
A USER FRIENDLY ENVIRONMENT

FOR GENE-FINDING PROGRAM EVALUATION (GFPE)

by

WEICHENG ZHANG

(Under the Direction of EILEEN KRAEMER)

ABSTRACT

A graphical, user friendly environment for GFPE (Gene-Finding Program Evaluation),

written in Java, is developed to evaluate the prediction accuracy of gene-finding

programs GenScan, HMMGene, GeneMark, Pombe and FFG. This tool aims to simplify

and/or automate the process of executing the gene-finding programs on sequences of

interest and of collecting and analyzing the results. The GUI is designed to be similar to a

spreadsheet table. The user can add, cut, copy or paste gene sequence files and annotation

files to the table, add, delete, or modify the GFPE program and parameters, select an area

on the table to represent the execution of various gene-finding programs on remote

servers, automatically collect the prediction results, and draw bar charts to compare

evaluation accuracy at the coding level, exon level and protein level. It provides a

convenient, user-friendly environment and an efficient file management and execution

system, thus saving the user substantial time.

INDEX WORDS: Gene-Finding Program Evaluation, GFPE, GenScan, GeneMark,

HMMGene, FFG, Pombe, Graphical User Interface.

A USER FRIENDLY ENVIRONMENT

FOR GENE-FINDING PROGRAM EVALUATION (GFPE)

by

WEICHENG ZHANG

BENG, Beijing Technology and Business University, China, 1988

MENG, Beijing Technology and Business University, China, 1993

MS, The University of Georgia, USA, 2001

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2003

© 2003

Weicheng Zhang

All Rights Reserved

A USER FRIENDLY ENVIRONMENT

FOR GENE-FINDING PROGRAM EVALUATION (GFPE)

by

WEICHENG ZHANG

Approved:

Major Professor: Eileen T. Kraemer

Committee: John A. Miller
 Thiab Taha

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
August 2003

 iv

To my family for their love and support

 v

ACKNOWLEDGEMENTS

Special thanks to my major professor Dr. Eileen T. Kraemer for her open minded

guidance, direction and patience during the entire course of my Masters study. I also

thank Drs. John Miller and Thiab Taha for serving on my advisory committee and

providing me with guidance.

 I am deeply grateful to Dr. William Kisaalita, my major professor in my Ph.D

program at Biological & Agricultural Engineering Department, for his kind support of

my study of Computer Science. Special thanks also is given to Mr. Jian Wang for his

GFPE command line package, which is run by this graphical user interface.

 I would also like to thank my friends and colleagues in the Computer Science

Department and Biological & Agricultural Engineering Department, Bo Qian, Nan Li

and Hongyu Wang, for their companionship and for sharing their programming

experience. I would also like to thank all the people whoever provided their kind help

which was available whenever I needed it.

 Last, I thank my parents and brothers on the other side of the globe for their constant

encouragement and support throughout my life; to them I dedicate my further studies.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... v

CHAPTER

1 INTRODUCTION ... 1

2 RELATED WORK .. 4

2.1 Gene Terminology ... 4

2.2 Gene-Finding Programs and Their Approaches................................... 6

2.3 Evaluation Methodology.. 10

2.4 Jian Wang’s Work in Evaluation Package ... 13

3 A WALKTHROUGH OF THE USAGE OF THE TOOL 15

3.1 Add Files to the “Prediction Files” Table .. 15

3.2 Add Programs and Setup Parameters... 16

3.3 Run Programs... 21

3.4 Draw Bar Charts... 24

3.5 Summary .. 26

4 DESIGN AND IMPLEMENTATION ... 27

4.1 GUI Construction... 28

4.2 Handling of Mouse Events and Selection .. 30

4.3 Data Operations.. 31

4.4 Handling of Sequence Files, Gene-Finding Programs and

 Parameters .. 33

 vii

4.5 Gene-Finding Program Prediction ... 34

4.6 Gene-Finding Program Evaluation .. 36

4.7 Draw Bar Charts... 37

4.8 Summary of Classed Implemented .. 38

5 USER EVALUATION .. 42

6 CONCLUSIONS AND FUTURE WORK .. 45

6.1 Conclusion ... 45

6.2 Future Work ... 46

APPENDICES ... 47

A. Gene-Finding Features (GFF): Definition .. 47

B. A User Manual ... 49

C. How To Add a New Gene-Finding Program Into the GFPE Package? 64

REFERENCES .. 65

CHAPTER 1

INTRODUCTION

Computational gene identification plays an important role in genome projects, and

numerous programs have been developed to address this problem. Selecting the best

gene-finding program or programs for a new organism or category of sequences can be

time-consuming and error-prone, as well as problematic for the following reasons: 1) The

approaches used in gene identification programs are often tuned to one particular

organism; accuracy for one organism or class of organism does not necessarily translate

to accurate predictions for other organisms. 2) The performance of the gene-finding

programs may depend on the parameter settings used to perform the analysis. 3)

Published evaluations of gene identification programs are often not only limited to a

particular organism, but may report only a subset of the available metrics. This use of

different metrics by the authors of different gene-finding programs complicates the

comparison of results. The effort required to reproduce these studies to verify the results

or to generate a consistent set of metrics is typically prohibitive.

 Numerous gene-finding programs have been developed over the last decade. Despite

these limitations, existing methods of gene prediction and models of gene structure are

still frequently applied to the newly sequenced organisms, for which no model or method

has yet been tuned. Some gene finding programs work well for the gene prediction, even

they were not specifically developed for the newly sequenced organisms. To find the best

gene-finding program from the numerous existing methods, a lots of trivial and tedious

repetitive work need to be done. Thus, it is important to have a rapid and reliable means

 2

to assess the accuracy of different gene identification methods and parameter settings

when beginning a new genome project or evaluating a new gene identification program.

 Recently, members of the Kraemer Lab at the University of Georgia evaluated several

commonly used gene-prediction programs GenScan, HMMGene, GenMark, Pombe and a

self developed program FFG, to compare the ability of these programs to accurately

predict gene structure for a particular organism, Neurospora crassa (Kraemer, 2001).

Executing these programs on the test sequences, collating the results of the various

programs, and calculating statistics were found to be both time-consuming and error-

prone, and motivated the need for development of a standard tool to perform such studies.

In 2002, a Gene-finding Program Evaluation (GFPE) program written in Java was

developed that aims to produce a command line tool to support the task of evaluating

gene-finding programs (Wang et al. 2003). The evaluation criteria employed in this

package are based on those described in (Burset et al. 1996). This GFPE program saves

the evaluators of gene-finding programs substantial effort in calculating the prediction

accuracy.

 In 2003, a user friendly environment for GFPE was developed to simplify and/or

automate the above process of executing the gene-finding programs on the sequences of

interest and of collecting and analyzing the results. The GUI is designed to be similar to a

spreadsheet table. The user can add, cut, copy or paste the sequence files and annotation

files to the table, add, modify or delete a column in which the selected program and

parameters were setup, select an area on the table to represent the execution of various

gene-finding programs on remote servers, automatically collect the prediction results

from the remote servers and convert them into standard Gene-Finding Features (GFF)

 3

(Sanger Center: GFF, 2000) for further accuracy evaluation. This tool also can draw bar

charts to compare the prediction accuracy at the coding level, exon level and protein

level.

 To run these gene-finding programs in the absence of the tool described in this thesis,

users would need go to different websites, paste gene sequence or attach a sequence file,

wait for the result to come back, save the result, manually convert its format, and then do

the evaluation. Using this tool, the users will not need to experience the above tedious

process and, all the work can be done in one place. The benefit of this user friendly

environment is that it provides a convenient and efficient file management and execution

system, allows users to add and edit gene sequences on the table, setup gene-finding

programs and parameters, simultaneously run multiple programs on the selected gene

sequences, monitor the running process, automatically collect the prediction results from

the remote server, and write the format converted result files to the local hard disk. Also

it allows users to save their own work, display files to see the results or visually compare

the evaluation results by drawing bar charts.

CHAPTER 2

RELATED WORK

2.1 Gene Terminology

Gene: The functional and physical unit of heredity passed from parent to offspring

through mitosis. Genes are pieces of DNA, and most genes contain the information for

making a specific protein.

DNA: Deoxyribonucleic acid is a double-stranded helix of nucleotides that carries the

genetic information of a cell. It encodes the information for the proteins and is able to

self-replicate.

