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Abstract

Standard time series models typically assume that the data are continuous. If the available

data consist of counts of observations in a finite number of categories, the usual autoregressive

moving average (ARMA) models cannot be applied to fit the count data. For each time t, the

count vector N(t) = (N1(t), N2(t), ..., Nm(t))′ can be modeled by a multinomial distribution.

The vector time series {N(t)}, t=0,1,2,..., is then a categorical time series. The main goal of

this dissertation is to present new models for {N(t)}, by introducing dependence over time.

The new models in this dissertation include (i) binary models obtained by clipping (or

grouping) Gaussian processes, (ii) observation driven state space models both for binary and

multi-category models, and (iii) models for dependent contingency tables. These models are

applied to real data sets to illustrate the models and methods developed.

Index words: Binary data, Categorical time series, Partial likelihood, Maximum
likelihood, State space models, Dependent contingency tables
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Chapter 1

Introduction

This dissertation presents results on time series models for categorical data and related

inference as well as prediction problems. A sequence of random vector variables {Yt} =

(Yt,1, Yt,2, ...Yt,m)′, t=1,2,..., is a categorical time series if

Yt,j =


1 when jth category is observed, j=1,...,m

0 otherwise.

(1.1)

Note that
∑m

j=1 Yt,j = 1. Generalized linear models for {Yt} conditional on past data and

possible covariates will be discussed.

Form=2, we have a univariate binary sequence {Yt}. As an illustration, we shall focus here

on the special case m=2. Examples of a binary process include level crossings in a Gaussian

process, crossing certain temperature levels in global warming studies, exceeding regulated

pollution levels in the atmosphere or in water, occurrences of earthquakes, volcanic eruptions,

stock market corrections, epileptic seizures, etc. For these and many other examples where

we are interested in occurrence or non-occurrence of certain events, we have a binary process

{Yt} defined by

Yt =


1 if the event occurs

0 otherwise.

(1.2)

The sequence of random variables {Yt} is, in general, a dependent Bernoulli sequence. It is

of interest to model the dependency structure for {Yt}. The regression approach seeks to

model the conditional distribution of Yt given the past data y∗t−1 = (yt−1, yt−2, ..., y1) and

possible covariates x∗t−1 = (xt−1, xt−2, ..., x1). Generalized linear models have proved very

1
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useful in the regression approach. An alternative approach is to model the joint distribution

p(y1, y2, ..., yn) from an underlying ’state’ process {πt} using the ’state-space’ formulation.

In this dissertation we present a combination of the two approaches. More specifically, we

use observation-driven state processes where the conditional distribution of πt is specified in

terms of the past data on {Yt}. For parameter estimation, we use the maximum likelihood

method, whenever the likelihood function p(y1, y2, ..., yn) can be constructed easily. When

the covariates {xt} are themselves random variables with unknown joint distributions,we use

the partial likelihood method for parameter estimation. Certain Bayesian tools are also used

in developing state-space models.

Chapter 2 gives a literature review. Standard regression type models, partial likelihood

and maximum likelihood estimation methods are reviewed. Binary models obtained by clip-

ping Gaussian autoregressive processes are introduced in Chapter 3. Five alternative methods

of estimation are discussed and compared via simulation. A real data application is also

given. Chapter 4 contains new state space models for categorical time series. The new

observation-driven state space models are used to analyze binary data on IBM and Dow

Jones Index data. As an application to multi-category time series, we present DNA data

analysis. Finally, Chapter 5 presents results on time series models for dependent contingency

tables. Multinomial-logit, conditional exponential family, Markov chain and multinomial-

Dirichlet models are discussed and applied to two real data sets.



Chapter 2

Literature Review

In this chapter, we review some standard categorical time series models. Regression type

models have been discussed by Kaufmann (1987), Fahrmeir and Kaufmann (1987), Fokianos

and Kedem (1998, 2003) among others. Fahrmeir and Tutz (2001) have studied state-space

models while Kedem (1980) and Slud & Kedem (1994) have discussed binary models derived

from Gaussian processes. Literature on categorical time series appears to be relatively sparse.

2.1 Binary Models: Partial Likelihood Approach

In numerous practical situations, one is interested in the prediction of a future value of a

stationary or non-stationary univariate binary time series {Yt}, t = 0,±1,±2, ..., from past

values of {Yt} and past (and sometimes also present) values of covariate variables {Xt}.

That is, {Yt} is predicted from the past either only given the past data which generate

the σ-field: Ft−1 = σ(yt−1, yt−2, ..., xt−1, xt−2, ...); or the covariate information at time t is

also known before observing yt, in which case, Yt is predicted given the σ-field Ft−1 =

σ(yt−1, yt−2, ..., xt, xt−1, ...). In either case, Xt may contain components that are functions

of Yt. The goal is to estimate from past information the one-step conditional probability

pt = P (Yt = 1|Ft−1).

2.1.1 Partial Likelihood

Partial likelihood (PL) was introduced by Cox (1972,1975) and given more formal definition

and theoretical justification by Wong (1986). The general definition given below follows Slud

(1992).

3
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Let Fk, k = 0, 1, 2..., be an increasing sequence of σ-fields, and let Y1, Y2, ..., be a sequence

of random variables on some common probability space, such that Yk is Fk measurable. Let

pk(yk; θ) be the conditional probability density given Fk−1 for Yk under probability measure

Pθ. The partial likelihood function based on the sample (y1, ..., yN) is defined as:

PL(θ; yN) ≡ PL(θ; y1, ..., yN) =
∏N

k=1 pk(yk; θ).

Note that if Fk is generated by {Yk, Yk−1, ..., } only, the partial likelihood is the same

as the ordinary likelihood. If Fk contains other random variables, say {xk}, then we have a

partial likelihood.

2.1.2 The Logistic Regression Model

Let {Zt}, t = 0,±1,±2, ..., be an autoregressive process of order p,

Zt = β1Zt−1 + ...+ βpZt−p + εt

where εt are i.i.d random variables logistically distributed with density function ex/(1+ex)2.

Now fix a threshold r ∈ (−∞,∞), and define a binary time series by

Yt ≡ I[Zt≥r] =


1 if Zt ≥ r

0 otherwise.

(2.1)

Then

pt(β) ≡ Pβ(Yt = 1|Ft−1) =
1

1 + exp[−(−r + β1Zt−1 + ...+ βpZt−p)]
(2.2)

where Z(t−1) = (Zt−1, ..., Zt−p). Since {Yt} is binary, the conditional density of yt is given by

pt(yt; β) = [pt(β)]yt [1− pt(β)]1−yt .

The corresponding partial likelihood is simply the product

PL(β) =
N∏
t=1

pt(yt; β) =
N∏
t=1

[pt(β)]yt [1− pt(β)]1−yt . (2.3)

The value of β which maximizes PL(β) is called the Maximum Partial Likelihood Estimator

(MPLE) of β.
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Knowing that conditionally given Ft−1, the binary variable {Yt} has mean pt(β) and

variance pt(β)(1− pt(β)), we have

Eβ[Z(s−1)Z
′
(t−1)(Ys − ps(β))(Yt − pt(β))|Fs−1] =


0 if s < t

Z(s−1)Z
′
(s−1)ps(β)(1− ps(β)) if s = t.

(2.4)

The score function is defined by:

SN(β) ≡ 5logPL(β) =
N∑
s=1

Z(s−1)(Ys − ps(β)). (2.5)

which is easily seen to be a martingale. That is, E[St(β)|Ft−1] = St−1(β). Clearly, E[St(β)] =

0. Next define

I(β) ≡ 55′ (−logPL(β)) =
N∑
t=1

Z(t−1)Z
′
(t−1)pt(β)(1− pt(β)). (2.6)

The quantity I(β)/N is the sample information matrix per observation. Note that I(β) also

can be seen as the sum of conditional covariance matrices.

I(β) =
N∑
s=1

V arβ[Z(s−1)(Ys − ps(β))|Fs−1]. (2.7)

Since St(β) is a martingale, we also can consider I(β) as the cumulative conditional variance-

covariance matrix for SN(β).

The large sample properties of the MPLE β̂ are studied with the aids of St(β) and I(β),

see Andersen and Gill (1982), Wong (1986) as well as Arjas and Haara (1987). The approach

taken in these references for providing consistency and asymptotic normality of MPLE’s is

based on the martingale central limit theorem, the almost sure concavity of the random

function PL, and the stability of the sample information matrix I(β)/N .

Theorem: Under regularity conditions, the MPLE β̂ is almost surely unique for all

sufficiently large N, and as N →∞,

(i) β̂
p−→ β0

(ii)
√
N(β̂ − β0)

d−→ N(0,Λ−1(β0)),

where Λ(β) is the probability limit of I(β)/N .
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2.1.3 Probit Link Function

Equation (2.2) implies that the logistic link function is used. Instead, we can use the probit

’link’ function Φ where Φ is the standard normal probability distribution function. In this

case we obtain what is known as a probit model, pt(β) ≡ Pβ(Yt = 1|Ft−1) = Φ(β′Z(t−1)).

Virtually every aspect of analysis is analogous except that in the AR(p) example here the

errors are now Gaussian instead of logistic and the proofs of theorems are very similar. (Slud

and Kedem (1994))

2.2 Regression Models for Categorical Time Series

For categorical time series{Yt}with m categories for each observation, setting q = m− 1, we

define the observation vector Yt = (Yt1, ..., Ytq)
′ by

Ytj =


1 category j has been observed, j=1,...,q

0 otherwise.

(2.8)

Correspondingly πt denotes the q-vector of conditional probabilities

πtj = P (Ytj = 1|yt−1, ..., y1), j = 1, ..., q.

A general regression model for categorical time series is given: πt = h(Z ′tβ), where β is

a vector of unknown parameters. The link function h is a one-to-one mapping from a q-

dimensional region D ⊂ <q to the set {(π1, ..., πq)
′, πj > 0,

∑
πj < 1}. The predetermined

variables now form a matrix Zt, which is a function of past observations and non-random

exogenous variables.

From the first t observations, the parameter β can be estimated by the method of max-

imum likelihood.

If

ysm = 1−
∑m−1

j=1 ysj, πsm = 1−
∑m−1

j=1 πsj,

the log-likelihood based on the observations {ys,j}, s = 1, ..., t and j = 1, ...,m is
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lt(β) =
∑t

s=1

∑m
j=1 ysjlnπsj.

Its first derivative, the score function, is

st(β) =
∑
ZsDs(β)Σ−1

s (β)(Ys − πs(β)),

with Ds(β) = ∂h(γ)/∂γ′, evaluated at γ = Z ′sβ, and Σs(β) = covβ(Ys|ys−1, ..., y1). The

conditional information matrix is given by

Gt(β) =
∑
ZsDs(β)Σ−1

s (β)D′s(β)Z ′s.

For the widely used logit link function, we have

πsi = exp(z′sβsi)
1+

∑q
r=1 exp(z′sβsr)

, i = 1, ..., q.

Now h = (h(γ1), ..., h(γq))
′ with h(γi) = πsi as above and γi = z′sβsi. The design matrix Zs

will be

Zs =



z′s 0 . . . 0

0 z′s . . . 0

. . . . . .

. . . .

. . . .

0 0 . . . z′s


and Ds(β) = Σs(β) below:

Σs(β) =



πs1(1− πs1) −πs1πs2 ... −πs1πsq

. . ... .

. . ... .

−πsqπs1 −πsqπs2 ... πsq(1− πsq)


.

Now,the score function becomes

st(β) =
∑
Zs(Ys − πs(β)),

and the conditional information matrix is simplified to:

Gt(β) =
∑
ZsΣs(β)Z ′s.



8

2.2.1 Asymptotic Theory

Theorem Under regularity conditions, there exists a sequence {β̂t} of MLE’s which is con-

sistent and asymptotically normal,

G
T/2
t (β̂t − β)

d−→ N(0, I)

where G
T/2
t (β) is the right Cholesky square root of Gt(β). See (Kaufmannn (1987)) for a

proof.

Fokianos & Kedem (1998) extend these large sample results by considering stochastic

time-dependent covariates and by dropping the Markovian assumption. They use the con-

cept of partial likelihood which simplifies conditional inference and obviates the Markov

assumption.



Chapter 3

Estimation for Binary Models Generated by Gaussian Autoregressive

Processes

3.1 Introduction

Kedem (1980), Slud and Kedem (1994), Kedem and Fokianos (2002), and Fokianos and

Kedem (1998,2003), among others have discussed models for correlated binary data {Yt} ,

t=1,2,..., where

Yt =


1 if the event occurs

0 otherwise.

(3.1)

Examples of binary data include level crossings in a Gaussian process, crossing certain tem-

perature levels in global warming studies, exceeding regulated pollution levels in the atmo-

sphere or in water, occurrences of earthquakes, volcanic eruptions, stock market corrections,

eplileptic seizures, etc. The binary process {Yt} is, typically, a correlated sequence of Bernolli

random variables.

