

of the deviations from these critical values:

t = Kc − K + s(h − hc), (3.14)

g = h − hc + r(Kc − K), (3.15)

where r and s depend upon the system [38]. For the simple Ising model, r = s = 0. The two

quantities that are conjugate to these scaling fields are also linear combinations of the SW

potential energy W and magnetization M .

E =
W − rM

1 − sr
, (3.16)

M =
M − sW

1 − rs
. (3.17)

Then the deviations from the average values of these two quantities

δM = M− < M >c, (3.18)

δE = E− < E >c (3.19)

will follow the universal distributions of their universality classes, respectively.

If we only care about the distribution of M which is known for both mean-field and 3d

Ising universality classes, we reduce the unknown parameters to a single s. The parameter r

will be absorbed in the normalization factor. Algorithm 4 is slightly different from Algorithm

1 and illustrates how to implement field-mixing for a new parameter set (T, h) based on data

taken at (T0, h0).

3.5 visualization

Visualization does provide some valuable insights that would otherwise take much more

effort. For example, at high temperature, the staggered magnetization would oscillate around
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Algorithm 4 Field-Mixing

1: //Notations:
2: //W : potential energy due to spin-spin interactions
3: //M : magnetization
4: //δM : the resolution of M
5: //H(M): the histogram value at M
6: //Z: partition function
7: //β: 1/T
8: //s: the linear field mixing coefficient
9: //initialization:

10: Z = 0
11: for all indexM do

12: H(indexM) = 0
13: end for

14: //loop
15: for All MC data output < M,E > in data files do

16: //do the reweighting
17: e = exp(−(β − β0)W + (h − h0)M)
18: indexM = (M − sW )/δM
19: H(indexM) = H(indexM) + e
20: Z = Z + e
21: end for

22: //normalize
23: for all M from the minimum M to the maximum M do

24: H(M) = H(M)/Z
25: end for
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zero, which is what we expect. We would not notice any difference even if the model breaks

down. A 3d chaotic image reveals that the model already breaks down at such a high tem-

perature, because the system topology is violated.

There are a number of tools for visualization. Aviz, developed by the group of J. Adler,

is powerful and easy to use. It allows observation from continuous-varying viewpoints. The

only drawback of Aviz is that it does NOT support topological information input, although

it does draw bonds between physically nearest neighbors.

Another visualization kit is Povray. For a tutorial of Povray, visit

http://www.physast.uga.edu/~smitchell/ .

Fig. 3.5, constructed with Povray, shows the 3d image of a 6× 6× 6 system. The distortion

is obvious. The drawing toolkit, including the Povray file, C program, and shell script are

attached in Appendix C. Both Aviz and Povray have been used in the dissertation projects.
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Figure 3.5: A 3d image of the model. Each box represents a unit cell, and each cell contains
8 spins (there are 1, 728 spins in the system). Gaps have been added between cells to show
lattice distortion due to elasticity and thermal fluctuations. The colors represent the local
concentration of spin +1 ( number of spin +1’s in a unit cell divided by 8 ) in each cell, as
indicated by the legend. The image at the upper right corner shows the interior structure of
a unit cell.



Chapter 4

Results for the Diamond Antiferromagnet

4.1 Time Evolution and Correlation

Fig. 4.1 shows the time evolution before the system reaches equilibrium near critical temper-

ature. It takes about 3000 MCS for the system to reach equilibrium. Note that the sudden

change of the staggered magnetization indicates a lattice flip (or inversion, spins change

directions simultaneously), which is quite normal for small lattices. The energy does NOT

change much during lattice flip. After reaching equilibrium, the system evolves without any

dramatic energy fluctuation, as in Fig. 4.2. The normalized autocorrelations in equilibrium

state are shown in Fig. 4.3. The autocorrelation is calculated using

φA(t) =
< A(0)A(t) > − < A >2

< A2 > − < A >2
,

where A can be any quantity of interest, such as the internal energy and the staggered

magnetization. If the time integral of φA(t) exists, i.e.

τA ≡
∫ ∞

0

φA(t)dt,

and τA can be interpreted as the “relaxation time” of quantity A. In Fig. 4.3, the relaxation

times are 55 MCS for the uniform magnetization, 136 MCS for the staggered magnetization,

and 512 MCS for the internal energy.

4.2 Phase Diagram

The field dependence and temperature dependence of specific heat and staggered suscepti-

bility are shown in Fig.4.4. These properties reach maxima at slightly different points. The
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Figure 4.1: The time evolutions of the staggered magnetization and the internal energy
before reaching equilibrium. The system starts from the totally ordered antiferromagnetic
state. System size L = 6, T = 0.312, h = 0. The energy unit is eV.
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Figure 4.2: The time evolutions of the staggered magnetization and the internal energy in
equilibrium. Data are taken every 500 MCS. System size L = 6, T = 0.312, h = 0. The
energy unit is eV.
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Figure 4.3: The time-displaced correlations of various quantities near criticality. System size
L = 6, T = 0.312, h = 0.

specific heat exhibits large fluctuations, but the staggered susceptibility has a much smoother

curve which makes it an ideal indicator for critical points.

We determine the phase boundary by locating the points where the staggered suscepti-

bility reaches a maximum. We find a single phase boundary separating a disordered state

from an ordered antiferromagnetic state as shown in Fig.4.5. The phase diagrams are rather

symmetric because their mirror images (not shown) about their center lines collapse into

themselves within error bars, respectively. The concentration is defined as the ratio of the

total number of spin +1’s in the system vs. the total number of all spins. Note that the

temperature-concentration curve turns slightly inward at low temperature. We believe this

low-temperature behavior is real, because it occurs consistently in different runs, and the

difference (0.0039) to the concentration at T=0.1 exceeds the standard deviation (0.0014).

However, we did not investigate this interesting phenomenon systematically.
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at fixed temperature. The error bars are no larger than twice the symbol sizes.
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at T = Tc and h = 0. σM+ is the standard deviation of order parameter. The upper figure
shows both the reweighted histogram and the rigid 3D Ising distribution. The lower figures
shows the difference between the rigid 3d Ising distribution and the reweighted histogram.
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38

-2 -1 0 1 2
m

+
/σ

m

0.0

0.1

0.2

0.3

0.4

0.5

P(
m

+
)σ

m

3D Ising
L=6
L=12
L=18
L=24

Figure 4.7: The order parameter distributions at the critical temperatures, obtained by fitting
the histograms to the rigid 3d Ising universal distribution that is calculated from Ref. [10].
The distributions have been scaled to unit variance. The σm is the standard deviation of the
staggered magnetization m+.

To understand the nature of the transition, we plot the normalized unit-variance prob-

ability distribution of the order parameter (staggered magnetization). Fig. 4.6 shows the

distribution for the 6 × 6 × 6 system and the comparison with that of the rigid 3D Ising

model. As we can see, they agree very well. Fig.4.7 shows that the distributions for different

system sizes collapse to the rigid 3d Ising distribution function. This is a strong indication

that the phase transition belongs to the rigid 3D Ising universality class which is second

order.

4.3 Critical Behavior

We extracted ν by considering the scaling behavior of certain thermodynamic derivatives,

including the derivative of the cumulant U4, and the logarithmic derivatives of < |m+| >,
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Figure 4.8: Log-log plot of the maximum slopes of various thermodynamic quantities used
to determine ν. The straight lines show the nonlinear least-square fit of Eq.2.27. All data
points agree within one standard deviation.

< |m+|2 >, as in Ref. [9]. We plot these properties as a function of lattice size on a log-log

scale in Fig.4.8.

The estimates for 1/ν from the nonlinear least square fits are given in Table 4.1. Com-

bining these three estimates we get 1/ν = 1.60 ± 0.01. This agrees with the value (1.594 ±

0.004) reported in [9] within one standard deviation. Therefore, our estimate for ν is 0.625±

0.004. The size of the error bars comes primarily from the statistical errors in our simula-

tion. With relatively small lattice sizes, we expect a noticeable correction term denoted by

ω. However, we find estimates for ω are extremely volatile, ranging from 0.6 to 4.5. This

volatility also comes from the statistical errors in our data which submerges the correction

terms.
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Table 4.1: Estimates for 1/ν obtained by finite size scaling of the maximum slopes of the
cumulant and the logarithmic derivatives of |m+|2 and |m+|.

1/ν
U4 1.597 ± 0.016

log < |m+| > 1.607 ± 0.006
log < |m+|2 > 1.603 ± 0.015
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Figure 4.9: Size dependence of the finite-lattice critical temperature estimated from various
properties. The solid lines are nonlinear least square fits to Eq.2.26.
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Table 4.2: Estimates for Kc obtained by finite size scaling of locations of the maximum slopes
of various thermodynamic derivatives.

Kc

U4 3.204 50 ± 0.000 64
log < |m+|2 > 3.204 11 ± 0.000 36
log < |m+| > 3.204 54 ± 0.000 30

χ+ 3.204 53 ± 0.000 32
|m+| 3.204 52 ± 0.000 50

4.4 Determine Kc

We find that the elasticity has a strong effect on the critical transition temperature. In

the absence of elasticity, the model becomes a rigid Ising model on a diamond lattice, whose

transition temperature is known to be kBT diamond
c = 2.70404|J |.[39] With |J | = |2ε(+1,−1)−

ε(+1, +1)− ε(−1,−1)|/4, the transition temperature would be kBTc = 0.14635eV , less than

half of the transition temperature found in our simulation. As in Ref. [9], we fitted the

simulation data to Eq.2.26. We fixed 1/ν = 1.60, ω = 1.0, and varied Kc, λ, and b in the

fitting. The choice ω = 1.0 is not necessarily optimal, but it works very well. In fact, previous

works[14] have suggested ω = 1.0. The results are shown in Fig.4.9 and Table 4.2. Almost all

data agree with fitted data within one standard deviation, and all agree within two standard

deviations. The average of these values is Kc = 3.20444 ± 0.00019. This corresponds to the

critical temperature kBTc = 0.312067 ± 0.000018eV . Our error bars are bigger than those

reported in Ref. [9] due to the smaller lattice sizes.

4.5 U4 Crossing

The Binder cumulant U4 scales with the linear system size L as Eq.2.25. At the critical

temperature Tc, the U4(T ) curves of all lattice sizes should have the same value U∗
4 = U4(Tc),

which would be a crossing point of all curves in Fig.4.10. The crossing value is one of the
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Figure 4.10: The Binder cumulant crossing. The curves alternate in solid and dashed lines
for clarity. They are smooth because the data points are reweighted from histogram, and can
reach any resolution. Lattice sizes are shown on both ends of each curve.

universal properties, which determines the university class of the model. Due to finite lattice

size effect, the curves do not cross exactly at the same point, but have their crossing points

spread out in a small neighborhood. By averaging the crossing points for L ≥ 10, we find

that this crossing value is U∗
4 = 0.472 ± 0.002. This is the same as that in the universality

class of the rigid three-dimensional Ising model[9] U∗
4 ' 0.47.

4.6 Other Exponents

We also fitted m+ vs. lattice size L to extract β. Fig. 4.11 shows the fitting results at a series

of temperature values. At T = 0.31208, we get the best fitting result: β/ν = 0.5221±0.0036,

or β = 0.3213 ± 0.0092. This agrees with the rigid 3D Ising exponent β = 0.3270 ± 0.0015.

The critical temperature is therefore Tc = 0.31208, agrees with the one obtained in sect. 4.4
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Figure 4.11: The nonlinear least square fitting of β/ν near critical temperature, according
to Eq. 2.19. The horizontal solid lines are the fitted values of m̃(xt) = m+ ∗Lβ/ν . At T = Tc,
m̃(xt) = m̃(0) becomes independent of lattice size L, therefore, remains constant for all
lattice sizes.

within one standard deviation. The fitting results at different temperature values are shown

in Table 4.3.

The exponent γ/ν is determined by the scaling behavior of the finite-lattice susceptibility

defined in Eq.2.21. Fig. 4.12 shows that the fitting is rather rough. The estimate is γ/ν =

2.027± 0.0045 at T = 0.31210, and the estimate for γ is γ = 1.27± 0.01, which is also close

to the ε-expansion result γ = 1.2390 ± 0.0025.
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Table 4.3: Estimates for β/ν near critical temperature

K β/ν
0.31220 0.5396 ± 0.0020
0.31215 0.5354 ± 0.0037
0.31208 0.5221 ± 0.0036
0.31205 0.5088 ± 0.0036
0.31202 0.5008 ± 0.0036
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Figure 4.12: The nonlinear least square fitting of γ/ν near critical temperature, according to
Eq. 2.21. The horizontal solid lines are the fitted values of χ̃(xt) = χ+ ∗ L−γ/ν . At T = Tc,
χ̃(xt) = χ̃(0) becomes independent of lattice size L, therefore, remains constant for all lattice
sizes.
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4.7 Summary

We have seen that the order parameter distribution is the same as that of the rigid 3D Ising

model. So are all the critical exponents and the Binder cumulant crossing. We can conclude

with confidence that the phase transition belongs to the rigid 3D Ising universality class,

despite the added elasticity. This result disagrees with theoretical predictions [22].



Chapter 5

Elasticity in the Antiferromagnetic Diamond Model

We have seen that the critical transition temperature for the antiferromagnetic diamond

model is quite different from that of the rigid model, but the phase transition still belongs

to the universality class of rigid Ising model. Is this because the model is too rigid? To

answer this question, we will assess the elasticity in this model. However, this is a rather

vague issue. The theory doesn’t tell us how much elasticity is sufficient to see the deviation

from Ising behavior, neither does it point out how to measure the elasticity. We will examine

the elasticity in five approaches: the bond length distribution, the energy distribution, the

coefficient distributions of prefactors (defined later), the coefficient distributions of the Ising-

like Hamiltonian, and the field mixing effect.

5.1 Bond Length Distribution

As shown in Fig.5.1, the nearest-neighbor bond length distributions are quite broad, with

the half-height-width being about 20% of the mean value, which means our model is indeed

very fluffy. Note that not all maxima occur at the same bond length value, because different

bonds have different equilibrium lengths . Fig.5.1 also shows the uniformity of elasticity in

the system, because the bond length distribution of all sites and that of a single site agree

very well and almost overlap with each other.

5.2 Energy Distribution

Bond length variation leads to energy changes. In this section, we will separate the total

energy into two parts: the first part is independent of the nearest-neighbor bond lengths,
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Figure 5.1: The first three bond length distribution (a), (b) and (c) are normalized together.
That is, their covered areas reflect their relative concentrations. Plot (d) is the distribution
of all bonds, which is the sum of (a), (b) and (c). Plot (e) shows the bond length distribution
of a single site over time.

and is called the chemical energy; the second part depends on the nearest-neighbor bond

lengths, therefore, is related to the elasticity, and is called the elastic energy. The two-body

SW potential can be Taylor-expanded in terms of bond length rij’s as

H2 = −
∑

i<j

ε(Si, Sj) +
∑

i<j

O(rij).

The first term is independent of bond lengths and is the chemical energy.

Echem = −
∑

i<j

ε(Si, Sj). (5.1)

The second part consists of higher order terms of H2 that depend on bond lengths. The

elastic energy, EElastic, consisting of H3 and the high-order terms of H2, depends on the bond

lengths and angles. Even without elasticity, i.e., in a rigid Ising model, the chemical energy

fluctuates as spins flip. In Fig.5.2 we show the distributions of the chemical energy and the
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Figure 5.2: The chemical energy and elastic energy distributions near critical temperatures
in various models: A1,A2) Antiferromagnet at constant pressure.B1,B2) Ferromagnet at
constant pressure.C1,C2) Ferromagnet at constant volume.

elastic energy in antiferromagnetic and ferromagnetic models. The two ferromagnetic models

are identical to those reported in Ref. [14] and Ref. [23], and they are used for comparison

purpose here. We see that the distributions of elastic energy are symmetric, while those

of chemical energy are asymmetric. In the antiferromagnet, the half-height-width of elastic

energy distribution (0.027eV ) is slightly larger than that of chemical energy (0.025eV ). In

the ferromagnets, the elastic energy distributions are far narrower than their chemical energy

counterparts. From this point of view, there is much more elasticity in the antiferromagnetic

model than in the ferromagnetic models.
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5.3 LGW Expansion Coefficient Distributions

While the above two measurements indicate there is sufficient elasticity in the model, they

mingle the translational and pseudospin degrees of freedom. Dünweg [40] suggested a clean

way as follows to separate the two degrees of freedom. First, we expand the two-body inter-

action as below.

H2(Si, Sj, rij) = A(rij)SiSj + B(rij)Si + C(rij)Sj + D(rij) (5.2)

There are four combinations of (Si, Sj) for a rij, which gives the four equations in equation

array 5.3.



















H2(+1, +1, rij)

H2(+1,−1, rij)

H2(−1, +1, rij)

H2(−1,−1, rij)
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




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
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









(5.3)

Then calculate the 4 coefficients A, B, C, and D as functions of rij in terms of H2(1, 1, rij),

H2(1,−1, rij), H2(−1, 1, rij), and H2(−1,−1, rij). The solution is straightforward – the trans-

pose of the coefficient matrix.
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(5.4)

Similarly, the three-body interaction is expanded as

H3(Si, Sj, Sk, rij, rjk, θijk) = ESiSjSk + FSiSj + GSjSk

+PSkSi + QSi + RSj

+SSk + T (5.5)
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where E, F , G, P , Q, R, S, and T are coefficients dependent on rij, rjk and θijk. These eight

coefficients can also be calculated in terms of H3’s at the eight combinations of Si, Sj, and

Sk. The equation array is


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
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T (rij, rjk, θijk)













































(5.6)
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And the solution is













































E(rij, rjk, θijk)

F (rij, rjk, θijk)

G(rij, rjk, θijk)

P (rij, rjk, θijk)

Q(rij, rjk, θijk)

R(rij, rjk, θijk)

S(rij, rjk, θijk)

T (rij, rjk, θijk)













































=

1

8













































1 −1 −1 1 −1 1 1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1 1

























































































H3(+1, +1, +1, rij, rjk, θijk)

H3(+1, +1,−1, rij , rjk, θijk)

H3(+1,−1, +1, rij , rjk, θijk)

H3(+1,−1,−1, rij , rjk, θijk)

H3(−1, +1, +1, rij , rjk, θijk)

H3(−1, +1,−1, rij , rjk, θijk)

H3(−1,−1, +1, rij , rjk, θijk)

H3(−1,−1,−1, rij , rjk, θijk)













































(5.7)

Now we define the total prefactor as the sum of the coefficients of all the nearest-

neighbor term SiSj’s. As suggested by B. Dünweg (but I am not convinced), the width of

the total prefactor distribution indicates the elasticity of the model. Fig.5.3 shows the total

prefactor distributions in the ferromagnetic and antiferromagnetic cases. The half-height

distribution width of the ferromagnet at constant pressure is about 11% of the mean value,

while that of the ferromagnet at constant volume is only 0.1% of its mean value. The half-

height width of the antiferromagnet at constant pressure is 0.5% of its mean value. Since an

apparent deviation from the rigid Ising behavior is observed in the ferromagnet at constant

volume [23], it seems that even 0.1% of variation is good enough to incur non-Ising behavior.
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Figure 5.3: The prefactor distributions near critical temperatures in various models:
A)Antiferromagnet at constant pressure.B)Ferromagnet at constant pressure.C)Ferromagnet
at constant volume.