RNA: Ribonucleic acid is an information encoded strand of nucleotides, similar to DNA,

but with a slightly different chemical structure. There are three main forms of RNA, each

with a slightly different function. mRNA (messenger RNA) is the mediating template

between DNA and proteins. The information from a particular gene is transferred from a

strand of DNA by the construction of a complementary strand of RNA through a process

known as transcription. Next, three nucleotide segments of RNA, called tRNA (transfer

RNA), which are attached to specific amino acids, match up with the template strand of

mRNA to order the amino acids correctly. These amino acids are then bonded together to

form a protein. This process, called translation, occurs in the ribosome, which is

composed of proteins and the third kind of RNA, rRNA (ribosomal RNA).

Protein: made of long chains of smaller building blocks called amino acids. Amino acids

determine the size, shape, and length of protein molecules. They also give protein

molecules the ability to coil and uncoil. They are the chemical building blocks from

 5

which the cells, organs, and tissues such as like muscle are made. Proteins also serve

double-duty as hormones, enzymes and antibodies, which help fight off invading germs.

Exon: Any segment of a discontinuous gene, the segments of which are separated by

introns.

Intron: Introns are sequences of "junk" DNA found in the middle of gene sequences.

These sequences are excised before the mRNA is translated into a protein. The function

of introns is not known.

Splicing (Malacinski and Freifelder, 2002): See Figure 2.1(a) and (b). Pre-mRNA splic-

ing occurs in large ribonucleoprotein complexes known as spliceosomes, which are as-

sembled from small nuclear ribonucleoprotein particles (snRNP) that recognize specific

sequences on the primary transcript. The spliced (mature) mRNA is transported to the

cytoplasm, while the lariat (excised portion) remains in the nucleus and is degraded.

Figure 2.1 The production of mature mRNA by splicing of the primary transcript

 6

2.2 Gene-Finding Programs and Their Approaches

Computational gene identification plays an important role in genome projects. Numerous

programs have been developed to address this problem.

 In this thesis, a graphical user interface is designed for a program that can evaluate

five commonly used gene-finding programs: GenScan (Burge and Karlin, 1997),

HMMGene (Krogh, 1997), GeneMark (Borodovsky and McIninch, 1993), Pombe (Chen

and Zhang, 1998), and Find Fungal Gene (FFG), developed at the University of Georgia.

 GenScan (Burge and Karlin, 1997) is a general-purpose gene identification program

that analyzes genomic DNA sequences from a variety of organisms including human,

other vertebrates, invertebrates and plants. For each sequence, the program applies a

probabilistic model of the gene structure and compositional properties of the genomic

DNA for the given organism to determine the most likely gene structure. This model

includes consensus sequences involved in transcription and translation, length

distributions, and compositional differences. GenScan identifies complete intron/exon

structures of a gene in genomic DNA, is able to predict multiple genes, can deal with

both partial and complete genes, and can predict consistent sets of genes that occur on

either or both strands of DNA. The GenScan program may be accessed through:

http://genes.mit.edu/GENSCAN.html. Parameter settings include a choice of organism

(vertebrate. arabidopsis, or maize) and a suboptimal exon cutoff value (1.0, 0.50, 0.25,

0.10, 0.05, 0.02, 0.0l).

 HMMGene (Krogh, 1997) is a program for prediction of genes in anonymous DNA,

designed for prediction of vertebrate and Caenorhabditis elegans genes. The program

predicts whole genes, and can be used on whole cosmids or even longer sequences. It can

 7

also predict splice sites and start/stop codons. If some features of a sequence are known,

such as hits to ESTs, proteins, or repeat elements, these regions can be locked as coding

or non-coding and then the program will find the best gene structure under these

constraints. The program is based on a hidden Markov model, a probabilistic model of

the gene structure. HMMGene can also report the n-best gene predictions for a sequence.

This is useful if there are several equally likely gene structures and may even indicate

alternative splicing. HMMGene takes an input file with one or more DNA sequences in

FASTA format. It also has a few options for changing the default behavior of the

program. The output is a prediction of partial or complete genes in the sequences. The

output specifies the location of all the predicted genes and their coding regions and scores

for whole genes as well as exon scores. The HMMGene program is available at:

http://www.cbs.dtu.dk/services/HMMGene/. Through the web page, users may enter

sequences, select an organism (vertebrate or C. elegans), specify whether or not to predict

signals, and specify the number of predictions (1-5) to report.

 The GeneMark gene prediction software takes several forms. The original

GeneMark program (Borodovsky and Mclninch, 1993) relied on inhomogeneous Markov

chain models of both coding and non-coding regions, based on analysis of known genes

and on the Bayes decision making function, to predict genes in Escherichia coli DNA

sequences, and was then retrained for Haemophillus influenzae, Mycoplasma genitalium,

and other organisms. GeneMark-Genesis, developed for analysis of organisms such as

Methanococcus jannaschii and Helicobaccter pylori, was designed for the situation in

which no experimentally studied segments are available for training. The

GeneMark.hmm algorithm (Lukashin and Borodovsky, 1998) generates a maximum-

 8

likelihood parse of the DNA sequence into coding and non-coding regions, and is

designed to more precisely locate the exact gene boundaries. This program is available

through the web page: http://opal.biology.gatech.edu/GeneMark/eukhmm.cgi. Where the

species include a choice of (H. sapiens, C. elegans, D. melanogaster, A. thaliana, C.

reinhardtii, G. gallus, O. sativa, Z. mays, T. aestivum, H. vulgare, M. musculus), the

output options include the choices of (Generate PostScript graphics, Print GeneMark 2.4

predictions in addition to GeneMark.hmm predictions, Translate predicted genes into

protein).

 The Pombe program was developed to find genes and predict exon-intron structure in

Schizosaccharomyces pombe (Chen and Zhang, 1998). In developing the program, the

authors first extracted a training data set from GenBank, checked the annotations for

accuracy, and removed redundancy. Execution of the program involves a number of

linear discriminant analyses. For example, one analysis differentiates between {sites,

introns, exons} and {pseudo sites, pseudo introns, pseudo exons}. Initiation sites, donor

sites, and acceptor sites are identified. Exon and intron predictions are the result of the

combination of three linear discriminant functions. Other factors considered include

oligonucleotide preferences, positional triplet preferences, and the location of ORFs. The

results of these intermediate analyses are then combined through dynamic programming

to predict gene structure. Pombe is freely available for academic use and is available

through the web site at: http://argon.cshl.org/genefinder/Pombe/pombe.htm.

 FFG is a pattern-directed program for gene-finding in N. crassa, based on statistical

analysis of sequence features with genes from N. crassa performed by Edelman and

Staben (1994). The FFG algorithm begins by identifying possible start and stop sites, as

 9

well as left (5’ donor) sites, center (splice branch) sites and right (3’ acceptor) sites.

Frame numbers are associated with start and stop sites. Any subsequence matching the

pattern ‘GTRNGT’ is identified as a potential left site; any subsequence matching the

pattern ‘CTRAC’ is identified as a potential center site and any subsequence matching

the pattern ‘YAG’ is identified as a potential right site.

 Then, the algorithm traverses the list of start sites and builds a list of ‘primitive’

ORFs. Each ORF ends at the first stop site encountered in the same reading frame in the

sequence. At this point, each ORF has one exon. Next, the algorithm repeatedly traverses

the ORF list. For each ORF, the algorithm examines the last exon in its list and attempts

to extend the ORF to include another exon. This is possible if a splice site can be found

within the exon. That is, if the exon contains a ‘left’ (5’ donor) site and both a ‘center’

(branch site) and ‘right’ (3’ acceptor) site can be found within an acceptable distance

(currently set to 300 base pairs). If these are located, another exon is added to the list for

that ORF; otherwise, the ORF is marked as complete. Extension terminates when all

ORFs are marked as complete.

 Finally, the algorithm deletes ORFs that are less than 300 bp in length (an ORF less

than 300 bases is not likely to be a gene). When several ORFs overlap, the longest one is

selected and the others are deleted. The reverse complement strand is then generated and

the process repeated. FFG accepts input sequences in FASTA or plain text format, and

produces output in the GFF format (Sanger Center: GFF, 2000), a sequence annotation

format developed with gene finding in mind.

 10

2.3 Evaluation Methodology

In general, prediction accuracy can be measured at three levels: at the level of the coding

nucleotide, at the level of exonic structure, and the level of the predicted protein product.

At the protein product level, the protein encoded by the actual gene is compared with the

protein encoded by the predicted gene.

 Measurements of accuracy at the coding level compare predicted coding value with

the actual coding value for each nucleotide along the test sequence (Figure 2.2). In this

widely used approach predictions are divided into four categories:

 True Positive (TP) = nucleotides classified as coding in both actual and predicted.

 True Negative (TN) = nucleotides classified as non-coding in both actual and

predicted.

 False Positive (FP) = classified as coding in predicted, but as non-coding in actual.

 False Negative (FN) = classified as non-coding in predicted, but as coding in actual.

