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ABSTRACT 

Genomic selection has been a hot topic in the poultry industry during the last couple of years. 

Many tools have been built to conduct genomic evaluation and to inspect changes in genetic prediction 

before and after selection. Here, we evaluate selected features of the single-step genomic best linear 

unbiased prediction (ssGBLUP) statistical method. This method can predict genomic estimated breeding 

values (GEBVs) by blending traditional pedigree relationships with realized relationships derived from 

genetic markers. Subsequently, GEBVs can be utilized in a genome-wide association study (GWAS) by 

conversion of GEBVs to marker effects and their weights. 

The dissertation utilized ssGBLUP in 4 studies. In the first study, the signatures of selection in 

male and female broiler breeds selected for the same goals were analyzed. Results indicated that the male 

breed had undergone stronger selection compared with the female breed in terms of allele frequency 

change. Furthermore, female breed had a greater heterozygosity change compared with the male breed. 

No overlapping selection region was found in the two breeds. 

In the second study, five options for weighted ssGBLUP (WssGBLUP) were tested. Simulated 

data sets included 5, 100, and 500 quantitative trait loci (QTLs). Weights were calculated based on 

formulas for single or segment single-nucleotide polymorphism (SNP) variance. Prediction accuracy for 

WssGBLUP improved at 2nd to 4th iterations by updating the mean, max or summation of ui2 among every 

20 (SNP), where ui is the effect of SNP i. Accuracy reached a plateau after iteration 3 or 5 by using 



weights proportional to ui2 plus a constant. Except in the 5-QTL scenario, realized accuracies with all 

WssGBLUP procedures were higher compared with those with BayesB and C. Noise in Manhattan plots 

was small with 5 and 100 QTLs but large with 500 QTLs. 

In the third and fourth studies, (co)variance components and prediction accuracy in linear and 

threshold, univariate, bivariate, and multivariate models were compared using ssGBLUP and BLUP 

methods for disease traits of binary or categorical nature. Uni- and multivariate threshold models 

surpassed linear models in obtaining higher heritabilities. A univariate threshold model surpassed a linear 

model in predicting (G)EBVs. Bivariate models and the ssGBLUP method did not have an advantage 

over univariate models and the BLUP method, respectively. 
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CHAPTER 1 

INTRODUCTION 

Genomic selection has been a hot topic in the poultry industry during the last couple of 

years. Many tools have been built to conduct genomic evaluation and to inspect changes in 

genetic prediction before and after selection. Here, we evaluate selected features of the single-

step genomic best linear unbiased prediction (ssGBLUP) statistical method. This method can 

predict genomic estimated breeding values (GEBVs) by blending traditional pedigree 

relationships with realized relationships derived from genetic markers. Subsequently, GEBVs can 

be utilized in a genome-wide association study (GWAS) by conversion of GEBVs to marker 

effects and their weights. 

The objectives of the current dissertation were 1) to inspect change in the genetic 

architecture for two breeds of broiler chickens under selection, 2) to modify weighted  ssGBLUP 

(WssGBLUP) and compare GEBV and GWAS accuracies with those from other methods using 

simulated data, 3) to determine and compare (co)variance components of mortality and diseases 

traits for broiler chickens using different models, and 4) to predict and compare the (G)EBVs of 

mortality and body weight for broiler chickens using different models.  
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CHAPTER 2 

LITERATURE REVIEW 

Signatures of selection 

Selection changes the allelic frequency of the underlying causative genes. At a population 

level, the variability within and between species is modified by selection (Nielsen, 2005). 

Different selections modify the variability in different ways. By combining the patterns of the 

ratio of inter- to intraspecific variability and frequency spectrum, types and effects of selections 

are able to be classified. Selection of livestock belongs to positive directional selection that 

favored new advantageous mutations, and the inter- to intraspecific variability between 

populations or between generations increases (Lewontin & Krakauer, 1973).  

Molecular signature of selection, or selective sweep, is a type of new, strong positive 

directional selection. It is a region in the genome that has been preferentially increased in 

frequency and fixed in a population recently because of its functional importance in specific 

processes (O’Brien et al., 2014). Therefore, by detecting signatures of selection, it is able to 

provide heuristic genomic information for artificial selection by the livestock industry. Signatures 

of selection form because nucleotides adjacent to the favorable mutation also tend to increase in 

frequency in a sort of “hitchhiking” process (Smith & Haigh, 1974). This leads to distributions of 

nucleotides around favorable mutations that differ statistically from that expected purely by 

chance (Kim & Stephan, 2002). These regions can be detected because of their lower genetic 

variability and specific regional linkage disequilibrium (LD) patterns (O’Brien et al., 2014).  
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Popular statistical methods for signatures of selection 

Lots of statistical methods have been developed to test the frequency spectrum over 

selection. Some test the intraspecific population variance, some test the ratio of inter- to 

intraspecific variance, and some test the allele frequency. Here I present some popular methods, 

including the ones that were used in my study. 

Tajima’s D test. This is the most famous neutral mutation test. In this test, the average number of 

nucleotide differences between pairs of sequences is compared with the total number of 

segregating sites (SNP, sequence, etc.). If the difference between these two measures of 

variability is larger than what is expected from the standard neutral model, this model is rejected 

(Tajima, 1989). The test statistic is 

D = d
V̂ (d )

=

k̂ − S
a1

e1S + e1S(S −1)
, 

where d is the difference between observed and expected of average number of (pairwise) 

nucleotide differences between the DNA sequencesis V̂  the variance of d, k̂  is the observed 

difference as a part of d, S is the number of segregating sites, a1  is the summation of the 

reciprocal of sample size, and e1  is a function of sample size of  k̂  and S. In the null hypothesis, d 

is equal to 0. This test captures the information regarding the frequency spectrum. 

Spatial pattern of selective sweep. This is an improvement of the neutrality test developed by Kim 

& Stephan (2002). The method estimates the location and the strength of the selective sweep by 

modeling the selective phase, which is the time needed for a substitution of a beneficial mutation 

that causes a hitchhiking effect to take place. The formula is 

x(t) = ξ

ξ + (1−)eα (t−ts )
, 
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where x(t) is the allele frequency x at the time t, ξ  and 1- ξ  are the beginning and end frequency, 

respectively, α is 2 times the effective population size, and ts is the length of the selective phase.  

FST test. This test created by Akey et al. (2002) utilizes the differentiation among populations as 

an indicator of selective sweep. When a selective sweep occurs in one but not other populations 

of a species, the FST test can show the significant level against the null hypothesis of neutrality. 

The formula is 

FST =
MSP −MSG

MSP + (nc −1)MSG
, 

where FST is the genetic differentiation, MSP is the observed mean square errors for loci across 

populations, MSG is the observed mean square errors for loci within populations, and nc is the 

number of populations. If FST is significantly different from 0, then neutral selection is rejected 

and selective sweep is accepted. The FST test requires multiple loci and thus is good for large-

scale genomic data. 

Heterozygosity test.  

Heterozygosity is the frequency of heterozygotes over all genotypes at a bi-allelic locus. 

High heterozygosity denotes high fitness as a pattern of balanced or natural selection. Rubin et al. 

(2012) used window-based heterozygosity to analyze large-scale genomic data. The equation is 

HP =
2 nMAJ∑ nMIN∑

( nMAJ∑ + nMIN∑ )2
, 

where HP is the heterozygosity,  nMAJ∑  is the sum of major allele frequencies, and nMIN∑  is 

the sum of the minor allele frequency (MAF) in a window.  

Wright’s fixation index. McEachern et al. (2009) combined FST with heterozygosity and formed a 

new FST as 
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FST =
HT −HS

HT
, 

where FST  is Wright’s FST  index, HT is the heterozygosity of the total population, and HS is the 

heterozygosity in subpopulations. This index with a high value denotes strong positive selection, 

but this formula does not account for sampling error (Weir & Cockerham, 1984). 

Application of statistical methods in livestock 

For domestic animals, there already have been several studies on the allele frequency 

spectrum of signature of selection. Elferink et al. (2012) investigated heterozygosity of 

commercial and noncommercial chicken breeds and identified 26 chromosomal regions with 

evidence of strong selection; 13 of the regions contained new candidate genes related to 

performance. Moradi et al. (2012) used Wright’s fixation index and found novel regions of 

increased homozygosity that associated with fat deposition in thin and fat tail sheep breeds. Ribin 

et al. (2012) used pooled heterozygosity HP and ZHP and found 3 loci on a domestic pig 

chromosome associated with elongation of the back and increased number of vertebrae. However, 

those studies used cross-generational data; therefore, their results were affected by both recent 

and historical selection. Furthermore, most previous studies only have allele frequency data after 

completion of selection, and initial allele frequencies and their changes are unknown. 

Cons of statistical methods 

Most methods applicable to population genetic data rely on strong assumptions regarding 

the demography of the population (e.g., no subpopulation structure), which often results in 

confounding with selection. Comparative methods are free of such assumptions. However, they 

need sequence and reference information that can provide synonymous and nonsynonymous 

mutations (Nielsen, 2005). 
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Use of SNP data 

To detect incomplete selective sweeps, it should be possible to utilize genome-wide 

changes in the allele frequency spectrum over time in populations under selection. One important 

consideration is that the process by which SNPs have been selected affects LD levels (Nielsen & 

Signorovitch, 2003), the frequency spectrum (Nielsen & Signorovitch, 2003), the level of 

population subdivision (Wakeley et al., 2001), and outlier definition (Nielsen, 2005). Therefore, 

the SNP  ascertainment process needs to be taken into account. 

GWAS and ssGBLUP 

GWAS in livestock has been a hot topic since 2001. In mainstream prediction modeling, 

the marker effects are derived from GEBVs of genotyped animals. In livestock, the data structure 

often includes a large population with phenotypes, with a small proportion of it genotyped. In 

many situations, the genotyped animals are young and their phenotypes are not yet collected. To 

obtain the GEBVs of these animals in multistep methods, the pseudo phenotype [e.g., daughter 

yield deviation (DYD)] and deregressed progeny-test EBV (EBVDP) as GEBV equivalents are 

created before GWAS analysis (Garrick et al., 2009; VanRaden & Wiggans, 1991). The pseudo 

phenotypes as well as GEBVs have some problems: 1) animals with few progeny have low 

reliability, 2) in multiple traits, different amounts of information may cause heterogeneity, 3) 

selection bias may exist for genotyped young animals, 4) systematic effect cannot be accounted 

for, 5) advantage cannot be taken of phenotypes and genotypes if they are mutually exclusive, 6) 

EBVDP does not include parent average, whereas DYD has some degree of double counting, and 

7) extension to complicated models is difficult (Garrick et al., 2009; VanRaden et al., 2009; 

Vitezica et al., 2011). 

The above problems can be solved by the ssGBLUP approach proposed by Misztal et al. 

(2009) and Christensen and Lund (2010) that integrates phenotypes, genotypes, and pedigree 

information simultaneously. The integrated relationship matrix is 
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where H is the integrated relationship matrix, A is the traditional pedigree relationship matrix, G 

is the realized genomic relationship matrix, and A22 is the inverse of the pedigree relationship 

matrix of genotyped animals. Therefore the Henderson mixed-model equation becomes 
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Z'X Z'Z + λH-1
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#
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&
(Aguilar et al., 2010), 

where X is the incidence matrix for fixed effects, Z is the incidence matrix for random effects, λ 

is the ratio of residual to additive variance, b is the best linear estimator, u is the best linear 

unbiased estimator, and y is the phenotype vector. 

Weighted GBLUP (WGBLUP) 

GBLUP usually assumes equal weights for all markers (Goddard & Hayes, 2009; 

Meuwissen et al., 2001; VanRaden, 2008). This assumption is biologically incorrect but makes 

the statistics robust by eliminating the number of unknowns (Meuwissen et al., 2001). Nonlinear 

methods such as BayesA and BayesB assume heterogeneous variances of SNP effects, with 

emphasis on the SNPs with major effects (Meuwissen et al., 2001; Meuwissen & Mike, 2004). 

The performance of these methods has been proved to be better than BLUP approaches in 

simulation studies assuming a few QTLs with large effects and many QTLs with small effects 

(Guo et al., 2010; Lund et al., 2009; Meuwissen et al., 2001; Meuwissen & Mike, 2004). 

However, experiences with real dairy cattle data indicate that these methods have resulted in 

reduced accuracy because of ignoring SNPs with small effects (Cole et al., 2009; Su et al., 2010) 

and that BLUP approaches performed well for most traits (Aguilar et al., 2010; Chen et al., 2011; 

Forni et al., 2011; Hayes et al., 2009; VanRaden et al., 2009; Wang et al., 2014) 
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One way to correct the equal-variance assumption of GBLUP without increasing the 

number of unknowns is to weight the SNPs. If those weights are known, WGBLUP provides 

GEBVs similar to those of a Bayesian procedure using the same weights (Legarra et al., 2009). 

WGBLUP and WssGBLUP were developed to allow for the estimation of weights within GBLUP 

or ssGBLUP, respectively.  

Studies of WGBLUP 

Sun et al. (2011) developed two procedures for calculating weights in WGBLUP. In the 

first one, the weights are calculated as w(i) = â j
(i)2 , where w(i)  is the weight of SNP j at iteration i 

and â j
(i)  is the effect of SNP j at iteration i. This procedure is effective for identifying top QTLs 

but excessively shrinks small SNP effects; thus, the accuracy of GEBV is reduced. The highest 

accuracy of GEBV was achieved by modifying the formula for weights to w(i) = â j
(i)2 + t , where 

t =
σ g
2

2 p jq jj=1
m∑

, σ g2 is the genetic variance; p and q are the minor and major allele frequencies at 

locus j, respectively, and m is the number of SNPs. This procedure introduced a constant to avoid 

SNPs with no effect and brought the accuracy of GEBV close to that by BayesC but yielded 

“noisy” Manhattan plots.  

Wang et al. (2012) evaluated WssGBLUP with simulation data using 

di(t ) =  ui(t )2  [2pi (1- pi )] , where di(t )  is the weight of SNP i at iteration t, ui(t )2  is the effect of SNP i 

at iteration t, and pi is the MAF.  They iterated either on SNP alone or on GEBV and SNP. The 

first option gave a good identification of top QTLs, and the second option provided a higher 

accuracy of GEBVs compared to BayesB, but only at the second iteration. 

Su et al. (2014) used group-marker variance from BayesR as a weighting factor on 

GBLUP in the study of dairy cattle. They achieved up to 1% higher reliability and reduced bias 
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by 11% on average for 4 production traits and mastitis when using the mean variance of a 30-SNP 

window compared with single SNPs. However, with or without grouping, BayesR was still 1.7 to 

2% more accurate compared with GBLUP. Xu (2013) demonstrated improved predictability in 

diploid plant QTL mapping using an artificial bin of LD-linked neighboring markers. 

Procedures in WssGBLUP 

Wang et al. (2012) built a routine procedure for WssGBLUP. The weighted matrix D is 

updated via iteration t for every SNP i:  

1. t  = 0, D(t ) = I ; G(t ) = ZD(t )Z 'λ . 

2. Compute âg  by ssGBLUP. 

3. Calculate ût =D(t )ZG(t )*−1âg . 

4. Calculate di(t+1)* = ûi(t )2 2pi (1− pi )  for all i. 

5. Normalize D(t+1) =
tr(D(0) )

tr(D(t+1)
* )

D(t+1)
* . 

6. Calculate G(t+1)* = ZD(t+1)Z 'λ . 

7. t = t + 1. 

8. Exit, or loop to step 2 or 3. 

G(t+1)*  is the new realized relationship matrix at iteration t, Z is the animal-by-genotype 

matrix, 𝜆 is the ratio of genetic to marker variance, âg  is the EBV, ût  is the estimated SNP effect, 

and pi is the MAF of SNP i. The loop to step 2 is to update both GEBV and weight, whereas the 

loop to 3 is to only to update weight. The weight of SNP i is defined as square of the SNP effect 

times the variance of binomial distribution. 
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Modeling of discrete traits 

Traits such as mortality and disease are recorded in discrete categories. These traits were 

treated as secondary traits in livestock and inferior to production traits for quite a long time 

(Thornton, 2010). Because genomic selection for production has been thoroughly studied and 

become routine in many industries worldwide, these secondary traits recently have become of 

interest. Linear models for continuous traits were not appropriate for discrete traits, because the 

latter are not normally distributed (Gianola, 1982; Thompson, 1979). When a case-controlled 

experiment is conducted to get phenotypes, extension of linear models to use this information is 

also tricky. Common models such as logit and probit can analyze traits with binomial distribution. 

However, those two models cannot be used for individual records. 

Threshold models have been developed to provide genetic evaluation of categorical traits 

(Gianola & Foulley, 1983; Gilmour et al., 1985; Harville & Mee, 1984). Such models include an 

extra latent variable, also called an underlying variable or liability, which is normally distributed. 

In the case of a binary observational phenotype, the threshold model assumes that the phenotype 

becomes 1 when the liability reaches a certain threshold; otherwise, it remains 0. For example, in 

an additive mixed model, 

y = Xb+Za+ e , 

where y is the discrete observations, X is the incidence matrix for fixed effects, β is the 

fixed effects, Z is the incidence matrix for random effects, a is the random additive genetic 

effects, and e is the residual. This model assumed an underlying distribution L of the discrete 

traits y, the response of which was modeled with the following distribution: 

f (y | L) = fi=1
n∏ (yi | Li )

= Ii=1
n∏ (Li < t1)I (yi =1)+ I (t1 < Li < t2  )I (yi = 2)+ I (t2 < Li < t3  )I (yi = 3)

, 
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where 𝑛 is the number of records; t1 , t2 , and t3  are thresholds that define the three categories of 

response; and I is an indicator function that has a value of 1 if the condition specified is true or a 

value of 0 otherwise. The procedure is a nonlinear transformation of best linear unbiased 

estimation (BLUE) and BLUP. 

To obtain the solution of the liability, it is treated as an unknown and sampled in Bayesian 

methodology. Fouley et al. (1983) and Janss and Foulley (1993) extended the threshold 

methodology to multitrait analysis with one continuous correlated trait or more and unequal 

design. Albert & Chib (1993) and Moreno et al. (1997) generalized the procedure to Markov-

chain Monte Carlo. Albert & Chib (1993) and Sorenson et al. (1995) generated algorithms that 

allow empty categories in fully conditional distributions. Van Tassell et al. (1998) built a 

multiple-trait Gibbs sampler for animal models (MTGSAM) program that allows several 

continuous and categorical variables in a threshold-linear model with Gibbs sampling. 

Performance in simulation and field data 

The advantages of threshold over linear models have been shown in several studies. For 

discrete traits, the predictability of breeding values from a threshold animal model is higher than 

those from an equivalent linear animal model (Casellas et al., 2007; Ramirez-Valverde et al., 

2001; Varona et al., 1999). Furthermore, the correlations of breeding values between linear and 

threshold models are above 0.99, and animal rankings are very similar (Weller et al., 1988; Weller 

& Ron, 1992). However, advantages of linear over threshold models have also been reported 

(Hagger & Hofer, 1989; Ramirez-Valverde et al., 2001). Jamrozik et al. (1991) reported that when 

categorical traits are nearly normal (e.g., 18 categories), the threshold model does not have an 

advantage over a linear model. Ramirez-Valverde et al. (2001) reported lower predictability of 

maternal breeding values in threshold models compared with linear models in sire-maternal 

grandsire models. The mechanism behind the inconsistency is not clear. Matos et al. (1997) 
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indicated no difference between goodness-of-fit and predictability of reproductive traits in linear 

and threshold models.   
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Abstract 

The objective of this study is to investigate if selection on similar traits in different 

populations progress from selection on similar genes. With the aid of high-density genome wide 

single-nucleotide polymorphism (SNP) genotyping, it is possible to directly assess changes in 

allelic frequencies and regions under selection and address the question. We compared the allele 

frequencies before and after two generations of selection on an index containing body weight at 6 

wk, ultrasound measurement of breast meat, and leg score in two commercial chicken breeds with 

different selection histories: M breed was primarily selected for rapid growth and commonly used 

as a broiler breeder sire line; F breed was primarily used as dual-purposed dam line selected for 

both egg production and growth. After quality control, 52,742 and 52,639 SNPs in M breed and F 

breed were kept in 4,922 and 4,904 animals, respectively. The average allele frequency change 

for both breeds on the autosomes was 0.049. Threshold value for detecting selected regions, 

where allele frequency changes exceeded expectations under drift were 0.140 and 0.136 for 

breeds M and F, respectively. According to the criterion used in this study, there were 25 and 17 

selection regions detected on breeds M and F, respectively, without any overlap of regions 

between the breeds. Average heterozygosity change in F breed was greater compared to M breed 

(0.008 vs. 0.002, P<0.01). Also, there was no overlapping of selected regions with high 

heterozygosity change between breeds M and F. The results indicate that in newly selected 

populations, even using the same criteria and selection methods, the historical selection goals and 

breed development determine the loci that most impact selection progress. These results are 

consistent with quantitative genetic theory that contribution of loci to selection progress depends 

on initial allele frequency. Therefore it should not be assumed that the same loci would be under 

selection in different populations even if similar selection goals and methods were used. 