Two related broad classes of models for binary data are: (a) regression type models

and (b) partial likelihood models. The regression type approach seeks to model the con-

ditional expectation of Yt given the past data (Yt−1, Yt−2, ..., Y1) and possible non-random

covariates (Zt−1, Zt−2, ...Z1). In some situations, the data {Yt} are obtained from another

observable random process {Zt} by clipping. For instance, Yt =


1 if Zt > c

0 otherwise

where c

is a given threshold. Then the above regression model for {Yt} with random covariates

(Zt−1, Zt−2, ..., Z1) can be used to construct a so-called partial likelihood .

9
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In this chapter, we are concerned with the second model where {Yt} are obtained by

clipping a Gaussian autoregressive process. We present five alternative methods of estimation

and compare these methods by simulation.

We present the basic model in Section 3.2. The estimation methods are discussed in

Section 3.3. Section 3.4 is concerned with the simulation study to compare the estimates. A

real data analysis is presented in Section 3.5.

3.2 Binary Models Generated by a Gaussian Autoregressive Process

Suppose {Zt} is a stationary Gaussian process with E(Zt) = 0, var(Zt) = σ2
z and

cov(Zt, Zt+k) = γz(k). Note that γz(0) = σ2
z . Also, ρz(k) = corr(Zt, Zt+k) = γz(k)

γz(0)
.

Define a binary process {Yt} by

Yt =


1 if Zt > 0,

0 otherwise.

(3.2)

We then have E(Yt) = P (Yt = 1) = P (Zt > 0) = 1
2
, E(Y 2

t ) = P (Yt = 1) = 1
2
, and

var(Yt) = γy(0) = 1
4
; cov(Yt, Yt+k) = γy(k) = E(YtYt+k)− 1

4
. Also, {Yt} is a strictly stationary

process.

Now, E(YtYt+k) = P (Zt > 0, Zt+k > 0) = 1
4

+ 1
2π

sin−1 ρz(k) (Kedem 1980). Hence,

γy(k) = E(YtYt+k)− 1
4

= 1
2π

sin−1 ρz(k), thus ρy(k) = γy(k)

γy(0)
= 2

π
sin−1 ρz(k), and we then have

the relationship

ρz(k) = sin(
π

2
ρy(k)) (3.3)

Based on the sample (y1, ..., yn) only, we can estimate ρz(k) by

ρ̂z(k) = sin(
π

2
ρ̂y(k)), (3.4)

where ρ̂y(k) =
∑n−k
t=1 (yt−ȳ)(yt+k−ȳ)∑n

t=1(yt−ȳ)2
, k = 1, 2, ....

Autoregressive process: AR(p)

Suppose {Zt} is an AR(p) process satisfying

Zt = β1Zt−1 + β2Zt−2 + ...+ βpZt−p + εt, (3.5)
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where {εt} are i.i.d N(0, σ2) random errors. Assume that all the roots of the equation 1 −

φ1ξ − φ2ξ
2 − ... − φpξp = 0 are larger than 1 in absolute value. Then {Zt} is a stationary

Gaussian process with mean zero and autocorrelation function ρz(k), k = 1, ..., p determined

by the linear Yule-Walker equation :

ρz(1)

ρz(2)

.

.

ρz(p)


=



1 ρz(1) ρz(2) ... ρz(p− 1)

ρz(1) 1 ρz(1) ... ρz(p− 2)

.

.

ρz(p− 1) ρz(p− 2) ρz(p− 3) ... 1





β1

β2

.

.

βp


.

This gives the relation

β = R−1
z ρz (3.6)

where β =


β1

β2

.

.

βp

, ρz =


ρz(1)

ρz(2)

.

.

ρz(p)

, and Rz =


1 ρz(1) ρz(2) ... ρz(p− 1)

ρz(1) 1 ρz(1) ... ρz(p− 2)

.

.

ρz(p− 1) ρz(p− 2) ρz(p− 3) ... 1

.

An estimate of β based on (y1, ..., yn) is given by

β̂y = R̂z

−1
ρ̂z (3.7)

where ρz(k), k = 1, ..., p in (3.6) are replaced by the estimates ρ̂z(k) = sin(π
2
ρ̂y(k)) with

ρ̂y(k) =
∑n−k
t=1 (yt−ȳ)(yt+k−ȳ)∑n

1 (yt−ȳ)2
,k = 1, ..., p.

For AR(1), we have β̂y = ρ̂z(1) = sin(π
2
ρ̂y(1)), where ρ̂y(1) =

∑n−1
1 (yt−ȳ)(yt+1−ȳ)∑n

1 (yt−ȳ)2
; while

from the original sample (z1, ...zn), we have β̂z = ρ̂z(1) =
∑n−1

1 (zt−z̄)(zt+1−z̄)∑n
1 (zt−z̄)2 .

3.3 Methods of Estimation

Let {Zt}, t=0,±1,±2, ...,±n, be an autoregressive process of order p defined by (3.5). Here

we take σ2 = 1 for simplicity. Also, define {Yt} as in (3.2).
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Method 1:Estimation based on {Yt}

An estimate of β based on the sample (y0, y1, ..., yn) is given by the Yule-Walker equation

β̂y = R̂z

−1
ρ̂z, where ρ̂z(k) = sin(π

2
ρ̂y(k)) for k = 1, ..., p and ρ̂y(k) =

∑n−k
1 (yt−ȳ)(yt+k−ȳ)∑n

1 (yt−ȳ)2
.

Method 2: Markov chain assumption

For the AR(p) model mentioned above, we know that P (Zt > 0) = P (Zt ≤ 0) = 1
2
. Also we

have P (Z(k+t) > 0, Zt > 0) = 1
4

+ 1
2π

sin−1 ρz(k). Therefore, for k = 1, ..., p,

P (Yt+k = 1|Yt = 1) = P (Zt+k > 0|Zt > 0) =
P (Zt+k > 0, Zt > 0)

P (Zt > 0)

=
1
4

+ 1
2π

sin−1 ρz(k)
1
2

=
1

2
+

1

π
sin−1 ρz(k).

(3.8)

Furthermore, P (Zt > 0|Zs > 0) = P (Zt ≤ 0|Zs ≤ 0) by the symmetry property of Gaussian

assumption. We define θk = P (Yt+k = 1|Yt = 1) = P (Yt+k = 0|Yt = 0). Then suppose {Yt}

is a Markov chain with the k-step transition matrix:

Pt,t+k =

 θk 1− θk

1− θk θk

 .

The likelihood function conditional on y0 is given by

L =
n∏
t=k

p∏
k=1

p(Yt|Yt−k) =
∏
i,j

p∏
k=1

pi,j(k)ni,j(k)

=

p∏
k=1

θ
(n00(k)+n11(k))
k (1− θk)(n10(k)+n01(k)),

where n = n00(k) + n11(k) + n01(k) + n10(k), pi,j = p(Yt = j|Yt−k = i), ni,j=number of

transitions ”i→ j” after k steps in the sample (y0, y1, ..., yn), and n = n00 + n11 + n01 + n10.

The ML estimator of θk is θ̂k = n00+n11

n
and if we let α̂k = 1 − θ̂k, we have α̂k = n01+n10

n
=

Nk(n)
n

, where Nk(n) = number of state changes (0-1 and 1-0) after ksteps of transition. Then

Nk(n) is approximately distributed as Bin(n, αk). We also can show that
√
n(α̂k − αk)

d−→

N(0, αk(1− αk)).
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Now, from the equation θk = p(Yt+k = 1|Yt = 1) = 1
2

+ 1
π

sin−1 ρz(k) k = 1, ..., p , we

have that ρz(k) = sin(θkπ− π
2
) = cos(αkπ). Using the estimate α̂k in place of αk, we get the

estimated ρ̂z(k) and thus the β̂y through the Yule-Walker equation β̂y = R̂z

−1
ρ̂z.

It may be noted that {Yt} is, in general, not a Markov chain. The Markov assumption

above is used only as an approximation.

Method 3: Estimation based on {Zt}

Here, we directly estimate from observation {Zt} by applying the Yule-Walker equation

β̂z = R̂z
−1
ρ̂z where ρ̂z(k) =

∑n−k
1 (zt−z̄)(zt+k−z̄)∑n

1 (zt−z̄)2 . It is known that β̂z is asymptotically equivalent

to the ML estimate of β obtained from:

Lz(β) =
∏n

t=1 fε(Zt −
∑p

j=1 βtZt−j)

where fε is the standard normal density function.

Method 4: Partial likelihood

Define pt(β) = Pβ(Yt = 1|Z(t−1)), where Z(t−1) = (Zt−1, ..., Zt−p). Then

pt(β) = P (
∑p

j=1 βjzt−j + εt > 0) = P (εt > −
∑p

j=1 βjzt−j) = Φ(
∑p

j=1 βjzt−j)

where Φ is the probability distribution function of a standard normal distribution. We also

know for the binary {Yt}

pt(yt; β) = Pβ(Yt = yt|Z(t−1)) = [pt(β)]yt [1− pt(β)](1−yt).

It is easy to see that the Partial Likelihood function is:

PL(β) =
∏n

t=1(Φ(
∑p

j=1 βjZt−j)
yt(1− Φ(

∑p
j=1 βjZt−j))

(1−yt).

The maximum partial likelihood estimator (MPLE) of β is then obtained by maximizing

PL(β). See ,for instance, Slud and Kedem (1994) and Wong (1986) for details on the concept

of partial likelihood.
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Method 5: Complete Likelihood

This approach is based on the joint distribution of observations {Zt, Yt}. The joint den-

sity function involving both {Zt} and {Yt} can be written as: pβ(Zt, Yt) = pβ(Yt|Zt)pβ(Zt).

Correspondingly, the full likelihood function is simply

L(Z, Y ; β) = PL(β)Lz(β)

=
n∏
t=1

(Φ(

p∑
j=1

βjZt−j)
yt(1− Φ(

p∑
j=1

βjZt−j))
(1−yt)fε(Zt −

p∑
j=1

βtZt−j),
(3.9)

where PL(β) and Lz(β) are defined as in methods 4 and 3 respectively.

3.4 Simulation Results

In order to evaluate the performance of different methods mentioned above, we applied each

of them for the special case AR(1) : Zt = βZt−1 + εt, where {εt} are i.i.d N(0,1). Denote

β̂(i)= estimator of β based on method i, i = 1, 2, 3, 4, 5.

We simulated n observations of {Zt} from AR(1) time series with parameter β taking different

values below:

(i) n=50,100,200 ;

(ii) β = 0,±0.3,±0.5,±0.7;

In each case, We repeated simulation N=200 times and then computed the means and

standard deviation of β̂(i). The results are summarized in Table 3.1 below.

For better comparison, we also calculated the relative efficiency of β̂(i) i=1,2,3,4 with

respect to β̂(5) as follows: Relative Efficiency of (β̂(i),β̂(5)) =( s.d.β̂(5)

s.d.β̂(i)
)2, and the results

appear in Table 3.2.

