
ONTOLOGY QUERY LANGUAGES FOR THE SEMANTIC WEB:

A PERFORMANCE EVALUATION

by

ZHIJUN ZHANG

(Under the Direction of John.A.Miller)

ABSTRACT

 Ontology languages and corresponding query languages play key roles for

representing and processing information about the real world for the emerging Semantic

Web. Efforts have been made to develop various ontology languages. Each ontology

language provides different expressive power and also computational complexity for

reasoning. Ontology query languages were developed to query the information defined by

these ontology languages and reasoning systems. We conduct a study to compare their

expressive power, efficiency, scalability and best performing situation. We also introduce

the OPS system which consists of two subsystems: the ROPS subsystem, an OWL reasoner

built on Jena2 and the SWOPS subsystem, a First Order Logic (FOL) reasoning system

based on Vampire. Each part can work separately and cooperate with each other for

different tasks. In this paper, we will compare different ontology query languages together

with query systems and give evaluations from the user ’s view point.

INDEX WORDS: OWL, SWRL, Performance Evaluation, Semantic Web, Ontology Query

Language

ONTOLOGY QUERY LANGUAGES FOR THE SEMANTIAC WEB:

A PERFORMANCE EVALUATION

by

ZHIJUN ZHANG

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2005

© 2005

Zhijun Zhang

All Rights Reserved

ONTOLOGY QUERY LANGUAGES FOR THE SEMANTIC WEB:

A PERFORMANCE EVALUATION

By

ZHIJUN ZHANG

 Approved.

 Major Professor: John.A.Miller

 Committee: Ismailcem Budak Arpinar

 Liming Cai

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August, 2005

 iv

DEDICATIOIN

To my wife Peng Xu

 v

ACKNOWLEDGEMENTS

 I would like to thank my advisor Dr. John. A. Miller for his guidance, and his

assistance. Dr. Miller has been very generous to provide his suggestions and help. He also

helped me to overcome the time limitation. I would also like to thank Dr. Ismailcem Budak

Arpinar and Dr. Liming Cai for their valuable suggestions and being a part of my

committee. I would also like to thank my friends Yanfeng Chen, Min Li, Yandong Su and

Liyue Hou for their help during my research.

 vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS…………………………………………………………..…......v

CHAPTER

1 INTRODUCTION AND LITERATURE REVIEW..…………………….…...1

2 ONTOLOGY LANGUAGES FOR THE SEMANTIC WEB:
A PERFORMANCE EVALUATION………………….…………….….…….3

1. Introduction……..……………………………………………………....4

2. Ontology Languages for the Semantic Web………….……….…….…..5

3. Query Languages and Implementations…………….……..……………8

4. ROPS (RDF-OWL Ontology Processing System)….…………………16

5. SWOPS (SWRL Ontology Processing System)……….…………...….19

6. Benchmarking Results………………………………….……………...21

7. Related Work…………………………………………….………….…31

8. Conclusions and Future Work………………………………………...32

3 CONCLUSIONS..………………………………………………..……....….35

REFERENCES…..…………………………………………………………...….....38

APPENDIX

A THE DESCRIPTION LOGIC FAMILIES……………………………….……...42

B USER GUIDE………………………………………………………….………..44

C INSTALLATION GUIDE……………………………………………….………50

 1

 CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Currently, there is tremendous effort going on to define languages for the Semantic Web.

The goal of these languages is to represent information over the World Wide Web, so that it

is understandable and accessible by machine. In addition, these languages should also

guarantee that they have enough expressive power to represent rich semantics of real world

information and also they should be efficient enough to be processed by machine.

Some of these languages are very successful, such as RDF(S) and OWL. They are

recommended as standard by W3C. There are also languages still under development. For

example, SWRL is an extension of OWL DL (a sublanguage of OWL) with Horn like rules

To utilize the information represented by Semantic Web languages, ontology query

languages are being developed to provide the ability for users to retrieve information from

ontology. Several of these query languages are implemented in ontology query systems. For

these query languages and implemented systems, there has been little comparison and

performance evaluation done so far. In our research, we compare several ontology query

languages giving their advantages and drawbacks. We also evaluate the performance of

corresponding query systems using the LUBM benchmark. The systems tested include Jena2

with RDQL, RACER with nRQL, and Vampire with SWRL.

We introduce OPS, an ontology query system that consists of two subsystems: ROPS

built on Jena2 and SWOPS built on the Vampire theorem prover. Our intension to build OPS

 2

is to provide an ontology query system that can deal with both complex ontology and large

ontology. The ROPS subsystem can handle ontology which is simple, but with a large data

set. The SWOPS subsystem can process very complex ontology that is not quite so large.

 3

CHAPTER 2

ONTOLOGY QUERY LANGUAGES FOR THE SEMANTIC WEB:

A PERFORMANCE EVALUATION1

1 Zhiun, Zhang, John A.Miller. Submitted to Journal of Web Semantics.
Corresponding author. Address: Dempartment of Computer Science, University of Georgia, Athens, GA 30602. E-Mail –
jam@cs.uga.edu. Telephone: 706-542-3440. Fax: 706-542-2966.

 4

1 Introduction

The Semantic Web is considered by some as the next generation of the World Wide
Web. The development of suitable languages for representing ontology and efficient
reasoners are two keys tasks to be solved for the Semantic Web. Currently, several
ontology languages and ontology query languages have been developed. For these
languages and querying systems, there does not exist a thorough comparison and
evaluation among them. This paper evaluates those mainstream ontology languages and
ontology query languages and provides a view about the advantages and disadvantages of
each of them. After that, it provides our evaluations on what query languages and what
query systems to choose under a certain situation.

In this paper, we will focus on three ontology languages: RDF(S) [1], OWL [2], and
SWRL [3]. The Resource Description Framework (RDF) is a framework developed by the
W3C (World Wide Web Consortium) for representing information in the World Wide Web.
RDF inherits XML syntax and exploits URI to identify resources. RDF Schema (RDFS) is
used to specify the vocabularies in RDF. RDF(S) provides a foundation for other advanced
languages for similar purposes. The Web Ontology Language (OWL) is a semantic markup
language for ontology representation. It extends RDF syntax and is derived from
DAML+OIL [4] and many other influencers. OWL provides three increasingly expressive
sublanguages: OWL Lite, OWL DL (Description Logic) and OWL Full [5]. The Semantic
Web Rule Language (SWRL) is a rule language combining OWL and RuleML [3]. It is still
under development by the Joint Markup Language Committee2. SWRL extends OWL DL
with binary/unary first order Horn like rules. This rule extension makes SWRL more
powerful and flexible than OWL DL. As a trade-off, the computational complexity of
SWRL increased to semi-decidable [6].

Along with the development of these ontology languages, several query systems have
been developed. Jena2 is a framework built by HP Labs. It provides multiple reasoners for
RDF, RDFS, and OWL. It also provides a flexible query language, called RDQL [7]. Jena2
is sufficient for many sophisticated query tasks, it can support OWL Lite and partially
OWL Full now. Another system is OWL-QL [8]. It introduces some very valuable features
for ontology querying. The other system is RACER that uses nRQL as the query language.
RACER supports reasoning for RDF, RDFS, and OWL ontology languages. Based on
Jena2, we built ROPS (RDF-OWL Ontology Processing System), a sub-system of OPS
(Ontology Processing System) supporting ontology reasoning in RDFS mode and OWL
mode. To test the power of the SWRL language, we also built our own SWRL query tool --
SWOPS (SWRL Ontology Processing System) which is based on the Vampire Theorem
Prover [9]. SWOPS is also a sub-system of OPS.

2 The Joint United States / European Union ad hoc Agent Markup Language Committee was created in October 2000 by
Jim Hendler of DARPA and Hans-Georg Stork of the European Union Information Society Technologies Programme
(IST). Refer http://www.daml.org/committee/ for detail.

 5

This paper is organized as follows: Section 2 reviews the relevant ontology languages.
Section 3 discusses several query languages supporting RDF, RDFS, OWL and SWRL,
respectively. We focus on languages/systems with some degree of OWL support. In Section
4, we present ROPS, built for OWL querying and then describe SWOPS, built on the
Vampire prover for SWRL querying in Section 5. The comparison of the performance for
these query languages along with other Semantic Web query languages is discussed in
Section 6. Section 7 describes the related work and section 8 gives the conclusions and
future work.

2 Ontology Languages for the Semantic Web

This section briefly discusses various ontology languages for the Semantic Web
(technically, these languages are in different layers of the Semantic Web layer cake [10],
but are all used for representing ontology). The focus is on the differences and
correspondences among different languages. Since all of these languages are influenced by
RDF and RDFS, we first briefly describe RDF and RDFS. DAML+OIL is very similar to
OWL and is also very briefly described. In this section, we will focus a bit more on the
higher end of the Semantic Web layer cake, OWL and SWRL.

2.1 RDF and RDFS

The goal of the Semantic Web is to make information on the Web both accessible and
understandable by not only humans, but also computers. RDF(S) was thus developed to
represent information in the Web. In RDF(S) the resources in the Web are identified by
Web identifiers (Uniform Resource Identifier or URI) [11]. To make it machine processible,
RDF inherits XML-based syntax. After years of development, RDF(S) now has formal
syntax, formal semantics and XML Schema datatypes. It is a W3C recommended
information representation standard for the Semantic Web. The RDF abstract syntax has a
graph pattern, where the statements are represented as N-triples [12] (format: Subject –
Predicate – Object or node-arc-node link, hence the term ‘graph’) [13].

RDF can express resource properties and their values. RDFS extends RDF by
providing the ability to define RDF vocabularies such as classes, properties, types, ranges,
domains, etc. However, RDF and RDFS only have very limited expressive powers [11]
[14]:

? RDF(S) cannot express equality and inequality;
? RDF(S) cannot define enumeration of property values;
? RDF(S) cannot apply cardinality and existence constraints;
? RDF(S) cannot describe unique, symmetric, transitive, inverse relationships among

properties;
? RDF(S) cannot describe union, intersection and complement;
? The domain and range in RDF(S) can only be specified globally [14].

 6

As a result, several more sophisticated languages have been developed to meet these
requirements.

2.2 DAML+OIL

 DAML+OIL [4] is a combination of DAML (DARPA Agent Markup Language) and
OIL (Ontology Inference Layer) [15]. It has an RDF/XML syntax based on the frame
paradigm [16] and describes the structure of a domain (schema) in an object-oriented style.
DAML+OIL consists of a set of axioms asserting the relationships between classes and
properties.

DAML+OIL uses a Description Logic style model theory to formalize the meaning of
the language [16]. This is a very important feature to reduce arguments and confusions, thus
giving the language the ability to precisely represent the meanings of information. This
ability is crucial for automatic reasoning, which is the goal of the Semantic Web.

