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Abstract

Wavefunction-based methods in quantum chemistry provide simultaneously the most accurate, but

also most expensive method for computing molecular properties. In particular, the realm of “sub-

chemical” accuracy better than 1.0 kcal mol−1 has now become feasible even for difficult combus-

tion intermediates. However, accurate methods must treat electron correlation, leading to problems

which explode in cost as N6 or worse in the number of atoms. More compact representations of

the wavefunction are necessary to further increase the scope and accuracy. Explicitly-correlated

methods have recently emerged which mathematically represent the wavefunction directly in the

interelectronic distance r12, providing a much more natural representation of the electron corre-

lation. Herein we develop a series of explicitly-correlated (R12) methods suitable for open-shell

radicals in combustion problems. These R12 methods are compared to existing methodologies such

as the focal point approach (FPA), demonstrating their utility in combustion thermochemistry.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW



1.1 Towards Subchemical Accuracy from Ab Iniito Quantum Chemistry

With recent advances in both theoretical algorithms and computational power, the “dream” of com-

puting thermochemical parameters entirely from first principles to “subchemical accuracy” better

than 1.0 kcal mol−1 is now being realized.1–4 Perhaps nowhere is this more significant than in

combustion where massive and complicated reaction schemes make the experimental isolation of

individual, elementary rate constants an arduous task. Consider for example the combustion of

methanol shown schematically in Figure 1.1.5 Only the initiation steps are shown, already demon-

strating significant mechanistic complexity. At least 84 elementary reactions have been identified

in the complete reaction scheme, indicating the enormous difficulty of performing a controlled ex-

periment to determine particular rate constants. Barrier estimates have ranged from 13.8 to 17.1

kcal mol−1 even for the seemingly simple reaction of HO2 addition to ethylene!6,7

CH3OH
+ M

+ O2

+ OH

CH2OH
+ O

- OH

-HO2

-H2O

-M, -OH
CH3

+H
-H2O

+HO2

-H2O2

+M
+O2

-HO2
-H, -M

CH2O

FIGURE 1.1: Reaction scheme for initiation of methanol combustion

Subchemical accuracy is absolutely essential if accurate kinetic models are desired. For combus-

tion in particular, numerous kinetic models have been developed, including master equations with
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RRKM,8,9 QRRK,10 and more approximate modified strong collider schemes.11 All of these models

are very sensitive to the barrier heights, with errors of even a few kcal mol−1 resulting in as much

as sevenfold changes in predicted branching fractions.8 The 3.3 kcal mol−1 uncertainty for the HO2

addition reaction above is therefore clearly not acceptable if combustion models are to be correct

within even an order of magnitude. As demonstrated herein, ab initio quantum chemistry has now

advanced such that the numerous reaction intermediates and corresponding reaction barriers can

now be computed with better than 1.0 kcal mol−1 accuracy.

The fundamental challenges of theoretical quantum chemistry can be essentially distilled to

the solution of eigenvalue equations involving N-electron wavefunctions. In particular, to every

physical observable corresponds a linear, Hermitian operator whose eigenvalues are the observed

quantities.12 In its most famous form, this appears as the time-independent Schrödinger equation

ĤΨ = EΨ (1.1)

where the Hamiltonian, Ĥ, is the Hermitian operator representing the observed energy. The solution

of the resulting many-body differential equations is certainly non-trivial. Indeed, the complexity

of the exact wavefunction grows exponentially with system size - the problem of the “exponential

wall” Walter Kohn emphasized in his Nobel speech.13 While a computation on molecular oxygen,

for example, may take only a few hours, the same computation on combustion intermediates of

propane may take longer than the age of the universe! The impracticality of exact solutions to

the Schrödinger equation has therefore created the need for approximate wavefunctions which

incorporate the most important physical effects without exponential scaling.

In the simplest-possible method, Hartree-Fock,14,15 the total energy can be computed to better

than 99 % accuracy for an individual molecule. However, since even for hydrogen molecule the total

electronic energy is more than 600 kcal mol−1, a residual error of one percent is clearly chemically

significant. In this regard, ab initio quantum chemistry must rely on cancellation of related errors for

computing energy differences rather than rigorous computation of total energies. The complexity of

the solution required for subchemical accuracy will therefore depend on the “degree of difference”

between products and reactants. In the simple case of alkane rotation around a single bond,
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for example, the various conformers will have a very similar electronic structure and the ground

electronic excited state is well-separated from any excited electronic states. In this regard, even

a very primitive wavefunction model may be sufficient. For combustion, however, the systems are

open-shell. The transition states between intermediates furthermore require breaking and forming

new bonds, leading to an electronic structure that varies significantly from species to species. In

this regard, a much more accurate treatment of the wavefunction will be required as subtle new

physical effects introduced no longer lead to cancellation of errors.

Again, while brute-force mathematics via the Schrödinger equation leads theoretically to an

exact answer, we must develop an approximate wavefunction ansatz which achieves subchemical

accuracy while remaining computationally feasible. In this regard, we develop here in the introduc-

tion the important concepts related to constructing molecular wavefunctions. Physical insight is

used to guide the mathematics, eventually leading to a systematically improvable series of approx-

imations that, even for difficult combustion problems, achieves the gold standard of subchemical

accuracy.

1.2 The Many-Body Problem in Wavefunction Mechanics

For the hydrogen atom with only a single electron, an exact, non-relativistic solution can be ob-

tained in which the spectrum of one-electron solutions are a sequence of “orbitals” of gradually

increasing diffuseness and angular momentum.12 Under the clamped nucleus (Born-Oppenheimer)

approximation, if the mutual Coulomb repulsion of electrons is omitted from the Hamiltonian, this

conceptual picture of one-electron orbitals can be extended to exact, many-body solutions. It is

therefore the electron correlation resulting from their Coloumb charge repulsion that presents the

fundamental challenge in wavefunction mechanics. One recent review16 has even dubbed electron

correlation “the many-body problem at the heart of chemistry.”

The exact mathematical definition of electron correlation in the statistical sense implies17

Γ(~r1, ~r2) 6= 1

2
ρ(~r1)ρ(~r2) (1.2)
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Here Γ(~r1, ~r2) is two-particle density distribution given by integrating over all possible positions of

electrons 3 . . . N

Γ(~r1, ~r2) =

∫
ψ∗(~r1, ~r2, . . . , ~rN )ψ(~r1, ~r2, . . . , ~rN )d~r3 . . . d~rN (1.3)

Equation (1.2) essentially expresses that the exact, spinless two-electron density distribution, Γ,

is not expressible as the product of independent one-electron distributions, ρ. Building from the

hydrogen atom, the simplest possible representation of an N-electron (fermionic) wavefunction is

the Slater determinant, an antisymmetrized product of orbitals.

|φ1(1)φ2(2) . . . φN (N)| = ÂNφ1(1)φ2(2) . . . φN (N) (1.4)

= φ1(1)φ2(2) . . . φN (N)− φ1(2)φ2(1) . . . φN (N) + . . . (1.5)

where ÂN is an antisymmetrizer which introduces all possible (antisymmetric) permutations of

electrons ensuring that the Slater determinant is a valid fermionic wavefunction. For a single-

determinant, the electron-electron interaction is only treated in an average sense with individual

electrons correlating only with a mean electric field rather than explicitly correlating with each

individual electron. Indeed, for the lowest singlet state of helium in which the 1s orbital is doubly-

occupied, denoting ~s as the composite spin-space coordinate

ψ(~s1, ~s2) =
1√
2
χ1s(~r1)χ1s(~r2)[α(1)β(2)− β(1)α(2)] (1.6)

which leads after spin-integration to

Γ(~r1, ~r2) =
1

2
|χ1s(~r1)|2|χ1s(~r2)|2 (1.7)

=
1

2
ρ(~r1)ρ(~r2) (1.8)

demonstrating that the spatial distribution of the two electrons is in fact uncorrelated. In contrast,

for lowest triplet state of helium, the spatial part of the wavefunction is now antisymmetric with
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respect to particle exchange

ψ(~s1, ~s2) =
1

2
[χ1s(~r1)χ2s(~r2)− χ2s(~r1)χ1s(~r2)] [α(1)β(2) + β(1)α(2)] (1.9)

leading to a correlated 2-particle density containing interference terms

Γ(~r1, ~r2) =
1

2
|χ1s(~r1)|2|χ2s(~r2)|2 +

1

2
|χ2s(~r1)|2|χ1s(~r2)|2 − χ∗1s(~r1)χ∗2s(~r2)χ2s(~r1)χ1s(~r2) (1.10)

Even the one-particle picture expressed by the Slater determinant therefore incorporates some

measure of electron correlation. However, the physical effect encapsulated by this correlation is

simply the forced antisymmetry of the electrons as fermions rather than any instantaneous spatial

correlation based on their mutual Coulomb repulsion. In this regard, the interference terms in

(1.10) are incorporating a “Fermi correlation” rather than a “Coulomb correlation.” By choosing

to represent the wavefunction as an antisymmetrized product of orbitals, we are able to incorporate

the static exchange interaction between electrons, but are still neglecting the important spatial

correlation of electrons.

In constructing more exact representations of the wavefunction, the conceptually simple or-

bital picture can still be maintained. In particular, given a complete a basis set of one-electron

orbitals, a complete determinantal basis for the Hilbert space of N-electron wavefunctions can be

constructed.18 In this way, an arbitrary N-electron wavefunction can be constructed as a multideter-

minantal expansion. As a first approximation to the electron correlation, one can use second-order

perturbation theory.19 The Hamiltonian is partitioned

Ĥ = Ĥ0 + λV̂ (1.11)

into a zeroth order part, Ĥ0 and a perturbation, V̂ which is modulated by a strength parameter

λ. A zeroth order reference determinant, Φ0 is computed, and successive perturbative corrections

to the first order wavefunction are gradually included to higher order in the strength parameter

λ. In the most popular formulation, second-order Møller Plesset perturbation theory (MP2), the
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zeroth order operator is chosen as the Fock operator, F̂ which includes the electron kinetic energy,

nuclear attraction, and mean-field electron interaction. In this way, the the perturbation is meant

to incorporate the missing Coulomb correlation.

Including terms in the multideterminantal expansion up to second order in λ avoids the ex-

ponential complexity of the exact wavefunction. However, if the orbital representation of the

wavefunction is used, the MP2 ansatz still leads to a system of equations scaling as O(N5) in the

system size. Even given that dramatic computational cost, the physical correlation captured by the

MP2 ansatz is far from exact. Most notably, the MP2 determinantal expansion truncates with only

those determinants differing from the reference function Φ0 by at most two orbitals. In this way,

MP2 essentially correlates only two electrons at a time. From physical intuition, three-body and

higher effects are expected to be much less significant than pairwise correlation. However, rigorous

benchmarking has now shown that even three-particle and four-particle correlations can contribute

on the chemically significant scale of 1 to 10 kcal mol−1. However, the already dramatic cost of the

two-particle approximations in MP2 becomes an N7 cost in the simplest formulation, CCSD(T),

incorporating three-body effects. As the particle rank (level of many-body effect) increases past

three electrons, the computational cost continues to accelerate, rapidly leading to wavefunction

ansätze which are only tractable for systems involving a few electrons.

Beyond the intrinsic cost of these approximate wavefunctions, the demands of the underlying

one-particle orbital basis set itself become problematic. The wavefunction cannot be expressed

exactly as a finite, closed sum over an infinite basis. An approximate, finite computational orbital

basis must therefore be introduced. Even for a given particle-rank, the approximate two-body

or three-body effects will then not be exactly evaluated. Again, building from the known exact

solutions for the hydrogen atom, an arbitrary one-electron function can be written in spherical

coordinates

F (r, θ, φ) =
∑
n,l,ml

Cn,l,mlRnl(r)Yl,ml(θ, φ) (1.12)

where the expansion coefficients Cn,l,ml are unique for the given function. In practice, the exact
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hydrogen radial functions Rnl(r) are replaced by Gaussian basis functions20

Rnl = exp(αnlr
2) (1.13)

but any set of complete functions can be chosen for computational convenience. Equation (1.12)

expands an arbitrary function as partial waves, separating the function into radial and angular

components. The computational cost of the orbital basis rapidly grows with increasing angular

momentum. The partial wave expansion must then be rapidly convergent for a tractable, high-

accuracy treatment of the wavefunction. For hydrogen-like ions, a closed-form solution exists for a

specific l,ml value. The partial wave expansion is therefore finite (it is a single term), and in that

sense rapidly converges. Even though an infinite partial wave expansion is necessary if spherical

symmetry is broken, the series converges with an exponential decay for one-electron systems,21 and

high-accuracy can therefore be obtained with only a few terms.

This partial wave expansion can be extended to functions of many-electrons. For helium,

exploiting spherical symmetry, we can write

ψ(~r1, ~r2) = ψl(r1, r2)Pl(θ12) (1.14)

where θ12 is the angle between electrons and Pl is a Legendre polynomial incorporating the angular

dependence. Here, ψl depends on the radial position of the two electrons. In this sense, the

electron correlation has been partitioned into an angular correlation - the electrons will tend to

occupy opposite sides of the helium nucleus - and a radial correlation - the electrons will tend to

avoid simultaneously being near the helium nucleus. In contrast to the one-electron, case, however

the series is now very slow to converge with increasing values of l. Unlike the exponential decay

exhibited for one-electron systems, the individual terms only decay as (l+ 1
2)−1/4. Truncating at a

particular value of l therefore leads to a cumulative residual error that decays only as l−3. Ensuring

a sufficient number of Gaussian functions to saturate the radial component of the wavefunction,

the total computational time has been demonstrated to grow empirically as l12. The residual error

will therefore decay at the painfully slow rate of t−1/4 in the total computational time!

8
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FIGURE 1.2: Coalescence cusp and Coulomb hole shape for gradually increasing levels of angular momentum (l)

The physical reasons for this slow convergence are now understood as the mathematical difficulty

of describing the cusp in the wavefunction at the coalescence point between two electrons.22–24 At

coalescence, the singularity in the Coulomb repulsion energy must be offset by a corresponding

singularity in the kinetic energy, leading to a cusp and surrounding depletion of electron density or

Coulomb hole. Kato would later show that for singlet pairs the correct spherically-averaged shape

of the Coulomb hole is given by the cusp condition24

lim
r12→0

(
∂Ψ(r12)

∂r12

)
av

=
1

2
Ψ(r12 = 0) (1.15)

which demonstrates that the wavefunction shape should depend linearly on the interelectronic

distance, r12. The slow convergence can be easily demonstrated by plotting two-electron density

near the coalescence point (Figure 1.2). In particular, for Neon, if we place the two electrons on

a ring at 1.0 a0 as shown in Figure 1.3, we can examine the shape of the electron density as the

two electrons are brought to coalescence. The shape of the Coulomb hole is demonstrated for a

sequence of basis sets with gradually increasing angular momentum in Figure 1.2.
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θ12

FIGURE 1.3: Schematic of coordinate system for coalescence cusp diagram

The cusp region, while still significant for small l values, rapidly becomes the only significant

energetic contribution for higher angular momentum terms in the partial wave expansion. In fact,

solving for the first-order wavefunction via second-order perturbation theory demonstrates the

limiting result25

lim
l→∞

ψl =
1

2
(r12)lΦ (1.16)

(r12)l =
1

2l + 3

rl+2
<

rl+1
>

− 1

2l − 1

rl<

rl−1
>

(1.17)

where Φ is the reference function and r< is the smaller of r1 and r2. In this regard, the only

physical effect included in higher partial waves is the electron cusp. As emphasized above, the most

conceptually and computationally simple representation of the wavefunction is a multideterminantal

expansion since it retains the physical picture of single-electron orbitals. However, due to the

limitations imposed by an approximate, finite orbital basis, the cusp problem cannot simply be

overcome by a brute force approach. Saturating the orbital basis with high-angular momentum

functions will quickly lead to an unreasonable computational cost. Achieving an accurate, but

compact representation of the wavefunction is therefore simply not possible by employing only

orbital products as N-electron basis functions.

A compact representation of the cusp region can be obtained by employing two-particle basis
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functions depending explicitly on the interelectronic distance, r12. In this way, the cusp region can

be included exactly through only a few explicitly-correlated terms instead of requiring a cumber-

some orbital expansion. Considering again second-order perturbation theory, we can employ the

wavefunction ansatz for the first-order correction

ψ = χ+
1

2
r12Φ (1.18)

in which χ is a perturbative contribution expanded in orbitals and Φ is a single term involving the

reference function. This leads to a modified differential equation for χ

−(Ĥ0 − E0)χ = (Û − E1)Φ (1.19)

involving a modified, non-singular perturbation

Û = −1

2

~r1 − ~r2

r12
· (~∇1 − ~∇2) (1.20)

The cusp requirement is therefore removed for χ, and the orbital expansion will be rapidly conver-

gent. Conceptually, we can also consider the r12-dependent terms as a change of coordinates

~r = ~r1 − ~r2 (1.21)

~R =
1

2
(~r1 + ~r2) (1.22)

from independent to explicitly-correlated electronic coordinates. This aligns with physical intuition

as the most natural coordinate for describing electron correlation is the interelectronic vector ~r.

Conflicting mathematical priorities therefore occur in which the mean-field physical effects are

most naturally described through independent-electron orbitals, but the instantaneous electron

correlation is most naturally described through explicit r12 terms.

While conceptually simple as a wavefunction ansatz, the explicitly-correlated terms introduce

new complications. If only Slater determinants are employed, the Hamiltonian matrix elements

easily factorize into integrals involving no more than two electrons. In contrast, if explicitly-
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correlated functions are included in the wavefunction, numerous and complicated many-electron

integrals appear. Consider for example a four-electron wavefunction. Computing the Coulomb

repulsion energy for an orbital product yields, for example,

EC =

∫
χi(~r1)χj(~r2)χk(~r3)χl(~r4)

1

r12
χi(~r1)χj(~r2)χk(~r3)χl(~r4) d~r1 d~r2 d~r3 d~r4 (1.23)

=

∫
χi(~r1)χj(~r2)

1

r12
χi(~r1)χj(~r2) d~r1 d~r2 (1.24)

in which the dependence on electrons 3 and 4 can be eliminated by a simple overlap integration. In

contrast, if we construct an explicitly-correlated four-electron wavefunction, the Coulomb repulsion

term

EC = fij(~r1, ~r2)fkl(~r3, ~r4)
1

r23
fij(~r1, ~r2)fkl(~r3, ~r4) d~r1 d~r2 d~r3 d~r4 (1.25)

cannot be factorized. These many-electron integrals, already complicated for small systems, will

quickly become overwhelmingly numerous for larger systems. A rigorous explicitly correlated treat-

ment can therefore only be performed on systems containing at most a few electrons.

We are therefore left with a fundamental dilemma in wavefunction mechanics. Orbital-based

representations cannot accurately describe the correlation cusp, but provide a simple mechanism

for computing Hamiltonian matrix elements. In contract, explicitly-correlated wavefunctions pro-

vide a highly-accurate, compact representation of the wavefunction, but lead to intractable matrix

elements. In general, two different approaches to this problem are followed. Orbital-only wave-

functions can be used over a sequence of basis sets, and the effect of higher partial waves can be

estimated by extrapolation. This approach is followed in the so-called Focal Point Approach (FPA)

and forms the basis for the discussion in the first-half of this dissertation. Alternatively, approxi-

mations can be introduced for the difficult matrix elements, which, although no longer computed

exactly, become computationally feasible for large molecules. This approach is followed in the

so-called R12 methods and forms the basis for the discussion in the second-half of this dissertation.
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1.3 Focal Point Approach

As outlined above, is it not computationally feasible to simply follow a brute-force approach in

constructing molecular wavefunctions. The computational cost grows far too rapidly with both

the particle rank (degree of electron correlation) and size of the underlying orbital basis. The so-

called correlation and complete basis set limits are therefore never realized in practice. However,

by constructing a hierarchy of gradually improving approximations, the possibility still exists of

incrementally approaching the correlation and basis set limits. In this regard, the focal point

approach26–29 employs a systematically-improvable series of approximations meant to extrapolate

the exact result, using physical insight where simple computational power fails.

The focal point method is therefore a two-dimensional approximation, estimating the correla-

tion limit (exponential complexity, all electrons simultaneously correlated) and the basis set limit

(infinite orbital basis for exactly representing the wavefunction). At its core, the focal point method

assumes that as the particle rank is increased to incorporate three-body, four-body, and higher ef-

fects, the energetic contributions from each successive rank will monotonically decrease. This is

guided by physical intuition. In a system of ten electrons, for example, the probability of even

six electrons occupying the same region of space is expected to be virtually zero. In fact, the

Pauli exclusion principle demands that the wavefunction have zero amplitude at the coalescence

of three electrons since at least two will have the same spin. While for two-particle effects, we

have demonstrated above that the partial-wave expansion is very slow to converge, one may ask

whether the incremental effect of three-body and higher effects is as demanding. In this regard, if

only the three-body correction to the two-body correlation is desired, the partial wave series might

be truncated at a much lower level, leading to computations which are computationally feasible.

The first dimension of the focal point, the correlation limit, is treated through the coupled-

cluster expansion of the wavefunction30–33

|Ψ〉 = exp(T̂ ) |Φ0〉 (1.26)

where T̂ is an excitation operator that generates a multi-determinantal expansion of the wavefunc-
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tion from a given reference function, usually taken to be the Hartree-Fock determinant. The cluster

operator can be written schematically as

T̂ = T̂1 + T̂2 + T̂3 + . . . (1.27)

where the subscript indicates the particle-rank of the operator, i.e. the number of orbital sub-

stitutions from the reference determinant. Conceptually, each successive cluster operator can be

considered to incorporate progressively higher correlation effects in the wavefunction. An exact

treatment of an N-electron wavefunction would require all cluster operators up to T̂N with rank

N . This is often referred to as the full configuration interaction (FCI) limit. If, for example,

an approximate wavefunction which only incorporates two-body effects were desired, the cluster

operator could be truncated at T̂ = T̂1 + T̂2. By incrementally increasing the rank of the cluster

operator, one converges on the correlation limit in which all electrons are simultaneously correlated.

Each level of theory is denoted by an acronym, for example, CCSD(T) which indicates rigorous

treatment of single and double substitutions with perturbative inclusion of triple excitations. The

focal point method therefore follows the hierarchy HF → MP2 → CCSD → CCSD(T) → CCSDT

→ CCSDT(Q). Again, rather than considering total energy changes, ∆E, for a given reaction, the

focal point method gauges only incremental contributions, for example

δ[CCSD] = ∆ECCSD −∆EMP2 (1.28)

the CCSD incremental correction to the MP2 reaction energy.

