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ABSTRACT 

 Human commensal microorganisms play a critical role in regulating host 

physiology and health status. Xenobiotics can induce complex changes of gut-microbiota 

and cause significant impacts on host health, but the detailed mechanisms are not fully 

established. This dissertation project focused on the impacts of two representative natural 

products: aflatoxin B1 (AFB1) and green tea polyphenols (GTPs) on gut-microbiota 

dependent metabolisms and overall host physiological changes in model rats. The 

hypothesis is that the dynamics of gut-microbiome induced by xenobiotics may disrupt 

gut-microbiota dependent metabolisms and metabolic pathways, which contribute to the 

adverse health outcomes or promotion of host health status. Through 16S rRNA gene 

survey and metagenomic analysis, we found that AFB1 and GTPs modified gut-microbiota 

community structure and gene orthalogs with respect to energy metabolism, obesity, and 

inflammation. Adverse outcome pathways (AOPs) and nutritional beneficial effects were 

analyzed by integrating data collected from multipal analytical platforms, different 



 
 

bioinformatics and biostatistics tools, as well as the reference data from validated 

pathological endpoints.  

We found that AFB1 significantly disrupted production of short chain fatty acids, 

secretion and metabolism of bile acids, absorption of long chain fatty acids, catabolism of 

phenylalanine, and the metabolisms of pyruvic acid, amino acids, and carbohydrates. These 

changes are associated with the alterations of community structure. The pathways all have 

key positions in the global metabolism of gut-microbiota and host health. Hence, gut-

microbiota may partially be involved in the pathological mechanism of AFB1-exposure 

induced adverse health outcomes in F344 rat model, and presumably also in humans.  

On the other hand, GTPs caused reduction of calorific carbohydrates, elevation of 

vitamin production, decreases of bile constituents, and modified metabolic pattern of amino 

acids in the gut of GTPs-treated Sprague Dawley rats. A further examination on the key 

differential metabolites indicated a boost of gut-microbiota dependent mitochondrial 

TCA/Urea cycle following GTPs administration. Based on previous microbiome data and 

clinical chemical analysis, we believe that such changes may be a major contributor to the 

anti-obesity function of GTPs. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Xenobiotics and gut-microbiota 

Commensal microorganisms in human and other animals play very important roles 

in regulating host physiology and health (Hooper and Gordon, 2001). However, this aspect 

has not been explored untile recent years because of improvement of high-throughput 

technologies, especially next-generation sequencing (NGS) technologies. The known 

xenobiotic compounds and substances that may disrupt gut-microbiota include alcohol 

(Mutlu et al. 2009), metals (Liu et al. 2014), metalloid (Lu et al. 2014), nanoparticles (Han 

et al. 2014), anthropogenic chemicals (Zhang et al. 2015), natural toxins (Wang et al. 2016), 

food composition (Francino 2015), as well as many antibiotics and drugs (Jakobsson et al. 

2010; Zaura et al. 2015). The interactions between gut microbiota and xenobiotics may 

affect the overall health of host in an interactive way. There are at least three aspects that 

need to be investigated. (1) the kinetics and dynamics of xenobiotics among different 

persons were affected by the different community structure of gut-microbiota that result in 

differneces in metabolizing, activating, or deactivating a xenobiotic; (2) the community 

structure of gut microbiota could be modified by the xenobiotic in a significant way; (3) 

the “community structure”–“functional gene orthalogs”–“metabolites”–“health outcomes” 

interactive links, which depends on the chemical features of the xenobiotics. Filling these 

gaps could largely update our knowledge on the effects of drugs/toxins/toxicants, as well 

as explain a number of issues in toxicology that have not been fully understood so far. 
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1.2 Introduction to aflatoxin B1 

1.2.1 Dietary exposure to aflatoxin B1 

The incidence rate of primary liver cancer has been on a rise since last 1970s 

(Deuffic et al., 1998). This trend is estimated to continue in the world wide before 2030, 

which would lead to a 35% increase compared with 2005 (Valery et al., 2018). According 

to a meta-analysis of the data collected from 2007 to 2016, the average annual percent 

change (AAPC) of incidence of liver cancer was 3.8% (95% C.I. 2.2% to 5.3%) in male 

Americans and 2.1 % (95% C.I. 1.5%–2.8%) in female Americans (Wong et al., 2017). It 

was reported by American Cancer Society that in 2017 about 40,710 new cases will be 

diagnosed with primary liver cancer and intrahepatic bile duct cancer, and about 28,920 

people will die of it (Goyal and Hu, 2017). The abnormal rise is considered to be associated 

with many risk factors such as hepatitis virus, cirrhosis, alcohol use, diabetes, smoking, 

unhealthy diets, metabolic syndrome and the oral exposure to food-borne aflatoxin B1 

(AFB1) (Groopman et al., 1996; Nderitu et al., 2016; Wang and Groopman, 1999). AFB1 

is known as a potent carcinogenic mycotoxin produced by fungi Aspergillus flavus and A. 

parasiticus. The contamination of AFB1 naturally occurs during post-harvest stage, 

frequently seen in hot, humid, and unsanitary environment (Wild and Hall, 2000). The 

fungi can easily colonize on the surface of cereals, groundnuts, and animal feedings at a 

moderate condition of temperature from 24 °C to 35 °C, which makes the contamination 

of AFB1 a significant concern for agricultural and food industries in the worldwide. Dietary 

exposure to AFB1 is associated with a wide array of adverse health effects in human and 

animals (Adedara et al., 2014; Storvik et al., 2011). Epidemiological studies have 
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demonstrated that the contamination of food with AFB1 is the primary risk factor for human 

liver cancer (Madden et al., 2002; Wang et al., 2001). 

Among the naturally occurred aflatoxins (B1, B2, G1 and G2), AFB1 carries the 

highest hepatotoxicity and genotoxicity. It has a LD50 of 1 to 50 mg/kg for most animal 

species and a LD50 < 1 mg/kg for pigs, dogs, cats, rainbow trouts and ducklings (Diaz and 

Murcia, 2011). It is categorized as a Group I human carcinogen by the International Agency 

for Research on Cancer (IARC) (Eaton and Gallagher, 1994; Tang et al., 2008). The 

mycotoxin can be found in corn, dried fruits, cereals and peanuts (Zeng et al., 2017), as 

well as the meat, egg and milk products from the animals that have consumed contaminated 

feeds (Herzallah, 2009). A variety of acute and chronic toxicities have been reportedly 

observed or associated with dietary exposure to AFB1 in human and other animals, e.g. 

hepatotoxicity and nephrotoxicity (Kensler et al., 2011), as well as the Reye syndrome, 

immune deficiency, growth retardation and metabolic syndrome (Hogan, 1978; Wild and 

Hall, 2000; Zeng et al., 2017).  

The concern with the easy growth of aflatoxin-producing fungus, together with the 

many diseases mentioned above, have jointly led to the formulation of regulatory actions 

by many international organizations and regional agencies. Currently, there are several 

regulatory standards formulated by these agencies in monitoring aflatoxins in food, with 

special attention paid to AFB1 and AFM1 in food and milk products. The World Health 

Organization (WHO) has founded Codex Alimentarius Commission (Codex) as the body 

responsible for formulating the maximum level aflatoxins in foods (Organization, 2010). 

Codex prescribes a maximum level of 15 parts per billion (ppb) for total aflatoxins in 

peanuts, hazelnuts, pistachios, and almonds; 10 ppb for the processed nuts and rice. The 
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maximum level of AFM1 is 0.5 parts per million (ppm) in milk. In North America, Canada 

and the United States have generally set aflatoxin standards of 15 to 20 ppb in any finished 

food products. In detail, the U.S. Food and Drug Administration (FDA) has set several 

action levels. For the feedstuff prepared for mature non-lactating animals: the action level 

is 100 to 300 ppb for total aflatoxins, specifically as: feed for breeding beef cattle, 100 ppb; 

feed for finishing swine, 200 ppb; feed for finishing beef cattle, 300 ppb. For commodities 

destined for human consumption and interstate commerce, the action level is 20 ppb for 

total aflatoxins. For dairy milk, the standard was at 0.5 ppb for AFM1 (Food and 

Administration, 2000). The guidelines and monitoring limits show large variation for the 

region out of North America and E.U. (Anukul et al., 2013), but such disparities are still 

comparable with the overall regulatory standards released by Codex.  

 

1.2.2 Metabolism and toxicity of AFB1 in human 

The theory of cytochrome P450 enzyme-based hepatic metabolism of AFB1 was 

established by Wogan Lab in Massachusetts Institute of Technology (MIT) last century 

(Groopman et al., 1996). For oral exposure of AFB1, a rapid absorption happens mostly 

via small intestinal passive diffusion. After that, AFB1 is transported to the liver where it 

undergoes the classic two-phase hepatic metabolism and then exerts carcinogenicity and 

toxicity. The metabolic activation was driven by the collaboration of a group of liver 

cytochrome P450 enzymes such as 1A2, 2A6, 3A4, 2A13, and 3A5 (Kensler et al., 2011; 

Kumagai, 1989; Tang et al., 2009; Wild and Turner, 2002; Ziglari and Allameh, 2013). 

The reactions can also occur in intestinal enterocytes, lung, and kidney, with different 

enzymes enrolled, and this process largely depends on the species under exposure. Figure 
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1 illustrates the general biotransformation of AFB1 in human liver. In the phase I reaction, 

the involved reactions include hydroxylation, reduction, demethylation and epoxidation, 

and the generated products are AFQ1 (product of AFB1 reduction), Aflatoxicol H1 (derived 

from Q1), AFM1 (product of AFB1 reduction), AFP1 (product of AFB1 demethylation), 

aflatoxicol (product of AFB1 hydroxylation), AFB2a (product of AFB1 hydroxylation), 

AFB1-8,9-epoxide (product of AFB1 epoxidation) and AFB1-mercapturic acid (produced 

by γ-glutamyl dipeptidase and N-acetyl transferase). Most AFB1 Phase I reactions are 

oxidations catalyzed by cytochrome P450 (CYP450) enzymes, except for the reduction of 

AFB1 to aflatoxicol (AFL) which is catalyzed by a cytosolic reductase. Phase II reactions 

are limited to conjugation of the AFB1-exo-8,9-epoxide (AFBO) with glutathione, and 

conjugation of aflatoxins P1 and M1-P1 with glucuronic acid. The conjugation of AFBO 

with GSH is catalyzed by specific glutathione transferase (GST) enzymes. The AFBO may 

also be hydrolyzed by an epoxide hydrolase (EPHX) to form AFB1-exo-8,9-dihydrodiol. 

In rats and human, the dihydrodiol is in equilibrium with the dialdehyde phenolate form, 

which can be reduced by AFB1 aldehyde reductase (AFAR), an enzyme that catalyzes the 

NADPH-dependent reduction of the dialdehyde to dialcohol phenolate (Guengerich et al., 

2001). AFB2a (from AFB1) and Aflatoxin B1-2,3-dihydrodiol (from AFB1-2,3-epoxide) can 

bind with amino acid-Schiff bases structures and cause toxic effects on protein (Neal et al., 

1981).  

Binding of AFBO to the N7 position of guanine leads to the formation of the 

unstable trans-8,9-dihydro-(N7-guanyl)-9-hydroxy-AFB1 adduct. Hydrolytic ring opening 

reaction further transfers the AFB1-N7-adduct into the more stable formamidopyrimidine 

form (Giri et al., 2002). Adverse consequences of the DNA binding include point mutations  
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Figure 1-1. AFB1 bio-transformation and elimination in humans: a schematic diagram for 

the known pathways of AFB1 metabolism in human (Eaton and Gallagher, 1994; Wild and 

Turner, 2002; Ziglari and Allameh, 2013) 
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and recombination in both prokaryotic and eukaryotic organisms. In bacteria, AFBO 

binding induces frameshift and missense mutations, mostly in form of G to T transversion. 

Hot spots for AFB1 induced mutations include six contiguous G residues in the HPRT gene 

and the third position in codon 249 of the human p53 tumor suppressor gene (Shen and 

Ong, 1996). The surface binding and transmembrane passage of AFB1 in gram-positive 

bacteria are more easily than gram-negative bacteria because of the structure of the cell 

wall (Oliveira et al., 2013). 

Though over 90% metabolized AFB1 can be excreted through urea and feces, part 

of the absorbed mycotoxin is irreversibly retained in the liver, bound to tissue 

macromolecules, and cause further adverse effects (Gradelet et al., 1998). Regarding the 

retention of AFB1 in human, the most relevant data were collected from primate models 

with radioactive standards. Wong and Hsieh reported that 100 hours after [14C]AFB1 

dosing (1/10 of LD50 i.v.), 13.6, 6.5 and 1.8% of the administrated dose was retained in 

monkey, rat and mouse liver (Wong and Hsieh, 1980). Dalezio and Wogan found that, 4 

days after i.p. injection of 0.4 mg/kg [14C]AFB1 into monkeys, 5.6% of the dose was 

retained by the liver, mostly conjugated with liver proteins (Dalezios and Wogan, 1972). 

The retained percentage is 5.8% when the dose was administrated orally (Dalezios et al., 

1973). Dalezio et al. also found in monkeys that about 80% of orally administrated AFB1 

(0.015 mg/kg) is excreted in 1 week but a tiny portion was retained in liver and peripheral 

circulation up to 5 weeks. After the oral dosing, rhesus monkeys excreted about 20% as 

aflatoxin M1 during day 1 to 4. Unchanged AFB1 accounted only for a small proportion 

and AFB1 beta-glucuronide accounted for 5%, with 3.3% as glucuronide and 1.2% as 

sulfate conjugate. There was 5% dose excreted as B1 and M1 in the feces. Holeski et al. 
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found that 2 hours after administration of 0.25 mg/kg AFB1 (via i.p.), 15% of the dose 

remained in the liver (Holeski et al., 1987). Of the total measured radioactivity in the liver, 

12% were from polar metabolites, 3% from nonpolar metabolites and 70% were from 

covalently bound adducts. In another study conducted in a rat model, over 80% of AFB1 

was found rapidly absorbed in the small intestine via passive diffusion (Kumagai, 1989). 

These findings are consistent with the lipophilic structure of aflatoxins, showing that AFB1 

can be immediately absorbed through passive diffusion and around 5% of the dosed AFB1 

or its metabolites can be retained in the liver.  

Table 1-1. Major metabolites of AFB1 and biochemical features. 

AFB1 metabolites Biochemical significance 

AFB2a 

Microsomal metabolite of AFB1, doubtful enzymatic formation, 

occurs non-enzymatically through hydration of furan double bond 

in absence of cofactors 

AFP1 
Mixed-function oxidase-catalyzed o-demethylase reaction in 

microsomes, major urinary metabolite in monkeys 

AFM1 

Hydroxylated metabolite, NADPH-dependent mixed function 

oxidase, major metabolite in milk and urine of animals fed AFB1-

contaminated diets 

AFQ1 

NADPH-dependent hepatic microsome-mediated hydroxylation of 

AFB1, major metabolite produced by primate microsomal 

metabolism 

Aflatoxicol 
Reversible reduction of AFB1 by reductase in the cytosol fraction, 

NADPH required as a cofactor, major metabolite of avian species 

AFL-M1 
Cytosol-catalyzed reduction of AFM1 or microsomal mixed-

function oxidase-catalyzed hydroxylation of AFL 

AFL-H1 

Cytosol-catalyzed reduction of AFQ1 or by cytochrome P-450-

catalyzed hydroxylation of AFL, major metabolite of AFB1 by 

humans or rhesus monkey 

AFB1-epoxide 

Not isolatable from biological systems or synthesizable, formation 

deduced from production of AFB1-dihydrodiol as acid hydrolysis 

product of metabolically or chemically generated AFB1-nucleic 

acid adducts 

AFB1 dihydrodiol Formed by enzymatic or nonenzymatic hydrolysis of AFB1-epoxide 

*Table is excerpted from (Deshpande, 2002) 

Several points in the metabolic pathway of AFB1 are worthy of further discussion: 

(1) among human aflatoxin-associated CYPs, CYP1A2 and CYP3A4 are the major AFB1-
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metabolizing enzymes found in human liver. AFB1 is activated by CYP1A2 and 3A4 to 

AFB1-8,9-exo-epoxide and AFB1-8,9-endo-epoxide, but it is the exo-epoxide which binds 

to DNA to form the predominant 8,9-dihydro-8-(N7-guanyl)-9-hydroxy-AFB1 (AFB1-N7-

Gua) adduct (Ramsdell et al., 1991); (2) the major carcinogenic and mutagenic metabolites 

of AFB1 are AFB1-8,9-exo-epoxide, AFB1-dihydroxide intermediate and AFM1-8,9-

epoxide, but the latter is relatively less active in the Ames mutagenesis test (Catterall et al., 

2003); (3) AFB2a causes acute toxicity, liver necrosis and cellular metabolizing enzyme 

inhibition; (4) in the phase II conjugation, aflatoxin B1-8,9-epoxide can bind with 

glutathione (GSH) by glutathione S transferase (GST), and the generated AFB1-GSH is the 

major detoxicated metabolites excreted in bile. The detected aflatoxin metabolites are 

shown in Table 1-2. AFP1, AFM1 and AFM1-P1 (derived from P1 or M1) can be conjugated 

with glucuronic acid by UGT (Dohnal et al., 2014). A biomarker is defined as the cellular, 

biochemical and molecular alteration that can be accurately measured in biological media, 

such as human tissues, cells or fluids. The measurement of these molecules can indicate 

the exposure of xenobiotics, induced effects or the susceptibility of subjects. Although 

many metabolites of AFB1 have been detected from human samples (Table 1-2), not all of 

them are reliable for the use of biomarker. The biomarkers used for the control of AFB1 

include urine AFB1-N7-guanine adduct, aflatoxin M1, AFB1-mercapturic acid and serum 

AFB1-albumin adduct (Qian et al., 2012; Tang et al., 2009; Wang and Groopman, 1999; 

Wang et al., 2008; Yu et al., 2006).   

  

Table 1-2. Reported aflatoxins and metabolites in human samples. 

Human biofluid & tissue Aflatoxins & Metabolites 

Amnoiotic fluid B1 

Bile B1 
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Blood Aflatoxicol, B1, B2, G1, G2, M1, M2 

Brain Aflatoxicol, B1, B2, G1, G2, M1, M2 

Breast milk Aflatoxicol, B1, B2, G1, G2, M1, M2 

Feces Aflatoxicol, B1, B2, G1, G2, M1, M2, Q1 

Serum Aflatoxicol, B1, B2, B2a, G1, G2, G2a, M1, M2, P, Q1 

Urine Aflatoxicol, B1, B2, B2a, G1, G2, G2a, M1, M2, P1, Q1 

  *Table is excepted and organized from (Weidenbörner, 2015). 

 

 
1.2.3 Impairment of gut-microbiota dependent metabolites caused by AFB1 

In addition to above discussed liver cancer, dietary exposure to food-borne AFB1 

is also associated with a wide array of health problems in human and animals. The reported 

diseases include diarrhea, vomiting, tumors, deficient immunity, stunted growth, Reye's 

syndrome, metabolic syndrome, and liver diseases such as bile duct cirrhosis and non-

alcoholic steatohepatitis (Kensler et al., 2011; Weir et al., 2013; Zeng et al., 2017). The 

impact of such exposure on nutritional status and metabolism needs to be thoroughly 

investigated in order to better understand the pathological mechanisms of the associated 

disease outcomes. Gut-microbial metabolome, a collection of thousands of micronutrients 

and functional metabolites, has demonstrated a significant influence on host health 

nutritional status, as well as the susceptibility to diseases (Goffredo et al., 2016; 

Randrianarisoa et al., 2016). Assessment of the impact of AFB1 on gut-microbial 

metabolome could, therefore, provide a mechanistic insight into the pathogenesis of AFB1-

induced health outcomes. 

A wealth of recently advanced techniques, such as “next generation sequencing”, 

“single cell-based omics” and “high through-put metabolomics”, can be leveraged to 

analyze the genome and metabolome of the intestinal microbial flora. By now, researchers 

have already found over 1000 bacterial species and 100-fold more genes than host genome 

in the microbial community, in which more than 99% residents belong to Firmicutes, 
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Bacteroidetes, Proteobacteria and Actinobacteria classes (Qin et al., 2010b). The scientific 

progress has brought new vision and strategy to the field of chemoprevention of liver 

diseases. The liver receives 70% of its blood supply from the intestine through the portal 

vein. Accordingly, it is the first and mostly exposed organ to gut-derived factors such as 

bacterial components, microbial derived nutrients, endotoxins, and peptidoglycans. Over 

80% of hepatocellular carcinoma (HCC) are associated with the inflammation that 

accompanies with cirrhosis, fibrosis and compensatory hepatocyte proliferation (Baffy, 

2013). It has been found that a number of hepatic cell types, e.g. Kupffer cells, sinusoidal 

cells, biliary epithelial cells, and hepatocytes carry pathogen-recognition-receptors that 

respond to the many microbial-derived products from the gut (Szabo et al., 2010).  

Actually, there have been many case reports which support that gut-microbiota and 

microbial metabolites are involved in the pathological process of liver diseases and other 

adverse health outcomes. Dumas et al. have previously found that the conversion of choline 

into methylamines by microbiota reduces the bioavailability of choline and lead to non-

alcoholic fatty liver disease (NAFLD) in 129S6 rats with a high-fat diet (Dumas et al., 

2006a). Gaudet el al designed an in vitro model using HEK 293T cells and several bacterial 

strains, which showed that Neisseria spp. may prevent liver carcinogenesis via microbial 

heptose-1,7-bisphosphate (HBP)-TRAF- forkhead associated domain (TIFA)-apoptosis 

pathway (Gaudet et al., 2015). The disruption of gut-microbiota may lead to pro-

inflammation in hepatic cells through the TLR4-TNFα-IL6 signaling that reduces oxidative 

and apoptotic stress (Darnaud et al., 2013). The event was found being initiated by the 

lipopolysaccharide (LPS) or damage-associated molecular patterns (DAMP) secreted by 

gut-microbiota during dysbiosis and occurs mainly in Kupffer cells (Yu et al., 2010). On 



12 
 

the other side, Zhang et al have shown in rat model of hepatocarcinoma which was created 

using diethylnitrosamine (DEN) via injected intraperitoneally (i.p.) administration, that the 

rats with liver cirrhosis and liver cancer frequently develop an intestinal dysbiosis, in which 

the E. coli growth rate was increased yet the benign bacteria which belong to Lactobacillus, 

Bifidobacterium and Enterococcus were significantly decreased (Zhang et al., 2012). 

These evidences imply that the maintenance of gut-microbial homeostasis is tightly 

associated with liver health via gut-microbial metabolites and cellular components. In 

addition to liver diseases, the exposure to harmful xenobiotics is also known to be 

associated with metabolic syndrome, thrombophilia, atherosclerosis, hyperuricaemia and 

hyperglycaemia (Sears and Genuis, 2012; Zhou, 2016). The modification of gut-microbiota 

may provide a new approach to AFB1 associated liver diseases and other adverse health 

outcomes. 

A wide range of xenobiotics, either naturally occurred or artificially synthesized, 

are known to be capable of disrupting the bio-chemical pathways or impairing the 

homeostasis of gut-microbiota (Maurice et al., 2013). The xenobiotics include alcohol 

(Bala et al., 2017; Mutlu et al., 2009; Nolan, 1989; Yan et al., 2011), heavy metals (Breton 

et al., 2013; Fazeli et al., 2011; Liu et al., 2014), nanoparticles (Merrifield et al., 2013; 

Sawosz et al., 2007), anthropogenic chemicals(Xu et al., 2014), antibiotics (Cho et al., 

2012; Dethlefsen and Relman, 2011; Francino, 2015), and natural toxins such as 

mycotoxins and microcystin-LR (Bennett and Klich, 2003; Lin et al., 2015; Saint-Cyr et 

al., 2013; Wache et al., 2009). The impacts of xenobiotics on gut-microbiota and microbial 

derived nutrients are critical to host health. The exposure of gut commensal microbiota to 

certain natural products largely determines the delivering efficiency of nutrition from food 
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to host (Gibson and Roberfroid, 1995; Tuohy et al., 2014). Many food ingredients and 

compositions are specially preferred by certain gut-microbial strains. L-carnitine is able to 

enrich the strains that belong to Peptostreptococcaceae and Clostridiaceae families, which 

in turn produce a high level of dimethylamine, trimethylamine (TMA) and trimethylamine-

N-oxide (TMAO). These amines were previously found connected with primary sclerosing 

cholangitis (PSC) and inflammatory bowel disease in human (Kummen et al., 2017). 

Genistein carries protective function from liver acute damage, liver inflammation (Tomas 

et al., 2012), fibrosis (Burcelin et al., 2011), hyperglycemia and glucose tolerance, and 

such function is associated with the modification of gut-microbiota (Qin et al., 2010a). The 

triangle interaction between xenobiotic-microbiota-host, as discussed above, could thus 

play an un-ignorable etiological role in the incidence of xenobiotic-associated health 

problems or beneficial effects. Our preliminary 16s rRNA based analysis showed that oral 

exposure to AFB1 resulted shift of gut-microbiota at phylogenetic level, featured by 

depletion of Lactobacillus and enrichment of Firmicutes clostridiales strains such as pro-

inflammatory Ruminococcus (Jandhyala et al., 2015). To further understand the 

complexities between gut-microbiota and AFB1-induced health problems, it is necessary 

to elucidate the specific chemical composition of the flora. Fecal metabolomics analysis is 

an effective, non-sacrifice and non-invasive approach to achieve this goal.  

 

1.3 Green Tea Polyphenols as chemoprevention and probiotic agent  

1.3.1 Introduction to green tea polyphenols 

The term “Probiotic” was first coined from the Greek language by Lilly et al., 

meaning “for life” (Lilly and Stillwell, 1965). The concept was brought out by Gibson and 
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Roberfroid in 1995 and further refined by Roberfroid in 2007, presented as “a selectively 

fermented ingredient that allows specific changes, both in the composition and/or activity 

in the gastrointestinal microflora that confers benefits upon host well-being and health” 

(Roberfroid, 2007). The term also meantime defined by World Health Organization (WHO) 

and Food and Agriculture Organization of the United Nations (FAO) as ‘live 

microorganisms which when administered in adequate amounts confer a health benefit on 

the host’ (Morelli and Capurso, 2012). Probiotics are considered to have, yet not limited 

to, the following benefits: (1) reduction of Helicobacter pylori infection; (2) reduction of 

allergic symptoms; (3) relief from constipation; 4) relief from irritable bowel syndrome; 

(5) beneficial effects on mineral metabolism, particularly bone density and stability; (6) 

cancer prevention; and (7) reduction of cholesterol and triacylglycerol plasma 

concentrations (Schrezenmeir and de Vrese, 2001). The application of Lactobacillus has 

shown effects such as reduction of harmful strains in humanized mice (Martin et al., 2008) 

and attenuation of chemical-induced colitis in mice (Kumar et al., 2008). Li et al. 

administrated Lactobacillus rhamnosus GG to C57BL6/N mice one week before tumor 

induction and they found that probiotics shifted the gut-microbial community toward 

certain anti-inflammatory beneficial bacteria such as Prevotella and Oscillibacter, leading 

to reduced Th17 polarization and promoted anti-inflammatory Treg/Tr1 cells in the gut (Li 

et al., 2016). Henrik et al. have reported the administration of Lactobacillus acidophilus 

NCFM in germ free Swiss Webster mice can modulate bile acid metabolism by 

deconjugation, as well as carbohydrate metabolism and Vitamin E acetate metabolism 

(Roager et al., 2014). For these studies an effective dose around 1 × 108 to 1 × 1010 

CFU/day is generally used.  
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Figure 1-2. Green tea polyphenols. 

 

Cancer chemoprevention is defined as the chronic administration of a synthetic, 

natural or biological agent to reduce or prevent the occurrence of malignancy (De Flora 

and Ferguson, 2005). Remarkable effort has been made to minimize the incidence of AFB1-

related HCC. In addition to the regulations discussed already, a significant effort of 

chemoprevention study has been made since last decade, such as oltipraz (Wang et al., 

1999), calcium montmorillonite clay (Mitchell et al., 2014) and green tea polyphenols (Luo 

et al., 2006a; Wang et al., 2008). Polyphenol is defined as a compound containing more 

than one phenolic hydroxyl group. The primary polyphenols in green tea are flavanols, 

commonly known as catechins, including (−)-epicatechin, (−)-epicatechin-3-gallate, (−)-

epigallocatechin, and (−)-epigallocatechin-3-gallate (EGCG). The major favorable 

functions of GTPs include: (1) protection against multiple carcinogenesis (Luo et al., 2006a; 

Mukhtar and Ahmad, 2000; Qian et al., 2012; Tang et al., 2008; Wang et al., 2008), (2) 
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amelioration of rheumatoid arthritis (Haqqi et al., 1999; Riegsecker et al., 2013; Singh et 

al., 2010), (3) reduction of high blood pressure (Negishi et al., 2004; Potenza et al., 2007a; 

Potenza et al., 2007b), (4) improvement of cardiovascular health (Babu and Liu, 2008; 

Wolfram, 2007), (5) enhancement of immune system (Katiyar et al., 1999; Wong et al., 

2011) and the (6) prevention on tooth osteoporosis (Shen et al., 2008).  

However, there are many controversial observations on the effects of GTPs in 

human, such as its weight losing effect. During the last decade there are approximately 

over 30 studies conducted in human population, animal model and in vitro assays that were 

dedicated to collect evidences for this question (Hursel and Westerterp-Plantenga, 2013; 

Janssens et al., 2015; Mielgo-Ayuso et al., 2014; Phung et al., 2010). Meanwhile, 

numerous potential mechanisms have been described, such as the involvement of 

chemokines, COX2, iNOS, NF-kB, AP-1 and such on (Frei and Higdon, 2003). These 

results are not well convincing because of the reasons such as the non-compatible 

composition of GTPs mixture between different studies, the involvement of caffeine when 

people drink tea, as well as the genetic polymorphism of the studied ethical populations. 

These functions cannot be completely explained by ligand-receptor theory. Emerging 

evidences have shown that polyphenols can be utilized by beneficial gut-microbial strains 

and modify the composition of the strains (Lee et al., 2006; Rastmanesh, 2011; Tuohy et 

al., 2012; Tuohy et al., 2014). Tea polyphenol-contained galloyl moieties were found to 

act as inhibitors to glucosyltransferase from Streptococcus sobrinus, as well as collagenase 

from some eukaryotic and prokaryotic cells. The inhibitory effects on pathogens shown by  
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tea polyphenols are possibly contributed by the galloyl moiety (Sakanaka et al., 1996). A 

metabolomics analysis of gut-microbial metabolome may help us better understand the 

beneficial functions of GTPs and clarify the many confusions.  

 

Figure 1-3. Comparing adverse health outcomes induced by oral exposure to AFB1 with 

beneficial effects brought by administration of GTPs. 

 

1.3.2 Previous studies on the beneficial functions of GTPs in human 

The rationale of current dissertation is built based on a bunch of findings discovered 

in our lab. In last 90s, our lab did such phase IIa chemoprevention trial in Guangxi Zhuang 

Autonomous Region, People’s Republic of China, to examine the ameliorating effects of 

green tea polyphenols on carcinogen biomarkers and the possible adverse effect of GTPs 
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in the population with high risk of hepatocellular carcinoma (HCC) (Luo et al., 2006a; 

Wang et al., 2008). The study site is a rural farming community where major supply of 

food and cooking oil are produced from local corn and peanuts with severe contamination 

of aflatoxins. Serum and urine samples were collected from Sanhe and Zhuqing, two 

villages in Qujiu Township. The normalized HCC incidence and mortality is around 100 

per 10 million for the last two decades.  

The study measured hepatitis B virus (HBV) and aflatoxin biomarkers in 1200 

blood samples and recruited 124 residents who were both HBsAg and AF-albumin adducts 

positive. These subjects were aged 20-55 with normal liver function test, serum alpha-

fetoprotein negative, no personal history of cancer, and no use of prescribed medications. 

The selected 2 doses of GTPs were 500 mg and 1000 mg, equivalent to two and four cups 

of tea drink, respectively. Initial studies did not find significant differences on adverse 

effects and parameters representing liver and kidney function among 3 groups, indicating 

the relative safety of GTPs in human subjects. In the next step, follow-up studies were 

conducted to find and validate biomarker of exposure to GTPs from urine and plasma 

samples. The major findings are summarized in Figure 1-4. 

(1) A total of 340 urine samples were collected at baseline, 1- and 3-month of the 

clinical trial. Trace amounts of GTPs components were detected for all 3 groups at baseline 

with no statistical significance (p = 0.92). Analysis of urine samples collected at 1- and 3-

month revealed that levels of urinary EGC and EC were dose-dependently elevated in 

GTPs-treated groups. Mixed effects model showed significant differences between times 

and groups of treatment (p < 0.05) (Wang et al., 2008).  
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(2) A total of 343 plasma samples collected at the same time points were analyzed. 

Similar pattern of dose-response was found in both urine and plasma samples, that the 

levels of EGCG and ECG in GTPs-treated groups were dose-dependently elevated. 

Significant differences between times and groups of treatment (p < 0.05) were also found. 

The results validated urinary excretion of EGC and EC and plasma levels of EGCG and 

ECG as biomarkers for green tea consumption (Luo et al., 2006a). Luo et al also analyzed 

plasma sample via metabolomics approach and found that 56 of 106 detected metabolites 

were significantly modulated with administration of GTPs (Luo et al., 2006b). 

(3) Urinary 8-hydroxy deoxyguanosine (8-OHdG) was measured to reflect the 

modulative effect of GTPs on reactive oxygen species (ROS)-induced oxidative DNA 

damage. It was found that at the end of 3-month intervention, 8-OHdG levels decreased 

significantly in both GTPs-treated groups, suggesting a pronounced effect of GTPs in 

diminishing general oxidative DNA damage (Luo et al., 2006a). 

(4) A panel of biomarkers was introduced to estimate the exposure level of AFB1 in the 

subjects and examine the mitigating effect of GTPs administration on the hepatic 

metabolism of AFB1. It was found that: 1) By 1-month administration, the AF-albumin 

adduct levels in serum samples collected of the intervention was significantly decreased in 

the high-dose group (p < 0.05) than that in control; 2) by 3-month, the levels of AF-

albumin-adducts in serum samples showed significant decrease in both the low- and the 

high-dose groups (p < 0.05); levels of AFM1 in urine samples was significantly decreased 

in both low-dose and high-dose intervention groups. Treatment of GTPs elevated levels of 

AFB1-NAC in GTPs-treated groups, which indicated an improved metabolism and 
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excretion of AFB1. Thus, GTPs effectively inhibited phase I metabolic enzyme activities 

and boosted phase II metabolic enzyme activities.  

(5) Based on the above findings, a long-term clinical trial with green tea 

polyphenols in Southern Guangxi, China. This study screened 10000 adult people and 

recruited 1826 HBsAg positive adults with normal liver function test, serum alpha-

fetoprotein negative, no personal history of cancer, and no use of prescribed medications, 

in Guangxi, China. Two capsules (500 mg GTPs, or placebo), were instructed to be taken 

twice daily after meal. The HCC incidence rate for years 2 and 3 was significantly reduced 

in GTPs-treated group (443.46/100000 person each year) as compared to that of placebo 

group (1092.39/100000 person year) (p one-sided = 0.039) (Yu et al., 2006).  

 

1.4 Validation of animal models 

In toxicological research, the use of animals to model human exposure strictly relies on the 

validation that basic mode of action (MOA) and mechanistic processes of experimental 

animals are similar with human. To validate an animal model, pharmacokinetic 

(PK)/pharmacodynamic (PD) or physiologically based pharmacokinetic (PBPK) models 

are widely used to gain information regarding “absorption, distribution, metabolism, and 

excretion (ADME)”, as well as the predictions of internal or target dose from 

environmental and pharmacologic chemical exposures. The oral LD50 range of AFB1 is 

estimated to be 1 to 50 mg/kg B. W. for most animal species. For rats, it shows gender 

differences with an oral LD50 of 17.9 mg/kg B. W. in female rats and 7.2 mg/kg body 

weight in male rats (Agag, 2004). For the latter, AFB1 is an incredibly potent carcinogen 

with a TD50 of 0.0032 mg/kg/day (Butler, 1964).  
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Figure 1-4. Previous studies of HCC prevention with GTPs administration. 
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Fischer 344 is the most widely used inbred rat strain for general purposes, being 

particularly favored for cancer research and toxicology. There is now substantial 

background information on its strain characteristics, including life-span, spontaneous 

diseases and response to chemicals. In the current study, Fischer 344 male rats were used 

as the animal model and validated by previous lab member Dr. Guoqing Qian. The detailed 

protocol was validated and reported in our previous publications, together with body 

indexes, histopathological assessment and AFB1-lys pharmacokinetic data (Qian et al., 

2014; Qian et al., 2013a; Qian et al., 2013b). The dosage applied in AFB1 study was 

transferred from several reports for Kenya, Ghana, and Guangxi, China, where the mean 

AFB1 levels were found to be 100 to 1000 μg/kg in corn (Azziz-Baumgartner et al., 2005; 

Groopman et al., 1992; Tang et al., 2009). The reference amount of corn consumption was 

300 to 400 g/day for local residents (Li et al., 2001), thus the minimal exposure level is 

estimated to be 0.45 μg/kg B. W. per day for adult with body weight of 65 kg. By applying 

a conversion factor of 6.2, the theoretical dose for rat of 150 g is 2.79 μg/kg B. W. per day 

(Nair and Jacob, 2016). Considering the working hours and actual B. W. (110 to 120 g) of 

rat, the minimal dose for gavage in this study is 5 μg/kg B. W. per day during working 

days. The original no-observed-effect-level (NOEL) for AFB1 oral exposure in rat is 100 

μg/kg for single dosing, and the maximum repeated dose in this study is 75 μg/kg B. W., a 

dose inducing significant liver cirrhosis in rats of the current study. Specifically, male 

Fischer 344 rats (100 to 120 g) were purchased from Harlan Laboratory (Indianapolis, IN). 

The animal housing environment is under controlled light/dark cycle (12 hr/12 hr) with a 

temperature of 22 ± 2 ℃ and relative humidity of 50 to 70%. Purified AIN 76A diet and 

tap water were maintained every day. We did not examine dietary aflatoxins in this study. 
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Upon arrival, animals were allowed for one week of environmental acclimation. One 

hundred male F344 rats were divided into 4 groups, with gavage of 0, 5, 25, 50 and 75 μg 

AFB1/kg B. W. per day respectively. DMSO was used as vehicle solvent. Fecal samples 

collected from 0, 5, 25 and 75 μg AFB1/kg B. W. were used for metabolomics analysis. 

With the AFB1 doses of 5, 10, 25, 50 and 75 μg/kg B. W. per day, the major 

pathological changes are listed on Figure 1-5, including the effects of exposure on the 

histological, immune-histological, clinical biochemical parameters, cell-specific cytokine 

secretion in splenic lymphocytes through both single-dose and repeated-dose treatment 

protocols (Qian et al., 2014; Qian et al., 2016; Qian et al., 2013a; Qian et al., 2013b; Qian 

et al., 2012). In repeated-dose protocol, a linear increase of serum AFB-lys was observed 

for animals that received 5 to 25 μg AFB1/kg B. W. daily, leading to a 1.0 to 1.5 times 

increase after five weeks compared to that after one week, suggesting its potential use as a 

long-term biomarker. For the application of highest dose, serum AFB-lys reached a 

maximum level after 2 weeks for animals that received a high daily dose of 75 μg/kg B. W. 

The dose-biomarker fitted curve matches Gaussian curve and may reflect a variation in the 

metabolic balance between AFB-epoxide formation and detoxification or enzymatic 

induction of glutathione S transferase (GST). This result is consistent with the alternative 

signs of toxicity found at this dose (see Figure 1-5 for details). After 3 weeks exposure to 

75 μg/kg B. W., bile duct proliferation, liver GST-P+ foci co-occurred, followed by 

proliferation foci formation after 4-week and dramatic ALT, AST and CK elevations after 

5-week exposure. Thus, the maximum dose chosen in this study is 75 μg/kg B. W.  

Sprague Dawley (SD) female rats were used as animal model for GTPs study. SD 

rat is an outbred multipurpose breed of albino rat used extensively in medical and 
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nutritional research. The rat model was evaluated by our collaborator Dr. Chwan-Li (Leslie) 

Shen, Texas Tech University Health Sciences Center. Shen Lab has by now assessed the 

chronic safety in middle-aged ovariectomized rats supplemented with different doses of 

GTPs in drinking water. The experiment used 6-month old sham (n = 39) and 

ovariectomized (OVX, n = 143) female rats. For comparison, all sham (n = 39) and equal 

number of the OVX animals received no GTPs treatment and were used as control. The 

samples were collected for outcome measures at baseline, 3 month and 6- month (n = 13 

per group for each). The left OVX animals were randomized into 4 treatment groups and 

receive 0.15%, 0.5%, 1%, and 1.5% (n = 26 for each) of GTPs (wt/vol), in drinking water 

for 3 and 6 months.  

During the veterinary examination, they found no mortality or abnormal treatment-related 

findings in clinical observations or ophthalmologic examinations (Shen et al., 2017). Also, 

no treatment-related macroscopic or microscopic findings were noted for animals 

administered with the highest dose. Throughout the study, there was no difference in the 

body weight among all OVX groups. By the end of 6 month, GTPs intake did not affect 

most hematological indexes and parameters of clinical chemistry. However, the 

phosphorus and blood urea nitrogen were increased, and the total cholesterol, lactate 

dehydrogenase, and urine pH were decreased. 
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Figure 1-5. Major findings of previous studies in animal models. 
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Figure 1-6. Composition of green tea polyphenol powder used in current study. 

 

1.5 Hypothesis of current dissertation 

As discussed above, oral exposure to AFB1 are associated with liver cancer, 

metabolic syndrome and a number of hepato-intestinal diseases. The recently revealed 

intricate “three-way” connection among xenobiotcs, gut-microbiota, and host health may 

involve in these situations by disrupting homeostasis of gut-microbiota and their functional 

metabolites. However, the administration of dietary prebiotics such as GTPs could improve 

host health by enriching beneficial bacteria such as Lactobacillales and the metabolites e.g. 

SCFAs. Our earlier 16s rDNA data has already discovered the dose-dependent change of 

gut-microbial strains and functional enzymes upon exposure to AFB1 (Wang et al., 2015). 

Such change may have an important role in the etiology of AFB1-induced diseases, 

ailments and health problems. The hypothesis here is that the impacts of AFB1 and GTPs 

on host health might be opposite and GTPs could potentially reverse the negative effects 

on AFB1 on gut-microbiota dependent metabolites. More evidences are needed to justify 

this hypothesis. 
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1.6 Methodology 

Metabolomics has been extensively employed to capture interested bio-chemical 

changes in cells, tissues and bio-fluids (Vernocchi et al., 2016). The most frequently used 

instruments are the ‘hyphenated’ analytical platforms that are constructed with 

chromatography and mass-spectrometry (MS). With properly developed method this 

combination is able to profile hundreds to thousands of metabolites showing in sample 

simultaneously, according to their m/z, retention time and ionized fragments. So far, both 

liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization (ESI) and 

gas chromatography-mass spectrometry (GC-MS) with Electron ionization (EI) serve as 

basic approach for metabolomics studies (Wang et al., 2010). They have been used to 

perform a number of complex tasks, e.g. elucidation of mechanism, biomarker search and 

pharmaceutical intervention (Patti et al., 2012; Ramautar et al., 2013). However, both LC-

MS and GC-MS are not perfect, in that the detective scope of GC-MS is generally limited 

to volatile molecules; whereas the data acquired by LC-MS are affected by factors, such as 

the ionization mode, design of analyzer, mobile phases, the voltages of capillary tube and 

cone (Beckonert et al., 2007). A second round of complication is introduced during the 

process of raw data, which heavily depends on the selected processing suites (e.g. XCMS, 

OpenMS, MaxQuant and SMART), as well as the numerous algorithms to be tuned for 

feature detection, chromatogram building, deconvolution, isotope grouping and alignment 

(Lindahl et al., 2017).  

 

Table 1-3. Important terms in metabolomics 

Term Definition 



28 
 

Metabolite 

Small molecules that participate in general metabolic 

reactions and that are required for the maintenance, growth 

and normal function of a cell. 

Metabolome 
A complete set of metabolites in an organism, tissue, site, 

organ or cell of interest. 

Metabolomics 
Identification and quantification of all metabolites in a 

metabolome. 

Metabolic Profiling 

Quantitative analysis of set of metabolites in a selected 

biochemical pathway or a specific category or categories of 

compounds. 

Metabolic 

Fingerprinting 

Extraction of distinctive metabolites in response to disease, 

environmental or genetic perturbations that can be used to 

distinguish samples of different treatments. 

Metabolomic 

Feature 

A molecular entity with a unique m/z and retention time. It 

could be a precursor ion, product ion or polymer ion or 

different adducts generated during ionization, depending on 

the specific ionizer and analyzer. 

The terms are organized from (Dumas et al., 2006b) and (Dettmer et al., 2007). 

 

To conduct comprehensive assessment of the gut-microbial metabolome, in this 

study we established an integrative analytical methodology which includes a group of state-

of-the-art analytical platforms. The whole system includes: (1) gas chromatography (GC)-

electron ionization (EI)-quadrupole (Q) mass spectrometer (MS)-based metabolomics 

analysis; (2) high resolution (HR) liquid chromatography (LC)-linear ion trap quadrupole 

(LTQ)-orbitrap hybrid MS-based metabolomics analysis; (3) in-house profiling library that 

contains 34 saccharides, organic acids, vitamins and amino acids via HPLC and GC-EI-Q 

MS profiling analyses; (4) high-throughput chromatographic profiling analysis through 

eight channel ultra-high performance liquid chromatography (UHPLC)-diode array 

(DAD)-fluorescence (FLD) that couples with UHPLC-triple quadrupole (TsQ)-MS 

metabolomics analysis (presentation in SESOT 2017); (5) XCMS and MZmine-based 

processing of raw MS files; (6) multiple variate analysis (MVA)-based statistical models, 

and (7) KEGG and HMDB-leveraged bioinformatics analysis such as enrichment analysis 
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and network analysis of metabolic pathways. The pre-treatment of fecal samples, 

derivatization of extract, data collection, and parameters of module algorithms of MZmine 

were all optimized in our lab.  

 

Figure 1-7. Design of integrative metabolomics methodology. 

 

1.7 Specific aims of research 

The principal goal of current dissertation study is to elucidate the impacts of AFB1 

and GTPs on gut-microbial metabolome in rat models using comprehensive metabolomics 

approach. This study has the following goals to achieve: 

(1) Establish multiple platforms-based methodology that integrates the standard 

metabolic profiling and metabolomics analysis. 

(2) Evaluate and apply statistical models to mine the metabolomics database, and 

also compare the efficacy of these models in order to refine dataset. 

(3) Validate the consistency between histopathological findings, metagenomics 
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data and metabolomics data of gut-microbiota under the same study design. 

(4) Provide bioinformatics explanation on AFB1-induced adverse health outcomes, 

as well as the health-improving effect of GTPs from a view of gut-microbial metabolome.  

In the long term, the established methods and database can be used to assess the 

adverse or beneficial effects of all kinds of food additives, preservatives, contaminants, and 

food-borne toxins on nutritional status through in vitro, in vivo and ex vivo experiments. 

The whole system holds several advantages: (1) all analytical protocols are elongated 

therefore they can be applied to different kinds of samples; (2) the integrated database and 

bioinformatics analysis can be conveniently updated and extended once open-access 

databases such as KEGG, HMDB and METLIN are upgraded; (3) any interested hot-spot 

chemicals can be examined and quantified in this database with external standards; (4) 

novel methods in data science can be applied to this database and enable a vision of systems 

biology. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Gut-microbiota dependent metabolome 

2.1.1 Review criteria 

“PubMed” and “Google Scholar” were used to search for the literatures with 

interested topics. The keywords input for literature searching include a primary term “gut 

microbiota”, or “intestinal content”, or “gut content”, and the following secondary terms: 

“indole”, “tryptophan”, “kynurenine”, “bile acid”, “secondary bile acid”, “phenyl acid”, 

“phenylalanine”, “tyrosine”, “vitamin”, “probiotic”, “quorum sensing”, “signaling 

molecule”, “organic acid”, “organic amine”, “lipid inflammatory factor”, “reactive 

oxygen”, and “aldehyde”. 

 

2.1.2 Concepts and terminology 

The concept of the human microbiota was first coined by Nobel laureate Joshua 

Lederberg on 2001, described as “the ecological community of commensal, symbiotic, and 

also pathogenic microorganisms that share our body space and have been all but ignored 

as determinants of health and disease” (Lederberg and McCray, 2001). Human gastro-

intestinal (GI) tract contains the largest surface of ~2,700 square feet in the human body, 

exceeding the total area of skin, lungs and body cavities (Leal-Lopes et al., 2015). Human 

GI tract harbors a microbial community that contains over 1000 bacterial species and 100–

fold more genes than host genome. Over 99% of the gut microbiota are Firmicutes, 
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Bacteroidetes, Proteobacteria, and Actinobacteria classes, with 64% of attached colonic 

species as Firmicutes and 23% of normal specie belonging to Bacteroidetes (Sartor, 2008). 

The microbial community demonstrate influences on various aspects of host physiology, 

including nutritional metabolism, resistance to infection, and the general performance of 

immune system as well.  

Current evidences suggest that gut-microbiota is inherited from maternal placenta 

and vagina during vaginal birth, and is adjusted following the changes of host health 

condition, physiology and dietary pattern after then (Neu and Rushing, 2011). In addition, 

accumulating data have indicated that gut-microbiota has co-evolved with the host over 

thousands of years before the formulation of an intricate and mutually beneficial 

relationship (Neish, 2009). The connection between individual and gut-microbiota is 

similar with the term “endosymbiosis”—a term used to describe the integrated internal 

symbiosis, in which one organism takes up permanent residence inside another and 

eventually evolves into a single biological lineage (Embley and Martin, 2006; Margulis, 

1981). This mutual connection is a good example to exhibit the complex links between 

eukaryotic system and prokaryotic cells. The two systems are believed to initially exist 

indifferently. According to the fundamental theory of evolutionary biology, eukaryotic 

cells were generated through the symbiotic union of separate prokaryotic cells, supported 

by the prokaryotic features of mitochondria and prokaryotic/eukaryotic features 

demonstrated by ribosome (Mereschkowsky, 1905; Wallin, 1927). Actually, with the 

accumulation of relevant data, researchers have identified a number of similarities existing 

between host/gut-microbiota and eukaryotic cells/mitochondria (Shapira, 2016). 
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So far, the most common practice to investigate gut-microbiota is fecal analysis, 

because feces contain representative portion of gut-microbiome and gut-microbiota 

dependent metabolites (Figure 2-1) and the collection of feces is a repeatable and non-

invasive process (Barbosa, 2013). Through omics based fecal analysis, Wang et al. have 

identified both genomic and metabolic differences between formula-fed (FF) infants and 

breast-fed (BF) infants of 3-month (Wang et al., 2013; Wang et al., 2015a). Compared with 

FF infants, in the gut of BF infants there are higher relative abundances of Bacteroides, 

lower proportions of Clostridium XVIII, Lachnospiracea incertae sedis, Streptococcus, 

Enterococcus and Veillonella. Besides, galactitol, 15-methylhexadecanoic acid and 

maltose were found to be the abundant metabolites enriched in BF infants, whereas beta-

alanine, dodecanoic acid, glycolic acid, decanoic acid and tyramine were the major 

metabolites associated with FF. 

 

Figure 2-1. Approximate composition of dehydrated human feces. Pie chart is constructed based 

on the data published by Barbosa et al (Barbosa, 2013). 
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2.1.3 Analytical approaches to the study of gut-microbiota 

The study of gut-microbiota is driven by the development and upgrade of 

polymerase chain reaction (PCR) based genetic and genomic analytical techniques. The 

most featured methods include qPCR, real-time PCR, denaturing gradient gel 

electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), 5'-rapid 

amplification of cDNA ends (5'-RACE PCR), terminal restriction fragment length 

polymorphism (T-RFLP), DNA/RNA microarray, 16S rRNA sequencing, shotgun 

sequencing and the “next-generation sequencing” such as illumina sequencing, Roche 454 

sequencing, Ion torrent/Proton/PGM sequencing (Fraher et al., 2012). These techniques 

were designed to extract, enrich, separate, sequence and quantify both cytoplasm 

nucleotides or nuclear genome in a high throughput manner (Gong and Yang, 2012; 

Karlsson et al., 2013). In addition to the sequencing-based studies, germ-free animal 

models are administrated with hypothesized functional microbes so that the connection 

between certain microbial inhabits and host health outcomes can be examined. In an early 

analysis of the illeal contents from germ free mice model the inoculation of Bacteroides 

thetaiotaomicron was found to modulate gut-associated lymph tissue (GALT)—an 

intestinal immune tissue with immune regulatory functions such as enhancing the integrity 

of illeal squamous epithelial barrier and promoting the enrollment of IgA-producing B cells 

(Hooper et al., 2001). A number of aspects of host health and disease conditions have been 

associated with gut-microbiota, e. g. immune system, fat storage, energy metabolism, 

hepatic steatosis, atherosclerosis, cardiovascular diseases, tissue lipid composition, 

periodontitis, motor activity and enteroendocrine metabolism (Burcelin et al., 2011). 

Recent findings have also suggested that perturbations of gut-microbiota community 
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structure may increase the predisposition to different disease phenotypes and cancer 

incidences, such as colorectal cancer, hepatic cancer, pancreatic cancer, chronic 

diarrhea, obesity, autism, allergy and inflammation (Carding et al., 2015; Clemente et al., 

2012). The application of probiotics may mitigate these abnormal changes by performing 

beneficial functions like the amelioration of gut inflammation and enhancement of 

epithelial integrity (Hemarajata and Versalovic, 2012). 

However, the phylogenetic analysis may sometimes fail to explain or correlate with 

the above adverse health outcomes, for reason that in clinical environment the microbial 

communities are extremely complicated and diverse among individuals and populations 

(Yatsunenko et al., 2012). In one study investigating the intestinal microbial composition 

of patients with severe obesity, decreased Firmicutes/Bacteroidetes ratio was identified 

(Schwiertz et al., 2010). In another study with similar goal obesity was associated with a 

significant decrease at the level of alpha-diversity, fewer Bacteroidetes, more 

Actinobacteria, yet with no significant change of Firmicutes discovered (Turnbaugh et al., 

2009). Not consistently, in an investigation using both animal models and human feces 

samples, a decreased ratio of Firmicutes/Bacteroidetes was found to be associated with 

weight-losing diet (Jumpertz et al., 2011). The disparities of these studies reflect a random 

competition amongst bacterial species, archaeal species, and various microbial eukaryotes 

living in mammal intestinal tracts (DiBaise et al., 2012). Besides, birth-delivery modes, 

dietary history and administrative history of antibiotics could further complicate the gut-

microbiota community structure (Jandhyala et al., 2015; Nohr et al., 2015). Accordingly, 

application of metagenomics analysis without auxiliary may not generate reliable results 

in assessing the influence of shift of gut-microbiota on host health.  
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Some transcriptomics and genomics-based studies have reported that gut-

microbiome with different community structures may eventually result in comparable 

metabolic status (Gosalbes et al., 2012). It seems that through the analysis of metabolites 

researchers could gain more reliable findings on the composition and function of gut-

microbiota. The collection of these metabolites covers host-secreted regulatory molecules, 

gut-microbiota derived dietary metabolites, and the cell components of microbes such as 

lipoteichoic acid, lipopolysaccharide, peptidoglycan and nucleotide acids (Cunha et al., 

2012; Gareau et al., 2010; Lebeer et al., 2010). The major components of this metabolome 

are the metabolites derived from daily diets, such as indole derivatives, phenyl acids, fatty 

acids, secondary bile acids and neurotransmitters like melatonin, serotonin and gamma-

amino butyric acid (Donia and Fischbach, 2015; Han et al., 2014; Holmes et al., 2012; 

Swann et al., 2011). Through these functional components, a three-way reciprocal 

connection is established by gut-microbiota, host metabolism and environmental input. By 

analyzing the metabolic profiles of feces, researchers are able to reveal the association 

between gut-microbiota and adverse health outcomes (Calvani et al., 2010; Qin et al., 

2010b). For example, one HT29/c1 and T84 colonic epithelial cell based study suggested 

that the domination of Bacteroides may lead to inflammation and cancer by increasing gut 

spermine oxidase (SMO) of enterotoxigenic Bacteroides fragilis (Goodwin et al., 2011). 

SMO can be elevated by inflammatory stimuli or Helicobacter pylori (H. pylori) infection, 

and a high SMO level has been associated with the overproduction of reactive oxygen 

species (ROS) and DNA damage on gastric epithelium (Chaturvedi et al., 2011; Handa et 

al., 2010). Bacteroides spp. were found to be enriched by chlorpyrifos induced dysbiosis 

(Claus et al., 2016). A recent mice study has demonstrated that the reduction of fecal bile 
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acid level in combination with elevated gut microbial microbial bile salt hydrolase (BSH), 

can modulate host lipid metabolism, cholesterol metabolism and eventually lead to weight 

loss, regardless of specific phylogenetic compositions (Joyce et al., 2014). This finding is 

consistent with the observations on the subjects in human epidemic intervention studies, as 

well as the many observations on chickens and pigs (Guban et al., 2006; Jones et al., 2012; 

Smet et al., 2007). High level of BSH has been found in many probiotic strains like 

Lactobacillus, Bifidobacterium, Enterococcus, Clostridium and Bacteroides spp., but is 

rarely seen in pathogen or opportunistic pathogens such as Listeria monocytogenes, 

Enterococcus faecalis and Xanthomonas maltophilia (Begley et al., 2006). These findings 

have jointly indicated that a metabolite-based analysis of intestinal microbiota is reliable 

and trustable. Accordingly, some researchers have turned to the end products and 

metabolites of the gut-microbiota to investigate its influence on host health. Actually, there 

has been a long history for the compositional analysis of feces with the aim to examine 

host health. In an early work published in Journal of Chromatography (1975) done by 

George et al., 6 indole and tryptophan derivatives were successfully extracted from 3 g rat 

feces for quantitatively analysis (Anderson, 1975). The concentrations of the metabolites 

measured in the samples included indole 4.5–7.8 μg/g, skatole 0–0.78 μg/g, indole-3-acetic 

acid 0.53–3.5 μg/g, indole-3-propionic acid 0.34–4.5 μg/g, tryptamine 0.17–1.7 μg/g, 

tryptophan 0.92–1.8 μg/g. In addition, indole-3-acetamide. tryptophol, indole-3-lactic acid, 

indole-3-acrylic acid, kynurenine and anthranilic acid fell out of the detection limit for 

quantitative analysis, though still detectable. Later in 1994, with the advancement of 

chromatography, Mogens et al. reported the measurement of indoles and skatole from 10 

g pig feces using gas-chromatography (GC) (Jensen et al., 1995). The lower limit of 
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detection (LLOD) for indole and 3-methylindole was both 20 μg/kg, largely below the 

values typically found in intestinal contents by biochemical measurement (100 mg/kg). On 

the other hand, the fecal levels of skatole and indole were 2.3 μg/g and 10 μg/g via high-

performance liquid chromatography (HPLC) based method, but the recoveries were lower 

than GC method (Claus et al., 1993).   

 

2.1.4 Birth of metabolomics 

In 1999, Jeremy K. Nicholson, John C. Lindon and Elaine Holmes, three 

biochemists from Imperial College of Science, Technology and Medicine, University of 

London, together published the first metabolomics study on the journal Xenobiotica, in 

which “Metabolomics” is defined as “the quantitative measurement of the dynamic multi-

parametric metabolic response of living systems to pathophysiological stimuli or genetic 

modification” (Nicholson, 2006). Ten years later, the complete concepts of the 

metabolomics, as well as metabolome wide association study (MWAS), was formally 

forged by the same group of researchers (Holmes et al., 2008). As an approach of analysis, 

metabolomics usually acquires data via gas or liquid chromatography combined with 

detectors like diode array detector (DAD), fluorescence detectors (FLD), electron capture 

detector (ECD), mass-spectrometer (MS) and nuclear magnetic resonance spectroscopy 

(NMR) etc., and the generated data are processed with thoughtful biostatistics and 

database-leveraging bioinformatics methods to extract useful information regarding 

biological effects and changes (Byrne et al., 2015; Wishart et al., 2007b). A broader 

detective scope could be achieved by combining data collected through different platforms, 

since the “next-generation” MS are constructed using a variety of ionization sources, 
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selectors, detectors and analyzers, such as electrospray ionization (ESI), atmospheric 

pressure chemical ionization (APCI), electron ionization (EI), chemical ionization (CI), 

triple quadruple, time-of-flight detector, orbitrap, fourier-transform ion cyclotron 

resonance and so on (Dettmer et al., 2007). In the last decade, metabolomics has been 

boosted by the introduction of ultra-high performance liquid chromatography (UHPLC), 

which is able to achieve efficient separation of mixed compounds with outstanding peak 

shape and accuracy, and enhance the signal-to-noise ratio (S/N) (Nordstrom et al., 2006). 

Different with genomics, transcriptomics and proteomics, the principal task of metabolic 

profiling and metabolomics is to look at the final phenotype side of a biological process or 

event. The advantage of metabolomics includes its non-invasive sampling method, 

convenient sample preparation, and preclinical diagnosis of drug toxicity and disease/pre-

disease conditions (Kildegaard et al., 2013; Schmidt, 2004). The five most important key 

steps for metabolomics study include: comprehensive understanding on the study design 

and purpose, complete master of the instrumental platform of metabolomics study, case-

to-case optimization of sample pre-treatment, raw data processing, and the strategies used 

for data analysis.  

Currently, both bottom-up untargeted metabolomics and top-down targeted 

metabolomics approaches are widely used. In mass spectrometry (MS)-based bottom-up 

untargeted metabolomics, no standard would be spiked in the beginning except for internal 

standards. Since the MS analysis is untargeted, there would be a large amount of ion peaks 

detected. These peaks would be filtered, deconvoluted and aligned using processing 

modules such as online XCMS or offline MZmine (Huan et al., 2017; Pluskal et al., 2010). 

The attribution of detected feature ions is based on fragmentation spectrum (GC/MS), 
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accurate mass (LC/MS), retention time and reference tandem mass spectrometry (MS/MS) 

data, all of which can be found by open-access data bases such as Human Metabolome 

Database (HMDB), massBank and METLIN, or trustable literatures (Smith et al., 2005; 

Wishart et al., 2007a). Through statistical modeling and analysis, usually 10–15 key 

metabolites would be retained from a data pool of several thousands of feature ions. This 

untargeted metabolomics workflow could help gain insights into the global metabolic 

changes in the biological system and discover the “black matters” that have never been 

characterized (Peisl et al., 2017).  

Regarding top-down metabolomic analysis, triple quadrupole (QqQ, or TsQ) LC-

MS based targeted metabolomic workflow is the mostly employed instrument (Lu et al., 

2008; Yuan et al., 2012). In such practice, standard compounds for the metabolites of 

interest are first used to set up selected reaction monitoring (SRM) library based on 

retention time and ion pair transition. Instrument voltages used for ionization and parent-

product fragmentation are determined and response curves are optimized for absolute 

quantification. Global metabolites are usually extracted from tissues, biofluids or cell 

cultures using either general methods or the strategies that can enhance the detection of 

certain metabolites. Top-down approach is aimed to concisely assess certain metabolic 

pathways (Bajad et al., 2006; Lu et al., 2008; Lu et al., 2010).  
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Figure 2-2. General workflow of metabolomic analysis. 

 

2.1.5 Application of metabolomics to the analysis of gut-microbiota 

Fecal metabolomics is considered to be a non-invasive way and proxy to qualify or 

quantify gut-microbiota dependent metabolites, therefore to assess the metabolic condition 

of gut-microbiota and predict its impacts on host health (Wikoff et al., 2009). For example, 

significant shift of gut-microbiota dependent metabolome has been found in the patients 

with Crohn's Disease (CD) by using metabolomics techniques (Jansson et al., 2009; 

Willing et al., 2010). The potential impacts of this metabolic shift on host include 

disruptions of tyrosine catabolism, bile acid metabolism, fatty acid biosynthesis, 

prostaglandin metabolism, as well as the metabolisms of tyrosine, tryptophan and 

phenylalanine. In addition to these house-keeping metabolisms, many findings have shown 

that gut-microbiota dependent metabolome may significantly influence host 

neurophysiology and behaviors (Anderson and Maes, 2015; Daulatzai, 2015; de Magistris 
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et al., 2016; Hemarajata and Versalovic, 2012; Hsiao et al., 2013). This is not surprising, 

since in human ~90% percent of serotonin is synthesized in gut from diet (Yano et al., 

2015).  In germ-free mice, or the mice depleted of gut-microbiota, researchers have 

observed substantial alterations in the behaviors and the neuropathology that are associated 

with neurodevelopmental, psychiatric and neurodegenerative disorders (Sampson and 

Mazmanian, 2015). It seems the components of gut-microbiota dependent metabolome 

have significant influence on other organs and systems, yet this metabolite pool has not 

been thoroughly investigated so far. The purpose of current review is thus to review the 

primary metabolites shown in the intestine metabolome in order to better interpret the data 

collected from metabolomics. 

 

2.1.6 Gut-microbiota dependent metabolites 

2.1.6.1 Indole and indole derivatives in tryptophan pathway 

Indole is a widely studied aromatic heterocyclic organic compound that is normally 

present in human feces at a concentration ranging from 0.25 to 1.2 mM (Karlin et al., 1985). 

In human gut, a notable quantity of indole and derivatives are produced by gut-microbiota. 

They serve as intercellular, interspecies and interkingdom signaling molecules (Akiyama 

et al.). Indole acetic acid is one of such indole derivatives. It can be produced from aromatic 

and branched-chain amino acids by Enterobacter cloacae (Leyn et al., 2016). Indole acetic 

acid is a major precursor of skatole (3-methyl indole)—a mildly toxic white crystalline 

organic compound belonging to the indole family. Skatole occurs naturally in feces, 

produced from tryptophan in the mammalian digestive tract, and has a strong fecal odor 

(Schmid-Schonbein and Delano, 2009). Tryptophan, a well-known precursor of the 
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neurotransmitter serotonin, can be generated from indole by gut-microbiota (Pandey et al., 

2013). The biosynthesis of tryptamine generally proceeds from tryptophan pathway. 

Tryptamine is the pivot precursor molecule of many hormones and neurotransmitters which 

are tryptamine derivatives. The most well-known tryptamine derivatives are serotonin, an 

important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-

wake cycle (Mozaffari et al., 2010).  

Indole is also known to be able to modulate intestinal epithelial metabolism by 

regulating incretin peptide glucagon-like peptide-1 (GLP-1) (Drucker and Nauck, 2006). 

It can widen the action potential of enteroendocrine L cells and result in the influx of 

extracellular calcium and the exocytosis of GLP-1 loaded vesicles. GLP-1 is known to 

inhibit glucagon release and stimulate insulin release, thus lower blood glucose. Prolonged 

exposure to indole may inhibit ATP production and GLP-1 secretion (Chimerel et al., 

2014).  

 

Figure 2-3. General metabolic links of indole derivatives. The structures are not intended 

to convey any stereochemical information. 
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Lee et al. found that the bacterial biofilm formation of E. coli O157 : H7 can be 

reduced by 83% by indole and 90% by 7-hydroxy indole (Lee et al., 2007). Indole-3-

acetaldehyde can be largely generated by intestinal Rhodococcus sp. BFI 332, and was 

reported to inhibit Escherichia coli O157: H7 biofilm formation (Lee et al., 2012). Some 

indole derivatives like indole-3-acetic acid (IAA), carry with anti-pathogen activity 

(Spaepen et al., 2007). Kazuhiko et al. have proposed that the molecular size of indole 

derivative is a primary factor determining the their inhibitory effect on pathogens—higher 

activity was observed when the substitute moeity is of smaller molecule size (Matsuda et 

al., 1998). 

In clinical medicine, indole and derivatives are frequently co-administered with 

non-steroidal anti-inflammatory drugs (NSAIDs). Indole and derivatives are able to reduce 

the generation of reactive oxidative species (ROS), and therefore enhance the efficiency of 

NSAIDs (Wallace, 2012). Indole-3-propionic acid (IPA) has shown significant mitigating 

and preventive effects on neuro damage by reducing ROS. The cell death and damage of 

primary neurons caused by ROS is one of the most prominent neuro-pathologic features of 

Alzheimer's disease (Guzior et al., 2015). IPA is also an inhibitor of beta-amyloid fibril 

formation and a potent neuro-protectant against oxidotoxins (Chyan et al., 1999). 

Amyloids are abnormal fibrous, extracellular, proteinaceous deposits found in organs and 

tissues. They are insoluble and are structurally dominated by β-sheets with no common 

primary structure. The accumulation of amyloids in neuron system is associated with 

amyloidosis (Glenner, 1980; Haass and Selkoe, 2007). These diseases include Alzheimer's, 

the spongiform encephalopathies and type II diabetes (Rambaran and Serpell, 2008). 