Keywords: SNP; allele frequency change; genomic evaluation 
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Introduction 

An interesting academic question with practical implications is, “does selection on 

similar traits in different populations progress from selection on similar genes?”. In practice the 

question is “will genes found to be important in one breeder of a given trait also be important for 

the same trait in another?”. Because selection on traits changes the allelic frequency of the 

underlying causative genes (Nielsen, 2005), the interspecific to intraspecific variability between 

populations or between generations increases (Lewontin and Krakauer, 1973). Directional 

selection is different from other evolutionary factors that either reduce the ratio of within and 

between population genetic variability, or have no effect on the genetic variability. Selective 

sweeps, which are genomic region that have recently become fixed due to the selection of 

advantageous alleles, reduces the variability in the causative genes and flanking sites. To detect 

incomplete selective sweeps, it should be possible to utilize genome-wide changes in the allele 

frequency spectrum over time in populations under selection. 

For domestic animals, there were already several studies on the allele frequency spectrum 

of signature of selection by investigating heterozygosity (Elferink et al., 2012), Wright’s fixation 

index (Fst test) (Moradi et al., 2012), and relative extended haplotype homozygosity (REHH test) 

(Sabeti et al. 2002). However, those studies used cross-generation data during selection, therefore, 

their results were impacted by both recent and historical selections. Furthermore, most previous 

studies only have allele frequency data after completion of selection, leaving the initial and 

change in allele frequencies unknown. 

In order to separate the results caused by historical and new selection, our study used two 

methods: the straightforward allele frequency change from initial to last generation was used to 

detected genomic change in a recent selection experiment in broiler (meat-type) chickens; and 

heterozygosity change in above time cession was used to detect selective sweep. Two selection 

breeds from different origins, a sire breed (M) historically selected for rapid growth, and a dam 
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breed (F) historically selected for both egg production and growth, were used. These breeds were 

selected for body weight at 6 wk (BW), ultrasound measurement of breast meat (BM), and leg 

score (LS) using the same index in both. Genotypes on animals in these breeds were collected for 

genomic selection. From this data, we attempted to identify the changes in allele frequency 

spectrum across chromosomes for each generation that should provide insights into how the 

genome responds to selection. 

METHODS 

Data structure 

Data was provided by Cobb-Vantress Inc. (Siloam Springs, AR). Animals from two pure 

breeds of commercial broilers were used. M breed was characteristic of a line primarily selected 

for rapid growth and commonly used as a primary broiler breeder sire line, and F breed was 

characteristic of a dual-purpose line selected for egg production and growth and commonly used 

as primary broiler breeder dam breed. In the experiment, both breeds were selected at 6 wk of age 

for body weight (BW, g), ultrasound measurement of breast meat (BM, cm2), and leg score (LS, 

‘acceptable’ or ‘not acceptable’) (Chen et al., 2011). The initial training dataset contained 2,000 

animals from 2 generations (G-1 and G0), which was used to estimate SNP effects. From G0, 

selection was performed for 3 generations with about 800 animals genotyped as selection 

candidates in each generation of each breed. Then about 20 males and 200 females were selected 

for breeding. ssGBLUP method was used for estimation of genomic breeding values (GEBV) 

(Aguilar et al., 2011), except for G-1 of F breed where selection for LS was done with GEBV 

from a BayesA (Meuwissen et al., 2001). The initial data set for the prediction of GEBV of 

animals in generation G0 contained 183,784 and 164,246 broilers in M breed and F breed, 

respectively. 
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Pedigree information included sires and dams without records in 2 historical generations 

and 3 selection generations. The total number of records at the end of the experiment was 297,017 

for M breed, and 277,051 for F breed. 

Genotype data 

Genotypes for 57,636 SNPs were obtained using the chicken IIIumina Infinium iSelect 

Beadchip (Groenen 2009). Total number of genotyped animals was 4,922 in M breed and 4,904 in 

F breed (Table 3.1). In M breed, 4,994 SNPs were removed because the call rate was less than 

0.90, the MAF was 0, or the location was on unassigned chromosomes or incomplete 

chromosomes (16 and W); 51 animals were removed because of low call rate (<0.90) or parent-

progeny conflicts. In F breed, 4,997 SNPs and 130 animals were similarly removed. 

Breeding structure 

The populations spanned several generations. G0 was the base population randomly 

selected from a historical set G-1, generation G1 were offspring of randomly selected parents 

from G0, G2 were offspring of parents selected from G1 on the index, and finally G3 were 

offspring of parents selected from G2 on the index. Allele frequency differences were obtained 

between all animals in G0 and all animals in G2, which are separated by 1 generation of random 

and 2 generations of directional selection. In other words, G3 data represented selected animals in 

G2, whereas G0 data represented the same generation. 

Allele frequency changes 

Allele frequencies (f) were computed in G0 and G2 by counting. The absolute values of 

changes in allele frequencies (d02 = | f2- f0|) between two generations within each breed were 

calculated. Large allele frequency differences in allele frequencies between G0 and G2 

generations were considered as putative selected regions. The running averages of 11 adjacent d02 

values were plotted against the location of the middle SNP along chromosomes to emphasize the 
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systematic changes of frequencies in a window. Window size of 11 was chosen on a criterion if 

the frequency distribution is clear enough but not too disintegrated (results not shown). Threshold 

values for significant changes in allele frequency were obtained by simulating the flow of alleles 

through the real pedigree, and gene dropping performed using HaploSim (Coster and Bastiaansen, 

2010). Haplotypes were simulated with 20 loci along one chromosome with 0 mutation rate and 

0.5 initial allele frequency. A 0.5 starting frequency gives the largest possible drift variance and 

leads to a conservative threshold. The haplotypes were simulated for the founder animals (1,165 

animals in M breed, and 1,154 in F breed) in the pedigree (Table 3.2). Genotypes were 

subsequently assigned to offspring according to Mendelian transmission rules. The changes in 

allele frequency from G0 to G2, d02, were computed for 1,000 replicates. Then a distribution of 

the d02 was obtained from the 1,000 replications of 20 SNPs. A threshold for evidence of selection 

was determined as the 95% upper bound of the distribution obtained under drift (P<0.05).  

Genetic variability between the breeds 

Genetic variability was assessed by looking at absolute heterozygosity change between 

G0 and G2 (H02) calculated in an overlapping sliding window approach with window size of 5 by 

modifying the equation by Rubin et al. (2010). The equation for heterozygosity within generation 

is HP =
2 nMAJ∑ nMIN∑

( nMAJ∑ + nMIN∑ )2
, where nMAJ∑  is the sum of major allele frequencies, and nMIN∑  is 

the sum of the MAF in a window. Then the genetic variability was calculated as the absolute 

difference between HP  of G0 and G2. The threshold for extreme high or low heterozygosity 

change was defined as 4 times the standard deviation of genetic variability across chromosomes. 

Genomic selection response from ssGBLUP 

GEBV of putative selection regions and genomic selection response was estimated by 

using the mixed model below: 
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where X and Z are the incidence matrices corresponding to fixed effects and additive genetic 

effects, respectively; b is a vector of fixed effects including an overall mean, hatch number and 

breed; u is the vector of random additive direct genetic effects; 𝜆 is the ratio of residual to 

additive genetic variances, where the residual effect is assumed independent and followed a 

normal distribution; H-1 is the inverse of a matrix that combines pedigree and genomic 

relationships (Aguilar et al., 2010); and y is the vector of phenotypic records, in a multi-trait 

scenario. 

GEBV of SNP regions were calculated as the summation of SNP content times SNP 

effects for that region for all genotyped animals within a generation. Thereafter, genomic 

response was accounted for by the change of average GEBV from G0 to G2. GEBV and genomic 

selection response for each of the three traits were analyzed separately for each of the two breeds. 

The sex chromosomes were excluded from the model. 

Results 

Effect of selection traits on the change of genetic variation 

Changes in allele frequency between G0 and G2 (d02) in M breed and F breed were 

calculated to compare the response to selection. Whole-genome patterns of allele frequency 

change in M breed and F breed were different with respect to the positions, the ranges of putative 

select regions, and values of the most extreme d02 (Figures 3.1 and 3.2). Thresholds for significant 

d02 determined by gene dropping method were 0.140 for M breed and 0.136 for F breed (Figure 

S3.1). None of the selected regions were overlapping between the two breeds. The average 

changes in allele frequency ( 02d ) on autosomes were the same, 0.049, in both breeds (Table 3.3). 

As expected for the sex chromosome, and aggravated by the smaller number of male versus 
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female parents, chromosome Z had a larger average allele frequency change compared to the 

autosomes. This change was greater in M breed than that found for F breed (0.070 vs. 0.061, 

respectively, P<0.01). The 02d  of all chromosomes for M breed and F breed are 0.051 and 0.049. 

Also, the average minor allele frequency (MAF) of G2 is higher than the MAF of G0 in both 

breeds, again in both the Z chromosome and in autosomes (average MAF difference, autosomes: 

0.002 for both breeds; chromosome Z: 0.016 and 0.008 for M breed and F, respectively, P<0.01). 

In selected regions, the average allele frequency changes were 0.177 for M breed, and slightly 

smaller, 0.176 for F breed, but not significantly different between the breeds (P=0.7). The 

distribution of d02 values showed a longer tail in M breed than F breed, indicating that SNPs in M 

breed have more extreme allele frequency changes after two generations of selection (Figure 3.3). 

Selected regions 

With both GBLUP selected breeds, less than half of the chromosomes contained extreme 

regions where the running average of d02 exceeded the threshold (Figures 3.1 and 3.2, Tables 

S3.2-S3.6). The threshold was exceeded on 12 and 9 chromosomes, and in 25 and 17 regions, in 

M breed and F breed, respectively. The total length of selected regions was 11,531 kb and 8,396 

kb; and the average length was 494 kb and 461 kb for M breed and F breed, respectively. No 

overlapping regions were found between breeds under resolution of 23kbp/SNP (Tables S3.3 and 

S3.4). The greatest changes in the running averages of d02 values were found on chromosome 2, 

9, 10 and Z on M breed; and on chromosomes 4, 12 and Z for F breed (Tables S3.5 and S3.6). 

Total numbers of 322 out of 44,770 and 296 out of 44,895 SNPs surpassed the threshold in breeds 

M and F, respectively.  

Divergence and genetic variability among the breeds 

Heterozygosity was expected to decrease in regions of selection (Allendorf 1986; Barton, 

1998; Kim and Stephan, 2002). The results shown in Table 3.4 indicates that there is a positive 
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average change in heterozygosity ( 02H ) across all autosomes between G0 and G2 in both breeds 

(G0-G2 = 0.004 for M breed and 0.008 for F breed, P<0.01), and the change in F breed is much 

larger compare to M breed (P<0.01). However, the Z chromosome has a bigger but increased H02  

(G0-G2 = -0.086 and -0.088 for M breed and F, respectively, P<0.01). 

The threshold values for significant heterozygosity changes (H02) are 0.136 and 0.125 for 

breeds M and F, respectively. The running average of H02 showed multiple regions above the 

thresholds (Figure 3.4 and 3.5) that overlapped with significantly selected regions based on d02 

(Figures 3.1 and 3.2) in both breeds. In M breed, chromosomes 2, 3, 9, 10, 15 and 18 each have 

one region that was identified by both methods. In F breed, one region each on chromosomes 3, 

4, 7, 11 and 12, and two regions on chromosome 6 also overlapped between the two methods. 

Discussion 

Our results indicate that both breeds M and F have many genome regions where allele 

frequency changes are observed after 2 generations of selection. For both breeds, the average 

MAF was higher in G2 than in G0, implying a certain level of selection for minor alleles. The 

average absolute allele frequency changes on autosomes were the same for both breeds, which 

was expected since they had similar effective size, leading to similar impact of drift, and both 

were selected for two generations. However, the patterns of d02 were vastly different for breeds M 

and F: non-overlap of selection regions; more and larger selected regions in M breed compared to 

F breed; and also larger d02 values in M breed than in F breed. The larger number of selected 

regions implies that more genes or functional elements were selected and on top of that the larger 

peaks in d02 indicates a stronger selection on those regions. 

The breeds experienced the same recent selection goal and intensity, density of genomic 

data, and had similar effective population sizes, which means that the distinct genetic 

backgrounds of M breed and F were responsible for the diversity in their allele frequency changes 
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(Falconer 1960). QTLs associated with the traits in breeds M and F started at different initial 

allele frequencies, given their differences in genetic architecture due to different historical 

selection goals, numbers and sizes of QTL affecting the traits, and LD (Lewontin, 1988). And the 

initial allele frequency of biallelic loci determines how and how strong the frequency changes 

along selection (Kimura, 1957), assuming no selective advantage to consider, as it was not natural 

selection. The larger selected regions and d02 in M breed compared to F breed indicates 

association with historical selection, where M breed was selected historically on growth traits 

with higher heritability than reproductive traits in which selection of F breed was based on. 

Nevertheless, for F breed there might be more genes but less selection intensity involved in the 

historical genetic architecture due to dual-purpose selection, resulting in the selection response 

being more distributed across the genome and fewer regions that pass the threshold. An 

interesting finding was that regions of d02 peaks appeared in breeds M and F were totally 

different. This attests that the same selection goal does not necessarily mean selection of the same 

genes, even in the same species. For example, alleles already fixed in M breed would not change 

in frequency, but still could be selected in F breed. 

Unlike allele frequency change and heterozygosity that could be affected by recent and 

historical events, genomic selection response based on GEBV changes of SNP in a region, 

however, measured the change of genetic effect responding to the current selection. Results 

demonstrate that most putative selection regions based on allele frequency change did not show 

peak values in genomic selection response (Table S3.7 and S3.8). For autosomes, out of 19 

regions in M breed, only 1 region exceeded 3 standard deviations from the mean (region 17, 

chromosome 23); and no region in F breed exceeded 3 standard deviations from the mean. Also, 

no region in either breed had top GEBV at G2 that ranked outside 3 standard deviations from the 

mean. The low heritability (0.24, 0.27 and 0.12 for BW, BM, and LS, respectively) may explain 

part of the inconformity. More importantly, based on the above assumption of historical selection, 
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the putative selection regions were more affected by historical selection hence might not 

necessarily overlap with current selection regions. 

Ascertainment bias is not supposed to influence our results, although it was created at the 

same time the SNP chip was created because only common SNPs were placed on the chip. The 

impact of ascertainment bias is that rare alleles were neither present nor tested for. However this 

bias has little or no impact on our results for 2 reasons: 1) if rare alleles were selected for or 

against, the contribution of those SNPs to the total genetic variation will be small since that 

contribution is 2p(1 - p)u2, where p is MAF and u is marker effect, meaning that even if the effect 

of the allele is large, the weight will be small. Such loci will eventually contribute to total genetic 

variation as the allele frequency approaches 0.5. 2) Because we assumed the most conservative 

setting, i.e. P=0.5, if such alleles were present, and could have been tested for, we most likely 

would not have detect them due to the small effect such rare alleles have on genetic variance.  

In other studies, QTL have been discovered across the whole genome, located on all 

macro-, intermediate-, micro-chromosomes and on chromosome Z. Using the same populations 

analyzed in this study, Wang (2013) identified the top 10 genome regions that explained genetic 

variance of the 3 traits that breeds M and F were selected on. These associated genome regions 

were detected using classical GWAS with WOMBAT (Meyer, 2007), ssGBLUP, and Bayes B 

methods. Only one of the selected regions identified in our study overlaps with the associated 

regions found by Wang (2013). The overlap was found in F breed, where the selected region is 

located on chromosome 6, from 19,539,027 bp to 20,308,725 bp. The corresponding region was 

associated with body weight at 6 wk was located from 19,470,652 bp to 19,901,892 bp and 

explained 5.97% of genetic variance according to the WOMBAT analysis (Wang 2013). The 

ssGBLUP and BayesB methods also identified an association in this region between 19,916,663 

bp and 20,267,429 bp, accounting for 2.2% and 4.24% of the genetic variance, respectively. The 

lack of consistency between association and selection results could due to genetic drift, mutation 
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rate, as well as the fact that the model only accounted for additive genetic effect. On the other 

hand, genetic analysis only seeks for effective SNPs, not their favorable haplotypes. Lastly, the 

results of association analysis were shown to be method-sensitive (Wang, 2013). Current 

experience with GWAS indicates that although many associations are detected in several regions, 

only a few of them are found in similar studies. 

Heterozygosity changes on autosomes from G0 to G2 indicated that selection reduces 

heterozygosity (P<0.05). The pattern is different from d02, but both breeds have overlap between 

d02 peaks and H02 peaks. The overlapped regions confirmed that certain haplotypes have been 

selected within those areas. The peak regions that only appear in d02 but not in H02 can occur 

when a haplotype that was favored contains the minor allele for some SNPs and the major allele 

for others. The peak regions that only appear in H02 but not in d02 may indicate no unique 

haplotype was favored. Heterozygosity pattern of past selection gives the position of selective 

sweep (Barton, 1998; Kim and Stephan, 2002), which is a wide range of adjacent alleles that 

became fixed under strong directional selection. In our case, a change of heterozygosity, instead 

of fixation, was used to identify selective sweeps due to recent selection. 

Chromosome Z is different from autosomes in a number of ways, e.g., higher major allele 

frequencies, larger 02d  lower average heterozygosity but larger 02H  from G0 to G2, which 

increased rather than decreased as generation of selection increases. It is important to note that 

heterozygosity analysis was done with genotypes of males only, as females are hemizygous (ZW) 

in chicken. Sundstrom et al. (2012) observed that when male effective population sizes are 

smaller, as is the case in many livestock selection programs, a selective sweep will reduce levels 

of genetic variability on the Z chromosome more drastically than on autosomes. Moreover, the 

recombination rate on Z chromosome is about 1.3cM/MB, ~2.5 times less than the average 

autosomal recombination rate (Levin et al., 1993), thus the effects of selection on linked neutral 

sites on chromosome Z would stretch much farther on average than autosomes. As expected from 
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these observations, we found that heterozygosity on chromosome Z changed more drastically 

than on autosomes in both breeds. Interestingly though, the genetic variability raised rather than 

reduced. Storchová and Divina (2006) found enrichment of male-biased genes (genes expressed 

preferentially or exclusively in male, e.g. genes coding sperm) but underrepresentation of female-

biased genes on chicken Z chromosomes. Bellott et al. (2010) found that chicken Z chromosomes 

are more uniquely responding to selection for traits that benefit male sex traits more than female. 

Therefore, the heterozygosity increases on chromosome Z under selection was probably linked to 

male sex traits indirectly affected by selection breed. 

Average heterozygosity of pooled autosomes and sex chromosomes in M breed ranged 

from 0.346 to 0.352. Elferink et al. (2012) used the same SNP array on commercial and non-

commercial chickens where heterozygosities ranged from 0.39 to 0.43 for broiler sire breeds, and 

0.35 to 0.42 for broiler dam breeds. These values are larger than in layers, given larger Ne and 

possibly less historic selection intensity in broilers compared with layers.  

Previous studies investigating selective sweeps on domestication of chicken also showed 

effects of selection on genetic variability (Elferink et al., 2012; Wang, 2013). These studies 

analyzed the genetic variation across current generations to discover the impact of past selection. 

Of our 41 putative selected regions, 6 of them overlapped with reference studies (Table S3.6.), 

however, most selective sweeps from previous studies do not show overlap with our results, 

presumably because the fixation in their results was generated by historical selection, and our 

study of recent selection cannot change allele frequencies in a large scale if those regions were 

already under fixation process. Previous studies confirmed that selection is the major cause of the 

frequency spectrum pattern change on chromosomes. 

Characterizing biological functions in putative selected regions 

We were also interested to see if QTLs within the selected regions overlap with known 

QTLs from chicken. QTL were identified from the animal QTL database 
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(http://www.animalgenome.org/cgi-bin/QTLdb/GG/index) and compared with selected regions 

found in our study. The QTL in regions with large d02 changes were found to be related to either 

production or health. Selected regions in M breed overlapped with 4 QTL for body weight, 2 for 

growth, 1 for residual feed intake, 1 for muscle weight, 1 for muscle size, 1 for number of eggs, 

and 1 for age at first egg. Selected regions in F breed overlap with 1 QTL for egg shell thickness, 

3 for carcass weight, 2 QTL for carcass components, 1 QTL for feather pecking, and 6 QTL 

associated with health traits. 

Of all the genes located within the selected regions, the interesting candidate genes are 

listed in Table S9. Of interest in M breed, carboxypeptidase B1 (CPB1) is located in the highest 

peak d02 region on chromosome 9. Carboxypeptidase B1 is a necessary enzyme especially in the 

processing of recombinant insulin, and insulin is a vital hormone regulating the 

carbohydrate and fat metabolism in the body (Ladisch and Kohlmann 1992). Epidermal growth 

factor receptor (EGFR-CHICK) located on chromosome 2, which is also the 3rd highest peak of 

d02, EGF stimulates the growth of various epidermal and epithelial tissues in vivo and in vitro and 

of some fibroblasts in cell culture (Groenestege et al., 2007). MYOCD (myocardin) is located in 

the 4th region on chromosome 18 and plays a crucial role in cardiogenesis and differentiation of 

the smooth muscle cell lineage (myogenesis) (Du et al., 2002). Adenylated cyclase 10 (ADCY10) 

on chromosome Z has a critical role in mammalian spermatogenesis. In human, it produces the 

cAMP which mediates in part the cAMP-responsive nuclear factors indispensable for maturation 

of sperm in the epididymis. It induces sperm capacitation and is involved in ciliary beat 

regulation. (Geng et al., 2005; Schmid et al., 2007). 

