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Abstract

This computational study aims at a better understanding of structure formation processes

in helical polymers. For this purpose, parallel tempering Monte Carlo simulations were

preformed using a generic coarse-grained model. Structural conformations exhibit helical

order with tertiary structural organizations including single helices, multiple helical segments

organized into bundles, and disorganized helical arrangements. We compare helical structure

formation for flexible and semiflexible polymers. For each model, we analyze low-energy

structural geometries, structural stability, and folding dynamics. This exploration lends

insight into the restricted flexibility of biological polymers such as double-stranded DNA

and proteins. Additionally, the influence of substrate adsorption on helical structures and

stability is investigated in detail.
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Chapter 1

Introduction

Many modern problems in physics are difficult to study using the traditional mathematical

tools available in theoretical physics. Additionally experimental explorations are often lim-

ited in terms of scope and flexibility. Due to the cooperative effects in complex systems it has

become essential that we embrace computation as a methodology. The algorithmic approach

allows us to study systems which are too large to be fully modeled theoretically and lack

convenient opportunity for simplification. As our ability to study complex systems experi-

mentally expands, interesting problems which can be approached computationally emerge.

Some examples of such a problems are my recent work on tertiary structure formation in

helical polymers [1] and evaporative cooling of ultracold atoms, which is the basis of my

early graduate work [2]. Computation has also proved extremely useful in many areas in-

volving phase transitions such as magnetism [3], networks [4], and cosmology [5]. Polymer

systems are often too complex to be fully solvable and are too small to be treated as infinitely

large. For these reasons the study of polymers has benefitted greatly from computational

exploration [6, 7].

Polymers are macromolecules consisting of many repeated units called monomers. They

occur frequently in biological systems and are an essential element in the function of all
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biological material. Biological polymers include polypeptides or proteins, polynucleotides

such as DNA and RNA, and polysaccharides. An understating of the structure and thus the

function of these biopolymers gives insight into how biological systems work and how they

evolved. This insight is critical because biopolymers are at the heart of many disease-causing

mechanisms such as viruses, prion diseases, and Alzheimer’s disease [8, 9].

Several disease causing mechanisms are linked to the relationship between biopolymer

sequence, structure, and function. Prion diseases such as bovine spongiform encephalopathy

and Creutzfeld-Jakob disease are caused by structural changes to proteins in the body caused

by foreign molecules. While the cause is less clear, Alzheimer’s disease is also caused by the

misfolding of proteins in the neuronal cellular network. In this dissertation, we study the

relationship between biopolymer sequence, structure, and function in hopes of contributing

to the better understanding of the biological systems relevant in cellular functions, evolution,

and disease.

1.1 Polypeptides

The most relevant systems to the work presented in this dissertation are polypeptide systems.

Polypeptides are biopolymers made up of a sequence of amino acids joined together by

peptide bonds. Each amino acid consists of an amine group (−NH2), a side chain unique to

each amino acid, and a carboxylic acid group (−COOH). Two individual amino acids can

join together by forming a peptide bond between the amine group of one amino acid and the

carboxylic group of the other. Many amino acids can join together into polypeptide chains

called proteins. Almost all proteins found in human biology are made from a basis of 20

different amino acids. The length of proteins ranges from approximately 20 to 20,000 amino

acids. Each polypeptide folds into a geometrical structure which depends on the sequence

of the amino acids. This structure dictates the protein’s function.
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1.2 Simulation and thermodynamics

Simulation allows for the study of thermodynamic quantities which describe the behavior of

a system. Over the course of a simulation, an ensemble of structures is generated according

to the canonical distribution which corresponds to a specific temperature. To understand the

behavior of the system in temperature space, we generate an array of canonical ensembles

each corresponding to a different temperature.

We can describe the ensembles by calculating averages of structural quantities. The most

obvious quantity is the energy. By plotting the canonical average of the energy, 〈E〉, versus

temperature we learn how the system evolves as the temperature varies. The rate of change

of the canonical energy, the specific heat, gives insight into the presence of phase transitions.

The specific heat can be calculated using

Cv = d〈E〉/dT = (〈E2〉 − 〈E〉2)/(kBT
2). (1.1)

Here, and for the remainder of this dissertation kB ≡ 1.

In the thermodynamic limit, an effectively infinite system may exhibit discontinuities

in thermodynamic quantities such as entropy or a divergence in Cv at a phase transition

temperature. However, in many cases considering the thermodynamic limit for the study of

polymers does not make sense. In polymers the finite-size effects are an essential element of

the behavior of the physical system. Although the system does not exhibit phase transitions

in the strict thermodynamic sense [10, 11], qualitative changes in the system behavior are

interesting and can be thought of as a finite analogue to phase transitions [12]. In this

dissertation, these transitions are referred to as structural transitions, and often correspond

to peaks or shoulders in the specific heat curve.

It can sometimes be useful to measure other canonical quantities to find structural tran-

sitions without a strong signal in energy. For example, the end-to-end length L of a polymer
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reliably shows a dramatic change between the liquid like structures and gas like random-coil

structures. This change presents itself as a peak in the temperature derivative of the length,

d〈L〉/dT . The temperature derivative of some canonical quantity, O, can be calculated using

the formula

d〈O〉/dT = (〈OE〉 − 〈O〉〈E〉)/(kBT 2). (1.2)

In addition to canonical averages, it can also be useful to examine histograms of canonical

ensembles across various structural quantities. The negative logarithm of the histogram can

be interpreted as a free-energy landscape in the space of system energy. The evolution of the

free-energy landscape can provide insight into the folding pathways [13–19] and structure

stability [20–23].

Another way to think about the evolution of a system is according to its microcanonical

properties [24]. The microcanonical ensemble is the collection of structures observed in the

system at a single energy. The microcanonical entropy is a relative measure of the logarithm

of the number of available states at a given energy. This quantity along with its derivatives

gives unparalleled insight into the phase transitions present in a system [25].

1.3 Study of biopolymers

Nuclear magnetic resonance spectroscopy (NMR) is a frequently used experimental tech-

nique used to determine structures of proteins [26]. Due to the cooperative effects in long

polymers, the behavior of these structures can only be explored theoretically for a very nar-

row set of circumstances . Because of these restraints, many systems can only be studied

computationally . All-atom models are commonly used to simulate proteins on the basis of

the fully atomic configuration [27]. In these simulations, polymers studied must either be

small or the scope of the experiment must be limited.
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A coarse-grained approach simplifies the problem by replacing the system with an anal-

ogous system with reduced complexity but similar behavior [28]. For polymers, this is done

by defining an arbitrary repeating unit called a monomer. Monomers interact according to

a set of potentials chosen to reproduce the behavior of the system in question. Each poten-

tial does not have a direct one-to-one relationship with a physical force derivable from first

principles but is rather an effective representation of an observable behavior of a system.

While coarse-grained models do not model a single specific protein sequence, their merit

lies in the ability to discern more broadly applicable effects. The generality of the model

allows for direct manipulation of a system’s behavior without regard for the microscopic

details responsible for it. Because of the increased efficiency gained from a dramatic decrease

in the degrees of freedom, it is possible to explore a much wider array of conditions, which

generates results that are more broadly applicable. The results of such a simulation can be

used in the construction of a hyper-phase diagram which describes the behavior of a system

across a multi-dimensional model parameter space.

Coarse-grained polymer models have been used successfully to study many different sys-

tems. These include both lattice models [29] and off-lattice models [30]. Systems include

flexible heteropolymers [31], flexible polymers [32–34], and semiflexible polymers [35–37].

The relationship between a collection of polymers has been explored using aggregation mod-

els [38, 39]. There has also been much interest in the effect of an adsorption substrate on

polymer structures [40–44]. Most importantly for the purposes of this dissertation, is the

research into helical polymer structures and transitions [45–48].