It may be noted that all the five estimators perform reasonably well and the efficiency

increases for large n. Not surprisingly, method 3 based on the original autoregressive process

{Zt} performs better than the other methods for most choices of β and n. The estimator β̂5

based on the complete likelihood is almost as good as β̂3. Methods 1 and 2 based only on

{Yt} have similar performance but they are not as good as β̂3 and β̂5 for obvious reasons
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Table 3.1: Mean,standard deviation and MSE results
β -0.7 -0.5 -0.3 0 0.3 0.5 0.7

mean -0.672 -0.466 -0.276 -0.018 0.232 0.376 0.609
β̂1 std 0.165 0.196 0.190 0.214 0.218 0.194 0.190

MSE 0.028 0.039 0.036 0.046 0.052 0.053 0.044
mean -0.636 -0.406 -0.216 0.059 0.291 0.488 0.685

β̂2 std 0.173 0.176 0.215 0.212 0.189 0.198 0.167
MSE 0.034 0.040 0.053 0.048 0.036 0.039 0.028

n=50 mean -0.673 -0.478 -0.300 -0.013 0.266 0.420 0.630
β̂3 std 0.106 0.127 0.116 0.132 0.129 0.126 0.111

MSE 0.012 0.016 0.013 0.018 0.018 0.022 0.017
mean -0.675 -0.449 -0.243 0.015 0.270 0.444 0.678

β̂4 std 0.178 0.176 0.159 0.178 0.181 0.186 0.158
MSE 0.032 0.034 0.028 0.032 0.033 0.038 0.025
mean -0.680 -0.468 -0.277 0.011 0.295 0.463 0.690

β̂5 std 0.107 0.132 0.122 0.139 0.136 0.132 0.103
MSE 0.012 0.018 0.015 0.019 0.019 0.019 0.011
mean -0.675 -0.473 -0.271 -0.022 0.269 0.431 0.622

β̂1 std 0.114 0.147 0.158 0.147 0.153 0.148 0.133
MSE 0.015 0.022 0.026 0.022 0.024 0.026 0.024
mean -0.652 -0.428 -0.228 0.017 0.287 0.496 0.705

β̂2 std 0.120 0.147 0.146 0.165 0.155 0.144 0.113
MSE 0.017 0.027 0.026 0.027 0.024 0.021 0.013

n=100 β̂3 mean -0.680 -0.492 -0.299 -0.01 0.287 0.468 0.657
std 0.067 0.092 0.096 0.095 0.094 0.094 0.075

MSE 0.005 0.009 0.009 0.009 0.009 0.010 0.007
mean -0.628 -0.438 -0.242 0.008 0.277 0.446 0.650

β̂4 std 0.124 0.130 0.122 0.121 0.126 0.132 0.120
MSE 0.020 0.021 0.018 0.015 0.016 0.020 0.017
mean -0.675 -0.478 -0.282 0.010 0.304 0.490 0.691

β̂5 std 0.071 0.097 0.100 0.098 0.098 0.099 0.074
MSE 0.006 0.010 0.010 0.010 0.010 0.010 0.006
mean -0.677 -0.467 -0.268 -0.018 0.260 0.454 0.667

β̂1 std 0.082 0.100 0.101 0.101 0.115 0.106 0.084
MSE 0.007 0.011 0.011 0.011 0.015 0.013 0.008
mean -0.656 -0.461 -0.236 0.031 0.282 0.479 0.702

β̂2 std 0.096 0.105 0.107 0.107 0.110 0.109 0.082
MSE 0.011 0.012 0.015 0.012 0.012 0.012 0.007

n=200 β̂3 mean -0.691 -0.493 -0.300 -0.009 0.288 0.494 0.685
std 0.051 0.061 0.064 0.065 0.072 0.063 0.054

MSE 0.003 0.004 0.004 0.004 0.005 0.004 0.003
mean -0.637 -0.425 -0.237 0.004 0.256 0.449 0.654

β̂4 std 0.092 0.085 0.078 0.077 0.087 0.094 0.090
MSE 0.012 0.013 0.010 0.006 0.010 0.011 0.010
mean -0.684 -0.477 -0.281 0.001 0.293 0.499 0.701

β̂5 std 0.054 0.064 0.064 0.067 0.075 0.067 0.054
MSE 0.003 0.005 0.004 0.004 0.006 0.004 0.003
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Table 3.2: Relative efficiency:
β -0.7 -0.5 -0.3 0 0.3 0.5 0.7

β̂1 0.421 0.454 0.412 0.422 0.389 0.463 0.294

β̂2 0.383 0.563 0.322 0.430 0.518 0.444 0.380

n=50 β̂3 1.019 1.080 1.106 1.109 1.111 1.098 0.861

β̂4 0.361 0.563 0.589 0.610 0.656 0.504 0.425

β̂1 0.388 0.435 0.401 0.444 0.410 0.447 0.310

β̂2 0.350 0.435 0.469 0.353 0.400 0.473 0.429

n=100 β̂3 1.123 1.112 1.085 1.064 1.087 1.109 0.974

β̂4 0.328 0.557 0.672 0.656 0.605 0.563 0.380

β̂1 0.434 0.410 0.402 0.440 0.425 0.400 0.413

β̂2 0.316 0.372 0.358 0.392 0.465 0.378 0.434

n=200 β̂3 1.121 1.101 1.000 1.062 1.085 1.031 1.000

β̂4 0.345 0.567 0.673 0.757 0.743 0.508 0.360

(loss of information). Finally, the partial likelihood estimator β̂4 is better than β̂1 and β̂2 ,

but it is not as good as β̂3 and β̂5 . We can therefore rank in terms of efficiency (preference):

(β̂3,β̂5 ), β̂4 ,(β̂1 ,β̂2 ).

3.5 Data Analysis

We collected IBM stock daily price data from 2005-2006 and denoted the original data as

{Xt}, t = 1, 2, ..., 288. Also let Zt = Xt − X, where X = 1
288

∑288
t=1Xt, that is Zt is the

mean-centered original data.

First, we apply method 3 where the parameter estimation is based on {Zt} for the first 200

observations.

(i) The plot of Zt vs. t shows that the stationarity is violated with non-constant mean;

therefore, the first difference is performed and the new data (defined as Ct) plot satisfies the

stationarity.(see Fig.1)

(ii) For the differenced data, the autocorrelation function (ACF) gradually decays after lag
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3 while the partial autocorrelation function (PACF) plot cuts off after lag 3. So we apply

the model Ct − φCt−3 = wt where wt is N(0, σ2) for the new data
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Figure 3.1: Original IBM data plot and after first difference plot

(iii) After fitting the model, we also check the residuals and it shows that the residuals do

follow white noise.

All the above steps are performed by SAS procedure PROC ARIMA. The final best model

for {Zt} is :

Zt = Zt−1 + 0.2075(Zt−3 − Zt−4) + εt, (3.10)

where {εt} follows iid N(0,0.81776).

Now, we do data-clipping below:

Yt =


1 if Zt > 0,

0 otherwise.

Define pt(β) = Pβ(Yt = 1|Z(t−1)), where Z(t−1) = (Zt−1, ..., Zt−p). Then

pt(β̂) = P (εt > −[Zt−1 + 0.2075(Zt−3 − Zt−4)]) = Φ( [Zt−1+0.2075(Zt−3−Zt−4)]√
0.81776

)
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where Φ is the probability distribution function of a standard normal distribution. We then

estimate the prediction probabilities for the last 88 observations. The results are listed in

Table 3.3, where * indicates that the predicted and observed are not consistent. It shows

that about 83% predictions are correct; one interesting point is that whenever there are

state-changes, our prediction results seem often to have one-lag delay.

Table 3.3: The observed price increases(Yt)and predicted probability of price increases (p̂t)

p̂t 0.07 0.17∗ 0.56 0.84∗ 0.49 0.54 0.45 0.51 0.29 0.10 0.01
Yt 0 1 1 0 0 1 0 0 0 0 0
p̂t 0.03 0.01 0.00 0.25 0.28∗ 0.76∗ 0.50 0.40∗ 0.82 0.94 0.95
Yt 0 0 0 0 1 0 0 1 1 1 1
p̂t 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Yt 1 1 1 1 1 1 1 1 1 1 1
p̂t 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.69∗ 0.38∗ 0.45∗

Yt 1 1 1 1 1 1 1 1 0 1 1
p̂t 0.53∗ 0.34 0.19 0.41∗ 0.49∗ 0.70∗ 0.42 0.46 0.15 0.13 0.07
Yt 0 0 0 1 1 0 0 0 0 0 0
p̂t 0.06 0.20∗ 0.98 0.79 0.95 0.81 0.71∗ 0.50 0.36∗ 0.74∗ 0.44
Yt 0 1 1 1 1 1 0 0 1 0 0
p̂t 0.02 0.01 0.00 0.00 0.00 0.01 0.03 0.02 0.09 0.01 0.00
Yt 0 0 0 0 0 0 0 0 0 0 0
p̂t 0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.00 0.01 0.00 0.00
Yt 0 0 0 0 0 0 0 0 0 0 0



Chapter 4

State Space Models for Categorical Time Series

4.1 Introduction

Models for categorical time series have been discussed by several authors including Fahrmeir

and Kaufmann (1987), Kedem (1980), Kedem and Fokianos (2002), Fokianos and Kedem

(1998, 2003), among others. Suppose {Yt}, t=1,2..., is a (mx1) vector time series with Yt =

(Yt1, ..., Ytm)′, and

Ytj =


1 when jth category is observed

0 otherwise

j = 1, ...,m,

m denoting the number of categories. We then refer to {Yt} as a categorical time series.

Denote the set of past history and possible covariates by the σ-field :

Ft−1 = σ(yt−1, yt−2, ..., xt−1, xt−2, ...x1);

where {xt−1, ..., x1} are the covariates which are (usually) non-random. The model for {Yt}

is then specified by the probabilities

πtj = E(Ytj|Ft−1) = p(Ytj = 1|Ft−1).

Typically, {πtj} are assumed to be functions of a parameter vector β which needs to be

estimated from the data. The likelihood function based on the data {Yt}, t = 1, ..., N , is

given by

L(β) =
N∏
t=1

m∏
j=1

π
ytj
tj (4.1)

19
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Most of the current literature on modeling categorical time series is based on the regression

concept. A generalized linear model for πtj is of the type

g(πtj) = Z ′t−1(j)β (4.2)

where g(.) is a given link function and Zt−1(j) is a vector of predictor variables which are func-

tions of Ft−1. Fokianos and Kedem (2003) give an extensive review of the regression models.

See, also Kedem and Fokianos (2002. Fahrmeir and Kaufmann (1987) discuss Markovian

regression models where the predictor variables {Zt−1(j)} depend only on the past p obser-

vations, and covariates, viz,{Yt−1, ..., Yt−p, xt−1, ..., xt−p}. If, on the other hand, {Zt−1(j)}

depend on the entire past Ft−1, {Yt} is not necessarily a Markov chain. Moreover, if the

covariates {xt} are random whose joint distributions depend on the parameter β , the L(β)

in (5.1) can be interpreted as a partial likelihood . See Fokianos and Kedem (1998,2003) for

further details on partial likelihood. An alternative formulation for modeling the categorical

time series {Yt} is via the state space models. The state space formulation typically contains

two models: (i) an observation model which is usually specified by the conditional density of

Yt given an unobserved state process (or a latent variable) {βt} and (ii) the state model which

specifies the probability structure for {βt}. If the state process is specified by a transition

density of βt given, say, (βt−1, βt−2, ..., βt−p), the state space model is said to be a state-driven

model. If, on the other hand, the state model for {βt} is specified by the conditional density

of βt given the past data {Zt−1}, the model is referred to as an observation-driven model.

Our main goal in this chapter is to present some new observation-driven state space models.

We present the background for the state-driven state space model in section 4.2. our

new observation-driven models are discussed in section 4.3. Section 4.4 contains a real data

application to the analysis of IBM stock daily prices and Dow Jones Index in the form

of binary data. As an application of multi-categorical time series, we present a DNA data

analysis in section 4.5.
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4.2 State Space Models: state-driven models

State space models relate time series observations {Yt} to unobserved states {βt}by an obser-

vation model for Yt given βt and a transition model for {βt}. The observation model is

specified by conditional densities

p(yt|β∗t , y∗t−1, x
∗
t ), t=1,2,...

the transition model is defined by transition densities

p(βt|β∗t−1, y
∗
t−1, x

∗
t )

where y∗t = (y1, ..., yt)
′, x∗t = (x1, ..., xt)

′, β∗t = (β0, β1, ..., βt)
′ denote histories of responses,

covariates and a sequence of unobserved states or parameter vector up to time t and an

initial density p(β0) is assumed known. We also denote Zt = Zt(x
∗
t , y
∗
t−1) as the design

matrix, which is predetermined since it is known when yt is observed. More common but

less general, transition densities are assumed to be independent of y∗t−1, x
∗
t , i.e. they are

defined by p(βt|βt−1). Also, linear transition equation is the most important specification of

transition model, such as βt = Ttβt−1 + vt, t=1,2,... where the error term vt has a Gaussian

or Non-Gaussian density f(v), with E(v) = 0, thus the transition density is given by

p(βt|βt−1) = f(βt − Ttβt−1), t = 1, 2, ... .

To specify the bivariate process { Yt , βt } completely in terms of genuine joint densities,

additional basic assumptions are required:

A1. Conditional on βt and ( y∗t−1, x∗t ), current observation yt are independent of β∗t−1, i.e.

p(yt|β∗t , y∗t−1, x
∗
t ) = p(yt|βt, y∗t−1, x

∗
t ), t=1,2,... .

A2. The state process is conditionally Markovian, i.e.

p(βt|β∗t−1, x
∗
t , y
∗
t−1) = p(βt|βt−1), t=1,2,... .
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It will be assumed for simplicity that the covariates {xt} are non-random. The primary goal

is to estimate βt given the observations y1, ..., yT . This is termed

(a) filtering for t = T

(b) smoothing for t < T

(c) prediction for t > T .

Using A1 and A2, we obtain the posterior density

p(β∗t |y∗t , x∗t ) ∝
∏t

s=1 p(ys|βs, y∗s−1, x
∗
s)

∏t
s=1 p(βs|βs−1).