The new features DAML+OIL supports are the following:

? Constraints (restrictions) on properties (existential/universal and cardinality),

? Boolean combinations of classes and restrictions, e.g., union, complement and
intersection,

? Equivalence and disjointness,

? Necessary and sufficient conditions, and

? Constraints on properties.

However, DAML+OIL tries to be compatible with RDF syntax, but this raises some
serious syntactic and semantic problems [16]. Another problem is that DAML+OIL
datatypes are not compatible with RDF, since RDF did not provide datatype definition
ability when DAML+OIL was being developed.

2.3 OWL

OWL [5] was developed on top of RDF and borrowed from DAML+OIL. Like RDF,
OWL is the standard recommended by W3C for Semantic Web. OWL is powerful in
expression, but complex for computation. To compromise between expressive power and
acceptable computational complexity, OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL, and OWL Full. Among them, OWL Lite is a subset of
OWL DL, and OWL DL is a subset of OWL Full.

OWL Full contains all the OWL language constructs and provides the free,
unconstrained use of RDF constructs [2]. In OWL Full, owl:Class is equivalent to
rdfs:Class. OWL Full also permits classes to be individuals. A class can even be a property

 7

of itself. In OWL Full, owl:Things and rdfs:Resource are equivalent too. This means that
object properties and datatype properties are not disjoint.

The advantage of this jointness is that it provides high expressive power. Unfortunately,
the drawback is that it is computationally undecidable [16]. As the result, it is very difficult
to build a reasoning tool for OWL Full. Although theoretically, OWL Full can be processed
via some FOL engine, it can not guarantee quick and complete answers.

As a sublanguage of OWL Full, OWL DL introduces several restrictions on the usage
of OWL constructs. These restrictions are carefully chosen to make sure that OWL DL is
decidable. OWL DL does not support all of RDF(S) [2]. In OWL DL, classes, datatypes,
individuals, and properties are all pairwisely disjoint. Datatype properties and object
properties are also disjoint. As a result, inverse, transitive and symmetric relationships can
not be applied to datatype properties. Cardinality constraints are also forbidden on
transitive properties.

These restrictions guarantee that OWL DL is computationally decidable. It is
equivalent to DL SHOIN(D) [16] whose worst case is non-deterministic exponential time
(NEXPTIME). Reasoning for OWL DL can be supported via DL or FOL reasoners without
losing accuracy. It is the best choice for users who require accurate results with maximal
expressive power.

OWL Lite can be considered as a simplified version of OWL DL. It supports simple
classification hierarchies and simple qualification restriction. Constructs such as one of,
unionOf, complementOf, hasValue, disjointWith and DataRange are not allowed in OWL
Lite. Furthermore, some constructs also restrain the use of certain resources. The
cardinality restrictions in OWL Lite can only have value of 0 or 1.

The computational complexity of OWL Lite is equivalent to that of DL SHIF(D), which
is exponential time (EXPTIME) in the worst case [16]. The purpose of OWL Lite is to
provide a minimal useful subset of OWL with an efficient complete reasoner. Building a
DL reasoner for OWL Lite is relatively straightforward. Several current DL reasoning
systems perform very well on OWL Lite repositories.

2.4 SWRL

The Semantic Web Rule Language (SWRL) [3] is under development as a combination
of the OWL DL with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup
Language [17]. SWRL can be considered as DL + function-free FO Horn rules [18].

SWRL adds rules to OWL DL. The reason is that these rules provide more expressive
power to Description Logic. For example, you can use FOL to define (represented in the
human readable syntax of SWRL) the concept Aunt.

 Parent(?x, ?y) ^ Sister(?y, ?z) ? Aunt (?x, ?z)

 8

Here ‘Parent(?x, ?y) ^ Sister(?y, ?z)’ is called the antecedent (body) and ‘Aunt (?x, ?z)’
is called the consequent (head) of the rule. Whenever the antecedent holds, the consequent
holds. OWL can not define relationships like this. Applying rules one can also extend OWL
with composition capability.

Although SWRL is relatively new, FOL has already been thoroughly studied. Also, the
combination with FOL allows SWRL to easily communicate with traditional relational
database systems. This feature is very attractive since most information in the real world is
still stored in relational databases.

The disadvantage of SWRL is its computational complexity. Although it is still under
construction, developers have agreed that it will support most of the features of Description
Logic and partial Horn Logic Programs. It is sure to be undecidable [3]. However, since
FOL has been studied for more than a century, it will still benefit from the precedent model
theory and FOL engines. A good solution for this is to borrow the idea of OWL –
developing multiple sublanguages of SWRL with decreasing complexities, from full to
simple versions and decreasing the complexities from being undecidable to being decidable.
This task has not formally started yet, but has already been considered [19].

3 Query Languages and Implementations

Based on the ontology languages described above, several query languages and
systems have been already developed. RDQL [7] is the query language for Jena2. Vampire
[9] is a FOL theorem prover using TPTP 3 format for problem input and query input. nRQL
is the query language for RACER. Finally, OWL-QL [8] is a query language for the
OWL-QL system.

SPARQL [20] is a Server-Client-based RDF query language. It has SQL syntax and is
influenced by RDQL and SquishQL4. SPARQL supports disjunction in the query and thus
can process more complex query than RDQL. SPARQL also provides optional variable
binding and result size control mechanisms for real world usage. However, we did not
choose SPARQL as a query language for testing, since there was no supporting system
available at the time.

Because Jena2 is a development package and did not provide an executable interface,
we build ROPS system over Jena2 for OWL ontology querying. Also, since Vampire is a
prover, we build SWOPS over Vampire as a FOL ontology reasoner.

In rest of this section, we briefly describe each of these query languages and the
systems developed for them.

3 TPTP stands for “Thousands of Problems for Theorem Provers”. Related information can be found at
http://www.cs.miami.edu/~tptp by Geoff Sutcliffe and Christian Suttner
4 http://swordfish.rdfweb.org/rdfquery/

 9

3.1 nRQL and RACER

RACER[21] is a description logic ontology reasoning system supporting DL
ALCQHI+(D-). RACER extends basic Description Logic ALC by adding role hierarchies,
transitive roles, inverse roles, and qualifying number restrictions.

nRQL (new RACER Query Language, an extension of RQL) [21] is an extended query
language for RACER. nRQL was constructed based on Description Logic model theory
[22].

In Description Logic, the knowledge base is represented in a tuple (T-Box, A-Box).
A-Box contains assertions about individuals and T-Box defines the concepts (classes or types
of instances), roles (predicates), and features (attributes/properties) of these instances.

In A-Box, the set of individual (instance) names I is the signature of A-Box. The
individual set must be disjoint with both the concept (class) set and the role (property) set. In
A-Box there are four types of assertions: asserting an individual IN1 to be of a concept C.;
asserting role filler for a role R to an individual IN2 that is, individual IN1 is related to
individual IN2 via role R .; assigning an attribute to an individual; or asserting a restriction on
an individual. RACER uses an optimized tableau algorithm to calculate the satisfiability
problem [23]. Tableau algorithms are the dominate algorithms for DL reasoning currently.
The basic idea of this algorithm is to apply transformation rules (these rules preserve the
consistency of original A-Box) to the A-Box until no rules are applicable. If there is no
contradiction in the A-Box, it is called consistent. Given a concept description C, C is called
satisfiable iff there exists an interpretation I so that CI ? ? . The subsumption problem in
RACER is reduced to the satisfiability problem [24].

The RACER T-Box includes the conceptual model of concepts and roles. The model
consists of a set of concept names C and a set of role names R. By exploiting several
operators (constructs), one can build complex concepts and roles. RACER supports
Negation, Conjunction, and Disjunction constructs. RACER also provides Existential and
Universal quantified restrictions to ensure that certain roles filler have to be of a specific
concept. RACER provides three types of number restrictions: At-most, At-least, and
Exactly. The restrictions can be applied to roles. However, only non-transitive roles (also no
transitive sub-roles) can apply cardinality restrictions to attributes.

For datatypes, RACER provides a Concrete Domain that describes concrete predicate
restrictions for attribute fillers. The types includes cardinal, integer, real, complex, and string.
The restrictions are all mapped to this concrete domain.

The concept axioms that RACER supports include concept inclusion that states the
subsumption relationship between two concepts, concept equation that states equivalence
between two concepts, and concept disjointness that states the disjointness relationship
among concepts. RACER can also define the concept name as a special type of a concept
term. In RACER, concept axioms can be cyclic or even several axioms for just one concept.

 10

Role declarations in RACER are unique. Only one declaration can be done to one role
name. This restriction also applies to attributes in T-Box and individual names in A-Box.
Role declarations can declare features (attributes) of a given role, declaring a role to be
transitive, and declare hierarchy relationships among roles. In the current version of RACER,
the sub-role relationship can not be cyclic.

To suit variant purposes of reasoning, RACER provides two inference modes. Given a
query, RACER can minimize the computation time in the lazy inference mode. If the lazy
inference mode is enabled, only the individuals involved in a “direct types” query are
realized. However, when the query involves much classifying, another mode – the eager
inference mode provides better performance. The other way to save processing time is to
save A-Box and T-Box in separate files. Thus, classifying one of them does not need to
affect another.

As an effort to be a universal query framework for the Semantic Web, RACER can read
RDF, RDFS, DAML+OIL, and OWL documents as inputs5. RACER can process OWL Lite
knowledge bases, as well as OWL DL.

 nRQL provides a powerful query language for RACER. It is an A-Box query language.
The variables in the queries are to be bound to A-Box individuals.

An example query with complex predicate is like:

 (retrieve (?x ?y) (?x ?y (:constraint (age) (age) >))),

The example query retrieves the individual pairs that who are older than whom. In this query,
nRQL first assigns the age attribute with individuals bound to ?x and ?y. Here variables x
and y are not restricted to specific classes. Any instance having a property age is possible to
participate in the answer.

nRQL also supports compound queries using the and operator:

 (retrieve (?x ?y) (and (?x mother) (?y man) (?x ?y has-child))),

This query asks about a mother who has whom as a son. Here variable x is bound to class
mother and variable y is bound to class man.

nRQL also supports negation as failure by providing a not operator:

 (retrieve (?x) (?x (not grandmother))),

This query does not return any female individual unless she was explicitly defined in the
ontology as not having any grandchild.

With the features mentioned above, RACER is a very powerful and formalized

5 RACER applies consistency checking during ontology loading process. It can not load test cases directly in our research.
We uses OilEd [25]. to load test ontology into RACER.