From this measurement, we cannot say that our antiferromagnetic model is not sufficiently

elastic.

5.4 Ising-like Hamiltonian Equivalence

The physical meaning of the so-called total prefactor is still unclear since it is just a sum

of coefficients. It never appears in the Hamiltonian. Instead, we rewrite the Hamiltonian in

an Ising-like fashion

H = −J0 −
∑

j

J1(j)Sj −
∑

ij

J2(i, j)SiSj −
∑

ijk

J3(i, j, k)SiSjSk, (5.8)

where J0 is a constant term, J1(j) is the equivalent coefficient of single-spin term Sj, J2(i, j)

is the equivalent coefficient of two-spin term SiSj, and J3(i, j, k) is the equivalent coefficient

of three-spin term SiSjSk. Using Eq. 5.2 and Eq. 5.5, we can see the relationship between
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Figure 5.4: Comparing J2 distributions in three systems. The J2(i, j)’s have been normalized
by their critical temperatures, respectively.

these J ’s and those decomposing coefficients. For J0, we have

J0 = −
∑

NN<ij>

D(rij) −
∑

<ijk>

T (rji, rjk, θijk)

And J3(i, j, k) = E(rji, rjk, θijk). For other J ’s, the relationship is not so explicit. J1(j) is the

sum of Cj and the twelve Rj’s that involves spin Sj. J2(i, j) is the sum of A(rij) and the six

Fij’s that involves the two-spin term SiSj. Nonetheless, the calculations of J ’s are easy to

implement in the code. Fig. 5.4 shows the distributions of J2’s in different systems, because

we expect J2 to determine the order of spins (ferromagnet or antiferromagnet). Again, we use

the relative width, i.e. the ratio of the standard deviation to the mean value, to indicate the

elasticity. We can see the J2 distribution for the antiferromagnet is the narrowest among the

three. However, J2 turns out to be positive for all three cases. And it should be negative for

the antiferromagnet. A possible explanation is that the J2 is insignificant comparing to J1 or
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Figure 5.5: Comparing J1 distributions in three systems. The J1’s have been normalized by
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J0. Maybe J1 should be a staggered field, which means that it should have a distribution with

symmetric double peaks around zero. Fig. 5.5 shows the J1 distributions. The J1 distribution

of the antiferromagnet is narrowest, has the least absolute values, and is negative. Still, it

does NOT explain why the system is antiferromagnetic. We come to a point where we really

cannot assess the elasticity this way. For this reason, we use an elasticity-adjustable model

in next chapter.

5.5 Field Mixing Effect

We also checked the field mixing effect in these models. We find no field mixing effect in

these transitions in the antiferromagnetic model, because the order parameter distribution

fits to universal 3d Ising distribution without any field-mixing calculation. However, there
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Figure 5.6: The order parameter distribution of the ferromagnet at constant pressure. The
original data is taken at h = −0.239755, and T = 0.0213eV, near the critical temperature.
The lattice size is L = 12, and data amount 8.4× 106 MCS. The reweighted critical point is
(Tc = 0.02161eV, h = −0.239777eV). The field mixing coefficient is s = 4.17.

is a strong field-mixing effect in the ferromagnetic model at constant pressure, as shown in

Fig. 5.6. In fact, the magnetization m and the SW potential W distributions are comple-

mentary to each other. Their linear combination, m−sW , is the order parameter. Note that

the internal energy E = −hm + W = −h(m − 1
h
W ). So the new field-mixing parameter

happened to be the internal energy. This is reasonable because the internal energy follows

the Gaussian distribution for the mean field universality class. The field-mixing coefficient,

therefore, should be s = 1
h
. This is verified by the result s = 4.17 = 1/0.239777 = 1/h.
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5.6 Summary

These elasticity analyses give contradicting and even unphysical results, which shows the

difficulty of separating the elasticity and pseudospin coupling in the SW potential. It would

be much easier if we can adjust the elasticity by explicitly modifying a single parameter.



Chapter 6

The Stacked Triangular Lattice

As pointed out in the previous chapter, it is very difficult to separate the elasticity and

pseudospin couplings in the SW potential in the antiferromagnetic diamond model. There-

fore, we now turn our attention to an elasticity-tunable Ising model on a deformable stacked

triangular lattice. Another reason that drives us to investigate this model is that the results

of the Boubcheur group [24] on this model are quite unusual. Fig. 6.1 shows the time evo-

lution of the model they reported. They find a very strong autocorrelation around 500,000

Monte Carlo steps, while the autocorrelation at the beginning appears to be weak, which is

somewhat unphysical in our opinion.

6.1 Model

The system consists of a stacked triangular lattice. Let the z-direction be the direction of

stacking, then the xy plane consists of equilateral triangles. The XY planes (layers) directly

stack over adjacent layers without any horizontal displacement. The Hamiltonian is described

by

H = U0

∑

<i,j>

J(rij) + Um

∑

<i,j>

J(rij)σiσj, (6.1)

where the first and second terms are the cohesive and magnetic interactions, respectively.

Both interactions are given by the Lennard-Jones potential

J(rij) = (r0/rij)
12 − 2(r0/rij)

6, (6.2)

where rij = |ri − rj| is the distance between spins at the ith and jth sites, r0 is the equilib-

rium distance between the nearest-neighbor(NN) spins. The ratio Q = U0/Um measures the

57
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Figure 6.1: The time evolution of the stacked triangular Ising model reported by Boubcheur
and Diep. Lattice size L = 20, T = 5.128, Q = 8.

rigidity of the model in a very direct way. By increasing ( or decreasing ) Q, we can decrease

( or increase ) the elasticity of the model. When Q goes to infinity, the model becomes

completely rigid.

It should be pointed out that such a system is unstable since the system would prefer

FCC structure when there are only two-body interactions. When the rigidity ratio Q is too

small, the whole system might become invalid.

We take Um = 1 , which makes the system ferromagnetic because J(rij) is negative

around equilibrium. The simulation is done in a semi-grand-canonical ensemble at constant

volume. According to Boubcheur [24], for Q > 4, the critical behavior is rigid 3d Ising. This

agrees with our simulational results. For Q = 3, Boubcheur reported 3d XY behavior, our
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Figure 6.2: The time evolution of the first 500 MCS. The dotted line is for visualization only.
Data obtained at L = 20, Q = 8, T = 5.128.

simulational results shows that it is still rigid 3d Ising. We will go through the results quickly

since the data analysis techniques have been introduced in previous chapters.

6.2 Time Evolution

We attempted to repeat the simulation in Ref. [24] by setting Q = 8, T = 5.128 and the

system size L = 20. The time evolution is shown in Fig. 6.2 and Fig. 6.3.

We can see that the system quickly (takes less than 100 MCS) approaches equilibrium

at the above condition, and there is no strong correlation after reaching equilibrium. This

is already above the critical temperature for Q = 8, and the magnetization only fluctuates

around zero.
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Figure 6.3: The time evolution of the first 2, 000, 000 MCS. The dotted line is for visualization
only. Data obtained at L = 20, Q = 8, T = 5.128.

6.3 Order Parameter Distribution

The distribution of magnetization is shown in Fig.6.4. The lattice sizes run from L = 16 to

48. Again, this is exactly rigid 3d Ising-like.

6.4 extract 1/ν

As we did for the diamond lattice, the exponent ν can be extracted from the scaling behaviors

of various thermodynamic derivatives in Fig.6.5. The results are shown in Table 6.1. The

estimate is 1/ν = 1.5986± 0.0071, or ν = 0.6255± 0.0028. This value is very close to that of

the rigid 3D Ising universality class, ν = 0.627 ± 0.002 [9].
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Table 6.1: Estimates for 1/ν obtained by finite size scaling of the maximum slopes of the
cumulant and the logarithmic derivatives of m2 and |m|.

1/ν
U4 1.587 ± 0.015

log < |m| > 1.600 ± 0.007
log < m2 > 1.603 ± 0.007

Table 6.2: Estimates for Kc obtained by finite size scaling of the locations of the maximium
slopes of various thermodynamic derivatives.

Kc

C 0.222 191 ± 0.000 006
U4 0.222 182 ± 0.000 005

log < m2 > 0.222 191 ± 0.000 003
log < |m| > 0.222 189 ± 0.000 002

χ 0.222 193 ± 0.000 002
|m| 0.222 181 ± 0.000 006

6.5 extract Kc

The finite size scaling results of Kc from various quantities are given in Fig.6.6 and Table

6.2. The Kc is very close to that of the rigid simple cubic 3D Ising reported in Ref.[9]. The

estimate is Kc = 0.222 19±0.000 05 (which is accidentally close to the rigid 3d Ising critical

temperature 0.221 67 ± 0.000 02 [9]).

6.6 Binder Cumulant Crossing

The finite size effect of the Binder cumulant is shown in Fig.6.7. A closer look is given in

Fig.6.8. The estimated value is 0.465± 0.005. The crossing value is very close to that of the

rigid 3D Ising universality U∗
4 = 0.47 [9].
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6.7 extract β

Fig.6.9 shows the finite size effect of magnetization. The nonlinear least square fit is shown

in Fig.6.10. The estimated value is β = 0.317 ± 0.006, slightly smaller than the Ising value

β = 0.3258 ± 0.0044 [9].

6.8 extract γ

We can extract the exponent γ by examining the finite size scaling behaviors of the suscepti-

bility χ, as shown in Fig.6.11 and Fig.6.12. The best fitting is at temperature T = 4.5005. The

estimated value is γ = 1.252±0.005 which is close to the Ising exponent γ = 1.2470±0.0039.
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Figure 6.13: The finite size effect of the specific heat near criticality.

6.9 extract α

The exponent α can be extracted from the scaling behavior of specific heat C, as shown in

Fig.6.13 and Fig.6.14. The fitting result is α = 0.144 ± 0.005 which is larger than the rigid

3D Ising value 0.1070 [41].

6.10 Summary

Despite the high elasticity in the stacked triangular lattice, the phase transition still belongs

to rigid 3d Ising universality class within our lattice size range. We did not find any hint of

crossover towards a first order transition, as predicted by the theory.
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Chapter 7

Conclusion and Future Work

We have investigated the critical phase behavior of an elastic antiferromagnetic Ising model

with SW potential and thoroughly assessed its elastic degree of freedom. The simulations were

performed at constant pressure on a semi-grand-canonical ensemble. The phase transition

is found second order everywhere, which disagrees with the theory. The reason might be

that the theory is overly simplified, or our lattice sizes are not large enough. Note that

Dünweg [22] also points out that the deviation from Ising transition is intrinsically harder

to detect in antiferromagnet case due to the quadratic coupling of the order parameter with

the strain tensor in antiferromagnet. By examining the order parameter distribution and

critical exponents, especially the crossing point of the Binder cumulant, we believe that the

transition belongs to the universality class of the rigid three dimensional Ising model.

We also studied the critical phase behavior of a stacked triangular lattice at constant

volume on a semi-grand-canonical ensemble that was reported to behave differently from

the rigid 3d Ising model. However, the order parameter distribution, the Binder cumulant

crossing and critical exponents unanimously show that it is still rigid 3d Ising-like. Future

improvements may be made by re-implementing the system on a FCC lattice which is stable

even if only two-body interactions exist. The system may also be made antiferromagnet with

volume fluctuation, which involves some nontrivial changes of the code. Promising results

might be possible after such changes.
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Appendix A

Code for the Compressible Diamond Model

A.1 The FORTRAN Code

c@PROCESS DIRECTIVE (’*VDIR:’)

PROGRAM DIAM8

C

C VERSION JAN 12, 1992

C FOR IBM ES / 9000

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

C CORRECTED THE STATISTICAL TREATMENT OF THE VACANCIES

C

C MONTE CARLO SIMULATION OF A 3D SEMICONDUCTOR ALLOY

C INCLUDING VACANCIES ON A 3D DIAMOND LATTICE

C AT CONSTANT PRESSURE Z E R O

C BOTH BULK SIMULATION AND THIN FILM GEOMETRY

C ELASTIC CONTRIBUTIONS VIA STILLINGER-WEBER POTENTIAL

C *****************

C THE LATTICE IS SET UP AS 8 INTERPENETRATING

C SIMPLE CUBIC LATTICES EACH OF WHICH HAS UNIT LATTICE CONSTANT

C SQUARE OF NEAREST NEIGHBOR DISTANCE IS 3 * 0.25 ** 2 = 0.1875

C THE FIRST 4 AND THE SECOND 4 SUBLATTICES FORM AN FCC, RESPECTIVELY

C SEE ASHCROFT / MERMIN P. 76

C THE 8 SUBLATTICES ARE INDEPENDENT; VECTORIZATION

C BY STANDARD CHECKERBOARD METHOD

C FOR NEIGHBOR TABLE SETUP IN THE BEGINNING,

C THE SC SUBLATTICE HAS LATTICE CONSTANT 4

C NUMBER OF PARTICLES IS NDIAM

C

C STATUS OF EACH SITE:

C 0 - VACANCY

C 1 A-ATOM

C -1 B-ATOM

C
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C EACH SITE NEEDS 5 RANDOM NUMBERS:

C 3 FOR NEW COORDINATES

C 1 FOR NEW STATUS

C 1 FOR ACCEPTANCE

C

C MOREOVER, 4 RANDOM NUMBERS ARE NEEDED FOR BOX FLUCTUATIONS

C 3 FOR THE SPATIAL DIRECTIONS

C 1 FOR ACCEPTANCE

C

C THE SIMULATION USES THE TAUSWORTHE GENERATOR (1279,1063)

C

C

C BEGINNING OF DECLARATIONS

C

C

PARAMETER(LSIMPX=24)

PARAMETER(LSIMPY=24)

PARAMETER(LSIMPZ=24)

PARAMETER(NCAN=1000)

C

PARAMETER(PSIMPX=LSIMPX)

PARAMETER(PSIMPY=LSIMPY)

PARAMETER(PSIMPZ=LSIMPZ)

PARAMETER(FSIMPX=1.D0/PSIMPX)

PARAMETER(FSIMPY=1.D0/PSIMPY)

PARAMETER(FSIMPZ=1.D0/PSIMPZ)

C

PARAMETER(NSIMP=LSIMPX*LSIMPY*LSIMPZ)

PARAMETER(NDIAM=8*NSIMP)

C

PARAMETER(FACSYS=1.D0/NDIAM)

C

PARAMETER(NHALF=NDIAM/2)

PARAMETER(NDIAM2=2*NDIAM)

PARAMETER(NDIAM3=3*NDIAM)

PARAMETER(NDIAM4=4*NDIAM)

PARAMETER(NDIAM5=5*NDIAM)

C

PARAMETER(NRAND=NDIAM5+4)

C

PARAMETER(LS4X=4*LSIMPX)

PARAMETER(LS4Y=4*LSIMPY)

PARAMETER(LS4Z=4*LSIMPZ)

C

PARAMETER(NBIT=32)
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PARAMETER(MERS=1279)

C

C DECLARATIONS FOR THE RANDOM GENERATOR

C

INTEGER IRWRK(MERS)

INTEGER IRAN(NRAND)

INTEGER IRTOT(MERS + NRAND)

EQUIVALENCE(IRTOT(1),IRWRK(1))

EQUIVALENCE(IRTOT(1 + MERS),IRAN(1))

C

COMMON/RANCOM/IRTOT

C

C STATUS AND COORDINATES OF THE ATOMS

C PARTICLE NO. NDIAM + 1 AS A DUMMY PARTICLE

C IN CASE THE PROGRAM RUNS A FREE SURFACE

C

INTEGER ISTAT(NDIAM+1,2)

DOUBLE PRECISION XCOORD(NDIAM+1,2),a0(3)

DOUBLE PRECISION YCOORD(NDIAM+1,2)

DOUBLE PRECISION ZCOORD(NDIAM+1,2)

C

C BIG SIMPLE CUBIC LATTICE FOR NEIGHBOR LIST SETUP

C

INTEGER LABEL(LS4X,LS4Y,LS4Z)

C

C NEIGHBOR TABLES

C

INTEGER NN(NDIAM,4)

INTEGER NNN(NDIAM,12)

C

C BONDS

C

DOUBLE PRECISION BONDX(NDIAM+1,4,2)

DOUBLE PRECISION BONDY(NDIAM+1,4,2)

DOUBLE PRECISION BONDZ(NDIAM+1,4,2)

DOUBLE PRECISION bondsq(NDIAM+1,4,2)

C

INTEGER INDBND(NDIAM+1,4,2)

DOUBLE PRECISION BOND2(NDIAM+1,4,2)

C

C TABLE OF ANGLES MADE UP BY TWO BONDS

C

INTEGER IANTBL(4,4)

C

C ANGLE TERMS
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C

INTEGER INDANG(NDIAM+1,6,2)

DOUBLE PRECISION ANGTRM(NDIAM+1,6,2)

C

C TEMPORARY ANGLE TERMS

C

INTEGER IANTMP(NDIAM,12)

DOUBLE PRECISION ANGTMP(NDIAM,12)

C

C ENERGY DIFFERENCE

C

DOUBLE PRECISION DELTAE(NDIAM)

DOUBLE PRECISION delta1(NDIAM),delta2(NDIAM),delta3(NDIAM)

DOUBLE PRECISION delta4(NDIAM)

C

C ACCEPTANCE POINTER

C

INTEGER IACC(NDIAM)

C

C HAMILTONIAN PARAMETERS

C

CCHEM DOUBLE PRECISION CHEM(-1:1)

CCHEM Define uniformed chemical potential and staggered potential

double precision UCHEM

double precision SCHEM

DOUBLE PRECISION EPS(-1:1,-1:1)

DOUBLE PRECISION ELAS(-1:1,-1:1)

DOUBLE PRECISION RIDEAL(-1:1,-1:1)

DOUBLE PRECISION RID2(-1:1,-1:1)

DOUBLE PRECISION RID3(-1:1,-1:1,-1:1)

DOUBLE PRECISION ANGLE(-1:1,-1:1,-1:1)

DOUBLE PRECISION lambda(-1:1),ffat

C

DOUBLE PRECISION EPS1(9)

DOUBLE PRECISION ELAS1(9)

DOUBLE PRECISION RIDE1(9)

DOUBLE PRECISION RID21(9)

DOUBLE PRECISION RID31(27)

DOUBLE PRECISION ANGLE1(27)

EQUIVALENCE (EPS1(1),EPS(-1,-1))

EQUIVALENCE (ELAS1(1),ELAS(-1,-1))