Indole-3-acetamide (I3A) is the intermediate metabolite in the conversion from tryptophan 
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to indole-3-acetic acid. I3A is an antioxidant reagent and also inhibitor of phospholipases 

A2. The latter enzymes function to release fatty acids from the second carbon group of 

glycerol, and mice deficient in sPLA2 isoenzymes have shown less atherosclerosis 

formation (Gao et al., 2013). 

Indole-3-carbinol (I3C) is a hydrolysis product of glucobrassicin, a compound that 

is of large amount in a number of vegetables of the Brassica genus such as cabbage (0.1–

1.9 mmol/kg), cauliflower (0.1–1.6 mmol/kg), and brussels sprouts (0.5–3.2 mmol/kg) 

(Bjeldanes et al., 1991). I3C is known to be a dietary modulator of carcinogenesis, showing 

the potential to be used as chemoprevention agent. Data have also shown that, with 

sufficient administration before carcinogen exposure, both the incidence of neoplasia and 

the formation of covalent adduct of carcinogen with DNA were reduced (Fujioka et al., 

2016). The functionality might be achieved through the binding activity of I3C with aryl 

hydrocarbon receptor (Chen et al., 1996). In fact, as early as last 80s, Wattenberg et al. 

have already shown that I3C can suppress 7,12-dimethylbenz(a)anthracene-induced 

mammary tumor formation in female Sprague-Dawley rats and on benzo(a)pyrene-induced 

neoplasia of the forestomach in female ICR/Ha mice (Wattenberg and Loub, 1978). In 

addition, I3C has also shown regulatory effects on estradiol metabolism and can inhibit 

spontaneous mammary tumors in mice (Bradlow et al., 1991). The National Institutes of 

Health (NIH) has reviewed indole-3-carbinol as a possible cancer preventive agent in last 

90s and had supported its using for breast and colon cancer prevention (Greenwald, 2004; 

Murillo and Mehta, 2001). The mechanism of the above anti-tumor function was further 

uncovered in the last decade by Chen et al. (Chen et al., 1996). Their follow-up study 

reported that indole-3-carbinol and its metabolite 3,3'-diindoylmethane (DIM) target 
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multiple aspects of cancer cell cycle regulation and survival including Akt-NFκB signaling, 

caspase activation, cyclin-dependent kinase activities, estrogen metabolism, estrogen 

receptor signaling, endoplasmic reticulum stress and BRCA gene expression (Weng et al., 

2008). They have also found that indole-3-carbinol may inhibit tumorigenicity of 

hepatocellular carcinoma cells via suppression of microRNA-21, including miR-21 and 

miR-221 and miR-222, and the upregulation of phosphatase and tensin homolog 

(PTEN/AKT pathway) in vivo and in vitro (Deng et al., 2015). In another study in mice 

with high-fat-diet-induced obesity, I3C administration was found to decrease the body 

weight, fat accumulation and infiltrated macrophages in epididymal adipose tissue. The 

reductions were associated with improved glucose tolerance and with modulated 

expression of adipokines, lipogenic-associated gene products such as acetyl coenzyme A 

carboxylase and peroxisome proliferator-activated receptor-γ (Chang et al., 2011). Indole-

3-acetonitrile was also abundant in cruciferous vegetables such as cabbage, cauliflower, 

broccoli, and brussels sprouts, in addition to the metabolic generation in the indole pathway. 

Studies have found that indole-3-acetonitrile can prevent tumor development in various 

animal models primarily by upregulating cytochrome P450 enzymes (Wattenberg and 

Loub, 1978).  

Some biological effects of indole derivatives discovered in animal models or cell 

cultures may not apply to human. It was found in dogs with acute diarrhea that the serum 

concentrations of kynurenic acid, together with urine concentrations of 2-methyl indole 

and 3-formyl-5-methoxy indole, were all significantly decreased (Probert et al., 2004; 

Tuomola et al., 1996). However, no human evidence has been collected. In an early study, 

indole-3-acrylic acid was found to be able to inhibit the growth of mycelia of neurospora 
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crassa and cause accumulation of indoleglycerol phosphate in cultured cells (Matchett, 

1972). But no obvious physiological function of indole-3-acrylic acid has been observed 

in human by now. 

 

2.1.6.2 Tryptophan metabolism  

Kynurenine and derivatives are major metabolites produced in tryptophan 

metabolic pathway and are considered to be beneficial to human health. Kynurenine can 

be generated by gut-microbial tryptophan dioxygenase and indole amine 2,3-dioxygenase 

(Kennedy et al., 2017). In human body, the former is synthesized primarily, but not 

exclusively in the liver, and the latter is synthesized in many tissues in response to various 

immune activation (Jasperson et al., 2009). Kynurenine and its metabolic products have 

diverse biological functions, including dilating blood vessels during inflammation, and 

regulating the immune response (Qin et al., 2010b). Epidemiological data have indicated 

that in lung cancer patients, serum kynurenine level is significantly higher than the healthy 

population (Suzuki et al., 2010). Besides, evidence has suggested that the increase of 

kynurenine may alleviate the depressive symptoms that are caused by interferon therapy 

for hepatitis C (Gambhir et al., 2012).  

Kynurenine plays important roles in a variety of psychological processes (Lovelace 

et al., 2016). Abnormal neuroactive metabolites of kynurenine have been closely linked to 

neurodegenerative diseases. For example, cognitive deficits in schizophrenia are associated 

with the dysfunctions of the enzymes that break down kynurenine (Muller et al., 2011). 

Kynurenine production was found to be increased in Alzheimer's disease and is positively 

associated with the cognitive deficits and depressive symptoms with the disease 
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progression (Baran et al., 1999). Dysfunctional state of kynurenine pathway, which may 

induce abnormal alteration of kynurenine, kynurenic acid, quinolinic acid, anthranilic acid, 

3-hydroxykynurenine levels in gut, has been described for a number of disorders related 

with the above discussion (O Watzlawik et al., 2016). 

 

Figure 2-4. General metabolic links of tryptophan. The structures are not intended to 

convey any stereochemical information. 

 

Quinolinic acid (QUIN or 2,3-Pyridinedicarboxylic acid) is a neuroactive 

metabolite generated in tryptophan pathway. QUIN is an agonist of N-methyl-D-aspartate 

(NMDA) receptors NR2A/B and is also considered to be an excitotoxin. As an endogenous 

neurotoxin with multiple target receptors, QUIN is implicated in the pathogenesis of a 

variety of human neurological diseases. In fact, QUIN is normally presented in nano molar 

concentrations in human brain and cerebrospinal fluid (CSF) (Davies et al., 2010). 

Although QUIN can be specifically degraded by quinolinate phosphoribosyltransferase 

(QPRT), the enzyme is usually of low efficiency and is saturated rapidly (∼300 nM). 

Accordingly, extra QUIN can continue stimulating NMDA receptor. This is different with 
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the uptake systems of glutamate and aspartate, the latter two metabolites are of same active 

level with QUIN yet they have fast uptake system available to remove them from neuro 

synapse (Choi, 1988). In general, QUIN neurotoxicity is considered to lead to presynaptic 

receptors, energetic dysfunction, oxidative stress, transcription factors, cytoskeletal 

disruption, behavior alterations and cell death (Lugo-Huitron et al., 2013). 

Serotonin (5-hydroxytryptamine, 5-HT) and melatonin are two important 

neurotransmitters produced in the kynurenine pathway, and show multiple hormonal 

bioactivity like sleep circle regulation, anti-oxidant and immune-modulation (Chowdhury 

and Maitra, 2012). Akihiko et al. have proven that melatonin is capable of reducing the 

susceptibility of the fetal rat brain to oxidative damage of lipids and DNA in rat model of 

fetal ischemia/reperfusion (Wakatsuki et al., 1999). It has also been found that microbial 

strains containing tryptophan catabolism enzymes can be enriched in the disease-associated 

microbial community (DMC), including Pseudomonas, Xanthomonas, Burkholderia, 

Stenotrophomonas, Shewanella, Bacillus, Rhodobacteraceae, Micrococcaceae and 

Halomonadaceae (Vujkovic-Cvijin et al., 2013). Abnormal 5-HT release after meal is 

associated with some postprandial symptoms that are accompanied with the irritable bowel 

syndrome (IBS) (Bearcroft et al., 1998). Following the deterioration of intestinal ecology, 

the disruption of serotonin and melatonin synthesis may lead to sleepy disorder and 

immune deficiency.  
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2.1.6.3 Glutamate metabolism 

Glutamate is the biological precursor of gamma-amino butyric acid (GABA). 

Glutamate is synthesized from the non-essential amino acid glutamine, and glutamate is 

converted into GABA by the enzyme glutamate decarboxylase. Glutamate decarboxylase 

uses Vitamin B6 as a cofactor (Peng et al., 1994). David R Wise and Craig B Thompson 

have recently brought out a viewpoint that a restriction of dietary glutamine can be an 

effective cancer therapy. The perspective is based on the observations of the addiction that 

cancer cell lines that display to glutamine. Actually, in many cancer cell lines, glutamine 

was found to be the primary mitochondrial substrate maintaining mitochondrial membrane 

potential, integrity and the NADPH production (Wise and Thompson, 2010). 

 

Figure 2-5. Metabolic pathway of glutamate. The structural representations provided are 

not intended to convey any stereochemical information. 

 

GABA can be generated from glutamate pathway. As an inhibitory 

neurotransmitter, GABA functions to calm nervous activity, a reason why the anti-anxiety 

drugs like Valium and Xanax achieve functionality by targeting GABA receptors (Streeter 

et al., 2012). Interestingly, John et al. have found that Lactobacillus rhamnosus, a common 

bacterium in human GI tract, can be passed to the intestine of rodent pups from dams 
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through the birth canal but not cesarean section. This strain is known to secret a high 

intensity of GABA (Bravo et al., 2011).  

2.1.6.4 Phenyl acid and derivatives 

Most phenyl acids and derivatives are harmful metabolites generated from 

phenylalanine. They were found to disrupt renal clearance and brain function (Smith et al., 

1945). Phenylalanine is a large, neutral amino acid which is capable of passing the blood-

brain barrier (BBB) via the large neutral amino acid transporter (LNAAT) (Pietz et al., 

1999). Excessive phenylalanine in the blood may saturate the transporter and decrease the 

levels of other LNAAs, and further disrupts brain development in infants. 

 

Figure 2-6. General metabolic links of phenylalanine and tyrosine. The structural 

representations provided are not intended to convey any stereochemical information. 

 

Phenyl acetic acid and phenyl propionic acid are formed from the metabolism of 

phenylalanine by anaerobic bacteria (Clayton, 2012). The most well-known microbial 

mediated conversion of phenylalanine to phenylacetic acid is from phenylalanine to 

phenylpyruvic acid, and then to phenylacetic acid. On the other side, the conversion of 

tyrosine to p-cresol is first through tyrosine to 4-hydroxy phenyl pyruvic acid, and then to 
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4-hydroxyphenylacetic acid and p-cresol. In human, phenylacetic acid and p-cresol are 

further degraded into phenylacetylglutamine and p-cresol sulfate, respectively. 

Phenylpyruvic acid is a pivot intermediate in several metabolic pathways. Besides, 

pyruvic acid can be produced from glucose through glycolysis, and can also be converted 

back to carbohydrates via gluconeogenesis (Dashty, 2013). Alternatively, pyruvic acid can 

be converted back to fatty acids through a reaction with acetyl-CoA (Williamson, 1967). 

Therefore, the endogenous concentration of phenylpyruvic acid might vary largely, 

depending on the global metabolic balance. Due to the accumulation of phenylacetic acid 

and phenylpyruvic acid, a “musty” odor of skin, hair, sweat, and urine might be generated, 

together with a tendency to hypopigmentation and eczema (Jiang et al., 2008). It was also 

noticed that the neural-developmental disruption of phenylketonuria is primarily caused by 

the block of neurotransmitter synthesis. In detail, the path from phenylalanine to tyrosine 

is blocked because of the deficiency of phenylalanine hydroxylase, thus that the generation 

from tyrosine to melanin and dopamine is obstructed. Early this century, the National 

Institutes of Health Consensus Development Conference announced the need for more 

research on PKU to replace the therapy based on a simple dietary restriction (Panel, 2001). 

Among other suggestions were the practice of standard screening procedures: infants with 

blood phenylalanine levels greater than 10 mg/dL should be started on treatment within 7 

to 10 days after birth. Appropriate treatment should be multidisciplinary with a lifelong 

duration. 
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2.1.6.5 L-Tyrosine to p-Cresol 

p-Cresol is one of the major metabolites generated from tyrosine and to a certain 

extent it can also be produced during the catabolism of phenylalanine. In the latter pathway, 

phenylalanine is converted to 4-hydroxyphenyl acetic acid by intestinal bacteria and then 

decarboxylated to p-cresol (Vanholder et al., 1999). The major contributing bacteria in this 

process are aerobes, mainly Enterobacteria, but anaerobes such as Clostridium perfringens 

may also take a producing role.  

Specifically, p-cresol is a uremic toxin that is at least partially removed by 

peritoneal dialysis in haemodialysis patients and has been involved in the progression of 

renal failure. It was reported that 1 μg/g phenol and 50 μg/g p-cresol were detected from 

0.45 to 0.55 g feces by using HPLC method (King et al., 2009). p-Cresol has been reported 

to carry with several physiological functions: (1) diminishing the oxygen uptake of rat 

cerebral cortex; (2) increasing concentration of warfarin and diazepam of the free active 

form; (3) inducing growth retardation in the weanling pig; (4) altering cell membrane 

permeability of bacteria; (5) inducing lactate dehydrogenase (LDH or LD) leakage from 

rat liver; (6) causing susceptibility to auditive epileptic crisis; (7) blocking cell K+ channels. 

 

Figure 2-7. General metabolic links between L-tyrosine and p-Cresol. Structural 

representations provided are not intended to convey any stereochemical information. 
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The accumulation of 4-hydroxyphenylpyruvic acid is known to induce tyrosinemia 

type III like syndrome, an autosomal recessive disorder featured by elevated levels of blood 

tyrosine and massive excretion of tyrosine derivatives into urine (Tomoeda et al., 2000). 

The 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes 4-hydroxyphenylpyruvic 

acid into homogentisic acid in the tyrosine catabolism pathway. It has been shown that 

hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 

“hawkinsin” may also be resulted by HPD deficiency (Endo et al., 1995). 

 

2.1.6.6 Bile acids and secondary bile acids 

The major members of bile acids and secondary bile acids include cholic acid, 

chenodeoxycholic acid, α-muricholic acid, β-muricholic acid, hyocholic acid, deoxycholic 

acid (DCA), ω-muricholic acid, lithocholic acid, ursodeoxycholic acid and hyodeoxycholic 

acid. They are the steroid acids secreted by liver which are then stored in the bile of most 

vertebrates. Bile acid synthesis is operated by a class of liver cells, in which primary bile 

acids were synthesized via a a multi-step process mediated by cytochrome P450 (Bjorkhem 

et al., 1999). Different molecular forms of bile acids can be synthesized in the liver by 

different species. For human, cholic acid and chenodeoxycholic acid are the primary bile 

acids secreted in such cells (Parks et al., 1999). It was estimated that on average, 

approximate 600 mg of bile salts are synthesized daily to replace bile acids lost in the feces 

(Wilson and Dietschy, 1972). Bile acids and neutral sterols are of interest due to the fact 

that they are of steric similarity to carcinogenic polycyclic aromatic hydrocarbons (Conney, 

1982). Patrice et al. have reported an observation on the shift of gut-microbiota community 

structure caused by high fat diet in mice, consequently leading to the expansion of 
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deoxycholic acid–producing bacteria Clostridium XI. Once over generated, deoxycholic 

acid could induce a phenotypic change in hepatic stellate cells to secrete pro-inflammatory 

cytokines and eventually facilitates hepatocellular carcinoma (Cani et al., 2007).  

 

2.1.6.7 Vitamins and probiotics 

The most featured benefit of gut probiotics—microorganisms that are believed to 

provide health benefits when consumed—is the production and provision of vitamins. 

Vitamins are essential micronutrients functioning as cofactors of the various enzymes. A 

routine exogenous supply of vitamins is necessary, because humans are incapable of 

synthesizing most vitamins. Since vitamins are involved in all the biochemical reactions in 

cells, they are necessary for the generation of many metabolites. For example, vitamin B6 

(pyridoxine, pyridoxal and pyridoxamine) are necessary cofactors in the conversion of 

glutamate to GABA and further from GABA to succinic acid. In human it has been well 

documented that gut-microbiota are able to synthesize most of the water-soluble B vitamins, 

such as biotin (VB 6), cobalamin (VB 12), folates (VB 9), niacin (VB 3), panthotenic acid 

(VB 5), pyridoxine (VB 6), riboflavin (VB 2) and thiamine (VB 1). In contrast to the uptake 

of dietary vitamins that occurs in small intestine, the predominant absorption of microbial 

produced vitamins was in the colon (LeBlanc et al., 2013). This portion of microbial 

produced vitamins is very necessary in maintaining routine need of vitamins, in that 

sometimes the deficiency of dietary vitamins can be resulted by insufficient food intake. 

Oral administration of fermented milk product that contains lactic acid bacteria is an 

effective way to supply B-group vitamins (LeBlanc et al., 2011).  
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Generally speaking, there are two major genera of vitamin-producing intestinal 

microbiota: Bifidobacterium and Lactobacilli (Arena et al., 2014). The genus 

Bifidobacterium, normally called Lactobacillus bifidus, encompasses 39 species. 

Bifidobacterial species can convert a number of dietary compounds to health-promoting 

bioactive molecules, such as conjugated linoleic acid and B vitamins. Lactobacilli species 

are known as vitamin and folate producers. This genus contains over 100 identified species 

of a remarkable phylogenetic, phenotypic and ecological diversity. The genetic 

characterization of Lactobacilli is much clearer than that of Bifidobacteria, but the 

molecular mechanisms driving their interaction with the human gut also remain largely 

unknown. Folate biosynthetic properties of Bifidobacteria have been well characterized. It 

was found that the folate biosynthesis appears to be restricted to certain species/strains. 

Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis are known to be high 

level folate producing strains, whereas and Bifidobacterium breve, Bifidobacterium 

longum subsp. longum and Bifidobacterium adolescentis are known to be low level folate-

producing species.  

Eight B group vitamins are reportedly generated by gut microbiota and the specific 

strains that can produce these vitamins have been well examined (Magnusdottir et al., 

2015). Riboflavin (VB 2), folate (VB 9) and cobalamin (VB 12), increased levels of other 

B-group vitamins like niacin (VB 3) and pyridoxine (VB 6), have been reported for certain 

LABs that appear in yoghurt, cheese and other types of fermentations. Elevated levels of 

thiamine (VB 1) and pyridoxine were found as a result of soy fermentation with 

Streptococcus thermophilus ST5, Lactobacillus helveticus R0052 or B. longum R0175. 

Lactobacillus reuteri CRL1098 was shown to be the first Lactobacillales (lactic acid 
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bacteria, LAB) strain that is able to produce a cobalamin-like compound. However, the 

biological activity of this pseudo vitamin B12 is still not clearly examined. 

Vitamin K is featured by its antioxidant characteristic that scavenges free radicals 

with high efficiency (LeBlanc et al., 2013). In fact, one study has shown that the 

antioxidant activity of vitamin K can protect against fetal brain injury. Bacteria in the gut 

flora can also convert K1 into vitamin K2. Certain gut microbiota can modify the 

isoprenoid side chain of vitamin K2 and produce a range of vitamin K2 forms. In fact, all 

forms of K2, other than MK-4, can only be produced by bacteria (Marques et al., 2010).  

 

2.1.6.8 Bacterial signaling molecules 

Microbial signaling molecules are certain small diffusible molecules secreted by 

microbes, and function as sensor to the local environmental conditions and also regulator 

to synchronize multicellular behaviors (Lee and Lee, 2010). It has been well characterized 

that gram-positive bacteria can regulate gene expression at the population level via a 

molecule signaling system known as quorum sensing. The system is mediated by two-

component systems (BceRS, LiaRS, PsdRS and YxdJK) and extracytoplasmic function σ 

factors (σM, σW and σX). This system has been widely investigated in both the Firmicutes 

(low genome GC percentage) and Actinobacteria (high genome GC percentage) branches 

of gram-positive bacteria. 

Compared with other microbial strains, the signaling molecules identified in 

Bacillus subtilis have been studied more deeply. The identified molecules include: (1) a 

modified 5- to 10-amino-acid peptide called ComX; (2) lantibiotic peptides such as subtilin; 

(3) unmodified pentapeptide Phr peptides, including PhrA, PhrC, PhrE, PhrF, PhrG, PhrH, 
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PhrI, and PhrK. Phr family of extracellular signaling peptides of are extracellular signaling 

peptides that are identified in Gram-positive bacteria; (4) Tprs is a kind of signaling 

molecule which works with internalized Phr-like peptides (Pottathil and Lazazzera, 2003). 

The regulatory mechanisms of the related genes are poorly documented and thus calls for 

more explorations. Environmental input molecules are known to regulate gut microbiota 

through manipulation on such molecules. For example, glucose can inhibit expression of 

the Phr-like peptide gene via catabolic repression, further leading to elevated production 

of bacteriocin.  

Autoinducer-2 (AI-2) is a furanosyl borate diester that functions as important 

signaling molecule in both gram-negative and gram-positive bacteria. The elevation of AI-

2 can be induced by 1-deoxy-3-dehydro-D-ribulose with boric acid and is recognized by 

the two-component sensor kinase LuxPQ in Vibrionaceae.  

 

2.1.6.9 LAB bacterial metabolites  

Phenyl lactic and hydroxyphenyl lactic acids have also been found to be the major 

metabolites involved in the formation of cheese flavour and produced by LAB strains 

through phenylalanine (Phe) and tyrosine (Tyr) degradation, respectively. 3-hydroxylated 

fatty acids are mainly generated from Firmicutes LAB, covering any fatty acid with a 

hydroxy functional group in the β- or 3-position. β-Hydroxy fatty acids accumulate during 

cardiac hypoxia and can also be used as chemical markers of bacterial endotoxins. 

Phenethyl amine can be generated by Firmicutes LAB. Phenylethylamine functions 

as a monoaminergic neuromodulator and a neurotransmitter in the human central nervous 

system (Zhang et al., 2017). It is derived from the amino acid L-phenylalanine through an 
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enzymatic decarboxylation via the enzyme aromatic L-amino acid decarboxylase. 

Phenethylamine is mainly metabolized in the small intestine by monoamine oxidase B 

(MAO-B) and aldehyde dehydrogenase (ALDH), finally converting it to phenylacetic acid. 

Phenethylamine is also found in many other organisms and foods, especially the foods 

processed with various microbial fermentation. In clinics, phenethylamine is sold as a 

dietary supplement for increasing mood, focus, energy and losing weight.  

 

2.1.6.10 Inflammatory factors and lipid oxidation secondary products 

Reactive oxygen species (ROS) are chemically reactive chemicals containing 

oxygen, such as peroxides, superoxide, hydroxyl radical, singlet oxygen and so on. It has 

been recognized that the major sources of ROS include mitochondria, NADPH oxidase and 

5-lipoxygenase. Plus, ROS can also be generated in many subcellular compartments by 

oxidases, peroxidases, mono-/di-oxygenases, P450 superfamily, lysyl oxidase and 

peroxisomal oxidases, which generally include glycolate oxidases, D-amino oxidases, 

ureate oxidases, fatty acid-CoA oxidases and L-α-hydroxyacid oxidases. 

The production and accumulation of ROS in human body can occur in response to 

ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, 

ischemia-reperfusion injury, chronic infections and inflammatory disorders. The 

appearance of ROS within the gastrointestinal (GI) tract is associated with the occurrence 

of various GI diseases, e.g. peptic ulcers, gastrointestinal cancers and inflammatory bowel 

disease, but the roles taken by ROS in the pathogenesis have not been well established 

(Bhattacharyya et al., 2014).  
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Fecal ROS contents can be measured by using HPLC, yet a strict quenching process 

during the sample pretreatment step is needed (Owen et al., 2000). Some studies have 

successfully correlated fecal ROS level with biased dietary habit, disorder of colorectal 

function and intestinal bowel disease (Orozco et al., 2011). In fact, despite the protective 

barrier provided by the mucosa, certain food contained toxins, such as mycotoxins or 

microbial pathogens, can induce oxidative burst and cause inflammation in the epithelium. 

The pathogenesis of various GI diseases, including peptic ulcers, gastrointestinal cancers 

and inflammatory bowel disease, are partly due to this reason (Bhattacharyya et al., 2014).  

A variety of toxic lipid aldehydes are known to be generated in the peroxidation 

process of lipid layer. They mainly belong to the α, β-unsaturated reactive aldehyde class, 

such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), 2-propenal (acrolein) 

and isoprostanes. Compared with the above discussed free radicals, these aldehydes are 

much more stable and can diffuse far away from the site of the origin. Some of these 

aldehydes have been shown oxidative reactivity with various biomolecules, including 

proteins, DNA, amino acids and phospholipids. Modification of amino acids by reactive 

aldehydes primarily occurs on the nucleophilic residues Cys, His and Lys. 4-HNE (4-

hydroxy-2-nonenal) is a widely studied reactive aldehyde which has been proven as a 

cytotoxic and genotoxic lipid oxidation secondary product. It can be formed through either 

microbiota or endogenously upon peroxidation of cellular n-6 fatty acids. 4-HNE showed 

tight connection with microbial derived nitrosamine. It was found this metabolite can form 

mitochondrial protein, DNA or lipid adducts in cancer development, thus can serve as early 

biomarker of CRC (Deng et al., 2015; Keller et al., 2015; Surya et al., 2016). The 

initialization and progress of colon cancer is almost usually associated with chronic 
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intestinal inflammation. Besides the inflammatory ROS and lipid aldehydes discussed 

above, the intestinal pathogen–host interaction can promote gut inflammation and 

stimulate host gut epithelium to secret higher levels of sphingosine-1-phosphate, 

Chemokine (C-C motif) ligand 20 (CCL20), prostaglandin E2 (PGE2) etc. (Deng et al., 

2015). 

 

Figure 2-8. Metabolic pathway of L-carnitine to trimethylamine. Structural representations 

provided are not intended to convey any stereochemical information. 

 

L-carnitine is an abundant in red meat and contains a trimethylamine structure 

similar to choline. L-carnitine is also widely used as functional component in commercial 

weight-loss pills. In human intestine, L-carnitine is metabolized into trimethylamine (TMA) 

by gut-microbiota, probably by Peptostreptococcaceae and Clostridiaceae families. Rat 

studies have indicated that, after uptake of intestinal tract via simple diffusion and carrier-

mediated transport, TMA was rapidly distributed to all parts of the body, with the highest 

concentrations measured in the kidney and liver. In liver, TMA is further metabolized into 

Trimethylamine N-oxide (TMAO) by flavin monooxygenases (FMOs), and then 

distributed in peripheral circulating system. TMAO may increase atherosclerosis by 

suppressing reverse cholesterol transport (RCT) and bile acid synthesis. In addition, 

TMAO contributes to the incidence of cardiovascular disease by acting as ‘on’ switch for 

inflammatory cascade and cause damages to arteries. Consequently, the generated 
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cholesterol accumulates on the artery wall and form plaque. Besides, high levels of serum 

TMAO reduce the body’s ability to get rid of low-density lipoprotein (LDL)—the so called 

“bad” cholesterol that tends to form blockage in vessels. 

 

2.2 Statistical issues in metabolomics 

2.2.1 Review criteria 

“PubMed” and “Google Scholar” were used to search for the literatures with 

interested topics. The keywords input for literatures searching include a primary term 

“metabolomics”, or “metabolic profiling”, combined with the following secondary terms 

“false discovery rate”, “α”, “β”, “statistical power”, “q value”, “re-sampling technique”, 

“statistical models”. 

 

2.2.2 Data pre-processing 

The basis task of data analysis for most metabolomics studies is to examine whether 

a detected ion or compound has statistically significant change among the designed groups. 

In toxicology, the groups are usually differed by their exposure to the interested chemicals 

with different functions and levels, or other interested conditions like genotype, age, life 

style and ethnicity. These factors can essentially be taken as independent variables in the 

statistical analysis. Given the complexity of the content of bio-samples, it is not uncommon 

to see that in each bio-sample being analyzed, hundreds to thousands of features are 

recorded by the instrument. Therefore, multivariate analysis is widely used to handle the 

dataset of metabolomics, which can provide predictive biomarkers and a refined data pool 

for pathway analysis. 
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However, in practice, it is not surprising to see that during instrumental analysis, 

for each running of single measurement, there is minor shift of the recorded values. This 

unavoidable bias is caused by the continually accumulated contamination of the analytical 

parts, the loss of efficiency of chromatographic column, and the background noise of the 

bio-samples. For instance, it is easy to find the retention time or m/z of a detected feature 

show minor shift in different samples or batches of samples. Such instrumental bias is 

statistically fixable by a statistical process termed as ‘alignment’, which can be processed 

with either the online resources like XCMS and MetaboAnalyst, or the software such as 

IPA, genesis QI and a number of R packages. The next step of data-processing are the 

normalization and standardization of raw data, which are necessary for most statistical 

methods to be applied. 

Centering converts all the concentrations to fluctuations around zero instead of 

around the mean of the metabolite concentrations. Hereby, it adjusts for differences in the 

offset between high and low abundant metabolites. It is therefore used to focus on the 

fluctuating part of the data and leaves only the relevant variation (being the variation 

between the samples) for analysis. Centering is applied in combination with all the methods 

described below. LOESS is very convenient for filling the missing data when the data size 

is large, with enough repeats performed. Analysis of the positive and negative correlations 

between metabolites can be performed by preparing a large number (typically 30–50) of 

apparently identical samples of, for instance, cultured cells. Although the measured 

concentrations of cellular metabolites in the individual samples will be identical within 

biological variation, that uniformity is achieved by numerous homeostatic mechanisms that 

will give rise to positive and negative correlations between metabolite concentrations. This 
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type of analysis is often referred to as metabolite–metabolite correlation analysis (MMCA) 

(Fiehn and Weckwerth, 2003; Kose et al., 2001).  

 

2.2.3 Familywise error rate in metabolomics 

The possibility of making one or more false discoveries or type I error when 

performing multiple hypothesis test is termed as familywise error rate (FWER). The 

existence of false discovery in metabolomics is rooted in the test of multiple hypothesis 

which is also seen in genomics, proteomics and proteomics (Tyanova et al., 2016). The 

causes of FWER include, but are not limited to, the improper sample size, excessive false 

discovery rate due to multiple hypothesis testing, inappropriate choice of particular 

numerical methods, and overfitting of the applied models (Broadhurst and Kell, 2006). The 

numerical modeling methods share some common processes: the features are treated 

equally; certain statistics or p-values are computed; and the false discovery rates or other 

controlling statistic are computed. To minimize statistical errors, adequate validation and 

cross-validations could be very helpful. However, for the excessive false discovery rate 

caused by the large abundance of dependent variables, the traditional p value simply does 

not work. If significant features need to be extracted from thousands of dependent variables, 

a p-value with threshold of 0.5 will lead to remarkable false positive results (Storey, 2003). 

The natural cubic spline algorithm-based calculation of q value is usually used in this 

situation to replace p-value, according to the strategy provided by Storey et al. (Storey and 

Tibshirani, 2003). 

Regarding the metabolomic methods used in the current dissertation, the overall 

goal is to compare the differential impacts of oral exposure of xenobiotics, either harmful 
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or beneficial, on gut-microbiota dependent metabolites. The measured values of the 

metabolites are processed with biostatistical and bioinformatics analyses, so as to extract 

stimulated metabolic pathways, indicator metabolites, networks of gene-compounds, and 

comprehensive pictures under a systematic view. The highlights of results cover the 

xenobiotic-induced nutritional provision to host, the fecal indicator metabolites that are 

able to reflect such exposure, and the potentially associated disease situations. 

The major statistical models used in the metabolomics are multivariate analyses, 

such as principal component analysis (PCA) and partial least squares discriminant analysis 

(PLS-DA) etc. There are several statistical parameters that frequently need to be carefully 

considered. (1) Alpha (α) value is the probability of committing a type I error, which is 

similar with the level of significance and is commonly set as 0.05 or 0.01. It represents the 

chance of rejecting a true null hypothesis. p-value is in general the smallest ‘α’ for which 

the test would reject the null hypothesis. (2) Beta (β) is the probability of committing a 

type II error, which represents the probability to fail in rejecting a false null hypothesis.  

The statistical power of any test is (1 − β), indicating the probability to reject the 

false null hypothesis. The statistical factors that affect statistical power are: (1) the 

directional nature of the alternative hypothesis, i.e. one or two tails; (2) the level of 

significance (α); (3) n (sample size). Statistical power can be elevated by: (1) application 

of one-tailed tests; (2) increasing alpha; (3) increasing sample size; (4) improvement of 

technical precision and accuracy. These values are tightly associated with p-value and 

FWER and normally come with the final results for a metabolomics dataset (Trutschel et 

al., 2015).  
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2.2.4 Enriched pathway analysis 

Since the detected and identified metabolites always take certain roles in a number 

of bio-chemical pathways which relate to global functions and responses. A generally 

applied strategy to quantify the level of involvement of a specific pathway, i.e. a set of 

metabolites sharing same physiological signaling event, is the so called “enrichment 

pathway analysis”. It requires a dataset with X metabolites, N samples and Y factors being 

analyzed, such as different exposures, phenotypes and genotypes. The calculation of the 

involvement of a pathway is called enrichment score ES(Pi), which are based on the 

association score of each gene/metabolite with the phenotype of interest, obtained from 

Pearson correlation or p-values of two-sample test (e.g. t-test). 

𝑇ℎ𝑖𝑡(P𝑖 , 𝐽) = ∑
|𝑟𝑗|

𝑁(𝑃𝑖)
, 𝑤ℎ𝑒𝑟𝑒𝑁(𝑃𝑖) = ∑ |𝑟𝑗|

𝑔𝑗∈P𝑖𝑔𝑗∈P𝑖,𝑗≤𝐽

 

𝑇𝑚𝑖𝑠𝑠(P𝑖, 𝐽) = ∑
1

𝐺 − 𝑝𝑖
𝑔𝑗∈P𝑖,𝑗≤𝐽

 

With the above formula (Liu et al., 2012; Subramanian et al., 2005), the ES score 

is defined as ES(Pi) = maxJ B(Pi, J) = maxJ Thit(Pi, J) − Tmiss(Pi, J). Again, if p-value is used, 

obviously there will be a huge FWER generated. The grouping of the metabolites is based 

on the online databases such as KEGG, Metline, HMDB etc., which are conveniently 

provided by the various online or offline tools as mentioned above. Thus, high FWER 

caused by the test of multiple hypothesis influences statistical analysis of a metabolomics 

dataset from so many aspects and q value is very useful in handling metabolomics data. To 

calculate q value, the R package ‘Qvalue’ can be leveraged, which is written by Storey 

(Storey and Tibshirani, 2003) and is available in Github or Bioconductor websites. Based 

on the p values input into the program, a list of q-value will be provided through algorithm 
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based on the combination of false discovery rate and interpolation of natural cubic spline 

(Hedenfalk et al., 2001). 

 

2.2.5 Two-sample t-test in metabolomics 

Two sample t-tests are frequently used in metabolomics to preliminarily screen the 

metabolites that may differentiate the sample with different treatments. By doing this, 

researchers can preliminarily refine the metabolite pool before applying multivariate 

models. The original Student’s t-test assumes normally distributed data with equal group 

variances. Welch’s t-test allows for unequal variances. The Wilcoxon-Mann-Whitney test 

uses a ranked set of values, by which it can handle non-normally distributed data sets 

(Adedara et al., 2014). It is very important to know that even a very small p value does not 

guarantee that the metabolite has sufficient power to separate the two groups in 

classification. Hence the metabolites with small p values must be further evaluated with 

classification models such as PLS-DA, logistic regression, support vector machine (SVM), 

and random forest. Here, when all p values are calculated, q values can be obtained for 

double checking purpose. The selected features can be input into classification models. 

 

2.2.6 Resampling techniques in metabolomics 

In omics studies, resampling is a popularly used technique to evaluate the 

performance of a statistical model. In general, a resampling procedure can be done by: (1) 

estimating the precision of sample statistics, including medians, variances and percentiles 

by using subsets of available data, which is the so called jackknifing, or drawing randomly 

with replacement from a set of data points , the so called bootstrapping; (2) exchanging 
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labels on data points when performing significance tests which is termed as permutation 

tests, also called exact tests, randomization tests, or re-randomization tests; (3) using 

random subsets, i.e. cross-validation (Efron and Gong, 1983).  

Cross-validation is a statistical method for validating a predictive model. It 

especially fits metabolomics study in that one major goal of metabolomics is to obtain 

biomarkers for the prediction of exposure of toxin/toxicants, or other independent variables 

of samples. Usually, subsets of the data are held out for use as validating sets; a model is 

applied to the remained training dataset, which result model parameters that can predict for 

the validation set. Cross-validation can be done by either leaving out a single observation 

at a time, similar with the jackknife, or, splitting the data into K subsets, with each one held 

out in turn as the validation set (Triba et al., 2015). 

 

2.3 Short chain fatty acids and chronic inflammatory diseases 

2.3.1 SCFAs and certain chronic inflammatory diseases 

Chronic inflammatory diseases (CIDs) are featured by local or systematic over-

recruitment of active immune cells and inflammatory factors over a long term. Emerging 

evidences indicate that a number of CIDs may be treated or modulated through nutritional 

approach. As major beneficial nutrients produced by gut-microbiota, short chain fatty acids 

(SCFAs) have shown immune regulatory effects on multiple organs, systems, and disease 

statuses. Growing evidences suggest that the mitigation of some CIDs by modifying 

intestinal and peripheral SCFAs is applicable. Here we systematically reviewed the 

relevant publications in this aspect and organized the major findings reported by these 

studies. Our review suggested that SCFAs have promising modulatory effects on obesity-
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associated inflammation, liver inflammatory diseases, colorectal inflammation, as well as 

the nervous system disease-associated inflammation. The specific mechanisms differ 

largely. We call for more widely and innovative clinical use of SCFAs as the entry point 

to modulate and mitigate these CIDs. 

The complex links between chronic inflammatory diseases (CIDs) and gut-

microbiota have been noticed for more than a decade (Tlaskalova-Hogenova et al., 2004; 

Tlaskalová-Hogenová et al., 2011). In the past years, the advent of meta-genomics has 

enabled a systematic understanding on human gut-microbiota—an organ-like community 

which harbors more than 100 trillion cells from 400 microbial species and contains 150 

times more genes than the human genome (Bourlioux et al., 2003; Qin et al., 2010a). The 

gut-microbiota has shown complex interactions with host, and has been proven to be a 

necessary and complimentary part to multiple metabolic pathways of host organs and 

systems, such as gut, liver, neuro and immune systems (Deng et al., 2015; I Naseer et al., 

2014; Sun et al., 2012; Tlaskalova-Hogenova et al., 2011), Studies have demonstrated that 

the diversity, intensity and metabolites of the gut-microbiota are tightly correlated with 

host healthy conditions, especially the homogeneity and maintenance of immune system 

(Koren et al., 2012; Neu and Rushing, 2011; Solis et al., 2010; Yatsunenko et al., 2012). 

Some basic understandings on this microbiota-driven regulation have been gained by 

analyzing gut-microbial derived metabolites such as trimethyl amine (TMA), 

trimethylamine N-oxide (TMAO), short chain fatty acids (SCFAs), tryptophan, secondary 

bile acids, 4-cresol, melatonin, serotonin and so on (Han et al., 2014; Holmes et al., 2012; 

Reddy et al., 1977; Ridlon et al., 2006). SCFAs have addressed special attention and 
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interests of medical professionals in the worldwide in light of the role of SCFAs in 

regulating host immune system, neuro function, and energy metabolism.  

SCFAs are defined as aliphatic acids constructed by 1–6 carbon atom(s) (Figure 2-

11), typically including formic acid, acetic acid, propionic acid, butyric acid, valeric acid 

and hexanoic acid. Regarding butyric acid, valeric acid and hexanoic acid, their methyl-

branched fatty acids (FBMAs, i.e. iso-butyric acid, iso-valeric acid and iso-caproic acid) 

are sometimes also categorized into SCFAs (Torii et al., 2010). In human gut, SCFAs are 

mainly generated from polysaccharide and oligosaccharide by the fermentation of resistant 

starches and insoluble fibers of intestinal anaerobic microbiota (Brockman, 2005). Besides, 

SCFAs can also be generated from protein, peptide, and glycoprotein precursors (Corte 

Osorio et al., 2011). This process incorporates a variety of alternative and compromising 

pathways, e.g., fructans, starch, cellulose and galactomannans are metabolized into SCFAs 

through gut microbial glycolytic pathway; xylans and pectins can be transferred into 

SCFAs through pentose phosphate pathway; arabinogalactan can be degraded into SCFAs 

through both routes (Macfarlane and Macfarlane, 2003). The correlation between diet and 

gut-microbiota dependent production of SCFAs has been investigated in many studies 

(Corte Osorio et al., 2011). However, the mechanism is complicated by the many receptors 

and signaling pathways involved in the production and function of SCFAs, as well as some 

contradictory findings and observations on the effects of SCFAs on CIDs. In this regard, 

we aimed to systematically review the major findings in these aspects so as to form a 

comprehensive picture that integrates the production, distribution, metabolism, 

physiological significances, and CIDs-modulating effects of SCFAs.  
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Figure 2-9. Chemical entities of short chain fatty acids. 

 

2.3.2 Review criteria 

“PubMed” and “Google Scholar” were used as engines to acquire the literatures 

of interests, either pre-clinical or clinical studies. The keywords used for the topic searching 

include: (1) a primary term “short chain fatty acids”, combined with secondary terms: 

acetic acid, acetic acid, butyric acid, butyric acid, propionic acid, propionic acid, valeric 

acid, valerate, pentanoic acid, caproic acid, hexanoic acid, synthesizing pathway, gut 

microbiota, intestinal microbiota, fermentation, administration, distribution, metabolism, 

excretion, fecal measurement G-protein receptors, GPR43, FFAR2, GPR41, FFAR3, 

OLFR78, OR51E2, GPR109A, HM74a, HCA2, PUMA-G, ABC transporters, SMCT1, 

SLC5A8, BRCP, ABCG2, OAT7, SLC22, epigenetic regulations, HDACs; (2) a 

combination of “short chain fatty acids” and “metabolic diseases”, input with the following 

secondary terms: obesity, insulin resistance, satiety, PPARγ, PPARδ, PPARα, LDL, LDLR, 



91 
 

type 2 diabetes mellitus, intestinal bowl diseases, cell cycle, apoptosis, TGF-β1, NF-κB, 

Treg cell, regulatory T cell, non-alcoholic fatty liver disease, steatohepatitis, 

neurodegenerative diseases, Parkinson’s disease, Alzheimer’s disease, colorectal cancer, 

gut auto-immune lymphatic tissue, GALT, auto-immune system, clinic applications, 

epidemiological study.  

 

2.3.3 SCFAs: production and absorption 

The production of SCFAs is affected by a number of factors, e.g. the community 

structure of gut-microbiota, host lifestyle, dietary habit, as well as host health status. The 

difference of community structure is believed to be the primary cause. It was found in a 

stool sample analysis that African Americans have lower SCFAs levels compared with 

other racial/ethnic groups (Topping and Clifton, 2001). One recent study explained this by 

analyzing the variation of microbiota and SCFAs levels among different racial/ethnic 

groups, and found that the members of the Lachnospiraceae and Ruminococcaceae 

families play the most deciding role in causing this variation (Marchesi et al., 2011)—the 

mean averaged quantity of Ruminococcaceae families was higher in African Americans 

than European Americans, but the Lachnospiraceae family was lower than European 

Americans.  

The most abundant three phyla of gut microbes in human intestine, i.e. 

Bacteroidetes (gram-negative), Firmicutes (gram-positive), and Actinobacteria (gram-

positive), have shown significantly different patterns in producing SCFAs. Bacteroidetes 

phylum mainly produces acetic acid and propionic acid (Macfarlane and Macfarlane, 2003); 

members of Actinobacteria are known as propionic acid-producing bacteria; Firmicutes 
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phylum produces the majority of butyric acid as end product (Akasaka et al., 2003). 

However, at genus level the gut microbes have a diversity of synthetic pathways to produce 

SCFAs. For instance, Ruminococcus flavefaciens and Ruminococcus albus mainly degrade 

cellulose (Flint et al., 2008), whereas Ruminococcus bromii and Ruminococcus callidus 

prefer to degrade complex polysaccharides like starch or xylan (Leitch et al., 2007). 

Cooperative production of SCFAs also exists. For example, Archaea can make use of CO2 

and H2 to produce CH4, then in the next step acetogenic bacteria could convert CO2 into 

acetic acid (den Besten et al., 2013). The synthesizing pathways of SCFAs are further 

complicated by a highly inter-strain co-metabolism (Louis et al., 2014). A general synthetic 

pathway for SCFAs can be described as the following stages: (1) monosaccharides are first 

generated from the aerobic microbial degradation on the resistant starch and insoluble fiber, 

then go through acrylate pathway, succinate pathway and propanediol pathway to generate 

propionic acid; (2) pyruvate, an intermediate produced from hexoses and pentoses in 

acrylate pathway, is utilized as common substrate in generating acetic acid and butyric 

acid—from pyruvate, acetic acid can be generated through either Wood-Ljungdahl 

pathway or directly through acetyl-CoA reduction, and butyric acid is generated through 

butyryl-CoA reduction (Louis et al., 2014); (3) valeric acid is generated by the additive 

reaction of acetic-CoA and butyric-CoA, whereas hexanoic acid is generated by acetic-

CoA and propionyl-CoA, and the two reactions are catalyzed by CoA transferase (Khan, 

2006). These metabolic events are integrated from microbes with different phylogenetic 

identities.  

Up to 90–95% of the SCFAs present in the human colon are acetic acid (C2), 

propionic acid (C3), and butyric acid (C4) (Mortensen and Clausen, 1996). The production 
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rate, ratio and the level of SCFAs depend on the factors like fermentable carbohydrate type, 

microbiome diversity and activity, as well as the gut transit time of food (Brinkworth et al., 

2009; Gao et al., 2013; Murphy et al., 2010; Schwiertz et al., 2010; Wisker et al., 1988). 

Evidences from both in vivo and in vitro studies have demonstrated that a longer transit 

process can increase SCFAs production by altering gut microbiota community (Macfarlane 

et al., 1998; Macfarlane et al., 1992). The total amount of SCFAs is estimated to range 

from 70 to 140 mM in the proximal colon, and around 20 to 70 mM in the distal colon 

(Cook and Sellin, 1998; Roberfroid, 2007; Topping and Clifton, 2001). Despite the 

individual factors, in healthy human gut the proportion of acetic acid : propionic acid : 

butyric acid concentrations in different regions of the large intestine were found to be stable 

as ~60 : 20 : 20 (Cummings et al., 1987).  

In terms of absorption, the three major SCFAs are generally absorbed at comparable 

rates in different regions of the colon (Engelhardt, 1995; Ruppin et al., 1980). SCFAs serve 

as important energy source for mammals, and count approximately 1.2–10% energy intake 

from the typical western diet in human (McNeil, 1984). The absorption of SCFAs in the 

cecum and the colon is highly efficient, and only 5–10% is excreted in the feces (McNeil 

et al., 1978; Roberfroid, 2004; Roediger and Moore, 1981). Although data from open-

access sources have shown that the averaged total SCFAs concentration is around 9 mg/mL 

in human stool (Hester et al., 2015), in human peripheral circulation SCFAs are at low 

level (Bowling et al., 1993). Wolever et al. have shown that in human peripheral blood the 

concentration of SCFAs is around 100–150 μM for acetic acid, 4.5–6.6 μM for propionic 

acid, and 2.2–3.9 µM for butyric acid (Wolever et al., 1997). Cummings et al. have 

measured SCFAs from adults, and results showed highest level of acetic acid as 69.1 



94 
 

mmol/kg in caecum content, propionic acid as 26.7 mmol/kg in ascending part of large 

intestine content, butyric acid as 26.1 mmol/kg in caecum content; total SCFA in blood 

was: portal 375±70 mM, hepatic 148±42 mM and peripheral 79±22 mM (Cummings et al., 

1987).  

The intestinal absorption of SCFAs can be achieved by either diffusion of 

protonated SCFAs or anion exchange (Cook and Sellin, 1998). A human rectal infusion 

study has shown that, SCFAs with shorter chain length and higher concentration can be 

absorbed faster, which suggests passive diffusion as the predominant mechanism of 

absorption (Ruppin et al., 1980). Indeed, at normal physiological conditions, around 60% 

SCFAs uptake is achieved via simple diffusion of protonated SCFAs, whereas the left 

intake is through anion exchange, with enhanced Na+ and K+ absorption and bicarbonate 

excretion (Fleming et al., 1991). Cook et al. proposed that the anion exchange route was 

assumed to become dominant at higher concentrations over 80 mmol/L (Cook and Sellin, 

1998; Harig et al., 1996; Rajendran and Binder, 1994). Such transportation is correlated 

with water and is greater in distal part than in the proximal colon. Finally, the absorption 

of SCFAs demonstrates a synergistic pattern. Human study indicated that butyric acid 

absorption is higher (n = 10, p = 0.12) when it is co-administrated with acetic acid and/or 

propionic acid at physiological ratio (Vogt and Wolever, 2003). 

The colonic uptake of butyric acid in human is achieved through two transporters: 

monocarboxylate transport proteins (MCT1) and sodium-linked moncarboxylate 

transporter (SMCT1, also called SLC5A8) (Blottiere et al., 2003; Halestrap and Meredith, 

2004). MCT1 and SMCT1 locate in the lumen side, whereas MCT4 and MCT5 locate on 

the basolateral membrane of portal vein. SMCT1 transports butyric acid faster than its 
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transportation of propionic acid and acetic acid (den Besten et al., 2013). MCTs and 

SMCT1 are negatively associated with tumorigenesis. For example, tumor-specific 

methylation on promoter SMCT1 was observed in 33 of 40 serrated adenomas (Dong et 

al., 2005). Also, in colonic epithelial tumor cells, a reduction in MCT1 and SMCT1 protein 

expression, and a consequent inhibited butyric acid absorption were observed (Goncalves 

and Martel, 2013). On the other side, the transporters of SCFAs are also indispensable in 

realizing physiological functions, and depletion of these transporters may lead to severe 

diseases or cancer. Gurav et al. have exhibited in an ex vivo study that SMCT1 takes an 

obligatory role in mucosal immune system (Gurav et al., 2015). In a case-control study, 

the methylation of SMCT1 was observed in 38 of 64 primary colon cancers, meanwhile 35 

of these 38 cases showing no methylation in matched healthy tissues (Blottiere et al., 2003). 

In patients of intestinal bowl diseases, i.e. ulcerative colitis and Crohn’s disease, colonic 

MCT1 was found significantly downregulated, yet glucose transporter GLUT1 was 

upregulated, indicating an energy-utilizing mechanism switch from butyric acid to glucose. 

Interestingly, in one study on colorectal cancer, MCT1 (also for isoforms 2 and 3) 

expression was shown a significant upregulation (n = 126) (Thibault et al., 2010). The 

mechanism is discussed as that the unlimited cell division in cancer tissue requires an 

upregulation of glycolysis, so an upregulated MCT expression is compensated to release 

lactate (Hadjiagapiou et al., 2000; Pinheiro et al., 2008). Thus, the expression level of the 

transporter is associated with SCFAs level, cell status and many other factors. 

Another transporter of butyric acid is breast cancer resistance protein 1 (BRCP, also 

referred to as ABCG2)—an ABC (ATP-binding cassette) transporter in the multi-drug 

resistance family. In colonocytes of normal status, butyric acid can be discharged to the 
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apical lumen side by BCRP, and this process can be facilitated with ATP consumption 

(Goncalves and Martel, 2013). Such activity is involved in the function of butyric acid to 

fasten cell proliferation (Goncalves et al., 2011). By contrast, BRCP is downregulated in 

intestinal bowl diseases and in colorectal cancer cell lines, which may be resulted by a 

compensation of the higher level of butyric acid in cancerous colonocytes (Englund et al., 

2007). Finally, a very special transporter called OAT7 was found to locate in the sinusoidal 

membrane of hepatocyte, and this transporter genetically belongs to SLC22 family. This 

transporter can export liver generated sulfate-conjugated estrone into blood plasma, and 

intake butyric acid as exchange (Shin et al., 2007). These evidences have indicated the 

essential role of SCFA transporters in realizing the physiological functions of SCFAs, 

rather than a singular transporting function. 

 

2.3.4 SCFAs: distribution and metabolism 

After absorption, SCFAs are mainly metabolized at three physiological sites, 

depending on the carbon number: (1) ceco-colonic epithelium uses butyric acid as major 

substrate for energy maintenance; (2) liver cells metabolize residual butyric acid, with large 

proportion of propionic acid for gluconeogenesis, and 50% to 70% of acetic acid for TCA 

cycle; (3) muscle and brain generate energy from oxidation of residual acetic acid 

(Roberfroid, 2007). For isolated healthy colonocytes, the oxidation of SCFAs account for 

60–70% of the energy need, and this supply reduces the oxidation of glucose, pyruvate and 

glutamine (Butler et al., 1990; LeBlanc et al., 2017). Indeed, studies have shown that 

compared with glucose, pyruvate and glutamine, butyric acid is the preferred intestinal fuel 

(Roediger, 1980) 
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The distributions and metabolisms of SCFAs differ largely. In liver, acetic acid is 

involved in cholesterol synthesis (Siperstein and Guest, 1960). Around half of total acetic 

acid absorbed in intestine will be rapidly taken up by the liver and then promptly delivered 

to peripheral tissues where acetic acid can be utilized as substrate of ATP synthesis (Hijova 

and Chmelarova, 2007), e.g. muscle skeletal cells can generate energy from the oxidation 

of acetic acid via acetyl-CoA (Al-Lahham et al., 2012). On the other hand, propionic acid, 

butyric acid and valeric acid are metabolized in both intestinal epithelium and liver, and 

are both glucogenic and ketogenic in liver (Hijova and Chmelarova, 2007). Propionic acid 

and butyric acid share many modulatory activities in the epithelia such as cell-cycle 

regulation (Hijova and Chmelarova, 2007; Topping and Clifton, 2001). However, butyric 

acid is still the preferred energy resource for colonic epithelia (Blottiere et al., 2003). This 

fact has been well exhibited in many studies. Leschelle et al. have therefore concluded that 

the metabolism downstream of acetyl-CoA, i.e. oxidation step in tricarboxylic acid (TCA) 

cycle and lipid synthesis, may act as the regulator of butyric acid intracellular concentration, 

and β-oxidative pathway is believed as major pathway for colon utilization of butyric acid 

(Brockman, 2005; Clausen and Mortensen, 1995). An earlier rat study showed that in rat 

colon, butyric acid oxidation is faster than acetic acid and much faster than propionic acid 

(Fleming et al., 1991), and in isolated human colonic cells, it was shown that butyric acid 

is metabolized more efficiently than acetic acid and propionic acid (Wong et al., 2006). 

These findings, together support a unique role of butyric acid as energy source for colonic 

mucosa, whereas acetic acid is mainly functioning in peripheral tissue. 
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2.3.4.1 Acetic acid in peripheral tissues 

As discussed above, a significant amount of acetic acid enters systemic circulation 

and reaches peripheral tissue, whereas propionic acid, after passing the portal circle, is 

primarily utilized in gluconeogenesis in the liver, and butyric acid majorly functions in gut 

epithelium (Anderson and Maes, 2015; Cummings et al., 1987; Puddu et al., 2014). 

Compared with butyric acid and propionic acid, acetic acid has the lowest affinity with G-

protein receptors and also demonstrates weakest HDACi activity. However, it shows some 

special functions that are different with other SCFAs. Gary et al. performed in vivo 11C-

acetic acid administration and PET-CT (positron emission tomography–computed 

tomography) scanning in mouse model and showed that the 11C-acetic acid administrated 

by intravenous injection or colonic infusion can come cross the blood–brain barrier (Frost 

et al., 2014). It was demonstrated by 13C high-resolution magic-angle-spinning that 13C 

acetic acid from fermentation of 13C-labelled carbohydrate in the colon can increase 

hypothalamic 13C acetic acid. They further observed the increase of melanocortin precursor 

pro-opiomelanocortin (POMC), the suppressions of Neuropeptide Y (NPY) and agouti-

related peptide (AgRP), and eventually a subsequent reduction in food intake. Similar with 

the above mechanism, it was found that acetic acid and propionic acid can significantly 

stimulate muscle and liver FA oxidation via increased activation of AMPK to pAMPK in 

cytoplasm and a PPARδ-dependent mechanism in nuclear (den Besten et al., 2015; Gao et 

al., 2009). It was also shown in rats with obese phenotype that after 6 months of acetic acid 

injections (5.2 mg/kg of body weight) in skeletal muscle, glucose uptake was indirectly 

increased through an AMPK-dependent manner via GLUT4 receptor, and muscular insulin 



99 
 

sensitivity is also increased through systemic levels of gut-originated PYY and GLP-1 

(Chambers et al., 2015a).  

Acetic acid has demonstrated apoptosis-inducing capacity on colorectal carcinoma 

cells HCT-15 and RKO at physiological relevant level (as low as 70 mM), which is 

involved with cathepsin D (CatD) releasing through lysosomal membrane permeabilization 

(LMP) (Marques et al., 2013). The result is consistent with another study which analyzed 

the synergistic anti-tumor effect of SCFAs, revealing that lysosomal protease CatD, which 

is released from damaged mitochondria and independent of autophagy, suppressed butyric 

acid-mediated apoptosis. Thus, a co-administrated CatD inhibitor may largely elevate the 

anti-tumor activity of SCFAs (Oliveira et al., 2015). Clinically, patients suffering from 

traumatic brain injury (TBI) show decreased N-acetylaspartate (NAA) and ATP in brain, 

which obstruct recovery of the injured area. Providing acetic acid would help compensate 

the lack of NAA and ATP levels, and also the nuclear histone acetylation reactions would 

help suppress inflammatory genes during cellular repair and recovery (Arun et al., 2010). 

 

2.3.4.2 Butyric acid in colon and breast gland 

Compared with other SCFAs, butyric acid has shown the strongest anti-colon 

cancer effect, besides its energetic and epigenetic functions in maintaining healthy 

colonocytes (Cunha et al., 2012; Donohoe et al., 2014; Fung et al., 2011). In a wide variety 

of neoplastic cells, butyric acid has been found to induce growth arrest, apoptosis and 

differentiation of cultured cells at mM concentrations, by altering the expression of a 

variety of genes through histone hyperacetylation, DNA hypomethylation and 

hypermethylation (Bordonaro and Lazarova, 2015; Lazarova and Bordonaro, 2016; Ortega 
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et al., 2016). Normally, cancer cell growth can be ceased through cell cycle arrest or histone 

deacetylase inhibition, and mitochondria mediated apoptosis is initiated by cell surface 

apoptotic receptor (Le Leu et al., 2007; Soscia et al., 2010). The proliferation of MCF-7 

human breast cancer cells plated at 5 x 104 cells/mL was reduced 46 % by butyric acid (1 

mM) combined with vitamin A (10 µM) after 120 h treatment, significantly higher than 

34 % and 10 % by butyric acid and vitamin A when used independently. This inhibition 

was achieved through the H3K9 targeted HDAC inhibitory effect of butyric acid that 

reactivates the promoter of RARβ, a cancer suppressive gene although the mutated CRBP-

1 remained down-regulated in this cancer cell line so the ability of retinol storing is still 

aberrant (Andrade et al., 2012). VEGF receptor neuropilin-1 (NRP-1) is expressed in a 

singly dispersed subpopulation of cells in the normal colonic epithelium, but that 

expression becomes dysregulated during colorectal carcinogenesis, highly indicating a 

poor prognosis of cancer development. The spatial distribution and morphology of NRP-1 

expressing cells are altered in response to disease state including cancer and irritable bowel 

syndrome. The increase of NRP-1 is reversed by butyric acid in colon cancer cell lines in 

vitro and in vivo (Chang et al., 2011). It was shown that butyric acid can suppress RKO 

colon cancer cell proliferation, migration by upregulating endocan through ERK2/MAPK 

signaling way (Zuo et al., 2013). Similarly, an in vitro study using human colon cancer cell 

line Caco-2 has shown that the butyric acid-induced cell differentiation was via p38-MAPK 

pathway, which leads to the upregulation of the vitamin D receptor (VDR) (Bermudez et 

al., 2011).  

Butyric acid has a contradictory role in regulating colon metabolism is termed as 

“Butyric acid Paradox”. It has been shown that butyric acid stimulates the physiological 
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pattern of proliferation in the basal crypt in the colon, whereas it reduces the number and 

the size of aberrant crypt focus, the earliest detectable neoplastic lesions in the colon. This 

‘Butyric acid Paradox’ was recently associated with “Warburg Effect”, basically describing 

a shift from mitochondrial oxidative respiration to aerobic glycolysis in cancer cell 

development. A study conducted in HCT116 cancer cells has demonstrated that the 

“Warburg effect” may combine with histone acetylation to induce the “Butyric acid 

Paradox” (Donohoe et al., 2012). The hypothesis was shown in cancer cells, that the Ca2+ 

hemostasis in cytoplasma is deviated by “Warburg Effect”. Zhang et al. showed that 

sodium butyric acid increases endoplasmic reticulum stress by altering intracellular 

calcium levels, a well-known autophagy trigger, and then lead to apoptotic response in 

human colorectal cancer cells lines HCT-116 and HT-29 with sodium butyric acid at 

concentrations ranging from 0.5 to 5 mM (Zhang et al., 2016). Moreover, because of 

“Warburg Effect”, in tumor cells the metabolism of butyric acid is slow, thus the 

accumulated butyric acid exerts a higher activity on apoptosis and cell proliferation 

(Donohoe et al., 2014). The contradictory effects of butyric acid on colorectal 

inflammation and cancer progress can be seen in many studies of irritable bowel syndrome 

(Finnie et al., 1993; Jørgensen and Mortensen, 2001). Such inconsistent bioactivities 

indicate that the function of butyric acid largely depend on the severity and specific 

progression of intestinal inflammation and cancer.  

2.3.4.3 Propionic acid in liver 

The distribution, metabolism and functioning of propinoic acid are mainly in liver. 

Bindels et al. reported that in mice model of aggressive malignancy that is induced by Bcr-

Abl-transfected Ba/F3 cells transplantation, administration of inulin-type fructans (ITF) 
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via drinking water could modulate compositions of gut-microbiota, enrich Bifidobacteria 

and Lactobacilli species and elevate portal propionic acid level, which further reduced 

hepatic BaF3 cell infiltration and inflammation via a cAMP level-dependent pathway 

(Bindels et al., 2012). They have also demonstrated that oral administration of inulin-type 

fructans can generate more propionic acid by elevating gut-microbiota dependent 

fermentation of starch, which further counteract the malignant cell proliferation in liver 

(Bindels et al., 2012). Another unique benefit of propionic acid is its capacity of stimulating 

insulin secretion. Evidences have shown that it can modulate Akt2 knockout-induced 

cardiomyocyte contractile dysfunction (Al-Lahham et al., 2012).  

 

2.3.4.4 Other SCFAs 

Currently there is little knowledge about iso-butyric acid, valeric acid, iso-valeric 

acid, caproic acid and iso-caproic acid. Solid evidences have suggested that the 

synthesizing pathway of valeric acid, caproic acid and branched SCFAs are largely distinct 

with major SCFAs. In general, straight SCFAs are considered as products of microbial 

fermentation on hydrocarbons, whereas branched SCFAs like iso-butyric and iso-valeric 

acids are fermented from protein sources. It was demonstrated in canine that a high protein 

diet, compared with baseline diet, can lead to 24-fold increase of valeric acid production, 

79.5% increase of iso-butyric acid and 42.4% increase of iso-valeric acid. Of note, 

production of propionic acid was reduced by 43.3%; the production of acetic acid was 

reduced by 25.0%; and the production of butyric acid was reduced by 10.2% (Huurinainen, 

2009). The increase of branched chain fatty acids was not as significant as valeric acids 

and may not be affected by dietary adaptation to a high protein composition. The positive 



103 
 

correlation between the productions of iso-butyric and iso-valeric acids, plus the evidence 

that their production is almost independent of species, age, diet and living conditions, has 

suggested that the source of their production is intestinal sloughed cells (Cardona et al., 

2005). Valeric and hexanoic acid (caproic acid) have shown similar yet weaker HDACi 

activity compared with butyric acid, and can decrease pro-inflammatory cytokine 

expression within dendritic cells meanwhile promote Treg induction (Arpaia et al., 2013). 

Han et al. have shown that propionic acid and valeric acid are able to elevate insulin-

stimulated glucose uptake in 3T3-L1 adipocyte via GPCR41 (Chimerel et al., 2014). 

Hexanoic acid is also positively associated with Salmonella infection in gut (Van 

Immerseel et al., 2004).  

 

2.3.5 Mechanism of function: G-protein receptors and downstream events 

Epidemiological studies have confirmed the association between higher fiber intake, 

increased intestinal SCFAs and reduced risk of a range of CIDs, such as irritable bowel 

syndrome, inflammatory bowel disease, cardiovascular inflammation, diabetes, and colon 

cancer (Galisteo et al., 2008). There are sufficient evidences showing that the 

administration of SCFAs has a positive effect on the treatment of ulcerative colitis, Crohn's 

disease, antibiotic-associated diarrhea, blood glucose homeostasis, insulin sensitivity, 

adipogenesis, lipid levels, the immune functions of colonic environment, intestinal 

mucosal growth and integrity, blood flow and obesity (Binder, 2010; Chambers et al., 

2015b; Di Sabatino et al., 2005; Neut et al., 1995; Roy et al., 2006; Vinolo et al., 2011; 

Wong et al., 2006).  
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SCFAs enable their functional regulation on target cells in two ways, either by the 

histone deacetylase (HDAC) activity after entering cell nuclear, or by directly coupling 

with membrane G-protein receptors to modulate downstream pathways (Canfora et al., 

2015).. In the latter aspect, they act as signal transduction molecules via G-protein coupled 

receptors like GPR43 (free fatty acid receptor 2, FFAR2), GPR41 (free fatty acid receptor 

3, FFAR3), OLFR78 (human ortholog as OR51E2), GPR109A (also named HM74a, 

HCA2 or PUMA-G). GPR41 has 52% similarity and 43% identity with GPR43, and the 

SCFAs response profiles between human and rat GPR41 receptor are similar, indicating 

that the receptor is evolutionarily conserved (Brown et al., 2003a).  

The affinities of SCFAs to GPR41 and GPR43 differ with the carbon length of the 

ligands. In CHO-GPR41 or CHO-GPR43 cells, GTPsγ[35S] binding assay showed that 

propionic acid EC50 to GPR41 and GPR43 are ~274 µM and ~259 µM, respectively; acetic 

acid EC50 to GPR41 was ~1300 µM and to GPR43 was ~537 µM. Pluznick et al. measured 

in HEK293T using luciferase assay, that OLFR78 responds solely to acetic acid and 

propionic acid and the EC50 for OLFR78 was 920 µM for propionic acid, 2.35 mM for 

acetic acid (Pluznick, 2014; Pluznick, 2013). GPR109A responds only to butyric acid with 

an EC50 as 1.6 mM (Ahmed et al., 2009).  

In addition to affinity, the three major SCFAs also demonstrated different potents 

in activating GPRs. Propionic acid has highest potent in activating GPRs, and acetic acid 

has lowest potent. Propionic acid is the most potent substrate to GPR41 and GPR43, 

whereas butyric acid is preferred by GPR41, and acetic acid has higher affinity with GPR43. 

Brown et al. conducted membrane GTPsγ[35S] binding assay in HEK293T cell and 

showed that formic acid EC50 to GPR43 and GPR41, were ~5640 ± 1480 μM and ~7760 
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± 3870 μM; acetic acid EC50 to GPR43 and GPR41 were 431 ± 85 μM and 1020 ± 200 

μM; propionic acid EC50 to GPR43 and GPR41 were ~290 ± 42 μM and ~127 ± 14 μM; 

butyric acid EC50 to GPR43 and GPR41 were ~371 ± 81 μM and ~158 ± 35 μM; valerate 

EC50 to GPR43 and GPR41 were  ~876 ± 206 μM and ~142 ± 87 μM; hexanoate EC50 to 

GPR43 was ~1300 μM but no result for GPR41. The EC50 of propionic acid, butyric acid 

and valerate to rGPR41 are close, between ~31 and ~41 μM (Brown et al., 2003a).  