The second dimension of the focal point method, the basis set limit, is treated through extrap-

olation techniques. As already noted above, for the Hartree-Fock method (HF), the partial-wave

expansion converges exponentially while for correlated methods it converges as l−3 in the maximum

angular momentum in the basis. The Dunning correlation consistent basis sets34–36 were carefully

calibrated for exactly this purpose, leading to a hierarchy of basis sets denoted cc-pVXZ where X is

the “cardinal number” (X=D, T, Q, 5, . . .). While for historical reasons the XZ stands for double-

ζ, triple-ζ, etc., indicating the number of independent Gaussian functions, the cardinal number
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also indicates the maximum angular momentum l = 2, l = 3, etc. While numerous extrapolation

schemes have been proposed in the literature, the standard choice for correlated methods, e.g. MP2

is the formula37,38

EcorrMP2 = E∞MP2 +BX−3 . (1.29)

where E∞MP2 and B are parameters to be fit and the ∞ denotes the estimated energy in a complete

basis set (CBS). Here only the correlation energy is extrapolated, i.e. the MP2 energy correction

to the Hartree-Fock energy

EcorrMP2 = EMP2 − EHF (1.30)

In a standard treatment, a somewhat brute force approach is applied to the economical Hartree-

Fock and MP2 methods employing up through, e.g. a cc-pV6Z basis set. The Hartree-Fock and

MP2 correlation energies are then extrapolated, estimating the basis set limit of the MP2 two-body

correlation.

DZ

TZ

QZ

5Z

6Z

HF MP2 CCSD CCSD(T) CCSDT

Ba
sis

Correlation

Focal Point Accuracy
Focal Point Tasks

FIGURE 1.4: Schematic of the focal point scheme showing extrapolation to the correlation and basis set limits.

Further corrections along the coupled-cluster hierarchy are then expected to converge much

faster. In particular, the Coulomb cusp has already been accounted for by the MP2 extrapola-
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tion. In this regard, the increment δ[CCSD] is not rigorously incorporating all two-body effects,

but providing only a modest correction to the MP2 perturbative treatment. In this regard, the

onerous cc-pV6Z basis is not necessary, and only a cc-pVQZ basis set might be necessary for an

accurate δ[CCSD]. Extending this reasoning, the increment δ[CCSD(T)] is not rigorously incor-

porating all three-body effects, but providing only a modest three-body correction to the CCSD

reaction energy. In this regard, only a cc-pVTZ basis set might be necessary. Carrying on, the

increment δ[CCSDT(Q)] should further decrease in magnitude, and only a cc-pVDZ basis set might

be necessary for chemical accuracy.

The two-dimensional nature of the focal point extrapolation is shown in Figure 1.4. Conceptu-

ally, the method is extrapolating down along the black line to larger basis sets and more extensive

correlation treatments. Computationally, however, the method is advancing along the blue line,

shrinking the basis set as the correlation treatment is expanded. The focal point method, however,

reaches a fundamental limit at the cc-pVDZ basis set at which the basis set cannot be further mini-

mized. In this regard, for very expensive methods such as CCSDTQ, even a cc-pVDZ computation

might be impossible, and the incremental scheme cannot continue to higher levels of correlation.

In this way, the orbital-based methods are no longer sufficient and a more compact representation

of the wavefunction would be absolutely required to estimate higher-body effects.

1.4 R12 Methods

As outlined above, despite the seeming conceptual simplicity of using explicitly-correlated terms

in the wavefunction, methods employing r12-dependent functions rapidly become intractable due

to the numerous many-electron integrals.39 Directly expanding the wavefunction in explicitly-

correlated, two-particle functions (known as geminals) essentially forms the basis of the Gaussian

geminals approach.40–42 This method, while unrivaled in accuracy, can hardly be applied to systems

containing more than a few electrons.

Rather than modifying the wavefunction, an alternative explicitly-correlated approach is the

transcorrelated Hamiltonian.43–46 A non-unitary transformation of the Hamiltonian is performed

involving r12-dependent terms, leading to a modified differential equation which has no Coulomb
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singularity. In this way, the modified Schrödinger equation expressed by the transcorrelated Hamil-

tonian does not have a cusp requirement, and the partial wave expansion of the wavefunction will

be much more rapidly convergent. While not requiring four-electron integrals, the transcorrelated

approach still leads to three-electron integrals, again preventing application to large molecular

systems.

A possible choice for explicitly-correlated terms would be the simple product of a correlation

factor, F (r12), and Hartree-Fock orbitals, e.g.

fij(~r1, ~r2) = F (r12) |ij〉 (1.31)

where Dirac bra-ket notation is now employed. Usually the correlation factor is of Slater form

F (r12) = exp(−γr12) (1.32)

which incorporates both the correct cusp and Coulomb hole decay. The many-electron integrals

required are therefore of the form

〈
ijkl

∣∣∣∣f(r12)f(r34)

r23

∣∣∣∣ ijkl〉 (1.33)

By introducing a resolution-of-the-identity (RI), the many-electron integrals can be factorized into

products of two-electron integrals, e.g.

〈
ijkl

∣∣∣∣f(r12)f(r34)

r23

∣∣∣∣ ijkl〉 = 〈ij |f(r12)| iα〉 〈kα |1/r12|βj〉 〈βl |f(r12)| kl〉 (1.34)

≈
〈
ij |f(r12)| ip′

〉 〈
kp′ |1/r12| q′j

〉 〈
q′l |f(r12)| kl

〉
(1.35)

where α, β represents the insertion of a formally complete one-electron basis and p′, q′ is some finite,

approximate computational RI basis. If a massive RI basis is required for accurately factorizing the

integrals, clearly no computational efficiency is gained. However, if a reasonably-sized RI insertion

can be obtained by prudent calibration of the basis set, the many-electron integrals do not need
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to be rigorously computed or stored, and only a modest number of two-electron integrals must be

computed. This RI insertion forms the basis for most modern explicitly-correlated methods.39,47–51

In the focal point approach built on orbital-expansions of the wavefunction, the matrix elements

are readily computed and the computational challenge is the determination of a huge number of

variational parameters associated with multideterminantal basis functions. Explicitly-correlated

methods provide a foil to the conventional methods in which a much smaller number of variational

parameters are required, but the Hamiltonian matrix elements provide the computational chal-

lenge. A logical extension of these principles is therefore combining the conventional and explicit

methods. The explicitly-correlated terms might reduce the number of variational parameters, while

the presence of the conventional orbital expansion might simplify the required r12-dependent terms.

This ansatz makes physical sense since the explicitly-correlated terms are well-suited for describing

the wavefunction for small r12 while the orbital-based determinants are better-suited for describing

longer-range correlation. The combination of simple Slater determinants and r12-dependent gemi-

nals in constructing the wavefunction provides the starting point for the R12 methods. The difficult

many-electron integrals are avoided through the RI approximation introduced above. Furthermore,

the basis set requirements on the r12 terms are significantly relaxed since the explicit geminals

are only describing correlation within the Coulomb hole rather than being forced to describe all

electron correlation as is done in the Gaussian geminals method.

1.5 Research Prospectus

While the above discussion provides a conceptual overview of the concerns in high accuracy, ab initio

quantum chemistry, the physical intuition must always be verified through numerical benchmarks.

Additionally, application of these methods in practice requires numerous theoretical subtleties to

be accounted for in the implementation. In the first part of the dissertation, the focal point

approach is therefore applied to gas-phase conformers of the amino acid cysteine, providing rigorous

energetic and structural benchmarks. The physical effects required here are, for example, hydrogen-

bonding, long-range electrostatic, dispersion, or hyperconjugation. As emphasized above, all of

these treatments depend on cancelation of errors. The accurate calculation of absolute energies
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is therefore not necessary as long as relative energies are accurately computed. For cysteine, the

overall electronic structure should not dramatically change with conformation. In this regard, the

differential physical effects such as hyperconjugation and hydrogen-bonding should converge quickly

to the focal point limit down the hierarchy. The conformers of cysteine therefore provide an ideal

test case for testing the convergence of the focal point methods.

In the second part of the dissertation, the focal point approach is applied to the reaction of ethyl

radical with molecular oxygen. The open-shell radicals present significant new challenges relative

to closed-shell species especially for transition states which involve breaking and forming of bonds.

This provides an even more stringent test of the focal point method as correlation treatments much

more extensive than in cysteine are expected to be necessary for chemical accuracy better than 1.0

kcal mol−1. This difficult case pushes the focal point approach to its limit, demonstrating a need

for alternative routes to high accuracy wavefunctions.

In the third part of the dissertation, building on the needs demonstrated by the open-shell ethyl

radical combustion, an initial formulation of R12 methods appropriate for radicals is presented at

the level of second-order perturbation theory. Significant new challenges are encountered extending

the R12 methods to an open-shell coupled-cluster ansatz. As a final component of the dissertation,

experience gained from the MP2 derivation is therefore used to formulate an efficient set of R12 ap-

proximations suitable for higher-level correlation treatments. The highly accurate, but still efficient

open-shell R12 ansatz presented here is therefore the most important result in this dissertation.
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2.1 Abstract

Structures, accurate relative energies, equilibrium and vibrationally averaged rotational constants,

quartic and sextic centrifugal distortion constants, dipole moments, 14N nuclear quadrupole cou-

pling constants, anharmonic vibrational frequencies, and double-harmonic infrared intensities have

been determined from ab initio electronic structure computations for conformers of the neutral

form of the natural amino acid L-cysteine (Cys). A systematic scan located 71 unique conformers

of Cys using the MP2(FC)/cc-pVTZ method. The large number of structurally diverse low-energy

conformers of Cys necessitates the highest possible levels of electronic structure theory to determine

their relative energies with some certainty. For this reason, we determined the relative energies of

the lowest-energy eleven conformers, accurate within a standard error (1σ) of about 0.3 kJ mol−1,

through first-principles composite focal point analyses (FPA), which employed extrapolations using

basis sets as large as aug-cc-pV(5+d)Z and correlation treatments as extensive as CCSD(T). Three

and eleven conformers of L-cysteine fall within a relative energy of 6 and 10 kJ mol−1, respectively.

The vibrationally averaged rotational constants computed in this study agree well with Fourier-

transform microwave spectroscopy results. The effects determining the relative energies of the

low-energy conformers of cysteine are analyzed in detail on the basis of hydrogen bond additivity

schemes and natural bond orbital analysis.

2.2 Introduction

Because amino acids (AA) are the building blocks of proteins and peptides, the structural inves-

tigation of them, extending from solids to the gas phase, has received considerable experimental

and theoretical attention.1 Cysteine (Cys) is the only amino acid with a reactive sulfur moeity. In

this regard, cysteine contributes to diverse structures, including disulfide bonds, zinc fingers, and

Fe-S coordination in iron-sulfur proteins.2 Functionally, disulfide bonds formed from cysteine serve

a central role in glutathione, a mediator of oxidative stress, and strong nucleophilicity also makes

cysteine a key component of the active site in many other enzymes.3,4

In the gas phase, amino acids are intrinsically flexible systems, occurring in their neutral form
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FIGURE 2.1: Labeling scheme for cysteine.

and exhibiting a large number of low-energy conformers. Even glycine, with only three rotatable

single bonds, has eight conformers,1,5,6 five of which have relative energies less than 12 kJ mol−1.

The number of natural amino acids is limited, and the relatively small size of these molecules

allows the application of highly sophisticated quantum chemical methods to study their equilib-

rium and dynamical structures and rotational-vibrational spectra. The number of local minima

on the respective potential energy surfaces (PES) and the structural properties of the related con-

formers, including accurate relative energies, are available for a number of amino acids. A review

summarizing results before 1999 is provided in Ref 1. Given the accuracy of modern electronic

structure techniques, characteriz(ation of the complex PESs of amino acids should precede and

supplement related experimental structural and spectroscopic studies. The most accurate equi-

librium structures (in cases both Born-Oppenheimer and semiexperimental ones) and relative en-

ergies (obtained within the focal point analysis (FPA) approach)7–11 are available for the amino

acids glycine (Gly)5,12,13 alanine (Ala),12,14 threonine (Thr),15 and proline (Pro).16,17 The present

high-level computational study expands the list of structurally well characterized amino acids by

careful investigation of all of the low-energy conformers of L-cysteine (Cys). Cysteine is a good

representative of those amino acids with the added complexity of a side chain capable of substantial

hydrogen-bonding interactions. Substitution of an SH group for one of the H atoms of the methyl
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side chain of Ala introduces two new rotators of significance, those around the Cα-Cβ and Cβ-S

bonds (Figure 2.1). A dramatic increase in the number of possible conformers results. The pres-

ence of three H-bond donors and four H-bond acceptors in Cys allows for the existence of twelve

distinct types of hydrogen bonds (Figure 2.2), including: (a) bifurcated H-bonds between -NH2 and

-COOH, similar to those found in the most stable conformers of Gly5 and Ala;12 (b) simple N-H

donor bonds, like the adducts to sidechain S-H and to carboxylic acid O-H and C=O; (c) sidechain

S-H interactions with nitrogen and the carbonyl or hydroxyl oxygen; and (d) O-H donations to

C=O and to sidechain S-H and NH2. While H-bonds are certainly the main secondary interactions

determining the occurence and relative energies of the conformers of Cys, other structural factors

are also important. These include electronic effects (exchange, electrostatic and hyperconjugative

interactions), as well as steric and dispersive interactions. Detailed investigation of these structural

factors is one of the main goals of this study. In principle, Cys could contain the same conformers

as serine (Ser), its OH analogue. However, since the interactions in Cys are weaker than in Ser

(the thiol group of the side chain has comparatively poorer H-bonding characteristics), the barriers

separating the conformers are expected to be smaller and in some instances may even disappear.

In such a case, Cys would exhibit fewer unique conformations than Ser.

Previous ab initio electronic structure computations performed on Cys include studies on its

conformational behavior19 and on its various physical properties, including proton affinities and

ionization potentials.20 Schäfer et al.21 investigated 10 conformers of Cys at the RHF/4-21G level

and established conformational trends. Gronert and O’Hair18 located 42 conformers at several

levels of ab initio electronic structure theory, including RHF/6-31G* and MP2/6-31+G*. Re-

cently, Dobrowolski and co-workers22 located 51 conformers using the B3LYP and MP2 methods

in conjunction with the aug-cc-pVDZ (and in some cases aug-cc-pVTZ) basis set. The computed

B3LYP/aug-cc-pVDZ frequencies were compared to IR matrix isolation spectra, suggesting the

presence of between three and six L-cysteine conformers.

The conformers of cysteine investigated previously range in relative energy by at most 50 kJ

mol−1. The six most stable conformers of Cys lie within 7 kJ mol−1, while altogether 33 conformers

have been identified within a 17 kJ mol−1 range. Alonso et al.23 recently identified five conformers
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FIGURE 2.2: Common hydrogen bond motifs and approximate interaction strengths, where known.14,18

Approximate relative energies of conformers can be treated additively as the difference between the sum of
near-atom interactions.

within 10 kJ mol−1 using laser ablation and Fourier-transform microwave spectroscopy (FTMW).

It is clear that the highest possible levels of electronic structure theory must be employed to obtain

definitive energetics for these structurally diverse but energetically similar conformers.

The present study yielded, as primary information, accurate equilibrium structures and relative

energies, as well as spectroscopic molecular parameters related to the vibrational and rotational

spectra of the most important conformers of Cys. In turn, the large number of computed molecular

properties allowed the investigation of a number of interesting computational issues. These include

systematic errors in the geometries, bracketing the errors in relative energies for different theories,

anharmonicity and zero-point vibrational corrections, and the electron correlation effects in prop-
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erties such as quadrupole coupling constants. In particular, the focal point convergence is assessed,

demonstrating the degree of correlation and basis set size necessary for achieving subchemical

accuracy on the order of 1.0 kJ mol−1.

2.3 Computational Details

Most of the atom-centered Gaussian basis sets selected for the electronic structure computations

of this study contain both polarization and diffuse functions, both of which are needed for the de-

termination of accurate structures and relative energies of H-bonded systems.24 The subcompact

3-21G25,26 basis lacks these functions, and thus it was used only for pre-screening the conform-

ers at the Hartree-Fock27 level of theory. The correlation-consistent, polarized-valence (aug)-cc-

p(C)V(n+d)Z, n = 2(D), 3(T), 4(Q) basis sets of Dunning and co-workers28–32 were employed

extensively for geometry optimizations and single-point energy computations within the FPA ap-

proach.7–11 The augmented (aug) basis sets contain diffuse functions, while tight functions neces-

sary for treating core correlation are contained in the core-polarized (C) basis sets. In addition, the

+d notation indicates a set of tight d-functions for second-row atoms to rectify problems with the

originally designed correlation-consistent sets and thus smooth basis set extrapolations for sulfur-

containing molecules. For Cys, the aug-cc-pV(D+d)Z, aug-cc-pV(T+d)Z, aug-cc-pV(Q+d)Z, and

aug-cc-pV(5+d)Z basis sets contain 233, 492, 891, and 1458 CGFs, respectively. Only pure spherical

harmonics were employed in all basis sets used in this study.

Electronic wave functions were determined in this study by the single-configuration, self-consistent-

field, restricted Hartree-Fock (RHF) method,27,33 by second-order Møller-Plesset perturbation the-

ory (MP2),34 and by coupled cluster (CC) methods35,36 including all single and double excitations

(CCSD)37 as well a perturbative correction for connected triple excitations [CCSD(T)].38 Addi-

tionally, energies and geometries were determined using the hybrid density functional B3LYP.39–41

Both the T1 diagnostics of coupled cluster theory42,43 (0.014) and qualitative bonding principles

indicate that the conformers of Cys are well described by single-reference correlation methods. The

seven lowest 1s-like orbitals along with the sulfur 2s and 2p orbitals were kept as frozen core (FC)

in all post-Hartree-Fock treatments.
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The electronic structure program packages MAB-ACESII,44 MPQC,45–47 MOLPRO,48 and

Gaussian0349 were used extensively in this study.

2.3.1 Geometry Optimizations

Initial structures for the geometry optimizations of the conformers of Cys were found by sys-

tematically varying the six most important dihedral angles (see Figure 2.1). The thiol carbon,

τ(S11-Cβ-Cα-C5), and amine groups, (H3-N1-Cα-Cβ), were rotated in 30◦ increments, while the

carboxylic acid plane, τ(O6-O7-C5-Cα), thiol hydrogen, τ(H12-S11-Cβ-Cα), carboxyl hydrogen,

τ(H8-O7-C5O6), and Cα-Cβ bond, τ(S11-Cβ-Cα-N1), were rotated in 120◦ increments, resulting

in a preliminary set of 11664 starting structures. The initial geometries were optimized at the

HF/3-21G level until the Cartesian displacements between optimization steps were less than 10−4

bohr. Redundant conformers were identified by checking that energies and geometries were equiv-

alent within a given threshold. Energies were considered to be the same if they were within 10−7

Eh, while bond lengths and angles were required to be within 0.001 Å and 1.0◦, respectively. In

total, a set of 90 unique HF/3-21G conformers were found.

The HF/3-21G structures were reoptimized at the frozen-core MP2/cc-pVTZ level. When

MP2(FC)/cc-pVTZ geometry optimizations were performed, some of the higher-energy HF/3-21G

conformers disappeared, yielding a final set of 71 conformers for Cys, according to the same unique-

ness criteria given above. The eleven MP2/cc-pVTZ conformers within 10.0 kJ mol−1 of the lowest-

energy structure were chosen for a more detailed analysis. These structures were reoptimized at

the frozen-core MP2/aug-cc-pV(T+d)Z level. Following a scheme first employed for glycine,5 the

conformers are numbered by Roman numerals (see Figure 2.3), reflecting the energy ordering de-

termined at the MP2(FC)/aug-cc-pV(T+d)Z level. Similarly to Dobrowolski,22 we choose a series

of dihedral angles to uniquely identify conformers, assigning each angle as C (cis, 30 < τ < +30),

T (trans, 150 < τ < 210), G+ (gauche, +30 < τ < +90), G− (gauche, −90 < τ < −30), A+

(anticlinal, +90 < τ < +150), or A− (anticlinal, −150 < τ < −90). This notation is equivalent

to the Klyne-Prelog specification,50 but we use the terms cis, gauche, and trans instead of syn-

periplanar, synclinal, and antiperiplanar, respectively. In particular, we identify the conformers
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FIGURE 2.3: Pictorial representation of the eleven lowest-energy conformers of L-cysteine (Cys). See Figure 2.1 for
numbering. The labeling scheme identifies conformers based on the series of dihedral angles τ(H8-O7-C5-O6),
τ(N1-Cα-C5-O6), τ(N1-Cα-Cβ-S11), τ(C5-Cα-Cβ-S11), and τ(N1-Cα-S11-H6). A sixth identifier can be added for the
dihedral angle of the nitrogen lone pair relative to the Cα-C5 bond in cases of ambiguity.

via the dihedral angles τ(H8-O7-C5O6), τ(N1-Cα-C5-O6), τ(S11-Cβ-Cα-N1), τ(S11-Cβ-Cα-C5), and

τ(N1-Cα-S11-H12). τ(H8-O7-C5O6) specifies the carboxyl group as cis or trans, τ(N1-Cα-C5-O6)

identifies the type of carboxyl-amine hydrogen bond, τ(S11-Cβ-Cα-N1) and τ(S11-Cβ-Cα-C5) define

the backbone of the molecule, and τ(N1-Cα-S11-H12) gives the orientation of the thiol hydrogen

relative to the amine. For some conformers, e.g. Cys-II and Cys-VIII, the orientation of the amine

lone pair relative to the C5-Cα bond must also be specified to uniquely identify the conformer.

The 71 conformers located here exceed those of Dobrowolski et al.,22 and Gronert and O’Hair,18

who observed only 51 and 42 distinct Cys conformers, respectively. Their initial search tested 324
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starting geometries at the AM1 level, resulting in a preliminary set of only 58 conformers. In

contrast, our initial search was performed at the HF/3-21G level on an initial set of over 10,000

starting geometries, yielding a preliminary set of 90 conformers. Because it is highly likely that

the 71 distinct MP2(FC)/cc-pVTZ conformers located here exist in reality, it seems that the 20

conformers were missed in previous work due to the AM1 preoptimization step.

