
Optimal Designs for

The Panel Mixed Logit Model

by

Wei Zhang

(Under the Direction of

Abhyuday Mandal and John Stufken)

Abstract

We discuss optimal designs for the panel mixed logit model. The panel mixed

logit model is usually used for the analysis of discrete choice experiments. The

information matrix used in design criteria does not have a closed form expression

and it is computationally difficult to evaluate the information matrix numerically.

We derive the information matrix and use the obtained form to propose three

methods to approximate the information matrix. The approximations are com-

pared to the information matrix in simulations to see whether the design criteria

based on them can yield similar orderings of designs as the criteria based on the

information matrix. We also propose three alternatives to the information matrix

based on approximate analysis methods for the generalized linear mixed models

given the panel mixed logit model is a special case of the generalized linear mixed

models. The alternatives are used in computer search to find optimal designs and

compared based on the efficiencies of the best designs and time needed to find

those designs.

Index words: Optimal designs, discrete choice models, panel mixed logit
model, locally optimal designs

Optimal Designs for

The Panel Mixed Logit Model

by

Wei Zhang

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2018

c© 2018

Wei Zhang

All Rights Reserved

Optimal Designs for

The Panel Mixed Logit Model

by

Wei Zhang

Major Professors: Abhyuday Mandal
John Stufken

Committee: Dan Hall
Gauri Datta
Jaxk Reeves
William McCormick

Electronic Version Approved:

Suzanne Barbour
Dean of the Graduate School
The University of Georgia
May 2018

Acknowledgments

In Georgia, I got a lot of help and support from fellow graduate students, faculty

and staff in the department of Statistics. Thanks to my advisors Dr. Mandal

and Dr. Stufken for their time, effort and encouragement. Thanks to my families

Shuang Zhang, Jing Wei and Chengchang Liu.

iv

Contents

Acknowledgments iv

List of Figures viii

List of Tables x

1 Introduction to Discrete Choice Experiments 1

1.1 Introduction . 1

1.2 Review of Discrete Choice Models 6

1.3 Review of Designs for Discrete Choice Models 13

1.4 Review of Generalized Linear Mixed Models 30

1.5 Summary and Discussions . 31

1.6 References . 33

2 Methods for Analysis of Generalized Linear Mixed Models 36

2.1 Introduction . 36

2.2 Different Methods for Estimation 39

2.3 Summary and Discussions . 64

2.4 References . 65

3 Information Matrix for Panel Mixed Logit Model 68

3.1 Introduction . 68

3.2 Model, Information Matrix and Design Criteria 72

v

3.3 Approximation of the Information Matrix 77

3.4 Simulation . 87

3.5 Discussion and Conclusion . 103

3.6 Appendix . 105

3.7 References . 116

4 Optimal Designs for the Panel Mixed Logit Model 120

4.1 Introduction . 120

4.2 Maximum Likelihood Method . 123

4.3 PQL and MQL Applied to Panel Mixed Logit Model 126

4.4 Method of Simulated Moments (MSM) Applied to Panel Mixed

Logit Model . 130

4.5 Searching for Optimal Designs . 133

4.6 Second Look at the Search for Optimal Designs 139

4.7 Revisiting the Example . 146

4.8 Discussion and Conclusion . 146

4.9 Appendix . 148

4.10 References . 153

5 Conclusion 156

6 Appendix: Code for Chapter 3 and 4 159

6.1 Code for Laplace Approximation 159

6.2 Code for MSM . 170

6.3 Code for PQL . 179

vi

6.4 Code for MQL . 187

vii

List of Figures

3.1 Comparisons of the three methods with A-optimality when the re-

sponse accuracy is high and the respondent heterogeneity is high. . 91

3.2 Comparisons of the three methods with D-optimality when the re-

sponse accuracy is high and the respondent heterogeneity is high. . 92

3.3 Comparisons of the three methods with A-optimality when the re-

sponse accuracy is high and the respondent heterogeneity is low. . . 93

3.4 Comparisons of the three methods with D-optimality when the re-

sponse accuracy is high and the respondent heterogeneity is low. . . 94

3.5 Comparisons of the three methods with A-optimality when the re-

sponse accuracy is low and the respondent heterogeneity is high. . . 95

3.6 Comparisons of the three methods with D-optimality when the re-

sponse accuracy is low and the respondent heterogeneity is high. . . 96

3.7 Comparisons of the three methods with A-optimality when the re-

sponse accuracy is low and the respondent heterogeneity is low. . . 97

3.8 Comparisons of the three methods with D-optimality when the re-

sponse accuracy is low and the respondent heterogeneity is low. . . 98

3.9 Relative difference (in %) between values from a sample size on the

x-axis and the values from the largest sample size for the 32/5/4

case with b = (−3, 0,−3, 0)′ and σ = (3, 3, 3, 3)′. 102

viii

4.1 The 1000 designs from the coordinate exchange algorithm using

criterion based on PQL and A-optimality for design problem with

5 attributes with 3 levels and out of which 3 attributes are random. 141

ix

List of Tables

1.1 Six Attributes to be Used in an Experiment to Compare Pizza . . . 3

1.2 One Choice Set in an Experiment to Compare Pizza 3

1.3 The possible design . 17

1.4 Optimal Designs for Multinomial Logit Model 20

1.5 Optimal Designs for Mixed Logit Model Assuming Independence . . 24

1.6 Optimal Design for Mixed Logit Model Assuming Correlation . . . 29

3.1 Correlations between the three methods 99

3.2 Time for evaluating 100 designs using the three methods 101

4.1 Results for 34/2/9 . 136

4.2 Results for 34/4/5 . 137

4.3 Reduced number of runs for 34/2/9 139

4.4 Robustness . 140

4.5 35 with 2 random attributes . 142

4.6 35 with 3 random attributes . 144

4.7 35 with 4 random attributes . 144

4.8 35 with 5 random attributes . 145

4.9 35/2/10 with 4 random attributes when b = (3, 0, 3, 0, 3, 0, 3, 0, 3, 0)′

and σ = 3 · 18. 147

x

Chapter 1

Introduction to Discrete Choice Experiments

1.1 Introduction

People make choices all the time, but how they make the choices is often not

revealed. To understand the choice behaviors is very important, for some of them

have great influence on the decisions that companies or governments make. Several

models, which are known as the discrete choice models, have been proposed to

analyze choice data. They can explain the choice behaviors by the influential

factors, like features of the products and socio-economic status of the respondents.

Discrete choice models are widely used in marketing, transportation, health care,

and many other areas.

The choice data can be either observational from sources like supermarket scan-

ners, or experimental from discrete choice experiments. The former only contain

alternatives that are currently available, for products that are currently in the

market; the latter can contain alternatives that are not available yet, for products

that may be introduced to the market. Since choice experiments can simulate

choice situations about how people make their choices, they play an important

role in the study of choice behaviors. Researchers can use different experiments

according to their research interests.

1

In a typical choice experiment, each respondent is shown one or more choice

sets. A choice set is a hypothetical choice situation that consists of several hypo-

thetical alternatives. The alternatives are described by the levels of the attributes.

The following is an example of a simple choice experiment that compares pizza.

This example is taken from Street and Burgess (2007) and is an example of a

paired comparison, in which two alternatives are compared at a time. Table 1.1

shows the attributes and their levels. Table 1.2 shows a choice set of two alterna-

tives. There can be many choice sets as in a choice experiment, one such example

is given in Table 1.2 . The researcher needs to decide which choice sets to use in

an experiment. The possible alternatives are the level combinations of the full fac-

torial design with the attributes as its factors; for this example there are 26 = 64

possible alternatives. The possible choice sets are all sets consisting of two of the

alternatives; for this example there are
(
64
2

)
= 2016 possible choice sets. In this

example, for a choice set and a respondent, the response is the pizza, A or B, which

the respondent chooses. Also, a choice set can contain more than two alternatives,

but not so many that a respondent cannot differentiate from.

Which choice sets will a respondent entering the experiment see? In the pre-

vious example, there are 2016 different choice sets; a respondent cannot possibly

finish a questionnaire consisting of all 2016 choice sets. In practice, a respondent

only sees a small subset of all possible choice sets. For different respondents, should

they see the same set of choice sets or different sets of choice sets? The design

problem is to decide which choice sets to include in the experiment and how to

assign the choice sets to the respondents.

2

Table 1.1: Six Attributes to be Used in an Experiment to Compare Pizza

Attributes Attribute levels

Pizza type
Traditional
Courmet

Type of Crust
Thick
Thin

Ingredients
All fresh
Some tinned

Size
Small only
Three sizes

Prices
$ 17
$ 13

Delivery time
30 minutes
45 minutes

Table 1.2: One Choice Set in an Experiment to Compare Pizza

Option A Option B
Pizza type Traditional Gourmet
Type of Crust Thick Thin
Ingredients All fresh Some tinned
Size Small only Small Only
Prices $ 17 $ 13
Delivery time 30 minutes 30 minutes
Suppose that you have already narrowed down your choice

of take-out pizza to the two alternatives above.
Which of these two would your choose?

Option A Option B

3

For the discrete choice models, the responses are categorical, so that linear

models are not appropriate. Instead, special nonlinear models, called discrete

choice modes, have been developed for this problem. For nonlinear models, in-

formation matrices depend on the unknown parameters. The design criteria are

usually functions of the information matrices, so the values of the parameters are

needed to get the optimal designs. Khuri et al. (2006) give a review of the designs

for the generalized linear models, and provide several methods for dealing with

the dependence problem. Their discussion includes the following methods:

1. Locally optimal design is the design that optimizes some design criterion for

given values of the parameters.

2. Bayesian optimal design is the optimal design obtained under some Bayesian

design criterion, which requires the prior distribution of the parameters. For

a review of Bayesian designs, see Chaloner and Verdinelli (1995).

3. Sequential design is obtained from a iterative process of updating values of

the parameters and adding designs, starting with an initial design.

Khuri et al. (2006) does not discuss minimax design criteria. A minimax design is

the design that optimizes the worst criterion value obtained over a range of values

for the parameters.

The above methods have been employed to find designs for discrete choice

models. Under the null hypothesis that the respondents are indifferent about

the alternatives offered, in which case the coefficients for the attributes are all

set to zeros, Street and Burgess (2007) find the locally optimal designs. When

4

information about preference of the respondents is available, Huber and Zwerina

(1996) argue that locally optimal designs constructed with appropriate nonzero

coefficients are more efficient. Using assumed values of the parameters, Sándor and

Wedel (2002), Bliemer and Rose (2010), and Liu and Arora (2011) construct locally

optimal designs for different discrete choice models that have not been previously

addressed. Sándor and Wedel (2001), Yu et al. (2009), and Vermeulen et al.

(2008) apply the Bayesian design approach to different discrete choice models, for

which the prior distribution of the parameters needs to be specified. Under the

Bayesian framework, Yu et al. (2011) propose an efficient individually adapted

sequential Bayesian (IASB) approach, which finds a sequential design specific for

each individual in the experiment.

In the literature, one set of choice sets is usually used for all the respondents.

The set is sometimes blocked into subsets, in which case a respondent only sees one

of the subsets. “Showing subjects more than one choice set is economical, and in

practice, most researchers almost always show multiple choice sets to each subject.”

(Kuhfeld (2006)). When more than one choice is observed from a respondent, these

choices may be correlated. However, in the literature, designs are often constructed

for models that assume independence for the choices in different choice sets made

by the same respondent. Bliemer and Rose (2010) construct a locally optimal

design for a model that takes into account the correlation among the responses

within subjects. One difficulty in finding such design is the complicated structure

of the information matrix. We find that the expression for the information matrix

could be simplified. We will give the simplified expression and the simulation

5

results for the optimal design using the simplified expression.

1.2 Review of Discrete Choice Models

1.2.1 Multinomial Logit Model

Discrete choice models are usually derived under an assumption of utility-maximizing

behavior by a respondent. Suppose a respondent n faces a choice set containing

J alternatives and his utilities are represented by the sum of systematic and ran-

dom component (Thurstone(1927); Manski(1977)), then his/her utility for the jth

alternative is given by

Unj = Vnj + εnj, j = 1, . . . , J,

where Vnj is the representative utility that is a function of the observed factors and

εnj is treated as a random variable that captures the influence of the unobservable

factors which cannot be included in Vnj. The observed factors may include at-

tributes of the alternatives and socio-economic characteristics of the respondents.

The respondent will choose the alternative with the greatest utility, i.e., he/she

will choose alternative j in the choice set if Unj > Uni,∀i 6= j. For a situation

when respondent n chooses one of the J alternatives in a choice set, the response

is given by Yn = (Yn1, . . . , YnJ)′, with Ynj = 1 if the respondent chooses alternative

j, and 0 otherwise. The probability that respondent n chooses alternative j is

6

P (Ynj = 1) = P (Unj > Uni,∀i 6= j)

= P (Vnj + εnj > Vni + εni,∀i 6= j) (1.1)

= P (εni < Vnj − Vni + εnj,∀i 6= j).

The multinomial logit model is obtained by assuming εnj’s to be independent

and identically distributed standard Gumbel. With this assumption, the choice

probability in (1.1) has a closed-form expression. The density function of the

standard Gumbel distribution is given by

f(ε) = e−εe−e
−ε
,

and the cumulative distribution function is given by

F (ε) = e−e
−ε
.

So the probability that respondent n chooses alternative j is

7

P (Ynj = 1) = P (εni < Vnj − Vni + εnj,∀i 6= j)

=

∫ ∞
−∞

P (εni < Vnj − Vni + εnj, ∀i 6= j|εnj)f(εnj)dεnj

=

∫ ∞
−∞

(∏
i 6=j

e−e
−(Vnj−Vni+εnj)

)
e−εnje−e

−εnj
dεnj

=

∫ ∞
−∞

(∏
i

exp(−e−(Vnj−Vni+εnj))

)
e−εnjdεnj

=

∫ ∞
−∞

exp

(
−
∑
i

e−(Vnj−Vni+εnj)

)
e−εnjdεnj

=

∫ ∞
0

exp

(
Znj

∑
i

e−(Vnj−Vni)

)
, let Znj = e−εnj

=
exp(Vnj)∑J
i=1 exp(Vni)

.

Let xnj be the coded levels of the attributes of alternative j for respondent n, the

representative utility Vnj is usually modeled using linear predictor Vnj = x′njβ,

where β be the corresponding coefficient vector. Details of coding of xnj will be

explained in Section 1.3. Then the probability of respondent n choosing alternative

j is

P (Ynj = 1|β) =
exp(x′njβ)∑J
i=1 exp(x′niβ)

.

For a situation when respondent n chooses one of the J alternatives in a choice

set, the data would look like yn = (yn1, . . . , ynJ)′, with ynj = 1 if the respondent

chooses alternative j, and 0 otherwise. Clearly,
∑J

j=1 ynj = 1 and probability of

8

observing yn is

P (Yn = yn|β) =
J∏
j=1

P (Ynj = 1|β)ynj .

Suppose there are N respondents, let Y = (Y ′1 , Y
′
2 , . . . , Y

′
N)′ be the responses from

the N respondents. Since εnj’s are i.i.d. standard Gumbel, the probability of

observing y = (y′1, y
′
2, . . . , y

′
N)′ is

P (Y = y|β) =
N∏
n=1

J∏
j=1

P (Ynj = 1|β)ynj

If a respondent is shown more than one choice set, the choices observed in

different choice sets are usually assumed to be independent.

1.2.2 Cross-sectional Mixed Logit Model

In the multinomial logit model, the same β is used for all the respondents, so β

represents the average preference of population. But the preference often varies

within the population, mixed logit model accommodates the heterogeneity in pref-

erence by assuming β to be a random effect. Let βn be the random coefficient for

respondent n, then the representative utility for respondent n is Vnj = x′njβn.

Given βn, the conditional probability of respondent n choosing alternative j is

given by

P (Ynj = 1|βn) =
exp(x′njβn)∑J
i=1 exp(x′niβn)

.

9

Let f(β|θ) be the distribution of the random coefficients, where θ is the vector of

population parameters. The unconditional choice probability is given by

P (Ynj = 1|θ) =

∫
P (Ynj = 1|βn)f(βn|θ) dβn.

For a situation when respondent n chooses one of the J alternatives in a choice

set, the data would look like yn = (yn1, . . . , ynJ)′, with ynj = 1 if the respondent

chooses alternative j, and 0 otherwise. Clearly, here
∑J

j=1 ynj = 1 and probability

of observing yn is

P (Yn = yn|θ) =
J∏
j=1

P (Ynj = ynj|θ)ynj .

Suppose there are N respondents, let Y = (Y ′1 , Y
′
2 , . . . , Y

′
N)′ be the responses

from the N respondents. Since εnj’s are i.i.d. standard Gumbel, the probability

of observing y = (y′1, y
′
2, . . . , y

′
N)′ is

P (Y = y|θ) =
N∏
n=1

J∏
j=1

P (Ynj = 1|θ)ynj .

If a respondent is shown with more than one choice set, cross-sectional mixed legit

model assumes that the choices observed in different choice sets are independent.

1.2.3 Panel Mixed Logit Model

If a respondent is shown with more than one choice sets, the choices observed in

different choice sets should be correlated. Panel mixed logit model can account

10

for this correlation by assuming that the random effect for respondent n, βn, is

constant over the choice sets. Given βn, the calculation of the choice probabil-

ity in the S choice set is the same as the calculation of the choice probability

in S choice sets for multinomial logit model with regression coefficient βn. Sup-

pose each respondent is shown with S choice sets composed by J alternatives,

let Yns = (Yns1, Yn12, . . . , YnsJ)′ be the choice made in choice set s which satisfies∑J
j=1 Ynsj = 1, and let Yn = (Y ′n1, Y

′
n2, . . . , Y

′
nS)′ be the sequence of choices in the

S choice sets from respondent n. Given βn, the choice probability of observing

yn = (yn11, yn12, . . . , ynSJ)′ is

P (Yn = yn|βn) =
S∏
s=1

J∏
j=1

P (Ynsj = 1|βn)ynsj =
S∏
s=1

J∏
j=1

(exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj ,
where xnsj is the coded levels of the attributes of alternative j in choice set s for

respondent n.

Let f(β|θ) be the distribution of the random coefficients, where θ is the vector

of population parameters. The unconditional choice probability is given by

P (Yn = yn|θ) =

∫ S∏
s=1

J∏
j=1

P (Ynsj = 1|βn)ynsjf(βn|θ) dβn.

From the above expression, we can see that the observations in different choice

sets are independent given βn, but are not independent in general.

Suppose there are N respondents, let Y = (Y ′1 , Y
′
2 , . . . , Y

′
N)′ be the responses

11

from the N respondents, the probability of observing y = (y′1, y
′
2, . . . , y

′
N)′ is

P (Y = y|θ) =
N∏
n=1

P (Yn = yn|θ).

1.2.4 Nested Logit Model

With multinomial logit model in 1.2.1, the ratio of the probabilities of choosing

any two alternatives is independent of all other alternatives in the choice set. The

ratio of probabilities of choosing alternative j and j′ is given by

P (Ynj = 1)

P (Ynj′ = 1)
=

exp(Vnj)

exp(Vnj′)
,

which does not include information about the other alternatives nor change if any

of the other alternatives are added or removed from the choice set. When an

alternative similar to j is added or removed from the choice set, the probability

of choosing j may decrease or increase more than that of j′ and the above ratio

may change. The nested logit model partitions the J alternatives in a choice set

into K subsets B1, . . . , BK with similar alternatives. The unobserved part of the

utility, εn = (εn1, . . . , εnJ)′, is assumed to have cumulative distribution function as

exp
(
−

K∑
k=1

(∑
j∈Bk

e−εnj/λk
)λk),

where each εnj, j = 1, . . . , J , follows univariate extreme value distribution, but

εnj’s within a subset Bk are correlated, and λk is the degree of independence of

12

the alternatives within subset Bk, which reduces the model to the Multinomial

Logit model if λk = 1 for all k. The probability of choosing alternative j in subset

Bk is given by

Pnj =
eVnj/λk(

∑
i∈Bk e

Vni/λk)λk−1∑K
l=1(
∑

i∈Bl e
Vni/λl)λl

.

Now for j and j′ in two subsets, the ratio of P (Ynj = 1)/P (Ynj′ = 1) also depends

on the other alternatives in these two subsets.

1.3 Review of Designs for Discrete Choice Mod-

els

Suppose there are N respondents in the choice experiment, each respondent is

presented with S choice sets of size J . For respondent n, the design matrix Xn is

given by

Xn = (xn11, xn12, . . . , xn1J︸ ︷︷ ︸
choice set 1

, xn21, xn22, . . . , xn2J︸ ︷︷ ︸
choice set 2

, . . . , xnS1, xnS2, . . . , xnSJ︸ ︷︷ ︸
choice set S

)′,

where x′nsj is coded levels of the attributes of alternative j in choice set s for

respondent n. The design matrix for choice set s is Xns = (xns1, xns2, . . . , xnsJ)′.

The choice sets presented to the respondents are not necessary the same sets for

each individual. For respondent n, the sequence of choices, Yn, is given by

Yn = (Yn11, Yn12, . . . , Yn1J︸ ︷︷ ︸
in choice set 1

, Yn21, Yn22, . . . , Yn2J︸ ︷︷ ︸
in choice set 2

, . . . , YnS1, YnS2, . . . , YnSJ︸ ︷︷ ︸
in choice set S

)′,

13

where Ynsj = 1, if respondent n chooses alternative j in choice set s; Ynsj = 0,

otherwise, and Yn satisfies that
∑J

j=1 Ynsj = 1,∀s. The response in choice set s

is Yns = (Yns1, . . . , YnsJ)′. Here, for simplicity in notation, the sizes of the choice

situations, i.e. S and J , are assumed to be the same for all the respondents,

they can be changed to accommodate more complex choice situations as needed.

For the experiment, denote the design matrix as X = (X ′1, X
′
2, . . . , X

′
N)′ and the

response as Y = (Y ′1 , Y
′
2 , . . . , Y

′
N)′.

Effects type coding is usually used for the attributes. For an attribute, with

dummy coding, the effect of the base level is set to zero, and coefficients can be

interpreted as the effects of the other levels compared to the base level; with effects

type coding, the sum of the effects of the levels is set to zero, and coefficients can

be interpreted as the effects of the levels around the grand mean. With effects

type coding, e.g., an attribute A of two levels and an attribute B of three levels

are coded as

A =

 1

−1

for level 1

for level 2
, B =


(1, 0)

(0, 1)

(−1,−1)

for level 1

for level 2

for level 3

.

From (1.1), it can be shown that the probability will not change if a constant is

added to all the utilities, so there is no intercept in the model. For an alternative

with level 2 for attribute A and level 1 for attribute B, it is coded as x = (x′A, x
′
B) =

(1, 1, 0)′.

For the discrete choice models, D-error is usually used in the literature as the

14

design criterion

D-error = det[I(θ|X)]−1/k,

where θ is the vector of parameters of length k, X is the design matrix, and I(θ|X)

is the information matrix for θ that depends on the unknown parameter θ. The

locally D-optimal design is the design which minimizes the D-error for a given

value of θ.

D-error is motivated from the confidence ellipsoid for θ

{
θ : (θ − θ̂)′I(θ̂)(θ − θ̂) ≤ constant

}
,

where θ̂ is the ML estimator of θ. The ellipsoid has a volume proportional to

[detI(θ̂)]−1/2 (Silvey (1980)).

For the discrete choice models, Bayesian D-error used in the literature is

DB-error =

∫
det[I(θ|X)]−1/kπ(θ) dθ,

where π(θ) is the prior distribution for θ. The Bayesian D-optimal design is the

design that minimizes DB-error.

It should be noted that, in the general design literature, the criteria are defined

similarly but in different forms. For example, D-optimality is defined as

D = log
(
det[I(θ|X)−1]

)
,

15

in which the logarithmic transformation makes the D-optimality less sensitive to

the extreme values of the determinant. Similarly, the Bayesian D-optimality is

defined as

DB =

∫
log(det[I(θ|X)])π(θ) dθ.

The design that maximizes DB also maximizes the expected Shannon information

(Atkinson et al. (2007)).

1.3.1 Design for Multinomial Logit Model

With multinomial logit model, if the choices made by the same respondent are

assumed to be independent, the probability of observing yns = (yns1, . . . , ynsJ)′ in

choice set s is given by,

P (Yns = yns|β) =
J∏
j=1

P (Ynsj = ynsj|β)ynsj ,

where

P (Ynsj = ynsj|β) =
exp(x′nsjβ)∑J
i=1 exp(x′nsiβ)

.

Since choices from different respondents are assumed to be independent by the

multinomial logit model, the likelihood can be written as

L(β|y) =
N∏
n=1

S∏
s=1

P (Yns = yns|β).

The information matrix of β for the multinomial logit model is

16

I(β|X) = E

(
∂ logL

∂β

∂ logL

∂β′

)
=

N∑
n=1

S∑
s=1

X ′ns(Pns − pnsp′ns)Xns,

where pns = (P (Yns1 = yns1|β), . . . , P (YnsJ = ynsJ |β))′, and Pns is a diagonal

matrix with diagonal elements pns.

The following results are obtained assuming that the same design is used for

all the respondents.

Assuming β = 0k, Street and Burgess (2007) give the theoretical results of

constructing locally D-optimal designs in a constrained design space. The details

of the results are omitted here, and we will only show how they work in a simple

example to find the locally optimal design. Suppose there are 2 alternatives with

2 binary attributes in each choice set. The levels of the binary attributes are

given by 0 and 1. A choice set is given as a pair, e.g., (00,11). The constraint is

that the pairs with v attributes different appear equally often, so the design space

is restricted to the designs in Table 1.3. The three rows in Table 1.3 give three

Table 1.3: The possible design

Pairs S
Design 1 (00,11) (01,10) 2
Design 2 (00,01) (00,10) (01,11) (10,11) 4
Design 3 (00,11) (01,10) (00,01) (00,10) (01,11) (10,11) 6

designs with 2, 4 and 6 choice sets respectively. The first design contains all pairs

with 2 attributes different, the second design contains all pairs with 1 attribute

17

different, the third design contains the first two designs equally often. Street and

Burgess (2007) prove that the D-optimal design contains fold-over pairs only, i.e.,

the pairs with all attributes different, so D-optimal design is the first design.

When β = 0k, it can be shown that the information matrix is

NJ−1{X ′X −
S∑
s=1

1

J
(X ′s1J)(1′JXs)}.

Goos et al. (2010) state that the above expression is the information matrix of

the treatment effects β for a block design with blocks of J observations except for

a multiplicative constant, so the D-optimal designs are equivalent for these two

experiments.

Huber and Zwerina (1996) discuss the locally D-optimal designs with non-zero

values for β. The locally optimal designs are more efficient if they are constructed

with values of the parameters close to the true ones. Hence, if reasonable guesses

for values of the parameter are available, it is more efficient to construct locally

D-optimal designs with these values. Reasonable guesses can be obtained from,

e.g., a pretest on a small sample.

Sándor and Wedel (2001) construct Bayesian D-optimal designs, which take

the uncertainty about the assumed values of the parameters into account. The

Bayesian D-optimal designs are thus expected to perform well over a wide range of

values of the parameters. Two kind of designs with the following specifications are

generated for comparisons: a locally D-optimal design with β = β0 and a Bayesian

D-optimal design with β ∼ N(β0, σ
2
0I), where σ2

0 represents the uncertainty about

18

the assumed mean β0. The two designs are compared over β ∼ N(β0, σ
2I), for

different values of σ. The simulation results show that the locally D-optimal design

is more efficient if σ is small, the Bayesian D-optimal design becomes more and

more efficient compared to the locally D-optimal design as σ gets larger.

SAS macro %ChoiceEff can be used to generate locally D-optimal designs, the

algorithm used is given in Zwerina et al.(1996; see updated [2005] version).

As an example, we will generate two locally D-optimal designs with β being

zero and nonzero, and a Bayesian D-optimal design for the 34/2/9 experiment.

34/2/9 means there are 4 attributes with 3 levels and 9 choice sets of size 2 in the

experiment. SAS macro %ChoiceEff is used to generate the two locally optimal

designs. We write our own program to generate the Bayesian D-optimal design.

With effects type coding, two parameters are needed for each attribute, so the

parameter vector β is of length eight. The results are given in Table 1.4, where

b0 = (1, 0, 1, 0, 1, 0, 1, 0)′. We use pairs to denote the two levels of an attribute

being compared in a choice set in the above designs. In Table 1.4, the three pairs

(1, 2), (2, 3), and (1, 3) are compared exactly three times for each attribute in the

locally D-optimal design with β = 08. (1, 1), (2, 2) or (3, 3) are not compared in

the two locally D-optimal designs, but in the Bayesian D-optimal design, (1, 1),

(2, 2), and (3, 3) are compared for several times.

1.3.2 Design for Cross-sectional Mixed Logit Model

With cross-sectional mixed logit model, the choices made by the same respondent

in the S choice sets are assumed to be independent, so the probability of observing

19

Table 1.4: Optimal Designs for Multinomial Logit Model

Locally D-optimal Locally D-optimal Bayesian D-optimal
β = 08 β = b0 β ∼ N(b0, I)

Choice set Alternative Attributes Attributes Attributes

1 2 3 4 1 2 3 4 1 2 3 4

1 I 2 3 3 2 1 3 3 1 2 2 2 1
II 1 2 2 3 2 1 2 2 1 2 2 2

2 I 3 1 1 3 2 2 2 2 1 3 1 1
II 2 2 2 2 3 1 1 3 3 1 1 2

3 I 1 1 3 1 3 3 2 2 3 1 2 3
II 2 2 1 3 2 1 3 3 3 2 1 2

4 I 1 2 1 1 3 2 1 2 2 1 1 2
II 3 3 2 3 1 3 2 1 1 2 3 1

5 I 2 1 2 1 1 2 1 3 2 1 1 2
II 1 3 1 2 3 1 2 1 3 1 1 1

6 I 3 3 2 1 2 3 3 2 1 2 1 3
II 2 1 3 3 3 2 2 3 1 1 2 1

7 I 1 1 2 2 3 2 3 1 3 2 2 3
II 3 2 3 1 2 3 2 3 3 3 2 3

8 I 3 1 1 2 1 3 1 2 1 2 2 2
II 1 3 3 3 2 2 3 1 1 1 3 2

9 I 3 2 3 2 1 1 3 2 2 2 2 2
II 2 3 1 1 2 3 1 1 1 1 1 3

yns = (yns1, . . . , ynsJ)′ in choice set s is

P (Yns = yns|θ) =
J∏
j=1

P (Ynsj = ynsj|θ)ynsj

=
J∏
j=1

(∫
P (Ynsj = ynsj|βn)f(βn|θ) dβn

)ynsj
,

where

20

P (Ynsj = ynsj|βn) =
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

.

Since choices from different respondent are assumed to be independent by the

mixed logit model, the likelihood function is

L(θ|y) =
N∏
n=1

S∏
s=1

P (Yns = yns|θ).

The distribution of βn is usually assumed to be Nk(b,Σ), where Σ = diag(σ2
1,

σ2
2, . . . , σ

2
k). βn can be written as βn = b + Unσ, where Un = diag(un) with

un ∼ Nk(0, Ik), and σ = (σ1, . . . , σk)
′, so

P (Ynsj = ynsj|θ) =

∫
P (Ynsj = ynsj|βn)f(βn|b, σ) dβn

=

∫
P (Ynsj = ynsj|un)φ(un) dun,

where P (Ynsj = ynsj|un) =
exp(x′nsj(b+Unσ))∑J
i=1 exp(x

′
ni(b+Unσ))

. Then the information matrix is

I(b, σ|X) =
N∑
n=1

S∑
s=1

 M ′
nsΠ

−1
nsMns M ′

nsΠ
−1
nsQns

Q′nsΠ
−1
nsMns Q′nsΠ

−1
nsQns

 ,
where

Mns =

∫
[Pns(un)− pns(un)pns(un)′]Xnsφ(un) dun

21

and

Qns =

∫
[Pns(un)− pns(un)pns(un)′]XnsUφ(un) dun

with pns(un) = (P (Yns1 = yns1|un), . . . , P (YnsJ = ynsJ |un))′ and Pns(un) is a diag-

onal matrix with diagonal elements pns(un), and Πns = E(Pns(un)). The informa-

tion matrix does not have a closed-form expression.

The following results are obtained assuming that the same design is used for

all the respondents.

Sándor and Wedel (2002) derive the above expression of the information ma-

trix. They compare the D-optimal design for the mixed logit model with that

for the multinomial logit model, when the true model is the mixed logit model.

From the simulation results, they conclude that the design generated with large

heterogeneity parameter σ is more robust to the mis-specification of the mean

parameters, and designs are more efficient with more alternatives in a choice set.

Yu et al. (2009) discuss the Bayesian designs for the mixed logit model. To

calculate the DB-error, the information matrix is integrated over the prior distri-

bution of the hyper-parameters (b, σ), which makes the computation more difficult.

They propose to use a small prior draw of only 20 points so that the optimal design

can still be found. In the simulation study, they compare eight designs including

a nearly orthogonal design, a locally D-optimal design for the multinomial logit

model, two Bayesian D-optimal designs for the multinomial logit model, a locally

D-optimal design for the mixed logit model, and three Semi-Bayesian D-optimal

design for the mixed logit model. A Semi-Bayesian design is generated with a

22

prior distribution for b and a prior value for σ, since generating full Bayesian

design with prior distributions for both b and σ is computationally impractical.

They conclude that the semi-Bayesian design generated with large prior value for

the heterogeneity parameter σ is more robust to the misspecification of the mean

parameters, the design is not very sensitive to the misspecification of the prior

value for the heterogeneity parameter σ. The nearly orthogonal design and the

locally D-optimal design for multinomial logit model perform poorly compared to

the other designs when the true model is the mixed logit model.