GPR41 and GPR43 were G protein-coupled receptors of same homologous family 

(Brown et al., 2003a; Le Poul et al., 2003; Nilsson et al., 2003). They are tandemly encoded 

at a single chromosomal locus in both humans and mice. GPR41 couples to Gi, and GPR43 

was found to couple to both Gi and Gq. Downstream of Gi and Gq proteins include several 

important cellular pathways containing adenylate cyclase, small G proteins, mitogen-

activated protein kinases (MAPK), phospholipase C(PLC) and A2(PLA2), inositol 1,4,5-

trisphosphate formation after phospholipase stimulation, inhibition of cAMP accumulation, 

ion channels and many transcription factors (Hirata et al., 1980; Hong et al., 2005; Redfern 

et al., 2000; Robishaw et al., 1986; Taylor et al., 1991). The protein-based physiological 

detection of these receptors is limited by the lack of reliable monoclonal antibody, therefore 

most findings are approached by nucleotide-based methods. GPR41 is mainly distributed 

in colon, with a cellular population density of 0.01 ± 0.01 cells/crypt. Although the 

population density of GPR41 is smaller than that of GPR43 (0.33 +/− 0.01 cells/crypt) in 

the human colon, the response of GPR41 to SCFAs, of which propionic acid > butyric acid > 

acetic acid, is matching with the potency order of SCFA-induced phasic contraction of 

colonic smooth muscle, while GPR43 responsive potency order is propionic acid, butyric 

acid, acetic acid. Therefore, GPR41 may function as primary sensor for luminal SCFAs in 
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human gut, while GPR43 plays unique roles in other organs (Tazoe et al., 2009). Indeed, 

GPR43 mRNA has been found in cardiovascular epithelium, intestinal epithelium, and 

immune cells like lymphocytes, neutrophils, monocytes, the peripheral blood mononuclear 

cells (PBMCs), brain, liver, muscle, bone marrow, immune system, lung, pancreas, gut 

epithelium, mature white adipose tissue, but not in the brown adipose tissue or pre-

adipocytes (Karaki et al., 2006; Kimura et al., 2011; Tazoe et al., 2009; Xiong et al., 2004). 

GPR41, GPR43 and OLFR78 proteins were found being expressed in the kidney and the 

vasculature, yet not like OLFR78, both GPR41 and GPR43 show other physiological 

expressions and corresponding functions (Pluznick, 2014): (1) GPR41 protein is found in 

human blood vessel, colon mucosa enterocytes and enteroendocrine cells, as well as in 

mouse autonomic and somatic sensory ganglia (Brown et al., 2003a; Pluznick, 2013); (2) 

GPR41 protein has also been detected in mice kidney blood vessels, and in several types 

of mice neuron and ganglia as well, such as autonomic and somatic sensory ganglia (Nohr 

et al., 2015; Pluznick, 2014); (3) GPR43 protein has been detected in human and mouse 

colon epithelial cells (Karaki et al., 2006; Tang et al., 2011), whereas Gpr43 mRNA was 

detected in human blood vessel endothelium, colon enterocytes, rat peptide YY (PYY) 

expressing enteroendocrine cells, and rat 5-HT expressing mast cells in the lamina propria 

(but not in muscle or submucosa) (Karaki et al., 2006; Karaki et al., 2008).  

A variety of physiological functions are associated with the above receptors. 

Evidences collected from in vitro, in vivo and epidemiological studies have clearly 

demonstrated that vasculature localized GPR41 has an inhibitory effect on blood pressure 

(Pluznick, 2013). For gut-localized GPR41, transgenetic mice revealed that GPR41 is 

associated with reduced expression of peptide YY (PYY), an enteroendocrine cell-derived 
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hormone that regulates gut motility and reduced harvest of energy from the diet (Samuel 

et al., 2008). Cell line studies have illustrated that GPR41 may inhibit cell proliferation and 

induces apoptosis via the activation of p53 and MAPK (Yonezawa et al., 2009). On the 

other hand, the primary beneficial function of GPR43 is highly related with cancer 

occurrence and immunity modulation (Pluznick, 2013). Cytokine-stimulation can induce 

GPR43 expression in bone marrow cells (Senga et al., 2003). It has been shown in both 

cultured intestinal epithelial cells and in mice, that SCFAs activate cytokines and 

chemokines in a GPR43 dependent way. The immune response was absent in Gpr43 −/− 

mice, which exhibited extensive dysregulation of inflammatory responses in models of 

colitis, arthritis and asthma (Kim et al., 2013).  

The maintenance or promotion of gut epithelium by SCFAs can be enabled by their 

binding with GPR43 and GPR109A to stimulate K+ efflux and hyperpolarization (Macia 

et al., 2015). GPR43 was also shown an important role in adipose insulin regulation, and 

the signaling is achieved by increasing phospholipase C (PLC), protein kinase C, 

phosphatase and tensin homolog (PTEN), thus inhibiting phosphatidylinositol (3,4,5)-

trisphosphate (PIP3) synthesis and reducing bioactivity of insulin (Kimura et al., 2013). A 

phenylacetamide derivative, CMTB, as specific GPR43 agonist has showed equal activity 

on Gi and Gq pathway, and cell-proliferation inhibiting activity on two human cancer cell 

lines, U937 cells and K562 cells (Qin et al., 2010b). These data have indicated a very 

complex and broad downstream of SCFA G-receptors. The corresponding pathways are in 

reality overlapped with epigenetic regulation and also energy homeostasis that centers in 

TCA circle.  
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The other two receptors for SCFAs, i.e. GPR109A and Olfr78, are less known. 

GPR109A has multiple ligand affinities and also demonstrate multiple functions, 

depending on the specific organ where it is expressed. It was measured by [35S]GTPsγS 

binding assay using GPR109A expressing CHO-K1 cells that GPR109A responded to 

butyric acid and β-hydroxybutyric acid, an endogenous ketone derivative of butyric acid 

generated in starvation, with EC50 1.6 mmol/L for butyric acid and 0.7 mmol/L for β-

hydroxybutyric acid (Elangovan et al., 2014; Taggart et al., 2005). Besides butyric acid 

and β-hydroxybutyric acid, GPR109A can also be stimulated by niacin and phenolic acids 

and then inhibit the oncogenes in multiple organs including gut, breast gland and lung. 

However, the normal physiologic level of butyric acid in circulation, approximately 10 

μmol/L, is insufficient to activate GPR109A in most tissues, except for colon and 

mammalian gland, because colon microbial derived butyric acid can reach a concentration 

of ~10 mM and in mammalian gland butyric acid is also of high concentration (Ochoa-

Zarzosa et al., 2009). It has been recognized for a long time, that butyric acid can decrease 

the development of carcinogen-induced mammary tumor, suppressing the expression of 

estrogen receptor ERa and progesterone receptor, thereby inducing growth arrest in breast 

cancer cell lines (Defazio et al., 1992; Graham and Buick, 1988; Horwitz et al., 1982). The 

deletion of the GPR109A receptor in GPR109A−/− mice will lead to higher incidence of 

lung metastasis, and the similar immune dysfunctional symptoms was shown in GPR43 

−/− mice (Elangovan et al., 2014). GPR109A also demonstrated immune modulatory 

function. In retinal pigment epithelial cells, the activation of GPR109A leads to inhibition 

of TNF-α induced IL-6 and Ccl2 production (Gambhir et al., 2012). Reduction of adipose 

lipolysis is another well-known function of GPR109A, triggered by binding of nicotinic 
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acid (Ahmed et al., 2009). GPR109A activation in adipose tissue decreases adenylyl 

cyclase efficiency and thus lead to lower cellular levels of cyclic AMP (cAMP) (Brown et 

al., 2003b; Soga et al., 2003; Tunaru et al., 2003). Finally, it has been shown that nicotinic 

acid can inhibit progression of atherosclerosis in mouse model through its receptor 

GPR109A in immune cells (Lukasova et al., 2011). Also, it has been observed that 

GPR109A expression demonstrated positive correlation with squamous cell carcinoma 

both in vivo and in vitro, though the increased GPR109A expressions are nonfunctional for 

unknown reason (Bermudez et al., 2011). The high similarity of response to SCFAs 

indicates that GPR109A is evolutionarily conservative like GPR41 (Pluznick, 2013).  

Mice Olfr78 (human ortholog as OR51E2) is one of the sensory receptors that play 

important yet undefined roles in a variety of tissues and physiological processes. OLFR78 

can be activated by acetic acid and propionic acid, and the EC50 values are 2.35 mM and 

920 μM, respectively (Kasubuchi et al., 2015). For human OR51E2, the EC50 is 2.93 mM 

for acetic acid and 2.16 mM for propionic acid (Pluznick, 2013). The binding of acetic acid 

and propionic acid to OLFR78 induces the release of renin, an enzyme that is involved in 

the regulation of blood pressure (Pluznick, 2014; Pluznick, 2013). Gpr43 and Olfr78 are 

both expressed in the kidney and cardiovascular system (Pluznick, 2014). Renal Olfr78 is 

expressed in renal juxtaglomerular apparatus vessel and is involved in renin secretion 

(Pluznick, 2013).  

Finally, the modulatory function of SCFAs on disease and ailments can be achieved 

by multiple receptors discussed above. For example, SCFAs can reduce blood pressure 

through at least two separated ways (Pluznick, 2014). SCFAs can bind with renal Olfr78 

in the afferent arteriole and modulate renin release, which can lead to change of blood 



110 
 

pressure after several hours or days. The regulation could also be achieved by stimulate 

peripheral OLFR78 and GPR41 receptors, and such change could happen in several 

seconds, through an acute adaptation in vascular tone. On the other side, independent 

regulations initiated by different receptors can be integrated in one physiological process. 

For example, specific in white adipose tissue, SCFAs were shown to upregulate leptin 

secretion through GPR41 (Xiong et al., 2004). Meanwhile, in adipose tissue the activation 

of GPR43 and GPR109A can suppress lipolysis, and the latter also decreases adenylyl 

cyclase efficiency and lower cellular levels of cyclic AMP (cAMP) (Zaibi et al., 2010). 

 

2.3.6 Mechanism of function: epigenetic regulations 

Besides coupling with G-protein receptors, SCFAs can also achieve complex 

regulations by their inhibitory activities on histone deacetylase (HDACs) in cytoplasm. 

Histones are a group of proteins in eukaryotic nuclei that construct chromatin, which allows 

for additional gene regulatory controls and modification of DNA packing. The basic unit 

of chromatin consists of a tetra-histone formed octamer. The eight core histones (duplicated 

H2A, H2B, H3, and H4) are wrapped around 145–146 bp of DNA. The core histones are 

rich in lysine or arginine residues, which are subject to posttranslational modifications such 

as methylation and acetylation (Berger, 2002; Strahl and Allis, 2000). For example, H3 

hyperacetylation (H3ac) or trimethylation at lysine 4 (H3K4me3) is often associated with 

genes of high activity (Santos-Rosa et al., 2002), whereas trimethylation of the same 

protein at lysine 9 or 27 (H3K9me3 or H3K27me3) is generally found in chromatin 

containing silent genes (Litt et al., 2001). Chromatin realizes a dynamic equilibrium 

between the two states (Baldwin et al., 2013). The above epigenetic regulation of 
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chromatin structure is realized by the interplay between histone acetyltransferases (HATs) 

and histone deacetylases (HDACs), which targets on histone proteins at Lys (K) residues. 

Typically, acetylation results in a more relaxed chromatin conformation which promotes 

most transcription factors (TFs) interaction with specific gene promoters, thus upregulating 

certain gene expression (Chuang et al., 2009). Deficiencies in histone acetylation and 

transcriptional dysfunctions have been well noted in cancer pathology and 

neurodegenerative diseases (Hinnebusch et al., 2002; Mariadason et al., 2000; Waldecker 

et al., 2008), such as Huntington’s, Parkinson’s and Alzheimer’s diseases, amyotrophic 

lateral sclerosis, spinal muscular atrophy and stroke (Bates et al., 2006; Pallos et al., 2008; 

Steffan et al., 2001).  

SCFAs are able to inhibit the activities of Class I/II HDACs, and downregulate the 

expression of sirtunin-1 (SIRT1, a Class III HDAC) (Nakahata et al., 2008). In addition, 

SCFAs can promote H3K27Me3 and H3K9Me3, the repressive histone trimethylation on 

histone 3, by affecting the enhancer of zeste homolog2 (EZH2) and the suppressor of 

variegation 3-9 homolog1 (SUV39H1) (Schotta et al., 2003; Sun et al., 1998). A large 

abundance of studies have demonstrated that the immune ameliorating and cancer 

prevention capacity of SCFAs are mainly enabled by their inhibitory effect on HDAC 

(Candido et al., 1978; Sealy and Chalkley, 1978). One test performed in calf thymus 

showed that butyric acid has the highest inhibitory potent on the enzyme activity of HDAC 

1/2 (80% of maximum level), whereas acetic acid showed the lowest inhibitory activity 

(10% of maximum level). The inhibitory efficiencies of other three SCFAs, propionic acid, 

valeroic acid and hexanoic acid are 60%, 65% and 30%, respectively (Cousens et al., 1979).  
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However, there is still argument on whether acetic acid is an actual histone 

deacetylase inhibitor (HDACi). Some studies reported negative observation on the HDACi 

activity of acetic acid (Hinnebusch et al., 2002; Kiefer et al., 2006; Waldecker et al., 2008), 

yet in many other studies, either in peripheral circulation or brain, the results are positive 

(Bhattacharyya et al., 2014; Soliman and Rosenberger, 2011). Markus et al. have 

conducted a luciferase-assay in HeLa Mad 38 cells, showing that acetic acid acid has 

merely no HDACi activity from 0 to 20 mM, and butyric acid showed the highest such 

potent at extremely low concentration that is close to physiological environment (1-2 mM). 

(Waldecker et al., 2008). In one study aimed to explore novel HDACi activity of acetic 

acid, researchers showed that acetic acid is a necessary co-operator in determining the 

specificity between HDAC8 and some amino-acid derived ligands (Whitehead et al., 2011). 

By contrast, butyric acid and propionic acid are widely recognized HDACi, as is discussed 

above, that can inhibit cell growth and promote cell differentiation (Bultman, 2014)—

actually, as early as last mid-1970s, sodium butyric acid was already found can halt DNA 

synthesis, cell proliferation and regulate gene expression and cell morphology (Prasad and 

Sinha, 1976). Later, some studies have reported that some other phenolic acids, which are 

formed during the intestinal microbial degradation of polyphenolic constituents of fruits 

and vegetables, also carry inhibitory activity on global HDAC (Bearcroft et al., 1998; 

James et al., 2004; Jenner et al., 2005). However, among all these organic acids, butyric 

acid and propionic acid have demonstrated highest potent HDACi activity in HT-29 human 

colon carcinoma cells and a whole-cell HeLa Mad 38-based reporter gene assay 

(Waldecker et al., 2008). Thus, compared with butyric acid and propionic acid, acetic acid 

is more like a a co-factor or mediator of HDACi activity. 
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Mechanistically, SCFAs function as non-competitive inhibitors of HDACs. It has 

been shown that butyric acid and propionic acid have preference on inhibiting HDAC1, 

HDAC2 and HDAC3. Typically, it is believed butyric acid prefers HDAC1 and propionic 

acid prefers HDAC3 (Thangaraju et al., 2009; Zimmerman et al., 2012). Recently, anti-

inflammatory effects of HDAC inhibitors have been confirmed in several murine disease 

models like chronic inflammatory bowel disease, systemic lupus erythematosus, 

rheumatoid arthritis, and endotoxemia (Biddle et al., 2013). For example, the long existing 

assumption of the epigenetic link between microbiota and obese and T2DM has also been 

confirmed by comparing patients with lean control subjects (Remely et al., 2014). It was 

reported that the diversity of the gut microbiota and the degree of methylation of the GPR41 

promoter region were significantly lower in the obese and type 2 diabetic patients 

compared to lean individuals, demonstrating a correlation between a higher body mass 

index and lower methylation of GPR41 (Remely et al., 2014). This result indicated that in 

long term, the epigenetic aspect of SCFAs modulation may come across the “border” to 

affect the functions that initialized by G-protein receptors of SCFAs. 

 

2.3.7 Effects of SCFAs on carcinogenesis and immune system  

The regulatory effects of SCFAs on carcinogenesis and immune system are tightly 

linked with the above two aspects of mechanisms. The cancer prevention effects of SCFAs 

are mainly achieved by inducing apoptosis and the arrest of uncontrolled cell proliferation.  

In colon cancer cells, the apoptosis can be initiated through the inhibition of Bcl-2, 

Bcl-xL, cyclin D1, and activation of the death receptor signaling pathway. In neutrophils 

the apoptosis would be achieved via a caspase-dependent way (Thangaraju et al., 2009). 
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One study in 2003 has uncovered how SCFAs can interfere cancer cells via an epigenetic 

regulation (Davie, 2003). It was demonstrated in p21Waf1/Cip1gene of MCF-7 (T5) human 

breast cancer cells, Sp1 and Sp3 are hyperactive in recruiting HDAC1 and HDAC2, leading 

to deacetylation in the promotor area and thus cause silence of p21 expression. Butyric acid 

inhibits HDACs and induce expression of p21Waf1/Cip1. The upregulated p21 thereby 

inhibited cyclin E–Cdk2 activity and halted the cells from entering into S phase. The cell 

cycle–arrested cancer cells may then differentiate or undergo cell death by apoptosis.  

How could SCFAs epigenetically modulate the cell circle of cancer cells? Kilner et 

al. applied iTRAQ tandem mass-spectrometry workflow and high-throughput analysis 

microscopy (HCA) to acquire information on the cell cycle and the cytoskeletal structure 

upon SCFAs administration. They reported that butyric acid has the most biological potent 

of SCFAs to inhibit human colon carcinoma and induce G2 phase arrest and consequent 

apoptosis in HCT116 cell line. They summarized that butyric acid, valerate and propionic 

acid carry specific effect of the modulatory activity: butyric acid and butyric acid sodium 

show more pronounced increasing effects on the keratin 19 and actin; valerate increases 

the keratin 19 and β-tubulin 2C; propionic acid displayed an intermediate effect, involving 

in both functions (Kilner et al., 2012). Other experimental evidences showed that SCFAs 

may possess anti-mitotic capabilities in colon cancer cells by disrupting microtubule (MT) 

structural integrity via dysregulation of β-tubulin isotypes. In one study, the simulations of 

propionic acid and valerate displayed increased catastrophe frequencies and longer periods 

of MT-fibre shrinkage (Kilner et al., 2016). In Wistar rats with Hartmann’s end colostomy, 

tumorous signs like hyperemia, increased number of vessels, bleeding and mucus discharge 

can be significantly restored by 8 wks administration of enemas containing butyric acid. 
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And the density of collagen fibers, the number of goblet cells and the apoptosis rate 

returned to normal value after treatment (Pacheco et al., 2012). A number of evidences 

support that such regulations on cell cycle progression and apoptosis are achieved through 

HADC and HAT homeostasis on related cytoskeleton unit genes (Aebersold and Mann, 

2003; Drake et al., 2008; Khan et al., 2011; Kilner et al., 2011; Ku et al., 1999; Leech et 

al., 2008). 

Several in vitro and in vivo studies have demonstrated the innate-immune 

modulation of SCFAs on peripheral blood mononuclear cells (PBMCs) such as lymphocyte, 

monocyte, or macrophage. The immune modulatory function of butyric acid is most 

remarkable among all SCFAs. Ohira et al. tested butyric acid effect on a co-culture of 3T3-

L1 adipocyte and RAW264.7 macrophage and found that butyric acid can significantly 

reduce the cell secreted TNF-a, MCP-1, IL-6, free glycerol and FFAs in the co-culture 

medium (Ohira et al., 2013). Butyric acid can inhibit the phosphorylation of MAPKs and 

the activity of NF-κB in co-cultured macrophages and suppress the activities of several 

lipases, including adipose triglyceride lipase, hormone sensitive lipase and the fatty acid-

binding protein in adipocytes. Consistent with this finding, a shared NF-kB suppressive 

activity of three major SCFAs was observed in the LPS induced RAW264.7 cells that 

showed increased nitric oxide and pro-inflammatory cytokines. The production of pro-

inflammatory factors, including TNF-a, IL-1β, IL-6 and NO was largely reduced by three 

SCFAs, and meantime the anti-inflammatory cytokine IL-10 was increased by SCFAs 

(Bhattacharyya et al., 2014). An in vitro study has tested SCFAs immune-modulatory 

ability and approved that in lipopolysaccharide (LPS)-stimulated PBMCs, SCFAs can 

down-regulate tumor necrosis factor alpha (TNF-a), interleukin (IL)-12, interferon gamma 
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(IFN-γ) and transforming growth factor beta-1 (TGF-β1), and up-regulated IL-4, IL-10. 

Meantime there is no significant effect on PBMCs in the control group, indicating that 

SCFAs regulated cytokine milieu in LPS-stimulated PBMCs to anti-inflammatory 

cytokines (Asarat et al., 2015). A transcript level evidence supported the selective immune 

modulatory effects of SCFAs, showing that in HT-29 colon epithelial cells, SCFAs 

enhanced TLR5-induced transcription of TNFα but abolished the TLR5-mediated 

induction of IL-8 and monocyte chemotactic protein 1 (Anderson and Maes, 2015). The 

dentritic cells (DCs) separated from wide type mice were exposed to butyric acid, and the 

expression of immunosuppressive enzymes indoleamine 2, 3-dioxygenase 1 (IDO1) and 

aldehyde dehydrogenase 1A2 (Aldh1A2) were then upregulated. Consequently, the 

conversion of naive T-cells into immunosuppressive forkhead box P3+ (i.e. FoxP3+) 

regulatory T-cells (Tregs) was promoted, and the conversion of naive T cells into pro-

inflammatory interferon (IFN)-γ-producing cells was suppressed. 

NF-κB is the pivot in the release of the inflammatory cytokines mentioned above 

(Hayden et al., 2006). Butyric acid and propionic acid were shown to reduce TNF-α level 

and NF-κB activity in PBMCs in a similar manner with HDAC inhibitor Trichostatin A 

(TSA) (Usami et al., 2008). Although global inhibition of HDAC activity was also 

observed in ex vivo rodent neutrophils after addition of acetic acid, propionic acid, or 

butyric acid (Vinolo et al., 2011), acetic acid may mediate its anti-inflammatory effects 

through GPCR activation, rather than HDAC inhibition (Maslowski et al., 2009). Vinolo 

et al. reported that in monocytes acetic acid failed to same effect as butyric acid and 

propionic acid, which can reduce LPS-induced TNFα expression and NOS expression in 

rodent neutrophils (Vinolo et al., 2011). Importantly, the weak HDAC-inhibitory activity 
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of acetic acid was also noted in other cases. For example, acetic acid failed to down-

regulate NF-κB activation, yet butyric acid and propionic acid can successfully activate 

NF-κB (Davie, 2003). HDACi activity of butyric acid and propionic acid can also stimulate 

lipolysis in 3T3-L1 adipocytes in a glucose-dependent way, while aminobutyric acid and 

acetic acid failed to show this effect (Rumberger et al., 2014). 

Similar with the myeloid cells discussed above, the HDACi-driven immune 

modulation by SCFAs can also be seen in lymphocytes. The inhibition of HDAC9 can 

increase expression of the forkhead box P3 (Foxp3) transcription factor in mice, which 

boosts proliferation and bioactivity of Tregs (Lucas et al., 2009; Tao et al., 2007). In-depth 

mechanistic explanations were provided by two groups on 2013. Arpaia et al. reported that 

in mice model propionic acid and butyric acid are able to upregulate peripheral regulatory 

T-cells in different ways. Butyric acid increases Treg-cell numbers by potentiating 

extrathymic differentiation of Treg-cells, and this process depends on acetylation of Foxp3 

intronic enhancer CNS1 (conserved non-coding sequence 1), which is necessary for 

extrathymic but dispensable for thymic Treg-cell differentiation. On the other hand, de 

novo Treg-cell generation in the periphery was potentiated by propionic acid but not butyric 

acid or acetic acid, which has weak HDAC-inhibitory activity. Arpaia et al. also briefly 

mentioned that this periphery immune stimulation is different with that in the colon—they 

found that Treg-cells in the gut was stimulated by acetic acid and propionic acid in a CNS1-

independent manner, but was not significantly promoted by butyric acid (Arpaia et al., 

2013). The above immune regulatory effects of SCFAs are summarized in Table 2-1. 

 

Table 2-1. Summary of the in vitro studies to examine the immune regulatory effects of 

SCFAs. 

Cell line Effect observed SCFAs Reference 
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Raw 264.7 cells 

↓TNF-α, IL-6, 

IL-1β, NO, ↑IL-

10 

Ac, Pr, 

Bt 

(Bhattacharyya et al., 2014; 

Chakravortty et al., 2000; 

Park et al., 2007) 

Mononuclear cells 
↓TNF-α, 

↑PGE2 
Bt (Usami et al., 2008) 

Monocytes and Macrophages ↓TNF-α Bt (Fukae et al., 2005) 

Macrophages 
↓TNF-α, IL-6, 

IL-8 
Ac (Kendrick et al., 2010) 

Monocytes 

↓TNF-α, IL-12, 

IFN-γ, ↑IL-10 
Bt (Saemann et al., 2000) 

↓MCP-1, IL-10, 

↑PGE2 

Ac, Pr, 

Bt 
(Cox et al., 2009) 

Microglial cells 
↑IL-6, NO Pr, Bt (Huuskonen et al., 2004) 

N9 cells 

Rat Primary Microglia 
↓TNF-α, IL-6, 

NO 
Bt (Huuskonen et al., 2004) 

Murine BV2 cell ↓NO Bt (Dong et al., 2005) 

Mesencephalic Neuron-glia ↓TNF-α, NO Bt (Chen et al., 2007) 

Co-culture of 3T3-L1 

Adipocyte & RAW 264.7 

Macrophage 

↓TNF-a, MCP-

1, IL-6, NF-κB 
Bt (Ohira et al., 2013) 

Kupffer cells 
↓TNF-α, 

↑PGE2 
Bt (Perez et al., 1998) 

Human Monocyte-Derived 

DC 

↓ CCL3, 

CCL4, CCL5, 

CXCL9, 

CXCL10; ↓IL-

6, IL-12p40 

Pr, Bt (Nastasi et al., 2015) 

Rat Neutrophils 
↓TNF-α, CINC-

2αβ, NO 
Pr, Bt (Vinolo et al., 2011) 

Human HUVECs 
↑ICAM-1, E-

selectin 
Bt (Miller et al., 2005) 

Abbreviations: acetic acid (Ac), propionic acid (Pr), butyric acid (Bt), interferon-γ (IFN-

γ), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12 (IL-12), macrophage 

chemoattractant protein (MCP), nitric oxide (NO), prostaglandin E2 (PGE2), tumor 

necrosis factor-α (TNF-α), dendritic cells (DC), human umbilical vein endothelial cells 

(HUVECs), intercellular adhesion molecule-1 (ICAM-1). (↑) increase and (↓) reduction. 

**The table is modified and updated from reference (Vinolo et al., 2011). 

 

2.3.8 SCFAs and obesity, insulin resistance and Type II diabetes mellitus 

Obesity, insulin resistance, and Type II diabetes mellitus (T2DM) are risk factors 

for a number of systematic CIDs, such as allergy, asthma, autoimmune diseases, and lupus 
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(Bastard et al., 2006; Festa et al., 2000). The modulatory effects of SCFAs on obesity can 

be achieved via a number of different aspects, such as appetite satiety, insulin sensitivity, 

lipolysis, adipogenesis, liver/muscular energy metabolism, glucogenesis and glucose 

uptake (Arora et al., 2011; den Besten et al., 2013; Diamant et al., 2011; Greiner and 

Backhed, 2011; Hong et al., 2005). Such positive function may further modulate innate 

immune system, leptin secretion, modulate immune disorder, and T2DM (Al-Lahham et 

al., 2012; Al-Lahham et al., 2010; den Besten et al., 2015). Studies have shown that oral 

and intravenous administration of acetic acid (den Besten et al., 2015; Kondo et al., 2009; 

Sakakibara et al., 2006; Yamashita et al., 2007), butyric acid (den Besten et al., 2015) and 

propionic acid (den Besten et al., 2015) in obesity and T2DM models can reduce liver lipid 

storage and improve glucose tolerance. A human epidemiological study has proved that 

acetic acid can fasten glucose metabolism, promote endothelial function and reduce 

circulating lipid level in subjects with impaired glucose tolerance (Mitrou et al., 2015). In 

detail, the researchers observed enhancement of muscle blood flow, improvement of 

muscular glucose uptake, and amelioration of postprandial hyper-

insulinaemia/triglyceridaemia after administration of acetic acid. These findings indicate a 

modulatory function of SCFAs for metabolic disorder and insulin resistance—the primary 

factor responsible for T2DM.  

A large bunch of evidences gathered from in vivo, ex vivo and in vitro studies, have 

well depicted the mechanistic map that how SCFAs could mitigate and prevent obesity and 

related secondary diseases. There are three major routes in such beneficial regulation.  

(1) The first route to achieve this function is through a comprehensive regulatory 

effect on energy homeostasis, which contains insulin sensitivity, lipolysis, adipogenesis 
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and fatty acid synthesis/oxidation in liver, muscle and adipose tissue. The process involves 

the stimulation of mitochondrial driven fatty acid oxidation in muscle, liver and brown 

adipose tissue, and also the suppression of fatty acid synthesis in liver (den Besten et al., 

2015; Gao et al., 2009). The achievement of this modulation in liver and adipocyte is 

through increased activation of AMPK to pAMPK in a PPARγ-dependent way, while in 

skeletal muscle the FA oxidation was approached via a PPARδ-dependent way. SCFAs 

reduce expression of PPARγ—and its target genes CD36, LPL, FABP4, and PLTP in liver 

and adipose tissue, but not in muscle (den Besten et al., 2015). The initiation of AMPK 

upregulation is caused by changed AMP/ATP ratio in liver (den Besten et al., 2013; Kondo 

et al., 2009). Importantly, mice study showed that in brown fat tissue and skeletal muscle, 

a further upregulation of PGC-1α, the peroxisome proliferator–activated receptor PPAR-

coactivator (PGC)-1α is involved, but such change was not observed in liver and white 

adipose (den Besten et al., 2015; Gao et al., 2009). The modulatory activity of SCFAs in 

white adipose tissue is different with the regulations of SCFAs in liver, muscle and brown 

adipose tissue, which is considered via either GPR41 or GPR43. By using siRNA targeting 

on GPR43 in 3T3-L1 cell lines, and also through ex vivo studies, Hong et al. have showed 

that acetic acid and propionic acid achieve influence on adipose via GPR43 but not GPR41 

(Hong et al., 2005). To add up, the regulation of obesity of SCFAs shows highly tissue-

specificity but are meantime well connected among different systems. 

Besides the content discussed above, the downstream of PPARs regulation on 

nuclear transcription facters (TFs) is also an important part of the modulatory function of 

SCFAs. LDL receptor and CD36 (a lipoprotein receptor/fatty acid transporter) were 

assumed to be a mediators of PPARγ-regulated lipid clearance. The association between 
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PPARγ and LDL receptor was found in liver (Yu et al., 2003). The co-upregulation of 

PPARγ and CD36 was found in many other tissues including adipose, muscle, liver, and 

macrophages (Akiyama et al., 2002; Gerhold et al., 2002; Memon et al., 2000). Although 

the inactivation of CD36 gene reduced fatty acid uptake in adipose tissue, skeletal muscle 

and heart, the effect was not observed in liver (Coburn et al., 2000).  

Taken together, the downstream events of SCFAs lipid regulation may finally 

through nuclear regulation on gene expressions of LDLR and CD36, following activation 

of PPARγ driven TFs. Specifically, upregulated LDLR leads to an increased receptor-

mediated endocytosis of LDL; whereas CD36 exhibits three functions in this process: (1) 

accumulation of cholesterol ester in cytoplasm; (2) generating more HDL and ApoA1; (3) 

LDL scavenge function (Marleau et al., 2005). These events will combine with PPARs 

mediated mitochondrial fatty acid oxidation reduce cellular lipid content (McGarry and 

Foster, 1980; Reddy and Rao, 2006).  

(2) The second route SCFAs mitigate obesity is through intestinal gluconeogenesis 

(IGN). Propionic acid and butyric acid are able to elevate IGN (De Vadder et al., 2014). 

And the elevation of blood glucan from IGN can be detected by hepatoportal glucose 

sensor, thus able to generate a satiety feeling that decreases food intake. The upregulation 

of IGN is resulted by butyric acid and propionic acid through different mechanisms: butyric 

acid acts through a cAMP-dependent mechanism and can induce IGN genes in vivo and in 

vitro; propionic acid, as a substrate of IGN, can directly initiate a GPR41 dependent gut-

brain neural circuit, but the observation is not observed in vitro. Following the preliminary 

stimulation, the glucose released by IGN can be detected by portal vein glucose sensor that 

connects with liver, and further transmit sensed signal to the brain through either vagus 
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nerve or spinal cord. Finally, SCFAs can falsify a c-fos-brought satiety to brain through 

colon IGN, as c-fos in is a well-known pivot in generating satiety upon food intake 

(Batterham et al., 2002).  

(3) Colon-originated hormone regulation is the third route by which SCFAs can 

influence obesity and related secondary symptoms. The relationship between neuro 

hormone/transmitter and SCFAs have been noticed for a long time. Fukumoto et al. showed 

in rats, that the released 5-HT from EC cells in response to SCFAs, can upregulate 5-HT3 

receptors in the colonic mucosa, which may cure diarrhea and colonic transit problem 

(Fukumoto et al., 2003). Byrne et al. showed that, fermentable hydrocarbons (FCs), or 

SCFAs themselves, can stimulate the production of anorectic gut hormones, such as 

glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), which can reduce the energy 

intake (Byrne et al., 2015). Samuel et al. and Psichas et al. have confirmed that SCFAs 

modulate obesity by regulating colon-generated glucagon-like peptide-1 (GLP-1) and 

peptide YY (PYY). They have conducted a serial of studies approached by KO rodent 

models in vivo and ex vivo cell lines. Their work, from functional genomic, biochemical, 

and physiologic aspects, showed that butyric acid and propionic acid can increase level of 

a variety of anorectic gut hormones, such as GLP-1 and PYY. The regulation mainly 

depends on GPR41 (Chambers et al., 2015a; Samuel et al., 2008). GLP-1 and PYY are 

well known hormones that can increase insulin secretion and reduce lipid storage, and these 

hormones are tightly associated many other physiological events related to obesity and 

TDM2. Nøhr et al. showed in monomeric red fluorescent protein (mRFP)-labeled GPR41 

mice, that there is a “CCK-secretin-GIP-neurotensin-GLP-1-PYY lineage” that can be 

upregulated, after stimulation of GPR41-expression in enteroendocrine cells along the 
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intestine, from duodenum, jejunum, ileum to colon and rectum. In contrast, such co-

stimulation pattern was not observed in GPR43. However, GPR43-mRFP reporter was 

found strongly expressed in a large population of leukocytes in the lamina propria, 

particularly in small intestine, but very weakly in a proportion of enteroendocrine cells, in 

which co-upregulation of GPR43, GLP-1 and mobilized intracellular Ca2+ were observed 

(Nøhr et al., 2013). Collectively, evidences support that SCFAs carry with modulatory 

activities on a variety of gut hormone peptides, and can achieve a neuron and hormone 

ruling on obesity related aspects like glucose homeostasis, insulin sensitivity, appetite, gut 

motivation performance.  

 

2.3.9 SCFAs and non-alcoholic fatty liver disease (NAFLD) 

Adult nonalcoholic fatty liver disease (NAFLD) is featured by portal chronic 

inflammation (Brunt et al., 2009). NAFLD has a prevalence of 20% in worldwide, a 

condition associated with an increased risk of developing T2DM, obesity, insulin resistance 

etc. The prevalence of NAFLD in the United States is reported to be between 10% and 

30%, with similar rates reported from Europe and Asia. As the most prevalent liver disease 

in the US, NAFLD is defined by the presence of ≥5% hepatic macrovesicular steatosis, in 

the condition that the patient consumes less than 20 g of alcohol per day (Farrell et al., 

2013; Vernon et al., 2011). As a matter of fact, NAFLD connects many other metabolic 

diseases and symptoms. First, NAFLD can induce a range of secondary diseases like 

Nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and portal hypertension 

(Browning et al., 2004; Clark et al., 2002). Once NAFLD came to the stage of cirrhosis, 

around 30%–40% patients will die of liver failure in 10 years (McCullough, 2006). Second,  
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a remarked association with obesity, metabolic/insulin resistance syndrome and 

dyslipidemia was unveiled (Adams and Angulo, 2006). NAFLD shows a significant 

association with obesity, T2DM and many other metabolic symptoms. For instance, 

NAFLD has been reported in over 76% of T2DM (Portillo-Sanchez et al., 2015). 

Furthermore, over 90% of severely obese patients undergoing bariatric surgery have 

NAFLD (Kasturiratne et al., 2013; Portillo-Sanchez et al., 2015; Yamazaki et al., 2015). 

A meta-analysis by Younossi et al. have shown that global prevalence of NAFLD is 

25.24%, and in all patients with NAFLD: 51.34% have obesity, 22.51% have T2DM, 69.16% 

have hyperlipidemia and 42.54% have metabolic syndrome (Younossi et al., 2015). Among 

these obese subjects, around 70%–80% have NAFLD and 15%–20% have NASH 

(Bugianesi et al., 2002). Insulin resistance syndrome A was observed in 88% of patients 

with NASH (Marchesini et al., 2003), and T2DM was found co-occurred with 30%–80% 

NAFLD patients (Marchesini et al., 1999; Silverman et al., 1989). A strong co-occurrence 

of NASH and obese has been observed under a background of obesity epidemic in the US 

and elsewhere (Calle et al., 1999; Flegal et al., 1998; James et al., 2004; Livingstone, 2000). 

It has been reported that All patients with NAFLD show symptom of insulin resistance to 

some extent (Tolman and Dalpiaz, 2007).  

Endogenous alcohol and microbial LPS, which can be generated by either infection 

or invaded bacteria from gut, are believed to be among the major factors that induce 

NAFLD (Deng et al., 2015). And the gut microbial generated alcohol serves an important 

role in NAFLD etiology, which is suggested by the increased abundance of alcohol-

producing bacteria, elevated blood-ethanol concentration, and biomarkers of alcohol 

induced oxidative stress in NASH patients (Tang et al., 2013). On the other hand, LPS and 
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other microbial components can enter liver and bind to the specific receptor-activating 

TLRs signaling in different liver cell populations, triggering the activation of cytokines 

like pro-IL-1β and pro-IL-18, and promote inflammation and fibrogenic pathway (De 

Minicis et al., 2014).  

Propionic acid has a high liver concentration and carries with a comprehensive 

modulatory effect on NAFLD. It was found in rats that an addition of 0.5% sodium 

propionic acid in cholesterol diet can significantly reduce liver and serum cholesterol level, 

compared with the control group, though serum triglyceride concentrations were not 

changed (Chen et al., 1984). Additionally, it was reported that propionic acid can 

downregulate hepatic lipogenic enzymes, specifically fatty acid synthase (FAS) (Parnell 

and Reimer, 2010). Chambers et al. developed a novel inulin-propionic acid ester (IPE), in 

which propionic acid is bounded with dietary fiber inulin, and is released upon microbial 

fermentation (Byrne et al., 2015). In their study, 16 participants (40–65 years) with 

NAFLD were recruited and were provided with either 10 g/day IPE (n = 11) or 10 g/day 

inulin control (n = 5) and a significant reduction in intrahepatocellular lipid (IHCL) content 

post-intervention was observed. However, some researchers reported that at the 

concentrations that are significantly higher than normal level, propionic acid may 

accumulate in liver mitochondria in the form of propionyl-CoA, and inhibit liver 

mitochondrial function (Matsuishi et al., 1991). 

 

2.3.10 Modulatory effects of SCFAs on inflammatory bowel disease 

It is known that the hereditary forms of colon cancer only count around 15–30 % 

of the total incidence of colorectal cancer (CRC) (Taylor et al., 2010). Most CRC cases 
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(50–75 %) could be prevented by adapting dietary patterns to a healthy diet (Englund et 

al., 2007). Epidemiological data have shown that a routine diet covering fish, dairy foods, 

poultry meat, high fiber diets, and daily coffee or tea drinking can significantly reduce the 

incidence of colon cancer; while red meat, pickled vegetables, processed meat products are 

proven risk factors for colon cancer incidence (Chao et al., 2005; Chavarro et al., 2008; 

Clausen et al., 1991; Larsson et al., 2005; Lee and Lee, 2010; Mirvish et al., 2008; Willett 

et al., 1990). Cohort studies in Europe and China have consistently revealed that patients 

with T2DM had a lower proportion of butyric acid-producing and a larger proportion of 

non-butyric acid-producing Clostridiales (Karlsson et al., 2013; Qian et al., 2013). A case-

control study has demonstrated that the significant association of reduced level and 

uncommon ratio of SCFAs with inflammatory bowel disease (IBD) (Huda-Faujan et al., 

2010). In this study, fecal samples were obtained from 50 healthy subjects (male = 18, 

female = 32) and 8 IBD (male = 6, female = 2) subjects from March 2007 to December 

2008 in Selangor, Malaysia. The age of the studied patients ranged from 34 to 68 years and 

the age for the healthy subjects ranged from 22 to 55 years. SCFAs ratio and level indicate 

gut microbiota condition and proportions, and also the general healthy situation. Besides, 

Firmicutes phylum could significantly decrease in inflammatory bowel disease (Frank et 

al., 2007). It has been found that the increased gene expression of inflammatory mediators 

like TNF-a, interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS) in both human 

samples and animal models of obesity (Hemmrich et al., 2007; Weisberg et al., 2003). 

Butyric acid can exert its anti-proliferative properties by altering colon cancer cells that are 

initially highly glycolytic to butyric acid utilizing phenotype. A cross-sectional study for 

which 93 CRC patients, 27 healthy individuals and 22 healthy individuals with adenoma 
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were enrolled, has shown that, the concentrations of SCFAs were significantly decreased 

in the CRC group and the pH was increased, while adenoma group were intermediate to 

CRC group and non-adenoma group (Ohigashi et al., 2013). In human, a case control study 

showed that one mechanistic aspect of SCFAs chemoprevention was achieved through 

SOD2, with increased level of mRNA as 1.96-fold; protein as 1.41-fold and enzymatic 

activity as 1.8-fold (n = 21 in case group, mean age 66 ± 13 yrs, p < 0.05) (Jahns et al., 

2015). 

To increase butyric acid concentration in colon, there have been several methods 

tested so far, including vehicle/booster molecule of SCFAs, and various SCFA-generating 

probiotics. For the former one, oligosaccharide acarbose can act as α-glucosidase inhibitor 

and indirectly increase colonic butyric acid concentration by enabling more starch to arrive 

colon. Tributyrin, which contain three butyric acid molecules, can augment butyric acid 

concentrations through hydrolysation of pancreatic and gastric lipases (Weaver et al., 1997; 

Wolever and Chiasson, 2000). Consumption of butyric acid-producing probiotic bacterial 

strains like Butyrivibrio fibrisolverns and Clostriduium butyricum has been modeled in rats 

and mice (Araki et al., 2004; Araki et al., 2000; Ohkawara et al., 2005). It has been shown 

in MCF-7 human breast and HT-29 human colon cancer cells that novel SCFA-acylated 

daunorubicin–GnRH-III bioconjugates can serve as drug delivery systems for targeted 

cancer chemotherapy (Hegedus et al., 2012). Thirabunyanon et al. have screened 

Pediococcus pentosaceus FP3, Lactobacillus salivarius FP25, Lactobacillus salivarius 

FP35 and Enterococcus faecium FP51 from infant feces and showed that they are probiotic 

bacteria that have anti-proliferative effect on colon cancer cells by generating butyric and 

propionic acids (Thirabunyanon and Hongwittayakorn, 2013).  
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2.3.11 SCFAs, gut-microbiota and nervous system associated inflammation 

Meta-genomics studies have uncovered a permeable boundary between gut-

microbiota, gut-autoimmune-lymphatic-tissue (GALT), intestinal endocrine system and 

the gut-brain neuro axis (Carabotti et al., 2015). The microbiota-brain link is also mutually 

regulated (Cryan and Dinan, 2012; El Aidy et al., 2016; Mayer et al., 2015). The influence 

of the gut microbiota on brain has been demonstrated in host’s intelligent/emotional 

performances and autonomic nerve functions like sleep, hunger and satiety. 

Epidemiological studies have demonstrated a significant association between dysbiosis and 

CNS disorders including autism, anxiety, depression, schizophrenia, atherosclerosis, 

neuromyelitis optica, Guillain-Barre syndrome, meningitis, chronic fatigue syndrome, 

Parkinson’s disease (PD) and Alzheimer’s disease (AD) (Cryan and Dinan, 2012; 

Daulatzai, 2015; El Aidy et al., 2015; I Naseer et al., 2014; Kist and Bereswill, 2001; 

Ochoa-Reparaz and Kasper, 2014; Tsang, 2002). The misfolded plaques or oligomers of 

disease-induced immune proteins like β-amyloid, tau, α-synuclein, huntingtin and TDP-43 

have been considered to be the major inducer of the above neuro diseases (Goate et al., 

1991; Murrell et al., 1991; Poorkaj et al., 1998; Weiss et al., 2012).  

As the second most common neurodegenerative disease, PD is estimated to affect 

1%–2% of the population over 65 years old, and more than 4% of the population by the 

age of 85 years in the world wide (De Rijk, 2000). The primary neuropathology of PD is 

the loss of midbrain dopaminergic neurons and the following characteristic motor deficits 

(Alexander, 2004). The initiation of PD is believed to be a multifactorial process, and the 

major causes include immune abnormality, alpha-synuclein abnormality, LRRK2 gene 

mutations (up to 80 types of pathogenic variants), PARKIN gene mutations (parkin, pivot 
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regulator of mitochondria shape and ubiquitin-proteasome system), autosome recession etc. 

(Corti et al., 2011). The motor deficiency is the clinical diagnostic standard, but the patients 

also have a number of non-motor symptoms (NMS), such as gastrointestinal disturbances, 

pain, psychiatric disorders, depression and anxiety (Chaudhuri et al., 2006). These 

syndromes generally happen before the motor symptoms and are highly associated with a 

dysfunction in the communication between gut and brain (Baig et al., 2015; Pfeiffer, 2003). 

These non-motor PD symptoms are highly associated with gut-microbial imbalance, with 

affects that often precede motor symptoms, whereas the administration of gut-probiotics 

can ameliorate such symptoms (Barichella et al., 2009). These findings lead to the 

hypothesis that gut microbial disorder happens before the appearance of neurodegenerative 

cases and some studies were conducted to explain this phenomenon. Several pathological 

studies have shown the spatial-temporal association between neuro diseases and the 

changes of certain immune proteins, with widely observations from in vivo, in vitro and ex 

vivo studies in diseases such as Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic 

lateral sclerosis (ALS) (Bhattacharyya et al., 2014; Deng et al., 2015; Goedert and 

Spillantini, 2006; Kumar et al., 2016; Mulak and Bonaz, 2015; Pfeiffer, 2003; Stefanis, 

2012; Tada et al., 2011). As a major route for pathogens to enter human body and induce 

disturbance in immune system, intestinal epithelium has attracted attention from scientists 

in many different fields. To correlate gut microbial metabolites with the healthy condition, 

or to manipulate the metabolic composition of intestinal microbiota, are therefore of highly 

clinical significance.  

Gut-microbiota is considered to be a major link of PD, immune disorder, and a 

number of CIDs. Persistent and excessive stimulation of the GALT would result in 
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symptoms like gut dysbiosis, bacterial overgrowth and increased intestinal permeability. 

The activation of enteric neurons and enteric glial cells may contribute to the initiation of 

alpha-synuclein misfolding. And chronic stimulation would result in accumulation of 

alpha-synuclein. The alpha-synuclein have cytotoxic misfolding and/or excessive secretion 

that affect all levels of the brain-gut axis, including the central, autonomic, and enteric 

nervous systems (Stefanis, 2012). In addition, the adaptive immune system may be misled 

by bacterial proteins and cross-react with human antigens, thereby resulting a variety of 

auto-immune diseases (Tlaskalova-Hogenova et al., 2011).  

In addition, small intestinal bacterial overgrowth (SIBO) and H. Pylori infection 

may also contribute to the incidence of PD. SIBO and H. Pylori infection usually lead to 

abdominal pain caused by the damage of small intestinal and gastric mucosa, via bacterial 

adherence and enterotoxin production (Sachdev and Pimentel, 2013). The microbial toxins 

can either act locally on enteric nerves, or translocate via humoral or vagal afferent 

pathways to affect neuro duct to induce pain (Kountouras et al., 2012). Such observation 

is consistent with the detected migration of immune cells stimulated in the intestine and 

appearing in distal sites, and is also backed up by the systemic diffusion of microbial 

metabolites, or the invaded bacteria from integrity-impaired intestinal barrier (Wang et al., 

2015b). In an epidemiology study conducted by Fasano et al., the presence of SIBO was 

reported in 54% of PD patients and is associated not only with the GI symptoms but also 

with the motor symptoms. The motor fluctuations were significantly promoted by 

treatment with Rifaximin (Fasano et al., 2013). In another study, SIBO was detected in 25% 

of PD patients, and showed early occurrence in the disease progress (Bhattacharyya et al., 

2014). Accordingly, it is assumed that SIBO induces the impairment of small intestinal 
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integrity and thus leads to the PD symptoms discussed above. Another example to show 

the association between gut-microbiota and neurodegenerative diseases is the link between 

gut pathogens and AD—the most common neurodegenerative disease. It was uncovered 

by Tanzi et al. that amyloid-beta, an anti-microbial peptide, can bind with microbial cell 

wall, and the formed Aβ oligomers are able to develop protofibrils on-site, to inhibit 

pathogen adhesion to host cells. Their in vivo models of both mouse and nematode have 

indicated that, persistently disturbed immune responses to invaded pathogens can stimulate 

the over-production of amyloid-beta, which gathers tough fibril-like structures called 

amyloid plaques within the brains of patients (Kumar et al., 2016; Soscia et al., 2010).  

Could administration of SCFAs modulate neuro diseases and related inflammation? 

Very likely. It is believed that to modify gut microbiota composition in PD patients would 

influence the cascade of neurodegeneration in PD (Mulak and Bonaz, 2015). A recent 

finding has uncovered that, the formation of alpha-synuclein aggregates in gut enteric 

nervous system (ENS), both the submucosal plexus (i.e. Meissner’s plexus) and myenteric 

plexus (i.e. Auerbach’s plexus), is prior to their appearance in CNS (Felice et al., 2016). 

This report has well backed up the hypothesis that PD can be initiated from gut microbial 

disturbance on GALT. Mechanistically, there is a close mutual relationship between gut 

dysbiosis, intestinal permeability and gut inflammation. The changes of intestinal 

permeability may stimulate the translocation of bacteria and endotoxins across the 

epithelial barrier, thereby inducing the immunological responses that secret pro-

inflammatory cytokines. In such process, the intensively disturbed enteric neurons and glial 

cells in the gut lamina propria may result in neurological dysfunction along the whole 

brain-gut axis (de Magistris et al., 2016; Felice et al., 2016; Mulak and Bonaz, 2015). 
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Therefore, the application of SCFAs may protect and maintain the epithelium so as to 

prevent the incidence of such dysfunction. 

 

2.3.12 Conclusion and future perspectives 

In this work, we have collected the relevant studies in terms of the various 

associations between gut-microbiota dependent SCFAs and CIDs. The major findings 

reported by these studies suggested that SCFAs carry with the modulatory effects on a 

number of CIDs, e.g. obesity-associated inflammation, liver inflammatory diseases, 

colorectal inflammation, and the nervous system disease-associated inflammatory status. 

The available mechanism and evidences demonstrated that the use of SCFAs in preventing 

and mitigating CIDs is applicable. The clinical use of SCFAs seems to be a promising 

approach to adjust the endogenous level of intestinal SCFAs, as well as their absorption, 

distribution, and metabolisms. And we are looking forward to see more innovative 

application of SCFAs in the field of clinical nutrition which may incorporate novel vehicles, 

prebiotics or probiotics as facilitating tools.  

 

2.4 Clinical references for omics data interpretation 

2.4.1 In Vitro test for liver abnormality and metabolic disorder 

Traditionally, in the fields of toxicology, pharmacology, nutrition and so on, 

biofluid-based biochemical analysis serves as a basic way of in vitro examination to 

preliminarily probe individual health status. The tested samples are mainly the blood, urine 

and feces collected from patients and the acquired information can well reflect the 

physiological status of organs and systems, the adverse affects of xenobiotics and the 
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effectiveness of medical treatment (Miri-Dashe et al., 2014). Among the various tests, 

probably the most widely used one is the lab based blood test (Baron, 1996; MacLennan et 

al., 2007). In America, the blood test technique has been gradually established since last 

1940s, marked by the milestones such as the official introduction of Coombs test in 1945 

(Coombs et al., 1945), and the marriage license-required blood test for synphilis in 1947 

(Brandt, 1988). With all the improvements made by the researchers in the worldwide, by 

now blood test has become a standard, convenient and reliable tool for clinical diagnosis. 

In America, standardized panels and processes are designed and certified by professional 

agencies such as Clinical Laboratory Improvement Amendments (CLIA), American 

Medical Association (AMA) (Ehrmeyer and Laessig, 2004). 

The nature of human blood is a complex and dynamic liquid mixture that 

compositionally include erythrocytes, leucocytes, thrombocytes and plasma. There are all 

kinds of nutrients, immune factors and metabolites transported in the plasma. The 

metabolites can either be exdogenous or endogenous, containing drug metabolites, lipids, 

glucoses, nucleoside triphosphate, functional nucleotides, cytokines, virus, enzymes, short 

peptides and amino acids like glutamine, homocysteine, creatinine, lipoprotein, albumin 

and C-reactive protein (CRP) (MacLennan et al., 2007). Many hydrophobic components 

like bilirubin, or enzymes such as alkaline transferase are conjugated with carrier protein 

like albumin and lipoprotein (Miri-Dashe et al., 2014). Unless otherwise specified, blood 

sample is mainly the arterial blood collected by arm venipuncture with vacuum tube 

(MacLennan et al., 2007). Rarely, for some specialized tests like arterial blood gas test, the 

artery blood is needed. The collected artery blood is analyzed to monitor carbon dioxide 

and oxygen levels related to pulmonary function, and also offers information on the blood 
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pH and bicarbonate levels. Blood test is also a proven way to examine virus infection. One 

such contribution of blood test is the screening of hepatitis virus such as HAV, HBV and 

HCV, which is considered to be a significant contribution in some countris with epidemic 

of viral hepatitis such as China (Gao et al., 2009). 

The routine method to prepare serum or plasma sample from blood sample, is via 

the centrifugation of blood sample, using inert gel barrier inserted evacuated tubes. The 

inert gel polymers have a specific gravity between the serum/plasma and the cellular 

portion of blood (Smith, 1989). In the case that plasma sample is needed, several strategies 

have been applied for the anticoagulation, i.e. EDTA-treated, normally with lavendar cap; 

citrate-treated anticoagulant tubes, normally with light-blue cap; heparinized tubes which 

normally have green tops (Penetar et al., 2008). It is worthy noting that heparin can often 

be accompanied with endotoxin, which can stimulate white blood cells to release cytokines, 

thus related immuno assays need to be cautious in sample preparation (Theoharides et al., 

2012). The second step for plasma preparation is the centrifugation, through which the 

liquid portion of blood sample can be separated from the cellular components that disrupt 

the consequent analysis. However, in the process of centrifugation the pellet spinned down 

sometimes migrates up again and contaminats the supernatant part needed (Yagi, 1984). 

By contrast, serum is much easier to be separated with the solid portion of blood, in that it 

is free of cells and platelets which are precipated away with the fibrin meshwork of the clot, 

though there is still contamination generated in the platelet clotting (Bruce et al., 2009; 

Yagi, 1984). Regarding which type of blood sample, plasma or serum should be used for 

lab tests, a debate exists. Yet in most cases serum is considered the gold standard and the 
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majority of lab reference ranges are based on serum, though a 30 min clotting time is 

required (Penetar et al., 2008).  

Blood tests are often performed in health care to investigate liver function, 

metabolic homeostasis and disease progression (Table 2-2). In practice, multiple tests for 

targetted blood components are often grouped together into one blood test panel, e.g. blood 

glucose test and cholesterol test (Burtis et al., 2012). A typical metabolic panel includes 

measurement of sodium, potassium, chloride, bicarbonate, blood urea nitrogen (BUN), 

magnesium, creatinine, glucose, and sometimes calcium (Burtis et al., 2012; Higgins, 2007; 

Saathoff et al., 2008). Another frequently performed test is cholesterol level panel, which 

typically includes LDL and HDL cholesterol levels, as well as triglyceride levels (Castelli 

and Anderson, 1986). The cholesterol test panel is especially important for the aged 

population. Some tests require specially designed process at different time points, such as 

the regular glucose test which is taken at a certain point in time; and the glucose tolerance 

test, for which repeated testing is needed to determine the rate at which glucose is 

physiologically processed (Nichols et al., 2008). The metabolic panel is another case in 

which complex blood analysis can be useful. The phenotypes of this syndrome include 

elevations of remnant lipoproteins, fasting glucose, blood pressure, circulating 

inflammatory cytokines, prothrombotic factors and suppressed levels of high density 

lipoproteins (HDL). A group of biomarkers have been associated with metabolic syndrome, 

e.g. non-esterified fatty acids, leptin, adiponectin, resistin, angiotensinogen, insulin, 

insulin-like growth factor binding protein-2 (Heald et al., 2006; Reaven, 2005; Trayhurn, 

2005). These components can be examined together from blood sample and serve as a test 

panel. 
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The most performed test for general examination is the liver function test (LFT) 

(Hoekstra et al., 2013). The princinple of it lies in that the physiological status of liver can 

be reflected by the blood enzymes and proteins secreted by liver and released from liver 

upon damage. So far, LFT has been proven as an efficient and effective approach to 

evaluate liver status. It normally consists of several metrics that can be performed at the 

same time. Typically, in order to conduct a reliable examination, subjects are asked to avoid 

eating or drinking for a consecutive 8 hours. Even though, the normal ranges for liver 

function tests still variate largely by the age, gender, race and region (Dufour et al., 2000). 

Therefore, different labs may have different reference ranges applied which have numeric 

difference. 

 

Table 2-2. Performance specifications and precisions for liver tests (%). 

Reference source 
Type of 

standard 

Specifications of measurements 

ALT AST ALP GGT Albumin Bilirubin 

Standard 

imprecision, % 
      

CLIA 
Mandate 

standard 
TE = 20 TE = 20 TE = 30 NS TE = 10 TE = 20 

European  
Biological 

variation 

I = 13.6 I = 7.2 I = 3.4 NS I = 1.4 I = 11.3 

B = 13.6 B = 6.2 B = 6.4 NS B = 1.1 B = 9.8 

TE = 36 TE = 18 TE = 12 NS TE = 3.4 TE = 28 

Ricos et al.  
Biological 

variation 

I = 12.2 I = 6.0 I = 3.2 I = 6.9 I = 1.6 I = 12.8 

B = 12.2 B = 5.4 B = 6.4 B = 10.8 B = 1.3 B = 10 

TE = 32 TE = 15 TE = 12 TE = 22 TE = 3.9 TE = 31 

Skendzel et al.  
Clinician 

opinion 
NS TE = 26 NS NS NS TE = 23 

Within-laboratory imprecision, % 

Lott et al. 
Proficiency 

tests 
8 9 5 6 NS NS 

Ross et al.  
Proficiency 

tests 
NS NS NS NS 4.4 8.9 

Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline 

phosphatase; GGT, gamma-glutamyltransferase. TE, total error; I, imprecision or degree 

of reproducibility; B, bias or difference from correct result; NS, not specified. The table is 

modified from (Dufour et al., 2000). Related references are from Westgard et al. (Westgard 
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et al., 1994), Ricos et al. (Ricos et al., 1999), Skendzel et al. (Skendzel et al., 1985), Lott 

et al. (Lott et al., 1988), Ross et al. (Ross and Lawson, 1995).  

 

 

Table 2-3. American Medical Association (AMA) approved organ or disease oriented 

panels for blood test. 

Panel 

Component 

Basic 

Metabol

ic 

Panel 

80048 

Comprehensi

ve 

Metabolic 

Panel 

80053 

Electroly

te 

Panel 

80051 

Hepati

c 

Functio

n 

Panel 

80076 

Acute 

Hepatit

is 

Panel 

80074 

Lipid 

Pane

l 

8006

1 

Obstetr

ic 

Panel 

80055 

Renal 

Functio

n 

Panel 

80069 

ABO, 

86900 
      ◼   

RH(D), 

86901 
      ◼   

Antibody 

Screen, 

86850 

      ◼   

Rubella 

Antibody 

IgG, 86762 

      ◼   

Hepatitis B 

Surface 

Antigen, 

87340 

      ◼   

VDRL, 

86592 
      ◼   

CBC 

w/Different

ial & Plt., 

85025 

      ◼   

Phosphorus

, Inorganic, 

84100  

       ◼  

Carbon 

Dioxide, 

82374 

◼  ◼  ◼      ◼  

Chloride, 

82435 
◼  ◼  ◼      ◼  

Potassium, 

84132 
◼  ◼  ◼      ◼  

Sodium, 

84295 
◼  ◼  ◼      ◼  

Creatinine, 

82565 
◼  ◼       ◼  
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Glucose, 

82947 
◼  ◼       ◼  

BUN, 

84520 
◼  ◼       ◼  

Calcium, 

82310 
◼  ◼       ◼  

Albumin, 

82040 
 ◼   ◼     ◼  

AST 

(SGOT), 

84450 

 ◼   ◼      

Alkaline 

Phosphatas

e, 84075 

 ◼   ◼      

Bilirubin, 

Total, 

82247 

 ◼   ◼      

Protein, 

Total, 

84155 

 ◼   ◼      

ALT 

(SGPT), 

84460 

 ◼   ◼      

Bilirubin, 

Direct, 

82248 

   ◼      

Hepatitis A 

Antibody, 

IgM, 86709 

    ◼     

Hepatitis B 

Surface 

Antigen, 

87340 

    ◼     

Hepatitis B 

Core 

Antibody, 

IgM, 86705 

    ◼     

Hepatitis C 

Antibody, 

86803 

    ◼     

Cholesterol

, 82465 
     

◼

  
  

HDL 

Cholesterol

, 83718 

     
◼
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LDL 

Cholesterol 

(Calculatio

n), 83718 

     
◼

  
  

Triglycerid

es, 84478 
     

◼

  
  

 

2.4.2 Alanine aminotransferase (ALT or SGPT) 

ALT has two isoforms, named as ALT1 and ALT2. The major expression of ALT1 

was found in liver, skeletal muscle and kidney, with relatively lower level in heart muscle. 

On the other hand, high level of ALT2 can be detected in skeletal and heart muscle 

(Lindblom et al., 2007). The measurement of blood ALT activity is very useful in checking 

hepatitis, and is taken as a specific biomarker of hepatocellular injury (Kim et al., 2008). 

Abnormal high level of ALT frequently coocurred with infection of acute hepatitis, while 

moderate increase can be seen accompanied with chronic hepatitis. Importantly, the uptake 

of certain drugs or during exercise also lead to elevation of ALT. 

 

2.4.3 Aspartate aminotransferase (AST or SGOP) 

AST is an enzyme mainly distributing in the liver, heart and the muscular tissues 

around the whole body. AST has two isoenzymes: mitochondrial type and cytosolic type 

(Baudhuin et al., 1964). The mitochondrial form is located in hepatocytes, functionally 

reacting to membrane oxidative stresses, taking a role similar with ALT. The cytosolic 

form is usually present in skeletal muscle, heart muscle and kidney tissue. Similary ALT, 

a very high level of AST is frequently seen with acute hepatitis, and usually the rise of 

blood AST occurs in conjunction with ALT. The ratio of AST/ALT is conventionaly used 

to estimate different types of hepatocellular injury. An AST/ALT ratio equal to 1:1, yet 
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with both levels elevated, would suggest acute viral hepatitis or drug-related liver injury. 

An AST/ALT ratio higher than 2:1, as mentioned above, would indicate alcoholic liver 

disease. Importantly, an AST/ALT ratio higher than 1:1 could also indicate cirrhosis if 

there is no alcoholic hepatitis found in patients (Pratt and Kaplan, 2000). When liver 

damage is induced by alcohol, AST often increases much more than ALT, a pattern rarely 

observed with few other liver diseases (Giannini et al., 2005). An elevated AST level can 

also be found after heart attacks and muscle injury (Giboney, 2005). Besides, during 

chronic hepatitis, blocked bile ducts, cirrhosis and liver cancer, AST level may be 

moderately increased as well (Green and Flamm, 2002).  

 

2.4.4 Alkaline phosphatase (ALP) 

ALP is an enzyme primarily generated in the bile ducts but also produced by the 

bones and intestines. The enzyme is produced by the epithelial cells lining bile ducts and 

canaliculi, and is released in response to the accumulation of bile salts or cholestasis 

(Hatoff and Hardison, 1982). ALP may be significantly increased with obstructed bile 

ducts, cirrhosis, liver cancer, and also with bone disease (Kaplan and Righetti, 1969). Since 

ALP is also generated in the kidney, intestine, leukocytes, placenta and bone, functional 

elevation of ALP can be seen during female pregnancy or in the growing period for children, 

whereas abnormal rise of level could occur in Paget’s disease, renal disease and bone 

metastases (Lehmann, 1975). To detect ALP with special origin, monoclonal based ELISA 

can be very useful (Gomez et al., 1995). For example, Du et al. reported that in nineteen 

trials with 3268 subjects included, the mean level of serum bone ALP was 41.50 ± 26.61 

μg/L (216.90 ± 139.00 U/L) in patients with osseous metastases and 14.49 ± 5.52 μg/L 

https://labtestsonline.org/understanding/conditions/heart-attack
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(103.30 ± 39.44 U/L) in patients without osseous metastases. The serum level of B-ALP 

was significant higher in the osseous metastases group than that in the control group (p < 

0.05) (Bhattacharyya et al., 2014). 

 

2.4.5 Gamma-glutamyl transferase (GGT)  

GGT is primarily present in liver, kidney, pancreas and intestine, but the majority 

of GGT in serum is released from liver. The enzyme is a cell-surface protein featured for 

its function to the extracellular catabolism of glutathione (GSH). In liver, it can be found 

in the microsomes of hepatocytes and biliary epithelial cells. A physiological elevation is 

found to be induced by chronic alcohol use or intake of rifampicin and phenytoin (Hall and 

Cash, 2012). An elevation of GGT, in association with a rise of ALP, highly suggests of a 

biliary tract obstruction, known as a cholestatic picture. A GGT test may be used to help 

determine the cause of an elevated ALP. It is worth noting that both ALP and GGT are 

elevated in bile duct and liver disease, but only ALP will be elevated in bone disease (Siris 

et al., 1998).  

Importantly, high level of GGT has been associated with increased risk of 

atherosclerotic cardiovascular disease (CVD). Lee et al. reported that in 3451 Framingham 

Study participants (mean age of 44 years old, 52% women), an increased serum GGT 

predicted the onset of metabolic syndrome and the occurrence of CVD and death; moreover, 

the highest GGT quartile experienced a 67% increase in CVD incidence. In this study the 

association of GGT concentrations with CVD and mortality remained significant after 

adjustment for traditional cardiac risk factors and C-reactive protein level, a metric 

reflecting general levels of inflammation (Lee et al., 2007).  



142 
 

2.4.6 Bilirubin  

Bilirubin is a yellow pyrrole compound generated in the catabolic pathway of heme 

break down, a routine physiological process in the vertebrate reticuloendothelial cells in 

liver, spleen and bone marrow (Wolkoff et al., 1983). Free bilirubin is transported to liver 

after binding with circulating albumin, in which case the conjugated bilirubin is also called 

“direct” bilirubin. In liver bilirubin is conjugated with glucuronic acid by the enzyme 

glucuronyl transferase and then excreted into the small intestine via bile ducts (Erlinger et 

al., 2014). The level of bilirubin is especially important if a person has jaundice. High 

bilirubin level is very common in newborns from 1 to 3 days old. In many healthy persons, 

the serum unconjugated bilirubin is mildly elevated to a concentration of 2 to 3 mg/dL 

(equal to 34–51 μmol/L) after a 24-hour fasting. However, if unconjugated bilirubin is high 

yet it is the only abnormality, while the conjugated bilirubin level and complete blood count 

being normal, the diagnosis is usually assumed to be Gilbert syndrome (Vı́tek et al., 2002). 

The syndrome was recently shown to correlate with to a variety of partial defects in uridine 

diphosphate-glucuronosyl transferase, which conjugates bilirubin with albumin for 

transportation (Johnston, 1999). Interestingly, bilirubin can behave as an antioxidant or 

pro-oxidant, depending on specific situations. In neonatal jaundice, bilirubin at low 

concentration is an antioxidant, yet in the case of haemolysis it is of high chance that 

albumin may be over-generated and lead to systematic oxidative stressing (Mizejewski et 

al., 2013). 