2.3.2 Focal Point Analysis (FPA)

In order to obtain relative energies as accurately as possible, the focal point analysis (FPA) approach

as outlined in the methods section was utilized. The eleven lowest-energy structures of Cys (Figure

2.3), obtained at the MP2(FC)/aug-cc-pV(T+d)Z level, were included in the FPA investigation.

Extrapolation of the energies to the complete basis set (CBS) limit at the RHF and MP2 levels

was performed, as part of the FPA approach. For HF, the total energy was extrapolated using the

formula En = ECBS + A exp(−Bn) with n={3, 4, 5} where A and B are adjustable parameters,

En is the RHF total energy for a correlation-consistent basis set aug-cc-pV(n+d)Z, and ECBS is

the Hartree-Fock limit. For MP2, the correlation energies (EMP2
n ) were extrapolated according to

EMP2
n = EMP2

CBS + Bn−3.51 Coupled-cluster energy corrections were treated additively, since the

electron correlation contributions to the conformational energies at higher levels of theory do not

change significantly with the size of the basis set.

Since the Born-Oppenheimer, non-relativistic Hamiltonian was employed, additional auxiliary

corrections can be included where higher accuracy is desired. Relativistic corrections estimated

via the scalar mass-velocity and Darwin terms52 and diagonal Born-Oppenheimer corrections

(DBOC)53 were deemed negligible. In similar FPA studies performed on the conformers of pro-

line16 and threonine,15 the relativistic corrections to the conformational energies turned out to be

minuscule. Additionally, only valence electrons are correlated in the focal point treatment. Given

the prohibitive cost of a rigorous treatment of core correlation at the CCSD(T) level, an estimate

of core correlation effects was obtained at the MP2/aug-cc-pCVTZ level.
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2.3.3 Spectroscopic Parameters

For the eleven lowest-energy conformers of Cys, quadratic force constants were computed at the

B3LYP/aug-cc-pVTZ level using geometries optimized at the same level. Additionally, quartic

force fields in the normal coordinate space were determined at the B3LYP/6-31G* level. No scal-

ing of the force fields or of the resulting vibrational frequencies was attempted. The use of fully

optimized reference geometries during the force field determinations helps to avoid the nonzero

force dilemma.54 Anharmonic, fundamental vibrational frequencies of the Cys conformers were

computed by applying the VPT2 formalism55 to the quartic force fields. Whenever a Fermi res-

onance appeared, the corresponding contribution to the fundamental frequency was evaluated by

eliminating the associated terms in the expression for the anharmonic constants and then explicitly

diagonalizing the 2 x 2 Hamiltonian matrix for the resonating states. The optimized structures

obtained at the MP2(FC)/aug-cc-pVTZ level were used to determine the equilibrium rotational

constants, while the quadratic and cubic force fields from B3LYP/6-31G* yield the quartic and

sextic centrifugal distortion constants in the A-reduced representation, respectively. Additition-

ally, quadrupole coupling constants are reported at the MP2 level using a “locally dense” basis set

composed of the standard cc-pVTZ functions on carbon, sulfur, oxygen, and hydrogen and the cc-

pCV5Z functions on nitrogen. The quadrupole coupling constant is determined by the electric field

gradient at nitrogen so that the combination of a locally dense basis and MP2 generally produces

good results. This approach is justified with numerical results for ammonia later in the discussion.

2.3.4 Zero-Point Vibrational Corrections

Zero-point vibrational energies (ZPVE) were obtained as harmonic and anharmonic values at the

B3LYP/aug-cc-pVTZ and B3LYP/6-31G* levels, respectively. Some ambiguity exists in the com-

putation of zero-point energies based on anharmonic force fields. For molecules with many normal

modes, resonances occur in the energy denominators of the related second-order vibrational per-

turbation theory (VPT2)55 expressions. Here, we employ the approach of Allen et al.,56 in which

the oft-neglected G0 term is included to obtain an expression for the zero-point vibrational energy
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completely devoid of resonance denominators. The working equations are

ZPV E =
1

2

∑
i

ωi −
1

32

∑
ijk

φiikφjjk
ωk

− 1

48
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ijk

φ2
ijk

ωi + ωj + ωk
+

1

32

∑
iijj

φiijj + Zkinetic (2.1)

and

Zkinetic = −1

4

∑
α

Bα
e

1 +
∑
i>j

(ξαij)
2B

α
e (ωi + ωj)− (ωi − ωj)2

ωiωj

 (2.2)

where the φijk and φijkl are cubic and quartic force constants in reduced normal coordinates,

Bα
e denotes the rotational constant for axis α, and the ξαij are Coriolis coupling constants. The

total zero-point vibrational energies obtained directly from Gaussian03 were quite similar to those

from (2.1), but contained discrepancies as large as 30 cm−1 for some conformers. Both our method

and Gaussian03 include the oft-neglected G0 term,57 which is a constant term involving a sum

over higher-order vibrational force constants and vibration-rotation interaction terms. However, in

contrast to our approach, Gaussian03 includes anharmonic effects by summing over the average of

the harmonic and fundamental frequencies58

ZPV E =
1

4

∑
i

(ωi + νi) +G0 −
1

4

∑
i

xii (2.3)

where xii is the diagonal anharmonic constant for mode i. The anharmonic corrections to the

ZPVE in Gaussian 03 therefore avoid resonance denominators by including the explicit 2 x 2

matrix diagonalization for resonating states, in contrast to our approach which avoids resonance

denominators by computing ZPVE directly in terms of cubic and quartic force constants.

Anomalously large VPT2 anharmonic shifts are observed for rotation of the S-H bond in some

conformers, Cys-IV, Cys-VI, and Cys-XI. In general, for conformers IV, VI, and XI, the thiol hy-

drogen is near the amino group, and the thiol rotation is strongly coupled to the NH2 wag. Because

of this coupling, VPT2 breaks down for these modes, resulting in unphysically large anharmonic

shifts. In (2.1) we exclude those force constants involving at least one mode for which VPT2 gives

an anomalous fundamental frequency.
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2.3.5 Natural Bond Orbital Analysis

The natural bond orbital (NBO) method transforms the molecular orbital picture into a localized

description based on the intuitive Lewis structures of molecules.59–63 The NBO scheme decomposes

the 1-particle density matrix into formally occupied 1-center core orbitals and lone pairs (nX) and

2-center bonding orbitals (σX−Y, πX-Y), which correspond naturally to bonds drawn in a Lewis dia-

gram. The localized, Lewis density is transformed to the exact density through delocalizations into

formally unoccupied 2-center antibonding orbitals (σ∗X−Y, π∗X-Y) and unoccupied 1-center Rydberg

orbitals. These delocalizations can be interpreted physically as energy-stabilizing donor-acceptor

interactions between localized orbitals, including conjugation (e.g. π → π∗) or hyperconjugation

(σ → σ∗). Applying perturbation theory gives the leading, second-order energy correction due to

these donor-acceptor interactions as

E2 =
F 2
ia

εi − εa
(2.4)

where Fia is the Fock matrix element between occupied orbital i and unoccupied orbital a, and εi

and εa are the corresponding diagonal Fock matrix elements. Here i and a do not represent canonical

doubly occupied and virtual molecular orbitals, but rather “almost doubly occupied” and “almost

unoccupied” orbitals, respectively. In this regard, the Brillouin condition does not apply so that

the matrix elements Fia, while small, are not rigorously zero. Written this way, the E2 values

indicate the most important relaxation from an idealized, local density to the exact density. For

cysteine, we can therefore assess the importance of hyperconjugation in conformational transitions

through the NBO formalism. Because E2 is based on perturbation theory, it may overestimate the

absolute magnitude of strong interactions in which the energy denominator is small or the Fock

matrix element is large. However, the overall trends should be consistent between conformers.
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TABLE 2.1: Summary of focal point analysis for the relative energies of the eleven most stable conformers of
cysteinea

Basis I II III IV V VI VII VIII IX X XI

∆E(RHF)a DZ 0.00 3.82 -3.91 -0.09 -5.29 7.62 -2.85 3.23 4.57 -2.75 -0.17
TZ 0.00 3.67 -4.00 -0.39 -5.40 7.22 -2.34 3.15 4.27 -2.52 -0.13
QZ 0.00 3.59 -4.02 -0.50 -5.54 7.13 -2.33 2.97 4.06 -2.54 -0.17
5Z 0.00 3.57 -4.04 -0.54 -5.59 7.11 -2.36 2.94 4.02 -2.57 -0.23
CBS 0.00 3.56 -4.06 -0.55 -5.61 7.09 -2.39 2.93 4.01 -2.60 -0.25

δ[MP2]a DZ +0.00 +2.20 +10.67 +8.37 +12.77 +1.80 +11.14 +7.24 +6.90 +12.64 +11.25
TZ +0.00 +2.83 +11.43 +8.98 +14.38 +2.07 +11.64 +7.87 +7.50 +14.46 +12.32
QZ +0.00 +2.94 +11.71 +9.00 +14.40 +2.28 +11.72 +7.82 +7.49 +14.60 +12.62
5Z +0.00 +2.98 +11.74 +8.98 +14.41 +2.32 +11.69 +7.84 +7.52 +14.65 +12.63
CBS +0.00 +3.02 +11.78 +8.95 +14.43 +2.37 +11.66 +7.86 +7.55 +14.71 +12.64

δ[CCSD] DZ +0.00 -0.66 -2.90 -1.84 -3.20 -1.03 -2.92 -2.60 -2.56 -3.32 -3.04
TZ +0.00 -0.70 -3.05 -2.03 -3.64 -1.00 -3.14 -2.83 -2.76 -3.60 -3.30

δ[CCSD(T)] DZ +0.00 +0.42 +1.88 +1.64 +2.04 +0.30 +1.80 +1.08 +1.01 +1.84 +1.85
TZ +0.00 +0.49 +2.06 +1.78 +2.33 +0.32 +1.96 +1.15 +1.07 +2.21 +2.10

∆E CCSD(T) CBS 0.00 6.37 6.73 8.15 7.51 8.78 8.09 9.11 9.87 10.72 11.19
core correction +0.00 +0.13 +0.17 +0.04 +0.33 +0.04 +0.17 +0.21 +0.21 +0.33 +0.21

harmonic ZPVE +0.00 -0.01 -2.19 -2.38 -2.24 -0.71 -1.73 -0.93 -1.00 -1.85 -1.76
anharmonic correction +0.00 +0.08 +0.08 +0.14 +0.21 -0.55 -0.01 +0.21 +0.05 +0.32 -0.10

∆E(FPA) 0.00 6.58 4.79 5.95 5.81 7.56 6.52 8.60 9.13 9.52 9.54

a All values given in kJ mol−1. ∆E denotes a relative energy between conformers. δ denotes an incremement or
correction to ∆E with respect to the preceding level of theory in the hierarachy RHF→ MP2→ CCSD→ CCSD(T).

2.4 Results and Discussion

2.4.1 Relative Energies of Conformers

As observed repeatedly for amino acids, the introductory Hartree-Fock level of electronic structure

theory, independent of the basis set used, is unable to yield the correct relative energies of the

conformers of Cys (Table 2.1). RHF/CBS theory places six conformers (Cys-III, -IV, -V, -VII,

-X, and -XI) lower in energy than the global minimum, Cys-I. While in Gly and Ala the inclusion

of electron correlation tends to decrease the energy differences between the conformers,5,14 in the

case of Cys it increases the energy differences in almost all cases, which might be attributed to the

relatively weak interactions present in Cys. Because sulfur is much more polarizable than oxygen

or carbon, the dipole-induced dipole and dispersion forces should be generally more important in

Cys than in Ala, Ser, or Pro, while S-H hydrogen bonds should be weaker. Accordingly, the MP2
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correlation energy destabilizes all the conformers considered relative to Cys-I, as signified by the

positive δ[MP2] values in Table 2.1, which can be as large as 15 kJ mol−1. This observation also

serves as a warning that the theoretical results obtained with small basis sets and simple electronic

structure methods might change considerably once more rigorous techniques are employed. Com-

pared to δ[MP2], the δ[CCSD] and δ[CCSD(T)] energy increments are relatively small, but can

affect relative energies as much as 3.6 and 2.2 kJ mol−1 for CCSD and CCSD(T), respectively.

Such amounts are clearly substantial when so many conformers are within a window of a few kJ

mol−1. Interestingly, but again in line with earlier work on the conformers of Thr15 and Pro,16 the

relative energies are barely affected by core correlation. Even the largest change is smaller than 0.35

kJ mol−1. In contrast, ZPVE corrections can affect relative energies on the order of 2 kJ mol−1.

Anharmonic corrections to the relative energies were less than 0.21 kJ mol−1 for all conformers

except Cys-VI and Cys-X, for which these shifts were 0.55 and +0.32 kJ mol−1, respectively.

TABLE 2.2: Comparison of conformational energies of L-cysteine (kJ mol−1) for different levels of theory without
zero-point vibrational correction

CCSD(T)/CBSa,b MP2/aV(T+d)Zb CCSD/aV(T+d)Zb RHF/3-21Gc B3LYP/aVTZd

Cys-I 0.00 0.00 0.00 1.26 0.00
Cys-II 6.37 6.49 5.82 11.84 3.93

Cys-III 6.73 7.45 4.35 4.35 7.15
Cys-IV 8.15 8.58 6.57 2.43 8.79
Cys-V 7.51 9.00 5.36 0.00 5.44

Cys-VI 8.78 9.29 8.28 12.68 7.53
Cys-VII 8.09 9.29 6.15 5.23 6.36

Cys-VIII 9.11 11.00 8.16 9.08 6.36
Cys-IX 9.87 11.76 9.00 11.30 7.15
Cys-X 10.72 11.97 8.37 13.05 8.91

Cys-XI 11.19 12.18 8.87 10.04 11.09

a CCSD(T)/CBS denotes the extrapolated value from the focal point analysis. See Table 2.1. b Computed at the
MP2/aug-cc-pV(T+d)Z reference geometries. c Computed at the RHF/3-21G reference geometries. d Computed at
the B3LYP/aug-cc-pVTZ reference geometries.

The MP2(FC)/aug-cc-pV(T+d)Z single-point energies happen to be quite accurate (Table 2.2)

because the CCSD and CCSD(T) increments are usually of opposite sign and partially cancel (Table

2.1). In this regard, many of the MP2 relative energies in Table 2.2 are closer to the FPA results than

their CCSD counterparts. The effect of higher-order correlation from the CCSD(T) perturbative

triples is not negligible, however, and the definitive FPA scheme alters the MP2 energy ordering

of the conformers. In general, B3LYP performs reasonably well for most conformers, but can be
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in error by as much as 2.7 kJ mol−1, as seen in Cys-VIII. While density functional theory can be

useful for zero-point corrections and geometry optimizations, obtaining the correct energy ordering

of so many conformers in such a small energy range (10 kJ mol−1) clearly requires better accuracy

than B3LYP provides. A rigorous energy ordering therefore necessitates correlation treatments as

extensive as CCSD(T) and also considerations inherent in the FPA scheme. The FPA scheme allows

errors to be bracketed based on the observed convergence to the basis set and correlation limits. The

RHF relative energies are converged to better than 0.05 kJ mol−1 with the aug-cc-pV(5+d)Z basis,

and thus there should be virtually no basis set error in our final RHF/CBS results. Similarly, the

MP2/aug-cc-pV(5+d)Z correlation increments match the extrapolated values within 0.12 kJ mol−1

for all conformers, and the associated basis set errors should again be negligible. For the coupled-

cluster increments, the aug-cc-pV(T+d)Z result matches the aug-cc-pV(D+d)Z result within 0.4 kJ

mol−1. In previous work, the CCSD and CCSD(T) increments are essentially converged with a TZ

basis,64 so that the basis set error in the coupled-cluster values should not be greater than 0.2 kJ

mol−1. Assesssing the error due to higher-order correlation and zero-point vibrational corrections

is more difficult. Corrections due to quadruple and higher excitations are generally an order of

magnitude less than CCSD(T) corrections.64,65 Since most CCSD(T) corrections here are on the

order of 12 kJ mol−1, the neglect of higher excitations should introduce an error to the cysteine

relative energies of at most 0.2 kJ mol−1. Zero-point vibrational corrections are generally insensitive

to the level of theory. For example, even MP2 harmonic zero-point corrections with the Huzinaga-

Dunning DZP++ basis66 (double−ζ plus polarization and diffuse functions) match the B3LYP/aug-

cc-pVTZ values within 0.3 kJ mol−1. Since we have accounted for anharmonicity in the present

work, the zero-point error should therefore not be greater than 0.2-0.3 kJ mol−1. In summary,

we estimate a standard error (1σ) of 0.3 kJ mol−1 for our predicted conformational energies,

corresponding to a 95% confidence interval (2σ) of ± 0.6 kJ mol−1. We emphasize that these

uncertainties hold only for the relative energies due to cancellation of errors, and the uncertainty

in the absolute energies will therefore be much larger.
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2.4.2 Geometric Structures

The sophisticated laser ablation FTMW experiments of Alonso et al.23 yielded rotational constants

of several conformers of cysteine, but only for the parent isotopologues. Therefore, the type of re-

finement on collections of isotopologues which has yielded semiexperimental equilibrium structures

for Gly13 and Pro17 cannot be executed at present for any of the conformers of Cys. Consequently,

one must rely on otherwise rather accurate14,17 computed structures when analyzing structural

trends among the conformers of Cys. Two major factors seem to determine the general type of

conformation that Cys can assume. First, the thiol, amine, and hydroxyl groups adopt different

orientations about the Cα-Cβ bond as either gauche or trans. In the discussion to follow, unless

stated otherwise, gauche and trans identify the orientation about the Cα-Cβ bond. Second, the

carboxyl group may assume a cis or trans conformation. Depending on these orientations, dif-

ferent hydrogen bonding patterns can form of the types O-H· · ·N, N-H· · ·O=C, and N-H· · ·OH,

as clearly seen in Figure 2.3. For the trans carboxyl, a strong O-H· · ·N interaction can form as

found in conformers Cys-I, Cys-II, Cys-VI, Cys-VIII, and Cys-IX. For the cis carboxyl, bifurcated

N-H· · ·O bonds form to either the carbonyl oxygen in Cys-III, Cys-IV, and Cys-V or to the hy-

droxyl oxygen in Cys-VII and Cys-XI. The gauche conformers are more sterically crowded than the

trans conformers. However, the gauche conformation brings the thiol group closer to the carboxyl

group, allowing S-H· · ·O interactions. A ring of hydrogen bonds can therefore form, as in Cys-I,

Cys-III, and Cys-VII. For trans conformers, only the amine interacts with the thiol, for example

in Cys-II. As observed previously for other amino acids,14,16 bond lengths and bond angles change

little among the low-lying conformers. Most bonds have a standard deviation of less than 0.004

Å while most bond angles have a standard deviation of less than 2.0◦. There are, however, a

few notable exceptions. The C=O distance has a standard deviation of 0.007 Å with the largest

deviation from the mean being 0.012 Å, occurring in Cys-III. The C=O bond in Cys-III forms a

bifurcated hydrogen bond with the amine group, lengthening the bond and redshifting the carbonyl

stretching frequency. The Cα-C5 has a standard deviation of 0.008 Å, with the largest deviation

from the mean (0.012 Å) occurring in Cys-IV. In general, three strong hyperconjugative interac-

tions are possible for the Cα-C5 bond with the lone pairs from nitrogen, the hydroxyl oxygen, and
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the carbonyl oxygen. The hyperconjugation is strongest when the lone pair is trans to the Cα-C5

bond (see below), and it will lengthen this bond by increasing the antibond occupation. In Cys-IV,

both the amine and hydroxyl groups are unfavorably placed for hyperconjugation, and the Cα-C5

bond distance is only 1.514 Å. In contrast, both the hydroxyl and amine are favorably placed for

hyperconjugation in Cys-I, lengthening the Cα-C5 bond to 1.534 Å. Similarly, in Cys-III the amine

lone pair is trans to the Cα-C5 bond, but the hydroxyl lone pair is unfavorably placed cis. The

Cα-C5 bond therefore has an intermediate value of 1.521 Å.

For bond angles, the largest standard deviations are for the N-C-C angles. The standard

deviation for N1-Cα-Cβ is 2.8◦ with the largest deviation from the mean being 4.0◦ for Cys-VI.

Similarly, the standard deviation for N1-Cα-C5 is 2.8◦ with the largest deviation from the mean

value being 5.4◦ for Cys-XI. The large spread of N-C-C angles is consistent with the trans angle

rule.67 In general, in primary alcohols and amines, if a C-C bond is trans to the X-H bond, the

X-C-C angle will be smaller, owing to both reduced bond repulsion relative to the gauche conformer

and weaker hyperconjugation from the nitrogen lone pair. The change in angle depending on bond

orientation is clearly evident in cysteine. For conformers Cys-I, Cys-VI, Cys-VIII, and Cys-IX, the

N-H bonds are gauche to the Cα-Cβ bond, and the angles are in the range 115◦-117◦. In contrast,

for conformers Cys-II, -III, -IV, -V, -VII, -X, and -XI, the N-H bond is trans to the Cα-Cβ bond, and

the N-C-C angles range from 109◦ to 111◦. The same general trends are observed for the N1-Cα-C5

angles. The angle variations are consistent with strong hyperconjugation from the nitrogen lone pair

to the C-C antibond (nN → σ∗C−C). Following arguments rationalizing tilting of the methyl group,68

the C-C axis generally tilts away from the C-N axis to maximize overlap between the nitrogen lone

pair and the backside lobe of the C-C antibond, strengthening the hyperconjugative stabilization.

In particular, for both Cα-C5 and Cα-Cβ large hyperconjugative interactions (E2 > 20.0 kJ mol−1)

are observed with large C-C-N angles, while weaker interactions (E2 < 16.0 kJ mol−1) are observed

with smaller C-C-N angles.

In the same way for the carboxyl group, if the carboxyl group assumes a cis conformation (O-H

bond trans to the C-H bond), the O-C-C angle is much smaller. This is observed in conformers

Cys-III, Cys-IV, Cys-V, and Cys-VII, all of which have O-C-C angles of approximately 111.5◦. In
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contrast, for conformers Cys-I, Cys-II, Cys-VI, and Cys-VIII with trans carboxyl (O-H bond cis to

the C-C bond), the angles are larger, between 113.5◦ and 114◦. In general, the trans effect seems

weaker for the O-H bond than for the N-H bond. The weaker dependence may be attributed to

the stronger basicity of the amine and therefore stronger n→ σ∗ hyperconjugation. The O-H· · ·N

hydrogen bonding also seems to offset the trans effect, closing the O-C-C angle to maximize the

O-H· · ·N interaction.