As an example, we will generate a locally D-optimal design and a Bayesian

D-optimal design for the 34/2/18 case. 34/2/18 means there are 4 attributes

with 3 levels and 18 choice sets of size 2 in the experiment. We write our own

programs to generate both designs. The results are given in Table 1.5, where

b0 = (1, 0, 1, 0, 1, 0, 1, 0)′. In Table 1.5, for each attribute, the number of times

that (1, 1), (2, 2), and (3, 3) are compared is around 6, which is one third of the

number of choice sets.

1.3.3 Design for Panel Mixed Logit Model

If the respondents are presented with more than one choice set, the data has a

panel structure. The panel mixed logit model can be used to model the correlation

in panel data. The simplest specification is to assume βn be constant in different

choice sets. Given βn, the conditional probability of observing yn is

23

Table 1.5: Optimal Designs for Mixed Logit Model Assuming Independence

Locally D-optimal Bayesian D-optimal

b0, σ = 18 b ∼ N(b0, I), σ = 18

Choice set Alternative Attributes Attributes

1 2 3 4 1 2 3 4

1 I 3 1 1 1 2 1 2 3
II 2 3 3 3 2 1 1 3

2 I 2 1 2 1 1 2 2 3
II 3 2 2 2 3 3 1 1

3 I 3 1 1 1 2 2 3 2
II 1 2 2 2 1 2 2 2

4 I 2 2 2 3 3 3 3 2
II 2 3 1 1 3 3 3 3

5 I 2 3 2 2 2 3 1 3
II 1 3 1 2 1 2 1 3

6 I 2 3 2 1 1 1 2 2
II 2 3 3 2 1 2 3 3

7 I 3 3 1 1 2 3 3 1
II 1 2 1 1 3 3 3 2

8 I 1 1 2 3 2 2 1 3
II 1 3 2 3 2 1 1 1

9 I 3 1 3 2 2 3 1 1
II 1 3 1 1 2 3 3 2

10 I 2 3 2 2 2 3 1 2
II 1 2 1 3 3 2 3 2

11 I 1 1 1 3 3 1 1 1
II 3 1 1 3 2 3 2 3

12 I 1 3 2 2 1 1 3 2
II 2 3 2 3 2 2 1 3

13 I 1 1 1 3 3 2 3 1
II 3 2 2 1 1 1 3 1

14 I 1 1 3 1 1 3 3 3
II 2 2 1 2 1 1 3 3

15 I 2 2 1 1 1 3 1 2
II 2 2 3 1 3 1 2 1

16 I 2 1 3 2 2 2 2 2
II 3 3 2 3 1 3 2 1

17 I 2 2 3 1 2 1 1 3
II 1 1 2 2 2 2 2 1

18 I 1 2 2 1 3 3 2 2
II 1 2 2 3 1 2 3 1

24

P (Yn = yn|βn) =
S∏
s=1

J∏
j=1

P (Ynsj = ynsj|βn)ynsj

=
S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

.

Given βn, the choices made by respondent n in the S choice sets are indepen-

dent. But the choices in different choice sets are not independent in general. The

unconditional choice probability of observing yn is

P (Yn = yn|θ) =

∫
P (Yn = yn|βn)f(βn|θ) dβn.

Since choices from different respondent are assumed to be independent by the

mixed logit model, the likelihood function is

L =
N∏
n=1

P (Yn = yn|θ).

Bliemer and Rose (2010) discuss locally D-optimal designs for the above model.

They find that the information matrix does not have a closed-form expression,

and it is more complicated than the information matrix for the mixed logit model

assuming independence, for it also involves expectation of functions of yn, e.g.,

Eyn(P (yn|θ)). Hence Eyn(P (yn|θ)) does not have a closed-form expression. We

find the expression they use for the information matrix can be simplified, and the

information matrix will be given in the next section.

Yu et al. (2011) propose an individually adapted sequential Bayesian (IASB)

25

approach for this model. Instead of the ordinary Fisher information matrix, they

use the generalized Fisher information matrix for the multinomial logit model. Yu

et al. (2008) show that the generalized Fisher information gives a more reliable ap-

proximation of the posterior covariance matrix in small data sets. The generalized

Fisher information is defined as

IGFIM(βn|X) = −E
[
∂2 log q(βn|Y,X)

∂βn∂β′n

]
,

where q(βn|Y,X) is the posterior distribution of βn. Suppose the prior distribution

for βn, π(βn), is a multivariate normal distribution with covariance matrix Σβn ,

then the generalized Fisher information is given by

IGFIM(βn, X) =
S∑
s=1

X ′ns(Pns − pnsp′ns)Xns + Σβn ,

where pns = (P (Yns1 = yns1|βn), . . . , P (YnsJ = ynsJ |βn))′ and Pns is a diagonal

matrix with elements pns. The Bayesian DB-error is

DB-error =

∫
det[IGFIM(βn|X)]−1/kπ(βn) dβn,

where π(βn) is the prior for βn. The design is generated in two stages, an initial

static stage and an adaptive sequential stage. In the initial static stage, S1 choice

set XS1
n are generated for respondent n. The posterior for βn, q(βn|yS1

n , X
S1
n), can

be computed after the responses yS1
n on XS1

n are observed. q(βn|yS1
n , X

S1
n) is used as

the prior in DB to find the first choice set added in the adaptive sequential stage.

26

In the adaptive sequential stage, one choice set is added at a time and the posterior

is updated after each choice made on the newly added choice set. The updated

posterior is then used as the prior in calculating DB to find a new choice set. The

adaptive sequential stage stops after a given number of choice sets are added. Yu

et al.(2011) compare four designs, an IASB design, a design for cross-sectional

mixed logit model, a design for multinomial logit model, and a nearly orthogonal

design, through simulation. The simulation results show that the IASB design can

capture the individual preference well: it provides more accurate estimation for

individual parameter βn, more accurate estimation for hyper-parameter (b, σ), and

better predictions of individual choices.

We will use simulation to find a locally D-optimal design for the 34/2/18 case.

Since the information matrix does not have a closed-form expression, samples of un

and yn are needed to approximate the expectations. Also, a searching algorithm

is needed to find the locally optimal design. Samples of un and yn are generated

with Modified Latin Hypercube Sampling method (see Hess et al.(2006)).

Coordinate-exchange algorithm (Meyer and Nachtsheim(1995)) is used to search

for the optimal design. The algorithm starts with an initial set of choice sets of the

desired size. The exchanges are carried out in the following way: for an attribute

of an alternative in a choice set, exchange the current level of the attribute with

the possible levels it can take, if the exchange results in an improvement in the

design criterion, the exchange is kept. The exchanges are done for every attribute

of every alternative in every choice set: from the first attribute of the first alter-

native in the first choice set to the last attribute of the last alternative in the last

27

choice set, and from the first attribute of the first alternative in the first choice

set again repeatedly, until no exchange can be made. This is called a run of the

algorithm. Many runs with different initial sets of choice sets are used to avoid

local optima.

We will use 100 runs for the coordinate-exchange algorithm, 200 as the sample

size for un, and 500 as the sample size for yn. Assuming b = (1, 0, 1, 0, 1, 0, 1, 0)′, σ =

18, the design obtained from the computer search is given in Table 1.6. Compare

to the designs in Table 1.5, (1, 1), (2, 2), and (3, 3) are compared less often in the

design in Table 1.6.

1.3.4 Designs for Other Models

Goos, Vermeulen and Vandebroek (2010) discuss designs for a no-choice nested

logit model, which consists of two nests: one containing all real alternatives and

the other containing the no-choice option. The row in the design matrix for the

no-choice option is set to zero, so the representative utility of the no-choice option

is also zero. Results regarding locally optimal designs under the indifference condi-

tion are given for any linear model. Locally optimal designs with and without the

indifference assumption and Bayesian optimal designs are compared. The locally

optimal design without the indifferent assumption and Bayesian optimal designs

are generated by computer search. Given the same parameter values and the same

design criterion, adding a no-choice option to every choice set of a optimal design

for the multinomial logit model result in a less efficient designsfor no-choice nested

logit models.

28

Table 1.6: Optimal Design for Mixed Logit Model Assuming Correlation

Locally D-optimal

Choice set Alternative Attributes
1 2 3 4

1 I 1 3 3 1
II 2 1 2 2

2 I 1 2 1 1
II 3 3 2 3

3 I 2 3 1 1
II 3 1 3 1

4 I 2 2 2 1
II 1 3 1 2

5 I 1 1 2 1
II 2 1 3 3

6 I 1 2 3 2
II 2 3 1 3

7 I 3 3 1 2
II 2 1 3 3

8 I 2 1 3 1
II 2 2 2 2

9 I 2 2 2 1
II 1 3 1 2

10 I 3 3 1 1
II 1 2 3 3

11 I 1 3 3 1
II 3 2 1 2

12 I 1 2 2 1
II 2 2 3 3

13 I 2 2 2 1
II 3 3 3 3

14 I 2 3 2 2
II 1 1 3 3

15 I 2 3 3 1
II 2 3 2 2

16 I 2 2 2 1
II 1 3 1 2

17 I 3 3 1 1
II 1 2 3 3

18 I 1 3 3 1
II 3 2 1 2

29

1.4 Review of Generalized Linear Mixed Models

Multinomial logit model (MNL) can be considered as a generalization of Logistics

regression for a response with more than two categories, which is a special case

of generalized linear model (GLM). Generalized linear mixed model (GLMM) is

obtained by adding random effects to GLM. Thus, mixed logit model, which is

developed by adding random effects to MNL, is a special case of GLMM. Mixed

logit model is mostly used and studied in marketing, leading to some gap between

analysis of mixed logit model and analysis of GLMM in the statistical literature.

The likelihood function of GLMM does not have a closed form expression.

In order to evaluate the likelihood function, four types of approaches are taken

to solve the problem. First, “brute force” methods approximate the likelihood

function with numerical integration, e.g., quadrature methods and importance

sampling. Second, Generalized Estimating Equations (GEE) construct estimating

equations in a way that solutions of the equations are unbiased estimates of the

model parameters under certain conditions. With GEE, only marginal distribu-

tion are specified not the full likelihood function, which greatly reduces amount

of the calculation. Third, penalized quasi-likelihood (PQL) is derived based on

a Laplace’s approximation to the likelihood function. PQL does not involve a

numerical integration, which is the part that takes the most effort in the estima-

tion process, but the estimates are not asymptotically unbiased because of the

simplifications made in its derivation. Fourth, Monte Carlo EM (MCEM) com-

bines EM algorithm with Metropolis algorithm and Monte Carlo Newton-Raphson

(MCNR) combines Newton-Raphson (NR) with Metropolis algorithm. Metropolis

30

algorithm is used to take samples from the posterior distribution of random ef-

fects given responses, which EM and NR requires in the calculation instead of the

likelihood function. Details of the first three approaches will be listed in Chapter

2, which will also be used in Chapter 4 for the design of panel mixed logit model.

The Metropolis algorithm in the fourth approach will be given in Chapter 3, but

MCEM and MCNR will not be covered at full details since our goal is to find

techniques applicable to designs.

1.5 Summary and Discussions

In choice experiments, respondents state about what they prefer when are pre-

sented with several alternatives, which contain valuable information about how

respondents make their trade offs among the alternatives. Thus, designs that out-

line the questions to ask is very important. The amount of information can be

obtained is determined by the design. Also, such experiments are under constraints

of people’s cognitive abilities. i.e., a person cannot compare too many alternative

in one question and finish too many questions. Optimal designs for choice ex-

periments have been studied by researchers from marketing, transportation and

statistics. Previous work focuses on developing optimal designs for models that

assume independence between different choice sets, which ignores the correlation

in choices made by the same person.

We consider optimal designs for the panel mixed logit model, where choices

made by the same respondent are assumed to be correlated. The design criteria

31

based on the information matrix do not have a closed form expression. Bliemer and

Rose (2010) use numerical integration of the information matrix, which is generally

slow. We note that the panel mixed logit model is a special case of the generalized

linear mixed models. In the analysis of generalized linear mixed models (GLMM),

there are approximate methods for analysis that can reduce the amount of calcu-

lation from using numerical integration of the likelihood function. We will apply

these methods to approximate information matrix for the panel mixed logit model.

In Chapter 2, we give a review of approximate analysis methods for GLMM, which

leads to approximations of the information matrix for GLMM. We show one of the

approximations can give a closed form approximation to the information matrix of

the Poisson mixed effects model. In Chapter 3, we consider approximations to the

information matrix of the panel mixed logit model, including different sampling

methods to get the numerical integration and Laplace’s method. In Chapter 4,

we apply methods in Chapter 2 to the panel mixed logit model and use computer

search to get optimal designs with criteria based on the approximations for these

mothods.

32

1.6 References

Atkinson, A. C., Donev, A. N., and Tobias, R. D. (2007).Optimum experimental

designs, with SAS , New York: Oxford University Press.

Bliemer, M. C., and Rose, J. M. (2010).“Construction of experimental designs

for mixed logit models allowing for correlation across choice observations”,

Transportation Research Part B: Methodological, 44(6), 720−734.

Chaloner, K., and Verdinelli, I. (1995). “Bayesian experimental design: A re-

view”, Statistical Science, 273−304.

Danthurebandara, V. M., Yu, J., and Vandebroek, M. (2011). “Sequential choice

designs to estimate the heterogeneity distribution of willingness-to-pay”.

Quantitative Marketing and Economics, 9(4), 429−448.

Goos, P., Vermeulen, B., and Vandebroek, M. (2010). “D-optimal conjoint choice

designs with no-choice options for a nested logit model”, Journal of Statistical

Planning and Inference, 140(4), 851−861.

Hess, S., Train, K. E., and Polak, J. W. (2006). “On the use of a Modified Latin

Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit

model for vehicle choice”, Transportation Research Part B: Methodological,

40(2), 147−163.

Huber, J., and Zwerina, K. (1996). “The importance of utility balance in efficient

choice designs”, Journal of Marketing research, 307−317.

33

Khuri, A. I., Mukherjee, B., Sinha, B. K., and Ghosh, M. (2006). “Design issues

for generalized linear models: A review”, Statistical Science, 376−399.

Kuhfeld, W. F. (2006). “Construction of Efficient Designs for Discrete Choice

Experiments”, The Handbook of Marketing Research: Uses, Misuses, and

Future Advances, 312.

Liu, Q., and Arora, N. (2011). “Efficient choice designs for a consider-then-choose

model”, Marketing Science, 30(2), 321−338.

Manski, C. (1977). “The Structure of Random Utility Models”, Theory And

Decision 8, 229−254.

Meyer, R. K., and Nachtsheim, C. J. (1995). “The coordinate-exchange algorithm

for constructing exact optimal experimental designs”, Technometrics, 37(1),

60−69.

Peter E. Rossi, Greg M. Allenby, Robert McCulloch (2006). Bayesian Statistics

and Marketing, John Wiley and Sons, Ltd.

Sándor, Z., and Wedel, M. (2001). “Designing conjoint choice experiments using

managers’ prior beliefs”, Journal of Marketing Research, 430−444.

Sándor, Z., and Wedel, M. (2002). “Profile construction in experimental choice

designs for mixed logit models”, Marketing Science, 21(4), 455−475.

Silvey, Samuel David (1980), OptimalDesign: An Introductionto the Theoryfor

ParameterEstimation, London: Chapmanand Hall.

34

Street, D. J., and Burgess, L. (2007). The construction of optimal stated choice

experiments: theory and methods , Wiley-Interscience.

Thurstone, L. L. (1929). “A Law of Comparative Judgement”, Psychological

Review 34, 273−286.

Vermeulen, B., Goos, P., and Vandebroek, M. (2008). “Models and optimal

designs for conjoint choice experiments including a no-choice option”, Inter-

national Journal of Research in Marketing, 25(2), 94−103.

Yu, J., Goos, P., and Vandebroek, M. (2009). “Efficient conjoint choice de-

signs in the presence of respondent heterogeneity”, Marketing Science, 28(1),

122−135.

Yu, J., Goos, P., and Vandebroek, M. (2011). “Individually adapted sequential

Bayesian conjoint-choice designs in the presence of consumer heterogeneity”,

International Journal of Research in Marketing, 28(4), 378−388.

Zwerina, Klaus, Joel Huber, and Warren F. Kuhfeld (1996), “A General Method

for Constructing Efficient Choice Designs”, working paper, Fuqua School

of Business, Duke University. (Updated version [2005] available at http:

//support.sas.com/techsup/tnote/tnote_stat.html.)

35

http://support.sas.com/techsup/tnote/tnote_stat.html.
http://support.sas.com/techsup/tnote/tnote_stat.html.

Chapter 2

Methods for Analysis of Generalized Lin-

ear Mixed Models

2.1 Introduction

In optimal designs, a design is often evaluated by a measure based on the infor-

mation matrix (Atkins et al.(2007)). For generalized linear mixed models, the in-

formation matrix does not have a closed-form expression. Hence, design measures

calculated from the information matrix also do not have closed-form expressions.

For these models, computer searches are often used to find designs that optimize a

given design measure. However, the complex form of the information matrix often

makes the search computationally difficult. For this reason, alternatives to the in-

formation matrix have been used in Moerbeek and Mass(2005), Niaparast(2009),

Niaparast and Schwabe(2013), Ogungbenro and Aarons(2011), Tekle et al.(2008)

and Waite et al.(2012). Except for Ogungbenro and Aarons(2011), they consider

models with known variance of the random effects. We will relax this assumption

and develop alternatives to the information matrix.

Let Y = (Y1, . . . , YN)′ be the response vector. Given the q-vector of random effects

36

u, the elements of Y are independent and the conditional distribution of Yi is given

by the exponential family,

Pβ(Yi = yi|u) = exp
[(
yiγi − b(γi))

/
a(φ) + c(yi, φ)

]
,

where a(·), b(·) and c(·) are known functions, φ is a dispersion parameter which

may or may not be known and γi is an unknown parameter. A link function

g(µi) = x′iβ+ z′iu relates the conditional mean E(yi|u) = µi to the linear predictor

of the fixed and random effects, where x′i the ith row of the model matrix X for

the fixed effects, z′i the ith row of the model matrix Z for the random effects and

β is the p-vector of parameters for the fixed effects. The conditional variance can

be written as V (yi|u) = a(φ)b′′(γi), where b′′(γi) is usually called the variance

function. The distribution of the random effects is given by u ∼ fψ(u), where

ψ is the parameter vector. The likelihood for the unknown parameter vector

θ = (β′, ψ′)′ is

L = Pθ(Y) =

∫
Pβ(Y = y|u)fψ(u) du,

where Pβ(Y = y|u) =
∏

i Pβ(Yi = yi|u). The score for the fixed effects is

37

∂ logL

∂β
=

∂
∂β

∫
P (Y = y|u)fψ(u) du

Pθ(Y = y)

=

∫
[∂
∂β
Pβ(Y = y|u)]fψ(u) du

Pθ(Y = y)

=

∫
∂ logP (Y = y|u)

∂β
fθ(u|y) du

=

∫
X ′W (y − µ)fθ(u|y) du

= X ′EU(W |y)y −X ′EU(Wµ|y), (2.1)

where ∂ logP (Y=y|u)
∂β

is the score of a generalized linear model andW = diag([a(φ)ν(µi)g
′(µi)]

−1).

The score for ψ is

∂ logL

∂ψ
=

∫
∂ log fψ(u)

∂ψ
fθ(u|y) du

= EU(
∂ log fψ(u)

∂ψ
|y). (2.2)

The information matrix is

I =

 Iββ Iβψ

Iψβ Iψψ


=

 EY (∂ logL
∂β

∂ logL
∂β′

) EY (∂ logL
∂β

∂ logL
∂ψ′

)

EY (∂ logL
∂ψ

∂ logL
∂β′

) EY (∂ logL
∂ψ

∂ logL
∂ψ′

)

 .
The terms in the information matrix do not have closed form expressions and can

38

only be evaluated numerically. For example,

Iββ = EY (
∂ logL

∂β

∂ logL

∂β′
)

= EY

([
X ′EU(W |y)y −X ′EU(Wµ|y)

][
X ′EU(W |y)y −X ′EU(Wµ|y)

]′)
.

The above expression contains expectations with respect to U and Y jointly. Since

Y is categorical, the expectation with respect to Y is the sum of the product of the

score function and its transpose over all possible value of Y . As shown in (2.1) and

(2.2), the score involves evaluating the posterior mean of a function, which usually

does not have a closed-form expression. The other terms in the information matrix

can be shown to be in similar forms.

Analysis of this model is discussed in McCulloch (1997), where the goal is to obtain

estimates of the parameters and an observed information matrix can be used given

observed values of Y . However, observed value of Y are not available before the

experiment.

2.2 Different Methods for Estimation

Since the likelihood function does not have a closed form expression, several numer-

ical optimization algorithms have been proposed to get the maximum likelihood

estimator.

39

2.2.1 Penalized Quasi-Likelihood

Schall (1991), Liu (1993), Brewlow & Clayton (1993), Lin & Breslow (1996) apply

Laplace’s method to approximate the likelihood function. For an integral of the

form
∫
e−κ(u) du, the Laplace approximation to the integral is

∫
e−κ(u) du ≈ (2π)q/2|κ′′(ũ)|−1/2e−κ(ũ),

where ũ is the mode of κ(u). Breslow and Clayton (1993) propose penalized

quasi-likelihood(PQL), where no assumption is made about Pβ(Yi = yi|u). The

conditional mean and variance is given by E(yi|u) = µi and V ar(yi|u) = a(φ)ν(µi).

Also, u is assumed to follow a multivariate normal distribution with mean 0 and

variance-covariance matrix Σ of which the unknown parameters are contained in

vector σ.

The quasi-likelihood function for unknown parameter vector θ = (β′, σ′)′ is given

by

eql(β,σ) ∝ |Σ|−1/2
∫

exp
[
− 1

2

n∑
i=1

di(yi, µi)−
1

2
u′Σ−1u

]
du,

where

di(y, µ) = −2

∫ µ

y

yi − t
a(φ)ν(t)

dt

is the deviance. If the conditional distribution of yi belongs to the exponential

family with variance function ν(·), ql(β, σ) is the same as the log-likelihood func-

tion.

40

Let κ(u) = 1
2

∑N
i=1 di(yi;µi) + 1

2
u′Σ−1u. Applying Laplace’s method to the inte-

grated quasi-likelihood, the approximation to the log quasi-likelihood is

ql(β, σ) ≈ −1

2
log |Σ| − 1

2
log |κ′′(û)| − κ(û) + c,

where c is a constant, κ′′(·) is the q × q matrix of second-order derivative of κ(·)

with respect to u, û minimizes κ(u) and therefore is the solution to

κ′(u) = Σ−1u−
N∑
i=1

yi − µi
a(φ)ν(µi)g′(µi)

zi = 0,

where κ′(·) is the first-order derivative of κ(·) with respect to u. It can be shown

that

κ′′(u) = Σ−1 +
N∑
i=1

ziz
′
i

a(φ)ν(µi)(g′(µi))2
+R ≈ Σ−1 + Z ′WZ,

where W ∗ is the N × N matrix with diagonal terms wi = {a(φ)ν(µi)[g
′(µi)]

2}−1.

With canonical link function, the remainder term R is 0. The approximation can

be written as

ql(β, σ) ≈ −1

2
log |I + Z ′WZΣ| − 1

2

N∑
i=1

di(yi, µ̂)− 1

2
û′Σ−1û.

Assuming that the ωi’s vary slowly(or not at all) as a function of the mean, ql(β, σ)

can be further simplified to

− 1

2

N∑
i=1

di(yi, µ̃)− 1

2
û′Σ−1û. (2.3)

41

The estimate of β can then be obtained by maximizing κ(û). Thus, (β̂′, û′)′ can

be obtained by jointly maximizing the Penalized Quasi-likelihood(PQL)

−1

2

N∑
i=1

di(yi;µi)−
1

2
u′Σ−1u,

which will be the solution to the following score equations from PQL

N∑
i=1

(yi − µi)xi
a(φ)ν(µi)g′(µi)

= 0,

N∑
i=1

(yi − µi)zi
a(φ)ν(µi)g′(µi)

= Σ−1u.

Fisher scoring algorithm can be used to get the solution of the above equations.

Let y∗i = ηi + (yi − µi)g′(µi) be the ith element of the working vector y∗ at the

current estimate of (β′, u′)′. The new estimate of (β′, u′)′ is the solution to the

following equations

 X ′WX X ′WZ

Z ′WX Σ−1 + Z ′WZ


 β

u

 =

 X ′Wy∗

Z ′Wy∗

 ,

where W is evaluated at the current estimate of (β′, u′)′. The variance-covariance

matrix for the final estimate β̂ is given by (X ′V −1X)−1, where V = W−1 +ZΣZ ′.

The update formula for σ given (β̂(σ)′, û(σ)′)′ is derived from REML version of

the approximate likelihood function. The (j, k)th element of information matrix

42

J for σ is given by

Jjk = −1

2
tr(P

∂V

∂σj
P
∂V

∂σk
),

where P = V −1 − V −1X(X ′V −1X)−1X ′V −1.

Assuming β̂ and σ̂ are independent, the variance-covariance matrix of (β̂′, σ̂′)′ from

PQL is  (X ′V −1X)−1 0

0 J−1

 .

Ogungbenro and Aarons (2011) applied the above expression to pharmacokinetic

experiments with repeated measurements, which are usually analyzed by a gener-

alized mixed effects model.

2.2.2 Marginal Quasi-Likelihood

To get marginal quasi-likelihood, Breslow and Clayton(1993) represent the re-

sponse yi given u in PQL as

yi = µi + εi,

where E(εi) = 0 and V ar(εi) = a(φ)ν(µi). Treating the right hand side of the

above equation as a function of u, we apply a first order taylor approximation

around 0 as

yi = h(ηi) + εi

≈ h(x′iβ) + h′(x′iβ)z′iu+ εi,

43

where h(·) = g−1(·). From the above approximation, the marginal mean of Yi is

approximated by µ0
i = h(x′iβ) and the marginal variance of Yi is approximately

V ar(Yi) ≈ V0 + ∆−10 ZΣZ ′∆−10 ,

where V0 = diag(a(φ)ν(µ0
i)) and ∆0 = diag(g′(µ0

i))

If σ is known, the estimate of β is the solution to the following estimating equations

(
∂µ0

∂β
)′V ar−1(y)(y − µ0) = 0,

where µ0 = (µ0
1, . . . , µ

0
N)′. It can be shown that the above estimating equations

are given by

X ′(W−1
0 + ZDZ ′)−1∆0(y − µ0) = 0,

where W0 is W evaluated at u = 0.

The covariance matrix of (θ̂, σ̂) has the same form as that of PQL except that u

is evaluated at 0 and β̂ and σ̂ from MQL are orthogonal while they not in PQL.

Moerbeek and Mass (2005) applied the covariance matrix to find optimal designs

for multilevel logistics models with two binary predictors.

2.2.3 Method of Simulated Moments

The method of simulated moments (MSM) are used in the econometrics literature

by McFadden (1989) and Lee (1992). Jiang (1995) propose a method based on

44

simulated moments for generalized linear mixed models, which provide computa-

tional advantage and consistent estimator. Assuming q-vector of random effects

can be partitioned as u = (u′1, u
′
2, . . . , u

′
r)
′ with uv ∼ N(0, σ2

vIqv) for 1 ≤ v ≤ r, we

write u as u = Dγ where D = diag(σ1
2Iq1 , . . . , σr

2Iqr) and γ ∼ N(0, Iq). Accord-

ingly, the columns of the design matrix for the random effects is partitioned as

Z = (Z1, . . . , Zr), where the ith row is z′i = (z1i1, . . . , z
1
iq1
, . . . , zri1, . . . , z

r
iqr). Then,

the linear predictor can be written as ηi = x′iβ + z′iDγ. Using canonical link

functions, the likelihood up to a multiplicative constant is

L ∝
∫ N∏

i=1

exp
[yiηi − b(ηi)

a(φ)
+ c(yi, φ)− γ′γ/2

]
dγ

∝
∫ N∏

i=1

exp
[yi(x′iβ + z′iDγ)− b(x′iβ + z′iDγ)

a(φ)
+ c(yi, φ)− γ′γ/2

]
dγ

=

∫
exp

[N∑
i=1

yix
′
iβ/a(φ) +

N∑
i=1

yiz
′
iDγ/a(φ)−

N∑
i=1

b(x′iβ + z′iDγ)/a(φ) +
N∑
i=1

c(yi, φ)

−γ′γ/2
]

dγ

If φ is known, a set of sufficient statistics for θ = (β′, σ′)′ is (
∑N

i=1 yix
′
i,
∑N

i=1 yiz
′
i)
′.

The method of moments estimating equations can be formulated as

N∑
i=1

xijyi =
N∑
i=1

xijE(yi), 1 ≤ j ≤ p,

qv∑
l=1

(N∑
i=1

zvilyi
)2

=

qv∑
l=1

E
(N∑
i=1

zvilyi
)2
, 1 ≤ v ≤ r.

If φ is unknown, the second set of equations need to be modified so it is free of

45

φ, since the second moments of yi may involve φ. The modified second set of

equations is

qv∑
l=1

(
N∑
i=1

zvilyi)
2 −

qv∑
l=1

N∑
i=1

(zvilyi)
2

=

qv∑
l=1

∑
s 6=t

zvslz
v
tlysyt =

qv∑
l=1

∑
s 6=t

zvslz
v
tlE(ysyt), 1 ≤ v ≤ r.

If Zv(1 ≤ v ≤ r) is a standard design matrix in the sense that Zv consists of only

0’s and 1’s and there is only one 1 in each row and at least one 1 in each column,

the following expressions for MM equations can be obtained. Any row of Zv

satisfies|zvi |2 = 1 and any two different rows of Zv satisfies (zvs)
′zvt = 0 or 1 for s 6= t.

Let Nv = {(s, t) : 1 ≤ s 6= t ≤ n, (zvs)
′zvt = 1} = {(s, t) : 1 ≤ s ≤ t ≤ n, zvs = zvt }.

Then, the right hand side of the second set of equations can be written as

qv∑
l=1

E(
∑
i

zvilyi)
2 = E

∑
i

(

qv∑
l=1

(zvil)
2)y2i +

∑
s 6=t

E(

qv∑
l=1

zvslz
v
tl)ysyt

=
∑
i

E(y2i) +
∑

(s,t)∈Nv

E(ysyt)

The first term on the right hand side depends on φ. The modified version based

only on the second term on the right hand side is

∑
(s,t)∈Nv

ysyt =
∑

(s,t)∈Nv

E(ysyt).

46

Let xj be the jth column of X and Hv = (1((s, t) ∈ Nv))1≤s,t≤N where 1(·) is

1 if the argument is true. Hv is symmetric and with 0’s on its diagonal, since

(s, t) ∈ Nv iff (t, s) ∈ Nv. The modified MM equations can be written as

∑
i

xijyi =
∑
i

xijE(yi) = (xj)′E(µ), 1 ≤ j ≤ p,∑
(s,t)∈Nv

ysyt =
∑

(s,t)∈Nv

E(ysyt) = E(µ′Hvµ), 1 ≤ v ≤ r.

The solution to the above equations can be found with Newton-Raphson algorithm.

The first derivatives are

∂

∂βk
(
∑
i

xijE(yi)) = (xj)′E(B)xk, 1 ≤ j, k ≤ p,

∂

∂σk′
(
∑
i

xijE(yi)) = (xj)′E(BZk′γk′), 1 ≤ j ≤ p, 1 ≤ k′ ≤ q,

∂

∂βk
(
∑

(s,t)∈Nv

E(ysyt)) = 2E(µ′BHvB)xk, 1 ≤ v ≤ r, 1 ≤ k ≤ p,

∂

∂σk′
(
∑

(s,t)∈Nv

E(ysyt)) = 2E(µ′BHvBZ
k′γk′), 1 ≤ v ≤ r, 1 ≤ k′ ≤ q,

where B = diag(b′′(ηi)).

The MM estimator is consistent but may not be efficient, Jiang and Zhang (2001)

give a second step estimator which is more efficient than the MM estimator. The

estimator is defined in the following framework. Let S be a N -vector of base

47

statistics (often a longer vector than the vector of parameter θ). Under the as-

sumption that the mean and variance-covariance matrix of S are known functions

of θ, the class of estimating functions are defined as H= {C(S−λ(θ))}, where C is

a (p+q)×N matrix. The first-step estimator θ̃ is the solution to C(S−λ(θ)) = 0.

A first order Taylor expansion of C(S − λ(θ̃)) around θ is

C(S − λ(θ̃)) ≈ C(S − λ(θ))− CΛ(θ̃ − θ),

where Λ = ∂λ(θ)/∂θ′. Since θ̃ is the solution to C(S − λ(θ)) = 0, then the above

expression can be rearranged to θ̃ − θ ≈ (CΛ)−1C(S − λ(θ)). Let the variance of

S be Vs, then

V ar(θ̃) ≈ (CΛ)−1(CVsC
′)
[
(CΛ)−1

]′
.

The variance of θ̃ is minimized when C = Λ′V −1s . Hence, the optimal estimating

equation is Λ′V −1(S − λ(θ)) = 0. With a first step estimator θ̃, this suggests that

a second-step estimator θ̂ can be obtained by solving

(Λ̃′Ṽs)
−1S = (Λ̃′Ṽs)

−1λ(θ).

It can be shown that under suitable conditions the second-step estimator is consis-

tent and has asymptotic covariance matrix (Λ′V −1s Λ)−1. Also, simulation results

show that the second-step estimator is more efficient than the first-step estimator.

48

For the MM estimating equations, the set of base statistics is

Sj =
∑
i

xijyi, 1 ≤ j ≤ p,

Sp+k =
∑
s 6=t

zskztkysyt 1 ≤ k ≤ q,

where zik is the (i, k) element of Z. If C = diag(Ip, 1
′
q1
, . . . , 1′qr), CS = E(CS)

are the MM equations. The corresponding U , Vs defined above can be obtained

respectively for this set of base statistics. The asymptotic covariance matrix for

the second-step estimator can be used as an alternative for the inverse of the

information matrix.