EQUIVALENCE (RIDE1(1),RIDEAL(-1,-1))

EQUIVALENCE (RID21(1),RID2(-1,-1))

EQUIVALENCE (RID31(1),RID3(-1,-1,-1))

EQUIVALENCE (ANGLE1(1),ANGLE(-1,-1,-1))
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C

C TRANSLATION VECTORS TO THE SUBLATTICES

C

INTEGER IOFFX(8)

INTEGER IOFFY(8)

INTEGER IOFFZ(8)

C

C JUMP VECTORS TO THE NEAREST NEIGHBORS, STARTING

C FROM SITES OF THE FIRST FCC SUBLATTICE

C

INTEGER JUMPX(4), JUMPY(4), JUMPZ(4)

C

C HELP ARRAYS FOR NEXT NEAREST NEIGHBORS

C

INTEGER IEXCL(3,4)

C

C FUNCTIONS

C

DOUBLE PRECISION func2,func3,ry,ry1,ry2

C

C

C STATISTICAL AVERAGES

C

DOUBLE PRECISION UAV(4)

DOUBLE PRECISION FAV(-1:1,2,4)

DOUBLE PRECISION UMXAV(4)

DOUBLE PRECISION ORDAV(4)

DOUBLE PRECISION VAV(4)

DOUBLE PRECISION ACCAV

DOUBLE PRECISION ACVAV

DOUBLE PRECISION a0V,a02

DOUBLE PRECISION DISTMED(4),DISTMED2(4),ODISTMED(4),ODISTMED2(4)

DOUBLE PRECISION SIGMAD(4),SIGMADNUM(4),RNUMDIST(4)

DOUBLE PRECISION RNUMDIST2(4)

DOUBLE PRECISION ANGMED(6),ANGMED2(6),RNUMMED(6),RNUMMED2(6)

DOUBLE PRECISION SIGMAANG(6),SIGMANUM(6),DANGMED(6),DANGMED2(6)

DOUBLE PRECISION FAC(6),FACTO(4),FACT3

DOUBLE PRECISION concsi,concge,inv_csi,inv_cge

INTEGER NUMDIST(4),NUMDIST2(4),NUMDIST1(4),NUMB(4)

INTEGER NUMMED(6),NUMMED2(6),NUM1(6)

C

DOUBLE PRECISION UAVOUT(4)

DOUBLE PRECISION FAVOUT(-1:1,2,4)

DOUBLE PRECISION UMXOUT(4)

DOUBLE PRECISION ORDOUT(4)
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DOUBLE PRECISION VAVOUT(4)

DOUBLE PRECISION ACCOUT

DOUBLE PRECISION ACVOUT

C

C C(n)

C

DOUBLE PRECISION cng1(0:9),cns1(0:9)

DOUBLE PRECISION c2s1(0:12),c2g1(0:12),ctots1(0:16),ctotg1(0:16)

INTEGER cng(0:9),cns(0:9),c2s(0:12),c2g(0:12),ctots(0:16)

INTEGER ctotg(0:16)

CZHU variables related to parallelization

integer myID, ierror,numprocs,f21,f22,f23,f27,f28,f24,ioffset

C

C HISTOGRAM (G(r), P(teta))

C

DOUBLE PRECISION RINT(4),DMAX(4),DMIN(4)

DOUBLE PRECISION RHISTO(NCAN,4),d0(NCAN,4),DNN(4)

DOUBLE PRECISION RHISTANG(NCAN,6),teta(NCAN),ANG(6),DEG

INTEGER NUM(6),HISTO(NCAN,4),HISTANG(NCAN,6)

pigreek=dacos(-1.d0)/180.d0

CZHU

CZHU parallelizing the code

CZHU initialization

CZHU

CALL MPI_INIT(ierror)

CALL MPI_COMM_RANK(MPI_COMM_WORLD,myID,ierror)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs, ierror)

ioffset=(myID-2)*10

f21=21+ioffset

f22=22+ioffset

f23=23+ioffset

f27=27+ioffset

f28=28+ioffset

f24=24+ioffset

WRITE(f24,*) ’After MPI call. Next, read input’

C

C DECLARATION PART FINISHED

C

C READING OF SIMULATION PARAMETERS FROM INPUT FILE

C

C

IFREES = 0

READ(5,*) IFREES

READ(5,*) MCSINI
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READ(5,*) MCSMAX

READ(5,*) NOUTCF

READ(5,*) NOUTOB

READ(5,*) MSTART

READ(5,*) NOUTAV

READ(5,*) ISEED

READ(5,*) PMOV

READ(5,*) PBOX

READ(5,*) TEMP

do l=1,4

READ(5,*) dmin(l)

READ(5,*) dmax(l)

enddo

c

WRITE(f24,*) ’My process ID is ’,myID

WRITE(f24,*) ’Original ISEED = ’, ISEED

ISEED=ISEED+947582*myID

WRITE(f24,*) ’ISEED = ’,ISEED

WRITE(f24,*) ’TOTAL NUMBER OF SIMULATED SITES = ’,NDIAM

WRITE(f24,*) ’SIMULATION GEOMETRY (0=BULK, 1=THIN FILM) = ’,IFREES

WRITE(f24,*) ’INITIAL VALUE FOR TIME MCS (USUALLY 1) = ’,MCSINI

WRITE(f24,*) ’FINAL VALUE FOR TIME MCS = ’,MCSMAX

WRITE(f24,*) ’TIME INTERVAL FOR DUMPING CONFIGURATIONS = ’,NOUTCF

WRITE(f24,*) ’TIME INTERVAL FOR OUTPUT OBSERVABLES = ’,NOUTOB

WRITE(f24,*) ’START AVERAGING AT MCS = ’,MSTART

WRITE(f24,*) ’TIME INTERVAL FOR OUTPUT STATISTICAL AVERAGES = ’,

* NOUTAV

WRITE(f24,*) ’MAXIMUM TRIAL MOVE = ’,PMOV

WRITE(f24,*) ’MAXIMUM RELATIVE MOVE IN BOX SIZE = ’,PBOX

WRITE(f24,*) ’ ’

WRITE(f24,*) ’TEMPERATURE = ’,TEMP

WRITE(f24,*) ’ ’

WRITE(f24,*) ’Parameters for g(r)’

c

KOUTCF = NOUTCF + MCSINI - 1

KOUTOB = NOUTOB + MCSINI - 1

KOUTAV = NOUTAV + MSTART - 1

BETA = 1.D0 / TEMP

CZHU

CZHU dealing with the case TEMP=0.0

CZHU

if(TEMP.EQ.0.0)then

BETA=1.0e30

WRITE(f24,*) ’temp = 0, reset beta ’

WRITE(f24,*) ’BETA = ’, BETA
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endif

c

C

C HAMILTONIAN PARAMETERS

C

CCHEM DO 2 I = -1,1

CCHEM CHEM(I) = 0.D0

CCHEM 2 CONTINUE

UCHEM=0.D0

SCHEM=0.D0

DO 3 I = 1,9

EPS1(I) = 0.D0

RIDE1(I) = 0.D0

RID21(I) = 0.D0

3 CONTINUE

DO 4 I = 1,27

RID31(I) = 0.D0

ANGLE1(I) = 0.D0

4 CONTINUE

C

CCHEM READ(5,*) CHEM(1)

CCHEM READ(5,*) CHEM(-1)

read(5,*) UCHEM

read(5,*) SCHEM

READ(5,*) EPS(1,1)

READ(5,*) EPS(-1,-1)

READ(5,*) EPS(1,-1)

READ(5,*) RID2(1,1)

READ(5,*) RID2(-1,-1)

READ(5,*) RID2(1,-1)

c

READ(5,*) lambda(1)

READ(5,*) lambda(-1)

c

WRITE(f24,*) ’ ’

CCHEM WRITE(f24,*) ’CHEMICAL POTENTIAL SPECIES A = ’,CHEM(1)

CCHEM WRITE(f24,*) ’CHEMICAL POTENTIAL SPECIES B = ’,CHEM(-1)

WRITE(f24,*) ’UNIFORM CHEMICAL POTENTIAL = ’,UCHEM

WRITE(f24,*) ’STAGGERED CHEMICAL POTENTIAL = ’,SCHEM

WRITE(f24,*) ’ ’

WRITE(f24,*) ’BOND ENERGY A - A = ’,EPS(1,1)

WRITE(f24,*) ’BOND ENERGY B - B = ’,EPS(-1,-1)

WRITE(f24,*) ’BOND ENERGY A - B = ’,EPS(1,-1)

WRITE(f24,*) ’ ’
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WRITE(f24,*) ’BOND LENGTH A - A = ’,RID2(1,1)

WRITE(f24,*) ’BOND LENGTH B - B = ’,RID2(-1,-1)

WRITE(f24,*) ’BOND LENGTH A - B = ’,RID2(1,-1)

WRITE(f24,*) ’ ’

c

EPS(-1,1) = EPS(1,-1)

RID2(-1,1) = RID2(1,-1)

c

c SCALE ALL DISTANCE WITH RESPECT TO SILICON LATTICE CONSTANT

c

fatt1=1.d0

a0(1)=5.6487488

a0(2)=0.0

a0(3)=5.4219888*fatt1

a02=a0(3)**2

a0V=a0(3)/LSIMPX

c

do i=1,9

RID21(I)=RID21(I)/a0(3)

enddo

c

C

C SCALE ALL ENERGIES WITH TEMPERATURE

C DEFINE MORE BOND LENGTH CONSTANTS

C

CCHEM DO 5 I = -1,1

CCHEM CHEM(I) = BETA * CHEM(I)

CCHEM 5 CONTINUE

UCHEM=BETA*UCHEM

SCHEM=BETA*SCHEM

ffat=2.d0**(-0.1666666666)

DO 6 I = 1,9

EPS1(I) = BETA * EPS1(I)

RIDE1(I) = RID21(I)*ffat

6 CONTINUE

WRITE(f24,*)

WRITE(f24,*)’ANGLE CONSTANTS’

DO 8 K = -1,1

DO 8 J = -1,1

DO 8 I = -1,1

RID3(I,J,K) = (lambda(I)*(lambda(J)**2)*lambda(K))

1 **(0.25) * sqrt(EPS(I,J) * EPS(J,K))

WRITE(f24,*)I,J,K,RID3(I,J,K)*TEMP

8 CONTINUE
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c From John’s input file:

c RID3(1,1,1)=45.47

c RID3(-1,-1,-1)=59.83

c RID3(1,-1,1)=52.1093

c RID3(-1,1,-1)=52.1093

c RID3(1,-1,-1)=55.8337

c RID3(-1,1,1)=48.4239

c

WRITE(f24,*) ’ ’

WRITE(f24,*) ’TEMP = ’,TEMP

C

C INITIAL CONFIGURATION: EACH FCC SUBLATTICE UNIFORMLY

C FILLED WITH ONE SPECIES, AND PERFECTLY ORDERED

C DIAMOND LATTICE. FIND OUT LOWEST ENERGY, TAKING

C INTO ACCOUNT THESE CONSTRAINTS.

C START WITH ALL B

C

ISTAT1 = 1

ISTAT2 = -1

CCHEM UINT = - CHEM(1) - 2.D0 * EPS(1,1)

UINT = - 2.D0 * EPS(1,1)

DO 15 J = -1,1

DO 15 I = -1,1

INDOLD = 5 + 3 * I + J

if (ABS(RIDE1(INDOLD)).gt.0.000001) THEN

ry=.433012702/RIDE1(INDOLD)

else

ry=1000000

endif

CCHEM TST = - 0.5D0 * CHEM(J) - 0.5D0 * CHEM(I)

TST = -UCHEM*(I+J)-SCHEM*(I-J)

& + 2.D0 * EPS(I,J) * func2(ry)

WRITE(f24,*)’UINT all’’inizio del run:’,TST * TEMP,I,J

IF(TST.LT.UINT) THEN

ISTAT1 = I

ISTAT2 = J

UINT = TST

END IF

15 CONTINUE

UOUT = UINT * TEMP

WRITE(f24,*) ’ ’

WRITE(f24,*) ’INITIAL SETTING:’

WRITE(f24,*) ’SIMULATION WILL START IN STATE ’,ISTAT1,’ ’,ISTAT2

WRITE(f24,*) ’AT INTERNAL ENERGY PER SITE ’,UOUT

WRITE(f24,*) ’ ’
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C

C DEFINE SHIFT VECTORS TO THE ORIGINS OF THE

C VARIOUS SUBLATTICES

C

IOFFX(1) = 0

IOFFY(1) = 0

IOFFZ(1) = 0

C

IOFFX(2) = 2

IOFFY(2) = 2

IOFFZ(2) = 0

C

IOFFX(3) = 2

IOFFY(3) = 0

IOFFZ(3) = 2

C

IOFFX(4) = 0

IOFFY(4) = 2

IOFFZ(4) = 2

C

IOFFX(5) = 1

IOFFY(5) = 1

IOFFZ(5) = 1

C

IOFFX(6) = 3

IOFFY(6) = 3

IOFFZ(6) = 1

C

IOFFX(7) = 3

IOFFY(7) = 1

IOFFZ(7) = 3

C

IOFFX(8) = 1

IOFFY(8) = 3

IOFFZ(8) = 3

C

C FILL THE LATTICE WITH PARTICLE INDICES IN THE FOLLOWING ORDER:

C SUBLATTICE 1

C SUBLATTICE 2

C ETC.

C

IPART = 0

DO 20 ISUBL = 1,8

DO 20 IZ = 1 + IOFFZ(ISUBL),LS4Z + IOFFZ(ISUBL),4

DO 20 IY = 1 + IOFFY(ISUBL),LS4Y + IOFFY(ISUBL),4
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DO 20 IX = 1 + IOFFX(ISUBL),LS4X + IOFFX(ISUBL),4

IPART = IPART + 1

LABEL(IX,IY,IZ) = IPART

20 CONTINUE

C

C DEFINE THE JUMP VECTORS TO THE NEAREST NEIGHBORS

C

JUMPX(1) = 1

JUMPY(1) = 1

JUMPZ(1) = 1

C

JUMPX(2) = 1

JUMPY(2) = -1

JUMPZ(2) = -1

C

JUMPX(3) = -1

JUMPY(3) = 1

JUMPZ(3) = -1

C

JUMPX(4) = -1

JUMPY(4) = -1

JUMPZ(4) = 1

C

C SET UP TABLE OF NEAREST NEIGHBORS

C IN CASE OF A FREE SURFACE, THE SURFACE SITES ARE

C NEIGHBORED BY THE DUMMY PARTICLE

C

DO 120 INN = 1,4

MOVX = JUMPX(INN)

MOVY = JUMPY(INN)

MOVZ = JUMPZ(INN)

DO 120 ISUBL = 1,8

IF(ISUBL.EQ.5) THEN

MOVX = - MOVX

MOVY = - MOVY

MOVZ = - MOVZ

END IF

DO 120 IZ = 1 + IOFFZ(ISUBL),LS4Z + IOFFZ(ISUBL),4

IZNEW = IZ + MOVZ

IZFLAG = 0

IF(IZNEW.LT.1) THEN

IZNEW = IZNEW + LS4Z

IF(IFREES.EQ.1) IZFLAG = 1

END IF

IF(IZNEW.GT.LS4Z) THEN
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IZNEW = IZNEW - LS4Z

IF(IFREES.EQ.1) IZFLAG = 1

END IF

DO 120 IY = 1 + IOFFY(ISUBL),LS4Y + IOFFY(ISUBL),4

IYNEW = IY + MOVY

IF(IYNEW.LT.1) IYNEW = IYNEW + LS4Y

IF(IYNEW.GT.LS4Y) IYNEW = IYNEW - LS4Y

DO 120 IX = 1 + IOFFX(ISUBL),LS4X + IOFFX(ISUBL),4

IXNEW = IX + MOVX

IF(IXNEW.LT.1) IXNEW = IXNEW + LS4X

IF(IXNEW.GT.LS4X) IXNEW = IXNEW - LS4X

IPART = LABEL(IX,IY,IZ)

IF(IZFLAG.EQ.1) THEN

NN(IPART,INN) = NDIAM + 1

ELSE

NN(IPART,INN) = LABEL(IXNEW,IYNEW,IZNEW)

END IF

120 CONTINUE

C

C FIND NEXT NEAREST NEIGHBORS

C REACH NNN NO. 1 - 3 VIA BOND NO. 1

C " " " 4 - 6 " " " 2

C " " " 7 - 9 " " " 3

C " " " 10 - 12 " " " 4

c

C

DO 130 INN = 1,4

KOUNT = 0

DO 130 KNN = 1,4

IF(KNN.NE.INN) THEN

KOUNT = KOUNT + 1

IEXCL(KOUNT,INN) = KNN

END IF

130 CONTINUE

C

DO 150 INN1 = 1,4

DO 150 INEXT = 1,3

INNN = (INN1 - 1) * 3 + INEXT

INN2 = IEXCL(INEXT,INN1)

MOVX = JUMPX(INN1) - JUMPX(INN2)

MOVY = JUMPY(INN1) - JUMPY(INN2)

MOVZ = JUMPZ(INN1) - JUMPZ(INN2)

DO 150 ISUBL = 1,8

IF(ISUBL.EQ.5) THEN

MOVX = - MOVX
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MOVY = - MOVY

MOVZ = - MOVZ

END IF

DO 150 IZ = 1 + IOFFZ(ISUBL),LS4Z + IOFFZ(ISUBL),4

IZNEW = IZ + MOVZ

IZFLAG = 0

IF(IZNEW.LT.1) THEN

IZNEW = IZNEW + LS4Z

IF(IFREES.EQ.1) IZFLAG = 1

END IF

IF(IZNEW.GT.LS4Z) THEN

IZNEW = IZNEW - LS4Z

IF(IFREES.EQ.1) IZFLAG = 1

END IF

DO 150 IY = 1 + IOFFY(ISUBL),LS4Y + IOFFY(ISUBL),4

IYNEW = IY + MOVY

IF(IYNEW.LT.1) IYNEW = IYNEW + LS4Y

IF(IYNEW.GT.LS4Y) IYNEW = IYNEW - LS4Y

DO 150 IX = 1 + IOFFX(ISUBL),LS4X + IOFFX(ISUBL),4

IXNEW = IX + MOVX

IF(IXNEW.LT.1) IXNEW = IXNEW + LS4X

IF(IXNEW.GT.LS4X) IXNEW = IXNEW - LS4X

IPART = LABEL(IX,IY,IZ)

IF(IZFLAG.EQ.1) THEN

NNN(IPART,INNN) = NDIAM + 1

ELSE

NNN(IPART,INNN) = LABEL(IXNEW,IYNEW,IZNEW)

END IF

150 CONTINUE

992 format(2(2x,I6),10x,I6)