TABLE 2.3: Summary of hyperconjugative interactions in kJ mol−1 for varying conformations of L-cysteine about
the Cα-Cβ bond. See (2.4) in text.

X-C-C-Y E2 σX−C → σ∗C−Y E2 σY−C → σ∗C−X <X-C-C <C-C-Y τ(X-C-C-Y)

Gauche Conformers

C5-Cα-Cβ-H10 7.8 12.1 109.7 109.9 175.5
I H4-Cα-Cβ-S11 20.7 9.6 108.4 112.4 178.4

N1-Cα-Cβ-H9 3.8 21.8 115.6 110.3 179.4

C5-Cα-Cβ-H10 6.4 13.7 110.7 108.1 -179.3
III H4-Cα-Cβ-S11 22.1 8.5 107.0 113.3 -178.0

N1-Cα-Cβ-H9 5.5 16.4 110.2 111.3 -172.4

C5-Cα-Cβ-H10 6.2 13.2 110.8 109.0 -179.2
IV H4-Cα-Cβ-S11 20.0 9.0 107.5 112.0 -172.3

N1-Cα-Cβ-H9 5.4 17.4 110.7 110.5 -177.6

C5-Cα-Cβ-H10 8.0 11.2 109.6 111.1 169.5
VI H4-Cα-Cβ-S11 21.1 9.5 108.2 112.3 178.0

N1-Cα-Cβ-H9 3.6 23.0 116.2 109.0 174.1

C5-Cα-Cβ-H10 7.1 13.1 109.7 108.4 176.0
VII H4-Cα-Cβ-S11 21.9 9.1 107.5 113.1 179.3

N1-Cα-Cβ-H9 5.4 17.5 110.3 111.0 -175.1

C5-Cα-Cβ-H10 7.9 11.6 108.3 109.8 170.4
XI H4-Cα-Cβ-S11 21.6 9.0 107.1 112.7 179.5

N1-Cα-Cβ-H9 5.2 18.1 110.6 109.8 179.3

Trans Conformers

C5-Cα-Cβ-S11 17.6 7.7 106.3 113.7 -179.4
II H4-Cα-Cβ-H10 11.9 12.1 108.8 109.6 -177.3

N1-Cα-Cβ-H11 4.8 17.6 110.2 109.6 175.6

C5-Cα-Cβ-S11 14.4 8.8 107.4 112.1 172.2
V H4-Cα-Cβ-H10 11.3 12.1 108.1 109.3 177.6

N1-Cα-Cβ-H11 5.5 16.6 109.9 110.3 177.2

C5-Cα-Cβ-S11 14.9 9.5 110.0 113.0 174.7
VIII H4-Cα-Cβ-H10 12.4 13.2 108.6 109.7 177.2

N1-Cα-Cβ-H11 3.9 21.5 115.6 110.4 174.9

C5-Cα-Cβ-S11 15.1 9.2 109.7 113.3 170.8
IX H4-Cα-Cβ-H10 12.6 12.5 108.4 110.6 179.9

N1-Cα-Cβ-H11 3.8 22.9 115.8 109.2 177.3

C5-Cα-Cβ-H10 7.1 13.3 110.6 108.5 -179.8
X H4-Cα-Cβ-H9 11.8 12.8 109.8 110.4 179.1

N1-Cα-Cβ-S11 11.6 15.2 109.1 113.2 -176.3
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2.4.3 Structural Effects on Relative Energies

As emphasized previously for alanine14 and serine,18 approximate values for the strength of certain

types of hydrogen bonds can be computed and used to rationalize energy differences among the con-

formers. Specifically, the energy of each conformer can be approximated as a sum of stabilizations

from near-atom interactions. The interaction strengths are then fit through a linear regression to

match as closely as possible the conformational energies. Approximate hydrogen bond strengths are

given in Figure 2.2 for the common bonding motifs, as reported in Ref 14. In general, the hydrogen

bond donors can be ranked in the order O-H > N-H > S-H and the hydrogen bond acceptors can

be ranked in the order N > O > S. Additionally, an additive approximation can be applied to

the conformation of the carboxyl group. Based on the formic acid prototype,14 the cis carboxyl is

intrinsically more stable than the trans carboxyl by approximately 18.5 kJ mol−1 irrespective of

hydrogen bonds to other functional groups.

As shown in Figure 2.2, the O-H· · ·N arrangement is the strongest hydrogen bond, matching the

strongest hydrogen bond donor, OH, with the best acceptor, N. We therefore find that the structure

of the global minimum, Cys-I, is stabilized by a strong O-H· · ·N hydrogen bond between the amino

and carboxyl groups. The Cys global minimum is in contrast to that of serine,18 for which the

lowest energy conformer is analagous to Cys-V, exhibiting a strong O-H· · ·N hydrogen bond with

the side chain. The S-H bond in Cys is comparatively a much weaker hydrogen bond donor than

the O-H sidechain in serine so that the trans to cis isomerization of the carboxyl is not enough

to offset the weaker hydrogen bond. Additionally, Cys-I, because of its gauche conformation, can

form three hydrogen bonds whose charge polarization will cooperatively reinforce each other. We

emphasize that our focal point conformational energies should be accurate within a standard error

of 0.3 kJ mol−1 (1σ) or a 95% confidence interval of ± 0.6 kJ mol−1 (2σ). In contrast to previous

studies,22,23 we can therefore definitively say that the energy differences are real physical effects

rather than errors in the underlying computational methods.

In addition to hydrogen bonding, gauche and trans conformations are also affected by steric

repulsion and hyperconjugation. The gauche conformers of cysteine have all three bulky sub-

stituents in close vicinity, increasing steric repulsion. For butane, the trans-gauche difference is
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2.6 kJ mol−1.69 Consequently, steric effects are certainly not negligible in Cys since its eleven

lowest-energy conformers lie in an energy range of 10 kJ mol−1. Hyperconjugation is stronger in

the gauche configuration since the strongly electronegative groups (amine, carboxyl, thiol) are all

antiperiplanar to the electropositive hydrogens. In this regard, the better electron donor orbitals

(σC−H) are matched to the better electron acceptors (σ∗C−N, σ∗C−S). The leading hyperconjuga-

tive interactions in cysteine conformers are listed in Table 2.3. For example, the σC−H → σ∗C−S

interaction is 20.7 kJ mol−1 in the gauche Cys-I while the equivalent σC−H → σ∗C−H interaction is

only 11.3 kJ mol−1 in Cys-V, although the effect is offset somewhat by stronger hyperconjugation

σC−C → σ∗C−S in Cys-V relative to the σC−H → σ∗C−H hyperconjugation in Cys-I. This gauche

effect has been observed previously for difluorosubstituted hydrocarbons and hydroxyproline.70,71

Hyperconjugation and steric effects will therefore tend to offset each other. For some conformers,

the relative energies will therefore be dictated mainly by the hydrogen bonding interactions, owing

to fortuitious cancellation of competing electronic effects.

The importance of hyperconjugation can be seen in the transformation from Cys-IV to Cys-V,

wherein the amine switches from a simple N-H· · ·O bond to a bifurcated N-H· · ·O bond while the

orientation about the Cα-Cβ bond simultaneously goes from gauche to trans. Assuming simple

hydrogen bond additivity, Cys-V should lie 5 kJ mol−1 below Cys-IV due to the larger bifurcated

hydrogen bond energy (Figure 2.2). In fact, the energy difference is less than 1 kJ mol−1. The

S-H· · ·N bond distances are basically equivalent in Cys-IV and Cys-V (2.48 Å versus 2.47 Å), so the

S-H· · ·N interaction should not contribute significantly to the energy difference. The discrepancy

seems to lie in hyperconjugative stabilization of Cys-IV. While steric repulsion is greater in Cys-

IV, the much stronger σC−H → σ∗C−S and σC−H → σ∗C−C donations in Cys-IV relative to the

σC−C → σ∗C−S and σC−S → σ∗C−C delocalizations in Cys-V (Table 2.3) preferentially stabilize Cys-

IV. Perhaps the most interesting conformer is Cys-X, which forms no typical hydrogen bonds in

the sense of near-linear X-H· · ·Y arrangements. The carboxyl plane is perpendicular to the C-N

bond. In this way, the amine seems to form both weak N-H· · ·O-H and N-H· · ·O=C interactions.

Despite positioning the C-N bond trans to the C-S bond, Cys-X exhibits strong σC−S → σ∗C−N

hyperconjugation, contributing to its unusual stability.
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TABLE 2.4: Anharmonic vibrational fundamentals in cm−1 and double-harmonic infrared relative intensities (%) of
the eleven lowest-energy conformers of L-cysteine for regions characteristic of particular hydrogen bond patternsa

O-H, N-H stretch S-H Stretch C=0 Stretch O-H bend C-O stretch
ν1 ν2 ν3 ν7 ν8 ν11 ν12 ν17 ν18

Cys-I 3397 (4) 3278 (18) 3216 (47) 2542 (0) 1793 (75) 1356 (100) 1353 (2) 1129 (2) 1073 (3)
Cys-II 3383 (6) 3300 (15) 3226 (43) 2543 (0) 1807 (87) 1337 (100) 1337 (8) 1144 (3) 1068 (3)
Cys-III 3539 (22) 3387 (4) 3327 (1) 2551 (0) 1776 (100) 1350 (0) 1314 (3) 1121 (2) 1086 (78)
Cys-IV 3554 (30) 3417 (8) 3374 (5) 2557 (1) 1775 (100) 1385 (4) 1314 (9) 1114 (69) 1084 (22)
Cys-V 3541 (21) 3397 (3) 3324 (1) 2552 (1) 1773 (100) 1380 (2) 1278 (15) 1124 (15) 1084 (58)
Cys-VI 3397 (4) 3378 (54) 3238 (12) 2539 (0) 1798 (84) 1349 (100) 1353 (12) 1130 (4) 1065 (2)
Cys-VII 3545 (28) 3407 (5) 3392 (1) 2548 (0) 1762 (100) 1350 (0) 1330 (8) 1114 (69) 1102 (22)
Cys-VIII 3396 (3) 3305 (10) 3244 (62) 2548 (0) 1794 (100) 1336 (59) 1366 (82) 1120 (3) 1084 (2)
Cys-IX 3410 (2) 3395 (18) 3254 (32) 2525 (0) 1798 (71) 1332 (1) 1362 (100) 1112 (5) 1088 (1)
Cys-X 3538 (25) 3398 (2) 3301 (0) 2560 (0) 1766 (100) 1344 (10) 1354 (0) 1111 (90) 1056 (21)
Cys-XI 3538 (27) 3401 (3) 3315 (0) 2545 (0) 1767 (100) 1359 (2) 1309 (10) 1122 (70) 1102 (18)

a Harmonic frequencies and intensities were computed at the B3LYP/aug-cc-pVTZ level. Anharmonic corrections
were computed using B3LYP/6-31G*. Intensities are reported as a percentage of the most intense peak for a given
conformer.

2.4.4 Vibrational fundamentals

Anharmonic vibrational frequencies in characteristic hydrogen bonding regions of the infrared spec-

tra are given in Table 2.4 for the eleven lowest-energy conformers of Cys. The combination of

B3LYP/aug-cc-pVTZ harmonic frequencies and B3LYP/6-31G* anharmonic corrections employed

here should be accurate on average to within 30 cm−1, although some deviations may be substan-

tially larger.72 Various fundamentals can be found where either the intensities or the frequencies

distinguish between structural features. For example, Cys-I is the only conformer that has all of

the following: two medium/strong bands between 3200-3300 cm−1, no strong bands above 3300

cm−1, and only two medium/weak bands below 1300 cm−1. In matrix isolation experiments on Cys,

Dobrowolski et al.73 noted that broadening and clustering of peaks often prevented assignment of

absorptions to individual conformers. In general, the matrix isolation vibrational spectra were only

able to distinguish between conformers as being with or without certain intramolecular hydrogen

bonds. As a natural extension, Dobrowolski et al. suggested that vibrational circular dichroism

(VCD) may be more informative. Because the relatively accurate computation of VCD spectra is

straightforward, such experiments hold promise for the detection of conformers present in the gas

before matrix deposition.
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Despite possible difficulties, four different regions should provide important fingerprints for

cysteine conformers to distinguish between O-H· · ·N or N-H· · ·O=C bonding patterns. No con-

formers with strong N-H· · ·O-H hydrogen bonds appeared in the current study. The first region

is the O-H stretch region between 3200-3600 cm−1. For conformers such as Cys-I, Cys-II, Cys-VI,

and Cys-VIII with O-H· · ·N hydrogen bonds, the O-H stretches are red-shifted so that the high-

est frequency peaks are the N-H stretches near 3400 cm−1. For free hydroxyl groups, the O-H

stretch appears near 3540 cm−1, as seen in conformers Cys-III, Cys-IV, Cys-V, Cys-VII, Cys-X,

and Cys-XI. This general band structure was observed in the matrix IR study,73 and our anhar-

monic fundamentals agree with the experimental absorptions within 10-20 cm−1, consistent with

the uncertainty estimate given above. As noted by Dobrowolski,73 the C-O single-bond stretch

also provides an important diagnostic through differing intensitities. In conformers Cys-I, Cys-II,

Cys-VI, and Cys-VII with O-H· · ·N bonds, the C-O stretching region does not exhibit any high

intensity peaks, presumably because the oscillator strength is smeared out among several modes. In

contrast, for hydroxyl groups that do not form hydrogen bonds, the C-O stretch in Cys-III, Cys-IV,

Cys-V, Cys-VII, Cys-X, and Cys-XI shows strong features between 1080 and 1125 cm−1, again in

excellent agreement with the experimentally observed frequencies. As usual, the most telling band

is the carbonyl stretch, ν8, which ranges from 1762-1807 cm−1. For conformers Cys-III, Cys-IV,

Cys-V, Cys-VII, Cys-X, and Cys-XI, which contain a N-H· · ·O=C hydrogen bond, the stretch is

red-shifted, appearing between 1762-1776 cm−1. In contrast, the free carbonyls in Cys-I, Cys-VI,

Cys-VII, and Cys-IX all appear in a narrow range at 1795 cm−1. The highest frequency occurs for

Cys-II at 1807 cm-1. However, no peak appears above 1800 cm-1 in the experimental spectrum.73

Cys-II is essentially identical to Cys-VIII except for 60◦ rotation of the amine group to form an N-

H· · · S hydrogen bond, but the carbonyl stretch for Cys-VIII appears at 1794 cm−1. It is therefore

very surprising both that Cys-II and Cys-VIII have such different stretching frequencies, and also

that Cys-II, one of the lowest energy conformers, is absent from the matrix.

The S-H stretch varies only over a narrow range of 2539-2560 cm−1. This is consistent with the

geometries since S-H seems to form only very weak hydrogen bonds. In general, the peaks are also

predicted to be quite weak, so the peak is not likely to be useful in distinguishing conformers.
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TABLE 2.5: Equilibrium and ground-state rotational constants, {Ae, Be, C e} and {A0, B0, C 0}, respectively,
quartic centrifugal distortion constants in the A-reduced representation, and dipole moments (µ) of the 11
lowest-energy conformers of L-cysteine.a Where available, experimental values are given in parentheses.23

Ground-state rotational constants are determined from MP2(FC)/aug-cc-pVTZ equilibrium structures with
anharmonic B3LYP/6-31G* corrections.

Gauche Conformers

Cys-I Cys-III Cys-IV Cys-VI Cys-VII Cys-XI

Ae 3059.2 2886.6 2855.8 3094.6 3182.5 2984
Be 1641.1 1654.3 1715.8 1605.7 1607.4 1610.3
C e 1357.6 1390.6 1430.2 1335.4 1302.7 1370
A0 3039.4 2852.1 2812.4 3055.1 3174.6 2953.9

(3071.1) (2889.4) (3216.2)
B0 1623.0 1642.6 1698.8 1601.9 1587.9 1605.2

(1606.5) (1623.0) (1572.7)
C 0 1344.5 1383.6 1421.0 1331.3 1287.8 1360.5

(1331.8) (1367.8) (1276.8)
DJK 434 449 891 1054 2621 1416
DJ 471 628 628 614 562 749
DK 1757 2049 2014 2809 9180 5164
µa 1.55 1.00 1.08 2.52 2.06 1.22
µb 4.08 1.34 0.73 4.94 0.47 1.84
µc 1.27 1.45 2.51 1.74 0.04 0.18

Trans Conformers

Cys-II Cys-V Cys-VIII Cys-IX Cys-X

Ae 4376.2 4235.8 4534.7 4505.9 2977.2
Be 1189.3 1195 1181.2 1185.4 1558.3
C e 1028.6 1018.5 972.8 970.7 1234.9
A0 4341.7 4204.9 4502.1 4462.2 2977.1

(4359.2) (4235.6) (3004.2)
B0 1180.1 1187.1 1172.0 1176.4 1538.7

(1178.3) (1187.3) (1527.4)
C 0 1018.5 1007.5 965.2 963.2 1218.3

(1015.3) (1003.1) (1210.7)
DJK 898 1036 706 763 1145
DJ 89 99 59 59 438
DK 835 1379 1028 1187 5316
µa 2.84 1.69 2.56 2.46 2.30
µb 2.62 0.34 2.83 3.80 0.36
µc 1.16 -0.66 0.29 0.66 0.24

a Rotational constants given in MHz and belong to the structures optimized at the MP2(FC)/aug-cc-pV(T+d)Z
level. Quartic centrifugal distortion constants are given in Hz. Dipole moments are given in Debye and computed at
the B3LYP/aug-cc-pVTZ level.

2.4.5 Rotational spectra

Alonso et al.23 recently reported the identification of six low-energy conformers of Cys through

Fourier transform microwave spectroscopy (FT-MW), providing a good opportunity here to com-

pare the computed and the experimental results. Computed rotational constants, centrifugal dis-

tortion constants, and dipole moments are reported in Table 2.5 along with experimental values,

where available. Some of the conformers (e.g., Cys-I, Cys-II, and Cys-VI) have substantial dipole
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moments along the principal axes, thus helping (a) the observation of the related rotational transi-

tions, and (b) the assignment of conformers based on information about which rotational constants

correspond to intense transitions. Generally, we can divide the cysteine conformers into two groups

based on the orientation about the Cα-Cβ bond. In gauche conformers, the thiol is gauche to both

the amine and carboxyl groups. The overall geometry is therefore more compact about the B axis,

which is reflected in the larger Be rotational constants for Cys-I and Cys-III in comparison to Cys-II

and Cys-V (Table 2.5). In contrast, in a trans conformation, the thiol is positioned antiperiplanar

to either the amine or carboxyl group. The overall geometry for the trans conformers is therefore

extended along the A axis, leading to much larger Ae rotational constants for Cys-II and Cys-V in

comparison to Cys-I and Cys-III.

At the MP2(FC)/aug-cc-pV(T+d)Z level, the rotational constants corresponding to the opti-

mized equilibrium structures should be accurate enough to be useful to deduce the presence of

conformers when interpreting experimental microwave spectra. As seen in Table 2.5, this is indeed

the case. The mean absolute deviations from experiment are 15, 25, and 21 MHz for Ae, Be, and

C e, respectively. Vibrational corrections for the rotational constants can be evaluated within the

realm of second-order vibrational perturbation theory (VPT2)55 by taking one-half the sum of the

vibration-rotation interaction constants, αi. The mean absolute deviations for B0 and C 0 become

only 11 and 9 MHz.

For the A axis, the theoretical rotational constants consistently underestimate the experimental

ones by as much as 40 MHz. For most conformers, the cysteine molecule lies along the A axis, with

the C-S bond running roughly perpendicular along the C axis. The moment of inertia about the

A axis is greatly affected by the position of the sulfur atom, and A0 is therefore very sensitive to

the C-S bond length. If the C-S bond length is systematically overestimated, then the computed

A0 constants will be too small. For example, shortening the C-S bond length by 0.005 Å in

Cys-I increases Ae by 30 MHz, bringing the corresponding A0 into nearly exact agreement with

experiment. Such bond length discrepancies may be attributed to a number of factors, including

neglect of core correlation, basis set incompleteness, or higher excitations that would be included in

CCSD or CCSD(T) geometry optimizations. The errors in B0 and C 0 also appear to be systematic,
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with both being consistently overestimated. In all cases, the zero-point vibrational corrections lower

the rotational constant, consistent with the vibrationally averaged bond lengths being longer than

their equilibrium values. Zero-point vibrational corrections to the rotational constants therefore

improve agreement for B0 and C 0, but actually diminish the agreement for A0. The source of

the systematic error for B0 and C 0 is more difficult to assess than for A0, especially without the

empirical refinement that was performed for conformers of glycine and proline.12,13,15,17

TABLE 2.6: Basis set and electron correlation dependence of computed ammonia quadrupole coupling constants.
Values are given in MHz.

All Electron Frozen Core
Basis HF MP2 CCSD CCSD(T) MP2 CCSD CCSD(T)

cc-pVDZ 5.05 4.58 4.71 4.69 4.59 4.71 4.69
cc-pCVDZ 5.16 4.71 4.83 4.81 4.71 4.83 4.81

cc-pCVDZ-unc 5.30 5.00 5.09 5.06 4.99 5.08 5.05
cc-pVTZ 4.84 4.42 4.55 4.51 4.41 4.54 4.50

cc-pCVTZ 4.79 4.38 4.51 4.47 4.35 4.48 4.44
cc-pCVTZ-unc 4.81 4.39 4.52 4.48 4.36 4.49 4.45

cc-pVQZ 4.74 4.23 4.40 4.34 4.21 4.39 4.33
cc-pCVQZ 4.64 4.17 4.33 4.28 4.14 4.30 4.25

cc-pCVQZ-unc 4.66 4.19 4.35 4.29 4.15 4.31 4.26
cc-pV5Z 4.65 4.11 4.30 4.24 4.08 4.28 4.21

cc-pCV5Z 4.55 4.04 4.23 4.17 4.00 4.19 4.13
cc-pVTZ-LD 4.56 4.06 4.25 4.19 4.02 4.21 4.15
Experiment 4.09

In the experiments of Alonso et al.,23 some ambiguity still remained in differentiating con-

formers with similar rotational constants. For example, the B0 and C 0 rotational constants of

Cys-I and Cys-III match within 40 MHz while A0 matches within 180 MHz. Furthermore, the

computed rotational constants for Cys-I lie in between the observed values. For example, C 0 for

Cys-I is computed to be 1344.5 MHz, in between the observed values of 1331.8 and 1367.8 MHz.