Assumption the variance of the random effects are known, Niaparast (2009), Nia-

parast and Schwabe (2013) use the above variance covariance matrix to get optimal

designs for the Poisson mixed model and Waite et al.(2012) use it to get optimal

designs for generalized linear models with random block effects.

For the poisson mxied model, the asymptotic variance-covariance matrix for the

second step estimator has a closed-form expression.

Example 2.2.1. In a poisson mixed effects model, suppose the response for an

individual i is Yi = (Yi1, . . . , Yini) and the elements of Yi gvien the q-vector of

random effects ui are independent from a poisson distribution

p(Yij = yij|ui) =
exp(−µij)µijyij

yij!
,

where µij = exp(x′ijβ + z′ijui), xij is the ith row of the model matrix Xi for fixed

49

effects, zij is the ith row of the model matrix Zi for random effects, β is the p-vector

of parameters for the fixed effects and ui ∼ Nq(0,Σ) with Σ = diag(σ2
1, . . . , σ

2
q).

Suppose there are N individuals, the model matrix for the fixed effects is X =

(X ′1, . . . , X
′
N)′ and the model matrix for the random effects is Z = (Z ′1, . . . , Z

′
N)′.

Let σ = (σ1, . . . , σq)
′, ui can be written as ui = diag(σ)γi where γi ∼ N(0, Iq).

Then, the likelihood is

L =
∏
i

∫ ∏
j

exp(−µij)µijyij
yij!

1

(2π)q/2
exp(−1

2
γ′iγi) dγi

=
∏
i

∫
exp

[
−
∑
j

exp(xijβ + z′ijdiag(σ)γi) +
∑
j

yij(x
′
ijβ + z′ijdiag(σ)γi)−

∑
j

log(yij!)
]

· 1

(2π)q/2
exp(−1

2
γ′iγi) dγi.

A set of sufficient statistics is given by
(
(
∑

j xijyij)
′, (
∑

j zijyij)
′)′, 1 ≤ i ≤ N . The

MM equations are

∑
i

∑
j

xijlyij =
∑
i

∑
j

xijlE(yij), 1 ≤ l ≤ p,∑
i

(
∑
j

zijmyij)
2 =

∑
i

E(
∑
j

zijmyij)
2, 1 ≤ m ≤ q.

Since ui ∼ N(0,Σ), exp(z′ijui) follows a log-normal distribution. It can be shown

50

that

E(yij) = E(µij) = E
[

exp(x′ijβ + z′ijui)
]

= exp(x′ijβ)E
[

exp(z′ijui)
]

= exp(x′ijβ +
1

2
z′ijΣzij),

E(y2ij) = E(µij + µ2
ij) = E(exp(x′ijβ + z′ijui) + exp(2x′ijβ + 2z′ijui))

= exp(x′ijβ +
1

2
z′ijΣzij) + exp(2x′ijβ + 2z′ijΣzij),

E(yijyij′) = E(µijµij′) = E
[

exp((xij + xij′)
′β + (zij + zij′)

′ui)
]

= exp
[
(xij + xij′)

′β +
1

2
(zij + zij′)

′Σ(zij + zij′)
]
.

So the MM equations are

∑
i

∑
j

xijlyij =
∑
i

∑
j

xijlE(µij), 1 ≤ l ≤ p,∑
i

(
∑
j

zijmyij)
2 =

∑
i

(
∑
j

z2ijmE(y2ij) +
∑
j 6=j′

zijmzij′mE(yijyij′))

=
∑
i

(
∑
j

z2ijmE(µij) + (
∑
j

zijmE(µij))
2), 1 ≤ m ≤ q.

The set of base statistics is given by

Sil =
∑
j

xijlyij, 1 ≤ i ≤ N, 1 ≤ l ≤ p,

Si(p+m) = (
∑
j

zijmyij)
2, 1 ≤ i ≤ N, 1 ≤ m ≤ q,

and S is constructed as a N × (p + q) vector by stacking Si = (Si1, . . . , Si(p+q))
′

for 1 ≤ i ≤ N . When C = 1′N ⊗ Ip+q, CS = E(CS) gives the above MM

51

equations. For the second-step estimator, since responses from different individuals

are independent, Vs is a block diagonal matrix. The second-step equations are

∑
i

(∂λi(θ)
∂θ′

)′
|θ=θ̃V

−1
i |θ=θ̃(Si − λi(θ)) = 0,

where λi(θ) = E(Si) is a p+ q vector and the diagonal elements of Vs are given by

(p + q)× (p + q) matrix Vi = V ar(Si). The asymptotic covariance matrix for the

second step estimator is

[∑
i

(∂λi(θ)
∂θ′

)′
V −1i

(∂λi(θ)
∂θ′

)]−1
,

which has a closed-form expression.

First, we derive the expression for ∂λi(θ)
∂θ′

. The expectations of the base statistics

are

λil(θ) = E(Sil) =
∑
j

xijlE(µij), 1 ≤ i ≤ N, 1 ≤ l ≤ p,

λi(p+m)(θ) = E(Si(p+m)) =
∑
j

z2ijmE(µij) +
∑
j

∑
j′

zijmzij′mE(µijµij′), 1 ≤ m ≤ q.

52

So elements of ∂λi(θ)
∂θ

are given by

∂λil(θ)

∂θk
=

∂(λil(θ))

∂βk
=
∑
j

xijlxijkE(µij), 1 ≤ l, k ≤ p,

∂λil(θ)

∂θp+k′
=

∂(λil(θ))

∂σk′
=
∑
j

xijlz
2
ijk′σk′E(µij), 1 ≤ k′ ≤ q,

∂λi(p+m)(θ)

∂θk
=

∂(λi(p+m)(θ))

βk

=
∑
j

z2ijmxijkE(µij) +
∑
j

∑
j′

zijmzij′m(xijk + xij′k)E(µijµij′), 1 ≤ k ≤ p, 1 ≤ m ≤ q,

∂λi(p+m)(θ)

∂θp+k′
=

∂(λi(p+m)(θ))

σk′

=
∑
j

z2ijmz
2
ijk′σk′E(µij) +

∑
j

∑
j′

zijmzij′m(zijk′ + zij′k′)
2σk′E(µijµij′), 1 ≤ m, k′ ≤ q.

Second, We derive E(SiS
′
i) in Vi = E(SiS

′
i) − E(Si)E(S ′i). Elements of E(SiS

′
i)

are given by

E(SiS
′
i)ll′ = E(SilSil′) = E

[
(
∑
j

xijlyij)(
∑
j

xijl′yij)
]

=
∑
j

xijlxijl′E(µij) +
∑
j

∑
j′

xijlxij′l′E(µijµij′), 1 ≤ l, l′ ≤ p,

E(SiS
′
i)l(p+m) = E(SilSi(p+m)) = E

[
(
∑
j

xijlyij)(
∑
j

zijmyij)
2
]

53

=
∑
j

xijlzijmzijmE(y3ij) +
∑
j 6=j′

(2xijlzij′mzijm + xij′lz
2
ijm)E(y2ijyij′)

+
∑

j 6=j′ 6=j′′
xijlzij′mzij′′mE(yijyij′yij′′)

=
∑
j

xijlzijmzijmE(µij + 3µ2
ij + µ3

ij) +
∑
j 6=j′

(2xijlzij′mzijm + xij′lz
2
ijm)E(µijµij′ + µ2

ijµij′)

+
∑

j 6=j′ 6=j′′
xijlzij′mzij′′mE(µijµij′µij′′)

=
∑
j

xijlzijmzijmE(µij) +
∑
j

∑
j′

(2xijlzij′mzijm + xij′lz
2
ijm)E(µijµij′)

+
∑
j

∑
j′

∑
j′′

xijlzij′mzij′′mE(µijµij′µij′′), 1 ≤ l ≤ p, 1 ≤ m ≤ q,

E(SiS
′
i)(p+m)l = (E(SiS

′
i))l(p+m), 1 ≤ l ≤ p, 1 ≤ m ≤ q,

54

E(SiS
′
i)(p+m)(p+m′)

= E(Si(p+m)Si(p+m′)) = E
[
(
∑
j

zijmyij)
2(
∑
j

zijm′yij)
2
]

=
∑
j

z2ijmz
2
ijm′E(y4ij) +

∑
j 6=j′

(2z2ijmzijm′zij′m′E(y3ijyij′) + 2zij′mzijmz
2
ijm′E(yij′y

3
ij))

+
∑
j 6=j′

(z2ijmz
2
ij′m′E(y2ijy

2
ij′) + 2zijmzij′mzijm′zij′m′E(y2ijy

2
ij′))

+
∑

j 6=j′ 6=j′′
(z2ijmzij′m′zij′′m′ + 4zijmzij′mzijm′zij′′m′ + zij′mzij′′mz

2
ijm′)E(y2ijyij′yij′′)

+
∑

j 6=j′ 6=j′′ 6=j′′′
zijmzij′mzij′′m′zij′′′m′E(yijyij′yij′′yij′′′)

=
∑
j

z2ijmz
2
ijm′E(µij + 7µ2

ij + 6µ3
ij + µ4

ij)

+
∑
j 6=j′

(2z2ijmzijm′zij′m′ + 2zij′mzijmz
2
ijm′)E(µij(1 + 3µij + µ2

ij)µij′)

+
∑
j 6=j′

(z2ijmz
2
ij′m′ + 2zijmzij′mzijm′zij′m′)E(µij(1 + µij)µij′(1 + µij′))

+
∑

j 6=j′ 6=j′′
(z2ijmzij′m′zij′′m′ + 4zijmzij′mzijm′zij′′m′ + zij′mzij′′mz

2
ijm′)E(µij(1 + µij)µij′µij′′)

55

+
∑

j 6=j′ 6=j′′ 6=j′′′
zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

=
∑
j

z2ijmz
2
ijm′E(µij + 7µ2

ij + 6µ3
ij + µ4

ij)

+
∑
j 6=j′

(2z2ijmzijm′zij′m′ + 2zij′mzijmz
2
ijm′)E(µijµij′ + 3µ2

ijµij′ + µ3
ijµij′)

+
∑
j 6=j′

(z2ijmz
2
ij′m′ + 2zijmzij′mzijm′zij′m′)E(µijµij′ + µ2

ijµij′ + µijµ
2
ij′ + µ2

ijµ
2
ij′)

+
∑

j 6=j′ 6=j′′
(z2ijmzij′m′zij′′m′ + 4zijmzij′mzijm′zij′′m′ + zij′mzij′′mz

2
ijm′)E(µijµij′µij′′ + µ2

ijµij′µij′′)

+
∑

j 6=j′ 6=j′′ 6=j′′′
zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

=
∑
j

z2ijmz
2
ijm′E(µij)

+
∑
j

∑
j′

(2z2ijmzijm′zij′m′ + 2zijmzij′mz
2
ijm′ + z2ijmz

2
ij′m′ + 2zijmzij′mzijm′zij′m′)E(µijµij′)

+
∑
j

∑
j′

∑
j′′

(z2ijmzij′m′zij′′m′ + 4zijmzij′mzijm′zij′′m′ + zij′mzij′′mz
2
ijm′)E(µijµij′µij′′)

+
∑
j

∑
j′

∑
j′′

∑
j′′′

zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′), 1 ≤ m,m′ ≤ q.

Hence, elements of Vi = E(SiS
′
i)− E(Si)E(S ′i) are given by

(Vi)ll′ = E(SilSil′)− E(Sil)E(Sil′)

=
∑
j

xijlxijl′E(µij) +
∑
j

∑
j′

xijlxij′l′E(µijµij′)− (
∑
j

xijlE(µij))(
∑
j

xijl′E(µij))

=
∑
j

xijlxijl′E(µij) +
∑
j

∑
j′

xijlxij′l′(E(µijµij′)− E(µij)E(µij′)), 1 ≤ l, l′ ≤ p,

56

where E(µijµij′)− E(µij)E(µij′) = E(µij)E(µij′)(exp(z′ijΣzij′)− 1),

(Vi)l(p+m) = E(SilSi(p+m))− E(Sil)E(Si(p+m))

=
∑
j

xijlzijmzijmE(µij) +
∑
j

∑
j′

(2xijlzij′mzijm + xij′lz
2
ijm)E(µijµij′)

+
∑
j

∑
j′

∑
j′′

xijlzij′mzij′′mE(µijµij′µij′′)

−(
∑
j

xijlE(µij))(
∑
j

z2ijmE(µij) +
∑
j

∑
j′

zijmzij′mE(µijµij′))

=
∑
j

xijlzijmzijmE(µij) + 2
∑
j

∑
j′

xijlzij′mzijmE(µijµij′)

+
∑
j

∑
j′

xij′lz
2
ijm(E(µijµij′)− E(µij)E(µij′))

+
∑
j

∑
j′

∑
j′′

xijlzij′mzij′′m(E(µijµij′µij′′)− E(µij)E(µij′µij′′)),

(Vi)(p+m)l = (Vi)l(p+m), 1 ≤ l ≤ p, 1 ≤ m ≤ q,

where

E(µijµij′µij′′)−E(µij)E(µij′µij′′) = E(µij)E(µij′µij′′)(exp(
1

2
(zij+zij′)

′Σ(zij+zij′′))−1),

57

and

(Vi)(p+m)(p+m′)

= E(Si(p+m)Si(p+m′))− E(Si(p+m))E(Si(p+m′))

=
∑
j

z2ijmz
2
ijm′E(µij)

+
∑
j

∑
j′

(2z2ijmzijm′zij′m′ + 2zijmzij′mz
2
ijm′ + z2ijmz

2
ij′m′ + 2zijmzij′mzijm′zij′m′)E(µijµij′)

+
∑
j

∑
j′

∑
j′′

(z2ijmzij′m′zij′′m′ + 4zijmzij′mzijm′zij′′m′ + zij′mzij′′mz
2
ijm′)E(µijµij′µij′′)

+
∑
j

∑
j′

∑
j′′

∑
j′′′

zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

−(
∑
j

z2ijmE(µij) +
∑
j

∑
j′

zijmzij′mE(µijµij′))(
∑
j

z2ijm′E(µij) +
∑
j

∑
j′

zijm′zij′m′E(µijµij′))

=
∑
j

z2ijmz
2
ijm′E(µij)

+
∑
j

∑
j′

(2z2ijmzijm′zij′m′ + 2zijmzij′mz
2
ijm′ + 2zijmzij′mzijm′zij′m′)E(µijµij′)

+
∑
j

∑
j′

z2ijmz
2
ij′m′(E(µijµij′)− E(µij)E(µij′))

+
∑
j

∑
j′

∑
j′′

4zijmzij′mzijm′zij′′m′E(µijµij′µij′′)

+
∑
j

∑
j′

∑
j′′

(z2ijmzij′m′zij′′m′ + zij′mzij′′mz
2
ijm′)(E(µijµij′µij′′)− E(µij)E(µij′µij′′)))

+
∑
j

∑
j′

∑
j′′

∑
j′′′

zijmzij′mzij′′m′zij′′′m′(E(µijµij′µij′′µij′′′)− E(µijµij′)E(µij′′µij′′′)), 1 ≤ m,m′ ≤ q,

where E(µijµij′µij′′µij′′′)−E(µijµij′)E(µij′′µij′′′) = E(µijµij′)E(µij′′µij′′′)
[

exp((zij+

zij′)
′Σ(zij′′ + zij′′′))− 1

]
.

58

If modified MM equations are used, the following shows that only conditional

mean and conditional variance need to be specified, while the unmodified equations

requires conditional third and fourth moments.

∑
i

∑
j

xijlyij =
∑
i

∑
j

xijlE(yij), 1 ≤ l ≤ p,∑
i

(
∑
j 6=j′

zijmzij′myijyij′) =
∑
i

E(
∑
j 6=j′

zijmzij′myijyij′), 1 ≤ m ≤ q.

So the modified MM equations are

∑
i

∑
j

xijlyij =
∑
i

∑
j

xijlE(µij), 1 ≤ l ≤ p,∑
i

(
∑
j 6=j′

zijmzij′myijyij′) =
∑
i

∑
j 6=j′

zijmzij′mE(µijµij′), 1 ≤ m ≤ q.

The set of base statistics is given by

Sil =
∑
j

xijlyij, 1 ≤ i ≤ N, 1 ≤ l ≤ p,

Si(p+m) =
∑
j 6=j′

zijmzij′myijyij′ , 1 ≤ i ≤ N, 1 ≤ m ≤ q,

and S is constructed as a N×(p+q) vector by stacking Si = (Si1, . . . , Si(p+q))
′, 1 ≤

i ≤ N . If C = 1′N⊗Ip+q, then CS = E(CS) gives the above MM equations. For the

second-step estimator, since responses from different individuals are independent,

59

Vs is a block diagonal matrix, so the second-step equations are

∑
i

(∂λi(θ)
∂θ′

)′
|θ=θ̃V

−1
i |θ=θ̃(Si − λi(θ)) = 0,

where λi(θ) = E(Si) is a p + q vector and Vi = V ar(Si) is a (p + q) × (p + q)

matrix. The asymptotic covariance matrix for the second step estimator is

[∑
i

(∂λi(θ)
∂θ

)′
V −1i

(∂λi(θ)
∂θ

)]−1
,

which has a closed-form expression.

First, the expression for ∂λi(θ)
∂θ

is derived. The expectations of the base statistics

are

λil(θ) = E(Sil) =
∑
j

xijlE(µij), 1 ≤ i ≤ N, 1 ≤ l ≤ p,

(λi(p+m)(θ)) = E(Si(p+m)) =
∑
j 6=j′

zijmzij′mE(µijµij′), 1 ≤ i ≤ N, 1 ≤ m ≤ q.

So elements of ∂λi(θ
′)

∂θ
are given by

∂λil(θ)

∂θk
=

∂(λil(θ))

∂βk
=
∑
j

xijlxijkE(µij), 1 ≤ l, k ≤ p,

∂λil(θ)

∂θp+k′
=

∂(λil(θ))

∂σk′
=
∑
j

xijlz
2
ijk′σk′E(µij), 1 ≤ m, k′ ≤ q,

60

∂λi(p+m)(θ)

∂θk
=
∂(λi(p+m)(θ))

βk

=
∑
j 6=j′

zijmzij′m(xijk + xij′k)E(µijµij′), 1 ≤ k ≤ p, 1 ≤ m ≤ q,

∂λi(p+m)(θ)

∂θp+k′
=
∂(λi(p+m)(θ))

σk′

=
∑
j 6=j′

zijmzij′m(zijk′ + zij′k′)
2σk′E(µijµij′), 1 ≤ m, k′ ≤ q.

Second, elements of E(SiS
′
i) are given by

E(SiS
′
i)ll′ = E(SilSil′) = E((

∑
j

xijlyij)(
∑
j

xijl′yij))

=
∑
j

xijlxijl′E(µij) +
∑
j

∑
j′

xijlxij′l′E(µijµij′), 1 ≤ l, l′ ≤ p,

E(SiS
′
i)l(p+m) = E(SilSi(p+m)) = E((

∑
j

xijlyij)(
∑
j 6=j′

zijmzij′myijyij′))

= 2
∑
j 6=j′

xijlzij′mzijmE(y2ijyij′) +
∑

j 6=j′ 6=j′′
xijlzij′mzij′′mE(yijyij′yij′′)

= 2
∑
j 6=j′

xijlzij′mzijmE(µijµij′ + µ2
ijµij′) +

∑
j 6=j′ 6=j′′

xijlzij′mzij′′mE(µijµij′µij′′)

= 2
∑
j 6=j′

xijlzij′mzijmE(µijµij′) +
∑
j

∑
j′ 6=j′′

xijlzij′mzij′′mE(µijµij′µij′′)

E(SiS
′
i)(p+m)l = (E(SiS

′
i))l(p+m), 1 ≤ l ≤ p, 1 ≤ m ≤ q,

61

E(SiS
′
i)(p+m)(p+m′) =

∑
j 6=j′

∑
j′′ 6=j′′′

zijmzij′mzij′′m′zij′′′m′E(yijyij′yij′′yij′′′)

= 2
∑
j 6=j′

zijmzij′mzijm′zij′m′E(y2ijy
2
ij′) + 4

∑
j 6=j′ 6=j′′

zijmzij′mzijm′zij′′m′E(y2ijyij′yij′′)

+
∑

j 6=j′ 6=j′′ 6=j′′′
zijmzij′mzij′′m′zij′′′m′E(yijyij′yij′′yij′′′)

= 2
∑
j 6=j′

zijmzij′mzijm′zij′m′E(µij(1 + µij)µij′(1 + µij′))

+4
∑

j 6=j′ 6=j′′
zijmzij′mzijm′zij′′m′E(µij(1 + µij)µij′µij′′)

+
∑

j 6=j′ 6=j′′ 6=j′′′
zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

= 2
∑
j 6=j′

zijmzij′mzijm′zij′m′E(µijµij′ + µ2
ijµij′ + µijµ

2
ij′ + µ2

ijµ
2
ij′)

+4
∑

j 6=j′ 6=j′′
zijmzij′mzijm′zij′′m′E(µijµij′µij′′ + µ2

ijµij′µij′′)

+
∑

j 6=j′ 6=j′′ 6=j′′′
zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

= 2
∑
j 6=j′

zijmzij′mzijm′zij′m′E(µijµij′) + 4
∑

j 6=j′,j 6=j′′
zijmzij′mzijm′zij′′m′E(µijµij′µij′′)

+
∑
j 6=j′

∑
j′′ 6=j′′′

zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

1 ≤ m,m′ ≤ q.

62

Hence, elements of Vi are given by

(Vi)ll′ = E(SilSil′)− E(Sil)E(Sil′)

=
∑
j

xijlxijl′E(µij) +
∑
j

∑
j′

xijlxij′l′E(µijµij′)− (
∑
j

xijlE(µij))(
∑
j

xijl′E(µij))

=
∑
j

xijlxijl′E(µij) +
∑
j

∑
j′

xijlxij′l′(E(µijµij′)− E(µij)E(µij′)), 1 ≤ l, l′ ≤ p,

where E(µijµij′)− E(µij)E(µij′) = E(µij)E(µij′)(exp(z′ijΣzij′)− 1),

(Vi)l(p+m) = E(SilSi(p+m))− E(Sil)E(Si(p+m))

= 2
∑
j 6=j′

xijlzij′mzijmE(µijµij′) +
∑
j

∑
j′ 6=j′′

xijlzij′mzij′′mE(µijµij′µij′′)

−(
∑
j

xijlE(µij))(
∑
j 6=j′

zijmzij′mE(µijµij′))

= 2
∑
j

∑
j′

xijlzij′mzijmE(µijµij′)

+
∑
j

∑
j′ 6=j′′

xijlzij′mzij′′m(E(µijµij′µij′′)− E(µij)E(µij′µij′′)),

(Vi)(p+m)l = (Vi)l(p+m), 1 ≤ l ≤ p, 1 ≤ m ≤ q,

where

E(µijµij′µij′′)−E(µij)E(µij′µij′′) = E(µij)E(µij′µij′′)(exp(
1

2
(zij+zij′)

′Σ(zij+zij′′))−1),

63

and

(Vi)(p+m)(p+m′)

= E(Si(p+m)Si(p+m′))− E(Si(p+m))E(Si(p+m′))

= 2
∑
j 6=j′

zijmzij′mzijm′zij′m′E(µijµij′) + 4
∑

j 6=j′,j 6=j′′
zijmzij′mzijm′zij′′m′E(µijµij′µij′′)

+
∑
j 6=j′

∑
j′′ 6=j′′′

zijmzij′mzij′′m′zij′′′m′E(µijµij′µij′′µij′′′)

−(
∑
j 6=j′

zijmzij′mE(µijµij′))(
∑
j 6=j′

zijm′zij′m′E(µijµij′))

= 2
∑
j 6=j′

zijmzij′mzijm′zij′m′E(µijµij′) + 4
∑

j 6=j′,j 6=j′′
zijmzij′mzijm′zij′′m′E(µijµij′µij′′)

+
∑
j 6=j′

∑
j′′ 6=j′′′

zijmzij′mzij′′m′zij′′′m′(E(µijµij′µij′′µij′′′)− E(µijµij′)E(µij′′µij′′′))

1 ≤ m,m′ ≤ q,

where E(µijµij′µij′′µij′′′)−E(µijµij′)E(µij′′µij′′′) = E(µijµij′)E(µij′′µij′′′)(exp((zij+

zij′)
′Σ(zij′′ + zij′′′))− 1).

2.3 Summary and Discussions

In this chapter, three approximate methods, i.e., PQL, MQL and MSM, for the

analysis of the generalized linear mixed models are discussed. These methods are

used by Moerbeek and Mass (2005), Niaparast (2009), Niaparast and Schwabe

(2013), Ogungbenro and Aarons (2011), Tekle et al. (2008) and Waite et al.(2012)

to get optimal designs for generalized linear mixed models. The estimates from

PQL and MQL are biased, while the estimate from MSM is consistent. Also, the

64

efficiency of MSM estimator can be improved by using a second step estimator. In

an example, we show that the variance-covariance matrix from MSM for a poisson

mixed model has a closed-form expression. The methods surveyed in this chapter

will be used in chapter 4 for finding optimal designs for the panel mixed logit

model, which is a special case of the generalized linear mixed models.

2.4 References

Atkinson, A. C., Donev, A. N., and Tobias, R. D. (2007).Optimum experimental

designs, with SAS . New York: Oxford University Press.

Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in general-

ized linear mixed models. Journal of the American Statistical Association,

88(421), 9−25.

Jiang, J. (1998). Consistent estimators in generalized linear mixed models. Jour-

nal of the American Statistical Association, 93(442), 720−729.

Jiang, J., & Zhang, W. (2001). Robust estimation in generalised linear mixed

models. Biometrika, 88(3), 753−765.

Lin, X., & Breslow, N. E. (1996). Bias correction in generalized linear mixed

models with multiple components of dispersion. Journal of the American

Statistical Association, 91(435), 1007−1016.

Liu, Q. (1993). Laplace approximations to likelihood functions for generalized

linear mixed models.

65

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear

mixed models. Journal of the American statistical Association, 92(437),

162−170.

McFadden, D. (1989). A method of simulated moments for estimation of discrete

response models without numerical integration. Econometrica: Journal of

the Econometric Society, 995−1026.

Lee, L. F. (1992). On efficiency of methods of simulated moments and maximum

simulated likelihood estimation of discrete response models. Econometric

Theory, 8(4), 518−552.

Moerbeek, M., & Maas, C. J. (2005). Optimal experimental designs for multilevel

logistic models with two binary predictors. Communications in Statistics−Theory

and Methods, 34(5), 1151−1167.

Niaparast, M. (2009). On optimal design for a Poisson regression model with

random intercept. Statistics & Probability Letters, 79(6), 741−747.

Niaparast, M., & Schwabe, R. (2013). Optimal design for quasi-likelihood esti-

mation in Poisson regression with random coefficients. Journal of Statistical

Planning and Inference, 143(2), 296−306.

Ogungbenro, K., & Aarons, L. (2011). Population Fisher information matrix and

optimal design of discrete data responses in population pharmacodynamic

experiments. Journal of pharmacokinetics and pharmacodynamics, 38(4),

449−469.

66

Schall, R. (1991). Estimation in generalized linear models with random effects.

Biometrika, 78(4), 719−727.

Tekle, F. B., Tan, F. E., & Berger, M. P. (2008). Maximin D-optimal designs for

binary longitudinal responses. Computational Statistics & Data Analysis,

52(12), 5253−5262.

Waite, T. W., Woods, D. C., and Waterhouse, T. H. (2012). Designs for gener-

alized linear models with random block effects.

67

Chapter 3

Information Matrix for Panel Mixed Logit

Model

3.1 Introduction

In marketing, transportation and health care, researchers are interested in under-

standing how people make their choices. Such consumer behaviors can be analyzed

with discrete choice models (Train (2009), Rossi, Allenby and McCulloch (2006)

and Hensher, Rose and Greene (2005)). One of the most popular discrete choice

models is the multinomial logit model, but it has several limitations in represent-

ing the choice behaviors (McFadden (1974)). Recently, mixed logit models have

become more popular, because they can relax assumptions in the multinomial logit

model (McFadden and Train (2000), Bhat (1998), Brownstone and Train (1999),

Erdem (1996), Revelt and Train (1998) and Bhat (2000)). However, mixed logit

models belong to the class of generalized linear mixed models, for which designing

an experiment and analyzing the data are difficult, since the likelihood functions

do not have closed-form expressions (McCulloch (1997), Booth and Hobert (1999),

Breslow and Clayton (1993), Wand (2007), Moerbeek and Maas (2005) and Waite

68

and Woods (2014)).

When respondents choose from several products, discrete choice models can be

used to explore the relationship between their choices and the attributes of the

products. The multinomial logit model is popular for its simple analytical form,

but it assumes a homogenous population (Train (2009)). Mixed logit models (Mc-

Fadden and Train (2000)) can account for the heterogeneity in the population. If

respondents are asked to choose from more than one choice set, the mixed logit

model used is called a panel mixed logit model (Erdem (1996), Revelt and Train

(1998) and Bhat (2000)). In a panel mixed logit model, a respondent is assumed

to use similar rules to make a sequence of choices, so the choices from the same

respondent are correlated.

Unlike multinomial logit models, mixed logit models do not have closed-form like-

lihood functions, so designing an experiment and analyzing the data are difficult.

For the analysis, likelihood functions are simulated by Monte Carlo methods (Rev-

elt and Train (1998)). For the design, information matrices are often used to form

criteria that measure qualities of the designs (Atkinson, Donev and Tobias (2007)).

Since information matrices also do not have closed-form expressions, we need a

method to evaluate information matrices.

For mixed logit models, the expression for the information matrix, which does

not have a closed-form expression, is often derived and simplified first, followed

by an approximation method based on the simplified expression. For the cross-

sectional mixed logit model, Sándor and Wedel (2002) provide an expression for

69

the information matrix that makes the evaluation straightforward using Monte

Carlo method. Sándor and Wedel (2002) used cross-sectional mixed logit model

for panel data, where responses from the same respondent are assumed to be

independent. For the panel mixed logit model, Bliemer and Rose (2010) derive an

expression for the information matrix, which is more complex than that for the

cross-sectional mixed logit model. Their expression is also too complex to explore

the structures in the information matrix. We simplify their expression and make

use of the new expression to propose more efficient methods for approximating

the information matrix. With respect to a design criterion, the optimal designs

are the ones that optimize the criterion and search algorithms can be used to

find efficient designs. Since many information matrices are evaluated in search

algorithms, efficient methods of approximating the information matrix can reduce

the time of the search considerably.

In this Chapter, we will first derive the simplified expression for the information

matrix under a panel mixed logit model. As in Bliemer and Rose (2010), the

expression consists of two expectations, but the two expectations involved are dif-

ferent. For the two expectations in our expression, one is with respect to the

posterior distribution of the random effects given the responses, the other is with

respect to the distribution of the responses. The former is nested within the latter.

We can evaluate the expression in two ways − independently or together. If the

two expectations are approximated independently, the expectation with respect to

the responses is considered first. Then to approximate the expectation with respect

to the posterior distribution, we consider techniques from the literature of discrete

70

choice models and generalized linear mixed models: McCulloch (1997) and Rossi,

Allenby and McCulloch (2006) use a Metropolis algorithm, Booth and Hobert

(1999) use rejection sampling, McCulloch (1997) and Booth and Hobert (1999)

use importance sampling, and Tierney and Kadane (1986) and Tierney, Kass and

Kadane (1989) apply Laplace’s method to approximate the posterior mean. We

find that the Metropolis algorithm is too time consuming for approximating the

information matrix, rejection sampling is not applicable for the posterior distri-

bution considered here, and importance sampling and the Laplace approximation

are viable to use here. If we consider the two expectations together, we propose

another method which uses samples from the joint distribution of the responses

and the random effects. The three methods, importance sampling, Laplace ap-

proximation and joint sampling, are compared in a simulation study. We find that

although the Laplace approximation is not as accurate as the other two methods,

it can still be used to rank designs and is much faster than the other two meth-

ods. Since our ultimate goal is to find efficient designs and not to approximate

information matrices, the ranking of the designs is more important than the actual

information matrices. We conclude that the Laplace approximation is the most

efficient method to use in search algorithms.

The Chapter is organized as follows. In Section 3.2, we introduce the panel mixed

logit model and give the simplified expression of the information matrix. Methods

for approximating the information matrix are discussed in Section 3.3 and three

methods are proposed. In Section 3.4, we use simulations to compare the three

methods. The Chapter concludes with a discussion in Section 3.5.

71

3.2 Model, Information Matrix and Design Cri-

teria

We start by introducing the formulation of the panel mixed logit model.

3.2.1 Panel Mixed Logit Model

In a typical choice experiment, there are several questions that ask the respondents

to choose one from several alternatives presented to them. The set consisting of the

alternatives in each question is called a choice set. From the respondents’ choices in

the choice sets, we can get information about the preferences of the respondents.

The alternatives are identified by the level combinations of the attributes. For

example, suppose a beverage has price (low and high) and volume (small and

large) as attributes. One beverage with low price and small volume corresponds

to a product that is different from another product—a beverage with low price

and large volume.

Let S denote the number of choice sets presented to each respondent and J the

number of alternatives in each choice set. Let xnsj be the k-dimensional vector

containing the coded levels of the q attributes for alternative j in choice set s

for respondent n and denote by βn the corresponding k-dimensional coefficient

vector. The details of the coding are given in Section 3.4. Then, the coded design

matrix for respondent n is given by a SJ × k matrix Xn = (xn11, xn12, . . . , xnSJ)′.