 Fig 2.2 Measures of prediction accuracy at nucleotide level (Burset and Guigo, 1996).

 11

 Sensitivity is defined as the proportion of coding nucleotides that have been correctly

predicted as coding.

 Specificity is the proportion of non-coding nucleotides that have been correctly

predicted as non-coding.

 An issue that arises in evaluating specificity is that the frequency of non-coding

nucleotides in genomic DNA sequences is much greater than the frequency of coding

nucleotides, so that TN tends to be much larger than FP, with the result of a tendency

toward very large non-informative values for specificity. Thus, in much of the literature

on gene structure prediction, specificity is instead defined to be TP/(TP+FP), the

proportion of predicted coding nucleotides that are actually coding. Other commonly

used metrics based on these categories are the Correlation Coefficient (CC), defined as:

)()()()(
)()(

FNTNFPTPFPTNFNTP
FPFNTNTPCC

+×+×+×+
×−×=

the Simple Matching Coefficient (SMC), defined as:

TNFPFNTP
TNTPSMC

+++
+=

the Average Conditional Probability (ACP), defined as:







+
+

+
+

+
+

+
=

FNTN
TN

FPTN
TN

FPTP
TP

FNTP
TPACP

4
1

and the Appropriate Correction, AC, defined as:

AC = (ACP-0.5)x2

(Burset and Guigo, 1996).

 While nucleotide-level metrics are often used to evaluate how well the program

locates sequence-coding regions, exonic structure metrics are typically used to evaluate

 12

how well the sequence signals (splice sites, start codons, stop codons) are identified

(Burset and Guigo, 1996). We evaluate the accuracy of predictions at the exon level by

comparing predicted and actual exons along the test sequence (Figure 2.3).

Fig 2.3 Measures of prediction accuracy at the exon level (Burset and Guigo, 1996).

 Although this approach is widely used, no unique criterion has been used to consider

an exon as ‘correctly’ predicted. The strictest criterion would score an exon prediction as

a correct match only if an exact match exists between actual and predicted start and stop

locations, i.e., both splicing boundaries are correctly identified. Kraemer and Wang

(2001) label these as ‘type 1’ predictions. A looser criterion scores a prediction as correct

if a partial match occurs, if at least one of the splice sites has been correctly identified.

Kraemer and Wang (2001) label these as ‘type 2’ predictions. Finally, a predicted exon

may be scored as correct if the overlap between actual and predicted exceeds some

threshold. Kraemer and Wang (2001) label these as ‘type 3’ predicted exons.

 The notions of sensitivity and specificity are still applicable in measurements

performed at the exon level. Sensitivity is the proportion of actual exons in the test

sequence that are correctly predicted. Specificity is the proportion of predicted exons that

are correctly predicted. Also useful are the notions of Missing Exons (ME) and Wrong

Exons (WE). ME indicates the proportion of actual exons with no overlap to predicted

exons. WE indicates the proportion of predicted exons with no overlap to actual exons.

 13

 Kraemer and Wang (2001) developed a method of selecting a threshold for overlap

between actual and predicted exons that relies on the notions of overlap-sensitivity and

overlap-specificity and an initial empirical evaluation. Overlap-sensitivity is the number

of nucleotides in the overlapping region between the predicted exon and the actual exons,

divided by the number of nucleotides in the actual exon. Overlap-specificity is the

number of nucleotides in the overlapping region, divided by the number of nucleotides in

the predicted exon. A Combined Overlap Percentage (COP) was defined to be:

2
)(OverlapSpOverlapSnCOP +=

In reporting the results of their evaluations, Kraemer and Wang (2001) define three

categories, labeled one-star (*), two-star (**), and three-star (***). The one-star category

includes only the type 1 exons. The two-star category includes only the type 1 and type 2

exons. Both of these categories may be used to evaluate the ability of a program to

exactly locate exon and intron boundaries. The three-star category combines this

information with a measure of the ability of a program to correctly predict coding

regions, and consists of type 1 exons, type 2 exons for which the COP exceeds the

threshold (80%), and type 3 exons for which the COP exceeds the same threshold.

2.4 Jian Wang’s Work in Evaluation Package

The gene finding evaluation programs used in this GFPE graphical user interface tool to

predict gene finding accuracy at the coding, exon and protein levels are a set of Java

classes developed by Jian Wang, and using a command line interface. The prediction

result GFF format converter programs were also written by Jian Wang. The data used to

draw the bar chart in the tool were averaged using Jian Wang’s program. The FFG

 14

program was developed by Dr. Eileen Kraemer, Dr. Jinhua Guo and Jian Wang at the

Department of Computer Science, the University of Georgia.

 15

CHAPTER 3

A WALKTHROUGH OF THE USAGE OF THE TOOL

Before running the program, this software should be installed, typically on a Windows-

based machine. In addition, a dataset consisting of DNA sequences and their annotation

files must be prepared. Then the following steps are performed to accomplish the gene-

finding program evaluation work.

3.1. Add Files to the “Prediction Files” Table

The system will automatically open a new experiment when it is started. If desired, the

user can close this new experiment, and open a previously saved experiment to continue

his work.

 To add a sequence or sequences to the “Prediction Files” Table, the user must select a

single table cell or an area in the first column, click the add file icon in the tool bar, then

select single or multiple files, and click “Open”. The files will be added to the sequence

file column in the order they are selected (Figure 3.1). Similarly, the user may choose the

second column to add annotation files. All four tables will have the same sequence and

annotation files in the first two columns, regardless of the table through which these files

were added.

 To see the content of the added files, the user should select them, click the display

icon in the tool bar, and the files will be displayed in the bottom text window.

 16

Fig 3.1 Add files to the “Prediction Files” table

3.2 Add Programs and Setup Parameters

To specify the gene-finding programs to be executed, the user may append or insert any

of the available gene-finding programs to the table. The user may also set up or modify

the program parameters, or delete an unwanted program. The same program may be

added multiple times with different parameters.

 To add a program, the user should click on the “Program & Parameters” menu, and

click “Append Program”. A “Select Program and Setup Parameters Window” will popup,

as shown in Figure 3.2a. There are five gene-finding programs in this package, they are:

GenScan, HMMGene, GeneMark, Pombe and FFG program. The user can select one of

them from the drop down JComboBox and setup its parameters, as seen in Figures 3.2b,

 17

3.2c, 3.2d, 3.2e and 3.2f. If the user clicks “Default”, the parameters will be set to the

default values for that program. If the user clicks “OK”, the selected program will be

appended to the last column of the table.

 To insert a program, the user should select a column, click “Insert Program” in the

“Program & Parameters” menu, then select a program and setup its parameters, and click

“OK”. The selected program will be inserted to the left of the selected column. To

modify the program parameters, the user can directly click the column heading in the

“Prediction Files” table, and re-setup the parameters from the popup window, or do so

using the “Modify Program” choice in the “Program & Parameters” menu. To delete a

program, the user should select that program column, and click “Delete Program” in the

“Program & Parameters” menu. A popup warning window will ask the user “Are you

sure you want to delete the selected column?”, the user should click “OK” to delete it. All

four tables will have the same programs in the same order. Figure 3.3 shows the table

with five gene-finding programs.

 18

Fig 3.2a Select GenScan program from the drop down JcomboBox

Fig 3.2b Setup Parameters Window for GenScan Program

 19

Fig 3.2c Setup Parameters Window for HMMGene Program

Fig 3.2d Setup Parameters Window for GeneMark Program

 20

Fig 3.2e Setup Parameters Window for Pombe Program

Fig 3.2f Setup Parameters Window for FFG Program

 21

Fig 3.3 A table with five gene-finding programs setup

3.3 Run Programs

Figure 3.4 presents the data flow through the gene-finding evaluation process.

 To run the gene-finding programs, the user should select an area in the “Prediction

Files” table, click the “Run Program” menu and click on the “Run Prediction”. All five

gene-finding programs can be run in multiple threads. When the prediction results are

available, the system will write the result files to the appropriate prediction_results folder

on the hard drive, write the file names to the appropriate table cells and, update the

corresponding table cells in the other three tables using the words: “not evaluated yet”.

The results taken from remote server are converted into GFF format to allow further

gene-finding program evaluation.

 22

 Fig 3.4 Data flow through GFPE

 Time required for the execution of the gene-finding programs can vary from a few

seconds per file to a few minutes per file, depending on the gene-finding program and the

size of the sequence file. Thus, results are not immediately available and the user may

wish to monitor the running process.

 To monitor the running process, the user should click on the “Run Program” menu

and click “Show Running Programs”. The system will update the table to reflect the

progress of running programs every 10 seconds in the popup window and display “All

Done!” when all the running programs are finished (Figure 3.5).