Quadrupole coupling constants of the nitrogen nucleus are therefore necessary to uniquely identify

such conformers. The quadrupole coupling constants (χαα) are given as

χαα = eqααQ (2.5)

where qαα is the the electric field gradient along the α-axis at the nitrogen nucleus, e is the fun-

damental charge, and Q is the nuclear quadrupole moment. For the nitrogen quadrupole moment,

we use the literature value of 20.44 mb.74 As seen for ammonia, the accurate computation of elec-
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tric field gradients at the nuclei presents a difficult theoretical problem. Similar difficulties hold

for spin-dependent properties that depend on contact terms since the amplitude and shape of the

wavefunction near the nuclei must be very accurately described.32,75 In particular, Gaussian basis

functions have the incorrect shape at the nuclei, so that extremely flexible and carefully designed

basis sets are required for accurate results.

In general, double-ζ basis sets and Hartree-Fock methods are not flexible enough to yield good

results for quadrupole coupling constants. Since the coupling constant depends only on the nitrogen

nucleus, it is possible to use a locally dense basis on the nitrogen atom.76 The combination of a

cc-pCV5Z basis on nitrogen and cc-pVTZ basis on all other atoms (denoted cc-pVTZ-LD) very

closely matches both the full cc-pCV5Z result and the experimental coupling constant (4.09 MHz)77

for ammonia (Table 2.6). Furthermore, probably through fortuitous cancellation of errors, MP2

matches the CCSD(T) results well, better than even CCSD. The combination of MP2 and the

locally dense basis therefore seems to offer the best combination of accuracy and efficiency for

computing the quadrupole coupling constants of cysteine.

The computed quadrupole coupling constants for the conformers of cysteine are presented in

Table 2.7. The MP2/cc-pVTZ-LD approximation generally performs quite well, yielding most

coupling constants within 0.1 MHz of experiment with the largest deviation being 0.18 MHz. In

particular, the ambiguity in assignment based on rotational constants is now removed. For example,

Cys-I has a strong χaa quadrupole coupling while Cys-III exhibits almost no χaa coupling, in

agreement with the results of Alonso et al.23

TABLE 2.7: Quadrupole coupling constants for conformers of L-cysteine computed at the MP2/cc-pVTZ-LD Level
(See Text)a

Conformer χaa χaa χaa

Cys-I −3.14 (−3.12) 2.44 (2.44) 0.70 (0.68)
Cys-II −0.18 (−0.41) 2.19 (2.23) −2.01 (−1.83)
Cys-III −0.01 (−0.15) 0.34(0.44) −0.32 (−0.30)
Cys-IV −3.09 2.74 0.35
Cys-V −4.39 2.74 1.65
Cys-VI −3.26 2.36 0.90
Cys-VII 0.06 (0.00) −0.48 (−0.45) 0.42 (0.45)
Cys-VIII −3.02 1.51 1.51
Cys-IX −3.22 1.61 1.61
Cys-X 0.51 −1.99 1.49
Cys-XI −1.27 0.88 0.39

a Experimental values23 where known are given in parentheses. All values given in MHz.
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2.5 Summary and Conclusions

In the present work, we performd a comprehensive study of the important structural features and

spectroscopic signatures of the amino acid L-cysteine. Through the focal point approach, we have

established definitive relative energies of the eleven lowest conformers to within a standard error 0.3

kJ mol−1 (1σ) or 95% confidence interval of ± 0.6 kJ mol−1 (2σ). Due to the added flexibility of the

thiol sidechain, cysteine exhibits 71 unique conformers and eleven conformers within 10 kJ mol−1

of the lowest minimum. As observed previously, Hartree-Fock energies are inaccurate. Inclusion of

electron correlation with B3LYP greatly improves results, but still fails by more than 2.5 kJ mol−1

for some conformers, which becomes significant when so many conformers lie within a narrow 10 kJ

mol−1 range. In general, B3LYP performs well for geometries and zero-point vibrational corrections,

but inclusion of correlation through at least MP2 seems neccessary for accurate energies. Definitive

energies to 0.5 kJ mol−1 accuracy still require corrections through CCSD(T).

While hydrogen bonding and electrostatics are the most important factors determining struc-

tures and energetics, the bond length, bond angle, and energy changes between conformers depend

strongly on subtle electronic effects, including hyperconjugation, steric repulsion, hydrogen-bond

cooperativity, and dispersion forces. These electronic effects, while subtle conceptually, are still

treated with subchemical accuracy by only CCSD(T). It should therefore be noted that any resid-

ual error by not including CCSDTQ or higher increments are likely to be less important than other

auxiliary corrections for relativistic or Born-Oppenheimer effects. In contrast to previous work, we

emphasize features such as the trans angle rule67 and the gauche effect.70,71 An additive picture of

hydrogen bonds may therefore be overly simplistic for cysteine.

Harmonic frequencies were computed at the B3LYP/aug-cc-pVTZ level with anharmonic cor-

rections at the B3LYP/6-31G* level (Tables 2.4). The vibrational perturbation theory generally

performs well (within 20 cm−1 of experiment), although it breaks down for a few large-amplitude

motions with very low frequencies. The computed fundamentals should aid future IR spectroscopy

studies. Since we are aiming for accuracy near 0.5 kJ mol−1 in the conformational energies, rigor-

ous anharmonic zero-point vibrational corrections are necessary instead of simply scaling harmonic

frequencies.
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The extensive ab initio results reported here should serve as an important reference both for

calibrating more approximate theoretical methods or future experiments, including circular dichro-

ism or infrared and microwave spectroscopy of isotopologues of cysteine. As more empirical data

becomes available (e.g. rotational constants of isotopologues), the structures and energies can be

further refined by empirical fitting, as done previously for glycine13 and proline.17
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21 L. Schäfer, S. Q. Kulpnewton, K. Siam, V. J. Klimkowski, C. Vanalsenoy, THEOCHEM 68, 373

(1990).

22 J. C. Dobrowolski, J. E. Rode, J. Sadlej, J. Mol. Struct. 810, 129 (2007).

23 M. Eugenia Sanz, S. Blanco, J. C. Lopez, J. L. Alonso, Angew. Chem. Int. Ed. 47, 6216 (2008).

24 M. J. Frisch, J. A. Pople, J. E. Delbene, J. Phys. Chem. 89, 3664 (1985).

25 M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre, J. Am. Chem. Soc. 104,

2797 (1982).

26 J. S. Binkley, J. A. Pople, W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980).

27 C. C. J. Roothaan, Rev. Mod Phys. 23, 69 (1951).

28 K. A. Peterson, T. H. Dunning, J. Chem. Phys. 117, 10548 (2002).

29 R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

30 T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

31 A. K. Wilson, T. H. Dunning, J. Chem. Phys. 119, 11712 (2003).

32 U. Benedikt, A. A. Auer, F. Jensen, J. Chem. Phys. 129, 064111 (2008).

33 P. Pulay, Mol. Phys. 17, 197 (1969).

53



34 R. Krishnan, M. J. Frisch, J. A. Pople, J. Chem. Phys. 72, 4244 (1980).
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3.1 Abstract

The C2H5 + O2 reaction is an archetype for hydrocarbon combustion, and the critical step in the

process is the concerted elimination of HO2 from the ethylperoxy intermediate C2H5O2. Master

equation kinetic models fitted to measured reaction rates place the concerted elimination barrier

3.0 kcal mol−1 below the C2H5 + O2 reactants, whereas the best previous electronic structure

computations yield a barrier more than 2.0 kcal mol−1 higher. We resolve this discrepancy here

by means of the most rigorous computations to date. Computations were executed with basis

sets as large as cc-pV5Z and correlation treatments as extensive as coupled cluster through full

triples with a perturbative inclusion of quadruple excitations. The final predicted barrier is −3.0

kcal mol−1, bringing the concerted elimination mechanism into precise agreement with experiment.

This work demonstrates that higher correlation treatments such as CCSDT(Q) are not only feasible

on systems of chemical interest but are necessary to supply accuracy beyond 0.5 kcal mol−1, which

is not obtained with the gold standard CCSD(T) method. Finally, we compute the enthalpy of

formation of C2H5O2 to be ∆fH
◦(298K) = −5.3 ± 0.5 kcal mol−1 and ∆fH

◦(0K) = −1.5 ± 0.5

kcal mol−1.

3.2 Introduction

Alkyl and alkylperoxy radicals appear in many applications, including combustion,1–4 atmospheric

chemistry,5 and biological processes.6 Understanding alkyl radical kinetics requires very accurate

thermochemistry, especially for the reaction of ethyl with O2.1,7,8 Pathways leading to different

products have barriers that differ by as little as 2-3 kcal mol−1. Even small errors in barrier heights

therefore cause large errors in reactions rates9 and branching ratios. Unfortunately, the desired

accuracy is difficult to obtain experimentally for transient gas-phase radicals, with uncertainties

of at least 2.0 kcal mol−1 being common.10 The situation is even more problematic for transition

states whose energies must be derived indirectly from elementary reaction rates. As emphasized

in the introduction, ab initio schemes can now achieve accuracy of a few tenths of a kcal mol−1,

helping to overcome these experimental difficulties.2,9,11–15
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The reaction of ethyl radical with O2 has served as a prototype for understanding hydrocar-

bon combustion.1,4 A conjunction over the past two decades of experimental measurements,2,16–22

theoretical computations,4,11,23–25 and kinetic modeling2,9,12,26–29 has revealed the key features of

the reaction mechanism (Figure 3.1). Despite having only two carbon atoms, the reaction mech-

anism still involves multiple, competing product channels. Many of the reaction paths such as

β-hydrogen abstraction in alkylperoxy intermediates are also relevant in larger hydrocarbons, and

a detailed understanding of the ethyl + O2 mechanism has therefore elucidated more complicated

systems.13,30–33
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FIGURE 3.1: Mechanisms for reaction of ethyl radical and O2. In M1, direct hydrogen abstraction from ethyl
radical by O2 through TS′) gives ethylene and HO2. Paths M2, M4, and M5 begin with barrierless addition of O2

to ethyl radical to form ethylperoxy radical 2. In M2 and M4, β-hydrogen abstraction in 2 through TS2 forms
ethylhydroperoxyl radical 4, which can proceed through TS3 to ethylene and HO2 (M4) or through TS5 to oxirane
and OH (M2). In path M5, concerted elimination of HO2 from 2 through TS1 forms ethylene. A previously
characterized (Ref. 11) loosely bound complex (3) in the C2H4 + HO2 product channel is not shown for simplicity.

Considerable work on the ethyl + O2 reaction has focused on the production of ethylene and

HO2 radical, the major products in the temperature range of 295-1000 K.17,18,26,34–37 Two main

experimental observations have supported a mechanism involving concerted elimination of HO2

from ethylperoxy radical to give ethylene. First, the major products, ethylene + HO2, are accom-
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panied by only small amounts of the thermodynamically more favorable oxirane + OH radical.34,37

Second, the reaction rate actually decreases with increasing temperature.17 Figure 3.1 shows three

possible routes from ethyl radical to ethylene; naming conventions are chosen to match previous

work.11 The simplest mechanism is direct abstraction (M1), in which O2 removes a hydrogen atom

through transition state TS1′. However, this process has a significant barrier11 and could only be

relevant at high temperatures. A more feasible path at lower temperatures involves addition of O2

to ethyl radical (M2, M4, M5) to form an ethylperoxy intermediate (C2H5O2, 2). In earlier work,

formation of ethylene and HO2 was thought to initially proceed from 2 by intramolecular hydrogen

abstraction (M2, M4, TS2),26 leading to the hydroperoxy intermediate (C2H4OOH, 4). From 4,

ethylene can form by CO bond scission through TS3. However, oxirane formation through elimina-

tion of OH radical (TS5) should be competitive with ethylene formation in M4, inconsistent with

experimental observations. In contrast, concerted elimination of HO2 through TS1 (M5) produces

only ethylene. Both density functional and coupled cluster computations indicate that the inter-

nal H-abstraction barrier (TS2) lies 2.3-9.9 kcal mol−1 higher in energy than the transition state

(TS1) for concerted elimination.9,11,12,38 Furthermore, master equation models have explained the

rate coefficient temperature dependence in terms of a C2H5 + O2 ↔ C2H5O2 equilibrium followed

by concerted elimination.9 At higher temperatures, the back reaction to C2H5 + O2 competes

more effectively with concerted elimination, thereby slowing the overall reaction to form ethylene.

Mechanism M5 is then consistent with both the experimentally observed product distribution and

negative temperature coefficient, making it the favored mechanism for low-temperate combustion

of ethyl radical. Even though the reaction of ethyl radical with O2 has been extensively studied,

disturbing ambiguities still remain for the relative energies of key intermediates in the pathways

shown in Figure 3.1.

From the master equation model of Miller and Klippenstein,9 the best agreement with experi-

ment has been obtained with energies relative to ethyl + O2 of −33.5 kcal mol−1 for ethylperoxy

(2) and −3.0 kcal mol−1 for the transition state TS1, similar to the values of −34.0 and −2.8

used by Dean et al.13 Barriers for TS1 near −3.0 kcal mol−1 have been obtained with a G2-like

method9,39 and the empirical model chemistry CBS-Q.12 In contrast, the most rigorous ab initio
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TABLE 3.1: Some theoretical values (kcal mol−1) for the concerted elimination barrier (TS1) of the ethyl + O2

system.

Level of Theory Reference Barrier

CISD/DZP 24 +19.1
CISD + (Q) / DZP 24 +13.3
UBLYP/DZP 23 −10.3
UB3LYP/DZP 23 −2.4
UB3LYP/TZ2Pf 23 −1.9
CCSD/DZP 11 +8.7
CCSD(T)/DZP 11 +3.3
CCSD/TZ2P 11 +6.9
CCSD(T)/TZ2Pf 11 −0.9
G2 9, 39 −3.0
CBS-Q 12 −2.8
Focal point analysis This work −3.0

computation in the literature,11 at the CCSD(T)/TZ2Pf level, gave a barrier of −0.9 kcal mol−1.

Published theoretical values for the concerted elimination barrier have varied wildly (Table 3.1),

ranging from +19.1 kcal mol−1 at the CISD/DZP level to −10.3 kcal mol−1 at the UBLYP/DZP

level. While the G2 and CBS-Q methods match the optimal values from the kinetic models, Miller

and Klippenstein9 have noted that the nearly exact agreement is “probably fortuitous.” Similarly,

Dean et al.13 have stressed that the “good agreement between predictions (from CBS-Q) and ex-

perimental data must be seen, at least in part, as a fortunate cancellation of errors.” While the G3

method typically obtains accuracy of 1-2 kcal mol−1,40 the accuracy sometimes results not from

intrinsic precision but from cancellation of unrelated errors.41 For several hydrocarbon radical en-

thalpies of formation, Dixon et al.42 have even shown that G3 and CBS-Q differ from very precise

coupled cluster computations and experimental values by more than 2.0 kcal mol−1. The TS1

barrier height is further muddled by seeming discrepancies in experimental results. In the reaction

of ethyl with O2, the major products are ethylene and HO2. Conversely, if the reverse experiment

is performed by reacting ethylene with HO2, the major products are oxirane and OH radical.4,16,43

Oxirane formation likely proceeds through the hydroperoxy intermediate (4). However, the lowest

energy path for addition of ground state HO2 to ethylene is formation of the alkylperoxy radical

2, which should decompose to reform ethylene and HO2 rather than oxirane and OH. Stark4 has

rationalized this discrepancy in terms of a conical intersection between A′ and A′′ surfaces, allowing
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different pathways to be followed in the forward and reverse directions. However, Stark suggests

that, for this mechanism to be consistent with experimental activation energies, the transition state

(TS1) should lie higher in energy than the ethyl + O2 reactants.

Very accurate ab initio computations are needed to resolve the energetic ambiguities of the ethyl

+ O2 reaction and, at last, firmly establish the concerted elimination mechanism. The history of

scattered predictions for the TS1 barrier, documented in Table 3.1, highlights the need for rigorous

new computations. Obtaining energies with errors of less than 1 kcal mol−1 requires correlated

methods with large basis sets. Even the ethyl + O2 system with only four heavy atoms and five

hydrogens pushes the limit of what can be feasibly treated. In this regard, the focal point approach

of Allen et al.44–47 outlined in the dissertation introduction minimizes the computational expense

by extrapolating the energy to both the basis set and correlation limit. The scheme is entirely free

of any possible bias due to empirical corrections, relying only on ab initio values. In the present

work, we therefore report focal point computations that yield definitive thermochemistry for the

low-temperature pathway of the ethyl + O2 combustion archetype.

3.3 Theoretical Methods

3.3.1 General Scheme

To obtain energies for each of the reactants and products, the following overall procedure was em-

ployed. The geometry was optimized with the CCSD(T) method48–50 (frozen core) using the Dun-

ning correlation-consistent cc-pVQZ basis set with the standard contractions C,O(12s6p3d2f1g/5s4p3d2f1g)

and H(6s3p2d1f/4s3p2d1f ).51 Energies were then extrapolated with respect to the correlation and

basis set limit using the valence focal point approach.44–46,52 Finally, auxiliary terms were in-

cluded for core correlation, relativistic effects, diagonal Born-Oppenheimer corrections (DBOC),

and zero-point vibrational energies (ZPVEs).

3.3.2 Geometry Optimization

All geometries were optimized using the MOLPRO2002.6 package.53 In the case of ethylperoxy

radical 2 and TS1, the geometry was optimized using delocalized internal coordinates via the
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OPTKING module in the PSI3 package;54 a fixed CCSD(T)/cc-pVDZ Hessian computed with

the ACESII package55 was employed in these cases with numerical gradients provided by MOL-

PRO2002.6.

3.3.3 Valence focal point analysis

The focal point method44–46,52 invokes a systematic approach towards both the basis set and corre-

lation limit, as explained in the introductory chapter. Here we reiterate the important focal point

principles and computational details specific to the ethyl-O2 system. In the following, E refers to

absolute energies, ∆E refers to relative energies between two species or for a reaction, and δ refers

to an energy increment, a correction to the relative energy with respect to a preceding level of

theory. The scheme proceeds by:

(1) Extrapolation of the Hartree-Fock (HF) energy according to the exponential form

EHF(X) = E∞HF +A exp(−bX) (3.1)

where X is the cardinal number of a correlation consistent cc-pVXZ basis.51 In the current

work, the three parameters EHF, A, and b were fit to energy points with X = 3 , 4 , 5.

(2) Extrapolation to the complete basis set limit of the second-order correlation energy obtained

from either closed-shell MP2 or Z-averaged perturbation theory (ZAPT2).56

εZAPT2 = ε∞ZAPT2 +BX−3 (3.2)

εZAPT2 = EZAPT2(X)− EHF(X) (3.3)

Because all the relative energies involve one or more open-shell species, we hereafter denote

correlation energies and energy increments from second-order perturbation theory as εZAPT2

and δ[ZAPT2], respectively, with the implication that for closed-shell species the standard

MP2 method was used. In the current work, the two parameters ε∞ZAPT2 and B were obtained
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algebraically from energy points with X = 4 , 5. The arguments for an X−3 dependence have

been given elsewhere.46,57–59

(3) Computation of the CCSD and CCSD(T) increments with the cc-pVQZ basis,

δ[CCSD] = ∆E(CCSD/cc-pVQZ)−∆E(ZAPT2/cc-pVQZ) (3.4)

and

δ[CCSD(T)] = ∆E(CCSD(T)/cc-pVQZ)−∆E(CCSD/cc-pVQZ) (3.5)

The focal point scheme adopted here assumes that the CCSD and CCSD(T) increments can

be computed as additive corrections.

(4) Inclusion of higher-order electron correlation by performing CCSDT and CCSDT(Q)60,61

computations with a modest basis, in this case cc-pVDZ, yielding the increments

δ[CCSD(T)] = ∆E(CCSDT/cc-pVDZ)−∆E(CCSD(T)/cc-pVDZ) (3.6)

δ[CCSDT(Q)] = ∆E(CCSDT(Q)/cc-pVDZ)−∆E(CCSDT/cc-pVDZ) (3.7)

Following the argument above for δ[CCSD(T)], the δ[CCSDT] and δ[CCSDT(Q)] increments

converge much more quickly to the basis set limit than the absolute energies. The δ[CCSDT]

and δ[CCSDT(Q)] corrections can therefore be well estimated as an additive constant. The

accuracy of the cc-pVDZ value is further addressed in the discussion.

(5) Determination of the final valence focal point ∆EFP relative energy given by

∆EFP = ∆E∞HF + δ∞[ZAPT2] + δ[CCSD] + δ[CCSD(T)] + δ[CCSDT] + δ[CCSDT(Q)]

(3.8)

With the inclusion of all extrapolations and corrections, (3.8) becomes an estimate of the

CCSDT(Q) relative energy at the CBS limit.
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Open-shell second-order Z-averaged perturbation theory56 (ZAPT2) computations were exe-

cuted with the MPQC package.62 All CCSD(T) single-point energies were obtained using MOL-

PRO200663 with unrestricted coupled cluster theory using ROHF orbitals.64 CCSDT and CCSDT(Q)

computations were performed using the MRCC program of Kllay.65 The MRCC program re-

quires a front-end program to compute integrals. For the CCSDT energies, MOLPRO2006 re-

stricted orbitals were used for consistency with the CCSD(T) results. For CCSDT(Q), only un-

restricted references are allowed in the MRCC code, and it was therefore necessary to use UHF

orbitals from the ACESII program. The different references do not affect the final results since

the absolute CCSDT(Q) and CCSDT energies do not enter the extrapolation, but rather the

energy differences CCSDT(Q) and CCSDT. The CCSDT(Q) correction is therefore computed

as ∆E[UHF-CCSDT(Q)] − ∆E[UHF-CCSDT], while the δ[CCSDT ] increment is computed as

∆E[ROHF-CCSDT]−∆E[ROHF-CCSD(T)].

3.3.4 Auxiliary Corrections

To account for core correlation, all-electron (AE) ZAPT2 computations were differenced from

frozen-core (FC) ones, as evaluated with the cc-pCVQZ basis set,66 which contains tight functions

to recover core correlation.