2.4.7 Albumin 

Hydrophobic substances can only be transported in the blood when they are 

attached to carrier proteins. Albumin is one such carrier protein and, as already discussed, 
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is the primary carrier protein for the transportation of bilirubin. Albumin is synthesized 

from amino acids in the liver, and typically is at normal level upon liver disease. As the 

main protein generated by the liver, the level of albumin can be affected by the functional 

changes of liver and kidney, since a deficiency of renal filtering function would release 

albumin in urine (Foley et al., 1996). More frequently, decreased blood albumin is induced 

by nutritional deficiency, a phenomenon frequently seen in Crohn disease, Low-protein 

diets, Celiac disease and Whipple disease (Russell, 1986; Zeuzem, 2000). In practice, 

patients with low serum albumin concentrations yet no other LFT abnormalities are most 

likely to have a non-hepatic cause for low albumin. Such causes include proteinuria, acute 

or chronic inflammation in burns, trauma and sepsis, and active rheumatic disorders or 

severe end-stage malnutrition (Johnston, 1999). Severe liver function decrease can be 

indicated by a measured results of total serum bilirubin concentration > 2.0 mg/dL and 

serum albumin concentration < 3.5 g/dL (Kamath et al., 2001). Plasma bilirubin/albumin 

ratio (B/A) in newborn may be used to identify newborns at risk for bilirubin 

encephalopathy and neurotoxicity (Iskander et al., 2014). 

Depending on specific situation, there may be many other metrics added into a 

regular LFT, e.g. lactate dehydrogenase (LD), prothrombin time (PT), alpha-feto protein 

(AFP) and autoimmune antibodies. These tests are very useful to understand certain disease 

incidence and staging. Lactate dehydrogenase (LD) is a non-specific marker of tissue 

damage and may be elevated with acute liver disease or liver tumors, yet it is also elevated 

with a number of other conditions that do not affect the liver. A prolonged or increased 

Prothrombin time (PT) can be seen with liver disease or coagulation factor deficiency. 

Different estimates or reference values exist, based on specific population statistics (Table 
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2-4). Because the standard normal ranges of blood test variate with a number of factors 

such as age, gender, region, life styles and genetics (Table 2-5). 

 

Table 2-4. Comparison of representative reference ranges of LFT. 

Parameter Nigeria Kenya Tanzania 
Tanzania 

(Mbeya) 
U.S. FDA 

Urea Nitrogen 

mmol/L M 

3.0 (2.2-

4.8) 

2.8 (1.5-

4.6) 
1.5-5.0 

2.77 (1.57-

5.01) 
3.6-7.1 3.32-6.68 

Urea Nitrogen 

mmol/L F 

3.3 (2.5-

5.8) 

2.5 (1.4-

4.6) 

2.55 (1.47-

4.61) 

Creatine μmol/L 

M 

85.8 

(76.3-

111.1) 

77 (62.0-

106.0) 
0-90 

56 (40-81) 

0-133 
88.4-

176.8 
Creatine μmol/L 

F 

79.3 (63-

117.8) 

66 (51-

91) 
69 (48-96) 

Glucose mmol/L 

M 

4.9 (3.7-

7.9) 

4.1 (3.0-

5.6) 
2.9-5.2 

4.16 (2.88-

5.3) 
4.2-6.4 4.4-6.7 

Glucose mmol/L 

F 

5.9 (4.4-

9.6) 

4 (3.2-

5.7) 

3.95 (3.3-

5.06) 

AST (U/L) M 

33.1 

(26.0-

49.4) 

23.9 

(14.9-

45.3) 
0-48 

28.2 (15.2-

53.4) 

0-35 0-40 

AST (U/L) F 
33 (22-

58.4) 

19.1 

(13.1-

38.1) 

20.1 (13.5-

35.2) 

ALT (U/L) M 

24.4 

(17.3-

48.4) 

22.3 

(10.8-

53.9) 0-48 

24.7 (9.1-

55.3) 
0-35 0-30 

ALT (U/L) F 
24.1 (19-

38) 

16.8 

(8.6-47) 

16.6 (6.7-

44.9) 

Total bilirubin 

μmol/L M 

6.8 (3.4-

17.1) 

12.2 

(5.6-

42.9) 5.2-41 

13.9 (6-42) 

5.1-17 

 Total < 

17.1 

Direct< 

6.84  
Total bilirubin 

μmol/L F 

2.3 (0.3-

10.6) 

9.6 (4.4-

26.8) 

10 (4.5-

31.3) 

Total cholesterol 

(mmol/L) M 

4.8 (3.2-

5.3) 

3.8 (2.5-

5.5) 
0-5.5 

3.77 (2.32-

5.67) 
0-6.2 <5.82 

Total cholesterol 

(mmol/L) F 

4 (3.1-

5.6) 

3.9 (2.6-

5.9) 

3.92 (2.82-

5.50) 

Triglyceride 

(mmol/L) M 

1.1 (0.7-

2.2) 

0.9 (0.4-

2.7) 
0-2.9 

0.91 (0.39-

3.01) 
0-1.8 0.45-2.26 

Triglyceride 

(mmol/L) F 

1.0 (0.6-

2.1) 

0.8 (0.4-

2.5) 

0.79 (0.38-

2.18) 
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In this modified table, references from other African region and U.S. are added for 

comparison (Adedara et al., 2014; Kratz et al., 2004; Saathoff et al., 2008). The calculated 

ranges are very useful, in that currently there is a strong demand of improving personal 

health in the large amount of underdeveloped countries and developing countries in Africa 

(Bultman, 2014). 

Table 2-5. Reference ranges of liver function related enzymatic activities. 

Sources Total bilirubin ALT AST GGT ALP Albumin 

Reference 1, 

25 °C 
0.2–1 mg/dL 8–30 U/L 

10–40 

U/L 

Female 4–18 

U/L Male 6–28 

U/L 

14–80 

U/L 
NA 

Reference 2, 

37 °C 
< 17 μmol/L 10–37 U/L NA 

Female 23 U/L 

Male 33 U/L 

39–

128 

U/L 

35–50 

g/L 

Reference 3, 

37 °C 

0.2-1.2 

mg/dL/(0–0.4 

mg/dL) 

Female 10–28 

U/L Male 13–40 

U/L 

10–59 

U/L 

Female 1–24 

U/L Male 2–30 

U/L 

14–80 

U/L 
NA 

Reference 1 is excerpted from (Koff, 1980); Reference 2 excerpted from (Blann, 2013; 

Higgins, 2007); Reference 3 is excerpted from (Burtis et al., 2012). 

 

Specificially for America, a representative and useful reference range was 

generated from the third National Health and Nutrition Examination Survey (NHANES III, 

Table 2-6), which is essentially a large cross-sectional study of the civilian 

noninstitutionalized U.S. population, conducted from 1988 to 1994 (Lazo et al., 2008). The 

participants are 1864 adults with equal sex distribution, aged over 18 years old, also with 

equally split between age 20 to 39 years and age 40 years or older. In the study, alanine 

aminotranferase (ALT), aspartate aminotranferase (AST), γ-glutamyltransferase, alkaline 

phosphatase, and total bilirubin were selected as major tested biomarkers. It was calculated 

from the study, the upper limit of cutoff values for the normal levels of the liver test results 

are suggested as: AST levels higher than 37 U/L for men and 31 U/L for women, ALT 

levels higher than 40 U/L for men and 31 U/L for women, γ-glutamyltransferase levels 
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higher than 51 U/L for men and 33 U/L for women, alkaline phosphatase levels higher than 

177 U/L, and total bilirubin levels higher than 17.1 μmol/L (> 1 mg/dL).  

Table 2-6. Liver test results in the U.S. NHNES III, 1988-1994. 

Serum composition Median level & range 

Alanine transferase  13 U/L (3–40 U/L) 

Aspartate transaminase 19 U/L (8–37 U/L) 

Gamma-glutamyltransferase 19 U/L (3–51 U/L) 

Alkaline phosphatase 82 U/L (17–174 U/L) 

Total Bilirubin 9 μmol/L (1.7–17.1 μmol/L) 

 

Abnormal results of LFT test may entail a repeat analysis of one or more 

components, or the whole panel. In the case that a person with liver disease is being 

medically treated, results of the liver panel can help to determine if liver function or damage 

is worsening or improving. The LFT results from American Association for Clinical 

Chemistry (AACC, Table 2-7) Child-Turcotte class (Table 2-8), known as the “Child” 

class, can be very helpful in monitoring the prognosis of liver functionality. By using this 

table, a “Child” score is calculated by adding the points as determined by the patient's 

laboratory results: class A = 0 to 1; class B = 2 to 4; class C = 5 and higher. The results can 

approximately estimate the severity of liver dysfunction: class A is associated with a good 

prognosis, and class C is associated with limited life expectancy. Ascites and 

encephalopathy are graded as “none”, “controlled with routine medical therapy” or 

“refractory to medical therapy” (Pugh et al., 1973).  

 

Table 2-7. Suggested interpretation of LFT results from American Association for Clinical 

Chemistry (AACC). 

Type of liver 

abnormality 
Bilirubin 

ALT and 

AST 
ALP Albumin 

Blood 

prothrombin 

time 
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Acute liver 

infaction 

damage due to 

infection, 

toxins or drugs, 

etc. 

normal or 

increased 

usually after 

alt and ast 

are already 

increased 

Usually 

greatly 

increased (> 

10 times); 

ALT is 

usually 

higher than 

AST 

normal or 

only 

moderately 

increased 

normal 
usually 

normal 

Chronic forms 

of various liver 

disorders 

normal or 

increased 

Mildly or 

moderately 

increased; 

ALT is 

persistently 

increased 

normal to 

slightly 

increased 

normal normal 

Alcoholic 

Hepatitis 

normal or 

increased 

AST is 

moderately 

increased, 

usually at 

least twice 

the level of 

ALT 

normal or 

moderately 

increased 

normal normal 

Cirrhosis 

may be 

increased 

but this 

usually 

occurs later 

in the 

disease 

AST is 

usually 

higher than 

ALT but 

levels are 

usually 

lower than in 

alcoholic 

disease 

normal or 

increased 

normal or 

decreased 

usually 

prolonged 

Bile duct 

obstruction, 

cholestasis 

normal or 

increased; 

increased in 

complete 

obstruction 

Normal to 

moderately 

increased 

increased; 

often 

greater than 

4 times 

what is 

normal 

normal or 

decrease 

if is 

chronic 

usually 

normal 

Metastasized 

cancer in liver 

usually 

normal 

Normal or 

slightly 

increased 

usually 

greatly 

increased 

normal normal 

Cancer 

originating in 

the liver 

(hepatocellular 

carcinoma, 

HCC) 

may be 

increased, 

especially if 

the disease 

has 

progressed 

AST higher 

than ALT 

but levels 

lower than 

that seen in 

alcoholic 

disease 

normal or 

increased 

normal or 

decreased 

usually 

prolonged 
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Autoimmune 

Deficiency 

normal or 

increased 

Moderately 

increased; 

ALT usually 

higher than 

AST 

normal or 

slightly 

increased 

usually 

decreased 
normal 

Retrieved from liver function test interpretation, Lab Tests Online, American Association 

for Clinical Chemistry, last modified on March 10, 2016. 

 

 Table 2-8. Estimate of liver function using the Child-Turcotte Class. 

Metrics 
Points 

0 1 2 

Albumin 
More than 3.5 g/dL (35 

g/L) 

2.8 to 3.5 g/dL 

(28 to 35 g/L) 

Less than 2.8 

g/dL (28 g/L) 

Bilirubin 
Less than 2 mg/dL (34 

μmol/L) 

2 to 3 mg/dL (34 

to 51 μmol/L) 

More than 3 

mg/dL 

Prolongation of 

prothrombin 

time 

Less than 4 seconds 4 to 6 seconds 
More than 6 

seconds 

Ascites None Controlled Refractory 

Encephalopathy None Controlled Refractory 

 

2.4.8 Liver and sex endocrine disorder 

Besides assessing liver function and metabolic homeostasis, LFT is also important 

in the diagnostics of endocrine disorder. Liver serves as a pivotal and central axis 

connecting the environment input, endogenous homeostasis, blood cleaning, detoxification 

of xenobiotics, the metabolism and delivery of nutrients (Hoekstra et al., 2013; Kamath et 

al., 2001; Pratt and Kaplan, 2000). It is the most critical organ in maintaining metabolic 

and endocrine homeostasis. There are numerous and constant relationships and feedback 

mechanisms between liver and other endocrine organs including pituitary gland, thyroid 

gland, adrenal gland, pancreas, ovary, testis etc. For this reason, abnormality of liver may 

become the cause of other endocrine disorders (Johnston, 1999). Regarding such 

correlation, there are many clinical examples, e.g. hypothyroidism can be induced by 
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primary biliary cirrhosis (Huang and Liaw, 1995); hyperthyroidism can be induced by 

chronic liver inflammation (Babb, 1984); Cushing’s syndrome has been reported to be 

caused by chronic liver inflammation (Burra, 2013); polycystic ovary syndrome which can 

be caused by nonalcoholic steatohepatitis and nonalcoholic fatty liver disease (Setji et al., 

2006).  

Clinical documents have shown statistically significant connection between 

hypogonadism and liver abnormalities (Bannister et al., 1986). The mechanism of the 

association between liver dysfunction and hypogonadism is complex. Male cirrhotic 

patients often show feminization, gynecomastia and redistribution of body fat, loss of 

libido and impotence during sex. In patients and rodent models with liver cirrhosis, a higher 

ratio of estrogen/androgen is noticed, with lower levels of testosterone and androstenadione 

(Coburn et al., 2000; Kew, 1987). The isolated Leydig cells, testes and testicular 

homogenates have all demonstrated reduced level of testosterone (Maheshwari and 

Thuluvath, 2011). The current opinion on the etiology is that these phenotypes are resulted 

from impaired estrogen metabolism in liver and consequent estrogenemia. Specifically, the 

damage of liver leads to deficient metabolism and secretion of estrogen, which in turn lifts 

the estrogen level in serum and gonads. Though similarly, androstenedione is not 

efficiently metabolized by liver, yet once coming into the circulation it is aromatised to 

estrone and estradiol in skin and adipose tissues. Also, estradiol can stimulate the 

production of sex hormone binding protein (SHBG) in testis, which preferably binds to 

testosterone and further decrease free testosterone/estrogen ratio (Gluud, 1988). SHBG or 

sex steroid-binding globulin (SSBG) is a glycoprotein that binds to androgen and estrogen 

and mask biological activities. Other steroid hormones such as progesterone, cortisol, and 
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other corticosteroids are bound by transcortin. The relative binding affinity of various sex 

steroids for SHBG is dihydrotestosterone (DHT) > testosterone > androstenediol > 

estradiol > estrone (Becker, 2001). In line with the theory being discussed here, it has been 

noted that orally administrated estrogen, progesterone, or commercial drugs of analogs, are 

inductive factors of hepatic adenomas, focal nodular hyperplasia and haemangiomas which 

are partly induced by the disruption of the metabolic pathway of steroid hormones in liver 

(Maheshwari and Thuluvath, 2011). In addition to the above theory, other induction of 

liver-related induction of hypogonadism include: (1) impaired supply of LDL-cholesterol 

from liver; (2) impaired secretion of insulin-like growth factor 1 (IGF-1 or somatomedin 

C) by liver, which eventually affects hypothalamus-pitutary-gonad axis.  

The measurement of circulating androgens can be exploited as a biomarker of 

hypogonadism. In human body, the main subset of androgens, known as adrenal androgens, 

is composed of 19-carbon steroids synthesized in the zona reticularis, the innermost layer 

of the adrenal cortex. The primary and most well-known androgen is testosterone. 

Dihydrotestosterone (DHT) and androstenedione (A4) are generally less known but are of 

equal importance in male development. DHT in the embryo life causes differentiation of 

penis, scrotum and prostate. Later in life DHT contributes to balding, prostate growth and 

sebaceous gland activity. Adrenal androgens function as weak steroids (though some are 

precursors), and the subset includes dehydroepiandrosterone (DHEA), 

dehydroepiandrosterone sulfate (DHEA-S), and androstenediol (A5). Although androgens 

are described as male sex hormones, both males and females have them to varying degrees, 

as is also true of estrogens. They are one of three types of sex hormones—the other types 

are estrogens such as estradiol and progestogens such as progesterone. 
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To summarize, liver function test is an important clinical reference which is needed 

for precise analysis of disease progress and evaluation of individual nutritional status. Gut-

microbiota dependent metabolism is a kind of frontier “center” which links environmental 

chemical input, endogenous functional metabolites and host physiology. Accordingly, a 

version that integrates gut-microbiota, intestinal epithelium, gut associated lymph tissue 

(GALT), endocrine system and liver function is very necessary and helpful. The 

combination of traditional clinical reference data, such as biopsy and liver function test, 

with novel omics-based analysis, bioinformatics and biostatistics may largely enhance the 

overall strength and precision of clinical medical treatment as well as the various researches 

conducted in laboratory environment. 
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CHAPTER 3. AFLATOXIN B1 DISRUPTS GUT-MICROBIAL METABOLISMS OF 

SHORT CHAIN FATTY ACIDS, LONG CHAIN FATTY ACIDS AND BILE ACIDS 

IN MALE F344 RATS 

 

3.1 Introduction 

Aflatoxins (AFs) are a class of food-borne mycotoxins mainly produced by 

Aspergillus Flavus and A. Parasiticus (Kumar et al., 2016). These toxigenic fungi 

commonly contaminate soil, and colonize on the surface of cereals, especially for maize, 

and groundnuts, once humidity (> 17.5%) and temperature (> 24 ºC) meet their growth 

needs (Trenk and Hartman, 1970). Such environmental conditions have made the tropical 

area more susceptible for the food contamination and human exposure to AFs, especially 

in the low- and middle-income developing nations (Qian et al., 2013b). Aflatoxin B1 (AFB1) 

is widely recognized as the most harmful AF, due to its potent toxicity, genotoxicity, and 

carcinogenicity as well as acute aflatoxicosis in animals and human populations (Kew, 

2013; Qian et al., 2013c; Wang and Groopman, 1999). Accordingly, the detection and 

assessment of AFB1 contamination in human food and animal feed has been a global 

concern for food safety and public health (Henry et al., 1999; Torres et al., 2014). On the 

other hand, remarkable efforts have been made to develop novel prevention/intervention 

strategies against AFB1-induced adverse health effects, including liver cancer risks and 

growth/developmental disorders in high-risk and vulnerable populations (Mitchell et al., 

2014; Xue et al., 2016).  
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Human gastrointestinal tract harbors a complex microbiota that contains more than 

100 trillion microbes with over 400 species and carries 150 times more genes than the 

human genome (Qin et al., 2010). The gut-microbiota constantly provides host with 

hundreds of micronutrients and functional metabolites, which actively participate into the 

host enterohepatic cross-talk, as well as the physiological regulations of many organs and 

systems (Ursell et al., 2014). In recent years, next-generation sequencing (NGS) 

technologies have uncovered all kinds of intricate connections among gut-microbiota, 

dietary composition and host health (Chakraborty et al., 2010; Holmes et al., 2012). In this 

three-way relationship, oral exposure to xenobiotics or dietary composition could lead to 

the alteration of gut-microbiota, and the changes of gut-microbiota may further influence 

host health in a significant way (Brown and Hazen, 2015). Emerging evidences have 

demonstrated the causative links between gut-microbial microbiome/metabolome and a 

series of health problems in host, e.g. obesity, metabolic syndrome, non-alcoholic fatty 

liver disease (NAFLD), colon cancer, inflammatory bowel disease (IBD), and 

cardiovascular disease (Flint et al., 2012; Holmes et al., 2012; Lee and Hase, 2014; Louis 

et al., 2014; Ursell et al., 2014). Therapeutic manipulation of gut-microbiota has also 

exhibited the potential to mitigate a number of metabolic diseases such as obesity, type-2 

diabetes mellitus (T2DM), IBD and NAFLD, most probably by modifying gut-microbiota 

dependent metabolites, which are either derived from food by gut-microbiota, or the 

endogenous metabolites of gut-microbes (Kootte et al., 2012; Schulberg and De Cruz, 

2016).  

We have previously performed 16S rRNA analysis and found the compositional 

change of fecal microbiome in F344 rats following repeated oral exposure to AFB1 (Wang 
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et al., 2016). Through 16S rRNA sequencing technique, notable enrichment of 

Clostridiales spp. and depletion of Lactobacillales spp. were found in the rat feces. In the 

work presented here, the potential impact of such compositional changes on host health at 

metabolic level was further explored by examining a group of fecal organic acids that are 

highly associated with gut-microbiota. The studied metabolites include acetic acid, lactic 

acid, propionic acid, butyric acid, valeric acid, hexanoic acid, cholic acid, deoxycholic acid, 

pentadecanoic acid (15:0), 3-phenyllactic acid, pyruvic acid, and linoleic acid (cis-9,cis-

12-18:2). The metabolism of these organic acids heavily depends on the metabolic 

pathways and community structure of gut-microbiota, and also play important roles in host 

physiology and global metabolic pathways.  

 

3.2 Materials and methods 

3.2.1 Chemicals and reagents 

Pyridine, 2-nitrophenylhydrazine, N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC), 2-ethylbutyric acid, acetic acid, propionic acid, 

butyric acid, valeric acid, hexanoic acid, cholic acid, pentadecanoic acid, 3-phenyllactic 

acid, pyruvic acid, linoleic acid, deoxycholic acid, bisphenol A, hippuric acid, 

heptadecanoic acid, AFB1 and dimethyl sulfoxide (DMSO) were all purchased from 

Sigma-Aldrich Inc. (St. Louis, MO, USA). AFB1 stock solution (25 mg/ml) was prepared 

in DMSO and diluted to appropriate treatment concentrations upon using. All other 

reagents and analytical solvents, methanol, acetonitrile and water were purchased at the 

highest grade commercially available from Honeywell (Morris Plains, NJ, USA).  
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3.2.2 Animal treatment 

Male Fischer 344 rats (100–120 g) were purchased from Harlan Laboratory 

(Indianapolis, IN, USA). The animal housing environment was under controlled light/dark 

cycle (12 hr/12 hr) with a temperature of 22 ± 2 ºC and relative humidity of 50 %–70%. 

Purified AIN 76A diet and tap water were maintained every day. Upon arrival, animals 

were allowed for one week of environmental acclimation. One hundred male F344 rats 

were divided into four groups and were gavaged with 0, 5, 25, and 75 μg AFB1/kg body 

weight (B. W.) per day, respectively. DMSO was used as vehicle solvent. The details of 

animal protocol were reported in earlier publications, together with body indexes, 

histopathological assessment and AFB1-Lys pharmacokinetic data (Mohammadagheri et 

al., 2016; Qian et al., 2014; Qian et al., 2016; Qian et al., 2013c). Briefly, animals were 

daily administered with AFB1 by gavage for four weeks. From the second week to the 

fourth week, rat feces were daily collected, and weekly pooled for each group. All fecal 

samples were stored in −80 ºC freezer. Animal husbandry and care, AFB1 dosing protocol, 

and sample collection were approved and in strict accordance with the requirements and 

regulations of the Institutional Animal Care and Use Committee at the University of 

Georgia. 

 

3.2.3 Sample quenching and extraction 

Sample extraction procedure was similar to what previously published with 

modifications (de Jonge et al., 2012; Hernández Bort et al., 2014). Cold methanol (−80 ℃) 

based quenching and extraction were applied to the fecal samples for sample pre-treatment. 

The purpose of using cold methanol was to avoid the loss of volatile compounds, and also 
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because methanol is a solvent chemically appropriate for the reaction of 2-NPH 

derivatization (Peters et al., 2004; Torii et al., 2010; Winder et al., 2008). To perform 

sample extraction, 200 mg rat feces was transferred to the Mobio PowerLyzer tube with 

pre-loaded glass beads (0.1 mm i.d.). One milliliter of cold methanol was immediately 

added into the tube, and fecal pellet was gently crushed using a glass pestle. After grinding, 

0.5 mL cold methanol was slowly added to wash the pestle. Then the tube was capped 

tightly and fastened on a rotary vortex to undergo 20 min vortex at maximum level using 

a Vortex-Genie 2 Mixer (Scientific Industries). During vortex, sample tube was put back 

on ice for 2 min in every 5 min, and finally underwent centrifugation at 12,000 rpm for 10 

min to spin down cellular debris. A volume of 100 µL supernatant was transferred to an 

Eppendorf tube, and 50 µL internal standard (2-ethylbutyric acid) stock solution was 

spiked into the supernatant to achieve a concentration of 1 µg/µL, which was used to 

compensate technical variabilities. 

 

3.2.3 2-Nitrophenylhydrazine (2-NPH) derivatization 

To perform derivatization, 150 µL sample extract (with internal standard added) 

was mixed with 45 µL derivatization solution which was freshly prepared by mixing 15 

µL EDC solution (0.05 g/mL H2O), 15 µL 2-NPH solution (12.5 mg/mL methanol) and 15 

µL 3% pyridine in methanol (v/v). After mild vortex, the tubes were transferred to water 

bath at 60 °C for 60 min. The tubes then were allowed to stay in room temperature for 5 

min and went through brief centrifugation in order to collect the liquid left on the tube wall. 

All sample vials were kept in 4 °C sample cooling tray and the analysis was finished within 

24 hours. 
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3.2.4 HPLC analysis 

An Agilent 1200 HPLC system, consisted of a degasser, a quarterly pump, an 

autosampler, a diode-array detector, and a fluorescence detector, was used to perform 

HPLC-profiling analysis. The chromatographic separation was conducted in a Nucleosil 

C18 reversed-phase column (250 mm × 4 mm i.d.; ES industries, NJ, USA) with particle 

size of 5 μm and pore diameter of 120 Å. The injection volume was 100 µL and flow rate 

was kept at 1 mL/min. Column oven temperature was set as 40 °C. Mobile phase A was 

pH 4.5 acidified water adjusted by hydrochloric acid. Mobile phase B was acetonitrile. The 

gradient eluting condition was: 90% A to 80% A in 0–12 min; 80% A to 70% A in 12–20 

min; 70% A to 60% A in 20–30 min; 60% A to 45% A in 30–41 min; 45% A to 10% A in 

41–43 min; then keeping at 10% A in 43–58 min; finally, from 10% A to 90% A in 58–61 

min for re-balance. The detection channel is 400 nm by DAD, with reference wavelength 

at 510 ± 60 nm. The representative chromatogram is shown in Figure 3-1. Lower limit of 

detection (LLOD), regression standard curves, as well as the other necessary quantitative 

parameters used for HPLC-profiling analysis are listed in Table 3-1. SCFAs were 

recovered using the recovery rates averaged from the feces spiked with SCFA standards of 

~50%, ~100%, and ~200% of their levels in control group (Table 3-3). The concentrations 

of other interested analytes were determined using the recovery rates of structurally close 

standards which have similar or close structure to the analytes. Specifically, the recovery 

rate of hippuric acid was used to recover phenyl acids (PAs); heptadecanoic acid was used 

to recover long chain fatty acids (LCFAs), and bisphenol A was used to recover bile acids. 

Further, 2-ethylbutyric acid was used to eliminate the technical variabilities, since it has 

similar structure with SCFAs. Bisphenol A was used as standard to calculate recoveries for 
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bile acid and derivatives because it is considered to have close structure with estradiol, 

which was previously used as internal standard for quantitative analysis of bile acid 

(Junichi et al., 1978; Rubin, 2011). Plus, in current method, no other commercially 

available compound was found to be chromatographically separatable with bile 

constituents for the calibration of recovery. 

 

3.2.5 Method validation and optimization  

Methanol blanks were spiked with SCFA standards to generate test solutions with 

concentrations of ~50%, ~100%, and ~200% of the actual SCFA amounts measured in the 

sample extracts. The test solutions were derivatized using 2-NPH and EDC and were 

immediately used for HPLC-profiling analysis. The analytical precision of the method was 

validated based on: (1) inter-day coefficient of variation (CV) of the peak intensities of 

SCFAs at three spike levels in three consecutive days, with one bunch performed per day; 

(2) inter-assay CV of the peak intensities of SCFAs at three spike levels in seven 

consecutive assays; (3) intra-assay CV of the peak intensities of SCFAs at three spike levels, 

with four repeats conducted at each level. Analytical accuracy was examined using 

recoveries with CV, and the formula to calculate recovery rate is: recovery % = (analyte 

amount measured in the extract of standard-spiked feces – analyte amount measured in the 

extract of non-spiked feces) × 100/(amount of spiked analyte) (Han et al., 2013b).  

 

3.2.6 16S rRNA analysis 

Briefly, total fecal genomic DNA which contains 16S rRNA was extracted using 

QIAamp DNA stool mini kits (QIAGEN, Valencia, California). A 2-step Quadruple-index 
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PCR method was used to prepare the 16S rRNA gene libraries according to Klindworth et 

al. (2013). Sequencing of these 16S rRNA fragment libraries was performed in the Georgia 

Genomic Facility (University of Georgia, Athens, Georgia) using the Illumina MiSeq with 

v2 500 cycle chemistry, resulting in paired-end 250 base reads to obtain approximately 30 

000 reads per sample.  

The 16S rRNA fragment amplified in this study is from site 358 to 784 under 

Escherichia coli system of nomenclature (Klindworth et al., 2013). The raw paired-end, 

demultiplexed sequence read was merged using FLASH 1.2.9 in Geneious 8.1 software 

(Biomatters Inc, San Francisco, California). All internal tags, base spacers, and locus-

specific primers of merged sequences were trimmed and sequences outranged 400–450 

base-pairs were discarded. Outputs from Geneious 8.1 were quality filtered using QIIME 

pipeline (Quantitative Insights Into Microbial Ecology) (Caporaso et al., 2010). 

Representative sequences for each OTU were compared with the Greengene 16S rRNA 

gene database 13-8 release (DeSantis et al., 2006) using uclust algorithm with the similarity 

threshold of 90%. The top 3 database hits that matched the above representative sequences 

for each OTU were selected.  

 

3.2.7 Statistics and software 

Data normality examination, homogeneity test, one-way ANOVA, and Welch’s T-

test, were all performed using SPSS 22. Levene statistic was used to test homogeneity of 

variances and Welch-Brown-Forsythe statistic was used to test the equality of means. 

Tukey’s test was used for post-hoc analysis in ANOVA. When data failed to follow 

normality of distribution, Kruskal-Wallis H test was applied to replace one-way ANOVA. 
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Mixed-effects model regression was performed using STATA 14.1. Pearson’s correlation 

analysis, and construction of heat map and hierarchical tree were performed using R. 

Mann-Whitney U test was used to compare the differences of fecal organic acids (except 

for SCFAs) when dose effect was the only factor being analyzed, with p value < 0.05 

considered to be statistically significant. 

 

3.3 Results  

3.3.1 Validation and optimization of HPLC-profiling method 

Our initial effort was to optimize conditions for fecal sample extraction and 

metabolites enrichment. However, centrifugal evaporation resulted in significant loss of 

SCFAs (20%–50%) in the sample extracts, as found by HPLC analysis (data not shown). 

For this reason, sample enrichment was avoided during sample preparation. Nonetheless, 

interested analytes are still detected from fecal samples. In terms of pre-column 

derivatization and HPLC-profiling analysis, the validation work included intra-assay 

precision, inter-assay precision, inter-day precision, and accuracy. Shown in Table 3-3, 

most values of measured metabolites showed CV less than 8%. The sensitivity and LLOD 

were determined for all analyzed metabolites, as shown in the Table 3-1. Internal standards 

were used to confirm the precision and accuracy, and recovery rate was ranged from 33% 

to 74% for the all SCFA standards spiked into fecal samples of the control and AFB1-dosed 

rats, with CV less than 5%. Using this validated method, the peak identity and 

concentrations of interested metabolites were further determined from the chromatogram 

of fecal extracts, as shown in Figure 3-1. Four categories of metabolites were measured in 

the study: SCFAs, including acetic acid, butyric acid, hexanoic acid, lactic acid, propionic 
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acid, and valeric acid; LCFAs, including linoleic acid (cis-9, cis-12-18:2) and 

pentadecanoic acid (15:0), bile acids, including cholic acid, deoxycholic acid, and other 

metabolites, such as 3-phenyllactic acid and pyruvic acid (Table 3-1).  

 

3.3.2 Aflatoxin B1 exposure affects SCFA production of gut-microbiota 

Rats were exposed to AFB1 at doses of 0, 5, 25, and 75 μg/kg b.w., which are noted 

as control, low-dose, middle-dose and high-dose groups in the study. As shown in Figure 

3-2 and Table 3-4, significant change of fecal SCFA levels was found in AFB1-exposed 

groups. The measured levels of SCFAs in the untreated control group were comparable 

over the time course from 2- to 4-week, but notable reduction of acetic acid, propionic acid, 

butyric acid, hexanoic acid, and lactic acid were detected in the rat feces of AFB1-exposed 

groups. In the low-dose group, fecal SCFA levels seemed to be affected by the time of 

exposure. The fecal levels of acetic acid, propionic acid, butyric acid, lactic acid, valeric 

acid and hexanoic acid were 46.6%, 39.9%, 68.4%, 79.9%, 95.3% and 63% of the control 

after two weeks of exposure, but the percentages went to 70.7%, 77.6%, 35.1%, 34.4%, 

75.6%, and 86.7% of the control after four weeks of exposure, indicating the time-effect of 

AFB1-exposure on SCFA levels in the low-dose group. The fecal levels of SCFAs in the 

middle-and high-dose groups were generally not affected by the exposure time, except for 

propionic acid in middle-dose group at 2-week, and lactic acid and hexanoic acid in high-

dose group at 4-week, which showed about 50% changes of fecal levels compared with 

control. As shown in Table 3-4, the fecal levels of six SCFAs in the middle-dose group, 

were 17.7%, 31.1%, 26.1%, 20.1%, 90.7%, and 19.9% of the control in 2-week, and were 

21.6%, 15.3%, 24.6%, 17.2%, 88.9%, and 27.3% of the control in 4-week. Similarly, In 
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the high-dose group the six SCFAs were 22%, 22.2%, 21.9%, 12.1%, 44.2%, and 20.5% 

of the control in 2-week, and were 25%, 34.4%, 17.2%, 6.8%, 42.2%, and 52% of the 

control in 4-week. Remarkable changes were found for fecal propionic acid level in 

middle-dose group, which was reduced from 31.1% of control to 15.3% of control from 2-

week to 4-week; valeric acid in high-dose group, which was reduced from 12.1% of control 

to 6.8% of control; and lactic acid in high-dose group, which was elevated from 20.5% of 

control to 52% of control from 2-week to 4-week.  

To examine the AFB1 dose-, time-, and time × dose interaction effects on fecal 

SCFA levels, mixed-effects regression model was applied to analyze the linear correlation 

between the AFB1-dose/time and SCFA levels. As shown in Table 3-2, significant dose 

effect and dose × time interaction effect were found. Further, Pearson’s correlation analysis 

was performed to examine the possible link between the changes of SCFA levels and the 

community structure of gut-microbiota. The correlation results were shown in the 

hierarchical tree and heat map in Figure 3-3. Briefly, strains belonging to Firmicutes 

Clostridiales order were highly clustered and showed inverse correlation with the fecal 

levels of SCFAs following AFB1-exposure, while Lactobacillales Streptococcus and 

Clostridiales Roseburia, two SCFA-producing strains, were depleted in the feces. All 6 

SCFAs are correlated in the same cluster of Pearson’s r distance.  

 

3.3.3 Aflatoxin B1 exposure affects metabolism of other gut-microbiota dependent 

organic acids 

We next examined the impacts of AFB1 treatment on a set of key organic acids after 

4 weeks of AFB1 exposure, including cholic acid, deoxycholic acid, 3-phenyllactic acid, 
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pyruvic acid, pentadecanoic acid (15:0), and linoleic acid (cis-9, cis-12-18:2). Oral AFB1 

exposure significantly elevated fecal LCFAs (linoleic acid and pentadecanoic acid).  

Specifically, the level of linoleic acid was 95.51 ± 24.18 ng/mg in the control group , and 

increased to 1,274.82 ± 363.02 ng/mg in the low-dose group and 1,079.18 ± 760.29 ng/mg 

in the middle-dose group; the level of pentadecanoic acid in the control group was 20.26 ± 

21.99 ng/mg, and increased to 64.76 ± 36.57 ng/mg in the low-dose group and 74.60 ± 

53.35 ng/mg in the middle-dose group; the most significantly altered organic acid was 

linoleic acid, with over 10-fold increase found in low- and middle-dose groups (Figure 3-

4).  

Oral AFB1 exposure also significantly elevated fecal levels of cholic acid, pyruvic 

acid, and 3-phenyllactic acid. The level of cholic acid in the control group was 56.15 ± 

27.15 ng/mg, and increased to 128.46 ± 15.35 ng/mg in the low-dose group and 122.60 ± 

7.32 ng/mg in the middle-dose group; the level of pyruvic acid in the control group was 

38.46 ± 26.92 ng/mg, and increased to 75.57 ± 22.18 ng/mg in the low-dose group and 

175.23 ± 74.98 ng/mg in the middle-dose group, and the level of 3-phenyllactic acid in the 

control group was 28.82 ± 9.04 ng/mg, and increased to 83.89 ± 18.10 ng/mg in the low-

dose group and 107.84 ± 74.9 ng/mg in the middle-dose group, respectively.   

On the other hand, the level of deoxycholic acid was significantly reduced, to about 

the half level (5.13 ± 5.09 ng/mg) in the low-dose group from 10.18 ± 8.69 ng/mg in the 

control group, and completely dropped to undetectable level in the middle-dose group.  

 

 

 



233 
 

3.4 Discussion 

Results of this study clearly demonstrated that up to 2-week oral AFB1 exposure 

disrupted metabolism of gut microbiota-dependent organic acids, as evidenced by 

significant reduction in fecal level of SCFAs and deoxycholic acid, and significant 

increases in LCFAs and other organic acids such as pyruvic acid, 3-phenyllactic acid, and 

cholic acid. All these microbial metabolites play key roles in the metabolism of gut-

microbiota and the maintenance of host nutrition and health.  

The detection of trace amounts of SCFAs in complex media, e.g. bio-fluids and 

fecal extracts, has been reported by several studies using HPLC-profiling combined with 

pre-column derivatization with 2-NPH (Han et al., 2013a; Miwa et al., 1985; Peters et al., 

2004), but the application of this method has not yet reported in AFB1-exposed rat models. 

The chemical derivatization is usually performed in mild aqueous or alcohol environment, 

in which carbonyl compounds (carboxylic acid, aldehyde and ketone) bonded to 2-NPH 

and form hydrazides. The reaction is activated by water-soluble EDC which serves as 

carbodiimide crosslinker. Before in-lab analysis, method validation was conducted to 

confirm whether the analytical procedure is suitable and reliable for a specific analytical 

task (VanHook, 2016). The accuracy and reliability of analytical method were further 

carefully validated (Table 3-3). The measured values and inter-class ratio of SCFAs in our 

study are comparable with several other publications (Cummings et al., 1987; Torii et al., 

2010; Zhao et al., 2006).   

In this study we found significant inhibitory effects of AFB1-exposure on synthesis 

of SCFAs, which has not previously reported. The decrease in SCFAs was consistent with 

the depletion of SCFA-producing strains such as Lactobacillales Streptococcus and 
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Clostridiales Roseburia (Duncan et al., 2002; Kleessen et al., 1997). SCFAs are a group 

of beneficial aliphatic acids that are mainly produced by the anaerobic bacterial 

fermentation of resistant starches and insoluble fibers in the gastrointestinal tract of human 

and other mammals (Brockman, 2005). They are structurally constructed by 1–6 carbon 

atom(s), including formic acid (C1), acetic acid (C2), propionic acid (C3), butyric acid 

(C4), valeric acid (C5), hexanoic acid (C6), and a variety of branched-chain isomers of 

these acids. A variety of nutritional and physiological associations of SCFAs with liver 

diseases, general immunity, IBD, cardiovascular disease, and diabetes were found in many 

epidemiological studies and in various in vivo and in vitro models (Corrêa-Oliveira et al., 

2016; Galisteo et al., 2008; Morrison and Preston, 2016; Wong et al., 2006; Zhao et al., 

2006). Acetic acid, butyric acid and propionic acid can be produced by gut-microbiota via 

fermentation of insoluble fibers (Corrêa-Oliveira et al., 2016; Morrison and Preston, 2016; 

Torii et al., 2010). SCFAs were mainly produced from the fermentation process of certain 

strains such as Lactobacillales Streptococcus. The aflatoxin-caused reduction in these 

microbial strains (Wang et al., 2015) could eventually affect the fermentation process and 

cause reduction of SCFAs. Mixed-effects model analysis showed that—three major SCFAs, 

i.e. acetic acid, butyric acid and propionic acid were the most significantly affected by 

AFB1-dose and dose × time interaction, but not time of treatment (Table 3-2). It was 

demonstrated in our earlier 16S rRNA analysis, that the adaption of gut-microbiota 

community structure was featured by the elevation of relative abundances of Clostridiales 

spp., but decrease of Lactobacillales Streptococcus and Clostridiales Roseburia (Wang et 

al., 2016). Given that dose-response was also found for specific gut-microbial strains, 

Pearson’s correlation analysis between fecal SCFA levels and gut-microbial strains was 
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performed to show their correlation. We found that strains from Firmicutes Clostridiales, 

an order associated with diarrhea in human and other mammals (Suchodolski et al., 2015), 

were highly clustered, and exhibited inverse correlation with SCFAs. By contrast, the 

relative abundances of Lactobacillales Streptococcus and Clostridiales Roseburia were 

positively correlated with fecal SCFAs. Both of these microbes are SCFA-producing 

strains (Duncan et al., 2002; Kleessen et al., 1997). The depletion of SCFAs in feces 

reflected the suppression of microbial fermentation on resistant starches and insoluble 

fibers. This may further result in a wide range of adverse consequences, because the 

receptors of SCFAs such as GPR43, GPR41, OLFR78, GPR109A, are extensively 

distributed in different organs and systems, and are involved in a myriad of regulatory axis 

and pathways, such as mobility of gut epithelium, liver lipogenesis, global immunity, cell 

cycle, oncogenesis, apoptosis and proliferation (Brown et al., 2003; Natarajan and Pluznick, 

2014; Smith et al., 2013). Moreover, dietary supply of SCFAs has recently been found to 

be able to protect against type-I diabetes in mice model (Wen and Wong, 2017).  

In addition to SCFAs, there are a great number of organic acids present in gut and 

feces that play important physiological roles. They are either food-derived nutrients or the 

metabolic products generated in gut-microbiota and host metabolisms. Interested organic 

acids in our study included fecal linoleic acid (cis-9, cis-12-18:2), pentadecanoic acid 

(15:0), pyruvic acid, 3-phenyllactic acid, cholic acid, and deoxycholic acid, which were 

remarkably altered in the feces following AFB1 exposure (Figure 4). Linoleic acid is an 

omega-6 polyunsaturated fatty acid known as an essential dietary nutrient that cannot be 

de novo synthesized by human body. The unsaturated fatty acids are known to carry with 

various health-promoting functions, such as antioxidant defense, suppression of blood 
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levels of triglycerides and cholesterol, maintenance of glucose tolerance, and mitigation of 

hyperinsulinemia (Whelan and Fritsche, 2013). Most of these beneficial functions has been 

identified in conjugated linoleic acids, mainly as cis-9, trans-11 C18:2, trans-9, trans-11 

C18:2 and trans-10, cis-12 C18:2 (Worley and Powers, 2016; Yatsunenko et al., 2012). 

Pentadecanoic acid is known to carry a variety of regulatory functions in cell signaling, 

glucose utilization, and the maintenance of the integrity and stability of gut epithelium 

(Santaren et al., 2014). The abnormal accumulation of linoleic acid and pentadecanoic acid 

in rat feces suggested a suppressed intestinal absorption of LCFAs, which is 

disadvantageous for host health. The deficient bioavailability may be caused by several 

conditions. First, the decrease of SCFAs may affect the epithelial delivery of nutrients to 

hepatic portal vein, since SCFAs are well known nutrients that are able to enhance colonic 

blood flow and epithelial motility by providing energy and activating G-protein receptors 

(Scheppach, 1994). Second, certain gut-microbial strains are capable of transferring 

LCFAs into their conjugated forms which are easier to be absorbed (Druart et al., 2014). 

For example, Lactobacillus, Propionibacterium and Bifidobacterium species can produce 

conjugated linoleic acid from dietary linoleic acid by using microbial lipoxygenases and 

cyclooxygenases—a process known to facilitate the absorption of LCFAs (Yatsunenko et 

al., 2012). Our previous 16S rRNA analysis demonstrated that these strains were 

suppressed by AFB1, which could affect the uptake and reduce bioavailability of LCFAs 

(Wang et al., 2016). 

Bile acids are endogenous steroid acids synthesized from cholesterol by liver cells 

of most vertebrates. Different species have distinct molecular forms of bile acids generated, 

but some major types of bile acids are shared by different species, e.g. cholic acid and 
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chenodeoxycholic acid in human and rat (Whittaker and Chipley, 1986). In human, bile 

acids are stored in the gallbladder, and are released into duodenum with bile juice under 

the dietary stimulation. Upon arriving small intestine, bile acids participate in the digestion 

and absorption of fats and fat-soluble vitamins and can be further metabolized into a variety 

of secondary metabolites by gut-microbiota. In the current work, cholic acid and 

deoxycholic acid were selected as representative primary and secondary bile acids to probe 

the microbial metabolism of bile acids, since they are found in both human and rat feces at 

comparatively high levels. We found a remarkable elevation of cholic acid level with a 

significant reduction of deoxycholic acid level in AFB1 exposed rat feces. The significant 

elevation of cholic acid is generally considered to be harmful to host health. Abnormal 

increase of cholic acid is associated with liver pathogenesis such as cirrhosis and steatosis 

(Mouzaki et al., 2016), and is also known as a risk factor for intestinal inflammation 

(Camilleri, 2011). Besides, extra cholic acid in gut may partially contribute to the incidence 

of colon cancer by stimulating the growth of a small-size benign adenoma to larger size 

(Rowland, 2012). In correspondence with the increase of cholic acid, we found severe liver 

damages and pathogenesis in the AFB1-treated rats (Qian et al., 2016; Qian et al., 2013c). 

The abnormal reduction of deoxycholic acid can be attributed to the relative abundances 

of the deoxycholic acid-producing microbes, such as Lachospiraceae, Clostridiaceae, and 

Ruminococcaceae, were all decreased by AFB1 exposure (Wang et al., 2016). In both 

human studies and rodent models these strains can metabolize primary bile acids into 

secondary bile acids (Labbé et al., 2014). There are also interactions among primary bile 

acids, secondary bile acids, and SCFAs in regulating host health, and the elevation of 

intestinal primary bile acids with decreased secondary bile acid was associated with the 
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incidences of dysbiosis and IBD in humans (Lefebvre et al., 2009). The increase of fecal 

cholic acid in combination with the decrease of SCFAs were previously observed in the 

patients with colon cancer (Weir et al., 2013). 

Pyruvic acid is a well-known energetic α-keto acid that is involved in a number of 

important metabolic pathways of both gut-microbiota and host. It serves as energy supply 

to cells through Krebs cycle, and can be transferred to SCFAs by Lactobacilli strains 

through glycolytic pathway (Pessione, 2012). Pyruvic acid can be transferred to 

carbohydrates via gluconeogenesis, or participate in the biosynthesis of fatty acids after 

binding with acetyl-CoA (Kim et al., 2016). Since pyruvic acid takes such a central role in 

the catabolism of carbohydrates, its unusual accumulation in rat feces reflected a 

suppressed energy utilization and disruption of glycolysis of gut-microbiota. This may also 

result in the decrease of microbial synthesis of SCFAs (VanHook, 2016). It seems that the 

reduction of SCFAs is not only caused by alteration of community structure of gut-

microbiota, but also related with the specific metabolic pathway. Lastly, 3-phenyllactic 

acid, a central intermediate product in the upstream of phenylalanine catabolism (Stark et 

al., 1979), was accumulated in the rat feces following exposure to AFB1. The abnormal 

accumulation of 3-phenyllactic acid suggested the disruption of gut-microbial 

phenylalanine pathway (Camilleri, 2011). The phenylalanine pathway is known to generate 

L-3,4-dihydroxyphenylalanine (L-DOPA) and tyrosine. L-DOPA is the precursor to a 

number of important neurotransmitters such as dopamine, norepinephrine, and epinephrine. 

In addition, L-DOPA itself also mediates neurotrophic factor release by the brain and 

central neuro system (CNS) (Lopez et al., 2008). For these reasons, the down-regulation 
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of phenylalanine pathway may interfere with host CNS function and cause related health 

problems. 

Dietary AFB1 exposure and AFB1-induced adverse health effects remain a major 

public health problem in many tropical developing nations. The range of dosage used in 

this study (5–75 µg/kg B. W.) was relevant to human exposure, based on 300 g corn 

consumption per day (Gwirtz and Garcia-Casal, 2014) and oral exposure levels ranged 

from 100 to 1000 μg/kg corn for high-risk human populations in Kenya, Ghana, and 

Guangxi area of China (Azziz-Baumgartner et al., 2005; Groopman et al., 1992; Tang et 

al., 2009). The dose was multiplied by an adjusting factor of 6.2 in order to transfer human 

exposure to that in rats (Nair and Jacob, 2016).  

Regarding the mechanisms behind the metabolite alterations found in this study, 

there are several mechanisms involved: (1) AFB1, as a natural antimicrobial agent, can 

selectively inhibit certain bacterial strains and influence on the growth of other strains, as 

shown in the compositional changes of gut-microbiota revealed by 16s rRNA analysis; (2) 

AFB1, as a potent hepatic toxin, can damage liver—the major metabolic organ and in turn 

induce the metabolic changes for the supply of nutrients and metabolites to host cells and 

tissues, including gut cells, which may play an important role in the metabolism of gut-

microbiota. However, the more specific mechanism related to how AFB1 induces changes 

of gut-microbiota community structure and the dependent metabolites still need to be 

clarified in future study. 

Taken together, as summarized in Figure 3-5 based on our previous studies (Qian 

et al., 2014; Qian et al., 2013a; Qian et al., 2013c; Wang et al., 2016), oral exposure to 

AFB1 in rat results in significant toxic effects, biochemical alterations, and induction of 
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preneoplastic GST-P positive liver foci. With same study design, here we show that AFB1 

can induces the adverse change of community structure of gut-microbiota and significant 

disruption of multiple metabolic pathways, such as production of SCFAs, secretion and 

metabolism of bile acids, absorption of LCFAs, catabolism of phenylalanine, and 

metabolism of pyruvic acid. These pathways take central and key positions in the global 

metabolism of gut-microbiota and maintenance of host health, for examples, energy-

delivery pathways related with pyruvic acid, including gluconeogenesis, fatty acid 

synthesis, Krebs cycle and production of lactic acid. Therefore, our data suggest that gut-

microbiota may partially be involved in the pathological mechanism and progressions of 

AFB1-exposure induced adverse health outcomes in F344 rat model, and presumably also 

in humans.  
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TABLES 

Table 3-1. Analytical parameters of HPLC-profiling analysis used for the measurement 

of interested fecal metabolites 

Component 
Categor

y 
RT* 

Detectio

n 

Channel 

Regressio

n  

(X, AUC; 

Y, ng/μL) 

R² 

Linear 

Range  

ng/μL 

LLO

D 

ng/μL 

Acetic acid SCFA 14.9 400 nm 

y = 

0.0063x − 

0.3726  

0.999

3 
0.016–64.8  0.008 

Propionic 

acid 
SCFA 

19.

6 
400 nm 

y = 

0.021x − 

0.9273  

0.999 0.07–143 0.03 

Butyric acid SCFA 25.1 400 nm 

y = 

0.0256x − 

0.4994  

0.999

1 
0.078–79.5 0.04 

Valeric acid SCFA 
31.

5 
400 nm 

y = 

0.0208x − 

0.4974 

0.999 
0.054–

56.1 
0.03 

Hexanoic acid SCFA 37.6 400 nm 

y = 

0.0309x − 

0.356 

0.999

4 
0.074–75.6 0.04 

Lactic acid SCFA 
13.

8 
400 nm 

y = 

0.0244x − 

0.2351 

0.999

1 

0.11–

14.33 
0.05 

Pyruvic acid 

Alpha-

keto 

acid 

41.3  400 nm 

y = 

0.0166x + 

0.7136  

0.999

7  
6.2–500 0.19 

2-

Ethylbutyric 

acid  

IS for 

SCFA 

34.

2 
400 nm 

y = 

0.1662x - 

0.4527 

0.999

1 
0.56–1138 0.28 

Niacin PA 22.1  210 nm 

y = 

0.0313x − 

6.1768 

0.995

4  
1–430 0.25 

3-

Phenyllactic 

acid 

PA 
31.

2  
400 nm 

y = 

0.1003x − 

0.7134 

0.999

4  
4.7–300 0.58 

Hippuric acid IS for 

PA 
26.3  400 nm 

y = 

0.6161x + 

2.8275 

0.999

6 
4.45–570 2.25 

Cholic acid SA 
45.

1  
400 nm 

y = 

0.1219x − 

6.6046 

0.993

0  
3.9–250 0.49 
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Deoxycholic 

acid 
SA 47.1  400 nm 

y = 

0.0371x − 

4.8658 

0.993

0  
2.5–330 0.64 

Cholesterol Sterol 
47.

4  
400 nm 

y = 

0.0686x − 

2.4795 

0.990

0  
1.95–125 0.98 

Bisphenol A IS for 

SA 
35.0  210 nm 

y = 

0.0148x − 

6.9647 

0.992 0.33–685 0.17 

Linoleic acid LCFA 
50.

9  
400 nm 

y = 

0.3705x − 

31.314 

0.994

8  
3.9–1000 3.9 

Pentadecanoi

c acid 
LCFA 51.2  400 nm 

y = 

0.0636x − 

0.3641 

0.999

0  
1.95–500 0.5 

Heptadecanoi

c acid  

IS for 

LCFA 
54.5  400 nm 

y = 

0.1436x − 

4.5852 

0.995

2 
2.15–275 1.07 

The minimum data point in the linear regression range (R2 > 0.999) was noted as LOQ. 

Abbreviations: IS, internal standard for quality control; R2, regression coefficient; LLOD, 

lower limit of detection; LCFA, long chain fatty acid; PA, phenyl acid; RT, retention time 

(min) in chromatogram; SA, steroid acid; SCFA, short chain fatty acid. The analyte level 

which generated a signal-to-noise (S/N) ratio of 3 was noted as the LLOD for that analyte. 

Niacin and cholesterol were not detected in most sample extracts. 
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Table 3-2. Mixed-effects model analysis between AFB1-treatment (dose, time and 

interaction) and fecal levels of SCFAs  

SCFAs 

Fixed Effect Random Effect 

Dose 
S. 

E. 
p Time 

S. 

E. 
p I 

S. 

E. 
p 

Estim

ate 

S. 

E. 

Acetic 

acid 

−0.11

03  

0.0

25  

< 

0.00

1 

0.161

3 

0.1

33  

0.2

27  

10.3

61  

2.1

49  

< 

0.001 

31.28

8  

6.0

21  

Propioni

c acid 

−0.06

17  

0.0

15  

< 

0.00

1 

0.054 
0.0

82  

0.5

09  

6.71

8  

1.3

01  

< 

0.001 

11.79

8  

2.2

70  

Butyric 

acid 

−0.14

42  

0.0

15  

< 

0.00

1 

−0.0

202 

0.0

86  

0.9

21  

13.2

26  

1.6

63  

< 

0.001 

18.31

6  

3.5

25  

Valeric 

acid 

−0.00

28  

0.0

01  

< 

0.00

1 

−0.0

007 

0.0

04  

0.8

63  

7.90

0  

0.9

77  

< 

0.001 
0.026  

0.0

05  

Hexanoi

c acid 

−0.01

79  

0.0

04  

< 

0.00

1 

−0.0

074 

0.0

22  

0.7

40  

2.11

3  

0.3

65  

< 

0.001 
0.881  

0.1

70  

Lactic 

acid 

−0.02

07  

0.0

03  

< 

0.00

1 

0.022

8 

0.0

18  

0.2

10  

1.28

0  

0.2

98  

< 

0.001 
0.586  

0.1

12  

*Estimate of interaction effect resulted by both dose and treatment time on fecal SCFA 

levels. 

**I, Interaction effect. 
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Table 3-3. Results of precision and accuracy tests of 2-NPH derivatization combined 

HPLC-profiling analysis 

Intra-

assay 

precisi

on 

SCFAs 

Low Level Middle Level High Level 

Mea

n 
S.D. 

%C.

V. 

Mea

n 
S.D. 

%C.

V. 

Mea

n 
S.D. 

%C.

V. 

Acetic acid 2752  6.38  0.23  4815  
48.0

3  
1.00  

1818

1  

159.

34  
0.88  

Propionic 

acid 
203  0.33  0.16  1876  

24.4

7  
1.30  

1221

2  

115.

10  
0.94  

Butyric acid 244  2.74  1.12  1629  
36.3

0  
2.23  9249  

146.

74  
1.59  

Valeric acid 254  1.59  0.63  1529  
49.8

3  
3.26  8391  

134.

81  
1.61  

2-

Ethylbutyric 

acid 

52  0.21  0.41  535  
21.3

8  
3.99  1626  

61.5

0  
3.78  

Hexanoic 

acid 
612  8.91  1.46  9527  

339.

38  
3.56  

1558

8  

193.

44  
1.24  

Lactic acid 587  
21.6

2  
3.68  6358  

93.2

4  
1.47  9889  

177.

22  
1.79  

Inter-

assay 

precisi

on 

Acetic acid 2642  
168.

04  
6.36  4668  

192.

73  
4.13  

1710

6  

1446

.57  
8.46  

Propionic 

acid 
213  

14.0

0  
6.58  1885  

34.4

2  
1.83  

1145

7  

1277

.65  

11.1

5  

Butyric acid 263  
16.6

8  
6.33  1656  

28.2

9  
1.71  8667  

1001

.05  

11.5

5  

Valeric acid 260  9.24  3.56  1564  
27.7

6  
1.77  7943  

930.

39  

11.7

1  

2-

Ethylbutyric 

acid 

58  3.89  6.74  845  
54.1

9  
6.42  1789  

368.

02  

20.5

7  

Hexanoic 

acid 
637  

15.3

0  
2.40  

1036

3  

368.

01  
3.55  

1506

4  

602.

41  
4.00  

Lactic acid 587  
10.4

4  
1.78  6244  

64.0

1  
1.03  

2543

6  

869.

88  
3.42  

Inter-

day 

precisi

on  

SCFAs 
Day 

1 

Day 

2 

Day 

3 

Day 

4 

Mea

n 
S.D. 

Upp

er 

Rang

e 

Low

er 

Rang

e 

%C.

V. 

Acetic acid 7790  
664

7  

699

6  
6888  

708

0  

428.

73  
7509  6651  6.06  

Propionic 

acid 
5105  

422

6  

454

5  
4460  

458

4  

322.

70  
4907  4261  7.04  

Butyric acid 4124  
336

4  

366

7  
3599  

368

8  

275.

47  
3964  3413  7.47  
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Valeric acid 3533  
304

5  

313

5  
3057  

319

3  

199.

64  
3392  2993  6.25  

2-

Ethylbutyric 

acid 

4841  
402

5  

426

7  
4017  

428

7  

334.

94  
4622  3952  7.81  

Hexanoic 

acid 
2779  

246

4  

266

1  
2526  

265

7  

198.

97  
2856  2459  7.49  

Lactic acid 6736  
586

3  

613

7  
5834  

614

2  

362.

44  
6505  5780  0.06  

Accur

acy* 

Compound 

Low Level Middle Level High Level 

Mea

n% 
S.D. 

C.V

. 

Mea

n% 
S.D. 

C.V

. 

Mea

n% 
S.D. 

C.V

. 

Acetic acid 
64.6

5  
1.97  3.05  

66.7

6  
3.52  5.28  

66.9

6  
1.95  2.91  

Propionic 

acid 

47.3

1  
2.15  4.55  

53.3

0  
1.63  3.05  

47.8

2  
1.30  2.71  

Butyric acid 
49.6

8  
1.84  3.71  

56.6

2  
2.08  3.67  

51.8

4  
1.86  3.59  

Valeric acid 
51.4

0  
1.42  2.77  

52.5

7  
2.70  5.14  

46.8

0  
1.60  3.42  

2-

Ethylbutyric 

acid 

77.7

5  
1.67  2.15  

78.6

8  
1.30  1.66  

70.2

7  
3.51  5.00  

Hexanoic 

acid 

50.0

3  
1.81  3.63  

55.3

4  
3.45  6.23  

50.9

3  
2.22  4.37  

Lactic acid 
77.2

5  
3.32  4.49  

48.8

7  
1.96  3.86  

68.2

6  
1.45  2.17  

Hippuric 

acid 

13.9

0  
1.06  7.65  9.74  0.30  3.03  

25.6

3  
1.34  5.23  

Heptadecano

ic acid 

47.3

3  
4.32  9.13  

45.0

0  
2.63  5.85  

23.7

6  
1.86  7.83  

Bisphenol A 
75.1

3  
0.01  1.63  

107.

07  
1.99  1.86  

109.

48  
3.60  3.29  

*Accuracy was calculated from recovery rate (%) of spiked standards at three 

concentrations. The low level. middle level and high level of the amounts of spiked 

compounds were ~50%, ~100%, and ~200% of their levels measured in the control group. 

The 100% levels of the spike standards were: acetic acid, 20 µmole/g; butyric acid, 10 

µmole/g; propionic acid, 15 µmole/g; valeric acid, 0.5 µmole/g; hexanoic acid, 4 µmole/g; 

hippuric acid, 0.25 µmole/g; heptadecanoic acid, 0.25 µmole/g; bisphenol A, 0.15 µmole/g; 

2-ethylbutyric acid (for pyruvic acid), 0.45 µmole/g; hippuric acid, 0.2 µmole/g. The feces 

used for test was 200 mg, so the spiked amounts at 100% level were: 4 µmole, 2 µmole, 3 

µmole, 0.1 µmole, 0.8 µmole, 0.05 µmole, 0.05 µmole, 0.03 µmole, 0.09 µmole and 0.04 

µmole, accordingly. The mole unit is used here for the convenience of unit conversion 

between different metabolites in same category, and also because the biological effects are 

usually mole based. 
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Table 3-4. Fecal SCFA levels (µmole/g feces) of rats treated with 0, 5, 25, and 75 

μg AFB1/kg B. W. 

SCFA 

AFB1 Dose 

(μg/kg B. 

W.) 

Treatment Time 

2-wk 3-wk 4-wk 

Acetic acid 

0 19.33 ± 3.38 20.11 ± 1.60 21.48 ± 0.83 

5 9.00 ± 0.88** 5.15 ± 1.81** 15.19 ± 5.08* 
25 3.43 ± 0.76** 4.00 ± 0.80** 4.65 ± 0.70** 
75 4.25 ± 1.17** 8.03 ± 1.90** 5.36 ± 1.32** 

Propionic 

acid 

0 11.46 ± 2.31 15.85 ± 0.99 11.41 ± 1.57 

5 4.57 ± 0.31** 4.06 ± 0.84** 8.85 ± 1.50* 
25 3.56 ± 1.23** 2.56 ± 1.02** 1.75 ± 0.14** 
75 2.54 ± 0.75** 4.88 ± 2.65** 3.92 ± 1.75** 

Butyric acid 

0 15.42 ± 1.91 19.37 ± 3.04 19.72 ± 2.87 

5 10.54 ± 3.63* 11.64 ± 1.95* 6.92 ± 1.34** 
25 4.03 ± 0.77** 8.11 ± 5.42** 4.86 ± 1.81** 
75 3.38 ± 0.89** 3.02 ± 0.92** 3.4 ± 0.49** 

Valeric 

acid  

0 0.43 ± 0.14 0.44 ± 0.17 0.45 ± 0.11 

5 0.41 ± 0.15 0.50 ± 0.28 0.34 ± 0.01 

25 0.39 ± 0.24 0.32 ± 0.09 0.4 ± 0.22 

75 0.19 ± 0.05 0.26 ± 0.09 0.19 ± 0.04 

Hexanoic 

acid  

0 3.51 ± 0.58 2.58 ± 1.20 2.56 ± 1.40 

5 2.21 ± 1.00* 0.79 ± 0.06** 2.22 ± 0.67* 
25 0.7 ± 0.12** 0.94 ± 0.39** 0.70 ± 0.27** 
75 0.72 ± 0.09** 0.74 ± 0.15** 1.33 ± 0.24** 

Lactic acid  

0 1.74 ± 0.33 1.73 ± 0.53 3.23 ± 1.42 

5 1.39 ± 0.46 1.36 ± 0.82* 1.11 ± 0.50** 
25 0.35 ± 0.16** 0.43 ± 0.22** 0.57 ± 0.24** 
75 0.21 ± 0.05** 0.13 ± 0.02** 0.22 0.07** 

Data are represented as means ± standard deviation (S.D.), n = 5. The significant 

difference between the means of treatment groups and control was determined using 

one-way ANOVA with Tukey’s post hoc test. * indicates p < 0.05 and ** indicates 

p < 0.01 between the treatment group and control, in order to show dose-response of 

AFB1 exposure. 
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Figure 3-1. HPLC-profiling chromatograms of fecal extracts from control (upper) and 

exposure group (lower) after 2-NPH derivatization. 2-ethyl butyric acid was used as 

internal standard (IS). The detection channel of DAD is 400 nm with a reference channel 

as 510 ± 60 nm. Down-regulated organic acids are labeled on the upper panel, whereas up-

regulated organic acids are labeled on the lower panel. Specific retention time and relevant 

information are available in Table 3-1. 
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Figure 3-2. Fecal SCFA levels of rats treated with 0, 5, 25, and 75 μg AFB¬1/kg body 

weight (B. W.). X-axis indicates duration of treatment. Significance of one-way ANOVA 

or Kruskal-Wallis H Test is indicated by string labels: same string indicating p > 0.05; 

string with partly overlapped character(s) indicating p < 0.05; totally different string 

indicating p < 0.01. Error bar indicates standard deviation (n = 5). Specific data is available 

in Table 3-4. 
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Figure 3-3. Hierarchical cluster tree and heat map to show cross correlations for short 

chain fatty acids and top 18 significantly altered gut microbial strains discovered by 

previous 16s rRNA data. Data were transferred to fold change of exposure group versus 

control. Hierarchical clusters are constructed based on Pearson’s r distance. Red-blue color 

bar indicates Pearson’s correlation coefficient between two correlated components. Short 

chain fatty acids are negatively correlated with the Clostridial Ruminococcaceae strains 

that are frequently seen in the stools from patients with Crohn’s disease and obesity. The 

suppressed strains belong to Lactobacillales and Clostridial Roseburia. Phylogenetic taxa 

information can be accessed in reference (Wang et al., 2016). 
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Figure 3-4. Fecal concentrations of cholic acid, deoxycholic acid, linoleic acid, 

pentadecanoic acid, pyruvic acid and 3-phenyllactic acid measured from the experimental 

groups treated with 0, 5 and 25 μg AFB1/kg B. W. via HPLC-profiling analysis. Non-

parametric Mann-Whitney U test was applied for all comparisons (n = 10). Box with 

middle vertical line represents 25%, 50% and 75% percentile of data. Vertical lines of box 

plots indicate S. D., multiplied with 1.5-fold coefficient in order to stretch out from box. 
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Figure 3-5. Summary of the adverse health outcomes associated with dietary exposure to 

AFB1 in F344 rat model. Grey arrow indicates the changing trend of microbial taxa 

induced by AFB1-treatment. The establishment of rat model for AFB1 oral exposure, as 

well as the 16s rRNA analysis have been published already (Qian et al., 2014; Qian et al., 

2013a; Qian et al., 2013c; Wang et al., 2016). Briefly, male F344 rats were gavaged with 

AFB1 at doses of 0, 5, 10, 25, 50 and 75 μg/kg B. W. per day. The major pathological 

changes are summarized on the left panel. After three weeks of exposure to 75 μg AFB1/kg 

B. W., bile duct proliferation, liver GST-P+ foci co-occurred, followed by proliferation 

foci formation after four weeks and dramatic alanine transaminase, aspartate transaminase 

and creatine kinase elevations after five weeks of treatment. 
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CHAPTER 4. ASSESSMENT OF THE ADVERSE IMPACTS OF AFLATOXIN B1 ON 

GUT-MICROBIOTA DEPENDENT METABOLISM IN F344 RATS 

 

4.1 Introduction  

The adverse impacts of aflatoxin B1 (AFB1) on gut-microbiota dependent 

metabolism in F344 rats were assessed via ultra-high performance liquid chromatograph 

(UHPLC)-profiling and UHPLC-mass spectrometer (MS) metabolomic analyses. UHPLC-

profiling analysis found 1100 raw peaks from the feces samples collected at week 4, of 

which 335 peaks showed peak shape qualified for quantitation. A total of 24, 40 and 71 

peaks were significantly decreased (> 2-fold, p < 0.05) among the exposure groups treated 

with 5, 25, and 75 μg AFB1/kg body weight (B. W.), respectively. Supervised orthogonal 

partial least squares projection to latent structures-discriminant analysis revealed 11 

differential peaks that may be used to predict AFB1-induced adverse changes of the 

metabolites. UHPLC-MS based metabolomic analysis discovered 494 features that were 

significantly altered by AFB1, and 234 of them were imputatively identified using Human 

Metabolome Data Base (HMDB). Metabolite set enrichment analysis showed that the 

highly disrupted metabolic pathways were: protein biosynthesis, pantothenate and CoA 

biosynthesis, betaine metabolism, cysteine metabolism, and methionine metabolism. Eight 

features were rated as indicative metabolites for AFB1 exposure: 3-decanol, xanthylic acid, 

norspermidine, nervonyl carnitine, pantothenol, threitol, 2-hexanoyl carnitine, and 1-

nitrohexane. These data suggest that AFB1 could significantly reduce the variety of 
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nutrients in gut and disrupt a number of gut-microbiota dependent metabolic pathways, 

which may contribute to the AFB1-associated stunted growth, liver diseases and the 

immune toxic effects that have been observed in animal models and human populations.  