C

C ASSIGN COORDINATES AND STATUS TO THE BULK PARTICLES

C

IOLDCF = 1

INEWCF = 2

C

IPART = 0

IASS = ISTAT1

DO 200 ISUBL = 1,8

IF(ISUBL.EQ.5) IASS = ISTAT2

DO 200 IZ = 1 + IOFFZ(ISUBL),LS4Z + IOFFZ(ISUBL),4

ZZZ = 0.25D0 * IZ

DO 200 IY = 1 + IOFFY(ISUBL),LS4Y + IOFFY(ISUBL),4

YYY = 0.25D0 * IY

DO 200 IX = 1 + IOFFX(ISUBL),LS4X + IOFFX(ISUBL),4
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IPART = IPART + 1

XCOORD(IPART,IOLDCF) = 0.25D0 * IX

YCOORD(IPART,IOLDCF) = YYY

ZCOORD(IPART,IOLDCF) = ZZZ

ISTAT(IPART,IOLDCF) = IASS

200 CONTINUE

C

C ASSIGN STATUS AND COORDINATES FOR THE DUMMY PARTICLE

C

XCOORD(NDIAM + 1,1) = 0.D0

XCOORD(NDIAM + 1,2) = 0.D0

YCOORD(NDIAM + 1,1) = 0.D0

YCOORD(NDIAM + 1,2) = 0.D0

ZCOORD(NDIAM + 1,1) = 0.D0

ZCOORD(NDIAM + 1,2) = 0.D0

ISTAT(NDIAM + 1,1) = 0

ISTAT(NDIAM + 1,2) = 0

C

C INITIALIZE RANDOM GENERATOR

C

CALL INIRAN(ISEED)

C

C NORMALIZATION FACTORS FOR THE RANDOM NUMBERS

C IBIG IS LARGEST INTEGER ON A NBIT MACHINE

C

IBIG = 2 ** (NBIT - 2)

IHLP = IBIG - 1

IBIG = IBIG + IHLP

FNORM = 1.D0 / IBIG

FNORM2 = FNORM * 2.D0

FNSTAT = FNORM * 3.D0

C

XBOX = PBOX * PSIMPX

YBOX = PBOX * PSIMPY

ZBOX = PBOX * PSIMPZ

FXBOX = XBOX * FNORM2

FYBOX = YBOX * FNORM2

FZBOX = ZBOX * FNORM2

C

PMOVX = PMOV * FSIMPX

PMOVY = PMOV * FSIMPY

PMOVZ = PMOV * FSIMPZ

C

C BOX SIZE PARAMETERS

C
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PERIX = PSIMPX

PERIY = PSIMPY

PERIZ = PSIMPZ

C

C THIS IS THE SETTING FOR SETUP FROM SCRATCH

C IF POSSIBLE, OVERWRITE THE CONFIGURATION BY

C DATA FROM INPUT FILE, UNIT 21

C

c do I=1,NDIAM

c read(28,*)XCOORD(I,IOLDCF),YCOORD(I,IOLDCF),

c & ZCOORD(I,IOLDCF),ISTAT(I,IOLDCF)

c enddo

c read(28,*)PERIX,PERIY,PERIZ

c

READ(f28,END=300) (IRWRK(I),I=1,MERS),

& (XCOORD(I,IOLDCF),I=1,NDIAM),

& (YCOORD(I,IOLDCF),I=1,NDIAM),

& (ZCOORD(I,IOLDCF),I=1,NDIAM),

& (ISTAT(I,IOLDCF),I=1,NDIAM),

& PERIX,PERIY,PERIZ

WRITE(f24,*) ’INITIAL SETTING OVERRIDDEN BY INPUT FILE’

300 CONTINUE

C

C

FPERIX = 2.D0 / PERIX

FPERIY = 2.D0 / PERIY

FPERIZ = 2.D0 / PERIZ

C

C DETERMINE SITE PART OF INTERNAL ENERGY

C

UINT = 0.D0

CCHEM DO 500 I = 1,NDIAM

DO 500 I = 1,NHALF

CCHEM UINT = UINT - CHEM(ISTAT(I,IOLDCF))

UINT=UINT-UCHEM*ISTAT(I,IOLDCF)-SCHEM*ISTAT(I,IOLDCF)

500 CONTINUE

DO 501 I = 1+NHALF,NDIAM

CCHEM UINT = UINT + CHEM(ISTAT(I,IOLDCF))

UINT=UINT-UCHEM*ISTAT(I,IOLDCF)+SCHEM*ISTAT(I,IOLDCF)

501 CONTINUE

C

C INITIALIZE BONDS

C

C

DO 510 INN = 1,4
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DO 510 I = 1,NDIAM

INEI = NN(I,INN)

INDOLD = 5 + 3 * ISTAT(INEI,IOLDCF) + ISTAT(I,IOLDCF)

DDXX = XCOORD(INEI,IOLDCF) - XCOORD(I,IOLDCF)

DDYY = YCOORD(INEI,IOLDCF) - YCOORD(I,IOLDCF)

DDZZ = ZCOORD(INEI,IOLDCF) - ZCOORD(I,IOLDCF)

DDXX = DDXX - PERIX * INT(FPERIX * DDXX)

DDYY = DDYY - PERIY * INT(FPERIY * DDYY)

DDZZ = DDZZ - PERIZ * INT(FPERIZ * DDZZ)

ddsq=sqrt(DDXX ** 2 + DDYY ** 2 + DDZZ ** 2)

ry=ddsq/ride1(INDOLD)

DD22 = EPS1(INDOLD) * func2(ry)

INDBND(I,INN,IOLDCF) = INDOLD

BONDX(I,INN,IOLDCF) = DDXX

BONDY(I,INN,IOLDCF) = DDYY

BONDZ(I,INN,IOLDCF) = DDZZ

BOND2(I,INN,IOLDCF) = DD22

bondsq(I,INN,IOLDCF) = ddsq

510 CONTINUE

C

C DETERMINE BOND PART OF INTERNAL ENERGY

C

WRITE(f24,*) ’H1 = CHEM =’,UINT* TEMP * FACSYS

RH1=UINT* TEMP * FACSYS

DO 560 INN = 1,4

DO 560 I = 1,NHALF

uu = uu + BOND2(I,INN,IOLDCF)

UINT = UINT + BOND2(I,INN,IOLDCF)

560 CONTINUE

WRITE(f24,*) ’H2 = UINT1 =’,UU * TEMP * FACSYS

RH2=UU * TEMP * FACSYS

WRITE(f24,*) ’UINT now (H1+H2) =’,UINT* TEMP * FACSYS

C

C TABLE OF ANGLES AS A FUNCTION OF BONDS

C

IANTBL(1,2) = 1

IANTBL(1,3) = 2

IANTBL(1,4) = 3

IANTBL(2,3) = 4

IANTBL(2,4) = 5

IANTBL(3,4) = 6

C

IANTBL(2,1) = 1

IANTBL(3,1) = 2

IANTBL(4,1) = 3
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IANTBL(3,2) = 4

IANTBL(4,2) = 5

IANTBL(4,3) = 6

C

C ANGLE CONTRIBUTIONS WHOSE VERTEX IS THE CENTRAL SITE

C

DO 600 INN1 = 1,3

DO 600 INN2 = INN1 + 1,4

IANGLE = IANTBL(INN2,INN1)

DO 600 I = 1,NDIAM

INEI1 = NN(I,INN1)

INEI2 = NN(I,INN2)

INDOLD2b1 = 5 + 3 * ISTAT(INEI1,IOLDCF) +

1 ISTAT(I,IOLDCF)

INDOLD2b2 = 5 + 3 * ISTAT(INEI2,IOLDCF) +

1 ISTAT(I,IOLDCF)

INDOLD = 14 + ISTAT(INEI1,IOLDCF)

& + 9 * ISTAT(INEI2,IOLDCF)

& + 3 * ISTAT(I,IOLDCF)

INDANG(I,IANGLE,IOLDCF) = INDOLD

cos=( BONDX(I,INN1,IOLDCF) * BONDX(I,INN2,IOLDCF)

1 + BONDY(I,INN1,IOLDCF) * BONDY(I,INN2,IOLDCF)

2 + BONDZ(I,INN1,IOLDCF) * BONDZ(I,INN2,IOLDCF))

3 / (bondsq(I,INN1,IOLDCF)*bondsq(I,INN2,IOLDCF) )

ry1=bondsq(I,INN1,IOLDCF)/ride1(INDOLD2b1)

ry2=bondsq(I,INN2,IOLDCF)/ride1(INDOLD2b2)

SCALP = RID31(INDOLD) * func3(ry1,ry2) *

2 (cos+0.3333333333)**2

ANGTRM(I,IANGLE,IOLDCF) = SCALP

uu1=uu1+scalp

UINT = UINT + SCALP

600 CONTINUE

C

WRITE(f24,*) ’H3 = Somma scalp=’,uu1 * TEMP * FACSYS

RH3=uu1 * TEMP * FACSYS

WRITE(f24,*) ’UINT now (H1+H2+H3) =’,UINT * TEMP * FACSYS

UOUT = UINT * TEMP * FACSYS

WRITE(f24,*) ’INTERNAL ENERGY PER SITE AT START OF THE RUN: ’,UOUT

WRITE(f24,*) ’ ’

C

C SET STATISTICAL AVERAGES TO ZERO

C

DO 980 I = 1,4

UAV(I) = 0.D0

UMXAV(I) = 0.D0
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ORDAV(I) = 0.D0

VAV(I) = 0.D0

980 CONTINUE

DO 990 K = 1,4

DO 990 J = 1,2

DO 990 I = -1,1

FAV(I,J,K) = 0.D0

990 CONTINUE

ACCAV = 0.D0

ACVAV = 0.D0

C

C

C INITIALIZATION PART FINISHED

C

CZHU write parameters to the ist file

write(f22,*)’Lx= ’, LSIMPX

write(f22,*)’Ly= ’, LSIMPY

write(f22,*)’Lz= ’, LSIMPZ

write(f22,*)’T= ’, TEMP

write(f22,*)’mu= ’, UCHEM

write(f22,*)’mus= ’, SCHEM

write(f22,*)’mStart= ’, MSTART

C WRITE HEADLINE

C

c WRITE(24,9100)

WRITE(f22,9101)

C

C BEGIN MONTE CARLO PROCEDURE

C

DO 8000 MCS = MCSINI,MCSMAX

C

CALL RANDOM(NRAND)

CZHU recording random numbers

CZHU do 2003 I=1,NRAND

CZHU write(f29,2002) (MCS-1)*NRAND+I, IRAN(I)

CZHU2003 enddo

CZHU2002 format(I15,5x, I15)

C

C FOR EACH PARTICLE, GENERATE A NEW POINT IN CONFIGURATION SPACE

C AND CALCULATE SITE CONTRIBUTION TO ENERGY DIFFERENCE

C

DXMAX = PMOVX * PERIX

DYMAX = PMOVY * PERIY

DZMAX = PMOVZ * PERIZ
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FNX = DXMAX * FNORM2

FNY = DYMAX * FNORM2

FNZ = DZMAX * FNORM2

C

DO I = 1,NDIAM

delta1(i)=0.0

delta2(i)=0.0

delta3(i)=0.0

delta4(i)=0.0

ENDDO

DO 1000 I = 1,NDIAM

c XCOORD(I,INEWCF) = XCOORD(I,IOLDCF)

c YCOORD(I,INEWCF) = YCOORD(I,IOLDCF)

c ZCOORD(I,INEWCF) = ZCOORD(I,IOLDCF)

c ISTNEW=ISTAT(I,IOLDCF)

XCOORD(I,INEWCF) = XCOORD(I,IOLDCF)

& + FNX * IRAN(I) - DXMAX

YCOORD(I,INEWCF) = YCOORD(I,IOLDCF)

& + FNY * IRAN(I + NDIAM) - DYMAX

ZCOORD(I,INEWCF) = ZCOORD(I,IOLDCF)

& + FNZ * IRAN(I + NDIAM2) - DZMAX

ISTNEW = INT(FNSTAT * IRAN(I + NDIAM3)) - 1

ioi=0

454 if (ISTNEW.eq.0)then

if(FNSTAT*IRAN(I+NDIAM3)>1.5D0)then

ISTNEW=1

else

ISTNEW=-1

endif

endif

ISTAT(I,INEWCF) = ISTNEW

CZHU

CCHEM //using staggered Mu and uniform Mu

IF(I<=NHALF)THEN

DELTAE(I)= - (UCHEM+SCHEM)*(ISTNEW-ISTAT(I,IOLDCF))

ELSE

DELTAE(I)= - (UCHEM-SCHEM)*(ISTNEW-ISTAT(I,IOLDCF))

CZHU DELTAE(I) = CHEM(ISTNEW) - CHEM(ISTAT(I,IOLDCF))

ENDIF

CCHEM delta1(i)= - CHEM(ISTNEW) + CHEM(ISTAT(I,IOLDCF))

1000 CONTINUE

C

DO 3000 ISUBL = 1,8

C
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ILOW = (ISUBL - 1) * NSIMP + 1

IHGH = ISUBL * NSIMP

C

C FIRST NEIGHBOR CONTRIBUTIONS

C

DO 1250 INN = 1,4

DO 1250 I = ILOW,IHGH

INEI = NN(I,INN)

INDNEW = 5 + 3 * ISTAT(INEI,IOLDCF) + ISTAT(I,INEWCF)

INDBND(I,INN,INEWCF) = INDNEW

DDXX = XCOORD(INEI,IOLDCF) - XCOORD(I,INEWCF)

DDYY = YCOORD(INEI,IOLDCF) - YCOORD(I,INEWCF)

DDZZ = ZCOORD(INEI,IOLDCF) - ZCOORD(I,INEWCF)

DDXX = DDXX - PERIX * INT(FPERIX * DDXX)

DDYY = DDYY - PERIY * INT(FPERIY * DDYY)

DDZZ = DDZZ - PERIZ * INT(FPERIZ * DDZZ)

ddsq=sqrt(DDXX ** 2 + DDYY ** 2 + DDZZ ** 2)

ry=ddsq/ride1(INDNEW)

DD22 = EPS1(INDNEW) * func2(ry)

BONDX(I,INN,INEWCF) = DDXX

BONDY(I,INN,INEWCF) = DDYY

BONDZ(I,INN,INEWCF) = DDZZ

BOND2(I,INN,INEWCF) = DD22

bondsq(I,INN,INEWCF) = ddsq

DELTAE(I) = DELTAE(I) + DD22 - BOND2(I,INN,IOLDCF)

delta2(i)= DD22 - BOND2(I,INN,IOLDCF)

1250 CONTINUE

C

C NOW, ANGLE CONTRIBUTIONS WHOSE VERTEX IS THE CENTRAL SITE

C

DO 1350 INN1 = 1,3

DO 1350 INN2 = INN1 + 1,4

IANGLE = IANTBL(INN2,INN1)

DO 1350 I = ILOW,IHGH

INEI1 = NN(I,INN1)

INEI2 = NN(I,INN2)

INDNEW = 14 + ISTAT(INEI1,IOLDCF)

& + 9 * ISTAT(INEI2,IOLDCF)

& + 3 * ISTAT(I,INEWCF)

INDNEW2b1 = 5 + 3 * ISTAT(INEI1,IOLDCF) +

1 ISTAT(I,INEWCF)

INDNEW2b2 = 5 + 3 * ISTAT(INEI2,IOLDCF) +

1 ISTAT(I,INEWCF)

INDANG(I,IANGLE,INEWCF) = INDNEW

cos=( BONDX(I,INN1,INEWCF) * BONDX(I,INN2,INEWCF)
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1 + BONDY(I,INN1,INEWCF) * BONDY(I,INN2,INEWCF)

2 + BONDZ(I,INN1,INEWCF) * BONDZ(I,INN2,INEWCF))

3 / (bondsq(I,INN1,INEWCF)*bondsq(I,INN2,INEWCF) )

ry1=bondsq(I,INN1,INEWCF)/ride1(INDNEW2b1)

ry2=bondsq(I,INN2,INEwCF)/ride1(INDNEW2b2)

SCALP = RID31(INDNEW) * func3(ry1,ry2) *

1 (cos+0.3333333333)**2

ANGTRM(I,IANGLE,INEWCF) = SCALP

DELTAE(I) = DELTAE(I) + SCALP

& - ANGTRM(I,IANGLE,IOLDCF)

delta3(i)= SCALP - ANGTRM(I,IANGLE,IOLDCF)

1350 CONTINUE

c

C

C FINALLY, ANGLE CONTRIBUTIONS WHOSE VERTEX IS A NEIGHBOR SITE

C

DO 1450 INN1 = 1,4

DO 1450 INEXT = 1,3

INNN = (INN1 - 1) * 3 + INEXT

INN2 = IEXCL(INEXT,INN1)

IANGLE = IANTBL(INN2,INN1)

DO 1450 I = ILOW,IHGH

NEINN = NN(I,INN1)

NEINNN = NNN(I,INNN)

INDNEW = 14 + 3 * ISTAT(NEINN,IOLDCF)

& + 9 * ISTAT(NEINNN,IOLDCF)

& + ISTAT(I,INEWCF)

INDNEW2b1 = 5 + 3 * ISTAT(NEINN,IOLDCF) +

1 ISTAT(I,INEWCF)

INDOLD2b2 = 5 + 3 * ISTAT(NEINNN,IOLDCF) +

1 ISTAT(NEINN,IOLDCF)

IANTMP(I,INNN) = INDNEW

cos=-( BONDX(I,INN1,INEWCF)

& * BONDX(NEINN,INN2,IOLDCF)

& + BONDY(I,INN1,INEWCF)

& * BONDY(NEINN,INN2,IOLDCF)

& + BONDZ(I,INN1,INEWCF)

& * BONDZ(NEINN,INN2,IOLDCF))

1 /(bondsq(I,INN1,INEWCF)*

2 bondsq(NEINN,INN2,IOLDCF))

ry1=bondsq(I,INN1,INEWCF)/ride1(INDNEW2b1)

ry2=bondsq(NEINN,INN2,IOLDCF)/ride1(INDOLD2b2)

SCALP = RID31(INDNEW) * func3(ry1,ry2) *

2 (cos+0.3333333333)**2

ANGTMP(I,INNN) = SCALP
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DELTAE(I) = DELTAE(I) + SCALP

& - ANGTRM(NEINN,IANGLE,IOLDCF)

delta4(i)= SCALP-ANGTRM(NEINN,IANGLE,IOLDCF)

1450 CONTINUE

C

C ENERGY CALCULATION FINISHED

C

C FIND OUT WHICH OF THE MOVES IS ACCEPTED

C

DO 1500 I = ILOW,IHGH

PACC = EXP(- DELTAE(I) )

& - FNORM * IRAN(I + NDIAM4)

IACC(I) = 0

IF(PACC.GE.0.D0) IACC(I) = 1

1500 CONTINUE

C

C UPDATE STATUS AND COORDINATES AT THE CENTRAL SITE

C

DO 1510 I = ILOW,IHGH

IF(IACC(I).EQ.1) THEN

ISTAT(I,IOLDCF) = ISTAT(I,INEWCF)