Maximization of the conditional density is thus equivalent to maximizing the log-posterior

PL(β∗t ) =
∑t

s=1 ls(βs) + a0(β0) +
∑t

s=1 as(βs, βs−1),

where ls(βs) = log p(yt|βt, y∗t−1, x
∗
t ) is the conditional loglikelihood distribution of yt; and

loglikelihood for the transition model after suppressing y∗t−1, x∗t is denoted by at(βt, βt−1) =

logp(βt|βt−1), a0(β0) = logp(β0). The criterion PL can be interpreted as a penalized loglike-

lihood, with the sum of the log-prior as as the roughness penalty. Numerical maximization

of the penalized log-likelihood can be achieved by various algorithms.

Fahrmeir (1992a) suggests the generalized extended Kalman filter and smoother as an

approximate posterior mode estimator in dynamic generalized linear models. In addition,

Fahrmeir & Kaufmann (1991) also show that this method can be considered as a simplifying

approximation of the Fisher scoring iterations. Fahrmeir (1992) recommends the following

procedure for common categorical response models: First apply the extended Kalman filter

and smoother, then use it as the initial solution for the Gaussian-Newton iterations.

For categorical time series{Yt}withmcategories for each observation, setting q = m − 1,

we define the observation vector Yt = (Yt1, ..., Ytq)
′ by

Ytj =


1 category i has been observed,

0 otherwise,

j = 1, ..., q.
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Correspondingly πt = (πt1, .., πtq)
′ denotes the q-vector of conditional probabilities πtj =

P (ytj = 1|βt, x∗t , y∗t−1), j = 1, ..., q. The following is the general specification of logistic

observation models for individual univariate categorical time series:

πtj =
exp(z′tβtj)

1+
∑q
k=1 exp(z′tβtk)

= h(Z ′βt)

where {zt} is function of past observation y∗t−1 and non-random exogenous variables x∗t ;

Additionally, we supplement a Markovian transition model for {βt}, i.e. by specifying a

transition density p(βt|βt−1). Note also that

ysm = 1−
∑m−1

j=1 ysj, πsm = 1−
∑m−1

j=1 πsj.

The conditional log-likelihood contribution of yt is

lt(βt) = log p(yt|βt, y∗t−1, x
∗
t ) =

∑t
s=1

∑m
j=1 ysjlogπsj.

The transition model may be chosen as the autoregressive process βt = φβt−1 + εt. The

transition density is thus given by p(βt|βt−1) = f(βt − φβt−1), where f(ε) is taken as the

normal density function. For state estimation, we can use the PL criterion discussed above.

Suppose we are interested in estimating the parameter φ in the transition density. The

marginal likelihood function is given by

Lt(φ) =

∫
[
t∏

s=1

m∏
j=1

π
ysj
sj (βs)f(βs − φβs−1)]dβ1...dβt. (4.3)

Since Lt(φ) is a multiple integral with increasing (with t) dimension, the problem of ML

estimation of φ becomes unwieldly, if not impossible. We shall, therefore, introduce in the

next section, an alternative observation-driven state space model which is much simpler for

ML estimation.

4.3 Observation-driven State Space Models

If the transition density of the state parameter depends upon possible covariates and past

responses, the model is said to be ’observation-driven’. Let
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p(βt|β∗t−1, y
∗
t−1, x

∗
t ) = p(βt|y∗t−1, x

∗
t ) = p(βt|Zt) ,

where Zt contains past responses and possible covariates.

In the following, we present’observation-driven’state space models for categorical time

series.

4.3.1 Binary Time Series (Conjugate State Process)

Consider a binary process {Yt} where Yt takes value 0 or 1.

Observation model:

p(yt|π∗t , y∗t−1, x
∗
t ) = p(yt|πt) = πytt (1− πt)1−yt , yt = 0, 1.

Transition model (later refer to State model):

p(πt|π∗t , y∗t−1, x
∗
t ) = p(πt|y∗t−1, x

∗
t ) = p(πt|Zt) =

π
µt−1
t (1−πt)(1−µt)−1

B(µt,1−µt) , 0 < πt < 1,

where Zt is a (px1) vector whose components are functions of (y∗t−1, x
∗
t ), β is a (px1) vector

of unknown parameters and logit(µt)(= log( µt
1−µt )) = Z ′tβ. Notice that the conditional dis-

tribution of πt is Beta(µt, 1− µt) with E(πt|Zt) = µt and V ar(πt|Zt) = µt(1− µt)/2.

It is easy to verify that

p(yt|Zt) =

∫ 1

0

p(yt, πt|Zt)dπt =

∫ 1

0

p(yt|πt)p(πt|Zt)dπt

=
B(µt + yt, 1− µt − yt)

B(µt, 1− µt)
= µytt (1− µt)1−yt , yt = 0, 1.

(4.4)

We have E(yt|Zt) = µt, V ar(yt|Zt) = µt(1− µt).

The likelihood function is thus given by

L(β) = Πn
t=1µ

yt
t (1− µt)1−yt .

The score function Sn(β) = dlogL(β)
dβ

=
∑n

t=1(dlogL
dµt

dµt
dβ

) = −
∑n

t=1 Zt(yt − µt);

and Fisher information In = −d2logL(β)
dβdβ′

=
∑n

t=1 ZtZ
′
tµt(1− µt).

Under regularity conditions, we have the following theorem:

Theorem:

(Σn
t=1ZtZ

′
tµt(1− µt))

1
2 (β̂ − β)

d−→ Np(0, I).

Under regularity conditions of Fahrmeir and Kaufmann (1987), their proof applied.
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4.3.2 Time Series With Multi-Categories(Conjugate State Process)

We extend the model in 3.1 to the case where the categorical time series {Yt} has mcategories

for each observation. Define

Yt,j =


1 if category j has been observed,

0 otherwise,

j = 1, ...,m. (4.5)

Also let q = m− 1, and define Yt = (Yt,1, ...Yt,q), πt = (πt,1, ..., πt,q), where πt,j = p(Yt,j =

1|Zt,j), Zt,j is a (px1) vector whose components are functions of non-random covariates

x∗t = (xt, ..., x1) and past data y∗t−1 = (yt−1, ..., y1).

The observation model is defined by:

p(yt|π∗t , y∗t−1, x
∗
t ) = p(yt|πt) = (

∏q
j=1 π

yt,j
t,j )(1−

∑q
j=1 πt,j)

1−
∑q
j=1 yt,j .

The state model is assumed to be a Dirichlet distribution:

p(πt|π∗t−1, y
∗
t−1, x

∗
t ) = p(πt|Zt) =

(
∏q
j=1 π

αt,j−1

t,j )(1−
∑q
j=1 πt,j)

αt,q+1−1

B(αt,1,...,αt,q+1)
.

Now choose αt,j = µt,j, j = 1, ..., q, and αt,q+1 = 1 −
∑q

j=1 µt,j, that is,
∑q+1

j=1 αt,j = 1. We

also define µt = (µt,1, ..., µt,q)
′ and logit(µt) = (logit(µt,j), j = 1, ..., q)′ where logit(µt,j) =

log(
µt,j

1−
∑q
j=1 µt,j

) = log(
µt,j
µt,q+1

) = Z ′t,jβ, We can rewrite it as: logit(µt) = Z ′tβ,where Zt =

(Zt,j, j = 1, ..., q) is a pxq matrix whose jth column is given by Zt,j.

From the properties of Dirichlet distribution, we have the following: E(πt,j|Zt) =

αt,j∑q+1
j=1 αt,j

= µt,j, j = 1, ..., q; Cov(πt,j, πt,j′|Zt) = −µt,jµt,j′/2, j 6= j′, and V ar(πt,j|Zt) =

1
2
µt,j(1− µt,j) .

The probability density function p(yt|zt) is given by:

p(yt|Zt) = (
∏q

j=1 µ
yt,j
t,j )(1−

∑q
j=1 µt,j)

1−
∑q
j=1 yt,j .

The likelihood function is:

Ln(β) =
∏n

t=1 p(yt|Zt) =
∏n

t−1

∏q+1
j=1 µ

yt,j
t,j ,

with yt,q+1 = 1−
∑q

j=1 yt,j; µt,q+1 = 1−
∑q

j=1 µt,j.

Correspondingly, the score function is
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Sn(β) = d logLn(β)
dβ

= −
∑n

t=1

∑q+1
j=1 µ

yt,j
t,j =

∑n
t=1

∑q
j=1 Zt,j(yt,j − µt,j).

We have E(Yt,j|Zt,j) = µt,j, Cov(Yt,j, Yt,j′|Zt) = −µt,jµt,j′ , for j 6= j′ and V ar(Yt,j|Zt) =

µt,j(1− µt,j).

Under regularity conditions, we have

Theorem:

(
∑n

t=1 ZtΣtZ
′
t)

1
2 (β̂ − β)

d−→ Np(0, I),

where Zt = (Zt,1, ..., Zt,q)
′,Σt = Cov(Yt,1, ..., Yt,q). Under regularity conditions of Fahrmeir

and Kaufmann (1987), their proof applied.

4.3.3 Binary Model(Non-conjugate State Process)

For a binary process {Yt}, we have the following setting:

The observation model is the same as before:

p(yt|π∗t , y∗t−1, x
∗
t ) = p(yt|πt) = πytt (1− πt)1−yt , yt = 1, 0.

The state model now is assumed to have a general state distribution:

p(πt|π∗t , y∗t−1, x
∗
t ) = pβ(πt|Zt), 0 < πt < 1.

Then the probability density of {Yt} given {Zt} is :

p(yt|Zt) =

∫ 1

0

p(yt, πt|Zt)dπt =

∫ 1

0

p(yt|πt)p(πt|Zt)dπt

=

∫ 1

0

πytt (1− πt)1−ytpβ(πt|Zt)dπt = πytt (1− πt)1−yt ,

(4.6)

where E(Yt|Zt) = p(Yt = 1|Zt) =
∫ 1

0
πtpβ(πt|Zt)dπt = E(πt|Zt) = πt, and V ar(Yt|Zt) =

πt(1− πt).

The likelihood function then is:
∏n

t=1 p(yt|Zt) =
∏n

t=1 π
yt
t (1− πt)1−yt . As a special example,

let µt = logitπt = log πt
1−πt , while µt ∼ N(ηt = Z ′tβ, σ

2). Then

pβ(πt|Zt) = 1√
σ22π

( 1
πt(1−πt))exp[−2σ2(logitπt − ηt)2], 0 < πt < 1.
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We can compute πt as

πt = E(πt|Zt) =
1√
σ22π

∫ ∞

−∞
(

1

1− πt
)exp[−2σ2(logitπt − ηt)2]dπt = E(1 + exp(−µt))−1.

(4.7)

4.3.4 Multi-Categorical Model(Non-conjugate State Process)

Consider the m-categorical model defined in section 3.2. Recall that the observation model

is given by :

p(yt|π∗t , y∗t−1, x
∗
t ) = p(yt|πt) = (

∏q
j=1 π

yt,j
t,j )(1−

∑q
j=1 πt,j)

1−
∑q
j=1 yt,j .

We now consider the general state model:

p(πt|π∗t−1, y
∗
t−1, x

∗
t ) = pβ(πt|Zt).

The probability density function of {Yt} conditional on {Zt} is calculated as follows:

p(yt|Zt) =

∫ 1

0

...

∫ 1

0

p(yt, πt|Zt)dπt,1...dπt,q

=

∫ 1

0

...

∫ 1

0

(

q∏
j=1

π
yt,j
t,j )(1−

q∑
j=1

πt,j)
1−

∑q
j=1 yt,jpβ(πt|Zt)dπt,1...dπt,q

=

∫ 1

0

...

∫ 1

0

(

q∏
j=1

π
yt,j
t,j )pβ(πt|Zt)dπt,1...dπt,q =

q∏
j=1

π
yt,j
t,j (1−

q∑
j=1

πt,j)
1−

∑q
j=1 yt,j ,

(4.8)

where E(yt,i|Zt) = E(πt,i|Zt) = πt,i and V ar(yt,i|Zt) = V ar(πt,i|Zt) = πt,i(1 − πt,i) and

Cov(yt,i, yt,j|Zt) = −πt,i × πt,j, for i 6= j.

Let µt,j = logitπt,j = log(
πt,j

1−
∑q
j=1 πt,j

), j = 1, ..., q; while µt,j
indp∼ N(ηt,j = Z ′t,jβ, σ

2
j ), j =

1, ..., q. Then the probability density function for {πt,j} will be:

pβ(πt,j|Zt) = 1√
σ2
j 2π

(
1−

∑q
i=1 πt,i+πt,j

πt,j(1−
∑q
i=1 πt,i)

)exp[−2σ2
j (logitπt,j − ηt,j)2], 0 < πt,j < 1.