In F breed, on chromosome Z, the highest d02 region contains lipoprotein lipase (LPL), 

which catalyze the hydrolysis of triglycerides of circulating chylomicrons and very-low-density 

lipoproteins (VLDL) (Nilsson-Ehle et al., 1980). In the 4th region on chromosome 4, the gene 

zygotes arrest 1 (ZAR-1) is found, which in human is essential for female fertility and may play a 
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role in the oocyte-to-embryo transition (Wu et al., 2002). The second highest peak contains lipid 

phosphate phosphatase-related protein type 1-like motif (LOC427306), but its function is 

uncharacterized so far. 

These genes associated in breeds M and F validate our assumption that different genes 

respond to the same selection direction in different breeds. Further studies on molecular pathways 

may need to illustrate the mechanism of different response. 

Conclusions 

The effect of selection goals and breeds on change of genomic variation was investigated 

across the entire genome of two breeds of broiler chicken. Twenty-five and seventeen regions 

with evidence of selection were detected after GBLUP selection in a male and a female broiler 

breeds, respectively. Our study shows that even using the same method (GBLUP) and the same 

selection index, changes in genomic variation are different between breeds. Given that both 

breeds have the same genes, this result implies that the historical goal during breed development 

changed the genetic architecture of each breed such that the regions currently selected were 

altered. These results are consistent with quantitative genetic theory that the contribution of loci 

to selection progress is dependent on initial allele frequency. Also, several QTLs overlap with the 

regions detected by allele frequency and heterozygosity changes indicating that these methods 

may have potential to identify genes that are functionally linked to the breeds. 
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Table 3.1. Total number of genotyped animals and number of animals that were selected 

based on EBV. 

Breed Total genotyped animals Selected animals 
G0 G2 

  Female Male Female Male 
M 4,922 200a 20 200 200 
F 4,904 200 20 20 20 
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Table 3.2. Number of genotyped animals retained after QC. 

Breed G0 G2 Total 
M 1,165 1,009 4,871 
F 1,154 1,028 4,774 
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Table 3.3. Average difference in allele frequencies ( 02d ) and major allele frequencies (f) of 

autosomes and chromosome Z within generations between breeds. 

Breed 
  G2-G0 G0 G2 

  1-28a Z 1-28 Z 1-28 Z 

M 
 02d  

02d  f0d f0 f2e f2 
Average 0.049 0.07 0.734 0.809 0.731 0.793 
SDb 0.04 0.051 0.142 0.153 0.14 0.149 
Nc 43,250 1,520 44,056 1,659 43,542 1,533 

F 

 02d  
02d  f0 f0 f2 f2 

Average 0.049 0.061 0.739 0.748 0.736 0.74 
SD 0.029 0.048 0.143 0.152 0.142 0.148 
N 43,533 1,362 42,629 1,414 42,180 1,375 

aChromosome 16 excluded, MAF=0 excluded 

bSD: standard deviation 

cN: total number of SNPs 

df0: allele frequency at generation 0 

ef2: allele frequency at generation 2 
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Table 3.4. Average heterozygosity (HP), mean difference of heterozygosity ( 02H ) and 

standard deviation by breeds and generations. 

Chromosome 
  M F 

  G2-G0 G0 G2 G2-G0 G0 G2 

1-28a 
 02H  HP0d HP2e 02H  HP0 HP2 

Average -0.004 0.362 0.36 -0.008 0.358 0.353 
SDb 0.062 0.142 0.145 0.058 0.143 0.148 
Nc 45,063 44,056 43,542 42,161 42,629 42,180 

Z 

 02H  HP0 HP2 02H  HP0 HP2 
Average 0.086 0.027 0.126 0.094 0.051 0.146 
SD 0.056 0.027 0.735 0.051 0.063 0.082 
N 1,502 1,659 1,533 1,372 1,414 1,375 

aChromosome 16 excluded, MAF=0 excluded 

bSD: standard deviation 

cN: total number of SNPs 

d HP0: heterozygosity at generation 0  

e HP2: heterozygosity at generation 2   
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Table S3.2. Chromosome regions with evidence of selection by GBLUP and their size in M 

breed. 

Number Chr Start Region (b) End Region (b) Size (Kb) #SNPs 
1 1 185,202,760 185,413,126 210.366 9 
2 2 50,574,392 54,731,865 4157.473 67 
3 2 83,264,437 83,539,060 274.623 9 
4 3 98,094,228 98,413,125 318.897 11 
5 8 614,142 767,604 153.462 9 
6 9 9,453,053 9,633,402 180.349 12 
7 9 10,943,233 11,177,961 234.728 14 
8 9 11,470,525 11,907,809 437.284 22 
9 10 6,024,285 6,155,943 131.658 7 
10 10 6,806,958 6,942,529 135.571 12 
11 10 8,128,457 8,308,720 180.263 10 
12 10 9,150,224 9,367,350 217.126 14 
13 14 4,018,870 4,219,431 200.561 15 
14 15 5,207,296 5,481,121 273.825 27 
15 15 5,593,782 5,690,280 96.598 11 
16 18 772,099 1,186,725 414.626 36 
17 23 1,204,542 1,370,482 165.94 17 
18 23 1,399,841 1,476,553 76.712 10 
19 26 245,579 317,938 72.359 10 
20 Z 1,694,169 2,132,656 438.487 19 
21 Z 11,576,834 12,057,649 480.815 8 
22 Z 17,156,388 17,411,947 255.559 11 
23 Z 26,835,196 27,640,939 805.743 17 
24 Z 62,933,907 63,349,183 415.276 13 
25 Z 72,563,048 73,766,594 1202.546 17 
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Table S3.3. Chromosome regions with evidence of selection by GBLUP and their size in F 

breed. 

Number Chr Start Region (b) End Region (b) Size (Kb) #SNPs 
1 3 33,983,511 34,455,760 472.249 21 
2 4 16,923,316 17,188,954 265.638 10 
3 4 39,593,070 39,691,336 98.266 6 
4 4 65,831,538 66,207,979 376.441 17 
5 5 1,191,392 1,468,963 277.571 12 
6 6 13,057,220 13,306,619 249.399 13 
7 6 16,365,513 16,695,335 329.822 18 
8 6 19,539,037 20,208,725 769.688 36 
9 7 31,502,486 32,511,463 1007.977 21 
10 11 17,539,521 17,677,955 138.434 9 
11 12 11,286,072 11,681,733 395.661 33 
12 12 12,611,675 12,989,064 377.389 16 
13 13 16,025,668 17,537,992 1512.324 84 
14 Z 44,183,374 44,571,786 388.412 8 
15 Z 45,488,677 45,700,011 211.334 7 
16 Z 53,597,683 54,396,139 798.456 25 
17 Z 64,478,414 65,205,624 727.21 16 
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Table S3.4. Number of total and direction of allele frequency changes after 2 generations of 

selection for GBLUP peaks in M breed. 

Chr Position f0 f2 d02 Name 
2 50623780 0.382  0.187  0.196  Gga_rs15990155 
2 50670751 0.618  0.821  -0.202  Gga_rs15990227 
2 50849141 0.575  0.720  -0.145  Gga_rs14181868 
2 50869811 0.351  0.152  0.199  Gga_rs14181874 
2 50893951 0.649  0.847  -0.198  Gga_rs15990496 
2 50917682 0.649  0.847  -0.198  Gga_rs15990523 
2 50929779 0.351  0.153  0.199  GGaluGA147120 
2 50939795 0.351  0.152  0.199  Gga_rs14181886 
2 50979433 0.428  0.281  0.147  Gga_rs15990558 
2 51051310 0.572  0.719  -0.147  Gga_rs15990661 
2 51075233 0.428  0.280  0.148  Gga_rs14181956 
2 51075438 0.572  0.719  -0.147  Gga_rs14181958 
2 51130285 0.590  0.749  -0.159  Gga_rs14182084 
2 51159111 0.590  0.750  -0.159  GGaluGA147158 
2 51176916 0.572  0.720  -0.148  Gga_rs15990836 
2 51210778 0.590  0.749  -0.159  Gga_rs14182120 
2 51280108 0.590  0.749  -0.159  Gga_rs10724628 
2 51357095 0.428  0.281  0.147  Gga_rs15991100 
2 51375819 0.410  0.252  0.158  Gga_rs14182263 
2 51425256 0.572  0.719  -0.147  Gga_rs14182280 
2 51444234 0.572  0.719  -0.146  Gga_rs14182344 
2 51463919 0.590  0.758  -0.167  Gga_rs14182365 
2 51483614 0.590  0.752  -0.162  Gga_rs14182386 
2 51498096 0.572  0.719  -0.146  Gga_rs14182398 
2 51525854 0.410  0.250  0.160  Gga_rs14182405 
2 51647563 0.590  0.749  -0.159  Gga_rs15991322 
2 51649545 0.590  0.749  -0.159  Gga_rs14182485 
2 51708066 0.410  0.252  0.158  GGaluGA147234 
2 51733546 0.410  0.250  0.160  Gga_rs15991494 
2 51795747 0.590  0.749  -0.159  Gga_rs14182566 
2 51826860 0.428  0.281  0.146  Gga_rs14182574 
2 51851106 0.410  0.251  0.159  GGaluGA147253 
2 51937287 0.590  0.750  -0.159  Gga_rs14182702 
2 51965459 0.572  0.719  -0.146  GGaluGA147267 
2 51995708 0.590  0.754  -0.164  Gga_rs14182727 
2 52007022 0.590  0.749  -0.158  Gga_rs14182733 
2 52064693 0.428  0.282  0.146  Gga_rs14182760 
2 52109734 0.542  0.692  -0.150  GGaluGA147286 
2 52123508 0.572  0.718  -0.146  Gga_rs15991956 
2 52147801 0.590  0.749  -0.159  Gga_rs14182785 
2 52210164 0.410  0.251  0.158  Gga_rs14726948 
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2 52216023 0.590  0.749  -0.159  GGaluGA147298 
2 52253171 0.590  0.750  -0.159  GGaluGA147301 
2 53807784 0.590  0.749  -0.159  Gga_rs14182788 
2 53826736 0.410  0.249  0.161  Gga_rs15992055 
2 53876105 0.410  0.251  0.159  Gga_rs14182822 
2 53883624 0.590  0.756  -0.165  Gga_rs14182832 
2 53902578 0.410  0.238  0.172  Gga_rs14182844 
2 53997807 0.590  0.750  -0.159  Gga_rs14182879 
2 54022986 0.590  0.750  -0.159  Gga_rs14182890 
2 54122331 0.410  0.252  0.158  Gga_rs14183051 
2 54208753 0.590  0.749  -0.159  Gga_rs14183091 
2 54251297 0.590  0.749  -0.159  Gga_rs13616286 
2 54334101 0.410  0.250  0.159  Gga_rs13616358 
2 54383830 0.590  0.749  -0.159  Gga_rs14183353 
2 54446447 0.590  0.749  -0.159  GGaluGA147366 
2 54487968 0.410  0.251  0.158  Gga_rs14183201 
2 54556413 0.410  0.251  0.159  Gga_rs14183274 
2 54622092 0.410  0.251  0.159  Gga_rs15993166 
2 54632827 0.590  0.750  -0.159  Gga_rs14183401 
2 54731865 0.590  0.749  -0.159  Gga_rs13616387 
9 11470525 0.718  0.874  -0.156  Gga_rs16655354 
9 11471460 0.282  0.124  0.158  GGaluGA338557 
9 11591855 0.332  0.186  0.146  Gga_rs15949367 
9 11638384 0.683  0.839  -0.156  GGaluGA338623 
9 11648946 0.664  0.434  0.230  Gga_rs14661884 
9 11675204 0.664  0.434  0.230  GGaluGA338635 
9 11675228 0.664  0.433  0.231  Gga_rs15949232 
9 11697657 0.616  0.404  0.212  Gga_rs14661820 
9 11744404 0.335  0.558  -0.223  Gga_rs10727978 
9 11764236 0.357  0.580  -0.224  GGaluGA338661 
9 11809684 0.662  0.436  0.226  Gga_rs13763666 
9 11826808 0.404  0.612  -0.207  Gga_rs14661681 
9 11848962 0.644  0.419  0.225  Gga_rs14661674 
9 11873116 0.333  0.167  0.165  GGaluGA338715 
9 11896431 0.315  0.151  0.163  Gga_rs13763624 
9 11907809 0.644  0.418  0.226  Gga_rs15948757 
10 9186849 0.413  0.247  0.166  Gga_rs14004211 
10 9249855 0.482  0.282  0.200  Gga_rs15573306 
10 9262744 0.482  0.283  0.199  Gga_rs14004240 
10 9270971 0.483  0.280  0.202  GGaluGA068302 
10 9284540 0.483  0.283  0.200  Gga_rs14004251 
10 9314643 0.483  0.281  0.202  Gga_rs14004260 
10 9320467 0.517  0.717  -0.200  GGaluGA068309 
10 9347264 0.483  0.282  0.201  Gga_rs14004281 
10 9367350 0.591  0.764  -0.174  GGaluGA068321 
Z 1694169 0.613  0.450  0.163  Gga_rs15714460 
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Z 1733849 0.309  0.106  0.202  Gga_rs14067770 
Z 1770223 0.648  0.884  -0.235  GGaluGA346277 
Z 1820638 0.687  0.487  0.200  GGaluGA346299 
Z 1835845 0.642  0.884  -0.241  GGaluGA346304 
Z 1890405 0.152  0.343  -0.191  GGaluGA346332 
Z 1923265 0.466  0.204  0.262  Gga_rs14067631 
Z 1934775 0.510  0.207  0.302  GGaluGA346347 
Z 1986078 0.530  0.812  -0.283  GGaluGA346376 
Z 2002023 0.529  0.800  -0.271  GGaluGA346383 
Z 2052364 0.255  0.433  -0.178  Gga_rs15714064 
Z 2132656 0.112  0.342  -0.230  Gga_rs14067402 
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Table S3.5. Number of total and direction of allele frequency changes after 2 generations of 

selection for GBLUP peaks in F breed. 

Chr Position f0 f2 d02 Name 
4 39608740 0.655  0.513  0.142  GGaluGA254530 
4 39645198 0.654  0.512  0.142  Gga_rs14453946 
4 39685604 0.552  0.367  0.185  GGaluGA254549 
4 39691336 0.448  0.634  -0.186  Gga_rs14454004 
4 65920557 0.622  0.427  0.195  Gga_rs16425301 
4 65926490 0.622  0.429  0.193  Gga_rs14482124 
4 65970742 0.305  0.478  -0.173  Gga_rs14482147 
4 66009865 0.378  0.572  -0.194  GGaluGA262868 
4 66022973 0.378  0.574  -0.196  GGaluGA262871 
4 66055249 0.378  0.545  -0.167  Gga_rs14482197 
4 66078516 0.622  0.455  0.167  Gga_rs14482208 
4 66089362 0.550  0.361  0.189  Gga_rs15602304 
4 66120967 0.451  0.640  -0.189  Gga_rs15602345 
4 66167705 0.378  0.546  -0.167  Gga_rs14482252 
4 66207421 0.378  0.548  -0.170  Gga_rs13548944 
4 66207979 0.622  0.454  0.168  Gga_rs13548947 
12 11318812 0.605  0.754  -0.149  Gga_rs14979711 
12 11319599 0.395  0.247  0.148  Gga_rs14041150 
12 11340723 0.409  0.254  0.154  GGaluGA085694 
12 11346391 0.415  0.257  0.158  Gga_rs14041187 
12 11357247 0.599  0.753  -0.154  GGaluGA085708 
12 11379238 0.596  0.751  -0.155  Gga_rs13612028 
12 11395657 0.581  0.748  -0.167  GGaluGA085732 
12 11408668 0.588  0.759  -0.172  GGaluGA085745 
12 11418973 0.591  0.760  -0.170  Gga_rs14041266 
12 11428043 0.591  0.759  -0.169  Gga_rs14041284 
12 11438067 0.408  0.238  0.170  Gga_rs13612067 
12 11467656 0.591  0.758  -0.168  Gga_rs15654369 
12 11470248 0.409  0.242  0.167  Gga_rs14041325 
12 11487871 0.426  0.252  0.174  Gga_rs14041332 
12 11500578 0.574  0.748  -0.174  Gga_rs14041333 
12 11505029 0.574  0.750  -0.175  GGaluGA085780 
12 11521935 0.574  0.748  -0.174  Gga_rs14979861 
12 11535596 0.591  0.758  -0.168  Gga_rs14041369 
12 11546970 0.591  0.761  -0.170  GGaluGA085805 
12 11557768 0.426  0.251  0.174  Gga_rs14979909 
12 11562607 0.574  0.748  -0.174  Gga_rs13612115 
12 11578458 0.408  0.239  0.169  GGaluGA085823 
12 11589524 0.426  0.251  0.175  Gga_rs14041454 
12 11611160 0.389  0.237  0.152  GGaluGA085851 
12 11626941 0.416  0.259  0.157  GGaluGA085867 
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12 11634177 0.416  0.259  0.157  GGaluGA085873 
12 11664560 0.588  0.740  -0.151  GGaluGA085883 
12 11681733 0.594  0.750  -0.156  Gga_rs14041513 
33 53676177 0.276  0.446  -0.170  Gga_rs14770696 
33 53708376 0.449  0.671  -0.222  Gga_rs14770716 
33 53764200 0.259  0.447  -0.188  Gga_rs14770738 
33 53770190 0.259  0.450  -0.191  GGaluGA353629 
33 53858804 0.741  0.554  0.186  Gga_rs14770809 
33 53869481 0.259  0.446  -0.186  Gga_rs16772057 
33 53956105 0.554  0.348  0.206  Gga_rs14770869 
33 53975701 0.448  0.650  -0.202  GGaluGA353674 
33 54008397 0.552  0.354  0.198  Gga_rs13769150 
33 54029926 0.553  0.356  0.197  GGaluGA353682 
33 54089802 0.553  0.358  0.195  GGaluGA353690 
33 54151572 0.445  0.627  -0.182  Gga_rs14771051 
33 54168493 0.554  0.373  0.181  Gga_rs14771061 
33 54205228 0.554  0.372  0.183  Gga_rs14771088 
33 54209320 0.554  0.372  0.183  Gga_rs14771094 
33 54302973 0.446  0.627  -0.181  Gga_rs14771149 
33 54323063 0.557  0.401  0.156  Gga_rs14771155 
33 54328818 0.557  0.402  0.154  Gga_rs14771157 
33 54376509 0.557  0.401  0.156  GGaluGA353725 
33 54396139 0.443  0.600  -0.156  GGaluGA353728 
33 64718176 0.575  0.818  -0.243  Gga_rs14775506 
33 64740695 0.574  0.818  -0.244  Gga_rs14775520 
33 64777119 0.695  0.871  -0.177  Gga_rs14775580 
33 64935210 0.425  0.183  0.242  Gga_rs16774878 
33 64973798 0.693  0.871  -0.177  Gga_rs14775780 
33 65029649 0.425  0.196  0.229  Gga_rs16121221 
33 65062597 0.307  0.137  0.170  Gga_rs16121384 
33 65125500 0.247  0.086  0.161  Gga_rs14775906 
33 65178185 0.423  0.264  0.160  Gga_rs14775949 
33 65205624 0.578  0.728  -0.150  Gga_rs14775967 
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Table S3.6. Selected regions overlapping with selection signals detected in other studies. 

Chr Breed 
Selected region in this study Selected region in other 

studies 
Line type used in other 

studyreference 
Start region 

(bp) 
End region 
(bp) 

Start region 
(bp) 

End region 
(bp)  

2 M 50574392 54731865 

50670751 54230105 commercial, broiler sire 
line, brown layer a 

50740000 50780000 commercial broiler b 
51880000 51920000 domestic line b 
51800000 51860000 domestic line b 
51940000 51980000 commercial broiler b 
52040000 52080000 commercial broiler b 

9 M 9453053 9633402 9440000 9620000 domestic line b 
10 M 9150224 9367350 9249855 9314643 dutch, dutch new breedsa 
18 M 772099 1186725 465378 615438 broiler, broiler sire linea 
6 F 19539027 20208725 19400000 19460000 commercial broiler b 
11 F 17539521 17677955 17522895 17594419 broiler dam linea 

aElferink et al. 2012 

bRubin et al. 2010 
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Table S3.7. Percentage of window SNP variance for the alleles at peak of allele frequency 

changes on autosomes in M breed. 