We employ a coarse-grained approach in order to study helical polymer systems. An

illustration of the difference between an all-atom representation of a 3-helix bundle and a

coarse-grained 3-helix bundle is given in Fig. 1.1. In the top panel, the atomic configura-

tion of VPS4A (vacuolar protein sorting factor 4A) is presented with the helical structures

highlighted as green ribbons. An all-atom simulation would require that all 1285 atoms be
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Figure 1.1: Top: Structure of vacuolar protein sorting factor 4A, a protein with 77 residues
comprising a total of 1285 atoms. The structure was observed in Nuclear Magnetic Resonance
experiments [49,50]. Bottom: Coarse-grained 3-helix bundle generated by parallel tempering
simulation of polymer with 60 monomers.
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considered. In the bottom panel, a coarse-grained approach is taken to model a generic

3-helix bundle similar to the protein above. The coarse-grained approach only requires the

interactions between the 60 monomers included to be considered. Not including the medium,

the coarse-grained system is a factor of 20 smaller than the all-atom simulation. Addition-

ally, the computational requirements are approximately proportional to the square system

size, meaning that the computational time for a coarse-grained system is reduced by a factor

of 500 from the simulation of an all-atom model. Despite this decrease in complexity, the

coarse-grained system still captures the cooperative interactions involved in the formation

of a structure such as VPS4A.

1.4 Coarse-grained helical polymers

Helical structures are among the most commonly found structures exhibited by polypeptide

systems [51]. In proteins, helices can occur in several different contexts. While peptide

structures consisting of only a single helical rod are found, often helical segments are part of

a larger tertiary structure consisting of many different elements such as helix bundles made

up of several helical segments.

A propensity for formation of helical structures in biological systems can be explained by

hydrogen bonding between backbone atoms of the polymer or as the result of an ordering

principle such as many-body constraint [52–54]. As polymers with a propensity for helical

order cool, they undergo a structural transition from random-coil structures to helical struc-

tures [55–61]. The inclusion of non-bonded interaction causes helical segments of sufficient

length to fold into helical bundles [62–70]. These helical structures vary greatly depending

on the particular interactions present [71, 72]. In this dissertation we expand on the previ-

ous work done in helical biopolymers using an effective potential model which represents a

generic protein chain with a propensity for helix formation. We simulate these biopolymers
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under an array of conditions in order to gain insight into the various influences which dictate

structure formation.

In Chapter 2, we describe in detail the effective potential model used to represent the

biopolymer. We include a discussion of the bond potential, non-bonded interaction, the

potential which facilitates helix formation, the bending angle interaction, and the adsorp-

tion potential. We describe the computational techniques used in our simulations of these

systems. Optimization strategies used to improve simulation efficiency are also discussed.

In physical polypeptide systems, it can be observed that the angle between successive

monomer-monomer bonds is restrained to a fixed value. This property is typical for a semi-

flexible polymer [46]. Chapter 3 explores the effect of these bending-angle restraints and

considers the reason for this restraint in nature. This is done by comparing the simulation

results for flexible and semiflexible systems under otherwise identical conditions.

Adsorption surfaces have been shown to influence conformation geometry, transition dy-

namics, and stability in many different systems [22, 73–75]. The effect of an adsorption

surface on the helix-coil transition has been explored experimentally [76]. Adsorbed helical

polymers in the regime of very large systems have also been studied using an exactly solvable

model [77].

Based on the experimental observation that helical polymers are stabilized by adsorption

onto the surface of silica nanoparticles, it has been hypothesized that the presence of these

particles during the formation and evolution of early life on earth may have played an

important role in stabilizing early biological polymers [78]. Chapter 4 is an investigation of

this claim. We accomplish this by simulating helical polymers in the presence of an adsorbing

surface to determine its impact on structure formation and stability.

Both research questions under consideration in this dissertation are studied using replica-

exchange Monte Carlo simulations. The systems are modeled using coarse-grained homopoly-

mers which include a torsion potential that facilitates the formation of helical order. These
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investigations provide insight into helical polymer ground state structures, stability, folding

pathways, and transitions in both temperature and torsion strength [79,80].
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Chapter 2

Simulation

2.1 Helical polymer model

The behavior of a simulated system is a direct result of the model used. In coarse-grained

models, effective potentials are used to represent essential system features observed in nature.

We use effective potentials to model the behavior of single-chain linear polymer systems.

Polymers are macromolecules with some number N of monomers which are bonded in a linear

chain. These potentials are first presented as unitless quantities which will be multiplied by

relative energy scales presented in Equation 2.6.

We model the relationship between successive bonded monomers according to the FENE

(finitely extensible nonlinear elastic) potential [81–83]. For neighboring monomers separated

by a distance r the FENE potential is given by

vFENE(r) = −1

2
R2 log{1− [(r − r0)/R]2}. (2.1)

The bond length associated with the potential minimum is given by r = r0 ≡ 1 and the

maximum deviation from this value is r − r0 = R ≡ 3/7. The shape of the potential is

10



Figure 2.1: The blue curve represents the FENE potential used for all bonded interactions
and orange is the Lennard-Jones which is used for non-bonded interactions. The vertical
dashed line is the cutoff distance for the LJ potential, any monomers beyond this distance
do not interact with each other.

shown in Fig. 2.1. If a monomer in a Monte Carlo update is shifted beyond the maximum

deviation, r > r0 + R or r < r0 − R, the potential is considered infinite and the move is

rejected. In effect, the FENE potential maintains the polymer as a single unbroken chain of

monomers.

The second interaction observed in polymer systems is an attractive interaction between

non-bonded monomers in close proximity to one another. Between monomers separated by a

distance r, the non-bonded interaction is calculated by the Lennard-Jones (LJ) potential [84].

In our simulations, we use it in the form

vLJ(r) =


4[(σ/r)12 − (σ/r)6]− vshift, if r < rcutoff ,

0, otherwise.

(2.2)
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We define σ = 2−1/6r0, where r0 ≡ 1 is the separation distance which yields an energetic

minimum. The LJ potential acts as a repulsive potential if r < r0 and it is attractive for

r > r0. The LJ potential is only calculated between monomers which are separated by

r < rcutoff ; this improves the efficiency of the simulation by greatly reducing the number

of times in which vLJ needs to be calculated. This improvement in efficiency comes at

very little cost since the gradient of the potential becomes very small at large r. We use

a cutoff distance of rcutoff = 2.5σ. A shift to the LJ potential must be included to avoid a

discontinuity in vLJ at r = rcutoff . This shift is given by vshift = 4[(σ/rcutoff)12 − (σ/rcutoff)6].

Monomers separated by r < rcutoff are considered to be in contact. Each contact between non-

bonded monomers provides a net energetic benefit. Because of this benefit polymers have

a tendency to maximize the number of monomer-monomer contacts by forming collapsed

dense structures.

Figure 2.2: Four monomers forming three bonds are required to define a torsion angle, τ ,
shown in blue. Any two adjacent bonds define a bending angle represented by θ in red.

Beyond the standard effective potentials, we include a torsion potential to introduce

helical order into the system. The torsion potential is associated with the twisting of the

bonds as shown in Fig. 2.2. The form of the torsion potential is used as suggested by

Rapaport [46],

vtor(τ) = 1− cos (τ − τ0) , (2.3)
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where τ represents the dihedral angle formed by the two surfaces which can be constructed

using four successive monomers. Any deviation in τ away from the reference torsion angle,

τ0 = 0.873, results in an increase in the torsion potential. The value of τ0 is chosen such that

a resultant helix will have approximately 4 monomers per turn.

In biological polymers, which often exhibit helical structures, there is nearly always an

additional restraint placed on successive bending angles. To include this restraint in our

model we apply a potential similar to the torsion potential which acts on the bending angle

between neighboring bonds. The form of this potential is given by

vbend(θ) = 1− cos (θ − θ0) . (2.4)

Here, θ is the bending angle and the reference angle is chosen to be θ0 = 1.4. Our implemen-

tation of the bending angle restraint is identical to the semiflexible polymer model [35, 85]

with a non-zero reference angle.

In Chapter 4, we discuss the effect of an adsorbing substrate on helical polymers. The

potential of a monomer at a distance h from an adsorption surface is calculated by integrating

the Lennard-Jones potential over the entire half-space of the surface. This gives a potential

of the form

vA(h) =


2
15

(
σ
h

)9 −
(
σ
h

)3 − vA shift, if h < hcutoff

0, otherwise.

(2.5)

We include a shift in the adsorption potential in the same way that a shift term was included

in the LJ potential with hcutoff = 2.5σ. To avoid a discontinuity, vA shift = 2
15

(
σ

hcutoff

)9

−(
σ

hcutoff

)3

. To keep the polymer from drifting excessively far from the adsorption surface,

we impose a steric impenetrable boundary at a distance of hmax = 200 from the surface.