The expectation of πt,j given Zt is computed as:

E(πt,j|Zt) =
1√
σ2
j2π

∫
(
1−

∑q
i=1 πt,i + πt,j

(1−
∑q

i=1 πt,i)
)exp[−2σ2

j (logitπt,j − ηt,j)2]dπt,j

= E(
exp(µt,j)

1 +
∑q

i=1 exp(µt,i)
).
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The likelihood functions is given by

Ln(β) =
n∏
t=1

p(yt|Zt). (4.9)

4.3.5 Bivariate Binary Models

Let {Yt} denote a bivariate binary response variable where Yt =

 Yt(1)

Yt(2)

, Yt(j) = 0, 1

j=1,2. Also denote:

p00(t) = P (Yt(1) = 0, Yt(2) = 0), p01(t) = P (Yt(1) = 0, Yt(2) = 1),

p10(t) = P (Yt(1) = 1, Yt(2) = 0), p11(t) = P (Yt(1) = 1, Yt(2) = 1).

Note that p00(t) + p01(t) + p10(t) + p11(t) = 1 .

The probability distribution of {Yt} given {Zt}, where {Zt} is a covariate vector defined by

{Zt} = (y∗t−1(1), y∗t−1(2), x∗t−1) and {xt} is possibly a random sequence, is given below:

p(yt|zt) = P (Yt(1) = yt(1), Yt(2) = yt(2)|Z(t))

= (p00(t)(1−yt(1))(1−yt(2))p01(t)(1−yt(1))yt(2)p10(t)yt(1)(1−yt(2))p11(t)(yt(1)yt(2)

= p00(t)(
p10(t)

p00(t)
)yt(1)(

p01(t)

p00(t)
)yt(2)(

p11(t)p00(t)

p01(t)p10(t)
)yt(1)yt(2),

where pij(t), i, j = 0, 1 are now the conditional probabilities given Zt.

We then are able to compute the expectations as follows:

E(Yt(1)|Zt) = P (Yt(1) = 1|Zt) = p10(t) + p11(t) = µt(1);

E(Yt(2)|Zt) = P (Yt(2) = 1|Zt) = p01(t) + p11(t) = µt(2);

E(Yt(1)Yt(2)|Zt) = P (Yt(1) = 1, Yt(2) = 1|Zt) = p11(t) = µt(1, 2);

Suppose we have a zero mean bivariate autoregressive process{Xt}defined by:

Xt =

 Xt(1)

Xt(2)

 =

 φ11 φ12

φ21 φ22

  Xt−1(1)

Xt−1(2)

 +

 εt(1)

εt(2)

 .

We create a bivariate binary process by clipping:

Yt(j) =


1 if Xt(j) ≥ 0

0 otherwise.

where j = 1, 2,
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Suppose ε =

 εt(1)

εt(2)

 t=1,2,... are independent and identically distributed having bivariate

normal density, N2(0,Σ). We have:

µt(j) = E(Yt(j)|Zt−1) = P (Yt(j) = 1|Zt−1)

= P (Xt(j) ≥ 0|Zt−1)

= P (εt(j) ≥ −(φj1Xt−1(1) + φj2Xt−1(2)))

= Fεj(φj1Xt−1(1) + φj2Xt−1(2)) j = 1, 2,

(4.10)

and

µt(1, 2) = P (Xt(1) ≥ 0, Xt(2) ≥ 0|Zt−1)

= P (εt(1) > −(φ11Xt−1(1) + φ12Xt−1(2)), εt(2) > −(φ21Xt−1(1) + φ22Xt−1(2)))

= Fε1,ε2((φ11Xt−1(1) + φ12Xt−1(2)), (φ21Xt−1(1) + φ22Xt−1(2))),

(4.11)

where Fεj , Fε1,ε2 stand for the cdf of zero-mean normal distribution and bivariate normal

distribution respectively.

Two methods of estimation are proposed for this model: (a) Maximum likelihood based on

{Xt}; (b) Partial likelihood based on both {Yt, Xt}.

(1) Maximum likelihood:

The likelihood function based on {xt} is given by

L(Φ, σεj ;xt) = Πn
t=1p(xt|xt−1) = Πn

t=1f(εt,1, εt,2)

= Πn
t=1

1

2πσε1σε2
√

1− ρ2
exp{−

[( εt,1
σε1

)2 + ( εt,2
σε2

)2 − 2ρ (εt,1)(εt,2)

σε1σε2
]

2(1− ρ2)
}.

Where εt,1 = xt,1 − φ11xt−1,1 − φ12xt−1,2, and εt,2 = xt,2 − φ21xt−1,1 − φ22xt−1,2.

Alternatively, we can estimate the coefficients via the Yule-Walker equation.

If Xt =

 Xt(1)

Xt(2)

, Φ =

 φ11 φ12

φ21 φ22

 and εt =

 εt1

εt2


the model can be written as :

Xt = ΦXt−1 + εt, {εt} ∼ N2(0,Σ).
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then by Yule-Walker equation: Φ̂ = (Γ̂−1(0))Γ̂(1), where

Γ̂(h) = n−1
∑n−h

t=1 (Xt+h −Xn)(Xt+h −Xn)′ and

Σ̂ = n−1
∑n

t=1[(Xt −Xn)− Φ̂(Xt −Xn)][(Xt −Xn)− Φ̂(Xt −Xn)]′.

(2)Partial Likelihood

The partial likelihood function is given by:

PL(Φ, σεj ; yt, xt) = Πn
t=1p(yt|zt)

= Πn
t=1p00(t)(

p10(t)

p00(t)
)yt(1)(

p01(t)

p00(t)
)yt(2)(

p11(t)p00(t)

p01(t)p10(t)
)yt(1)yt(2).

(4.12)

4.4 IBM data analysis

We collected IBM stock daily price data for 2005 as well as the corresponding Dow Jones (DJ)

index. Let Xt1 and Xt2 denote the mean-centered DJ and IBM stock daily price respectively.

1.Partial Likelihood

Binary Clipping for the IBM data

The binary response variable {Yt,2} is created by clipping :

Yt,2 =


1 if Xt,2 > 0,

0 otherwise.

(4.13)

Consider the model:

Xt,2 = φ1Xt−1,1 + φ2Xt−1,2 + εt

where {εt} is a sequence of independent N(0, σ2) random variables. As an alternative model,

we also consider the logistic distribution with density fεt(z) = exp(−z)
(1+exp(−z))2 . We have

pt(φ) = Pφ(Yt,2 = 1|Ft−1) = P (εt > −(φ1xt−1,1 + φ2xt−1,2))

=


Φ(φ1xt−1,1 + φ2xt−1,2) : Normal

1
1+exp(−(φ1xt−1,1+φ2xt−1,2))

: Logistic.

(4.14)

Since {Yt} is binary, the conditional density of yt is given by
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pt(yt;φ) = [pt(φ)]yt [1− pt(φ)]1−yt .

The corresponding partial likelihood is simply the product

PL(φ) =
N∏
t=1

pt(yt;φ) =
N∏
t=1

[pt(φ)]yt [1− pt(φ)]1−yt . (4.15)

We can estimate φ’s by maximizing the above partial likelihood function. For the first t=250

observations, we apply this method to six models (see Table 4.1) to estimate parameter φ′s

and then predict the future chain from t=253 to 288.

Table 4.1: Models with normal/logistic error distributions
model Linear part

Model 1 Xt,2 = φXt−1,2 + εtwhere εt ∼ N(0, σ2)
Model 2 Xt,2 = φXt−1,2 + εt where εt ∼ logistic(0, 1)
Model 3 Xt,2 = φ1Xt−1,1 + φ2Xt−1,2 + εt where εt ∼ N(0, σ2)
Model 4 Xt,2 = φ1Xt−1,1 + φ2Xt−1,2 + εt where εt ∼ logistic(0, 1)
Model 5 Xt,2 = φ1Xt−1,1 + φ2Xt−1,2 + φ3Xt−2,1 + φ4Xt−2,2 + εt where εt ∼ N(0, σ2)
Model 6 Xt,2 = φ1Xt−1,1 + φ2Xt−1,2 + φ3Xt−2,1 + φ4Xt−2,2 + εt where εt ∼ logistic(0, 1)

The likelihood ratio tests show that for both normal/logistic error distribution models, the

first-order models with only IBM variable involved, that is, Model1 and Model 2 in Table

4.1 are the best. The prediction results are listed in Table 4.2.

Table 4.2: The predicted probabilities based on normal/logistic error distributions,
p̂(t,norm), p̂(t,log),and observed Yt
Yt p̂(t,log) p̂(t,norm) Yt p̂(t,log) p̂(t,norm) Yt p̂(t,log) p̂(t,norm)

0 0.4356 0.3721 0 0.1968 0.0384 0 0.1471 0.0135
0 0.1175 0.0056 0 0.0980 0.0026 1 0.2277 0.0621
1 0.9601 1.0000 1 0.7308 0.8957 1 0.8333 0.9786
1 0.8552 0.9873 0 0.6688 0.8118 0 0.4953 0.4906
1 0.4175 0.3375 0 0.7521 0.9188 0 0.4584 0.4169
0 0.0364 0.0000 0 0.0398 0.0000 0 0.0148 0.0000
0 0.0165 0.0000 0 0.0119 0.0000 0 0.0201 0.0000
0 0.0577 0.0002 0 0.0327 0.0000 0 0.0963 0.0024
0 0.0289 0.0000 0 0.0031 0.0000 0 0.0014 0.0000
0 0.0025 0.0000 0 0.0194 0.0000 0 0.0095 0.0000
0 0.0493 0.0001 0 0.0103 0.0000 0 0.0322 0.0000
0 0.0213 0.0000 0 0.0237 0.0000 0 0.0165 0.0000
0 0.0114 0.0000 0 0.0510 0.0001 0 0.0067 0.0000

2. Observation-driven models

For the series {Yt} created by bivariate clipping, we also apply our observation-driven state-

space models.

The observation model:
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p(yt|π∗t , y∗t−1, xt) = p(yt|πt) = πytt (1− πt)1−yt , yt = 1, 0

The state model:

p(πt|π∗t , y∗t−1, x
∗
t ) = pβ(πt|Zt), 0 < πt < 1

(A) Beta prior:

We define pβ(πt|Zt) =
π
µt−1
t (1−πt)(1−µt)−1

B(µt,1−µt) , 0 < πt < 1. And logit(µt)(= log( µt
1−µt )) = Z ′tβ. The

likelihood function is thus given by

L(β) = Πn
t=1µ

yt
t (1− µt)1−yt .

(B) Logit-normal prior:

Let µt = logitπt = log πt
1−πt , while µt ∼ N(ηt = Z ′tβ = β0 + β1Yt−1,1 + β2Yt−1,2, σ

2). The

Gaussian model here is a non-conjugate prior.

The likelihood function is:

n∏
t=1

p(yt|Zt) =
n∏
t=1

πytt (1− πt)1−yt (4.16)

where πt = E(πt|Zt) = E((1 + exp(−µt))−1), which is approximated by Gaussian Hermite

Quadrature with 8 pair of nodes and the likelihood function is then maximized by Quasi-

Newton optmization method.

We also do model selections for each prior as in Table 4.3below:

Table 4.3: Candidate state space models for IBM data
Model 1 1 + Yt−1

Model 2 1 + Yt−1 + Yt−2

Model 3 1 + Yt−1 + Yt−2 + Yt−3

Model 4 1 + Yt−1 + Yt−2 + Yt−3 + Yt−4

Model 5 1 + Yt−1 + Yt−2 + Yt−3 + Yt−4 + Yt−5

The model selections results are listed in Table 4.4, where the second column lists the number

of estimated parameters, the third column reports the deviance of the model: D = −2lnL(β̂)

and the next two columns correspond to AIC and BIC criteria, where AIC = D + 2d;
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BIC = D + dlog(N), where d is the number of parameters being estimated and N is the

total number of observations. The last two columns give the values of the likelihood ratio

test statistics together with their p-values for testing the order of the model. We see that

all criterions chose Model 3 as the best for Beta-prior, while for logit-normal prior, Model 4

is chosen by AIC criterion and LRT, BIC criterion selected Model 3 is the best. After the

estimators β are obtained by maximizing the likelihood function, they are plugged into πt

to estimate the prediction probabilities, see Table4.5.