Region number #SNPs Selection responsea GEBV in G2b 

1 9 -0.017 -0.008 
2 67 0.024 0.065 
3 9 0.016 0.015 
4 11 0.006 -0.011 
5 9 0.001 0.002 
6 12 0.03 0.044 
7 14 0.051 0.111 
8 22 0.025 0.048 
9 7 0.023 0.036 
10 12 0.021 0.046 
11 10 -0.033 -0.057 
12 14 -0.027 -0.088 
13 15 0.059 0.115 
14 27 0.06 0.034 
15 11 0.029 -0.009 
16 36 0.015 -0.021 
17 17 0.085 0.121 
18 10 0.017 0.002 
19 10 0.003 -0.005 

a average single SNP GEBV change was 9×10-5±1×10-3 

b average single SNP GEBV in G2 was 1×10-4±6×10-3 
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Table S3.8. Percentage of window SNP variance for the alleles at peak of allele frequency 

changes on autosomes in F breed. 

Region number #SNPs Selection responsea GEBV in G2b 

1 21 0.0285 0.0107 
2 10 0.0187 0.0078 
3 6 -0.0121 0.0078 
4 17 -0.0324 -0.0300 
5 12 -0.0179 -0.0098 
6 13 0.0049 -0.0034 
7 18 0.0083 0.0104 
8 36 -0.028 -0.0481 
9 21 0.0935 0.044 
10 9 0.0007 0.0195 
11 33 -0.0575 -0.0821 
12 16 0.0487 0.0966 
13 84 -0.0503 0.096 

a average single SNP GEBV was 7×10-5±1×10-4 

b average single SNP GEBV in G2 was 1×10-4±2×10-3 
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Table S3.9. Interesting genes located in regions of selection in breeds M and F. 

Chr Breed 
Selected regions Candidate gene 

acronyma Candidate gene name Start region 
(bp) 

End region 
(bp) 

1 M 185202760 185413126 CCDC67; 
SLC36A4 

coiled-coil domain 
containing 67;  

solute carrier family 36 
(proton/amino acid 

symporter), member 4; 

2 M 50574392 54731865 
CNTNAP2; 
TPK1； 

EGFR_CHICK 

contactin associated 
protein-like 2;  

thiamin pyrophosphokinase 
1;  

Epidermal growth factor 
receptor 

9 M 9453053 9633402 TRIP12 
thyroid hormone receptor 

interactor 12 
 

9 M 10943233 11177961 PLSCR1; 
PLSCR5 

phospholipidscramblase 1;  
phospholipid scramblase 

family member 5 

9 M 11470525 11907809 CPB1 
NCBP2 

 
carboxypeptidase B1; 

nuclear cap binding protein 
subunit 2, 20kDa 

10 M 8128457 8308720 MYO5A myosin VA (heavy chain 12, 
myosin) 

18 M 772099 1186725 MYOCD myocardin 

23 M 1399841 1476553 EYA3 
 Eyes Msent homolog 3 

Z M 11576834 12057649  EGFLAM; 
LIFR 

EGF-like, fibronectin type 
III and laminin G domains; 
leukemia inhibitory factor 

receptor alpha 

Z M 72563048 73766594 
ADCY10; 

LOC100858602 
 

adenylatecyclase 10 
(soluble); 

adenylatecyclase type 10-
like 

 
4 F 65831538 66207979 ZAR-1 Zygotes arrest 1 

5 F 1191392 1468963 

LOC428827; 
COR6; 
OR5AS1; 
LOC770492; 

olfactory receptor 1052-like 
chick olfactory receptor 6; 

olfactory receptor, family 5, 
subfamily AS, member 1; 
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IGHMBP2 ras-related and estrogen-
regulated growth inhibitor-

like 
immunoglobulin mu 

binding protein 2 
 

6 F 19539027 20208725 
IDE; 
MYOF 

 

insulin-degrading enzyme; 
myoferlin 

7 F 31502486 32511463 LRP1B 
  

13 F 16025668 17537992 FGF1 
 

Fibroblast growth factor 1 
 

Z F 53597683 54396139 LPL Lipoprotein lipase 

Z F 64478414 65205624 LOC427306 

 
lipid phosphate 

phosphatase-related protein 
type 1-like 

 
a resource: NCBI chicken genome overview, UniProt, GO  
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Figures 

Figure 3.1. Pattern of genetic variation after two generations of selection for M breed. Running 

average of allele frequency distribution of 44,770 SNPs along the whole genome is plotted against the 

sequence. The deviations above the threshold show signals of selection. 

Chromosome 33 is chromosome Z. 
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Figure 3.2. Pattern of genetic variation after two generations of selection for F breed. Running 

average of allele frequency distribution of 44,895 SNPs along the whole genome is plotted against the 

sequence. The deviations above the threshold show signals of selection. 

Chromosome 33 is chromosome Z. 
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Figure 3.3. The distribution of d02 after two generations of selection on GBLUP breeding values. X-

axis is d02 value, and y-axis is the number of bins. 
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Figure 3.4. Pattern of heterozygosity after two generations of selection for M breed. Running average 

of allele frequency distribution of 46,293 SNPs along the whole genome is plotted against the sequence. 

The deviations above the threshold show signals of selection. 

Chromosome 33 is chromosome Z. 
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Figure 3.5. Pattern of heterozygosity after two generations of selection for F breed. Running average 

of allele frequency distribution of 43,253 SNPs along the whole genome is plotted against the sequence. 

The deviations above the threshold show signals of selection. 

Chromosome 33 is chromosome Z. 
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Figure S3.1. The distribution of allele frequency difference value obtained from gene dropping 

method. 
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CHAPTER 4 

WEIGHTED SINGLE-STEP GENOMIC BLUP: AN ITERATIVE APPROACH FOR ACCURATE 

CALCULATION OF GEBV AND GWAS1 

  

                                                        
1 Zhang, X., D. A. L. Lourenco, Legarra A., and I. Misztal. To be submitted to Frontier Genomics. 
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Abastract 

Weighted single-step GBLUP (WssGBLUP) can improve both the accuracy of GEBV prediction 

and the estimate of marker effects. However, the improvements are limited and even weakened with a 

greater number of iterations. In the current study, five different procedures were implemented to calculate 

weights for a genomic relationship matrix to restrict the shrinkage along iterations of WssGBLUP. The 

procedures as well as BayesB and BayesC were tested with three simulated data sets with 5, 100, and 500 

true QTLs.  Prediction accuracy of WssGBLUP improved at iterations 2 through 4 by updating the mean, 

maximum, or summation of ui2 among every 20 SNPs, where ui is the effect of SNP i.. Accuracy reached a 

plateau after iteration 3 or 5 by using weights proportional to ui2 plus a constant. Except in the 5-QTL 

scenario, accuracies with all WssGBLUP procedures were higher compared with those from BayesB and 

BayesC. Noise in the Manhattan plots was small with 5 and 100 QTLs but large with 500 QTLs. The 

presented procedures enhanced the accuracy of both GEBVs and marker effects. 

Keywords: GWAS, WssGBLUP, BayesB, BayesC 
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Introduction 

GBLUP usually assumes equal weights for all SNPs, whereas Bayesian methods give different 

weights to SNPs. If those weights are known, WGBLUP provides GEBVs similar to those of a Bayesian 

procedure using the same weights (Legarra et al., 2009). Different methods (WGBLUP and WssGBLUP) 

were developed to allow for the estimation of weights within GBLUP (Sun et al., 2011; Sun et al., 2012) 

or  ssGBLUP (Aguilar et al., 2010; Misztal et al., 2009; Wang et al., 2012), respectively. Sun et al. (2011) 

developed two procedures for calculating weights in WGBLUP. In the first one, the weights are calculated 

asw(i) = â j
(i)2 , where w(i)  is the weight of SNP j at iteration i and â j

(i)  is the effect of SNP j at iteration i. 

This procedure is effective for identifying top QTLs but excessively shrinks small SNPs; thus, the 

accuracy of GEBVs is reduced. The highest accuracy of GEBVs was achieved by modifying the weight 

formula to w(i) = â j
(i)2 + t , where t =

σ g
2

2 p jq jj=1
m∑

, σ g
2  is the genetic variance; p and q are the minor and 

major allele frequencies at locus j, respectively, and m is the number of SNPs. This procedure introduced 

a constant to avoid SNPs with no effect and brought the accuracy of GEBVs close to that by BayesC but 

yielded noisy Manhattan plots. Wang et al. (2012) evaluated WssGBLUP with simulation data using 

di(t ) =  ui(t )
2  [2pi (1- pi )] , where di(t )  is the weight of SNP i at iteration t, ui(t )

2  is the variance of SNP i at 

iteration t, and pi is the MAF. They iterated either on SNPs alone or on GEBVs and SNPs. The first option 

gave a good identification of top QTLs, and the second option provided a higher accuracy of GEBVs 

compared with BayesB, but only at the second iteration. 

Recently, it was found that assigning a common weight to markers on a chromosomal region 

yielded more accurate estimates. Su et al. (2014) used group-marker variance from BayesR as a weighting 

factor for GBLUP in the study of dairy cattle. They achieved up to 1% higher reliability and reduced bias 

by 11% on average for 4 production traits and mastitis when using the mean variance of 30-SNP window 

compared with single SNPs. However, with or without grouping, BayesR was still 1.7 to 2% more 
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accurate compare with GBLUP. Xu (2013) demonstrated improved predictability in diploid plant QTL 

mapping using an artificial bin of LD-linked neighboring markers. 

Because ssGBLUP is easy to apply and is usually the most accurate among tested methods (Wang 

et al; 2014; Wang et al., 2012), the objectives of this study were to present new procedures to calculate 

weights for SNPs in WssGBLUP and to compare the accuracy and SNP effects with those computed by 

BayesB (Meuwissen et al., 2001) and BayesC (Kizilkaya et al., 2010) using simulated data.  

Materials and Methods 

Data simulation 

One additive trait with a mean of 1.0, phenotypic variance of 2.0, and heritability of 0.5 was 

simulated using QMSim (Sargolzaei & Schenkel, 2009). A total of 20 chromosomes with an average 

length of 82 cM and containing 45,000 evenly distributed SNPs were created. Three scenarios were 

considered involving different numbers of randomly placed QTLs (5, 100, and 500) were considered to 

simulate simple traits defined by major effects and complex traits or indices affected by numerous minor 

effects. All QTLs were selected among SNPs. For the first scenario, QTL effects were sampled from the 

normal distribution with a minimum absolute value of 0.2. For the latter two scenarios, QTL sampling 

was determined by the gamma distribution with a shape factor of 0.4. Both SNPs and QTLs were biallelic 

with no overlap between their positions. The simulated population was randomly selected from 205 

generations, which was preceded by a historical population with 1,000 generations of random mating. 

Overall, 200 males and 2,600 females were selected to mate in each generation with a litter size of 1, 

forming an effective population size of 743. Generations 200 to 204 were treated as a training population 

and generation 205 as a validation population, with 1,240 and 300 genotyped animals, respectively. The 

complete datasets contained 18,400 individuals in the pedigree, of which 13,000 were phenotyped and 

1,540 were genotyped. 
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Quality control was conducted as described in Wiggans et al. (2010) using the methodology by 

Aguilar et al. (2011). SNP and animal call rates were 0.90, MAF was 0.05, and Hardy-Weinberg 

equilibrium difference was 0.15. Monomorphic SNPs were deleted. 

Models and computation.  

The model for the simulation analysis included a population mean, a random SNP effect, and a 

random residual error term. For WssGBLUP, GEBV and SNP effects were obtained by BLUPF90 

(Misztal et al., 2002) modified for genomic analyses (Aguilar et al., 2010). For BayesB and BayesC, 

EBVDP with c = 0.05 (where c is the fraction of genetic variation not explained by markers) as well as 

EBVs were calculated from BLUP estimates as in Garrick et al. (2009). Subsequently, the SNP effects 

were obtained by GenSel (Fernando and Garrick, 2009) using a chain length of 41,000 to 50,000 with 

first 1,000 to 10,000 chains as burn-in. Degrees of freedom for genetic variances and residual were set to 

4 and 10, respectively; 10 Metropolis-Hasting iterations per chain were set for BayesB. 

Statistical analysis.  

The weighted genomic relationship matrix was constructed, as suggested by Vanraden (2008): 

G =
ZDZ'

2 ip (1− ip )∑
, 

where pi is the MAF of SNP i and D is the matrix of weights, where dii is the weight for SNP i. The 

weights were derived from SNP solutions. Improvements in the SNP weights can be obtained iteratively 

either by recomputing only the SNP effects or by recomputing the GEBVs (Wang et al., 2012). The latter 

was chosen for this study. Six options were used to calculate the SNP weights in ssGBLUP: 1) default:  

weight is proportional to ui
2 , where ui  is effect of SNP i; 2) constant: weight is proportional to ui

2  plus a 

constant, where the constant was chosen as the weight of the top SNP in the first iteration; 3) nonlinear A: 

weights were ν|𝑠−2|, where ν is a scale standing for the departure from normality and 𝑠 is the number of 

standard deviations from the mean for each 2 ip (1− ip )ui
2∑ ; 4) large window: the largest effect ( ui

2 )  
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among every 20 SNPs and default weighting was used; 5) mean window: the mean effect of every 20 

SNPs; and 6) summed window: the summation of every 20 SNPs. 

Accuracy was defined as the correlation between true breeding value (TBV) and GEBV in the 

validation population. Correlation between TBV and direct genomic values (DGV) (Aguilar et al., 2010; 

Wang et al., 2012) was also computed. Comparisons were made among the six options and also with 

BayesC using EBVDP from BLUP computed by WssGBLUP with default weighting using only 

phenotypes and π, the proportion of markers with no effect, of 0.5, 0.9, and 0.99. 

Results and Discussion 

Simulation 

QTL effects ranged from 0.2 to 1.2 in the 5-QTL scenario, from 0.0 to 0.8 with 100 QTLs, and 

from 0 to 0.6 with 500 QTLs. An average of 36,000 SNPs was collected after quality control. Average LD 

r2 (correlation between loci pair) at last generation was about 0.29. Average allele frequency for last three 

generations was 0.49. 

Genetic estimates 

Figure 4.1 and Table S4.1 show accuracies of GEBVs for six different methods under three 

scenarios. The average accuracies of six methods were 0.873, 0.803, and 0.769 under 5-, 100-, and 500-

QTL scenarios. Standard deviations among 10 iterations ranged from 0.020 to 0.067. With default 

weighting, the accuracy increased initially but declined later. As the number of QTLs increased, the 

inflection point came earlier (0.909, 0.826, and 0.810 on iterations 4, 3, and 2 for 5-, 100-, and 500-QTL 

scenarios, respectively). The declined accuracy with iteration was the result of continuously adding 

weight to SNPs with large effects while shrinking SNPs with small effects. Consequently, GEBVs 

gradually decreased with iteration because the number of SNPs with no effect increased. 

For early  iterations (≤5), large, mean, and summed windows were most accurate at iteration 4 (5-

QTL scenario), iteration 3 (100-QTL scenario), and iteration 2 (500-QTL scenario). A mean window had 
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the highest accuracies and improved peak accuracy of default weighting by 0.9% (0.917 vs. 0.909), 1.6% 

(0.839 vs. 0.826), and 0.2% (0.812 vs. 0.810) under 5-, 100-, and 500-QTL scenarios, respectively. 

Window options performed better than options with single SNP weighted because the uncertainty was 

smaller (Su et al., 2014). A window size of 20 SNPs was chosen over 5, 10, 50, and 100 based on 

accuracy. Many factors, including size of reference population and population structures, influence the 

optimum window size (Su et al., 2014). Window options maintained high accuracy with 5 QTLs but lost 

the superior performance in late iterations with more QTLs. A summed window decreased in accuracy 

fastest among all window options, especially under the 500-QTL scenario, because it gave the greatest 

weight to the windows with large SNP effects and least weight to those with small SNP effects. This over- 

and under-weighting introduced bias into the solutions. In regard to real genetic evaluation of massive 

data, the performance of iterations 4 and later may not matter because one iteration usually takes from 

several hours up to several weeks. 

Weights that included a constant were introduced to retain all SNP effects with the same base 

value, which was chosen to be the top effect at first iteration. The best average constants for 5-, 100-, and 

500-QTL scenarios were 8, 40, and 13, respectively. These relatively small values avoid SNPs with no 

effects while not deviating large effects significantly. The results indicated that although the option with a 

constant did not have as high accuracy at early iteration as the window options, accuracy remained stable 

after the peak was reached (0.880, 0.834, and 0.811 at iterations 5, 5, and 3 for 5, 100, and 500 QTLs, 

respectively). These exceeded accuracy of the default option by 1.0 and 0.6% under the 100- and 500- 

QTL scenarios, respectively, but not for the 5-QTL scenario, where most SNPs did not have effects. 

Adding a constant to avoid under-weighting was redundant and counterproductive. The plateau accuracies 

exceeded GBLUP by 14.6% (0.880 vs. 0.768), 8.8% (0.834 vs. 0.767), and 2.8% (0.811 vs. 0.789) under 

the 5-, 100-, and 500-QTL scenarios (Figure 4.1 and Table 4.1). The 8.8% increase in accuracy is higher 

than the 7.4% (0.87 vs. 0.81) in Sun et al.’s (2011) study that used WGBLUP in a similar simulation of 

10,000 SNPs and 33 QTLs. For the option with a constant, any constant that is not too large to reduce the 
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original scale (e.g., <3 × peak SNP effect) improved the accuracy of GEBVs. However, the mechanism 

behind picking the right constant is unclear; e.g., the average genetic variance t in Sun et al. (2011) 

derived from GBLUP was too small for ssGBLUP. Theoretically, a threshold between zero and peak SNP 

effects increases the bottom line of the absolute value for SNPs with no effects. This threshold should 

both guarantee high accuracy of EBVs and differentiate SNP effects. Number of QTLs, LD, and 

distribution of QTL effects are related to this threshold, but in reality these are unknown. 

Muir (2007) found that the optimum accuracy for GBLUP was reached at a ratio of 10:1 

marker:QTL loci when the markers and QTLs were evenly distributed on the genome. The markers 

cannot capture all the genetic variance when the QTL loci outnumber the marker loci. This explained the 

average accuracy decline when the number of QTLs increased in the simulation with randomly placed 

QTLs. WssGBLUP raised the accuracy under all scenarios by up to 1.6%. These results indicated an 

increasingly greater ability for weight manipulation to improve accuracy when a relatively small number 

of markers loses the ability to capture the QTLs. 

VanRaden (2008) developed a nonlinear prediction A to define weight of SNP i as 1.25|s-2|, where 

s is the number of standard deviations from the mean, and 1.25 represents the departure from normality. 

For this study, the s with the best accuracy was smaller and ranged from 1.06 to 1.12. This option gave 

more weight to SNPs with smaller effects, thus preventing the drastic decrease in accuracy. Its inferior 

performance compared with other options occurred for two reasons. First, for oligogenic traits with few 

large QTLs where mean effect is close to zero, it assigns more weight to SNPs with effects but not to 

those with no effects; thus, it introduces bias into GEBVs. Results in the 5-QTL scenario indicated that 

the nonlinear-A option did not greatly increase the accuracy through iteration compared with the default 

option (0.880 vs. 0.909). Secondly, the narrow weight range from 1 to about 2 is not very flexible. This 

study showed that nonlinear A performed as well as other options (0.809) only under the 500-QTL 

scenario.  
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The accuracies of DGVs from Bayesian methods were compared with accuracy of GEBVs from 

WssGBLUP (Figure 4.1 and Table 4.2.1). Except for the 5-QTL scenario, all WssGBLUP options under 

all scenarios surpassed BayesC and BayesB in accuracy before iteration 6. BayesC with π = 0.99 was 

5.3% lower compared with the peak accuracy of the default option under the 100-QTL scenario (0.782 vs. 

0.826) and 13.3% lower under the 500-QTL scenario (0.702 vs. 0.810). Decreases for BayesB were 

13.3% (0.716 vs. 0.826) with π = 0.99 under the 100-QTL scenario and 40.9% with π = 0.5 under the 500-

QTL scenario (0.479 vs. 0.810). This is consistent with previous studies (Daetwyler et al., 2010; Zhong et 

al., 2015), which indicated that Bayesian methods perform well when the number of QTLs is small, 

whereas WssGBLUP performs better when the number of QTLs is large (>50, results not shown) because 

it uses an infinitesimal model that includes a polygenic effect. Moreover, pedigree relationships contribute 

to the accuracy of ssGBLUP (Legarra et al., 2009; Aguilar et al., 2010; Christensen & Lund, 2010), 

whereas DGVs of Bayesian methods exclude parent average (Garrick, 2009). With both pedigree and 

parent average removed (GBLUP line shown in Figure 1), the difference was smaller. BayesC with π = 

0.99 was 14. 4 and 2.0% higher compared with GBLUP under the 5- and 100-QTL scenarios, respectively 

(0.879 vs. 0.768 and 0.782 vs. 0.767) but 10.4% lower under the 500-QTL scenario (0.702 vs. 0.789). 

BayesB with π = 0.99 was 17.6% higher (0.903 vs. 0.768) under the 5-QTL scenario but 6.6% lower 

under the 100-QTL scenario (0.716 vs. 0.767) and 39.3% lower with π = 0.5 under the 500-QTL scenario 

(0.479 vs. 0.789). Sun et al. (2011) also found 9.9% (0.87 vs. 0.81) higher accuracy for BayesC but 2.5% 

(0.83 vs. 0.81) higher accuracy for BayesB with π = 0.99 compared with GBLUP. Posterior variances 

from BayesB and BayesC were used to weight G in ssGBLUP, but the result did not (Results not shown). 