∆Ecore = ∆E(AE-ZAPT2/cc-pCVQZ)−∆E(FC-ZAPT2/cc-pCVQZ) (3.9)

A scalar first-order relativistic correction,67 ∆Erel, from the one-electron mass-velocity and Darwin

terms was computed at the CCSD(T)/aug-cc-pVTZ level

Ĥrel = − 1

8c2

∑
j

∇4
j +

π

2c2

∑
j,A

δ(rjA) (3.10)

where the sums run over all electrons, j, and nuclei, A. ZPVE corrections, ∆EZPVE, were evaluated

from harmonic vibrational frequencies obtained at the frozen-core CCSD(T) level with the cc-pVTZ

basis set.51 Relaxation of the clamped nucleus assumption was considered by computing diagonal
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Born-Oppenheimer corrections (DBOC)68 at the restricted HF/aug-cc-pVTZ level as

〈Ψe| −
1

2

∑
A

1

MA
∇2
AΨe〉R (3.11)

where∇A denotes a derivative of the electronic wavefunction Ψe with respect to nucleus A evaluated

at a particular set of nuclear positions R.

The final energy for each molecule is then given by

Efinal = ∆EFP + ∆EZPVE + ∆Ecore + ∆Erel + ∆EDBOC. (3.12)

Core correlation corrections were computed with the MPQC62 package, while relativistic and DBOC

corrections were computed with ACESII.55

3.3.5 Enthalpy of formation at 298 K

Thermal corrections to the molar enthalpies of formation were calculated with the standard formula,

H −H0 = RT 2

(
d lnQ

dT

)
V

+RT (3.13)

The vibrational and rotational partition functions (Q) were computed using the harmonic-oscillator

and rigid-rotor approximations, respectively. The translational partition function was determined

by the equipartition theorem. The low-frequency methyl torsions in ethyl radical, ethylperoxy rad-

ical, and acetaldehyde were treated as hindered rotors according to the Pitzer-Gwinn procedure69

using CCSD(T)/cc-pVTZ barriers and moments of inertia.

3.4 Results and Discussion

3.4.1 Geometric Structures

The CCSD(T)/cc-pVQZ reaction intermediate (2) and transition state (TS1) structures for the

concerted elimination pathway are displayed in Figures 3.2 and 3.3. In the case of the ethylperoxy

radical, 2, two different conformers are possible.11,70 Only conformer 2a with Cs symmetry is
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shown in Figure 3.2. Conformer 2b involves a rotation about the O2-C3 bond, yielding a C1

gauche structure that is 0.23 kcal mol−1 lower in energy.

FIGURE 3.2: CCSD(T)/cc-pVQZ optimum geometry of ethylperoxy radical (2A′′), conformer 2a (Cs). Bond
lengths are in Å; bond angles in degrees.

FIGURE 3.3: CCSD(T)/cc-pVQZ optimum geometry of the transition state TS1 (2A′′, Cs), for concerted
elimination of ethylene. Bond lengths are in Å; bond angles in degrees.

During the concerted elimination process, three major changes take place. First, a hydrogen

atom is transferred from the terminal carbon atom, C4, to the terminal oxygen, O1. The O1-H

distance in TS1 is thus 1.25 Å compared to 0.97 Å in the hydroperoxyl radical, while the C4-H

distance is 1.37 Å compared to 1.09 Å in 2a. Second, the O2-C3 bond is homolytically cleaved. In

TS1, this bond is therefore significantly extended to 2.12 Å, compared to 1.45 Å in 2a. Finally, a
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double bond forms between C3-C4. In TS1, the C3-C4 bond is accordingly 1.39 Å, compared to

1.51 Å in 2a and 1.33 Å in ethylene.

The quality of the geometric structures for 2a and TS1 may be gauged by comparing our best

CCSD(T)/cc-pVQZ parameters with corresponding CCSD(T)/cc-pVTZ results. For 2a, almost all

CCSD(T) bond lengths change by less than 0.003 Å in going from cc-pVTZ to the cc-pVQZ basis

set, the largest change being 0.0055 Å for the O1-O2 length; all bond angles change by less than

0.3◦. Similarly for TS1, most bond lengths change by less than 0.004 Å, and all bond angles change

by less than 0.5◦. The largest bond length change in TS1 again occurs for the O1-O2 distance,

which decreases by 0.004 Å from cc-pVTZ to cc-pVQZ CCSD(T). In brief, the CCSD(T)/cc-pVQZ

geometries should be well converged with respect to both basis set and correlation limits, making

them suitable as reference geometries for higher level computations.

The computation of CCSD(T)/cc-pVQZ harmonic vibrational frequencies for TS1 is prohibitive

in cost; therefore, we rely on CCSD(T)/cc-pVTZ values which confirm that TS1 is a genuine

transition state. Considering the similarity of the cc-pVQZ and cc-pVTZ CCSD(T) structures,

significant differences in the corresponding vibrational frequencies are not expected.

TABLE 3.2: Comparative diagnostics for static correlation, CCSD(T)/cc-pVTZ level of theory.

T1 diagnostic Largest T2 amplitude

HO2 0.037 0.055
CN 0.053 0.091
TS1 0.034 0.072
2a 0.031 0.022

3.4.2 Static correlation and multireference character

Given the distorted bonds in TS1, we must assess the degree of multireference character in the elec-

tronic wave function. A common T1 diagnostic71 and the largest T2 amplitude from the coupled-

cluster wave function can indicate degrees of static correlation. Single-reference coupled cluster

methods give accurate results for the hydroperoxy72,73 and CN74 radicals, and we therefore com-

pare TS1 to these examples. In the present work, the T1 diagnostic was computed with the

MOLPRO2006.1 package, while the largest T2 amplitude was computed with the ACESII package.

Both diagnostics were evaluated at the CCSD(T)/cc-pVTZ level. For the T1 diagnostic, TS1 has
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a value even lower than the HO2 and CN benchmarks (Table 3.2). Furthermore, the largest T2

amplitude in CN radical exceeds the largest amplitude for TS1. Similar comparisons hold for the

ethylperoxy intermediate 2a. Therefore, we deem our single-reference coupled cluster methods reli-

able, especially because we ultimately include electron correlation through the connected quadruple

excitation level.

TABLE 3.3: Summary of focal point energies (kcal mol−1) for the reactions of ethyl radical and O2.

Reaction EHF δ∞[ZAPT] δ∞[CCSD] δ∞(T) δ∞[CCSDT] δ∞(Q) ∆EFP

C2H5 + O2 → TS1 +32.38 −27.59 −1.32 −6.91 −0.13 −0.75 −4.31
C2H5 + O2 → 2a −30.21 +5.32 −12.60 −0.93 −0.22 +0.22 −38.41
C2H5 + O2 → c-CH2CH2O + OH −41.68 +12.9 −7.74 +1.28 +0.07 +0.47 −34.70
C2H5 + O2 → CH3CHO + OH −72.13 +18.54 −8.90 +1.40 −0.05 +0.47 −60.67
C2H5 + O2 → C2H4 + HO2 −11.82 +11.16 −13.65 −0.67 −0.34 +0.24 −15.08

3.4.3 Focal Point Analysis

The focal point analyses of reactants, intermediates, and products for ethyl + O2 reactions are

summarized in Table 3.3. Auxiliary corrections and final predicted reaction energies appear in

Table 3.4. Detailed layouts for the energetics of TS1 and 2a are given in Tables 3.5 and 3.6

respectively. For ethylperoxy radical, the focal point analysis was applied only to conformer 2a,

because the CCSD(T)/cc-pVQZ geometry optimizations and subsequent single-point computations

were much less demanding in Cs rather than in C1 symmetry. The relative energy of 2b was then

obtained by a conformer correction of −0.23 kcal mol−1 computed with the CCSD(T)/cc-pVTZ

method. We found that the 2a-2b energy difference is not sensitive to level of theory, and the

conformer correction should be accurate to within 0.05 kcal mol−1.

From the size of the various terms in Table 3.3, we can assess the convergence of the focal

point extrapolations. The δ[CCSD] corrections are sizable, larger than 6 kcal mol−1 for most

cases; however, the subsequent δ[CCSD(T)] increments are much smaller, on the order of 1.0 kcal

mol−1 except for TS1. The higher corrections δ[CCSDT] and δ[CCSDT(Q)] are generally less than

0.5 kcal mol−1, two to threefold smaller than the preceding δ[CCSDT] terms. Assuming continued

proportionate reductions, the error in neglecting quintuple and higher excitations should not exceed

a few tenths of a kcal mol−1. Nonetheless, some caution is warranted regarding the TS1 barrier,
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TABLE 3.4: Auxiliary corrections and final energetic predictions for the reactions of ethyl radical and O2. All
entries in kcal mol−1. Comparisons to experiment are included where available.

∆H◦ ∆H◦ Exp. ∆H◦

Reaction EFP ZPVEa Relativity Core DBOC (0 K) (298K) (298 K)

TS1 −4.31 +1.34 +0.02 −0.03 −0.00 −2.98 −4.56 -
2a −38.41 +5.45 +0.02 −0.03 −0.03 −32.99 −34.20 -

c-CH2CH2O + OH −34.70 +1.90 +0.13 −0.04 −0.02 −32.73 −33.10 −32.37
CH3CHO + OH −60.67 +0.61 +0.10 −0.11 −0.02 −60.10 −59.95 −59.51

C2H4 + HO2 −15.08 +1.37 +0.05 −0.07 −0.01 −13.74 −13.86 −13.07

a Computed from harmonic vibrational frequencies at the CCSD(T)/cc-pVTZ level. b Based on the following literature
values for the standard enthalpies of formation in kcal mol−1 at 298 K: ethyl radical, +28.7 ± 0.1 (Ref 76); ethylene,
+12.7 ± 0.2 (Ref. 79); oxirane, −12.6 ± 0.2 (Ref. 82); acetaldehyde, −39.7 ± 0.1 (Ref. 81); OH radical, +8.91 ±
0.07 (Ref. 83); and HO2 radical, +2.94 ± 0.06 (Ref. 77).

which displays a small δ[CCSD] of −1.32 kcal mol−1 followed by an unusually large δ[CCSD(T)]

of −6.91 kcal mol−1 and, finally, a significant δ[CCSDT(Q)] of −0.75 kcal mol−1. The reason that

most previous computations with wave function methods (Table 3.1) have overestimated the height

of TS1 is apparent from the occurrence of only negative correlation increments in Tables 3.3 and

3.5.

The full focal point layouts of the concerted elimination barrier (Table 3.5) and the C2H5-O2

bond energy (Table 3.6) indicate that the cc-pV5Z basis set yields Hartree-Fock results within 0.01

kcal mol−1 of the complete basis set (CBS) limit. Of course, the limits for the correlation increments

are harder to reach, as shown by changes of −0.62 and −0.36 kcal mol−1 in the ZAPT2/cc-pV5Z in-

crements obtained by CBS extrapolation in the TS1 and 2a cases, respectively. For the δ[CCSD(T)]

correction, the cc-pVTZ and cc-pVDZ values differ by 1.21 and 0.33 kcal mol−1 for TS1 and 2a,

but the succeeding cc-pVQZ/cc-pVTZ differences are only 0.26 and 0.14 kcal mol−1 in the two

cases, respectively. These observations suggest that the difference between cc-pV5Z and cc-pVQZ

δ[CCSD(T)] values should be significantly smaller than 0.2 kcal mol−1, supporting the focal point

additivity scheme. Finally, for the δ[CCSDT(Q)] and δ[CCSDT] corrections, recent work by Martin

et al.75 has shown that, for atomization energies, the cc-pVDZ values may differ from the CBS

limit by as much 0.3 kcal mol−1. However, for intramolecular transition states, the cc-pVDZ and

cc-pVTZ values often match within a few hundredths of a kcal mol−1 (Ref 80), and our cc-pVDZ
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results should be sufficiently accurate for the current system. Combining all sources of error, our

final focal point values can be reported as having uncertainties of 0.5 kcal mol−1 or smaller.

TABLE 3.5: Focal point layout (kcal mol−1) or the concerted elimination barrier (TS1) relative to ethyl + O2.
Computed values are listed without brackets; extrapolated values are shown in brackets.

Basis ∆EHF δ[ZAPT2] δ[CCSD] δ(T ) δ[CCSDT] δ(Q) ∆E[CCSDT(Q)]

cc-pVDZ +31.93 −19.97 −3.50 −5.44 −0.13 −0.75 +2.15
cc-pVTZ +32.26 −24.92 −1.74 −6.65 −0.13 [−0.75] [−1.92]
cc-pVQZ +32.38 −26.38 −1.32 −6.91 −0.13 [−0.75] [−3.11]
cc-pV5Z +32.39 −26.97 [−1.32] [−6.91] [−0.13] [−0.75] [−3.69]
cc-pV6Z [+32.39] [−27.23] [−1.32] [−6.91] [−0.13] [−0.75] [−3.95]
CBS limit [+32.38] [−27.59] [−1.32] [−6.91] [−0.13] [−0.75] [−4.31]

Extrapolation a+ be−cX a+ bX−3

Fit Points 3,4,5 3,4

TABLE 3.6: Focal point layout (kcal mol−1) for the formation of ethylperoxy radical conformer 2a from ethyl +
O2. Computed values are listed without brackets; extrapolated values are shown in brackets.

Basis ∆EHF δ[ZAPT2] δ[CCSD] δ(T ) δ[CCSDT] δ(Q) ∆E[CCSDT(Q)]

cc-pVDZ −29.47 +10.80 −12.17 −0.46 −0.22 +0.22 −31.30
cc-pVTZ −30.37 +7.56 −12.45 −0.79 [−0.22] [+0.22] [−36.04]
cc-pVQZ −30.22 +6.43 −12.60 −0.93 [−0.22] [+0.22] [−37.32]
cc-pV5Z −30.20 +5.89 [−12.60] [−0.93] [−0.22] [+0.22] [−37.84]
cc-pV6Z [−30.21] [+5.65] [−12.60] [−0.93] [−0.22] [+0.22] [−38.08]
CBS limit [−30.21] [+5.53] [−12.60] [−0.93] [−0.22] [+0.22] [−38.41]

Extrapolation a+ be−cX a+ bX−3

Fit Points 3,4,5 3,4

TABLE 3.7: Focal point layout (kcal mol−1) for the formation of oxirane and OH from ethyl + O2. Computed
values are listed without brackets; extrapolated values are shown in brackets.

Basis ∆EHF δ[ZAPT2] δ[CCSD] δ(T ) δ[CCSDT] δ(Q) ∆E[CCSDT(Q)]

cc-pVDZ −37.36 +19.75 −7.93 +1.20 +0.07 +0.47 −23.80
cc-pVTZ −40.54 +15.79 −7.86 +1.30 [+0.07] [+0.47] −30.77
cc-pVQZ −41.24 +14.39 −7.74 +1.28 [+0.07] [+0.47] −32.77
cc-pV5Z −41.53 +13.66 [−7.74] [+1.28] [+0.07] [+0.47] −33.79
cc-pV6Z [−41.63] [+13.34] [−7.74] [+1.28] [+0.07] [+0.47] −34.21
CBS [−41.68] [+12.90] [−7.74] [+1.28] [+0.07] [+0.47] −34.70

Extrapolation a+ be−cX a+ bX−3

Fit Points 3,4,5 3,4

As previously discussed, the concerted elimination transition state (TS1) best fits the master

equation kinetic models with a barrier of −3.0 kcal mol−1 relative to ethyl + O2. By comparison,

the Hartree-Fock approximation places TS1 over 35 kcal mol−1 too high (Table 3.5). Even in

the ZAPT2/CBS limit, TS1 lies almost 5 kcal mol−1 above the C2H5 + O2 reactants. Simply

optimizing geometries at the CCSD(T)/cc-pVQZ level yields a barrier of −0.9 kcal mol−1 after
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TABLE 3.8: Focal point layout (kcal mol−1) for the formation of ethylene and HO2 from ethyl + O2. Computed
values are listed without brackets; extrapolated values are shown in brackets.

Basis ∆EHF δ[ZAPT2] δ[CCSD] δ(T ) δ[CCSDT] δ(Q) ∆E[CCSDT(Q)]

cc-pVDZ −8.92 +15.16 −13.47 −0.30 −0.34 +0.24 −7.63
cc-pVTZ −11.29 +12.94 −13.66 −0.56 −0.34 [+0.24] [−12.67]
cc-pVQZ −11.60 +12.07 −13.65 −0.67 −0.34 [+0.24] [−13.95]
cc-pV5Z −11.74 +11.63 −13.65 [−0.67[ [−0.34] [+0.24] [−14.53]
cc-pV6Z [−11.79] [+11.43] [−13.65] [−0.67] [−0.34] [+0.24] [−14.78]
BS [−11.82] [+11.16] [−13.65] [−0.67] [−0.34] [+0.24] [−15.08]

Extrapolation a+ be−cX a+ bX−3

Fit Points 3,4,5 3,4

ZPVE corrections. Extrapolating to the complete basis set CCSD(T) limit lowers TS1 to −2.1

kcal mol−1. Inclusion of the CCSDT and CCSDT(Q) corrections finally brings TS1 to −3.0 kcal

mol−1, in excellent agreement with the empirical barrier height. Collectively, the core correlation

and relativistic shifts (Table 3.4) alter the TS1 barrier by only 0.01 kcal mol−1. Our results clearly

show that a balanced treatment of the reactants and transition state TS1 requires basis sets of at

least cc-pV5Z quality and correlation treatments beyond CCSDT.

For the ethylperoxy radical 2a, the C2H5-O2 binding energy is surprisingly good at the Hartree-

Fock limit, only about 8 kcal mol−1 too low and 5.5 kcal mol−1 better than CBS ZAPT2 (Table

3.6). Correlation convergence is achieved once the δ[CCSD] = −12.60 and δ[CCSD(T)] = −0.93

kcal mol−1 increments are included; the corresponding δ[CCSDT] and δ[CCSDT(Q)] terms are only

0.22 kcal mol−1 in magnitude and precisely cancel each other. Optimizing 2a at the CCSD(T)/cc-

pVQZ level yields a well depth D0 of 31.87 kcal mol−1 after zero-point correction. The focal point

analysis yields a CBS CCSD(T) value of D0 = 32.96 kcal mol−1 for 2a, and with all corrections the

final value is only 0.03 kcal mol−1 higher. Adding in the 2a-2b energy difference places the lowest

energy conformer of the ethylperoxy radical 33.2 kcal mol−1 below the C2H5 + O2 reactants. This

improved result demonstrates the good accuracy of Miller and Klippenstein’s previous value of 33.5

kcal mol−1.9 Similar focal point trends are observed for the formation of oxirane (Table 3.7) and

ethylene (Table 3.8) . The Hartree-Fock energy rapidly converges to the basis set limit, while the

residual basis set error for the correlation treatments should not be greater than 0.3 kcal mol−1.
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Again, in contrast to TS1, correlation increments tend to oscillate, producing a CCSD(T) energy

which is fortuitously close to the focal point limit.

3.4.4 Enthalpy of Formation of Ethylperoxy Radical

Our focal point analyses for the reactions of ethyl + O2 yielding ethylene + HO2, oxirane + OH,

and acetaldehyde + OH yield final reaction energies (Table 3.4) in good accord with the best

enthalpies of formation from the literature.76–78,81–83 Nonetheless, the theoretical exothermicities

are systematically greater than the experimental ones by 0.2-0.6 kcal mol−1. If ∆fH(298) (C2H5) =

28.7 ± 0.1 kcal mol−1 is accepted from Ref. 76, then the disparities are attributable to inexactness

of the theoretical treatment of the O2 molecule.

TABLE 3.9: Enthalpy of formation of ethylperoxy radical 2b at 298 K computed via four reference reactions. All
values in kcal mol−1.

∆fH
◦(298 K) ∆fH

◦(298 K)
Reaction reactantsa ∆rxnH◦(0 K)b ∆rxnH◦(298 K)b of 2bc

C2H5 + O2 → 2b +28.70 −33.23 −34.52 −5.82
c-CH2CH2O + OH → 2b −3.67 −0.49 −1.42 −5.09

CH3CHO + OH → 2b −30.81 +26.87 +25.43 −5.38
C2H4 + HO2 → 2b +15.64 −19.49 −20.66 −5.02

a See footnote b of Table 3.4
b Enthalpies of reaction at 0 K and 298 K computed in this work using the focal point energies and thermal corrections.
c Enthalpy of formation of ethylperoxy radical from literature ∆fH

◦ (reactants) and computed ∆rxnH
◦(298 K).

We can employ our thermochemical data to refine the enthalpy of formation of the ethylper-

oxy radical by averaging results from four different routes that form 2b, as shown in Table 3.9.

Conjoining the selected literature enthalpies of formation of C2H5, c-CH2CH2O, CH3CHO, C2H4,

OH, and HO2 (Table 3.4) with our computed enthalpies (derived from Table 3.9) for the four reac-

tions that yield 2b, we obtain ∆fH
◦(298K) values for ethylperoxy radical ranging from −5.02 to

−5.82 kcal mol−1 (Table 3.9). The apparent systematic errors in the theoretical reaction energies

in Table 3.4 suggest that the ∆fH
◦(298K) value of −5.82 kcal mol−1 derived from the C2H5 + O2

reaction may be too negative by roughly 0.5 kcal mol−1. Therefore, we recommend ∆fH
◦(298K)

= −5.3± 0.5 kcal mol−1 for ethylperoxy, which corresponds to ∆fH
◦(0K)= −1.5± 0.5 kcal mol−1

using our thermal corrections for 2b and standard H◦(298K) - H◦(0K) differences for H2(g), O2(g),

and C(gr).84 By comparison, Okumura et al.10 determined ∆fH
◦(298K) = −6.8± 2.3 kcal mol−1
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for 2 using a combination of experimental bond enthalpies from photoelectron spectroscopy and

CBS/APNO computations.