 11

description logic inference engine with a flexible query language – nRQL, for the Semantic
Web. It provides many attractive features, especially for when expressive power and
performance are both critical. Even for those who want the maximum expressive power, it is
still a good choice.

3.2 OWL-QL

The OWL Query Language (OWL-QL) is a well designed language for querying over
knowledge represented in a repository [8]. OWL-QL is an updated version of DAML
Query Language (DQL).6 It is intended to be a candidate for query-answering dialogues
among answer agents and query agents. Then information receivers and information
providers can transfer queries and answers via the Internet.

OWL-QL provides a formal description of the semantic relationships among queries,
answers, and knowledge bases used to produce answers. An OWL-QL query contains a
collection of OWL sentences in which some URI references are considered to be variables.
This collection is called query pattern.

The answers to a query provide bindings to the query pattern so that the binding result
of the query pattern is existentially quantified. It may not necessarily entail a binding for
every variable in the query. OWL-QL extends this by enabling clients to designate which
variable or set of variables must be bound to the query pattern. Each variable occurring in
the answer pattern has one of the three binding types, i.e., must-bind variable, may-bind
variable, and don’t-bind variable. A quantified answer must provide all the bindings for all
the must-bind variables, may provide bindings for any of the may-bind variables and must
not provide bindings for any of the don’t-bind variables. All the lists are disjoint with each
other. By adjusting the variable for binding, OWL-QL can answer the questions such as
“What resources make the query pattern true” or “Is the query pattern true”. This is quite
flexible and allows for sophisticated queries. It also provides users the ability to specify an
answer pattern, so that the server knows in what format the answers should be returned.

Since OWL-QL provides a large range of query-answer services, the size of the answers
returned for a query may be very large. In addition, if the query is over a large KB, the
process may take an unexpected long time. The solution is to permit the answering server to
return part of query results. In addition, there needs to be a communication channel between
clients and server. OWL-QL introduces the mechanisms called answer bundle and process
handle to deal with this.

Unfortunately, because an executable package of OWL-QL is not available right now,
we could not compare it with the other query systems in section 6.

3.3 RDQL and Jena2

6 Developed by the Joint United States/European Union ad hoc Agent Markup Language Committee

 12

RDQL is a query language for RDF in the Jena framework. The development of RDQL
is to provide a data-oriented query model. This means that RDQL only retrieves
information stored in the model which contains a set of N-Triple [12] statements. RDQL
provides no reasoning mechanisms. The reasoning is provided by user selected reasoners
bound to the model containing the original ontology information. Provided with a proper
reasoner, RDQL can process ontology in various languages including OWL. Unlike
OWL-QL, all variables in the input query are must-bind variables.

An RDQL query has the following form:

 SELECT ?x
 WHERE (?x,<ns0:father>,?y) (?y,<ns0:cars>,?z) (?x,<ns0:carType>,<truck>)
 USING ns0 FOR <http://www.somewhere.com/driverregistration#>

This query asks for the retrieval of all the instances of person whose fathers have trucks.

Figure 1: Structure of the inference machinery of Jena2

The notation of ?x represents a variable. In the WHERE clause, a set of N-Triples
define the query pattern of a query. The USING clause defines an alias for the prefix of a
URIs to simplify the URI. RDQL can query about predicates or objects too. The limitation
of RDQL is that it does not support disjunction in a query. Though RDQL is relatively
simple in syntax, it is efficient for most of the ontology queries. The simple syntax also
makes RDQL very flexible.

The machinery structure of Jena2 is shown in Fig. 1. The asserted statements are held
in the base RDF graph. The selected reasoner uses information in the base graph to
generate additional entailments from the original set of statements. RDQL queries are
processed by Ont/Model.

To optimize ontology reasoning, Jena2 provides a variety of reasoners for ontology
with different formats and complexity. These reasoners include the following:

 13

 Transitive Reasoner:
The transitive reasoner provides storage and traverses classes and properties. It
processes the transitive and symmetric properties of rdfs:subPropertyOf and
rdfs:subClassOf. This reasoner is included in RDFS rule reasoner by default. It is a
basic reasoner that can be embedded in other hybrid reasoners.

 RDFS Rule Reasoner:
The RDFS rule reasoner processes a configurable subset of the RDFS entailments.
There are three subsets of them – Full, Default, and Simple. The RDFS rule
reasoner is a hybrid implementation. It combines other basic reasoners to do
reasoning tasks to reduce redundancy and flexibility. The hierarchical relationships
are calculated by the transitive reasoner embedded into the RDFS rule reasoner by
default. The rest of the RDFS operations are executed by the generic hybrid rule
reasoner.

 OWL Rule Reasoner:
The OWL rule reasoner intends to be the smooth extens ion of RDF Reasoner.
Compared to more sophisticated Description Logic reasoners, this reasoner is less
efficient. The OWL rule reasoner supports OWL Lite plus some of the constructs of
OWL Full.

 Generic Rule Reasoner:
The Generic rule reasoner is a rule-based reasoner that supports user defined rules.
It supports forward chaining, tabled backward chaining, and hybrid execution
strategies. The forward chaining engine is based on the standard RETE algorithm
[26]. The backward chaining engine is a logic programming (LP) engine supporting
tabling, which is the technique used in XSB7. This technique can successfully
resolve recursive problems, such as transitive closure to avoid infinite loops.

The current version of Jena is 2.2 and it supports most of the major ontology languages
including RDF(S), DAML+OIL, and OWL. However, Jena2 does not fully support OWL
yet. It can understand all the syntax of OWL, but it do not support reasoning in OWL Full.
Jena2 now supports OWL Lite plus some constructs of OWL DL and OWL Full such as
hasValue. Some of the important constructs that are not supported in Jena2 include unionOf,
complementOf, and oneOf. The constructs Jena2 supports are listed in Table 1. Jena
supports cardinality restrictions on literal valued properties. Notice that for the cardinality
restrictions, Jena2 only supports the values of 0 and 1 (the same as in OWL Lite).

Jena2 provides a model interface that can store N-triples persistently in a database.
When a query is processed on a stored ontology again, Jena2 can just load the statements
from the database without having to redo the reasoning process.

7 XSB is developed by Stony Brook University, in collaboration with Katholieke Universiteit Leuven, Universidade Nova
de Lisboa, Uppsala Universitet and XSB, Inc.

 14

Jena2 also provides a generic rule engine and an interface for users to enter rules as an
extension to the original rule set. This feature theoretically makes Jena2 support SWRL
reasoning (Jena2 only supports a subset of features of SWRL right now).

Table 1: The construct list supported by Jena2

Constructs supported by Jena2

rdfs:subClassOf, rdfs:subPropertyOf, rdf:type

rdfs:domain, rdfs:range

owl:someValuesFrom, owl:allValuesFrom

owl:minCardinality, owl:maxCardinality, owl:cardinality

owl:intersectionOf

owl:equivalentClass, owl:disjointWith

owl:sameAs, owl:differentFrom, owl:distinctMembers

owl:Thing

owl:equivalentProperty, owl:inverseOf

owl:FunctionalProperty, owl:InverseFunctionalProperty

owl:SymmeticProperty, owl:TransitiveProperty

owl:hasValue

In our research, we built the ROPS system based on Jena2 for evaluating Jena2 and
RDQL. The ROPS system will be introduced in detail in section 4.

3.4 SWRL as a Query Language

As we described above, SWRL is a combination of OWL DL and first order Horn like
rules. OWL DL is a subset of DL (OWL DL is equivalent to DL SHOIN (D)) and DL is a
subset of FOL [18]. We can represent SWRL in FOL without losing information.
Theoretically, we can start from a universal FOL engine to implement a SWRL query
engine. Currently, there is no complete implementation for SWRL. However, we can use a
human readable syntax (Datalog- like) to formulate queries to simulate SWRL queries and
process them using a FOL theorem prover.

To process OWL via a FOL engine, we need to translate Description Logic statements
to FOL rules [27]. We give some example translations below:

DL statement CA ? CB, where CA is a subclass of CB, can be represented in FOL as:
 CA(?x) ? CB(?x).

 15

PA ? PB, PA is a subProperty of PB can be represented as:
 PA(?x, ?y) ? PB(?x, ?y).
dom(P) : C, Domain of Property P is Class C, can be represented as:
 P(?x, ?y) ? C(?x).
range(P) : C, Range of Property P is Class C, can be represented as:
 P(?x, ?y) ? C(?y).

 a ? C, a is a instance of Class C, can be simply represented as:
 C(a).
 (x, b) ? P, (a, b) is a instance of Property P, can be represented as:
 P(a, b).

The other constructs can also be represented in the same way as discussed in [27] [28]. All
of these constructs in OWL DL can be translated into FOL rules with consistent meanings.

The FOL engine we adopted is Vampire8 , an automated theorem prover (ATP)
developed for first order classical logic by Andrei Voronkov and Alexandre Riazanov in the
Computer Science Department, University of Manchester. Vampire exploits several
techniques to improve its performance such as optimized algorithms for backward and
forward subsumption, indexing and discrimination trees. These optimizations make
Vampire very efficient in theorem proving.

Vampire is a saturation-based theorem prover. The problem given to the kernel of
Vampire is a set of clauses. Each clause is a dis junction of literals. The prover then tries to
derive new clauses from the initial clause set until an empty clause is found (proved).
Otherwise, the prover goes on until no new clause can be generated (unproved) and the
problem set is called saturated [29]. As a result, Vampire is very efficient for unsatisfiable
problem like proving a subsumption (a subsumption holds if the corresponding problem is
unsatisfiable), since it can often derive an empty clause before consuming all clauses to stop.
For satisfiable problems like non-subsumption, it will be less efficient since it have to
exhaust all the clauses until it can not generate any new clause.

Vampire is a theorem prover, which makes it less efficient for acting as a real time FOL
query engine. Vampire can only prove a set of clauses that contains a query problem one at a
time and with only three possible outputs: satisfiable (unproved), unsatisfiable (proved) and
timeout. It can not return a list of answers like a common query engine. As a result, for
queries potentially having multiple answers, Vampire can not return all the answers at once.
In addition, Vampire needs to reload the problem data (ontology information in our test) for
each query, since Vampire can only take a file as input. All these limitations compromise the
performance of Vampire as an ontology reasoner.

As a sophisticated prover, Vampire provides a list of options to control the behavior of
the kernel to improve performance. However, most of these options can not improve the

8 The website of Vampire is http://www.cs.man.ac.uk/~riazanoa/Vampire/

 16

performance of ontology reasoning for query processing.

To test the performance of a FOL ontology reasoner, we built the SWOPS system by
modifying Vampire to improve its performance and created a GUI for it too. We will
describe SWOPS in section 5.