QTL identification 

Figure 4.2 shows the Manhattan plots of SNP effects (graph A) for all methods (graphs B–G) and 

scenarios (Figures 4.2.1a, 4.2.2a, and 4.2.3a) for the iteration with the best accuracy (iteration 2 for all 

scenarios). Figures 4.2.1b, 4.2.2b, and 4.2.3b show the Manhattan plots of BayesC and BayesB with 

different π. Under all scenarios, window options reduced the noise. Although up to 20% of the QTLs did 
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not create large peaks, most QTLs with large effects were identified and few peaks were false. The option 

with a constant reduced the difference between large and small SNP effects; hence, the plot looks noisy. A 

similar pattern was found in the nonlinear-A option because the weighting factors had a limited range for 

all SNPs. Bayesian methods, especially BayesB, estimated SNP effect best under the 5-QTL scenario; 

however, under the 500-QTL scenario, it captured <1% of the SNPs and assigned extremely high weight 

to them. This is the result of neglecting polygenic effects among SNPs with small effects, which caused 

bias in estimating SNP variances (Calus & Veerkamp, 2007). BayesB and BayesC patterns depend on the 

choice of π.   

Computation time 

Less than 10 min was required to compute the breeding values and SNP effects in ssGBLUP. 

Conclusion 

The procedures for calculating SNP weights in WssGBLUP can be effective in improving both 

the accuracy of GEBVs and GWAS. WssGBLUP GEBVs were more accurate than those from BayesB 

and BayesC, although different priors and π in the latter could change the ranking of the methods. 

Window options may be the best choices given that the true number of QTLs may not be known in real 

data. The WssGBLUP method is especially useful for GWAS when the population contains many 

ungenotyped animals and when complex models preclude accurate deregression. 
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Table 4.1. Accuracy of BayesB and BayesC using different response variables with different π under 

three simulations. 

 

1Deregressed-proved EBV with c = 0.05. 

  

 
Number of simulated QTLs 

5 100 500 

Response variable Method π Mean SD Mean SD Mean SD 

EBVDP1 

BayesC 

0.50 0.66 0.05 0.61 0.04 0.63 0.10 

0.90 0.75 0.06 0.67 0.03 0.65 0.09 

0.99 0.87 0.04 0.76 0.07 0.68 0.07 

BayesB 

0.50 0.85 0.07 0.56 0.06 0.48 0.17 

0.90 0.85 0.07 0.60 0.07 0.44 0.16 

0.99 0.87 0.07 0.63 0.07 0.41 0.15 

EBV 

BayesC 

0.50 0.70 0.05 0.64 0.03 0.66 0.09 

0.90 0.78 0.06 0.69 0.03 0.68 0.08 

0.99 0.88 0.05 0.78 0.02 0.70 0.07 

BayesB 

0.50 0.88 0.08 0.65 0.07 0.42 0.12 

0.90 0.89 0.07 0.68 0.06 0.41 0.09 

0.99 0.90 0.06 0.72 0.05 0.47 0.09 
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Figure 4.1.1. Accuracies of different WssGBLUP under 5-QTL simulation. 
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Figure 4.1.2. Accuracies of different WssGBLUP under 100-QTL simulation. 
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Figure 4.1.3. Accuracies of different WssGBLUP under 500-QTL simulation. 
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Figure 4.2.1. Proportion of variance explained by QTL effects and absolute SNP effects for different 

methods under 5-QTL simulation. a: A: true QTL; B: default; C: constant; D: nonlinear A: weights as 

ν|𝑠−2|, where ν is a scale standing for the departure from normality, and 𝑠 is number of standard deviation 

from mean for each ui
2 ; E：large window; F: mean window; G: sum window. b: A: true QTL; B: BayesC 

π = 0.5; C: BayesC π = 0.9; D: BayesC π = 0.99; E: BayesB π = 0.5; F: BayesB π = 0.9; G: BayesB π = 

0.99. 

a. 
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b.
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Figure 4.2.2. Proportion of variance explained by QTL effects and absolute SNP effects for different 

methods under 100-QTL simulation. a: A: true QTL; B: default; C: constant; D: nonlinear A: weights 

as ν|𝑠−2|, where ν is a scale standing for the departure from normality, and 𝑠 is number of standard 

deviation from mean for each ui
2 ; E：large window; F: mean window; G: sum window. b: A: true QTL; 

B: BayesC π = 0.5; C: BayesC π = 0.9; D: BayesC π = 0.99; E: BayesB π = 0.5; F: BayesB π = 0.9; G: 

BayesB π = 0.99. 

a. 
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b.
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Figure 4.2.3. Proportion of variance explained by QTL effects and absolute SNP effects for different 

methods under 500-QTL simulation. a: A: true QTL; B: default; C: constant; D: nonlinear A: weights 

as ν|𝑠−2|, where ν is a scale standing for the departure from normality, and 𝑠 is number of standard 

deviation from mean for each ui
2 ; E：large window; F: mean window; G: sum window. b: A: true QTL; 

B: BayesC π = 0.5; C: BayesC π = 0.9; D: BayesC π = 0.99; E: BayesB π = 0.5; F: BayesB π = 0.9; G: 

BayesB π = 0.99. 

a. 
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b.
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Table S4.1. Accuracy for first 10 iterations of ssGBLUP with iterations with different methods 

under 5-, 100-, and 500- QTL simulation. 

Option Iteration 
5 QTLs 100 QTLs 500 QTLs 

Accuracy SD Accuracy SD Accuracy SD 

Default 

1 0.80  0.04  0.79  0.02  0.81 0.04 
2 0.86  0.02  0.82  0.02  0.81 0.04 
3 0.90  0.03  0.83  0.02  0.79 0.04 
4 0.91  0.04  0.81  0.03  0.77 0.05 
5 0.91  0.04  0.81  0.03  0.76 0.05 
6 0.90  0.05  0.80  0.03  0.76 0.05 
7 0.90  0.05  0.80  0.03  0.75 0.06 
8 0.90  0.05  0.80  0.03  0.75 0.06 
9 0.90  0.05  0.80  0.03  0.75 0.06 
10 0.90  0.05  0.79  0.03  0.75 0.06 

Constant 

1 0.80  0.04  0.79  0.02  0.81 0.04 
2 0.83  0.03  0.81  0.02  0.81 0.04 
3 0.86  0.03  0.83  0.02  0.81 0.04 
4 0.88  0.03  0.83  0.02  0.81 0.04 
5 0.88  0.03  0.83  0.02  0.81 0.04 
6 0.88  0.03  0.83  0.02  0.81 0.04 
7 0.88  0.03  0.83  0.02  0.81 0.04 
8 0.88  0.03  0.83  0.02  0.81 0.04 
9 0.88  0.03  0.83  0.02  0.81 0.04 
10 0.88  0.03  0.83  0.02  0.81 0.04 

Nonlinear A 

1 0.80  0.04  0.79  0.02  0.81 0.04 
2 0.80  0.04  0.79  0.02  0.81 0.04 
3 0.80  0.03  0.80  0.02  0.81 0.04 
4 0.81  0.03  0.80  0.02  0.81 0.04 
5 0.81  0.02  0.80  0.02  0.81 0.04 
6 0.82  0.02  0.80  0.02  0.81 0.04 
7 0.82  0.03  0.80  0.02  0.81 0.04 
8 0.82  0.03  0.80  0.02  0.81 0.04 
9 0.82  0.03  0.80  0.02  0.81 0.04 
10 0.83  0.03  0.80  0.02  0.81 0.04 

Large window 

1 0.80  0.04  0.79  0.02  0.81 0.04 
2 0.85  0.02  0.81  0.02  0.81 0.04 
3 0.91  0.03  0.83  0.02  0.81 0.04 
4 0.91  0.04  0.82  0.02  0.78 0.04 
5 0.90  0.05  0.79  0.03  0.74 0.05 
6 0.90  0.05  0.77  0.03  0.71 0.05 
7 0.90  0.05  0.76  0.03  0.69 0.06 
8 0.90  0.05  0.76  0.03  0.67 0.06 
9 0.89  0.05  0.75  0.03  0.66 0.06 
10 0.89  0.05  0.75  0.03  0.65 0.06 

Mean window 

1 0.80  0.04  0.79  0.02  0.81 0.04 
2 0.85  0.02  0.81  0.02  0.81 0.04 
3 0.91  0.03  0.84  0.02  0.81 0.04 
4 0.92  0.04  0.83  0.02  0.78 0.05 
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5 0.91  0.05  0.82  0.02  0.75 0.05 
6 0.92  0.04  0.81  0.03  0.73 0.06 
7 0.92  0.04  0.81  0.03  0.71 0.06 
8 0.92  0.04  0.80  0.03  0.70 0.06 
9 0.92  0.04  0.80  0.03  0.69 0.06 
10 0.92  0.04  0.80  0.03  0.69 0.07 

Summed window 

1 0.80  0.04  0.79  0.02  0.81 0.04 
2 0.85  0.02  0.82  0.02  0.81 0.04 
3 0.90  0.03  0.84  0.02  0.81 0.04 
4 0.91  0.05  0.82  0.02  0.78 0.05 
5 0.91  0.05  0.80  0.03  0.74 0.05 
6 0.91  0.05  0.79  0.03  0.72 0.05 
7 0.91  0.05  0.79  0.04  0.70 0.05 
8 0.91  0.04  0.78  0.04  0.69 0.05 
9 0.91  0.04  0.77  0.04  0.68 0.05 
10 0.91  0.04  0.77  0.04  0.67 0.06 
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CHAPTER 5 

RELATIONSHIP BETWEEN MORTALITY AND SELECTION ON RESIDUAL FEED INTAKE AND 

RELATED TRAITS IN BROILER CHICKENS1 

  

                                                        
1 Zhang, X., S. Tsuruta, D. A. L. Lourenco, I. Misztal, R. L. Sapp, and R. J. Hawken. To be 

submitted to Poultry Science. 
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Abstract 

Three binary traits [mortality (MORT), ascites (ASC), and tibial dyschondroplasia (TD)] and one 

categorical trait [femur head necrosis (FHN)] were analyzed with Bayesian methodology and Gibbs 

sampler using linear and threshold models and a multivariate threshold-linear model with four other 

continuous traits [body weight (BW), residual feed intake (RFI), breast muscle percentage (BMP), and 

weight gain (WG)]. Field data included 186,596 records of commercial broilers from Cobb-Vantress Inc. 

THRGIBBS1F90 software was used to obtain estimates of the marginal posterior mean and standard 

deviation of the (co)variance components, heritabilities, and correlations from threshold and multivariate 

linear-threshold models. AIREMLF90 software was used to obtain the mean and standard error of the 

corresponding statistics from the linear models. The posterior means of direct heritability for binary and 

categorical traits from the threshold models were higher compared with those means from the linear 

models. The means and posterior means of direct and maternal heritability of all traits from the 

multivariate linear-threshold model were higher compared with the means from the linear models and 

posterior means from the threshold models except for FHN, for which the heritability was higher from the 

threshold model than from the multivariate linear-threshold model (0.29 vs. 0.19). The results confirmed 

that the posterior mean of the marginal distribution was suitable as a point estimate for univariate 

threshold and multivariate threshold-linear models. 

Keywords: mortality; binary trait; threshold model 
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Introduction 

Commercial broiler mortality has dropped from 18 to 3.9% since 1925 (The National Chicken 

Council, 2015); however, compared with commercial layers, the mortality of broilers younger than 1 year 

old is 7 times higher (European Commission, 2000). The peak mortality rate often occurs within the first 

week after the birth of the chicks, and the second peak gradually comes after the week 7 (McNaughton et 

al., 1978; Tabler et al., 2004). Recently, the early lay mortality has been associated with heavy, 

overconditioned hens in contrast to the early and mid-1990s when it was often associated with small and 

underfleshed hens. Studies showed that chickens bred for a higher yield of breast meat have a higher 

incidence of heart and circulatory disorders and are more susceptible to infectious diseases (Animal 

Welfare Working Group, June 1995; Julian, 1993). 

ASC is the seeping of liver plasma into the body cavity as a result of pulmonary hypertension 

(Julian, 1993). It is the number one cause of broiler mortality in commercial and pastured poultry 

production, with an incidence rate as high as 25% in commercial broilers. ASC is responsible for 8% of 

all broiler deaths each year and 20 to 30% of all male broiler deaths (Mattocks, 2002). It is attributed 

primarily to superior growth characteristics combined with underdeveloped internal organs, primarily the 

lungs and heart (Julian, 1993; Pavlidis et al., 2007). 

TD is the swelling of immature cartilage that causes bowing in the region of the hock joint. This 

leaves the growth plate prone to fracture, infection, and deformed bone development (Bradshaw et al., 

2002). It is the potential cause of lameness, mortality, and carcass condemnations in young poultry 

(Julian, 2005; Okimoto, 2015, personal communication; Velleman, 2000). In broiler chickens, TD 

develops within 2 to 5 weeks of age (Lynch et al., 1992). Although the natural etiology of TD is not 

known (Rath et al., 2004), super growth and unbalanced nutrition are thougth to be major contributions in 

addition to genetics (European Commission, 2000; Julian, 1998; Leach & Monsonego-Ornan, 2007; 

Thorp, 1994). Wong-Valle et al. (1993) demonstrated that the incidence rate was higher in male broilers 

than in females. 



 

89 

FHN is one kind of proximal femoral degeneration most frequently is the results of bacterial 

chondronecrosis and osteomyelitis (Thorp et al., 1993) and accounts for 17.3% of lameness in broilers 

(McNamee & Smyth, 2000). It is triggered by poor calcification of the long bones in super-growth 

chickens, probably as early as the second week of age when osteoblast activity and bone formative 

processes decline and mineralization is insufficient (Prisby et al., 2014). Diagnose of early FHN is 

difficult (McNamee & Smyth, 2000; Prisby et al., 2014). Birds in which bacterial chondronecrosis with 

osteomyelitis has already developed are unlikely to respond to the treatment. Because of the multiple 

types of bacteria, a vaccine has not been fully developed yet (McNamee & Smyth, 2000). 

Mortality and diseases are recorded in discrete categories. Threshold models have been developed 

to provide genetic analyses of categorical traits (Gianola & Foulley, 1983; Gilmour et al., 1985; Harville 

& Mee, 1984). Fouley et al. (1983) and Janss and Foulley (1993) extended the threshold methodology to 

multitrait analyses that consider one continuous correlated trait or more and unequal design. Albert & 

Chib (1993) and Moreno et al. (1997) generalized the procedure to Markov-chain Monte Carlo. Albert & 

Chib (1993) and Sorenson et al. (1995) constructed algorithms to allow empty categories in fully 

conditional distributions. Van Tassell et al. (1998) developed the MTGSAM program that allows several 

continuous and categorical variables in a threshold-linear model, and combined with Gibbs sampling. 

The advantages of threshold over linear models have been shown in several studies. The 

predictability of breeding values from a threshold animal model is higher than from equivalent linear 

animal model for discrete traits (Casellas et al., 2007; Ramirez-Valverde et al., 2001; Varona et al., 1999). 

Furthermore, the correlations of breeding values from linear and threshold models are >0.99, and animal 

rankings are very similar (Weller et al., 1988; Weller & Ron, 1992). However, advantages of linear over 

threshold models also have been reported (Hagger & Hofer, 1989; Ramirez-Valverde et al., 2001). 

The objectives of this study were 1) to build and analyze linear and threshold models for 

mortality and 2) to estimate variance components. 
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Materials and Methods 

Data 

Cobb-Vantress Inc. provided data for 188,936 fully pedigreed commercial broiler breeders from 

20 overlapping mini-generations (MGs) from multiple breeder flocks. Eggs that were laid within several 

consecutive weeks constituted one MG, and each week was considered as one hatch. Approximately 14 

MG were used in the study. Breeder source, MG, and hatches were used to define 420 contemporary 

groups (CGs). Four growth traits (BW, RFI, BMP, and WG), three binary traits (MORT, ASC, and TD), 

and one categorical trait (FHN) were recorded. Binary traits were classified as 0 (normal) and 1 

(abnormal). FHN was scored from 0 to 6. Classification of MORT was based on observation. TD was 

scored using an X-ray machine as well as dissection of the legs. A random population of birds were sent 

each week to dissection, where breast meat FHN and TD were recorded. ASC was visually ascertained by 

fluid in the body cavity and cyanosis of the comb, wattles, and skin. Suspicious individuals were then 

dissected and confirmed according to the presence of fluid in the abdominal cavity and right ventricular 

hypertrophy (Enkvetchakul et al., 1993). TD incidence was determined by making a longitudinal cut 

across the right tibia, and the tibia was scored according to the white cartilage plug abnormality (Rekaya 

et al., 2013). FHN were scored as 0 (normal) to 3 (gross disintegration of the epiphysis, physis or 

metaphysis) for each leg, and scores for both legs were combined to obtain overall scores from 0 to 6 

(Sapp, 2015, personal communication). MORT and ASC were recorded from hatch up to grading 

(recording of BW); BW, TD, FHN, and BMP were recorded around 5 weeks of age after grading. 

Subsequently, RFI was measured using a 1-week test, and WG was measured afterwards. BMP was 

measured after dissection and dead chickens were culled; therefore, no further traits were recorded for 

dissected and culled chickens. 
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Statistical models 

The analyses were performed using animal models. Fixed effects included MG, sex, and CG. For 

linear models, fixed effects included MG, CG, and animal sex. For binary and categorical traits in 

threshold models, CG was treated as a random effect. Sex was not used for BMP because it was only 

recorded for roosters. In addition to direct breeding value, BW had maternal breeding value and maternal 

permanent effects. 

Univariate Linear Model. 

y = Xb + Z1a + Z2m + Z3 pem + e , 

where b were fixed effects; a were direct breeding values; m were maternal breeding values; pem were 

maternal permanent environmental effects; X, Z1 , and Z2  were incidence matrices that linked the data 

with fixed effects and direct and maternal breeding values, respectively; Z3  was a diagonal matrix; and e 

were residuals. This model was used for all 8 traits. 

Univariate Threshold Model 

y = Xb + Z1a + Z2m + Z4cg+ e , 

where cg were random CG effects of based on farm source, MG and hatch and Z4  was an incidence 

matrix that linked the data with cg. 

This model assumed an underlying distribution L of the binary (MORT, TD, and ASC) and 

categorical (FHN) traits 𝑦 with the same effects as the univariate linear model, but the response of 𝑦 was 

modeled with the following distribution: 

f (y | L) = fi=1
n∏ (yi | Li )

= Ii=1
n∏ (Li < t1)I (yi =1)+ I (t1 < Li < t2  )I (yi = 2)+ I (t2 < Li < t3  )I (yi = 3)

, 
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where n is the number of records; t1 , t2 , and t3  are thresholds that define the three categories of response 

and 𝐼 is an indicator function that equals 1 if the condition specified is true or 0 otherwise. The procedure 

is a nonlinear transformation of BLUE and BLUP. 

Transformation of heritability. The heritability from the linear model was transformed to a liability scale 

for binary traits using the formula from Dempster and Lerner (1950): 

ho
2 =

zhl
2

p(1− p)
, 

where ho
2  is the heritability on the observational scale, 𝑧 is the height of the normal density function, hl

2  

is the heritability on the liability scale, and p  is the incidence rate. The normal density function is a 

standard norm following Gianola and Foulley (1983). 

For ordered categorical traits, the heritability from the linear model was transformed to a liability 

scale using the formula from Gianola (1979) with normal distributions for both breeding values and 

residuals: 

ho
2 =

hl
2[ zi (ai +1− ai )i=1

m−1∑ ]2

ai
2pi (1− pi )− 2 aij=1

m∑i=1
m∑ a j pi p ji=1

m−1∑
, 

where m is the number of categories, ai is the threshold value of category i + 1, and pi  is the incidence 

rate of the category i. 

Bivariate Linear-Linear Model 

BW and MORT used the same model as for the univariate linear model. Genetic components of 

both traits were assumed to be correlated. Residual components were not assumed to be correlated. 

Genetic and residual effects were assumed to be independent of each other. 
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Bivariate Threshold-Linear Model. 

BW used the same model as in LM, and MORT used the same model as in TM. Genetic and 

residual components shared the same assumptions as in LLM. 

Multivariate Threshold-Linear Model. 

Continuous traits used the same model as for the univariate linear model, and binary and 

continuous traits used the same model as for the univariate threshold model. Genetic components were 

assumed to be correlated. Random CG effects were not assumed to be correlated. Residual components 

were also assumed to be correlated, except for the binary traits with extreme category problems (ECPs);  

e.g., if chickens were dissected to confirm their disease status, then only healthy chicken in category 0 

would have records that were measured afterwards. 

Genomic BLUP Models. 

ssGBLUP was used as a genomic model. 