This decreases the time taken for a free polymer to attempt adsorption to the surface while

having minimal effect on adsorbed and desorbed structures.
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To calculate an energy associated with a particular polymer structure we combine all

five of these potentials with each having its own associated energy scale. The energy can be

calculated by

E(X) = SFENE

∑
i

vFENE(ri i+1) + SLJ

∑
i>j+1

vLJ(rij)

+Sτ
∑
l

vtor(τl) + Sθ
∑
k

vbend(θk)

+SA

∑
i

vA(hi). (2.6)

The energy scales for the FENE and LJ potentials take the standard values SFENE = 98/5

and SLJ = 1. Throughout this paper, we will vary the torsion energy scale Sτ to explore

helical structures formed at different levels of helix forming propensity. To restrict the model

parameter space, we do not explore an array of values for the bending potential energy scale,

but rather consider it to be either Sθ = 0 or 200, representing the flexible and semiflexible

cases, respectively. Finally, the adsorption energy scale is considered to be SA = 0 for

Chapter 3 in which adsorption is not considered. For Chapter 4 values between SA = 0 and

2 are chosen to explore the effect of the adsorption surface on helical polymer structures.

For the cases in which SA = 0, the steric boundary is not present.

2.2 Metropolis sampling

In this study, polymers of length between 30 and 60 are simulated using replica-exchange

Monte Carlo simulation (parallel tempering) [86–90]. Here, the initially random configura-

tion is continually modified by iterative random updates to its configuration. Each change

to the configuration will result in a change in the polymer’s energy by an amount ∆E.

The modification will be accepted with probability Paccept according to the Metropolis crite-
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rion [91],

Paccept =


e−β ∆E, if ∆E > 0

1, otherwise,

(2.7)

which depends on the inverse temperature β = 1/(kBT ).

There are many different types of updates which can be used in Metropolis sampling of

off-lattice polymers. The choice of update types can have a strong influence on the correla-

tion time and therefore the simulation efficiency. It is important when choosing updates that

ergodicity and detailed balance are satisfied. Ergodicity is the requirement that it is possible

that all possible configurations of the system are accessible from all other configurations by

making many repeated updates. This does not have to be satisfied for each update type in-

dependently but only for the combination of all updates. Detailed balance is the requirement

that any update is equally likely to be attempted in both directions. For example, generating

the state X2 starting with X1 should have the same probability as generating X1 from X2

for all updates used. The most elementary update type is the local displacement update, in

which a single monomer is chosen at random a to be moved to a new location within a box

of size rd surrounding its original location. The displacement update is particularly efficient

because the entire energy need not be calculated at each energy step. Only those compo-

nents influenced directly by that monomer are recalculated (2 FENE interactions, N − 3 LJ

interactions, 4 torsion angles, 3 bending angles, and 1 adsorption interaction).

For the displacement update, optimization of the box size can lead to gains in simula-

tion efficiency [92]. For large values of rd the acceptance rate decreases. In the case that

acceptance becomes rare, the simulation efficiency decreases as it will take many attempted

updates to change the polymer configuration significantly. Conversely, for very small values

of rd, changes in energy will be quite small, leading to a high acceptance rate. Although the

acceptance rate is high, the relative change to the polymers configuration in each move will
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be very small. In this case, it will take many updates to change the polymer’s configuration,

appreciably also decreasing efficiency. The optimal rd will lie somewhere in between these

two extremes.

We choose rd such that the acceptance rate is approximately Raccept = 0.5. This is done

during an initialization period before data collection begins. After every 100 updates, the

displacement size is changed to r′d = rd + p(Raccept − 0.5). The parameter p is a factor

determining the size of each iterative adjustment of rd which we choose to be 0.04. A

lower limit for displacement size is also implemented to avoid having displacements grow

unreasonably small in regimes where very few moves are accepted.

For polymer systems which include both bending and torsion potentials, the strongest

variation between unique structure types comes from variation in the torsion angles. For

example, the difference between a single helix and two-helix bundle is a disturbance in the

torsion angles in the joint between the two helical segments. Allowing for random variation

of the torsion angles of low-temperature systems, leads to shorter autocorrelation time due

to the increased ease by which the system can transition between structure types. Random

variation of the torsion angles can be achieved by selecting a single bond at random, and

rotating all monomers on one side of the bond around a rotation axis collinear with the

bond. Monomers are rotated by the same randomly chosen angle between +τr and −τr.

The torsion update can also be optimized in the same way as the displacement update was

optimized, by changing τr dynamically during the initialization period based on the torsion

update acceptance rate. Because of the global nature of this update the entire energy must be

calculated to find the energy difference. Because of this, the torsion update takes significantly

longer than the single monomer displacement update.

With the inclusion of an adsorption substrate, adsorption attempts can be drastically

increased by including a translational update of the entire polymer helping it to drift through

the simulation region more rapidly. This update chooses a random displacement which is
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applied to every monomer at once. This effectively translates the entire polymer relative

to the adsorption surface changing only the adsorption energy and leaving the monomer-

monomer interactions unchanged. While this update is not important for low temperatures at

which the polymer will be adsorbed, it can greatly increase the speed at which the simulation

can overcome the adsorption transition.

We choose between the various update types at random with weights applied to each

update type depending on its desired frequency. We apply 2N single monomer displacement

updates for each torsion update and polymer displacement update.

2.3 Parallel tempering

Metropolis sampling has the fundamental problem that for systems with multi-welled free-

energy landscapes, the simulation is prone to becoming stuck in one of the free-energy

minima, taking very many updates to eventually overcome the entropic barrier. While

a physical system exhibits some fraction of the population in each well, a system being

simulated with Metropolis sampling will likely fall into one of the wells and continue sampling

only that well. Because every move has some probability of acceptance, there is always a

non-zero probability of transitioning between the wells. This transition, though, may take

far longer than the length of the simulation.

Replica-exchange parallel tempering nicely mitigates this problem while making only a

minor change to the simulation. Instead of generating an array of temperature ensembles

independently, all ensembles are simulated in parallel. Each simulation is performed on a

separate computational thread and is propagated using the original Metropolis algorithm.

Periodically neighboring temperature threads compare polymer conformations and attempt

to exchange. This allows a single polymer to travel through multiple simulation threads at

different temperatures. Ideally, a single replica (polymer structure) stuck in a free-energy
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Figure 2.3: Exchanges represented by arrows are attempted between neighboring tempera-
ture threads every 400 updates. Each thread alternates between attempting exchange with
its higher and lower temperature neighbor. The first and last threads only participate in
half of the exchange attempts.

minimum will eventually transition to a higher temperature thread, melt, and then eventually

transition back into a low-temperature thread possibly cooling into a different free-energy

minimum. Each simulation thread will sample many different replicas and explore structure

space much more efficiently.

In the studies discussed here, we perform a single parallel tempering simulation for each

model we explore. In each simulation, an array of N temperatures {T1, T2, . . . , TN} is chosen.

Metropolis simulations are performed in each thread attempting to exchange replicas every

400 updates. The ith temperature thread alternates between attempting exchange with the

i+ 1 thread and the i− 1 thread. Because both T1 and TN have only one neighbor, they will

each remain idle during half of the attempts. This pattern is explained further in Fig. 2.3.

A single exchange attempt between thread i and thread j is accepted with probability

Paccept = min(1, e−(βi−βj)(Ej−Ei)). (2.8)

Ideally, the thread temperature arrangement is chosen in a way which allows exchanges and

rejections to both occur frequently. For this to happen, the histograms of threads i and j
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Figure 2.4: Energy histograms for each temperature thread in three different 16 thread
simulations. Compared are simulations in which temperature are chosen linearly, inverse
temperatures are chosen linearly, and temperatures are chosen exponentially. Exponential
temperature spacing leads to the most consistent histogram overlap.

must overlap by approximately 50%. The obvious choice might be to choose either evenly

spaced temperatures or temperatures which are evenly spaced in β. We find that evenly

spaced temperatures results in histograms with excessive overlap at high-temperature and

very little overlap at low-temperature. Conversely, evenly spacing the inverse temperature

leaves very little overlap in the histograms of high-temperature threads. We find that an

even spacing of log(T ) results in the most consistent overlap as shown in Fig. 2.4. It is

also important to the effectiveness of the parallel tempering simulation that the largest

temperature thread, TN , is large enough that structures are fully melted.