3.5 Summary

The concerted elimination mechanism for the reaction of ethyl + O2 to yield ethylene + HO2

has been established by rigorous focal point computations that give a theoretical TS1 barrier in

precise accord with master equation kinetic models fitted to measured reaction rates. The concerted

elimination barrier presents an extreme challenge for electronic structure theory, with previous

correlated methods placing TS1 as much as 19 kcal mol−1 above and 10 kcal mol−1 below the

ethyl + O2 reactants. The most rigorous ab initio result prior to this work was a CCSD(T)/TZ2Pf

computation that gave a barrier of −0.9 kcal mol−1.11 Arduous optimization of the TS1 geometry

and evaluation of the barrier height at the CCSD(T)/cc-pVQZ level does not change the value

of −0.9 kcal mol−1. Two improvements past CCSD(T)/cc-pVQZ are essential to converging the

TS1 barrier: first, a 1.2 kcal mol−1 lowering by extrapolation to the complete basis set limit of

CCSD(T), and second, an additional 0.9 kcal mol−1 reduction by incorporation of higher-order

correlation via the CCSDT(Q) method. The overall effect of −2.1 kcal mol−1 is a critical result,

because shifts of this magnitude can engender sevenfold changes in the branching fractions for

the ethyl + O2 reaction.9 The final concerted elimination barrier from our focal point analysis

of the direct C2H5 + O2 → TS1 process is −3.0 kcal mol−1. This result provides a consensus

between the highest levels of ab initio theory and optimal values from the kinetic models.9,39

Nevertheless, minor revisions of the TS1 barrier may still be necessary in the future. In particular,

an alternative, indirect means of determining the concerted elimination barrier for C2H5 + O2 →

C2H4 + HO2 would use our theoretical data to construct a focal point layout for the reverse barrier

C2H4 + HO2 → TS1 and then append the reaction energy given by the best available enthalpies

of formation from the literature. To achieve consistency between the direct, forward computations

and the indirect, reverse approach, TS1 would have to lie −2.6 ± 0.5 kcal mol−1 below C2H5 +

O2. Therefore, while we must still recommend a concerted elimination barrier of −3.0 kcal mol−1
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based on direct computations, this value may migrate upward by a few tenths of a kcal mol−1 as

existing thermochemical inconsistencies are resolved.
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4.1 Abstract

Explicitly-correlated MP2-R12 and coupled-cluster R12 methods have proven to be effective in

achieving the basis set limit of correlated wavefunction methods. However, correlated methods

for high-spin open-shell states are typically based on semi-canonical orbitals, requiring a different

set of amplitudes to be computed for each spin case. In contrast, Z-averaged perturbation theory

redefines the Hamiltonian with a symmetric exchange operator, thereby allowing a spin-restricted

formulation with equivalent α and β subspaces. In the current work, we present a preliminary

study of explicitly correlated ZAPT for second-order perturbation theory. The superior basis set

convergence of R12 methods is demonstrated for a set of atomization energies, showing the R12

results to be competitive with common basis set extrapolation techniques, albeit at a fraction of

the cost. Given the efficiency gains associated with the symmetric exchange operator, we suggest

ZAPT as a candidate for reducing the cost of current open-shell MP2-R12 and CCSD(T)-R12

computations.

4.2 Introduction

Coupled-cluster (CCSD) and second-order Møller Plesset (MP2) perturbation theories are ubiq-

uitous in quantum chemistry, providing efficient approximations for treating electron correlation.

For chemical accuracy better than 1 kcal mol−1, connected triple excitations must be included in

the cluster operator,1–3 which is efficiently accomplished through the CCSD(T) perturbative esti-

mate.4,5 For larger molecules, MP2 provides a more approximate, but very economical treatment

of electron correlation, particularly for hydrogen bonding.6,7 However, MP2 and CCSD(T), like all

wavefunction-based correlated methods, converge very slowly to the basis set limit,8–10 which is now

understood as the inability of orbital-based expansions to properly describe the cusp and Coulomb

hole at electron-electron coalescence points. Inclusion of terms in the wavefunction that depend

explicitly on the interelectronic coordinate r12 can include the cusp exactly, greatly accelerating

the basis set convergence. In this direction, explicitly correlated MP2-R12 and CCSD(T)-R12 ap-

proaches have been developed, combining the intrinsic accuracy of the correlation treatments with
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the superior basis set convergence of the R12 methods. Using CCSD(T)-R12 with modest basis

sets, thermochemistry often has an accuracy better than 3.0 kJ mol−1 while vibrational frequencies

usually agree with experiment within 4 cm−1!11,12

Given their perturbative nature, MP2 and CCSD(T) require the full Hamiltonian to be parti-

tioned into a zeroth-order Fock operator, Ĥ0, and first-order fluctuation potential, V̂ . For RHF and

UHF reference functions, the most natural choice of Ĥ0 is the standard spin-orbital Fock operator

(see below). For ROHF reference functions, however, the standard Brillouin variational condition no

longer holds, requiring Ĥ0 to be redefined. As a consequence, properties such as orbital invariance,

same spatial orbitals for different spins, and spin-restriction, easily maintained in closed-shell MP2,

may no longer be satisfied for ROHF references. Choosing a partition for the Hamiltonian there-

fore requires numerous subtleties to be considered which are often taken for granted in closed-shell

theories. Several methods for partitioning the Hamiltonian were developed in the first half of

the 1990s13 including open-shell perturbation theory (OPT1 and OPT2),14–16 invariant open-shell

perturbation theory (IOPT),17 restricted open-shell Møller-Plesset (ROMP),18 restricted Møller-

Plesset (RMP),19,20 and Z-averaged perturbation theory (ZAPT).21–24 The most straightforward

perturbation theory is RMP. However, despite rigorous spin-restriction of the Hartree-Fock wave-

function, the different number of α and β electrons in RMP leads to different exchange operators

for the α and β spin-orbital subspaces. For correlated wavefunctions, this asymmetric exchange

leads to an essentially unrestricted framework, drastically increasing the cost relative to closed-

shell methods. In contrast, ZAPT employs a symmetric exchange operator in Ĥ0 that restores

the equivalence of α and β subspaces, allowing a spin-restricted theory to be formulated which is

essentially equivalent in cost to a closed-shell computation.

Given the success of R12 approaches for MP2 and coupled-cluster methods, we present an initial

formulation of the symmetric exchange approach for explicitly correlated second-order perturba-

tion theory to establish a ZAPT-R12 framework. We first give a brief summary of the numerous

ROHF-based perturbation theories, comparing the advantages and disadvantages of the symmetric

exchange approach. We then introduce the MP2-R12 method, considering the additional subtleties

caused by the choice of a symmetric exchange operator.
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4.3 ROHF Perturbation Theories

In the discussion to follow, the following notation is used to distinguish orbital subspaces.

i, j, k, l . . . DOCC Doubly occupied orbitals

a, b, c, d . . . VIR Virtual orbitals

s, t . . . SOCC Singly occupied orbitals

p, q . . . ORB Entire orbital basis set

p′′q′′ . . . CABS External orbitals

The orbital basis set is the finite computational basis, and is the union of the occupied and virtual

orbitals. Lower case letters indicate spin orbitals while upper case letters will indicate spatial

orbitals.

The complications in ROHF theories derive from the off-diagonal elements of the spin-orbital

Fock operator

fia =
〈

Φa
i

∣∣∣Ĥ∣∣∣Φ0

〉
(4.1)

whose matrix elements are given by

fpq = hpq +
∑
i

〈pi||qi〉 (4.2)

Here hpq contains the kinetic energy and nuclear attraction terms while the sum over anti-symmetrized

two-electron integrals runs over all occupied orbitals. Because of the non-zero fia block, Φ0 is no

longer an eigenfunction of the Fock operator.

The most straightforward method for redefining Ĥ0 is RMP13,19,20 which simply projects out

the fia terms

Ĥ0 = ôf̂ ô+ v̂f̂ v̂ (4.3)

through the occupied space, ô, and virtual space, v̂, projectors. In solving the MP2 equations, the

orbitals are usually “semi-canonicalized” by diagonalizing the OCC-OCC and VIR-VIR blocks of

the Fock matrix. However, since the α and β Fock matrices differ based on asymmetric exchange

with the singly-occupied orbitals, diagonalization within these subspaces breaks the α-β orbital
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symmetry, leading to a different orbitals for different spins (DODS) formalism. In particular, the

Fock operators for α and β subspaces can be distinguished by

f̂α = ĥ+ Ĵ − K̂c − K̂o (4.4)

f̂β = ĥ+ Ĵ − K̂c (4.5)

where ĥ is the core Hamiltonian, Ĵ is the Coulomb operator, and K̂c and K̂o are the operators

for exchange with closed-shell and open-shell orbitals, respectively. If canonical rather than semi-

canonical orbitals are used, only one integral transformation is required, but the MP2 amplitudes

must be solved iteratively.

The partitioning is spin-dependent, and the RMP wavefunction is therefore spin-contaminated.

While the energy is not rigorously spin-restricted, it can be classified as spin-projected.24 The MP2

energy 〈
Φ0

∣∣∣Ĥ∣∣∣Ψ(1)
〉

(4.6)

is therefore equivalent to 〈
Φ0

∣∣∣ĤP̂ ∣∣∣Ψ(1)
〉

(4.7)

where P̂ is an operator that projects out spin-contaminants. RMP therefore usually provides more

meaningful correlation energies than UMP2.25,26

In an effort to provide a fully spin-restricted ROHF perturbation theory, Davidson and co-workers

introduced the OPT1 method.16,17 Rather than partition the Hamiltonian through spin-dependent

Fock operators, the Hamiltonian is partitioned based on a spin-averaged operator

Fav =
1

2

(
f̂α + f̂β

)
(4.8)

so that the Fock operator becomes

f̂ = ĥ+ Ĵ − K̂c −
1

2
K̂o (4.9)
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where the open-shell exchange has been symmetrized. Ĥ0 is therefore spin-independent and rig-

orously spin-restricted. The spin-independent orbital canonicalization produces equivalent orbitals

for different spins, so that OPT1 is equivalent to closed-shell MP2 in computational cost. Unfor-

tunately, OPT1 correlation energies are spuriously large. Both occupied and unoccupied SOCC

orbitals have the same eigenvalues, leading to small energy denominators. Furthermore, to avoid

mixing occupied and virtual orbitals during canonicalization, Ĥ0 must take the form

Ĥ0 = d̂f̂ d̂+ ŝf̂ ŝ+ v̂f̂ v̂ (4.10)

where d̂ and ŝ are projectors for the doubly-occupied and singly-occupied spaces. The OPT1 opera-

tor therefore does not include the block f̂is between SOCC and DOCC spaces so that, unlike RMP,

the theory is not invariant to SOCC-DOCC mixing. To correct the energy denominator problem,

a second theory, OPT2, was introduced. Two-electron operators are included in Ĥ0, producing

different eigenvalues for occupied and unoccupied SOCC orbitals. As with OPT1, only a singlet set

of orbitals is required, but the correlation energies obtained are much smaller. Unfortunately, ro-

tations among degenerate orbitals within the SOCC space are no longer allowed, producing orbital

invariance problems as large as 9 kcal mol−1 for some systems. Especially for explicitly correlated

methods, a two-electron Ĥ0 is also undesirable.

Z-averaged perturbation theory (ZAPT) corrects the energy denominator problem of OPT1

by defining separate Fock operators for doubly-occupied and singly-occupied orbitals. For DOCC

orbitals, the symmetric OPT1 operator is used, maintaining equivalence of α and β orbitals within

the DOCC space. Asymmetric exchange is used for the SOCC orbitals, giving

f̂ = ĥ+ Ĵ − K̂c − K̂o (4.11)

for occupied SOCC orbitals and

f̂ = ĥ+ Ĵ − K̂c (4.12)
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for unoccupied SOCC orbitals. For multiple SOCC orbitals within the same irreducible represen-

tation, the different exchange operators for unoccupied and occupied SOCC orbitals will produce

different ZAPT canonical orbitals. The majority of open-shell applications will be doublets or mul-

tiplet states occupying orbitals of different symmetries.22 Even if SOCC spatial symmetry is broken,

the DOCC orbitals dominate the computation and the cost will still be essentially equivalent to

closed-shell MP2.

In contrast to OPT1, the ZAPT Fav operator is only spin-averaged, but not spin-independent.

As in RMP, the correlation energies will not be spin-restricted, but rather spin-projected. In con-

trast to RMP, though, ZAPT can be solved non-iteratively with only a single integral transforma-

tion. Furthemore, Lee has argued that the ZAPT wavefunction contains “less spin contamination”

than RMP, and should therefore give slightly improved correlation energies.24,26 For conventional

perturbation theory, ZAPT therefore presents an excellent compromise between efficiency and ac-

curacy. For a full review of of ROHF-based perturbation theories, we refer the reader to references

13 and 24.

Despite the simplifications associated with a single set of spatial orbitals, closed-shell MP2 and

coupled-cluster theories are dramatically simplified by the amplitude relation

T aαbαiαjα
= T

aαbβ
iαjβ

− T aαbβjαiβ
(4.13)

that allows the theory to be formulated through a single set of intermediates. For high-spin open-

shell states, α-β amplitude symmetry is broken in coupled-cluster theories regardless of the orbital

canonicalization due to the unequal number of α and β electrons. Although ZAPT is intrinsically a

redefinition of Ĥ0 based on open-shell exchange, it can be equivalently derived by using symmetric

spin functions in the SOCC space

σ+ =
1√
2

(α+ β)

σ− =
1√
2

(α− β)

(4.14)
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so that the SOCC orbitals are “Z-averaged” with respect to the DOCC orbitals. In this regard,

symmetric exchange for α and β subspaces results not from a particular choice of Ĥ0, but directly

from the symmetric spin basis. The symmetric spin basis produces a Z-averaged generalization27

of (4.13)

T aαbαiαjα
+ T

aβbβ
iαjα

= T
aαbβ
iαjβ

− T aαbβjαiβ
(4.15)

where, despite the appealing symmetry of the amplitudes, the theory is now complicated by α,β

exchange amplitudes T
aβbβ
iαjα

. In particular, exchange matrix terms of the form

K
jβ
iα

=
∑
s

〈sσ+sσ+|iαjβ〉 (4.16)

are non-zero due to the symmetric spin basis. At first order, as in the MP2 wavefunction, such

α,β exchange amplitudes are zero, first appearing only at second-order. If such amplitudes are

neglected, the Z-averaged approach returns to a closed-shell formalism. Even if the α,β exchange

amplitudes are rigorously included, spin-adapted equations can still be derived which represent a

drastic reduction in computational cost relative to other high-spin open-shell approaches.27

To ensure well-defined orbital eigenvalues such that

F̂av |i〉 = εi |i〉 (4.17)

α, β exchange terms are not included in Ĥ0. In this way, it is the perturbation, V̂ , and not Ĥ0

that introduces α, β exchange terms in the wavefunction.

4.4 MP2-R12

Until recently, most ab initio methods have relied upon an n-electron basis comprised of antisym-

metrized products of orbitals. Despite the conceptual appeal of theories formulated in one-electron

orbitals and potential for high accuracy through partial wave extrapolations,28–32 one-particle ap-

proaches converge very slowly to the basis set limit.8–10 As noted in the introductory sections, the

correlation energy generally converges as (L+1)−3 where L denotes the highest angular momentum
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included in the orbital basis.32 For correlated wavefunction methods with N4 basis set scaling, the

residual error decays at the painfully slow rate of t−
1
4 with respect to total computational time!33

While the exact wavefunction requires a cusp and depletion of electron density (Coulomb hole)

in the coalescence region between two electrons,8,34,35 orbital-based expansions are smooth at the

coalescence point and require very high angular momentum functions to provide an accurate shape.

This troubling convergence originally led Hylleraas to formulate an explicitly correlated expansion

of the Helium wavefunction36 that included functions depending on the interelectronic distance,

r12. By expanding the wavefunction in two-particle functions that depend explicitly on r12, the

correct Coulomb hole shape can be enforced independent of any underlying one-particle expansion.

As alluded to in the introductory sections, explicitly correlated theories can be grouped into

roughly two different approaches. In transcorrelated approaches37–43 the Hamiltonian is trans-

formed by an r12-depedent operator, leading to a modified differential equation equivalent to the

Schrödinger equation but involving a non-singuar Hamiltonian with no cusp requirement. In con-

trast, R129,10,44–49 and gaussian geminal methods50–54 employ the standard Hamiltonian, but ex-

pand the wavefunction in an explicitly-correlated two particle basis. The fundamental drawback of

both approaches is the appearance of numerous, difficult 3e and 4e integrals that would otherwise

limit application of the techniques to small systems.33 R12 theories have therefore achieved the

greatest success by allowing the difficult integrals to be factored into products of much simpler 2e

integrals through an ingenious resolution of the identity approximation44,55 originally introduced

by Klopper and Kutzelnigg. R12 methods are therefore unique amongst the explicitly correlated

methods in escaping the restriction to small molecules, and, even without local56–58 or density-

fitting approximations,59,60 can be routinely be applied to molecules as large as benzene dimer.61

Explicitly correlated methods have now been implemented for coupled cluster,12,62–75 configuration

interaction,76–78 and multireference perturbation theory.79 Generally, R12 computations with the

aug-cc-pVTZ80 basis set can now achieve the accuracy of conventional aug-cc-pV5Z computations

at a fraction of the cost.81

In addition to the previous notation, we must introduce the following notation for subspaces in

R12 methods
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x, y, . . . Geminal space

p′′q′′ . . . CABS External orbitals

α, β, . . . CBS Complete basis set

p′, q′, . . . RI Resolution of the identity

The geminal space generates the R12 pair correlation functions as the product of an orbital pair

and the correlation factor

|ij〉 → Q̂12F̂12 |xy〉 (4.18)

where F̂12 is a correlation factor depending explicitly on the interelectronic coordinate r12, usually

of Slater, exp(−r12), or Gaussian geminal, exp(−r2
12), form.82,83 Q̂12 is a projection operator

necessary to ensure that Ψ(1) is orthogonal to Φ0. Typically, only occupied orbitals are necessary

in the geminal space, although for excited state and response properties virtual orbitals must

also be included.63,64,72 The RI space approximates the complete basis obtained within a finite

computational basis, usually obtained as the union of the orbital basis set and an auxiliary basis

set. The CABS (complementary auxiliary basis set) space represents those orbitals in the RI that

are complementary or external to the orbital basis set. The indices α, β denote orbitals in a formally

complete basis which may be used in derivations, but never enter the programmable equations.

The MP2-R12 energy can be solved variationally starting from the Hylleraas functional

E2[Ψ(1)] =
〈

Ψ(1)
∣∣∣Ĥ0 − E0

∣∣∣Ψ(1)
〉

+ 2 Re
〈

Ψ(1)
∣∣∣Ĥ∣∣∣Φ0

〉
(4.19)

where Ψ(1) is the first order perturbative wavefunction correction and E2 is the second order

correlation energy, written here as a functional of Ψ(1). The wavefunction Ψ(1) is chosen by the

ansatz ∣∣∣Ψ(1)
〉

=
1

4

∣∣∣Φab
ij

〉
T ijab +

1

4

∣∣∣Φαβ
ij

〉
F klαβT

ij
kl + |Φa

i 〉T ia (4.20)

Here repeated indices imply summation over spin orbitals. The above ansatz differs slightly from

the closed-shell case by the inclusion of singly-substituted determinants. Here the matrix element
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F klαβ is defined as

F klαβ =
〈
kl
∣∣∣F̂12Q̂12

∣∣∣αβ〉 (4.21)

From the form of (4.20), we see that Ψ(1) involves a conventional contribution,
∣∣∣Φab

ij

〉
T ijab, supple-

mented by an R12 correction,
∣∣∣Φαβ

ij

〉
F klαβT

ij
kl that helps complete the determinantal basis.

In spin-orbital form with i, j denoting all occupied orbitals DOCC and SOCC and a, b denoting

all virtual orbitals, the amplitude residuals become

Rabij = 〈ij||ab〉+ T abik f
k
j + T abkj f

k
i + T acij f

b
c + T cbij f

a
c + T xyij C

ab
xy (4.22)

Rxyij = V xy
ij +Bxy

wzT
wz
ij −Xxy

wz(f
k
i T

wz
kj + fkj T

wz
ik ) + Cxyab T

ab
ij (4.23)

The matrix elements in (4.22) and (4.23) are defined by

V xy
ij =

〈
ij

∣∣∣∣ 1

r12
Q̂12F̂12

∣∣∣∣xy〉 (4.24)

Bwz,xy =
〈
wz
∣∣∣F̂12Q̂12

(
f̂1 + f̂2

)
Q̂12F̂12

∣∣∣xy〉 (4.25)

Xwz,xy =
〈
wz
∣∣∣F̂12Q̂12F̂12

∣∣∣xy〉 (4.26)

Cabxy =
〈
xy
∣∣∣F̂12Q̂12

(
f̂1 + f̂2

)∣∣∣ ab〉 (4.27)

V is the R12 generalization of the electron repulsion integrals, where instead of correlating an

occupied i, j pair with a virtual a, b pair the occupied orbitals are correlated with an R12 geminal.

〈
ij
∣∣∣ 1
r12

∣∣∣ ab〉⇒ 〈
ij
∣∣∣ 1
r12
Q̂12F̂12

∣∣∣xy〉 (4.28)

B is a generalization of the MP2 energy denominator. X is the overlap matrix between R12

geminals, and C is the matrix coupling conventional and explicit terms. After computing the

matrix elements, the equations may be solved iteratively for the amplitudes. Alternatively, for

canonical orbitals, the equations can be inverted and solved non-iteratively. Once amplitudes have
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been obtained, the pair energies are

Eij =
∑
ab

T abij (〈ij||ab〉+Rabij ) +
∑
xy

T xyij (V xy
ij +Rxyij ) (4.29)

By inclusion of the residuals in the energy expression, the error in the correlation energy will become

quadratic in the amplitude error, which is important for methods which do not fully optimize the

amplitudes. From (4.29), the R12 pair energies are seen to be the conventional MP2 energy plus an

R12 correction. However, we emphasize that if the coupling matrix C is non-zero, the amplitudes

T abij in MP2-R12 are not equal to the conventional MP2 value. By effectively treating the short

range correlation, the explicitly correlated terms relax the conventional MP2 amplitudes.