 23

Fig 3.5 Monitor running program window

 To evaluate the gene-finding results, the user can choose to test at three levels – the

coding level, exon level and protein level, by going to the appropriate table, selecting an

area to be tested, clicking on the “Run Program” menu, and then clicking on “Run

Evaluation”. The system will automatically start the evaluation. As the evaluation results

are available, the system will write the result files to the appropriate folder on the hard

drive, and update table cells with the corresponding file names. To display the evaluation

results, the user can select single or multiple files in an area in the table, click the

“Display” menu and click “Display Files”. The evaluation results will be displayed in the

bottom text window (Figure 3.6).

 24

Fig 3.6 Display file content through the bottom text window

3.4 Draw Bar Charts

To compare the evaluation results, the user can view coding, exon or protein level

accuracy bar charts. To do so, the user should go to the appropriate evaluation table,

select an area that contains the files to be compared, click on the “Display” menu and

click on “Draw Bar Chart”. A popup window will display the bar chart, as seen in Figure

3.7, 3.8 and 3.9. The user can then click the tabs in the “Coding Level Accuracy Chart”

or the “Exon Level Accuracy Chart” to check the different evaluation results.

 25

Fig 3.7 Evaluation results bar chart – coding level accuracy

Fig 3.8 Evaluation results bar chart – exon level accuracy

 26

Fig 3.9 Evaluation results bar chart – protein level accuracy

3.5 Summary

This chapter describes the operational features and functionality of GFPE’s user

friendly environment through a walkthrough usage of the tool, and is intended to serve as

a brief user manual. For the detailed user manual, refer to Appendix B.

CHAPTER 4

DESIGN AND IMPLEMENTATION

This software package provides a user friendly environment for GFPE. The main part is

the GUI interface that displays the operation menu, tool bar, tables and a text window. To

permit users to perform gene-finding program evaluation, the GUI allows users to add,

cut, copy, paste or delete files on the table, save or load an experiment, add gene-finding

programs and set up the related parameters, run prediction and evaluation functions and

compare the evaluation results using bar charts.

 Figure 4.1 shows the architecture diagram of this software package. The major

operations of “GUI Construction”, “Handling of Mouse Events and User Selection”,

“Data Structures and Operations”, “Handling of Sequence Files, Gene-Finding Programs

and Parameters”, “Gene-Finding Program Prediction”, “Gene-Finding Program

Evaluation” and “Draw Bar Charts” were implemented using Java, and are described in

the following sections of this chapter. To enhance the clarity of discussions of code

modules, we use different type faces to distinguish between classes that are part of the

Java distribution and those written as an element of this thesis project. The typeface for

java.sun.com Java API packages is bold, Java classes developed in this project are shown

in bold italic, and variables and methods are in plain italic.

 28

Figure 4.1 The Architecture Diagram of the software package

4.1 GUI Construction

The primary classes involved in the GUI interface are: Gui.java, SpreadsheetModel.java

and InternalTableFrame.java. The file Gui.java is the main class of this tool. It creates a

JFrame and adds a JMenuBar to the top and a JTextArea to the bottom, and a

JTabbedPane on which JInternalFrames (spreadsheet-like tables) can be created and

displayed.

The JMenuBar

 The JMenuBar holds a JMenu of ‘Experiment’, ‘File’, ‘Table Editor’, ‘Run

Program’, ‘Display’ and ‘Help’ choices. The JMenu contains JMenuItems, and may

 29

also contain JSeparators. The JMenu and JMenuItems in this tool are shown in Figure

3.3.

The JToolBar

 The JToolBar contains five groups of the fast access JButtons with image icons.

The JTabbedPane

 The JTabbedPane holds four InternalTableFrames that extend JInternalFrame.

They are the backbone of the tables. Each InternalTableFrame contains a spreadsheet-

like table based on its own SpreadsheetModel. All the tables have the same number of

rows and columns, same size table cells and same column headings. The first table is

used to display gene sequence file names, annotation file names and gene-finding

prediction file names. The other three tables are used to display gene sequence file

names, annotation file names and gene-finding program evaluation result file names at

the coding level, exon level and protein level. The number of rows in each table initially

is set to 40, but the user may append or insert more rows to the table as needed. The

number of columns in each table is initially set to 2, but again, the user can append or

insert more columns to each table. The maximum number of columns in each table is

100.

 The class InternalTableFrame creates a JInternalFrame containing two JTables.

Two TableColumnModels are created for the two JTables, one for the row header

JTable that displays the row numbers in the red background cells, and the other for the

spreadsheet-like JTable that displays file names in the white background cells. A

JViewport is created to hold the row header JTable; without the JViewport the

scrolling for the two JTables would not match.

 30

 The class InternalTableFrame also has some accessor methods for the class

SpreadsheetModel. It also includes three event listeners: table cell selection listener

(SelectionListener), column head click listener (ColumnHeaderListener) and right click

mouse button listener (MyMouseListener).

The JTextArea

 The JTextArea is a multi-line area that is used to display file content or program

parameters in this tool. JScrollPane is used to make the JTextArea scrollable. The font

and font size are set to "Serif" and “Font.BOLD, 12”, respectively.

4.2 Handling of Mouse Events and User Selection

The primary class involved in the handling of mouse events and user selections is

InternalTableFrame.java. The class InternalTableFrame includes three private event

listener classes: table cell SelectionListener, table cell MyMouseListener, and table head

ColumnHeadListener.

 The table cell SelectionListener class implements ListSelectionListener and

handles table cell selection. Whenever a ListSelectionEvent happens, this class will

assign the new position values of the selected column starting index, selected column end

index, selected row starting index and selected row end index to the variables

colIndexStart, colIndexEnd, rowIndexStart and rowIndexEnd, respectively. These values

can then be used to perform appropriate operations such as to add or delete files, display

a file, cut, copy or paste files, run programs and draw bar charts.

 The table cell MyMouseListener class extends MouseAdapter and handles the

MouseEvents that happen on any table cells. Only the right click button function is

 31

implemented in this class. Whenever the right mouse button is clicked on a table cell or a

selected area in the table, a RightClickMenu object will be created, and a small menu is

popped up allowing the user to quickly access the file edit buttons: "Add", "Display",

"Cut", "Copy", "Paste" and "Delete".

 The table head ColumnHeadListener class extends MouseAdapter and handles

MouseEvents on the user-appended or user-inserted table column heads

(JTableHeaders). Whenever a left mouse click or right mouse click event happens on

those table column headers, a ColumnModify object will be created, and a “Program and

parameters Modifying Window” is popped up allowing the user to modify the program

parameters or change the original program to a new program and set up the related

parameters.

4.3 Data Operations

The primary classes involved in management of data structures are TableManager.java

and SpreadsheetModel.java. The class SpreadsheetModel extends DefaultTableModel

and implements Serializable. It is the backbone of the table data and contains 4

important Vector variables: columnNameVector, filePathVector, fileNameVector and

parameterVector. The TableManager class allows the user to operate on data, add files

to the table, save the tables (actually, save the data Vectors of each table), load a saved

experiment and display the original stored file names on the table, and read the user

selected files and display them on the GUI text window.

 32

Data Storage

 The columnNameVector stores column headers - the user-appended or user-inserted

program names. Initially it has only three columns: "" (name is null), “Sequence file" and

"Annotation file".

 The files in each table are stored in appropriate directories on the hard drive, as

shown in Figure 3.1. Their paths and names are stored in two different Vectors of a

SpreadsheetModel.java to serve different purposes. One Vector is the filePathVector that

is used to hold the row data Vector of file paths, in which the file paths are stored in the

order of the column index, and the other vector is the fileNameVector that is used to hold

the row data vector of file names, in which the file names are stored in the order of the

column index. The files in filePathVector are used when its associated table is selected

and the gene-finding programs or evaluation programs are called. The files in

fileNameVector are used only for displaying the file names in that associated table.

 The parameterVector stores the parameters of the user-selected program. The

parameters are stored in the String format based on the column index; they are null at the

index position 0, 1 and 2, since those places correspond to the row header, “Sequence

file” and “Annotation file”, which have no programs. The maximum number of

parameters that the parameterVector can store in each table is set to 100.

Data operation

 All the data operations are through the SpreadsheetModel. The TableManager class

is a major class controlling data operations such as adding files to the table, saving tables,

opening a saved table file or displaying the selected prediction or evaluation files. When

saving the tables, the four Vectors of columnNameVector, fileNameVector,

 33

filePathVector and parameterVector in the SpreadsheetModel are written into a user

named file in Objects by ObjectOutputStream. When loading an experiment, the stored

table data are restored by ObjectInputStream, four new SpreadsheetModels are created

using the restored data, and four tables are constructed using a method of

createInternalTabs(model) in Gui.java with the newly obtained SpreadsheetModels.