For systems exhibiting strong first-order phase transitions, the ideal spacing of temper-

atures cannot be generated so simply in the region of the transition. While the exponential

choice of temperatures is a good starting point each specific model may benefit from a unique

choice of temperatures. To dynamically tune the temperature spacing of simulation threads

we have tried implementing a proportional control system during the system equilibration

period, considering each thread starting with an initial random configuration. A few thou-

sand sweeps are allowed for the system to stabilize before dynamically tuning the individual
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temperature threads. After this time, a dynamic control of each temperature is implemented

every 20 exchanges. The update to each temperature is calculated using

ci = p(Rt −Ri)(Ti − Ti−1)

T ′i = max( Ti + (T ′i−1 − Ti−1) + ci , T ′i−1 + Tspmin), (2.9)

where Ti represents the original temperature of the ith thread, T ′i represents the updated

temperature of the ith thread, Ri is the exchange rejection rate in the ith thread, Rt is

the target rejection rate, and p is the proportional factor. In our simulations we have used

values of Rt = 0.6 and p = 0.02. It is also important that we impose a minimum temperature

spacing (Tspmin) so that all replicas do not move into a region of a particularly strong first-

order phase transition. In practice we find that dynamic updating of temperatures, while

useful, often introduces more problems than it fixes and was therefore not included in the

simulations used to generate the data presented in this dissertation.
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Chapter 3

Flexible and semiflexible helical

macromolecules

In this chapter we present the results of simulations of flexible and semiflexible polymers with

a varied propensity for helical order. We begin by explaining our methodology for classifying

structures. This methodology is then used to explain changes in structure formation as Sτ

is varied. We further our understanding of each system by examining its thermodynamic

behavior across temperature space. With information about transitions in both Sτ and T ,

we construct a hyper-phase diagram which lays out structure types in this two-dimensional

parameter space. Finally, we take a more detailed look at low-temperature structures and

structure stability.

3.1 Structure classification

A variety of unique structures are generated in the simulation of flexible and semiflexible

helical polymers across torsion strength and temperature. These structures include single

helical strands, bundles of two or more helical segments, globular clusters with or without lo-
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cal helical order, amorphous solids with or without helical order, and random-coil structures.

Descriptive parameters must be used to distinguish between structures types. Traditional

parameters, including energy, end-to-end length, radius of gyration, and number of contacts,

can provide some insight into the structures generated but lack the specific property of distin-

guishing helices and helix bundles. For a more targeted approach to structure classification,

we introduce several unique parameters.

Helical disorder, qτ , gives a measure of a structure’s torsional deviation away from the

idealized helical polymer. It can be calculated using the equation

qτ =
∑
l

vtor(τl). (3.1)

A structure in which all torsion angles are near to the reference torsion angle will have a

small value for qτ . While this parameter provides useful information about the polymer

structure, it is directly correlated with a change in the torsion strength with any change in

qτ is attributable to a change in Sτ . This parameter is not a good indication of tertiary

structural information such as helix bundle formation.

To distinguish between helix bundles with different numbers of helical segments, we

introduce the pair of parameters q1 and q2. These parameters describe the local and global

Lennard-Jones interaction, respectively. For a particular polymer conformation, the average

over all monomers of their LJ interaction with other monomers separated by less than seven

bonds is given by the equation

q1 =
1

N

N−2∑
i=1

N∑
j=i+2

Θ6,j−i vLJ(rij). (3.2)

Here the Heaviside function is presented in a discrete form such that Θm,n is 1 for m ≥ n

and 0 otherwise. The average over all monomers of interaction with monomers separated by
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Figure 3.1: Definition of the order parameters q1 and q2. The black monomer interacts
with the green monomers via the FENE potential and with the blue and red monomers via
the LJ potential. The total potential of the LJ interactions between nonbonded monomers
separated from the black monomer by 6 or fewer bonds, as represented by red monomers,
contributes to q1. Consequently, q2, accounts for the LJ contributions from the monomers
more than 6 bonds away (blue monomers).

more than six bonds is given by

q2 =
1

N

N−2∑
i=1

N∑
j=i+2

Θj−i,7 vLJ(rij). (3.3)

The distinction is explained visually in Fig. 3.1, where the interactions between the black

monomer and all red monomers contribute to q1 and the black monomers interaction with

blue monomers contributes to q2.

To understand the usefulness of this pair of parameters, consider two example structures,

a single helix and a two-helix bundle. For a single helix, all monomers are in contact with

other monomers which are either, in its own helix turn, the turn before its own, or the turn

after its own. All of the monomers in these three turns are separated by no more than 6

bonds and will, therefore, contribute a negative potential to q1. All monomers more than 6

bonds away from a particular monomer are too far away to be in contact. For this reason,

in a single helix q1 is minimal and q2 maximal. In contrast, for a two-helix bundle local
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LJ interaction at the joint between the two helix segments is sacrificed, causing an increase

in q1. This joint allows monomers from different helix segments, separated by more than

6 bonds, to come into contact with each other. These additional contacts give a negative

contribution to q2. Similarly, higher-order helix bundles can also be distinguished by the

relationship between q1 and q2. If we plot a collection of structures onto a space defined by

q1 and q2, we find that qualitatively similar structures form distinct clusters. This clustering

allows us to quantitatively distinguish between different helix bundle types.

3.2 Distribution in structure parameter space

In both the flexible and semiflexible cases, we explore polymers at an array of Sτ values.

Each simulation consists of 24 temperature threads arranged exponentially between T = 0.1

and 2. From each temperature thread 1000 polymer structures are saved. Structures from

all temperature threads for a single simulation are compiled and distributed in q1− q2 space.

The black areas shown in each panel of Fig. 3.2 depict the regions in which structures are

formed for a selection of Sτ values. The left column (a)-(d) represents semiflexible models

(Sθ = 200), and the right, flexible models (Sθ = 0). Red regions represent only structures

formed at T = 0.1, and the gray regions are simply a background which shows the combined

region for all values of Sτ with either semiflexible or flexible. In panel (a) we see that

the low-temperature structures collect at low q1 and as the temperature increases so does

q1. It is apparent that, at low temperature, there are several distinct structural clusters

formed which correspond to a multi-welled free-energy landscape near the ground state. In

panel (b), the larger Sτ creates helical segments which organize into bundles. We still see

multiple low-temperature clusters corresponding to unique bundling configurations. Further

increasing Sτ stiffens the helical segments, leading to production of two-helix bundles in

panel (c). The two-helix bundle offers fewer possible orientations and variations, therefore
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Figure 3.2: Regions of structure formation in (q1−q2) space for the (a)-(d) semiflexible (bend-
ing restrained) and (e)-(h) flexible (bending unrestrained) polymers with 40 monomers. Light
gray regions represent the generalized ensemble of all conformations found at all tempera-
tures T and torsion strengths Sτ simulated. Black regions correspond to the most populated
states at given Sτ values. Red regions represent only the states populated for T ≤ 0.1.
Representative conformations for each low-temperature ensemble are shown.
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exhibiting a single well-defined low-temperature cluster corresponding to a single structure

type. For Sτ = 30, we see that a single stiff helix is consistently produced. All of the

panels in the bending restrained case have high-temperature structures in the upper-right

hand region. When cooled these ensembles move toward the lower-left into one of several

branches depending on the native folded state for the particular model being explored.

In contrast to the bending restrained case, Fig. 3.2 panels (e)-(h) show flexible polymer

structures (Sθ = 0). For nearly every value of Sτ , we see multiple low-temperature clusters.

While helical order emerges as Sτ increases from 0, the lack of bending restraint lends no

stiffness to the helical segments. Because of the lack of stiffness there is far less predictability

and organization in the evolution of global structures as Sτ varies.

3.3 Free-energy minima folding trajectories

A more detailed analysis of the free-energy landscape in structure parameter space q1 − q2

can give further insight into the folding pathways and their dependance on Sτ . We determine

the free-energy for each canonical ensemble from the inverse frequency of states in each bin

of a partitioned space of q1 − q2. The free-energy can be calculated by

FSτ ,T (q1, q2) = −kBT logZSτ ,T (q1, q2), (3.4)

where

ZSτ ,T (q′1, q
′
2) =

∫
DXδ(q′1 − q1(X))δ(q′2 − q2(X))e−E(X)/kBT (3.5)

is the restricted partition function in the space of all structures present in the ensemble.