XCOORD(I,IOLDCF) = XCOORD(I,INEWCF)

YCOORD(I,IOLDCF) = YCOORD(I,INEWCF)

ZCOORD(I,IOLDCF) = ZCOORD(I,INEWCF)

UINT = UINT + DELTAE(I)

END IF

1510 CONTINUE

C

C UPDATE BONDS AT THE CENTRAL SITE

C

DO 1520 INN = 1,4

DO 1520 I = ILOW,IHGH

IF(IACC(I).EQ.1) THEN

INDBND(I,INN,IOLDCF) = INDBND(I,INN,INEWCF)

bondsq(I,INN,IOLDCF) = bondsq(I,INN,INEWCF)

BONDX(I,INN,IOLDCF) = BONDX(I,INN,INEWCF)

BONDY(I,INN,IOLDCF) = BONDY(I,INN,INEWCF)

BONDZ(I,INN,IOLDCF) = BONDZ(I,INN,INEWCF)

BOND2(I,INN,IOLDCF) = BOND2(I,INN,INEWCF)

END IF

1520 CONTINUE

C

C UPDATE ANGLES AT THE CENTRAL SITE

C

DO 1530 IANGLE = 1,6
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DO 1530 I = ILOW,IHGH

IF(IACC(I).EQ.1) THEN

INDANG(I,IANGLE,IOLDCF) = INDANG(I,IANGLE,INEWCF)

ANGTRM(I,IANGLE,IOLDCF) = ANGTRM(I,IANGLE,INEWCF)

END IF

1530 CONTINUE

C

C UPDATE THE BONDS OF THE NEIGHBORING SITES

C

DO 2500 INN = 1,4

C*VDIR: IGNORE RECRDEPS

CDIR$ IVDEP

DO 2500 I = ILOW,IHGH

INEI = NN(I,INN)

INDBND(INEI,INN,IOLDCF) = INDBND(I,INN,IOLDCF)

BONDX(INEI,INN,IOLDCF) = - BONDX(I,INN,IOLDCF)

BONDY(INEI,INN,IOLDCF) = - BONDY(I,INN,IOLDCF)

BONDZ(INEI,INN,IOLDCF) = - BONDZ(I,INN,IOLDCF)

BOND2(INEI,INN,IOLDCF) = BOND2(I,INN,IOLDCF)

bondsq(INEI,INN,IOLDCF) = bondsq(I,INN,IOLDCF)

2500 CONTINUE

C

C UPDATE THE ANGLES OF THE NEIGHBORING SITES

C

DO 2600 INN1 = 1,4

DO 2600 INEXT = 1,3

INNN = (INN1 - 1) * 3 + INEXT

INN2 = IEXCL(INEXT,INN1)

IANGLE = IANTBL(INN2,INN1)

C*VDIR: IGNORE RECRDEPS

CDIR$ IVDEP

DO 2600 I = ILOW,IHGH

INEI = NN(I,INN1)

PACC = IACC(I)

INDANG(INEI,IANGLE,IOLDCF) =

& IACC(I) * IANTMP(I,INNN)

& + (1 - IACC(I)) * INDANG(INEI,IANGLE,IOLDCF)

ANGTRM(INEI,IANGLE,IOLDCF) =

& PACC * ANGTMP(I,INNN)

& + (1.D0 - PACC) * ANGTRM(INEI,IANGLE,IOLDCF)

2600 CONTINUE

C

3000 CONTINUE

c

C
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C LOOP OVER SUBLATTICES FINISHED

C

C NOW, PERFORM HOMOGENEOUS VOLUME FLUCTUATION

C

PSXNEW = PERIX + FXBOX * IRAN(NDIAM5 + 1) - XBOX

PSYNEW = PERIY + FYBOX * IRAN(NDIAM5 + 2) - YBOX

PSZNEW = PERIZ + FZBOX * IRAN(NDIAM5 + 3) - ZBOX

IF(PSXNEW.LE.0.D0.OR.PSYNEW.LE.0.D0.OR.PSZNEW.LE.0.D0) THEN

WRITE(f24,*) ’BOX FLUCTUATIONS TOO LARGE !’

WRITE(f24,*) ’CRASH AT MCS = ’, MCS

STOP

END IF

FACX = PSXNEW / PERIX

FACY = PSYNEW / PERIY

FACZ = PSZNEW / PERIZ

C

C ENERGY CALCULATION FOR VOLUME FLUCTUATION

C

UBR0 = - NDIAM * LOG(FACX * FACY * FACZ)

UBREAT = 0.D0

C

C NEAREST NEIGHBOR CONTRIBUTIONS. LOOP OVER SUBLATTICE 1 - 4

C

DO 4500 INN = 1,4

DO 4500 I = 1,NHALF

INDOLD = INDBND(I,INN,IOLDCF)

DDXX = FACX * BONDX(I,INN,IOLDCF)

DDYY = FACY * BONDY(I,INN,IOLDCF)

DDZZ = FACZ * BONDZ(I,INN,IOLDCF)

BONDX(I,INN,INEWCF) = DDXX

BONDY(I,INN,INEWCF) = DDYY

BONDZ(I,INN,INEWCF) = DDZZ

ddsq=sqrt(DDXX ** 2 + DDYY ** 2 + DDZZ ** 2)

ry=ddsq/ride1(INDOLD)

DD22 = EPS1(INDOLD) * func2(ry)

BOND2(I,INN,INEWCF) = DD22

bondsq(I,INN,INEWCF) = ddsq

UBREAT = UBREAT + DD22 - BOND2(I,INN,IOLDCF)

4500 CONTINUE

C

C UPDATE THE BONDS AT THE NEIGHBORING SITES OF SUBLATTICE 1 - 4

C

DO 4600 INN = 1,4

C*VDIR: IGNORE RECRDEPS

CDIR$ IVDEP
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DO 4600 I = 1,NHALF

INEI = NN(I,INN)

BONDX(INEI,INN,INEWCF) = - BONDX(I,INN,INEWCF)

BONDY(INEI,INN,INEWCF) = - BONDY(I,INN,INEWCF)

BONDZ(INEI,INN,INEWCF) = - BONDZ(I,INN,INEWCF)

BOND2(INEI,INN,INEWCF) = BOND2(I,INN,INEWCF)

bondsq(INEI,INN,INEWCF) = bondsq(I,INN,INEWCF)

4600 CONTINUE

C

C ANGLE CONTRIBUTIONS WHOSE VERTEX IS THE CENTRAL SITE

C

DO 4800 INN1 = 1,3

DO 4800 INN2 = INN1 + 1,4

IANGLE = IANTBL(INN2,INN1)

DO 4800 I = 1,NDIAM

INEI1 = NN(I,INN1)

INEI2 = NN(I,INN2)

INDOLD = INDANG(I,IANGLE,IOLDCF)

INDOLD2b1 = 5 + 3 * ISTAT(INEI1,IOLDCF) +

1 ISTAT(I,IOLDCF)

INDOLD2b2 = 5 + 3 * ISTAT(INEI2,IOLDCF) +

1 ISTAT(I,IOLDCF)

INDOLD1 = 14 + ISTAT(INEI1,IOLDCF)

& + 9 * ISTAT(INEI2,IOLDCF)

& + 3 * ISTAT(I,IOLDCF)

cos=( BONDX(I,INN1,INEWCF) * BONDX(I,INN2,INEWCF)

1 + BONDY(I,INN1,INEWCF) * BONDY(I,INN2,INEWCF)

2 + BONDZ(I,INN1,INEWCF) * BONDZ(I,INN2,INEWCF))

3 / (bondsq(I,INN1,INEWCF)*bondsq(I,INN2,INEWCF) )

ry1=bondsq(I,INN1,INEWCF)/ride1(INDOLD2b1)

ry2=bondsq(I,INN2,INEWCF)/ride1(INDOLD2b2)

SCALP = RID31(INDOLD) * func3(ry1,ry2) *

2 (cos+0.3333333333)**2

ANGTRM(I,IANGLE,INEWCF) = SCALP

UBREAT = UBREAT + SCALP - ANGTRM(I,IANGLE,IOLDCF)

4800 CONTINUE

c

C

C UPDATE

C

ACV = 0.D0

PACC = EXP(-UBREAT-UBR0) - FNORM * IRAN(NRAND)

IF(PACC.GT.0.D0) THEN

C

C ACCEPT. FIRST, ASSIGN NEW VALUES FOR THOSE ARRAYS
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C FOR WHICH IT HAS NOT BEEN DONE YET

C

DO 5000 I = 1,NDIAM

XCOORD(I,INEWCF) = FACX * XCOORD(I,IOLDCF)

YCOORD(I,INEWCF) = FACY * YCOORD(I,IOLDCF)

ZCOORD(I,INEWCF) = FACZ * ZCOORD(I,IOLDCF)

ISTAT(I,INEWCF) = ISTAT(I,IOLDCF)

5000 CONTINUE

DO 5010 INN = 1,4

DO 5010 I = 1,NDIAM

INDBND(I,INN,INEWCF) = INDBND(I,INN,IOLDCF)

5010 CONTINUE

DO 5020 IANGLE = 1,6

DO 5020 I = 1,NDIAM

INDANG(I,IANGLE,INEWCF) = INDANG(I,IANGLE,IOLDCF)

5020 CONTINUE

C

ACV = 1.D0

UINT = UINT + UBREAT

C

C EXCHANGE POINTER TO OLD AND NEW CONFIGURATION

C

ITMP = IOLDCF

IOLDCF = INEWCF

INEWCF = ITMP

C

PERIX = PSXNEW

PERIY = PSYNEW

PERIZ = PSZNEW

C

FPERIX = 2.D0 / PERIX

FPERIY = 2.D0 / PERIY

FPERIZ = 2.D0 / PERIZ

C

END IF

c

UOUT = UINT * TEMP * FACSYS

C

C MEASURE SOME OBSERVABLES

C

IF(MCS.GE.MSTART.OR.MCS.EQ.KOUTOB) THEN

C

C DETERMINE OCCUPATION FRACTIONS IN THE FCC SUBLATTICES

C AND ACCEPTANCE RATE

C



97

IS11 = 0

IS12 = 0

IS21 = 0

IS22 = 0

JACC = 0

DO 6010 I = 1,NHALF

IS11 = IS11 + ISTAT(I,IOLDCF)

IS12 = IS12 + ISTAT(I,IOLDCF) ** 2

JACC = JACC + IACC(I)

6010 CONTINUE

DO 6020 I = NHALF + 1,NDIAM

IS21 = IS21 + ISTAT(I,IOLDCF)

IS22 = IS22 + ISTAT(I,IOLDCF) ** 2

JACC = JACC + IACC(I)

6020 CONTINUE

CZHU Calculate the extensive magnitization MEXT

MEXT=IS11+IS21

MEXTSD=IS11-IS21

CZHU Calculate the Stillinger-Webber potential contribution

CCHEM

HSW=UINT+MEXT*UCHEM+MEXTSD*SCHEM

F1A = FACSYS * (IS12 + IS11)

F1B = FACSYS * (IS12 - IS11)

F1V = 1.D0 - F1A - F1B

F2A = FACSYS * (IS22 + IS21)

F2B = FACSYS * (IS22 - IS21)

F2V = 1.D0 - F2A - F2B

ACC = JACC * FACSYS

C

C INTERNAL ENERGY

C

UOUT = UINT * TEMP * FACSYS

C

C ORDER PARAMETER FOR UNMIXING

C

UMX = 0.5D0 * ( (F1A - F1B) + (F2A - F2B) )

UMX = ABS(UMX)

C

C ORDER PARAMETER FOR SUPERLATTICE FORMATION

C

ORD = 0.5D0 * ( (F1A - F1B) - (F2A - F2B) )

ORD = ABS(ORD)

C

C SPECIFIC VOLUME

C
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VOLUME = PERIX * PERIY * PERIZ * FACSYS

C

END IF

C

C CUMULATE AVERAGES

C

IF(MCS.GE.MSTART) THEN

DO 7000 MOM = 1,4

UAV(MOM) = UAV(MOM) + UOUT ** MOM

FAV(-1,1,MOM) = FAV(-1,1,MOM) + F1B ** MOM

FAV(0,1,MOM) = FAV(0,1,MOM) + F1V ** MOM

FAV(1,1,MOM) = FAV(1,1,MOM) + F1A ** MOM

FAV(-1,2,MOM) = FAV(-1,2,MOM) + F2B ** MOM

FAV(0,2,MOM) = FAV(0,2,MOM) + F2V ** MOM

FAV(1,2,MOM) = FAV(1,2,MOM) + F2A ** MOM

UMXAV(MOM) = UMXAV(MOM) + UMX ** MOM

ORDAV(MOM) = ORDAV(MOM) + ORD ** MOM

VAV(MOM) = VAV(MOM) + VOLUME ** MOM

7000 CONTINUE

ACCAV = ACCAV + ACC

ACVAV = ACVAV + ACV

END IF

C END OF CUMULATE AVERAGE

CZHUC

C OUTPUT OBSERVABLES

IF(MCS.EQ.KOUTOB) THEN

KOUTOB = KOUTOB + NOUTOB

CZHU WRITE(24,9000) MCS,F1A,F1B,F1V,F2A,F2B,F2V

ffa=F1A+F2A

ffb=F1B+F2B

ffv=F1V+F2V

CZHU WRITE(22,9001) MCS,ACC,UOUT,FFA,FFB,FFV

CZHU

CZHU recording the max and min values of HSW

CZHU It is inevitable to discard the beginning part of data

CZHU So start comparing from step #MSTART

CZHU But instantaneous recording still starts from #1

CZHU

WRITE(f22,770)MCS,MEXT,MEXTSD,HSW

END IF

C

C DUMP CONFIGURATION

C
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IF(MCS.EQ.KOUTCF) THEN

KOUTCF = KOUTCF + NOUTCF

REWIND(f21)

WRITE(f21) (IRWRK(I),I=1,MERS),

& (XCOORD(I,IOLDCF),I=1,NDIAM),

& (YCOORD(I,IOLDCF),I=1,NDIAM),

& (ZCOORD(I,IOLDCF),I=1,NDIAM),

& (ISTAT(I,IOLDCF),I=1,NDIAM),

& PERIX,PERIY,PERIZ

REWIND(f27)

do I=1,NDIAM

write(f27,732)XCOORD(I,IOLDCF),YCOORD(I,IOLDCF),

& ZCOORD(I,IOLDCF),ISTAT(I,IOLDCF)

enddo

write(f27,*)PERIX,PERIY,PERIZ

WRITE(f24,*) ’CONFIGURATION DUMPED AFTER MCS = ’,MCS

END IF

732 format(3(2x,f12.6),2x,I4)

C

C OUTPUT STATISTICAL AVERAGES

C

IF(MCS.EQ.KOUTAV) THEN

KOUTAV = KOUTAV + NOUTAV

REWIND(f23)

CZHU REWIND(33)

CZHU REWIND(34)

C

FACTOR = 1.D0 / (MCS - MSTART + 1)

FACTOR1 = FACTOR * FACSYS

c

DO 7100 MOM = 1,4

UAVOUT(MOM) = UAV(MOM) * FACTOR

UMXOUT(MOM) = UMXAV(MOM) * FACTOR

ORDOUT(MOM) = ORDAV(MOM) * FACTOR

VAVOUT(MOM) = VAV(MOM) * FACTOR

7100 CONTINUE

DO 7200 MOM = 1,4

DO 7200 ISUBL = 1,2

DO 7200 I = -1,1

FAVOUT(I,ISUBL,MOM) = FAV(I,ISUBL,MOM) * FACTOR

7200 CONTINUE

ACCOUT = ACCAV * FACTOR

ACVOUT = ACVAV * FACTOR

C

SPEC = NDIAM * (BETA ** 2) * (UAVOUT(2) - UAVOUT(1) ** 2)
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COMPRS = NDIAM * BETA * (VAVOUT(2) - VAVOUT(1) ** 2)

SUSUMX = NDIAM * BETA * (UMXOUT(2) - UMXOUT(1) ** 2)

SUSORD = NDIAM * BETA * (ORDOUT(2) - ORDOUT(1) ** 2)

CUMUMX = 0.D0

CUMORD = 0.D0

CUMUMXF= 0.D0

CUMORDF= 0.D0

IF(UMXOUT(2).NE.0.D0)

& CUMUMX = 1.D0 - UMXOUT(4) / (3.D0 * UMXOUT(2) ** 2)

IF(ORDOUT(2).NE.0.D0)

& CUMORD = 1.D0 - ORDOUT(4) / (3.D0 * ORDOUT(2) ** 2)

CZHU

CZHU Added to use the full definition of cumulant

CZHU DENU means denumerator

CZHU

UMXDENU = (UMXOUT(2)-UMXOUT(1)**2)**2

ORDDENU = (ORDOUT(2)-ORDOUT(1)**2)**2

IF(UMXDENU.NE.0D0)THEN

CUMUMXF=UMXOUT(4)+6.D0*UMXOUT(2)*UMXOUT(1)**2

& -4.D0*UMXOUT(3)*UMXOUT(1)-3.D0*UMXOUT(1)**4

CUMUMXF=1.D0-CUMUMXF/3.D0/UMXDENU

ENDIF

IF(ORDDENU.NE.0D0)THEN

CUMORDF=ORDOUT(4)+6.D0*ORDOUT(2)*ORDOUT(1)**2

& -4.D0*ORDOUT(3)*ORDOUT(1)-3.D0*ORDOUT(1)**4

CUMORDF=1.D0-CUMORDF/3.D0/ORDDENU

ENDIF

C

FACTOR = 1.D0 / (MCS - MSTART + 1)

FACTOR1 = FACTOR * FACSYS

concge=(FAVOUT(-1,1,1)+FAVOUT(-1,2,1))*0.5

concsi=(FAVOUT(1,1,1)+FAVOUT(1,2,1))*0.5

WRITE(f23,134) MCS

WRITE(f23,234) ACCOUT

WRITE(f23,334) ACVOUT

WRITE(f23,*) ’ ’

CCHEM WRITE(23,335) CHEM(1)*TEMP,CHEM(-1)*TEMP

WRITE(f23,335) UCHEM*TEMP,SCHEM*TEMP

WRITE(f23,*) ’TEMP = ’,TEMP

WRITE(f23,*) ’ ’

c

WRITE(f23,*) ’ ’

DO 7500 MOM = 1,4

WRITE(f23,434) UAVOUT(MOM),MOM
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7500 CONTINUE

WRITE(f23,*) ’ ’

WRITE(f23,534) SPEC

WRITE(f23,*) ’ ’

DO 7550 MOM = 1,4

WRITE(f23,634) VAVOUT(MOM),MOM

7550 CONTINUE

WRITE(f23,*) ’ ’