The corresponding response vector is given by Yn = (Yn11, Yn12, . . . , YnSJ)′, where

72

Ynsj = 1 if respondent n chooses alternative j in choice set s and Ynsj = 0 otherwise.

In each choice set,
∑J

j=1 Ynsj = 1 where 1 ≤ s ≤ S, because the respondent chooses

only one alternative in each choice set.

We now introduce the panel mixed logit model. In choice set s, if βn is given, the

probability of respondent n choosing alternative j is

P (Ynsj = 1|βn) =
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

.

In the above formula, βn is assumed to be constant across the S (> 1) choice sets.

Given βn, the choices made by respondent n are independent and the conditional

probability of observing a sequence of choices yn is

P (Yn = yn|βn) =
S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

.

The above expression is the probability of observing yn in a multinomial logit

model where βn is a fixed parameter vector. In a mixed logit model, βn is assumed

to be a random vector, whose density function is fθ(βn) with θ being the vector of

unknown parameters. The unconditional probability of observing yn is

Pθ(Yn = yn) =

∫
P (Yn = yn|βn)fθ(βn) dβn =

∫ S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

fθ(βn) dβn.

The above expression reflects that choices by the same respondent in different

choice sets are not independent.

73

For a sample y = (y′1, y
′
2, . . . , y

′
N)′ of N respondents, the likelihood function of θ is

L(θ|Y = y) =
N∏
n=1

Pθ(Yn = yn).

3.2.2 Information Matrix

The asymptotic variance-covariance matrix of the maximum likelihood estimator

of θ is equal to the inverse of the information matrix. The information matrix can

be calculated as

I(θ|X) = EY

(
(
∂ logL(θ|Y)

∂θ
)(
∂ logL(θ|Y)

∂θ
)′
)
,

where X = (X ′1, X
′
2, . . . , X

′
N)′ is the NSJ × k coded design matrix for the N

respondents.

Usually, βn is assumed to be a random vector from a multivariate normal dis-

tribution Nk(b,Σ) with b = (b1, b2, . . . , bk)
′ and Σ = diag(σ2

1, σ
2
2, . . . , σ

2
k). The

normal random vector βn can be written as βn = b+ un where un ∼ Nk(0,Σ). Let

σ = (σ1, σ2, . . . , σk)
′, then the vector of unknown parameters is θ = (b′, σ′)′. The

information matrix for θ is

I(θ|X) =
N∑
n=1

 EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂b
)(∂ logLn

∂σ
)′
)

EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂σ
)′
)
 ,

where Ln = Pθ(Yn = yn) is the likelihood function for respondent n and is given

74

by

Pθ(Yn = yn) =

∫
Pb(Yn = yn|un)fσ(un) dun

=

∫ S∏
s=1

J∏
j=1

(
exp(x′nsj(b+ un))∑J
i=1 exp(x′nsi(b+ un))

)ynsj

(2π)−k/2|Σ|−1/2exp(−1

2
u′nΣ−1un) dun.

The score function for respondent n is

∂ logLn
∂b

=
1

Ln

∂Ln
∂b

= X ′n
(
yn − Eun(pn|yn)

)
, (3.1)

where pn = (p′n1, p
′
n2, . . . , p

′
nS)′ with pns = (pns1, pns2, . . . , pnsJ)′ and pnsj = Pb(Ynsj =

1|un) =
exp(x′nsj(b+un))∑J
i=1 exp(x

′
nsi(b+un))

; and

∂ logLn
∂σ

= −
(

1

σ1
, . . . ,

1

σk

)′
+ Eun

[(
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|yn
]
, (3.2)

where uni is the ith element of un, 1 ≤ i ≤ k. The above expressions are derived

in Appendix 3.6.1

75

Then, it can be shown that expressions in the information matrix are given by

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂b

)′
)

= X ′n

(
Eun(∆n)− Eun(pnp

′
n) + EYn

[
Eun(pn|Yn)Eun(p′n|Yn)

])
Xn,

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂σ

)′
)

= X ′n

(
Eun

[
pn

(
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)]
−EYn

[
Eun(pn|Yn)Eun

((
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)])

,

EYn

(
(
∂ logLn
∂σ

)(
∂ logLn
∂σ

)′
)

= −
(

1

σ1
, . . . ,

1

σk

)′(
1

σ1
, . . . ,

1

σk

)
+ EYn

[
Eun

((
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)
Eun

((
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)]

,

(3.3)

where ∆n = diag(∆ns) with ∆ns = diag(pns)− pnsp′ns. These expressions are also

derived in Appendix 3.6.1. They will be used to evaluate the information matrix

in order to identify optimal designs, as discussed below.

3.2.3 Design Criteria

For a univariate estimator, one with a small variance is desirable. For a multi-

variate estimator, the generalization of variance is the variance-covariance matrix.

As mentioned in Subsection 3.2.2, the asymptotic variance-covariance matrix of

the maximum likelihood estimator is equal to the inverse of the information ma-

trix. Hence, a real-valued function of the information matrix is usually used to

formulate the design criterion. D-optimality is usually used as the design criterion,

which seeks to minimize det
[
I(θ|X)

]−1/2k
(often called D-error in the context of

discrete choice experiments) over all possible choices of X, where 2k is the num-

76

ber of parameters in θ. A-optimality is another frequently used design criterion,

for which the average of the eigenvalues of I(θ|X)−1, i.e., the trace of I(θ|X)−1

divided by 2k, is minimized.

Note that I(θ|X) depends on the parameter vector θ, which is unknown prior to

the experiment. To overcome this problem, an estimated value of θ from previous

studies or an educated guess can be used. Optimal designs found by this method

are called locally optimal designs (Chernoff (1953)). Here, locally D-optimal de-

signs are the designs that minimize the D-optimality criterion for a given value

of θ. Similarly, the locally A-optimal designs are the designs that minimize the

A-optimality criterion for a given value of θ.

3.3 Approximation of the Information Matrix

The expressions of information matrices for different respondents are the same,

but different choices of Xn can be used. Hence, for the demonstration of how to

approximate the information matrix, we will use X1 (SJ × k) for respondent 1 as

an example. Correspondingly, Y1 (SJ × 1) and u1 (k × 1) are the response and

random effect for respondent 1.

The expressions in (3.3) cannot be evaluated explicitly, because they contain in-

tractable integrals. In (3.3), the terms Eu1(∆1), Eu1(p1p
′
1) andEu1

[
p1(

u211
σ3
1
, . . . ,

u21k
σ3
k

)
]

only involve expectations with respect to u1, so Monte Carlo methods can be ap-

plied directly to evaluate these terms.

77

However, the following terms involve additional expectations with respect to Y1:

EY1
[
Eu1(p1|Y1)Eu1(p′1|Y1)

]
, EY1

[
Eu1(p1|Y1)Eu1

(
(
u211
σ3
1

, . . . ,
u21k
σ3
k

)|Y1
)]
,

and EY1

[
Eu1
(
(
u211
σ3
1

, . . . ,
u21k
σ3
k

)′|Y1
)
Eu1
(
(
u211
σ3
1

, . . . ,
u21k
σ3
k

)|Y1
)]
. (3.4)

The two layers of expectations make the approximation of these terms computa-

tionally expensive. For simplicity, we denote these terms in a general form as

EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]
,

where both g(u1) and h(u1) are vectors of functions of u1. The approximation

methods that we propose for such expressions can be classified into two categories,

which are differentiated by whether samples of Y1 and samples of u1 are drawn

independently or jointly. In Subsection 3.3.1 , we will discuss different methods for

sampling independently, while Subsection 3.3.2 discusses the method for sampling

jointly.

3.3.1 Approximations Using Samples from Marginal Dis-

tributions

For methods in this section, the approximation is done in two steps.

In the first step, a sample is drawn from the marginal distribution of Y1 to approx-

imate the expectation EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]

with respect to Y1.

78

The marginal sample can be easily obtained from a joint sample, so we introduce

how to get the joint sample next. The density function for the joint distribution

of Y1 and u1 is given by fθ(y1, u1) = Pb(Y1 = y1|u1)fσ(u1). To get the ith sample

point (yi1, u
i
1) from the joint distribution, first a ui1 is drawn from fσ(u1), then a

yi1 is generated from Pb(Y1 = y1|ui1) in two steps:

1. In choice set s, given ui1 the response (Y1s1, Y1s2, . . . , Y1sJ)′ follows a multi-

nomial distribution with probabilities (pi1s1, p
i
1s2, . . . , p

i
1sJ)′, where pi1sj =

exp(x′1sj(b+u
i
1))∑J

l=1 exp(x
′
1sl(b+u

i
1))

. Given ui1, a (yi1s1, y
i
1s2, . . . , y

i
1sJ)′ is simulated for each

choice set s, 1 ≤ s ≤ S.

2. Noting that given ui1 the responses in different choice sets are independent,

the ith sample yi1 can be obtained by juxtaposing the simulated responses

for all choice sets in the previous step.

Suppose the sample size is ny, then the joint sample is (y11, u
1
1), . . . , (y

ny
1 , u

ny
1).

Finally, a sample of Y1 from the marginal distribution can be obtained by using

the y part in the joint sample (y11, u
1
1), . . . , (y

ny
1 , u

ny
1), which is y11, . . . , y

ny
1 .

Now, EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]

is approximated by

1

ny

ny∑
i=1

Eu1(g(u1)|yi1)Eu1(h(u1)
′|yi1). (3.5)

In the second step, Eu1(g(u1)|yi1), 1 ≤ i ≤ ny, is considered. Note that Eu1(g(u1)|yi1)

79

is a posterior mean and the posterior density is given by

fθ(u1|yi1) ∝ Pb(Y1 = yi1|u1)× fσ(u1)

∝
S∏
s=1

J∏
j=1

(
exp(x′1sj(b+ u1))∑J
l=1 exp(x′1sl(b+ u1))

)yi1sj

× (2π)−k/2|Σ|−1/2exp(−1

2
u′1Σ

−1u1).

From the literature, the following methods can be used to approximateEu1
(
g(u1)|yi1

)
.

1. Metropolis Algorithm: For generalized linear mixed models, McCulloch

(1997) uses a Metropolis algorithm to take samples from the posterior distri-

bution and then form Monte Carlo approximations to the desired posterior

means in the Monte Carlo EM algorithm. Rossi, Allenby and McCulloch

(2006) consider two Metropolis variants to take samples from the posterior

distribution for the multinomial logit model.

To approximate the information matrix, we need to approximate Eu1
(
g(u1)|yi1

)
where 1 ≤ i ≤ ny, so a sample of u1|yi1 is required for every i. Since samples

drawn by this method are dependent, a large sample size is usually required

for it to work. Additionally, when we search for optimal designs in Sec-

tion 3.4, we also need to approximate the information matrices of a large

number of designs. Hence, it is not feasible to use the Metropolis algorithm

in practice for our problem.

2. Rejection Sampling: For generalized linear mixed models, Booth and

Hobert (1999) use rejection sampling to take samples from the posterior

distribution in the Monte Carlo EM algorithm. The method they use is

80

carried out in two steps. In step 1, a u11 is drawn from fσ(u1) and a w is

drawn from the uniform(0,1) distribution. In step 2, if w ≤ Pb(Y1 = yi1|u11)/τ

where τ = supu1 Pb(Y1 = yi1|u1), then u11 is accepted; otherwise, start from

step 1 again. This procedure stops when a desired sample size is attained.

In step 2, Pb(Y1 = yi1|u1) is maximized as a function of u1.

Here, since yi1 is the response vector from respondent 1 and the number of

choice sets for a respondent cannot be very large, it is not always possible

to find a u1 that maximizes Pb(Y1 = yi1|u1). Hence, the previous rejection

sampling method is not applicable for the posterior distribution considered

here.

3. Importance sampling: For generalized linear mixed models, McCulloch

(1997) and Booth and Hobert (1999) also use importance sampling, with

the former using it to approximate the log-likelihood and the latter for the

posterior means in the EM algorithm. To approximate the likelihood func-

tion, McCulloch (1997) uses the density function of the random effects as the

importance density. Booth and Hobert (1999) use a multivariate t density

whose mean and variance match the mode and curvature of the posterior

distribution as the importance density.

For our problem, since the posterior mean can be written as the ratio of

two expectations, importance sampling is used to approximate both expec-

tations. Let ui11 , u
i2
1 , . . . , u

inu
1 be a set of random samples from the importance

density q(u1) that has the same support as fθ(u1|yi1). Then, Eu1(g(u1)|yi1) is

81

approximated by

Eu1(g(u1)|yi1) ≈
∑nu

j=1 g(uij1)Pb(Y1 = yi1|u
ij
1)fσ(uij1)/q(uij1)∑nu

j=1 Pb(Y1 = yi1|u
ij
1)fσ(uj1)/q(u

ij
1)

.

For our problem, we will use the density of the random effects, fσ(u1), as

the importance density.

As an alternative to (3.5), EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]

can be calcu-

lated directly as

∑
yi1∈A

Eu1(g(u1)|yi1)Eu1(h(u1)
′|yi1)Pθ(Y1 = yi1),

where A is the set that contains all possible values for Y1. In situations where

the number of possible values for Y1 is not very large, we can make use of the

above expression. We only need to find a way to approximate Pθ(Y1 = yi1).

Since we have a sample ui11 , u
i2
1 , . . . , u

inu
1 from importance density fσ(u1), we

can approximate Pθ(Y1 = yi1) as 1
nu

∑nu
j=1 Pb(Y1 = yi1|u

ij
1).

4. Laplace approximation: Let the lth element of g(u1) be gl(u1). Assuming

for now u1 is univariate and gl(u1) is a smooth and positive function of u1,

the posterior mean of gl(u1) can be written as

Eu1 [gl(u1)|yi1] =

∫
elog gl(u1)+logPb(Y1=y

i
1|u1)+log fσ(u1) du1∫

elogPb(Y1=y
i
1|u1)+log fσ(u1) du1

.

With Q(u1) = logPb(Y1 = yi1|u1) + log fσ(u1) and ql(u1) = log gl(u1) +

82

logPb(Y1 = yi1|u1) + log fσ(u1), the above expression can be written as

Eu1 [gl(u1)|yi1] =

∫
eql(u1) du1∫
eQ(u1) du1

.

Tierney and Kadane (1986) apply Laplace’s method to integrals in the nu-

merator and the denominator and obtain an approximation of the posterior

mean. Let û1 be the mode of Q(u1) and d2 = −1/Q′′(u1)|u1=û1 . Then,

Laplace’s method approximates the integral in the denominator by

∫
eQ(u1)du1 ≈

∫
exp

[
Q(û1)− (u1 − û1)2

2d2

]
du1 =

√
2π|d|eQ(û1).

Similarly, if û1l is the mode of ql(u1) and dl
2 = −1/(ql(u1))

′′|u1=û1l , then

Laplace’s method approximates integral in the numerator by
√

2π|dl| exp(ql(û1l)).

Taking the ratio of these two approximations, the Laplace approximation of

Eu1 [gl(u1)|yi1] is given by

Eu1 [gl(u1)|yi1] ≈
|dl|
|d|

exp
[
ql(û1l)−Q(û1)

]
.

If u1 is multivariate, a similar approximation can be obtained by

Eu1 [gl(u1)|yi1] ≈
(|Dl|
|D|

)1/2
exp

[
ql(û1l)−Q(û1)

]
,

where û1l and û1 maximize ql(u1) and Q(u1) respectively, Dl is the negative

of the inverse of the Hessian of ql(u1) evaluated at û1l and D is the negative

83

of the inverse of the Hessian of Q(u1) evaluated at û1.

Applying this approximation to Eu1(p1sj|yi1), where 1 ≤ s ≤ S and 1 ≤ j ≤

J , we have

Eu1(p1sj|yi1) =

∫
p1sjPb(Y1 = yi1|u1)fσ(u1)du1∫
Pb(Y1 = yi1|u1)fσ(u1)du1

≈
(|Hsj|
|H|

)1/2p1sjPb(Y1 = yi1|u1)fσ(u1)|u1=û1sj
Pb(Y1 = yi1|u1)fσ(u1)|u1=û1

, (3.6)

where û1sj maximizes log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1), û1 maximizes

logPb(Y1 = yi1|u1) + log fσ(u1),

Hsj = −
(∂

∂u1

∂

∂u′1

[
log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1)

])−1
|u1=û1sj

= −(−X ′1s∆1sX1s −X ′1∆1X1 − Σ−1)−1|u1=û1sj ,

where X1s = (x1s1, x1s2, . . . , x1sJ)′, and

H = −
(∂

∂u1

∂

∂u′1

[
logPb(Y1 = yi1|u1) + log fσ(u1)

])−1
|u1=û1

= −(−X ′1∆1X1 − Σ−1)−1|u1=û1 .

The expressions are derived in Appendix 3.6.2. The previous approximation

only applies to a positive function gl(u), but the elements of (
u211
σ3
1
, . . . ,

u21k
σ3
k

)

could be zero. Tierney et al. (1989) suggest to add a large constant c to

gl(u1), so that gl(u1) + c is a positive function. Applying this procedure to

84

E
(
(
u21j
σ3
j

)|yi1
)
, where 1 ≤ j ≤ k, we get

E
(u21j
σ3
j

|yi1
)

= E
(u21j
σ3
j

+ c|yi1
)
− c

≈
(|Hj|
|H|

)1/2 u21j+cσ3
j

σ3
j

Pb(Y1 = yi1|u1) log fσ(u1)|u1=û1j
Pb(Y1 = yi1|u1)fσ(u1)|u1=û1

− c,(3.7)

where û1j maximizes log(
u21j+cσ

3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1) and

Hj = −
(∂

∂u1

∂

∂u′1

[
log(

u21j + cσ3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1)
])−1
|u1=û1j

= −
(

2(cσ3
j − u21j)

(u21j + cσ3
j)

2
eje
′
j −X ′1∆1X1 − Σ−1

)−1
|u1=û1j .

The above expressions are also derived in Appendix 3.6.2.

The Laplace approximation for Eu1(g(u1)|yi1) should run faster than the

Monte Carlo method, since optimization usually requires less computation

than sampling. In addition, we do not have to decide the sample size of u1

as in the Monte Carlo method, which is good since we also need to decide

the sample size of Y1.

3.3.2 Approximation Using Samples from the Joint Distri-

bution

Previously, a sample from the marginal distribution of Y1 is used and we discuss

several methods to approximate posterior means with respect to u1 given the sam-

85

ple of Y1. In the second approach, a sample of size nyu from the joint distribution of

(Y1, u1) is used. The method to take samples from the joint distribution has been

described in Subsection 3.3.1. We denote the joint sample as (yi1, u
i
1), 1 ≤ i ≤ nyu.

Suppose there are M unique vectors of y1 in the joint sample, and denote these

by z11 , . . . , z
M
1 . Then, Eu1

(
g(u1)|Y1 = zm1

)
, 1 ≤ m ≤M , is approximated by

∑
{i:yi1=zm1 }

g(ui1)

#{i : yi1 = zm1 }
,

where {i : yi1 = zm1 } is a set of integers at which yi1 is equal to zm1 and #{i : yi1 = zm1 }

is the number of elements in this set. Next, EY1
[
Eu1(g(u1)|yi1)Eu1(h(u1)

′|yi1)
]

is

approximated by

M∑
j=1

∑
{i:yi1=zm1 }

g(ui1)

#{i : yi1 = zm1 }

∑
{i:yi1=zm1 }

h(ui1)
′

#{i : yi1 = zm1 }
#{i : yi1 = zm1 }

nyu
.

In Subsection 3.3.1, when we use importance sampling, the same sample size of nu

is used for every given yi1. Here, when we use the joint sampling, the sample size

of u1 for a given yi1 is determined from the joint sample. Hence, the sample size

of u1 can be adjusted as needed. Also, we only need to decide the sample size nyu

for the joint sample.

86

3.4 Simulation

In Section 3.3, we discuss three methods to approximate the information matrix:

importance sampling, Laplace approximation and joint sampling. In this section,

we will compare the three methods in simulations.

We consider a case where 2 attributes of 3 levels are of interest and a design with

9 choice sets of size 2 is used for all the respondents. The number of choice sets

and the number of alternatives in each choice set cannot be large due to cognitive

constraints. We use 32/2/9 to denote this choice design, while other choice designs

considered are 32/3/6, 32/4/5 and 32/5/4.

We use effects-type coding for the attributes (Hensher, Rose and Greene (2005)).

For example, if the coefficients of the first two levels of an attribute are given by

(β1, β2)
′, where the attribute has 3 levels, then the coefficient of the third level

is −β1 − β2. With effects-type coding, the sum of coefficients for an attribute is

zero and the coefficient of each level can be interpreted as its effect relative to the

average effect of the attribute, which is zero. Hence, two independent parameters

are needed for an attribute of three levels. Here, with effects-type coding, the three

levels of an attribute are coded as (1, 0), (0, 1) and (−1,−1). Then, the distribution

of random effects is N4(b,Σ), where b = (b1, b2, b3, b4)
′ and Σ = diag(σ2

1, σ
2
2, σ

2
3, σ

2
4).

The unknown parameter vector is θ = (b′, σ′)′, where σ = (σ1, σ2, σ3, σ4)
′. Follow-

ing Arora and Huber (2001), Toubia et al. (2004) and Yu et al. (2011), values of the

parameters are varied in terms of response accuracy and respondent heterogeneity.

We take b = (a, 0, a, 0)′, where a = .5 is used to represent low response accuracy

87

and a = 3 is used to represent high response accuracy. With this specification, it

is implied that the mean for the third level is −a for each attribute. Arora and

Huber (2001) state that it is more meaningful to select the variance relative to the

mean. As in Toubia et al. (2004), we take σ = (
√

3a,
√

3a,
√

3a,
√

3a)′ in the case

of high respondent heterogeneity and σ = (
√

0.5a,
√

0.5a,
√

0.5a,
√

0.5a)′ in the

case of low respondent heterogeneity. Thus, the 4 sets of parameter values used

in our simulations are (a) high accuracy and high heterogeneity: b = (3, 0, 3, 0)′

and σ = (3, 3, 3, 3)′, (b) high accuracy and low heterogeneity: b = (3, 0, 3, 0)′

and σ = (
√

1.5,
√

1.5,
√

1.5,
√

1.5)′, (c) low accuracy and high heterogeneity: b =

(0.5, 0, 0.5, 0)′ and σ = (
√

1.5,
√

1.5,
√

1.5,
√

1.5)′, and (d) low accuracy and low

heterogeneity: b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′.

We are only interested in finding good designs, so the (dis)similarities of the three

methods are compared on good designs. For a choice design with given values of

the parameters, we handpick 100 good designs and approximate the information

matrices for these designs using the three methods. The 100 designs are good

designs from a computer search (We use a coordinate exchange algorithm with the

Laplace approximation, A-optimality, and a sample size of ny = 10000. The setting

of the coordinate exchange algorithm is chosen based on preliminary simulation

results.).

In the simulation, we use large sample sizes for the three methods so that the

approximated values have stabilized and would have very small variation. For

importance sampling, if there are 9 choice sets of size 2, there are 29 = 512 possible

values for Y . Since 512 is not a large number in this context, instead of taking

88

a sample of Y , we use all possible values of Y with nu = 106 in the simulation.

We can also use all possible values of Y in the other cases (6 choice sets of size

3, 5 choice sets of size 4 and 4 choice sets of size 5). For joint sampling, we use

nyu = 106. For the Laplace method, we use ny = 106. Importance sampling is

considered to be the most accurate method because we use all possible values for

Y and use 106 as the sample size for u.

Importance sampling and joint sampling are Monte Carlo methods, so the sim-

ulated information matrices will converge to the information matrices if the cor-

responding sample sizes (ny and nu for importance sampling and nyu for joint

sampling) go to infinity. Since the Laplace approximation is a combination of

Monte Carlo method and Laplace’s method, the simulated information matrices

will not converge to the information matrices, but to the approximations of the

information matrices, when the sample size (ny for the Laplace method) goes to

infinity. Our eventual goal is to find optimal designs, and not the actual values of

the information matrices. Thus, we only want to see whether the three methods

can rank the designs similarly.

Figures 3.1 to 3.8 show the comparisons of the three methods for cases 32/2/9,

32/3/6, 32/4/5 and 32/5/4. The 100 designs are ordered by the values from im-

portance sampling and the x-axis gives the order of the designs. We can see that

values from importance sampling and joint sampling are very close. Although val-

ues from the Laplace approximation are different from values from the other two

methods, the patterns are similar. The three methods largely agree in ordering

those 100 good designs.

89

Another way to assess agreement between the three methods is by studying pair-

wise correlations of values for a given criterion for the 100 designs. The scatter

plot of values from any two of the methods shows that there is a linear pattern.

The closer the scatter plot resembles a straight line, the more the two methods

would agree in ordering the designs. Correlations depend on the 100 designs used

here, since it is more difficult to get high correlations when the designs are simi-

lar. Hence, the correlation cannot be used as a useful measure of how the three

methods agree. Table 3.1 shows the correlations between any two of the meth-

ods. We see that the correlations between importance sampling and joint sampling

are larger than 0.9 in all cases. When the accuracy is high and heterogeneity is

high, the correlations between the Laplace method and the other two methods are

lower, except for 32/5/4 with A-optimality. When the accuracy is high and the

heterogeneity is low, the correlations between the Laplace method and the other

two methods are lower, which are around 0.8, in 32/2/9, 32/3/6 and 32/4/5 and

all with A-optimality. For these two sets of parameter values, the correlations

between the Laplace method and the other two methods are larger in 32/5/4 than

in 32/2/9. For the other two sets of parameter values, the correlations between

the Laplace method and the other two methods are higher than 0.90. This table

is consistent with what we observe in Figures 3.1 to 3.8.

In order to use the three methods in practice, we need to find appropriate sample

sizes for the methods. For each method, relative differences are used to show how

values change with sample sizes. We will use the 32/5/4 case with b = (3, 0, 3, 0)′

and σ = (3, 3, 3, 3)′ as an example for illustration. For importance sampling,

90

0 20 40 60 80 100

2
4

2
6

2
8

3
0

3
2

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

2
4

2
6

2
8

3
0

3
2

Design
A

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

2
4

2
6

2
8

3
0

3
2

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

2
6

2
8

3
0

3
2

3
4

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.1: Comparisons of the three methods with A-optimality when the re-
sponse accuracy is high and the respondent heterogeneity is high.

91

0 20 40 60 80 100

1
5

.5
1

6
.0

1
6

.5
1

7
.0

1
7

.5
1

8
.0

1
8

.5
1

9
.0

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

1
5

.0
1

5
.5

1
6

.0
1

6
.5

1
7

.0
1

7
.5

1
8

.0
1

8
.5

Design
D

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

1
5

.0
1

5
.5

1
6

.0
1

6
.5

1
7

.0
1

7
.5

1
8

.0
1

8
.5

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

1
7

.5
1

8
.0

1
8

.5
1

9
.0

1
9

.5
2

0
.0

2
0

.5
2

1
.0

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.2: Comparisons of the three methods with D-optimality when the re-
sponse accuracy is high and the respondent heterogeneity is high.

92

0 20 40 60 80 100

6
.0

6
.5

7
.0

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

5
.0

5
.5

6
.0

Design
A

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

5
.0

5
.5

6
.0

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

6
.0

6
.5

7
.0

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.3: Comparisons of the three methods with A-optimality when the re-
sponse accuracy is high and the respondent heterogeneity is low.

93

0 20 40 60 80 100

3
.7

3
.8

3
.9

4
.0

4
.1

4
.2

4
.3

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

3
.7

3
.8

3
.9

4
.0

4
.1

4
.2

4
.3

Design
D

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

3
.8

3
.9

4
.0

4
.1

4
.2

4
.3

4
.4

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

4
.3

4
.4

4
.5

4
.6

4
.7

4
.8

4
.9

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.4: Comparisons of the three methods with D-optimality when the re-
sponse accuracy is high and the respondent heterogeneity is low.

94

0 20 40 60 80 100

2
.9

0
2

.9
5

3
.0

0
3

.0
5

3
.1

0
3

.1
5

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

2
.9

0
2

.9
5

3
.0

0
3

.0
5

3
.1

0
3

.1
5

Design
A

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

2
.9

5
3

.0
0

3
.0

5
3

.1
0

3
.1

5
3

.2
0

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

3
.4

0
3

.4
5

3
.5

0
3

.5
5

3
.6

0
3

.6
5

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.5: Comparisons of the three methods with A-optimality when the re-
sponse accuracy is low and the respondent heterogeneity is high.

95

0 20 40 60 80 100

2
.5

0
2

.5
5

2
.6

0
2

.6
5

2
.7

0

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

2
.6

5
2

.7
0

2
.7

5
2

.8
0

Design
D

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

2
.7

5
2

.8
0

2
.8

5
2

.9
0

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

3
.1

5
3

.2
0

3
.2

5
3

.3
0

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.6: Comparisons of the three methods with D-optimality when the re-
sponse accuracy is low and the respondent heterogeneity is high.

96

0 20 40 60 80 100

0
.9

4
0

.9
6

0
.9

8
1

.0
0

1
.0

2
1

.0
4

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

0
.9

8
1

.0
0

1
.0

2
1

.0
4

1
.0

6
1

.0
8

Design
A

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

1
.1

2
1

.1
4

1
.1

6
1

.1
8

1
.2

0
1

.2
2

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

1
.4

4
1

.4
6

1
.4

8
1

.5
0

1
.5

2
1

.5
4

Design

A
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.7: Comparisons of the three methods with A-optimality when the re-
sponse accuracy is low and the respondent heterogeneity is low.

97

0 20 40 60 80 100

0
.8

4
0

.8
6

0
.8

8
0

.9
0

0
.9

2

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(a) 9 choice sets of size 2

0 20 40 60 80 100

0
.8

8
0

.9
0

0
.9

2
0

.9
4

0
.9

6

Design
D

−
o

p
ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(b) 6 choice sets of size 3

0 20 40 60 80 100

1
.0

2
1

.0
4

1
.0

6
1

.0
8

1
.1

0

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(c) 5 choice sets of size 4

0 20 40 60 80 100

1
.2

4
1

.2
6

1
.2

8
1

.3
0

1
.3

2

Design

D
−

o
p

ti
m

a
lit

y

Importance sampling
Joint sampling
Laplace

(d) 4 choice sets of size 5

Figure 3.8: Comparisons of the three methods with D-optimality when the re-
sponse accuracy is low and the respondent heterogeneity is low.

98

Table 3.1: Correlations between the three methods

9 choice sets
of size 2

6 choice sets
of size 3

hh hl lh ll hh hl lh ll

A-optimality

Importance
-Joint

0.98 0.97 0.98 0.97 0.97 0.99 0.98 0.98

Importance
-Laplace

0.88 0.84 0.96 0.98 0.89 0.80 0.98 0.99

Joint
-Laplace

0.88 0.86 0.94 0.96 0.87 0.80 0.97 0.98

D-optimality

Importance
-Joint

≈ 1 ≈ 1 0.99 0.98 0.99 ≈ 1 0.99 0.99

Importance
-Laplace

0.64 0.97 0.98 0.99 0.84 0.96 0.99 ≈ 1

Joint
-Laplace

0.64 0.98 0.97 0.98 0.86 0.96 0.99 0.99

5 choice sets
of size 4

4 choice sets
of size 5

hh hl lh ll hh hl lh ll

A-optimality

Importance
-Joint

0.99 0.99 0.97 0.96 0.98 0.99 0.97 0.95

Importance
-Laplace

0.88 0.78 0.98 0.99 0.94 0.95 0.94 0.99

Joint
-Laplace

0.88 0.80 0.97 0.95 0.94 0.95 0.93 0.94

D-optimality

Importance
-Joint

≈ 1 ≈ 1 0.99 0.97 ≈ 1 ≈ 1 0.98 0.97

Importance
-Laplace

0.86 0.94 0.99 0.99 0.86 0.96 0.97 0.99

Joint
-Laplace

0.86 0.95 0.98 0.97 0.86 0.96 0.97 0.97

Note: hh represents high accuracy and high heterogeneity (b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′), hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′), lh represents low accuracy and high heterogeneity (b =
(0.5, 0, 0.5, 0)′ and σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′) and ll represents low accuracy and
low heterogeneity (b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′).

99

sample sizes considered are 5000, 10000, . . . , 40000. For joint sampling, sample

sizes considered are 50000, 100000, . . . , 400000. For the Laplace approximation,

sample sizes considered are 1000, 2000, . . . , 9000. For each method, the relative

differences between values from a small sample size and values from the largest

sample size (which were also used in the previous simulation, i.e., all possible values

of Y with nu = 106 for importance sampling, nyu = 106 for joint sampling and

ny = 106 for the Laplace method) are calculated. Figure 3.9 shows the relative

differences of values in A-optimality and D-optimality for the three methods for

100 designs. The 100 designs are the same as those used previously for the 32/5/4

case with b = (3, 0, 3, 0)′ and σ = (3, 3, 3, 3)′. We conclude that it suffices to take

nu = 20000 for importance sampling, nyu = 250000 for joint sampling and ny =

3000 for the Laplace approximation. After these sample sizes, the improvements

in the mean and variance of the relative differences become smaller as sample sizes

increase. For the other cases, similar conclusions hold. Thus, we can use nu =

20000 for importance sampling, nyu = 250000 for joint sampling and ny = 3000

for the Laplace approximation for all the cases considered.

Table 3.2 shows the running time that the three methods take to approximate

the information matrices for 100 designs with the reduced sample sizes. We can

see that the Laplace approximation is about 3 times faster than importance sam-

pling and 10 times faster than joint sampling. Note that here all possible values

of Y are used for importance sampling. When this is not possible, we need to

sample Y , making importance sampling slower, and the advantage of the Laplace

approximation in running time will be larger. Another advantage of the Laplace

100

approximation is that only the sample size of Y needs to be decided. For impor-

tance sampling with a large number of possible Y values, sample sizes of Y and u

are varied simultaneously to find the appropriate ones. For joint sampling, nyu is

often much larger than ny for the Laplace approximation, so it takes more time to

find the appropriate sample size. For a given choice experiment, we can see that

the time of joint sampling changes with the values of the parameters. The time

is shorter for the cases with high response accuracy. In these cases, the mass of

Y concentrates on a small proportion of possible values of Y . The algorithm that

counts the unique values of Y in the joint sample runs faster when the mass of Y

concentrates on a small proportion of possible values of Y than when it is more

evenly distributed over possible values of Y .