4 ROPS (RDF-OWL Ontology Processing System)

ROPS is a sub-system of our Ontology Processing System (OPS). It is the RDF/OWL
ontology reasoning system we developed using Jena2. Taking advantage of the friendly
Java interfaces of Jena2, we developed the ontology reasoning kernel and visual user
interface for ROPS. In this section, we first illustrate the architecture of the OPS system.
After that, we explain the related features in Jena2 and then describe the implementation of
ROPS.

4.1 Architecture of OPS System

OPS is a flexible ontology reasoning system for both OWL and SWRL. It is composed
by two subsystems: RDF-OWL Ontology Processing System (ROPS) based on Jena2 and
SWRL Ontology Processing System (SWOPS) based on Vampire. This ROPS subsystem
will be discussed later in this section and the SWOPS subsystem will be illustrated in
section 5. Fig. 2 illustrates the architecture of OPS.

Figure 2: Architecture of OPS

The OPS system provides a graphic user interface through which users can control its
subsystems and perform ontology reasoning process. The GUI provides universal API for
both of OPS and SWOPS subsystems. Each subsystem provides a plug- in to communicate

 17

with OPS interface. The Input interface provides I/O control for reading input ontology and
output the results. The configuration interface provides controls on the performance of
ROPS and SWOPS subsystems. The rule extension interface provides the mechanism to
extend current ontology with SWRL rules for the queries beyond OWL. The queries are
entered via a query interface to communicate with the selected subsystem. A user guide of
OPS is in Appendix B.

Users can choose ROPS or SWOPS as the ontology reasoner based on the input
ontology and reasoning tasks. Currently, OPS does not support direct switching between
ROPS and SWOPS during the reasoning process.

4.2 Related Features in Jena2

Jena2 provides several choices for the input interface. The input could be from a file on
a local disk, over a network, or any resolvable URL. This makes OPS very flexible to get
input resources among different location.

Jena2 supports most of the current ontology languages as input. ROPS supports RDF(S),
DAML and OWL (we only use OWL in our test). A user can define the type of input
language to improve performance. OWL Full is set as the input language by default. Users
can also define whether to perform reasoning in memory or in a database. The default mode
is to process in memory.

When creating the ontology model, users can specify the type of the input by providing
the model factory the URI of the specific language. Currently, Jena2 supports RDFS,
DAML+OIL, OWL Lite, OWL DL, and OWL Full. For each type of input language, Jena2
provides several reasoners optimized for that ontology language. Users can also select what
reasoner should be bound to the ontology model.

Since selecting a proper reasoner can affect performance, to generate the best
performance, the users of ROPS need to have sufficient knowledge of the ontology content
and queries. ROPS selects the OWL Rule Reasoner by default, which is the most powerful
and least efficient reasoner.

4.3 Architecture of ROPS Subsystem

ROPS is embedded in OPS and provides compatible API to OPS GUI. There are four
main functions in ROPS to implement the four modules in the visual interface of OPS. The
operations selected via the GUI are processed by ROPS and then sent to Jena2 for
corresponding actions. There is also code to answer queries about direct subsumption
relationships. This function is done by directly calling Jena2 API. The architecture of
ROPS is shown in Fig. 3.

Through the intermediate layer, users can use GUI of OPS system to control I/O
process. Users can also configure the process of ROPS by selecting a proper reasoner
based on the content of the input ontology and complexity of the query tasks. A proper

 18

reasoner can provide better performance. If users do not specify the reasoner, the system
will choose the OWL Rule Reasoner automatically.

Users can extend the ontology by adding new rules via the rule extension interface of
OPS. New rules can be input from an input box or be imported in a batch from a local file
or URL. However, this enhancement can only be used together with the generic rule
reasoner. This limits the usage of rule extension mechanism of ROPS.

Figure 3: Architecture of ROPS

Users can also add and remove statements like adding rules to the existing ontology
together with reasoners other than the generic rule reasoner. This is also processed through
the rule extension interface of OPS. However, both these activities will trigger the reasoner
to restart the reasoning process instantly. To improve the efficiency, users can choose to set
the reasoners in non- incremental mode to notify the reasoner not to re- infer until a new
query is submitted. Users can also trigger the reasoner to restart reasoning after all
modifications are done.

Users can input RDQL queries directly via the query interface. However, RDQL has
limited support for queries on the schema. ROPS extends RDQL to support this type of
queries (e.g., queries about subsumption relationships, such as superclassOf). These
extensions queries are processed by directly calling and combining the functions provided
by Jena2.

ROPS supports the following types of queries:

? subClass or superClass of a given class type,
? subProperty or superProperty of a given property type,
? what type of class (all or direct superclasses) a given instance is,
? whether two given instances or two types are the same or different,

 19

? what is the value of a specified property of a instance,
? all the instances of a class,
? all the properties of a given instance (currently only can get direct properties), and
? combinations of these queries together for more query power.

In the query interface, users can also choose to generate derivation history for the input
queries. The derivation history can give the detail about the inferred statements. However,
since this process needs to create additional data for each step, it is very expensive both in
time and in memory. The default setting of this option is off.

ROPS is still an incomplete query system for RDF and OWL. The main purpose of
ROPS is for academic research and test usage. The performance of ROPS will be discussed
in section 7.

5 SWOPS (SWRL Ontology Processing System)

SWOPS is another sub-system of our OPS system. It is a FOL ontology query system
based on the Vampire theorem prover. SWOPS is a prototype query system for SWRL.
Since OWL can be translated into SWRL without losing information, SWOPS supports
both OWL and SWRL.

The Vampire prover is not optimized for ontology reasoning and processing of queries.
As a result, the performance of Vampire is compromised and can be improved. In the
SWOPS system, we modified Vampire to solve some of the problems mentioned in section
3.4. These improvements discussed below make SWOPS more efficient for processing
queries.

Figure 4: Architecture of SWOPS

 20

First, Vampire accepts TPTP format files as input. The file-input-only interface makes
it awkward for semantic queries since for each new query (even for the same query over
the same ontology) a new problem file is required before processing the new query. This is
very expensive if the input file is very large. Even for a small input file, if the number of
queries is very large, the overall cost of input is still unacceptable. We partially improve
this by refactoring portions of Vampire and wrapping it in the interface we developed so
that our Java based SWOPS can communicate with Vampire directly without using a
intermediate problem file as input and screen print out as output (see Fig.4).

The second problem with Vampire is that it can only answer whether the input problem
is proved, unproved and unknown. This means that it can only return one answer for each
execution. For those queries that have multiple answers, Vampire must execute as many
times as the number of answers. We modified Vampire by rearranging its proving
procedure so that it can generate all the answers in one execution. In the improved version,
Vampire tries to find the next answer for the query recursively until no further answer can
be found. This modification guarantees that all the answers can be generated. These two
modifications improve the performance of SWOPS for ontology reasoning and make it
possible to compare SWOPS with DL reasoning systems.

Vampire was developed in C++. To communicate with Vampire from Java, we
developed an adapter via Java Native Interface (JNI). This adapter substitutes the
command line interface Vampire originally provides. As shown in Fig. 4, the JNI adapter
permits the rule translation layer to communicate with Vampire directly. The translation
layer interacts with the JNI adapter to control the behavior of Vampire prover and also
provide the I/O method.

The graphic user interface plug- in of SWOPS is similar to that of ROPS. However, the
interface of SWOPS is simpler, since Vampire does not provide as much choice as Jena2.
The functions provided by these sub-interfaces are shown below.

The configure sub-interface of SWOPS is very simple. It is actually combined with the
query interface. Though Vampire provides several options to optimize the performance,
only a few of them are useful for improving the performance, primarily running time
limitation and memory limitation.

The running time limitation is the most important option to control Vampire. Although
Vampire is outstanding as a FOL prover, it is not guaranteed to always terminate, so setting
a maximum running time is necessary. The memory limitation is very similar to time
limitation. Users can adjust this value to optimize the usage of system memory.

The queries of SWOPS are in Datalog-like syntax. An example of the Datalog- like
query similar to the one shown in Section 3.3 looks like the following:

?x := father(?x, ?y), cars(?y, ?z), carType(?z,truck).

 21

The SWOPS query parser we built will parse the Datalog- like query into TPTP format
query. The TPTP format is required by the Vampire prover. The queries in TPTP format
look like the following:

 input_formula(axiom_query,axiom,(subClassOf(male,X))).

This query asks about the subclass of class male. In the TPTP format, notations starting with
uppercase represent variables and notations starting with lowercase represent instances. In
SWOPS, we can query about the following:

? instances of a class,
? subSumption relationships,
? satisfaction of a statement, and
? equivalence or inEquivalence of two instances.

6 Benchmarking Results

The LUBM (Lehigh University Benchmark) [30] was chosen to compare the
performance of these ontology query systems. The benchmark test ontology generated by
LUBM is in OWL (or DAML+OIL) syntax. LUBM can generate testing ontology
automatically based on the initial setting provided by users. These ontology test cases are
based on the real information from Lehigh University. All test cases generated by LUBM
have a similar schema, but have various numbers of instances. LUBM also provides a set
of 14 queries with different complexity levels for the benchmark test.

Our tests were conducted on a WinXP system running on 1.6GHz Pentium 4 processor
with 512MB of memory. In order to reduce inaccuracy, only necessary applications are
loaded during the testing. In our tests, the ROPS subsystem was built on Jena2.2. The
tested version of RACER system is 1.7.24. The SWOPS subsystem was built on Vampire
7.0.

Table 2: Brief Information about five Test Cases
* The size of this file is measured before modification to be compatible with all the systems

 Case 1 Case 2 Case 3 Case 4 Case 5
Class # 41 41 41 41 41

Property # 24 24 24 24 24
Class Instance # 112 401 1084 6973 20659

Property Instance # 383 1470 3844 28039 82415
Size (KB) * 81.3 257 659 4360 8050

In our test, we created five test cases with increasing number of instances using LUBM.
The details are shown in Table 2. The schemas of the five test cases are all the same. The
schema consists of hierarchical relationships, equivalent classes, existential restrictions,

 22

intersections, and inverse relationships. There are no datatype restrictions, transitive
properties, or cardinality restrictions. Since the OWL-QL system is not available, we did
not compare it in the benchmark test.