WRITE(f23,734) COMPRS

DO 7600 MOM = 1,4

WRITE(f23,*) ’ ’

DO 7600 ISUBL = 1,2

DO 7600 I = -1,1

WRITE(f23,834) I,ISUBL,MOM,FAVOUT(I,ISUBL,MOM)

7600 CONTINUE

WRITE(f23,*) ’ ’

conctot1=(FAVOUT(1,1,1)+FAVOUT(1,2,1))/2.0

conctot2=(FAVOUT(-1,1,1)+FAVOUT(-1,2,1))/2.0

WRITE(f23,835)conctot1

WRITE(f23,836)conctot2

WRITE(f23,*) ’ ’

DO 7700 MOM = 1,4

WRITE(f23,934) MOM,UMXOUT(MOM)

7700 CONTINUE

WRITE(f23,1134) SUSUMX

WRITE(f23,1234) CUMUMX

WRITE(f23,1235) CUMUMXF

WRITE(f23,*) ’ ’

DO 7750 MOM = 1,4

WRITE(f23,1334) MOM,ORDOUT(MOM)

7750 CONTINUE

WRITE(f23,1434) SUSORD

WRITE(f23,1534) CUMORD

WRITE(f23,1535) CUMORDF

END IF

C

8000 CONTINUE

call MPI_FINALIZE(ierror)

C

C LOOP OVER MONTE CARLO STEPS FINISHED

C

C

134 FORMAT(’STATISTICAL AVERAGES AFTER MCS = ’,I6)

234 FORMAT(’AVERAGE ACCEPTACE RATE = ’,F15.11)
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334 FORMAT(’AVERAGE VOLUME FLUCTUATION ACC. R. = ’,F15.9)

CCHEM335 FORMAT(’CHEM(1) = ’,F15.6,’ CHEM(-1) =’,F15.6)

335 FORMAT(’Uniform CHEM = ’,F15.6,’ Staggered CHEM =’,F15.6)

561 FORMAT(’DISTANCE Si-Si = ’,F15.6)

562 FORMAT(’DISTANCE Si-Ge = ’,F15.6)

563 FORMAT(’DISTANCE Ge-Ge = ’,F15.6)

564 FORMAT(’LATTICE CONST. = ’,F15.6)

544 FORMAT(’SIDES = ’,F15.8,1x,F15.8,1x,F15.8,1x)

565 FORMAT(’NUMBER OF Si-Si = ’,F15.6)

566 FORMAT(’NUMBER OF Si-Ge = ’,F15.6)

567 FORMAT(’NUMBER OF Ge-Ge = ’,F15.6)

461 FORMAT(6(1x,F8.6))

462 FORMAT(7(1x,F8.6))

568 FORMAT(’Si-Si-Si = ’,F15.6,2x,F15.6)

569 FORMAT(’Ge-Si-Ge = ’,F15.6,2x,F15.6)

570 FORMAT(’Si-Si-Ge = ’,F15.6,2x,F15.6)

571 FORMAT(’Si-Ge-Si = ’,F15.6,2x,F15.6)

572 FORMAT(’Ge-Ge-Ge = ’,F15.6,2x,F15.6)

573 FORMAT(’Si-Ge-Ge = ’,F15.6,2x,F15.6)

574 FORMAT(’N. Si-Si-Si = ’,F15.6,2x,E15.6)

575 FORMAT(’N. Ge-Si-Ge = ’,F15.6,2x,E15.6)

576 FORMAT(’N. Si-Si-Ge = ’,F15.6,2x,E15.6)

577 FORMAT(’N. Si-Ge-Si = ’,F15.6,2x,E15.6)

578 FORMAT(’N. Ge-Ge-Ge = ’,F15.6,2x,E15.6)

579 FORMAT(’N. Si-Ge-Ge = ’,F15.6,2x,E15.6)

434 FORMAT(’INTERNAL ENERGY = ’,F15.6,’ MOMENT =’,I2)

534 FORMAT(’SPECIFIC HEAT = ’,F15.9)

634 FORMAT(’SPECIFIC VOLUME = ’,F15.9,’ MOMENT =’,I2)

734 FORMAT(’COMPRESSIBILITY = ’,F15.9)

834 FORMAT(’FRACTION OF ATOMS’,I3,’ IN SUBLATTICE ’,I2,

* ’ ,MOMENT’,I2,’ = ’,F15.6)

835 FORMAT(’CONC. OF ATOMS 1, MOMENT 1, = ’,F15.9)

836 FORMAT(’CONC. OF ATOMS -1,MOMENT 1, =’,F15.9)

837 FORMAT(’ORDER PARAMETER =’,F15.9)

838 FORMAT(’ORDER PARAMETER POWER2=’,F15.9)

839 FORMAT(’ORDER PARAMETER POWER4=’,F15.9)

840 FORMAT(’ORDER PARAMETER U4=’,F15.9)

934 FORMAT(’ORDER PARAMETER UNMIXING, MOMENT’,I2,’ = ’,F15.6)

1134 FORMAT(’SUSCEPTIBILITY UNMIXING = ’,F15.9)

1234 FORMAT(’CUMULANT UNMIXING = ’,F15.9)

1235 FORMAT(’CUMULANT UNMIXING FULLY DEFINED = ’,F15.9)

1334 FORMAT(’ORDER PARAMETER SUPERLATTICE, MOMENT’,I2,’ = ’,F15.6)

1434 FORMAT(’SUSCEPTIBILITY SUPERLATTICE = ’,F15.9)
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1534 FORMAT(’CUMULANT SUPERLATTICE = ’,F15.9)

1535 FORMAT(’CUMULANT SUPERLATTICE FULLY DEFINED = ’,F15.9)

444 format(I6,1x,3(F10.6,1x,I6),1x,I6)

445 format(I6,1x,4(F13.7,1x))

761 format(4(f9.5,1x,f8.6,1x))

762 format(f8.4,1x,6(f10.4,1x))

770 format(I10, 1x,I8,2x,I8,2x,e24.18)

9000 FORMAT(I6,1x,6(f10.6,1x))

9001 FORMAT(I8,6(E13.6,1x))

9101 FORMAT(4X,’MCS’,2X,

& 3X,’MEXT’,2X,

& 2X,’MEXTSD’,1X,

& 9X,’HSW’,5X)

9100 FORMAT(2X,’MCS’,3X,

& 2X,’FRC. A SL 1’,2X,

& 2X,’FRC. B SL 1’,2X,

& 2X,’FRC. V SL 1’,2X,

& 2X,’FRC. A SL 2’,2X,

& 2X,’FRC. B SL 2’,2X,

& 2X,’FRC. V SL 2’,2X)

C

STOP

END

c

c

Function func2(ry)

c

DOUBLE PRECISION func2,ry

DOUBLE PRECISION costA,costB,costp,costbb

c

costA=7.049556277

costB=0.6022245584

costp=4.0

costbb=1.80

c

if (ry.lt.costbb) then

func2=costA*((costB/ry**costp)-1.0)* exp(1.0/(ry-costbb))

else

func2=0.0

endif

c

return

end
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c

c

Function func3(ry1,ry2)

c

DOUBLE PRECISION func3,ry1,ry2

DOUBLE PRECISION costbb,costg

c

costbb=1.80

costg=1.20

c

if ((ry1.lt.costbb).and.(ry2.lt.costbb)) then

func3=exp((costg/(ry1-costbb))+(costg/(ry2-costbb)))

else

func3=0.0

endif

c

return

end

c

c

c@PROCESS DIRECTIVE (’*VDIR:’)

SUBROUTINE INIRAN(ISEED)

C

C STARTS THE RANDOM NUMBER GENERATOR

C

PARAMETER(LSIMPX=24)

PARAMETER(LSIMPY=24)

PARAMETER(LSIMPZ=24)

PARAMETER(NRAND=40*LSIMPX*LSIMPY*LSIMPZ+4)

C

C SPECIFICATIONS FOR THE TAUSWORTHE GENERATOR

C

PARAMETER(MERS=1279)

PARAMETER(MERS1=1063)

PARAMETER(NBIT=32)

C

INTEGER ISEED

INTEGER IRTOT(MERS + NRAND)

COMMON/RANCOM/IRTOT

DOUBLE PRECISION RMOD, PMOD, PMULT, FACTOR

C

C SPECIFICATIONS FOR THE MODULO GENERATOR

C

PMOD = 2147483647.D0

PMULT = 16807.D0
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C

RMOD = ISEED

C

C IBIG IS LARGEST INTEGER ON A NBIT MACHINE

C

IBIG = 2 ** (NBIT - 2)

IHLP = IBIG - 1

IBIG = IBIG + IHLP

C

C WARMING UP THE MODULO GENERATOR

C

DO 10 I = 1,NRAND

RMOD = PMULT * RMOD

RMOD = RMOD - INT(RMOD / PMOD) * PMOD

RMOD = INT(RMOD + 0.1D0)

10 CONTINUE

C

C PUT RANDOM NUMBERS ON THE WORKING ARRAY

C

DO 20 I = 1,MERS

RMOD = PMULT * RMOD

RMOD = RMOD - INT(RMOD / PMOD) * PMOD

IRTOT(I) = INT(RMOD + 0.1D0)

RMOD = IRTOT(I)

20 CONTINUE

C

C MAYBE, THERE ARE MORE THAN 32 BITS AVAILABLE

C AND WE WANT TO USE THEM

C

IF(NBIT.NE.32) THEN

FACTOR = IBIG / PMOD

DO 30 I = 1,MERS

IRTOT(I) = IRTOT(I) * FACTOR

30 CONTINUE

END IF

C

C LINEAR INDEPENDENCE

C PUT 1’S ON THE MAIN DIAGONAL

C AND 0’S ABOVE IT

C

IMASK1 = 1

IMASK2 = IBIG

DO 40 I = NBIT - 1,2,-1

C--------IBM

IRTOT(I) = IAND(IOR(IRTOT(I),IMASK1),IMASK2)
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IMASK2 = IEOR(IMASK2,IMASK1)

C--------CRAY

CC IRTOT(I) = AND(OR(IRTOT(I),IMASK1),IMASK2)

CC IMASK2 = XOR(IMASK2,IMASK1)

IMASK1 = IMASK1 * 2

40 CONTINUE

IRTOT(1) = IMASK1

C

C WARM UP THE TAUSWORTHE GENERATOR

C

CALL RANDOM(NRAND)

C

RETURN

END

C@PROCESS DIRECTIVE (’*VDIR:’)

SUBROUTINE RANDOM(N)

C

C STORES N (AT MOST NRAND) UNNORMALIZED INTEGER RANDOM NUMBERS

C

PARAMETER(LSIMPX=24)

PARAMETER(LSIMPY=24)

PARAMETER(LSIMPZ=24)

PARAMETER(NRAND=40*LSIMPX*LSIMPY*LSIMPZ+4)

C

PARAMETER(MERS=1279)

PARAMETER(MERS1=1063)

C

INTEGER N

INTEGER IRTOT(MERS + NRAND)

COMMON/RANCOM/IRTOT

C

NCYC = N / MERS1

NREST = N - MERS1 * NCYC

IBAS1 = 0

IBAS2 = MERS - MERS1

IBAS3 = MERS

C

DO 100 ICYC = 1,NCYC

C--------IBM

C*VDIR: IGNORE RECRDEPS

DO 10 I = 1,MERS1

IRTOT(IBAS3 + I) = IEOR(IRTOT(IBAS1 + I),IRTOT(IBAS2 + I))

10 CONTINUE

C--------CRAY

CDIR$ IVDEP
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CC DO 10 I = 1,MERS1

CC IRTOT(IBAS3 + I) = XOR(IRTOT(IBAS1 + I),IRTOT(IBAS2 + I))

C10 CONTINUE

IBAS1 = IBAS1 + MERS1

IBAS2 = IBAS2 + MERS1

IBAS3 = IBAS3 + MERS1

100 CONTINUE

C

IF(NREST.GT.0) THEN

C--------IBM

C*VDIR: IGNORE RECRDEPS

DO 110 I = 1,NREST

IRTOT(IBAS3 + I) = IEOR(IRTOT(IBAS1 + I),IRTOT(IBAS2 + I))

110 CONTINUE

C--------CRAY

CDIR$ IVDEP

CC DO 110 I = 1,NREST

CC IRTOT(IBAS3 + I) = XOR(IRTOT(IBAS1 + I),IRTOT(IBAS2 + I))

C110 CONTINUE

END IF

C

C PUT LAST ELEMENTS TO THE BEGINNING

C

C-----IBM AND CRAY

C*VDIR: IGNORE RECRDEPS

CDIR$ IVDEP

DO 200 I = 1,MERS

IRTOT(I) = IRTOT(N + I)

200 CONTINUE

C

RETURN

END
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A.2 The Input File input.dat

0 0 MEANS BULK SIMULATION, 1 FREE SURFACE

1 INITIAL VALUE FOR TIME MCS (USUALLY 1)

55000 FINAL VALUE FOR TIME MCS

5000 TIME INTERVAL FOR DUMPING CONFIGURATIONS

1 TIME INTERVAL FOR OUTPUT OBSERVABLES

1 FIRST MCS FOR AVERAGING

5000 TIME INTERVAL FOR OUTPUT STATISTICAL AVERAGES

730151709 ISEED

0.005 MAXIMUM TRIAL MOVE

0.001 MAXIMUM RELATIVE TRIAL MOVE IN BOX SIZE

0.312 TEMPERATURE (ALL UNITS IN EV)

2.200000048

2.599999905

2.200000048

2.599999905

2.200000048

2.599999905

5.429999828

5.519999981

0 Uniformed CHEMICAL POTENTIAL

0 Staggered CHEMICAL POTENTIAL

2.17 BOND ENERGY A - A

1.93 BOND ENERGY B - B

2.3427 BOND ENERGY A - B

2.34779 BOND LENGTH A - A

2.44598 BOND LENGTH B - B

2.396885 BOND LENGTH A - B

21.0 lambda(1)

31.0 lambda(-1)
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A.3 Shell Script

Below is the simple shell script used to run the job. An advanced version is available in the

CDROM.

#!/bin/sh

ln -s posout_prev fort.28

ln -s posout1 fort.27

ln -s posout fort.21

ln -s ist fort.22

ln -s medie fort.23

ln -s output fort.24

# assume the executable is SW_retNFL.x,

# and the input file is inp_SW.dat.

/usr/bin/time -p ./SW_retNFL.x <inp_SW.dat >> output_file



Appendix B

Programs for the Compressible Stacked Triangular Ising System

B.1 The FORTRAN Code

PROGRAM ISING_LENNARD_JONES

C AUTHOR: N. S. Branco

C VERSION OCTOBER 04, 2000 - 14:00

C FOR IBM ES / 9000

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

C MONTE CARLO SIMULATION OF COMPRESSIBLE ISING MODEL

C WITH THE LENNARD-JONES POTENCIAL

C AT CONSTANT VOLUME

C THE STACKED TRIANGULAR LATTICE IS SET UP AS 8 INTERPENETRATING

C TILTED SIMPLE CUBIC LATTICES

C THE 8 SUBLATTICES ARE INDEPENDENT; VECTORIZATION

C BY STANDARD CHECKERBOARD METHOD

C FOR NEIGHBOR TABLE SETUP IN THE BEGINNING,

C THE SC SUBLATTICE HAS LATTICE CONSTANT 2

C NUMBER OF PARTICLES IS NDIAM

c NESTA VERSAO, A PARTICULA SO PODE SE MOVER DENTRO DE

C UMA ESFERA DE RAIO AO QUADRADO DELTA2 EM TORNO DE SUA

C POSICAO EM T=0 E SEUS MOVIMENTOS TEM AMPLITUDE MAXIMA

C PMOV EM CADA UMA DAS 3 DIRECOES

C NESTA VERSAO USAMOS O GNA DA SHAN-HO

C

C EACH SITE NEEDS 5 RANDOM NUMBERS:

C 3 FOR NEW COORDINATES

C 1 FOR NEW SPIN

C 1 FOR ACCEPTANCE

C

C

C BEGINNING OF DECLARATIONS

C

C IMPORTANT: LSIMP? MUST BE GREATER THAN 2 AND EVEN

110
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C

PARAMETER(LSIMPX=64)

PARAMETER(LSIMPY=64)

PARAMETER(LSIMPZ=64)

C

PARAMETER(NDIAM=LSIMPX*LSIMPY*LSIMPZ)

C

PARAMETER(FACSYS=1.D0/NDIAM)

C

PARAMETER(NDIAM2=2*NDIAM)

PARAMETER(NDIAM3=3*NDIAM)

PARAMETER(NDIAM4=4*NDIAM)

PARAMETER(NDIAM5=5*NDIAM)

C

PARAMETER(NRAND=NDIAM5)

C

C DECLARATION FOR THE RANDOM GENERATOR

C

DOUBLE PRECISION IRAN(NRAND)

C

C SPINS AND COORDINATES OF THE ATOMS

C

C

INTEGER ISTAT(NDIAM,2)

DOUBLE PRECISION XCOORD(NDIAM,2),XCOORD0(NDIAM)

DOUBLE PRECISION YCOORD(NDIAM,2),YCOORD0(NDIAM)

DOUBLE PRECISION ZCOORD(NDIAM,2),ZCOORD0(NDIAM)

DOUBLE PRECISION RO2(NDIAM)

C

C BIG SIMPLE CUBIC LATTICE FOR NEIGHBOR LIST SETUP

C

INTEGER LABEL(LSIMPX,LSIMPY,LSIMPZ)

C

C NEIGHBOR TABLE

C

INTEGER NN(NDIAM,8)

C

C IN THIS ARRAY WE STORE THE ENERGY OF EACH BOND

C

DOUBLE PRECISION BOND2(NDIAM,8,2)

C

C ENERGY DIFFERENCE

C

DOUBLE PRECISION DELTAE(NDIAM)

C
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C ACCEPTANCE POINTER

C

INTEGER IACC(NDIAM)

C

C HAMILTONIAN PARAMETERS

C

DOUBLE PRECISION Um,Q,TEMP,R02,DELTA2,SIN60,PMOV

C

C TRANSLATION VECTORS TO THE SUBLATTICES

C

INTEGER IOFFX(8)

INTEGER IOFFY(8)

INTEGER IOFFZ(8)

C

C JUMP VECTORS TO THE NEAREST NEIGHBORS, STARTING

C FROM SITES OF THE FIRST CUBIC SUBLATTICE

C

INTEGER JUMPX(8), JUMPY(8), JUMPZ(8)

C

C STATISTICAL AVERAGES

C

DOUBLE PRECISION UAV(4),MAV(4),MUAV(4),ACCAV

C

DOUBLE PRECISION UAVOUT(4),MAVOUT(4),MUAVOUT(4),ACCOUT

CZHU

CZHU parallelizing the code

CZHU initialization

CZHU

integer myID, ierror,numprocs,f21,f22,f23,f27,f28,f24,ioffset

myID=0

CALL MPI_INIT(ierror)

CALL MPI_COMM_RANK(MPI_COMM_WORLD,myID,ierror)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs, ierror)

ioffset=(myID-2)*10

f21=21+ioffset

f22=22+ioffset

f23=23+ioffset

f27=27+ioffset

f28=28+ioffset

f24=24+ioffset

WRITE(f24,*) ’My process ID is ’,myID

WRITE(f24,*) ’After MPI call. Next, read input’
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C

CZHU OPEN(3,FILE=’tricons6.in’)

C

SIN60=DSIN(1.0471975511965977D0)

DELTA2 = 0.183D0**2

C

C DECLARATION PART FINISHED

C

C

WRITE(f24,*) ’TOTAL NUMBER OF SIMULATED SITES = ’,NDIAM

C

WRITE(f24,*) ’INITIAL VALUE FOR TIME MCS (USUALLY 1) = ?’