Table 3.2: Time for evaluating 100 designs using the three methods

9 choice sets
of size 2

6 choice sets
of size 3

hh hl lh ll hh hl lh ll
Importance, nu = 20000 42m 43m 42m 42m 65m 60m 64m 61m

Joint, nyu = 250000 169m 172m 298m 361m 172m 187m 417m 506m
Laplace, ny = 3000 20m 20m 21m 27m 26m 26m 27m 29m

5 choice sets
of size 4

4 choice sets
of size 5

hh hl lh ll hh hl lh ll
Importance, nu = 20000 90m 94m 83m 81m 56m 50m 58m 57m

Joint, nyu = 250000 209m 198m 499m 630m 173m 166m 405m 487m
Laplace, ny = 3000 30m 32m 30m 35m 33m 35m 30m 32m

Note: hh represents high accuracy and high heterogeneity (b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′), hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′), lh represents low accuracy and high heterogeneity (b =
(0.5, 0, 0.5, 0)′ and σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′) and ll represents low accuracy and low het-
erogeneity (b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′).

101

●

●●

●

●
●

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

−30

−20

−10

0

10

A−optimality

(a) Importance sampling

●

●

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

−10

−5

0

5

D−optimality

(b) Importance sampling

●

●

●

●

●

●

●

●

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

−30

−20

−10

0

10

A−optimality

(c) Joint sampling

●●

●

●

●
●

●

●

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

−10

−5

0

5

D−optimality

(d) Joint sampling

●

●

●

● ●

●

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

−30

−20

−10

0

10

A−optimality

(e) The Laplace method

● ●

● ●

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

−10

−5

0

5

D−optimality

(f) The Laplace method

Figure 3.9: Relative difference (in %) between values from a sample size on the
x-axis and the values from the largest sample size for the 32/5/4 case with b =
(−3, 0,−3, 0)′ and σ = (3, 3, 3, 3)′. 102

3.5 Discussion and Conclusion

For the panel mixed logit model, the information matrix has a complex form and

cannot be written in a closed-form expression. We propose three methods to ap-

proximate the information matrix: importance sampling, Laplace approximation

and joint sampling. For importance sampling, a sample of Y and a sample of u

are taken independently, so the sample sizes of the two samples can be changed

separately to adjust the precision of the approximation. When the number of pos-

sible values for Y is not large, all possible values of Y can be used, which makes

the method more efficient. For joint sampling, the sample size for the joint sam-

ple is varied to adjust the accuracy of the approximation. From the simulation

results, the running time for joint sampling is much longer than for the other two

methods. For the Laplace approximation, although it is not as accurate as the

other two methods, it ranks designs similarly and is much faster than the other

two methods. For finding optimal designs, this ordering is the most important

thing. Moreover, when search algorithms are used to find efficient designs, the

number of information matrices to be evaluated will be much greater than 100

considered in our simulation and the search algorithm can take days, so using an

efficient method to evaluate the information matrix is very important. For larger

choice designs, importance sampling and joint sampling may not be practical and

the Laplace approximation may be the only viable method to use. Another advan-

tage of the Laplace approximation is that only the sample size of Y needs to be

decided. It is easier and faster to get an appropriate sample size for the Laplace

103

approximation.

104

3.6 Appendix

3.6.1 Information Matrix for Panel Mixed Logit Model

We will show the validity of the expressions for ∂ logLn
∂b

and ∂ logLn
∂σ

in (3.1) and

(3.2). First,

∂ logLn
∂b

=
1

Pθ(Yn = yn)

∂Pθ(Yn = yn)

∂b

=
1

Pθ(Yn = yn)

∂
(∫ ∏S

s=1

∏J
j=1 p

ynsj
nsj fσ(un) dun

)
∂b

=
1

Pθ(Yn = yn)

∫
∂
(∏S

s=1

∏J
j=1 p

ynsj
nsj

)
∂b

fσ(un) dun

=
1

Pθ(Yn = yn)

∫ (S∏
s=1

J∏
j=1

p
ynsj
nsj

)
(
∑
s

∑
j

ynsj
∂pnsj
∂b

)fσ(un) dun

=
1

Pθ(Yn = yn)

∫
(
∏
s

∏
j

p
ynsj
nsj)

(∑
s

∑
j

ynsj(xnsj −
∑
i

pnsixnsi)
)
fσ(un) dun

=
1

Pθ(Yn = yn)

∫
(
∏
s

∏
j

p
ynsj
nsj)

(∑
s

∑
j

ynsjxnsj −
∑
s

∑
j

ynsj(
∑
i

pnsixnsi)
)
fσ(un) dun

=
1

Pθ(Yn = yn)

∫
(
∏
s

∏
j

p
ynsj
nsj)

(∑
s

∑
j

ynsjxnsj −
∑
s

∑
j

pnsjxnsj

)
fσ(un) dun

=
1

Pθ(Yn = yn)

∫
(
∏
s

∏
j

p
ynsj
nsj)(X ′nyn −X ′npn)fσ(un) dun

=
1

Pθ(Yn = yn)
X ′n

(
Pθ(Yn = yn)yn −

∫
(
∏
s

∏
j

p
ynsj
nsj)pnfσ(un) dun

)
= X ′n

(
yn −

1

Pθ(Yn = yn)

∫
(
∏
s

∏
j

p
ynsj
nsj)pnfσ(un) dun

)
= X ′n

(
yn − Eun(pn|yn)

)
,

105

where pn is defined in (3.1). For the second expression that is to be evaluated,

∂ logPθ(Yn = yn)

∂σ
=

1

Pθ(Yn = yn)

∂Pθ(Yn = yn)

∂σ

=
1

Pθ(Yn = yn)

∂
(∫ ∏S

s=1

∏J
j=1 p

ynsj
nsj fσ(un) dun

)
∂σ

=
1

Pθ(Yn = yn)

∫ (S∏
s=1

J∏
j=1

p
ynsj
nsj

)∂fσ(un)

σ
dun

=
1

Pθ(Yn = yn)

∫ (∏
s

∏
j

p
ynsj
nsj

)(
(2π)−k/2(−1

2
)|Σ|−3/2exp(−1

2
u′nΣ−1un)

∂|Σ|
∂σ

+(2π)−k/2|Σ|−1/2exp(−1

2
u′nΣ−1un)(−1

2
)
∂(u′nΣ−1un)

∂σ

)
dun

=
1

Pθ(Yn = yn)

∫ (∏
s

∏
j

p
ynsj
nsj

)(
− 1

2
fσ(un)

[
|Σ|−1∂|Σ|

∂σ
+
∂(u′nΣ−1un)

∂σ

])
dun

=
1

Pθ(Yn = yn)

∫ (∏
s

∏
j

p
ynsj
nsj

)(
fσ(un)

[
− (

1

σ1
, . . . ,

1

σk
)′ + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
])

dun

= −(
1

σ1
, . . . ,

1

σk
)′ + Eun

(
(
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′|yn
)
,

where uni is the ith element of un, 1 ≤ i ≤ k.

Using these partial derivatives, we can now get the expressions forEYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

,

EYn

(
(∂ logLn

∂b
)(∂ logLn

∂σ
)′
)

and EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂σ
)′
)

.

106

First, for EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

we have

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂b

)′
)

= EYn

(
X ′n
[
Yn − Eun(pn|Yn)

][
Y ′n − Eun(p′n|Yn)

]
Xn

)
= X ′nEYn

([
Yn − Eun(pn|Yn)

][
Y ′n − Eun(p′n|Yn)

])
Xn

= X ′n

(
EYn(YnY

′
n)− EYn

[
Eun(pn|Yn)Y ′n

]
− EYn

[
YnEun(p′n|Yn)

]
+EYn

[
Eun(pn|Yn)Eun(p′n|Yn)

])
Xn.

Theses expressions are now evaluated separately.

EYn(YnY
′
n) = Eun(EYn(YnY

′
n|un))

= Eun
[
EYn(



Yn1

Yn2
...

YnS


(
Y ′n1 Y ′n2 . . . Y ′nS

)
|un)

]

= Eun



EYn(Yn1Y
′
n1|un) EYn(Yn1Y

′
n2|un) . . . EYn(Yn1Y

′
nS|un)

EYn(Yn2Y
′
n1|un) EYn(Yn2Y

′
n2|un) . . . EYn(Yn2Y

′
nS|un)

.

EYn(YnSY
′
n1|un) EYn(YnSY

′
n2|un) . . . EYn(YnSY

′
nS|un)



= Eun



diag(pn1) pn1p
′
n2 . . . pn1p

′
nS

pn2p
′
n1 diag(pn2) . . . pn2p

′
nS

.

pnSp
′
n1 pnSp

′
n2 . . . diag(pnS)


,

107

where pns is defined after (3.1). Next,

EYn
[
Eun(pn|Yn)Y ′n

]
=

∑
yn

[(∫
pn

∏
s

∏
j p

ynsj
nsj

Pθ(Yn = yn)
fσ(un) dun

)
y′nPθ(Yn = yn)

]
=

∫
pn
∑
yn

[∏
s

∏
j

p
ynsj
nsj y

′
n

]
fσ(un) dun

=

∫
pnp

′
nfσ(un) dun

= Eun(pnp
′
n).

Let ∆n = diag(∆ns) with ∆ns = diag(pns)− pnsp′ns. Then

Eun(∆n) = EYn(yny
′
n)− EYn

[
Eun(pn|yn)y′n

]
.

Hence, we have

EYn

((∂logLn
∂b

)(∂logLn
∂b

)′)
= X ′n

(
Eun(∆n)− Eun(pnp

′
n) + EYn

[
Eun(pn|Yn)Eun(p′n|Yn)

])
Xn.

108

Second, EYn

((
∂ logLn
∂b

)(
∂ logLn
∂σ

)′)
can be written as

EYn

((∂ logLn
∂b

)(∂ logLn
∂σ

)′)
= EYn

(
X ′n
[
Yn − Eun(pn|Yn)

][
−
(1

σ1
, . . . ,

1

σk

)
+ Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)])

= −X ′nEYn
[
Yn − Eun(pn|Yn)

](1

σ1
, . . . ,

1

σk

)
+X ′nEYn

([
Yn − Eun(pn|Yn)

]
E
[(u2n1

σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
])

= X ′nEYn

(
YnEun

[(u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
])

−X ′nEYn
(
Eun(pn|Yn)Eun

[(u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
])

.

To evaluate the first of these, note that

EYn

(
YnEun

[(u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
])

=
∑
yn

(
yn

[∫ (u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)∏
s

∏
j p

ynsj
nsj

Pθ(Yn = yn)
fσ(un) dun

]
Pθ(Yn = yn)

)

=

∫ [∑
yn

(∏
s

∏
j

p
ynsj
nsj

)
yn

](u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
fσ(un) dun

=

∫
pn

(u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
fσ(un) dun

= Eun

[
pn

(u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)]
.

109

Hence, we have

EYn

((∂ logLn
∂b

)(∂ logLn
∂σ

)′)
= X ′n

(
Eun

[
pn

(u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)]
− EYn

[
Eun(pn|Yn)Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)])

.

Last, EYn

((
∂ logLn
∂σ

)(∂ logLn
∂σ

)′)
can be written as

EYn

((∂ logLn
∂σ

)(
∂ logLn
∂σ

)′)
= EYn

([
−
(1

σ1
, . . . ,

1

σk

)′
+ Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)]

·
[
−
(1

σ1
, . . . ,

1

σk

)
+ Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)])

=
(1

σ1
, . . . ,

1

σk

)′(1

σ1
, . . . ,

1

σk

)
−
(1

σ1
, . . . ,

1

σk

)′
EYn

[
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)]

− EYn
[
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)](1

σ1
, . . . ,

1

σk

)
+ EYn

[
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)]

=
(1

σ1
, . . . ,

1

σk

)′(1

σ1
, . . . ,

1

σk

)
−
(1

σ1
, . . . ,

1

σk

)′(1

σ1
, . . . ,

1

σk

)
−
(1

σ1
, . . . ,

1

σk

)′(1

σ1
, . . . ,

1

σk

)
+ EYn

[
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)]

= −
(1

σ1
, . . . ,

1

σk

)′(1

σ1
, . . . ,

1

σk

)
+ EYn

[
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)
Eun

((u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)]

.

110

Information Matrix for General Σ

For general Σ, not necessarily a diagonal matrix, a normal random vector βn can

be written as βn = b + un, where un ∼ Nk(0,Σ = ΓΓ′) with Γ a lower triangular

matrix. Let γ = vec(Γ′), the information matrix for θ = (b′, γ′)′ is

I(θ|X) =
N∑
n=1

 EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂b
)(∂ logLn

∂γ
)′
)

EYn

(
(∂ logLn

∂γ
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂γ
)(∂ logLn

∂γ
)′
)
 ,

where Ln = Pθ(Yn = yn) is the likelihood function for respondent n and is given

by

Pθ(Yn = yn)

=

∫
Pb(Yn = yn|un)fγ(un) dun

=

∫ S∏
s=1

J∏
j=1

(
exp(x′nsj(b+ un))∑J
i=1 exp(x′nsi(b+ un))

)ynsj

(2π)−k/2|Σ|−1/2exp(−1

2
u′nΣ−1un) dun.

It can be shown that ∂ logLn
∂b

has the same expression as before. For ∂ logLn
∂γ

, the

derivation is the same as for ∂ logLn
∂σ

except that we cannot simplify the following

expression further,

∂ logLn
∂γ

=
1

Pθ(Yn = yn)

∫ (S∏
s=1

J∏
j=1

p
ynsj
nsj

)(
− 1

2
fγ(un)

[
|Σ|−1∂|Σ|

∂γ
+
∂(u′nΣ−1un)

∂γ

])
dun.

111

3.6.2 Laplace Approximation

In (3.6), we have

Eu1(p1sj|yi1) =

∫
p1sjPb(Y1 = yi1|u1)fσ(u1)du1∫
Pb(Y1 = yi1|u1)fσ(u1)du1

=

∫
exp

[
log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1)

]
du1∫

exp
[

logPb(Y1 = yi1|u1) + log fσ(u1)
]
du1

≈
(|Hsj|
|H|

)1/2p1sjPb(Y1 = yi1|u1)fσ(u1)|u1=û1sj
Pb(Y1 = yi1|u1)fσ(u1)|u1=û1

,

where û1sj maximizes log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1), û1 maximizes

logPb(Y1 = yi1|u1) + log fσ(u1),

Hsj = −
(∂

∂u1

∂

∂u′1

[
log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1)

])−1
|u1=û1sj

= −
([∂
∂u1

∂

∂u′1
log p1sj +

∂

∂u1

∂

∂u′1
logPb(Y1 = yi1|u1) +

∂

∂u1

∂

∂u′1
log fσ(u1)

])−1
|u1=û1sj

= −(−X ′1s∆1sX1s −X ′1∆1X1 − Σ−1)−1|u1=û1sj ,

and

H = −
(∂

∂u1

∂

∂u′1

[
logPb(Y1 = yi1|u1) + log fσ(u1)

])−1
|u1=û1

= −
([∂
∂u1

∂

∂u′1
logPb(Y1 = yi1|u1) +

∂

∂u1

∂

∂u′1
log fσ(u1)

])−1
|u1=û1

= −(−X ′1∆1X1 − Σ−1)−1|u1=û1 .

112

The validity of these expressions follows because

∂

∂u1
(log p1sj) =

1

p1sj
(
∂p1sj
∂u1

)

=
1

p1sj

∂

∂u1
(

exp(x′1sj(b+ u1))∑J
i=1 exp(x′1si(b+ u1))

)

=
1

p1sj
(p1sjx1sj − p1sj

∑
i

p1six1si)

= x1sj −
∑
i

p1six1si,

so that

∂

∂u1

∂

∂u′1
log p1sj =

∂

∂u1
(x′1sj −

∑
i

p1six
′
1si)

= −
∑
i

(
∂

∂u1
p1si)x

′
1si

= −
∑
i

(p1six1si − p1si
∑
l

p1slx1sl)x
′
1si

= −
∑
i

p1six1six
′
1si + (

∑
i

p1six1si)(
∑
i

p1six
′
1si)

= −X ′1sdiag(p1s)X1s +X ′1sp1sp
′
1sX1s

= −X ′1s∆1sX1s.

Further,

113

∂

∂u1
logPb(Y1 = yi1|u1) =

1

Pb(Y1 = yi1|u1)
(
∂Pb(Y1 = yi1|u1)

∂u1
)

=
1

Pb(Y1 = yi1|u1)
∂

∂u1
(
∏
s

∏
j

p
yi1sj
1sj)

=
1

Pb(Y1 = yi1|u1)
(
∏
s

∏
j

p
yi1sj
1sj)(

∑
s

∑
j

yi1sj
p1sj

∂p1sj
∂u1

)

=
∑
s

∑
j

yi1sj
p1sj

(p1sjx1sj − p1sj
∑
k

p1skx1sk)

=
∑
s

∑
j

(yi1sj − p1sj)x1sj,

so that

∂

∂u1

∂

∂u′1
logPb(Y1 = yi1|u1) =

∂

∂u1
(
∑
s

∑
j

(yi1sj − p1sj)x′1sj)

= −
∑
s

∑
j

(
∂

∂u1
p1sj)x

′
1sj

= −
∑
s

∑
j

(p1sjx1sj − p1sj
∑
k

p1skx1sk)x
′
1sj

= −
∑
s

(X ′1sdiag(p1s)X1s −X ′1sp1sp′1sX1s)

= −X ′1∆1X1.

114

In (3.7), we have

E
(u21j
σ3
j

|yi1
)

= E
(u21j
σ3
j

+ c|yi1
)
− c

=

∫ u21j+cσ
3
j

σ3
j

Pb(Y1 = yi1|u1)fσ(u1)du1∫
Pb(Y1 = yi1|u1)fσ(u1)du1

− c

=

∫
exp

[
log(

u21j+cσ
3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1)
]
du1∫

exp
[

logPb(Y1 = yi1|u1) + log fσ(u1)
]
du1

− c

≈
(|Hj|
|H|

)1/2 u1j2+cσ3
j

σ3
j

Pb(Y1 = yi1|u1) log fσ(u1)|u1=û1j
Pb(Y1 = yi1|u1)fσ(u1)|u1=û1

− c,

where û1j maximizes log(
u21j+cσ

3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1) and

Hj = −
(∂

∂u1

∂

∂u′1

[
log(

u21j + cσ3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1)
])−1
|u1=û1j

= −
(

2(cσ3
j − u21j)

(u21j + cσ3
j)

2
eje
′
j −X ′1∆1X1 − Σ−1

)−1
|u1=û1j .

The validity of this expression follows because

∂

∂u1
log
(u21j + cσ3

j

σ3
j

)
=

2u1jej
u21j + cσ3

j

,

115

and

∂

∂u1

∂

∂u′1
log
(u21j + cσ3

j

σ3
j

)
=

∂

∂u1

(2u1je
′
j

u21j + cσ3
j

)
=

2eje
′
j

u21j + cσ3
j

− 2u1jej
(u21j + cσ3

j)
2
(2u1je

′
j)

=
2eje

′
j(u

2
1j + cσ3

j)− 4u1j
2eje

′
j

(u21j + cσ3
j)

2

=
2(cσ3

j − u21j)
(u21j + cσ3

j)
2
eje
′
j.

3.7 References

Arora, N., and Huber, J. (2001). Improving parameter estimates and model

prediction by aggregate customization in choice experiments. Journal of

Consumer Research, 28(2), 273−283.

Atkinson, A. C., Donev, A. N., and Tobias, R. D. (2007). Optimum experimental

designs, with SAS . New York: Oxford University Press.

Bhat, C. (1998). Accommodating variations in responsiveness to level-of-service

variables in travel mode choice models. Transportation Research A, 32,

455−507.

Bhat, C. (2000). Incorporating observed and unobserved heterogeneity in urban

work mode choice modeling. Transportation Science, 34, 228−238.

116

Bliemer, M. C., and Rose, J. M. (2010). Construction of experimental designs

for mixed logit models allowing for correlation across choice observations.

Transportation Research Part B: Methodological, 44(6), 720−734.

Booth, J. G., and Hobert, J. P. (1999). Maximizing generalized linear mixed

model likelihoods with an automated Monte Carlo EM algorithm. Journal

of the Royal Statistical Society. Series B, Statistical Methodology, 265−285.

Breslow, N. E., and Clayton, D. G. (1993). Approximate inference in general-

ized linear mixed models. Journal of the American Statistical Association,

88(421), 9−25.

Brownstone, D. and K. Train (1999). Forecasting new product penetration with

flexible substitution patterns. Journal of Econometrics, 89, 109−129.

Chernoff, H. (1953). Locally optimal designs for estimating parameters. The

Annals of Mathematical Statistics, 586−602.

Erdem, T. (1996). A dynamic analysis of market structure based on panel data.

Marketing Science, 15, 359−378.

Hensher, D. A., Rose, J. M., and Greene, W. H. (2005). Applied choice analysis:

a primer. Cambridge University Press.

McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear

mixed models. Journal of the American Statistical Association, 92(437),

162−170.

117

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior.

In: Zarembka P (ed), Frontiers in Econometrics. Academic Press, New

York, pp. 105−142.

McFadden, D. and K. Train (2000). Mixed MNL models of discrete response.

Journal of Applied Econometrics, 15, 447−470.

Moerbeek, M., and Maas, C. J. (2005). Optimal experimental designs for multi-

level logistic models with two binary predictors. Communications in Statistics−Theory

and Methods, 34(5), 1151−1167.

Peter E. Rossi, Greg M. Allenby, and Robert McCulloch (2006). Bayesian Statis-

tics and Marketing. John Wiley and Sons, Ltd.

Revelt, D. and K.Train (1998). Mixed logit with repeated choices: households’

choices of appliance efficiency level. Review of Economics and Statistics,

80(4), 647−657.

Sándor, Z., and Wedel, M. (2002). Profile construction in experimental choice

designs for mixed logit models. Marketing Science, 21(4), 455−475.

Tierney, L., and Kadane, J. B. (1986). Accurate approximations for posterior

moments and marginal densities. Journal of the American Statistical Asso-

ciation, 81(393), 82−86.

Tierney, L., Kass, R. E., and Kadane, J. B. (1989). Fully exponential Laplace ap-

proximations to expectations and variances of nonpositive functions. Journal

of the American Statistical Association, 84(407), 710−716.

118

Toubia, O., Hauser, J. R., and Simester, D. I. (2004). Polyhedral methods

for adaptive choice-based conjoint analysis. Journal of Marketing Research,

41(1), 116−131.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge uni-

versity press.

Wand, M. P. (2007). Fisher information for generalized linear mixed models.

Journal of Multivariate Analysis, 98(7), 1412−1416.

Waite, T.W. and Woods, D.C. (2014) Designs for generalized linear models with

random block effects via information matrix approximations. Southampton,

GB, Southampton Statistical Sciences Research Institute, 21pp. (Southamp-

ton Statistical Sciences Research Institute Methodology Working Papers,

M12/01).

Yu, J., Goos, P., and Vandebroek, M. (2011). Individually adapted sequential

Bayesian conjoint-choice designs in the presence of consumer heterogeneity.

International Journal of Research in Marketing, 28(4), 378−388.

119

Chapter 4

Optimal Designs for the Panel Mixed Logit

Model

4.1 Introduction

Discrete choice experiments are usually used in marketing, health care, transporta-

tion, etc., to understand how people make their choices among several alternatives.

In a typical choice experiment, respondents are asked to choose their most pre-

ferred alternative based on characteristics of the alternatives presented to them,

e.g., making a choice among laptops with different specifications. Discrete choice

models can be used to explain the choices the respondents made based on influen-

tial factors such as characteristics of the alternatives and socioeconomic status of

the respondents.

For example, Veldwijk et al. (2014) use a discrete choice experiment to study

the barriers and facilitators of lifestyle programs for Type 2 Diabetes Mellitus

patients. The five attributes, each with three levels, are menu schedule (a flexi-

ble schedule, a regular schedule or an elaborate schedule), physical activity (PA)

schedule (a flexible schedule, a regular schedule or an elaborate schedule), consul-

tation structure (individual, in groups of 5 or 10 other patients), expected outcome

120

(0, 5 or 10 kilograms weight loss), and out-of-pocket costs (e75, e150 or e225 per

year). The design problem is to choose alternatives to present to the respondents.

The characteristics of the alternatives are varied purposefully to learn about how

people make their trade-offs.

Optimal design theory can be used to solve the design problem. In the lit-

erature, optimal designs have been developed for several discrete choice models.

Huber and Zwerina (1996), Sándor and Wedel (2001) and Street and Burgess

(2007) consider designs for the multinomial logit model. Sándor and Wedel (2002)

and Yu et al. (2009) are concerned with designs for the cross-sectional mixed logit

model. Rose (2010) and Yu et al. (2011) deal with designs for the panel mixed

logit model.

We are interested in finding optimal designs for a panel mixed logit model,

which represents choice behaviors better than the multinomial logit model or the

cross-sectional mixed logit model. First, a panel mixed logit model can account for

the heterogeneity in preferences by introducing random effects to the multinomial

logit model, while the multinomial logit model assumes that respondents’ prefer-

ences are all the same. Second, the panel mixed logit model can account for the

correlation in the responses from the same respondent, while the cross-sectional

mixed logit model assumes independence. In a choice experiment, each respon-

dent usually answers several questions. Responses from a respondent are likely

to be correlated, since each respondent adopts similar decision rules in different

questions. However, finding efficient designs for the panel mixed logit model is

difficult, since comparing designs using criteria based on the information matrix

121

requires a large amount of computation. For the panel mixed logit model, both the

likelihood function and the information matrix can not be written in closed-form

expressions and can only be evaluated numerically.

The panel mixed logit model is a special case of a generalized linear mixed

model. For generalized linear mixed models, it is also difficult to find efficient de-

signs using criteria based on the information matrix which corresponds to the max-

imum likelihood (ML) method. Design criteria based on other analysis methods

such as penalized quasi-likelihood (PQL), marginalized quasi-likelihood (MQL)

and generalized estimating equations (GEE) are considered by (Moerbeek and

Mass (2005), Tekle et al. (2008), Niaparast (2009), Ogungbenro and Aarons

(2011), Niaparast and Schwabe (2013), Waite et al. (2012)). The resulting design

criteria are easier to compute. From the literature of generalized linear mixed mod-

els, we propose a new criterion based on the method of simulated moments (MSM)

(Jiang and Zhang (2001). In the aforementioned work, except for Ogungbenro and

Aarons (2011), the interest lies only in making inference about the mean of the

random effects and treating variance of random effects as nuisance parameters. For

the panel mixed logit model, the variance parameters are also important, since we

are interested in knowing the distribution of respondents’ preferences. Hence, we

also consider the uncertainty of variance parameters in our new criterion.

In Sections 4.2-4.4, we discuss how to derive variance-covariance matrices of the

estimators from maximum likelihood (ML), penalized quasi-likelihood (PQL) and

marginalized quasi-likelihood (MQL) methods, and method of simulated moments

(MSM), respectively, for the panel mixed logit model. In Section 4.5, we use a

122

computer search to find optimal designs with the four types of design criteria and

compare the results from the searches. In Section 4.6, we consider finding designs

for larger choice designs while varying the number of random attributes. In Section

4.7, we revisit the motivating example and the Chapter concludes with a discussion

in Section 4.8.

4.2 Maximum Likelihood Method

In Chapter 3, we focus on the information matrix, the inverse of which is the

asymptotic variance-covariance matrix of the maximum likelihood estimator. The

variance-covariance matrix gives uncertainty of an estimator, so it is often used to

formulate design criteria. First, we give a brief summary of how the information

matrix is derived.

In a choice experiment, a respondent is often shown several alternatives and

asked to choose the one they like the most. The respondent will be asked to respond

to several of these hypothetical questions, each of which consists of a different set of

alternatives. The set of alternatives in each question is called a choice set. Suppose

an alternative can be represented by q attributes and the overall preference of

alternative j in choice set s is related to the linear function x′nsjβn, where xnsj

is the k-vector which contains the coded levels of the q attributes of alternative

j in choice set s for respondent n and βn is the k-vector of random effects for

respondent n. Given βn, the probability of respondent n choosing alternative j in

123

choice set s is given by

P (Ynsj = 1|βn) =
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

,

where J is the number of alternatives in the choice set. The responses for respon-

dent n are given by Yn = (Yn11, Yn12, . . . , YnSJ)′, where Ynsj = 1 if respondent n

chooses alternative j in choice set s and Ynsj = 0 otherwise. The likelihood for

respondent n given βn is modeled by

P (Yn = yn|βn) =
S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

.

The likelihood function for the panel mixed logit model is given by

L(θ|Y = y) =
N∏
n=1

∫
P (yn|βn)fθ(βn) dβn

=
N∏
n=1

∫ S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

fθ(βn) dβn, (4.1)

where y = (y′1, y
′
2, . . . , y

′
N)′ is the vector of observed choices from the N respondents

and the density function of βn is fθ(βn) with unknown parameter θ. Usually,

βn’s are assumed to be independent and follow a multivariate normal distribution

Nk(b,Σ) with Σ = diag(σ2
1, . . . , σ

2
k). Then βn can be written as βn = b + un,

where un = (un1, . . . , unk)
′ is from Nk(0,Σ). The length of un is the same as the

length of βn when all the attributes are random. We will assume all element in

βn are random when we derive the formula. Without loss of generality, k can be

124

adjusted to k′ when the first k′ elements of βn are assumed to be random. Denoting

σ = (σ1, . . . , σk)
′, the unknown parameter vector is θ = (b′, σ′)′. The information

matrix of θ can be written as

I(θ|X) =
N∑
n=1

 EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂b
)(∂ logLn

∂σ
)′
)

EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂σ
)′
)
 ,

where

Ln =

∫
P (yn|βn = b+ un)(2π)−k/2|Σ|−1/2exp(−1

2
u′nΣ−1un) dun.

It can be shown that

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂b

)′
)

= X ′n

(
Eun(∆n)− Eun(pnp

′
n) + EYn

[
Eun(pn|Yn)Eun(p′n|Yn)

])
Xn,

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂σ

)′
)

= X ′n

(
Eun

[
pnhσ(un)

]
− EYn

[
Eun(pn|Yn)Eun

(
hσ(un)|Yn

)])
,

EYn

(
(
∂ logLn
∂σ

)(
∂ logLn
∂σ

)′
)

= −
(1

σ1
, . . . ,

1

σk

)′(1

σ1
, . . . ,

1

σk

)
+ EYn

[
Eun

(
hσ(un)|Yn

)
Eun

(
h′σ(un)|Yn

)]
,(4.2)

where pn = (p′n1, . . . , p
′
nS)′ with pns = (pns1, . . . , pnsJ)′ and pnsj =

exp(x′nsjβn)∑J
i=1 exp(x

′
nsiβn)

,

∆n = diag(∆n1, . . . ,∆nS) with ∆ns = diag(pns)−pnsp′ns and hσ(un) =

(
u2n1
σ3
1
, . . . ,

u2nk
σ3
k

)′
.

The maximum likelihood estimator θ̂, at which L(θ|Y = y) is maximized, has

asymptotic variance-covariance matrix given by V ar(θ̂) = I(θ|X)−1.

125

In Chapter 3, we propose three methods to approximate the information ma-

trix, among which Laplace approximation is the fastest method. However, it is

still not fast enough if we want to use it in a coordinate exchange algorithm for

finding efficient designs. For the analysis of generalized linear mixed models, there

are computationally more efficient methods for estimating unknown parameters.

In the next two sections, we will derive variance-covariance matrices of estimators

from these methods.

4.3 PQL and MQL Applied to Panel Mixed Logit

Model

For the analysis of generalized linear mixed models, Breslow and Clayton (1993)

propose PQL and MQL, which are approximations to the maximum likelihood

method but computationally more efficient. Similarly, for the design problem, the

variance-covariance matrices of these estimators can be utilized as alternatives to

the variance-covariance matrix of the maximum likelihood estimator.

First, we apply PQL to the panel mixed logit model. The likelihood function

126

in (4.1) can be written as

L =

∫ N∏
n=1

p(yn|βn = b+ un)fσ(un) du

∝ |G|−1/2
∫

exp

(
N∑
n=1

S∑
s=1

J∑
j=1

ynsj

[
x′nsj(b+ un)

− log
(J∑
i=1

exp[x′nsi(b+ un)]
)]
− 1

2
u′G−1u

)
du,

where u = (u′1, . . . , u
′
N)′ ∼ N(0, G) with G = diag(Σ, . . . ,Σ︸ ︷︷ ︸

N

). The log-likelihood

function can be written as

l = c− 1

2
log |G|+ log

∫
exp(−q(u)) du,

where c does not depend on the unknown parameters and q(u) is given by

−
N∑
n=1

S∑
s=1

J∑
j=1

ynsj

[
x′nsj(b+ un)− log

(J∑
i=1

exp[x′nsi(b+ un)]
)]

+
1

2
u′G−1u.

Applying Laplace’s method to l gives

l ≈ c− 1

2
log |G| − 1

2
log |q′′(ũ)| − q(ũ),

where ũ maximizes q(u) and the matrix of second derivatives of q(u), q′′(u), is a

127

block diagonal matrix with the nth diagonal block given by

q′′n(u) =
S∑
s=1

x′ns∆nsxns + Σ−1, n = 1, . . . , N.