Table 3: Modified Benchmark Query Set
In this table, the name space “NS” = “http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl”

 Query

Q1
SELECT ?x WHERE (?x,<NS#takesCourse>,<Dept0/GraduateCourse0>) (?x,

<rdf:type>,<NS#GraduateStudent>)

Q2

SELECT ?x,?y,?z WHERE (?x,<NS#memberOf>,?z)

(?z,<NS#subOrganizationOf>,?y) (?x,<NS#undergraduateDegreeFrom>,?y)

(?x,<rdf:type>,<NS#GraduateStudent>) (?y,<rdf:type>,<NS#University>)

(?z,<rdf:type>,<NS#Department>)

Q3
SELECT ?x WHERE (?x,<NS#publicationAuthor>,

<Dept0/AssistantProfessor0>) (?x, <rdf:type>,<NS#Publication>)

Q4
SELECT ?x, ?y, ?z, ?w WHERE (?x, <NS#worksFor>, <Dept0>) (?x,

<NS#name>, ?y) (?x, <NS#emailAddress>, ?z) (?x, <NS#telephone>, ?w)

(?x, <rdf:type> <NS#Professor>)

Q5 (retrieve (?x) (and (?x |NS#Person|) (?x |Dept0| |NS#memberOf|)))

Q6 (retrieve (?x) (?x |NS#Student|))

Q7
(retrieve (?x ?y) (and (?x |NS#Student|) (?y |NS#Course|)

(|Dept0/AssociateProfessor0| ?y |NS#teacherOf|) (?x ?y

|NS#takesCourse|)))

Q8
(retrieve (?x ?y ?z) (and (?x |NS#Student|) (?y |NS#Department|) (?x ?y

|NS#memberOf|) (?y |University0| |NS#subOrganizationOf|) (?x ?z

|NS#emailAddress|)))

Q9
?- teacherOf(Y,Z), takesCourse(X,Z), advisor(X,Y), Student(X),

Faculty(Y), Course(Z)

Q10 ? - Student(X), takesCourse(X,Dept0_GraduateCourse0)

Q11 ?- ResearchGroup(X), subOrganizationOf(X,University0)))

Q12
?- Chair(X), Department(Y), worksFor(X,Y), subOrganizationOf(Y,

University0)

Q13 input_formula(axiom_query,axiom,(~(UndergraduateStudent(X)))).

Q14
input_formula(axiom_query,axiom,(~(Person(X) & hasAlumnus(

wwwxUniv0xedu,X)))).

Q15 input_formula(axiom_query,axiom,(~(TAandRA(X)))).

Q16
input_formula(axiom_xxx,axiom,(![X,Y]: ((UndergraduateStudent(X) &

GraduateCourse(Y) & takesCourse(X,Y)) => (busyOn(X,Y))))).

input_formula(axiom_query,axiom,(~(busyOn(X,Y)))).

 23

The queries provided by LUBM do not require the power of SWRL. To illustrate the
power of SWRL, we switched the order of query 13 with query 14, and added two more
that could only be processed by the SWOPS subsystem. The new query set is shown in
Table 3. These queries were translated into different query languages for each system
tested. There are three of them: RDQL, nRQL, and SWRL in a Datalog-like human
readable syntax. In addition, queries may be specified in TPTP which can be directly given
to Vampire. In table 3, each of these languages expresses four queries in group order (e.g.,
1 to 4 are in RDQL).

ROPS can process in both RDFS reasoning mode (RDFS-mode) and OWL reasoning
mode (OWL-mode). However, in the RDFS-mode, the reasoner can correctly entail RDFS
recognizable statements. As a result, the queries that can be correctly performed in
RDFS-mode are query 1, 2, 3, 4, 5, 7, 11, 12 and 13.

Query 6, 8, 9, and 10 cannot be directly processed by ROPS using the RDFS reasoner.
These queries all consist of axioms about class Student. In the testing ontology, implicitly
defined class Graduate Student (defined via an equivalent class) should be recognized as a
subclass of class Student. However, the reasoner in the RDFS-mode can not recognize this.
It can only return answers from instances that belong to class Undergraduate Student,
which is explicitly defined as a subclass of class Student.

However, these problems can be solved in this test case by adding a statement that
explicitly defines the class Graduate Student to be a subclass of class Student. With this
modification, these four queries can be processed correctly by ROPS in RDFS-mode. Note,
this solution may not be applicable in other case. The running times for query 6, 8, 9, and
10 of ROPS in RDFS-mode shown in table 4 to 8 are the running times on the modified
ontology.

ROPS in RDFS-mode could not execute query 14 since inverse properties can not be
recognized by the RDFS mode reasoner. To fix this problem, we had to generate a new
query by replacing the predicate in the original query with the corresponding inverse
predicate. The combination of sets of answers generated from these two queries is the final
correct answer set. However, since RDQL does not support disjunction, so we can not
combine the new query with the original one. This means ROPS can not process query 14
in one step. As a result, we did not compare the running time of ROPS in RDFS-mode for
query 14. The running times shown in the tables in parenthesis are those queries can not
correctly answered by the query systems.

We extended the query set with query 15 and query 16 to distinguish the power of
tested systems. For query 15, we added a new class TAandRA to those ontology testing
cases. The class TAandRA was defined by the unionOf class TeachingAssistant and
ResearchAssistant. Query 15 asks about all the instances of class TAandRA. ROPS in both
RDFS-mode and OWL-mode can not process this query correctly, since Jena2 does not
support unionOf. Compare to ROPS, RACER can correctly answer this query. Query 16

 24

involves composition of properties. This query first defines a new property busyOn via the
rule extension mechanism of the SWOPS system. This query is only supported by SWRL.
All the other systems can not process this query since OWL does not support composition
of properties.

Tables 4 to 8 show the benchmarking results on the five test cases. The running time is
recorded separately for each query. These queries are executed consecutively after the
testing ontology was loaded. Since only SWOPS can process query 16, the total running
time is the sum from queries 1 to 15.

Table 4: Testing results for Case 1 (in seconds)
*The running time marked in the column of ROPS with RDFS Reasoner is the running time on the

modified ontology.

ROPS with

RDFS Reasoner
(RDQL)

ROPS with OWL
Reasoner
(RDQL)

RACER
(nRQL)

SWOPS
(SWRL)

Loading t 1.132 1.212 0.641 0.9
Q1 0.04 11.977 0.341 1.2
Q2 0.09 0.04 0.04 1.2
Q3 0.01 <0.001 0.04 1.2
Q4 0.01 <0.001 0.03 1.2
Q5 0.03 0.01 0.14 1.5
Q6 0.03* 0.01 0.04 1.9
Q7 <0.001 <0.001 0.01 1.5
Q8 0.02* 0.02 0.02 1.8
Q9 0.02* 0.21 3.665 1.3
Q10 0.01* 0.01 0.03 1.2
Q11 <0.001 <0.001 0.02 1.2
Q12 <0.001 <0.001 4.998 1.2
Q13 <0.001 <0.001 4.977 1.2
Q14 (<0.001) <0.001 5.017 1.2
Q15 (<0.001) (<0.001) 0.03 1.2
Total 1.441 13.216 19.387 19.7
Q16 - - - 1.2

In test case 1, the size of the test ontology is the smallest. We can see from Table 4 that
ROPS has the best performance. It was faster than the other systems in both the
OWL-mode and RDFS-mode. Particularly, in RDFS-mode, we can see most of the time
was actually spent on loading and creating model. The RDFS mode reasoning of ROPS is
about ten times faster then the others in this test case. Even with OWL reasoner, ROPS is

 25

still faster than RACER and SWOPS.

RACER is slower than ROPS in this case. However, the difference is not big. SWOPS
is barely slower than RACER. Considering that Vampire is not optimized as a query
reasoner and must repeat reasoning process once for each query, the potential performance
of SWOPS as a FOL query processor can be as fast as the others.

In Table 4, there is an interesting scenario that most of the time ROPS spent in
OWL-mode was on the first query. This is because that the reasoning strategy of Jena2 is to
derive all the additional statements from original ontology at once. It does not matter
whether the statements are related to current query. Based on this strategy, the following
queries can generate answers without or with very little cost on additional reasoning.
Taking advantage of the optimized indexing technique of Jena2, the following queries can
be processed very fast. This reasoning strategy makes ROPS efficient when processing a
large number of queries on the same ontology.

Table 5: Testing results for Case 2 (in seconds)

ROPS with

RDFS Reasoner
ROPS with OWL

Reasoner
RACER SWOPS

Loading t 1.312 1.402 1.091 2.6
Q1 0.05 96.682 0.871 3.9
Q2 0.04 0.05 4.997 3.8
Q3 0.06 0.02 0.04 4
Q4 <0.001 <0.001 0.21 4
Q5 0.02 0.01 0.621 6.9
Q6 0.06* 0.02 1.272 6.7
Q7 0.01 <0.001 4.987 4.3
Q8 0.01* 0.01 0.09 6.2
Q9 0.03* 0.942 0.101 4.1
Q10 <0.001* <0.001 0.02 3.9
Q11 0.01 <0.001 4.736 3.9
Q12 <0.001 0.01 4.988 3.8
Q13 <0.001 <0.001 0.02 3.8
Q14 (<0.001) <0.001 5.037 4.2
Q15 (<0.001) (<0.001) 0.22 4.1
Total 1.713 99.13 28 66.1
Q16 - - - 3.9

Table 5 shows the result of test case 2. In this case, the input ontology is about 3 times
as large as that in test case 1. The running time of ROPS in OWL mode increased more
than 6 times. Apparently, ROPS in OWL-mode is the slowest in test case 2. The running

 26

time of ROPS in RDFS-mode is still the fastest. Its running time almost did not change
when the size of input ontology increased. This shows that the OWL-mode reasoner of
ROPS is not very scalable and efficient. However, the RDFS-mode reasoner is very
efficient for those queries that can be processed correctly.

The running time of RACER increases slowly compared to the increasing input size. It
ran much faster than ROPS in OWL-mode, but not as fast as ROPS in RDFS-mode.
However, ROPS in RDFS-mode can only correctly process 9 out of 14 queries (those
queries that can only be correctly processed on the modified ontology are considered as
failed; SWRL only queries are not counted) compared to that of all 14 queries that can be
processed by RACER. In this case, RACER can be considered as the winner.

SWOPS also demonstrated decent performance in this test case. Although it is slower
than RACER, it is faster than ROPS in OWL-mode. The ratio between the increments of
running time and input size is linear from test case 1. We can say that the performance of
SWOPS is satisfying in this test case.