READ(5,*) MCSINI

WRITE(f24,*) MCSINI

C

WRITE(f24,*) ’FINAL VALUE FOR TIME MCS = ?’

READ(5,*) MCSMAX

WRITE(f24,*) MCSMAX

C

WRITE(f24,*) ’TIME INTERVAL FOR DUMPING CONFIGURATIONS = ?’

READ(5,*) NOUTCF

WRITE(f24,*) NOUTCF

KOUTCF = NOUTCF + MCSINI - 1

C

WRITE(f24,*) ’TIME INTERVAL FOR OUTPUT OBSERVABLES = ?’

READ(5,*) NOUTOB

WRITE(f24,*) NOUTOB

KOUTOB = NOUTOB + MCSINI - 1

C

WRITE(f24,*) ’START AVERAGING AT MCS = ?’

READ(5,*) MSTART

WRITE(f24,*) MSTART

C

WRITE(f24,*) ’TIME INTERVAL FOR OUTPUT STATISTICAL AVERAGES = ?’

READ(5,*) NOUTAV

WRITE(f24,*) NOUTAV

KOUTAV = NOUTAV + MSTART - 1

C

WRITE(f24,*) ’ISEED = ?’

READ(5,*) ISEED

WRITE(f24,*) ’Original ISEED = ’, ISEED

ISEED=ISEED+947582*myID

WRITE(f24,*) ’ISEED = ’,ISEED

C
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WRITE(f24,*) ’MAXIMUM DISTANCE FOR ATTEMPTED MOVE = ?’

READ(5,*) PMOV

WRITE(f24,*) PMOV

C

WRITE(f24,*) ’TEMPERATURE (IN UNITS OF Um) = ?’

READ(5,*) TEMP

WRITE(f24,*) TEMP

Um = 1.D0/TEMP

C

C HAMILTONIAN PARAMETERS

C

C

WRITE(f24,*) ’ELASTIC OVER MAGNETIC ENERGY = ?’

READ(5,*) Q

WRITE(f24,*) Q

C

WRITE(f24,*) ’SQUARE OF NEAREST NEIGHBOR DISTANCE= ?’

READ(5,*) R02

WRITE(f24,*) R02

C

C INITIAL CONFIGURATION: EACH FCC SUBLATTICE IN STATE +1

C AND PERFECTLY ORDERED

C DIAMOND LATTICE.

C

UOUT = - 4.D0 * (Q+1.D0)

WRITE(f24,*) ’INITIAL SETTING:’

WRITE(f24,*) ’SIMULATION WILL START IN THE ORDERED STATE ’

WRITE(f24,*) ’AT INTERNAL ENERGY PER SITE (IN UNITS OF Um):’,UOUT

WRITE(f24,*) ’AT MAGNETIZATION: 1.’

C

C DEFINE SHIFT VECTORS TO THE ORIGINS OF THE

C VARIOUS SUBLATTICES

C

IOFFX(1) = 0

IOFFY(1) = 0

IOFFZ(1) = 0

C

IOFFX(2) = 1

IOFFY(2) = 0

IOFFZ(2) = 0

C

IOFFX(3) = 0

IOFFY(3) = 0

IOFFZ(3) = 1

C
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IOFFX(4) = 1

IOFFY(4) = 0

IOFFZ(4) = 1

C

IOFFX(5) = 0

IOFFY(5) = 1

IOFFZ(5) = 0

C

IOFFX(6) = 1

IOFFY(6) = 1

IOFFZ(6) = 0

C

IOFFX(7) = 0

IOFFY(7) = 1

IOFFZ(7) = 1

C

IOFFX(8) = 1

IOFFY(8) = 1

IOFFZ(8) = 1

C

C SET LABEL TO ZERO

C

DO 17 IZ = 1,LSIMPZ

DO 17 IY = 1,LSIMPY

DO 17 IX = 1,LSIMPX

LABEL(IX,IY,IZ) = 0

17 CONTINUE

C

C FILL THE LATTICE WITH PARTICLE INDICES IN THE FOLLOWING ORDER:

C SUBLATTICE 1

C SUBLATTICE 2

C ETC.

C

IPART = 0

DO 20 ISUBL = 1,8

DO 20 IZ = 1 + IOFFZ(ISUBL),LSIMPZ + IOFFZ(ISUBL),2

DO 20 IY = 1 + IOFFY(ISUBL),LSIMPY + IOFFY(ISUBL),2

DO 20 IX = 1 + IOFFX(ISUBL),LSIMPX + IOFFX(ISUBL),2

IPART = IPART + 1

LABEL(IX,IY,IZ) = IPART

20 CONTINUE

C

C DEFINE THE JUMP VECTORS TO THE NEAREST NEIGHBORS

C

JUMPX(1) = 1
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JUMPY(1) = 0

JUMPZ(1) = 0

C

JUMPX(2) = 0

JUMPY(2) = 1

JUMPZ(2) = 0

C

JUMPX(3) = -1

JUMPY(3) = 1

JUMPZ(3) = 0

C

JUMPX(4) = 0

JUMPY(4) = 0

JUMPZ(4) = 1

C

JUMPX(5) = 0

JUMPY(5) = 0

JUMPZ(5) = -1

C

JUMPX(6) = 0

JUMPY(6) = -1

JUMPZ(6) = 0

C

JUMPX(7) = -1

JUMPY(7) = -1

JUMPZ(7) = 0

C

JUMPX(8) = -1

JUMPY(8) = 0

JUMPZ(8) = 0

C

C SET UP TABLE OF NEAREST NEIGHBORS

C

DO 120 INN = 1,8

MOVX = JUMPX(INN)

MOVY = JUMPY(INN)

MOVZ = JUMPZ(INN)

DO 120 ISUBL = 1,8

IF(ISUBL.EQ.5) THEN

IF (INN.EQ.2.OR.INN.EQ.6) MOVX = 1

IF (INN.EQ.3.OR.INN.EQ.7) MOVX = 0

END IF

DO 120 IZ = 1 + IOFFZ(ISUBL),LSIMPZ + IOFFZ(ISUBL),2

IZNEW = IZ + MOVZ

IF(IZNEW.LT.1) THEN
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IZNEW = IZNEW + LSIMPZ

END IF

IF(IZNEW.GT.LSIMPZ) THEN

IZNEW = IZNEW - LSIMPZ

END IF

DO 120 IY = 1 + IOFFY(ISUBL),LSIMPY + IOFFY(ISUBL),2

IYNEW = IY + MOVY

IF(IYNEW.LT.1) IYNEW = IYNEW + LSIMPY

IF(IYNEW.GT.LSIMPY) IYNEW = IYNEW - LSIMPY

DO 120 IX = 1 + IOFFX(ISUBL),LSIMPX + IOFFX(ISUBL),2

IXNEW = IX + MOVX

IF(IXNEW.LT.1) IXNEW = IXNEW + LSIMPX

IF(IXNEW.GT.LSIMPX) IXNEW = IXNEW - LSIMPX

IPART = LABEL(IX,IY,IZ)

NN(IPART,INN) = LABEL(IXNEW,IYNEW,IZNEW)

120 CONTINUE

C

C ASSIGN COORDINATES AND SPINS TO THE PARTICLES

C

IOLDCF = 1

INEWCF = 2

C

IPART = 0

DO 200 ISUBL = 1,8

DO 200 IZ = 1 + IOFFZ(ISUBL),LSIMPZ + IOFFZ(ISUBL),2

ZZZ = IZ - 1

DO 200 IY = 1 + IOFFY(ISUBL),LSIMPY + IOFFY(ISUBL),2

YYY = SIN60 * (IY-1)

DO 200 IX = 1 + IOFFX(ISUBL),LSIMPX + IOFFX(ISUBL),2

IPART = IPART + 1

XCOORD(IPART,IOLDCF) = IX - 1 + 0.5D0 * MOD(IY-1,2)

YCOORD(IPART,IOLDCF) = YYY

ZCOORD(IPART,IOLDCF) = ZZZ

ISTAT(IPART,IOLDCF) = 1

200 CONTINUE

DO 201 I=1,NDIAM

XCOORD0(I) = XCOORD(I,IOLDCF)

YCOORD0(I) = YCOORD(I,IOLDCF)

ZCOORD0(I) = ZCOORD(I,IOLDCF)

201 CONTINUE

C

C INITIALIZE RANDOM GENERATOR

C

CALL RINITIALIZE(ISEED)

C
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C THIS IS THE SETTING FOR SETUP FROM SCRATCH

C IF POSSIBLE, OVERWRITE THE CONFIGURATION BY

C DATA FROM INPUT FILE, UNIT 21

C

READ(f28,END=300)

& (XCOORD(I,IOLDCF),I=1,NDIAM),

& (YCOORD(I,IOLDCF),I=1,NDIAM),

& (ZCOORD(I,IOLDCF),I=1,NDIAM),

& (ISTAT(I,IOLDCF),I=1,NDIAM)

WRITE(f24,*) ’INITIAL SETTING OVERRIDDEN BY INPUT FILE’

300 CONTINUE

C

C

FPERIX = 1.5D0 / LSIMPX

FPERIY = 1.5D0 / LSIMPY

FPERIZ = 1.5D0 / LSIMPZ

C

C INITIALIZE BONDS

C

DO 510 INN = 1,8

DO 510 I = 1,NDIAM

INEI = NN(I,INN)

DDXX = XCOORD(INEI,IOLDCF) - XCOORD(I,IOLDCF)

DDYY = YCOORD(INEI,IOLDCF) - YCOORD(I,IOLDCF)

DDZZ = ZCOORD(INEI,IOLDCF) - ZCOORD(I,IOLDCF)

DDXX = DDXX - LSIMPX * INT(FPERIX * DDXX)

DDYY = DDYY - LSIMPY * SIN60 * INT(FPERIY * DDYY/SIN60)

DDZZ = DDZZ - LSIMPZ * INT(FPERIZ * DDZZ)

DIST2 = DDXX ** 2 + DDYY ** 2 + DDZZ ** 2

DD22 = ( (R02/DIST2)**6 - 2.D0*(R02/DIST2)**3 )

& * (Q+ISTAT(INEI,IOLDCF)*ISTAT(I,IOLDCF))

BOND2(I,INN,IOLDCF) = DD22

510 CONTINUE

C

C DETERMINE BOND PART OF INTERNAL ENERGY

C

UINT = 0.D0

DO 560 INN = 1,8

DO 560 I = 1,NDIAM

UINT = UINT + BOND2(I,INN,IOLDCF)

560 CONTINUE

C

UINT = UINT / 2.D0

UOUT = UINT * FACSYS

WRITE(f24,*)
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&’INTERNAL ENERGY PER SITE AT START OF THE RUN (IN UNITS OF Um):’,

& UOUT

C

C DETERMINE THE MAGNETIZATION

C

MAG = 0

DO 561 I = 1,NDIAM

MAG = MAG + ISTAT(I,IOLDCF)

561 CONTINUE

C

XMAGOUT = ABS(MAG) * FACSYS

WRITE(f24,*) ’MAGNETIZATION AT START OF THE RUN: ’,XMAGOUT

C

C SET STATISTICAL AVERAGES TO ZERO

C

DO 980 I=1,4

UAV(I) = 0.D0

MAV(I) = 0.D0

MUAV(I) = 0.D0

980 CONTINUE

ACCAV = 0.D0

C

C

C INITIALIZATION PART FINISHED

C

CZHU write parameters to the ist file

write(f22,*)’Lx= ’, LSIMPX

write(f22,*)’Ly= ’, LSIMPY

write(f22,*)’Lz= ’, LSIMPZ

write(f22,*)’T= ’, TEMP

write(f22,*)’Q= ’, Q

write(f22,*)’mStart= ’, MSTART

C WRITE HEADLINE

C

WRITE(f22,9101)

9101 FORMAT(4X,’MCS’,8X,’M’,15X,’IE’)

C WRITE HEADLINE

C

C BEGIN MONTE CARLO PROCEDURE

C

DO 8000 MCS = MCSINI,MCSMAX

C
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DO I=1,NRAND

IRAN(I) = RANF()

C print*,iran(i)

ENDDO

C

C FOR EACH PARTICLE, GENERATE A NEW POINT IN CONFIGURATION SPACE

C AND CALCULATE BOND CONTRIBUTION TO ENERGY DIFFERENCE

C

FNX = PMOV * 2.D0

FNY = PMOV * 2.D0

FNZ = PMOV * 2.D0

C

DO 1000 I = 1,NDIAM

XCOORD(I,INEWCF) = XCOORD(I,IOLDCF)

& + FNX * IRAN(I) - PMOV

YCOORD(I,INEWCF) = YCOORD(I,IOLDCF)

& + FNY * IRAN(I + NDIAM) - PMOV

ZCOORD(I,INEWCF) = ZCOORD(I,IOLDCF)

& + FNZ * IRAN(I + NDIAM2) - PMOV

ISTNEW = 2*INT(2.D0 * IRAN(I + NDIAM3)) - 1

ISTAT(I,INEWCF) = ISTNEW

1000 CONTINUE

C

DO 1001 I = 1,NDIAM

RO2(I) = (XCOORD(I,INEWCF)-XCOORD0(I))**2 +

& (YCOORD(I,INEWCF)-YCOORD0(I))**2 +

& (ZCOORD(I,INEWCF)-ZCOORD0(I))**2

1001 CONTINUE

C

DO 1002 I = 1,NDIAM

IF (RO2(I).GT.DELTA2) THEN

XCOORD(I,INEWCF) = XCOORD(I,IOLDCF)

YCOORD(I,INEWCF) = YCOORD(I,IOLDCF)

ZCOORD(I,INEWCF) = ZCOORD(I,IOLDCF)

ENDIF

1002 CONTINUE

C

DO 2000 I=1,NDIAM

DELTAE(I) = 0.D0

2000 CONTINUE

C

DO 3000 ISUBL = 1,8

C

ILOW = (ISUBL - 1) * NDIAM/8 + 1

IHGH = ISUBL * NDIAM/8
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C

C FIRST NEIGHBOR CONTRIBUTIONS

C

DO 1250 INN = 1,8

DO 1250 I = ILOW,IHGH

INEI = NN(I,INN)

DDXX = XCOORD(INEI,IOLDCF) - XCOORD(I,INEWCF)

DDYY = YCOORD(INEI,IOLDCF) - YCOORD(I,INEWCF)

DDZZ = ZCOORD(INEI,IOLDCF) - ZCOORD(I,INEWCF)

DDXX = DDXX - LSIMPX * INT(FPERIX * DDXX)

DDYY = DDYY - LSIMPY * SIN60*INT(FPERIY * DDYY/SIN60)

DDZZ = DDZZ - LSIMPZ * INT(FPERIZ * DDZZ)

DIST2 = DDXX ** 2 + DDYY ** 2 + DDZZ ** 2

DD22 = ( (R02/DIST2)**6 - 2.D0*(R02/DIST2)**3 )

# * (Q+ISTAT(INEI,IOLDCF)*ISTAT(I,INEWCF))

BOND2(I,INN,INEWCF) = DD22

DELTAE(I) = DELTAE(I) + DD22 - BOND2(I,INN,IOLDCF)

1250 CONTINUE

C

C ENERGY CALCULATION FINISHED

C

C FIND OUT WHICH OF THE MOVES IS ACCEPTED

C

DO 1500 I = ILOW,IHGH

PACC = DEXP(- DELTAE(I) * Um )

& - IRAN(I + NDIAM4)

IACC(I) = 0

IF(PACC.GT.0.D0) IACC(I) = 1

1500 CONTINUE

C

C UPDATE SPINS AND COORDINATES AT THE CENTRAL SITE

C

DO 1510 I = ILOW,IHGH

IF(IACC(I).EQ.1) THEN

ISTAT(I,IOLDCF) = ISTAT(I,INEWCF)

XCOORD(I,IOLDCF) = XCOORD(I,INEWCF)

YCOORD(I,IOLDCF) = YCOORD(I,INEWCF)

ZCOORD(I,IOLDCF) = ZCOORD(I,INEWCF)

UINT = UINT + DELTAE(I)

END IF

1510 CONTINUE

C

C UPDATE BONDS AT THE CENTRAL SITE

C

DO 1520 INN = 1,8
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DO 1520 I = ILOW,IHGH

IF(IACC(I).EQ.1) THEN

BOND2(I,INN,IOLDCF) = BOND2(I,INN,INEWCF)

END IF

1520 CONTINUE

C

C UPDATE THE BONDS OF THE NEIGHBORING SITES

C

DO 2500 INN = 1,8

C*VDIR: IGNORE RECRDEPS

CDIR$ IVDEP

DO 2500 I = ILOW,IHGH

INEI = NN(I,INN)

BOND2(INEI,-INN+9,IOLDCF) = BOND2(I,INN,IOLDCF)

2500 CONTINUE

C

3000 CONTINUE

C

C LOOP OVER SUBLATTICES FINISHED

C

C MEASURE SOME OBSERVABLES

C

IF(MCS.GE.MSTART.OR.MCS.EQ.KOUTOB) THEN

C

C DETERMINE ACCEPTANCE RATE AND MAGNETIZATION

C

JACC = 0

MAG = 0

DO 6010 I = 1,NDIAM

JACC = JACC + IACC(I)

MAG = MAG + ISTAT(I,IOLDCF)

6010 CONTINUE

ACC = JACC * FACSYS

XMOUT = MAG * FACSYS

C

C INTERNAL ENERGY

C

UOUT = UINT * FACSYS

C

END IF

C

C END OF MEASURING BLOCK

C

C CUMULATE AVERAGES

C
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IF(MCS.GE.MSTART) THEN

DO 7000 MOM = 1,4

UAV(MOM) = UAV(MOM) + UOUT ** MOM

MAV(MOM) = MAV(MOM) + XMOUT ** MOM

MUAV(MOM) = MUAV(MOM) + XMOUT ** MOM * UINT

7000 CONTINUE

ACCAV = ACCAV + ACC

END IF

C

C OUTPUT OBSERVABLES

C

IF(MCS.EQ.KOUTOB) THEN

KOUTOB = KOUTOB + NOUTOB

C WRITE(f22,9000) MCS,ACC,UOUT,XMOUT

WRITE(f22,9001) MCS,XMOUT,UOUT

END IF

C

C DUMP CONFIGURATION

C

IF(MCS.EQ.KOUTCF) THEN

KOUTCF = KOUTCF + NOUTCF

REWIND(f21)