 The ColumnAppend, ColumnDelete, ColumnInsert, ColumnModify, FileEdit, Go,

GoColdSpringHarbor, GoDenmark, GoGaTech, GoMIT, RowsAppend and RowsEdit

classes will update some or all Vectors of columnNameVector, fileNameVector,

filePathVector and parameterVector if these Objects are called and executed.

4.4 Handling of Sequence Files, Gene-Finding Programs and Parameters

The primary classes involved in handling of sequence files, gene-finding programs and

parameters set up are FileEdit.java, ReadFile.java, WriteToFile.java,

ColumnAppend.java, ColumnDelete.java, ColumnInsert.java and ColumnModify.java.

The class FileEdit allows the user to add sequence files and annotation files to the table

by selecting an area in the first two columns of any of the four tables, and also to cut,

copy or paste files in the first two columns, or to delete files in all the columns. The file

data can be accessed by the class ReadFile, and can be saved by the class WriteToFile.

 The class ColumnAppend is a subclass of Java’s JFrame that contains five gene-

finding programs and related parameter JPanel windows for appending a program to the

four tables. The class ColumnDelete can delete a selected program column. The class

ColumnInsert can insert a program to the left of the selected column in the four tables.

 34

The class ColumnModify allows the user either to change a selected program or modify

the parameters without changing the program.

4.5 Gene-Finding Program Prediction

The primary classes involved in running the prediction functions are Go.java,

GoColdSpringHarbor.java, GoDenmark.java, GoGaTech.java, GoMIT.java,

GoFFG.java, HttpUpload.java, ThreadsRuning.java and ThreadsStop.java. The Go

class is designed to run the appropriate prediction or evaluation program, based on the

user-selected table. If the user selects the first table – “Prediction Files” table, the Go

class will run the appropriate gene-finding programs by checking the table column

headers of the selected area, if the column header is “GenScan Program” GoMIT will be

run using the selected gene sequences.

 Whenever a new prediction file is to be written to the hard drive, the Go class will

examine whether the new prediction file’s name exists through the

checkFileExist_RenameItIfExist (File myFile) method. If it exists, the new prediction file

will be renamed to avoid overwriting.

 There are five gene-finding programs. GenScan, HMMGene, GeneMark and Pombe

are on remote web servers, to which our program must upload the gene sequence files

and the user-selected parameters. The upload methods include either setting up a

URLConnection to the remote servers, and using the “name=value” pairs POST method

to transfer the sequence file and the parameters to the remote servers, or using the

HttpUpload class to set up an HttpURLConnection to the remote server, then packing

up the file and the paramters into a multi-part upload bundle, and posting the sequence

 35

file and the parameters to the remote servers. The transferred data are queued in the

servers to be calculated. When the prediction result is available, InputStreamReader

and getInputStream() are used to get the result back.

 GenScan, HMMGene, GeneMark, Pombe and FFG programs can be run by the

GoMIT, GoDenmark, GoGaTech, GoColdSpringHarbor and GoFFG class,

respectively. These classes are implemented using multithreading. The class

ThreadsRunning can monitor the running threads by checking if the threads are alive or

not, and updating the information every 10 seconds on a popup window until all the

programs have finished. The class ThreadsStop can terminate the running programs.

A stopFlag is set to true to stop the active multithreaded execution in the case that the

user does not want to continue running the prediction function. The stopFlag is placed

near the end of the prediction execution function in the GoColdSpringHarbor,

GoDenmark, GoMIT, GoFFG, GoGaTech classes, just before writing the prediction

result into a file.

 The GenScan program, on the Burge Laboratory web server at Massachusetts

Institute of Technology, is run by the GoMIT class using HttpUpload. The parameters

and file are posted through multipart/form-data.

 The HMMGene program, on a server at the Center for Biological Sequence Analysis,

Technical University of Denmark, is run by the GoDenmark class using HttpUpload.

Again, the parameters and file are posted through multipart/form-data.

 The GeneMark program, on a server at the School of Biology, Georgia Institute of

Technology, is run by the GoGaTech class using URLConnection. The parameters and

file are posted through “name=value” pairs.

 36

 The Pombe program, on a server at the Zhang Lab, Cold Spring Harbor Laboratory,

is run by the GoColdSpringHarbor class using URLConnection. The parameters and

file are posted through “name=value” pairs.

 The FFG program, written in C++ code and compiled into an executable file

FFG.exe, is run on the local drive by the Java class GoFFG, implemented in multiple

threads using the Java Runtime.exec(File file) method.

4.6 Gene-Finding Program Evaluation

The primary class involved in running the evaluation function is Go.java. A set of other

major classes in the GFPE directory are provided by Jian Wang, and have been compiled

into Java class files. The Go class is designed to run appropriate prediction or evaluation

programs based on the user-selected table. To run evaluation programs, one needs to set

up the appropriate class path in the system environment variables. If the user selects the

second table - “Test Coding Accuracy” table, Go will execute

TestCodingAccuracy.execute(args), where args is a string that contains the names of the

gene sequence file, annotation file and the prediction result file from the first table. If the

user selects the third table - “Test Exon Accuracy” table, Go will execute

TestExonAccuracy.execute(args), where args is a string that contains the names of the

gene annotation file and the prediction result file from the first table. If the user selects

the fourth table - “Test Protein Accuracy” table, Go will execute

TestProteinAccuracy.execute(args), where args is a string that contains the names of the

gene sequence file, annotation file and the prediction result file from the first table.

 37

 Whenever a new evaluation file is to be written to the hard drive, the Go class will

examine whether the new evaluation file’s name exists through the

checkFileExist_RenameItIfExist (File myFile) method. If it exists, the new evaluation file

will be renamed to avoid overwriting.

4.7 Draw Bar Charts

The primary classes involved in drawing bar charts are DrawBarChartDataProcess.java

and DrawBarChart.java. The DrawBarChartDataProcess class processes data files

based on the user-selected table index and the user-selected area in the table, and

calculates the weighted average if multiple rows were selected. The weighted average is

described in detail in the DrawBarChartDataProcess.java file. A Vector array is used to

store the averaged data. For example, yAxisData_CodingVector is used to hold "CC",

"SMC", "ACP" and "AC" average data in the coding bar chart, yAxisData_exonVector is

used to hold "Sn*", "Sn**", "Sn***", "Sp*", "Sp**", "Sp***", "(Sn*+Sp*)/2",

"(n**+Sp**)/2)", "(Sn***+Sp***)/2)", "ME" and "WE" average data in the exon bar

chart.

 The DrawBarChart class uses the Graphics class methods drawLine, drawstring and

fill3DRect to draw the X axis, Y axis and bars. The number of bars to be drawn in the

chart depends on the selected columns (programs). The DrawBarChart class can

dynamically adjust the size of the window based on the bar numbers, and make them

evenly distributed along the X axis.

 38

4.8 Summary of Classes Implemented

This tool has been developed using object-oriented design. Some of the major classes

created are:

1. Command line GFPE package (provided by Jian Wang).

2. ColumnAppend: A subclass of Java’s JFrame that contains 5 gene-finding

programs and related parameters for appending a column to the 4 tables.

3. ColumnDelete: Delete a selected column. A warning window will popup to make

sure the user delete or not.

4. ColumnInsert: A subclass of Java’s JFrame that contains 5 gene-finding

programs and related parameters for inserting a column to the left of the selected

column in the 4 tables.

5. ColumnModify: A subclass of Java’s JFrame that contains 5 gene-finding

programs and related parameters for modifying a column, the user can either

change the program or re-setup the parameters without changing the program.

6. DrawBarChart: A subclass of Java’s JPanel using Graphics class methods

drawLine, drawstring and fill3Drect to draw the X axis, Y axis and bars. It can

dynamically adjust the size of the window based on the number of bars, and make

them evenly distributed along the X axis.

7. DrawBarChartDataProcess: Processes data files based on the selected table and

the selected area in the table, calculates the weighted average if multiple rows

were selected.

8. FileEdit: Lets the user edit only the "sequence file" column and "annotation file"

column by selecting an area in the two columns at any one of the 4 tables, to

 39

perform file Cut, Copy or Paste in the two columns. Delete can be performed in

all the columns.

9. Go: Runs the appropriate prediction or evaluation programs based on the user

selected table. If the user selects the second table - “Test Coding Accuracy” table,

Go will execute TestCodingAccuracy.execute(args), where args is a string that

contains the names of the gene sequence file, annotation file and the prediction

result file from the first table. If the user selects the third table - “Test Exon

Accuracy” table, Go will execute TestExonAccuracy.execute(args), where args is

a string that contains the names of the gene annotation file and the prediction

result file from the first table. If the user selects the fourth table - “Test Protein

Accuracy” table, Go will execute TestProteinAccuracy.execute(args), where args

is a string that contains the names of the gene sequence file, annotation file and

the prediction result file from the first table.