AFB1 is a potent toxic and carcinogenic mycotoxin produced by Aspergillus flavus 

and A. parasiticus (Wang and Groopman, 1999). The two fungi can colonize on the surface 

of post-harvested cereals, groundnuts, and corns in humid and hot environment, which 

results in a high chance of human dietary exposure to AFB1 (Eaton and Groopman, 2013). 

Acute exposure to AFB1 causes aflatoxicosis and death in human and other animals; 

whereas chronic AFB1 exposure induces hepatocellular carcinoma (HCC) and immune 

toxic effects (Mace et al., 1997; Jiang et al., 2008; Qian et al., 2014). There were also 

evidences showing that dietary exposure to AFB1 is associated with and malnutrition-

related stunted growth (Khlangwiset et al., 2011; Lombard, 2014; Knipstein et al., 2015). 

For these reasons, regulation of AFB1 contamination in food and assessment of dietary 

AFB1 exposure in human populations have received continuous and widely attention.  

Metabolomic analysis is able to profile hundreds to thousands of metabolites 

present in biological samples (Dettmer et al., 2007; Zivkovic and German, 2009; Ramirez 

et al., 2013; Calvani et al., 2014). The frequently employed instruments for metabolomic 

analysis are liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-

mass spectrometry (GC-MS) (Wang et al., 2010). The fragmentation spectrum, retention 

time, parent-product ion transition, and m/z of the detected features can be used for the 

imputative identification and characterization of chemical entities through open-access or 

commercial databases (Patti et al., 2012; Ramautar et al., 2013). However, the detective 

scope of MS-based metabolomics is sometimes affected by different setting factors, e.g. 
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ionization strategy, mode of analyzer, mobile phases, voltages of capillary tube (Beckonert 

et al., 2007). One compromising strategy is to perform chromatography based metabolic 

profiling prior to metabolomics analysis. The metabolic profiling analysis is independent 

of ion fragmentation, but more relies on the resolution of chromatogram, and the signals 

recorded by conservative detectors like flame ionization detector (FID), electron capture 

detector (ECD), ultraviolet-diode (UV-DAD) and fluorescent detector (FLD) 

(Georgakoudi et al., 2002; Andersen and Frisvad, 2004; Menter, 2006). Ultra-high 

performance liquid chromatography (UHPLC) has largely enhanced the resolution of 

chromatographic profiling analysis (Guillarme and Veuthey, 2015). In addition to “clearer” 

chromatograms, the combination of UHPLC with MS could further provide preliminary 

elucidation of the alterations of metabolic pathways. 

We have previously conducted a series of studies to investigate the adverse health 

outcomes and pathogenesis induced by AFB1 in F344 rat model (Qian et al., 2013a; Qian 

et al., 2013b; Qian et al., 2014; Qian et al., 2016). We also found that AFB1 induced 

depletion of beneficial gut-microbial strains and increase of harmful gut-microbes (Wang 

et al., 2016). Moreover, a set of key fecal metabolites were remarkably affected by AFB1, 

such as short chain fatty acids (SCFAs), pyruvic acid, cholic acid, deoxycholic acid and 

long chain fatty acids (Zhou et al., 2018). The cell components and dependent metabolites 

of gut-microbiota count for around 25–50% of solid material of human stool (Rose et al., 

2015). Accordingly, fecal analysis of metagenome and metabolites is considered to be a 

standard non-invasive approach to investigate gut-microbiota (Barbosa, 2013; Thomas et 

al., 2015). Since these metabolites play important roles in maintaining host immune 

function, energy metabolism, and liver function, the disturbance of metabolic homeostasis 
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of these metabolites may lead to various adverse health outcomes (Prasad Maharjan and 

Ferenci, 2003; Ursell et al., 2014; Sinha et al., 2016). In this regard, the AFB1-induced 

changes of gut-microbiota dependent metabolism need to be further investigated and 

analyzed in a high throughput way. In this work, UHPLC-based metabolic profiling and 

UHPLC-MS-based metabolomic analysis were used to examine gut-microbiota dependent 

metabolism. Multivariate analyses such as principal component analysis (PCA), supervised 

partial least squares projection to latent structures-discriminant analysis (PLS-DA), 

orthogonal (O)PLS-DA, and random forest were performed to screen and rate the 

chromatographic peaks that can reflect the impairment of gut-microbiota dependent 

metabolism. Metabolite set enrichment analysis (MSEA) was further used to characterize 

the adverse impact of AFB1 on gut-microbiota dependent metabolic pathways.  

 

4.2. Methods and material 

4.2.1 Reagents and chemicals 

Dimethyl sulfoxide (DMSO) and aflatoxin B1 (AFB1) standard were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). AFB1 stock solution (25 mg/mL) was prepared 

in DMSO and diluted to appropriate treatment concentrations upon use. All eluting solvents 

(methanol and water) were LC-MS grade reagents purchased from J. T. Baker (Phillipsburg, 

NJ, USA). Formic acid of LC-MS grade was ordered from Fluka (Buchs, Switzerland).  

 

 

 

4.2.2 Animal study 
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The dosing protocol has been systematically validated and reported in previous 

publications (Qian et al., 2013a; Qian et al., 2013b; Qian et al., 2014; Qian et al., 2016). 

The doses applied are relevant to the exposure level in tropical area (Zhou et al., 2018). 

Briefly, 100 male F344 rats (100–120 g) were purchased from Harlan Laboratory 

(Indianapolis, IN, USA). After 1 week of environmental acclimation, the rats were divided 

into 4 experimental groups, with 5 cages assigned for each group. The animal housing 

conditions were: light/dark cycle of 12 hr/12 hr, temperature of 22 ± 2 ℃, relative humidity 

of 50–70%. Purified AIN 76A diet and tap water were maintained every day. The 4 

experimental groups were daily gavaged with 0, 5, 25, and 75 mg AFB1/kg body weight 

(B. W.), respectively, in a consecutive duration of 5 weeks. Rat feces were daily collected 

from week 2 to the week 4 and were pooled by each cage at each week. All samples were 

stored in –80 ℃ freezer. Animal husbandry, care, AFB1-exposure, and sample collection 

strictly followed the requirements and regulations of Institutional Animal Care and Use 

Committee at the University of Georgia.  

 

4.2.3 Sample quenching and extraction 

Cold methanol was used to quench fecal sample and extract metabolites (de Jonge 

et al., 2012; Hernandez Bort et al., 2014). The specific operations were published in 

previous works (Zhou et al., 2018). In brief, fecal pellet (200 mg) was transferred to the 

Mobio PowerLyzer Glass Bead tubes (Mobio, Carlsbad, CA). The tubes were pre-loaded 

with glass beads (diameter, 0.1 mm) to facilitate the breakup of feces and lysis of cells. 

One milliliter cold methanol (−80 ℃) was immediately added. The fecal pellet was ground 

using a glass pestle. Following this, 0.5 mL methanol was slowly added to wash the pestle. 
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The tube was then capped and fastened on a rotary vortex to undergo vortex for 20 mins. 

After vortex, the tube was placed on ice for 5 minutes, and was further centrifugated at 

12,000 rpm for 15 mins to spin down cellular debris. The supernatant was used for analysis. 

 

4.2.4 UHPLC-profiling analysis 

Chromatographic profiling of fecal metabolome was performed using Thermo 

Scientific Dionex UltiMate 3000 UHPLC system. The system consists of rapid separation 

(RS) tertiary pump module, advanced sample tray, ultraviolet-diode detector (UV-DAD), 

fluorescent detector (FLD), and is equipped with a C18 reversed-phase column (length, 

150 mm; i.d., 2.1 mm; particle size, 2.2 μm; pore diameter, 120 Å; Thermo Fisher, Norcross, 

GA, USA). The detector unit is capable of scanning 8 detective channels simultaneously. 

Phase A was water containing 0.1% formic acid (v/v), and phase B was methanol with 0.1% 

formic acid (v/v). The injection volume was 30 µL. The gradient elution program started 

with a flow rate of 0.3 mL/min. The gradient eluting ratio was 95% to 85% A, from 0 min 

to 10 min; 85% to 30% A, from 10 min to 45 min; 30% to 10% A, from 45 min to 60 min; 

10% to 5% A, from 60 min to 68 min, then keep to 97 min; 5% A to 0% A, from 97 min 

to 100 min with flow rate 0.5 mL/min, then keep to 120 min; 0% A to 95% A, from 120 

min to 123 min, with flow rate back to 0.3 mL/min. Oven temperature was set as 45 °C. 

The excitation wavelengths of FLD detective channels were set as 230 nm, 280 nm and 

330 nm, with zero-order model automatically locating the maximum absorption 

wavelength. The wavelengths of DAD detective channels were set as 210 nm, 250 nm, 280 

nm and 340 nm. The representative chromatograms are shown in Figure 4-1, with the 

possible target analyte categories listed in Table 4-1.  
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4.2.5 UHPLC-MS metabolomic analysis 

UHPLC-MS metabolomic analysis was performed in an Acquity ultra-high 

performance liquid chromatography (UHPLC) system combined to Xevo Triple 

Quadrupole (TQD) mass spectrometer with electrospray ionization (ESI). The system was 

equipped with the same C18 reversed-phase column used for UHPLC-profiling analysis. 

A volume of 9 μL extract was injected for each sample. The parameters for the MS settings 

are: capillary voltage, 2.8 kV; detective range of m/z, 50 to 1500; source temperature, 

350 °C; desolvation temperature, 50 °C; desolvation gas, 800 L/h; cone gas, 50 L/h. Data 

acquisition was performed in ESI (+) mode, with precursor scanning mode, and centroid 

file format. Ultra-high purity nitrogen was used as desolvation gas and cone gas. Sample 

extracts were randomly picked from the control group and the middle-dose group for 

metabolomics analysis (n = 6). Mobile phase A was 0.1% formic acid in water and B was 

0.1% formic acid in acetonitrile. A constant flow rate of 0.4 mL/min was used and the 

gradient elution was applied with the following proportions (v/v) of solvent A: 0 to 1.5 min, 

at 98% A; 1.5 to 7.0 min, from 98% to 75% A; 7.0 to 10.0 min, from 75% to 40% A; 10.0 

to 15.0 min, from 40% to 5% A; 15.0 to 20.0 min, at 5% A; 20.0 to 26.0 min, from 5% to 

98% A; followed by 4.0 min of re-equilibration.  

 

 

 

4.2.6 Data processing and statistics  
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UHPLC-profiling data were pre-processed with Thermo Fisher Chromeleon 7.0. 

The data pre-processing includes peak detection, filtering, alignment, labeling of peaks and 

formation of library. When multiple peaks were generated from different detective 

channels for one metabolite, only the channel with highest signal was used for quantitative 

analysis. To standardize the peak intensities collected by different detectors and channels, 

data were transformed to fold-change by dividing with the mean intensities of the peaks 

measured in control samples. The statistical difference of the metabolite levels between 

control and exposure groups was tested using Welch’s t-test. Principal component analysis 

(PCA), supervised partial least squares projection to latent structures-discriminant analysis 

(PLS-DA), orthogonal (O)PLS-DA, random forest, Pearson’s correlation, and hierarchical 

clustering analyses were all performed in R (Team, 2000). Statistical supervision on PLS 

and OPLS include the R2 and Q2 quality metrics, and permutation diagnostics (Wold et 

al., 2001). Auto-scaling was applied to remove the dependence of the rank of the 

metabolites on the average concentration and the magnitude of the fold changes (van den 

Berg et al., 2006). The raw files collected by UHPLC-LC-MS were processed using 

Progenesis QI (Waters, MA, USA), including the mass detection, deconvolution of total 

ion chromatogram (TIC), grouping of isotope features, alignment of ion peaks, and 

formation of extracted ion chromatogram (XIC). Processed metabolomic data were next 

normalized through median division and auto-scaled, and finally analyzed using random 

forest model and OPLS-DA in order to find most differential metabolites. The prediction 

power, sensitivity, and specificity were determined by receiver operating characteristic 

(ROC) analyses. The metabolite set enrichment analysis (MSEA) was performed using 

MetaboAnalyst (Xia and Wishart, 2016).  
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4.3 Results 

4.3.1 Aflatoxin B1 induced global shift of gut-microbiota dependent metabolism 

For convenience, in the following part of this article the AFB1 doses of 5, 25, and 

75 μg /kg B. W. were noted as low-, middle-, and high-dose. UHPLC-profiling analysis 

detected 1100 raw peaks from fecal samples at week 4 (n = 60, 3 samplings × 5 cages × 4 

groups). The representative chromatograms were shown in Figure 4-1. A conservative 

peak filtering was applied to refine the raw chromatograms, with the filtering criteria of 

tailing factor of 0.5–2 and signal-to-noise (S/N) ratio > 5. Eventually Chromeleon module 

cropped 335 peaks between 19 min and 109 min from the aligned chromatograms. A total 

of 111 detected peaks were marked as common peaks since they were present in over 80% 

samples, and Pearson’s correlation coefficients were used to rate the pairwise correlations 

of the peaks (Figure 4-2). Among the total 6105 pairwise correlations, 1521 pairs are 

significantly correlated with p < 0.01, and 779 pairs were correlated with p < 0.05, such 

that 37.3% of the detected peaks were correlated with AFB1 treatment. Volcano plot 

analysis showed the shift of fecal metabolome (Figure 4-3). The screening criteria for 

significant fold change was set as > 2-fold (q < 0.05). The peak counts in different exposure 

groups exhibited dose dependent changes. Compared with control samples, there were 24, 

40 and 71 peaks significantly reduced in the low-, middle-, and high-dose groups, 

respectively. The number of up-regulated peaks slightly decreased, with 18, 11 and 10 in 

the three exposure groups, respectively. Of note, in the high-dose group 27.2% of the 

common peaks exhibited significant fold-changes, with the majority of these peaks reduced 

by AFB1 (Figure 4-3).  
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About 37.3% of the detected metabolites exhibited associated dose-responses to 

AFB1 exposure, suggesting the necessity to perform multivariate analysis (MVA). Prior to 

MVA, a stepwise refinement of variables was applied to the dataset in order to enhance the 

reliability and statistical power of MVA models. In the first step, 26 peaks with significant 

alteration were retained from the 111 common peaks. The retaining criteria was that the 

peak showed significant fold-change (> 2-fold, q < 0.01) in at least two exposure groups, 

as compared with the control group. Principal component analysis (PCA) was used to 

assess whether these peaks could fairly represent the metabolic change induced by AFB1, 

and 55.5% of sample variance was explained by the top 5 PCs (SI Figure 4-1). The 26 

peaks were next processed with supervised projections to latent structures discriminant 

analysis (PLS-DA) and orthogonal (O) PLS to extract the differential peaks in response to 

AFB1-exposure. All test parameters are shown in Figure 4-4. Permutation diagnostics 

indicated that the PLS and OPLS models could well fit the analysis. For the PLS model, 

t1/t2 together correlated/summarized 32% of the X variance, and the top 3 PCs achieved 

an explanatory R2Y value of 0.552 and predictive Q2Y value of 0.438 (Figure 4-4 A and 

B). With the concern of the undesirable Q2Y of PLS modeling, we turned to binominal 

OPLS model to predict “Yes/No” of the adverse changes of gut-microbiota dependent 

metabolism (Figure 4-4 C and D). Permutation diagnostics showed a qualified R2Y value 

of 0.808, and a Q2Y value of 0.645 with p < 0.05. PC1 captured 26% of variance of X 

matrix. Therefore, OPLS-DA model may generate more reliable statistical results here.  

Variable importance in projection (VIP) statistics were calculated using OPLS-DA 

model. By grouping all samples from exposure groups into one group, we applied OPLS-

DA model and ranked the relative importance of the 26 differential peaks in differing 
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samples with different treatments according to their VIP scores. There were 11 peaks 

showing VIP score >1: M2, M215, M281, M264, M311, M11, M6, M324, M31, M254 and 

M224. These differential peaks were taken as indicative peaks for the adverse alterations 

of gut-microbiota dependent metabolism induced by AFB1 (Table 4-2). The mean 

decrease in accuracy (MDA) calculated from random forest model was provided as 

secondary quantitative reference to rate the relative importance of peaks in separating 

samples with different treatments.  

 

4.3.2 Aflaxoin B1 disrupts gut-microbiota dependent metabolic pathways 

UHPLC-MS based metabolomic analysis discovered 494 significant responding 

features from 1744 detected features. The chemical entities of the 178 features were 

imputatively identified through Human Metabolome Data Base (HMDB). The relative 

intensities of the top 50 differential metabolites ranked by t-test are shown in Figure 4-5 

A, including 23 down-regulated metabolites and 27 up-regulated ones. The 178 identified 

metabolites were submitted to MetaboAnalyst module for pathway analysis (Xia and 

Wishart, 2002). Representative components of major fecal metabolite categories modified 

by the AFB1 are listed in Table 4-3. The disrupted metabolic pathways were summarized 

by using MetaboAnalyst online modules, based on KEGG database (Figure 4-5 B and 

Table 4-4). The top 5 significantly disrupted metabolic pathways were protein biosynthesis, 

methionine metabolism, pantothenate and CoA biosynthesis, glycine, serine and threonine 

metabolism, and pyruvate metabolism. Figure 4-6 A listed the top 15 indicative 

metabolites ranked by their percentages of selected frequency (%) calculated by random 

forest model (Table 4-5). The top 5 differential metabolites, including 3-decanol, D-
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threitol, phenylacetic acid, pantothenol and 2-hexanoyl carnitine, together achieved an 

AUC of 0.962 in ROC diagnostics (Figure 4-6 B). In order to obtain a conservative 

selection of metabolites as indicators for AFB1 treatment in rats, we input the top 30 

differential metabolites ranked by Welch t-test into OPLS-DA model and compared the 

results with that obtained from random forest model (Table 4-5). The predictive 

component t1 explained 38% variance of sample with a qualified R2Y of 0.977 and Q2Y 

of 0.887. Xanthylic acid, 3-decanol, norspermidine, neuronul carnitine, pantothenol, D-

threitol, 2-hexenoyl carnitine, and 1-nitrohexane were marked as indicative metabolites by 

both OPLS-DA and random forest models. The alterations of the 8 metabolites were shown 

in Figure 4-7. 

 

4.4 Discussion 

In this study, the global shift of fecal metabolites was detected using 7 

representative detective channels of UHPLC (Table 4-1). The fecal metabolites, as proxy 

of gut-microbiota dependent metabolism, exhibited highly dose-dependent correlations 

and compositional shift in response to AFB1 exposure (Figure 4-2 and Figure 4-3). 

Multivariate analysis (MVA) models were used to identify the indicative peaks of the 

impairment of gut-microbiota dependent metabolism, and OPLS-DA was found to be the 

most effective model (Figure 4-4, SI Figure 4-1 and Table 4-2). UHPLC-LC-MS based 

metabolomic analysis was employed to characterize the changes of gut-microbiota 

dependent metabolic pathways (Table 4-3 and Figure 4-5). The most affected pathways 

include: protein biosynthesis; methionine metabolism; pantothenate and CoA biosynthesis; 

glycine, serine and threonine metabolism; pyruvate metabolism; betaine metabolism; 
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cysteine metabolism; arginine and proline metabolism; urea cycle; oxidation of branched 

chain fatty acids (Table 4-4 and Figure 4-5). The indicative metabolites of the disrupted 

metabolic pathways were identified using random forest model (Figure 4-6 A). The 

predicting power was examined using ROC, and the first 5 differential features showed 

AUC of 0.962 (Figure 4-6 B). Xanthylic acid, 3-decanol, norspermidine, nervonyl 

carnitine, pantothenol, D-threitol, 2-hexenoyl carnitine, and 1-nitrohexane were marked as 

top differential metabolites by both OPLS-DA and random forest model (Table 4-5 and 

Figure 4-7).  

Gut-microbiota actively interact with host physiology and play an irreplaceable role 

in the maintenance of host nutritional status and a number of physiological regulations 

(Kaiko and Stappenbeck, 2014). In this work, we found that AFB1 induced remarkable 

dose-responses for the metabolites contained in the feces (Figure 4-2 and Figure 4-3). The 

hierarchical clusters in Figure 4-2 stand for the metabolic pathways that are potentially 

involved in the related metabolic events of gut-microbiota. There are key nutrients and 

metabolites that may take pivotal roles in metabolism. AFB1 reduced diversity of nutrients 

in a dose-dependent manner which may result in adverse impact on host nutritional 

provision (Martens et al., 2009). In the field of metabolomics, PCA, PLS-DA and OPLS-

DA have been widely used to extract principle components, or to identify distinct metabolic 

pattern (Luo et al., 1999). The ranking of important metabolites heavily depends on the 

specific algorithm and index to use, e.g. variable importance in projection (VIP) scores 

(Galindo-Prieto et al., 2014). Our stepwise analysis retained a panel of 11 predictive 

indicators for AFB1 induced impairment of gut-microbial metabolism (Table 4-2). This 

impairment includes disorder of community structure (Wang et al., 2016) and 
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derangements of major gut-microbiota dependent metabolites such as short chain fatty 

acids, long chain fatty acids and secondary bile acid (Zhou et al., 2018). Further structural 

elucidation for these indicative metabolites will be one important aspect of our future work. 

Extensive alterations of gut-microbiota related metabolites, including amino acids, 

aliphatic acids, vitamins and polyamines were induced by AFB1 (Figure 4-5 and Table 4-

3). Of note, the levels of a variety of amino acids were changed significantly, such as the 

decreases of L-Arginine and L-Threonine, and increases of L-Lysine, L-Carnitine, 

Cysteinyl-histidine and L-Cysteine. These changes may have remarkable impact on host 

health, because host body growth and various physiological regulatory functions heavily 

depend on a sufficient provision and metabolism of these amino acids (Zeng et al., 2016). 

In addition, we noticed the disruption of L-tryptophan pathway in AFB1 exposure group, 

including the down-regulated S-farnesyl-L-cysteine and taurine, and elevated cyclic 3-

hydroxyl melatonin, methyldopa and L-beta-aspartyl-L-glutamic acid. The metabolism of 

L-tryptophan by gut-microbiota is known for its production of serotonin, melatonin and 

many other neurotransmitters. Accordingly, the disorganization of L-tryptophan 

metabolism may affect the performance of host neuro system in a significant way (Fujigaki 

et al., 2017). Although it has not been fully established whether gut-microbiota can produce 

neuropeptide-like compounds, the microbes do routinely produce small molecule 

neurotransmitters from host diet. For example, serotonin can be synthesized by several 

strains that belong to Candida, Streptococcus, Escherichia and Enterococcus (Alkasir et al., 

2017); dopamine and noradrenaline can be generated by Escherichia, Bacillus and 

Saccharomyces (Lyte, 2011); and some strains belonging to Lactobacillus and 
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Bifidobacterium are able to produce gamma-aminobutyric acid (GABA) and acetylcholine 

(Messaoudi et al., 2011).  

Metabolomic analysis revealed the reduction of fecal short chain fatty acids 

(SCFAs) in AFB1 exposure group, such as lactic acid, valeric acid, acetic acid, and 

phenylacetic acid (Table 4-3). These changes were in agreement with our data collected 

using HPLC-profiling analysis (Zhou et al., 2018), and were consistent with the results of 

earlier 16S rRNA analysis that lactic acid bacteria were depleted by AFB1 (Wang et al., 

2016). The decrease of intestinal supply of SCFAs may contribute to the incidences of a 

myriad of adverse health outcomes, in that the receptors of SCFAs (GPR43, GPR41, 

OLFR78, GPR109A) are broadly distributed in different organs and systems, and 

participate into the regulations of a number of important physiological functions, as well 

as cellular events, e.g. mobility of gut epithelium, liver detoxification, liver lipogenesis, 

cell cycle, proliferation and apoptosis (Brown et al., 2003; Smith et al., 2013; Natarajan 

and Pluznick, 2014). 

We found that the concentrations of several vitamins were elevated in the rat feces 

after AFB1 exposure (Table 4-3), such as biotin, ubiquinone-1 and -4. Unlike SCFAs that 

are primarily synthesized by gut-microbiota, most of vitamins are consumed from food 

(Kamei et al., 1986; Sugahara et al., 2015). The abnormal elevations of these vitamins in 

feces were highly indicative of the impairment of gut absorption of vitamins. These 

vitamins perform necessary bio-chemical functions in global metabolism. For example, 

biotin is a driving coenzyme that is widely involved in the metabolisms of fatty acids, 

amino acids, and saccharides (LeBlanc et al., 2013). Ubiquinone-1 and -4 are important 

intermediates in the synthesis of Coenzyme Q (CoQ), and the primary role of CoQ is to 
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create a proton gradient across the inner mitochondrial membrane and drive ATP formation 

(Green, 1959). In addition, organic amines, including ornithine, spermine, norspermidine 

and putrescine, were all decreased (Table 4-3). Such changes may possibly be resulted by 

the domination of Bacteroides after AFB1 treatment (Wang et al., 2016)—Bacteroides have 

comparatively higher expression of spermine oxidase (SMO) (Goodwin et al., 2011a; 

Goodwin et al., 2011b). The catalyzing process of these amines by SMO could produce a 

high level of reactive oxygen species (ROS) and causes DNA damage to intestinal 

epithelium once ROS is largely accumulated (Agostinelli et al., 2007). 

It is suggested that random forest is the most robust model for the classification, 

regression and ranking of important variables when dealing with the dataset with small 

sample size and large amount of variables (Cutler et al., 2007; Gunduz and Fokoue, 2015). 

Indeed, we input the 178 metabolites into several statistical models, such as PCA, OPLS-

DA, supportive vector machine (SVM), and random forest model, and the results from 

random forest model showed highest AUC in ROC diagnostics. As shown in Figure 4-6, 

the differential metabolites between control and exposure groups were rated by random 

forest model according to their statistical power to predict AFB1 treatment. The top 5 

differential metabolites were able to predict AFB1 exposure with an AUC of 0.962 (Figure 

4-6 B). The indicative metabolites identified by both OPLS-DA and random forest model 

include 3-decanol, xanthylic acid, norspermidine, nervonyl carnitine, pantothenol, D-

threitol, 2-hexenoyl carnitine, and 1-nitrohexane (Table 4-5 and Figure 4-7). They could 

be combined with the indicative peaks generated by UHPLC-profiling analysis to predict 

the impairment of gut-microbiota dependent metabolic pathways, as well as the 

corresponding changes of community structure of gut-microbiome following AFB1 
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exposure in rats. Metagenomics data will be collected in our future work, which will be 

able to provide further evidences in terms of the molecular biological events induced by 

AFB1—such metabolic changes of gut-microbiota may be very complex and are involved 

with several factors, e.g. community structure alteration, toxin-induced enzyme changes, 

as well as the health status of host. 

To summarize, our data have demonstrated that oral exposure to AFB1 could disrupt 

a number of gut-microbiota dependent metabolic pathways, including energy utilization, 

vitamin absorption, and essential metabolisms of fatty acids, amino acids and 

carbohydrates in rats. The results further completed previous findings gained via 16S rRNA 

and HPLC-profiling analyses. The adverse changes of the metabolic pathways may 

contribute the AFB1-induced hepatic pathogenesis, immune toxicity, and stunted growth 

that were revealed by previous studies in the same rat model. Moreover, we have shown 

that the combination of UHPLC-profiling and UHPLC-MS based metabolomics could be 

used to identify the indicative peaks and metabolites and assess and predict the adverse 

alterations of gut-microbiota dependent metabolisms induced by AFB1.  

 

 

 

 

 

 

TABLES 

Table 4-1. Detective channels and major analytes in UHPLC-profiling analysis. 

Detector Channel Target analytes Reference 
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FLD 230 nm 
phenylalanine, tyrosine, tryptophan and 

derivatives 

(Determann et al., 

1998; Thomas et al., 

2002; Andersen and 

Frisvad, 2004) 

FLD 
280 & 

330 nm 

NADH, tyrosine, tryptophan, serotonin, 

melatonin, aromatic amines, collagen 

and elastin 

(Georgakoudi et al., 

2002; Menter, 2006) 

DAD 210 nm metabolites with (-COOH) or (-OH) (Caruso et al., 1994) 

DAD 250 nm 
steroids, prostaglandin, glucuronide, 

furans, indoles 

(Salari et al., 1987) 

DAD 280 nm 
steroid, folic acid, riboflavin, furans, 

tryptophan 

(Dorfman, 1953) 

DAD 340 nm 
kynurenine, xanthurenic acid, 

flavonoids 

(Soto et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2. Indicative peaks discovered in UHPLC-profiling analysis. 

Metabolite Retention Time Detective Channel VIP Score* MDA** 

M2 18.09  FLD Ex 280 nm 1.65  0.014  

M6 21.32  DAD UV 250 nm 1.19  0.009  
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M11 23.37  DAD UV 250 nm 1.24  0.022  

M31 33.20  FLD Ex 280 nm 1.12  0.014  

M215 61.54  DAD UV 250 nm 1.59  0.018  

M224 67.92  DAD UV 280 nm 1.01  0.007  

M254 67.69  FLD Ex 330 nm 1.05  0.014  

M264 68.10  DAD UV 250 nm 1.46  0.014  

M281 73.94  DAD UV 210 nm 1.56  0.006  

M324 65.82  FLD Ex 230 nm 1.16  0.005  

M311 95.82  DAD UV 250 nm 1.42  0.010  
*VIP score is calculated from control and using the binary OPLS-DA model 

for all four groups. 
**MDA (mean decrease accuracy) is calculated from all four groups using 

random forest model (500 trees). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3. Representative metabolites detected by UHPLC-MS based metabolomics 

Imputative Identities Trend Fold-change a p-value a m/z RT b 
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Ornithine Down >30 <0.001 87.1181 28.02 

Spermine Down 4.41 0.092 83.1720 29.07 

Norspermidine Down 8.50 0.022 87.0925 28.44 

Putrescine Down >30 <0.001 65.5738 15.68 

N1-Acetylspermine Up 9.41 0.136 97.1730 7.28 

L-Arginine Down 16.77 0.058 59.0451 29.42 

L-Threonine Down 8.75 0.054 119.1435 3.42 

L-Lysine Up 29.67 0.063 102.1420 1.06 

L-Carnitine Up >30 <0.001 116.1352 8.58 

Cysteinyl-histidine Up >30 <0.001 141.0374 8.9 

L-Cysteine Up >30 <0.001 56.1072 12.88 

Ubiquinone-1 Up >30 <0.001 99.1400 4.5 

Biotin Up 3.18 0.120 97.1293 8.02 

Ubiquinone-4 Up >30 <0.001 167.1993 6.09 

Vitamin A2 Down 3.54 0.019 103.0739 5.73 

Pantothenol Up >30 <0.001 84.1438 1.08 

Homocystine Down >30 <0.001 105.1169 5.72 

Betaine aldehyde Down 14.75 0.048 103.0980 3.3 

Betaine Up >30 <0.001 72.1071 6.69 

Proline betaine Down >30 <0.001 98.1242 3.71 

S-Farnesyl-L-cysteine  Down >30 <0.001 124.1636 0.74 

Taurine Down >30 <0.001 64.6602 9 

3-Hydroxyl melatonin Up 12.95 0.120 135.0381 14.11 

L-Aspartyl-L-glutamic acid Up 4.06 0.113 103.1263 23.82 

N-Acetyl-L-aspartic acid Up >30 0.093 74.1146 1.6 

Lactic acid Down 3.43 0.060 66.0315 12.8 

Valeric acid Down >30 <0.001 135.1012 12.29 

Acetic acid Down >30 <0.001 121.0491 26.74 

Phenylacetic acid Down 1.62 0.019 61.1152 10.54 

D-Phenyllactic acid Up >30 <0.001 121.0914 25.9 

2-Keto-glutaramic acid Up >30 <0.001 64.1130 16.44 

a. Fold-change and p-value were automatically calculated with one-way ANOVA by 

Progenesis QI. The quantitation was based on total ion intensity (area under curve) 

of extracted ion chromatogram (XIC) for the specific ion.  

b. RT, aligned retention time of feature shown in total ion chromatograms (TICs) of 

UHPLC-LC-MS metabolomics. 

 

 

Table 4-4. Gut-microbiota dependent metabolic pathways disrupted by 

AFB1. 

Pathway Hits/Total a p-value FDR b 
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Protein biosynthesis 4/19 0.0001 0.0014 

Methionine metabolism 4/24 0.0010 0.0054 

Pantothenate and CoA biosynthesis 3/10 0.0001 0.0014 

Glycine, serine and threonine metabolism 3/26 0.0014 0.0065 

Pyruvate metabolism 3/20 0.0047 0.0115 

Betaine metabolism 2/10 0.0003 0.0029 

Cysteine metabolism 2/8 0.0009 0.0054 

Arginine and proline metabolism 2/26 0.0039 0.0115 

Urea cycle 2/20 0.0039 0.0115 

Oxidation of branched chain fatty acids 2/14 0.0154 0.0265 

a. The detected metabolites divided by the total number of metabolites in 

that pathway documented in MetaboAnalyst. 

b. FDR, false discovery rate to conceptualize the rate of type I errors in 

null hypothesis testing when conducting multiple comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-5. Differential metabolites found by Random Forest and OPLS-DA models. 

Random Forest model OPLS-DA model 

Metabolite Freq. Metabolite VIP 
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3-Decanol 0.94 2,4,6-Tribromophenol 1.51 

D-Threitol 0.94 3-Decanol 1.27 

Phenylacetic acid 0.92 Xanthylic acid 1.18 

Pantothenol 0.86 Galactaric acid 1.13 

2-Hexenoyl carnitine 0.52 Norspermidine 1.08 

6-Thioinosine-5'-monophosphate 0.48 Nervonyl carnitine 1.06 

1,2,3,4-Tetrahydro-beta-carboline 0.44 Pantothenol 1.05 

3,6,10-Trimethyltetradecane 0.42 D-Threitol 1.04 

3-Aminopropoxy guanidine 0.38 1,1'-Thiobisethanethiol 1.04 

Nervonyl carnitine 0.36 2-Hexenoylcarnitine 1.04 

Iso-Valeraldehyde 0.36 1-Nitrohexane 1.02 

L-Lysine 0.34 3,4,5-Trimethoxy phenylacetate 0.97 

5-Methoxytryptophol 0.30 Vitamin A2 0.95 

Norspermidine 0.30 2,5-Dimethyl-2,4-hexadiene 0.95 

Steroid derivative 0.30 6-Phenyl undecane 0.94 

Abbreviations: Freq. (selected frequency), the percentage being selected by all 

individual trees in the ensemble in making decision (500 trees), indicating the 

relative importance of metabolite in clustering samples with different treatments; 

VIP (variance importance in projection), a measure of a metabolite's importance in 

clustering samples with different treatments, calculated a weighted sum of the 

squared correlations between the PLS-DA components and the original variable. 
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. 

Figure 4-1. Representative chromatograms documented by UHPLC-profiling analysis of 

control sample. Signals were simultaneously collected from seven detective channels. The 

peaks were automatically labeled, picked and aligned by Chromeleon for further statistical 

analysis. UV bands 210 nm (UV-C), 254 nm (UV-C), 280 nm (UV-B) and 340 nm (UV-

A) were set as monitor channels of DAD. FLD was employed with channels of excitation 

wavelength at 230 nm, 280 nm and 330 nm.  
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Figure 4-2. Heat map to show the correlations of 111 common metabolites upon AFB1-

treatment. The hierarchical reorganization was based on the Pearson’s correlation 

coefficient. Data from seven detective channels were transformed to fold-change before 

correlation analysis and demonstrated normal distribution. Positive correlation is indicated 

by red color; negative correlation is indicated by blue color. The results indicated the 

necessity to perform multiple variable analysis (MVA) with dimension reduction technique, 

as well as the extensive metabolic pathway correlation. 
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Figure 4-3. Volcano plots of all 335 differential metabolites detected by UHPLC-profiling 

analysis. The plots illustrate the global changes of gut-microbiota dependent metabolome 

in response to AFB1 exposure of 3 different doses. Each dot represents a ratio of metabolite 

calculated by comparing the chromatographic intensity of the metabolite in the treatment 

group with that in the control group. The data for all metabolites are plotted as log2 fold-

change (X axis) versus the -log10 of p-value (Y axis). The cut-off threshold for the 

screening of significant responding metabolites was set as fold-change > 2 and adjusted p 

< 0.05 by Welch's t-test, marked as red spots. 
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Figure 4-4. Examination of multiple variable analysis (MVA) models to extract 

differential metabolites from data pool. Supervised partial least squares (PLS) and 

Orthogonal (O) PLS: (A) score plots of PLS-DA, (B) model overview on the parameters 

of first three principal components of PLS, (C) score plots of OPLS-DA, (D) model 

overview on the parameters of first principal component of OPLS. Each dot represents a 

biological sample point. All data were auto-scaled and show normal distribution. 

Coordinates in axis are marked for illustration purpose only and selected arbitrary, and 

therefore do not have clear biological meanings. Percentage associated with each PC is the 

proportion of an eigenvalue for the respective PC in the sum of eigenvalues for all PCs. 

The components t1 and t2 are reflected on the horizontal and vertical axis respectively. The 

R2Y value is equivalent to the y-block cumulative variance captured, while the Q2Y is 

based on the 10 times cross-validated results and indicates predictive performance of the 

modeling.  
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Figure 4-5. Overview of the does-responses of metabolites with significant dose-respose 

to AFB1-exposure and the biochemical pathways that are associated with these metabolites. 

(A) Heap map to show the dose-responses of top 50 significantly altered metabolites ranked 

by t-test. The map was constructed based on Euclidean distance with an algorithm of 

average distance, and data standardization via feature auto-scaling. (B) The biochemical 

pathways ranked by Metabolite Set Enrichment Analysis (MSEA). Specific statistical 

parameters are available in Table 4-4. Data were normalized by median and standardized 

by pareto-scaling. 
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Figure 4-6. Evaluation of predictive power of indicative metabolites using receiver 

operating characteristic (ROC) curve based exploratory analysis (random forest model 

built-in). (A) Top 15 differential metabolites ranked according to the importance in 

discriminating samples with different treatments via random forest model (500 trees). (B) 

Validation of the differential metabolites extracted by random Forest model using ROC 

curves. ROC analysis was performed with built-in multivariate random forests algorithm. 

Monte-Carlo cross validation (MCCV) with balanced subsampling was used to generate 

ROC curves. ROC curves are based on all optional models averaged from all CVs. The 95% 

confidence interval was presented. In multivariate exploratory ROC analysis overview, 

feature importance was evaluated using two thirds (2/3) of the samples. The top 2, 3, 5, 

10 ...100 (max) important features are then used to build classification models which is 

validated on the 1/3 the samples that were left out. ROC curves were used to compare the 

models with the combination of different number of features. 
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Figure 4-7. Box plots to show the alterations of indicative metabolites induced by AFB1. 

The ion peak intensities were integrated from Extracted Ion Chromatograms (EICs) which 

were generated from the Total Ion Chromatograms (TICs) of metabolomics analysis in ESI 

(+) mode. The rat feces were from the experimental groups treated with 0 and 75 μg AFB-

1/kg body weight (B. W.). Quantitative ions and retention times were noted on each box 

plots with imputative identifications acquired from HMDB. Non-parametric Mann-

Whitney U test was applied for all comparisons (n = 6). Box plots represent 25%, 50% and 

75% percentile of data. Vertical lines of box plots indicate standard deviation (SD), 

multiplied with an adjusting coefficient of 1.5 in order to stretch out from box. 
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SI Figure 4-1. Score plot matrix of relationships between first five principal components 

of PCA. Control, low-dose, middle-dose and high-dose correspond to 0, 5, 25, and 75 μg 

AFB1/kg B. W. doses, respectively. Overlapped area is found between groups of exposure. 

Clear separation was shown between exposure groups and controls. Coordinates in axis are 

for illustration purpose only and selected arbitrary and therefore do not have clear 

biological meanings. Percentage associated with each PC is the proportion of an eigenvalue 

for the respective PC in the sum of eigenvalues for all PCs. With PC1 to PC5, a regression 

function of AFB1 exposure level was obtained with R squared of 0.458 between predicted 

AFB1 dose and actual AFB1 doses. 
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CHAPTER 5. AFLATOXIN B1 DISRUPTS GUT-MICROBIOTA DEPENDENT 

METABOLIC PATHWAYS OF CALORIFIC CARBOHYDRATES, AMINO ACIDS, 

ORGANIC ACIDS AND LIPIDS MALE F344 RATS 

 

5.1 Introduction 

Our preliminary studies have demonstrated the adverse effects of aflatoxin B1 

(AFB1) on gut-microbiota community structure and dependent metabolites in F344 rats. 

Here, the adverse impact was explored using both gas chromatography-electron ionization-

quadrupole mass spectrometer (GC-EI-Q-MS) and high-resolution liquid chromatography 

hybrid linear ion trap-orbitrap mass spectrometer (HRLC-LTQ-Orbitrap MS). Male F344 

rats were daily gavaged with 0, 5, 25 and 75 μg AFB1 kg-1 body weight. The feces collected 

in week 4 were used for analysis. A total of 1490 features were aligned from the raw data 

collected by GC-MS using XCMS. Sixty out of top 100 differential features were 

imputatively identified based on NIST database. For the raw data collected by HRLC-LTQ-

Orbitrap MS, 3925 MS1 features were aligned using MZmine, whereas 2498 MS2 features 

(234 groups) were aligned using XCMS. The MS1 m/z and MS2 fragmentation patterns 

matched 86 metabolites documented in Human Metabolome Database (HMDB), 

MassBank and METLIN databases. The key metabolites altered by AFB1 belong to 

carbohydrates, amino acids, bile constituents, phospholipids, glycerolipids, and fatty acids. 

The top 5 impacted metabolic pathways revealed by (a) GC-MS and (b) nanoHRLC-

MS/MS include—(a): valine-leucine metabolism; bile acid and steroid synthesis; GTPs 
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Synthesis; N-acetyl-D-glucosamine synthesis; carbohydrate conversion; (b): retinol 

metabolism; glycerolipid metabolism; pentose and glucoronate interconversion; 

glycerophospholipid metabolism; arginine and proline metabolism. The results are highly 

consistent with previous findings, suggesting that the impairment of gut-microbiota by 

AFB1 is an important contributor to the AFB1-induced stunted growth and the disruptions 

of liver-gut axis, immune function and energy homeostasis in rats.  

AFB1 is a Group 1 carcinogen that can induce hepatocellular carcinoma (HCC) in 

human (Wang and Groopman, 1999). It has a TD50 of 0.0032 mg kg-1 day-1 in rats (Gold 

et al., 2005). The mycotoxin is generated by Aspergillus Flavus and A. Parasiticus—two 

fungus that can easily grow on the cereals and groundnuts at a routine temperature (24 °C–

35 °C), and the fungal colonization could be easily boosted by moderate humidity (Wang 

and Groopman, 1999). In recent years, the global climate change and extreme weather 

conditions have driven the contamination of AFB1 to become an emerging risk for food 

safety in the world wide, and, in turn, more effort has been put on the investigation of 

adverse effects of AFB1 (Battilani et al., 2016; Mary et al., 2017; Sriwattanapong et al., 

2017). 

“Next-generation sequencing” techniques have uncovered an extremely complex 

gut-microbiota in gastrointestinal tracts of human and other mammals (Peisl et al., 2017; 

Qin et al., 2010). The microbial flora contains over 1000 bacterial species and 100-fold 

more genes than host genome (Huang et al., 2017). Substantial data have uncovered the 

intricate interaction between the gut-microbiota and host health—an interplay that 

influences a variety of aspects of host health, e.g. fat storage, energy metabolism, immune 

function, central neuron system (CNS) function, and cardiovascular circulation (Chi et al., 
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2017; Gao et al., 2017; Yoo et al., 2015). Could AFB1 affect gut-microbiota in human and 

animals and further lead to adverse health outcomes? Our previous 16S rRNA sequencing 

and metabolic profiling analyses of feces have shown that oral exposure to AFB1 may 

induce community structure change of gut-microbiota and affect gut-microbiota dependent 

nutritional provision (Wang et al., 2016; Zhou et al., 2018). A set of key metabolites tightly 

associated with the liver-gut axis and immune system were found to be altered by AFB1 in 

male F344 rats (Qian et al., 2014; Qian et al., 2016; Qian et al., 2013; Qian et al., 2012). 

At this point, more specific evidences are needed in order to elucidate the changes of 

specific metabolic pathways.  

Metabolomics is considered to be a proper approach to investigate gut-microbiota 

dependent metabolic pathways since it is able to capture the changes of hundreds to 

thousands of metabolites and nutrients present in complex metabolome (Peisl et al., 2017). 

However, as an integrative analytical approach, the detective scope of metabolomics 

dependents a number of factors including sample pre-treatment, instrumental design and 

settings, the modes of detector and data collection, statistical analysis, bioinformatic 

interpretation of data, as well as the consistency with reference data (Beger et al., 2016; 

Dunn et al., 2017; Peisl et al., 2017). As such, multiple platforms may be together 

employed to explore gut-microbiota and its physiological significances. 

Currently, both gas chromatography–mass spectrometry (GC-MS) and liquid 

chromatography–mass spectrometry (LC-MS) are widely used to perform metabolomics 

analysis, since they have different detective scopes (Barbosa, 2013; Chi et al., 2017; 

Smirnov et al., 2016). With similar instrumental parameters and columns, GC-EI-Q MS 

usually generates reproducible fragmentation patterns for the targeted analytes, making it 
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an integral and comparable tool to elucidate the metabolic pathway changes for most 

sample types (Grün et al., 2008; Trimigno et al., 2017). The constant ionization energy and 

standardized instrumental settings have generated highly reproducible standard fragment-

rich mass spectra in the fields of metabolomics, environmental chemistry, pharmacology, 

and gut-microbiota studies etc. (Garcia and Barbas, 2011; Shadoff et al., 1977). To extend 

the detective scope of metabolites, here we also applied “high resolution LC linear ion trap-

Orbitrap Hybrid MS” (nanoHRLC-LTQ-Orbitrap MS) to perform rapid untargeted 

LC/MS/MS metabolomics analysis. The core unit of the system is the C-trap united linear 

ion trap and Orbitrap analyzer, which ensures an integration of collision-induced 

dissociation (CID) and orbitrap that can largely fasten MS/MS analysis (Kalli et al., 2013). 

The gut-microbiota dependent biochemical pathways that were disrupted by AFB1 were 

summarized using open-access cheminformatics databases, metabolite set enrichment 

analysis (MSEA), pathway analysis and network analysis (Shannon et al., 2003; Shen et 

al., 2016). By applying these statistical models and bioinformatics methods we aim to 

reveal the gut-microbiota dependent metabolic pathways disrupted by AFB1 and retained 

a small number of key metabolites for further structural elucidation.  

 

5.2 Method and materials 

5.2.1 Chemicals and reagents 

Pyridine, dimethyl sulfoxide (DMSO), Aflatoxin B1 (purity ≥ 98%), 2-deoxy-d-

ribose, D-mannose, D-ribitol, D-fructose, D-ribose, D-galactose, D-glucose, D-galactitol, 

N-acetyl-D-glucosamine, myo-inositol, D-lactose, D-trehalose, L-lysine, L-proline, L-

alanine, L-tyrosine, methoxyamine, and N,O-bis(trimethylsilyl)trifluoroacetamide 
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(BSTFA) with 1% trimethylchlorosilane (TMCS) were all purchased from Sigma-Aldrich 

Inc. (St. Louis, MO, USA). Methanol, acetonitrile, formic acid, water and chloroform of 

GC-MS grade were purchased from J. T. Baker (Phillipsburg, NJ, USA). AFB1 stock 

solution (25 mg mL−1) was prepared in DMSO and was freshly diluted upon dosing.  

 

5.2.2 Animal study 

One hundred male F344 rats (100–120 g) were purchased from Harlan Laboratory 

(Indianapolis, IN, USA). Upon arrival, animals were allowed for one week of 

environmental acclimation, and were divided into 4 groups, with 5 cages per group. The 4 

experimental groups were then gavaged with 0, 5, 25, and 75 mg AFB1 kg−1 body weight 

(B. W.) day−1, respectively. Animals were daily dosed from Monday to Friday per week in 

a consecutive duration of 5 weeks. The animal housing environment was under controlled 

light/dark cycle (12 hr) with a temperature of 22 ± 2 ℃ and relative humidity of 50 to 70%. 

Purified AIN 76A diet and tap water were maintained every day. The detailed protocol was 

validated and reported in our previous publications, including body indexes, 

histopathological assessment, and AFB1-Lys pharmacokinetic data (Qian et al., 2014; Qian 

et al., 2016; Qian et al., 2013). From week 2 to week 4, rat feces were daily collected for 

each cage and pooled by each week. All samples were stored in –80 ℃ freezer until using. 

Animal husbandry and care, dosing and sample collection were in strict accordance with 

the requirements and regulations of the Institutional Animal Care and Use Committee at 

the University of Georgia.  

 

5.2.3 Sample extraction and derivatization prior to GC-MS analysis 



306 
 

Cold methanol was used to perform sample quenching and extraction of global 

metabolites (de Jonge et al., 2012). Briefly, a pellet of 50 mg frozen rat feces was taken to 

a tube which contained pre-loaded glass beads (PowerLyzer, i.d. 0.1 mm, Mo Bio, Carlsbad, 

CA). Four hundred milliliter of −80 ℃ cold methanol was immediately added. Then the 

fecal pellet was sufficiently grinded using a fine glass pestle. An aliquot of 800 μL 

chloroform was mixed with the sample and the tube was vortexed for 15 min. After vortex, 

an aliquot of 400 μL water was added into the tube to achieve phase separation. The tubes 

were then well sealed before frozen centrifugation at 12,000 rpm for 10 min and then placed 

into the refrigerator at 4 ℃ for 5 min stabilization. Following this step, 100 μL upper phase 

and 100 μL lower phase were taken from the sample extract and re-combined in in a new 

tube. The mixture was dried using a centrifugal evaporation. After dryness, 300 μL 

methanol was added to bring down the liquid left on the wall and further evaporation was 

continued until sample extract is fully dried. For each group, 6 sub-samplings were 

randomly conducted for each of the 5 pooled samples, totally generating 120 measurements 

of GC-MS. After thorough dryness, a volume of 80 μL methoxyamine (15 mg mL−1 

pyridine) was added into the glass tube. An aliquot of 2 μL 5 mg mL−1 epigallocatechin 

gallate (EGCG) in pyridine was spiked as internal standard in order to eliminate 

instrumental and operational bias, since EGCG is present in the end part of chromatogram 

and leaves no disturbance on the other components (Figure 5-1). The glass tubes then 

underwent vortex for 10 min of homogenization, followed by a frozen centrifugation at 

4000 rpm for another 10 min to collect the liquid left on the tube wall. The solution was 

finally transferred to standard glass sample vial and were placed into an air bath shaker, 

keeping at 35 °C for 90 min to process derivatization. After that, an aliquot of 80 μL 
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BSTFA with 1% TMCS was carefully spiked into the vial to process the second step of 

derivatization at 70 °C for 12 hours. For nanoLC-MS/MS analysis, the sample supernatants 

from control group and middle dose group (25 mg AFB1 kg−1 B. W. day−1) were directly 

taken out for analysis without derivatization (n = 6).  

 

5.2.4 GC-MS condition  

GC-EI-Q MS metabolomics was performed in an Agilent 5973-6890 system equipped 

with a J&W DB-5MS column. Ultra-high purity grade helium was used as carrier gas. The 

front inlet was set as splitless mode with gas-saver and a heating temperature of 275 °C. 

The ion source temperature was set at 230 °C and quadrupole temperature was set at 150 °C. 

The injection volume was 2 μL. The flow rate was 0.6 mL min−1. The oven initial 

temperature was 50 °C. After a holding time of 2 mins, the oven temperature ramped to 

320 °C at a rate of 3.5 °C min−1, followed with a holding time for 10.5 min at 320 °C. To 

protect MS detector, a solvent delay time of 10.5 min was applied. Full-scan mode was 

performed with m/z ranged from 50 to 800. The representative total ion chromatogram 

(TIC) is shown in Figure 5-1. The labeled peaks were confirmed by spiking standard 

chemicals. 

 

5.2.5 nanoLC-CID-MS/MS condition 

Untargeted LC-MS metabolomics was performed in a Thermo Orbitrap Elite™ 

Hybrid Ion Trap-Orbitrap Mass Spectrometer equipped with a nanoC18 column (length, 

130 mm; i.d., 100 µm; particle size, 5 µm; pore size, 150 Å; max flow rate, 500 nL/min; 

packing material, Bruker Micron Magic 18). It has a maximum resolution power of over 



308 
 

120,000 at m/z 400 for a 768 ms transient. A further advancement comes from the coupled 

nanoLC system, which may significantly avoid the nebulization at high temperature and 

therefore keeps more analytes stable for detection. Mobile phase A is 0.1% formic 

acid/water solution; mobile phase B is 0.1% formic acid/acetonitrile. A volume of 10 μL 

of each sample was injected for analysis. A constant flow rate of 500 nL/min was applied 

to perform a gradient profiling with the following proportional change of solvent A (v/v): 

0 to 1.5 min at 98% A, 1.5 to 15.0 min from 98% to 75% A, 15.0 to 20.0 min from 75% to 

40% A, 20.0 to 25.0 min from 40% to 5% A, 25.0 to 28.0 min kept at 5% A, 28.0 to 30.0 

min from 5% to 98% A, and the washing elution ended with a 4 min of re-equilibration. 

The LTQ-Orbitrap Elite MS was set in positive full scan mode within range of 50 to 1500 

m/z. Settings of the electrospray ionization were: heater temperature of 300 °C, sheath gas 

of 35 arbitrary unit, auxiliary gas of 10 arbitrary unit, the capillary temperature of 350 °C 

and source voltage was +3.0 kV. Collision-induced dissociation (CID) scan with a Fourier 

transform resolving power of 120,000 (transient = 192 ms; scan repetition rate = 4 Hz) at 

400 m/z over 50–1500 m/z was used to induce MS/MS fragmentation (Najdekr et al., 2016). 

The following settings were applied: activation value q. of 0.25, the activation time of 10 

ms and normalized collision energy of 35%. The applied collision energy for CID mode is 

suggested by Thermo Fisher and is considered to be proper for informative fragmentation 

of the majority of small molecule compounds. The cloud plot generated by XCMS and the 

data normalization conducted by MetaboAnalyst were presented in Figure 5-8 A and B. 
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5.2.6 Data processing and statistics 

Raw GC-MS files were submitted to XCMS for peak picking, isotope grouping, 

and alignment. The total intensities of extracted ion chromatography (EIC) was 

automatically integrated for each feature ion, and were then normalized using cyclic locally 

weighted scatterplot smoothing (LOESS) technique before further analysis (Savage, 1972). 

A two-tailed Welch’s t-test was used to test the significance of fold change and the p value 

was adjusted for multiple comparisons before further data-mining (Storey et al., 2004). 

After peak deconvolution via Agilent AMDIS modules, the fragmentation pattern of the 

peaks containing the interested features were searched through National Institute of 

Standards and Technology (NIST) Standard Reference Database to characterize the entities 

of these chemicals. The imputatively identified metabolites were searched through Human 

Metabolome Database (HMDB) to acquire functional and pathway information. Non-

parametric Mann-Whitney U test was used to examine the significance of fold change for 

the metabolites that were determined by standard calibration (n = 10). Principal component 

analysis (PCA), supervised partial orthogonal least squares projection to latent structures 

(OPLS-DA) and Random Forest were applied to the dataset in order to extract PCs and key 

metabolites. Metabolite set enrichment analysis and pathway enrichment analysis were 

conducted to reveal the biochemical pathways disrupted by AFB1 according to Xia et al. 

(Shen et al., 2016). KEGG-based compound-gene network analysis was performed in 

CytoScape 3.0 in order to reveal the global compound-gene correlation and the biochemical 

pathways disrupted by AFB1 (Saito et al., 2012). 

nanoLC-CID-MS/MS data were initially processed using MZmine 2.29 (Pluskal et 

al., 2010). The steps of processing include baseline-correction, MS1 detection, 
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chromatogram building, deconvolution, isotope grouping, and peak alignment through 

linear mode random sample consensus (RANSAC). Specifically, baseline-correction was 

performed with m/z bin of 1, based on amu of base peak. Asymmetric baseline corrector 

was used as correcting method with a smoothing factor of 1 and asymmetry factor of 0.001. 

The method used for MS1 detection was wavelet transform. The wavelet transform was set 

with noise level of 15000, scale level of 10 and wavelet window size of 20%. The centroid 

was set with a noise level of 500. Chromatogram deconvolution was based on the wavelet 

algorithm. The used parameter includes S/N threshold of 20, wavelet scale between 0.25 

and 5, and a peak duration range from 0 to 10. The isotope grouping was based on m/z 

tolerance of 0.006 or 20 ppm and the tolerance of retention time was 0.5 min. RANSAC 

aligner was set with a m/z tolerance of 0.005 amu or 20 ppm, retention time tolerance of 

1.5 min and 0.5 min after correction. The iteration of RANSAC was 100 with a minimum 

number of points 30%. The processed dataset was normalized by sum, auto-scaled and 

showed well-shaped normal distribution by examining density plot (van den Berg et al., 

2006). A one-tailed Welch’s t-test with adjusted-p value (q) was used to examine the 

significance of change (Hochberg and Benjamini, 1990; Storey et al., 2004). XCMS was 

used to form fragmentation patterns so that the results of MS1 searching can further rely 

on fragmentation-based identity characterization once it is available in HMDB, MassBank 

or METLINE. Similar with GC-MS data processing, the enriched pathway analysis, 

principal component analysis (PCA), supervised partial orthogonal least squares projection 

to latent structures (OPLS-DA) and Random Forests models were performed using 

MetaboAnalyst (Shen et al., 2016).  
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5.3 Results 

5.3.1 GC-MS metabolomic analysis 

The chemical derivatization protocol suggested by manufacturer (Sigma-Aldrich, 

MO, USA) was briefly optimized. SI Table 5-1 shows the peak number generated when 

different reaction temperature and solvent were tested according to the suggested 

derivatization protocol. Shown in SI Table 5-2, we examined the extracting efficacy of 

several frequently used solvent mixtures, including methanol/methyl tert-butyl ether/water 

(2:2:1), BUME (butanol/methanol at 3:1) and several adjusted Folch system solvents 

(Eggers and Schwudke, 2016; Howlett et al., 2017; Lofgren et al., 2016). Of them, a 

mixture of methanol, chloroform and water with ratio of 1:2:1 generated highest scanning 

peak number of 1094 ± 69. 

For convenience, in the following part of this article the four experimental groups 

treated with 0, 5, 25, and 75 mg AFB1 kg−1 B. W. day−1 are noted as control, low-dose, 

middle-dose and high-dose groups, respectively. The peak detection, deconvolution, 

alignment and integration of GC-MS data were processed through XCMS online modules. 

After data pre-treatment, 1490 feature ions were aligned from the 120 measurements of the 

fecal samples. Seen from the volcano plots of total feature ions (Figure 5-2), the counts of 

significantly upregulated features (> 1.5-fold, q < 0.05) were 278, 405 and 10 in the low-

dose, middle-dose and high-dose groups, respectively. The down-regulated features 

demonstrated straightly decreasing trend, with count number of 638, 902 and 1106 showing 

in the three AFB1-treated groups (Figure 5-2 D). The top 100 differential feature ions were 

imputatively identified by searching their fragmentation pattern through NIST database 

and a set of 60 metabolites were identified. Compared with the control group, there were 
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43 down-regulated and 17 elevated metabolites in the middle-dose group. Of note, there 

were 127 feature ions showing increasing trend from low-dose to middle-dose treatment 

(Figure 5-2 B and C). Most of these components were later attributed to carbohydrates and 

amino acids. Figure 5-3 shows the heatmap of the normalized intensities of these 

metabolites in the control and middle-dose groups. The major categories of these 

metabolites include carbohydrates, organic acids, steroids and amino acids (SI Table 5-3).  

In addition to the fragmentation pattern based imputative identification through NIST 

database, we also determined fecal concentrations of 16 structurally similar carbohydrates 

and amino acids using standard calibration method. The quantitative parameters such as 

regression curves, lower limit of detection and recoveries were all included in Table 5-1. 

A set of 16 structurally similar carbohydrate and amino acid standards were spiked to 

determine their concentrations in feces. Significant changes were confirmed for 11 of them 

(Figure 5-4). The fecal concentrations of these 11 metabolites are listed in Table 5-2 and 

Figure 5-4. 

To extract the key metabolites altered by AFB1. The 60 imputatively identified 

metabolites were further analyzed using principal component analysis (PCA). SI Figure 

5-2 A shows the matrix of the clusters separated by the first 5 principal components (PCs). 

PC1 to PC5 together explained 91.4% variance of values, and the regression constructed 

with them showed a fair R2 of 0.697 between the actual values and the predicted values of 

exposure level (SI Figure 5-2 B). The binary supervised model of OPLS-DA (Figure 5-5) 

was next applied to extract the key metabolites according to the method published by 

Etienne et al (Giacomoni et al., 2015). The ‘double-check’ of supervision includes the R2 

and Q2 quality metrics and 10 times permutation diagnostics. Permutation diagnostics 
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generated a R2Y of 0.858 and a Q2Y of 0.845. The first PC predicts 31% of data variance. 

Differential metabolites were obtained by inputting extracted ion intensities of the 

identified metabolites obtained in middle-dose group into OPLS-DA model. By doing so, 

a list of metabolites with VIP score over 1 was obtained (SI Table 5-3). Random Forest 

model was also applied to find the key metabolites by further ranking the components 

according to mean decrease accuracy (MDA) score (Figure 5-6 and SI Table 5-3).  

 

5.3.2 nanoLC-MS/MS metabolomic analysis 

A total of 3923 MS1 features were found by MZmine with the settings mentioned 

in material and method part. There were 140 MS1 features showing q-value < 0.05. Their 

chemical entities were imputatively characterized by searching through HMDB. In 

addition, data were processed with XCMS online module and generated 234 feature groups, 

containing 2498 MS2 features. The fragmentation patterns were searched through 

“fragment similarity search” module offered by METLIN and the results were used 

together with MS1 to characterize the identification of metabolites. By performing the 

above two approaches, 86 metabolites were imputatively identified (SI Table 5-5). The 

total intensities of MS1 integrated from extracted ion chromatography (EIC) were used for 

quantitatively analysis for these metabolites, the data were normalized by sum, pareto-

scaled, and then used for quantitative analysis according to material and method part of 

this article. Figure 5-9 shows the heatmap of these metabolites. There were 36 metabolites 

showing elevated intensities and 48 metabolites showing decreased intensities following 

treatment.  
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Figure 5-10 A shows the OPLS-DA scores plot. In the OPLS-DA model, the 

explained sum of squares for T (x) and orthogonal T (y) were found to be 71.2% and 11.2%, 

respectively. Three parameters R2X, R2Y and Q2Y were used to supervise the validity of 

the OPLS-DA model through 10-fold cross validation (Figure 5-10 B). R2X and R2Y 

represent the fraction of the variance of the x and y variable explained by the model, while 

Q2Y suggests the predictive performance of the model. The model reported R2X value of 

0.712, R2Y value of 0.96 and Q2 value of 0.939. Therefore, we the 86 metabolites could 

well represent the change of fecal metabolome caused by AFB1. To extract distinct 

metabolites from dataset, OPLS-DA model and Random Forests model were both used. 

Table 5-4 shows the ranking of the signature metabolites which were extracted using both 

OPLS-DA and Random Forest models. The annotations, retention time, and m/z of these 

signature metabolites were listed in SI Table 5-5. Figure 5-11 shows the relative 

intensities (auto-scaled and normalized intensities) of the differential lipids between 

control and exposure groups.  

 

5.4 Discussion 

We profiled the changes of fecal metabolome induced by AFB1 and observed 

extensive dose-dependent shift of the metabolome (Figure 5-2). Data showed that AFB1 

disrupted fecal long chain fatty acids, cholesterol, amino acids and carbohydrates in a 

remarkable way. Analytical parameters for a set of key carbohydrates and amino acids were 

fixated using standard calibration (Table 5-1) and the concentrations of these compounds 

in different dose groups were shown in Table 5-2. We found accumulation of calorific 

carbohydrates and reduction of beneficial pentoses. The signature metabolites that were 
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stimulated by AFB1 were extracted using a combination of different statistical models, 

presented in Figure 5-5, Figure 5-6 and Table 5-3. Finally, to assess the impact of AFB1 

on the metabolic pathways we employed both pathway impact analysis (Figure 5-7) and 

gene-compound network analysis (SI Figure 5-1).  

Shown in SI Table 5-1, Pyridine outperformed DMSO and DMF with the least 

number of background peaks. DMSO resulted in unacceptable noise peak number. The 

disturbing peak number reached approximate 500 counts though apparently highest peak 

counts was gained. With respect to the reaction temperature used for the derivatization with 

methoxyamine hydrochloride, the scanned peaks under the selected three reaction 

temperatures, i.e. 35 ℃, 55 ℃ and 70 ℃, were found to generate comparable results. A 

temperature of 35 ℃ was finally selected for derivatizing reaction. In terms of the second 

step of derivatization with BSTFA (1% TMCS), we tested the suggested time and found 

that a reaction time of 12 hour is sufficient to achieve the maximum peak number. The 

efficiency of extraction of metabolites for different extracting solvents were evaluated and 

compared (SI Table 5-2). The adjusted Folch-system was finally selected to perform the 

sample extraction since it detected highest peak number with least background peaks, 

probably benefited by the combination of aqueous and organic phases. As briefly 

mentioned in the introduction part, the instrumental settings for GC-MS based 

metabolomics are basically comparable with similar instrumental settings conducted in 

different labs. It generates stable fragmentation of analyzed metabolites though the 

detective scope for GC-MS mainly targets the small molecules of less polarity (Beger et 

al., 2016). Variation of data quality, however, could be caused by the sample extraction 

and derivatization procedures. The most significant checkpoints to pinpoint the 
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variabilities are the solvents used for sample extraction and derivatization, as well as the 

temperature and time to process derivatization. These factors need to be examined before 

instrumental analysis since the efficacy of extraction is dependent on the specific 

biochemical properties of sample (Beger et al., 2016; Calvani et al., 2014; Dettmer et al., 

2007; Dunn et al., 2017; Garcia and Barbas, 2011). After validation, we applied the 

derivatization to analyze the extract of rat feces. 

Upon AFB1 treatment, the metabolome demonstrated dose-response at global level 

(Figure 5-2). The counts of the significantly elevated features (> 1.5-fold, q < 0.05) were 

278, 405 and 10 in the low-dose, middle-dose and high-dose groups, and the down-

regulated features were of 638, 902 and 1106 in the 3 exposure groups. In the high-dose 

group the components were all reduced (Figure 5-2 C), with many feature ions completely 

fell out of detective range. To include these data into statistical analysis and model fitting 

may result in statistical errors, thus this dataset was excluded from further analysis. Next, 

we located the total ion chromatogram (TIC) peaks that contain the top 100 significantly 

altered feature ions (ranked by Welch t-test) after deconvolution of chromatogram using 

AMDIS. The identities of these peaks were imputatively annotated according to the 

fragmentation pattern documented in NIST database. Seen from SI Table 5-3, GC-EI-Q 

MS revealed the changes of metabolites that belong to a wide range of categories, including 

carbohydrates, amino acids, fatty acids, steroids and derivatives. Since the chemical entities 

of these metabolites were imputative, further discussion of biological significance was 

based on categorical level. 