For a given ensemble, there is a global free-energy minimum corresponding to the dom-

inant structural configuration present. Fig. 3.3 is divided between bending-restrained (left)

and bending-unrestrained (right). Each black point represents the global free-energy min-
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Figure 3.3: Structural phase diagrams for bending-restrained semiflexible (left) and unre-
strained flexible polymers (right) in (q1 − q2) order parameter space for the temperature
and torsion strength space (T, Sτ ) covered in our simulations. Colored regions represent
structural phases. Black dots locate free-energy minima at given T and Sτ values. Tra-
jectories show the helical folding pathways at fixed torsion strengths Sτ by decreasing the
temperature.
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imum for a single canonical ensemble, and lines connecting free-energy minima connect

different temperatures for the same set of model parameters. Regions are marked in the

space according to the dominant structure types found in the region, as well as the locations

of transitions in specific heat plots.

The lines signify the folding pathway for fixed torsion strength. For all pathways the

high-temperature ensembles which are in the random-coil phase, begin in the upper-right

hand corner of the panel. As the temperature decreases, the free-energy minima move

toward the lower left into one of the folding branches depending on the value of Sτ . For

specific values such as the bending restrained Sτ = 20 case, it is possible for the dominant

phase to jump from one structural branch to another as temperature decreases. In this

particular case, as the system is cooled structures which begin in the random-coil phase

transition predominantly to the single-helix phase. Upon further cooling, the system exhibits

coexistence of the single-helix and 2-helix phases. Eventually, the single-helix phase dies out

completely leaving structures in only the 2-helix phase at the lowest temperatures.

While the folding trajectories in the bending restrained case show clear behavior with

predictable evolution as Sτ is varied. The unrestrained case exhibits none of these properties.

In contrast to the distinct solid structural phases present on the left, bending unrestrained

folding trajectories all transition from random-coil configurations through a liquid phase

into an amorphous solid phase. In this solid phase the local helical order increases with

increasing Sτ as seen in the bending unrestrained curve of Fig. 3.4. While the helical order is

increasing, the helical segments are very short allowing them to contort into less structured

phases which do not show a drastic qualitative global change in organization across Sτ .

The global structure type changes are the cause of the stair-step events seen in the bending

restrained curve in Fig. 3.4.
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Figure 3.4: Torsion disorder plotted as a function of Sτ for canonical ensembles at T =
0.1. While both systems show decreasing torsion disorder with increasing torsion restraint
the structure transitions present in the bending restrained case cause jumps in the torsion
disorder.

3.4 Transitions in temperature

Transitions in Sτ are nicely revealed by the discrete branches seen in q1 − q2 space but

transitions in temperature are not nearly as apparent using the methods explored up to this

point. To detect these transitions we consider how the specific heat behaves in temperature.

Fig. 3.5 shows the specific heat for the semiflexible model on the left and the flexible model

on the right across a variety of Sτ values. For the semiflexible case, starting from the top

panel where the torsion potential is quite strong, we see a single peak in the specific heat

curve corresponding to the freezing transition between the solid single-helix phase and the

random-coil phase. As Sτ decreases, a second sharper transition corresponding to the a solid-

solid transition between the single-helix phase and two-helix bundle phase comes in from the

left starting at Sτ = 24. At Sτ = 14, the solid-solid transition merges with the freezing
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transition. As we continue to decrease Sτ , the transition splits into a Θ transition and a

freezing transition which spread apart to form an increasingly large liquid phase between

them. For Sτ ≤ 8, the region to the right of both transitions corresponds to the random-coil

phase. The region between the transition has a more liquid-like behavior, with no defined

single organization. And to the left of the lower-temperature transition is a solid phase

corresponding to either 2-helix, 3-helix, 4-helix, or amorphous solid phases distinguishable

by the q1 − q2 branch in which they lie. For Sτ < 4, transitions in temperature become

increasingly complex with the introduction of multi-welled low-temperature ensembles. We

do not find it useful to analyze the canonical specific heat quantity for these cases.

Figure 3.5: Specific heat vs. temperature for Sτ between 4 and 100, with bending restrained
cases on the left and bending unrestrained on the right. The peaks and shoulders in these
curves give insight into the location of structural transitions in temperature.
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Transitions in the bending restrained case exhibit far fewer systematic features which can

be observed across Sτ . While we still in general observe a Θ and freezing transition, we see

additional transitions which appear and disappear for each unique value of Sτ . For a more

detailed analysis of the phase transitions present in the flexible model, a microcanonical

analysis would be required.

Analysis of transitions recognizable in the specific heat curves gives insight into not only

the temperatures at which each transition occurs but also the region of q1 − q2 space shown

in Fig. 3.3 in which we find solid, liquid, and random-coil phases.

3.5 Hyper-phase diagram in system parameter space

Using information gathered in both the folding trajectory study and the specific heat vs.

temperature curves, we are able to construct a hyper-phase diagram parameterized by torsion

strength and temperature. In Fig. 3.6 we see the dominant phase present for all values of

Sτ and T , in both the semiflexible and flexible models. In the semiflexible case (left) we

observe much more robust organization of unique structural phases. For Sτ ≥ 7, there is

clear distinction between random-coil, liquid, single-helix, and 2-helix phases. In each of the

regions specified, the dominant structure is qualitatively distinguishable and recognizable.

Moving to lower values of Sτ the dominant phase becomes increasingly less clear. For Sτ = 6

low-temperature structures are clearly dominated by 3-helix bundles but as we move closer

to the 4-helix and amorphous solid regime we begin to have variability in the organization

of the three-helix bundles, with helical segments of differing lengths and orientations. The

strong presence of distinct clustering also begins in this region. These features become more

pronounced as Sτ decreases further into the 4-helix and amorphous solid regions.

Included in Fig. 3.7 are the hyper-phase diagrams for semiflexible 30, 40, and 60 monomer

systems. We find that for a 60-mer the instability in the 3-helix bundle reduces, with the

31



!"

#$

#"

%$

$

%"

"

"&# "&' "&( "&) %&" %&# %&' "&# "&' "&( "&) %&" %&# %&'

! !

"
!

Figure 3.6: Hyper-phase diagrams of bending-restrained semiflexible (left) and unrestrained
flexible polymers (right) with 40 monomers. Regions are represented in the space of the
torsion strength Sτ as a material parameter distinguishing classes of polymers and the tem-
perature T as an external control parameter for the formation of structural phases. The
color code is the same as in Fig. 3.3.
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Figure 3.7: Hyper-phase diagrams of semiflexible polymers with varied system size. The
color code is the same as in Fig. 3.3.

3-helix branch forming at larger values of Sτ and separating more obviously from the 4-

helix branch. The bundling for the 3-helix bundle becomes less variable in orientation and

helix-segment length. The variability of the 4-helix bundle reduces as well, but to a lesser

extent. Conversely, in the case of the 30-mer we see disappearance of the 4-helix phase.

The parameter space for which 3-helix bundles are formed is greatly reduced from the 40

monomer case and the bundles are highly unstable.

As shown in the right side of Fig. 3.6, the folding process is not influenced strongly by the

torsion strength. Again, while helical order emerges for increased Sτ , there is no organization

of helical segments. While structures in this region are not all of a single structure type,

they are not well separated in q1 − q2 space and are therefore projected into a single phase.

Also, in contrast to the bending restrained case, we no longer see the disappearance of the

liquid phase at high Sτ .
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3.6 Low-temperature structure analysis

Here we introduce a new parameter qfrac
2 , which gives the fraction of Lennard-Jones interac-

tion which occurs between monomers separated by more than 6 bonds. The value of qfrac
2

can be calculated using the equation

qfrac
2 = q2/(q1 + q2). (3.6)

In Fig. 3.8, we plot the canonical averages of qfrac
2 at each value of Sτ considering only the

ensembles for a single temperature. For each panel, a different temperature is chosen shown

in the upper left. The behavior of qfrac
2 highlights the structural transitions in Sτ at low

temperature.

Figure 3.8: Structural parameter 〈qfrac
2 〉 plotted for a single temperature for each value Sτ .