10. GoColdSpringHarbor: Runs the Pombe program using multithreading on a

remote server at the Zhang Lab, Cold Spring Harbor Laboratory.

11. GoDenmark: Runs the HMMGene program using multithreading on a remote

server at the Center for Biological Sequence Analysis, Technical University of

Denmark.

12. GoFFG: Runs the FFG program on local drive using multithreading. The FFG

program is a set of C++ codes written by Kraemer et al., they were compiled into

an executable file FFG.exe for use in this package.

13. GoGaTech: Runs the GeneMark program using multithreading on a remote server

at the School of Biology, Georgia Institute of Technology.

 40

14. GoMIT: Runs the GenScan program using multithreading on the Burge

Laboratory web server at Massachusetts Institute of Technology

15. Gui: The start-up class of this tool. It creates a JFrame and adds a JMenuBar to

the top and a JTextArea to the bottom, and the rest of the JFrame is used for a

JTabbedPane on which JInternalFrames (spreadsheet-like table) can be created

and displayed.

16. HttpUpload: A helper class to package up files and parameters as a multi-part

upload bundle to a web-server.

17. InternalTableFrame: Creates JInternalFrames containing two JTables. Two

TableColumnModels are created for the two JTables. One for the row headers

and the other for the spreadsheet-like table. A JViewport is created to hold the

row header table. It has some accessor methods for the class SpreadsheetModel.

It also includes three event listeners: table cell selection listener, column head

click listener and right click mouse button listener.

18. ReadFile: Reads in a file from the designated directory on the hard disk.

19. WriteToFile: Writes a new file to the designated directory on the hard disk.

20. RightClickMenu: A small menu allowing the user to quickly access the file edit

buttons: "Add", "Display", "Cut", "Copy", "Paste" and "Delete".

21. RowsAppend: Appends rows to the end of the 4 tables.

22. RowsEdit: A subclass of Java’s JFrame that lets users specify how many rows to

be inserted into the current table, or delete the selected rows from the table. For

both insertion and deletion, the operation is applied to all four tables.

 41

23. SpreadsheetModel: The backbone of the table data, it contains four important

Vector variables: columnNameVector, filePathVector, fileNameVector and

parameterVector, which are used to store column name, file path and name, file

name and parameters.

24. TableManager: Allows the user to operate on data, add files to the table, save the

tables (Actually, save the data Vectors of each table), open a saved file to display

the original stored file names on the table, read the user selected files and display

them on the GUI text window.

25. ThreadsRunning: Checks on running threads and updates information about the

running threads on a popup window every 10 seconds.

26. ThreadsStop: A stopFlag is set to true to stop the active multithreaded execution

in the case that the user does not want to continue running the prediction function.

The stopFlag is placed near the end of the prediction execution function in the

GoColdSpringHarbor, GoDenmark, GoMIT, GoFFG, GoGaTech classes,

before writing the prediction result into a file.

CHAPTER 5

USER EVALUATION

For GUI-based software designed for use by scientific researchers, the life-cycle

development relies heavily on user requirements, user evaluation and user feedback.

Accordingly, during the development of this tool, user evaluation was obtained. The

users were researchers and graduate students at the University of Georgia. Users were

asked to use the tool and feedback was obtained.

GFPE User Friendly Environment, version 1.0

 Version 1.0 of the GUI dealt with the appearance of the menu bar, four spreadsheet-

like tables attached by the tabs of “Prediction Files”, “Test Coding Accuracy”, “Test

Exon Accuracy” and “Test Protein Accuracy” and a text display window. Interaction

with the spreadsheet allows users to select an area in the table, add files to that area, edit

the files using cut, copy, paste or delete, run the gene-finding programs and evaluate the

prediction results by coding accuracy, exon accuracy, and protein accuracy, and display

prediction results or evaluation results in the bottom text window. Each table has only

seven fixed columns whose column header showing “Sequence Files”, “Annotation

Files”, “GenScan Program”, “HMMGene Program”, “GeneMark Program”, “Pombe

Program” and “FFG Program”. After an initial demonstration, user feedback was sought.

The interface look was fine and the participants felt that the tool would save users much

effort and time, compared to independently running those gene-finding programs and

collecting the prediction results. More concrete ideas about the additional features

included:

 43

• Enabling dynamic addition, insertion or deletion of programs on the table,

allowing users to compare the programs that he/she wants, or to compare the same

program with different set of parameters on one table, instead of the initial fixed

seven columns.

• Enabling a mouse right click popup menu for user to quickly access the “File”

edit menu such as “Add”, “Cut”, “Copy”, “Paste” and “Delete”.

• Enabling a mouse click popup window on the column header to change the

program or program parameters and merging the separate parameter window into

one window.

• Implementing multithreading to improve the speed of running programs on

remote servers and to enable monitoring the running process.

• Drawing bar charts to compare the evaluation results visually.

GFPE User Friendly Environment, Version 2.0

 In version 2.0, the additional features described in the previous user evaluation were

implemented. The focus was on dynamically appending or inserting the columns to the

table, using multithreading to improve the gene-finding program prediction speed and

drawing the bar charts. After a demonstration of version 2.0, the user suggested the

following additions:

• Enabling undo and redo functions to allow the user to move back and forth

between the current and previous status.

• Enabling a print feature to allow the user to print some results.

• Reporting failure if unable to setup a connection, or unable to get the result back

when accessing remote servers to run the gene-finding program predictions.

 44

• Enabling one bar chart to compare the prediction evaluation results of the

different sequences predicted by the same program.

 The above suggestions will be considered in the future work.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In retrospect, the development of the present version 2.0 of GFPE user friendly

environment was a good, hands-on, learning experience of programming in the Java

language using OOD/OOP. Ease of user interaction was kept in mind throughout the

development process. Using a visualization-based software tool for solving problems

associated with gene-finding research was found to be quite effective.

• A graphical, user friendly environment for Gene-Finding Program Evaluation

(GFPE) written in Java is developed to evaluate the prediction accuracy of gene-

finding programs of GenScan, HMMGene, GeneMark, Pombe and FFG program.

• The middle part of the GUI is designed similar to a spreadsheet table. The user

can add, cut, copy or paste gene sequence files and annotation files to the table,

add, modify or delete a column in which the selected program and parameters

were set up, select an area on the table to represent the execution of various gene-

finding programs on remote servers, automatically collect the prediction results,

and draw bar charts to compare evaluation accuracy at the coding level, exon

level and protein level. All the user’s prediction and evaluation work can be saved

as a file for future use.

• This tool aims to simplify and/or automate the process of executing the runs of the

gene-finding programs on the sequences of interest and of collecting and

analyzing the results, saves users substantial time and command line typing work.

 46

• It also serves as a basic platform for building further enhancements, which could

be used to solve other Bioinformatics applications.

6.2 Future Work

As suggested in the version 2.0 user feedback, we may do the following future work:

• Enabling undo and redo function to allow user back and forth between the current

and previous status.

• Enabling print feature allow user to print some results.

• Reporting failure if unable to setup connection, or unable to get the result back

when access remote servers to run the gene-finding program predictions.

APPENDIX A

Gene-Finding Features (GFF): Definition (Sanger Center, 2000)

Fields are: <seqname> <source> <feature> <start> <end> <score> <strand> <frame>
[group]
<seqname>

The name of the sequence. Having an explicit sequence name allows a feature file
to be prepared for a data set of multiple sequences. Normally the seqname will be
the identifier of the sequence in an accompanying fasta format file. An alternative
is that 'seqname' is the identifier for a sequence in a public database, such as an
EMBL/Genbank/DDBJ accession number. Which is the case, and which file or
database to use, should be explained in accompanying information.

<source>
The source of this feature. This field will normally be used to indicate the
program making the prediction, or if it comes from public database annotation, or
is experimentally verified, etc.

<feature>
The feature type name. We hope to suggest a standard set of features, to facilitate
import/export, comparison etc. Of course, people are free to define new ones as
needed. For example, Genie splice detectors account for a region of DNA, and
multiple detectors may be available for the same site, as shown above.

<start>, <end>
Integers. <start> must be less than or equal to <end>. Sequence numbering starts
at 1, so these numbers should be between 1 and the length of the relevant
sequence, inclusive.

<score>
A floating point value. When there is no score (i.e. for a sensor that just records
the possible presence of a signal, as "splice5" above) you must give something, by
convention 0.

<strand>
One of '+', '-' or '.'. '.' should be used when strand is not relevant, e.g. for
dinucleotide repeats.