Table 6: Testing results for Case 3 (in seconds)

ROPS with

RDFS Reasoner
ROPS with OWL

Reasoner
RACER SWOPS

Loading t 1.632 1.753 3.155 6.8
Q1 0.06 229.56 4.095 10.0
Q2 0.05 0.05 0.541 10.0
Q3 0.09 0.04 1.983 10.2
Q4 0.01 0.01 0.27 10.1
Q5 0.01 <0.001 0.581 10.3
Q6 0.131* 0.02 0.201 10.6
Q7 0.03 0.01 4.897 10.7
Q8 <0.001* 0.02 0.921 14.8
Q9 0.16* 0.291 3.124 10.6
Q10 0.01* 0.01 4.988 10.0
Q11 <0.001 <0.001 4.987 10.0
Q12 <0.001 0.01 5.037 10.1
Q13 <0.001 0.01 0.261 10.0
Q14 (<0.001) <0.001 4.977 13.9
Q15 (<0.001) (<0.001) 0.11 9.0
Total 2.193 231.784 36.893 158.1
Q16 - - - 8.9

 27

Table 6 shows the results of test case 3. The table shows that ROPS in OWL-mode is
the slowest and ROPS in RDFS-mode is the fastest in this case. However, in OWL-mode,
after finishing in the first query, all the following queries are very fast. Obviously, the
query strategy of Jena2 is to provide best performance for large amount of queries about
the same stable ontology.

RACER has a default lazy reasoning strategy that it provides good performance for a
single query. The processing time of each query depends on the complexity of the query
and whether the necessary information has already generated. We can tell from the running
times of queries 9 and 10. The information to answer the query 10 has already been used in
query 9. There is no reasoning needed for query 10. In this test case, RACER spent some
time on this query. Although in test case 2, this time is short. For ROPS, none of queries
(except the first) takes more than half a second.

In this test case, SWOPS is slow, as it is still faster than ROPS in OWL-mode. It seems
that SWOPS is not as scalable as RACER. In addition, there is an interesting scenario that
the running time of each query did not change much whether the query is complex or
simple, whether the return answer size is big or small. It is most likely that Vampire spent a
certain amount of time on preprocessing the ontology before processing the query. If the
FOL reasoner can be optimized so that the duplicated reasoning process for each query can
be avoided, the performance of the FOL reasoner can be improved.

Table 7: Testing results for Case 4 (in seconds)

ROPS with

RDFS
easoner

RACER
ROPS with

RDFS
RACER

Loading t 4.276 17.456 Q9 1.782* 14.28
Q1 0.05 445.801 Q10 0.09* 0.03
Q2 0.09 24.595 Q11 <0.001 0.06
Q3 0.21 0.661 Q12 <0.001 0.02
Q4 0.01 0.882 Q13 <0.001 0.03
Q5 0.02 7.781 Q14 (<0.001) 5.779
Q6 0.16* 7.07 Q15 (<0.001) 0.34
Q7 0.1 0.471 Total 6.839 539.867
Q8 0.03* 31.906

Table 7 shows the result of test case 4. SWOPS failed in this case. The reason is the
limitation of the Vampire prover. It is not designed to process this large input sizes (in this
case 6973 class instances and 28038 property instances).

ROPS in OWL-mode failed too in this test case. It occupied more than 700 MB
memory during the execution, as there were extensive requests of memory page exchange

 28

to the disk. The CPU utilization is not very high since most of the time is spent on disk
access. We stopped its execution after more than an hour of execution and considered
ROPS in OWL-mode to be failed in this test case. If there had been more memory, ROPS
in OWL-mode could have finished this test case.

Table 8: Testing results of ROPS on Case 5 (in seconds)

Loading Q1 Q2 Q3 Q4 Q5 Q6 Q7

8.182 0.05 0.2 0.421 0.01 0.02 0.14 0.231

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Total

0.03 9.994 3.555 <0.001 <0.001 <0.001 (<0.001) 24.20
5

RACER could still generate correct answers, but it was very slow for some queries. In
addition, RACER required too much memory. The heap usage of memory was nearly 1GB.
This amount is much bigger than ROPS in OWL-mode. However, it seams that RACER is
optimized on the data storage in the physical memory. The disk access requests during the
execution were not as extensive as that of ROPS. As a result, it could finish in about ten
minutes and ROPS could not finish in an hour. It seems RACER is a litter better on
scalability than ROPS in OWL-mode.

Table 9: Benchmark Query Set on Family Ontology
In this table, the name space “FN#” = “http://owl.man.ac.uk/ontologies/family#”

 Query
Q1 SELECT ?x WHERE (?x, <rdf:type>, <FN#Person>)

Q2
SELECT ?x, ?y WHERE (?x, <rdf:type>, <FN#Person>) (?x

<FN#hasParent>, ?y)

Q3
(retrieve (?x ?y) (and (?x |FN#Male|) (?y |FN#Female|) (?x ?y

|FN#hasSibling|)))

Q4
(retrieve (?x ?y) (and (?x | FN#Male|) (?y | FN#Female|) (?x ?y |

FN#hasMother|)))

Q5 ?- Male(X), Female(Y), Person(Z), hasMother(X,Z), hasBrother(Y,Z)

Q6 ? - Father(X)

Q7 input_formula(axiom_query,axiom,((~(Happy(X))))).

Q8

input_formula(axiom_xxx,axiom,(![A,B,C]: ((hasParent(A,B))=>

(hasAncestor(A,B))))).

input_formula(axiom_xxx,axiom,(![A,B,C]: ((hasAncestor(A,B) &

hasParent(C,A)) => (hasAncestor(C,B))))).

input_formula(axiom_query,axiom,((~(hasAncestor(X,Y))))).

ROPS in RDFS-mode still worked well in this test case on those queries it could handle.
It is the most scalable one in all the test cases. Table 8 shows the results of test case 5. In

 29

test case 5, RACER failed too due to insufficient memory. ROPS under RDFS-mode was
the only one that can work. Its performance is still very good. In addition, the memory
occupied by ROPS in RDFS-mode is very small compared to RACER. This test case
proves that ROPS in RDFS-mode is very efficient and scalable for simple ontology and
queries.

In the benchmark test cases, one problem may affect the applicability of the results, i.e.,
all the test cases have the same schema. Unlike ROPS and RACER, SWOPS is built on
Vampire FOL prover, and is powerful on complex, but small ontology. Also, SWRL is
more powerful than DL and can provide the ability to compose new properties which is
impossible for OWL. The testing ontology and queries provided by the benchmark package
are not complex enough to show this difference. For this reason, we created a new test case
which is a family ontology with a more complex schema and smaller instance size.

The family ontology contains fewer class and property instances than that of LUBM.
However, there are much more complex relationships such as equivalence, intersection,
inversion, and someValueFrom. The family ontology also contains symmetricProperties. In
addition, it consists of a much more complex hierarchical structure. There are 24 classes
and 18 properties. The number of instances is 121. For benchmarking, we create 8 queries
simulating those in LUBM in both the complexity and format. The queries in this test case
can be considered corresponding to queries 14, 6, 3, 5, 7, 9, 15, and 16 in LUBM query set,
respectively. The queries are shown in Table 9. Similarly to Table 3, the queries are written
in four languages. ROPS in RDFS mode can only process query 1, 2, and 4 and can not
process correctly more than half of the queries. Queries 3, 5, 6, and 7 all involve axioms
about equivalent classes or union of classes. Query 8 can only be processed correctly by
SWOPS since it involve rule extension.

Table 10: Testing result on family ontology

Query
ROPS with

RDFS Reasoner*
ROPS with OWL

Reasoner
RACER SWOPS

Loading t 0.971 - 0.55 0.2
Q1 0.06 - 1.211 0.4
Q2 0.02 - 0.07 0.4
Q3 (0.01) - 0.051 0.4
Q4 0.01 - 0.02 0.4
Q5 (0.01) - 4.887 0.4
Q6 (0.01) - 4.927 0.4
Q7 - - 0.03 0.5
Q8 - - - 0.5

Total 1.091 - 11.697 2.6

 30

Table 10 shows the testing result for the family ontology. ROPS in OWL reasoning
mode kept on computing without any output for more than half an hour. We consider it as
failed. The RDFS mode reasoner could still work. However, it can only handle 3 out of 8
queries. The running times of the queries can not be handled by ROPS in RDFS mode are
shown in the parenthesis. We can see that SWOPS performed very well in this test case. It
is faster than RACER. Apparently, SWOPS is very efficient on small and complex
reasoning tasks. On the contrary, RACER is not very efficient in this test case. RACER can
not handle query 8.

To get a clear evaluation, we expand the size of the family ontology to 3 times. There
are 396 individuals in this ontology. The depth of the hierarchical structure of this test case
is 2 times deeper than that of the previous test case. The testing result of this test case is
shown in Table 11.

 In this test case, SWOPS is slower but was still the fastest. It is a little slower than the
previous test case. This is possibly because SWOPS spent too much time loading the
system and preprocessing the input ontology. The increasing time of reasoning is a small
portion compared to the total running time.

Table 11: Testing result on family ontology

Query
ROPS with

RDFS Reasoner*
ROPS with OWL

Reasoner
RACER SWOPS

Loading t 1.132 - 0.671 0.3
Q1 0.07 - 2.343 0.5
Q2 0.04 - 0.381 0.6
Q3 - (0.08) - 0.02 0.5
Q4 0.1 - 0.07 0.5
Q5 - (0.071) - 5.007 0.5
Q6 - (8.692) - 4.356 0.7
Q7 - - 0.09 0.9
Q8 - - - 0.7

Total 10.275 - 12.948 5.2

RACER is almost as fast as it was in the previous test cast. This shows that RACER
needs some time to initialize before executing the query. It is also more scalable than other
systems, but not as efficient on complex queries. This can be figured out by comparing the
running time of RACER in this test case with that in other test case. The ROPS in RDFS
mode is slower even without generating correct answer. This is probably because that the
complex hierarchy relationships in this test case. The depth of the hierarchy relationship is
up to 9 comparing to that is 3 in the previous test case.

From all the testing results, we identified the advantages and disadvantages of these
systems. ROPS in RDFS-mode is very efficient on large and simple ontology querying. Its

 31

OWL-mode reasoner can only process small ontology. It also cannot handle complex
ontology querying.

Though RACER is not as fast as Jena in RDFS-mode when performing simple queries
and cannot deal with large size of ontology, it provides relatively good scalability and
performance. It is not as good as FOL on very complex queries. However, the overall
performance is still satisfying.

SWOPS, a FOL based querying system, can handle very complex ontology querying
and still provide good performance, but because of limitations of Vampire, SWOPS is not
that scalable. Vampire is not designed for FOL query processing. Nevertheless, the
performance of SWOPS in the tests is enough to prove that FOL systems have potential to
be efficient for complex ontology querying.

7 Related Work

There have been several studies on ontology languages for the Semantic Web. For
example, in [16], Ian Horrocks gives a valuable picture of the development history and the
relationships among current languages. However, there are few investigations about
ontology query language comparisons and evaluations.