Table 4.4: The state space model selection for IBM stock data
Method Model parameter D AIC BIC λn p-value

model 1 2 158.499 164.499 175.438
model 2 4 150.244 160.244 178.541 8.255 0.0161

Beta prior model 3 6 130.594 144.594 170.186 19.650 < 0.0001
model 4 8 127.296 149.296 178.168 3.298 0.192

model 1 3 132.346 140.246 149.335
model 2 5 124.900 138.900 153.197 7.446 0.0242

Logit-normal prior model 3 7 106.068 120.068 141.659 18.832 < 0.0001
model 4 9 100.000 118.000 150.872 6.068 0.0481
Model 5 11 99.500 123.500 162.222 0.500 0.779

Table 4.5: The observed Yt,predicted probabilities by Beta prior p̂(1)
t , and by Logit-normal prior

p̂
(2)
t
Yt 0 0 1 1 1 1 1

p̂
(1)
t 0.04147 0.04147 0.04147 0.65894 0.59263 0.94674 0.94674

p̂
(2)
t 0.04414 0.04414 0.04414 0.63152 0.55559 0.83507 0.96943
Yt 0 0 1 0 0 0 0

p̂
(1)
t 0.94674 0.28840 0.34992 0.65894 0.03155 0.34992 0.04147

p̂
(2)
t 0.96943 0.44850 0.52684 0.90604 0.03114 0.17230 0.21853
Yt 0 0 0 0 0 0 0

p̂
(1)
t 0.04147 0.04147 0.04147 0.04147 0.04147 0.04147 0.04147

p̂
(2)
t 0.04414 0.04414 0.04414 0.04414 0.04414 0.04414 0.04414
Yt 0 0 0 0 0 0 0

p̂
(1)
t 0.04147 0.04147 0.04147 0.04147 0.04147 0.04147 0.04147

p̂
(2)
t 0.04414 0.04414 0.04414 0.04414 0.04414 0.04414 0.04414
Yt 0 0 0 0 0 0 0

p̂
(1)
t 0.04147 0.04147 0.04147 0.04147 0.04147 0.04147 0.04147

p̂
(2)
t 0.04414 0.04414 0.04414 0.04414 0.04414 0.04414 0.04414

From Table 4.5, we see that the two priors produce very similar results on the IBM data,

when compared with partial likelihood method which additionally employs {xt} informa-

tion(see Table 4.2), the observation-driven models which only using the {Yt} information

perform very well too.
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4.5 Multi-Category: DNA Data Analysis

A DNA sequence consists of four nucleotides differing only in the nitrogenous base, whose

order determines the genetic information of each organism. The four nucleotides are given

one-letter abbreviations as shorthand as follows:

A for adenine; G for guanine; C for cytosine; T for thymine.

Adenine and guanine are purines–the larger of the two types of bases found in DNA–while

cytosine and thymine are pyrimidines.

Thus, a strand of DNA can be represented as a sequence of letters from {A,C,G,T} and

can be viewed as a nominal categorical time series with the assignment A=1, C=2,G=3 and

T=4. For more information, see Waterman (1995).

We present the data analysis for DNA sequence data of the gene BNRF1 of the Epstein-

Barr virus (see Shumway and Stoffer (2000), Section 5.9) considering only the first 1000

observations.

We apply the model proposed in Section 3.4 by fitting a series of models.

The observation model is:

p(yt|π∗t , y∗t−1, x
∗
t ) = p(yt|πt) = (

∏q
j=1 π

yt,j
t,j )(1−

∑q
j=1 πt,j)

1−
∑q
j=1 yt,j ; with q = m− 1 = 3

and the state model is:

p(πt|π∗t−1, y
∗
t−1, x

∗
t ) = pβ(πt|Zt),

where logitπt,j = log(
πt,j

1−
∑q
j=1 πt,j

) = µt,j, and µt,j
indp∼ N(ηt,j = Z ′t,jβj, σ

2
j ), j=1,2,3. HereZt,j

refers to the past {Y}s.

Accordingly, the likelihood function:

L =
n∏
t=1

q∏
j=1

π
yt,j
t,j (1−

q∑
j=1

πt,j)
1−

∑q
j=1 yt,j (4.17)

where πt,j = E(πt,j|Zt) = E(
exp(µt,j)

1+
∑q
i=1 exp(µt,i)

), which could be approximated by the High-

dimension Gaussian Quadrature. Quasi-Newton optimization methods is then applied to
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maximize the likelihood function (4.17), and estimate the parameter βj—-a d-dimensional

vector.

For example, a first-order model is given by

µt,j = logitπt,j = log
πt,j

1−Σqi=1πt,i
, where

µt,j
indp∼ N(ηt,j = βj,0 + βj,1Yt−1,1 + βj,2Yt−1,2 + βj,3Yt−1,3, σ

2
j ), j = 1, 2, 3

and is denoted by 1 + Yt−1. A second-order model is labeled 1 + Yt−1 + Yt−2 and ηt,j consists

of the above plus a linear combination in terms of Yt−2,1, Yt−2,2, Yt−2,3. In the same manner

we carry out up to the fourth-order model fitting.

Fokianos and Kedem (2003) applied regression-type methods for the same data. They

employed the multinomial logit model defined by Agresti (1990, section 9.2) below:

Let the tth observation of m categorical time series be expressed by the vector Yt =

(Yt,1, ..., Yt,q)
′ of length q = m− 1, with elements

Yt,j =


1 if the jth category is observed at time t,

0 otherwise.

(4.18)

for t=1,...,N and j = 1, ..., q. Denote by πt = (πt,1, ..., πt,q)
′ the vector of conditional proba-

bilities given Ft−1, where

πt,j = E(Yt,j|Ft−1) = p(Yt,j = 1|Ft−1),

j = 1, ..., q. The σ-field Ft−1 is generated by Zt−1 = (y∗t−1, x
∗
t ) and x∗t stands for the covariates.

Through the logit link-type function, we have

πt,j =
exp(Z′t−1βj)

1+
∑q
i=1 exp(Z

′
t−1βi)

, j = 1, ..., q

Here βj,j = 1, ..., q, are d-dimensional regression parameters and Zt−1 is a corresponding

d-dimensional vector of stochastic time-dependent covariates independent of j.

For example, in this DNA data analysis, the first-order model is given by:

log(
πt,j(β)

πt,4(β)
) = βj,0 + βj,1Yt−1,1 + βj,2Yt−1,2 + βj,3Yt−1,3 j = 1, 2, 3. (4.19)
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For the purpose of comparison, Table 4.6 lists the models applied to the DNA sequence

data and Table 4.7 reports the inferential results from both state-space and regression

methods, where the second column lists the number of estimated parameters, the third

column reports the deviance of the model D and the next two columns correspond to AIC

and BIC cirteria. The last two columns give the values of the likelihood ratio test statistics

together with their p-values for testing the order of the model.

Table 4.6: Candidate models for the gene BNRF1 of the Epstein-Barr virus DNA sequence
data
Model 1 1 + Yt−1

Model 2 1 + Yt−1 + Yt−2

Model 3 1 + Yt−1 + Yt−2 + Yt−3

Model 4 1 + Yt−1 + Yt−2 + Yt−3 + Yt−4

Table 4.7: Comparison of various-order models for the gen BNRF1 of the Epstein-Barr virus
DNA sequence data(N=1000)

Model Order p D AIC BIC λn p-value
Independent 6 2713.025 2725.025 2754.47

Model 1 15 2649.49 2679.49 2753.108 63.53 < 0.000001
State-space Mode 2 24 2628.96 2676.96 2794.75 20.53 0.0149

Model 3 33 2606.93 2672.93 2834.88 22.03 0.0088
Model 4 42 2599.049 2683.049 2889.17 7.88 0.545

Independent 3 2711.31 2717.31 2732.02
Model 1 12 2677.75 2701.75 2760.60 33.56 0.0001

Regression Mode 2 21 2664.27 2706.27 2809.25 13.48 0.1420
Model 3 30 2648.41 2708.41 2855.52 15.86 0.0698
Model 4 39 2639.39 2714.39 2905.63 12.02 0.2121

Based on the AIC and likelihood ratio test, the state-space method chooses 3-order model as

the best model, while regression type method also selects 3-order model while only Yt−1and

Yt−3 as the covariates of the linear part.

We also predict the transition probabilities by each model. For the regression model,the

transition probability P (Yt = i|Yt−1 = j, Yt−3 = l) for i, j, l=1,2,3,4 are estimated by sub-

stitution of the maximum partial likelihood estimators into the regression equation of πt,i

using (4.19). Table 4.8 reports the transition probabilities among the different states where,

for example, if Yt−3 = A and Yt−1 = T , then the transition probability to Yt = C is equal to

0.2592.
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Table 4.8: Estimated transition matrix from model 1 +Yt−1 +Yt−3 for the gen BNRF1 of the
Epstein-Barr virus DNA sequence data(N=1000)

Yt
Yt−3 Yt−1 A C G T

A A 0.2004 0.2915 0.3389 0.1692
C 0.2756 0.3097 0.2089 0.2058
G 0.2352 0.3257 0.3219 0.1172
T 0.1583 0.2592 0.3526 0.2299

C A 0.1479 0.2889 0.3828 0.1804
C 0.2107 0.3179 0.2443 0.2271
G 0.1763 0.3279 0.3692 0.1266
T 0.1149 0.2526 0.3916 0.2409

G A 0.2167 0.3069 0.3342 0.1422
C 0.2972 0.3251 0.2053 0.1724
G 0.2511 0.3384 0.3135 0.0970
T 0.1738 0.2770 0.3531 0.1961

T A 0.1643 0.2335 0.3652 0.2370
C 0.2289 0.2513 0.2279 0.2919
G 0.2001 0.2705 0.3596 0.1688
T 0.1249 0.1997 0.3656 0.3098

Similarly, for state-space model, plug in the linear coefficients obtained by maximizing the

likelihood function (4.17), to approximate πt,j, which is the mean of transition probability

πt,j given Zt (see Table 4.9).

Table 4.9: Estimated transition matrix from model 1 +Yt−1 +Yt−2 +Yt−3 for the gen BNRF1

of the Epstein-Barr virus DNA sequence data(N=1000)

Yt

Yt−1 Yt−2 Yt−3 A C G T

A A A 0.1778251 0.2290601 0.298148 0.2949668

C 0.125896 0.3350852 0.2454728 0.293546

G 0.1857601 0.2433225 0.3222724 0.248645

T 0.1247395 0.3089377 0.2520591 0.3142637

C A 0.1276695 0.3103511 0.2471709 0.3148085

C 0.0838423 0.4207186 0.1884157 0.3070234

G 0.1339133 0.3312549 0.2685522 0.2662796

T 0.0837368 0.3910701 0.1951154 0.3300777

G A 0.2217018 0.3479214 0.1825425 0.2478343
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Yt

Yt−1 Yt−2 Yt−3 A C G T

C 0.1460276 0.4725163 0.1392451 0.242211

G 0.232239 0.3698909 0.1972054 0.2006647

T 0.1475015 0.4446206 0.1460377 0.2618402

T A 0.2198668 0.2655186 0.2296538 0.2849608

C 0.1524703 0.3801538 0.1848987 0.2824772

G 0.2300745 0.2824692 0.2485773 0.238879

T 0.1522858 0.3533922 0.1914619 0.3028601

C A A 0.2696437 0.1291132 0.1631762 0.4380669

C 0.2051667 0.2031658 0.1446181 0.4470494

G 0.302782 0.1470468 0.188293 0.3618782

T 0.1945817 0.179912 0.1432068 0.4822995

C A 0.1980809 0.1797594 0.1396695 0.4824902

C 0.1406626 0.2634615 0.1150578 0.4808181

G 0.2280212 0.2092807 0.1642482 0.3984499

T 0.1335763 0.2339403 0.1144074 0.518076

G A 0.3428175 0.1991569 0.1008562 0.3571694

C 0.2518036 0.3019434 0.0859406 0.3603124

G 0.3694143 0.2184261 0.1125526 0.299607

T 0.2468405 0.2757763 0.0875697 0.3898135

T A 0.321375 0.1439127 0.1205135 0.4141988

C 0.2443886 0.2261899 0.1066105 0.422811

G 0.3566548 0.162203 0.1378338 0.3433084

T 0.2340492 0.2021491 0.1064831 0.4573186

G A A 0.1747397 0.225158 0.299624 0.3004783

C 0.1239013 0.3298966 0.2470877 0.2991144

G 0.1826734 0.2394073 0.3242196 0.2536997

T 0.1225878 0.3037134 0.253355 0.3203438

C A 0.1254795 0.3051336 0.2484676 0.3209193

C 0.0825822 0.4145577 0.1898275 0.3130326

G 0.1318396 0.3262773 0.2704566 0.2714265

T 0.0823287 0.3846537 0.1962389 0.3367787

G A 0.2188321 0.3436233 0.1843542 0.2531904
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Yt

Yt−1 Yt−2 Yt−3 A C G T

C 0.1443034 0.4672584 0.1408131 0.2476251

G 0.2291571 0.365286 0.1991811 0.2063758

T 0.1457092 0.4394632 0.1475975 0.2672301

T A 0.2165566 0.2616201 0.2313515 0.2904718

C 0.1503757 0.3750927 0.1865335 0.2879981

G 0.2267111 0.2785109 0.2506232 0.2441548

T 0.1500188 0.3482641 0.1929188 0.3087983

T A A 0.1495064 0.1160819 0.3861615 0.3482502

C 0.114884 0.1845877 0.3461148 0.3544135

G 0.1582605 0.1250562 0.4233102 0.2933731

T 0.1102353 0.1648526 0.3444842 0.3804279

C A 0.1131971 0.1661743 0.3390087 0.3816199

C 0.0821611 0.2494251 0.2866353 0.3817785

G 0.1219395 0.182062 0.3775234 0.3184751

T 0.0788968 0.2231167 0.2860206 0.4119659

G A 0.2161584 0.2051858 0.2758648 0.302791

C 0.1566986 0.3073668 0.2325749 0.3033597

G 0.2264731 0.2186897 0.299252 0.2555852

T 0.1546952 0.2823492 0.2379602 0.3249954

T A 0.1970832 0.1436332 0.3178453 0.3414383

C 0.1490883 0.2247163 0.2801112 0.3460842

G 0.208696 0.1548014 0.348621 0.2878816

T 0.144328 0.2024803 0.2812717 0.37192

From Table 4.7, we can see that, compared with the regression model, except the inde-

pendent model, our observation-driven state-space model reduces AIC and BIC values in

every order model although we have more parameters being estimated .