<frame>
One of '0', '1', '2' or '.'. '0' indicates that the specified region is in frame, i.e. that its
first base corresponds to the first base of a codon. '1' indicates that there is one
extra base, i.e. that the second base of the region corresponds to the first base of a
codon, and '2' means that the third base of the region is the first base of a codon. If
the strand is '-', then the first base of the region is value of <end>, because the
corresponding coding region will run from <end> to <start> on the reverse strand.

[group]
An optional string-valued field that can be used as a name to group together a set
of records. Typical uses might be to group the introns and exons in one gene

 48

prediction (or experimentally verified gene structure), or to group multiple
regions of match to another sequence, such as an EST or a protein. See below for
examples.

All strings (i.e. values of the <seqname>, <feature> or <group> fields) should be under
256 characters long, and should not include whitespace. The whole line should be under
32k long. A character limit is not very desirable, but helps write parsers in some
languages. The slightly silly 32k limit is to allow plenty of space for comments/extra
data.

Fields must be separated by TAB characters ('\t').

Here are some example records:
SEQ1 EMBL atg 103 105 0.9 + 0
SEQ1 EMBL exon 103 172 6.42 + 0
SEQ1 EMBL splice5 172 173 0 + .
SEQ1 netgene splice5 172 173 0.94 + .
SEQ1 genie sp5-20 163 182 2.3 + .
SEQ1 genie sp5-10 168 177 2.1 + .
SEQ2 grail ATG 17 19 2.1 - 0

 49

APPENDIX B

User Manual

1. Compiling And Running The Software
The software developed in this thesis work may be downloaded from
http://iubio.bio.indiana.edu:7780/archive/00000645/. To begin using the software, a user
would download the zip file, GFPE.zip, and then unzip the software to a selected
directory on the hard drive. In our examples, this directory is named “gui”. After
unzipping, the software files and directories will be shown as displayed in Figure 3.1. In
the root directory of gui, this software package contains the graphical user interface Java
files and an executable FFG program seen on the right side of Figure 1. and a GFPE
directory that contains the Java files for the gene-finding evaluation programs, a data
directory that can store gene sequence, annotation and prediction files, as well as the
prediction result evaluation accuracy files and some temporary files, and a readme
directory that contains the user manual image pages, all seen on the left side of Figure 1.
 To run this tool, JDK, preferably version 1.4 or higher, should be installed on the
machine. To compile, the command “javac *.java” should be used in the gui directory
and in the GFPE directory separately. To run the tool, the command “java Gui” should be
used, and also the correct class path should be set up in the system environment variables.
For Unix systems, the user may need to set the “DISPLAY” variable to an appropriate
value.

 50

Fig 1 Directories of the software package and java files in the hard drive

2. Layout Of The Main Screen
 Once the program is started, the main screen appears as seen in Figure 2. This initial
screen contains the following parts:

 51

Fig 2 Layout of the main screen

• A JMenuBar on the top of the screen contains the menu items “Experiment”,
“File”, “Program & Parameters”, “Run Program”, “Display” and “Help”. The
detailed JMenuItems in each JMenu are as shown in Figure 3.

• A JtabbedPane in the middle of the screen contains four tabs: “Prediction Files”,
“Test Coding Accuracy", "Test Exon Accuracy" and "Test Protein Accuracy".

• A spreadsheet-like table is attached to each tab. The table with the “Prediction
Files” tab displays the DNA sequence files, annotation files and gene-finding
program prediction files. The table with the “Test Coding Accuracy” tab displays
the DNA sequence files, annotation files and gene-finding evaluation result files
at the coding level. The table with the “Test Exon Accuracy” tab displays the
DNA sequence files, annotation files and gene-finding evaluation result files at
the exon level; The table with the “Test Protein Accuracy” tab displays the DNA
sequence files, annotation files and gene-finding evaluation result files at the
protein level. The first and second columns holds the same DNA sequence files
and corresponding annotation files in all four tables.

• A text area on the bottom of the screen is used to display any file/files the user
selects from the table, or program parameters of the user selected columns.

 52

Experiment File Program & Parameters Run Program Display Help

Add User Manual
About the Kit

New
Load
Close

Display Parameters
Display Files
Draw Bar Chart

Print

Cut
Copy
Paste

Append Program
Insert Program
Modify Program
Delete Program

Run Prediction
Run Evaluation
Show Running Programs
Stop Running

Delete Save
Save as
Exit

Append Blank Rows
Insert Blank Rows
Delete Rows

Fig 3 GFPE Menu and Menu Items

 53

3. “Experiment” Menu

• New: Open a new experiment. The new experiment is like the one shown in
Figure 1, in which each blank table contains only two columns of sequence file
and annotation file.

• Load: Open a saved experiment. The tables will contains all the saved files and
related program columns.

• Close: Close the experiment. Ask “Do you want to save the change you made?”
before close.

• Print: Not implemented yet.
• Save: Save the current experiment.
• Save as: Save the current experiment in the other name.
• Exit: Exit from the system.

4. “File” Menu
This menu is designed to operate on the first and the second column in four tables,
“Delete” can work on all the columns.

• Add: Add files to a single column at each time. If the single column is the first
column or the second column, the first column or the second column in all the
four tables will contain the same sequence files or annotation files, even the user
add the files only to one of the four tables. To add files, select appropriate table by
clicking the tab using the mouse, and then select a single table cell as a starting
cell to which the user wants to add files, or select an area, click “File” menu, click
“Add”, a file selection window will popup, the user can select one or more files at
each time, and then click open, the files will be added to the column where the
selected single cell is or the first column of the selected area in the order they are
selected (Figure 4).

• Cut: Cut files from the first or the second column, or both columns of the table
only. Because all the files in other columns are created by different gene-finding
programs based on the sequence file and annotation file in the first and the second
column at the same row. If any of the first column or second column were cut, the
files in other columns will be gone. To cut, select a single file or an area, click
“File” menu, click “Cut”. Cut files are stored in a file named “tempDataStore” for
future paste use, every new “Cut” will update this file.

• Copy: Copy files from the first or the second column, or both column of the table
only. To make a copy, select a single file or an area within the first two columns,
click “File” menu, click “Copy”. Copied files are stored in a file named
“tempDataStore” for future paste use, every new “Copy” will update this file.

• Paste: Paste the cut or copied files, which are stored in tempDataStore, to the
first or the second, or both column of the table only. To make a paste, select an
equal size area within the first two columns, click “File” menu, click “Paste”. For
the “Prediction Files Table”, the table cells that are at the same row as the pasted
files and whose column number greater than 2 will become blank. For other
evaluation accuracy tables, the corresponding table cells will be written by the
words of “no pred result yet”.

 54

• Delete: Delete the selected files from any of the four tables. To make a delete,
select the files to be deleted, click “File” menu, click “Delete”.

The user also can right click mouse button to get fast access to the above menu item
function after selecting table cells.

Fig 4 Add files to the “Prediction Files” Table

5. “Program & Parameters” Menu
This menu is designed to assist user append, or insert gene-finding programs, or blank
rows to the table, change program parameters, or delete unwanted programs or unwanted
rows from the table. There are five gene-finding programs in this package, they are:
GenScan, HMMGene, GeneMark, Pombe and FFG program. Please perform the
following functions on the “Prediction Files” table. Once each operation is done, all the
other three tables will do the same.

• Append Program: Append a user selected program to the end of each table. To
append, click “Program & Parameters” menu, click “Append Program Column”, a
“Select Program and Setup Parameters Window” will popup, as shown in Figure
5a, 5b, 5c, 5d, and 5e. The user can select a program from one of five programs in
the drop down JComboBox and then setup its parameters.

• Insert Program: Insert a user selected program to the left hand side of the
selected column in each table. Insertion to the left hand side of the first or the
second column is not allowed. To insert, select a column located, click “Program

 55

& Parameters” menu, click “Insert Program Column”. Then the user can select a
program from the popup window and then setup its parameters.

• Modify Program: Change program parameters or using a new program to
replace the original selected program in the selected column. To modify, selected
a column to be changed, click “Program & Parameters” menu, click “Modify
Program Column”, or click the to be changed column head directly. The user re-
setup the parameters without changing the program in the popup window, or
select a new program to replace the original program and then setup new program
parameters. Figure 6 shows a table setup with five selected programs.

• Delete Program: Delete a program from each table. Pay attention to do this, all
the data and the column can not be recovered anymore once the deletion is
complete. To delete, click “Program & Parameters” menu, click “Delete Program
Column”.

• Append Blank Rows: Append a number of blank rows to the end of each table.
To append, click “Program & Parameters” menu, click “Append Blank Rows”. A
popup window will ask how many rows to be added, input a number, then click
ok button.