In Breslow and Clayton (1993), with some simplification to the above approx-

imation of l, PQL is given by

−
N∑
n=1

S∑
s=1

J∑
j=1

ynsj

[
x′nsj(b+ un)− log

(J∑
i=1

exp[x′nsi(b+ un)]
)]

+
1

2
u′G−1u. (4.3)

An estimate of b and u can be obtained by jointly maximizing (4.3) with respect

to b and u. In Breslow and Clayton (1993), the approximate variance-covariance

matrix for b̂PQL is given by

V ar(b̂PQL) = (
N∑
i=1

X ′nV
−1
n Xn)−1,

where Vn = ∆−1n |un=ũn +XnΣX ′n. An estimate of θ can be obtained by maximizing

REML of the corresponding linear mixed effects model for y. The (j, k) element

of the information matrix for σ from the REML version of approximation is given

by

1

2
tr(P

∂V

∂σj
P
∂V

∂σk
),

where P = V −1 − V −1X(X ′V −1X)−1X ′V −1 and V = diag(V1, . . . , VN). When N

is large, the results from REML and ML are similar, but REML requires a lot

more computation. Hence, we use the ML version of the information matrix of σ

128

and denote it as IPQLσσ , of which the (j, k) element is given by

1

2
tr(V −1

∂V

∂σj
V −1

∂V

∂σk
).

Finally, the variance-covariance of θ̂PQL is given by

V ar(θ̂PQL) =

 V ar(b̂PQL) 0

0 (IPQLσσ)−1

 . (4.4)

In PQL, ũ, which maximizes q(u), needs to be found numerically. MQL can

simplify PQL further by using ũ = 0 and the corresponding variance-covariance

matrix for θ̂MQL can be obtained by evaluating (4.4) at ũ = 0.

PQL and MQL aim to get estimates of unknown parameters faster, but they

are known to produce biased estimates in some cases. Our goal is to use the

variance covariance matrices from PQL and MQL as alternatives to the variance-

covariance matrix from ML in the design criteria. The design criteria based on

these approximations have not been compared to the design criteria based on ML

for finding efficient designs before. We will compare these design criteria in their

abilities for finding efficient designs in Section 4.6.

129

4.4 Method of Simulated Moments (MSM) Ap-

plied to Panel Mixed Logit Model

For generalized linear mixed models, Jiang and Zhang (2001) propose to use the

method of simulated moments for analysis. Instead of using the likelihood function,

they use the method of moments to construct estimating equations.

If βn is written as b + Lνn where L = diag(σ) is the Cholesky decomposi-

tion of Σ = diag(σ2
1, . . . , σ

2
k) and νn ∼ Nk(0, Ik), then the likelihood function for

respondent n can be written as

Ln =

∫
P (yn|βn = b+ Lνn)

1

(2π)k/2
exp(−ν

′
nνn
2

)dνn

=

∫
exp
(S∑
s=1

J∑
j=1

k∑
l=1

ynsjxnsjl(bl + σlνnl)

−
S∑
s=1

log
(J∑
j=1

exp(x′nsi(b+ Lνn))
)
− k

2
log(2π)− ν ′nνn

2

)
dνn.

A set of sufficient statistics for θ is given by

S∑
s=1

J∑
j=1

xnsj1ynsj, 1 ≤ n ≤ N,

...
S∑
s=1

J∑
j=1

xnsjkynsj, 1 ≤ n ≤ N.

130

A set of estimating equations using method of moments is given by

N∑
n=1

S∑
s=1

J∑
j=1

xnsjlynsj =
N∑
n=1

S∑
s=1

J∑
j=1

xnsjlE(ynsj), 1 ≤ l ≤ k,

N∑
n=1

(
S∑
s=1

J∑
j=1

xnsjlynsj)
2 =

N∑
n=1

E(
S∑
s=1

J∑
j=1

xnsjlynsj)
2, 1 ≤ l ≤ k.

Let the lth column of Xn be xln = (xn11l, xn12l, . . . , xnSJl)
′ and snl = xln

′
yn. The

above equations can be written as

S = u(θ),

where S = (S ′1, S
′
2)
′ and u(θ) = E(S ′1, S

′
2)
′ with S1 = (

∑N
n=1 sn1, . . . ,

∑N
n=1 snk)

′

and S2 = (
∑N

n=1 s
2
n1, . . . ,

∑N
n=1 s

2
nk)
′ .

Let the estimate from the above estimating equations be θ̃. A second step

estimator θ̂MSM can be obtained by solving B̃S = B̃u(θ), where B̃ = U ′V −1|θ=θ̃

with U = ∂u(θ)/∂θ′ and V = V ar(S). Jiang and Zhang (2001) show that, under

suitable conditions, θ̂MSM has the same asymptotic variance-covariance matrix as

the estimate from solving BS = Bu(θ), which is

V ar(θ̂MSM)

= (U ′V −1U)−1 (4.5)

=


 ∂E(S1)

∂b′
∂E(S1)
∂σ′

∂E(S2)
∂b′

∂(S2)
∂σ′


′ V (S1) Cov(S1, S2)

Cov(S2, S1) V (S2)


−1 ∂E(S1)

∂b′
∂E(S1)
∂σ′

∂E(S2)
∂b′

∂E(S2)
∂σ′



−1

,

131

where U = ∂u(θ)
∂θ′

.

Next, we will derive the expression for U . The details are given in the appendix.

∂E(snl)
∂θ′

is given by

N∑
n=1

xln
′∂E(yn)

∂b′
=

N∑
n=1

xln
′
E(∆n)Xn,

N∑
n=1

xln
′∂E(yn)

∂σ′
=

N∑
n=1

xln
′
E[pn(−(

1

σ1
, . . . ,

1

σk
) + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

))].

Further, we can write out
∑N

n=1

∂E(s2nl)

∂θ′
=
∑N

n=1(x
l
n
′ ⊗ xln

′
)∂E(yn⊗yn)

∂θ′
, and show

that the (((s − 1)J + i − 1)(SJ) + (s′ − 1)J + j)th row of ∂E(yn⊗yn)
∂θ′

, given by

(
∂E(ynsiyns′j)

∂b′
,
∂E(ynsiyns′j)

∂σ′
), is

∂E(ynsiyns′j)

∂b′

=



(
− E(pns1pnsj), . . . , E(pnsj − p2nsj), . . . ,−E(pnsJpnsj)

)
Xns if s = s′, i = j

0 if s = s′, i 6= j

E
(
pnsipns′j

[
(x′nsi −

∑J
k=1 pnskx

′
nsk) + (x′ns′j −

∑J
k=1 pns′kx

′
ns′k)

])
if s 6= s′

.

and

∂E(ynsiyns′j)

∂σ′

=


E
(
pnsj

[
− (1

σ1
, . . . , 1

σk
) + (

u2n1
σ3
1
, . . . ,

u2nk
σ3
k

)
])

dun if s = s′, i = j

0 if s = s′, i 6= j

E
(
pnsjpns′j

[
− (1

σ1
, . . . , 1

σk
) + (

u2n1
σ3
1
, . . . ,

u2nk
σ3
k

)
])

if s 6= s′

.

132

To evaluate V ar(θ̂MSM) in (4.5), we can use Monte Carlo methods on U and

V independently, because U only involves expectations with respect to u and V

only involves moments of Y . Therefore, the evaluations should be much faster

than those of the information matrix in (4.2), where expectations with respect to

u and Y are nested.

4.5 Searching for Optimal Designs

In the previous sections, we derive variance-covariance matrices from the penalized

quasi-likelihood method (PQL), the marginal quasi-likelihood method (MQL), and

the method of simulated moments (MSM). In this section, we will find optimal

designs based on design criteria using these variance-covariance matrices.

The coordinate exchange algorithm is usually used to search for optimal designs

for discrete choice models. The algorithm starts with a random design and uses

exchanges to find better designs under a given design criterion. The exchange is

done for one attribute of one alternative at a time by replacing the current level

of the attribute with the other possible levels of the attribute. The exchange will

be kept if there is an improvement in the design criterion after the exchange. The

algorithm will stop if no change is kept after going through the entire design−from

the first attribute of the first alternative in the first choice set to the last attribute

of the last alternative in the last choice set. This is a run of the coordinate exchange

algorithm, which yields a design that cannot be improved anymore by exchanges.

Usually, many runs are used to avoid local optima. The final result is the best

133

design from all runs. The designs from the coordinate exchange algorithm are not

guaranteed to be optimal designs, so they are often referred to as efficient designs.

First, we consider a case where there are 4 attributes each with 3 levels. We

assume that the coefficients for the first two attributes are random and those

for the other two attributes are fixed. Effects type coding is used for the at-

tribute levels. The random coefficients are assumed to be independent and dis-

tributed as N(bi, σ
2
i), i = 1, . . . , 4. Let the mean of the whole coefficient vector

be b = (b1, b2, . . . , b8)
′ and the variance vector be σ = (σ1, . . . , σ4)

′. The values

of parameters are varied in terms of the response accuracy and the respondent

heterogeneity. The parameter vector b is given by a · (1, 0, 1, 0, 1, 0, 1, 0)′ and the

parameter vector σ is given by
√
c · a · (1, 1, 1, 1)′, where a = 3 in the case of high

response accuracy and a = 1/2 in the case of low response accuracy; c = 3 in the

case of high respondent heterogeneity and c = 1/2 in the case of low respondent

heterogeneity. The 4 combinations of a and c values are all used in the computer

search.

We will first consider an experiment with 9 choice sets of size 2, which is denoted

as 34/2/9.

For given parameter values and an approximation method, the coordinate exchange

algorithm is used to find a locally A-optimal design and a locally D-optimal design

respectively. A-optimality and D-optimality are used with the Laplace approxi-

mation of the information matrix and variance-covariance matrices from PQL,

MQL and MSM. Hence, for each combination of parameter values, the coordinate

134

exchange algorithm is implemented 8 times− for A- and D-optimality each with

the 4 methods. After searches are finished, we want to compare efficient designs

obtained from different methods. Since the panel mixed logit model is usually

analyzed with the maximum likelihood method, we are interested in comparing

the designs for this method. Hence, the efficient designs are evaluated again with

the criterion based on the variance-covariance matrix of the maximum likelihood

method. To get an accurate comparison of designs, the information matrix is ap-

proximated using the importance sampling method in Chapter 3 with all possible

values of Y and 106 as the sample size for u. The results are reported in Table 4.1,

where the given time is for one run of the coordinate exchange algorithm.

The results in Table 4.1 are used to compare the 4 methods. First, a good method

should enable the coordinate exchange algorithm to find a good design. Second,

the time to complete a search is determined mainly by the time needed to evaluate

the design criterion here. For the two cases in the upper half of Table 4.1, the best

design for A-optimality is found by MSM and the best design for D-optimality

is found by the Laplace approximation. While the A- or D-optimality values of

the designs found by the two methods are similar, the time for MSM is about

1/10 of the time for the Laplace approximation. Although the searches with PQL

and MQL run faster, the designs found are considerably less efficient than the

best designs except with D-optimality in the second case, where all methods yield

similar results. For the two cases in the lower half of the table, the A- or D-

optimality values of designs found by the four criteria are all similar. The search

with MQL is the fastest, while the time for PQL might also be acceptable in

135

Table 4.1: Results for 34/2/9

hh hl
A D time (A) time (D) A D time (A) time (D)

Laplace 18.18 7.77 115m24s 157m29s 5.87 2.18 144m 163m32s
MSM 16.93 7.86 11m47s 14m27s 5.83 2.21 11m52s 13m41s
PQL 26.30 8.79 1m56s 2m6s 7.47 2.25 3m9s 2m29s
MQL 37.39 10.31 3.4s 3.6s 7.27 2.33 3.4s 3.8s

lh ll
A D time (A) time (D) A D time (A) time (D)

Laplace 2.37 1.65 115m26s 203m47s 0.85 0.69 161m38s 190m30s
MSM 2.38 1.66 11m1s 10m58s 0.87 0.69 14m59s 15m3s
PQL 2.36 1.68 2m45s 1m43s 0.84 0.69 4m48s 3m28s
MQL 2.45 1.68 3.8s 3.6s 0.86 0.70 3.5s 3.5s

Note: hh represents high accuracy and high heterogeneity(b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′), hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′), lh represents low accuracy and high heterogeneity(b =
(0.5, 0, 0.5, 0)′ and σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′) and ll represents low accuracy and low
heterogeneity (b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′).

practice and PQL yields better designs than MQL in almost all cases. For the

second case in the upper half and the first case in the lower half, the values for b

are different while the values for σ are the same, we can see that the performance

of the methods not only depends on the magnitude of the variance but also on the

magnitude of the mean.

Next, we consider an experiment with 5 choice sets of size 4 and denote it as

34/4/5. We repeat the procedures in the previous experiment with only the first

2 cases of the parameter values, since results from the 4 methods are similar in

the other two cases. The results are given in Table 4.2. The results are similar

136

Table 4.2: Results for 34/4/5

hh hl
A D time (A) time (D) A D time (A) time (D)

Laplace 15.60 6.71 190m35s 234m34s 4.63 2.30 266m7s 241m46s
MSM 14.67 6.68 24m17s 29m18s 4.49 2.27 26m48s 21m53s
PQL 20.61 7.49 2m50s 2m42s 4.70 2.35 2m58s 3m47s
MQL 25.83 ∞ 4.3s 3.8s 16.70 2.34 3.1s 3.1s

Note: hh represents high accuracy and high heterogeneity(b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′) and hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′).

to those in Table 4.1, except that PQL performs better for A-optimality in the

case of high response accuracy and low respondent heterogeneity and PQL is now

comparable with the Laplace approximation and MSM. The improvement in PQL

might be due to the increase in the size of the design, i.e., there are (4−1) ·5 = 15

independent rows in the design matrix for 35/4/5 compared to (2− 1) · 9 = 9 for

35/2/9.

With MSM, the coordinate exchange algorithm still takes too long to run, e.g., it

takes approximately 1000×10 mins in 35/2/10. Next, we try to reduce the number

of runs in the coordinate exchange algorithm. With m (< 1000) runs, what is the

probability of getting a design that is at least 90% efficient as the best design from

1000 runs, when the designs are compared using the maximum likelihood method.

One way is to assess this is by running the coordinate exchange algorithm with

m starting designs repeatedly and calculating the proportion of times of getting

a design that is at least 90% efficient, but it will be computationally difficult.

137

Another way is by repeatedly sampling m runs from the 1000 runs we have already

completed and calculating the proportion of times of getting a design at least 90%

efficient. The simulation is carried out as follows. From running a computer search

with 1000 runs, we obtain 1000 designs from the coordinate exchange algorithm

and the corresponding A- or D-optimality values for a given method. If m runs are

taken randomly from the 1000 runs, the m designs can be ordered according to the

m A- or D-optimality values obtained from the computer search. The best design

is evaluated using the criterion based on the maximum likelihood method. This

process is repeated many times, so the probability of getting a design that is above

90% efficient can be calculated. For the first case of the parameter values, the best

A-optimality value we have is 16.77 and the best D-optimality value is 7.68. A

design that is at least 90% efficient in A-optimality will have a A-optimality smaller

than 16.77/0.9 = 18.65 and a design that is at least 90% efficient in D-optimality

will have a D-optimality smaller than 7.68/0.9 = 8.53. Table 4.3 reports the the

values of m with which the probability of getting a 90% or 80% efficient design is

over 0.9 for the first two cases of the parameter values. The m values in some of

the cells are much smaller than 1000. Hence, it is possible to reduce the number of

the runs in these cases. For some cases with PQL and MQL, the results with 1000

starting designs can not pass the 90% or 80% efficiency standard, so NA values

are entered for these cases. From the m values for different methods, we conclude

MSM is the best method to use, which is consistent with the previous result.

138

Table 4.3: Reduced number of runs for 34/2/9

hh hl
A D A D

90% 80% 90% 80% 90% 80% 90% 80%
Laplace 895 9 3 1 595 5 9 1
MSM 182 12 6 1 90 3 8 1
PQL NA NA NA 190 NA NA 55 3
MQL NA NA NA NA NA NA 900 30

Note: hh represents high accuracy and high heterogeneity(b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′) and hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′). NA are put in cases where even with 1000 runs the results
are not at least 90% or 80% efficient.

4.6 Second Look at the Search for Optimal De-

signs

First, we will study the robustness of locally optimal designs against misspecifi-

cation of parameter values. The rows of Table 4.4 give the assumed parameter

values for finding the locally optimal designs. The columns give the true values

of the parameters. There are 8 designs in the table−one locally A-optimal design

and one locally D-optimal design in each row for the assumed parameter values.

The designs are from previous results−in the first two rows, we use the designs

from MSM; in the last two rows, we use the designs from PQL. The designs are

compared with the best designs found previously with the true values, so the ef-

ficiencies (shown in parentheses) are always less than 1. As expected, we can see

that the further the true parameter values move away from the assumed ones,

139

Table 4.4: Robustness

hh hl lh ll
design A D A D A D A D
hh 16.91 7.86 7.33 (.80) 2.87 (.77) 3.74 (.63) 2.14 (.79) 2.27 (.37) 1.22 (.56)
hl 19.50 (.87) 9.16 (.86) 5.86 2.21 3.50 (.68) 1.98 (.85) 1.70 (.5) 0.81 (.84)
lh 75.11 (.23) 9.52 (.83) 25.62 (.23) 3.90 (.57) 2.37 1.69 0.88 (.97) 0.74 (.92)
ll 59.96 (.28) 9.92 (.79) 13.69 (.43) 3.05 (.72) 2.42 (.98) 1.75 (.97) 0.85 0.68

Note: hh represents high accuracy and high heterogeneity(b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′) and hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′). In the parentheses are the efficiency of the design com-
pared to the best design.

the locally optimal designs become less efficient; however, the loss of efficiency is

not more than 20%, except for a few cases within the range of parameter values

studied.

Second, we conduct the search for larger experiments. We consider a case with 5

attributes with 3 levels and vary the number of random attributes from 2 to 5. The

two sets of parameter values with high accuracy are used, because the differences

between the 4 methods for the other values are small in the previous results. The

design problems for 35/2/10 and 35/4/5 are discussed.

Figure 4.1 gives A-optimalities of the 1000 good designs from the coordinate ex-

change algorithm using criterion based on PQL. The x-axis gives A-optimality

using ML and the y-axis gives A-optimality using PQL. The best design for ML

can not be found if PQL, i.e. values from the y-axis, is used to compare designs.

Based on the observation, we propose a new algorithm to improve on PQL. After

each run of the coordinate exchange algorithm using PQL, the design found in the

140

40 60 80 100 120 140

10
20

30
40

50

PQL

M
LE

(a) 10 choice sets of size 2

50 100 150 200

10
20

30
40

50

PQL

M
LE

(b) 5 choice sets of size 4

Figure 4.1: The 1000 designs from the coordinate exchange algorithm using crite-
rion based on PQL and A-optimality for design problem with 5 attributes with 3
levels and out of which 3 attributes are random.

run is evaluated with the criterion based on ML. After the 1000 runs, the design

criterion values from ML are used to find the best design. With this change to the

exchange algorithm, good designs could be found with one more evaluation of the

design criterion based on ML at the end. The new algorithm is denoted as new

PQL in Table 4.5 to Table 4.8.

If two attributes are random, the results in Table 4.5 are similar to the previous

ones. MQL gives the worst results in all cases considered except one. In all cases

considered for A-optimality, the designs from criteria based on the Laplace approx-

141

Table 4.5: 35 with 2 random attributes

hh hl
35/2/10 A D time (A) time (D) A D time (A) time (D)
Laplace 19.76 5.64 106m52s 92m26s 5.91 1.84 100m37s 110m33s
MSM 17.75 5.91 7m6s 16m17s 6.06 1.99 5m26s 7m21s
PQL 20.53 7.00 40s 38s 6.70 1.96 1m9s 49s
New PQL 18.47 5.73 6m41s 6m34s 5.74 1.95 7m14s 6m14s
MQL 28.84 7.83 6s 5s 6.56 2.22 6s 6s

35/4/5 A D time (A) time (D) A D time (A) time (D)
Laplace 14.30 5.56 98m10s 88m21s 4.92 2.07 98m00s 113m5s
MSM 15.40 5.89 5m39s 5m11s 5.05 2.14 6m5s 5m55s
PQL 20.77 5.81 53s 49s 5.45 2.18 1m14s 52s
New PQL 16.26 5.81 6m55s 6m30s 4.73 2.18 7m29s 7m30s
MQL 46.97 9.72 7s 6s 39.27 4.00 6s 5s

imation and MSM are similar and they are better than designs from the criterion

based on PQL by a small margin. Considering design efficiency and time, the cri-

teria based on MSM and PQL are competitive when A-optimality is used−MSM

is better in terms of design efficiency and PQL is better in terms of time. For

D-optimality, the designs from criteria based on the Laplace approximation, MSM

and PQL are similar. For 35/2/10 with high accuracy and high heterogeneity, there

is some efficiency loss associated with the criterion based on PQL. PQL is the best

method for D-optimality except for smaller designs with parameter values at high

accuracy and high heterogeneity. In this case, MSM might be a competitive option

because it yields better designs in acceptable time.

The results for 3 random attributes are listed in Table 4.6. The results are similar

to those in Table 4.5 except for the results for A-optimality with high accuracy and

142

high heterogeneity in the smaller design 34/2/10, where criteria based on Laplace

approximation and PQL does not work well. Table 4.7 contains the results for

4 random attributes. The results are similar to those in Table 4.5 and Table 4.6

except for high accuracy and high heterogeneity and A-optimality, where MSM

works best while the Laplace approximation and PQL do not work in both cases.

Table 4.8 contains results for 5 random attributes. The results are similar to the

previous ones, except the Laplace approximation and PQL fail in one more case,

i.e., the case 210/2/10 with high accuracy and low heterogeneity and A-optimality.

To summarize, MSM works well for both A- and D-optimality in all the cases and

PQL works well with D-optimality in almost all the cases. The results show their

performance under different specifications of the experiments, such as the size of

the design, the values of the parameters and the number of random attributes.

PQL runs about 10 times faster than MSM. When they yield similar results, PQL

is preferred. The Laplace approximation is much slower than the other methods

and does not work for A-optimality in some situations.

In new PQL, we use all possible Y and 105 as the sample size for U , which adds

about 6 minutes to the time for PQL. The time for MSM and the time for the

new algorithm are similar. Also, we can control the speed by using appropriate

sample sizes for Y and U in the evaluation of criterion based on ML. The results

are given in Table 4.5 to Table 4.8. We see improvements in almost all cases,

especially in cases PQL preform worse than MSM. The results of MSM and the

new algorithm are similar in almost all cases except for high accuracy and high

heterogeneity with A-optimality in Table 4.8, where results for the new algorithm

143

Table 4.6: 35 with 3 random attributes

hh hl
35/2/10 A D time (A) time (D) A D time (A) time (D)
Laplace 88.86 10.61 118m16s 157m10s 9.32 2.71 129m46s 158m40s
MSM 31.67 11.01 5m48s 7m5s 8.94 2.62 5m26s 6m22s
PQL 60.58 11.89 58s 53s 11.15 2.84 1m31s 1m4s
New PQL 33.68 10.71 7m55s 7m33s 8.79 2.77 7m38s 7m30s
MQL 75.47 13.84 6s 4s 11.17 2.97 6s 5s

35/4/5 A D time (A) time (D) A D time (A) time (D)
Laplace 26.13 11.77 141m55s 170m16s 6.92 3.02 174m47s 143m18s
MSM 23.75 11.66 5m25s 5m40s 6.85 3.23 6m35s 5m25s
PQL 34.45 13.27 49s 56s 8.12 3.12 1m28s 1m14s
New PQL 25.19 11.17 7m40s 7m14s 6.56 3.12 8m14s 7m16s
MQL 46.11 16.48 7s 4s 21.50 5.62 6s 4s

Table 4.7: 35 with 4 random attributes

hh hl
35/2/10 A D time (A) time (D) A D time (A) time (D)
Laplace 76.76 15.56 185m12s 164m34s 13.25 3.60 160m42s 189m43s
MSM 67.01 16.74 6m50s 5m56s 12.06 3.61 12m7s 11m20s
PQL 195.47 16.64 1m11s 1m10s 20.52 3.72 2m8s 2m3s
New PQL 50.53 16.38 7m49s 7m48s 13.00 3.72 8m59s 8m40s
MQL 104.14 19.37 7s 5s 20.07 4.05 6m 4m

35/4/5 A D time (A) time (D) A D time (A) time (D)
Laplace 84.27 16.99 239m3s 224m17s 9.08 3.97 242m31s 285m3s
MSM 41.41 18.26 6m11s 4m30s 8.91 4.09 8m32s 5m24s
PQL 49.87 19.01 1m19s 59s 10.71 4.00 1m21s 1m35s
New PQL 36.63 17.84 7m52s 7m44s 9.03 4.00 8m9s 8m28s
MQL 67.77 20.41 6s 6s 15.16 5.79 5s 4s

144

Table 4.8: 35 with 5 random attributes

hh hl
35/2/10 A D time (A) time (D) A D time (A) time (D)
Laplace 384.41 22.27 288m25s 264m31s 149.45 4.56 345m50s 363m2s
MSM 135.08 22.67 17m2s 19m43s 16.33 4.78 18m38s 20m4s
PQL 362.85 23.00 1m36s 1m33s 40.99 4.88 3m11s 2m40s
New PQL 211.5 23.00 76m46s 82m54s 20.61 4.81 84m11s 78m51s
MQL 484.10 25.89 5s 8s 44.82 5.06 6s 7s
35/4/5 A D time (A) time (D) A D time (A) time (D)
Laplace 305 23.89 306m4s 373m11s 13.23 5.16 366m47s 332m58s
MSM 71.66 25.42 17m31s 14m19s 12.46 5.12 17m41s 17m
PQL 160.11 27.94 1m27s 1m41s 17.62 5.41 2m34s 2m6s
New PQL 118.45 24.51 78m41s 78m53s 13.24 5.25 80m9s 107m29s
MQL 181.52 ∞ 6s 5s 20.72 8.45 5s 4s

are much worse than MSM.

In new PQL, we use all possible Y and 105 as the sample size for U , which adds

about 6 minutes to the time for PQL. The time for MSM and the time for the

new algorithm are similar. Also, we can control the speed by using appropriate

sample sizes for Y and U in the evaluation of the criterion based on ML. The

results are given in Table 4.5 to Table 4.8. We see improvements in almost all

cases, especially when PQL preform worse than MSM. The results of MSM and

the new algorithm are similar in almost all cases except for high accuracy and high

heterogeneity with A-optimality in Table 4.8, where results for the new algorithm

are much worse than MSM.

145

4.7 Revisiting the Example

We will use the lifestyle program example to show how an efficient design from

the computer search looks like. Suppose we want to find a design for 35/2/10 with

4 random attributes and the parameters are given by b = (3, 0, 3, 0, 3, 0, 3, 0, 3, 0)′

and σ = 3 · 18, Table 4.9 gives an efficient design from the coordinate exchange

algorithm using A-optimality with MSM.

4.8 Discussion and Conclusion

In this Chapter, we propose three alternatives to the design criterion based on the

maximum likelihood (ML) method for the panel mixed logit model, which is diffi-

cult to use in practice because of the amount of computation required. The three

alternatives are derived from penalized quasi-likelihood (PQL), marginal quasi-

likelihood (MQL) and method of simulated moments (MSM). The alternatives

based on PQL and MQL have closed form expressions, while the alternative from

MSM simplifies the criterion based on ML to contain expectations with respect

to the response and the random effects independently. However, PQL and MQL

are approximate analysis methods which produce biased estimates, while the esti-

mate from MSM are consistent but could be less efficient than from ML. We use

a computer search to see whether an efficient design can be found in a computer

search using the alternatives. From the results, all three methods show significant

improvement in time with MQL being the fastest followed by PQL and MSM.

The designs from MSM are as good as those from the Laplace approximation and

146

Table 4.9: 35/2/10 with 4 random attributes when b = (3, 0, 3, 0, 3, 0, 3, 0, 3, 0)′

and σ = 3 · 18.

Choice
Set

Measure
Schedule

Physical Activity
(PA) Schedule

Construction
Structure

Expected
Weight Loss

Out-of-pocket
Costs

1
Regular Elaborate 10 other patients 10 kilograms e225
Regular Elaborate 5 other patients 10 kilograms e225

2
Elaborate Regular Individual 5 kilograms e75
Elaborate Elaborate 5 other patients 10 kilograms e75

3
Flexible Flexible Individual 0 kilograms e150
Flexible Flexible 5 other patients 0 kilograms e225

4
Flexible Regular 5 other patients 10 kilograms e75
Elaborate Regular 5 other patients 0 kilograms e75

5
Regular Regular 5 other patients 5 kilograms e225
Regular Flexible 5 other patients 5 kilograms e225

6
Regular Regular 5 other patients 5 kilograms e150
Flexible Regular Individual 0 kilograms e225

7
Elaborate Regular 10 other patients 0 kilograms e75
Flexible Regular 10 other patients 10 kilograms e225

8
Elaborate Elaborate Individual 0 kilograms e150
Flexible Elaborate Individual 10 kilograms e225

9
Elaborate Regular 5 other patients 10 kilograms e225
Regular Elaborate Individual 10 kilograms e75

10
Regular Regular 5 other patients 10 kilograms e225
Elaborate Elaborate 5 other patients 5 kilograms e225

147

even outperform those from Laplace approximation for the case with more ran-

dom effects. Designs from MSM are the best for both A- and D-optimality and all

parameter values considered. The designs from PQL are the best for D-optimality

and cases where heterogeneity is not too large. One run of the coordinate exchange

algorithm using MSM takes 5-20 minutes in all the cases considered, so 1000 runs

still take a significant amount of time. However, the 1000 runs can be executed

in parallel. One run of the coordinate exchange algorithm using PQL takes less

than 4 minutes in all cases considered, so PQL is viable option to use in practice

for D-optimality and cases where heterogeneity is not too large.

4.9 Appendix

4.9.1 Method of Moments Applied to Panel Mixed Logit

Model

If βn is written as b + Lun where L = diag(σ) is the Cholesky decomposition of

Σ = diag(σ2
1, . . . , σ

2
k) and un ∼ Nk(0, Ik), the likelihood function for respondent n

148

can be written as

Ln =

∫ S∏
s=1

J∏
j=1

(
exp

(
x′nsj(b+ Lun)

)∑J
i=1 exp

(
x′nsi(b+ Lun)

))ynsj
1

(2π)k/2
exp(−u

′
nun
2

)dun

=

∫
exp

(
S∑
s=1

J∑
j=1

ynsjx
′
nsj(b+ Lun)−

S∑
s=1

log
(J∑
j=1

exp
(
x′nsi(b+ Lun)

))
−k

2
log(2π)− u′nun

2

)
dun

=

∫
exp

(
S∑
s=1

J∑
j=1

k∑
l=1

ynsjxnsjl(bl + σlunl)−
S∑
s=1

log
(J∑
j=1

exp
(
x′nsi(b+ Lun)

))
−k

2
log(2π)− u′nun

2

)
dun.

A set of sufficient statistics for θ is given by
∑S

s=1

∑J
j=1 xnsjlynsj, 1 ≤ l ≤ k. Then,

a set of estimating equations using method of moments can be formulated as

S∑
s=1

J∑
j=1

xnsjlynsj =
S∑
s=1

J∑
j=1

xnsjlE(ynsj), 1 ≤ l ≤ k,

(
S∑
s=1

J∑
j=1

xnsjlynsj)
2 = E(

S∑
s=1

J∑
j=1

xnsjlynsj)
2, 1 ≤ l ≤ k. (4.6)

Let the lth column of Xn be xln = (xn11l, xn12l, . . . , xnSJl)
′ and sl = xln

′
y. Equations

(4.6) can be written as

xln
′
yn = xln

′
E(yn) = xln

′
E(pn) , 1 ≤ l ≤ k

(xln
′
yn)2 = E(xln

′
yn)2 = (xln

′ ⊗ xln
′
)E(yn ⊗ yn) , 1 ≤ l ≤ k

.

149

Let S = (S ′1, S
′
2)
′ with S1 = (s1, . . . , sk)

′ and S2 = (s21, . . . , s
2
k)
′ and u(θ) =

E(S ′1, S
′
2)
′, equations 4.6 can be written as S = u(θ). For estimating equa-

tions of the form BS = Bu(θ), the optimal B is U ′V −1, where U = ∂u/∂θ′

and V = V ar(S) is the variance-covariance matrix of S. The variance-covariance

matrix of the resulting estimator is

V ar(θ̂) = (U ′V −1U)−1

=


 ∂E(S1)

∂b′
∂E(S1)
∂σ′

∂E(S2)
∂b′

∂(S2)
∂σ′


′ V (S1) Cov(S1, S2)

Cov(S2, S1) V (S2)


−1 ∂E(S1)

∂b′
∂E(S1)
∂σ′

∂E(S2)
∂b′

∂E(S2)
∂σ;



−1

,

where U =
∂(E(S′1,S

′
2)
′)

∂θ′
.

We will first derive ∂E(sl)
∂θ′

= xln
′ ∂E(pn)

∂θ′
, 1 ≤ l ≤ k. The (sJ+j)th row of ∂E(pn)/∂θ′

is given by (∂E(pnsj)/∂b
′, ∂E(pnsj)/∂σ

′), which can be written as

∂E(pnsj)

∂b′
=

∫
∂pnsj
∂b′

fσ(un) dun = E
(
pnsj(x

′
nsj −

J∑
i=1

pnsix
′
nsi)
)

=
(
− E(pns1pnsj), . . . , E(pnsj − p2nsj), . . . ,−E(pnsJpnsj)

)
Xns,

∂E(pnsj)

∂σ′
=

∫
pnsjfσ(un)(−(

1

σ1
, . . . ,

1

σk
) + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

))

= E(pnsj(−(
1

σ1
, . . . ,

1

σk
) + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

))) dun.