Also, from the probability of prediction Table 4.8, 4.9, if we predict the possible outcomes

based on the highest probability indicting by the highlight numbers, we see that the state-

space model is able to predict ’A’ which has lowest frequencies of appearance in the DNA

sequence; Also the state-space model predicts the probabilities much more accurately (86

vs.52 out of 200) than the regression type models.



Chapter 5

Categorical Time Series Models for Contingency tables

5.1 Introduction

Fokianos and Kedem (2003) have discussed regression models for categorical time series.

See also Fahrmeir and Kaufmann (1987), Fokianos and Kedem (1998), Kaufmann (1987),

and Kedem (1980). Consider a bivariate binary time series {Yt}, t=1,2,..., where Y (t) =

(Y1(t), Y2(t))′, and

Yi(t) =


1 if event i occur at time t

0 otherwise

i = 1, 2.

Suppose we observe Y (t) for n(t) independent individuals at time t. One can then construct

a sequence of (2x2) contingency tables: for t=1,2,...,

Y2(t)
0 1

Y1(t) 0 n00(t) n01(t)
1 n10(t) n11(t)

where nuv(t)=number of times Y1(t) = u and Y2(t) = v among the n(t) individ-

uals; u, v=0,1. Note that
∑ ∑

nuv(t) = n(t). For each fixed t , the count vector N(t) =

(n00(t), n01(t), n10(t), n11(t))′ is assumed to be a multinomial vector with cell probabilities

{puv(t)},u, v=0,1, and index(assumed non-random) n(t). If {N(t)}, t=1,2,..., are indepen-

dent over time, one can apply standard generalized linear regression modeling techniques

for the (marginal) means µi(t) = E(Yi(t)), i=1,2, and the pairwise log-odds ratio (LOR)

40
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λ12(t) = log(p11(t)p00(t)
p01(t)p10(t)

),

which is a measure of association between Y1(t) and Y2(t). In this chapter, we consider the

case when {N(t)}, t=1,2,..., is a sequence of dependent multinomials.

We present four models for {Y (t)} (and hence {N(t)}) in Section 5.2. Section 5.3 is

concerned with parameter estimation for the models. The models are applied to two real

data sets and the results are reported in Section 5.4. Some concluding remarks are presented

in Section 5.5.

5.2 Model Specification

We present four models for contingency data analysis. Models 1 to 3 are based on regression

type models and Model 4 is an observation-driven state space model.

Model 1 Conditional Exponential Family

Suppose that conditional on Ft−1 = σ(yt−1, yt−2, ...) the joint density function of Y (t) =

(Y1(t), Y2(t))′ is given by

p(Yt|Ft−1) ∝ exp[θ0(t) + θ1(t)Y1(t) + θ2(t)Y2(t) + θ3(t)Y1(t)Y2(t)], (5.1)

where θ0(t) = ln(p00(t)), θ1(t) = log(p10(t)
p00(t)

), θ2(t) = log(p01(t)
p10(t)

) and θ3(t) = log[p11(t)p00(t)
p01(t)p10(t)

].

Here puv(t) denotes the conditional probabilities given Ft−1. Note that (5.1) is just a repa-

rameterization of

p(Yt|Ft−1) =
∏

u,v=0,1

(puv(t))
ξuv(t), (5.2)

where

ξuv(t) =


1 if Y1(t) = u and Y2(t) = v

0 otherwise.

Since p00(t) = 1 − p01(t) − p10(t) − p11(t), it suffices to model θi(t), i=1,2,3, as functions

of past observations. Using the model (5.1) for n(t)i.i.d observations Y (j)(t),j = 1, ..., n(t),
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where Y (j)(t) denotes the observation corresponding to the jth individual at time t, we have

p(N(t)|Ft−1) ∝ exp[θ0(t)n(t) + θ1(t)(n10(t) + n11(t)) + θ2(t)(n01(t) + n10(t)) + θ3(t)n11(t)].

(5.3)

The log-likelihood function based on the contingency data {N(t)}, t=1,...,N, is then given

by

lnL(θ) =
N∑
t=1

[θ0(t)n(t) + θ1(t)(n10(t) + n11(t)) + θ2(t)(n01(t) + n11(t)) + θ3(t)n11(t)]. (5.4)

It is convenient to find the mean parameters via θi(t), i=1,2,3,:

µ1(t) = E(Y1(t)|Ft−1), µ2(t) = E(Y2(t)|Ft−1), and µ3(t) = E(Y1(t)Y2(t)|Ft−1). Note

that µi(t) = −∂θ0(t)
∂θi(t)

, where θ0(t) = log(p00) is a function of {θi(t), i = 1, 2, 3}. We also have

µ1(t) = p10(t) + p11(t), µ2(t) = p01(t) + p11(t), and µ3(t) = p11(t).

Consider the model

θi(t) = βi0 + βi1log(
n01(t− 1)

n00(t− 1)
) + βi2log(

n10(t− 1)

n00(t− 1)
) + βi3log(

n11(t− 1)n00(t− 1)

n01(t− 1)n10(t− 1)
), (5.5)

i=1,2,3. The parameters θi(t) and hence µi(t) have natural interpretation for the contingency

data. More specifically, if {θi(t)} are of main interest, Model 1 would be a useful model to

consider.

Model 2 Multinomial-Logit Model

For notational simplicity, we now onwards label n00(t), n01(t), n10(t) and n11(t) as n1(t), n2(t), n3(t)

and n4(t) respectively. Denote, as before, N(t) = (n1(t), n2(t), n3(t), n4(t))′. Suppose

p(N(t)|Ft−1) ∝
4∏
i=1

(pi(t))
ni(t) (5.6)

where pi(t) = P (Y (t) = i|Ft−1). Thus, conditional on Ft−1, N(t) is assumed to have a

multinomial distribution as in Model 1.

We now proceed to model pi(t) via the logit transformation. Let

φi(t) = logit(pi(t)) = log(
pi(t)

p4(t)
), i = 1, 2, 3, (5.7)
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where φi(t) = αi0 +
∑3

j=1 αijUj(t−1), i = 1, 2, 3, and Uj(t−1) = logit(ni(t−1)
n(t−1)

) = log(ni(t−1)
n4(t)

).

The likelihood function is given by

L(α) =
N∏
t=1

4∏
i=1

(pi(t))
ni(t), (5.8)

where {pi(t)} are modeled by (5.7). Note that Models 1 and 2 are both multinomial regression

models with different parameterizations. If the probabilities {pi(t)} are of direct interest,

Model 2 would be more appropriate.

Model 3 Markov Chain Model

Suppose {Y (t)} is a Markov chain with states 00,01,10 and 11 labeled as 1,2,3,4, and homo-

geneous transition probabilities {pij(t)} defined by pij = p(Yt = j|Yt−1 = i), i, j=1,2,3,4.

Assuming stationarity, we have

πj(t) = p(Yt = j) =
4∑
i=1

πi(t− 1)pij, (5.9)

j=1,...,4. Given Ft−1 = σ(yt−1, yt−2, ...) , we may approximate the stationary probabilities

πj(t) by

π∗j (t) =
4∑
i=1

(
ni(t− 1)

n(t− 1)
)pij. (5.10)

Note that π∗j (t) is obtained from πj(t) by replacing πi(t − 1) by the corresponding sample

proportions ni(t−1)
n(t−1)

. Our assumed model now is

p(N(t)|Ft−1) =
4∏
j=1

(π∗j (t))
nj(t), (5.11)

where {π∗j (t)} are defined by (5.10)which depend on the transition probabilities {pij}. Define

θij = logitpij = log(
pij
pi4

), i = 1, ..., 4,  = 1, 2, 3. (5.12)

The likelihood function is then given by

L(θ) =
N∏
t=1

4∏
j=1

(π∗j (t))
nj(t)

=
N∏
t=1

4∏
j=1

4∑
i=1

(
ni(t− 1)

n(t− 1)
)pij(θ),

(5.13)
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where pij(θ) = (1 +
∑3

j=1 e
θij)−1eθij , i=1,...,4, j=1,2,3 and pi4 = 1 −

∑3
j=1 pij(θ) = (1 +∑3

j=1 e
θij)−1. If the one-step transition probabilities are of primary interest, Model 3 should

be considered.

Model 4 A State Space Model

We now present a multinomial-Dirichlet state-space model for the count process {N(t)}. The

observation densities are assumed to be conditionally independent multinomials:

p(N(t)|π(t)) ∝
4∏
i=1

(πi(t))
ni(t), t = 1, ..., N. (5.14)

The state densities conditional on past data are assumed to be Dirichlet:

p(π(t)|Ft−1) ∝
4∏
i=1

(πi(t))
ri(t)−1 (5.15)

where ri(t) are functions of the past data Ft−1 and
∑4

i=1 ri(t) = n(t). From (5.14) and (5.15)

the forecast density of N(t) given Ft−1 is given by the multinomial-Dirichlet distribution:

p(N(t)|Ft−1) ∝
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4∏
i=1

(πi(t))
ni(t)+ri(t)−1dπ1(t)dπ2(t)dπ3(t)dπ4(t)

∝
4∏
i=1

Γ(ni(t) + ri(t))

Γ(ri(t))

∝
4∏
i=1

ni(t)∏
j=1

(ri(t) + j − 1).

(5.16)

Note that E(πi(t)|Ft−1) = ri(t)
n(t)

= µi(t), say. We then have E(ni(t)|Ft−1) = n(t)µi(t) = ri(t).

We now model µi(t) via the logit link function, viz,

logitµi(t) = U ′(t− 1)βi, i = 1, 2, 3, (5.17)

with µ4(t) = 1−
∑3

i=1 µi(t), U
′(t−1) = (1, logitni(t−1)

n(t−1)
, i = 1, 2, 3), and βi = (βi0, βi1, βi2, βi3)′.

The likelihood function is given by

L(β) =
N∏
t=1

p(N(t)|Ft−1) =
N∏
t=1

4∏
i=1

ni(t)∏
j=1

(ri(t) + j − 1). (5.18)

In Model 4, the cell probabilities {πi(t)} are considered as random variables and E(πi(t)|Ft−1) =

µi(t) are of primary interest.
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5.3 Parameter Estimation

A common feature of all the four models introduced in Section 2 is that the count process

{N(t)} is a (vector) Markov process of first order having the property

p(N(t)|Ft−1) = p(N(t)|N(t− 1)). (5.19)

The parameters of interest in Models 1 to 4 are different. For the purpose of parameter

estimation, we may exploit the Markovity in (5.19) to study the asymptotic properties of

ML estimators. The generic likelihood function for Models 1 to 4 is

L(θ) =
N∏
t=1

pθ(N(t)|N(t− 1)) (5.20)

where θ is the vector of parameters in the model. The main regularity conditions for the

consistency and asymptotic normality of the ML estimator θ̂ can be formulated in terms of

the score vector Sn(θ) = ∂lnL(θ)
∂θ

and the sample information matrix Jn(θ) = −∂2lnL(θ)
∂θ∂θ′

, given

below:

(c.1) n−1Jn(θ)
p−→ F (θ), where F (θ) denotes the limiting Fisher information matrix

which is assumed to be non-singular.

(c.2) n−
1
2Sn(θ)

d−→ N(0, F (θ)).

(c.3) n−1[Jn(θn)− Jn(θ)]
p−→ 0, for any θn

p−→ θ.