There are several query systems not evaluated in this paper. The Fast Classification of
Terminologies (FaCT) is a DL reasoning system based on the optimized tableaux algorithm
[24]. It contains two reasoners, one supporting DL SHF and another supporting DL SHIQ
[31]. Now a new generation of FaCT, FaCT++ is available. The FaCT reasoner does not
provide a combined query language like the other systems in this paper, so we did not
include it in our benchmark test. In [21], they provide a performance evaluation using
LUBM benchmark too. But they did not compare with other query systems.

In [29], Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer and Ian Horrocks give a
comparison between FaCT++ and Hoolet9 . Hoolet uses the Vampire FOL prover to
implement an OWL-DL reasoner. It can be also be extended to process SWRL reasoning.
The purpose of this paper is to verify the potential of FOL engine for ontology reasoning.
The evaluation of ontology languages and query languages are not mentioned. The version
of Vampire was not optimized at that time, so the result is not as promising as our results.

In [32], F-OWL, an ontology query language and its query system is based on
FLORA-210. F-OWL is intended to support OWL. However, there was no substantial result
available now. FLORA-2 uses XSB as the query engine. XSB is a deductive database using
tabling technique to resolve recursive queries. A study in [33] indicated that it is suitable
for Description Horn Logic reasoning, although it need some translation before processing

9 Hoolet implements an OWL-DL reasoner using Vampire FOL prover. The website of Hoolet is
http://owl.man.ac.uk/hoolet/.
10 http://flora.sourceforge.net/docs/releasemanual.pdf

 32

subsumption problems.

In [34], the FORTH Institute of Computer Science developed ICS-FORTH RDFSuite,
which provides RDF validation, storage, and querying (using RDF Query Language --
RQL). ICS-FORTH RDFSuite uses an object-relational DBMS to store RDF(S) statements
and takes the advantage of the technique of DBMS so that it can process very large data set.
The RQL language it provided for querying is SQL-like and supports complex queries. We
did not test it since it can not process OWL ontology and it has already provided a
performance test.

In [30], the developers of the LUBM benchmark evaluated the performance of four
knowledge base systems (KBS). The target systems they studied are different from those in
our test and their intention for the benchmark test is different as well. Their test is focused
on the scalability and performance of the chosen systems. These systems can only support
reasoning tasks for partial OWL Lite. In our test, the systems we selected all support
reasoning tasks at least as complex as OWL Lite. Our intention is to test query systems for
ontology with rich semantics and complex hierarchical structure. In addition, the systems
we tested all have query language available. This is important for practical users. This is
not considered in that paper and as a result, there is no evaluation of query languages for
those systems. In addition, in order to test large data set, they processed the queries
separately. For Database-based systems, this is a usual approach. However, for complex
ontology reasoning, reasoning systems like Jena2, FaCT++, and RACER all buffer the
statement generated by earlier queries so that the following queries can use this information
and improve performance. This can be clearly seen from our test result. In our approach,
we focused not only on the performance, but also on other additional features related to real
world usage. For example, the flexibility of I/O function, ontology languages supported,
user friendliness and the power of query language used, the reasoning power of a system,
the flexibility of user control, and so on. All these features can affect users’ intention while
choosing a system for a certain task.

8 Conclusion and Future Work

From the study of these ontology languages, we can conclude that RDF(S) is limited in
representing real world information. The advantage of RDF(S) is that it is very simple and
can be very efficient for reasoning.

OWL is a W3C recommended standard. It provides very flexible and good expressive
powers. The standardization also makes it accessible and computable by computers and
also human readable. It introduces a very attractive idea to design a family of sublanguages
with different levels of expressive power and computational complexity. This gives users
flexibility to select a proper ontology language for different information representation
tasks. Another advantage is that it can easily upgrade existing ontology to a higher level of
sublanguage. For example, users can start creating ontology in OWL Lite, since it is much

 33

easier to understand and manipulate. When users become more familiar with OWL Lite
and the ontology requires more powerful features, users can smoothly upgrade ontology
from OWL Lite to OWL DL. However, users should consider the increasing complexity
before upgrading. Especially for OWL Full, since it is undecidable, it is difficult to find an
efficient reasoner that can generate correct answers.

SWRL is still under development, but its expressive power and flexible and simple
syntax make it very promising as an ontology language. As we mentioned in section 2.4,
SWRL is very flexible and powerful in representing complex relationships. In addition, the
rule based pattern provides SWRL the potential to combine with traditional databases that
are still dominating the information processing field. All these database systems are
somewhat based on subsets of FOL (e.g., Relational Calculus). As a result, SWRL will be
more compatible with and much easier to be combined with current database systems. The
disadvantage of SWRL is its complexity (it is semi-decidable [6]). However, researchers
are considering using a sublanguage strategy (as used for OWL) to solve this problem, by
optimizing them more for query processing.

 Each query system compared in this paper has its own advantages and disadvantages.
RDQL is a flexible query language for RDF and OWL. Its SQL like syntax makes it very
attractive to users. However, it can only provide limited schema (T-box) querying
mechanism and more complex schema queries (such as direct subclass) have to be
processed by calling Jena2 directly. The lack of disjunction in RDQL is another problem.
ROPS built on Jena2 is the best solution for querying ontology with simple schema and
large scale. For some queries beyond the reasoning scope of RDFS mode reasoner, we can
still guarantee correct and fast answers by modifying the ontology and queries. Using the
OWL mode reasoner, ROPS can process small ontology with moderately complex schema.

The Jena2 package also provides flexible interfaces for other ontology processing
systems such as Protégé, RACER, and FaCT. By communicating with RACER or FaCT,
Jena2 can enhance its ability for reasoning on large and complex ontology. Jena2 also
provides interfaces for several database systems such as MySQL, Oracle and PosgreSQL.
This provides Jena2 the ability to process information stored in these databases without
having to translate and store the information.

Overall, RACER is the fastest system for OWL. It is also relatively scalable. It is
efficient for reasoning on complex ontology with relatively large scale. It is better to
exploit RACER for repeated queries on part of the ontology as we mentioned before.
RACER also provides a powerful query language nRQL to support complex queries. With
the complex queries, users can retrieve more information than the other DL systems. This
makes RACER a better choice for the users dealing with complex semantic data and
expecting more information from the ontology. The drawback of nRQL is as for RDQL, it
does not provide schema querying mechanism currently (it is claimed to be available
soon).

 34

Our purpose of building SWOPS using Vampire is to test the potential ability of a FOL
reasoner for ontology querying. From the testing result, it is satisfying that SWOPS
performs very well when dealing with very complex, but relatively small ontology. Since it
is not a specifically designed system for SWRL, its performance can be improved. As we
discussed in section 6, it is possible that a FOL reasoner can be a DL reasoner. Although
there are some limitations, it has been verified that SWOPS using Vampire is a fairly
efficient OWL and SWRL reasoner by this study. It is a very good reasoning system for
complex ontology.

The main contributions of this work are that we evaluated current ontology query
languages and query processors, systematically. The evaluation focused on their ability and
performance. In the evaluation, we discussed the advantage and disadvantage of each
query language processor. We also discussed the type of tasks that they are efficient for.
For the ontology query languages and supporting systems, we compared them in the
querying power and performance. We also discussed the functions they provided for
particular tasks. Finally, we point out in what situations the query systems can be most
efficient.

In the future, we will revise the OPS system to combine its two subsystems more
tightly. We will also combine Jena2 with a more powerful query language, SPARQL [20],
to provide more complex queries. To get more reasoning power, we plan to embed RACER
into ROPS via the plug- in provided by Jena.

 35

CHAPTER 3

CONCLUSION

In this thesis, we studied several languages for the Semantic Web. RDFS is a

framework that provides limited expressiveness for representing metadata. The advantage

of RDFS is that it is very simple and can be very efficient for reasoning.

OWL is a successful ontology language which is recommended by W3C. It provides

standardized syntax and is downward compatible with RDFS. That is anything represented

in RDFS can be translated into OWL. To overcome the complexity problem, OWL

introduces a very attractive idea to design a family of sublanguages with different levels of

expressive power and computational complexity. Users can flexibly select a proper

sublanguage for a specific representation task. Another advantage of this strategy is that

users can easily upgrade existing ontology into higher level of sublanguages. For example,

users can start creating ontology in OWL Lite since it is much easier to understand and

manipulate. When users become more familiar with OWL Lite and the ontology requires

more powerful features, users can smoothly upgrade ontology from OWL Lite to OWL DL.

For those who want even more expressive power, the process of upgrading from OWL DL

to OWL FULL is very similar. However, users should consider the increasing complexity

before upgrading. Especially for OWL Full, since it is undecidable, it is difficult to find an

efficient reasoner that can generate correct answers.

SWRL extends OWL DL with Horn like rules. This rule extension enriches OWL DL

with ability to define more complex relationships. The rule extension also provides SWRL

 36

the potential to be easily combined with traditional databases that are still dominating the

information processing field, since these database systems are all related with First Order

Logic (FOL). Cooperation with database will also makes SWRL more scalable by using

database system to store and retrieve information not suitable to be loaded into memory.

The drawback of SWRL is its complexity. It is for sure to be undecidable. However, the

sublanguage strategy (as used for OWL) and improve existing FOL query engines by

optimizing them for query processing can help solve this problem.

We also evaluate the ontology query languages and implementing systems. The nRQL

query language is very powerful and flexible. It supports compound query and negation as

failure to build complex queries. It also supports complex queries with datatypes which is

usually weak in ontology query system. The RACER system using nRQL is the most

powerful Description Logic (DL) reasoner available currently. In the benchmark test,

RACER is the fastest system for OWL in most of the case. It can process relatively

complex ontology and is also scalable compared to ROPS in OWL mode. RACER uses

lazy reasoning strategy by default. This may save time when frequently switching among

different ontology. The drawback of RACER is that it uses large amount of memory and for

repeated query, it is not as fast as ROPS..

The ROPS subsystem in OPS is good at small ontology. RDQL is a simple and flexible

query language. Although it does not support compound queries it can easily retrieve

almost all the information in the model including schema data. The advantage of ROPS is

 37

its multiple reasoner strategy. This makes it suitable for most of the query task. In the test,

ROPS can perform very well for queries over simple and large ontology. It can also process

complex ontology, but may not be very efficient. ROPS is also very robust for input format.

This is a big issue since to create a ontology in the proper version of syntax is a challenge

for most of users. In addition, Jena2 provide interfaces to communicate with many other

applications and database products, e.g., Protégé, MySQL, and ORACLE. Jena2 can also

embed RACER, FaCT, and FaCT++ as imported reasoner. This means it can do everything

these reasoners can do with similar performance.