150

So ∂E(sl)
∂θ′

is given by

xln
′∂E(yn)

∂b′
= xln

′
E(∆n)Xn,

xln
′∂E(yn)

∂σ′
= xln

′
E[pn(−(

1

σ1
, . . . ,

1

σk
) + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

))].

Next, we derive
∂E(s2l)

∂θ′
. The ((s− 1) ∗J + i− 1) ∗ (SJ) + (s′− 1) ∗J + j)th element

of E(yn ⊗ yn) is given by

E(ynsiyns′j) =


E(pnsj) , s = s′, i = j

0 , s = s′, i 6= j

E(pnsipns′j) , s 6= s′

.

It can be shown that

∂E(pnsipns′j)

∂b′
=

∫
∂(pnsipns′j)

∂b′
fσ(un) dun

=

∫
(
∂pnsi
∂b′

pns′j + pnsi
∂pns′j
∂b′

)fσ(un) dun

= E(pnsipns′j(x
′
nsi −

J∑
k=1

pnskx
′
nsk) + pnsipns′j(x

′
ns′j −

J∑
k=1

pns′kx
′
ns′k))

= E(pnsipns′j((x
′
nsi −

J∑
k=1

pnskx
′
nsk) + (x′ns′j −

J∑
k=1

pns′kx
′
ns′k)))

151

and

∂E(pnsipns′j)

∂σ′
=

∫
pnsjpns′jfσ(un)(−(

1

σ1
, . . . ,

1

σk
) + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)) dun

= E(pnsjpns′j(−(
1

σ1
, . . . ,

1

σk
) + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

))).

So we can write out
∂E(s2l)

∂θ′
= (xln

′ ⊗ xln
′
)∂E(yn⊗yn)

∂θ′
, where the ((s− 1) ∗ J + i− 1) ∗

(SJ) + (s′ − 1) ∗ J + j)th row of ∂E(yn⊗yn)
∂θ′

, given by (
∂E(ynsiyns′j)

∂b′
,
∂E(ynsiyns′j)

∂σ′
), is

∂E(ynsiyns′j)

∂b′

=



(
− E(pns1pnsj), . . . , E(pnsj − p2nsj), . . . ,−E(pnsJpnsj)

)
Xns , s = s′, i = j

0 , s = s′, i 6= j

E(pnsipns′j((x
′
nsi −

∑J
k=1 pnskx

′
nsk) + (x′ns′j −

∑J
k=1 pns′kx

′
ns′k))) , s 6= s′

;

and

∂E(ynsiyns′j)

∂σ′

=


E(pnsj(−(1

σ1
, . . . , 1

σk
) + (

u2n1
σ3
1
, . . . ,

u2nk
σ3
k

))) dun , s = s′, i = j

0 , s = s′, i 6= j

E(pnsjpns′j(−(1
σ1
, . . . , 1

σk
) + (

u2n1
σ3
1
, . . . ,

u2nk
σ3
k

))) , s 6= s′

.

Hence, the variance-covariance matrix of θ̂ is

152

V ar(θ̂) = (U ′V −1U)−1

=


 ∂E(S1)

∂b′
∂E(S1)
∂σ′

∂E(S2)
∂b′

∂(S2)
∂σ′


′ V (S1) Cov(S1, S2)

Cov(S2, S1) V (S2)


−1 ∂E(S1)

∂b′
∂E(S1)
∂σ′

∂E(S2)
∂b′

∂E(S2)
∂σ;



−1

,

where U =
∂(E(S′1,S

′
2)
′)

∂θ′
, S1 = (s1, . . . , sk)

′, S2 = (s21, . . . , s
2
k)
′ and S = (S ′1, S

′
2)
′.

4.10 References

Bliemer, M. C., and Rose, J. M. (2010).“Construction of experimental designs

for mixed logit models allowing for correlation across choice observations”,

Transportation Research Part B: Methodological, 44(6), 720−734.

Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in general-

ized linear mixed models. Journal of the American Statistical Association,

88(421), 9−25.

Huber, J., and Zwerina, K. (1996). “The importance of utility balance in efficient

choice designs”, Journal of Marketing research, 307−317.

Jiang, J., & Zhang, W. (2001). Robust estimation in generalised linear mixed

models. Biometrika, 88(3), 753−765.

Moerbeek, M., & Maas, C. J. (2005). Optimal experimental designs for multilevel

logistic models with two binary predictors. Communications in Statistics−Theory

and Methods, 34(5), 1151−1167.

153

Niaparast, M. (2009). On optimal design for a Poisson regression model with

random intercept. Statistics & Probability Letters, 79(6), 741−747.

Niaparast, M., & Schwabe, R. (2013). Optimal design for quasi-likelihood esti-

mation in Poisson regression with random coefficients. Journal of Statistical

Planning and Inference, 143(2), 296−306.

Ogungbenro, K., & Aarons, L. (2011). Population Fisher information matrix and

optimal design of discrete data responses in population pharmacodynamic

experiments. Journal of pharmacokinetics and pharmacodynamics, 38(4),

449−469.

Sándor, Z., and Wedel, M. (2001). “Designing conjoint choice experiments using

managers’ prior beliefs”, Journal of Marketing Research, 430−444.

Sándor, Z., and Wedel, M. (2002). “Profile construction in experimental choice

designs for mixed logit models”, Marketing Science, 21(4), 455−475.

Street, D. J., and Burgess, L. (2007). The construction of optimal stated choice

experiments: theory and methods , Wiley-Interscience.

Tekle, F. B., Tan, F. E., & Berger, M. P. (2008). Maximin D-optimal designs for

binary longitudinal responses. Computational Statistics & Data Analysis,

52(12), 5253−5262.

Veldwijk, J., Lambooij, M. S., de Bekker-Grob, E. W., Smit, H. A., & De Wit, G.

A., The effect of including an opt-out option in discrete choice experiments.

PloS one, 9(11), (2014).

154

Waite, T. W., Woods, D. C., & Waterhouse, T. H. (2012). Designs for generalized

linear models with random block effects.

Yu, J., Goos, P., and Vandebroek, M. (2009). “Efficient conjoint choice de-

signs in the presence of respondent heterogeneity”, Marketing Science, 28(1),

122−135.

Yu, J., Goos, P., and Vandebroek, M. (2011). “Individually adapted sequential

Bayesian conjoint-choice designs in the presence of consumer heterogeneity”,

International Journal of Research in Marketing, 28(4), 378−388.

155

Chapter 5

Conclusion

In this thesis, we are interested in optimal designs for discrete choice models.

In discrete choice experiments, respondents are recruited to compare products

or services which are assumed to be represented by a few characteristics of the

product or services. The design problem is to decide which combinations should

the respondents see and compare. A good design could give a good understanding

of how people make trade offs between the characteristics and make their choices

giving the information they have under the constraint of the number of respondents

and the time people have. The panel mixed logit model can account for the

heterogeneity in the respondents and correlation between choices made by the

same respondents, compared to multinomial logit model which estimate of the

average of the respondents and cross-sectional mixed logit model which assumes

independence of the choices from the same respondent. We give a review of papers

on optimal designs for multinomial logit model and cross-sectional mixed logit in

chapter 1. For the panel mixed logit model, the information matrix, which is often

used in design criteria, does not have a closed form expression. In chapter 3, we

propose three approximations of the information matrix which make use of the

formula derived in the chapter. In chapter 4, we propose three alternative to the

information matrix based on approximate analysis methods for the generalized

156

linear mixed models−the panel mixed logit is a special case of the generalized

linear mixed models. The approximations are used in the computer search for

finding optimal designs in chapter 4, which we show that the design criteria based

on the approximations of the information matrix in chapter 3 and 4 are much

faster to evaluate than the information matrix.

In Chapter 4, we give the time needed for one run of the coordinate exchange

algorithm for each method. More runs are needed to avoid local optima. For the

coordinate exchange algorithm, the runs can be carried out separately. If running

in parallel at the same time, the time needed to finish all the runs will be similar

to the time for one run of the coordinate exchange algorithm. If the runs are

carried out sequentially, the time needed to finish all runs will be the number of

runs times the time for one run of the coordinate exchange algorithm, which will

grow significantly. In chapter 4, we consider a few design scenarios. The time

needed may be longer than the time reported in Chapter 4 for a scenario with

more choice sets, more alternatives in a choice set, more random effects or more

extreme parameter values.

For the panel mixed logit model, the information matrix depends on the un-

known parameters. We consider locally optimal designs, where optimal designs are

found for given parameter values. The optimal designs can be less efficient if the

true parameter values are very different from the assumed ones. There are more

robust design criteria, e.g. Bayesian design criteria and minimax design criteria,

which take into account the variation of the parameter values into account, but

they will require more computation than the locally optimal design criteria and

157

are not considered in this Chapter.

158

Chapter 6

Appendix: Code for Chapter 3 and 4

6.1 Code for Laplace Approximation

The following code is for implementing coordinate exchange algorithm with design

criteria based on Laplace approximation in Section 3.3.2. The Fortran code needs

to be compiled first before running the R code. The coordinate exchange algorithm

in the R code uses the Laplace approximation in the Fortran code to evaluate each

design.

R code

library(DoE.base)

library(MASS)

library(Matrix)

##############################

main 141013

##############################

S = 10 # number of choice sets

J = 2 # number of alternatives per choice sets

cs = c(,,,,) # input vector , the number of alternatives in each choice set , S, J can be read from cs

cs=rep(J,S) # a vector for numbers of alternatives in choice sets , used

ns=length(cs) # number of choice sets reading from the length of cs

nl=c(3,3,3,3,3)#,3,3) # a vector for the number of levels for attributes

#b = c(0,0,0,0)

#sigma = c(1,1,1,1)

b = 3*c(1,0,1,0,1,0,1,0,1,0)

sigma = 9*c(rep(1,8),rep(0,2))

#b=c(.4,.6,1,2)#,1,0,1,0) # value of mean vector

159

#sigma=c(.5,.5,1,1)#,1,1,1,1) # value of the parameters in covariance matrix

nb2 = 200 # number of draws for random effects

ny = 1000 # sample size of y if we are not using ally

indexr = (1: length(b))[sigma !=0]

indexf = (1: length(b))[sigma ==0]

br = b[indexr]

sigmar = sigma[indexr]

bf = b[indexf]

b = .5*c(1,0,1,0)

sigma = 1.5* rep(1,4)

b = .5*c(1,0,1,0)

sigma = .25* rep(1,4)

nattr <-length(nl) # number of attributes

dimb <-sum(nl)-nattr # number of parameters for the main effects

dimbr <- length(br)

qes <- rep(factor (1:ns),times=cs) # a vector of ids of the alternatives in each choice set.

ind <- c(0,cumsum(cs))

if(dimb > dimbr)

{

dyn.load(’laplaceybm.so ’)

laplace = function(modmat ,N=100)

{ I = matrix(1,dimb+dimbr ,dimb+dimbr)

sigmai = solve(diag(sigmar))

res=. Fortran(’laplaceybm ’,as.integer(ny),as.integer(modmat),as.integer(c), as.integer(S),as.

integer(J),as.double(b),as.double(sigma),as.double(sigmai),as.integer(dimb),as.integer(

dimbr),as.integer(N),I=as.double(I))

return(matrix(res$I ,dimb+dimbr ,dimb+dimbr))

}

}else{

dyn.load(’laplaceyb.so ’)

I = matrix (1,2*dimb ,2* dimb)

laplace = function(modmat ,N=100)

{

sigmai=solve(diag(sigma))

laplace(y,ny,uy,modmat ,s,j,b,sigma ,dimb ,n,infm)

res=. Fortran(’laplaceyb ’,as.integer(ny),as.integer(modmat),as.integer(c), as.integer(S),as.

integer(J),as.double(b),as.double(sigma),as.double(sigmai),as.integer(dimb),as.integer(N

),I=as.double(I))

return(matrix(res$I ,2*dimb ,2* dimb))

}

}

160

c=100000

###

ordinate exchange alg for generating designs

###

do<-Inf

contr=NULL

R = 10 # number of starting designs for coordinate exchange alg

design <-array(0,c(R,sum(cs),nattr)) # optimal designs from R starting designs

designc <-array(0,c(R,sum(cs),dimb)) # coded values of design

derr <- rep(0,R) # the determinant of the R optimal designs

count=0

for(r in 1:R)

{

st=NULL

fullfac=fac.design(nlevels=nl,random=F)

for(i in 1:S){st=c(st ,sample(prod(nl),J,replace=T))}

designm =(fullfac)[st ,]

if(is.null(contr))

{

contr=rep(’contr.sum ’,nattr)

names(contr)=names(designm)

contr=as.list(contr)

}

modmat=model.matrix (~.,designm ,contrasts = contr)[,-1] #contr is used to get effects type coding ,

current coded design

Ic=laplace(modmat)

#Ic=round(Ic ,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if((rankMatrix(Ic)<(dimb+dimbr)))

#if(rankMatrix(Ijt[,,j]) <(2*dimb))

{

dc = Inf

}else{

if(det(Ic) <0)

{

dc=Inf

}else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

#dc=abs(det(Ic))^{ -1/(2* dimb)} # determinant of the current design

dc=sum(eigen(solve(Ic))$values)/(dimb+dimbr)

a.jt[j]=sum(eigen(solve(Ijt[,,j]))$values)/(2* dimb)

d.jt[j]=(det(Ijt[,,j]))^(-1/(2* dimb))

if(dc < 0)

{

161

dc = Inf

}

}}

new=matrix () # new design

##n,n,i,j,k,l

m=1

while(m!=0) # if no exchange is made , then m=0

{

n=0 # number of exchange

for(i in 1:(sum(cs)*nattr)) # i goes through all elements in the uncoded design matrix

{

j=(i%% nattr) # column in uncoded design matrix , i.e., jth

attribute

if(j==0) {j=nattr}

k=(i-j)/nattr+1 # row in uncoded design matrix , i.e., kth row

ch=ceiling(k/J) # the ’ch’th choice set

diff=setdiff (1:nl[j],designm[k,j]) # possible levels for exchange

for(l in diff)

{

new=designm

new[k,j]=l # uncoded design

matrix after exchange

modmatnew=model.matrix (~.,new ,contrasts=contr)[,-1] # coded matrix of new

result1 = fi(modmat)

I1=laplace(modmatnew)

#c=round(Ic,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if((rankMatrix(I1)<(dimb+dimbr)))

#if(rankMatrix(Ijt[,,j]) <(2*dimb))

{

d1 = Inf

}else{

if(det(I1) <0)

{

d1=Inf

}else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)

/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

#d1 = abs(det(I1))^{ -1/(2* dimb)} # determinant of the

current design

d1=sum(eigen(solve(I1))$values)/(dimb+dimbr)

a.jt[j]=sum(eigen(solve(Ijt[,,j]))$values)

/(2* dimb)

d.jt[j]=(det(Ijt[,,j]))^(-1/(2* dimb))

if(d1 < 0)

{

162

d1 = Inf

}

}

}

if (d1<dc)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

if(d1 == dc)

{

u = runif (1,0,1)

if(u < 0.5)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

}

count=count +1

} #l

print(dc)

}# i

m=n

}#end of while

design[r,,]=as.matrix(designm)

designc[r,,]= modmat

derr[r]=dc

if(dc<do)

{

Io=Ic # information matrix of the optimal design

opt=designm # optimal design

mo=modmat # coded optimal design

do=dc # determinant of optimal design

}

save.image(’rcode.RData ’)

}# r

design.R = matrix(0,S*J,nattr*R)

for(i in 1:R)

{

design.R[,((i-1)*nattr +1):(i*nattr)]= design[i,,]

163

}

write.table(design.R,’design.txt ’,row.names=F,col.names=F)

write.table(opt ,’opt.txt ’,row.names=F,col.names=F)

write.table(do ,’do.txt ’,col.names=F,row.names=F)

write.table(derr ,’derr.txt ’,col.names=F,row.names=F)

save.image(’rcode.RData ’)

Fortran Code

subroutine laplaceybm(ny,modmat ,c,s,j,b,sigma ,sigmami ,dimb ,dimbr ,n,infm)

implicit none

integer , intent(in) :: ny ,s,j,n,dimb ,c,dimbr ! stop after n runs

of newton ’s alg

integer , dimension(S*J,ny) :: y

double precision , dimension(dimbr ,ny) :: uy

double precision , intent(in), dimension(dimb ,1) :: b,sigma

integer , intent(in),dimension(S*J,dimb) :: modmat

double precision , intent(in), dimension(dimbr ,dimbr) :: sigmami ! inverse of diag(sigma)

integer :: i, i1 ,j1,j2 ,nyd ,jj,l1,l2 ,ind1 ,ind2 ,i2,i3,ind

integer , dimension(j,dimb) :: modmatj ! modmat for a choice set

integer , dimension(j,dimbr) :: modmatjr ! modmat for a choice set

integer , dimension(s*j,dimbr) :: modmatr ! modmat for a choice set

double precision ,dimension(j,j) :: deltaj ! delta for a choice set

double precision :: sumy ,denom ,hddet ,u,stepsize

double precision , dimension(s*j,1) :: p,pp,uty

double precision , dimension(j,1) :: pj ,postptemp ,ptemp ,postptemp1

double precision , dimension(s*j,1) :: epy ,num1 ,eps ,v

double precision , dimension(dimbr ,1) :: eu2 ,num2 ,gr,mleu0 ,mleu1 ,mstart ,sigmar ! e(u^2/

sigma ^3|y)

double precision , dimension(dimb ,1) :: bb

integer , dimension(dimbr ,1) :: ej

integer , dimension (1,2) :: pos

double precision , dimension(dimb ,1) :: score1 ,beta

double precision , dimension(dimbr ,1) :: score2

double precision , dimension(dimb ,dimb) :: i11

double precision , dimension(dimb ,dimbr) :: i12

double precision , dimension(dimbr ,dimbr) :: i22 ,he,hd ,hei

double precision , dimension(dimb+dimbr ,dimb+dimbr) :: infm

double precision , dimension(s*j,s*j) :: delta

double precision , parameter :: tol = 1.d-12

integer :: con

double precision , PARAMETER :: Pi = 3.14159265359

uy = 0

u = 0

sigmar = 0

modmatr = 0

modmatjr = 0

164

do i1 = 1,dimbr

sigmar(i1 ,1) = sigma(i1 ,1)

end do

Do I1 = 1,ny ! number of y

DO I2=1,(S*J) !

CALL RANDOM_NUMBER(u)

eps(I2 ,1)=-log(-log(U))

end do !I2

do I2 = 1,dimbr

call random_normal(uy(i2 ,i1))

uy(i2,i1) = uy(i2,i1)*sqrt(sigma(i2 ,1))

beta(i2 ,1) = b(i2 ,1) + uy(i2,i1)

end do

do i2 = (dimbr +1),dimb

beta(i2 ,1) = b(i2 ,1)

end do

v(:,1)=matmul(modmat ,beta (:,1))+eps(:,1) ! utility of one y vector

y(:,i1)=0

do I2=1,S ! I2 choice set

ind= (I2 -1)*J+1 ! 1st alt in I2 , index for the chosen alt

y(IND ,I1)=1 ! current chosen alternative , 1st alt in choice set

do I3=2,J ! 2 to Jth alternative

if(v((I2 -1)*J+I3 ,1)>v(ind ,1)) then ! if the alt larger than the current chosen one

y((I2 -1)*J+I3 ,I1)=1 ! chosen

y(ind ,I1)=0 ! not chose

ind=(I2 -1)*J+I3 ! update the index for the chosen one

end if

end do !I3,alt

end do !I2 ,choice set

end do !I1 ,y

hei = 0

!delta = 0

!p = 0

hd = 0

hddet = 0

i11 = 0

i12 = 0

i22 = 0

nyd = ny

do i1 = 1,dimbr

modmatr(:,i1) = modmat(:,i1)

end do

do i=1,ny

! get E(p|y),E(u^2/ simga ^3|y) from laplace approximation

! epy

!mleu0 (:,1) = uy(:,i) !starting value for u

165

mleu0 (:,1) = uy(:,i) !starting value for u

con = 0 ! 1 is newton ’s alg for denominator converges

j1 = 1 ! find maximizer u for denominator

do while (j1 <=n)

do l1 = 1,dimbr

bb(l1 ,1) = b(l1 ,1) + mleu0(l1 ,1)

end do

do l1 = (dimbr +1),dimb

bb(l1 ,1) = b(l1 ,1)

end do

UTY = exp(MATMUL(modmat ,bb))

delta = 0

DO l1 = 1,S ! the probability of y,

ind1 = (l1 -1)*j+1

ind2 = l1*j

SUMY = sum(UTY(ind1:ind2 ,1))

p(ind1:ind2 ,1)=UTY(ind1:ind2 ,1)/SUMY

ptemp (:,1) = p(ind1:ind2 ,1)

delta(ind1:ind2 ,ind1:ind2) = - matmul(ptemp ,transpose(ptemp))

do l2 = 1,j

delta(ind1 -1+l2 ,ind1 -1+l2) = delta(ind1 -1+l2 ,ind1 -1+l2)+p(ind1 -1+l2 ,1)

end do

end do

gr(:,1) = matmul(transpose(modmatr),y(:,i)-p(:,1))- matmul(sigmami ,mleu0 (:,1))

he = -matmul(matmul(transpose(modmatr),delta),modmatr)-sigmami

stepsize =1/(1+10* sqrt(sum(gr(:,1) **2)))

call solve(dimbr ,he,hei)

mleu1 = mleu0 - stepsize*matmul(hei ,gr)

if(sqrt(sum((mleu1 -mleu0)**2))<tol) then

j1 = n+1

con = 1

else

mleu0 = mleu1

j1 = j1+1

end if

end do ! while

if(con ==1) then ! the newton algrithm in the denominator converges

call solve(dimbr , he, hd)

hd = -hd

call det(dimbr , hd , hddet)

denom = sqrt(hddet)*product(p(:,1)**y(:,i))*product ((1/(sqrt (2*pi*SIGMAr)))*exp(-(mleu0 **2) /(2*

sigmar)))

mstart = mleu0

do j1 = 1,S*J ! element in the numerator vector

mleu0 = mstart ! starting value for the jth element

i1 = floor ((j1 -1.0)/J)+1 ! ith choice set

166

modmatj = modmat (((i1 -1)*j+1):(i1*j) ,:) ! modmat for the ith choice set

modmatjr = modmatj (:,1: dimbr)

jj = 1

do while(jj <= n)

do l1 = 1,dimbr

bb(l1 ,1) = b(l1 ,1) + mleu0(l1 ,1)

end do

do l1 = (dimbr +1),dimb

bb(l1 ,1) = b(l1 ,1)

end do

UTY = exp(MATMUL(modmat ,bb))

delta = 0

DO l1 = 1,S ! the probability of y,

ind1 = (l1 -1)*j+1

ind2 = l1*j

SUMY = sum(UTY(ind1:ind2 ,1))

p(ind1:ind2 ,1)=UTY(ind1:ind2 ,1)/SUMY

ptemp (:,1) = p(ind1:ind2 ,1)

delta(ind1:ind2 ,ind1:ind2) = - matmul(ptemp ,transpose(ptemp))

do l2 = 1,j

delta(ind1 -1+l2 ,ind1 -1+l2) = delta(ind1 -1+l2 ,ind1 -1+l2)+p(ind1 -1+l2 ,1)

end do

end do

pp = p

pp(j1 ,1) = -1+p(j1 ,1)

pj(:,1) = -pp(((i1 -1)*j+1):(i1*j) ,1)

gr(:,1) = matmul(transpose(modmatjr),pj(:,1))&

+matmul(transpose(modmatr),y(:,i)-p(:,1))&

-matmul(sigmami ,mleu0 (:,1))

deltaj = delta (((i1 -1)*j+1):(i1*j) ,((i1 -1)*j+1):(i1*j))

he = - matmul(matmul(transpose(modmatjr),deltaj),modmatjr)&

-matmul(matmul(transpose(modmatr),delta),modmatr)-sigmami

call solve(dimbr ,he,hei)

stepsize =1/(1+10* sqrt(sum(gr(:,1) **2)))

mleu1 = mleu0 - stepsize*matmul(hei ,gr)

if(sqrt(sum((mleu1 -mleu0)**2))<tol) then

jj = n+1

else

mleu0 = mleu1

jj = jj+1

end if

end do ! while

call solve(dimbr , he, hd)

hd = -hd

call det(dimbr , hd , hddet)

num1(j1 ,1) = sqrt(hddet)*p(j1 ,1)*product(p(:,1)**y(:,i))*product ((1/(sqrt (2*pi*SIGMAr)))&

*exp(-(mleu0 **2) /(2* sigmar)))

167

end do !j1

do j1 = 1,dimbr ! element in the numerator vector

mleu0 = mstart ! starting value for the jth element

jj = 1

ej = 0

ej(j1 ,1) =1

do while(jj <= n)

do l1 = 1,dimbr

bb(l1 ,1) = b(l1 ,1) + mleu0(l1 ,1)

end do

do l1 = (dimbr +1),dimb

bb(l1 ,1) = b(l1 ,1)

end do

UTY = exp(MATMUL(modmat ,bb))

delta = 0

DO l1 = 1,S ! the probability of y,

ind1 = (l1 -1)*j+1

ind2 = l1*j

SUMY = sum(UTY(ind1:ind2 ,1))

p(ind1:ind2 ,1)=UTY(ind1:ind2 ,1)/SUMY

ptemp (:,1) = p(ind1:ind2 ,1)

delta(ind1:ind2 ,ind1:ind2) = - matmul(ptemp ,transpose(ptemp))

do l2 = 1,j

delta(ind1 -1+l2 ,ind1 -1+l2) = delta(ind1 -1+l2 ,ind1 -1+l2)+p(ind1 -1+l2 ,1)

end do

end do

gr(:,1) =(2* mleu0(j1 ,1)/(mleu0(j1 ,1) **2+c*sqrt(sigmar(j1 ,1))**3))*ej(:,1)&

+matmul(transpose(modmatr),y(:,i)-p(:,1))&

-matmul(sigmami ,mleu0 (:,1))

he = (2*(c*sqrt(sigmar(j1 ,1))**3-mleu0(j1 ,1) **2)/(mleu0(j1 ,1) **2+c*sqrt(sigmar(j1 ,1))

**3) **2)&

*matmul(ej,transpose(ej))&

-matmul(matmul(transpose(modmatr),delta),modmatr)-sigmami

call solve(dimbr ,he ,hei)

stepsize =1/(1+10* sqrt(sum(gr(:,1) **2)))

mleu1 = mleu0 - stepsize*matmul(hei ,gr)

if(sqrt(sum((mleu1 -mleu0)**2))<tol) then

jj = n+1

else

mleu0 = mleu1

jj = jj+1

end if

end do ! while

call solve(dimbr , he, hd)

hd = -hd

call det(dimbr , hd , hddet)

! num2(j1 ,1) = sqrt(hddet)*((mleu0(j1 ,1) **2+100) /(sqrt(sigma(j1 ,1))**3))&

168

! *product(p(:,1)**y(:,i))*product ((1/(sqrt (2*pi*SIGMA)))*exp(-(mleu0 **2) /(2*

sigma)))

num2(j1 ,1) = sqrt(hddet)*((mleu0(j1 ,1) **2+c*sqrt(sigmar(j1 ,1))**3)/(sqrt(sigmar(j1 ,1))**3))

&

*product(p(:,1)**y(:,i))*product ((1/(sqrt (2*pi*SIGMAr)))*exp(-(mleu0 **2) /(2* sigmar)))

end do !j1

epy = num1/denom

do j2 = 1,s! redundancies

IND1=(J2 -1)*j+1

ind2 = j2*j

epy(ind1:ind2 ,1) = epy(ind1:ind2 ,1) / sum(epy(ind1:ind2 ,1))

!postptemp (:,1)=epy(ind1:ind2 ,1)

!pos(1,:) = minloc(postptemp)

!postptemp1 (:,1) = postptemp (:,1)

!postptemp1 (:,pos(1,1)) = -1

!pos(1,:) = maxloc(postptemp1)

!postptemp(pos(1,1) ,1)=1-sum(postptemp)+postptemp(pos(1,1) ,1)

!epy(ind1:ind2 ,1)=postptemp (:,1)

end do

eu2 = num2/denom -c

! end of epy , eu2

score1 (:,1) = matmul(transpose(modmat),y(:,i)-epy(:,1))

score2 =-1/sqrt(sigmar) + eu2

do j2 = 1, dimbr

if(eu2(j2 ,1) <0) then

score1 (:,1)=0

score2 (:,1)=0

end if

end do

if(score2 (1,1) ==0) then

nyd = nyd -1

end if

i11 = i11 + matmul(score1 ,transpose(score1))

i12 = i12 + matmul(score1 ,transpose(score2))

i22 = i22 + matmul(score2 ,transpose(score2))

else

nyd = nyd -1

end if

end do ! i

infm (1:dimb ,1: dimb) = I11

infm (1:dimb ,(dimb +1):(dimb+dimbr)) = I12

infm((dimb +1):(dimb+dimbr) ,1:dimb) = TRANSPOSE(I12)

infm((dimb +1):(dimb+dimbr),(dimb +1):(dimb+dimbr)) = I22

infm=infm/nyd

return

end subroutine laplaceybm

169

6.2 Code for MSM

The following code is for implementing coordinate exchange algorithm with design

criteria based on method of simulated moments in Section 4.4. The Fortran code

needs to be compiled first before running the R code. The coordinate exchange

algorithm in the R code uses the MSM approximation in the Fortran code to

evaluate each design.

R code

library(DoE.base)

library(MASS)

library(Matrix)

##############################

main 141013

##############################

S = 10 # number of choice sets

J = 2 # number of alternatives per choice sets

cs = c(,,,,) # input vector , the number of alternatives in each choice set , S, J can be read from cs

cs=rep(J,S) # a vector for numbers of alternatives in choice sets , used

ns=length(cs) # number of choice sets reading from the length of cs

nl=c(3,3,3,3,3)#,3,3) # a vector for the number of levels for attributes

#b = c(0,0,0,0)

#sigma = c(1,1,1,1)

b = 3*c(1,0,1,0,1,0,1,0,1,0)

sigma = 9*c(rep(1,8),rep(0,2))

#b=c(.4,.6,1,2)#,1,0,1,0) # value of mean vector

#sigma=c(.5,.5,1,1)#,1,1,1,1) # value of the parameters in covariance matrix

nb2 = 200 # number of draws for random effects

ny = 1000 # sample size of y if we are not using ally

nu = 1000

indexr = (1: length(b))[sigma !=0]

indexf = (1: length(b))[sigma ==0]

br = b[indexr]

sigmar = sigma[indexr]

bf = b[indexf]

170

b = .5*c(1,0,1,0)

sigma = 1.5* rep(1,4)

b = .5*c(1,0,1,0)

sigma = .25* rep(1,4)

nattr <-length(nl) # number of attributes

dimb <-sum(nl)-nattr # number of parameters for the main effects

dimbr <- length(br)

qes <- rep(factor (1:ns),times=cs) # a vector of ids of the alternatives in each choice set.

ind <- c(0,cumsum(cs))

dyn.load(’momm.so ’)

vm = matrix(1,dimb+dimbr ,dimb+dimbr)

du = matrix(1,dimb+dimbr ,dimb+dimbr)

mom = function(modmat ,ny,nu)

{

laplace(y,ny,uy ,modmat ,s,j,b,sigma ,dimb ,n,infm)

res=. Fortran(’mom ’,as.integer(ny),as.integer(nu),as.integer(modmat),as.integer(S),as.integer(J),as.

double(b),as.double(sigma),as.integer(dimb),as.integer(dimbr),vm=as.double(vm),du=as.double(du))

vm=matrix(res$vm ,dimb+dimbr ,dimb+dimbr)

du=matrix(res$du ,dimb+dimbr ,dimb+dimbr)

return(I=t(du)%*% ginv(vm)%*%du)

}

###

ordinate exchange alg for generating designs

###

do<-Inf

contr=NULL

R=10 # number of starting designs for coordinate exchange alg

design <-array(0,c(R,sum(cs),nattr)) # optimal designs from R starting designs

designc <-array(0,c(R,sum(cs),dimb)) # coded values of design

derr <- rep(0,R) # the determinant of the R optimal designs

count=0

for(r in 1:R)

{

st=NULL

fullfac=fac.design(nlevels=nl,random=F)

for(i in 1:S){st=c(st ,sample(prod(nl),J,replace=T))}

designm =(fullfac)[st ,]

if(is.null(contr))

{

contr=rep(’contr.sum ’,nattr)

names(contr)=names(designm)

171

contr=as.list(contr)

}

modmat=model.matrix (~.,designm ,contrasts = contr)[,-1] #contr is used to get effects type coding ,

current coded design

Ic=mom(modmat ,ny ,nu)

Ic=round(Ic ,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if(all(is.na(Ic))==T)

{

dc = Inf

}else{

if(rankMatrix(Ic)<(dimbr+dimb)|| isSymmetric(Ic)==F)

{ dc = Inf

} else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

a.lap[j]=sum(eigen(solve(Ilap[,,j]))$values)/(2* dimb)

d.lap[j]=(det(Ilap[,,j]))^(-1/(2* dimb))

dc=sum(eigen(solve(Ic))$values)/(dimb+dimbr)

#dc=(det(Ic))^(-1/(2* dimb))

if(dc < 0)

{

dc = Inf

}

}

}

new=matrix () # new design

##n,n,i,j,k,l

m=1

while(m!=0) # if no exchange is made , then m=0

{

n=0 # number of exchange

for(i in 1:(sum(cs)*nattr)) # i goes through all elements in the uncoded design matrix

{

j=(i%% nattr) # column in uncoded design matrix , i.e., jth

attribute

if(j==0) {j=nattr}

k=(i-j)/nattr+1 # row in uncoded design matrix , i.e., kth row

ch=ceiling(k/J) # the ’ch’th choice set

diff=setdiff (1:nl[j],designm[k,j]) # possible levels for exchange

for(l in diff)

{

new=designm

new[k,j]=l # uncoded design

matrix after exchange

172

modmatnew=model.matrix (~.,new ,contrasts=contr)[,-1] # coded matrix of new

result1 = fi(modmat)

I1=mom(modmatnew ,ny,nu)

I1=round(I1 ,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if(all(is.na(I1))==T)

{

d1 = Inf

}else{

if(rankMatrix(I1)<(dimb+dimbr)|| isSymmetric(

I1)==F)

{ d1 = Inf

} else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

a.lap[j]=sum(eigen(solve(Ilap[,,j]))$values)/(2* dimb)

d.lap[j]=(det(Ilap[,,j]))^(-1/(2* dimb))

d1=sum(eigen(solve(I1))$values)/(dimb+dimbr)

#d1=(det(I1))^(-1/(2* dimb))

if(d1 < 0)

{

d1 = Inf

}

}

}

if (d1<dc)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

if(d1 == dc)

{

u = runif (1,0,1)

if(u < 0.5)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

}

count=count +1

} #l

173

print(dc)

}# i

m=n

}#end of while

design[r,,]=as.matrix(designm)

designc[r,,]= modmat

derr[r]=dc

if(dc<do)

{

Io=Ic # information matrix of the optimal design

opt=designm # optimal design

mo=modmat # coded optimal design

do=dc # determinant of optimal design

}

save.image(’rcode.RData ’)

}# r

design.R = matrix(0,S*J,nattr*R)

for(i in 1:R)

{

design.R[,((i-1)*nattr +1):(i*nattr)]= design[i,,]

}

write.table(design.R,’design.txt ’,row.names=F,col.names=F)

write.table(opt ,’opt.txt ’,row.names=F,col.names=F)

write.table(do ,’do.txt ’,col.names=F,row.names=F)

write.table(derr ,’derr.txt ’,col.names=F,row.names=F)

save.image(’rcode.RData ’)

Fortran Code

subroutine mom(ny,nu,modmat ,s,j,b,sigma ,dimb ,dimbr ,vm1 ,du1)

implicit none

integer , dimension(S*J,ny) :: y

integer , intent(in) :: ny ,nu,s,j,dimb ,dimbr ! stop after n runs

of newton ’s alg

double precision , dimension(dimb ,ny) :: uy

double precision , dimension(dimb ,nu) :: un

double precision , intent(in), dimension(dimb ,1) :: b,sigma

double precision , dimension(s*j,nu) :: p

double precision , dimension(s*j,1) :: ep

double precision , dimension(s*j,dimb) :: epu , u11 , u12

double precision , dimension ((s*j)**2,1) :: epp

double precision , dimension ((s*j)**2,dimb) :: eppu , u21 ,u22 , xx

double precision , dimension ((s*j)**3,1) :: eppp

double precision , dimension ((s*j)**3,dimb) :: epppu

integer , intent(in),dimension(S*J,dimb) :: modmat

double precision , dimension(dimb ,dimb) :: du11 ,du12 ,du21 ,du22

174

double precision ,dimension (2*dimb ,2* dimb) :: du , vm

double precision , dimension (2*dimb ,1) :: em

double precision ,dimension (2*dimb ,ny) :: mme

integer :: i1 ,j1,j2,ind1 ,ind2 ,i2 ,i3,ind ,i4 ,n1,n2,sttemp1 ,

entemp1 ,s1 ,s2

integer :: sttemp2 ,entemp2 ,index

double precision :: sumy ,u,ppi ,pppi ,ss1 ,ss2

double precision , dimension(s*j,1) :: uty

double precision , dimension(s*j,1) :: epy ,eps ,v,pi

double precision , dimension(dimb ,1) :: beta , ui

integer , dimension(s,1) :: st, en

double precision , dimension(1,dimb) :: u12temp ,u21temp , u22temp ,tui ,u11temp

double precision , dimension(dimb+dimbr ,dimb+dimbr) :: vm1 ,vmi ,du1 ,imom ,vmom

uy = 0

u = 0

Do I1 = 1,ny ! number of y

DO I2=1,(S*J) !