Condition (c.1) can be verified by using a law of large number(or checking the ergodicity

of the Markov process {N(t)}, see, for instance, Tweedie (1975)). A martingale central limit

theorem yields(c.2). See Hall and Heyde (1980). Various sufficient conditions are available in

the literature to verify (c.3). See, for instance, Billingsley (1961). Under (c.1),(c.2) and (c.3)

we have

Theorem 3.1 There exists a consistant solution θ̂ of the equationSn(θ) = 0 with prob-

ability tending to 1, and
√
n(θ̂ − θ) d−→ N(0, F−1(θ). (5.21)

See Billingsley(1961) for a proof.
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It is to be noted that covariates, say {xt}, can be included in Model 1,2,4 by simply

adding a term xTt to the linear component of each model (5.5), (5.7) and (5.17). One can

then use regularity conditions such as those of Kaufmann(1987) for the asymptotic theory.

Since in Model 3, the transition probabilities {puv} are themselves of interest and they are

assumed to be independent of time, it would not be useful to include covariates in Model 3.

In this paper we do not consider models with covariates.

5.4 Data Analysis

To illustrate the application of the above models, two sets of data are analyzed. The first

example is from Baltimore Eye Survey Study and the second is about IBM stock price and

Dow Jones Index data.

Example 4.1: Baltimore Eye Survey Study

In this example, a bivariate binary response is recorded for each subject indicating whether

or not an eye (left and right) was visually impaired (VI) (vision less than 20/60) as defined

by State of Maryland driving regulations. The explanatory variables include age in years

grouped into 4 categories: 40-50, 51-60, 61-70, 70+; race (white, black) and eye (right, left).

The scientific interest is to characterize the prevalence of VI in terms of age and race. See

Liang, Zeger and Qaqish (1992). At each time t,where t = {40− 50, 51− 60, 61− 70, 70+},

we create the contingency table for black and white separately as below:

Table 5.1: Contingency Table at time t, t={40-50,51-60, 61-70, 70+}

Eye
Left Right

Prevalence VI Yes n1(t) n2(t)
No n3(t) n4(t)

Table 5.2 is the time-dependent contingency table we create based on Table5.1

Table (5.3)lists the observed probabilities which are calculated by pi(t) = ni(t)
n(t)

, i=1,2,3,4;

t=2,3,4.
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Table 5.2: Prevalence of VI left and right eyes for age and race combination in the Baltimore Eye
Survey Study

Race t Age n1(t) n2(t) n3(t) n4(t) n(t)
1 40-50 15 19 617 613 1264
2 51-60 24 25 557 556 1162

White 3 61-70 42 48 789 783 1662
4 70+ 139 146 673 666 1624

1 40-50 29 31 750 748 1558
2 51-60 38 37 574 575 1224

Black 3 61-70 50 49 473 474 1046
4 70+ 85 93 344 336 858

Table 5.3: The observed probabilities in Baltimore eye survey analysis

Race Age Observed probabilities pi
51-60 0.0190 0.0215 0.4793 0.4802

White 60-71 0.0253 0.0289 0.4747 0.4711
71+ 0.0845 0.0900 0.4149 0.4106

51-60 0.0310 0.0302 0.4690 0.4698
Black 61-70 0.0478 0.0468 0.4522 0.4532

71+ 0.0991 0.1084 0.4009 0.3916

We fit the data and do model selection for each type of proposed models. After that, we use

the selected models to do probabilities predictions and the results of conditional exponential

model, multimomial-logit model, Markov chain model and multinomial-Dirichlet model are

listed in the following tables separately (Table (5.4), Table (5.5), Table (5.6) and Table (5.9)).

Table 5.4: Baltimore eye survey analysis results by mulitnomial-logit type model

Race Age Predicted probabilities (p̂i)
51-60 0.021 0.029 0.4891 0.4669

White 60-71 0.0250 0.0303 0.4794 0.4653
71+ 0.0829 0.0892 0.4104 0.4175

51-60 0.0294 0.0293 0.4735 0.4678
Black 61-70 0.0499 0.0482 0.4636 0.4383

71+ 0.0624 0.0711 0.6006 0.2659
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Table 5.5: Baltimore eye survey analysis results by conditional exponential model

Race Age Predicted probabilities(p̂i)
51-60 0.0216555 0.020848 0.4765396 0.480956

White 61-70 0.0273647 0.027 0.472587 0.473047
70+ 0.079254 0.09064 0.4110337 0.4190715

51-60 0.0304 0.02955 0.4703 0.4698
Black 61-70 0.04973 0.05019 0.4523 0.4478

70+ 0.09489 0.1068 0.3990 0.3993

Table 5.6: Baltimore eye survey analysis results by Markov chain model

Race Age Predicted probabilities(p̂i)
51-60 0.0397 0.0422 0.4600 0.4581

White 60-71 0.0455 0.0509 0.4538 0.4499
71+ 0.0519 0.0556 0.4469 0.4455

51-60 0.0426 0.0469 0.4552 0.4553
Black 61-70 0.0545 0.0566 0.4447 0.4442

71+ 0.0704 0.0723 0.4289 0.4284

For the Markov chain method, in addition to the predicted probabilities, we can also esti-

mate one-step transition probabilities. These transition probabilities provide further insight

into one-step changes in the contingency tables.

Table 5.7: One-step transition matrix for white people resulting from Markov chain model

Meaning of state state 1 2 3 4
Left eye impaired 1 0.0316 0.9668 0.0000 0.0016

Right eye impaired 2 0.9053 0.0935 0.0002 0.0010
Left eye good 3 0.0037 0.0152 0.0427 0.9384

Right eye good 4 0.0493 0.0451 0.9056 0.0000

Now state 1 stands for the case that left eye is impaired; state 2 for right eye is impaired;

state 3 is for left eye is not impaired; and state 4 is for right eye is not impaired. In Table

(5.7), for white people, p12 = 0.9668 and p21 = 0.9053 meaning that if the patient’s one eye

is impaired, the other eye will be impaired with high probability later; while p34 = 0.9384
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Table 5.8: One-step transition matrix for black people resulting from Markov chain model

Meaning of state state 1 2 3 4
Left eye impaired 1 1.0000 0.0000 0.0000 0.0000

Right eye impaired 2 0.0005 0.9995 0.0000 0.0000
Left eye good 3 0.0263 0.0000 0.3406 0.6331

Right eye good 4 0.0235 0.0562 0.6067 0.3136

and p43 = 0.9056 indicating that if the patient’s one eye is not impaired, the other eye won’t

be impaired either. On the other hand, in Table (5.8) for the black people, p11 = 1.0000 and

p22 = 0.9995 means that one eye does not affect later the other eye. These are interesting

observations from the estimated transition probabilities in Tables (5.7, 5.8).

Table 5.9: Baltimore eye survey analysis results by mutinomial-Dirichlet model

Race Age Predicted probabilities(p̂i)
51-60 0.0233 0.0224 0.500 0.4543

White 60-71 0.0339 0.0416 0.4800 0.4445
71+ 0.0704 0.0755 0.4067 0.4475

51-60 0.0313 0.0279 0.4552 0.4553
Black 61-70 0.05563 0.0542 0.4398 0.4497

71+ 0.0875 0.1015 0.4066 0.4044

From Tables (5.4, 5.5, 5.6, 5.9), we see that different methods perform differently when

comparing the predicted probabilities with the observed probabilities. In general, conditional

exponential model, multinomial-logit and multinomial- Dirichlet models outperform Markov

chain model, but Markov chain model provides more information in term of the one-step

transition probabilities; Conditional exponential model works very well for both white and

black people, multinomial-logit model predicts better for white people while multinomial-

Dirichlet model gives more precise predictions for black people.



50

Example 4.2: IBM and Dow Jones Index data

We collected IBM stock price and Dow Jones Index data from 2004 to 2006. For each

quarter, we calculated the number of days they both increase, represented by n11, they

both drop, represented by n00, number of days IBM stock prince dropped while Dow Jones

Index went up,represented by n01 and IBM stock price went up while Dow Jones Index

dropped,represented by n10. Thus we created the contingency Table (5.10). The corre-

sponding observed probabilities are listed in Table (5.11).

Table 5.10: Contingency Table for IBM & DowJone Data

Quarter n00 n01 n10 n11 n(t)
1 28 5 11 18 62
2 27 13 6 16 62
3 26 8 11 19 64
4 20 6 12 26 64
5 27 9 11 14 61
6 28 12 8 16 64
7 26 13 5 20 64
8 25 9 11 18 63
9 24 13 9 16 62
10 30 8 6 19 63
11 25 7 10 21 63
12 19 9 15 20 63

Table 5.11: IBM and DJ data observed probabilities during 12 quarters

Quarter Observed probabilities
2 0.4355 0.2097 0.0968 0.2581
3 0.4063 0.1250 0.1719 0.2969
4 0.3125 0.0938 0.1875 0.4063
5 0.4426 0.1475 0.1803 0.2295
6 0.4375 0.1875 0.1250 0.2500
7 0.4063 0.2031 0.0781 0.3125
8 0.3968 0.1429 0.1746 0.2857
9 0.3871 0.2097 0.1452 0.2581
10 0.4762 0.1270 0.0952 0.3016
11 0.3968 0.1111 0.1587 0.3333
12 0.3016 0.1429 0.2381 0.3175

For each model (Model1 to 4), we fit the data and do model selection, the selected models

are used to predict the probabilities and the results of four different models are listed in the

Table (5.12, 5.13, 5.14, 5.15) below.
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It must be noted that stock prices are notoriously difficult to predict from past data due

to the random walk nature of the data. Nevertheless, the three models do provide some good

estimates of the prediction probabilities.

Table 5.12: IBM and DJ data analysis results by conditional exponential model

Quarter Predicted probabilities (p̂i)
2 0.4003 0.1598 0.1489 0.2909
3 0.3973 0.1432 0.1469 0.3127
4 0.4007 0.1621 0.1491 0.2882
5 0.4017 0.1731 0.1501 0.2752
6 0.4005 0.1609 0.1490 0.2896
7 0.3988 0.1504 0.1478 0.3030
8 0.3963 0.1391 0.1463 0.3183
9 0.4008 0.1633 0.1492 0.2867
10 0.4002 0.1584 0.1487 0.2927
11 0.3966 0.1402 0.1465 0.3168
12 0.4004 0.1604 0.1489 0.2903

Table 5.13: IBM and DJ data analysis results by Markov chain model

Quarter Predicted probabilities(p̂i)
2 0.3691 0.1749 0.1505 0.3054
3 0.4157 0.1442 0.1350 0.3050
4 0.3876 0.1707 0.1520 0.2896
5 0.3775 0.1618 0.1997 0.2610
6 0.3970 0.1834 0.1220 0.2976
7 0.4089 0.1572 0.1313 0.3025
8 0.4119 0.0861 0.1594 0.3427
9 0.3953 0.1730 0.1465 0.2851
10 0.4205 0.1637 0.1334 0.2824
11 0.3809 0.1391 0.1566 0.3233
12 0.3809 0.1604 0.1687 0.2900
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Table 5.14: IBM and DJ data analysis results by multinomial-logit type model

Quarter Predicted probabilities(p̂i)
2 0.3805 0.1984 0.1391 0.2820
3 0.4084 0.1410 0.1396 0.3110
4 0.3993 0.1650 0.1458 0.2899
5 0.3794 0.1379 0.2140 0.2688
6 0.4112 0.1891 0.1067 0.2929
7 0.4116 0.1577 0.1267 0.3040
8 0.3926 0.1170 0.1816 0.3088
9 0.4070 0.1654 0.1387 0.2889
10 0.4222 0.1556 0.1282 0.2940
11 0.3794 0.1406 0.1672 0.3128
12 0.3882 0.1527 0.1701 0.2891

Table 5.15: IBM and DJ data analysis results by mutinomial-Dirichlet model

Quarter Predicted probabilities(p̂i)
2 0.3796 0.1783 0.1435 0.2985
3 0.4053 0.1441 0.1419 0.3088
4 0.3978 0.1662 0.1487 0.2873
5 0.3750 0.1415 0.2167 0.2667
6 0.4131 0.1890 0.1107 0.2872
7 0.3863 0.2089 0.1224 0.2824
8 0.3868 0.1211 0.1816 0.3105
9 0.4060 0.1676 0.1430 0.2835
10 0.4212 0.1601 0.1343 0.2844
11 0.3747 0.1405 0.1633 0.3215
12 0.3852 0.1541 0.1710 0.2897
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5.5 Concluding Remarks

In this chapter, we have presented four related models for time series of (2x2) contingency

tables. The models exploit the basic multinomial structure of the data and introduce time-

dependence using a regression type approach. A state space model is also introduced using

an observation-driven state process. The models are applied to two real data sets. Maximum

likelihood estimation and model selection are discussed for the data applications, and the

prediction probabilities are computed for the four models.
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