Regions of constant 〈qfrac
2 〉 represent consistent phases over a range of Sτ . (a) For the bending

restrained case at T = 0.1, there is strong division between distinct states. This behavior is
not present in the unrestrained case. At higher temperature (b) we see the sharpness of the
transitions decrease as the structural variability increases. In (c) the distinct states are no
longer discernible.
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In panel (a), we have plotted the behavior of qfrac
2 for T = 0.1. We see progression, in

the bending restrained case (black), from most of the energy in q2, which corresponds to the

amorphous solid phase, to just less the half for the 3- and 4-helix bundles, to less than 1/4

in the 2-helix bundle, and almost 0 in the single helix. We can see in the 3- and 4-helix

bundle region that the there is no well-defined separation between the two for the parameter

qfrac
2 . The inconsistency of qfrac

2 in the 3- and 4- helix region is evidence of some instability in

the system, this will be more obvious later when we look at the ensembles from which these

averages are taken. The single helix and 2-helix regions are both highly consistent over the

extent of their domain.

In contrast to the constrained case, the unconstrained case is highly unstable. This is

evident based on the erratic behavior of qfrac
2 along Sτ .

As the temperature is increased to T = 0.3, we see softening of the transitions due to the

increased variability within each structure type. For Sτ = 0.6, the transition between stable

unique states has completely disappeared in favor of a continuous evolution between globule-

like Sτ = 0 structures and the stiffer helical segments of Sτ = 0.6. No notable behavior is

observed in the bending unrestrained case at higher temperature.

To give further insight into the ensemble averages of qfrac
2 shown in Fig. 3.8, we present

the histograms from which these averages are taken. Fig. 3.9 shows the histograms of the

qfrac
2 from structures generated in each T = 0.1 ensemble. It is apparent that for the fully

flexible polymer many of the ensembles present spread our multi-peaked histograms when

projected into the qfrac
2 parameter space. The free-energy is the negative logarithm of the

histogram, implying that the multi-peaked histograms presented here correspond to multi-

welled free-energy landscapes. Multi-peaked histograms also occur in the semiflexible helical

polymer, but only for low torsion potential in the three-helix, four-helix, and amorphous

solid structures and in higher temperature ensembles which are not shown here.
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Figure 3.9: qfrac
2 histograms for canonical ensembles at T = 0.1. The base line for each his-

togram aligns with the value of Sτ at which it was generated. Panel (a) gives the histograms
generated in the semiflexible case, and panel (b) gives the histograms generated for fully
flexible polymers.
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Figure 3.10: Energies E0 of putative ground-state structures at different values of torsion
strength Sτ (dots) for bending-restrained polymers (N = 40) with torsional barriers. The
color of the dots and curves is consistent with the key in Fig. 3.3. The solid lines are hypo-
thetic extrapolations of the energy Eext(Sτ ) if the torsion strength in the torsion potential
of a given ground-state structure is changed. The intersection points of lines with different
color mark the crossover between different structure types of ground-state conformations.
The thus identified Sτ threshold values agree with the zero-temperature transition points in
the hyper-phase diagram shown in Fig. 3.6.
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To understand the location of structure transition in Sτ , we consider only the single

lowest-energy structure for each value of Sτ in the bending restrained case to be the putative

ground state for that particular model. In Fig. 3.10 we plot a point for each structure’s

energy E0, as well as a line for its extended energy

Eext(Sτ ) = E0 + (Sτ − S0
τ )
∑
l

vtor(τl), (3.7)

where S0
τ is the torsion strength at which the structure was originally formed. Eext effectively

gives that structure’s total energy in an alternate environment. Because
∑

l vtor(τl) is a

property of the structure and is not dependent on the environment, Eext is a linear function

with a slope proportional to the torsion disorder. A system in its ground state will always

form the structure type with the lowest possible energy and will therefore form a structure

along the Eext line which is the lowest for a particular value of Sτ . The clustering of the lines

is due to the nonlinear nature of the change in the torsion disorder. For example the three

3-helix blue curves are more similar to each other than they are to any of the 2-helix or 4-

helix curves. It must be noted that there are three distinct clusterings for 2-helix structures,

and this is due to the way in which the joint between the helices is constructed.

It can be inferred that the point at which lines from one structure type cross with lines

from another structure type will be the point at which ground state structures will transition

between the two. We can see good agreement between the transition locations on this plot

and in Fig. 3.8.

3.7 Summary

In this chapter, we simulated bead-spring homopolymers with propensity for helical order.

We performed a rigorous comparison of structures, transitions, and stability for flexible and
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semiflexible models. The flexible polymers have no potential associated with its bending

angles, and the semiflexible models have bending angles restrained to maintain a near fixed

value. The tendency to form helical segments was controlled via a torsion potential. The

strength of the torsion potential is tuned to explore a range of models spanning the space

from no torsion potential to a very strong helix potential.

We find that stiff helical segments are formed when both a torsion and bending potential

are included. The helical segments can vary in length and will align into bundles. The

stiffness of the helical segments and, consequently, the number of helices per bundle are

determined by the strength of the torsion potential.

Polymer chains lack helical segment stiffness and do not form stable organized helix

bundles when an effective bending restraint is not included. Ensembles produced without

bending-stabilization exhibit clustering at low temperature. This indicates instability in the

structures formed. Without bending-stabilization, we also observe unpredictable sensitivity

to a change in environmental factors such as torsion strength and temperature.

The lack of stability and tolerance to environmental variability provides insight into the

observed preference in semiflexible biopolymers for the restriction of bond angles. This

observation can be made in both DNA and most protein structures. The reduced degrees of

freedom obtained by fixed bond angles in polypeptides is essential for functional structures

to behave predictably and consistently.
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Chapter 4

Adsorption of helix bundles

In this chapter, we further explore the structures and stability of helical bundles by con-

sidering the effect of an adsorption surface. Like the introduction of a bending restraint,

adsorption to a substrate provides a restriction on the configuration space available to he-

lical polymers. In this chapter we first study the influence of surfaces with many different

adsorption strengths on a system with a single torsion strength. This will aid in our un-

derstanding of the adsorption transition for helical polymers and show for a single system

the effect of varied surface adsorption strengths representing different substrate materials.

We then consider only a single adsorption strength and look the effect of adsorption at an

array of torsion strengths to understand more broadly the effect of adsorption for classes of

polymers.

4.1 Adsorption of helical polymers on different sur-

faces

For simulations performed with the torsion energy scale Sτ = 6, we consider an array of values

for adsorption strengths in the interval SA ∈ [0, 6]. Examples of the structures generated in
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Figure 4.1: Representative polymer conformations formed under varied conditions. Each row
shows structures for a single value of SA along an array of temperatures between T = 0.03
and 1.62. The adsorption strength increases from top to bottom from a value of SA = 0 to
2.
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this series of simulations are shown in Fig. 4.1. Considering the top row (SA = 0), polymer

structures at low temperature are dominated by three-helix bundles and exhibit variability in

terms of alignment and helix segment length. As the adsorption strength is increased we see

that the polymers adsorb onto the surface at low temperatures and form two-helix bundles

instead of three-helix bundles. We also find qualitatively that the adsorbed structures exhibit

far less variability over a wider range of temperatures.

4.1.1 Variation of structures with temperature

It can be useful to calculate canonical averages for structural quantities to observe their

variation as temperature and model parameters are changed. The parameter 〈q2〉/〈q1〉 is the

ratio of the global to local Lennard-Jones energy, and it is a good parameter to distinguish

between various helical structure types. For three-helix bundles observed at low temperature

in the case of SA = 0, 〈q2〉/〈q1〉 ≈ 0.64. In the case of the two-helix bundles which dominate

at low temperature when SA ≥ 0.75 we find that 〈q2〉/〈q1〉 ≈ 0.33.

Fig. 4.2 (a) gives 〈q2〉/〈q1〉 as a function of T for each value of SA. By comparing

the different values SA, we can see splitting at low temperature between two- and three-

helix bundle branches. For higher temperature it is apparent that the different simulation

ensembles become more similar. Fig 4.2 (b) shows the thermal fluctuation of the center of

mass distance from the substrate (dhcm/dT ). The temperature at which polymers desorb

from the surface can be determined by noting the peak in this plot as it corresponds to

the temperature at which there the most even mixture between adsorbed and desorbed

structures. There is agreement between the desorption temperature noted in panel (b) and

the convergence to the free case (SA = 0) case for the curves in panel (a). We can also see

that the desorption temperature increases with increasing adsorption strength as is expected.