We found that in the middle-dose group the utilization of carbohydrate was 

generally suppressed, since a number of calorific carbohydrates were accumulated in the 
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feces. The remarkable decrease of the count of metabolites in the high-dose group might 

be caused by the deficient gut-microbiota dependent catabolism of carbohydrates and 

amino acids as carbon source or “raw materials” to produce secondary metabolites (Table 

5-2 middle-dose group). Severe disruption of metabolisms was also observed in the 

metabolites of other categories, such as long chain fatty acids, short chain fatty acids and 

bile constituents. To explain these changes, related literatures were searched and collected, 

and possible mechanisms were given to explain the changes induced by AFB1. Only 

middle-dose group was used to compare with control, since volcano plots already showed 

the global changing trend of metabolome were consistent with the increase of AFB1 dose, 

and both low-dose and high-dose groups contain too little useful information. 

The accumulated carbohydrates and related derivatives include: glucose (2.72 fold, 

standard calibration), rhamnose (3 fold), fructose (3.69 fold, standard calibration), turanose 

(2.038 fold), galactose (2 fold, standard calibration), galactitol (1.538 fold), glycerol (1.355 

fold), ribose (1.26 fold), 3-beta-D-galactosyl-sn-glycerol (1.36 fold), arabinose (1.39 fold), 

and trehalose (12.23 fold, standard calibration) (Table 5-2 middle-dose group data and SI 

Table 5-3). The results suggest a suppressed utilization and metabolism of calorific 

carbohydrates of gut-microbiota. In agreement with such change, a group of secondary or 

degradative metabolites of these carbohydrates showed decrease changes, including, 

threose (0.598), arabitol (0.845), N-acetyl glucosamine (0.894 fold), mannose (0.85 fold, 

standard calibration). Mannose can be produced from fructose or glucose by microbial 

mannose isomerases and further used as basic components of bacterial cell wall (Cleasby 

et al., 1996; Elbaz and Ben-Yehuda, 2010). Straightforward decrease was seen in 2-deoxy-

D-ribose. The concentration of this deoxy pentose was reduced to 37% of control in low-
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dose group, and 40% of control in middle-dose group. The monocarbohydrate is a preferred 

carbon source for diarrhea-associated pathogens with deoxyribokinase (Martinez-Jehanne 

et al., 2009), so that the decrease might be induced by the domination of diarrhea-

associated pathogens which largely consumed 2-deoxy-D-ribose as carbon source. Of note, 

three primary carbohydrates: glucose, fructose and trehalose, which are utilized by most 

gut-microbial strains as carbon source, were all elevated in feces. Such pronounced 

accumulation suggested suppressed intensities of the majority of gut-microbial strains upon 

AFB1 exposure. 

   SCFAs and related derivatives were mostly reduced in the middle-dose group, 

such as acetic acid (0.745 fold), lactic acid (0.445 fold), formic acid (0.648 fold), butanoic 

acid (0.736 fold), 3-hydroxybutyric acid (0.44 fold), 6-hydroxyhexanoic acid (0.656 fold), 

2-hydroxybutanedioic acid (0.792 fold), ethanedioic acid (0.888 fold), 2,5-

dihydroxyphenylacetic acid (0.628 fold), vinylformic acid (0.605 fold). This suggests that 

the synthetic pathways of SCFA and secondary metabolites were blocked or suppressed by 

AFB1. Short or medium chain aliphatic acids, especially SCFAs, are able to maintain the 

nutritional and immunomodulatory functions of host physiology (Sun and O'Riordan, 

2013). The entry of small molecule aliphatic acids into bacterial cytoplasm is through free 

diffusion across the bacterial membrane in nonionized form. Once inside the bacterial 

cytoplasm, the nonionized acids undergo dissociate and result in accumulation of protons, 

which evokes inhibitory effect on numerous pathogens such as Clostridium Difficile, 

Streptococcus Mutans, S. Gordonii, S. Sanguis, Candida albicans (Huang et al., 2011; May 

et al., 1994), but not the probiotic strains that belong to Lactobacillus sp, Bifidobacterium 

sp, and Saccharomyces boulardii etc (Amaya-Farfan, 1999). Plus, many reports also 
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revealed the positive association between the intestinal amount of organic acids and villus 

heights in duodenum and jejunum, as well as inhibited intestinal infectious processes 

(Mohammadagheri et al., 2016). There is a mechanistic link between catabolism of 

calorific hexoses and microbial synthesis of short chain fatty acids (Louis et al., 2014). 

Thus, the reduction of SCFAs and derivatives were likely resulted from deficient 

catabolism of calorific carbohydrates caused by AFB1 treatment. By contrast, food-sourced 

long chain fatty acids were found to be accumulated in the feces (Figure 5-1), including 

arachidonic acid (7.27 fold), 9,12-octadecadienoic acid (1.436 fold), octadecanoic acid 

(1.103 fold), oleic acid (1.297 fold) and erucic acid (1.517 fold). This indicates that the 

absorption of food-sourced long chain fatty acids was affected by AFB1. In accordance 

with the absorption of these long chain fatty acids, a number of possible secondary 

metabolic products or metabolic intermediates of them also demonstrated decreasing trend 

in feces, including 2,6,10,14-tetramethyl pentadecanoic acid (0.677 fold), dihydroxy 

octadecatrienoic acid (0.772 fold), and 9,10-12,13-diepoxy-octadecanoate (0.753 fold). 

The absorption of long chain fatty acids and production of SCFAs were previously found 

to be driven and mediated by the gut-microbiota shown in rat and zebra fish models 

(Groopman et al., 1992; Rabot et al., 2010; Semova et al., 2012). Data from these works 

also showed that Firmicutes strains may increase the number of lipid droplets in 

enterocytes by facilitating the absorption, whereas Bacteroidetes or Proteobacteria strain 

could not. Therefore, the alteration of SCFA and fatty acid levels observed in the middle-

dose exposure group might be caused by the community structure change induced by AFB1, 

which were shown in our previous 16s rRNA sequencing data (Tang et al., 2015).  
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The levels of cholesterol metabolites in feces were universally reduced, such as 

cholesterol (0.547 fold), cholesterol ester (0.786 fold), chenodeoxycholic acid (0.795 fold), 

(22R)-20α,22-dihydroxycholesterol (0.447 fold), (22R)-22-hydroxycholesterol (0.797 

fold), 5-cholestene (0.711 fold), and cholest-5-ene-3β,7α-diol (0.935 fold). Since these 

metabolites are produced in liver as derivatives of cholesterol, their consistent decreases 

indicate disruption of cholesterol metabolism in liver (Chrostek et al., 2014). This is in line 

with our previous observations on the hepatic pathogenesis and development of liver 

cancer in same study design (Qian et al., 2013).   

In the middle-dose group L-lysine, L-proline and L-tyrosine were all elevated over 

2-fold in feces. Food-sourced proteins are hydrolyzed into peptides and amino acids by 

both host- and bacteria secreted proteases and peptidases (Gaudet et al., 2015). Therefore, 

the reduced level of these amino acids in the low-dose group might be resulted by the 

suppressed microbial exo-enzymes (i.e. extracellular enzymes) such as proteases and 

peptidases. However, with the increase of dose, both the diversity and intensity of gut-

microbiota were reduced (Tang et al., 2015). In accordance with this change, the endo-

enzymes (i.e. cytoplasmic enzymes)-based modification and metabolism were suppressed 

and finally resulted in the accumulation of metabolites in feces. Such enzyme-based 

explanation could also apply to mannose and N-acetyl-D-glucosamine. The two 

carbohydrates demonstrated divergent trends of change, possibly because of the dose-

dependent sequence of inhibition on exo-enzymes and endo-enzymes.  

According to above discussion, the metabolomics data suggest that AFB1 disrupted 

gut-microbiota dependent metabolisms of SCFA, long chain fatty acids, cholesterol, amino 

acids and carbohydrates. These changes may further induce a wide range of adverse health 
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outcomes in the experimental rats. PCA was next used to examine whether these 

metabolites could stand for the global metabolic changes induced by AFB1. As a major 

type of unsupervised discriminant multivariate analysis (MVA), the assumption of PCA is 

that all observed variables are correlated with underlying variables which are 

corresponding to the clustering of subjects. The analysis provides basic information on the 

dependent structures of data and predictive model for the exposure. Importantly, PCA is 

considered to be a practical indicator of PLS-DA or OPLS-DA model reliabilities (Worley 

and Powers, 2016). Seen from SI Figure 5-2, PC1 to PC5 explained 91.4% data variance. 

The principal component regression (PCR) analysis constructed with them showed linear 

regression coefficient of 0.697 between the actual values and the predicted values of 

exposure level (SI Figure 5-2 B). This indicates that sample pre-treatment process 

successfully retained the differential composition between control and exposure groups, 

and the GC-MS metabolomics protocol properly profiled these components.  

The binary supervised model of OPLS-DA was next applied to extract the key 

metabolites altered by AFB1 according to the method published by Etienne et al (Thévenot 

et al., 2015). Seen from Figure 5-5, the “double-check” of supervision includes the R2 and 

Q2 quality metrics and 10 times permutation diagnostics. Both higher R2Y of 0.858 and 

Q2Y of 0.845 were shown with p < 0.05 for the permutation diagnostics, which justified 

the fitness of the model. The first predictive component predicts 31% of data variance. 

Differential metabolites were obtained by inputting extracted ion intensities of the 

identified metabolites obtained in middle-dose group into OPLS-DA model. There were 

10 metabolites with VIP score over 1 revealed by OPLS-DA (Table 5-3). We found that 

the mean decrease accuracy (MDA) based ranking of metabolites provided by Random 
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Forests model is consistent with the VIP score-based ranking (Table 5-3 and Figure 5-6). 

The 10 metabolites with high VIP score were all included in the MDA based ranking list, 

including D-lactic acid, 3-hydroxybutyric acid, erucic acid, cholesterol, 20α, 22R-

dihydroxycholesterol, N-acetyl-L-alanine, α, α-trehalose, L-arabinose, galactitol and 

turanose. The metabolite panel was considered to be the signature metabolites in response 

to AFB1 treatment. These metabolites also stand for the several major metabolite categories 

affected by AFB1, such as carbohydrates, amino acids, long chain fatty acids, SCFAs, and 

cholesterol derivatives. 

We applied metabolite set enrichment analysis to summarize the metabolic changes 

occurred at pathway level. The results from control and middle-dose groups were used for 

MSEA and pathway enrichment analysis, which uses the records documented in KEGG 

database (Shen et al., 2016). The disrupted biochemical pathways are listed on Figure 5-7 

A, with the topological presentation shown in Figure 5-7 B. The most significantly altered 

metabolic pathways were found to be galactose metabolism, protein biosynthesis, 

propanoate metabolism, and several metabolic pathways of amino acids (valine, leucine, 

isoleucine, alanine etc.). In addition, glycolysis, glycogenesis, pyruvate pathway, and 

homeostasis of global energy supply are also among the most severely affected pathways. 

In general, the biochemical pathways correlated by KEGG-based enrichment analysis are 

consistent with the literature-based data interpretation. We also constructed KEGG-based 

network to reveal the global compound-gene correlation (SI Figure 5-1). The reports from 

several bioinformatics methods were generally consistent. 

The AFB1-induced liver pathogenesis has been analyzed and characterized by our 

previous works (Qian et al., 2013). Here nanoLC-MS/MS metabolomics found a set of 
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signature fats and lipids that are associated with gut-liver axis. To be specific, we identified 

18 signature metabolites by applying statistical modeling analysis (Figure 5-10, Table 5-

4, and Figure 5-11). Though their specific structures cannot be confirmed at this point, the 

chemical entities estimated by HMDB, Massbank and METLIN indicate that they belong 

to lipids, including fatty acyls, glycerolipid and glycerophospholipid. Of them, we found 

elevated levels of diglyceride (DG), monoacylglyceride (MG), 19,20-dihydroxy-

4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid (19,20-DiHDPA), phosphatidylethanolamine, 

PC(DiMe(9,3)/DiMe(9,3)), S-(2-Methylbutanoyl)-dihydrolipoamide, and palmitoyl 

glucuronide. Usually these lipids are carried by bile from liver to gut, and their elevation 

may be resulted by AFB1-induced hepatic steatosis (Amaya-Farfan, 1999; Jeannot et al., 

2012). Propionic acid is able to inhibit lipogenesis and cholesterogenesis in liver (Demigne 

et al., 1995; Hara et al., 1999). The reduced supply of propionic acid from gut to liver may 

also contribute to the elevated lipids, and such reduction was reported by our previous work. 

The hepatic steatosis was further indicated by the increase of other three signature 

metabolites: 5beta-pregnane-3alpha,21-diol-11,20-dione, 11beta,20-dihydroxy-3-

oxopregn-4-en-21-oic acid (DHOPA) and 3-oxo-4,6-choladienoic acid. The first two 

metabolites are transformed from corticosterone in liver and then carried to gut by bile. 

Hypercortisolism is associated with steatosis, obesity and metabolic syndrome (Tarantino 

and Finelli, 2013). The increase of 3-oxo-4,6-choladienoic acid is consistent with the 

elevation of fecal bile acid that was formerly reported. The rat diet did not contain extra 

lipids. The elevated lipids in gut were more likely transported from liver. In fact, after 

fourth weeks of treatment, histological examination found liver steatosis and cirrhosis 

induced by the treatment of AFB1 (Qian et al., 2016; Qian et al., 2013). Similar with lipids, 
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the elevation of vitamin A and derivatives (retinol and 4-oxo-retinoic acid) may also be 

resulted from the damaged liver tissue, since vitamin A is fat-soluble and is stored in the 

liver. Liver regulates a variety of biochemical reactions in detoxification of drugs and 

metabolism of nutrients or metabolites. It takes a central role in plasma protein synthesis, 

hormone synthesis, as well as maintenance of glucose and lipid homeostasis. There are 

numerous studies reporting that oral exposure to AFB1 could affect lipid metabolism in 

liver, including tri-, di-, monoglycerides, clycerolipid, cholesterol and phospholipids etc. 

Lu et al. have reported disruption of hepatic gluconeogenesis and lipid metabolism 

following acute AFB1 exposure in rat (Lu et al., 2013). 

L-carnitine can facilitate the catabolism of medium- to long-chain fatty acids by 

transporting acyl- group into mitochondria where the carbon chain undergoes β-oxidation 

(Mller et al., 2002). Endogenous synthesis of L-carnitine is an important metabolic 

function of the liver, and part of synthesized L-carnitine is released into gut through bile 

(Groopman et al., 1992). There are several reports demonstrating that liver diseases, such 

as primary biliary cirrhosis and other liver diseases (Fortin, 2011; Tang et al., 2015). We 

found a 37.8-fold down-regulation of L-carnitine in the feces from the exposure group. 

This remarkable reduction of L-carnitine could be caused by liver cirrhosis, for which 

specific histological examination was reported previously (Qian et al., 2013).  

The other signature metabolites (Table 5-4) include L-urobilin, creatine, propyl 

decanoate, 7-hexadecenoic acid methyl ester and 5,8-tetradecadienoic acid. Creatine is 

produced in liver and kidney. The synthesis relies on methionine, glycine, and arginine, 

and two enzymes, i.e. l-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate 

methyltransferase (GAMT) (da Silva et al., 2009). Creatine was almost not detected in the 
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exposure group. It was reported before that decline in hepatic functional capacity results in 

reduced creatine production (MacAulay et al., 2006), thus the observed reduction of fecal 

creatine might be caused by the liver damages. L-urobilin, propyl decanoate, 7-

hexadecenoic acid methyl ester and 5,8-tetradecadienoic acid were found to be reduced by 

over 40 folds. L-urobilin and propyl decanoate are microbial derivatives of liver-secreted 

bilirubin and food-contained decanoic acid, respectively. 7-hexadecenoic acid methyl ester 

belong to mono-unsaturated fatty acids, which can be synthesized by microbes through 

both anaerobic and aerobic pathways (Russell and Nichols, 1999). Conversion from 

arachidonic acid to 5,8-tetradecadienoic acid could occur through the peroxisomal 

oxidative enzymes from gut-microbiota (Spector et al., 1997). The reduction of the acid 

suggested dysfunction of related enzymes. During steatosis, extra lipids were produced in 

liver, and were further brought to gut through bile excretion. Once entering gut, these lipids 

could change the composition of gut-microbial strains. It has been widely known that diet 

with high concentration of lipids and fats could enrich certain gut-microbial strains that are 

associated with obesity, metabolic syndrome, as well as several types of cardiovascular 

diseases in human and animal models (Chang et al., 2011; Guo et al., 2017; Lecomte et al., 

2015; Murphy et al., 2015). Hybrid LTQ-Orbitrap LC-MS seems to be a proper platform 

for further lipidomic analysis of bile constituents in the future. 

 

5.5 Conclusion 

Gut-microbiota are able to impart specific function in the metabolism of nutrients 

in host. The regulation is realized via the small molecules produced by gut microbiota, 

including the food-derived micronutrients, microbial signaling molecules and a small 
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portion of host secreted molecules from bile and gut epithelium (Scheppach et al., 1994). 

The major categories include aliphatic acids, lipids, hydrocarbons, phenyl acids, bile 

compositions, vitamins, steroids, amino acids, organic amines and a rich pool of microbe-

derived secondary metabolites of these components. These metabolites offer a wide range 

of functions, and some of them can be easily detected since they have considerable high 

concentrations shown in feces. The gut-microbial metabolome thus plays a dominant role 

in regulating the development and performance of host systems, organs, and tissues. By 

contrast, the disruption of gut-microbiota is associated with many gastrointestinal diseases, 

hepatic diseases, cancer, obesity, autism and a variety of allergic or inflammatory 

symptoms (Smith et al., 2017). Our findings in the current study generally agree with these 

knowledges. 

In this work, we captured the alteration of fecal metabolites from AFB1-treated 

F344 male rats using GC-MS and nanoLC-MS/MS based metabolomics. To mine useful 

information from the metabolomics data, multiple statistical models and bioinformatics 

tools were applied. The data were acquired using validated methods with sufficient sample 

size, three dose levels and pretreatment of sample. The biological explanation and 

interpretation were consistent with previous pathological findings and the results of 16S 

rRNA analysis. Taken together, oral exposure to AFB1 in F344 male rats may disrupt gut-

microbial utilization of carbohydrates and amino acids, absorption of food-sourced long 

chain fatty acids, bile synthesis and secretion, and also largely reduce production of SCFAs 

(Zhou et al., 2018). The adverse health outcomes predicted from metabolomics data may 

be further examined in future, and the structures of key metabolites could be structurally 

elucidated. 
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TABLES 

Table 5-1. Analytical parameters of GC-MS analysis used for the measurement of amino 

acids and carbohydrates. 

Compound RT 
Q 

Ion 

Regression 

Equationa R2 Recoveryb 
Linear 

Rangec LLODd 

2-Deoxy-D-

ribose 
32.55 73 

y = 1e-06x + 

6.4 
0.996 0.222 1.25–400 0.625 

D-Mannose 35.93 73 
y = 2e-07x - 

0.66 
0.999 0.203 1.25–400 0.625 

D-Ribitol 37.35 73 
y = 1e-07x - 

1.2 
0.998 0.239 1.25–400 0.625 

D-Fructose 41.68 73 
y = 1e-06x - 

2.03 
0.996 0.232 1.25–400 0.625 

D-Ribose 42.14 73 
y = 9e-07x - 

14.5 
0.996 0.257 1.25–400 0.625 

D-Galactose 42.20 73 
y = 3e-07x - 

2.42 
0.999 0.298 1.25–400 0.625 

D-Glucose 42.42 73 
y = 1e-06x - 

16.57 
0.991 0.562 1.25–400 0.625 

D-Galactitol 43.50 73 
y = 4e-06x - 

9.89 
0.993 0.305 1.25–400 0.625 

GlcNAc 47.34 73 
y = 1e-06x + 

12.36 
0.999 0.249 1.25–400 0.625 

myo-inositol 47.46 73 
y = 4e-07x - 

10.31 
0.995 0.193 1.25–400 0.625 

D-Lactose 61.39 73 
y = 1e-06x - 

4.96 
0.995 0.249 1.25–400 0.625 

D-Trehalose 62.62 73 
y = 1e-06x - 

11.92 
0.991 0.217 1.25–400 0.625 

L-Proline 22.4 307 
y = 1e-05x + 

22.75 
0.944 0.243 9–575 4.5 

L-Lysine 43.01 174 
y = 6e−06x + 

16.84 
0.993 0.133 15.6–500 7.8 

L-Tyrosine 43.52 218 
y = 9e−07x + 

32.87 
0.998 0.358 25–400 12.5 

L-Alanine 15.3 116 
y = 2e-06x + 

101.4 
0.992 0.267 75–1200 37.5 

Abbreviation: RT, retention time; Q Ion, most abundant fragment ion used for quantitation; 

R2, linear regression coefficient; LLOD, lower limit of detection; GlcNAc, N-Acetyl-D-

glucosamine. 

a. Y, ng μL−1 of analyte; X, peak area. The ion peak intensities used for quantitation were 

integrated from Extracted Ion Chromatograms (XICs).  

b. Recovery rate was calculated from blank extract containing ~50%, ~100% and ~200% 

concentrations of an analyte measured in mixed sample extract (n = 10, control group). 
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Recovery% = (amount of analyte measured in the spiked extract − analyte amount 

measured in the extract) × 100/(spiked analyte amount in the extract). Blank extract was 

generated from the samples that were thoroughly washed. Blank extract was generated 

from samples which were thoroughly washed. 

c. The range in which regression curve maintains R2 > 0.99. Unit of linear range is μg mL−1. 

d. The analyte level which generated a signal-to-noise (S/N) ratio of 3 was noted as the 

LLOD for that analyte. The unit of LLOD is μg mL−1. 
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Table 5-2. Fecal concentrations of key carbohydrates and amino acids determined by 

standard calibration (Figure 5-5). 

Metabolite Dose* 
Concentration in feces (ng mg−1) 

Mean STD Median Ratio Trend p** 

2-Deoxy-D-

ribose 

0 1375.07  183.15  1275.78     

5 508.59  77.26  494.47  0.37  Down <0.0001 

25 545.92  152.91  502.45  0.40  Down <0.0001 

D-Mannose 

0 340.69  111.86  357.69        

5 122.38  37.59  135.84  0.36  Down 0.001 

25 288.69  77.18  294.29  0.85  Down 0.112 

D-Fructose 

0 
12022.0

8  
2510.93  

12087.0

9  
   

5 
15262.0

7  
3238.84  

15724.8

9  
1.27  Up 0.049 

25 
44408.6

6  

16726.8

1  

46244.2

1  
3.69  Up <0.0001 

D-Galactose 

0 2175.87  582.41  2180.88        

5 1886.38  449.48  1981.40  0.87  Down 0.257 

25 4346.70  3070.31  3118.29  2.00  Up 0.226 

D-Glucose 

0 9746.52  1550.97  9879.19     

5 
10767.2

5  
3039.79  

10215.8

5  
1.10  Up 0.597 

25 
26544.6

7  
5334.65  

28526.4

1  
2.72  Up <0.0001 

N-Acetyl-D-

glucosamine 

0 768.87  120.28  749.39        

5 495.31  56.19  478.17  0.64  Down <0.0001 

25 835.15  198.60  845.66  1.09  Up 0.288 

D-Trehalose 

0 496.06  197.91  519.84     

5 2008.69  1219.08  1530.23  4.05  Up <0.0001 

25 6068.40  1780.92  5441.29  12.23  Up <0.0001 

L-Lysine 

0 3037.01  881.80  2711.68        

5 1174.31  361.46  1229.62  0.39  Down <0.0001 

25 7602.95  2660.96  6759.64  2.50  Up <0.0001 

L-Proline  

0 
18758.0

5  
2919.63  

19441.9

9  
   

5 
20710.8

8  

11028.5

5  

17906.7

5  
1.10  Up <0.0001 

25 
48716.2

1  
12224.2  

51352.9

8  
2.60  Up <0.0001 

L-Alanine 

0 
14354.2

5  
3238.78  

14853.3

2  
      

5 3346.25  435.66  3138.63  0.23  Down <0.0001 

25 
12905.0

8  
5026.46  

12094.3

6  
0.90  Down 0.364 
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L-Tyrosine  

0 1378.64  247.42  1374.36     

5 1155.53  216.34  1045.81  0.84  Down 0.034 

25 2726.71  595.30  2525.14  1.98  Up <0.0001 

* mg AFB1 kg−1 B. W. day−1. 

** Kruskal-Wallis H test, n = 10. 
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Table 5-3. Key metabolites (GC-MS) extracted by Random Forests and OPLS-DA models.  

Random Forests model  OPLS-DA model  

Component MDA Component VIP 

(22R)-20alpha,22-

Dihydroxycholesterol 
0.055 D-Lactic acid 1.383  

D-Lactic acid 0.040 alpha, alpha-Trehalose 1.344  

N-Acetyl-L-alanine 0.035 N-Acetyl-L-alanine 1.331  

Turanose 0.033 
(22R)-20alpha,22-

Dihydroxycholesterol 
1.317  

Acetic acid 0.025 Turanose 1.312  

Cholesterol 0.023 Erucic acid 1.280  

(R)-3-Hydroxybutyric acid 0.016 Galactitol 1.257  

5,6-Dihydroxyindole-2-

carboxylate 
0.014 Cholesterol 1.250  

9,12-Octadecadienoic acid  0.013 (R)-3-Hydroxybutyric acid 1.241  

Vinylformic acid 0.013 L-Arabinose 1.193  

L-Arabinose 0.013 Tetramethylpentadecanoic acid 1.186  

Tetramethylpentadecanoic acid 0.012 Vinylformic acid 1.178  

Erucic acid 0.011 Sphinganine 1.177  

Galactitol 0.010 3-beta-D-Galactosyl-sn-glycerol 1.161  

6-Hydroxyhexanoic acid 0.009 Formic acid 1.156  

Abbreviations: MDA, Mean Decrease Accuracy, calculated by Random Forests model 

(500 trees), indicating the relative importance of metabolite in clustering samples with 

different treatments. VIP (variance importance in projection), a measure of a metabolite's 

importance in clustering samples with different treatments, calculated a weighted sum of 

the squared correlations between the OPLS-DA components and the original variable. 
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Table 5-4. Key metabolites (nanoHRLC-MS/MS) extracted by Random Forests and 

OPLS-DA models.  

Random forests model OPLS-DA model 

Component AI Component VIP 

L-Urobilin 5.08 
3-Hydroxy-cis-5-

tetradecenoylcarnitine 
1.41 

Dodecanedioylcarnitine 2.66 
7-Hexadecenoic acid, methyl 

ester 
1.41 

12-phenoxydodecoxybenzene 2.63 L-Histidinol 1.39 

Lyso PE(16:0/0:0) 2.37 Piperochromenoic acid 1.34 

Heptadecenoic acid 1.62 
Dihydromaleimide beta-D-

glucoside 
1.34 

Taurolithocholic acid 3-sulfate 1.83 Palmitoyl glucuronide 1.33 

PE(22:2(13Z,16Z)/P-18:0) 1.54 L-Urobilin 1.32 

Stearic acid 1.61 Squamoxinone 1.30 

Trihexosylceramide 1.29 
N-Nitrosothiazolidine-4-

carboxylic acid 
1.28 

3-4-Hydroxy-3-methoxyphenyl-1,2-

propanediol 
1.23 

3-4-Hydroxy-3-methoxyphenyl-

1,2-propanediol 
1.27 

Palmitoyl glucuronide 1.23 4-Hydroxyenterodiol 1.27 

Z-22-Hentriacontene-2,4-dione 1.17 Glycerol trihexanoate 1.26 

Mahanimbinol 1.13 3,17-Androstanediol glucuronide 1.26 

2-Hydroxyhexadecanoylcarnitine 1.01 Retinal 1.25 

2-Isopentyl-7-azaindole 1.08 
3,7-Dihydroxy-12-oxocholanoic 

acid 
1.24 

Abbreviations: AI, averaged importance, or mean importance measure, calculated by 

Random Forests model (500 trees), indicating a (weighted) mean of the individual trees 

improvement in the splitting criterion produced by each variable (Strobl et al., 2007). VIP 

(variance importance in projection), a measure of a metabolite's importance in clustering 

samples with different treatments, calculated a weighted sum of the squared correlations 

between the PLS-DA components and the original variable.  
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Figure 5-1. Typical GC-MS total ion chromatogram (TIC) of fecal metabolites. The 

labeled interested amino acids and carbohydrates were located in the chromatogram by 

standard spikes.  
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Figure 5-2. Volcano plots of 1490 feature ions detected by GC-MS. The plots illustrate the 

compositional changes of fecal metabolome in rats treated with (A) 5, (B) 25 and (C) 75 

μg AFB1 kg−1 B. W. day−1. Each dot represents a ratio of metabolite calculated by 

comparing the extracted ion chromatography (EIC) intensity of the metabolite in the 

treatment group with that in the control group. The data for all metabolites are plotted as 

log2 fold-change (X axis) versus the −log10 of q-value (Y axis). The cut-off threshold for 

the screening of significant responding metabolites was set as fold-change > 2 and q < 0.05 

by Welch's t-test, marked as red spots.  
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Figure 5-3. Heatmap overview of the alterations of metabolites profiled by GC-MS 

between control and middle-dose groups. Heat map shows the level changes of metabolites. 

The hierarchical reorganization was based on the Pearson’s correlation coefficient with 

average distance. Data were normalized using locally weighted scatterplot smoothing 

(LOESS) algorithm. The exposure group was treated with 25 μg AFB1 kg−1 B. W. 
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Figure 5-4. Differential metabolites measured by standard calibration. The ion peak 

intensities were integrated from Extracted Ion Chromatograms (XICs). Non-parametric 

Mann-Whitney U test was applied for all comparisons (n = 10). Violin plots represent 25%, 

50% and 75% percentile of data. Whisker of box plots indicate standard deviation (S. D., 

n = 10). 
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Figure 5-5. Score plot and model supervision of OPLS-DA model for GC-MS 

metabolomics data. Each dot represents a biological sample point. All data were auto-

scaled and show normal distribution. The components t1 and t2 are reflected on the 

horizontal and vertical axis respectively. The R2Y value is equivalent to the y-block 

cumulative variance captured, while the Q2Y is based on the 10 times cross-validated 

results and indicates predictive performance of the modeling. The color-coded circle 

represents 95% confidential interference. 
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Figure 5-6. Key metabolites (GC-MS) ranked by Random Forests model to evaluate the 

contribution of metabolites to the discrimination between control and AFB1-treated groups. 

Mean decrease accuracy (MDA) was calculated by Random Forests model (500 trees), 

indicating the relative importance of metabolite in clustering samples with different 

treatments. The more the accuracy of the random forest decreases due to the exclusion of 

that single variable, the more important that variable is. The variable with a larger mean 

decrease in accuracy is more important for classification of the data. 
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Figure 5-7. Metabolite set enrichment analysis (MSEA) and pathway enrichment analysis 

for the detected metabolites (KEGG rat database). (A) MSEA of metabolic pathways with 

q < 0.05 for the significance of alteration. The color code indicates q values, and the 

enrichment fold (X-axis) indicates extent of response for the metabolic pathway. (B) 

Pathway enrichment analysis to show the biochemical pathways affected by AFB1 (global 

test with topology analysis based on relative-betweeness centrality). Specific results of 

pathway analysis are available on SI Table 4. (a) Phenylalanine, tyrosine and tryptophan 

biosynthesis; (b) Valine, leucine and isoleucine biosynthesis; (c) Glycerolipid metabolism; 

(d) Tyrosine metabolism; (e) Pyruvate metabolism; (f) Steroid biosynthesis; (g) Alanine, 

aspartate and glutamate metabolism; (h) Glyoxylate and dicarboxylate metabolism; (i) 

Primary bile acid synthesis; (j) TCA cycle; (k) Amino sugar and nucleotide sugar 

metabolism. 
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Figure 5-8. Cloud plot and data normalization of nanoHRLC-MS/MS data. 
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.

 

Figure 5-9. Heat map based on the Pearson distance measure and the average cluster 

algorithm. Heat map here provides intuitive visualization of the metabolic remodeling in 

disease groups compared to the control group. Red color indicates a high level of 

metabolites and green color indicates a low level of metabolites, while black color means 

an equal level in groups. 
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Figure 5-10. Score plot and model supervision of OPLS-DA model for nanoLC-MS/MS 

metabolomics data. Each dot represents a biological sample point. All data were auto-

scaled and show normal distribution. The components t and orthogonal t are reflected on 

the horizontal and vertical axis respectively. The R2Y value is equivalent to the y-block 

cumulative variance captured, while the Q2Y is based on the 10 times cross-validated 

results and indicates predictive performance of the modeling. The color-coded circle 

represents 95% confidential interference. 
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Figure 5-11. Comparison of intensities of signature lipid components between control 

group (upper) and exposure group (lower). The intensities of ion peaks were normalized 

by sum and pareto-scaled (n = 5). The horizontal lines of box plots indicate the 25th 

percentile, mean and 75th percentile. Abbreviations: DG, diglyceride (14:0/18:0/0:0) or 

(14:0/18:0/0:0) or (18:0/14:0/0:0) or (16:0/16:0/0:0) or (16:0/0:0/16:0); 19,20-DiHDPA, 

(4Z,7Z,10Z,13Z,16Z)-19,20-dihydroxydocosa-4,7,10,13,16-pentaenoic acid; MG, 

monoradyglycerol (0:0/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) or 

(0:0/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) or (20:5(5Z,8Z,11Z,14Z,17Z)/0:0/0:0); PC, 

phosphatidyl choline (DiMe(9,3)/DiMe(9,3)). Specific data are available on SI Table 5-5. 
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SI Table 5-1. Comparison of the counts of peak detected by GC-MS by using different 

solvents for chemical derivatization. 

Derivatization  Temperature 

Derivatization solvent 

Pyridine DMSO DMF 

Peak 

count 
Blank 

Peak 

count 
Blank 

Peak 

count 
Blank 

Step 1  

35 ℃ 342 ± 7 13 505 ± 15 388 345 ± 33 23 

55 ℃ 347 ± 3 8 643 ± 6 311 336 ± 8 28 

70 ℃ 343 ± 6 10 624 ± 6 479 348 ± 5 24 

Step 2 70 ℃ 363 ± 3 11 563 ± 66 492 366 ± 8 27 

Peak count: number of peaks detected by AMDIS in total ion chromatographic (TIC), 

mean ± SD, n = 3. Step 2 was not examined since 70 ℃ is widely applied for sufficient 

derivatization. 
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SI Table 5-2. Comparison of the counts of peaks 

detected by GC-MS analysis by using different 

solvents for sample extraction. 

Extraction solvent Peak count  

Methanol/Chloroform 2:1 798 ± 6 

Methanol/Chloroform 1:1 850 ± 4 

Methanol/Chloroform 1:2 939 ± 44 

Methanol 476 ± 44 

Methanol/Water 1:1 730 ± 13 

BUME 550 ± 2 

Methanol/MTBE/Water 2:2:1 608 ± 4 

Methanol/Chloroform/Water 1:2:1  1094 ± 69 

Peak count: number of peaks detected by AMDIS in 

deconvoluted total ion chromatographic (TIC), mean 

± SD, n = 3. BUME, Butanol/Methanol 3:1. MTBE, 

Methyl-Tertiary-Butyl-Ether. 
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SI Table 5-3. Fold-change and statistical parameters for the 60 differential metabolites 

detected by GC-MS. 

Imputative Identity 

Middle

-dose 

vs 

Contro

l 

mz@RT MDA 

VIP 

scor

e 

q Trend 

(22R)-20alpha,22-

Dihydroxycholesterol 
0.447  M370T69 

0.054

8 

1.31

7  

1.310E

-18 

DOW

N 

D-Lactic acid 0.445  M73T14 
0.040

4 

1.38

3  

4.182E

-26 

DOW

N 

N-Acetyl-L-alanine 0.480  M117T14 
0.035

2 

1.33

1  

7.191E

-20 

DOW

N 

Acetic acid 0.745  M149T17 
0.024

5 

1.06

8  

1.718E

-08 

DOW

N 

Cholesterol 0.547  M371T69 
0.022

5 

1.25

0  

2.123E

-15 

DOW

N 

3-Hydroxybutyric acid 0.444  M147T23 
0.015

8 

1.24

1  

7.346E

-16 

DOW

N 

5,6-Dihydroxyindole-2-

carboxylate 
0.651  M220T17 

0.014

4 

1.12

4  

2.327E

-09 

DOW

N 

Vinylformic acid 0.605  M73T37 
0.012

6 

1.17

8  

2.293E

-13 

DOW

N 

D-Galactose 0.677  M299T43 
0.011

6 

1.18

6  

6.113E

-12 

DOW

N 

6-Hydroxyhexanoic acid 0.656  M118T14 
0.009

0 

1.06

8  

5.312E

-11 

DOW

N 

Lauric acid 0.870  M95T71 
0.008

8 

0.74

1  

1.778E

-04 

DOW

N 

Formic acid 0.648  M145T17 
0.008

6 

1.15

6  

1.400E

-12 

DOW

N 

L-Tyrosine 0.741  M75T44 
0.007

7 

1.01

9  

1.161E

-08 

DOW

N 

2,5-

Dihydroxyphenylacetic 

acid 

0.628  M74T14 
0.006

2 

1.03

4  

1.934E

-10 

DOW

N 

L-Alanine 0.521  M116T16 
0.005

5 

1.08

9  

2.784E

-10 

DOW

N 

Threose 0.598  M147T16 
0.004

9 

1.03

7  

3.511E

-09 

DOW

N 

Butanedioic acid 0.676  M145T19 
0.004

8 

1.04

0  

2.372E

-08 

DOW

N 

L-Lysine 0.618  M247T23 
0.004

4 

1.06

0  

1.457E

-09 

DOW

N 
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2'-Deoxyadenosine 5'-

phosphate 
0.745  M216T70 

0.004

4 

1.01

1  

4.483E

-08 

DOW

N 

L-Valine 0.521  M144T19 
0.004

1 

1.15

2  

2.907E

-11 

DOW

N 

Butanoic acid 0.736  M75T17_1 
0.003

9 

1.09

6  

3.729E

-09 

DOW

N 

Sphinganine 0.682  M207T13 
0.003

8 

1.17

7  

3.846E

-11 

DOW

N 

(2R,6R,10R)-2,6,10,14-

Tetramethylpentadecanoi

c acid 

0.761  M217T48 
0.003

5 

1.03

2  

1.317E

-08 

DOW

N 

(3S,10R)-Dihydroxy-

(4Z,6E,12Z)-

octadecatrienoic acid 

0.772  M145T69 
0.003

3 

0.90

0  

8.890E

-07 

DOW

N 

2,2,2-Trichloroethyl beta-

D-glucopyranosiduronic 

acid 

0.714  M217T69 
0.002

7 

0.95

2  

4.632E

-08 

DOW

N 

Chenodeoxycholic acid 0.795  M258T72 
0.001

7 

0.91

5  

4.818E

-07 

DOW

N 

27-Hydroxycholesterol 0.720  M368T70 
0.001

4 

1.00

4  

3.516E

-07 

DOW

N 

(22R)-22-

Hydroxycholesterol 
0.797  M388T72 

0.001

1 

0.90

8  

2.113E

-06 

DOW

N 

L-Arabitol 0.845  M205T68 
0.001

1 

0.81

4  

6.285E

-06 

DOW

N 

Cholesterol ester 0.786  M257T71 
0.001

0 

1.01

9  

1.013E

-07 

DOW

N 

Aniline 0.761  M95T69 
0.001

0 

0.84

0  

3.016E

-06 

DOW

N 

9,10-12,13-Diepoxy-

octadecanoate 
0.753  

M119T71_

2 

0.001

0 

0.85

4  

1.592E

-06 

DOW

N 

1,2-Diacylglycerol 0.803  M191T48 
0.001

0 

0.91

6  

1.885E

-07 

DOW

N 

4-Bromocatechol 0.788  M207T71 
0.000

8 

0.78

5  

1.517E

-05 

DOW

N 

4-Aminobutyrate 0.741  M130T18 
0.000

8 

0.95

5  

3.994E

-07 

DOW

N 

Pyridine-2,3-

dicarboxylate 
0.838  M208T13 

0.000

7 

0.89

5  

2.652E

-06 

DOW

N 

5α-Cholest-7-en-3β-ol 0.935  M460T71 
0.000

7 

0.27

1  

2.177E

-01 

DOW

N 

2-Hydroxybutanedioic 

acid 
0.792  M117T54 

0.000

6 

0.89

8  

1.022E

-06 

DOW

N 

Cholest-5-ene-

3beta,7alpha-diol 
0.845  M205T68 

0.000

4 

0.81

4  

6.285E

-06 

DOW

N 
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N-Acetyl-D-glucosamine 0.894  M320T70 
0.000

4 

0.63

1  

1.164E

-03 

DOW

N 

17beta-Hydroxy-5alpha-

androstan-3-one 
0.837  M217T39 

0.000

2 

0.50

0  

3.045E

-03 

DOW

N 

5-Cholestene 0.711  M385T70 
0.000

1 

0.95

8  

2.955E

-07 

DOW

N 

Ethanedioic acid 0.888  M148T12 
0.000

1 

0.66

6  

6.353E

-04 

DOW

N 

gamma-Linolenic acid 0.817  M129T54 
0.000

1 

0.89

3  

1.929E

-06 

DOW

N 

5beta-Cholestane-

3alpha,7alpha-diol 
0.790  M189T69 

-

0.000

1 

0.96

6  

3.113E

-08 

DOW

N 

Turanose 2.038  M361T63 
0.032

8 

1.31

2  

6.914E

-16 
UP 

9,12-Octadecadienoic 

acid  
1.436  M75T51 

0.012

6 

0.97

5  

1.841E

-08 

DOW

N 

L-Arabinose 1.390  M218T63 
0.012

6 

1.19

3  

1.224E

-11 
UP 

Erucic acid 1.517  M319T63 
0.011

2 

1.28

0  

3.698E

-14 
UP 

Galactitol 1.538  M363T63 
0.010

1 

1.25

7  

2.781E

-13 
UP 

Oleic Acid 1.297  M337T51 
0.004

0 

0.86

6  

2.251E

-06 

DOW

N 

Maltose 1.226  M219T63 
0.002

7 

0.93

5  

2.170E

-06 

DOW

N 

alpha, alpha-Trehalose 1.776  M362T63 
0.001

7 

1.34

4  

3.955E

-17 
UP 

Glycerol 1.355  M133T22 
0.001

5 

0.71

6  

1.337E

-04 

DOW

N 

Fructose 1.746  M355T69 
0.001

0 

0.93

9  

5.894E

-06 

DOW

N 

Pyridine 1.436  M171T12 
0.001

0 

0.86

5  

5.767E

-06 

DOW

N 

Octadecanoic acid 1.103  M77T51 
0.000

9 

0.47

6  

1.625E

-02 

DOW

N 

3-beta-D-Galactosyl-sn-

glycerol 
1.357  M148T63 

0.000

7 

1.16

1  

7.822E

-11 
UP 

D-Ribose 1.260  M205T63 
0.000

5 

0.76

2  

1.106E

-04 

DOW

N 

Pentacosanoic acid 1.003  M440T67 
0.000

0 

0.02

0  

9.606E

-01 

DOW

N 
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SI Table 5-4. Results of GC-MS pathway analysis (MSEA, only significant components 

included) performed using MetaboAnalyst. 

Metabolic pathway 

Significant 

Hits/Total 

compounds 

q FDR impact 

Pyruvate metabolism 3/22 1.13E-26 1.13E-26 0.15318 

Steroid biosynthesis 2/35 4.10E-23 2.11E-23 0.11826 

Primary bile acid 

biosynthesis 
4/46 2.71E-20 9.15E-21 0.05530 

Pentose phosphate pathway 1/19 3.34E-20 9.15E-21 0.00000 

Nicotinate and nicotinamide 

metabolism 
1/13 1.36E-18 3.06E-19 0.00000 

Galactose metabolism 3/26 4.39E-17 6.84E-18 0.03729 

Alanine, aspartate and 

glutamate metabolism 
3/24 4.98E-17 6.84E-18 0.11392 

Arginine and proline 

metabolism 
1/44 4.98E-17 6.84E-18 0.01198 

beta-Alanine metabolism 1/19 4.98E-17 6.84E-18 0.00000 

Citrate cycle (TCA cycle) 2/20 5.45E-17 7.33E-18 0.07086 

Steroid hormone biosynthesis 2/70 5.18E-15 6.60E-16 0.01746 

Tyrosine metabolism 3/42 7.44E-15 9.04E-16 0.19116 

Glyoxylate and dicarboxylate 

metabolism 

2/16 
5.08E-14 5.95E-15 0.11111 

Aminoacyl-tRNA 

biosynthesis 

4/67 
1.82E-13 2.07E-14 0.00000 

Butanoate metabolism 4/20 3.23E-12 3.59E-13 0.02899 

Glycolysis or 

Gluconeogenesis 

1/26 
3.03E-11 3.31E-12 0.02862 

Ubiquinone and other 

terpenoid-quinone 

biosynthesis 

2/3 5.85E-10 6.34E-11 0.00000 

Biosynthesis of unsaturated 

fatty acids 
4/42 2.69E-09 2.91E-10 0.00000 

Amino sugar and nucleotide 

sugar metabolism 
2/37 3.59E-08 3.89E-09 0.06921 

Selenoamino acid 

metabolism 
1/15 4.71E-07 5.16E-08 0.00000 

Phenylalanine, tyrosine and 

tryptophan biosynthesis 
1/4 5.60E-06 5.94E-07 0.50000 

Phenylalanine metabolism 1/9 5.60E-06 5.94E-07 0.00000 

Synthesis and degradation of 

ketone bodies 
1/5 1.83E-05 2.14E-06 0.00000 

Propanoate metabolism 1/20 8.89E-05 1.08E-05 0.00000 



350 
 

Fatty acid biosynthesis 3/43 0.0001138 1.45E-05 0.00000 

Methane metabolism 1/9 0.0002316 3.12E-05 0.00000 

Valine, leucine and 

isoleucine biosynthesis 
1/11 0.001373 0.0001841 0.33333 

Valine, leucine and 

isoleucine degradation 
1/38 0.001373 0.0001841 0.00000 

Pantothenate and CoA 

biosynthesis 
1/15 0.001373 0.0001841 0.00000 

Glycerolipid metabolism 1/18 0.0092925 0.0018069 0.28098 

Biotin metabolism 1/5 0.010753 0.0024281 0.00000 

Pentose and glucuronate 

interconversions 
2/14 0.061189 0.016731 0.00000 

Purine metabolism 1/68 0.10644 0.037631 0.00193 

Starch and sucrose 

metabolism 
3/23 0.10644 0.050231 0.07345 

Sphingolipid metabolism 1/21 0.10644 0.090684 0.14286 
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SI Table 5-5. Summary of nanoLC-MS/MS metabolomics data. 

m/z RT  
MS1 30 ppm 

threshold 

MS/MS 100 ppm 

threshold for 

both 

adjusted p 

337.252

7 

0.16026

6 

Up Ubiquinone 6  0.01388001 

457.256

1 

0.45628

2 

Up  10,11-Dihydro-

12R-hydroxy-

leukotriene E4 

0.00126909 

503.298

1 

0.56348

4 

Up 2b,3a,7a,12a-Tetrahydroxy-5b-

cholanoic acid 

0.0182688 

405.224

9 

0.69638

8 

Up Isopentenyladenine-9-N-glucoside 0.00812974 

340.259

6 

0.75562

1 

Up  8-Hydroxy-6-

docosanone 

0.04166214 

186.060

8 

0.85413 Down L-Histidinol  0.01430053 

172.044

4 

0.86841

2 

Down N-Acetylgalactosamine 4-sulphate 0.01430053 

198.097

3 

0.88195

2 

Up  Vanillyl glycol 0.04461579 

103.122

7 

0.98203

7 

Down Cadaverine  0.00037804 

89.107 1.01826 Down Putrescine  0.01012924 

86.0961

5 

1.03036

8 

Down Piperidine  0.0000781 

143.001

3 

1.05996

8 

Down L-Cystine  0.03050316 

607.138

9 

1.09157

3 

Down Molludistin 2''-rhamnoside 0.02187826 

441.091

3 

1.09980

6 

Down 6,8-Di-O-methylaverufin 0.00301581 

173.011

8 

1.11955

2 

Down Oxidized dithiothreitol 0.01209673 

110.975

1 

1.12915

6 

Down 1,3-Dichloropropene 0.03076705 

177.006

8 

1.13494 Up Resveratrol 3-sulfate 0.02712832 

561.133

6 

1.14416

5 

Down Dihydromaleimide beta-D-glucoside 0.01128034 

120.034 1.15255 Up S-(2-Methylbutanoyl)-

dihydrolipoamide 

0.00923176 
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111.529

4 

1.16426

9 

Up Tetrahydrohippuric acid 0.00562575 

555.124

6 

1.17206

3 

Down Luteone 7-

glucoside 

 0.00401423 

143.018

8 

1.22717

3 

Down 4-Hydroxymethylpyrazole 0.01430053 

295.085

8 

7.81396

6 

Up  Tyrosyl-

Asparagine 

0.01339197 

318.202

2 

11.3708

9 

Up  4-

Hydroxyenterodi

ol 

0.00952649 

259.082

4 

11.7767

9 

Down Harmaline  0.02685834 

437.235

6 

11.9566

2 

Down N1,N10-Dicoumaroylspermidine 0.00018382 

568.345

9 

12.8308

2 

Up  Deoxycholic acid 

3-glucuronide 

0.01588081 

453.343

5 

13.2360

8 

Up  LysoPE(16:0/0:0) 0.04461579 

349.200

9 

14.6381

9 

Up  Dihomo-gamma-

Linolenoyl 

ethanolamide 

0.01372483 

306.181

3 

14.6638

8 

Up  1-(beta-D-

Glucopyranosylo

xy)-3-octanone 

0.01750777 

588.41 14.7932

1 

Up Trihexosylceramid

e 

 0.03877391 

320.196

8 

15.7086

9 

Up Leucyl-phenylalanine 0.00401423 

311.182

8 

15.9938 Up 6-Hydroxypentadecanedioic acid 0.00612773 

349.237

3 

16.1297

4 

Up  Coutaric acid 0.01430053 

361.173

3 

16.1884

1 

Down L-Carnitine  0.00214256 

363.253

1 

16.5869

2 

Up 19,20-DiHDPA  0.00113767 

345.242

4 

16.6401

4 

Up  Eicosapentaenoyl 

Ethanolamide 

0.0222471 
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349.237

3 

16.6613

3 

Up  5beta-Pregnane-

3alpha,21-diol-

11,20-dione 

0.00401423 

367.247

9 

16.7510

4 

Up  Nervonic acid  0.0000781 

452.221

5 

16.7856

1 

Up Geranylgeranylcysteine 0.01333004 

321.180

9 

16.8769

3 

Up  Phenylalanyl-

Arginine 

0.03634054 

343.162

8 

16.9131

3 

Up  N-trans-Feruloyl-

4-O-

methyldopamine 

0.01372483 

435.274

3 

17.0325

1 

Up  11beta,20-

Dihydroxy-3-

oxopregn-4-en-

21-oic acid 

(DHOPA) 

0.00301581 

305.092 17.1159

5 

Down 11-Hydroxy-9-tridecenoic acid 0.03298289 

345.130

8 

17.1885

2 

Down phosphatidylinositol bisphosphate 0.00034479 

595.349

7 

17.2133

5 

Down L-Urobilin  0.00036523 

355.263

1 

17.2546

3 

Down 12-phenoxydodecoxybenzene 0.01262934 

315.195

5 

17.2941 Up 4-oxo-Retinoic 

acid 

 0.01430053 

468.249

6 

17.2943 Down  3,17-

Androstanediol 

glucuronide 

0.00482093 

373.273

7 

17.3974

4 

Down  Dodecanedioylcar

nitine 

0.00663949 

433.258

6 

17.4650

1 

Up phosphatidylserine  0.0021413 

459.214

7 

17.5969

8 

Up  Cerivastatin 0.00920544 

436.269

5 

17.8709

7 

Down 7-Hexadecenoic acid, methyl ester 0.00401423 

425.229

9 

17.9593

9 

Up Glycerol trihexanoate 0.00124504 

399.252

9 

18.0686

5 

Up MG(0:0/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) 0.00335238 
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457.256

5 

18.0686

5 

Up Palmitoyl glucuronide 0.0000781 

417.263

5 

18.0686

5 

Up Ethynodiol Diacetate 0.00233927 

401.268

9 

18.2147

5 

Up Piperochromenoic acid 0.03666113 

333.242

5 

18.3053 Up  Mahanimbinol 0.00726697 

361.237

3 

18.4091

5 

Up phosphatidylethanolamine 0.0021413 

291.112

9 

18.6983

2 

Down  Etiocholanolone 0.0003923 

232.133

2 

18.9214

4 

Up  Melatonin 0.0182688 

537.267

1 

19.1824

2 

Up  Sodium 

taurocholate 

0.01430053 

327.231

9 

19.1917

5 

Up 2-Hydroxydesogestrel 0.01430053 

385.237

3 

19.642 Up  3-Hydroxy-cis-5-

tetradecenoylcarn

itine 

0.01262934 

284.294

8 

19.9294

7 

Down  Stearic acid 0.02375207 

327.268

2 

20.1106

9 

Up  Margaroylglycine 0.00923176 

317.247

4 

20.1929

3 

Up Retinal  0.00370377 

286.274

1 

20.6951

9 

Down Heptadecenoic 

acid 

 0.00401423 

225.185 20.7251

9 

Down  3-Nitrotyrosine 0.0000855 

783.579 20.7706 Down  PE(22:2(13Z,16Z

)/P-18:0) 

0.01430053 

307.242

1 

20.8410

3 

Up Diacylglycerol  0.00032169 

353.247

7 

20.8578

4 

Up 4-(4-Methylphenyl)-2-pentanone 0.00754925 

371.258

1 

20.8578

4 

Up  Docosahexaenoyl 

Ethanolamide 

0.01430053 

406.295

3 

20.8578

4 

Up  3,7-Dihydroxy-

12-oxocholanoic 

acid 

0.00482093 
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411.250

8 

20.8760

2 

Up Butyl 

phenylacetate 

 0.00147953 

462.394

5 

21.4875

6 

Down (Z)-22-Hentriacontene-2,4-dione 0.03938217 

563.265

8 

24.6176

6 

Down  Taurolithocholic 

acid 3-sulfate 

0.03634054 

415.357

4 

26.7365

6 

Up  2-

Hydroxyhexadeca

noylcarnitine 

0.01430053 

381.297

7 

28.4184

9 

Down Glycerol 1-octadecanoate 0.01118184 

200.973

1 

29.056 Down N-Nitrosothiazolidine-4-carboxylic 

acid 

0.00711225 

97.0007 29.1332

6 

Down S-(2,5-Dimethyl-3-furanyl) 2-

furancarbothioate 

0.03413086 

128.019

2 

29.1471

8 

Down (Z)-5-[(5-Methyl-2-

thienyl)methylene]-2(5H)-furanone 

0.03666113 

151.035

2 

29.1910

6 

Down 1,6-Dimethoxypyrene 0.03413086 

317.020

4 

29.2486

4 

Down 4-[(2,4-

Dihydroxyphenyl)azo]benzenesulfonic 

acid 

0.01372483 

198.94 29.3401

1 

Down Butanedithiol  0.03081329 
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SI Figure 5-1. Global compound-gene network analysis of the metabolites detected in rat 

feces collected from the middle-dose group. The intense red hexagons represent 

metabolites with significant alteration. The light red hexagons (compounds) and purple 

balls (genes) stand for the components in the pathways. Compounds and genes are 

represented as nodes and the relationships among them are represented as edges; the edges 

represent both reactions and enzymes based on KEGG. The most activated pathways 

include: (1) Valine-leucine metabolism; (2) Bile acid and steroid synthesis; (3) GTPs 

synthesis; (4) N-acetyl-D-glucosamine synthesis; (5) Carbohydrate conversion; (6) 

Lactate-pyruvate glycolysis (anaerobic glycolysis). 
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SI Figure 5-2. Principal component analysis (PCA) for the 60 imputatively identified 

metabolites that were significantly altered by AFB1. (A) Score plot matrix of the 

combination of first 5 PCs to show sample clustering upon AFB1 treatment. Coordinates 

in axis are for illustration purpose only and selected arbitrary, and do not have clear 

biological meanings. Percentage associated with each PC is the proportion of an eigenvalue 

for the respective PC in the sum of eigenvalues for all PCs. (B) The Principal Component 

Regression (PCR) function between predicted AFB1 dose and actual AFB1 dose has a R2 

(linear regression coefficient) of 0.697.  

 

 



358 
 

Reference 

Amaya-Farfan, J. (1999). Aflatoxin B1-induced hepatic steatosis: role of carbonyl 

compounds and active diols on steatogenesis. Lancet 353(9154), 747-748. 

Barbosa, M. R. (2013). Chemical composition and formation of human feces-Problems and 

solutions of large mergers demographics in developing countries. In 10th 

International Symposium on Recent Advances in Environmental Health Research. 

Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Camardo Leggieri, M., 

Brera, C., Rortais, A., Goumperis, T., and Robinson, T. (2016). Aflatoxin B1 

contamination in maize in Europe increases due to climate change. Sci Rep 6, 24328. 

Beger, R. D., Dunn, W., Schmidt, M. A., Gross, S. S., Kirwan, J. A., Cascante, M., Brennan, 

L., Wishart, D. S., Oresic, M., and Hankemeier, T. (2016). Metabolomics enables 

precision medicine:“a white paper, community perspective”. Metabolomics 12(9), 

149. 

Calvani, R., Brasili, E., Pratico, G., Capuani, G., Tomassini, A., Marini, F., Sciubba, F., 

Finamore, A., Roselli, M., Marzetti, E., et al. (2014). Fecal and urinary NMR-based 

metabolomics unveil an aging signature in mice. Exp Gerontol 49, 5-11. 

Chang, H.-P., Wang, M.-L., Chan, M.-H., Chiu, Y.-S., and Chen, Y.-H. (2011). Antiobesity 

activities of indole-3-carbinol in high-fat-diet–induced obese mice. Nutrition 27(4), 

463-470. 

Chi, L., Mahbub, R., Gao, B., Bian, X., Tu, P., Ru, H., and Lu, K. (2017). Nicotine Alters 

the Gut Microbiome and Metabolites of Gut–Brain Interactions in a Sex-Specific 

Manner. Chem Res Toxicol 30(12), 2110-2119. 



359 
 

Chrostek, L., Supronowicz, L., Panasiuk, A., Cylwik, B., Gruszewska, E., and Flisiak, R. 

(2014). The effect of the severity of liver cirrhosis on the level of lipids and 

lipoproteins. Clin Exp Med 14(4), 417-21. 

Cleasby, A., Wonacott, A., Skarzynski, T., Hubbard, R. E., Davies, G. J., Proudfoot, A. E., 

Bernard, A. R., Payton, M. A., and Wells, T. N. (1996). The x-ray crystal structure 

of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. 

Nat Struct Biol 3(5), 470-9. 

da Silva, R. P., Nissim, I., Brosnan, M. E., and Brosnan, J. T. (2009). Creatine synthesis: 

hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. 

Endocrinol Metabol 296(2), E256-61. 

de Jonge, L. P., Douma, R. D., Heijnen, J. J., and van Gulik, W. M. (2012). Optimization 

of cold methanol quenching for quantitative metabolomics of Penicillium 

chrysogenum. Metabolomics 8(4), 727-735. 

Demigne, C., Morand, C., Levrat, M. A., Besson, C., Moundras, C., and Remesy, C. (1995). 

Effect of propionate on fatty acid and cholesterol synthesis and on acetate 

metabolism in isolated rat hepatocytes. Brit J Nutr 74(2), 209-19. 

Dettmer, K., Aronov, P. A., and Hammock, B. D. (2007). Mass spectrometry‐based 

metabolomics. Mass Spectrom Rev 26(1), 51-78. 

Dunn, W. B., Broadhurst, D. I., Edison, A., Guillou, C., Viant, M. R., Bearden, D. W., and 

Beger, R. D. (2017). Quality assurance and quality control processes: summary of 

a metabolomics community questionnaire. Metabolomics 13(5), 50. 

Eggers, L. F., & Schwudke, D. (2016). Lipid Extraction: Basics of the Methyl-tert-Butyl 

Ether Extraction. In Encyclopedia of Lipidomics (pp. 1-3). Springer Netherlands. 



360 
 

Elbaz, M., and Ben-Yehuda, S. (2010). The metabolic enzyme ManA reveals a link 

between cell wall integrity and chromosome morphology. PLoS Genet 6(9), 

e1001119. 

Fortin, G. (2011). Chapter fifteen - l-Carnitine and Intestinal Inflammation. In Vitamins & 

Hormones (G. Litwack, Ed.), Vol. 86, pp. 353-366. Academic Press. 

Gao, B., Chi, L., Mahbub, R., Bian, X., Tu, P., Ru, H., and Lu, K. (2017). Multi-omics 

reveals that lead exposure disturbs gut microbiome development, key metabolites, 

and metabolic pathways. Chem Research Toxicol 30(4), 996-1005. 

Garcia, A., and Barbas, C. (2011). Gas chromatography-mass spectrometry (GC-MS)-

based metabolomics. Methods Mol Biol 708, 191-204. 

Gaudet, R. G., Sintsova, A., Buckwalter, C. M., Leung, N., Cochrane, A., Li, J., Cox, A. 

D., Moffat, J., and Gray-Owen, S. D. (2015). INNATE IMMUNITY. Cytosolic 

detection of the bacterial metabolite HBP activates TIFA-dependent innate 

immunity. Science 348(6240), 1251-5. 

Giacomoni, F., Le Corguille, G., Monsoor, M., Landi, M., Pericard, P., Petera, M., 

Duperier, C., Tremblay-Franco, M., Martin, J. F., Jacob, D., et al. (2015). 

Workflow4Metabolomics: a collaborative research infrastructure for 

computational metabolomics. Bioinformatics 31(9), 1493-5. 

Gold, L., Slone, T., Manley, N., Garfinkel, G., and Ames, B. (2005). Summary table by 

chemical of carcinogenicity results in CPDB on 1485 chemicals. University of 

California, Berkeley. Available: http://potency. berkeley. edu/pdfs/ChemicalTable. 

pdf [accessed 6/30/2005 2005]. 



361 
 

Groopman, J. D., Zhu, J. Q., Donahue, P. R., Pikul, A., Zhang, L. S., Chen, J. S., and 

Wogan, G. N. (1992). Molecular dosimetry of urinary aflatoxin-DNA adducts in 

people living in Guangxi Autonomous Region, People's Republic of China. Cancer 

Res 52(1), 45-52. 

Grün, C. H., van Dorsten, F. A., Jacobs, D. M., Le Belleguic, M., van Velzen, E. J., 

Bingham, M. O., Janssen, H.-G., and van Duynhoven, J. P. (2008). GC–MS 

methods for metabolic profiling of microbial fermentation products of dietary 

polyphenols in human and in vitro intervention studies. J Chromatogr B 871(2), 

212-219. 

Guo, X., Li, J., Tang, R., Zhang, G., Zeng, H., Wood, R. J., and Liu, Z. (2017). High Fat 

Diet Alters Gut Microbiota and the Expression of Paneth Cell-Antimicrobial 

Peptides Preceding Changes of Circulating Inflammatory Cytokines. Mediators 

Inflamm 2017, 9474896. 

Hara, H., Haga, S., Aoyama, Y., and Kiriyama, S. (1999). Short-chain fatty acids suppress 

cholesterol synthesis in rat liver and intestine. J Nutr 129(5), 942-8. 

Hochberg, Y., and Benjamini, Y. (1990). More powerful procedures for multiple 

significance testing. Stat Med 9(7), 811-8. 

Howlett, R. M., Davey, M. P., and Kelly, D. J. (2017). Metabolomic Analysis of 

Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass 

Spectrometry. Methods Mol Biol 1512, 189-197. 

Huang, C. B., Alimova, Y., Myers, T. M., and Ebersole, J. L. (2011). Short- and medium-

chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral 

Biol 56(7), 650-4. 



362 
 

Huang, G., Xu, J., Lefever, D. E., Glenn, T. C., Nagy, T., and Guo, T. L. (2017). Genistein 

prevention of hyperglycemia and improvement of glucose tolerance in adult non-

obese diabetic mice are associated with alterations of gut microbiome and immune 

homeostasis. Toxicol Appl Pharmacol 332, 138-148. 

Jeannot, E., Boorman, G. A., Kosyk, O., Bradford, B. U., Shymoniak, S., Tumurbaatar, B., 

Weinman, S. A., Melnyk, S. B., Tryndyak, V., Pogribny, I. P., et al. (2012). 

Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C 

transgenic mice. Int J Cancer 130(6), 1347-56. 

Kalli, A., Smith, G. T., Sweredoski, M. J., and Hess, S. (2013). Evaluation and optimization 

of mass spectrometric settings during data-dependent acquisition mode: focus on 

LTQ-Orbitrap mass analyzers. J Proteome Res 12(7), 3071-86. 

Lecomte, V., Kaakoush, N. O., Maloney, C. A., Raipuria, M., Huinao, K. D., Mitchell, H. 

M., and Morris, M. J. (2015). Changes in gut microbiota in rats fed a high fat diet 

correlate with obesity-associated metabolic parameters. PLoS One 10(5), e0126931. 

Lofgren, L., Forsberg, G. B., and Stahlman, M. (2016). The BUME method: a new rapid 

and simple chloroform-free method for total lipid extraction of animal tissue. Sci 

Rep 6, 27688. 

Louis, P., Hold, G. L., and Flint, H. J. (2014). The gut microbiota, bacterial metabolites 

and colorectal cancer. Nat Rev Microbiol 12(10), 661-72. 

Lu, X., Hu, B., Shao, L., Tian, Y., Jin, T., Jin, Y., Ji, S., and Fan, X. (2013). Integrated 

analysis of transcriptomics and metabonomics profiles in aflatoxin B1-induced 

hepatotoxicity in rat. Food Chem Toxicol 55, 444-55. 



363 
 

MacAulay, J., Thompson, K., Kiberd, B. A., Barnes, D. C., and Peltekian, K. M. (2006). 

Serum creatinine in patients with advanced liver disease is of limited value for 

identification of moderate renal dysfunction: Are the equations for estimating renal 

function better? Can J Gastroenterol 20(8), 521-526. 

Martinez-Jehanne, V., du Merle, L., Bernier-Febreau, C., Usein, C., Gassama-Sow, A., 

Wane, A. A., Gouali, M., Damian, M., Aidara-Kane, A., Germani, Y., et al. (2009). 

Role of deoxyribose catabolism in colonization of the murine intestine by 

pathogenic Escherichia coli strains. Infect Immun 77(4), 1442-50. 

Mary, V. S., Arias, S. L., Otaiza, S. N., Velez, P. A., Rubinstein, H. R., and Theumer, M. 

G. (2017). The aflatoxin B1‐fumonisin B1 toxicity in BRL‐3A hepatocytes is 

associated to induction of cytochrome P450 activity and arachidonic acid 

metabolism. Environ Toxicol 32(6), 1711-1724. 

May, T., Mackie, R. I., Fahey, G. C., Jr., Cremin, J. C., and Garleb, K. A. (1994). Effect of 

fiber source on short-chain fatty acid production and on the growth and toxin 

production by Clostridium difficile. Scand J Gastroenterol 29(10), 916-22. 

Mller, D. M., Seim, H., Kiess, W., Lster, H., and Richter, T. (2002). Effects of oral L-

carnitine supplementation on in vivo long-chain fatty acid oxidation in healthy 

adults. Metabolism 51(11), 1389-1391. 

Mohammadagheri, N., Najafi, R., and Najafi, G. (2016). Effects of dietary supplementation 

of organic acids and phytase on performance and intestinal histomorphology of 

broilers. Vet Res Forum 7(3), 189-195. 



364 
 

Murphy, E. A., Velazquez, K. T., and Herbert, K. M. (2015). Influence of high-fat diet on 

gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab 

Care 18(5), 515-20. 

Najdekr, L., Friedecky, D., Tautenhahn, R., Pluskal, T., Wang, J., Huang, Y., and Adam, 

T. (2016). Influence of Mass Resolving Power in Orbital Ion-Trap Mass 

Spectrometry-Based Metabolomics. Anal Chem 88(23), 11429-11435. 

Peisl, B. Y. L., Schymanski, E. L., and Wilmes, P. (2017). Dark matter in host-microbiome 

metabolomics: Tackling the unknowns–A review. Anal Chim Acta doi: 

10.1016/j.aca.2017.12.034. 

Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010). MZmine 2: modular 

framework for processing, visualizing, and analyzing mass spectrometry-based 

molecular profile data. BMC Bioinformatics 11(1), 395. 

Qian, G., Tang, L., Guo, X., Wang, F., Massey, M. E., Su, J., Guo, T. L., Williams, J. H., 

Phillips, T. D., and Wang, J. S. (2014). Aflatoxin B1 modulates the expression of 

phenotypic markers and cytokines by splenic lymphocytes of male F344 rats. J Appl 

Toxicol 34(3), 241-9. 

Qian, G., Tang, L., Lin, S., Xue, K. S., Mitchell, N. J., Su, J., Gelderblom, W. C., Riley, R. 