• Insert Blank Rows: Insert a number of blank rows before the selected row in
each table. To insert, click “Program & Parameters” menu, click “Insert Blank
Rows”. A popup window will ask how many rows to be inserted, input a number,
then click ok button.

• Delete Rows: Delete a number of selected rows from each table. Pay attention to
do this, all the data and the rows can not be recovered anymore once the deletion
is complete. To delete, select the rows to be deleted, click “Program &
Parameters” menu, click “Delete Rows”.

Fig 5a Select Program and Setup Parameters Window for GenScan Program

 56

Fig 5b Select Program and Setup Parameters Window for HMMGene Program

Fig 5c Select Program and Setup Parameters Window for GeneMark Program

 57

Fig 5d Select Program and Setup Parameters Window for Pombe Program

Fig 5e Select Program and Setup Parameters Window for FFG Program

 58

Fig 6 A table setup with five gene-finding programs

6. “Run Program” Menu
This menu is designed to assist user run the gene-finding programs in the first table -
Prediction Files table, run test coding accuracy in the second table – Test Coding
Accuracy table, run test exon accuracy in the third table – Test Exon Accuracy table, run
test protein accuracy in the fourth table – Test Protein Accuracy table. The data flow
through the GFPE graphical user interface is shown in Figure 7. The Run Prediction
should go first, since the evaluation needs the prediction data.

 59

Fig 7 Data flow through the GFPE Graphical user interface

 60

• Run Prediction: Run the user selected programs using multiple threads in the

first table. To run, select an area in the table, click “Run Program” menu, click
“Run Prediction”. When the prediction result is available, the system will write
the result file to the appropriate prediction_results folder on the hard drive, see
Figure 1, and write the file name to the appropriate table cell in the table, update
the corresponding table cells in the other three tables using the words of “not
evaluated yet”. User can monitor the run prediction process by clicking “Show
Running Programs”.

• Run Evaluation: Run the evaluation programs of test coding accuracy, test exon
accuracy and test protein accuracy by selecting the files to be evaluated in the
second, the third and the fourth table, respectively. To run, go to appropriate table,
select an area, click “Run Program” menu, click “Run Evaluation”. The system
will automatically recognize what evaluation program (test coding, test exon or
test protein) to execute based on the selected table. When the evaluation result is
available, the system will write the result file to the appropriate folder on the hard
drive, and update the table cell using the file name.

• Show Running Programs: Show the unfinished running programs. To show
running programs, during the run prediction process, click “Run Program” menu,
click “Show Running Programs”, see Figure 8. The show window will be
automatically updated by the latest unfinished running program information every
10 seconds. After all the programs finished, it shows “All done!”.

• Stop Running: Stop the running programs. To stop, click “Run Program” menu,
click “Stop Running”, which will activate the stop points in multiple thread
programs, block the result files to be written to the file storage folders on the hard
drive and to the table cells.

 61

Fig 8 Monitor running program window

7. “Display” Menu
This menu is designed to assist user check parameter, or file information through the
bottom text window, and compare the prediction accuracy results using the weighted
average values shown in bar charts.

• Display Parameters: Display the parameters for the selected gene-finding
program. To display, go to the first page table, select the column, click “Display”
menu, click “Display Parameters”, the parameters will be shown in the bottom
text window. Or click the column head, check the parameters from the popup
window.

• Display Files: Display the selected file content. To display, go to appropriate
table, select an area that contains the files to be checked, click “Display” menu,
click “Display Files”, then the selected files will be displayed one by one in the
bottom text window.

• Draw Bar Chart: Draw coding, exon or protein level accuracy bar chart based on
the user selected evaluation data. The data will be averaged by weight if multiple
sequence evaluation results are selected in one column. User also can compare
single sequence prediction evaluation using the same gene-finding program. To
draw the bar chart, go to appropriate evaluation table, select an area that contains
the files to be compared, click “Display” menu, click “Draw Bar Chart”, a popup
window will display the bar chart, see Figure 9, 10 and 11.

 62

Fig 9 Draw bar cart – coding level accuracy

Fig 10 Draw bar cart – exon level accuracy

 63

Fig 11 Draw bar cart – protein level accuracy

8. “Help” Menu

This menu is designed to assist user know how to use the GFPE graphical user
interface kit and the version of this software package.

• User Manual: Describe the user manual. To use, click “Help” menu, click “User
Manual”.

• About the Kit: Describe version, developer and the contact information about
the GFPE graphical user interface kit.

 64

APPENDIX C

How To Add a New Gene-Finding Program Into the GFPE Package?

Follow the procedures below to add a new gene-finding program into the GFPE package
step by step, suppose the new program name is AAA and it’s on a remote server.

1) Run AAA program on the remote server: Write a basic java class file
GoAAA.java, make upload DNA sequence file, upload the related parameters to
the remote server, get the prediction result back and change it into the standard
GFF format success. Refer to the class GoMIT.java and GoDenmark.java.

2) Setup result file related storage directories, output file names and paths: On the
local hard drive, make four AAA folders in the directories of
“data\prediction_results\”, “data\testCoding_results\”, “data\testExon_results\”
and “data\testProtien_results\” to hold the AAA program prediction result, coding
level test result, exon level test result and protein level test result, respectively. In
the class Go.java, add “AAA Program” to the end of the field String array
“programs”; add "data\\prediction_results\\AAA\\" to the end of the field String
array “predictionResult_filePath” to setup the prediction output result file path;
add “_AAA_pred.gff ” to the end of the field String array
“predictionResult_suffix” to setup the prediction file name suffix; add
"data\\testCoding_results\\AAA\\" to the end of the field String array
“testCodingResult_filePath” to setup the coding level test output result file path;
add "data\\testExon_results\\AAA\\" to the end of the field String array
“testExonResult_filePath” to setup the exon level test output result file path; add
"data\\testProtein_results\\AAA\\" to the end of the field String array
“testProteinResult_filePath to setup the protein level test result file path. Refer to
the class Go.java.

3) Code parameter related panel and methods in the class ColumnInsert.java,
ColumnModify.java and ColumnAppend.java: Add “AAA Program” to the end of
the field String array “programs” to allow user choose the new program; code an
AAA program parameter panel; update the methods “MyItemListener{}”,
“saveProgramPramaters()” and “saveProgramDefaultParamaters()”; code the new
methods getAAA_Parameters() and getDefaultAAA_Parameters().

4) In the class Go.java, find the method “public void runPrediction ()”, add a
boolean judgement to determine when to run AAA program. Refer to the class
Go.java.

5) Modify the file GoAAA.java: Make it be able to write the prediction result into a
file on the local disk, and display the file properly in the table.

 For a gene-finding program that can be downloaded to the local machine, refer to the
above procedures and the class GoFFG.java and Go.java to add it into the GFPE package.

 65

REFERENCES

1. Borodovskky M. and McIninch J. GeneMark: parallel gene recognition for both

DNA strands. Comput. Chem. 1993, 17: 123-133.

2. Burge C. and Karlin S. Prediction of complete gene structure in human genomic

DNA. J. Mol. Biol., 1997, 268:78-94.

3. Burset, M.; Guigo, R. Evaluation of gene structure prediction programs. Genomics,

1996, 34:353-367.

4. Chen T. and Zhang M. Q. Pombe: a gene-finding and exon intron structure prediction

system for fission yeast. Yeast, 1998, 14:701-710.

5. Edelmann S. E. and Staben C. A statistical analysis of sequence features within genes

from Neurosora crassa. Exp. Mycol., 1994, 18:70-81.

6. Java Tutorial: http://java.sun.com/docs/books/tutorial/

7. Kraemer E.; Wang J.; Guo J.; Hopkins S.; Arnold J. An analysis of gene-finding

programs for Neurospora crassa. Bioinformatics, 2001, 17(10): 901-912.

8. Krogh A. Two methods for improving performance of an HMM and their application

for gene finding. In Proceedings of Fifth International Conference on Intelligent

Systems for Molecular Biology. AAAI Press, Menlo Park, CA. 1997, pp.179-186

9. Lukashin A. V. and Borodovsky M. GeneMark.hmm: new solutions for gene finding,

Nucleic Acids Research, 1998, 26:1107-1115.

10. Malacinski G. M., Freifelder D. Essentials of Molecular Biology, 3rd edition, Jones

and Bartlett Publishers, Inc. 2002, 325-326.

 66

11. Sanger Center: GFF (2000). GFF (Gene Finding Features) Specifications Document:

http://search.cpan.org/src/LDS/AcePerl-1.83/docs/GFF_Spec.html

12. Wang J.; Kraemer E. GFPE: Gene-finding Program Evaluation. Bioinformatics, 2003,

to appear.