More interestingly, in the range from SA = 0.75 to 2 the low-temperature structure and

structural stability to perturbation in temperature changes very little.

42



Figure 4.2: (a) 〈q2〉/〈q1〉 as a function of temperature for an array of different values for
SA. (b) Temperature variation of the center of mass distance of polymers at several different
adsorption strengths. Note that the peak locations correspond to the temperature at which
the polymer desorbs from the surface. (c) Temperature variation of the number of monomer-
monomer contacts vs temperature. Nc decreases most rapidly during structural transitions
between solid, liquid and gas exhibiting inverted peaks or shoulders in the plot of dNc/dT .
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Fig. 4.2 (c) shows the thermal fluctuation of the number of monomer-monomer contacts

as a function of T . The gas-liquid transition and the liquid-solid transition are both marked

by a rapid rate of change in the number of monomer-monomer contacts and can be located

in this plot by finding inverted peaks and shoulders. We can see that as the adsorption

strength increases the temperature range over which the liquid phase occurs narrows.

4.1.2 Structure clustering in q1 − q2 space

We can better understand the relationship between the ensembles formed at each value of

SA by considering the structures produced in each of these simulations in q1 − q2 space, as

seen in Fig. 4.3. The low-energy structures (produced at low temperature) must in general

have lower q1 and q2 values, and therefore lie towards lower left.

For SA = 0 or 0.5, low-temperature structures are spread out over several unique clusters.

Each of these clusters represents a unique structure type. The inset in Fig. 4.3 shows only

the low-energy clusters corresponding to SA = 0 along with example structures for each

discernible cluster. While the lower right hand cluster is made up of three-helix bundles in

which all helices are parallel and of approximately the same length, the upper left and cluster

contains structures in which two long helical segments are wrapped around each other and

a short helical segment connects their ends.

The presence of multiple low-temperature cluster for both SA = 0 and 0.5 is due to

local free-energy minima near in phase space to the ground state. Ensembles exhibiting

this behavior are inherently unstable due to the varied structure type accessible at a single

low-temperature. Additionally they are highly sensitive to changes to their environment, as

seen by the drastic change in structure type with the introduction of even a weak adsorption

surface. Not shown here is their high sensitivity to other changes such as a small change in

Sτ .
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Figure 4.3: Shown above is a plot of q1 vs q2 for a collection of example structures produced
across all temperatures simulated. The color of each point corresponds to the torsion energy
scale at which the structure it represents was formed. Structures in q1, q2 space cluster with
similar structure types. Low-temperature structures for SA = 0 are shown independently in
the lower right inset along with example structures for each cluster. Colors agree with the
legend shown in Fig. 4.2.

As we increase SA and transition from three-helix to two-helix structures we find that the

system sacrifices Lennard-Jones energy from globular collapse (q2) in favor of lower energy

in the torsion potential, larger contact with the adsorption surface, and lower Lennard-Jones

energy of local contacts associated with q1. This is demonstrated by a decrease in q1 and

increase in q2. The inherent instability and high sensitivity shown in the ensembles with

SA = 0 and 0.5 is greatly reduced by the inclusion of the adsorption surface as demonstrated

by the consistent and single-peaked clusters corresponding to two-helix bundles formed for
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all values of SA between 0.75 and 2.0. At these higher values of adsorption strength the

low-temperature configuration are predictable, consistent, and highly resilient to changes in

their environment.

We notice also that the primary effect of a varied adsorption strength is the temperature

at which the polymer adsorbs to the substrate. The particular strength chosen does not

however have a strong effect on the geometry of adsorbed structures in within a wide range

of values of SA between 0.75 and 2. This means that within this adsorption regime the

influences on structure formation are a binary effect where once a structure is adsorbed it

no longer matters the strength of the adsorption surface. This will remain true until the

adsorption surface is strong enough to compete with the torsion potential.

4.2 Adsorbed and free structures for an array Sτ values

The particular case of Sτ = 6 shown above exhibits a dramatic qualitative shift when ad-

sorption is added to the standard helix bundle model. We will further explore the effect

of the adsorption surface on a wide array of Sτ values between 0 and 30. To simplify this

exploration we will consider only the free case (SA = 0) and a single adsorbed case (SA = 2).

4.2.1 Low temperature free and adsorbed structures

In Fig. 4.4 we see examples of structures formed at low temperature with and without

the adsorption surface. We see that for the free case (top row), amorphous solids, 4-helix

bundles, 3-helix bundles, 2-helix bundles, and single helixes are formed. In the adsorbed case

(bottom row), the types of structures formed are much more restricted. Above T ≈ 2, we

consistently find stable formation of two-helix bundles. This can be observed quantitatively

in Fig 4.5, where, for low-temperature (a), in the region 1 ≤ Sτ < 8, the free case clearly

exhibits 3- and 4-helix bundles while the adsorbed case forms predominantly 2-helix bundles.
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Figure 4.4: Example structures from a collection at low temperature in an array of simu-
lations. This array of structures highlights the differences in structure formation in helical
polymers with and without an adsorption surface.

The parameter space over which the 2-helix bundle dominates is expanded to lower values

of Sτ due to the adsorption surface. Similarly, the single-helix phase dominates over a larger

region of phase space in the adsorbed case because the addition of an adsorption surface

entropically suppresses the two-helix phase more than the single-helix phase.

As the temperature is increased structural variability within each canonical ensemble

increases also. As this variability increases we see less consistency of structures in a single

phase across an array of Sτ values. In panel (b) of Fig. 4.5 this is reflected in more gradual

transitions in Sτ space and a steeper slope within the stable regions of each phase for both

the free and adsorbed cases. The smearing of the transitions indicates the presence of

intermediate structures between the two structure types as well as mixed phase ensembles.

The increased slope within phases is a direct result of the increased variability of structures in

that phase, with each Sτ value producing slightly different structures. Both of these effects

are seen in both the free and adsorbed models. At T = 0.45, we also see the transition

between two-helix bundles and single helices occurring at a lower value of of Sτ . All three
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Figure 4.5: All three panels show structural parameter 〈qfrac
2 〉 plotted for a single temper-

ature ensemble from each value Sτ . We can see the different structural phases formed and
transitions between them. (a) For T = 0.05 the two systems depart from each other strongly
in 1 < Sτ < 8 where in the free case 3- and 4-helix bundles dominate, whereas the adsorbed
polymer directly forms a 2-helix bundle. Similar behavior is observed for (b) and (c) but with
the behavior exhibiting progressively less dramatic transitions as temperature is increased.

of these effects are more pronounced in the free case. For ensembles produced at T = 0.7 in

Fig. 4.5 (c) we see the same effects described for T = 0.45 but to a greater extent. Here the

free case has almost no stratification between single-, 2-, 3-, 4-helix phases. In contrast the

2-helix phase in the adsorbed case remains far more discernible. This phase stability into

higher temperatures is an important feature due to the presence of the substrate.

The ensembles from which the canonical ensembles in Fig. 4.5 come, can be better un-

derstood by considering the histograms which are averaged to obtained the canonical mean.

In Fig. 4.6 we see the histograms produced by qfrac
2 values for all structures in each canon-

ical ensemble produced at T = 0.05. In the free case we see multi-peaked histograms for

many of the 3-helix and 4-helix ensembles. We also see stark variation between the details
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Figure 4.6: qfrac
2 histograms for canonical ensembles at T = 0.05. The base line for each

histogram aligns the value of Sτ at which it was generated. Panel (a) shows the histograms
generated in the case of a semiflexible free polymer, and panel (b) gives the histograms
generated for semiflexible adsorbed polymers.
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of neighboring histograms. This variation occurs because as we move from Sτ = 1 to 6 we

transition between 3- and 4-helix bundle as well as different helix segment orientations. For

the adsorbed ensembles in the same region of Sτ space, we observe much more consistent

formation of helix bundles which in this case are 2-helix bundles. For Sτ = 20 to 25 in the

free model double peaked histograms are caused by a change in the geometry of the joint

between helix segments. In the semiflexible case this type of instability in the two-helix

bundle geometry is completely eliminated for all Sτ ≥ 4.