T., Phillips, T. D., and Wang, J. S. (2016). Sequential dietary exposure to aflatoxin 

B1 and fumonisin B1 in F344 rats increases liver preneoplastic changes indicative 

of a synergistic interaction. Food Chem Toxicol 95, 188-95. 

Qian, G., Tang, L., Wang, F., Guo, X., Massey, M. E., Williams, J. H., Phillips, T. D., and 

Wang, J. S. (2013). Physiologically based toxicokinetics of serum aflatoxin B1-

lysine adduct in F344 rats. Toxicology 303(1), 147-51. 



365 
 

Qian, G., Xue, K., Tang, L., Wang, F., Song, X., Chyu, M. C., Pence, B. C., Shen, C. L., 

and Wang, J. S. (2012). Mitigation of oxidative damage by green tea polyphenols 

and Tai Chi exercise in postmenopausal women with osteopenia. PLoS One 7(10), 

e48090. 

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, 

N., Levenez, F., Yamada, T., et al. (2010). A human gut microbial gene catalogue 

established by metagenomic sequencing. Nature 464(7285), 59-65. 

Rabot, S., Membrez, M., Bruneau, A., Gerard, P., Harach, T., Moser, M., Raymond, F., 

Mansourian, R., and Chou, C. J. (2010). Germ-free C57BL/6J mice are resistant to 

high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. 

FASEB J 24(12), 4948-59. 

Russell, N. J., and Nichols, D. S. (1999). Polyunsaturated fatty acids in marine bacteria—

a dogma rewritten. Microbiology 145(4), 767-779. 

Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., Lotia, S., Pico, A. R., Bader, 

G. D., and Ideker, T. (2012). A travel guide to Cytoscape plugins. Nat Methods 

9(11), 1069-76. 

Savage, D. C. (1972). Associations and physiological interactions of indigenous 

microorganisms and gastrointestinal epithelia. Am J Clin Nutr 25(12), 1372-9. 

Scheppach, W., Loges, C., Bartram, P., Christl, S. U., Richter, F., Dusel, G., Stehle, P., 

Fuerst, P., and Kasper, H. (1994). Effect of free glutamine and alanyl-glutamine 

dipeptide on mucosal proliferation of the human ileum and colon. Gastroenterology 

107(2), 429-34. 



366 
 

Semova, I., Carten, J. D., Stombaugh, J., Mackey, L. C., Knight, R., Farber, S. A., and 

Rawls, J. F. (2012). Microbiota regulate intestinal absorption and metabolism of 

fatty acids in the zebrafish. Cell Host Microbe 12(3), 277-88. 

Shadoff, L., Hummel, R., Lamparski, L., and Davidson, J. (1977). A search for 2, 3, 7, 8-

tetrachlorodibenzo-p-Dioxin (TCDD) in an environment exposed annually to 2, 4, 

5-trichloro-phenoxyacetic acid ester (2, 4, 5-T) herbicides. Bull Environ Contam 

Toxicol 18(4), 478-485. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., 

Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for 

integrated models of biomolecular interaction networks. Genome Res 13(11), 2498-

504. 

Shen, X. T., Gong, X. Y., Cai, Y. P., Guo, Y., Tu, J., Li, H., Zhang, T., Wang, J. L., Xue, 

F. Z., and Zhu, Z. J. (2016). Normalization and integration of large-scale 

metabolomics data using support vector regression. Metabolomics 12(5), 89. 

Smirnov, K. S., Maier, T. V., Walker, A., Heinzmann, S. S., Forcisi, S., Martinez, I., Walter, 

J., and Schmitt-Kopplin, P. (2016). Challenges of metabolomics in human gut 

microbiota research. Int J Med Microbiol 306(5), 266-279. 

Smith, P., Willemsen, D., Popkes, M., Metge, F., Gandiwa, E., Reichard, M., and 

Valenzano, D. R. (2017). Regulation of life span by the gut microbiota in the short-

lived African turquoise killifish. Elife 6, e27014. 

Spector, A. A., Williard, D. E., Kaduce, T. L., and Gordon, J. A. (1997). Conversion of 

arachidonic acid to tetradecadienoic acid by peroxisomal oxidation. Prostaglandins 

Leukot Essent Fatty Acids 57(1), 101-5. 



367 
 

Sriwattanapong, K., Slocum, S. L., Chawanthayatham, S., Fedeles, B. I., Egner, P. A., 

Groopman, J. D., Satayavivad, J., Croy, R. G., and Essigmann, J. M. (2017). 

Editor's Highlight: Pregnancy Alters Aflatoxin B1 Metabolism and Increases DNA 

Damage in Mouse Liver. Toxicol Sci 160(1), 173-179. 

Storey, J. D., Taylor, J. E., and Siegmund, D. (2004). Strong control, conservative point 

estimation and simultaneous conservative consistency of false discovery rates: a 

unified approach. J Roy Stat Soc B 66(1), 187-205. 

Strobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest 

variable importance measures: illustrations, sources and a solution. BMC 

Bioinformatics 8, 25. 

Sun, Y., and O'Riordan, M. X. (2013). Regulation of bacterial pathogenesis by intestinal 

short-chain Fatty acids. Adv Appl Microbiol 85, 93-118. 

Tang, Y. M., Wang, J. P., Bao, W. M., Yang, J. H., Ma, L. K., Yang, J., Chen, H., Xu, Y., 

Yang, L. H., Li, W., et al. (2015). Urine and serum metabolomic profiling reveals 

that bile acids and carnitine may be potential biomarkers of primary biliary cirrhosis. 

Int J Mol Med 36(2), 377-85. 

Tarantino, G., and Finelli, C. (2013). Pathogenesis of hepatic steatosis: the link between 

hypercortisolism and non-alcoholic fatty liver disease. World J Gastroenterol 

19(40), 6735-43. 

Trimigno, A., Khakimov, B., Mejia, J. L. C., Mikkelsen, M. S., Kristensen, M., Jespersen, 

B. M., and Engelsen, S. B. (2017). Identification of weak and gender specific 

effects in a short 3 weeks intervention study using barley and oat mixed linkage β-



368 
 

glucan dietary supplements: a human fecal metabolome study by GC-MS. 

Metabolomics 13(10), 108. 

van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., and van der Werf, 

M. J. (2006). Centering, scaling, and transformations: improving the biological 

information content of metabolomics data. BMC Genomics 7, 142. 

Wang, J., Tang, L., Glenn, T. C., and Wang, J. S. (2016). Aflatoxin B1 Induced 

Compositional Changes in Gut Microbial Communities of Male F344 Rats. Toxicol 

Sci 150(1), 54-63. 

Wang, J. S., and Groopman, J. D. (1999). DNA damage by mycotoxins. Mutat Res 424(1-

2), 167-81. 

Worley, B., and Powers, R. (2016). PCA as a practical indicator of OPLS-DA model 

reliability. Curr Metabolomics 4(2), 97-103. 

Yoo, N. Y., Jeon, S., Nam, Y., Park, Y. J., Won, S. B., and Kwon, Y. H. (2015). Dietary 

Supplementation of Genistein Alleviates Liver Inflammation and Fibrosis 

Mediated by a Methionine-Choline-Deficient Diet in db/db Mice. J Agric Food 

Chem 63(17), 4305-11. 

Zhou, J., Tang, L., Wang, J., and Wang, J. S. (2018). Aflatoxin B1 Disrupts Gut-microbial 

Metabolisms of Short Chain Fatty Acids, Long Chain Fatty Acids and Bile Acids 

in Male F344 Rats. Toxicol Sci doi: 10.1093/toxsci/kfy102, kfy102. 

 

 

 

 



369 
 

 

 

CHAPTER 6. GREEN TEA POLYPHENOLS MODIFY GUT-MICROBIOTA 

DEPENDENT METABOLISMS OF ENERGY, BILE CONSTITUENTS AND 

MICRONUTRIENTS IN FEMALE SPRAGUE-DAWLEY RATS 

 

6.1 Introduction 

Our recent metagenomics analysis has uncovered remarkable modifying effects of 

green tea polyphenols (GTPs) on gut-microbiota community structure and energy 

conversion related gene orthologs in rats. How these genomic changes could further 

influence host health is still unclear. In this work, the alterations of gut-microbiota 

dependent metabolites were studied in the GTPs-treated rats. Six groups of female SD rats 

(n = 12/group) were administered drinking water containing 0%, 0.5%, and 1.5% GTPs 

(wt/vol). Their gut contents were collected at 3- and 6-month and were analyzed via high 

performance liquid chromatography (HPLC) and gas chromatography (GC)-mass 

spectrometry (MS). GC-MS based metabolomics analysis captured 2668 feature, and 57 

metabolites were imputatively from top 200 differential features identified via NIST 

fragmentation database. A group of key metabolites were quantitated using standard 

calibration methods. Compared with control, the elevated components in the GTPs-treated 

groups include niacin (8.61-fold), 3-phenyllactic acid (2.20-fold), galactose (3.13-fold), 

mannose (2.05-fold), pentadecanoic acid (2.15-fold), lactic acid (2.70-fold), and proline 

(2.15-fold); the reduced components include cholesterol (0.29-fold), cholic acid (0.62-fold), 

deoxycholic acid (0.41-fold), trehalose (0.14-fold), glucose (0.46-fold), fructose (0.12-
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fold), and alanine (0.61-fold). These results were in line with the genomic alterations of 

gut-microbiome previously discovered by metagenomics analysis. The alterations of these 

metabolites suggested the reduction of calorific carbohydrates, elevation of vitamin 

production, decreases of bile constituents, and modified metabolic pattern of amino acids 

in the GTPs-treated animals. Changes in gut-microbiota associated metabolism may be a 

major contributor to the anti-obesity function of GTPs. 

Green tea is a popular beverage consumed by people all over the world (Graham, 

1992) and has been recognized as health-promoting drink that offers a wide range of health 

benefits, although their major constituents were identified in less than three decades as 

GTPs (Cabrera et al., 2006; Jankun et al., 1997). A number of in vivo, in vitro and 

epidemiological studies have demonstrated that GTPs constituents, (–)-epigallocatechin-3-

gallate (EGCG), (–)-epicatechin-3-gallate (ECG), (–)-epigallocatechin (EGC), and (−)-

epicatechin (EC), carry various positive functions in regulating human health, including 

anti-oxidative stress, cancer prevention, immune enhancement, amelioration of liver 

diseases, prevention of osteoporosis, and improvement of arterial function (Bose et al., 

2008; Chen et al., 1997; Chung et al., 1999; Kim et al., 2000; Kovacs et al., 2004; Lee et 

al., 2002; Nagao et al., 2005; Rasooly et al., 2013; Yang et al., 1998a; Yang et al., 1998b; 

Yang et al., 2000). Importantly, GTPs has been found to be significantly associated with 

the prevention and mitigation of obesity and related ailments. Studies have shown that such 

beneficial function may be achieved by modulating liver functions, including elevation of 

hepatic glycolysis, suppression of liver lipogenesis, as well as the reduction of triglyceride 

and cholesterol (Chan et al., 1999; Kim et al., 2013; Muramatsu et al., 1986; Suzuki et al., 

1998; Yang and Koo, 1997). Several studies have explored the uses of GTPs as the 
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complementary and alternative medicinal agents against human chronic diseases (Borges 

et al., 2016; Li et al., 2016; Peng et al., 2014; Wang et al., 2008).    

 Human gastrointestinal (GI) tract harbors a complex and dynamic microbial 

community (Dominguez-Bello et al., 2010; Penders et al., 2006). Next generation 

sequencing (NGS) techniques have identified more than 1000 microbial species from gut 

microbiota with over 200 trillion cells, which own a gene repertoire of about 150 times 

larger than human gene complement (Qin et al., 2010a). The metabolic functions 

maintained by the gene products of gut-microbiota provide host with thousands of 

functional metabolites and nutrients, including vitamins, phenols, secondary bile acids, 

lipids, short chain fatty acids (SCFAs), and neurotransmitters (Clifford, 2004; Qin et al., 

2010b; Rowland et al., 2018). These molecules actively modulate the physiological 

functions of GI tract and liver through enterohepatic circulation (Jia et al., 2018), and 

participate in the regulation of other organs via peripheral circulation (Ursell et al., 2014). 

Studies have recently uncovered a complicated “three-way” connection among gut-

microbiota, host health, and the environmental inputs—dietary preference, medical 

treatments, and lifestyle-related factors, e.g. cigarette smoking, alcohol consumption, and 

physical activities (Chakraborty et al., 2010; Holmes et al., 2012). With regards to the 

influential factors involved with gut-microbiota, food consumption is recognized as the 

most crucial determinant which modulates the human gut-microbiota starting from infancy 

(Brown and Hazen, 2015; Conlon and Bird, 2014; Holmes et al., 2012; Jansson et al., 2009; 

Penders et al., 2006). Certain dietary pattern, or consumption of functional food 

components, were found to remarkably modify the community structure of gut-microbiota, 

leading to the change of nutritional status, and eventually resulting in positive or adverse 
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health outcomes in host (Oriach et al., 2016). This “three-way” relationship is essentially 

driven by the diversity, proportion, and the amount of the metabolites produced by gut-

microbiota (Conlon and Bird, 2014; Marchesi et al., 2016). Therefore, to examine and 

characterize gut-microbiota dependent metabolism have been considered a novel 

dimension for the study of human health and disease conditions.  

Previous 16S rRNA sequencing analysis demonstrated that microbes of 

Bacteroidetes and Oscillospira families were significantly enriched whereas 

Peptostreptococcaceae family were almost depleted in the gut of the rats treated with GTPs 

(Wang et al., 2018). The adjusted gut-microbiota community structure was supposed to 

influence the nutritional provision in gut in a more comprehensive way than gene orthologs. 

However, more specific and solid evidences are required to estimate the potential health 

impacts of the genome changes gut-microbiota on host. In the work presented here, gas 

chromatography–mass spectrometry (GC-MS) based metabolomics and high-performance 

liquid chromatography (HPLC)-metabolic profiling approaches were used to analyze the 

gut content of the rats administered with GTPs. In addition to the high-throughput 

metabolomics data, a set of key organic acids, carbohydrates, and amino acids were 

determined using standard calibration methods. The purpose of this study is to investigate 

how genomic changes in gut microbiome could further influence host health via 

modification of gut-microbiota dependent metabolisms. 
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6.2 Methods  

6.2.1 Chemicals and reagents 

Methoxyamine, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% 

trimethylchlorosilane (TMCS), N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC), 2-nitrophenylhydrazine, and high-purity standards (>99%), 

including D-mannose, D-fructose, D-galactose, D-glucose, N-acetyl-D-glucosamine, myo-

inositol, D-lactose, D-trehalose, L-proline, L-alanine, acetic acid, propionic acid, butyric 

acid, valeric acid, hexanoic acid, cholic acid, pentadecanoic acid, 3-phenyl lactic acid, 

pyruvic acid, linoleic acid, deoxycholic acid, internal standards (i.e. 2-ethylbutyric acid, 

hippuric acid, and heptadecanoic acid) were all purchased from Sigma-Aldrich Inc (St. 

Louis, MO, USA). GC-MS grade hexane and chloroform were ordered from J. T. Baker 

(Phillipsburg, NJ, USA). HPLC grade solvents, including pyridine, dimethyl sulfoxide 

(DMSO), methanol, acetonitrile, and water, were purchased from Honeywell (Morris 

Plains, NJ, USA). Decaffeinated high-purity green tea polyphenols (GTPs) powder, 

consisting of 65.37% of EGCG, 19.08% of ECG, 9.87% of EC, 4.14% of EGC, and 1.54% 

of catechin was purchased from Zhejiang Yixin Pharmaceutical Co., Ltd. (Zhejiang, China). 

 

6.2.2 Animal experiment 

This study was conducted following the same protocol used in a recently published 

study which tested the chronic toxicity and no observed adverse effect level (NOAEL) of 

GTPs extracts (decaffeinated) in middle-aged ovariectomized SD rats (Shen et al., 2017; 

Wang et al., 2018). Briefly, 72 female Sprague-Dawley (SD) rats (6-month old, Harlan 

Laboratories, Indianapolis, IN, USA) were randomized and divided into 6 groups (n = 
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12/group), and housed in individual stainless-steel cages with a room temperature of 21 ± 

2 °C and a light-dark cycle of 12 hr. The rats were administered with drinking water 

containing 0, 0.5%, and 1.5% GTPs (g/dL, 2 groups per treatment level) up to 6-month. 

The applied doses have been shown to be under NOAEL (Shen et al., 2017). All rats were 

fed with the pelleted AIN-93M diet (Dyets, Bethlehem, PA, USA). Gut contents were 

collected at 3-month and 6-month, with 1 group of rats at teach treatment level sacrificed 

at each sampling time. After sacrifice, gut content samples were rapidly taken out and 

transferred to 50 mL centrifuge tubes, and then immediately stored in a −80 °C freezer 

until analysis. The 6-month duration of treatment for the evaluation of chronic effects of a 

substance in rats is roughly equivalent to 12 years in human (Guideline, 2006). All 

procedures were approved by the Institutional Animal Care and Use Committee. 

 

6.2.3 Gas chromatography–mass spectrometry (GC-MS) metabolomic analysis 

To quench the sample used for GC-MS analysis, a 50 mg frozen sample pellet was 

transferred to a PowerLyzer tube, and 400 μL cold methanol (−80 °C) was immediately 

added into the tube. The sample pellet was then smashed using a glass pestle. After that, 

an aliquot of 800 μL chloroform was added to form a mixture. The tube was capped and 

vortexed for 15 min. Next, an aliquot of 400 μL water was added to induce phase separation. 

The tube was later centrifuged at 4 °C and 12,000 rpm for 10 min. Following centrifugation, 

100 μL upper phase and 100 μL lower phase were drawn out and re-combined into an 

analytical glass tube (length, 75 mm; inner diameter 10 mm; Fisher Scientific, Pittsburgh, 

PA, USA). The sample was evaporated to dryness in a centrifugal evaporator. A volume 

of 300 μL methanol was used to wash the tube wall and a secondary round of evaporation 
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was conducted. After thorough evaporation of sample extract in a centrifugal evaporator, 

80 μL methoxyamine (15 mg/mL in pyridine) was added into the glass tube to perform pre-

column derivatization. The glass tube was vortexed for 10 min in order to homogenize the 

mixture, and then underwent centrifugation at 4000 rpm, 4 °C for 10 min to collect the 

mixture solution left on the wall. The solution was then transferred to an analytical vial to 

for air bath at 35 °C for 90 min. After then, an aliquot of 80 μL BSTFA with 1% TMCS 

was added and the vial was allowed to stay at 70 °C for 12 hr under mild shaking condition. 

Three extra sampling operations were performed randomly for each group to increase 

statistical power, generating a sample size of 15 for each group.  

GC-MS metabolomics analysis was performed using an Agilent 5973-6890 system 

equipped with a J&W DB-5ms column (length, 30 m; inner diameter, 0.25 mm; film 

thickness, 0.25 µm; temperature range, −60–350 °C). Ultra-high purity grade nitrogen was 

used as carrier gas with a constant flow rate of 0.6 mL/min. Front inlet was set as splitless 

and gas-saving mode with a heating temperature of 275 °C. To analyze sample, the purge 

time was set to 60 s, with a purge flow rate of 20 mL/min and an equilibration time of 1 

min. The column temperature was initially started at 50 °C for 2 min, and then ramped to 

320 °C at 3.5 °C/min, held for 10.5 min. Ion source temperature was set as 230 °C. 

Quadrupole temperature was set as 150 °C. Data was acquired in full-scan positive mode 

with a mass range of 50 to 800 amu. To protect ion detector, a solvent delay time of 10.5 

min was applied in the ramping process for instrumental protection. Injection volume was 

2 μL. Typical total ion chromatograms (TIC) of GTPs-treated group and control group are 

shown in Figure 6-1. The labeled peaks were confirmed with standard spikes. All 

analytical parameters used for quantitation are listed on Table 6-1. The quantitation was 



376 
 

based on extracted ion chromatogram (XIC or EIC) using the most abundant ions showing 

in the fragmentation spectra. 

 

6.2.4 HPLC-metabolic profiling of key metabolites 

The sample extraction procedure was modified from previous publications (de 

Jonge et al., 2012; Hernandez Bort et al., 2014). Cold methanol (−80 °C) was used to 

quench and extract samples in order to avoid the loss of volatile composition (Peters et al., 

2004; Torii et al., 2010; Winder et al., 2008). Briefly, 200 mg frozen sample pellet was 

transferred to a Mobio PowerLyzer tube (Qiagen, Venlo, Netherlands). The tube was 

preloaded with glass beads of 0.1 mm inner diameter in order to sufficiently break the cells 

and particles under vortex condition. One milliliter of cold methanol (−80 °C) was added 

into the tube. Then the sample pellet was gently smashed using a glass pestle. Half milliliter 

of cold methanol was slowly added to wash the pestle. The tube was next capped tightly 

and fastened on Genie 2 mixer (VWR, Suwanee, GA, USA) to undergo 20 min vortex. 

Finally, the tube was centrifuged at 12,000 rpm for 10 min to spin down cellular debris.  

The derivatization protocol followed our previous publication (Zhou et al., 2018). 

Briefly, 100 µL supernatant was transferred to a microcentrifuge tube, and 50 µL internal 

standard (IS, 2-ethylbutyric acid) stock solution was spiked into the tube to achieve a 

concentration of 1 µg/µL. To perform 2-nitrophenylhydrazine (2-NPH) derivatization, 150 

µL sample extract (with internal standard added) was mixed with 45 µL derivatization 

solution which was freshly prepared by mixing 15 µL EDC solution (0.05 g/mL H2O), 15 

µL 2-NPH solution (12.5 mg/mL methanol) and 15 µL 3% pyridine in methanol (v/v). 

After mild vortex, the tubes were transferred to process water bath at 60 °C for 60 min. 
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The tubes then were allowed to stay in room temperature for 5 min and went through brief 

centrifugation in order to collect the liquid left on the tube wall. All sample vials were kept 

in 4 °C sample cooling tray and the analysis was finished within 24 hours. Ten samples 

were randomly picked from each group for quantitation and analysis. The instrumental 

settings and chromatographic conditions were the same described in previous work (Zhou 

et al., 2018). A typical chromatogram from GTPs-treated group and control group are 

shown and compared in Figure 6-2. The labeled peaks were confirmed using standard 

spikes. All analytical parameters used for quantitative analysis were listed in Table 6-2.  

 

6.2.5 Data processing and statistics 

GC-MS raw files were submitted to XCMS on-line modules for peak detection, 

retention time correction, isotope grouping, peak alignment, and integration of extracted 

ion chromatography (Tautenhahn et al., 2012). The processed data were then normalized 

using cyclic locally weighted scatterplot smoothing (LOWESS) technique (Savage, 1972). 

A two-tailed Welch’s t-test was used to examine the statistical significance of fold change 

of metabolomic data. The chemical entities of the interested analytes were imputatively 

annotated by searching their fragmentation spectra through National Institute of Standards 

and Technology (NIST) Standard Reference Database coupled to Agilent Automatic Mass 

Deconvolution and Identification Software (AMDIS). Principal component analysis (PCA) 

was applied to evaluate the statistical importance of metabolite in clustering samples with 

different treatments using R. Heatmap and hierarchical tree were constructed based on 

Pearson’s correlation coefficients. Two-way ANOVA was performed in SPSS 13.0 to 

examine the statistical significance of dose (A), time (B), and interaction (A × B) effects 
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of GTPs on the metabolites detected in the metabolomic analysis. Treatment time was set 

as within-subjects independent variable and dose was set as between-subjects independent 

variable. The specific metabolic pathways responding to GTPs treatment were estimated 

and summarized according to Human Metabolome Database (HMDB) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database. Metabolite set enrichment 

analysis (MSEA) was conducted to summarize the alterations of metabolic pathways via 

MetaboAnalyst (Xia and Wishart, 2016). Non-parametric Mann-Whitney U test was 

performed in SPSS 13.0 to examine the significance of fold-change for the key metabolites 

profiled by GC-MS and HPLC using standard calibration-based quantitation. Unless 

otherwise stated, all data visualizations were performed in R (Team, 2013). 

 

6.3 Results  

6.3.1 Green tea polyphenols induced dose- and time-dependent changes of gut-

microbiota dependent metabolites 

For convenience, the three experimental groups were noted as control, 0.5% GTPs-

treated, and 1.5% GTPs-treated, respectively. GC-MS based metabolomics analysis was 

performed to gain an overview on the global shift of the gut microbial metabolites. Totally 

2667 feature ions were detected from 90 samples. The top 200 significantly altered feature 

ions ranked by Welch’s t-test were noted as differential feature ions. The total ion 

chromatogram (TIC) peaks that contain these differential feature ions were located in the 

deconvoluted chromatograms using the retention time and m/z of that feature ion. The 

quantitative analysis was based on the total peak intensities of extracted ion chromatograms 

(EIC) of feature ions. The fragmentation spectra of top 200 differential peaks were 
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searched through NIST database and a total of 57 metabolites were imputatively identified 

(Table 6-3). Principal component analysis (PCA) model was used to examine whether the 

differential metabolites could reflect the global change of the gut microbial metabolites 

induced by GTPs-treatment. The metabolomics data of the samples collected at 3-month 

and 6-month were input into the PCA model to examine whether the studied 57 features 

could represent the overall change of samples induced by GTPs. The scores plot was shown 

in Figure 6-3. At 3-month PC1 and PC2 explained 60.1% and 10.2% of data variation; at 

6-month the PC1 and PC2 explained 81% and 9.3% of data variation, respectively. 

Principal component regression (PCR) analysis with these 5 PCs generated a regression 

coefficient (R2) of 0.86 between the expected dose and actual dose of GTPs (data not 

shown). Thus, not much information is lost by considering these 57 metabolites as 

representative components of all existing metabolites at 6-month. The dose- and time-

effects of GTPs-treatment on these metabolites were visualized using heatmap and 

hierarchical clustering tree (Figure 6-4 A). The clustering tree was built based on the 

distance metrics of Pearson correlation coefficient. As shown in the heatmap, Cluster A 

(28 components) were decreased in the GTPs-treated groups, and Cluster B (29 

components) were elevated in the GTPs-treated groups. Further, the components in Cluster 

B exhibited time-dependent changes. The highest concentrations of Cluster B1 (15 

components) were observed after 3-month treatment, whereas the highest concentrations 

of Cluster B2 (14 components) were observed after 6-month treatment.  

Following observations on the changes of metabolic patterns, two-way ANOVA 

was applied to examine the time- and dose-dependency of the metabolites during GTPs-

treatment. The results of two-way ANOVA are listed in Table 6-3. Venn plot illustrates 
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the counts of metabolites that are significantly affected by the two main factors and 

interaction effect (Figure 6-4 B). There were 53 metabolites significantly affected by the 

dose effect, 14 metabolites significantly affected by the time effect, and 39 metabolites 

affected by the interaction effect between dose and time of GTPs-treatment. Eight 

metabolites were found to be significantly affected by time, dose and the interaction effects 

of GTPs-treatment, all observed at high dose level (Figure 6-5). The imputative identities 

and max fold changes (MFC) of the eight metabolites are pentanoic acid (MFC, 2.02; p = 

0.033), unknown steroid (MFC, 0.89; p = 0.0064), aspartic acid (MFC, 1.91; p < 0.0001), 

butanedionic acid (MFC, 1.44; p = 0.00046), pyrimidine (MFC, 1.67; p < 0.0001), D-

xylose (MFC, 2.65; p < 0.0001), ursodeoxycholic acid (MFC, 1.7; p < 0.0001), and 

cyclohexanecarboxylic acid (MFC, 0.79; p < 0.0001), respectively.  

The potential impact of the changes of 57 differential metabolites on host health 

was assessed using metabolite set enrichment analysis (MSEA) (Figure 6-6). The 

metabolic pathways showing remarkable response to GTPs were summarized by MSEA, 

based on KEGG records. There were 32 pathways showing significant responses (Table 

6-4). There were 6 metabolic pathways containing more than 3 significantly altered 

metabolites: (1) urea cycle, (2) galactose metabolism, (3) glycine, serine and threonine 

metabolism, (4) ammonia recycling, (5) bile acid biosynthesis, (6) valine, leucine and 

isoleucine degradation. These 6 major pathways extended to connect with other metabolic 

pathways and form 5 major “node clusters”. Shown in Figure 6-6 B, the “major pathways 

centered node clusters” are—Cluster 1: alanine metabolism, glucose-alanine cycle, urea 

cycle, arginine and proline metabolism, ammonia recycling, glutamate metabolism, 

malate-aspartate shuttle; Cluster 2: glycine, serine and threonine metabolism, methionine 
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metabolism; Cluster 3: fatty acid metabolism, fatty acid elongation in mitochondria; 

Cluster 4: galactose metabolism, nucleotide sugars metabolism, starch and sucrose 

metabolism; Cluster 5: glycolysis, gluconeogenesis. 

Following pathway analysis, global metabolite-gene network analysis was 

performed and revealed the genes that were potentially affected by the metabolic changes 

caused by GTPs-treatment (Figure 6-7). The results of global metabolite-gene network 

analysis were consistent with the results of MSEA and present us the connections between 

metabolic pathways bridged by both compounds and genes. The most remarkably activated 

and connected metabolic pathways are: Bile acid biosynthesis, C21-steroid hormone 

biosynthesis and metabolism, de novo fatty acid biosynthesis, Fructose/Mannose 

metabolism, Galactose metabolism, Glycine/serine/alanine/threonine metabolism, 

Glycerophospholipid metabolism, Glycolysis, Gluconeogenesis, and Glycosphingolipid 

metabolism.  

 

6.3.2 Determination of key metabolites in gut content 

Untargeted GC-MS based metabolomics analysis provided us an overview on the 

metabolic pathways modified by GTPs. It was shown that the most significantly modified 

metabolites belong to long chain fatty acid, phenyl acid, bile constituents, carbohydrate, 

vitamin, and amino acid. To confirm such changes, the concentrations of a set of 

representative metabolites were determined using standard calibration methods via HPLC 

and GC-MS analyses. The high-purity standards used for quantitative analysis are shown 

in Materials and Methods part. The regression curves and analytical parameters are listed 

in Table 6-1 and 6-2. The specific results of the quantitation of these metabolites are shown 
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in Figure 6-8. The metabolites showing statistically significant and MFCs at 3-month 

include niacin (8.61; p < 0.0001; 1.5% GTPs-treated group), 3-phenyllactic acid (2.20; p = 

0.009; 1.5% GTPs-treated group), D-galactose (3.13; p < 0.0001; 0.5% GTPs-treated 

group), pentadecanoic acid (2.15; p = 0.022; 1.5% GTPs-treated group), lactic acid (2.70; 

p = 0.003; 1.5% GTPs-treated group), and L-proline (2.15; p < 0.0001; 1.5% GTPs-treated 

group); the components with reduced MFCs were cholesterol (0.29; p = 0.007; 0.5% GTPs-

treated group), cholic acid (0.62; p = 0.001; 1.5% GTPs-treated group), deoxycholic acid 

(0.41; p = 0.034; 1.5% GTPs-treated group), D-trehalose (0.14; p < 0.0001; 0.5% GTPs-

treated group), D-glucose (0.46; p < 0.0001; 1.5% GTPs-treated group); D-fructose (0.12; 

p < 0.0001; 1.5% GTPs-treated group). The metabolites showing significant and MFCs at 

6-month included D-mannose (2.05; p < 0.0001; 1.5% GTPs-treated group) and L-alanine 

(0.61; p < 0.0001; 1.5% GTPs-treated group), respectively. 

 

6.4 Discussion 

In the current study, untargeted metabolomics analysis followed by quantitation of 

key metabolites with GC-MS and HPLC were conducted to investigate GTPs-induced 

alterations of gut-microbiota dependent metabolic pathways. A total of 57 differential 

metabolites represented the overall changes of GTPs induced metabolome of gut-

microbiota (Figure 6-3). The dataset of metabolites at 6-month could explain ~90% data 

variation, indicating that it can well stand for the global metabolic changes induced by 

GTPs (Figure 6-3 B). Fragmentation-based characterization of sample metabolomes 

demonstrated that GTPs treatment induced remarkable changes of metabolites in a wide 

range of categories, which exhibited significant time- and dose-dependent patterns (Figure 
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6-4 and Table 6-3). Bioinformatic analysis found that such changes cover the biochemical 

reactions that relate to metabolisms of carbohydrates, amino acids, lipids, organic acids, 

and bile constituents etc. (Figure 6-6, Figure 6-7 and Table 6-4). Cluster analysis also 

demonstrated a “node cluster” formed by several pathways that were related with TCA 

cycle, including alanine metabolism, glucose-alanine cycle, urea cycle, arginine-proline 

metabolism, ammonia recycling, glutamate metabolism, and malate-aspartate shuttle 

(Figure 6-6 B). Standard calibration-based quantitation confirmed that significant 

alterations occurred on carbohydrates, amino acids, bile constituents, and lactic acid, but 

not for the other short chain fatty acids (SCFA) (Figure 6-8). 

The gut of mammals is colonized by actively metabolizing microorganisms that 

play a crucial role in digesting food and providing functional metabolites and nutrients 

(Marchesi et al., 2016). Upon exposure to xenobiotics, such as drugs, natural products, 

toxins and toxicants, gut flora has exhibited responsive adjustment of community structure 

and metabolic pathways, which further exert dynamic influence on host health (Koppel et 

al., 2017). The changes of the metabolic pathways are usually explored via all kinds of 

metabolomic analyses (Smirnov et al., 2016; Tang et al., 2016; Xia and Wishart, 2016; 

You et al., 2014). Among the diverse strategies that are used to refine and reduce 

metabolomic data pool for further analysis, the combination of t-test with PCA has been 

widely practiced to acquire the representative metabolite set for further pathway analysis 

(Lu et al., 2014; Lu et al., 2012; Xia et al., 2009). As shown in Figure 6-3, the dataset 

collected at 6-month was much more representative than that extracted from dataset at 3-

month, of which the PC1 and PC2 only explained 70% variation caused by GTPs. The 

metabolomic data (Table 6-3) at 6-month demonstrated that GTPs extensively reduced 
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concentrations of calorific carbohydrates (such as glucose, galactose, fructose), fatty acids 

(such as pentadecanoic acid and octadecanoic acid) but elevated a number of amino acids 

and derivatives (such as threonine, aspartic acid, leucine). The bile constituents were found 

to be generally reduced, suggesting that GTPs could also downregulate the synthesis and 

secretion of bile components. These metabolites were affected by time-, dose-, and 

interaction (time × dose) effects of GTPs treatment. Untargeted metabolomic analysis 

(Figure 6-4 and Table 6-3) found that the metabolites usually with high concentrations in 

gut, such as D-glucose, D-fructose, glycerol, myo-inositol, acetic acid, L-aspartic acid, L-

alanine etc., were only affected by dose, whereas no metabolite was found to be affected 

singly by time. This indicates that the time effect of GTPs treatment is comparably weaker 

than dose effect in modulating the gut-microbiota dependent metabolic pathways of major 

nutrients and metabolites. This is consistent with previous finding that the gut-microbiota 

biodiversity was mainly dependent on GTPs dose (Wang et al., 2018). The eight most 

sensitive responsive metabolites (Figure 6-5) were organic acid (pentanoic acid, 

butanedionic acid), bile metabolites (an unknown steroid, ursodeoxycholic acid), amino 

acid (aspartic acid), phenolic acid (cyclohexanecarboxylic acid), nucleic acid metabolite 

(pyrimidine) and carbohydrate (D-xylose). The changes of these metabolites indicated the 

alterations of biochemical reactions for the metabolisms of carbohydrates, steroids, amino 

acids, aliphatic acids and phenol acids, which has been reported for exposure to a wide 

range of xenobiotic categories (Barbosa, 2013; Kim et al., 2013; Koppel et al., 2017). 

As shown in Figure 6-6 A and Table 6-4, the top five metabolic pathways 

demonstrating significant responses to GTPs include urea cycle, aspartate metabolism, 

malate-aspartate shuttle, arginine and proline metabolism, and beta-alanine metabolism, all 
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of which were related with mitochondrial TCA/Urea cycle. Next to these five pathways 

were the metabolisms of carbohydrates and conjugated sugars that support mitochondrial 

respiration and ATP-synthesis. The cluster analysis (Figure 6-6 B) also indicated that 

mitochondrial centered “energy conversion” pathways were affected. Moreover, KEGG-

based compound-gene network analysis (Figure 6-7) found consistent results with the 

above pathway analysis. While the gene ortholog data were not available, network analysis 

was performed to show the “gene bridged” connections between the metabolic pathways. 

As shown in the Figure 6-7, the metabolic pathways connected to TCA/Urea cycle include: 

bile acid biosynthesis, C21-steroid hormone biosynthesis and metabolism, de novo fatty 

acid biosynthesis, fructose/mannose metabolism, galactose metabolism, 

glycine/serine/alanine/threonine metabolism, glycerophospholipid metabolism, glycolysis, 

gluconeogenesis, and glycosphingolipid metabolism, etc. The pathway analysis and 

network analysis together suggested that TCA/urea cycle of gut-microbiota may be boosted 

by GTPs and then drives the metabolisms of carbohydrates, fatty acids and lipids. This is 

consistent with the results of metagenomic analysis, in which a set of microbial gene 

orthologs related to mitochondrial respiration were significantly elevated by GTPs, such as 

alpha-glucosidase (ENOG4105CGS), NADH oxidase (ENOG4105CCY), and AAA-

ATPase (ENOG4105F42) (Wang et al.). These analyses further suggest that GTPs 

modulated the energy conversion and branch pathways (Laparra and Sanz, 2010; 

Velagapudi et al., 2010).  

Standard-calibration based quantitation (Figure 6-8) demonstrated that the major 

dietary calorific carbohydrates, such as D-glucose, D-fructose and D-trehalose, were 

reduced in all GTPs-treated groups. This may be partially caused by the enrichment of 
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Bacteroidetes and Oscillospira by GTPs in the gut of rats (Wang et al.)—the two families 

were linked with the lean phenotype in mammals (Konikoff and Gophna, 2016; Tims et 

al., 2013; Turnbaugh et al., 2009; Verdam et al., 2013), and were shown to be highly 

efficient in metabolizing carbohydrates (Lin et al., 2013; Turnbaugh et al., 2009). GTPs 

may elevate the efficiency of gut-microbiota dependent energy conversion at global level 

and consequently reduced calorific carbohydrates in gut by enriching these microbes. By 

contrast, D-mannose and D-galactose were both increased by GTPs in the gut content, and 

the elevation of D-galactose was more remarkable than D-mannose. Galactose has been 

reported to offer beneficial modifications regarding multiple physiological functions, such 

as liver metabolism, fertilization, blood maintenance, and pulmonary function via forming 

functional complex carbohydrates (Dabelsteen et al., 1988; Hussain et al., 2012; Roseman 

and Baenziger, 2003; Xia et al., 2005). Galactose and mannose can be synthesized in the 

bacterial catabolic process of calorific carbohydrates (Macfarlane et al., 2005).  

Interestingly, there was no significant changes of SCFAs observed in the gut 

content from GTPs-treated rats, except for lactic acid, which is different with a recent report 

that tea polyphenols elevated the production of SCFA in Caco cell-bacteria co-culture 

system (Sun et al., 2018). In our study, remarkable elevation was only observed for lactic 

acid at 3-month (2.7 fold; p = 0.003; 0.5% GTPs-treated group). In addition, acetic acid 

demonstrated remarkable decrease at 6-month in 1.5% GTPs-treated groups (0.6-fold of 

control, p = 0.013). It seems that GTPs may not target bacterial anaerobic metabolism of 

indigestible fibers—the major source of gut SCFAs. Consistently, 16S rRNA sequencing 

analysis also showed non-significant change for Lactobacillales, such as Lactobacillus, 
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Leuconostoc, Pediococcus, Lactococcus, and Streptococcus. Therefore, we conclude that 

the gut-microbiota dependent formation of SCFAs is not a major target pathway of GTPs. 

L-alanine (reduced by ~40%) and L-proline (increased by ~2 fold) were both 

markedly altered in our study, which may suggest that the metabolisms of amino acids may 

not respond in the same trend. These results reflected complex adjustment of community 

structure of gut-microbiota following GTPs treatment, since different microbial strains 

have diverse preferences on the metabolic pathways of amino acids (Dai et al., 2011). Gut-

microbiota is known to play important roles in the digestion and absorption of amino acids, 

as well as the catabolism and fermentation of amino acids in gut (Wang et al., 2009). In 

the intestine of healthy adults, the most abundant amino acid fermenting bacteria belong to 

Clostridium, Proteobacteria, Peptostreptococci, and Streptococcus.  

Gut niacin was elevated in the GTPs-treated groups, with remarkable increase seen 

in 0.5% GTPs-treated group at 6-month (8.61-fold of change, p < 0.0001), 1.5% GTPs-

treated groups at both 3-month (4.24-fold of control, p = 0.001) and 6-month (3.66-fold of 

change, p = 0.027). B group vitamins are well known to take the central regulating role in 

mitochondrial energy metabolism, including the oxidative decarboxylation of the 

branched-chain keto acid, CoA formation and fatty acid oxidation (Depeint et al., 2006). 

Niacin (vitamin B3) is especially needed for the mitochondrial synthesis of NADH, which 

supplies protons for the oxidative phosphorylation. A PubSEED-based investigation 

showed that niacin can be synthesized by 162 of the 256 gut microbes of common human 

gut bacteria (Magnusdottir et al., 2015). Therefore, GTPs may enrich gut vitamin-

producing strains and then contribute to the TCA/Urea cycle and energy conversion. 
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Cholesterol and cholic acid, two major constituents of bile, were significantly 

reduced in the GTPs-treated groups (Figure 6-8). The reduction of cholic acid may be 

caused by the decrease of cholesterol since cholic acid is synthesized from the latter. 

Consistently, gut deoxycholic acid, a derivative of cholic acid, was markedly reduced in 

the 1.5% GTPs-treated group at 6-month. In line with the above HPLC-profiling results, 

metabolomics data also indicated an overall suppression of bile constituents, such as 

deoxycholic acid, cholan-24-oic acid, ursodeoxycholic acid, cholesterol, and coprostan-3-

ol—all reduced in 1.5% GTPs-treated groups at both 3-month and 6-month (Table 6-3). It 

is well known that bile constituents are endogenously synthesized from cholesterol by liver 

cells of most vertebrates. Though different species have distinct molecular forms of bile 

constituents, but cholic acid and chenodeoxycholic acid are both generated in human and 

rats. The alteration of bile constituents in gut, especially bile acid and deoxycholic acid, 

play a crucial role in modulating gut-microbiota (Tremaroli and Backhed, 2012). Besides, 

the elevation of cholic acid in gut is associated with liver pathogenesis and is also known 

as a risk factor for intestinal inflammation (Camilleri et al., 2011; Mouzaki et al., 2016), 

and extra cholic acid may partially contribute to the incidence of colon cancer by 

stimulating the growth of benign adenoma (Rowland, 2012). The modulation of the 

secretion and metabolism of bile constituents have been long noticed as a major aspect of 

the health benefits offered by GTPs (Stalmach et al., 2010; Yang and Koo, 1999). In 

addition to bile constituents, significant accumulation of pentadecanoic acid was observed 

in the GTPs-treated groups at 3-month (MFC, 2.15; p = 0.022), which indicated the 

suppression of fat absorption following GTPs administration. It was suggested that the 

decrease in body fat after administration of GTPs is partly due to the inhibition of lipid 
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absorption, which is linked with mechanism of bile constituents in liver (Koo and Noh, 

2007; Wang et al., 2006).    

Taken together, the results from untargeted and targeted metabolomics analysis 

demonstrated the decrease of calorific carbohydrates, reduction of bile synthesis, reduced 

absorption of fatty acids, altered metabolisms of amino acids, elevation of beneficial 

hexoses and vitamins in the gut of the GTPs-treated rats. The pathway changes were 

remarkable after 6-month treatment, especially for mitochondria TCA/Urea cycle related 

pathways. However, the production of SCFAs was not significantly affected by GTPs. The 

gut-microbiota dependent metabolic changes, accompanied with the alteration of gut-

microbiome, may partially contribute to the health benefits observed with green tea 

consumption. It seems the overall beneficial effects of GTPs on host health rely on the 

consequences of integrated mechanisms. Our data showed that the gut-microbiota 

dependent metabolism could be a very important and indispensable contributor to the 

health-promoting bioactivity of GTPs, especially for the mitigation of obesity and 

reduction of extra calories. 
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TABLES 

Table 6-1. Analytical parameters of GC-MS analysis used for the measurement of key 

metabolites. 

Compound RT 
Q-

ion 

Regression 

Functiona R2 Recovery 

Rateb  

Linear 

Rangec LLODd 

2-Deoxy-D-

ribose 
32.55  73 

y = 1E-06x + 

6.4 
0.996 0.222  1.25~400 0.625 

D-Mannose 35.93  73 
y = 2E-07x - 

0.66 
0.999 0.203  1.25~400 0.625 

D-Ribitol 37.35  73 
y = 1E-07x - 

1.2 
0.998 0.239  1.25~400 0.625 

D-Fructose 41.68  73 
y = 1E-06x - 

2.03 
0.996 0.232  1.25~400 0.625 

D-Ribose 42.14  73 
y = 9E-07x - 

14.5 
0.996 0.257  1.25~400 0.625 

D-Galactose 42.20  73 
y = 3E-07x - 

2.42 
0.999 0.298  1.25~400 0.625 

D-Glucose 42.42  73 
y = 1E-06x - 

16.57 
0.991 0.562  1.25~400 0.625 

D-Galactitol 43.50  73 
y = 4E-06x - 

9.89 
0.993 0.305  1.25~400 0.625 

GlcNAc 47.34  73 
y = 1E-06x + 

12.36 
0.999 0.249  1.25~400 0.625 

myo-inositol 47.46  73 
y = 4E-07x - 

10.31 
0.995 0.193  1.25~400 0.625 

D-Lactose 61.39  73 
y = 1E-06x - 

4.96 
0.995 0.249  1.25~400 0.625 

D-Trehalose 62.62  73 
y = 1E-06x - 

11.92 
0.991 0.217  1.25~400 0.625 

L-Proline  22.4  307 
y = 1E-05x + 

22.75 
0.944 0.243  9~575 4.5 

L-Alanine 15.3  116 
y = 2E-06x + 

101.4 
0.992 0.267 75~1200 37.5 

Abbreviation: RT, retention time; Q ion, fragment ion used for quantitation; R2, linear 

regression coefficient; LLOD, lower limit of detection; GlcNAc, N-Acetyl-D-

glucosamine. 

a. Y, ng/μL of analyte; X, peak area integrated from extracted ion chromatogram (EIC) of 

Q ion. 

b. Recovery rate was calculated from blank extract containing ~50%, ~100% and ~200% 

peak area of an analyte measured in mixed control sample extract (n = 10, from control 

group). Recovery % = (amount of analyte measured in the spiked sample − analyte 

amount measured in the control) × 100/(spiked analyte amount in the extract). Three 

replicates were used to generate final recovery rate. 
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c. The range in which regression curve maintains R2 > 0.99. Unit of linear range is 

μg/mL. 

d. The analyte level which generated a signal-to-noise (S/N) ratio of 3 was noted as the 

LLOD for that analyte. The unit of LLOD is μg/mL. 
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Table 6-2. Analytical parameters of HPLC-profiling used for the measurements of key 

metabolites. 

Compound RT Detective 

Channel 

Regressi

on  
R² 

Recover

y Ratea 

Linear 

Range  

LLOD
b  

Acetic acid 14.9 400 nm 

y = 

0.0063x 

− 0.373  

0.999

3 
0.66 0.016–64.8  0.008 

Propionic 

acid 
19.6 400 nm 

y = 

0.021x − 

0.927  

0.999 0.49 0.07–143 0.03 

Butyric acid 25.1 400 nm 

y = 

0.0256x 

− 0.499  

0.999

1 
0.53 0.078–79.5 0.04 

Valeric acid 31.5 400 nm 

y = 

0.0208x 

− 0.497 

0.999 0.50 0.054–56.1 0.03 

Hexanoic 

acid 
37.6 400 nm 

y = 

0.0309x 

− 0.356 

0.999

4 
0.52 0.074–75.6 0.04 

Lactic acid 13.8 400 nm 

y = 

0.0244x 

− 0.235 

0.999

1 
0.65 0.11–14.33 0.05 

Pyruvic acid 41.3  400 nm 

y = 

0.0166x 

+ 0.714  

0.999

7  
IS 1 6.2–500 0.19 

2-

Ethylbutyri

c acid  

34.2 400 nm 

y = 

0.1662x 

- 0.453 

0.999

1 
0.76 0.56–1138 0.28 

Niacin 22.1  210 nm 

y = 

0.0313x 

− 6.177 

0.995

4  
IS 2 1–430 0.25 

3-

Phenyllactic 

acid 

31.2  400 nm 

y = 

0.1003x 

− 0.713 

0.999

4  
IS 2 4.7–300 0.58 

Hippuric 

acid 26.3  400 nm 

y = 

0.6161x 

+ 2.828 

0.999

6 
0.16 4.45–570 2.25 

Cholic acid 45.1  400 nm 

y = 

0.1219x 

− 6.605 

0.993

0  
IS 3 3.9–250 0.49 

Deoxycholi

c acid 
47.1  400 nm 

y = 

0.0371x 

− 4.866 

0.993

0  
IS 3 2.5–330 0.64 
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Cholesterol 47.4  400 nm 

y = 

0.0686x 

− 2.48 

0.990

0  
IS 3 1.95–125 0.98 

Bisphenol A 35.0  210 nm 

y = 

0.0148x 

− 6.965 

0.992 0.97 0.33–685 0.17 

Linoleic 

acid 
50.9  400 nm 

y = 

0.3705x 

− 31.314 

0.994

8  
IS 4 3.9–1000 3.9 

Pentadecano

ic acid 
51.2  400 nm 

y = 

0.0636x 

− 0.3641 

0.999

0  
IS 4 1.95–500 0.5 

Heptadecan

oic acid  54.5  400 nm 

y = 

0.1436x 

− 4.5852 

0.995

2 
0.39 2.15–275 1.07 

The minimum data point in the linear regression range (R2 > 0.999) was noted as LOQ. 

Abbreviations: IS, internal standard for quality control; R2, regression coefficient; LLOD, 

lower limit of detection; LCFA, long chain fatty acid; PA, phenyl acid; RT, retention time 

(min) in chromatogram; SA, steroid acid; SCFA, short chain fatty acid. The analyte level 

which generated a signal-to-noise (S/N) ratio of 3 was noted as the LLOD for that analyte. 

More specifics of methodology are available in previous publication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



394 
 

Table 6-3. Two-way ANOVA examination on the statistical significance of the dose, 

time, and interaction effects of GTPs-treatment on the metabolites measured by GC-MS. 

m/z RT Annotation 
Categor

y 

E/C

1 

E/C

2 
VIPc 

p-value 

Dose Time 
Interacti

on 

Metabolites significantly affected by dose-time interaction of GTPs-treatment 

129 
43.

9 
Pentadecanoic acid LCFA 

0.69

2 

0.78

9 

0.01

4 

<0.00

1 
>0.05 <0.001 

59.

1 

51.

6 
Octadecanoic acid LCFA 

0.70

8 

0.78

0 

0.07

6 

<0.00

1 
>0.05 <0.001 

211 
38.

6 
Phosphoric acid IA 

0.58

4 

0.64

6 

1.47

0 

<0.00

1 
>0.05 <0.001 

221 
18.

1 

Cyclohexanecarboxyl

ic acid 
OA 

0.59

8 

0.63

5 

1.21

9 

<0.00

1 
<0.05 <0.01 

73.

1 

40.

3 
Benzoic acid OA 

1.52

1 

2.08

5 

1.51

8 

<0.00

1 
>0.05 <0.001 

61.

1 

13.

6 
Propanoic acid SCFA 

0.63

9 

0.69

5 

0.64

2 
>0.05 >0.05 <0.001 

119 
11.

2 
Pentanoic acid SCFA 

0.74

8 

1.00

8 

1.11

5 

<0.00

1 
<0.05 <0.001 

101 
14.

1 
Hexanoic acid SCFA 

0.64

4 

0.68

4 

1.15

0 

<0.00

1 
>0.05 <0.001 

77.

1 

23.

3 
Butanedionic acid SCFA 

0.69

4 

1.02

5 

0.05

8 

<0.00

1 
<0.05 <0.05 

190 
21.

2 
Butanoic Acid SCFA 

0.72

4 

1.00

3 

0.08

6 

<0.00

1 
>0.05 <0.05 

147 24 Pyrimidine OC 
0.72

0 

1.01

5 

0.32

2 

<0.00

1 
<0.01 <0.05 

297 
55.

8 

3-Pyridinecarboxylic 

acid 
OC 

0.61

4 

0.82

6 

0.44

6 

<0.00

1 
>0.05 <0.05 

400 
68.

8 
Unknown steroid CD 

0.61

7 

0.59

2 

1.45

1 

<0.00

1 
<0.05 <0.01 

259 
70.

6 
Deoxycholic acid CD 

0.57

1 

0.64

5 

1.32

6 

<0.00

1 
>0.05 <0.05 

430 
72.

3 
Cholan-24-oic acid CD 

0.97

6 

0.91

0 

0.30

0 

<0.00

1 
>0.05 <0.001 

355 
67.

7 

Prosta-5,13-dien-1-

oic acid 
CD 

0.56

3 

0.69

2 

1.00

5 

<0.00

1 
>0.05 <0.05 

414 
72.

6 
Ursodeoxycholic acid CD 

0.61

0 

0.73

6 

0.07

6 

<0.00

1 
<0.05 <0.001 

355 70 Cholesterol CD 
0.62

5 

0.73

7 

0.86

7 
<0.01 >0.05 <0.001 

330 
68.

4 
Coprostan-3-ol CD 

0.66

9 

0.78

7 

0.38

0 
<0.01 >0.05 <0.001 

55.

2 

71.

7 
Stigmastanol CD 

0.57

6 

0.46

8 

1.72

7 

<0.00

1 
>0.05 <0.05 
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311 
72.

6 
beta-Sitosterol CD 

0.64

9 

0.75

7 

0.40

7 

<0.00

1 
>0.05 <0.001 

385 
70.

2 

Cholestan-3-yl 

acetate 
CD 

0.49

3 

0.48

5 

1.45

9 

<0.00

1 
>0.05 <0.001 

100 
30.

7 
Aspartic acid AA 

0.59

8 

1.33

6 

0.31

7 

<0.00

1 

<0.00

1 
<0.001 

73.

1 

25.

9 
Threonine AA 

0.66

2 

1.85

5 

1.32

1 

<0.00

1 
>0.05 <0.001 

100 
43.

5 
Tyrosine AA 

0.62

9 

1.12

2 

0.43

7 

<0.00

1 
>0.05 <0.05 

159 
21.

5 
Leucine AA 

0.64

3 

1.14

0 

0.00

2 
>0.05 >0.05 <0.001 

75.

1 

19.

3 
Valine AA 

0.50

4 

0.86

4 

0.45

1 
>0.05 >0.05 <0.05 

174 
22.

7 
Glycine AA 

0.38

8 

0.88

1 

0.99

9 

<0.00

1 
>0.05 <0.001 

75.

1 

22.

4 
Isoleucine AA 

0.58

9 

1.09

3 

0.05

3 

<0.00

1 
>0.05 <0.05 

91.

1 
34 Glutamine  AA 

0.62

6 

1.08

6 

0.26

8 

<0.00

1 
>0.05 <0.05 

89.

1 

11.

6 
Propylene glycol C 

0.69

7 

0.87

1 

0.54

9 

<0.00

1 
>0.05 <0.001 

85.

2 

71.

7 
1,4-Cyclohexadiene C 

0.63

0 

0.52

9 

1.33

9 
<0.01 >0.05 <0.001 

355 
50.

8 

Methyl α-D-

galactoside 
C 

0.62

1 

0.73

8 

0.78

3 
<0.01 >0.05 <0.001 

161 
42.

4 
Glucose C 

0.75

3 

1.01

7 

0.11

8 

<0.00

1 
>0.05 <0.01 

307 
35.

9 
Xylose C 

1.11

4 

1.83

0 

1.03

2 

<0.00

1 
<0.05 <0.001 

249 
48.

6 
Fucose C 

0.67

2 

0.79

9 

0.36

2 

<0.00

1 
>0.05 <0.001 

160 
42.

9 
Galactose C 

0.85

8 

1.16

7 

0.24

6 

<0.00

1 
>0.05 <0.001 

204 
57.

9 
Turanose C 

0.70

2 

0.68

3 

1.13

2 

<0.00

1 
>0.05 <0.001 

158 
10.

8 
Diethylamine C 

0.68

7 

0.78

1 

0.54

8 
<0.05 >0.05 <0.001 

Metabolites significantly affected by dose and time effects of GTPs-treatment 

121 
11.

5 
Pyridine OC 

0.48

9 

0.52

9 

1.70

8 

<0.00

1 
<0.01 >0.05 

204 
37.

6 
Xylopyranose C 

0.41

0 

0.45

9 

2.20

7 

<0.00

1 
<0.01 >0.05 

73.

1 

49.

6 

1-Monolinoleoyl 

glycerol 
C 

2.13

6 

2.49

6 

2.98

4 

<0.00

1 
<0.05 >0.05 
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291 45 Pantothenic acid VB 
0.59

2 

0.70

6 

0.90

8 
>0.05 <0.05 >0.05 

84.

1 

31.

2 
Serine AA 

0.50

8 

0.72

1 

1.22

4 

<0.00

1 
<0.05 >0.05 

205 
69.

9 
Corticosterone CD 

0.51

8 

0.49

3 

2.08

4 

<0.00

1 
<0.05 >0.05 

Metabolites significantly affected by dose effect of GTPs-treatment 

155 
21.

7 
Glycerol C 

0.66

8 

0.85

4 

0.49

8 <0.01 >0.05 >0.05 

315 
55.

4 

Myo-inositol 

derivative 
C 

0.60

0 

0.66

2 

1.26

6 <0.01 >0.05 >0.05 

217 
41.

7 
Fructose C 

0.45

7 

0.48

1 

2.05

9 

<0.00

1 >0.05 >0.05 

73.

1 

35.

2 
Ribose C 

0.72

6 

0.47

7 

2.67

2 

<0.00

1 >0.05 >0.05 

73.

1 

61.

7 
Dulcitol C 

0.82

1 

0.43

6 

2.97

2 

<0.00

1 >0.05 >0.05 

339 67 Phosphatidylcholine Choline 
0.72

5 

0.97

6 

0.15

0 

<0.00

1 >0.05 >0.05 

174 
46.

7 
Hexadecanoic acid LCFA 

0.65

8 

0.93

9 

0.08

9 

<0.00

1 >0.05 >0.05 

77.

1 

43.

3 

2-

Hydroxyphenylpentan

oic acid 

PA 
1.01

6 

1.45

7 

1.42

0 
<0.00

1 >0.05 >0.05 

220 
16.

5 
Acetic acid SCFA 

0.52

3 

0.55

7 

1.67

2 

<0.00

1 >0.05 >0.05 

75.

1 

15.

1 
Alanine AA 

0.46

5 

0.57

4 

1.39

8 

<0.00

1 >0.05 >0.05 

249 
15.

4 
Hydroxylamine Oam 

0.46

0 

0.72

3 

0.83

8 

<0.00

1 >0.05 >0.05 

Abbreviation: LCFA, long chain fatty acid; IA, inorganic acid, OA, organic acid; SCFA, 

short chain fatty acid; OC, organoheterocyclic compound; CD, cholesterol and derivative; 

AA, amino acid; C, carbohydrate, OAm, organic amine; VB, vitamin B; PA, phenolic acid. 

RT, retention time of feature ion aligned from all TICs (total ion chromatograms). 

Annotation, most plausible chemical entity acquired from NIST database based on the 

fragmentation spectrum. E/C1, extracted ion chromatogram peak intensity of a metabolite 

detected in 0.5% GTPs-treated group versus control after 6-month treatment. E/C2, 

extracted ion chromatogram peak intensity of a metabolite detected in 1.5% GTPs-treated 

group versus control, after 6-month treatment. VIP, Variable Importance in Projection (VIP) 

calculated using OPLS-DA, to evaluate the importance of a metabolite in clustering 

samples with different treatments. 
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Table 6-4. Significantly modified metabolic pathways revealed by MSEAa. 

Pathway Hits/Total adjusted-p FDR 

Urea cycle* (Cluster 1) 3/20 4.00E-10 1.83E-10 

Aspartate metabolism 1/12 5.36E-10 1.83E-10 

Malate-aspartate shuttle (Cluster 1) 1/8 5.36E-10 1.83E-10 

Arginine and proline metabolism (Cluster 1) 2/26 9.42E-08 2.54E-08 

Beta-alanine metabolism 2/13 3.62E-07 8.00E-08 

Galactose metabolism* (Cluster 4) 5/25 3.00E-06 4.40E-07 

Starch and sucrose metabolism (Cluster 4) 1/14 3.02E-06 4.40E-07 

Fructose and mannose degradation 1/18 3.02E-06 4.40E-07 

Nucleotide sugars metabolism (Cluster 4) 1/9 8.10E-06 1.11E-06 

Steroidogenesis 2/32 2.37E-05 3.02E-06 

Glycine, serine and threonine metabolism* 

(Cluster 2) 
3/26 6.60E-05 7.87E-06 

Ammonia recycling* (Cluster 1) 4/18 1.41E-04 1.54E-05 

Bile acid biosynthesis* 4/49 1.43E-04 1.54E-05 

Glucose-alanine cycle (Cluster 1) 2/12 3.80E-04 3.93E-05 

Tyrosine metabolism 1/38 1.22E-03 1.07E-04 

Phenylalanine and tyrosine metabolism 1/13 1.22E-03 1.07E-04 

Catecholamine biosynthesis 1/5 1.22E-03 1.07E-04 

Selenoamino acid metabolism 1/15 5.82E-03 5.14E-04 

Alanine metabolism (Cluster 1) 1/6 5.82E-03 5.14E-04 

Beta oxidation of very long chain fatty acids 1/14 6.45E-03 5.89E-04 

Insulin signaling 2/19 9.00E-03 8.18E-04 

Butyrate metabolism 1/9 1.24E-02 1.13E-03 

Valine, leucine and isoleucine degradation* 3/36 1.25E-02 1.14E-03 

Fatty acid metabolism (Cluster 3) 1/29 2.13E-02 1.89E-03 

Fatty acid elongation in mitochondria (Cluster 

3) 
1/26 2.13E-02 1.89E-03 

Steroid biosynthesis 1/31 2.67E-02 2.46E-03 

Propanoate metabolism 2/18 2.67E-02 2.46E-03 

Glycolysis (Cluster 5) 1/21 2.84E-02 2.75E-03 

Gluconeogenesis (Cluster 5) 2/27 2.84E-02 2.75E-03 

Pyrimidine metabolism 1/36 4.65E-02 4.69E-03 

Purine metabolism 1/45 4.65E-02 4.69E-03 

Glutamate metabolism (Cluster 1) 1/18 4.65E-02 4.69E-03 

Methionine metabolism (Cluster 2) non-

sisignificant 
2/24 1 0.7 

* Pathway contains more than 3 detected components. There are four clusters revealed in 

network analysis. Cluster 1: Alanine metabolism, Glucose-alanine cycle, Urea cycle, 

Arginine and proline metabolism, Ammonia recycling, Glutamate metabolism, Malate-

aspartate shuttle. Cluster 2: Glycine, serine and threonine metabolism, Methionine 

metabolism. Cluster 3: Fatty acid metabolism, Fatty acid elongation in mitochondria. 

Cluster 4: Galactose metabolism, Nucleotide sugars metabolism, Starch and sucrose 

metabolism. Cluster 5: Glycolysis, Gluconeogenesis. 
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a. MSEA, metabolite set enrichment analysis performed using MetaboAnalyst online 

modules. 

b. The count of the detected metabolites divided by the total number of metabolites in that 

pathway according to KEGG. 

c. FDR, false discovery rate to conceptualize the rate of type I errors in null hypothesis 

testing when conducting multiple comparisons. 
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Figure 6-1. GC-MS total ion chromatogram (TIC) of gut content metabolites. Several 

interested amino acids and carbohydrates were located in the chromatogram by spiking 

standards. A solvent delay time of 10.5 min was applied. The determined concentrations 

of these nutrients were calculated based on extracted ion chromatogram (XIC) using 

standard calibration method. Specific results are listed in Figure 6-8. 
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Figure 6-2. HPLC-profiling chromatograms of gut content metabolites from control (upper) 

and GTPs-treated group (lower). The detection channel of DAD is 400 nm with a reference 

channel as 510 ± 60 nm. Specific results are available in Figure 6-8. 
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Figure 6-3. Score plot of principal component analysis (PCA) of the 57 metabolites 

significantly modified by GTPs. (A) Dataset collected at 3-month; (B) Dataset collected at 

6-month. The color-coded circle represents 95% confidential interference, with 0.5% and 

1.5% correspond to the treatments of drinking water containing 0.5% and 1.5% GTPs, 

respectively. Coordinates in axis are for illustration purpose only and selected arbitrary and 

therefore do not have clear biological meanings. Percentage associated with each PC is the 

proportion of an eigenvalue for the respective PC in the sum of eigenvalues for all PCs. 

With the top 5 PCs extracted from dataset of 6-month, the regression function between 

predicted GTPs dose and actual doses of GTPs has a R2 (linear regression coefficient) of 

0.86.  
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Figure 6-4. Overview of the alterations of metabolites profiled by GC-MS during the 

course of GTPs-treatment. (A) Heat map shows the level changes of metabolites. The 

hierarchical reorganization was based on the Pearson’s correlation coefficient with average 

distance. Data were normalized using locally weighted scatterplot smoothing (LOESS) 

algorithm. (B) Venn plot demonstrates the time, dose, and interaction effects of GTPs on 

significantly altered metabolites revealed by two-way ANOVA (see Table 6-3). 
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Figure 6-5. Box plots to show the alterations of eight signature metabolites that were 

affected by the dose, time and interaction effects of GTPs-treatment. The ion peak 

intensities were integrated from Extracted Ion Chromatograms (XICs). Non-parametric 

Mann-Whitney U test was applied for all comparisons (n = 10). Box plots represent 25%, 

50% and 75% percentile of data. Whisker of box plots indicate standard deviation (S. D.). 
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Figure 6-6. Metabolite set enrichment analysis (MSEA) of detected metabolites and 

network view of GTPs-modified metabolic pathways. (A) MSEA of metabolic pathways 

with adjusted-p < 0.05 for the significance of alteration. Specific statistics are listed in 

Table 3. The color code indicates adjusted-p values, and the enrichment fold (X-axis) 

indicates extent of response for the metabolic pathway. (B) Network view of metabolic 

pathways that share same metabolites. The node size reflects the total number of 

components in a pathway; the node color reflects the p value of the pathway, with a darker 

color corresponding to lower adjusted-p values. There are four clusters of nodes. Cluster 1: 

Alanine metabolism, Glucose-alanine cycle, Urea cycle, Arginine and proline metabolism, 

Ammonia recycling, Glutamate metabolism, Malate-aspartate shuttle. Cluster 2: Glycine, 

serine and threonine metabolism, Methionine metabolism. Cluster 3: Fatty acid metabolism, 

Fatty acid elongation in mitochondria. Cluster 4: Galactose metabolism, Nucleotide sugars 

metabolism, Starch and sucrose metabolism. Cluster 5: Glycolysis and Gluconeogenesis. 
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Figure 6-7. Global compound-gene network analysis of metabolites detected in feces of 

rats administered with 1.5% GTPs in drinking water. The intense red hexagons represent 

metabolites with significant alteration. The light red hexagons (compounds) and purple 

balls (genes) stand for the components in the pathways. Compounds and genes are 

represented as nodes and the relationships among them are represented as edges; the edges 

represent both reactions and enzymes based on KEGG. The most activated pathways 

include: bile acid biosynthesis, C21-steroid hormone biosynthesis and metabolism, 

butanoate metabolism, de novo fatty acid biosynthesis, biopterin metabolism, arachidonic 

acid metabolism, fructose and mannose metabolism, galactose metabolism, 

glycerophospholipid metabolism, glycine/serine/alanine/threonine metabolism, glycolysis 

and gluconeogenesis, glycosphingolipid metabolism. 
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Figure 6-8. Key metabolites determined using HPLC-profiling and GC-MS analyses. Blue 

color bar indicates the relative level of the compound determined in the three experimental 

groups. Half-transparent bar stands for the results at 3-month and fully filled bar stands for 

the results at 6-month. Abbreviations: a. E/C, the mean concentration (ng/mg gut content) 

determined in exposure group versus that in control group. b. p-value is calculated from 

Kruskal-Wallis H test, n = 10. 
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CHAPTER 7. GREEN TEA POLYPHENOLS BOOST GUT-MICROBIOTA 

DEPENDENT MITOCHONDRIAL TCA/UREA CYCLE AND ENERGY 

CONVERSION OF IN SPRAGUE DAWLEY RATS 

 

7.1 Introduction 

Here we report the modifying effects of green tea polyphenols (GTPs) on gut-

microbiota dependent TCA/urea cycle and related metabolic pathways in Sprague Dawley 

rats. GTPs were administered through drinking water under no-observed-adverse-effect-

level (NOAEL) doses 0, 0.5% and 1.5% g/dL. Gut-content samples were collected at both 

3- and 6-month and were analyzed using hydrophilic interaction liquid chromatography 

(HILIC)-heated electrospray ionization (HESI)-tandem mass spectrometry (MS). Through 

untargeted metabolomic analysis, a total of 2177 features were aligned from 60 samples, 

with 91 features showing significant dose and/or time dependent responses to the treatment. 