4.5 Variations and Approximations within R12 Methods

4.5.1 Projection operators

The projection operator is required to make the correlating R12 geminals orthogonal to the occupied

space. For the projection operator Q̂12 in (4.21), the most common choice is45,81

Q̂12 = (1− ô1)(1− ô2)(1− v̂1v̂2) (4.30)

The operators ô1, ô2 ensure orthogonality of the R12 geminals on the reference function, while the

virtual space projector additionally enforces orthogonality against the conventional MP2 terms in

(4.20). In ZAPT, the complete basis wavefunction would require singly-substituted determinants

of the form Φp′′

i , which are annihilated by the above projectors. However, it can be shown that

the singles contribution to the correlation energy converges rapidly to the basis set limit. In

this regard, the explicitly correlated terms are not necessary for spanning the space of functions

Φp′′

i . In addition, single excitations into external orbitals of the form Φp′′

i contribute not only to

the ZAPT2 correlation energy, but also perturbatively correct the inexact Hartree-Fock reference

due to the finite computational basis.65 For use in the context of focal point84 or other additive

thermochemistry schemes,1,3 we wish to separately obtain basis set limit Hartree-Fock and MP2
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correlation energies. Separating Hartree-Fock and MP2 contributions from single-excitations can

be difficult.65 Further, if the basis set limit of the correlation energy is desired rather than the total

energy, Valeev has shown that inexact Hartree-Fock orbitals can yield very accurate correlation

energies.85 We therefore suggest that the cleanest approach for obtaining correlation energies is to

neglect single excitations in the projection operator.

4.5.2 The general and extended Brillouin conditions

Two approximations can be made on the exactness of the Fock operator computed in the finite

basis.9,45,86 First, the generalized Brillouin condition (GBC) assumes that the occupied space is

closed under the action of the Fock operator

f̂ |φi〉 =
∑
j

fij |φj〉 (4.31)

The errors associated with the GBC approximation are generally negligible compared with the

other approximations.86 Second, the extended Brillouin condition (EBC) assumes that the virtual

space is also closed under the action of the Fock operator

f̂ |φa〉 =
∑
b

fab |φb〉 (4.32)

The EBC approximation is somewhat poorer than the GBC approximation. However, for reference

functions computed with a sufficiently large orbital basis set, the associated errors are again very

small.86

The basis of the GBC approximation for closed shells is the Brillouin condition, since all off-

diagonal terms fia are rigorously zero. Because of the approximate nature of the Hartree-Fock

wavefunction in a finite basis, Fock matrix terms of the form fip′′ are non-zero, but would otherwise

vanish in the limit of an exact reference. For an ROHF reference, such terms do not vanish even

in the limit of a complete basis. However, because of our choice of partition, the terms fip′′ are

chosen to be zero in Ĥ0, instead being included in the perturbation. Therefore, while in closed-shell
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MP2-R12 the GBC terms are completely neglected (neither in Ĥ0 or V̂ ), in ROHF the GBC is no

longer an approximation, but rather a choice of partition.

4.5.3 Amplitude ansätze

The original R12 formulation9 only included diagonal excitations of the form

|ij〉± → Q̂12F̂ |ij〉± (4.33)

where ± indicates singlet and triplet spin-adapted pairs. The energy is not invariant to orbital

rotations, which led Klopper to introduce an orbitally invariant formulation (IJKL ansatz) where

off-diagonal excitations

|ij〉 → Q̂12F̂12 |kl〉 (4.34)

are also included. More recently, a fixed-amplitude ansatz has been favored in which only diagonal

excitations are again included, but the amplitudes T ijij are not variationally optimized. The ampli-

tudes are instead fixed at the singlet and triplet complete basis asymptotic values of 1/2 and 1/4,

restoring orbital invariance. Although the diagonal and fixed amplitude methods are “less varia-

tional” than the full orbital-invariant approach, the diagonal approximations often gives superior

results.87 Since the number of R12 excitations per ij pair scales as N2
occ in the orbital-invariant

approach, larger molecules will have a disproportionate number of R12 pair correlation functions,

leading to geminal basis set superposition errors

Spin-adapted triplet and singlet pairs cannot be defined for DOCC-SOCC pairs, and the fixed-

amplitude approach must therefore be recast in a spin-orbital formulation. The rational generator

of Ten-no can be applied, which properly generates the asymptotic cusp conditions in a spin-orbital

formulation.68,73,88 The rational generator, G, is applied as

G |ij〉 =
3

8
|ij〉+

1

8
p(12) |ij〉 (4.35)

where p(12) permutes the spatial orbitals of electrons 1 and 2, but not the spins. Applied to

spin-adapted triplet and singlet pairs, the rational generator can easily be verified to yield the
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asymptotic amplitudes of 1
4 and 1

2 . For DOCC-SOCC pairs, the rational generator yields geminal

excitations of the form

|iαsσ+〉 → G |iαsσ+〉 (4.36)

G |iαsσ+〉 =
3

8
|iαsσ+〉+

1

8
|sαiσ+〉 (4.37)

In contrast to closed-shell, open-shell R12 methods must then include unoccupied orbitals (sα) in

the geminal generating space. The rational generator is indepedent of the spin functions involved,

and the symmetric spin basis in ZAPT therefore introduces no additional complications with respect

to previous open-shell approaches.68

Because of the symmetric spin basis and the presence of the occupied-space projector in Q̂12,

α,β exchange terms such as V
xαyβ
iαjα

are non-zero, leading to non-zero α, β exchange amplitudes

T
xαyβ
iαjα

. This differs from the conventional MP2 case in which all α,β exchange excitations are zero

by spin-integration

T
aβbβ
iαjα

=
〈iαjα||aαbβ〉

εi + εj − εa − εb
= 0 (4.38)

We must therefore clearly identify what is meant by a double excitation in the context of ZAPT.

By first order interacting space arguments, Lee and Jayatilaka have argued that an α,β exchange

should correspond to an excitation.22 Although determinants of the form

Φ
aβ
iα

(4.39)

are single substitutions, they should therefore be considered double excitations. Matrix elements

faαiα corresponding to true single excitations are zero in ZAPT, and, unlike other ROHF pertur-

bation theories, the ZAPT first-order wavefunction can be said to contain only doubly excited

determinants. A very subtle point arises for matrix elements of the form V
xαyβ
iαjα

for α,β exchanges.

The term initially seems to correspond to an artificially included α,β exchange excitation which is

not included in conventional ZAPT2 and would be classified as a triple excitation. However, all
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α,β exchange terms are projected out by Q̂12. The only surviving correlations in the R12 geminal

are of the form

|iαjα〉 →
∣∣sσ−aα〉 (4.40)

Despite the appearance of only α and β spin-orbitals, the correlation factor is actually generating

σ− virtual pairs so that no inconsistency exists with the first order interacting space definition

of double excitations, and the ZAPT2-R12 ansatz does not artificially include any α,β exchange

excitations absent in conventional ZAPT2.

4.5.4 R12 Matrix Elements

In general, three different approximations have been introduced for computing integrals, denoted

A′,44 B9,44 and C.89 We here present the procedure for approximation C, since it does not require

the commutator integrals

〈
wz
∣∣∣[T̂1, F̂12]

∣∣∣xy〉 (4.41)

and therefore allows integrals to be performed with minimal modification of an existing Obara-

Saika code.90,91 For all approximations, the V matrix is straightforwardly computed by expanding

the projection operator as

Q̂12 = 1− ô1p̂
⊥
2 − p̂⊥1 ô2 − p̂1p̂2 (4.42)

where ô, p̂⊥, p̂ are the projectors for the occupied, CABS, and orbital subspaces. By directly

substituting Q̂12 into the definition (4.24), we then compute

V xy
ij = (Fg)ijxy − F

p′′j
ij gxyp′′j − F

iq′′

ij gxyiq′′ − F
pq
ij g

xy
pq (4.43)

where (Fg)xyij is the product of the correlation factor and electron repulsion operator

〈
ij

∣∣∣∣F̂12
1

r12

∣∣∣∣xy〉 (4.44)
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The matrix elements Xxy
wz are computed in the same fashion as

Xxy
wz = F̃wzxy − F p

′′j
wz F

xy
p′′j − F

iq′′
wz F

xy
iq′′ − F

pq
wzF

xy
pq (4.45)

where have denoted

F̃wzxy =
〈
wz
∣∣F 2

12

∣∣xy〉 (4.46)

The computation of the matrix elements Bmn
kl is much more complicated. For approximation C, a

commutator approach is used in which we begin by writing the projection operator as Q̂12 = 1−P̂12,

so that the B matrix expression can be expanded to

Bxy
wz =

〈
wz
∣∣∣F̂12(f̂1 + f̂2)F̂12

∣∣∣xy〉
−
〈
wz
∣∣∣F̂12(f̂1 + f̂2)P̂12F̂12

∣∣∣xy〉
−
〈
wz
∣∣∣F̂12P̂12(f̂1 + f̂2)F̂12

∣∣∣xy〉
+
〈
wz
∣∣∣F̂12P̂12(f̂1 + f̂2)P̂12F̂12

∣∣∣xy〉
(4.47)

For the terms involving P̂12, the projection operator is directly written out, and programmable

equations are obtained by replacing complete basis set indices with the approximate, computational

RI basis. A more detailed derivation can be found in Ref 89, and we here only report the final

expression

〈
wz
∣∣∣F̂12(P̂12f̂1P̂12 − P̂12f̂1 − f̂1P̂12)F̂12

∣∣∣xy〉
=− F p′mwz f

r′
p′F

xy
r′m + F p

′′m
wz fnmF

xy
p′′n

− F pbwzf rpF
xy
rb

− F p′′mwz f q
′
mF

xy
p′′q′ − F

p′′m
xy f q

′
mF

wz
p′′q′

− F p′′awz f
q
p′′F

xy
qa − F p

′′a
xy f qp′′F

wz
qa

(4.48)
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where the analogous expression for f̂2 is obtained by permutation of indices. We note here that all

matrix elements fpq in ZAPT are not simply matrix elements of the standard Fock operator, but

rather the spin-averaged Ĥ0 given above.

For the initial term in (4.47), a commutator approach is applied in which we rewrite

F̂12f̂1F̂12 = F̂12(f̂1 + K̂1)F̂12 − F̂12K̂1F̂12 (4.49)

F̂12(f̂1 + K̂1)F̂12 = 1
2 [[F̂12, f̂1 + K̂1], F̂12] + 1

2 [f̂1 + K̂1, F̂
2
12]+ (4.50)

Because the correlation factor is a multiplicative operator it commutes with all local operators,

and, for the closed-shell Fock operator, the commutator is therefore nonzero only for the exchange

and kinetic energy terms. In this way, the double commutator term becomes

[[F̂12, f̂1 + K̂1], F̂12] = [[F̂12, T̂1], F̂12] =
1

2

(
~∇1F12

)2
(4.51)

for which the integrals can be computed analytically for Gaussian correlation factors. For the

anticommutator term, the operator f̂ + K̂ is expanded in the approximate RI basis, yielding

〈
wz
∣∣∣F̂ 2

12(f̂1 + K̂1)
∣∣∣xy〉 = F̃ p

′y
wz (f +K)xp′ (4.52)

where again F̃ denotes matrix elements of F̂ 2
12.

As noted by Knizia,65 the approach must be reassessed in the context of ROHF methods, since

matrix elements of the form fia are ignored in Ĥ0. In this regard, the equality in (4.51) is no longer

valid since the terms T ai are not included in the kinetic energy operator. Ideally, the kinetic energy

contribution to the B matrix should still be computed analytically rather than by some form of

direct RI insertion. In this regard, we write the ZAPT zeroth order operator as

Ĥ0 = f̂ + δf̂ (4.53)

and consider the ZAPT Fock operator to be the standard Fock operator plus a difference term. We
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then rewrite, inserting Ĥ0 to distinguish the ZAPT Fock operator

F̂12Ĥ0F̂12 = F̂12(f̂ + K̂)F̂12 − F̂12(K̂ − δf̂)F̂12 (4.54)

The approach allows the double commutator term to be computed exactly as before. The second

term on the right-hand side is computed by direct RI insertion

〈
wz
∣∣∣F̂12(K̂1 − δf̂1)F̂12

∣∣∣xy〉 = F p
′q′

wz (K̂1 − δf1)r
′
p′F

xy
r′q′ (4.55)

The contribution from K̂2− δf̂2 is obtained by permutation of indices. Constructing the B matrix

for ZAPT then proceeds in exactly the same way as for the closed-shell case, complicated only by

replacement of the exchange matrix with the modified operator K̂ + δf̂ . For ZAPT, however, we

must again note the inclusion of α,β exchange excitations. Because of the symmetric spin basis,

matrix elements of the form

(K + δf)
qβ
pα (4.56)

are non-zero. If the diagonal ansatz is chosen, these α,β exchange excitations are excluded from

the geminal space.

The most computationally demanding step in approximation C is the double RI index integral

transformation necessary in computing the B matrix. We therefore employ a hybrid approxima-

tion which avoids the double RI transformation, greatly reducing computational requirements. In

particular, two terms in the B matrix require a double RI transform.

F p
′q′

ij Kr′
p′F

kl
r′q′ (4.57)

Fmq
′′

ij fp
′
mF

kl
p′q′′ (4.58)
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We therefore propose approximating each term by a single RI analog

F p
′q

ij K
r′
p′F

kl
r′q (4.59)

Fmq
′′

ij fpmF
kl
pq′′ (4.60)

For the exchange term, we are essentially expanding the identity operator in the orbital basis

instead of the full RI basis. For the second term, we are neglecting Fock matrix terms of the form

fp
′′

i (4.61)

which is equivalent to the GBC approximation for closed shell molecules. For ROHF, as explained

above, these terms are chosen as rigorously zero by the Hamiltonian partition. The RI approxi-

mation is very similar to the hybrid approaches proposed by Klopper92 for Approximation B and

Werner for Approximation C.45,65

4.6 Computational Methods

The ZAPT2-R12 method described herein was added to the MPQC package61,93 for a Slater-type

correlation factor with exponent 1.4 approximated as a sum of six Gaussian geminals. In the present

work, all results are reported for approximation C so that the kinetic energy commutator integrals

do not need to be computed. Unless otherwise stated, all R12 results are computed with fixed am-

plitudes, assuming the EBC condition and hybrid RI approximation. Integrals were implemented

in the CINTS/LIBINT package94 within MPQC according to the Obara-Saika scheme with the fun-

damentals modified accordingly.90,91,95,96 All conventional ZAPT2 computations were performed

with the Dunning aug-cc-pVnZ80,97 family of basis sets (hereafter denoted aVnZ). The ZAPT2

basis set limit is estimated from an aV5Z-aV6Z extrapolation using an n−3 extrapolation.30,32 All

ZAPT2-R12 computations use the Peterson F12 and F12-RI basis sets,98 which have been shown

to be well-calibrated for R12 computations.99 For all R12 computations, we shall abbreviate the

basis sets as DZ, TZ, and QZ, being understood as the Peterson R12 basis sets. R12 complete

basis limits are estimated according to the n−4 extrapolation suggested by Peterson. All molecules
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in the current work were optimized at the B3LYP/aVTZ level, since the goal of the current work

is not to establish rigorous basis set limit correlation energies, but only to assess the R12 basis set

convergence properties.

4.7 Results and Discussion

In the following we do not report total energy differences, but rather only the contributions from

the correlation energy.

δ[ZAPT2]A→B = EcorrZAPT2(B)− EcorrZAPT2(A) (4.62)

With the R12 corrections, the basis set error can often be larger for the Hartree-Fock energy

than the correlation energy. Schemes for perturbative corrections to the Hartree-Fock energy have

therefore been proposed using the auxiliary basis.65 In the present work, however, we focus only

on the error inherent in the ZAPT2 correlation increment.
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FIGURE 4.1: Error of atomization energy δ[ZAPT2] increments with respect to ZAPT2 aV5Z-aV6Z extrapolation
for conventional ZAPT2 (Conv) and ZAPT2-R12 (R12) computations.

The error in the δ[ZAPT2] correlation energy increments for both conventional ZAPT2 and

R12 computations are shown in Figure 4.1 for a set of 20 atomization energies. Even the R12 TZ
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computations consistently outperform the conventional aV6Z result. The R12 DZ results, while

somewhat worse than the ZAPT2 aV5Z results, are still remarkably accurate, especially considering

the approximations involved: EBC, hybrid RI, and fixed amplitudes. In extending the basis set

from TZ to QZ, the R12 results generally change by only 0.1 to 0.2 kcal mol−1, suggesting the R12

correlation energies are essentially converged at the QZ level. In contrast, for conventional ZAPT2,

the aV5Z to aV6Z δ[ZAPT2] increment usually changes by as much as 0.5 to 1.0 kcal mol−1. The

difference between R12 TZ and R12 QZ results is generally smaller than the difference between the

R12 QZ and 5-6 extrapolation, suggesting the R12 QZ results may actually be closer to the basis

set limit than the aV5Z-aV6Z extrapolation.
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FIGURE 4.2: Error of atomization energy δ[ZAPT2] increments with respect to R12 T-Q extrapolation for R12
ansätze.

To validate our choice of R12 ansatz, the errors for the different amplitude ansätze are displayed

in Figure 4.2, with the basis set limit now estimated by an R12 T-Q extrapolation. While the IJKL

ansatz generally performs slightly better with the DZ basis, all results are essentially identical for

the TZ basis. For the DZ basis, the IJKL results actually benefit from compensating errors in

which geminal basis set superposition errors tends to offset the basis set incompleteness error. For
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situations in which only a DZ computation is feasible, we suggest that errors associated with the

use of fixed amplitudes are negligible compared with the intrinsic basis set error.
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FIGURE 4.3: Error of atomization energy δ[ZAPT2] increments with respect to R12 T-Q extrapolation for RI
approximationsAs mentioned previously, the most expensive part of an R12 computation is the double RI index

transformation necessary for the exchange matrix term of the B intermediate. The double RI can

be replaced by a single RI approximation, drastically reducing memory and CPU requirements.

The effect of the approximation is shown in Figure 4.3. For the TZ basis, the results are equivalent

within 0.1 kcal mol−1. For the DZ basis, the hybrid RI is clearly a more severe approximation.

However, the difference from the full RI approach is usually less than 0.5 kcal mol−1, and, again, for

computations in which only a DZ computation is feasible, the hybrid RI error is probably negligible

compared to the total error in the computation. To further assess the accuracy of the R12 T-Q

limit versus the conventional aV5Z-aV6Z limit, we can examine the basis set convergence of the

conventional and R12 increments. Figure 4.4 shows the conventional δ[ZAPT2] increments for the

aVQZ, aV5Z, aV6Z progression. Even the conventional aV5Z δ[ZAPT2] increments are usually 2.0

to 3.0 kcal mol−1 from the CBS estimate while aV6Z increments are 1.0 to 2.0 kcal mol−1 from the

CBS estimate. As a consequence, the aVQZ-aV5Z extrapolation usually differs from aV5Z-aV6Z
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FIGURE 4.4: Error of atomization energy δ[ZAPT2] increments for conventional ZAPT2 with respect to
aV5Z-aV6Z extrapolation.

result by as much as 0.5 kcal mol−1, demonstrating a significant indeterminacy in the exact CBS

limit.

In contrast, the R12 QZ results differ from the R12 T-Q limit by less than 0.2 kcal mol−1

(Figure 4.5), suggesting the R12 T-Q CBS estimate is essentially converged. The D-T extrapolation

improves little on the accuracy of a single R12 TZ computation given the relatively large error in

the R12 DZ result, and there seems to be little benefit in performing a D-T extrapolation.

4.8 Conclusions

An explicitly-correlated second-order perturbation theory for high-spin open-shell states has been

presented based on a symmetric (Z-averaged) exchange operator. Excellent basis set convergence

for atomization energies is observed with the recently developed R12 basis sets of Peterson. This

convergence is competitive with even an aV5Z-aV6Z extrapolation. Through the use of symmetric
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FIGURE 4.5: Error of atomization energy δ[ZAPT2] increments with respect to R12 T-Q extrapolation for
ZAPT2-R12 computations.

spin-orbitals in the singly-occupied space, equivalence of α and β subspaces is maintained, greatly

reducing the computational cost. Since computational cost at the level of second-order perturbation

theory is determined almost exclusively by the atomic orbital (AO) to molecular orbital (MO)

integral transformation, ZAPT represents a significant computational savings over approaches based

on semi-canonical orbitals. For restricted Møller Plesset (RMP) perturbation theories, even if

canonical ROHF orbitals are used so that only one set of integrals is required, different amplitudes

are still required for each spin case. In this regard, ZAPT reintroduces amplitude symmetry

relations between the different spin cases, allowing a spin-restricted formalism which will be similar

in cost to closed-shell computations. ZAPT should therefore be useful in greatly reducing the cost

of explicitly-correlated, high-spin open-shell computations.
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CHAPTER 5

SUMMARY AND CONCLUSIONS



5.1 Concluding Remarks

Even the Schrödinger equation for the non-relativistic, Born-Oppenheimer Hamiltonian presents

daunting mathematical challenges if highly-accurate solutions are desired. In particular, it is the

exponential complexity of the electron correlation which rapidly becomes intractable for large sys-

tems. In this regard, we have discussed a series of approximations and extrapolations which can be

feasibly applied to combustion intermediates containing more than ten atoms. In particular, the

coupled-cluster ansatz provides a truncated model of the electron correlation which can be system-

atically improved. This model is exploited in the focal point approach (FPA), extrapolating to the

so-called complete basis set and correlation limits at which the wavefunction becomes mathemati-

cally an exact eigenfunction of the Hamiltonian. The focal point method has been applied here to

two separate systems: conformers of gaseous cysteine and combustion intermediates of ethyl radi-

cal. For cysteine, the realm of subchemical accuracy better than 1.0 kcal mol−1 is already achieved

with triple excitations and orbital basis sets including g-functions. In contrast, for ethyl radical,

a much more extensive treatment is required through quadruple excitations and orbital basis sets

with at least h-functions.

Much more compact representations of the electron correlation can be obtained with wavefunc-

tions directly incorporating the interelectronic distance r12. Although new challenges related to the

computation of Hamiltonian matrix elements arise, we have demonstrated that the R12 methods

provide a set of efficient but still highly accurate approximations. In particular, we have derived

an R12 formalism appropriate for open-shell radicals in combustion via the so-called Z-averaged or

symmetric exchange approach. The Z-averaged R12 methods have been tested at the level of both

second-order perturbation theory and coupled-cluster with singles and doubles, demonstrating the

validity of the approximations. In this regard, the R12 terms essentially only treat two-body effects,

almost exclusively in modeling the Coulomb hole near the coalescence point of two electrons. In

this regard, a foundation has been built for extending these open-shell R12 methods to even more

accurate wavefunction models, potentially providing compact mathematical representations of both

the connected three-body and four-body electron correlation effects.
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