The SWOPS subsystem performs very well after we optimize it for ontology queries. It

can handle very complex, but relatively small ontology and runs faster than RACER and

ROPS. Since it is not a specifically designed system for SWRL, its performance can be

further improved. SWOPS is also more powerful for reasoning. Although there are some

limitations, it has been verified that SWOPS using vampire is a very efficient OWL and

SWRL reasoner by this study. The study of SWOPS proves the potential to query about

ontology using FOL query engine. The rule extension also makes SWOPS very flexible to

build complex queries.

 38

REFERENCE

[1] McBride, P.H.a.B., RDF Semantics. W3C, 2004.

[2] Mike Dean, G.S., Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider and Lynn Andrea Stein, OWL Web Ontology Language

Reference, ed. W3C. 2004.

[3] Ian Horrocks, P.F.P.-S., Harold Boley,Said Tabet,Benjamin Grosof and Mike Dean, SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. available at

http://www.w3.org/Submission/2004/SUBM -SWRL-20040521/, 2004.

[4] Horrocks, I., DAML+OIL: a Description Logic for the Semantic Web. the IEEE Computer Society

Technical Committee on Data Engineering, 2002. 25(1): pp. 4-9.

[5] Michael K. Smith, C.W.a.D.L.M., OWL Web Ontology Language Guide. W3C, 2004.

[6] Becker, M.Y. Godel's Completeness Theorem. in Computer Laboratory University of Cambridge.

28.2.2003.

[7] Seaborne, A., Jena Tutorial A Programmer's Introduction to RDQL. HP Labs, 2002.

[8] Richard Fikes, P.H., and Ian Horrocks, OWL-QL – A Language for Deductive Query Answering on

the Semantic Web. KSL 03-14, 2003.

[9] Voronkov, A.R.a.A., Vampire 1.1. IJCAR, 2001. LNAI 2083: pp. 376-380.

[10] Palmer, S.B., The Semantic Web: the introduction. W3C, 2001.

 39

[11] Frank Manola, E.M.a.B.M., RDF Primer. W3C, 2004.

[12] Brian McBride, J.G.a.D.B., RDF Test Cases. W3C, 2004.

[13] Graham Klyne, J.J.C.a.B.M., Resource Description Framework (RDF):Concepts and Abstract

Syntax. W3C, 2004.

[14] Ratnakar, Y.G.a.V., A Comparison of Markup Languages. 15 th International FLAIRS Conference,

2002.

[15] D. Fensel, F.v.H., I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider., OIL: An ontology

infrastructure for the semantic web. IEEE Intelligent Systems, 2001. 16(2).

[16] Ian Horrocks, P.F.P.-S.a.F.v.H., From SHIQ and RDF to OWL:The Making of a Web Ontology

Language. Journal of Web Semantics, 2003. 1(1):7-26.

[17] Harold Boley, M.D., Benjamin Grosof, Michael Sintek, Bruce Spencer, Said Tabet, Gerd Wagner,

FOL RuleML: The First-Order Logic Web Language. Available at http://www.ruleml.org/, 2004.

[18] Dean, B.G.a.M., DAML Rules Report for PI Mtg. 2004.

[19] Ruckhaus, E., Efficiently Answering Queries to DL and Rules Web Ontologies. W3C, 2004.

[20] Seaborne, E.P.h.a.A., SPARQL Query Language for RDF. 2005.

[21] Volker Haarslev, R.M.o., and Michael Wessel, Querying the Semantic Web with Racer + nRQL. In

Proceedings of the KI-2004 International Workshop on ADL'04, 2004.

[22] Franz Baader, I.H., Ulrike Sattler, Description Logics for the Semantic Web. KI - Künstliche

 40

Intelligenz, 2002. 16(4):57-59.

[23] Möller, V.H.a.R., Proceedings of the International Workshop on Description Logics. DL-2001, 2001.

1.-3: pp. 132-141.

[24] U, B.F.a.s., An Overview of Tableau Algorithms for Description Logics. Studia Logica, 2001. 69(1):

pp. 5-40(36).

[25] Sean Bechhofer, I.H., Carole Goble, Robert Stevens, OilEd: a Reason-able Ontology Editor for the

Semantic Web. 2001. 2174 of LNAI: pp. 396-408.

[26] Forgy, C., L., Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem.

Artificial Intelligentc, 1982.

[27] Benjamin N. Grosof, I.H., Raphael Volz and Stefan Decker. Description logic programs: Combining

logic programs with description logic. in In Proc. of the Twelfth International World Wide Web

Conference (WWW 2003). 2003.

[28] B. Motik, U.S., and R. Studer., Query Answering for OWL -DL with Rules. ISWC2004, 2004. 7-11.

[29] Dmitry Tsarkov, A.R., Sean Bechhofer and Ian Horrocks, Using Vampire to Reason with OWL.

ISWC2004, 2004.

[30] Y. Guo, Z.P., and J. Heflin., An Evaluation of Knowledge Base Systems for Large OWL Datasets.

Technical Report LU -CSE-, 2004. 04-012.

[31] I.Horrocks, U.S., and S.Tobies, Reasoning with individuals for the description logic SHIQ.

 41

Proceedings of the 17th International Conference on Automated Deduction (CADE-17), 2000.

number 1831 in Lecture Notes in Computer Science.

[32] MIchael Hinchey, J.L.R., Walter F. Truszkowski, and Christopher A. Rouff, Formal Approaches to

Agent-Based Systems. proceedings of the Third International Workshop (FAABS), 2004.

[33] Jos de Bruijn, C.F., Uwe Keller, Ruben Lara, Axel Polleres, Livia Predoiu, and Holger Lausen,

WSML Deliverable D16.2 v0.2 WSML Reasoning Implementation. Dec, 2004.

[34] G. Karvounarakis, A.M., S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl, K. Tolle, Querying

the Semantic Web with RQL. Computer Networks and ISDN Systems Journal, 2003. 42(5): pp.

617-640.

 42

APPENDIX A; THE DESCRIPTION LOGIC FAMILIES

The table A.1 contains information about Description Logic language AL family. The

table A.2 contains information about DL language SH family.

Table A.1: Description Logic AL Families:

 Syntax Description

AL C, D ? A

-

-

¬ A

C ? D

? R.C

? R.T

atomic concept

universal concept, top

bottom concept

atomic negation

conjunction

value restriction

limited existential quantification

C ? C concept negation

U C ? D disjunction

E ?R.C existential quantification

N ? n R, ? n R number restriction

Q ? n R.C, ? n R.C qualified number restriction

R R ? S role conjunction

I R- inverse roles

H role hierarchy

F u1 = u2, u1 ? u2 feature (dis)agreement

 43

Table A.2: Description Logic of SH Families:

 Syntax

S ALC + transitive roles

H role hierarchy

I inverse role

Q qualified number restriction

O concept enumeration

(D) datatypes and values

 44

APPENDIX B: USER GUIDE

The ROP system provides a visual user interface for ontology query. The GUI contains

three functional modules: I/O control pane l, Configuration panel, and Query panel.

Before submitting an ontology query, user must choose the subsystem as reasoner.

From the menu shown in figure B.1, user can select between the ROPS and SWOPS

subsystems.

Figure B.1: Before starting

The I/O control panel appears the same for both subsystems. There is no difference

between while using different subsystems. Figure B.2 displays how to use I/O control panel.

From the Input File field, user can input the file name in which the ontology is stored. In

the Name Space filed, user can input the base name space. In the query process, users can

 45

then replace the long name space in the query with given abbreviation.

In the I/O control panel, user can also control the output mode. The output can be

redirected to the combination of screen, result window of the GUI, and a local file. If the

File check box is selected, a pop-up dialog window will notify user to choose an output file

like what is shown in Figure B.2.

The ROPS subsystem can recognize input format in OWL, DAML, and RDF. The

system will automatically recognize the input format. User can also select input format in

the configuration panel. This selection will affect the performance and reasoning power of

ROPS. The SWOPS subsystem can only recognize TPTP format.

Figure B.2: I/O control panel

 46

Figure B.3 displays the configuration panel. The combo lists on the left part control

reasoners bound to ROPS subsystem. User can choose the input type and model type to

configure the system how much information to be recognized. The memory mode tells the

system whether to execute in memory or to bind with an outside DBMS.

Figure B.3: Configuration panel

The last combo box controls the reasoner type or no reasoner. Different types of

reasoner provide different level of reasoning power. The default reasoner is the Rule

reasoner, the most powerful one.

On the right side is the configuration for the SWOPS subsystem. The memory limit

control the maximum memory allocated to SWOPS. The time lime control the longest time

SWOPS can execute before ending. This control avoids the infinite execution for some

 47

complex problems.

Figure B.4 illustrates the Query panel using ROPS as query system. After the loading

of the ontology and configuration, users can submit queries in this panel. This panel also

includes the rule extension mechanism. Users can add new rules to the ontology to get

more information and make queries simpler.

Figure B.4: Query panel of the ROPS subsystem

The rules are loaded from a local file. These rules will be passed to proper format and

added to the ontology model in ROPS or SWOPS. Notice that the extended rules may

significantly increase the complexity comparing to the original ontology. The computing

time may be unbearable. The loaded rules are shown in the inactive rules list in the bottom

 48

combo lists in the panel. User can select which rule or rules to be activate or deactivate

between active rules list and inactive rules list. User can select multiple rules at the same

time by press on the ctrl key during selection.

In the query input filed, user can type in query in proper format. For the ROPS system,

the input query is in RDQL syntax. If the Name space was defined in the I/O Control panel,

user can replace the long name space with the defined abbreviation to make the query more

easily to be read and input. The output will be directed to the channel defined by user in the

I/OControl panel. Notice that user can move the division bar to expand the result filed to

show more results in the window.

 49

Figure B.5: Query panel of the SWOPS subsystem

The figure B.5 is the screen shot of SWOPS subsystem. The GUI is similar to that of

ROPS. The difference is they use different query syntax. SWOPS uses a Datalog- like query

and it will be translated into TPTP format for the underlying Vampire prover. As a result,

the output format of SWOPS is different from that of ROPS too.

 50

APPENDIX C: INSTALLATION GUIDE

The prototype of the OPS was developed in Java1.4.2. Because of the reasoner bounded,

OPS can only work in Windows environment currently. It also requires Jena2.2 to be

properly installed before running. Notice that the JENA_HOME environment variable must

be properly defined or the Jar files for Jena2 should be copied to the

%JAVA_HOME%\jre\lib\ext\ directory.

 The OPS system does not need installation. Users can simply unzip the archive to local

disk. There should be a directory Ops. Run the RunOps.bat will load the GUI of OPS. The

usage of OPS is in the user guild.