X'X X'Z
Z'X Z'Z + λH-1
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where where   y is a vector of phenotypic records in a multitrait scenario; X and Z are the incidence 

matrices corresponding to the fixed effects and additive genetic effects, respectively; b is a vector of fixed 

effects including an overall mean, hatch number, and breed; u is the vector of random additive direct 

genetic effects; λ is the ratio of residual to additive genetic variances, where the residual effect was 

assumed independently and followed a normal distribution; H-1 is the inverse of a matrix that combines 

pedigree and genomic relationships (Aguilar, 2010); and e is the vector of residual effects, which is 

assumed to be independent and follow a normal distribution [𝑒  ~ (0, 𝐼𝜎!!)]. 
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Computation and software 

AIREMLF90 (Misztal et al., 2002) was used to estimate variance components of linear models. 

The convergence criterion was 10-12. THRGIBBS1F90 (Tsuruta & Misztal, 2006) was used to estimate 

variance components of threshold and threshold-linear models. The POSTGIBBSF90 program (Aguilar, 

2010) was used to determine the burn-in and convergence and to calculate posterior means.  

Results 

Data summary 

The statistics of binary, categorical, and continuous traits are listed in Tables 5.1.1 and 5.1.2. All 

186,596 animals had at least one trait recorded. Incidence rates of MORT, ASC, and TD were 7.5, 1.2, 

and 3.5%. FHN had an incidence rate of 13.4% for category 1 and 8.6% for categories 2 through 6 

combined; therefore, category 2 was redefined to include categories 2 through 6.  Only roosters had BMP 

records. Average offspring per female was 54. 

 (Co)variance components 

(Co)variance components and heritability from univariate linear, univariate threshold, bivariate 

linear-linear, and bivariate threshold-linear models are in Tables 5.2 and 5.3. Other models for BW (Table 

S5.1) and for BW and MORT (Table S5.2) were not used because of small or large heritability or 

difficulty with convergence. Correlations and heritabilities from the multivariate threshold-linear model 

are in Table 5.4, and (co)variance components are in Table S5.3. A constant of 1,000 was added to raw 

RFI records to avoid a value of 0, which would have been treated as a missing record in BLUP90IOD2 

and CBLUP90IOD2. Raw BW, RFI, BMP, and WG records were divided by 10 to avoid overflow of 

THRGIBBS1F90. Number of burn-ins discarded in POSTGIBBSF90 ranged from 5,000 to 150,000. 

By using a threshold model, heritabilities of binary and categorical traits were on a liability scale 

and, therefore, were different from those from linear models that were on a phenotypic scale. The 

heritabilities of binary and categorical traits from a threshold model were higher compared with those 
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from a linear model for TD (0.33 vs. 0.06), FHN (0.29 vs. 0.02), ASC (0.22 vs. 0.17), and MORT (0.12 

vs. 0.05). By transforming heritability from the linear model to the liability scale, the new heritabilities 

were close to those from threshold models (TD, 0.34; FHN, 0.33; ASC, 0.24; and MORT, 0.17). With the 

multivariate threshold-linear model, heritabilities for BW (0.26 vs. 0.2), BMP (0.50 vs. 0.48), TD (0.34 

vs. 0.33), MORT (0.13 vs. 0.12), and BW maternal genetic effect (0.08 vs. 0.04) were higher, but 

heritabilities for RFI (0.25 vs. 0.26), WG (0.21 vs. 0.22), FHN (0.19 vs. 0.22), and ASC (0.24 vs. 0.29) 

were lower compared with univariate linear and threshold models. 

Genetic correlations between MORT and seven other traits were generally very low, except for 

maternal BW (−0.5) and ASC (0.77). BW had a positive correlation with TD (0.17), FHN (0.23), and ASC 

(0.27). Maternal BW also had a negative correlation with FHN (−0.13) and ASC (−0.37), but heritability 

of maternal BW was low (0.08). Residual correlations of ASC and MORT with other traits were 

significantly different from zero, although by definition they should be zero and likewise for TD and FHN 

with RFI. Other than those anomalies, medium to high correlations were found between MORT and ASC 

(0.73), BW and BMP (0.41), BW and WG (0.12), and RFI and BMP (0.16). 

(Co)variance components from linear-linear and threshold-linear models for MORT and BW were 

estimated just for the predictability study that compared univariate and bivariate models. Heritability of 

BW was slightly higher compared with those from the univariate model (0.21 vs. 0.2), but heritability of 

MORT was not (0.05 for linear-linear and univariate linear models; 0.03 for threshold-linear model vs. 

0.12 for the univariate threshold model). The correlation of genetic effect between BW and MORT was 

0.12 for the linear-linear model, 0.28 for the threshold-linear model, and 0.13 for the multivariate 

threshold-linear model. 

Computing time 

For variance component estimation, THRGIBBS1F90 took 11 hours for 100,000 iterations with 

the univariate threshold model, 75 hours with the bivariate linear-linear model, 13 days with the bivariate 
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threshold-linear model, and 35 days for 200,000 iterations with the multivariate threshold-linear model 

with eight traits. AIREMLF90 took 5 minutes for the univariate linear model and 75 hours for the 

bivariate linear-linear model, depending on the initial value 

Discussion 

Heritabilities and correlations in different models 

In a threshold model using maximum likelihood for binary or categorical response variables, 

heritability tends to be biased upward when the amount of information per fixed effect is small 

(Hoeschele & Tier, 1995; Moreno et al., 1997; Tempelman, 1998). Such ECPs (Misztal et al., 1989) have 

an observed value of only 0 or 1 at a certain level of a fixed effect. In the full dataset of this study, MGs 

had at least 2,651 samples, sex had at least 26,788 samples, and CGs had at least 39 samples at one level 

for a single binary or categorical trait. When splitting the data randomly in half, CGs would have more 

serious ECPs. The small sample size for CG levels was not a problem in this study because 1) the data 

were split by CG, which guaranteed that each level contained all samples in each subset, and 2) CG was 

treated as a random effect with a Gaussian distribution so that the bias in Monte Carlo error, 

autocorrelations and variance estimates would be decreased (Hoeschele & Tier, 1995; Luo et al., 2001; 

Moreno et al., 1997).  

Gianola (1979) had illustrated that h2 is higher on a liability scale compared with a linear scale, 

and this has been proved in many studies (Kadarmideen et al., 2004; Ramirez-Valverde et al., 2001; 

Varona et al., 1999), including this one. By transforming the linear scale to a liability scale, the univariate 

and multivariate ℎ! become comparable with those from the threshold models. 

Multivariate models were expected to have higher ℎ! compared with univariate models, assuming 

strong correlations among different traits. This was the case for BW, BMP, TD, ASC, and MORT but not 

for FHN. RFI and WG ℎ!were very close in both models. FHN was the only categorical trait.  
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BW and MORT were also analyzed using bivariate models. BW was selected because its maternal 

genetic effect had the highest correlation with MORT and BW records were collected immediately after 

MORT records. However, the ℎ!  of MORT with the bivaruate threshold-linear model was smaller 

compared with those from the univariate and multivariate threshold models. The smaller ℎ! was probably 

the result of the small heritability of the maternal genetic effect, which contributes very little to MORT, 

and the missing values of MORT, which were not handled properly by the bivariate model. In linear 

regression, the missing values were not considered; however, with the threshold model using 

THRGIBBS1F90, they were predicted from a Gaussian sampling distribution. With the multivariate 

model, the seven other traits probably provided information about the shape of the distribution (thus 

reducing the bias), but BW was the only other trait used for the bivariate model. 

Heritabilities and genetic correlations of disease traits 

González-Recio et al. (2008) reported a heritability of 0.02 for late mortality (14-42 dayes of age) 

in a commercial broiler population using Bayesian linear model with a incidence rate of 5%. in a 

commercial broiler population using a Bayesian linear model with an incidence rate of 5%. In a cold- 

challenge experiment with two commercial sire lines of chickens selected for production traits from birth 

to 35 days of age, De Greef et al. (2001) reported a heritability of 0.22 using a linear model with an 

incidence rate of 12% in the population. In a White Plymouth Rock broiler dam line up to 35 days of age, 

Pakdel et al. (2002) a heritability for mortality of 0.32 with a linear animal model and 0.16 for direct and 

0.05 for maternal heritabilities with a linear maternal model. The correlation between direct and maternal 

effects was 0.21. The high heritability resulted mainly from the high incidence rate, as estimated 

heritability is a function of incidence with a linear model but not with a threshold model (Gianola, 1979). 

This discovery revealed a role of maternal effect in pullet mortality. Using a linear model with a maternal 

effect, this study found that the direct heritability of mortality was 0.02 and maternal heritability was 0.01 

(Table S3.2.). The correlation between direct and maternal genetic effects was 0.02. Because of the very 

small portion for maternal heritability and smaller direct heritability compared with a simple model, the 



 

98 

maternal model was not used. The same was the case for the threshold model, where the correlation was 

0.03. Differences in heritability could be the result of differences in definitions used by various 

researchers, animal age at measurement, scale used to describe the trait, sample size, and statistical and 

computational strategies used for estimation (Rekaya et al., 2013). 

Pakdel et al. (2002) reported that the heritability of ASC-related continuous traits were 0.18 to 

0.47. They also found a maternal heritability of 0.03 for ASC ventricular weights. Moghadam et al. 

(2001) reported heritabilities of 0.12 and 0.22 on the liability scale for ASC syndrome transformed from a 

linear scale in White Rock and Cornish broilers with an incidence rate of 1.5 and 1.1%, respectively. 

They also reported higher heritabilities for male broilers. De Greef et al. (2001) reported a heritability of 

0.06 using a linear model for ASC-related mortality with an incidence rate of 4.2%. In an experiment for 

ASC susceptibility of male line chicks up 20 weeks of age, Pavlidis et al. (2007) reported that the 

heritability from a linear model was 0.30 ± 0.05 for the susceptible line and 0.55 ± 0.05 for the resistant 

line, with an average incidence rate of 75.3% for both lines. 

Rekaya et al. (2013) that TD heritability was 0.12 ± 0.01 in a Cobb-Vantress commercial broiler 

line, which was slightly smaller than for this study. They used Bayesian implementation and a 

multivariate threshold-linear model. Akbas et al. (2009) reported that the heritability of TD heritability at 

6 weeks of age in a commercial broiler population with an incidence rate of 7% was 0.06 using a linear 

animal model, which was the same as in this study, and 0.21 if transformed to a liability scale. Kapell et 

al. (2012) reported a TD heritability of 0.27 in commercial-broiler breeder lines recorded at 5 to 6 weeks 

of age for males only, with a prevalence of 7.8% using a linear animal model. Kuhlers and McDaniel 

(1996) reported that TD heritability in commercial male-line broiler breeders was 0.5 at 7 weeks of age 

using a linear animal model. The incidence rate was 11%. 

No literature on the genetic component of FHN was found. One study on mineral density of 

human femoral neck bone reported a heritability of 0.43 (confidence interval of 0.16–0.67); no significant 

phenotypic relationship was found between mineral density and body weight at the same age. 
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Kadarmideen et al. (2004) reported a heritability of 0 for femur head score in Swiss Large White pigs 

using generalized mixed linear, logit, and probit animal models. They claimed that heritability was not 

estimable because of the extremely low incidence of 0.01%. 

Genetic correlations between disease traits were generally negligible, expect for MORT and ASC. 

De Greef et al. (2001) reported a genetic correlation of 0.9 between mortality and ASC-related mortality, 

which is similar to the 0.77 of this study. 

Heritabilities and genetic correlations of production traits 

For production traits, the BW heritability estimate was smaller than the 0.33 of Rekaya et al. 

(2013) but larger than that reported by Chen et al. (2011). The heritability estimate of RFI in this study 

was close to the 0.26 of Rekaya et al. (2013) but lower than the 0.45 of Aggrey et al. (2010). The BMP 

heritability estimate was higher than the 0.39 reported by Liu et al. (2014). Studies on breast muscle 

weight reported heritabilities of 0.37 to 0.53 (Venturini et al., 2014). WG heritability ranged from 0.19 to 

0.51 in previous studies (Aggrey et al., 2010; Gonzalez-Ceron et al., 2015). BW had no genetic 

correlation with RFI, which was expected because it was adjusted by BW. BMP was also a measurement 

related to BW, and BW was slightly negatively correlated with BMP, which differed from the correlation 

of 0.2 of De Greef et al. (2001). BW had a small genetic correlation with WG. RFI had an insignificant 

small positive relationship with BMP, which was also expected for the same reason as for BW. RFI had a 

small genetic correlation with WG, which was smaller than the 0.34 of Aggrey et al. (2010) and the 0.27 

of González-Ceron et al. (2015). This implies that selection for higher RFI would result in greater WG. 

BMP had no genetic correlation with WG.  

Genetic correlations between production and disease traits 

In this study, BW had small positive genetic correlations with disease traits, which implies that t 

selection for BW slightly impairs health. Its genetic correlation with MORT, however, was not 

significantly different from zero. The insignificant genetic correlation between BW and MORT in this 
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study probably resulted from the bias introduced by data truncation. De Greef et al. (2001) reported a 

genetic correlation of −0.46 ± 0.11 between mortality and BW at 35 days of age. In swine, Roehe et al. 

(1999) reported that the genetic correlation between the number of pigs born alive and litter birth weight 

was -0.28 to -0.37, which implies a positive relationship between birth weight and mortality. Schneider et 

al. (2012), however, reported a positive genetic correlation (0.56) between number of pigs born alive and 

litter birth weight in crossbred swine. A similar result was reported by Dufrasne et al. (2013) in a 

crossbred pig population, which suggests that BW is negatively correlated with pre-weaning mortality 

with a genetic correlation of -0.52. Arango et al. (2005) reported a genetic correlation of  -0.65 between 

number of piglets born dead and those reaching 113.3 kg in commercial Large Whites, which implies that 

selection for faster growth increased birth mortality. 

Pavlidis et al. (2007) reported genetic correlations of 0.28 and 0.24 between body weight at 21 

days of age and ASC-related mortality in susceptible and resistant lines selected for ASC, respectively, 

which implies that selection on ASC reduces BW. Other studies reported negative genetic correlations 

from −0.23 to −0.37 between BW and ASC indicator traits, which implies a positive relationship between 

BW and susceptibility to ASC (Pakdel et al., 2005; Zerehdaran et al., 2006). Closter et al. (2012) found a 

change in genetic correlation between BW and an ASC indicator trait from slightly positive to moderately 

negative from 2 to 7 weeks of age, and the change was more pronounced in males than in females, which 

suggests that males and females should be studied separately. The genetic correlation between BW before 

7 weeks of age and TD ranged from −0.03 to 0.19 in previous studies (Kapell et al., 2012; Kuhlers & 

McDaniel, 1996; Rekaya et al., 2013) 

RFI also had small positive genetic correlation with disease traits, and an insignificant genetic 

correlation with MORT. No literature on the relationship of chicken RFI and diseases were analyzed in 

this study was found, but a study of beef cattle found no relationship between RFI and perinatal mortality 

(Crowley et al., 2011). Rekaya et al. (2013) reported that the genetic correlation between RFI and TD was 

0.01, the same as in this study. 
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BMP had insignificantly negative genetic correlations with disease traits, which implies no effect 

when selecting on BMP. The small correlation in this study is attributed mainly to the fact that BMP was 

only recorded for males and the sample size was very small. Although high BMP was widely considered 

as negatively affecting the health at a phenotype level, few studies examined the genetic relationship. De 

Greef et al. (2001) reported a genetic correlation of 0.02 ± 0.01 between mortality and BMP, which was 

close to the correlation of 0.04 (P > 0.05) in this study. Hoving-Bolink et al. (2000) indicated that 

chickens with high BMP were at higher risk of having ASC,  mainly through lower capillary density that 

diminishes oxygen supply. Rekaya et al. (2013) reported genetic correlation of −0.08 between breast 

muscle yield and tibial dyschondroplasia. 

Residual correlations 

For the binary traits that were truncated early, their residual and phenotypic correlations with 

subsequent recorded traits were supposed to be zero (Table 5.4). The correlations of RFI with BMP, TD, 

and ASC were significantly different from zero but low. Correlation between BMP and ASC was high, in 

agreement with many studies, which suggests that males selected for breast muscle had high ASC 

prevalence (Mattocks, 2002; Moghadam et al., 2001; Pavlidis et al., 2007). Correlations of RFI with 

FHN, WG, and ASC and between WG and MORT were higher than 0.7, mostly because of the inaccurate 

covariance estimate from the Gibbs sampling procedure of THRGIBBS1F90. An unstructured covariance 

model may lead to unstable covariance parameter estimates with large posterior variances in an 

unbalanced design where the number of observations is small with respect to the number of traits, effects, 

and measurements. Model improvements, such as ante-dependence or a heteroscedastic residual 

(co)variance matrix, can account for unbalanced design and improve covariance estimates (Azevedo et 

al.). 
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Implication 

In this study and many others, mortality was triggered by complicated causes specific to each 

genetic background, environment, management, etc. Therefore, the results of this study might not be 

extrapolatable. The background of this study indicated that ASC might explain the major cause of 

mortality. Some preventive measures, such as sufficient ventilation, can alleviate the incidence rate 

(Julian, 1993). 

In a study including Cobb-500 male broilers, Goliomytis et al. (2003) found that leg problems 

were the principal cause of mortality of broilers beyond 70 days of age. Calcium insufficiency is a cause 

of immature bone that eventually leads to diseases that increase mortality (Zavala et al., 2011). BW and 

BMP are not direct causes of mortality, but are principal causes of leg problems (Animal Welfare Working 

Group, June 1995; Goliomytis et al., 2003; Julian, 1993; Sorensen et al., 1999). Breeding farm and 

hatchery environments are sources of bacterial infections in legs (McNamee & Smyth, 2000). Fewer 

times of meal feeding and early feed restriction were suggested as efficient means to reduce skeletal 

problems in meat-type birds (Sorensen et al., 1999; Su et al., 1999). However, another study showed that 

starvation could raise male broiler mortality (Zavala et al., 2011). 

Other mortality factors may include sex, maternal effect from hens, and management. Female and 

male broilers had different causes and degrees of mortality. Males often had a higher mortality because of 

killing, feather pecking, and other aggressive attacks, which lead to bone impairments, such as fractures 

and infections (Zavala et al., 2011). Higher mortality in broiler chicks up to 8 weeks of age has been 

found to be correlated with younger age of hen at laying and lighter egg weight (McNaughton et al., 

1978).  

Zavala et al. (2011) suggested examining BW lost, atrophy, or obesity reflected by breast muscle 

score as well as and bone integrity, such as femur bone in necropsy, to determine the cause of mortality 

because the diseases that change physiological condition at the time of death are highly related to 

mortality. 
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Conclusion 

Early mortality of broilers has a low to moderate heritability, which implies that it can be 

improved through selection. Selection of heavier maternal body weight may decrease offspring mortality. 

Selection on residual feed intake, on the other hand, does not influence mortality.  
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Table 5.1.1. Number of observations (and incidence rates in parentheses) of disease traits and mortality. 

Traita N Trait score 
0 1 2 3 4 5 6 

TD 59,124 57,032 
(96.5%) 

2092 
(3.5%) 

— — — — — 

FHN 16,870 11,112 
65.86% 

2,265 
13.4% 

1,372 
8.1% 

62 
0.4% 

22 
0.1% 

1 
0% 

6 
0% 

ASC 163,971 161,950 
98.8% 

2,021 
1.2% 

— — — — — 

MORT 180,998 167,389 
92.5% 

13,609 
7.5% 

— — — — — 

Total 186,596 — — — — — — — 
aTD: tibia dischondroplasia; FHN: femur head necrosis; ASC: ascites; MORT: mortality. 
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Table 5.1.2. Summary statistics of production traits. 

Traita N Mean SD Median Min Max 
BW (g) 161,984 1973.8 229.7 1956.1 1162.3 2863.3 
RFI (g) 41,730 0.12 64.56 -1.52 -445.1 493.89 

BMP (%) 7,087 25.5 1.9 15.3 15.3 33.3 
WG (g) 41,730 693.0 139.7 686.0 300.0 1372.0 
Total 186,596 — — — — — 

aBW: body weight; RFI: residual feed intake; BMP: breast muscle percentage; WG: weight gain. 
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Table 5.2.1. Means (and standard errors in parentheses) for the animal (σ a
2 ), maternal (σm

2 ), maternal 

permanent environment group (σ pem
2 ), and residual (σ e

2 ) variances, covariance between animal and 

maternal effect (σ am
2 ) and direct (h2) and maternal heritabilities ( hm

2 ) for production traits using linear 

models. 