WRITE(f21)

& (XCOORD(I,IOLDCF),I=1,NDIAM),

& (YCOORD(I,IOLDCF),I=1,NDIAM),

& (ZCOORD(I,IOLDCF),I=1,NDIAM),

& (ISTAT(I,IOLDCF),I=1,NDIAM)

REWIND(f27)

do 730 I=1,NDIAM

write(f27,732)XCOORD(I,IOLDCF),YCOORD(I,IOLDCF),

& ZCOORD(I,IOLDCF),ISTAT(I,IOLDCF)

732 format(3(2x,f12.6),2x,I4)

730 enddo

write(f27,733)LSIMPX,LSIMPY,LSIMPZ

733 format(3I5)

WRITE(f24,*) ’CONFIGURATION DUMPED AFTER MCS = ’,MCS

END IF

C

C OUTPUT STATISTICAL AVERAGES

C

IF(MCS.EQ.KOUTAV) THEN

KOUTAV = KOUTAV + NOUTAV

REWIND(f23)
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C

FACTOR = 1.D0 / (MCS - MSTART + 1)

DO 7100 MOM = 1,4

UAVOUT(MOM) = UAV(MOM) * FACTOR

MAVOUT(MOM) = MAV(MOM) * FACTOR

MUAVOUT(MOM) = MUAV(MOM) * FACTOR

7100 CONTINUE

ACCOUT = ACCAV * FACTOR

C

SPEC = NDIAM * (Um ** 2) * (UAVOUT(2) - UAVOUT(1) ** 2)

SUSC = NDIAM * Um * (MAVOUT(2) - MAVOUT(1) ** 2)

CUM = 0.D0

IF(MAVOUT(2).NE.0.D0)

& CUM = 1.D0 - MAVOUT(4) / (3.D0 * MAVOUT(2) ** 2)

V1 = - ( MUAVOUT(1)/MAVOUT(1) ) + UAVOUT(1)*NDIAM

V2 = - ( MUAVOUT(2)/MAVOUT(2) ) + UAVOUT(1)*NDIAM

dUdK = - ( 1.D0 / (3.D0 * MAVOUT(2)**2) ) *

& ( MAVOUT(4) * ( 2.D0*MUAVOUT(2)/MAVOUT(2) -

& UAVOUT(1)*NDIAM ) - MUAVOUT(4) )

C

WRITE(f23,*)

& ’LINEAR SIZE = ’,LSIMPX, ’ # PARTICLES = ’,NDIAM

WRITE(f23,*) ’TEMPERATURE = ’,TEMP

WRITE(f23,*) ’SEED = ’,ISEED

WRITE(f23,*) ’STATISTICAL AVERAGES AFTER MCS = ’,MCS

WRITE(f23,*) ’ ’

WRITE(f23,*) ACCOUT, ’ AVERAGE ACCEPTANCE RATE’

WRITE(f23,*) ’ ’

DO I=1,4

WRITE(f23,7770) MAVOUT(I),I

7770 format( E24.18,’ ORDER PARAMETER, MOMENT ’, I1)

ENDDO

WRITE(f23,*) SUSC, ’ SUSCEPTIBILITY’

DO I=1,4

WRITE(f23,7772) UAVOUT(I),I

7772 format(E24.18, ’ INTERNAL ENERGY, MOMENT ’, I1)

ENDDO

DO I=1,4

WRITE(f23,7774) MUAVOUT(I),I

7774 format(E24.18, ’ m’,I1,’E’)

ENDDO

WRITE(f23,*) SPEC, ’ SPECIFIC HEAT’

WRITE(f23,*) CUM, ’ CUMULANT’

WRITE(f23,*) dUdK, ’ DERIVATIVE OF THE CUMULANT’
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WRITE(f23,*) V1, ’ DERIVATIVE OF ln(m1)’

WRITE(f23,*) V2, ’ DERIVATIVE OF ln(m2)’

ENDIF

C

8000 CONTINUE

call MPI_FINALIZE(ierror)

C

C LOOP OVER MONTE CARLO STEPS FINISHED

C

9000 FORMAT(I8,3E15.7)

9001 FORMAT(I8,2(3X,E18.12))

9999 format(2x,i4,2x,3(f8.4,2x),i2)

C

STOP

END

*=======================================================================

* This file contains the Cray specific subroutines for random number

* generation and convolution SUM routine

*=======================================================================

SUBROUTINE RINITIALIZE(ISEED)

IMPLICIT REAL*8(A-H,O-Z),INTEGER(I-N)

PARAMETER(NAB3=101280)

COMMON/CNUM/NUM

NUM=NAB3-1280

CALL RANINI(ISEED)

END

DOUBLE PRECISION FUNCTION RANF()

IMPLICIT REAL*8(A-H,O-Z),INTEGER(I-N)

COMMON/CNUM/NUM

ranf = RANDA(NUM)

NUM=NUM+1

END

C***********************************************************************

SUBROUTINE RANINI(ISeed)

IMPLICIT NONE

INTEGER NAB3

PARAMETER(NAB3 = 101280)
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INTEGER ISeed,IMod,I,J,K

INTEGER RanVec,IMax

REAL*8 RMod,PMod,DMaxI,RanVec2

COMMON/dom/RanVec(NAB3),Ranvec2(NAB3)

IMax = 2147483647

DMaxI = 1.0D0/2147483647.0D0

RMod = DBLE(ISeed)

PMod = DBLE(IMax)

DO I = 1,1000

RMod = RMod*16807.0D0

IMod = RMod*DMaxI

RMod = RMod - PMod*IMod

END DO

DO I = 1,1279

RanVec(I) = 0

DO J = 0,30

DO K = 1,36

RMod = RMod*16807.0D0

IMod = RMod*DMaxi

RMod = RMod - PMod*IMod

END DO

RMod = RMod*16807.0D0

IMod = RMod*DMaxi

RMod = RMod - PMod*IMod

IF (RMod .GT. 0.5D0*PMod) RanVec(I) = IBSET(RanVec(I),J)

END DO

END DO

C** Generate 1000 random numbers to warm up the generator

CALL RANDOM(1000)

RETURN

END

C***********************************************************************

SUBROUTINE RANDOM(Number)

IMPLICIT NONE

INTEGER NAB3

PARAMETER(NAB3 = 101280)

real*8 RanVec2
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INTEGER RanVec,Number,I

COMMON/dom/RanVec(NAB3),RanVec2(NAB3)

C** This works because Number will always be a multiple of four for this

C** program

C** Unroll this loop for extra speed

DO I = 1,Number,4

RanVec(I+1279) = IEOR(RanVec(I), RanVec(I+216))

RanVec(I+1280) = IEOR(RanVec(I+1), RanVec(I+217))

RanVec(I+1281) = IEOR(RanVec(I+2), RanVec(I+218))

RanVec(I+1282) = IEOR(RanVec(I+3), RanVec(I+219))

END DO

C** Copy the final 1279 elements to the beginning for use on the next call

C** Unroll this loop for extra speed

DO I = 1,1276,4

RanVec(I) = RanVec(I+Number)

RanVec(I+1) = RanVec(I+1+Number)

RanVec(I+2) = RanVec(I+2+Number)

RanVec(I+3) = RanVec(I+3+Number)

END DO

RanVec(1277) = RanVec(1277 + Number)

RanVec(1278) = RanVec(1278 + Number)

RanVec(1279) = RanVec(1279 + Number)

do I = 1,number

RanVec2(I) = dble(RanVec(I))*4.656612875D-10

end do

RETURN

END

FUNCTION RANDA(NUM)

INTEGER NUM,ranvec,NAB3

REAL*8 RANVEC2,RANDA

PARAMETER(NAB3=101280)

COMMON/dom/RanVec(NAB3),Ranvec2(NAB3)

if(NUM.ge.NAB3-1280)then

CALL RANDOM(NAB3-1280)
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RANDA = ranvec2(1)

NUM = 2

else

RANDA = ranvec2(NUM)

NUM = NUM + 1

endif

end
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B.2 The Input File input tri.dat

1 INITIAL VALUE FOR TIME MCS (USUALLY 1)

100000 FINAL VALUE FOR TIME MCS

10000 TIME INTERVAL FOR DUMPING CONFIGURATIONS

1 TIME INTERVAL FOR OUTPUT OBSERVABLES

1 FIRST MCS FOR AVERAGING

10000 TIME INTERVAL FOR OUTPUT STATISTICAL AVERAGES

410060409 ISEED

0.05D0 MAXIMUM DISTANCE FOR ATTEMPTED MOVE

4.50 TEMPERATURE (ALL IN UNITS OF Um)

3.0 ELASTIC OVER MAGNETIC PARAMETER

1.0D0 SQUARE OF NEAREST NEIGHBOR DISTANCE



130

B.3 The Shell Script

This is a very simple version. See the CDROM for the advanced version.

#!/bin/sh

ln -s posout fort.28

ln -s posout1 fort.27

ln -s posout fort.21

ln -s ist fort.22

ln -s medie fort.23

ln -s output fort.24

# assume the executable is tricons.x,

# and the input file is inp_tricons.dat

/usr/bin/time -p ./tricons.x <inp_tricons.dat >>& output_file



Appendix C

Povray Tools

In the chapter, three files are provided: a C code for processing raw data, a povray file, and

the shell script to run these two.

C.1 Shell Script

#!/bin/csh

gcc -lm drawLattice.c -o drawLattice

set i=$1

set SN=‘echo $i |awk ’{len=length($1);

printf "%04d\n", substr($1,11,len-13)}’‘

set ext=‘echo $SN |awk ’{printf "%04d\n",$1/10}’‘

set dividable=‘echo $SN|awk ’{print $1%10}’‘

set frame=$i

./drawLattice $i >balls.inc

cp example2.pov $frame.pov

povray +I$frame.pov +H300 +W400 +A0.1

rm $frame.pov
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C.2 Povray File example2.pov

camera {

location 1*<1,1,0.75> //position of camera

look_at <0.0, 0.0, 0.0> //look at position

right x*image_width/image_height //don’t change

up z //don’t change

direction -1*x //don’t change

sky z //don’t change

}

background{rgb 0.8*<1,1,1>}

light_source{<1000,100,500> rgb 1}

//#declare L=7;

//note, this is to shorten the data set, set=to total size to view all atoms

#declare crad=0.04;

#declare tex1=

texture{

pigment{rgb <0.5,0,0>}

finish{ambient 0.25 diffuse 0.75}// specular 0.3}

}

#declare tex2=

texture{

pigment{rgb <0.5,0.4,0>}

finish{ambient 0.25 diffuse 0.75}// specular 0.3 reflection 0.3}

}

#declare tex3=

texture{

pigment{rgb <0,0.5,0>}

finish{ambient 0.5 diffuse 0.5}// specular 0.3}

}

#declare tex4=

texture{

pigment{rgb <0,0.5,0>}

finish{ambient 0.25 diffuse 0.75}// specular 0.3}

}

#include "balls.inc" //this contains your own cylinders, etc...
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union{

object{

balls

}

translate -<1,1,0>/2

scale <1,1,1>/L

translate -0.5*<1,1,1>

rotate clock*360*z

//no_shadow

}
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C.3 File drawLattice.c

This program reads data and output the povray components.

#include <stdio.h>

#include <stdlib.h>

#define L 6

#define CELL_SCALE 0.7

//global variables

double X[L+1][L+1][L+1],Y[L+1][L+1][L+1],Z[L+1][L+1][L+1];

double color[L+1][L+1][L+1];

int nr[L+1];

double lx,ly,lz;

//subroutines

void drawBox(int,int,int);

void drawCylinder(int,int,int,int,int,int);

void drawTriangle(int,int,int,int,int,int,

int,int,int,double,double,double);

int main(int argc, char** argv)

{

int i,j,k,m,sub;

double spin;

int tmp;

char str[256];

FILE* fin=NULL;

fin=fopen(argv[1],"r");

printf("//inpufile: %s, fin=%g\n",argv[1],fin);

for(i=0;i<L+1;i++)

nr[i]=(i+1)%(L+1);

//initialization

for(k=0;k<L;k++)

for(j=0;j<L;j++)

for(i=0;i<L;i++)

color[i][j][k]=0.0;

//read data
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for(sub=0;sub<8;sub++)

for(k=0;k<L;k++)

for(j=0;j<L;j++)

for(i=0;i<L;i++)

{

fgets(str,256,fin);

sscanf(str,"%lg\t%lg\t%lg\t%lg\n",

&(X[i][j][k]),&(Y[i][j][k]),&(Z[i][j][k]),&spin);

color[i][j][k]+=spin/8.0;

}

fgets(str,256,fin);

sscanf(str,"%lg\t%lg\t%lg\n",&lx,&ly,&lz);

//extend to the periodic outlier

for(i=0;i<L+1;i++)

for(j=0;j<L+1;j++)

{

X[i][j][L]=X[i][j][0];

Y[i][j][L]=Y[i][j][0];

Z[i][j][L]=Z[i][j][0]+lz;

color[i][j][L]=color[i][j][0];

}

for(i=0;i<L+1;i++)

for(k=0;k<L+1;k++)

{

X[i][L][k]=X[i][0][k];

Y[i][L][k]=Y[i][0][k]+ly;

Z[i][L][k]=Z[i][0][k];

color[i][L][k]=color[i][0][k];

}

for(j=0;j<L+1;j++)

for(k=0;k<L+1;k++)

{

X[L][j][k]=X[0][j][k]+lx;

Y[L][j][k]=Y[0][j][k];

Z[L][j][k]=Z[0][j][k];

color[L][j][k]=color[0][j][k];

}

//output surface

fprintf(stdout,"#declare L=%g;\n",(lx*(L+1))/L);

fprintf(stdout,"#declare balls=\n union{\n");

for(i=0;i<L;i++)

for(j=0;j<L;j++)
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for(k=0;k<L;k++)

drawBox(i,j,k);

fprintf(stdout,"}\n");

}

void drawBox(int i,int j, int k)

{

double spin;

double red, blue, green;

spin=color[i][j][k];

fprintf(stdout,"\t union{

// begin of box <%d, %d, %d>\n", i,j,k);

if(spin>=0)

{

red=1.0;

green=1.0-spin;

blue=1.0-spin;

}else

{

red=1.0+spin;

green=1.0+spin;

blue=1.0;

}

//spheres

fprintf(stdout,

"\t\t sphere{<%lg,%lg,%lg>,crad texture{tex3}}\n",

X[i][j][k],Y[i][j][k],Z[i][j][k],red,green,blue);

//cylinders

// in i-direction

drawCylinder(i,j,k,nr[i],j,k);

drawCylinder(i,nr[j],k,nr[i],nr[j],k);

drawCylinder(i,j,nr[k],nr[i],j,nr[k]);

drawCylinder(i,nr[j],nr[k],nr[i],nr[j],nr[k]);

// in j-direction

drawCylinder(i,j,k,i,nr[j],k);

drawCylinder(nr[i],j,k,nr[i],nr[j],k);

drawCylinder(i,j,nr[k],i,nr[j],nr[k]);

drawCylinder(nr[i],j,nr[k],nr[i],nr[j],nr[k]);

// in k-direction

drawCylinder(i,j,k,i,j,nr[k]);

drawCylinder(i,nr[j],k,i,nr[j],nr[k]);

drawCylinder(nr[i],j,k,nr[i],j,nr[k]);



137

drawCylinder(nr[i],nr[j],k,nr[i],nr[j],nr[k]);

//triangles

//<i,j,k>,<nr[i],j,k>,<i,nr[j],k>, k fixed

drawTriangle(i,j,k,nr[i],j,k,

i,nr[j],k,red,green,blue);

drawTriangle(nr[i],nr[j],k,nr[i],j,k,

i,nr[j],k,red,green,blue);

drawTriangle(i,j,nr[k],nr[i],j,nr[k],

i,nr[j],nr[k],red,green,blue);

drawTriangle(nr[i],nr[j],nr[k],nr[i],j,nr[k],

i,nr[j],nr[k],red,green,blue);

//j fixed

drawTriangle(i,j,k,nr[i],j,k,

i,j,nr[k],red,green,blue);

drawTriangle(nr[i],j,nr[k],nr[i],j,k,

i,j,nr[k],red,green,blue);

drawTriangle(i,nr[j],k,nr[i],nr[j],k,

i,nr[j],nr[k],red,green,blue);

drawTriangle(nr[i],nr[j],nr[k],nr[i],nr[j],k,

i,nr[j],nr[k],red,green,blue);

//i fixed

drawTriangle(i,j,k,i,nr[j],k,

i,j,nr[k],red,green,blue);

drawTriangle(i,nr[j],nr[k],i,nr[j],k,

i,j,nr[k],red,green,blue);

drawTriangle(nr[i],j,k,nr[i],nr[j],k,

nr[i],j,nr[k],red,green,blue);

drawTriangle(nr[i],nr[j],nr[k],nr[i],nr[j],k,

nr[i],j,nr[k],red,green,blue);

//translation and scale

fprintf(stdout,"\t\t translate -<%g,%g,%g>\n",

X[i][j][k],Y[i][j][k],Z[i][j][k]);

fprintf(stdout,"\t\t scale <1,1,1>*%g",CELL_SCALE);

fprintf(stdout,"\t\t translate <%g,%g,%g>\n",

X[i][j][k],Y[i][j][k],Z[i][j][k]);

fprintf(stdout,"\t} // end of box <%d, %d, %d>\n ", i,j,k);

}

void drawCylinder(int i1,int j1,int k1, int i2, int j2, int k2)

{

fprintf(stdout,"\t\t cylinder{<%lg,%lg,%lg>,<%lg,%lg,%lg>,
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crad texture{tex3}}\n",

X[i1][j1][k1],Y[i1][j1][k1],Z[i1][j1][k1],

X[i2][j2][k2],Y[i2][j2][k2],Z[i2][j2][k2]);

}

void drawTriangle(int i1,int j1,int k1,

int i2, int j2, int k2,

int i3,int j3,int k3,

double red, double green,double blue)

{

fprintf(stdout,

"\t\t triangle{<%lg,%lg,%lg>,

<%lg,%lg,%lg>,<%lg,%lg,%lg>

texture{pigment{rgb <%g,%g,%g>}

finish{ambient 0.5 diffuse 0.5}}}\n",

X[i1][j1][k1],Y[i1][j1][k1],Z[i1][j1][k1],

X[i2][j2][k2],Y[i2][j2][k2],Z[i2][j2][k2],

X[i3][j3][k3],Y[i3][j3][k3],Z[i3][j3][k3],

red,green,blue);

}
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