Targeted metabolic profiling analysis was conducted with established reference MS/MS 

library. The two approaches together revealed fold-changes of 39 metabolites that relate to 

TCA/urea cycle and related metabolic pathways. At 6-month, in the 1.5% GTPs-treated 

group, significant fold-changes were found for argininosuccunic acid (0.9-fold), 

dihydrouracil (1.14-fold), fumaric acid (1.19-fold), malic acid (2.17-fold), citrulline (1.86-

fold) and succinic acid (0.4-fold). Metabolic mapping analysis with 1891 gene orthologs 

and 72 related metabolites revealed remarkable alterations and correlations of TCA/urea 

cycle, carbohydrate metabolism, nucleotide metabolism, energy metabolism, bile acid 

metabolism, and the metabolisms of different amino acids. These results agreed with the 
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findings of metagenomic analysis of gut-content and were in line with the clinical 

chemistry results of blood. Of note, in the gut-content of GTPs-treated rats we observed 

enrichment of Clostridiales ruminococcaceae, C. Lachnospiraceae, Bacteroidetes 

bacteroidaceae, and decreases of “adverse health outcome”-associated OTUs. Taken 

together, our study suggested that GTPs could boost gut-microbiota dependent energy 

conversion in gut by altering the community structure and mitochondrial TCA/urea cycle 

of the gut-microbiota. Such modifying effects could be an important mechanistic part of 

the health-promoting function of green tea discovered in human populations and animal 

models. 

Green tea has been considered a recreational and health-promoting beverage since 

ancient times (Weisburger, 1997). The major functional compositions of green tea leaves 

(Camellia sinensis) include flavonoids, amino acids and polysaccharides (Balentine et al., 

1997). As primary flavonoids contained in tea leaves, green tea polyphenols (GTPs) 

constitute up to 30% dry weight of tea leaves (Balentine et al., 1997; Graham, 1992). In 

both in vitro and in vivo assays, GTPs have demonstrated the similar beneficial effects 

associated with drinking green tea, including antioxidant activity, cancer protection, 

alleviation of high blood pressure, enhancement of bone quality, the reductions of body fat, 

cholesterol level and blood sugar etc. (Chen et al., 2017b; Luo et al., 2006; Qian et al., 

2012; Shen et al., 2015a; Shen et al., 2008; Tang et al., 2008). Accordingly, GTPs have 

addressed remarkable attention from both industry and academia, with significant efforts 

made to explore its novel clinical uses as well as the behind mechanisms (Taylor, 1998).  

Our previous studies have demonstrated that GTPs could effectively modify gut-

microbiota community structure and the dependent metabolites in Sprague Dawley (SD) 
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rats. In GTPs exposure group, we observed significant enrichment of C. Ruminococcaceae, 

C. Lachnospiraceae and B. Bacteroidaceae, as well as the elevation of the gene orthologs 

(GOs) that are related with mitochondrial TCA cycle and ATP synthesis (Wang et al., 

2018). Through normal phase-based metabolomics, we found that not only the calorific 

carbohydrates (glucose, fructose and trehalose) were largely reduced, but also the 

metabolisms of bile acids, fatty acids, and amino acids were all positively modulated in the 

gut. The alterations of these metabolites could be explained by the shift of gut-microbiota 

community structure. It has been reported that the major part of cellular metabolites 

generated by gut-microbiota are hydrophilic, and may reflect and represent the metabolic 

changes of the microbiota (Marcobal et al., 2013). However, in our studies the water-

soluble compositions of the microbiota dependent metabolites have not been specifically 

investigated because of the undesirable separation of hydrophilic metabolites in the reverse 

phase chromatography-based analysis.  

In recent years, hydrophilic interaction liquid chromatography (HILIC) silica 

column has been widely employed to analyze hydrophilic metabolites (Tang et al., 2016). 

In practice, HILIC column is frequently coupled with liquid chromatography (LC)-triple 

quadrupole (TsQ)-mass spectrometry (MS) that is featured by the function of selected 

reaction monitoring (SRM) analysis. The parent ion selected in the first quadruple (MS1 

or Q1) is dissociated to fragment ions in the collision cell, and only a specific fragment ion 

(daughter ion) is selected in the second quadruple for quantitative purpose (MS2, or Q3) 

(Bajad et al., 2006; Lu et al., 2008). This two-stage transition of ion pair is corresponding 

to specific chemical structure and therefore can be used for the quantitative analysis of the 

interested compounds. Though the detective limit of TsQ-MS is sometimes not satisfying, 
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heated electrospray ionization (HESI) can be introduced in the TsQ-MS to enhance the 

sensitivity for the ion detection (Rodriguez-Aller et al., 2013). In the current study we 

applied HILIC-based untargeted/targeted metabolomic analyses to observe the shift of 

hydrophilic metabolites contained in the gut-content following GTPs administration. 

Bioinformatics analysis was then used to integrate previous data and explore the 

mechanistic scheme. The current work aims to provide a comprehensive picture to describe 

the changes of gut-microbiota induced by GTPs.  

 

7.2 Materials and methods  

7.2.1 Chemicals and reagents 

LC-MS grade acetonitrile, formic acid and water were purchased from Honeywell 

(Morris Plains, NJ, USA). High-purity green tea polyphenols (GTPs, decaffeinated) 

powder was ordered from Zhejiang Yixin Pharmaceutical Co., Ltd. (Zhejiang, China). The 

mixture contains 65.37% of EGCG, 19.08% of ECG, 9.87% of EC, 4.14% of EGC, and 

1.54% of catechin. 

 

7.2.2 Animal study 

The protocol of animal study was described in previous studies. In brief, 72 female 

Sprague-Dawley (SD) rats (6-month old, Harlan Laboratories, Indianapolis, IN, USA) 

were randomized and divided into 6 groups (n = 12). The rats were housed in individual 

stainless-steel cages with a room temperature of 21 ± 2 °C and a light-dark cycle of 12 

hours. After environmental acclimation, the rats were administered with drinking water 

containing 0, 0.5%, and 1.5% GTPs (g/dL, 2 groups/treatment) for 6-month. All rats were 

fed with the pelleted AIN-93M diet (Dyets, Bethlehem, PA, USA). Gut-content samples 
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were collected at 3-month and 6-month. Each time half of rats in dosing group were 

sacrificed for sample collection. After sacrifice, gut-content was immediately taken out and 

transferred to 50 mL Eppendoff tubes and were stored in a −80 °C freezer until use. All 

procedures were approved by the local Institutional Animal Care and Use Committee. For 

each sampling time and dosing group, a total of 10 samples were randomly chosen for 

untargeted metabolic analysis. Six samples were randomly chosen from samples at 6-

month for SRM analysis. 

 

7.2.3 Sample pre-treatment 

Sample extraction procedure was consistent with several earlier publications. 

Briefly, cold methanol (−80 ℃) was used to quench gut-content and consequent extraction 

of metabolome. Around 200 mg frozen gut-content was weighed and placed into a Mobio 

PowerLyzer tube containing glass beads of 0.1 mm inner diameter (Qiagen, Venlo, 

Netherlands). One milliliter cold methanol was added in the tube and the pellet was ground 

using a glass pestle. The tube was then capped tightly and fastened on Genie 2 mixer (VWR, 

Suwanee, GA, USA) for 20 min vortex. The tube was centrifugated at 12,000 rpm for 10 

min in order to spin down the cellular debris. Only supernatant was used for further analysis.   

 

7.2.4 Metabolomic analysis 

To perform metabolomic analysis, Agilent 1100 High-performance liquid 

chromatography (HPLC) system was coupled with Finnigan Triple Quadrupole (TsQ) 

Ultra mass spectrometer (Thermo Electron Corporation, San Jose, CA, USA). The HPLC 

system was equipped with Atlantis HILIC Silica (SiO2) column (Waters, 150 mm × 2 mm, 
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3 μm i.d., pH range 1–6). A 0.1 mm internal diameter fused silica capillary was used to 

introduce sample into the electrospray chamber after chromatographic separation. Heated 

electrospray ionization spray voltage was 3200 V in positive mode. Ultra-high purity 

nitrogen was used as sheath gas (30 psi) and auxiliary gas (10 psi). Argon was used as the 

collision gas (1.5 mTorr). Capillary temperature was 325 °C. Flow rate was 150 μL/min. 

Mobile phase A was water containing 0.1% formic acid; mobile phase B was acetonitrile 

containing 0.1% formic acid. The gradient was: t = 0 min, 100% B; t = 30 min, 0% B; t = 

42 min, 0% B; t = 44 min, 100% B; t = 50 min, 100% B. Data were collected in centroid 

files. Both untargeted and targeted metabolomic analyses were applied. Untargeted 

metabolomic analysis was performed in full-scan positive (+) mode with the following 

settings: sample volume was 15 µL; scan range was 150–1500 amu; scan time was 1 s; 

scan width was 1 m/z; unit resolution of Q1 peak width was 0.7 amu. Scan time for Q1 was 

based on the following calculation: (1) (1500−150 amu)/0.7 amu =1938 measures; (2) 1938 

measures × 0.5 ms (dwell time) ≈ 1 s. Dwell time of 0.5 ms is the commonly recommended 

minimum dwell time for Thermo Ultra mass spectrometry. Selected reaction monitor 

(SRM) mode was used for targeted metabolomic analysis. Injection volume was 15 µL. 

Collision voltage was selected from 15 eV, 25 eV, and 35 eV, depending on the closest 

collision voltage recorded in the reference library. The scanned parent-product transition 

was also based on the reference MS/MS library (Bajad et al., 2006; Lu et al., 2008). Gas 

pressure was 1.5 mtorr. Transition scan time was 0.05 s. Scan width was 1 m/z.  
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7.2.5 Data processing and statistics 

Raw MS files were submitted to on-line XCMS modules for peak detection, 

retention time correction, isotope grouping, and peak alignment. Quantitative analysis was 

based on the total ion intensities integrated by extracted ion chromatography (XIC). The 

processed data were normalized using cyclic locally weighted scatterplot smoothing 

(LOWESS) technique. Two-tailed Welch’s t-test was used to examine the statistical 

significance of fold change. Analysis of variance simultaneous component analysis (ASCA) 

was used to screen the metabolites that showed remarkable responses to 

time/dose/interaction effects of GTPs treatment (leverage threshold, 0.9; alpha threshold, 

0.05). ASCA and pathway impact analysis were both processed through MetaboAnalyst 

(Xia et al., 2015). Microbial correlation analysis was based on Pearson’s correlation. Gene 

diversity data of family-level OTUs were retrieved from Integrated Microbial Genomes & 

Microbiomes (IMG/M) (Chen et al., 2017a).  

 

7.3 Results 

7.3.1 Normal phase chromatography-based metabolomic analysis 

A total of 2177 features were aligned from the 60 samples measured by MS. There 

were 35 features demonstrating significant dose-dependency (Fig. 7-1 A) and 54 features 

showing significant time-dependency (Fig. 7-1 B). Of note, two features were significantly 

affected by the interaction effect of treatment (Fig. 7-1 C, D and E). The majority of the 

hydrophilic metabolites were the dietary components and complex lipids that are 

undistinguishable without high-purity standards (SI Table 7-1). A set of 15 metabolites 

were found to fall into the TCA/urea/pyrimidine pathways (Table 7-1). SRM analysis 

identified 24 metabolites that relate to TCA/urea cycle and the metabolisms of pyrimidine, 
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purine and diverse amino acids (Table 7-2). The detected TCA/urea cycle associated 

metabolites include malic acid (2.17-fold, p < 0.01), fumaric acid (1.19-fold, not 

significant), citrulline (1.86-fold, p < 0.01), argininosuccinic acid (0.9-fold, p < 0.01), 

dihydrouracil (1.14-fold, p < 0.01), aspartic acid (1.34-fold, p < 0.05), succinic acid (0.4-

fold, p < 0.05), argmatine (0.35-fold, p < 0.05). These results are summarized in Figure 7-

7. Meantime, there were also several metabolites showing remarkable changes in purine 

and pyrimidine pathway. Pyrimidine pathway: dihydroorotic acid (0.83-fold, p = 0.062), 

cytosine (6.01-fold, p = 0.0039), allantoin (2.68-fold, p = 0.0244), ureidosuccinate (2.57-

fold, p = 0.0024). Purine pathway: inosinic acid (0.93-fold, p = 0.019), adenosine 3',5'-

cyclic phosphate (0.96-fold, p = 0.0168), 3-hydroxy-4-aminopyridine sulfate (0.97-fold, p 

= 0.0433). The fold changes of these metabolites at 6-month were used for pathway impact 

analysis through MetaboAnalyst 3.0. The results were listed in Table 7-3. The most 

significantly impacted metabolic pathways include “TCA cycle (0.106)”, “cysteine and 

methionine metabolism (0.257)”, “glycine, serine and threonine metabolism (0.535)”, 

“purine metabolism (0.119)”, and “valine, leucine and isoleucine biosynthesis (0.667)”.  

 

7.3.2 Correlation analysis of family-level taxa 

The relative contributions of the significantly altered OTUs to the interested 

metabolic pathways were estimated by the relative abundances of OTUs and their gene 

diversities in the metabolic pathways being examined. The results were presented in Figure 

7-2. Compared with other enriched OTUs, (p) Ruminococcaceae and (u) Bacteroidaceae 

demonstrated highest contribution to the examined metabolic pathways. Correlation 

analysis was performed to explore the connections between the family-level OTUs. The 
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results are presented in the circular plots shown in Figure 7-3. The specific operational 

taxonomic group labels are listed in SI Table 7-2. There were two clusters formed in the 

decreased OTUs: a-b-f-g-n and c-d-e (Fig. 7-3 B). Among the increased OTUs, p-q-r-w 

demonstrated most extensive correlation with the other enriched OTUs; (p) 

Ruminococcaceae and (t) Dehalobacteriaceae exhibited clustered correlation which is 

exclusive to the other OTUs (Fig. 7-3 C). By examining the correlation between the 

elevated OTUs with decreased OTUs shown in Figure 7-3 D, we found that (d) 

Peptostreptococcaceae, (f) Prevotellaceae, and (g) Bifidobacteriaceae showed inverse 

correlation with the most enriched OTUs. Specifically, (d) Peptostreptococcaceae was 

inversely correlated with (v) Porphyromonadaceae, (u) Bacteroidaceae, and (s) 

Lachnospiraceae; (f) Prevotellaceae was inversely correlated with (w) 

Alphaproteobacteria|o__RF32, (r) Peptococcaceae, and (q) Desulfovibrionaceae; (g) 

Bifidobacteriaceae was inversely correlated with (u) Bacteroidaceae, (r) Peptococcaceae, 

and (q) Desulfovibrionaceae.  

Specifically, correlation analysis revealed three clusters of the enriched OTUs and 

the decreased OTUs :(1) (s) Lachnospiraceae (u) Bacteroidaceae and (v) 

Porphyromonadaceae were inversely correlated with (d) Peptostreptococcaceae 

(associated with colon cancer); (2) (r) Desulfovibrionaceae and (q) Peptococcaceae were 

inversely correlated with (f) Prevotellaceae (opportunistic pathogen); (3) (u) 

Bacteroidaceae, (r) Desulfovibrionaceae and (q) Peptococcaceae were inversely 

correlated with (g) Bifidobacteriaceae (contain opportunistic pathogen). 
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7.3.3 Integration of metabolomics, metagenomics and clinical chemistry data 

To analyze the alteration of global metabolic pathways, metabolomics and 

metagenomics data collected at 6-month were input into KEGG online mapper. The 

metabolomic data included the results from previous GC-MS metabolomic analysis, 

HPLC-profiling data, and the compounds listed in Table 7-1 and Table 7-2, together 

covering 72 metabolites. The metagenomics data include 1891 GOs. Figure 7-4 illustrates 

the mapping analysis of the metabolic pathways using the metabolomics and metagenomics 

data. The metabolic pathways filled by the metabolites and GOs were highly coincided in 

TCA/urea cycle and the “energy conversion” related metabolisms of purine, pyrimidine, 

lipids, fats, carbohydrates, and amino acids. This is consistent with the significant changes 

of the 6 mitochondrial biogenesis related GOs discovered by previous metagenomic 

analysis (Fig. 7-5 and SI Table 7-5) and is also consistent with the clinical chemistry 

analysis of rat serum (Fig. 7-6 and SI Table 7-6). At 6-month, in the 1.5% GTPs-treated 

group the fold change of the six “energy conversion” related GOs were: AAA-ATPase 

(1.63-fold; p < 0.001), NADH-flavin oxidoreductase (1.78-fold; p < 0.0001), fumarate 

reductase (2.74-fold; p < 0.001), alpha glucosidase (1.81-fold; p < 0.0001), 4Fe-4S 

ferredoxin, iron-sulfur binding domain protein (5.86-fold; p < 0.001), molybdopterin 

oxidoreductase (5.58-fold; p < 0.001). Clinical chemistry analysis showed that at 6-month, 

in 1.5% GTPs-treated group total cholesterol, triglycerides, glucose were 108.7 ± 2.5 

mg/dL, 37.14 ± 1.62 mg/dL, and 153.4 ± 3.2 mg/dL, respectively. The values were reduced 

to 125.5 ± 3.8 mg/dL (p < 0.05), 49.25 ± 2.48 mg/dL (p < 0.05), and 160.8 ± 3.7 mg/dL 

(p > 0.05), respectively. We observed significant elevation of blood urea nitrogen (BUN) 

following GTPs treatment. At 6-month, BUN in control group was 16.08 ± 0.81 mg/dL, 
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and the value was increased to 18.50 ± 0.64 mg/dL by 1.5% GTPs-treatment (p < 0.05). 

Finally, the general alterations of TCA/urea cycle are summarized in Figure 7-7.  

 

7.4 Discussion 

In this study, the results of HILIC-LC-MS based metabolomic analysis further 

fulfilled our exploration on how GTPs could modify gut-microbiota and the dependent 

metabolites in rat model. We found that GTPs caused significant time- and dose-dependent 

alterations of the hydrophilic metabolites and nutrients in the gut of GTPs-treated rats 

(Table 7-1, Table 7-2, Fig. 7-1 A and B). The altered metabolic pathways include TCA 

cycle, bile acid metabolism and the metabolisms of purine, pyrimidine, and various amino 

acids (Table 7-3). In addition, calorific lipids and fats were accumulated in the gut of 

GTPs-treated rats (SI Table 7-1). Meantime, GTPs enriched OTUs that have high gene 

diversities in TCA/urea cycle and the “energy conversion” related pathways, such as 

glycolysis, gluconeogenesis, and fatty acid degradation (Fig. 7-2). The taxonomic groups 

associated with healthy physiological phenotypes were enriched by GTPs, whereas the 

taxonomic groups containing opportunistic pathogens and related with adverse health 

outcome were reduced by GTPs (Fig. 7-3 and SI Table 7-2). To gain an overview on the 

global metabolic changes caused by GTPs, data published in several earlier works were 

integrated (Fig. 7-4 and Table 7-2) and were input into KEGG metabolic mapping analysis 

(Fig. 7-5). The gene ortholog and mapping analyses showed that TCA/urea cycle may play 

a central role in reducing the serum glucose, triglyceride and total cholesterol, which was 

supported by clinical chemistry analysis (Fig. 7-6). These results also indicated that GTPs 

may reduce the absorption of calorific food components by boosting the TCA/urea cycle, 
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glycolysis, ATP synthesis and the metabolisms of amino acids of gut-microbiota (Fig. 7-

7). 

The untargeted metabolomics also revealed that the majority of these fatty acids 

and lipids were accumulated in the gut content (SI Table 7-1). Though specific structures 

of these components could not be elucidated without spikes of high-purity standards, the 

results are consistent with previous metabolomic analysis using gas chromatography–mass 

spectrometry (GC-MS). Our data suggested that green tea polyphenols could suppress the 

absorption of calorific fats and lipids in both human and rodent models. In terms of the 

mechanism, several studies have been done to investigate the mechanism behind the anti-

obesity function of green tea extract (Dulloo et al., 1999; Murase et al., 2005; Xu et al., 

2015). The mechanism was considered to be the catechin-induced precipitation of fats and 

lipids in the micelles of gut content (Ikeda et al., 1992). But to our best knowledge, no such 

study has been conducted with a specific focus on the role of gut-microbiota in the anti-

obesity function of GTPs except for our earlier microbiome analysis conducted in the same 

rat model (Wang et al., 2018). Of note, we observed significant time-/dose- dependent shift 

of the gut-content metabolome caused by GTPs. Of note, two features m/z 416.144 (3.351 

min) and m/z 359.11 (3.367 min) were found to be significantly affected by the interaction 

effect of time and dose of GTPs treatment (Fig. 7-1 C, D and E). The identities of 

metabolites were tentatively characterized with HMDB, showing to be trihydroxy-3',7-

dimethoxyflavanone (m/z, 416.144; retention time, 3.351) and myricanol 5-(6-

galloylglucoside) (m/z, 359.110; retention time, 3.367). They might be generated from the 

gut-microbiota dependent metabolism of GTPs in gut and may be used to predict the 

dietary exposure to GTPs. 
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These genes belong to the mitochondrial respiratory chain complex which functions 

to maintain oxidative phosphorylation, also termed as the respiratory chain. This is not 

surprising since GTPs are well known free radical scavenger (Rehman et al., 2014). 

Oxidative phosphorylation is an important cellular process that uses carbohydrates to create 

adenosine triphosphate (ATP), also termed as mitochondrial biogenesis (Frye et al., 2016). 

The evidences from these two aspects together reflected the stimulation of gut-microbiota 

dependent TCA cycle and ATP synthesis. The intermediate metabolites of TCA/urea cycle 

showed remarkable alterations following GTPs treatment (Table 7-1, Table 7-2 and Fig. 

7-7). Consistently, previous metagenomic analysis found that the gene orthologs (GOs) 

related with mitochondrial TCA cycle and ATP synthesis were significantly increased, 

including AAA-ATPase, NADH-flavin oxidoreductase, fumarate reductase, alpha 

glucosidase, 4Fe-4S ferredoxin iron-sulfur binding domain protein, and molybdopterin 

oxidoreductase (Fig. 7-5). In addition, we also noticed the elevation of metabolisms of 

purine and pyrimidine, which are tightly linked with mitochondrial energy conversion 

(Loffler et al., 2005; Song et al., 2013; Vogels and Van der Drift, 1976). Pyrimidine can 

be synthesized from glutamine and uridine monophosphate (UMP), which were generated 

from ribose-5-P (pentose phosphate pathway, PPP) and aspartic acid (TCA cycle), 

respectively. Purine can be synthesized by glutamine and AMP, which were generated 

from glycine (glycolysis) and ribose-5-P (PPP), respectively. The purine nucleotide 

pathway is a metabolic process in which fumaric acid is generated from aspartic acid in 

order to provide the fumaric acid consumed in TCA cycle (Song et al., 2013). The 

catabolism of pyrimidine could provide acetyl-CoA and succinyl-CoA to TCA cycle 

(Vogels and Van der Drift, 1976). There it seems the boosted TCA/urea cycle further 
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elevated pyrimidine and purine metabolisms by consuming the intermediates generated by 

these two pathways. More specific molecular evidences in terms of how GTPs affect 

mitochondrial TCA/urea cycle is not known in this study. To our knowledge, the specific 

mechanisms are complex and have a myriad of factors involved, such as SIRT-1, PGC-1 

a, Bak/Bax and MPTP etc. (Sandoval-Acuna et al., 2014). Considering that gut-microbiota 

is a highly complex mixture of different microbial strains, more detailed mechanism could 

be very difficult to elucidate. 

Two sulfate-reducing OTUs, (q) Desulfovibrionaceae, (t) Dehalobacteriaceae and 

(r) Peptococcaceae exhibited positive correlations with (p) Ruminococcaceae (Fig. 7-2 A 

and C). Evidences have shown a negative correlation between high fat diets with 

Ruminococcus and Oscillospira (family Rumminococcaceae), and Dehalobacterium 

(family Dehalobacteriaceae), Butyribrio and R. gnavus (family Lachnospiraceae), of 

which all belong to Clostridiales order, phylum Firmicutes (O'Connor et al., 2014). The 

elevation of the above strains may be resulted by the precipitation of fats and lipids in gut 

following physical binding of catechins. It is well known that (p) Ruminococcaceae and (s) 

Lachnospiraceae are associated with healthy gut status and lean phenotype (Wong et al., 

2006). On the other hand, the sulfur metabolism of gut-microbiota has been linked with the 

anti-oxidative capacity and detoxification of xenobiotics (Carbonero et al., 2012). Of note, 

two decreased OTUs (d) Peptostreptococcaceae (over-represented in the guts of colorectal 

cancer patients) and (f) Prevotellaceae (opportunistic pathogen) were negatively correlated 

with the strains discussed above (Fig. 7-2 D). (g) Bifidobacteriaceae was also inversely 

correlated yet its role is controversial in different publications (Million et al., 2013), for 

which reason it will not be discussed here. As shown in Figure 7-2 B, two clusters exist 
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among the decreased OTUs: cluster 1, (n) Alcaligenaceae (opportunistic pathogen), (b) 

Rikenellaceae (high fat diet), (f) Prevotellaceae, (opportunistic pathogen), and (g) 

Bifidobacteriaceae; cluster 2, (d) Peptostreptococcaceae (colorectal cancer related), (e) 

Verrucomicrobiaceae. More specific reasons for such clustering keep unknown in the 

current study and need to be investigated in future work.  

As mentioned in the results part above, certain correlations among the altered OTUs 

were discovered, from which we gained interesting findings (Fig. 7-3). The reduction of 

opportunistic pathogens may be a result of the competition of carbon source with the 

beneficial strains, since (s) Lachnospiraceae, (u) Bacteroidaceae and (v) 

Porphyromonadaceae were all highly active in energy conversion (SI Table 7-2 and 3). 

The other two links may relate to sulfur-reducing reactions because both (r) 

Desulfovibrionaceae and (q) Peptococcaceae are active sulfur-reducing OTUs. In the 

family of (r) Desulfovibrionaceae, members of the genera Desulfovibrio, Desulfobaculum, 

and Desulfocurvus are able to utilize sulfate as electron acceptor which is reduced to sulfide, 

most species can also use sulfite and thiosulfate. Similarly, many genera in (q) 

Peptococcaceae, such as Desulfitibacter, Desulfitispora and Desulfurispora could use 

sulfide and sulfite as electron acceptors (Kuever, 2014). In addition, (p) Ruminococcaceae, 

(u) Bacteroidaceae and (s) Lachnospiraceae highly contributed to the global energy 

metabolism, including TCA cycle, ATP synthesis, amino acid synthesis, 

glycolysis/gluconeogenesis and fatty acids metabolism. The members of these families 

have been reported as beneficial bacteria in gut that are associated with a wide range of 

positive health outcomes (Montel et al., 2014; Thushara et al., 2016; Walter et al., 2013). 

By contrast, although (w) RF32. unclassied and (v) Porphyromonadaceae were 
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significantly elevated in the 1.5% GTPs group at 6-month, they have bare contribution to 

“energy conversion” pathways. Significant reductions of cholic acid, deoxycholic acid and 

cholesterol were found in previous HPLC-profiling analysis. In terms of the metabolizer 

of bile acids, Clostridiales Lachnospiraceae, C. Ruminococcaceae and C. Blautia have 

been found to carry with highly active 7α-dehydroxylating activities (Chen et al., 2011; 

Kakiyama et al., 2013b; Liu et al., 2004).  

Our previous analysis showed that GTPs enriched C. Lachnospiraceae and C. 

Ruminococcaceae and significantly reduced cholic acid level in the gut of rats (Wang et 

al., 2018). Studies have uncovered that the derivatization and metabolism of bile acids by 

gut-microbiota is a crucial factor in deciding the physiological health statuses of host 

gastrointestinal (GI) tract and liver (Louis et al., 2014; Ma et al., 2018; O'Connor et al., 

2014; Wolf et al., 2014). Also, one recent mice study has proven that, regardless of specific 

phylogenetic composition, a reduced fecal bile acid level, induced by an elevated level of 

bile salt hydrolase (BSH) of gut-microbiota, can modulate host lipid metabolism, 

cholesterol metabolism and eventually lead to weight loss by regulating related key genes 

in liver and intestine (Joyce et al., 2014). BSH has been found in many probiotic genera 

like Lactobacillus, Bifidobacterium, Enterococcus, Clostridium and Bacteroides spp., and 

is rarely seen in pathogen or opportunistic pathogens (Begley et al., 2006). Thus, the 

dynamics of gut-microbiota community structure could affect the metabolism of bile acid 

and in turn exert significant influence on liver and gut. Indeed, studies have clearly 

demonstrated the association between the pathogenesis/carcinogenesis of liver-gut axis and 

the gut-microbiota dependent bile acid metabolism, such as nonalcoholic steatohepatitis 

(Wolf et al., 2014), liver cancer (Ma et al., 2018), colorectal cancer (Louis et al., 2014), 
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cirrhosis (Kakiyama et al., 2013a), and inflammation bowl disease (Duboc et al., 2013) etc. 

From a view of systematic biology, the metabolic status of gut-microbiota also participates 

into the global immune system by affecting gut autoimmune lymph tissue (GALT) (Li et 

al., 2018). Taken the above information into consideration, the modulation of bile acid by 

C. Lachnospiraceae and C. Ruminococcaceae may lead to a healthy intestinal environment 

and enhance the epithelial absorption of nutrients. The Lachnospiraceae and 

Ruminococcaceae are two of the most abundant families in the mammalian gut 

environment and have been positively associated with gut health. The two families share a 

common role as active plant degraders (Biddle et al., 2013). This might be the reason that 

they were largely enriched following oral administration of GTPs. 

As already presented in the results part, significant alterations were found for the 

metabolites between TCA and urea cycles (Fig. 7-7). The two pathways are associated with 

purine metabolism, pyrimidine metabolism, glycolysis, gluconeogenesis, as well as the 

metabolisms of diverse amino acids. It is well-known that gut-microbiota plays a pivotal 

role in regulating host energy balance—not only the host environment contributes to the 

composition of gut microbiota, but the microbiota in turn influence the digestive efficiency 

and energy homeostasis of host (Cani and Delzenne, 2009a). Dysfunctional energy 

homeostasis of gut-microbiota can result in obesity and is related with diabetes (Baothman 

et al., 2016; Meijnikman et al., 2017). In addition to energy homeostasis, TCA cycle of 

gut-microbiota has been reportedly linked with host redox homeostasis, oxidative stress, 

and the latter is also connected with lipid metabolism (Cani and Delzenne, 2009b; Holmes 

et al., 2012). GTPs boosted TCA/urea cycle which further connected with TCA/urea cycle, 

carbohydrate metabolism, nucleotide metabolism, energy metabolism, and the 
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metabolisms of amino acids (Fig. 7-4). The metabolic changes of gut-microbiota are 

consistent with clinical chemistry data (Fig. 7-6), which demonstrated reductions of serum 

glucose, triglycerides, total cholesterol, and the increase of blood urea nitrogen. Gut-

microbiota dependent urea metabolism has been noticed for its correlation with host urea 

balance (Davila et al., 2013; Shen et al., 2015b), but to our best knowledge it has not been 

mechanistically linked with GTPs. Considering the results of metabolomic analysis, 

metagenomic analysis and clinical chemistry, we believe that gut-microbiota may be an 

important factor involved with the elevation of serum urea following green tea 

administration in rats.  

To summarize, data from metabolomics, metagenomics and clinical chemistry 

together demonstrated that GTPs could boost TCA/urea cycle of gut-microbiota and 

meantime enrich Ruminococcaceae, Bacteroidaceae and Lachnospiraceae. Besides, the 

strains featured for sulfide-reducing activities were also enriched, including (q) 

Desulfovibrionaceae, and (r) Peptococcaceae. The adjustment of gut-microbiome co-

occurred with the GTPs-induced positive modifications of the metabolisms of bile 

constituents, carbohydrates, fats, lipids and amino acids. Our results represent a 

comprehensive picture of the changes of gut-microbiota induced by GTPs, suggesting that 

gut-microbiota dependent mitochondrial TCA/urea cycle is a key factor for the health-

promoting function of GTPs. However, more detailed information and mechanisms for the 

underlying changes of mitochondrial metabolism remain obscure and need to be explored 

in future in order to improve clinical medical practice of GTPs.  
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TABLES 

Table 7-1. Signature metabolites significantly affected by time/dose effects of GTPs 

treatment. 

AS

CA 
m/z RT Imputative ID 

E/

C 

p-

valu

e 

Lever

age 
SPE 

Metabolic 

pathway 

Tim

e  

358.1

00 

4.47

2 

Dihydroorotic 

acid 

0.

83 

6.29

E-

02 

2.83E

-03 

9.43E-

17 

Pyrimidine 

metabolism 

Tim

e  

253.0

04 

11.2

92 

2-

Hydroxyethanes

ulfonate 

0.

85 

1.04

E-

01 

5.20E

-03 

1.17E-

16 

Taurine 

metabolite 

Tim

e  

459.0

18 

11.1

69 

Diadenosine 

pentaphosphate 

0.

90 

1.10

E-

02 

4.40E

-03 

1.63E-

16 

Glycerophosp

holipid 

metabolism 

Tim

e  

332.1

56 

10.7

28 

Argininosuccinic 

acid 

0.

90 

6.71

E-

03 

3.35E

-03 

1.30E-

16 
Urea cycle 

Tim

e  

393.0

18 

12.8

83 
Inosinic acid 

0.

93 

1.90

E-

02 

4.26E

-03 

1.30E-

17 

Purine 

synthesis 

Tim

e  

405.9

76 

12.5

33 

Adenosine 3',5'-

cyclic phosphate 

0.

96 

1.68

E-

02 

2.68E

-03 

3.25E-

17 

Purine 

metabolism 

Tim

e  

212.9

94 

11.2

53 

3-Hydroxy-4-

aminopyridine 

sulfate 

0.

97 

4.33

E-

02 

3.82E

-03 

8.46E-

17 

Pyridine 

amines 

metabolism 

Tim

e  

252.9

60 

16.5

63 
Dihydrouracil 

1.

14 

1.62

E-

03 

2.08E

-03 

1.45E-

16 
Urea cycle 

Tim

e  

322.0

87 

16.0

68 

1H-Indole-2,3-

dione 

1.

27 

1.01

E-

03 

1.91E

-03 

1.63E-

18 

Indole 

derivative 

Dos

e  

162.0

29 

14.8

24 
Indole 

1.

41 

3.48

E-

05 

1.48E

-03 

8.04E

+11 

Tryptophan 

metabolism 

Dos

e  

175.0

13 

13.7

57 

Glyceric acid 

1,3-biphosphate 

1.

50 

2.89

E-

04 

1.40E

-03 

2.88E

+13 
Glycolysis 

Dos

e  

592.4

43 

3.34

2 

Aspidospermidin

e 

1.

56 

1.05

E-

05 

1.49E

-03 

1.73E

+12 

Tryptophan 

metabolism 

Dos

e  

290.9

55 

3.28

6 

Inositol 

1,3,4,5,6-

1.

75 

6.52

E-

07 

2.27E

-03 

6.73E

+13 

Cell 

replication 
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pentakisphosphat

e 

Dos

e  

404.0

48 

3.39

7 

N-(1-Deoxy-1-

fructosyl) 

phenylalanine 

1.

99 

2.94

E-

06 

2.19E

-03 

1.87E

+14 

Phenylalanine 

metabolism 

Abbreviation: RT, Retention Time; E/C, Ratio of peak intensity (Extracted Ion 

Chromatogram) in 1.5% GTPs-treated group versus control group at 6-month; p-values 

were calculated from Welch T-test, two-tailed. Leverage and SPE score was calculated 

using analysis of variance-simultaneous component analysis (ASCA) according to Neuda 

et al. (Nueda et al., 2007). Leverage was used to evaluate the importance of the metabolite 

to the model, and SPE was a test of the fitness of the model for the particular metabolite. 

Variables with low SPE and higher leverage usually have more significant contribution to 

the model and were the compounds showing remarkable response to the treatment. Full list 

is available in the SI Table 7-1. 
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Table 7-2. TCA/Urea cycle targeted metabolomic analysis performed with SRM. 

Transition* CE RT Metabolite E/C p-value Primary pathway 

Elevated Metabolites 

112→95 15 12.52 Cytosine 6.01 0.0039 Pyrimidine metabolism 

136→90 15 17.65 Homocysteine 4.53 0.0013 Amino acid 

113→70 35 18.25 Uracil 2.77 0.0064 Pyrimidine metabolism 

159→99 15 15.92 Allantoin 2.68 0.0244 Uric acid metabolite 

175→132 15 19.5 Ureidosuccinate 2.57 0.0024 Pyrimidine metabolism 

133→115 15 19.54 Malic acid 2.17 0.0077 Urea cycle 

150→133 15 18.2 Methionine 1.99 0.0172 Amino acid 

174→131 15 15.24 Citrulline 1.86 0.0098 Urea cycle 

106→60 15 18.84 Serine 1.73 0.0684 Amino acid 

132→86 15 15.16 (Iso)leucine 1.65 0.0648 Amino acid 

173→93 15 18.13 Shikimic acid 1.62 0.0216 Tryptophan pathway 

116→70 15 16.77 Proline 1.62 0.0393 Amino acid 

124→80 15 11.33 Taurine 1.56 0.0262 Tryptophan pathway 

120→44 35 17.44 Homoserine 1.54 0.1060 Amino acid 

118→55 15 18.75 Valine 1.24 0.2855 Amino acid 

115→71 15 18.8 Fumaric acid 1.19 0.0036 Urea/TCA cycle 

142→95 15 18.65 Histidinol 1.12 0.3586 Amino acid 

Decreased Metabolites 

104→60 15 18.62 Choline 0.98 0.4676 Vitamin-like nutrient 

147→84 15 19.47 Lysine 0.76 0.2769 Amino acid 

122→78 15 16.58 Nicotinic acid 0.76 0.1782 Vitamin 

76→30 15 18.9 Glycine 0.74 0.3136 Amino acid 

345→122 25 14.85 ThPP 0.70 0.1086 Vitamin 

117→73 15 16.31 Succinic acid 0.40 0.0332 TCA cycle 

131→72 15 18.72 Agmatine 0.35 0.0181 Arginine metabolism 

*Transition, the specific pair of m/z values associated to the precursor and fragment 

ions selected is referred to as a "transition" and can be written as parent m/z → fragment 

m/z. Abbreviation: CE, Collision Energy (eV); RT, Retention Time; E/C, ratio of peak 

intensities (Extracted Ion Chromatogram) of a metabolite measured in exposure group 

versus control; ThPP, Thiamine pyrophosphate. p-values were calculated from Welch 

T-test, two-tailed. 
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Table 7-3. Pathway impact analysis based on the metabolites showing 

remarkable change in targeted and untargeted metabolomic analysis. 

Pathway Hit/Total  p value Impact 

Arginine and proline metabolism 4/44 0.004 0.070 

Alanine, aspartate and glutamate metabolism 4/24 0.022 0.025 

Citrate cycle (TCA cycle) 3/20 0.007 0.106 

Cysteine and methionine metabolism 3/28 0.009 0.257 

Valine, leucine and isoleucine degradation 3/38 0.044 0.036 

Glycine, serine and threonine metabolism 3/32 0.119 0.535 

Purine metabolism 2/68 0.003 0.119 

Butanoate metabolism 2/20 0.004 <0.001 

Valine, leucine and isoleucine biosynthesis 2/11 0.107 0.667 

Pantothenate and CoA biosynthesis 2/15 0.149 <0.001 

Pyrimidine metabolism 2/41 0.330 0.065 

Primary bile acid biosynthesis 2/46 0.339 0.060 

Methane metabolism 2/9 0.516 0.400 

Cyanoamino acid metabolism 2/6 0.516 <0.001 
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Figure 7-1. Leverage/SPE scatter plots to screen the important metabolites that 

demonstrated significant responses to (A) time-, (B) dose-, and (C) interaction effects of 

GTPs administration. The leverage and squared prediction error (SPE) scores were 

calculated via ASCA model using MetaboAnalyst. X-axis indicates modeling leverage; Y-

axis indicates SPE. Two feature ions (D and E) showed remarkable response to the 

interaction effect of treatment time and dose.  
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Figure 7-2. Correlation analysis of elevated and decreased operational taxonomic units 

(OTUs) of gut-microbiota. (A) Overall correlation of 23 family-level OTUs. (B) 

Correlation between decreased OTUs. (C) Correlation between elevated OTUs. (D) 

Correlation between elevated OTUs and decreased OTUs. Cutoff value for Pearson 

correlation coefficient is 0.5. Specific values are available in the SI Table 7-2. 
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Figure 7-3. Relative contribution to gut-microbiota dependent metabolism by specific 

OTUs. Inside phylogenetic tree was constructed with the 23 family-level OTUs which 

showed significant alteration following GTPs administration. The color clades which cover 

the phylogenetic tree indicate four major phyla of gut-microbiota—Firmicutes, 

Bacteroidetes, Actinobacteria, and Proteobacteria. The rainbow color-coded circular bars 

indicate the relative contribution of gut-microbiota family group to the interested metabolic 

pathways. The outside grey histogram indicates the ratio of family relative abundance 

measured in 1.5% GTPs treated group versus control at 6-month. Specific values are 

available in the SI Table 7-3. 
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Figure 7-4. Metabolic mapping of metabolomic and metagenomic data on KEGG map of 

gut-microbiota biosynthesis pathways. Fold changes of a total of 72 metabolites and 1891 

GO at 6-month were input into iPath online module. 
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Figure 7-5. Relative abundances of TCA/Urea cycle related Gene Orthologs (GOs) 

revealed by metagenomic analysis that showed significant alteration in previous analysis. 

(A) AAA-ATPase (ENOG4105F42); (B) NADH-flavin oxidoreductase (ENOG4105CCY); 

(C) Fumarate reductase (ENOG4105DAB); (D) Alpha glucosidase (ENOG4105CGS); (E) 

4Fe-4S ferredoxin, iron-sulfur binding domain protein (ENOG4105D3S); (F) 

Molybdopterin oxidoreductase (ENOG4108J2R). Specific data are available in SI Table 

7-5. Data were retrieved from previous metagenomic analysis (Wang et al., 2018). 
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Figure 7-6. Serum chemistry analysis of the rats treated with GTPs. (A) Blood 

Triglycerides; (B) Blood Glucose; (C) Blood Total Cholesterol; (D) Blood Urea Nitrogen. 

Specific data are available in SI Table 6. Data were retrieved from previous clinical 

chemistry analysis (Shen et al., 2017). 
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Figure 7-7. Summary of impact of GTPs on the mitochondrial TCA/urea cycle and 

associated metabolic pathways of gut-microbiota. 
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SI Table 7-1. Summary of untargeted metabolomic analysis. 
Depend

ency 
m/z RT Imputative Identity Fold ANOVA p 

Time  1008.663 14.209 

(23S,24S)-17,23-Epoxy-24,29-

dihydroxy-27-norlanost-8-ene-3,15-

dione 

0.94 1.0169E-02 

Time  1042.657 14.294 1-Stearoylglycerophosphoglycerol 0.87 8.9828E-02 

Dose  1042.846 14.192 
TG(20:4(5Z,8Z,11Z,14Z)/20:0/20:4(5

Z,8Z,11Z,14Z)) 
1.69 2.7023E-05 

Time  1076.777 14.295 Theasapogenol A 1.10 4.2667E-03 

Time  1110.664 14.234 LysoPC(20:5(5Z,8Z,11Z,14Z,17Z))  0.91 4.3259E-02 

Time  1178.656 14.256 

(3b,6a,12b,17a,20S)-Dammar-24-ene-

3,6,12,17,20-pentol 20-[glucosyl-

(1->2)-[rhamnosyl-(1->6)]-glucoside] 

6-xyloside 

0.98 7.4035E-03 

Dose  160.010 14.689 3-keto-2-Methylbutyrate 1.78 7.5206E-06 

Time  160.989 13.270 2-(Dimethylamino)acetonitrile 1.04 1.1629E-02 

Time  165.005 2.527 Sanguisorbic acid dilactone 0.89 1.5222E-03 

Dose  167.941 17.240 
3-Chloro-4-(dichloromethylene)-2,5-

pyrrolidinedione 
1.70 1.1862E-04 

Time  170.053 14.984 
1,3-Diacetoxy-4,6,12-tetradecatriene-

8,10-diyne 
0.80 5.5229E-03 

Time  171.116 15.017 Cardanolmonoene 1.16 5.1708E-05 

Time  170.985 16.331 Acetylthiophene 0.96 2.1943E-03 

Time  176.967 11.624 (E)-S-1-Propenyl thiosulfate 0.72 4.6205E-01 

Time  177.952 10.787 4,5-Dihydro-2-methylthiazole 0.70 4.3655E-01 

Time  188.043 15.033 3-Hydroxymugineic acid 0.92 1.8986E-04 

Time  188.025 16.259 

5,6-dihydroxy-2-(4-hydroxy-3-

methoxyphenyl)-7-methoxy-4H-

chromen-4-one 

1.18 3.6763E-04 

Time  199.922 10.776 DG(15:0/16:1(9Z)/0:0) 0.70 4.9968E-01 

Time  202.047 14.931 Hydroxybenzoic acid 1.04 1.3375E-04 

Dose  213.939 15.861 DG(16:1(9Z)/18:0/0:0) 1.43 1.0876E-04 

Time  216.034 14.909 Phenol sulphate 0.78 2.4755E-02 

Time  238.961 15.891 Quindoxin 1.37 1.6535E-04 

Time  253.004 11.292 2-Hydroxyethanesulfonate 0.85 1.0378E-01 

Dose  302.126 3.319 2-Ethyldihydro-3(2H)-thiophenone 1.39 1.6040E-04 

Time  304.134 10.780 Benzo[a]pyrene-7,8-diol 0.83 7.1968E-02 

Time  307.947 13.458 
TG(20:3(5Z,8Z,11Z)/o-

18:0/20:3(5Z,8Z,11Z)) 
1.28 2.7411E-04 

Time  308.841 14.219 
PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:

3(8Z,11Z,14Z)) 
1.03 2.8312E-02 

Time  320.807 14.874 DG(14:1(9Z)/22:0/0:0) 0.94 1.7019E-03 

Time  351.038 15.878 
5-(4-Chloro-3-hydroxy-1-butynyl)-

2,2'-bithiophene 
1.53 5.5431E-04 

Dose  388.062 3.394 
ent-Epicatechin-(4alpha->8)-ent-

epicatechin 3-gallate 
1.89 1.0446E-05 

Time  393.018 12.883 Inosinic acid 0.93 1.8999E-02 

Interact

ion 
416.144 3.351 unknown 1.28 2.3013E-04 
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Time  437.047 13.337 Lentinic acid 1.08 8.9200E-04 

Time  461.151 13.256 

Pelargonidin 3-O-[b-D-

Glucopyranosyl-(1->2)-[4-

hydroxycinnamoyl-(->6)]-b-D-

glucopyranoside](E-) 5-O-b-D-

glucopyranoside 

1.11 2.3147E-05 

Time  477.161 13.805 Dulxanthone E 1.03 2.3339E-05 

Time  478.156 13.807 
a-L-Arabinofuranosyl-(1->3)-b-D-

xylopyranosyl-(1->4)-D-xylose 
1.13 2.9436E-05 

Dose  498.951 13.076 Ganglioside GD3 (d18:0/18:1(11Z)) 1.43 1.3063E-05 

Time  498.651 14.437 Cardiolipin 0.95 4.6810E-01 

Dose  512.227 12.977 Histidinyl-Serine 1.56 6.6540E-05 

Dose  542.330 3.255 LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)) 1.52 2.8734E-04 

Time  546.241 13.236 
Dihydrozeatin-9-N-glucoside-O-

glucoside 
1.20 9.2032E-05 

Dose  556.350 3.256 3-Methylthiohexyl hexanoate 1.59 5.5700E-04 

Dose  557.434 3.248 

TG(22:4(7Z,10Z,13Z,16Z)/22:6(4Z,7

Z,10Z,13Z,16Z,19Z)/22:4(7Z,10Z,13

Z,16Z)) 

1.60 9.2456E-07 

Time  561.923 13.376 

TG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20

:4(8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,

13Z,16Z,19Z))  

1.01 2.2105E-03 

Dose  563.149 3.168 Lupiwighteone hydrate 7-glucoside 1.61 7.4740E-04 

Time  567.645 14.553 

Cyanidin 3-[6-(4-

glucosylferuloyl)sophoroside] 5-

glucoside 

1.08 1.7846E-03 

Dose  570.388 3.247 Glabric acid 1.69 6.5743E-08 

Dose  571.384 3.266 LysoPC(P-18:0) 1.45 7.7586E-07 

Dose  584.393 3.236 Cyclopassifloic acid B 1.70 5.4172E-10 

Dose  585.367 3.243 LysoPC(20:4(5Z,8Z,11Z,14Z))  1.54 2.7974E-06 

Time  588.847 13.495 

28-Glucosyl-30-methyl-3b,23-

dihydroxy-12-oleanene-28,30-diate 3-

[glucosyl-(1->3)-xylosyl-(1->2)-

glucoside] 

0.82 1.1724E-01 

Time  593.155 12.333 8,8'-Methylenebiscatechin 1.03 3.2210E-03 

Time  594.162 12.311 
Epicatechin-(2beta->7,4beta->6)-

catechin 
1.12 2.2456E-03 

Time  597.166 12.380 
7,8-Dihydrovomifoliol 9-[apiosyl-

(1->6)-glucoside] 
1.03 2.3188E-02 

Time  598.158 12.364 
Dihydro-4-hydroxy-5-S-glutathionyl-

benzo[a]pyrene 
1.13 1.5225E-03 

Time  612.140 12.361 3,5-Digalloylepicatechin 0.83 7.7992E-02 

Time  618.145 12.356 Kaempferol 7-(6''-galloylglucoside) 1.15 8.6142E-03 

Dose  619.320 3.350 

(3b,16a)-Dihydroxy-12-oleanen-28-

oic acid 3-[glucosyl-(1->2)-

arabinoside] 28-[rhamnosyl-(1->4)-

glucosyl-(1->4)-glucosyl] ester 

1.44 1.0303E-05 

Time  625.156 12.295 
4''-Methyl-6''-(3,4-dihydroxy-E-

cinnamoyl) isoorientin 
0.96 5.2612E-02 

Time  626.150 12.310 Epifisetinidol-(4beta->8)-catechin 1.00 2.5905E-03 
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Time  639.080 12.301 3,5-Digalloylepicatechin 1.08 2.6089E-03 

Time  648.271 12.242 Histidinyl-Histidine 0.92 1.3411E-02 

Dose  695.167 3.313 
7-Hydroxy-6-methyl-8-ribityl 

lumazine 
1.60 4.3456E-07 

Dose  719.963 13.818 Ganglioside GM2 (d18:1/16:0) 1.43 6.6945E-10 

Dose  761.556 14.004 PC(14:0/14:0) 1.56 4.3179E-08 

Time  798.446 14.300 
PE(18:3(6Z,9Z,12Z)/20:5(5Z,8Z,11Z,

14Z,17Z)) 
1.10 6.4203E-04 

Time  804.665 14.332 PE(22:0/22:5(4Z,7Z,10Z,13Z,16Z)) 1.02 2.4615E-02 

Dose  806.566 13.842 PG(16:0/16:0) 1.72 1.8574E-07 

Dose  809.566 13.887 CE(MonoMe(13,5)) 1.71 4.9579E-08 

Dose  810.564 13.723 
PC(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19

Z)) 
1.70 6.1595E-07 

Dose  811.565 13.741 PE(15:0/20:3(5Z,8Z,11Z)) 1.61 2.3538E-07 

Dose  833.563 13.680 
PC(20:5(5Z,8Z,11Z,14Z,17Z)/14:1(9

Z)) 
1.64 1.8502E-09 

Dose  885.453 12.181 

(2b,3b)-Dihydroxy-30-nor-12,20(29)-

oleanadiene-28-glucopyranosyloxy-

23-oic acid 3-glucuronide 

1.52 6.4116E-05 

Dose  906.821 14.307 TG(15:0/24:1(15Z)/15:0) 1.91 1.3524E-07 

Time  974.661 14.219 Cholesterol sulfate 0.91 1.0154E-01 

Dose  974.828 14.333 
TG(20:3(5Z,8Z,11Z)/18:1(11Z)/20:3(

5Z,8Z,11Z)) 
1.73 4.4468E-06 

Time  358.100 4.472 Dihydroorotic acid 0.83 6.2918E-02 

Time  459.018 11.169 Diadenosine pentaphosphate 0.90 1.1016E-02 

Time  332.156 10.728 Argininosuccinic acid 0.90 6.7146E-03 

Time  405.976 12.533 Adenosine 2',3'-cyclic phosphate 0.96 1.6762E-02 

Time  212.994 11.253 3-Hydroxy-4-aminopyridine sulfate 0.97 4.3328E-02 

Time  252.960 16.563 Ureidosuccinic acid 1.14 1.6187E-03 

Interact

ion 
359.110 3.367 unknown 1.14 1.0624E-03 

Time  322.087 16.068 1H-Indole-2,3-dione 1.27 1.0145E-03 

Dose  162.029 14.824 Indole 1.41 3.4829E-05 

Dose  160.981 14.884 Fumaric acid 1.48 2.6364E-05 

Dose  175.013 13.757 Glyceric acid 1,3-biphosphate 1.50 2.8916E-04 

Dose  696.234 3.303 
Glycylalanylprolylmethionylphenylal

anylvalinamide 
1.52 9.9884E-06 

Dose  592.443 3.342 Aspidospermidine 1.56 1.0538E-05 

Dose  290.955 3.286 Inositol 1,3,4,5,6-pentakisphosphate 1.75 6.5157E-07 

Dose  404.048 3.397 
N-(1-Deoxy-1-

fructosyl)phenylalanine 
1.99 2.9430E-06 
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SI Table 7-2. Relative abundance of gut-microbiome family-level taxa in 1.5% GTPs-

treated groups at 6-month. 

Phylogenetic assignment 
1.5% GTPs-

treatment 

Fold 

change 

(a) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidal

es|f__unclassied 

ND ND 

(b) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidal

es|f__Rikenellaceae 

ND ND 

(c) 

k__Bacteria|p__Tenericutes|c__Mollicutes|o__RF39|f__uncl

assied 

0.00038 0.015 

(d) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_Peptostreptococcaceae 

0.00025 0.048 

(e) 

k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__

Verrucomicrobiales|f__Verrucomicrobiaceae 

0.00259 0.053 

(f) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidal

es|f__Prevotellaceae 

0.00112 0.154 

(g) 

k__Bacteria|p__Actinobacteria|c__Actinobacteria|o__Bifido

bacteriales|f__Bifidobacteriaceae 

0.00311 0.169 

(h) 

k__Bacteria|p__Firmicutes|c__Erysipelotrichia|o__Erysipelo

trichales|f__Erysipelotrichaceae 

0.04216 0.274 

(i) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_Christensenellaceae 

0.00030 0.316 

(j) 

k__Bacteria|p__Actinobacteria|c__Coriobacteriia|o__Coriob

acteriales|f__Coriobacteriaceae 

0.00560 0.390 

(k) 

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__

Lactobacillaceae 

0.00271 0.515 

(l) 

k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__

Streptococcaceae 

0.00379 0.617 

(m) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidal

es|f__unclassied 

0.05313 0.682 

(n) 

k__Bacteria|p__Proteobacteria|c__Betaproteobacteria|o__Bu

rkholderiales|f__Alcaligenaceae 

0.00421 0.701 



451 
 

(o) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_unclassied 

0.20846 0.853 

(p) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_Ruminococcaceae* 

0.32593 1.176 

(q) 

k__Bacteria|p__Proteobacteria|c__Deltaproteobacteria|o__D

esulfovibrionales|f__Desulfovibrionaceae 

0.00767 1.601 

(r) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_Peptococcaceae 

0.00666 1.736 

(s) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_Lachnospiraceae* 

0.06401 1.963 

(t) 

k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f_

_Dehalobacteriaceae 

0.00103 2.302 

(u) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidal

es|f__Bacteroidaceae* 

0.25901 4.470 

(v) 

k__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidal

es|f__Porphyromonadaceae 

0.00525 5.871 

(w) 

k__Bacteria|p__Proteobacteria|c__Alphaproteobacteria|o__R

F32|f__unclassied 

0.00150 appear 

Abbreviations: ND, not detected. Taxonomic groups with asterisk (p, s, u) were previously 

found to be reduced by AFB1 but enriched in 1.5% GTPs-treated group. 

 

 

  



452 
 

SI Table 7-3. Family-level OTU average gene diversities in the metabolic pathways 

stimulated by GTPs.  

OT

U 

Relative 

intensit

y* 

Biosynthe

sis of 

amino 

acids 

TCA 

cycle 

Fatty 

acid 

biosynt

hesis 

Fatty acid 

degradati

on 

Glycolysis 

and 

Gluconeogene

sis 

ATP 

synthes

is 

a 0.00025 117.39 20.89 22.00 5.11 37.67 22.11 

b 0.00025 85.50 14.00 16.50 2.50 30.00 14.50 

c 0.00038 19.16 3.93 0.46 0.66 21.13 4.26 

d 0.00025 117.90 18.62 14.19 8.62 77.71 11.29 

e 0.00259 80.50 12.00 7.83 1.33 20.33 19.33 

f 0.00112 64.70 15.50 10.30 2.80 27.40 18.70 

g 0.00311 24.45 104.67 7.79 8.48 12.67 6.98 

h 0.04216 78.14 6.71 7.43 3.71 67.86 7.71 

i 0.00030 113.00 26.00 17.00 19.00 10.00 7.00 

j 0.00560 92.88 13.00 6.88 3.63 34.88 15.50 

k 0.00271 82.01 7.15 15.02 3.37 52.38 11.02 

l 0.00379 85.50 14.00 16.50 2.50 30.00 14.50 

m 0.05313 60.32 13.92 11.40 3.96 23.56 12.36 

n 0.00421 158.56 27.37 31.91 36.14 40.61 42.30 

o 0.20846 91.82 11.18 10.27 3.68 26.05 7.55 

p 0.32593 110.00 12.14 12.05 3.82 31.05 8.95 

q 0.00767 118.11 23.16 16.32 4.95 44.11 22.11 

r 0.00666 134.50 23.45 16.95 16.68 39.41 30.86 

s 0.06401 133.43 10.61 12.17 5.65 38.78 9.52 

t 0.00103 121.00 25.00 15.00 9.00 42.00 29.00 

u 0.25901 118.24 21.59 22.59 5.12 37.47 22.71 

v 0.00525 62.57 19.71 11.43 4.00 28.57 9.00 

w 0.00150 109.25 21.75 23.75 18.50 35.25 31.00 

* Relative intensity at 6-month. 

 

 



SI Table 7-4. Relative contribution of family level OTUs to the gut-microbiota dependent 

metabolic pathways (1.5% GTPs-treated group, 6-month). 

Taxa 

Relative contribution to metabolic pathways 

Biosynthesis of 

amino acids 

Citrate 

cycle (TCA 

cycle) 

ATP 

Synthesis 

Fatty acid 

biosynthesis 

Fatty acid 

degradation 
Glycolysis 

Phylogenetic families reduced by 1.5% GTPs treatment at 6-month 

a 8.32 9.50 9.56 9.56 9.80 9.46 

b 6.06 6.36 6.27 7.17 4.79 7.54 

c 2.05 2.70 2.78 0.30 1.91 8.02 

d 8.36 8.46 4.88 6.17 16.52 19.52 

e 58.23 55.65 85.24 34.72 26.07 52.11 

f 20.29 31.16 35.74 19.79 23.74 30.44 

g 21.23 582.80 36.95 41.45 199.10 38.98 

h 918.81 505.86 552.58 535.34 1179.40 2826.82 

i 9.43 13.91 3.56 8.69 42.85 2.96 

j 145.12 130.23 147.61 65.87 153.34 193.07 

k 61.97 34.65 50.76 69.55 68.80 140.22 

l 90.38 94.88 93.42 106.87 71.44 112.34 

m 893.86 1322.52 1116.39 1035.15 1586.50 1236.85 

n 185.99 205.84 302.43 229.36 1146.09 168.76 

o 5338.87 4167.79 2675.76 3659.07 5784.88 5366.01 

Phylogenetic families elevated by 1.5% GTPs treatment at 6-month 

p* 10000 7075.83 4959.27 6712.47 9388.69 10000 

q 252.58 317.54 288.20 213.86 286.19 334.18 

r 249.71 279.13 349.21 192.83 837.22 259.21 

s 2382.16 1214.46 1035.96 1331.36 2727.09 2452.77 

t 34.64 45.88 50.60 26.31 69.65 42.59 

u* 8542.01 10000 10000 10000 10000 9589.82 

v 91.68 185.15 80.38 102.62 158.45 148.30 

w 45.77 58.42 79.15 60.96 209.52 52.31 

* indicates the families demonstrating highest contribution to the interested metabolic 

pathways at global level. The contribution was estimated by multiplying average gene 

diversity (i.e. gene richness in a specific metabolic pathway) of gut-microbiota family with 

the relative abundances at 6-month (×10-4, percentage of maxima value among all taxa). 
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SI Table 7-5. Energy Conversion related gene orthologs (GO) significantly modified by 

GTPs. 

Gene Orthologs Time 
Control 

0.5% GTPs-

treated 

1.5% GTPs-

treated 

Mean SD Mean SD Mean SD 

AAA-ATPase 
3-month 

1.029E-

03 

2.115E-

04 

1.004E-

03 

1.899E-

04 

1.114E-

03 

2.158E-

04 

6-month 
7.746E-

04 

1.864E-

04 

1.070E-

03 

2.042E-

04 

1.266E-

03 

3.299E-

04 

Fumarate reductase 
3-month 

7.690E-

05 

2.746E-

05 

1.684E-

04 

1.053E-

04 

1.996E-

04 

6.818E-

05 

6-month 
1.346E-

04 

5.292E-

05 

1.319E-

04 

4.531E-

05 

3.695E-

04 

1.233E-

04 

NADH-flavin 

oxidoreductase 

3-month 
2.457E-

04 

2.824E-

05 

3.780E-

04 

7.808E-

05 

4.563E-

04 

9.702E-

05 

6-month 
2.610E-

04 

3.398E-

05 

3.624E-

04 

6.515E-

05 

4.658E-

04 

1.083E-

04 

Alpha glucosidase 
3-month 

4.822E-

04 

1.156E-

04 

4.567E-

04 

9.942E-

05 

5.893E-

04 

1.600E-

04 

6-month 
2.832E-

04 

1.137E-

04 

4.773E-

04 

9.765E-

05 

5.115E-

04 

1.108E-

04 

4Fe-4S ferredoxin, 

iron-sulfur binding 

domain protein  

3-month 
5.079E-

05 

4.461E-

05 

9.176E-

05 

7.306E-

05 

1.169E-

04 

5.871E-

05 

6-month 
4.535E-

05 

2.190E-

05 

9.144E-

05 

4.916E-

05 

2.658E-

04 

1.087E-

04 

Molybdopterin 

oxidoreductase  

3-month 
8.032E-

05 

5.742E-

05 

1.950E-

04 

1.008E-

04 

2.470E-

04 

7.733E-

05 

6-month 
9.189E-

05 

5.223E-

05 

1.982E-

04 

7.913E-

05 

5.127E-

04 

1.847E-

04 
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SI Table 7-6. Clinical chemistry data from reference serum analysis. 

Parameter Time OVX-control  OVX+0.5%GTPs OVX+1.5%GTPs 

CHOL-total  
3-month 103.3ax±4.9 93.9abx±2.5 92.0bx±2.2 

6-month 125.5by*±3.8 138.5ax*±3.0 108.7cz±2.5 

TRIG  
3-month 53.09ax±7.37 47.00abx±3.84 35.38bx±2.35 

6-month 49.25ax±2.48 48.92ax±3.70 37.14bx±1.62 

GLU 
3-month 213.2ax*±18.1 186.5abx±10.3 174.8bx±10.6  

6-month 160.8ax±3.7 149.2ax±6.3 153.4ax±3.2 

BUN  
3-month 15.92bx±0.62 15.85bx±0.88 18.00ax*±0.97 

6-month 16.08bxy±0.81 17.15abxy±0.76 18.50axy*±0.64 

Data are presented as mean ± SEM (mg/dL). BUN, blood urea nitrogen; CHOL, 

cholesterol; GLU, glucose; TRIG, triglycerides. All four parameters did not show 

significant difference between sham control and ovariectomy (OVX) control. 

Within a given column (dose), values that share the same superscript letter (a, b, c, or d) 

are not statistically different from each other among the OVX groups (OVX-control, 

OVX+0.5% GTPs, OVX+1.5% GTPs) without adjustment for multiple comparisons.  

Within a given row (time), values that share the same superscript letter (x, y, or z) are not 

statistically different from each other among the OVX groups (OVX-control, OVX+0.5% 

GTPs, OVX+1.5% GTPs) after adjustment for multiple comparisons.  
 Indicates a difference from the 0-month data of the control treatment at p<0.05.  

* indicates a difference after adjustment 
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CHAPTER 8. SUMMARY 

 

The current dissertation sufficiently investigated the impacts of green tea 

polyphenols (GTPs) and aflatoxin B1 (AFB1) on gut-microbiota in rodent models. The 

studies were conducted in two different rat strains with unrelated doses, different rat 

models and different exposure times, thus the data can hardly be integrated for any 

meaningful analysis. However, the major findings can still be inspiring. Opposite 

modifying effects excerted by GTPs and AFB1 were found in 6 aspects, with each aspect 

covering a number of metabolic pathways: (1) bile constituents, (2) calorific lipids and fats, 

(3) amino acids and derivatives, (4) calorific carbohydrates, (5) beneficial monosaccride 

and (6) short chain fatty acids.  

 

Figure 8-1. Comparing the major changes of gut-microbiota dependent metabolites 

following exposures to GTPs and AFB1.  
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The possible mechanisms were explored by integrating metabolomics data with 

available reference data, such as 16s rRNA survey, metagenomics data, histopathological 

data and clnical chemistry data. And the mechanisms seem to be largely different. The 

treatment of AFB1 induced decrease of a number of beneficial gut-microbiota strains, such 

as lactic acid bacteria. Marked enrichment of Clostridiales spp. and depletion of 

Lactobacillales spp. were discovered following AFB1 treatment. Importantly, 

Lactobacillales streptococcus and Clostridiales roseburia, two SCFA-producing strains, 

were depleted in the feces. Due to the changes of community structure, global metabolism 

of gut-microbiota was disrupted in the AFB1-treated rats. The efficiency of ennergy 

conversion, bile constituent metabolism and long chain fatty acid metabolism were all 

suppressed, which was indicated by the accumulation of bile acid, pyruvic acid and linoleic 

acid in the rat feces. Besides, the metabolism of phenylalanine was perturbed, suggesting 

the impairment of gut-microbiota dependent metabolisms of amino acids. 

The modifying effects of GTPs administration on gut-microbiota are totally 

different. The driving force of the generally boosted gut-microbiota dependent 

metabolisms seem to be the mitochondrial TCA/Urea cycle. This might be initiated by the 

binding between GTPs and known GTPs receptors. The altered metabolism may also be 

involved with the enrichment of Clostridiales ruminococcaceae, C. Lachnospiraceae, 

Bacteroidetes bacteroidaceae, and decreases of various “adverse outcome pathway”-

associated OTUs. The changes of community structure may result in adaptions of 

abundances of functional genes in different pathways. Eventually, calorific carbohydrates, 

lipids and fats were consumed. However, the levels of short chain fatty acids were not 

significantly modified.  
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We consider that the primary limit of current studies is the short of a combinational 

exposure to AFB1 and GTPs under same experimental settings, which may explore whether 

or not GTPs are able to reverse the AFB1-induced impairment of gut-microbiota in rats. 

The secondary limit is that we don’t know whether gut-microbiota may naturally recover 

from the AFB1-induced impairment and how long it needs to recover completely. Besides, 

there are many details that need to be investigated. Could the supplement of any probiotics 

reverse the adverse impacts of AFB1 but strengthen GTPs benefits on gut-microbiota? 

What would the physiological outcomes be? How would the changes of gut-microbiota 

dependent metabolisms affect rodent physiology when the community structure of gut-

microbiota is conditionally controlled? These issues may be investigated in the future. 

 

 

 