4.2.2 Structures in q1 − q2 space

To further draw distinction between the free and adsorbed cases, we consider the region

in q1 − q2 space where structures are formed for a selection of simulations. Each panel in

Fig. 4.7 represents all of the structures generated in a single parallel tempering simulation.

The structures collected in the simulation across all temperatures are projected onto a two

dimensional space of q1 and q2 which is divided into bins. Any bin which reaches a threshold

number of structures is colored black. Black region where structures are generated in each

simulation is shown on a background of gray representing all of the structures formed across

all values of Sτ . Both the black and gray regions represent structures formed access all

temperatures which are included in the simulation. As Sτ increases, q1 increases, sacrificing

local order in favor of increased global Lennard-Jones connections and thus decreased q2.

Structures formed at lower temperature tend to have lower values of both q1 and q2 clus-

tering in the lower left of the particular branch along which structures are formed. Regions

with structures dominant at T < 0.075 are colored in red. Splitting of low-temperature peaks

in the q1 − q2 space indicates local minima surrounding the global minimum. Local minima

can decrease the stability of structures as well as increase their variability. For Sτ = 0, we see

in both the adsorbed and free case that there are many low-temperature clusters and these

represent a very rough free-energy landscape. As Sτ increases, the additional constraint of
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Figure 4.7: For each panel the gray background area represents the region in which structures
are formed for all values of Sτ and T for either the free (left column (a)-(e)) or adsorbed
(right (f)-(j)) simulations. In the foreground of each panel the area shows where structures
are formed for all temperatures at the particular model parameters corresponding to the
panel. The red area highlights the region where low-temperature (T < 0.075) structures are
formed.
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the torsion potential works to eliminate the local minima surrounding the global minimum.

At Sτ = 2 and 4 the low-temperature structures appear to be more stable in the adsorbed

case and still exhibit local minima at Sτ = 0. For Sτ ≥ 8, there does not appear to be any

significant variation in the results obtained in free and adsorbed simulations.

4.2.3 Hyper-phase diagrams of adsorbed and free helical polymers

For each simulation thread with a unique Sτ and T it is possible for us to assign a phase

at which the ensemble exists by studying the locations of structures generated within the q1

q2 space. Considering the branch along which the majority of structures occurs can help to

distinguish between single helices, two-helix bundles, three-helix bundle, four-helix bundles,

and amorphous solids. For polymers of length 40, which are mainly discussed here, the

branches formed by three- and four-helix bundles are overlapping and difficult to distinguish

in all but the lowest temperature cases.

For each simulation thread a phase is chosen based on transitions observed in the canon-

ical quantities as well as the branch in which structures lie in the q1− q2 plot. These phases

are shown in Fig. 4.8, in which the color of each region represents the state which is dom-

inant under the conditions of the simulation corresponding to the area covered. The lower

left corner of both plots are difficult to classify and unpredictable because of the inherent

instability of low-temperature structures with models with low Sτ . The primary contrast

between the free and adsorbed cases is the expanded two-helix (green) region, which replaces

the blue three-helix region in the free case.

4.3 Summary

In this chapter, we performed simulations to determine the influence of the presence of an

adsorption surface on helical polymers. To begin, we performed simulations for a single tor-
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Figure 4.8: Hyper-phase diagrams representing the dominant structural phase present at
each Sτ , T combination for both the adsorbed case (SA = 2) and the free case (SA = 0) .
Black lines are approximate locations of phase transitions.
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sion strength across an array of adsorption strengths. The presence of an adsorption surface

can influence the structures formed as well as the stability of those structures. In the free

case, we see that for the particular adsorption strength chosen (Sτ = 6), three-helix bundles

are formed with two distinct organizations. Multiple low-temperature clusters indicate a

local free-energy minimum near the ground state in parameter space. The presence of local

minima near the global minimum causes structural instability as well as high sensitivity to

slight changes in the environment.

The free-energy local minimum present in the free case disappears for adsorbed polymers.

We also see a single well-defined low-temperature cluster representing two-helix bundles. The

lack of local minima indicates more stable structures with less variability and more resiliency

to changes in the environment.

As SA increases we note that the adsorption transition occurs at higher and higher

temperatures and that the liquid phase exists over a smaller temperature region. The Θ-

transition and the freezing transition eventually merge into a single structural phase transi-

tion from gas to two-helix bundle.

Simulation of free and adsorbed polymers across an array of torsion strength values gives

a broader understanding of the effect of an adsorption surface on many different types of

helical structures. With Sτ = 0, the adsorbed and free cases exhibit many low-temperature

free-energy minima, indicating high instability as well as high sensitivity. For values of Sτ

between 1 and 6, we see high instability and sensitivity in the 3- and 4- helix bundles formed

in the free case but reliable 2-helix bundles in the adsorbed case. While structures formed

at torsion strength Sτ < 8 prove very different in the adsorbed and free cases, structures

formed at Sτ ≥ 8 show relatively little influence from the adsorption surface.
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Chapter 5

Conclusion

This dissertation has focussed on the structural behavior of helical polymers. These polymers

are represented by a homopolymer model based on effective potentials that represent the

FENE interaction between neighboring monomers, the Lennard-Jones interaction between

nonbonded monomers, a torsion potential associated with the dihedral angles, a bending

potential associated with bond angles, and interaction with a substrate via an adsorption

potential. Each of these potentials has a tunable energy scale that allows for the relative

influence of each interaction to be varied. Using these sets of potentials, we explore structural

geometry, transitions between structures, structural stability, and hyper-phase diagrams

comparing structural domains under various conditions in order to gain insight into folding

pathways, structure transitions, ground state structures, and stability.

Simulations of helical polymers present an obvious comparison to biological polymers

such as polypeptides, which often form helical structures and helix bundle structures. It can

be observed that bending angles between amino acids are fixed in polypeptide chains. We

examine the effect of a bending restraint on coarse-grained polymers with a propensity for

local helical order via their torsion angles.
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With the inclusion of a torsion potential, both flexible and semiflexible polymers exhibit

local helical order. The stabilization provided to the helix segments by a bending restraint

present in the semiflexible case leads to formation of helix bundles. The number of helical

segments in the bundle is dependent on the helix segment stiffness and the length of the

polymer. Since the helical segments are divided by a joint which is formed by the disturbance

of several torsion angles, the segment stiffness is dictated by the strength of the torsion

potential. In the case of the flexible helical polymer, we find that low-temperature ensembles

are highly unstable in both structural consistency and with respect to variation of system

parameters.

Predictability and stability are essential to consistent functionality in biological systems.

We hypothesize that the bending restraint observed in nature is necessary for the stability

of protein structures.

Further stabilization of helical structures can be achieved by the introduction of an ad-

sorption surface. For semiflexible helical polymers at a single torsion strength, structure

formation and stability are compared in the presence of adsorbing surfaces with an array

of adsorption strengths. The torsion strength is chosen such that the free polymer con-

figurations are dominated by three-helix bundles at low temperatures. When adsorbed to

the surface, the low-temperature configuration of the polymer changes from 3-helix bundle

to 2-helix bundle. The adsorbed 2-helix phase is stable to a higher temperature and more

structurally stable than in the free case. As adsorption strength increases the temperature at

which the polymer adsorbs to the surface increases as well. Interestingly, beyond controlling

the temperature at which the polymer adsorbs, the adsorption strength has relatively little

influence on the particular structure of the adsorbed polymer. The low-temperature 2-helix

structures across different adsorption strengths are very similar. Of course if the adsorption

strength were increased further, to the point where it overcomes the torsion strength, the

helical order would be sacrificed to maximize surface contacts.
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We extend this study of adsorbed helical polymers further by considering the entire

spectrum of torsion strengths for both the free case and the adsorbed case. For weak torsion

potentials, unstable 3- and 4-helix structures dominant for the free case are replaced by

the far more stable 2- helix structure phases in the adsorbed case. The transition between

the single-helix phase and 2-helix bundle phase also occurs at a weaker value of the torsion

potential.

Although we have no means to test the influence on evolution and abiogenesis, we do

find increased stability of helical structures when attached to an adsorbing substrate. These

results support the findings of Lundqvist et al. [78] who showed that the presence of silica

nanoparticles would contribute a surface onto which organic macromolecules could attach

and be stabilized.
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