CALL RANDOM_NUMBER(u)

eps(I2 ,1)=-log(-log(U))

end do !I2

do I2 = 1,dimb

call random_normal(uy(i2 ,i1))

uy(i2,i1) = uy(i2,i1)*sqrt(sigma(i2 ,1))

end do

beta (:,1) = b(:,1) + uy(:,i1)

v(:,1)=matmul(modmat ,beta (:,1))+eps(:,1) ! utility of one y vector

y(:,i1)=0

do I2=1,S ! I2 choice set

ind= (I2 -1)*J+1 ! 1st alt in I2 , index for the chosen alt

y(IND ,I1)=1 ! current chosen alternative , 1st alt in choice set

do I3=2,J ! 2 to Jth alternative

if(v((I2 -1)*J+I3 ,1)>v(ind ,1)) then ! if the alt larger than the current chosen one

y((I2 -1)*J+I3 ,I1)=1 ! chosen

y(ind ,I1)=0 ! not chose

ind=(I2 -1)*J+I3 ! update the index for the chosen one

end if

end do !I3,alt

end do !I2 ,choice set

end do !I1 ,y

Do I1 = 1,nu ! number of y

do I2 = 1,dimb

call random_normal(un(i2 ,i1))

beta(i2 ,1) = b(i2 ,1) + un(i2,i1)*sqrt(sigma(i2 ,1))

end do

UTY = exp(MATMUL(modmat ,beta))

DO I2 = 1,S ! the probability of y,

175

ind1 = (I2 -1)*j+1

ind2 = I2*j

SUMY = sum(UTY(ind1:ind2 ,1))

p(ind1:ind2 ,i1)=UTY(ind1:ind2 ,1)/SUMY

end do

end do !I1 ,y

ep = 0

epu = 0

epp = 0

eppu = 0

eppp = 0

epppu = 0

do i1 = 1,nu

ep(:,1) = ep(:,1) + p(:,i1)

pi(:,1) = p(:,i1)

ui(:,1) = un(:,i1)

tui = transpose(ui)

epu = epu + matmul(pi,tui)

do i2 = 1,(s*j)

do i3 = 1,(s*j)

ppi = p(i2,i1)*p(i3,i1)

index = (i2 -1)*s*j+i3

epp(index ,1) = epp(index ,1) + ppi

eppu(index ,:) = eppu(index ,:) + ppi*tui(1,:)

do i4 = 1,(s*j)

pppi = ppi*p(i4,i1)

index = ((i2 -1)*s*j+i3 -1)*s*j +i4

eppp(index ,1) = eppp(index ,1) + pppi

epppu(index ,:) = epppu(index ,:) + pppi*tui(1,:)

end do !i4

end do !i3

end do !i2

end do !i1

ep = ep/nu

epu = epu /nu

epp = epp / nu

eppu = eppu/nu

eppp = eppp/nu

epppu = epppu/nu

do i1 = 1, s

st(i1 ,1) = (i1 -1)*j+1

en(i1 ,1) = i1*J

end do

s1 = 1

do n1 = 1,(s*j)

176

if(n1==(s1*j+1)) then

s1 = s1+1

end if

j1 = n1 -(s1 -1)*j

sttemp1 = st(s1 ,1)

entemp1 = en(s1 ,1)

u11temp = 0

u12temp = 0

do i2 =1, j

u11temp (1,:) = u11temp (1,:)+epp((n1 -1)*(s*j)+sttemp1+i2 -1,1)*modmat(sttemp1+i2 -1,:)

do i3 = 1, dimb

u12temp(1,i3) = u12temp(1,i3)+modmat(sttemp1+i2 -1,i3)*eppu((n1 -1)*(s*j)+sttemp1+i2 -1,i3)

end do !i3

end do !i2

u11(n1 ,:) = ep(n1 ,1)*modmat(n1 ,:)-u11temp (1,:)

do i2 = 1,dimb

u12(n1 ,i2) = modmat(n1 ,i2)*epu(n1,i2)-u12temp(1,i2)

end do !i2

s2 = 1

do n2 = 1,(s*j)

if(n2==(s2*j+1)) then

s2 = s2+1

end if

j2 = n2 -(s2 -1)*j

sttemp2 = st(s2 ,1)

entemp2 = en(s2 ,1)

index = (n1 -1)*s*j+n2

if(s1 == s2) then

if(j1==j2) then

u21(index ,:) = u11(n1 ,:)

u22(index ,:) = u12(n1 ,:)

else

u21(index ,:) = 0

u22(index ,:) = 0

end if

else

u21temp = 0

u22temp = 0

do i2 = 1,J

ind1 = ((n1 -1)*s*j+sttemp1+i2 -1-1)*s*j+n2

ind2 = ((n2 -1)*s*j+sttemp2+i2 -1-1)*s*j+n1

u21temp (1,:) = u21temp (1,:) + eppp(ind1 ,1)*modmat(sttemp1+i2 -1,:)+eppp(ind2 ,1)*modmat(

sttemp2+i2 -1,:)

do i3 = 1,dimb

u22temp(1,i3) = u22temp(1,i3) + modmat(sttemp1+i2 -1,i3)*epppu(ind1 ,i3)+modmat(sttemp2+i2

-1,i3)*epppu(ind2 ,i3)

end do !i3

177

end do !i2

u21(index ,:) = epp(index ,1)*(modmat(n1 ,:)+modmat(n2 ,:))-u21temp (1,:)

do i2 = 1,dimb

u22(index ,i2) = (modmat(n1 ,i2)+modmat(n2 ,i2))*eppu(index ,i2)-u22temp(1,i2)

end do !i2

end if

end do !n2

end do !n1

do i1 = 1,dimb

do i2 = 1,(s*j)

do i3 = 1,(s*j)

index = (i2 -1)*s*j+i3

xx(index ,i1) = modmat(i2,i1)*modmat(i3,i1)

end do !i3

end do !i2

end do !i1

du11 = matmul(transpose(modmat),u11)

du12 = matmul(transpose(modmat),u12)

du21 = matmul(transpose(xx),u21)

du22 = matmul(transpose(xx),u22)

mme (1:dimb ,:) = matmul(transpose(modmat),y)

mme((dimb +1) :(2* dimb) ,:) = matmul(transpose(modmat),y)**2

vmi = 0

vmom = 0

em(:,1) = sum(mme ,dim=2)/ny

vm = matmul(mme , transpose(mme))/ny -matmul(em ,transpose(em))

vm1 = vm(1:(dimb+dimbr) ,1:(dimb+dimbr))

!call solve(dimb+dimbr ,vm1 ,vmi)

du(1:dimb ,1: dimb) = du11

du(1:dimb ,(dimb +1) :(2* dimb))=du12

du((dimb +1) :(2* dimb) ,1:dimb) = du21

du((dimb +1) :(2* dimb) ,(dimb +1) :(2* dimb))=du22

du1 = du(1:(dimb+dimbr) ,1:(dimb+dimbr))

!imom = matmul(transpose(du1),matmul(vmi ,du1))

!call solve((dimb+dimbr),imom ,vmom)

return

end subroutine mom

178

6.3 Code for PQL

The following code is for implementing coordinate exchange algorithm with design

criteria based on PQL in Section 4.3. The Fortran code needs to be compiled first

before running the R code. The coordinate exchange algorithm in the R code uses

the PQL approximation in the Fortran code to evaluate each design.

R Code

library(DoE.base)

library(MASS)

library(Matrix)

##############################

main 141013

##############################

S = 10 # number of choice sets

J = 2 # number of alternatives per choice sets

cs = c(,,,,) # input vector , the number of alternatives in each choice set , S, J can be read from cs

cs=rep(J,S) # a vector for numbers of alternatives in choice sets , used

ns=length(cs) # number of choice sets reading from the length of cs

nl=c(3,3,3,3,3)#,3,3) # a vector for the number of levels for attributes

#b = c(0,0,0,0)

#sigma = c(1,1,1,1)

b = 3*c(1,0,1,0,1,0,1,0,1,0)

sigma = 9*c(rep(1,8),rep(0,2))

ny = 100

indexr = (1: length(b))[sigma !=0]

indexf = (1: length(b))[sigma ==0]

br = b[indexr]

sigmar = sigma[indexr]

bf = b[indexf]

b = .5*c(1,0,1,0)

sigma = 1.5* rep(1,4)

b = .5*c(1,0,1,0)

sigma = .25* rep(1,4)

nattr <-length(nl) # number of attributes

dimb <-sum(nl)-nattr # number of parameters for the main effects

179

dimbr <- length(br)

qes <- rep(factor (1:ns),times=cs) # a vector of ids of the alternatives in each choice set.

ind <- c(0,cumsum(cs))

dyn.load(’pql.so ’)

pql = function(modmat ,N=100)

{ I = matrix(1,dimb+dimbr ,dimb+dimbr)

sigmai = solve(diag(sigmar))

res=. Fortran(’pql ’,as.integer(ny),as.integer(modmat),as.integer(S),as.integer(J),as.double(b),as.double(sigma

),as.double(sigmai),as.integer(dimb),as.integer(dimbr),as.integer(N),I=as.double(I))

return(matrix(res$I ,dimb+dimbr ,dimb+dimbr))

}

###

ordinate exchange alg for generating designs

###

do<-Inf

contr=NULL

R=10 # number of starting designs for coordinate exchange alg

design <-array(0,c(R,sum(cs),nattr)) # optimal designs from R starting designs

designc <-array(0,c(R,sum(cs),dimb)) # coded values of design

derr <- rep(0,R) # the determinant of the R optimal designs

count=0

for(r in 1:R)

{

st=NULL

fullfac=fac.design(nlevels=nl,random=F)

for(i in 1:S){st=c(st ,sample(prod(nl),J,replace=T))}

designm =(fullfac)[st ,]

if(is.null(contr))

{

contr=rep(’contr.sum ’,nattr)

names(contr)=names(designm)

contr=as.list(contr)

}

modmat=model.matrix (~.,designm ,contrasts = contr)[,-1] #contr is used to get effects type coding ,

current coded design

Ic=pql(modmat)

#Ic=round(Ic ,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if(any(is.na(Ic))==T)

{

dc = Inf

180

}else{

if((rankMatrix(Ic)<(dimb+dimbr))|| isSymmetric(Ic)==F)

#if(rankMatrix(Ijt[,,j]) <(2*dimb))

{

dc = Inf

}else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

#dc=abs(det(Ic))^{ -1/(2* dimb)} # determinant of the current design

dc=sum(eigen(solve(Ic))$values)/(dimb+dimbr)

a.jt[j]=sum(eigen(solve(Ijt[,,j]))$values)/(2* dimb)

d.jt[j]=(det(Ijt[,,j]))^(-1/(2* dimb))

if(dc < 0)

{

dc = Inf

}

}}

new=matrix () # new design

##n,n,i,j,k,l

m=1

while(m!=0) # if no exchange is made , then m=0

{

n=0 # number of exchange

for(i in 1:(sum(cs)*nattr)) # i goes through all elements in the uncoded design matrix

{

j=(i%% nattr) # column in uncoded design matrix , i.e., jth

attribute

if(j==0) {j=nattr}

k=(i-j)/nattr+1 # row in uncoded design matrix , i.e., kth row

ch=ceiling(k/J) # the ’ch’th choice set

diff=setdiff (1:nl[j],designm[k,j]) # possible levels for exchange

for(l in diff)

{

new=designm

new[k,j]=l # uncoded design

matrix after exchange

modmatnew=model.matrix (~.,new ,contrasts=contr)[,-1] # coded matrix of new

result1 = fi(modmat)

I1=pql(modmatnew)

#c=round(Ic,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if(any(is.na(I1))==T)

{

d1 = Inf

}else{

if((rankMatrix(I1)<(dimb+dimbr))|| isSymmetric(I1)==

F)

181

#if(rankMatrix(Ijt[,,j]) <(2*dimb))

{

d1 = Inf

}else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)

/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

#d1 = abs(det(I1))^{ -1/(2* dimb)} # determinant of the

current design

d1=sum(eigen(solve(I1))$values)/(dimb+dimbr)

a.jt[j]=sum(eigen(solve(Ijt[,,j]))$values)

/(2* dimb)

d.jt[j]=(det(Ijt[,,j]))^(-1/(2* dimb))

if(d1 < 0)

{

d1 = Inf

}

}}

if (d1<dc)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

if(d1 == dc)

{

u = runif (1,0,1)

if(u < 0.5)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

}

count=count +1

} #l

print(dc)

}# i

m=n

}#end of while

design[r,,]=as.matrix(designm)

designc[r,,]= modmat

derr[r]=dc

182

if(dc<do)

{

Io=Ic # information matrix of the optimal design

opt=designm # optimal design

mo=modmat # coded optimal design

do=dc # determinant of optimal design

}

save.image(’rcode.RData ’)

}# r

design.R = matrix(0,S*J,nattr*R)

for(i in 1:R)

{

design.R[,((i-1)*nattr +1):(i*nattr)]= design[i,,]

}

write.table(design.R,’design.txt ’,row.names=F,col.names=F)

write.table(opt ,’opt.txt ’,row.names=F,col.names=F)

write.table(do ,’do.txt ’,col.names=F,row.names=F)

write.table(derr ,’derr.txt ’,col.names=F,row.names=F)

save.image(’rcode.RData ’)

Fortran Code

subroutine pql(ny,modmat ,s,j,b,sigma ,sigmami ,dimb ,dimbr ,n,infm)

implicit none

integer , intent(in) :: ny ,s,j,n,dimb ,dimbr ! stop after n runs of

newton ’s alg

integer , dimension(S*J,ny) :: y

double precision , dimension(dimbr ,ny) :: uy

double precision , intent(in), dimension(dimb ,1) :: b,sigma

integer , intent(in),dimension(S*J,dimb) :: modmat

integer ,dimension(S*(J-1),dimb) :: modmatd

double precision , intent(in), dimension(dimbr ,dimbr) :: sigmami ! inverse of diag(sigma)

double precision ,dimension(s*(j-1),s*(j-1)) :: deltad ,deltadi ,vn ,vni

double precision , dimension(dimb , dimb) :: sigmam

integer :: i, i1 ,j1,nyd ,l1 ,l2,ind1 ,ind2 ,i2,i3 ,ind

integer , dimension(s*j,dimbr) :: modmatr ! modmat for a choice set

integer , dimension(s*(j-1),dimbr) :: modmatrd

double precision :: sumy ,denom ,u,stepsize

double precision , dimension(s*j,1) :: p,uty

double precision , dimension(j,1) :: pj ,ptemp ,postptemp1

double precision , dimension(s*j,1) :: epy ,num1 ,eps ,v

double precision , dimension(dimbr ,1) :: eu2 ,num2 ,gr,mleu0 ,mleu1 ,mstart ,sigmar ! e(u^2/

sigma ^3|y)

double precision , dimension(dimb ,1) :: bb

integer , dimension(dimbr ,1) :: ej

183

double precision , dimension(dimb ,1) :: beta

double precision , dimension(dimb ,dimb) :: i11 ,i11temp ,i22

double precision , dimension(dimb ,dimbr) :: i12

double precision , dimension(dimbr ,dimbr) :: he,hd ,hei

double precision , dimension(dimb+dimbr ,dimb+dimbr) :: infm

double precision , dimension(s*j,s*j) :: delta

double precision , parameter :: tol = 1.d-12

integer :: con

double precision , PARAMETER :: Pi = 3.14159265359

uy = 0

u = 0

sigmar = 0 ! part of sigmar which is corresponding to the random effects

modmatr = 0 ! part of modmat ...

sigmam = 0

!!

! non zeor part of sigma

do i1 = 1,dimbr

sigmar(i1 ,1) = sigma(i1 ,1)

end do

!!

! sigmam is diagonal matrix of sigma

do i1 = 1,dimb

sigmam(i1,i1) = sigma(i1 ,1)

end do

beta = 0

!!

! generate y

Do I1 = 1,ny ! number of y

DO I2=1,(S*J) !

CALL RANDOM_NUMBER(u)

eps(I2 ,1)=-log(-log(U))

end do !I2

do I2 = 1,dimbr

call random_normal(uy(i2 ,i1))

uy(i2,i1) = uy(i2,i1)*sqrt(sigma(i2 ,1))

beta(i2 ,1) = b(i2 ,1) + uy(i2,i1)

end do

if(dimb > dimbr) then

do i2 = (dimbr +1),dimb

beta(i2 ,1) = b(i2 ,1)

end do

end if

v(:,1)=matmul(modmat ,beta (:,1))+eps(:,1) ! utility of one y vector

y(:,i1)=0

184

do I2=1,S ! I2 choice set

ind= (I2 -1)*J+1 ! 1st alt in I2 , index for the chosen alt

y(IND ,I1)=1 ! current chosen alternative , 1st alt in choice set

do I3=2,J ! 2 to Jth alternative

if(v((I2 -1)*J+I3 ,1)>v(ind ,1)) then ! if the alt larger than the current chosen one

y((I2 -1)*J+I3 ,I1)=1 ! chosen

y(ind ,I1)=0 ! not chose

ind=(I2 -1)*J+I3 ! update the index for the chosen one

end if

end do !I3,alt

end do !I2 ,choice set

end do !I1 ,y

hei = 0

hd = 0

i11 = 0

i11temp = 0

i12 = 0

i22 = 0

nyd = ny

vn = 0

vni = 0

deltad = 0

deltadi = 0

bb = 0

do i1 = 1,dimbr

modmatr(:,i1) = modmat(:,i1)

end do

! the differenced coded the design matrix madmatd and matmatrd(for random effects)

do i1 =1,s

do i2 = 1,j-1

ind1 = (i1 -1)*(j-1)+i2

ind2 = (i1 -1)*j+i2

modmatd(ind1 ,:) = modmat(ind2 ,:)-modmat(i1*j,:)

modmatrd(ind1 ,:) = modmatr(ind2 ,:)-modmatr(i1*j,:)

end do

end do

do i=1,ny

! get E(p|y),E(u^2/ simga ^3|y) from laplace approximation

! epy

!mleu0 (:,1) = uy(:,i) !starting value for u

mleu0 (:,1) = uy(:,i) !starting value for u

con = 0 ! 1 is newton ’s alg for denominator converges

j1 = 1 ! find maximizer u for denominator

do while (j1 <=n)

185

do l1 = 1,dimbr

bb(l1 ,1) = b(l1 ,1) + mleu0(l1 ,1)

end do

if(dimb > dimbr) then

do l1 = (dimbr +1),dimb

bb(l1 ,1) = b(l1 ,1)

end do

end if

UTY = exp(MATMUL(modmat ,bb))

delta = 0

DO l1 = 1,S ! the probability of y,

ind1 = (l1 -1)*j+1

ind2 = l1*j

SUMY = sum(UTY(ind1:ind2 ,1))

p(ind1:ind2 ,1)=UTY(ind1:ind2 ,1)/SUMY

ptemp (:,1) = p(ind1:ind2 ,1)

delta(ind1:ind2 ,ind1:ind2) = - matmul(ptemp ,transpose(ptemp))

do l2 = 1,j

delta(ind1 -1+l2 ,ind1 -1+l2) = delta(ind1 -1+l2 ,ind1 -1+l2)+p(ind1 -1+l2 ,1)

end do

end do

gr(:,1) = matmul(transpose(modmatr),y(:,i)-p(:,1))- matmul(sigmami ,mleu0 (:,1))

he = -matmul(matmul(transpose(modmatr),delta),modmatr)-sigmami

stepsize =1/(1+10* sqrt(sum(gr(:,1) **2)))

call solve(dimbr ,he,hei)

mleu1 = mleu0 - stepsize*matmul(hei ,gr)

if(sqrt(sum((mleu1 -mleu0)**2))<tol) then

j1 = n+1

con = 1

else

mleu0 = mleu1

j1 = j1+1

end if

end do ! while

if(con ==1) then ! the newton algrithm in the denominator converges

do i1 =1,s

ind1 = (i1 -1)*(j-1)

ind2 = (i1 -1)*j

deltad ((ind1 +1):(ind1+j-1) ,(ind1 +1):(ind1+j-1)) = delta((ind2 +1):(ind2+j-1) ,(ind2 +1):(ind2+j

-1))

end do

call solve(s*(j-1),deltad ,deltadi)

vn = deltadi + matmul(matmul(modmatd ,sigmam),transpose(modmatd))

call solve(s*(j-1),vn,vni)

i11temp = matmul(matmul(transpose(modmatd),vni),modmatd)

i11 = i11 + i11temp

i22 = i22 + 2* matmul(matmul ((sqrt(sigmam)),i11temp **2),sqrt(sigmam))

186

else

nyd = nyd -1

end if

end do ! i

infm (1:dimb ,1: dimb) = I11

infm (1:dimb ,(dimb +1):(dimb+dimbr)) = I12

infm((dimb +1):(dimb+dimbr) ,1:dimb) = TRANSPOSE(I12)

infm((dimb +1):(dimb+dimbr),(dimb +1):(dimb+dimbr)) = I22(1:dimbr ,1: dimbr)

infm=infm/nyd

return

end subroutine pql

6.4 Code for MQL

The following code is for implementing coordinate exchange algorithm with design

criteria based on MQL in Section 4.3.

R Code

library(DoE.base)

library(MASS)

library(Matrix)

##############################

main 141013

##############################

S = 10 # number of choice sets

J = 2 # number of alternatives per choice sets

cs = c(,,,,) # input vector , the number of alternatives in each choice set , S, J can be read from cs

cs=rep(J,S) # a vector for numbers of alternatives in choice sets , used

ns=length(cs) # number of choice sets reading from the length of cs

nl=c(3,3,3,3,3)#,3,3) # a vector for the number of levels for attributes

#b = c(0,0,0,0)

#sigma = c(1,1,1,1)

b = 3*c(1,0,1,0,1,0,1,0,1,0)

sigma = 9*c(rep(1,8),rep(0,2))

indexr = (1: length(b))[sigma !=0]

indexf = (1: length(b))[sigma ==0]

br = b[indexr]

sigmar = sigma[indexr]

187

bf = b[indexf]

b = .5*c(1,0,1,0)

sigma = 1.5* rep(1,4)

b = .5*c(1,0,1,0)

sigma = .25* rep(1,4)

nattr <-length(nl) # number of attributes

dimb <-sum(nl)-nattr # number of parameters for the main effects

dimbr <- length(br)

qes <- rep(factor (1:ns),times=cs) # a vector of ids of the alternatives in each choice set.

ind <- c(0,cumsum(cs))

cprob <-function(b,modmat ,...) # each column of b is a vector of parameter values(nrow

= dimb), modmat is the coded design matrix (sum(cs)*dimb)

{

rep=exp(modmat %*%b) # each column of rep is a vector of

representative utilities of alternatives , nrow = sum(cs)

sumrep=apply(rep ,2,function(x) ave(x,qes ,FUN=sum)) # each column of sumrep is a vector of sum of

utilities in each choice set , nrow = ns

p=rep/sumrep # each column of p is a vector of choice

probabilities of alternatives , nrow = ns

return(p)

}

delta = matrix(0,S*J,S*J)

ind2 = seq(J,by=J,length=S)

mql = function(modmat)

{

modmatd = matrix(0,S*(J-1),dimb)

for(i in 1:S)

{

modmatd [((i-1)*(J-1)+1):(i*(J-1)),] = modmat [((i-1)*J+1):((i-1)*J+J-1) ,]-modmat[i*J,]

}

I = matrix(0,dimb+dimbr ,dimb+dimbr)

I11 = 0

I22 = 0

u = 0

p = cprob(b,modmat) # p evaluated at tilde(u)

for(j in 1:S)

{

st = (j-1)*J+1

en = j*J

pos = st:en

delta[pos ,pos]=diag(p[pos ,1])-p[pos ,1]%*%t(p[pos ,1])

188

}

v = solve(delta[setdiff (1:(S*J),ind2),setdiff (1:(S*J),ind2)])+modmatd %*% diag(sigma)%*%t(modmatd) #

vn in the formula

vi = solve(v)

vix = vi%*% modmatd

I11 = I11 + t(modmatd)%*% vix

I22 = I22 + 2*diag(sqrt(sigma))%*%(t(modmatd)%*%vi%*% modmatd)^2%*% diag(sqrt(sigma))

I[1:dimb ,1: dimb] = I11

I[(dimb +1):(dimb+dimbr),(dimb +1):(dimb+dimbr)] = I22[1:dimbr ,1: dimbr]

return(I)

}

###

ordinate exchange alg for generating designs

###

do<-Inf

contr=NULL

R=10 # number of starting designs for coordinate exchange alg

design <-array(0,c(R,sum(cs),nattr)) # optimal designs from R starting designs

designc <-array(0,c(R,sum(cs),dimb)) # coded values of design

derr <- rep(0,R) # the determinant of the R optimal designs

count=0

for(r in 1:R)

{

st=NULL

fullfac=fac.design(nlevels=nl,random=F)

for(i in 1:S){st=c(st ,sample(prod(nl),J,replace=T))}

designm =(fullfac)[st ,]

if(is.null(contr))

{

contr=rep(’contr.sum ’,nattr)

names(contr)=names(designm)

contr=as.list(contr)

}

modmat=model.matrix (~.,designm ,contrasts = contr)[,-1] #contr is used to get effects type coding ,

current coded design

Ic=mql(modmat)

#Ic=round(Ic ,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if((rankMatrix(Ic)<(dimb+dimbr)))

#if(rankMatrix(Ijt[,,j]) <(2*dimb))

{

dc = Inf

}else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

189

#dc=abs(det(Ic))^{ -1/(2* dimb)} # determinant of the current design

dc=sum(eigen(solve(Ic))$values)/(dimb+dimbr)

a.jt[j]=sum(eigen(solve(Ijt[,,j]))$values)/(2* dimb)

d.jt[j]=(det(Ijt[,,j]))^(-1/(2* dimb))

if(dc < 0)

{

dc = Inf

}

}

new=matrix () # new design

##n,n,i,j,k,l

m=1

while(m!=0) # if no exchange is made , then m=0

{

n=0 # number of exchange

for(i in 1:(sum(cs)*nattr)) # i goes through all elements in the uncoded design matrix

{

j=(i%% nattr) # column in uncoded design matrix , i.e., jth

attribute

if(j==0) {j=nattr}

k=(i-j)/nattr+1 # row in uncoded design matrix , i.e., kth row

ch=ceiling(k/J) # the ’ch’th choice set

diff=setdiff (1:nl[j],designm[k,j]) # possible levels for exchange

for(l in diff)

{

new=designm

new[k,j]=l # uncoded design

matrix after exchange

modmatnew=model.matrix (~.,new ,contrasts=contr)[,-1] # coded matrix of new

result1 = fi(modmat)

I1=mql(modmatnew)

#c=round(Ic,digits =10)

#if(rankMatrix(Infm[,,j]) <(2*dimb))

if((rankMatrix(I1)<(dimb+dimbr)))

#if(rankMatrix(Ijt[,,j]) <(2*dimb))

{

d1 = Inf

}else{

a.i[j]=sum(eigen(solve(Infm[,,j]))$values)

/(2* dimb)

d.i[j]=(det(Infm[,,j]))^(-1/(2* dimb))

#d1 = abs(det(I1))^{ -1/(2* dimb)} # determinant of the

current design

d1=sum(eigen(solve(I1))$values)/(dimb+dimbr)

a.jt[j]=sum(eigen(solve(Ijt[,,j]))$values)

/(2* dimb)

d.jt[j]=(det(Ijt[,,j]))^(-1/(2* dimb))

190

if(d1 < 0)

{

d1 = Inf

}

}

if (d1<dc)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

if(d1 == dc)

{

u = runif (1,0,1)

if(u < 0.5)

{

designm=new

modmat=modmatnew

Ic=I1

dc=d1

n=n+1 # exchange is kept , add 1 to number of change

}

}

count=count +1

} #l

print(dc)

}# i

m=n

}#end of while

design[r,,]=as.matrix(designm)

designc[r,,]= modmat

derr[r]=dc

if(dc<do)

{

Io=Ic # information matrix of the optimal design

opt=designm # optimal design

mo=modmat # coded optimal design

do=dc # determinant of optimal design

}

save.image(’rcode.RData ’)

}# r

design.R = matrix(0,S*J,nattr*R)

for(i in 1:R)

191

{

design.R[,((i-1)*nattr +1):(i*nattr)]= design[i,,]

}

write.table(design.R,’design.txt ’,row.names=F,col.names=F)

write.table(opt ,’opt.txt ’,row.names=F,col.names=F)

write.table(do ,’do.txt ’,col.names=F,row.names=F)

write.table(derr ,’derr.txt ’,col.names=F,row.names=F)

save.image(’rcode.RData ’)

192

	Acknowledgments
	List of Figures
	List of Tables
	Introduction to Discrete Choice Experiments
	Introduction
	Review of Discrete Choice Models
	Review of Designs for Discrete Choice Models
	Review of Generalized Linear Mixed Models
	Summary and Discussions
	References

	 Methods for Analysis of Generalized Linear Mixed Models
	Introduction
	Different Methods for Estimation
	Summary and Discussions
	References

	Information Matrix for Panel Mixed Logit Model
	Introduction
	Model, Information Matrix and Design Criteria
	Approximation of the Information Matrix
	Simulation
	Discussion and Conclusion
	Appendix
	References

	Optimal Designs for the Panel Mixed Logit Model
	Introduction
	Maximum Likelihood Method
	PQL and MQL Applied to Panel Mixed Logit Model
	Method of Simulated Moments (MSM) Applied to Panel Mixed Logit Model
	Searching for Optimal Designs
	Second Look at the Search for Optimal Designs
	Revisiting the Example
	Discussion and Conclusion
	Appendix
	References

	Conclusion
	Appendix: Code for Chapter 3 and 4
	Code for Laplace Approximation
	Code for MSM
	Code for PQL
	Code for MQL