Statistic 
Traita 

BW  RFI  BMP  WG 
σ a
2  49.25 (4.57)  10.87 (0.56)  0.01 (0.00)  27.79 (1.56) 

σm
2  8.53 (2.46)  —  —  — 

σ am
2  -7.41 (2.67)  —  —  — 

σ pem
2  

11.66 (1.43)  —  —  — 

σ e
2  181.23 (2.40)  31.50 (0.41)  0.01 (0.00)  96.99 (1.16) 

h2 0.20  0.26  0.48  0.22 
hm
2  0.04  —  —  — 

aBW: body weight; RFI: residual feed intake; BMP: breast muscle percentage; WG: weight gain. 
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Table 5.2.2. Means (and standard errors in parerntheses) for animal (σ a
2 ), contemporary group (σ cg

2 ), and 

residual (σ e
2 ) variances of linear models, posterior means and standard deviations in highest posterior-

density regions for the variance components of threshold models, and heritabilities on linear (h2) and 

liability ( hl
2 ) scales for disease and mortality traits.a 

 Linear Model Threshold Model 
 TDa ASC FHN MORT TD ASC FHN MORT 

σ a
2  0.0011 

(0.0001) 
0.0001 
(0.0000) 

0.0650 
(0.0060) 

0.0031 
(0.0002) 

0.5323 
(0.0465) 

0.3087 
(0.0179) 

0.4473 
(0.0567) 

0.1418 
(0.0115) 

σ cg
2  

— — — — 0.0604 
(0.0116) 

0.0918 
(0.0152) 

0.0431 
(0.0082) 

0.0261 
(0.0028) 

σ e
2  0.0174 

(0.0001) 
0.0078 
(0.0000) 

0.3161 
(0.0055) 

0.0659 
(0.0003) 

1.0005 
(0.0082) 

1.0000 
(0.0052) 

1.0381 
(0.0158) 

1.0001 
(0.0048) 

h2 0.06 0.02 0.17 0.05 — — — — 

hl
2
b 0.34 0.24 0.33 0.17 0.33 0.22 0.29 0.12 

aTD: tibia dischondroplasia; FHN: femur head necrosis; ASC: ascites; MORT: mortality. 
b Transformation between observed and liability scales based on Dempster & Lerner (1950) and Gianola 
(1979). 

 

  



 

115 

Table 5.3. Means (and standard errors in parentheses) for animal ( σ a
2 ), maternal ( σm

2 ), maternal 

permenental envrionment group (σ pem
2 ), contemporary group (σ cg

2 ), and residual (σ e
2 ) variances of a 

linear-linear model, posterior means and standard deviations in highest posterior-density regions for 

variance components of a threshold-linear model, and heritabilities on linear (h2) and liability ( hl
2 ) scales 

for mortality (MORT) and body weight (BW). 

Statistics and traits 
Linear-linear models Threshold-linear models 

σ x1,x2
2  rx1,x2

 h2 hl
2  σ x1,x2

2  rx1,x2
 h2 hl

2  

σ a
2 -MORTa 0.003 

(0.001) — 0.05 0.16 0.028 
(0.009) — — 0.03 

σ a
2 -BW 51.240 

(4.727) — 0.21 — 51.010 
(5.586) — 0.21 — 

σm
2 -BW 6.722 

(2.238) — 0.03 — 11.729 
(2.813) — 0.05 — 

σ a,m
2 -BW, BW -7.504 

(2.571) -0.403 — — -9.183 
(2.675) -0.380 — — 

σ a,a
2 -MORT, BW 0.047 

(0.024) 0.120 — — 0.333 
(0.173) 0.280 — — 

σ a,m
2 MORT, BW -0.071 

(0.043) -0.490 — — -0.513 
(0.122) -0.900 — — 

σmpe
2 -BW 12.640 

(1.414) — — — 10.288 
(1.589) — — — 

σ cg
2 -MORT — — — — 0.023 

(0.003) — — — 

σ e
2 -MORT 0.066 

(0.000) — — — 1.007 
(0.005) — — — 

σ e
2 -BW 180.200 

(2.471) — — — 180.360 
(2.887) — — — 

aMORT: mortality, BW: body weight. 
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Table 5.4. Genetic correlations (upper right), residual correlations (lower left), and heritabilities from the 

multiple threshold-linear model by trait. 

Trait BWa RFI BMP WG TD FHN ASC MORT BWmat 
BW  0.00 -0.12c 0.28c 0.17c 0.23c 0.27c 0.13 -0.53c 
RFI 0.04c  0.14c 0.22c 0.01 0.18c 0.08c 0.01 0.09 
BMP 0.41c 0.16cb  0 -0.01 -0.15c -0.06 0.04 0.11 
WG 0.12c -0.02c -0.06  -0.03 -0.10 0.25c 0.14c 0.03 
TD -0.08c -0.13cb -0.01 0.06b  0.11 0.02 -0.02 0 
FHN 0.03c 0.98cb 0.12 0.01b -0.02  0.08 0.10 -0.13c 
ASC 0.31cb 0.27cb 0.65cb 0.74cb -0.11cb 0.23cb  0.77c -0.37c 
MORT -0.13cb 0.20cb 0.15cb 0.82cb -0.30cb 0.22cb 0.73c  -0.50c 
BWmat — — — — — — — — — 
h2 0.26 0.25 0.50 0.21 0.34 0.19 0.24 0.13 0.08 

aBW: body weight; RFI: residual feed intake; BMP: breast muscle percentage; WG: weight gain; TD: 

tibia dischondroplasia; FHN: femur head necrosis; ASC: ascites; MORT: mortality; BWmat: BW maternal 

genetic. 

bShould be 0 because of extreme category phenotype. 

cSignificantly different from 0 by 2 standard deviations. 
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Table S5.1. Means (and standard errors in parentheses) for the animal (σ a
2 ), maternal (σm

2 ), maternal 

permenental group (σ pem
2 ), phenotypic (σ p

2 ), and residual (σ e
2 ) variances, covariance between animal and 

maternal effect (σ am
2 ), and direct (h2) and maternal heritabilities ( hm

2 ) for body weight using full and 

reduced linear models. 

Statistics Full model Reduce model 1 Reduce model 2 
σ a
2  49.25 (4.57) 46.36 (3.70) 108.29 (3.43) 

σm
2  853.01 (2.46) — — 

σ am
2  -7.41 (2.67) — — 

σ pem
2  

11.66 (1.43) 13.80 (1.00) — 

σ e
2  181.23 (2.40) 181.34 (1.99) 151.03 (1.87) 

σ p
2  

243.26 241.51 259.32 

h2 0.20 0.19 0.42 
hm
2  0.04 — — 
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Table  S5.2. Means and standard errors in parentheses) for animal (σ a
2 ), maternal (σm

2 ), maternal 

permenental environment group (σmpe
2 ), contemporary group (σ cg

2 ), and residual (σ e
2 ) variances for an 

altertanive linear-linear model, posterior means and standard deviations in highest posterior-density 

regions for variance components of an alternative threshold-linear model, and heritabilities on linear (h2) 

and liability ( hl
2 ) scales for mortality (MORT) and body weight (BW). 

Statistics and 
traits 

Linear-linear model Threshold-linear model 
σ x1,x2
2  rx1,x2

 h2a hl
2  σ x1,x2

2  rx1,x2
 h2 hl

2  

σ a
2 -MORT 0.002 

(0.000) — 0.03 0.09 0.065 
(0.013) — — 0.06 

σm
2 -MORT, 

MORT 
0.001 
(0.000) — 0.01 — 0.027 

(0.007) — 0.02 — 

σ a,m
2 -MORT, 

MORT 

-0.001 
(0.000) -0.636 — — -0.015 

(0.009) 
-

0.360 — — 

σ a
2 -BW 49.430 

(4.626) — 0.17 — 50.364 
(4.895) — 0.21 — 

σm
2 -BW 6.016 

(2.161) — 0.02 — 15.273 
(2.168) — 0.06 — 

σ a,m
2 -BW, BW -6.759 

(2.495) -0.039 — — 11.239 
(2.810) 

-
0.140 — — 

σ a,a
2 -MORT, 

BW 

0.013 
(0.026) 0.044 — — -0.200 

(0.167) 
-

0.110 — — 

σm,m
2 -MORT, 

BW 

0.012 
(0.017) 0.165 — — -0.504 

(0.107) 
-

0.780 — — 

σ a,m
2 -MORT, 

BW 

-0.039 
(0.021) -0.367 — — -0.129 

(0.127) 
-

0.130 — — 

σ a,m
2 -BW, 

MORT 

-0.007 
(0.026) -0.032 — — 0.550 

(0.120) 0.470 — — 

σmpe
2 -MORT 0.001 

(0.000) — — — 0.021 
(0.004) — — — 

σmpe
2 -BW 11.410 

(1.365) — — — 9.280 
(1.421) — — — 

σmpe,mpe
2 -

MORT, BW 

-0.014 
(0.009) -0.014 — — — — — — 

σ cg
2 -MORT - — — — 0.026 

(0.003) — — — 

σ e
2 -MORT 0.066 

(0.000) — — — 1.000 
(0.005) — — — 
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a Transformation between observed and liability scales based on Dempster & Lerner (1950) and Gianola 

(1979). 

  

σ e
2 -BW 235.400 

(2.545) — — — 180.660 
(2.562) — — — 

𝝈𝒆,𝒆𝟐 -MORT, 
BW 

1.904 
(0.019) — — — — — — — 
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Table S5.3. Posterior means (PM), their standard deviation (PSD) and effective sample size (ES) in 

highest posterior-density regions for the animal (σ a
2 ), maternal (σm

2 ), maternal permanent environment 

(σ pem
2 ), contemporary group (σ cg

2 ), and residual (σ e
2 ) variances from a threshold-linear model and 

heritability on linear (h2) and liability ( hl
2 ) scales for all traits.a 

σ x1,x2
2  

PM PSD ES σ x1,x2
2  

PM PSD ES 

σ cg
2 -TDa 0.077 0.014 14.3 σ a

2 -ASC 0.343 0.033 9.0 

σ cg
2 -FHN 0.032 0.004 23.3 σ a,a

2 -ASC, MORT 0.172 0.016 18.2 

σ cg
2 -ASC 0.070 0.008 11.3 σ am

2 -ASC, BW -0.977 0.197 12.3 

σ cg
2 -MORT 0.027 0.003 120.3 σ a

2 -MORT 0.146 0.011 21.5 

σ a
2 -BW 63.786 5.311 13.0 σ am

2 -MORT, BW -0.870 0.139 8.3 

σ a,a
2 -BW, RFI -0.056 1.274 13.3 σm

2 -BW 20.737 2.569 5.2 

σ a,a
2 -BW, BMP -0.106 0.043 21.4 σ pem

2 -BW 8.722 1.004 5.4 

σ a,a
2 -BW, WG 12.328 1.959 30.6 σ e

2 -BW 175.990 2.738 14.6 

σ a,a
2 -BW, TD 1.024 0.435 8.4 σ e,e

2 -BW, RFI 2.599 0.849 16.8 

σ a,a
2 -BW, FHN 0.896 0.277 7.1 σ e,e

2 -BW, BMP 0.635 0.029 19.2 

σ a,a
2 -BW, ASC 1.283 0.301 10.0 σ e,e

2 -BW, WG 17.298 1.803 10.3 

σ a,a
2 -BW, MORT 0.383 0.259 5.3 σ e,e

2 -BW, TD -1.013 0.347 15.0 

σ am
2 -BW, BW -19.431 3.161 5.9 σ e,e

2 -BW, FHN 0.457 0.177 8.4 

σ a
2 -RFI 10.668 0.437 43.3 σ e,e

2 -BW, ASC 4.147 0.570 2.8 

σ a,a
2 -RFI, BMP 0.052 0.025 3.6 σ e,e

2 -BW, MORT -1.745 0.211 11.7 

σ a,a
2 -RFI, WG 4.004 0.734 23.4 σ e

2 -RFI 32.496 0.352 37.4 

σ a,a
2 -RFI-, TD 0.025 0.148 8.3 σ e,e

2 -RFI, BMP 0.107 0.033 3.8 

σ a,a
2 -RFI-, FHN 0.291 0.078 12.1 σ e,e

2 -RFI, WG -1.488 0.617 22.9 

σ a,a
2 -RFI, ASC 0.147 0.071 16.3 σ e,e

2 -RFI, TD -0.737 0.236 4.7 

σ a,a
2 -RFI, MORT 0.009 0.057 24.6 σ e,e

2 -RFI, FHN 5.563 0.046 8.8 



 

121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aTD: tibia dischondroplasia; FHN: femur head necrosis; ASC: ascites; MORT: mortality; BW: body weight; RFI: 
residual feed intake; BMP: breast muscle percentage; WG: weight gain.

σ am
2 -RFI, BW 1.311 0.844 10.1 σ e,e

2 -RFI, ASC 1.549 0.088 14.8 

σ a
2 -BMP 0.013 0.001 9.7 σ e,e

2 -RFI, MORT 1.144 0.126 7.3 

σ a,a
2 -BMP, WG -0.003 0.027 7.7 σ e

2 -BMP 0.014 0.001 12.8 

σ a,a
2 -BMP, TD -0.007 0.005 7.5 σ e,e

2 -BMP, WG 0.080 0.049 10.2 

σ a,a
2 -BMP, FHN -0.009 0.003 7.4 σ e,e

2 -BMP, TD -0.001 0.008 3.7 

σ a,a
2 -BMP, ASC -0.004 0.004 3.4 σ e,e

2 -BMP, FHN 0.014 0.004 7.8 

σ a,a
2 -BMP, MORT 0.002 0.002 13.1 σ e,e

2 -BMP, ASC 0.077 0.004 11.4 

σ am
2 -BMP, BW 0.059 0.032 12.3 σ e,e

2 -BMP, MORT 0.017 0.005 12.5 

σ a
2 -WG 30.462 1.832 9.9 σ e

2 -WG 114.790 1.640 11.5 

σ a,a
2 -WG, TD -0.141 0.347 5.6 σ e,e

2 -WG, TD 0.634 0.378 7.8 

σ a,a
2 -WG, FHN -0.251 0.144 10.2 σ e,e

2 -WG, FHN 0.155 0.202 9.6 

σ a,a
2 -WG, ASC 0.803 0.129 23.4 σ e,e

2 -WG, ASC 7.941 0.284 3.3 

σ a,a
2 -WG, MORT 0.302 0.101 13.1 σ e,e

2 -WG, MORT 8.833 0.187 6.6 

σ am
2 -WG, BW 0.783 1.119 30.2 σ e

2 -TD 1.000 0.005 2,999.0 

σ a
2 -TD 0.559 0.071 11.5 σ e,e

2 -TD, FHN -0.023 0.032 18.4 

σ a,a
2 -TD, FHN 0.040 0.035 7.2 σ e,e

2 -TD, ASC -0.112 0.042 5.8 

σ a,a
2 -TD, ASC 0.010 0.029 9.5 σ e,e

2 -TD, MORT -0.302 0.049 4.0 

σ a,a
2 -TD, MORT -0.007 0.015 17.5 σ e

2 -FHN 1.000 0.005 2,767.4 

σ am
2 -TD, BW -0.014 0.202 6.8 σ e,e

2 -FHN, ASC 0.234 0.032 3.6 

σ a
2 -FHN 0.245 0.019 23.8 σ e,e

2 -FHN, MORT 0.221 0.021 10.1 

σ a,a
2 -FHN, ASC 0.024 0.016 3.8 σ e

2 -ASC 1.000 0.005 2,999.0 

σ a,a
2 -FHN, MORT 0.020 0.010 5.8 σ e,e

2 -ASC, MORT 0.728 0.020 6.5 

σ am
2 -FHN-, BW -0.300 0.137 10.5 σ e

2 -MORT 1.000 0.005 2,733.0 
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CHAPTER 6 

COMPARISON OF LINEAR VS. THRESHOLD AND SINGLE- VS. TWO-TRAIT ANALYSES 

IN MORTALITY OF COMMERICAL BROILER BREEDERS: PREDICABILITY1 

  

                                                        
1 Zhang, X., S. Tsuruta, D. A. L. Lourenco, I. Misztal, R. L. Sapp, and R. J. Hawken. To be 

submitted to Journal of Animal Science. 
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Abstract 

This study compared the predictability of several models and methods, for obtaining genetic 

evaluations of MORT as a binary variable in broiler chickens. Data were obtained from Cobb-Vantress 

Inc. and included 180,998 records of both MORT and BW. The incidence rate of MORT was 7.5%. 

Univariate threshold and linear animal models and bivariate linear-linear model and threshold-linear 

animal models were used for MORT and BW. The threshold animal models included fixed effects for MG 

and sex and random effects for CG (source, MG, and hatch), direct and maternal genetic effects, and 

maternal permanent environment. The linear animal models were similar to threshold animal models, 

except that CG was treated as fixed. Models were compared using a data splitting technique based on the 

correlation of EBVs from two samples, with half of the records discarded randomly by CG in the first 

sample and the remaining records discarded in the second sample. For each model, both BLUP and 

ssGBLUP methods were used. Reported predictabilities are average correlations of 10 replicates. The 

results obtained confirmed the slight advantage of threshold over linear for univariate models and 

threshold-linear over linear-linear for bivariate models with both BLUP (0.746 vs. 0.614 for univariate 

models and 0.614 vs 0.728 for bivariate models) and ssGBLUP (0.737 vs. 0.587 for univariate models and 

0.720 vs. 0.597 for bivariate models). Bivarate models improved the predictability of breeding values for 

MORT compared with the univariate linear model with ssGBLUP but not for the threshold model with 

BLUP or ssGBLUP; ssGBLUP had no advantage over BLUP in the same models. For genetic evaluation 

of mortality in chickens, the threshold model appears more appropriate compared with the linear model. 

To add more traits to the model, data must be accurate and complete. 

Keywords: mortality, binary trait, threshold model 
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Introduction 

Threshold models have been developed to provide genetic evaluation of categorical traits 

(Gianola & Foulley, 1983; Gilmour et al., 1985; Harville & Mee, 1984). Fouley et al. (1983) and Janss 

and Foulley (1993) extended the threshold methodology to multitrait analyses that consider more than one 

continuous correlated trait and unequal design. Albert & Chib (1993) and Moreno et al. (1997) 

generalized the procedure to Markov-chain Monte Carlo. Albert & Chib (1993) and Sorenson et al. (1995) 

developed algorithms that allow empty categories in fully conditional distributions. Van Tassell et al. 

(1998) constructed a MTGSAM program that allows several continuous and categorical variables in a 

threshold-linear model with Gibbs sampling. 

The advantages of threshold over linear models have been shown in several studies. The 

predictability of breeding values from a threshold animal model is higher than from equivalent linear 

animal model for discrete traits (Casellas et al., 2007; Ramirez-Valverde et al., 2001; Varona et al., 1999). 

Furthermore, the correlations of breeding values from linear and threshold models are >0.99, and animal 

rankings are very similar (Weller et al., 1988; Weller & Ron, 1992). However, advantages of linear over 

threshold models also have been reported (Hagger & Hofer, 1989; Ramirez-Valverde et al., 2001). 

Chen et al. (2011) showed that the accuracy of breeding value for leg score could be improved 

significantly by including genomic information in the estimation, which suggests the possibility of using 

ssGBLUP in predicting breeding value. 

Chapter 3 showed that the maternal effect of BW was the only factor that had a strong 

relationship with MORT. Therefore, BW was chosen for a bivariate model with MORT in this study. The 

objectives were 1) to compare linear and threshold models, 2) to compare univariate and bivariate models, 

and 3) to compare BLUP and ssGBLUP models in terms of MORT and BW. 
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Materials and methods 

Phenotypic data 

The phenotypic data were the same as described in Chapter 5. 

Genotypic data 

Overall, 52,232 SNPs on 28 autosomes and two commercial chromosomes from 18,947 selection 

candidates in MGs 184 to 198 were collected using an Illumina 60K BeadChip for chickens. Genotypes 

for some individuals from early MGs were imputed from an old panel to the new panel using the 

methodology of  Browning and Browning (2009), which was also used for later MGs. The R2 criterion in 

Beagle was 0.8. Quality control for imputation included a SNP error rate of <0.035, a correlation between 

raw and imputed SNPs of >0.85, single-SNP heritability of >0.8, a SNP error rate of <0.005, and 

Mendelian sampling errors of <0.5. 

After imputation, all SNPs were processed using PREGSF90 (Aguilar et al., 2014). For quality 

control, SNPs with Mendelian conflicts, a call rate of <0.9, an MAF of <0.05, and Hardy-Weinberg 

equilibrium difference of <0.15 as well as individuals with a call rate of <0.9 were removed. Individuals 

with a parentage conflict were reassigned with correct parents or removed by comparing genomic and 

pedigree relationships. 

Statistical models 

The univariate linear and threshold models and bivariate linear-linear and threshold-linear models 

used were the same as those described in Chapter 5. 

Comparison of models 

The models were compared using two-fold crossvalidation, as described in Ramirez-Valverde et 

al. (2001). The data set was split into two samples. For the first sample, half of the 420 CGs were 

randomly chosen and their records discarded. For the second sample, records for the other half of CGs 
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were discarded. Thus, records in the two samples were mutually exclusive, but pedigree and genomic 

relationships were not split.  

Ten replications were conducted using the above criteria, and the correlations of EBVs from the 

two samples were averaged across the 10 replicates. For each replicate, correlations were calculated for 

four subsets: all animals, young animals (the last generation), genotyped animals, and genotyped young 

animals. The correlation reflected the predictability of the model. A high correlation indicated a highly 

stable model prediction. 

Computation and software. 

BLUP90IOD2 (Misztal et al., 2002) was used to predict (G)EBVs for the linear model with a 

convergence criterion of 10−
14. CBLUP90IOD2 (Misztal et al., 2002) was used to predict (G)EBVs for 

threshold and threshold-linear models. The CBLUP90IOD2 convergence criteria were 10−
14 for the 

threshold model and 10−
12 for the threshold-linear model. The YAMS (Masuda et al., 2014a,b) option was 

used in CBLUP90IOD2 to solve the mixed-model equations iteratively over the dense genomic 

relationship matrix. 

Results 

Data summary 

A total of 180,998 animals had BW and MORT data (Chapter 5, Tables 5.1.1 and 5.1.2). Animals 

with a MORT score of 2 did not have a BW record. The incidence of MORT was 7.5%. 

Genotyped data 

After quality control, 38,609 SNPs remained. Chromosomes 16, 25, and three commercial 

chromosomes were eliminated because of Mendelian conflicts. Sex chromosomes were eliminated 

because of asymmetry. Average allele frequency across the remaining SNPs was 0.49. Overall, 18,047 

genotyped animals remained after quality control, which was 9.97% of the phenotyped animals. 
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Additionally, 12,969 of genotyped animals (71.86%) were selection candidates with complete records for 

both their sires and themselves, and only one dam did not have record. The numbers of records for each 

trait are listed in Table 6.1 for genotyped animals. Very few animals were genotyped in categories 1 and 

2; for MORT, no dead animals were genotyped. Only 537 animals with BMP records were genotyped. 

Among all 420 CGs, 12.98% of animals were genotyped on average, with a maximum of 55.79% 

genotyped in CG 1871922, and a minimum of 0% genotyped in CG 1781854. 

Model comparison 

Mean correlations among EBVs for MORT and BW from univariate linear and threshold models 

and bivariate linear-linear and threshold-linear models that were used to analyze the split dataset are in 

Tables 6.2.1. and 6.2.2.  

Univariate linear and threshold models 

The predictability of MORT was higher with the threshold model than with the linear model for 

all four subsets of animals and both BLUP and ssGBLUP methods (Table 6.2.1). For genotyped young 

animals, the BLUP predictability of MORT was 0.746 ± 0.025 for the threshold model compared with 

0.614 ± 0.035 for the linear model. 

Bivariate linear-linear and threshold-linear models 

The predictability of MORT was higher with the threshold-linear model than with the linear-

lienar model for both BLUP (0.728 ± 0.021 vs. 0.614 ± 0.036) and ssGBLUP (0.720 ± 0.024 vs. 0.597 ± 

0.025) for genotyped young animals (Table 6.2.1). For BW, predictability with the threshold-linear model 

was slightly lower than with the linear-linear model for both BLUP (0.697 ± 0.042 vs. 0.715 ± 0.040) and 

ssGBLUP (0.752 ± 0.013 vs. 0.760 ± 0.014) for genotyped young animals (Table 6.2.2). All replicates in 

all subsets of the two traits were consistent with the average. 
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Univariate threshold and bivariate threshold-linear models 

The pattern of predictability of MORT for univariate threshold and bivariate threshold-linear 

models was complicated (Table 6.2.1). For genotyped young animals, the univariate threshold model was 

better than the bivariate threshold-linear model in prediction for both BLUP (0.746 ± 0.025 vs. 0.728 ± 

0.021) and ssGBLUP (0.737 ± 0.027 vs. 0.720 ± 0.024). A similar pattern can be observed for the subset 

of young animals. However, for the datasets of all genotyped animals or all animals from all generations, 

the univariate threshold model was not as good a predictor as the bivariate threshold-linear model. For the 

subset of all genotyped animals, predictability was 0.719 ± 0.042 (univariate threshold model) vs. 0.752 ± 

0.031 (bivariate threshold-linear model) with BLUP and correspondingly 0.721 ± 0.040 vs. 0.737 ± 0.025 

with ssGBLUP. 

Univariate linear and bivariate linear-linear models 

For MORT, the bivariate linear-linear model outperformed the univariate linear model for all four 

subsets with both BLUP and ssGBLUP (Table 6.2.1). Predictability for genotyped young animals with 

BLUP was 0.614 ± 0.035 (univariate linear model) vs. 0.614 ± 0.036 (bivariate linear-linear model); 

corresponding predictability with ssGBLUP was 0.587 ± 0.024 vs. 0.597 ± 0.025. For BW, however, the 

pattern of predictability for univariate linear and bivariate linear-linear models was complicated (Table 

6.2.2). With BLUP, the univariate linear model outperformed the bivariate linear-linear model for all 

subsets. Predictability for genotyped young animals was 0.722 ± 0.041 (univariate linear model) vs. 0.715 

± 0.040 (bivariate linear-linear model). However, with ssGBLUP, the univariate linear model was inferior 

to the bivariate linear-linear model for genotyped young animals (0.757 ± 0.018 vs. 0.760 ± 0.014) as well 

as for the genotyped animal and young animal subsets. 

BLUP and ssGBLUP 

For BW from the univariate linear model (Table 6.2.2), predictability was higher with ssGBLUP, 

which included genomic information, than with traditional BLUP (0.722 ± 0.041 vs. 0.757 ± 0.018) for 
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genotyped young animals. Only one replication out of 10 had a predictability that was 0.01 lower in 

ssGBLUP than in BLUP. Genotyped animals also had correspondingly higher predictability (0.727 ± 

0.017 vs. 0.746 ± 0.024) as did the young animals of the last generation (0.771 ± 0.028 vs. 0.779 ± 0.024). 

For MORT from the univariate threshold model (Table 6.2.1), predictability for genotyped young animals 

was lower with ssGBLUP than with BLUP (0.746 ± 0.025 vs. 0.737 ± 0.027), but predictabilities for the  

other three subsets were higher with ssGBLUP. Predictability of genotyped young animals for MORT 

was also lower using a univariate linear model with ssGBLUP than with BLUP (0.614 ± 0.035 vs. 0.587 ± 

0.024), which was also observed for the genotyped animal subset. For genotyped young animals, 6 out of 

10 replicates were consistent with the average correlation using the univariate threshold model compared 

with 9 out of 10 for the univariate linear model. For both univariate models, predictability was higher 

with ssGBLUP than with BLUP for datasets of all animals and young animals. 

For BW from bivariate models (Table 6.2.2), predictability was higher with ssGBLUP than with 

BLUP for genotyped young animals (0.715 ± 0.040 vs. 0.760 ± 0.014 for the linear-linear model and 

0.697 ± 0.042 vs. 0.752 ± 0.013 for the threshold-linear model). All replications for all four subsets were 

consistent with the average. For MORT (Table 6.2.1), however, predictability was lower for genotyped 

young animals with ssGBLUP than with BLUP (0.614 ± 0.036 vs. 0.597 ± 0.025 for the linear-linear 

model and 0.728 ± 0.021 vs. 0.720 ± 0.024 for the threshold-linear model) as was also observed for the 

genotyped animal subset. 

Standard errors for predictability with the univariate linear and bivariate linear-linear models 

generally were higher with BLUP than with ssGBLUP, but this was not always the case for univariate 

threshold and bivariate threshold-linear models. 

Computing time 

For prediction of breeding values, THRGIBBS1F90 took 1.5 hours for the univariate threshold 

model and 13 hours with genomic information, 4 hours for the bivariate threshold-linear model and 39 

hours with genomic information. All results using THRGIBBS1F90 were solved at 11,000 iterations. 
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CBLUP90IOD2 took 2 minutes for the univariate threshold model and 1.5 hours with genomic 

information and 30 minutes for the bivariate threshold-linear model and 5 hours with genomic 

information. BLUP90IOD2 took 2 minutes for the linear univariate model and 30 minutes with genomic 

information and 20 minutes for the bivariate linear-linear model and 4 hours with genomic information. 

Discussion 

Predictability in this study ranged from 0.629 to 0.813, which was slightly higher than reported in 

previous studies using a bivariate threshold-linear model and THRGIBBSF90 (Brien et al., 2002; 

Ramirez-Valverde et al., 2001; Varona et al., 1999). When comparing within univariate or bivariate 

models, where the observations were the same across groups, threshold models were better compared 

with linear models in predicting MORT. For BW, however, a linear model was better than a threshold 

model, which is understandable given the properties of the data (Gianola, 1982; Thompson, 1979). In a 

bivariate model, predictability theoretically should be higher than in a univariate model, especially for 

traits with low heritability. However, in this study, the pattern varied among generations, traits, and 

presence or absence of genomic information. The heritability of MORT from the bivariate threshold-

linear model was lower than from the univariate threshold model (0.03 vs. 0.05, Chapter 3, Table 3.2.2). 

One explanation could be that BW is only maternally highly correlated to MORT. However, in previous 

studies where bivariate models were better than univariate models, the continuous traits all had medium to 

high direct genetic correlations to the discrete traits (Negussie et al., 2008; Ramirez-Valverde et al., 2001; 

Varona et al., 1999). 

Compared with BLUP, ssGBLUP was expected to have higher predictability in all scenarios. 

However, it appeared to be biased for MORT. Predictabilities for the genotyped and genotyped young 

animal subsets were not better for ssGBLUP compared with BLUP regardless of model. The mechanism 

behind the result is not clear. For MORT, category 1 had no genotyped animals (Table 6.1). Therefore, 

GEBVs of dead individuals were improved only through genotyped relatives with records. Nevertheless, 
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predictability for univariate threshold and bivariate threshold-linear models with ssGBLUP still was 

higher than for univariate linear and bivariate linear-linear models, respectively, in this study. 

Binary and categorical traits in this study were almost all truncated and with known or unknown 

bias. For example, ASC, TD, and FHN were confirmed only by necropsy when a suspicious lesion was 

detected by X-ray or when the chicken expressed observational symptoms. Thus, the false negative rate is 

expected to be biased upwards by the error rate of the detection methods. MORT and ASC, on the other 

hand, were recorded only at early ages, and dead animals were not recorded for other traits, such as BW. 

This is a problem in bivariate but not univariate models. The breeding values of individuals with missing 

traits were predicted from relatives with phenotypes through pedigree and genomic relationships and, 

therefore, had low reliability. 

Another reason for the variation in predictability may be that this dataset was far from balanced. 

The number of observations for continuous traits, number of observations for categories of discontinuous 

traits, and number of genotyped individuals in each CG varied from none to a very large number. In two-

fold cross validation with split CG, the correlation between split data can vary depending on the 

relationships among animals with different CGs and the information in the related CGs. 

Conclusion 

A threshold model is more appropriate for predicting binary data. A bivariate or multivariate 

model that includes correlated traits can improve the predictability of binary traits. ssGBLUP using a 

mixed relationship matrix can improve predictability compared with BLUP. Bayesian methods with 

proper priors and proper sampling distribution may improve truncated and missing values. 

  



 

132 

Reference 

Aguilar, I., I. Misztal, S. Tsuruta, A. Legarra, and H. Wang. (2014). Proceedings of the 10th World 

Congress on Genetic Applied Livestock Production, Vancouver, Canada. 

Albert, J. H., and S. Chib. (1993). Bayesian analysis of binary and polychotomous response data. Journal 

of the American Statistical Association, 88(422), 669-679.  

Brien, F. D., K. V. Konstantinov, and J. C. Greeff. (2002). Proceedings of the 7th World Congress on 

Genetics applied to Livestock Production, Montpellier, France, 18-23. 

Browning, B. L., and S. R. Browning. (2009). A unified approach to genotype imputation and haplotype-

phase inference for large data sets of trios and unrelated individuals. American Journal of Human 

Genetics, 84(2), 210-223.  

Casellas, J., G. Caja, A. Ferret, and J. Piedrafita. (2007). Analysis of litter size and days to lambing in the 

Ripollesa ewe. I. Comparison of models with linear and threshold approaches. Journal of Animal 

Science, 85(3), 618-624.  

Chen, C. Y., I. Misztal, I. Aguilar, S. Tsuruta, S. E. Aggrey, T. Wing, and W. M. Muir. (2011). Genome-

wide marker-assisted selection combining all pedigree phenotypic information with genotypic 

data in one step: An example using broiler chickens. Journal of Animal Science, 89(1), 23-28.  

Foulley, J. L., D. Gianola, and R. Thompson. (1983). Prediction of genetic merit from data on binary and 

quantitative traits with an application to calving difficulty, birth weight and pelvic opening. 

Genetics Selection Evolution, 15(3), 401-423.  

Gianola, D. (1982). Theory and analysis of threshold characters. Journal of Animal Science, 54(5), 1079-

1096.  

Gianola, D., and J. L. Foulley. (1983). Sire evaluation for ordered categorical data with a threshold model. 

Genetics Selection Evolution, 15(2), 201-223.  

Gilmour, A. R., R. D. Anderson, and A. L. Rae. (1985). The analysis of binomial data by a generalized 

linear mixed model. Biometrika, 72(3), 593-599.  



 

133 

Hagger, C., and A. Hofer. (1989). Correlations between breeding values of dairy sires for frequency of 

dystocia evaluated by a linear and non linear method. Journal of Animal Science, 67(Suppl. 1), 88 

(abstract).  

Harville, D. A., and R. W. Mee. (1984). A mixed-model procedure for analyzing ordered categorical data. 

Biometrics, 40(2), 393-408.  

Janss, L. L. G., and J. L. Foulley. (1993). Bivariate analysis for one continuous and one threshold 

dichotomous trait with unequal design matrices and an application to birth-weight and calving 

difficulty. Livestock Production Science, 33(3-4), 183-198.  

Masuda, Y., I. Aguilar, S. Tsuruta, and I. Misztal. (2014a). 10th World Congress on Genetics Applied to 

Livestock Production, Vancouver, Canada. 

Masuda, Y., T. Baba, and M. Suzuki. (2014b). Application of supernodal sparse factorization and 

inversion to the estimation of (co)variance components by residual maximum likelihood. Journal 

of Animal Breeding and Genetics, 131(3), 227-236.  

Misztal, I., S. Tsuruta, T. Strabel, B. Auvray, T. Druet, and D. Lee. (2002). Proceedings of the 7th world 

congress on genetics applied to livestock production, Montpellier, France, Communication 28–

27. 

Moreno, C., D. Sorensen, L. A. García-Cortés, L. Varona, and J. Altarriba. (1997). On biased inferences 

about variance components in the binary threshold model. Genetics Selection Evolution, 29(2), 

145-160.  

Negussie, E., I. Strandén, and E. A. Mäntysaari. (2008). Genetic analysis of liability to clinical mastitis, 

with somatic cell score and production traits using bivariate threshold–linear and linear–linear 

models. Livestock Science, 117(1), 52-59.  

Ramirez-Valverde, R., I. Misztal, and J. K. Bertrand. (2001). Comparison of threshold vs linear and 

animal vs sire models for predicting direct and maternal genetic effects on calving difficulty in 

beef cattle. Journal of Animal Science, 79(2), 333-338.  



 

134 

Sorensen, D. A., S. Andersen, D. Gianola, and I. Korsgaard. (1995). Bayesian inference in threshold 

models using Gibbs sampling. Genetics Selection Evolution, 27(3), 229-249.  

Thompson, R. (1979). Sire evaluation. Biometrics, 35(1), 339-353.  

Van Tassell, C. P., L. D. Van Vleck, and K. E. Gregory. (1998). Bayesian analysis of twinning and 

ovulation rates using a multiple-trait threshold model and Gibbs sampling. Journal of Animal 

Science, 76(8), 2048-2061.  

Varona, L., I. Misztal, and J. K. Bertrand. (1999). Threshold-linear versus linear-linear analysis of birth 

weight and calving ease using an animal model: I. Variance component estimation. Journal of 

Animal Science, 77(8), 1994-2002.  

Weller, J. I., I. Misztal, and D. Gianola. (1988). Genetic analysis of dystocia and calf mortality in Israeli-

Holsteins by threshold and linear models. Journal of Dairy Science, 71(9), 2491-2501.  

Weller, J. I., and M. Ron. (1992). Genetic analysis of fertility traits in Israeli Holsteins by linear and 

threshold models. Journal of Dairy Science, 75(9), 2541-2548.  

 



 

135 

Table 6.1. Numbers of observations for genotyped animals by trait and generation. 

Traita 
Genotyped animals Genotyped young animalsb 
Category  Category  
0 1 2 Missing 0 1 2 Missing 

TD 16,678 40 — 1,320 2,134 7 - 241 
FHN 417 81 41 17,508 60 5 5 2,312 
ASC 17,998 19 — 30 2,371 1 — 10 
MORT 18,045 0 — 2 2,381 0 — 1 
BW 17,998 49 2,371 11 
RFI 16,188 1,859 2,071 311 
BMP 537 17,510 70 2,312 
WG 16,188 1,859 2,071 311 
Total 18,047 — 2,382 — 

aTD: tibia dischondroplasia (binary trait); FHN: femur head necrosis (categorical trait); ASC: ascites (binary trait); 

MORT: mortality (binary trait); BW: body weight (continuous trait); RFI: residual feed intake(continuous trait); 

BMP: breast muscle percentage(continuous trait); WG: weight gain (continuous trait). 

bGenotyped animals in generation 198. 
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Table 6.2.1. Correlationsa (and standard errors in parentheses) of split datasets for breeding value 

solutions of mortality using univariate linear, univariate threshold bivariate linear, and bivariate threshold-

linear animal models. 

Model Animal group 
Univariate 

 
Bivariate 

BLUP  ssGBLUP BLUP  ssGBLUP 
Linear All 0.519 (0.026)  0.538 (0.024)  0.537 (0.025)  0.553 (0.023) 

Young 0.663 (0.027)  0.671 (0.025)  0.665 (0.028)  0.670 (0.026) 
Genotyped 0.594 (0.037)  0.590 (0.031)  0.613 (0.036)  0.609 (0.030) 
Genotyped young 0.614 (0.035)  0.587 (0.024)  0.614 (0.036)  0.597 (0.025) 

Threshold All 0.641 (0.039)  0.671 (0.036)  0.681 (0.026)  0.696 (0.023) 
Young 0.780 (0.022)  0.792 (0.024)  0.764 (0.020)  0.756 (0.024) 
Genotyped 0.719 (0.042)  0.721 (0.040)  0.752 (0.031)  0.737 (0.025) 
Genotyped young 0.746 (0.025)  0.737 (0.027)  0.728 (0.021)  0.720 (0.024) 

aCorrelations are the average from 10 replicates. 
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Table 6.2.2. Correlationa (and standard errors in parentheses) for a split datasets for breeding value 

solutions of body weight using univariate linear, univariate threshold bivariate linear, and bivariate 

threshold-linear animal models. 

Model Animal group 
Univariate 

 
Bivariate 

BLUP  ssGBLUP BLUP  ssGBLUP 
Linear All 0.800 (0.0076)  0.799 (0.008)  0.792 (0.006)  0.793 (0.008) 

Young 0.771 (0.028)  0.779 (0.024)  0.759 (0.027)  0.781 (0.014) 
Genotyped 0.727 (0.017)  0.746 (0.024)  0.720 (0.015)  0.747 (0.014) 
Genotyped young 0.722 (0.041)  0.757 (0.018)  0.715 (0.040)  0.760 (0.014) 

Threshold All —  —  0.781 (0.006)  0.785 (0.007) 
Young —  —  0.737 (0.029)  0.768 (0.014) 
Genotyped —  —  0.708 (0.015)  0.740 (0.013) 
Genotyped young —  —  0.697 (0.042)  0.752 (0.013) 

aCorrelations are the average from 10 replicates. 
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CHAPTER 7 

CONCLUSIONS 

This dissertation inspected the changes in genetic architecture before and after selection on 

broiler chickens. In the study of signatures of selection (Chapter 3), the study of two breeds using the 

same selection goal and the same selection index showed quite different signatures of selection, which 

implies that the historical goal during breed development changed the genetic architecture of each breed 

such that the regions currently selected were altered. The overlap of signatures of selection and putative 

selection regions detected by GWAS via ssGBLUP indicates strong evidence for genomic selection. In the 

study of MORT (Chapter 6), the results from a threshold model indicate a low heritability of early MORT 

but a strong negative genetic correlation with maternal BW at early age. This implies that selection on 

heavier BW in hens decreases chicken MORT. Nevertheless, the low correlation between MORT and RFI 

implies that selection on the latter has no impact on MORT. 

In Chapters 4 to 6, the studies in this dissertation confirmed that ssGBLUP is an effective 

statistical method for genomic evaluation and GWAS in broiler chickens. In the WssGBLUP study 

(Chapter 4), these methods improved the accuracy of breeding value prediction after weighting compared 

with traditional BLUP, GBLUP, BayesB, and BayesC, especially for complex traits with numerous 

underlying QTLs. The Manhattan plots indicated similar patterns for WssGBLUP and Bayesian methods, 

with more SNP captured by WssGBLUP under an infinitesimal model. The ssGBLUP is applicable to 

complex models, such as a multivariate model and a model with maternal genetic and maternal permanent 

effects. Furthermore, the blending relationship (H matrix) in ssGBLUP is able to be combined with 

Bayesian inference using Gibbs sampling. In the study of threshold models (Chapter 6), the accuracy of 

breeding value prediction was better with ssGBLUP compared with that of BLUP under both linear and 
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threshold models for both continuous and binary traits. In bivariate models, ssGBLUP had an advantage 

over BLUP for BW but no advantage for MORT as a binary trait. 


