
ON COMPUTING THE THOM-BOARDMAN SYMBOLS

FOR POLYNOMIAL MULTIPLICATION MAPS

by

JANICE WETHINGTON

(Under the direction of Robert Varley)

ABSTRACT

A conjecture by R. Varley states that the Thom-Boardman invariant for polynomial
multiplication maps can be computed by using the Euclidean algorithm on the degrees of
the polynomials. This thesis provides some history of the problem, its connection with
secant maps and Gauss maps, proofs of classes of cases, and it develops a theory which
gives an upper bound on the invariant that agrees with the conjectured invariant. We con-
struct monomial ideals which have the conjectured invariant and discuss the generaliza-
tion of this construction to polynomial ideals. There is also a discussion on the symmetric
product of a smooth curve, along with some basic deformation theory, that is used in
the proof of a proposition concerning versality of families of hyperplane sections and
transversality to a stratification of the symmetric product.

INDEX WORDS: Singularities, Thom-Boardman Invariants, Symmetric Product,
Versal Deformations, Transversality, Secant Maps



ON COMPUTING THE THOM-BOARDMAN SYMBOLS

FOR POLYNOMIAL MULTIPLICATION MAPS

by

JANICE WETHINGTON

M.S., Rensselaer Polytechnic University, 1997

B.S., University of Kentucky, 1996

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2002



c
�

2002

Janice Wethington

All Rights Reserved



ON COMPUTING THE THOM-BOARDMAN SYMBOLS

FOR POLYNOMIAL MULTIPLICATION MAPS

by

JANICE WETHINGTON

Approved:

Major Professor: Robert Varley

Committee: Malcolm Adams
Valery Alexeev
Ed Azoff
Dino Lorenzini

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
December 2002



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Robert Varley. His patience, encour-

agement, and assistance cannot be overstated. After all, this thesis is about a conjecture by

Dr. Varley. His guidance has been my saving grace. For their comments and suggestions

along the way, I would like to thank my committee: Malcolm Adams, Valery Alexeev, Ed

Azoff, and Dino Lorenzini. Also, I thank Rod Canfield, Clint McCrory and Ted Shifrin

for patiently answering my questions with a straight face. The UGA Department of Math-

ematics office staff deserves my heartfelt appreciation for being so helpful in so many

ways. Also, thank you Watson, for being so patient.

This work was supported for the most part by the National Physical Science Consor-

tium Graduate Fellowship Program and the Department of Defense. Additional support

included a research fellowship from the National Science Foundation Vertical Integration

of Research and Education in the Mathematical Sciences Program.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER

1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 THE THOM-BOARDMAN INVARIANT TB . . . . . . . . . . . . . 4

1.2 POLYNOMIAL MAPS . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 THE FIRST JACOBIAN OF ����� � . . . . . . . . . . . . . . . . . . 8

1.4 ELIMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 THE WEIGHTING STRUCTURE . . . . . . . . . . . . . . . . . . 11

1.6 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 THE ���
	 SYMMETRIC PRODUCT OF A CURVE OF DEGREE � . . . . . . . 16

2.1 SOME DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 TWO IMPORTANT PROPOSITIONS . . . . . . . . . . . . . . . . 17

2.3 DEFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 THE PROPOSITION . . . . . . . . . . . . . . . . . . . . . . . . 30

3 SECANT MAPS AND VARLEY’S CONJECTURE . . . . . . . . . . . . . . 34

3.1 THE NORMAL FORM FOR SECANT MAPS . . . . . . . . . . . . 34

3.2 VARLEY’S CONJECTURE . . . . . . . . . . . . . . . . . . . . . 37

3.3 DETERMINANTS OF �
���
� � . . . . . . . . . . . . . . . . . . . . 38

3.4 THE CRITICAL COLUMN . . . . . . . . . . . . . . . . . . . . . 39

v



vi

3.5 STRENGTHENING VARLEY’S CONJECTURE . . . . . . . . . . . 40

4 CLASSES OF CASES . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 � �
� � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 � ��� � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 ��� � � � , ����� . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 ��	
����
 � 	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 MONOMIAL AND POLYNOMIAL MODELS . . . . . . . . . . . . . . . . 51

5.1 MONOMIAL IDEALS ����������� . . . . . . . . . . . . . . . . . . . 51

5.2 GENERALIZING TO POLYNOMIAL IDEALS . . . . . . . . . . . . 56

5.3 IMPOSING THE RIGHT NONDEGENERACY CONDITIONS . . . . . 57

6 USING THE CRITICAL COLUMNS . . . . . . . . . . . . . . . . . . . . 59

6.1 THE CRITICAL COLUMNS . . . . . . . . . . . . . . . . . . . . 59

6.2 ����� �"! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 #%$&��� �"! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 “SPECIAL” RESULTS . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 PRESENT STATE OF AFFAIRS . . . . . . . . . . . . . . . . . . . 75

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



INTRODUCTION

The following work has its origins in the study of complex analytic maps from one com-

plex manifold to another. In 1956, R. Thom developed a method to classify singularities

of differentiable maps according to the rank of the first differential of the map and the

ranks of its restrictions to submanifolds of singularities. His theory depended upon the

manifold structure of the singular locus of each restriction of the map. J.M. Boardman

published a paper in 1967 generalizing Thom’s work to include maps whose singular loci

may fail to be manifolds, or whose successive restrictions may fail to be manifolds. In

effect, Boardman expanded Thom’s work to almost all differentiable maps on manifolds.

The Thom-Boardman classification is realized by an infinite, non-increasing sequence of

nonnegative integers referred to as the Thom-Boardman invariant. When the number of

nonzero terms is finite, the symbol for the invariant is usually truncated after the last

nonzero entry.

Joint work at the University of Georgia by Professors M. Adams, C. McCrory, T.

Shifrin, and R. Varley concerned invariants of Gauss maps of theta divisors. Their inves-

tigation revealed an fundamental connection between these Gauss maps and secant maps.

Continued work by R. Varley indicated a connection between secant maps and maps

defined by the multiplication of two single-variable polynomials. The multiplication maps

take the coefficients of two polynomials to expressions in those coefficients that describe

the coefficients of the product of the two polynomials. The classification by singularities of

these polynomial multiplication maps would result in the classification of the secant maps.

However, the Thom-Boardman symbol is usually difficult to compute. Even in the case

of the polynomial multiplication maps the computations become extremely difficult in all
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but a small number of cases. Then a conversation with V. Goryunov led to Varley’s conjec-

ture that computing the Thom-Boardman symbol for polynomial multiplication reduces

to computing the successive quotients and remainders for the Euclidean algorithm applied

to the degrees of the two polynomials.

The first chapter of this thesis contains the definitions and constructions of the Thom-

Boardman invariant and the polynomial multiplication maps. The Jacobian matrix of an

ideal generated by a set of expressions � � ������� ���
� is the matrix formed by taking partial

derivatives of those equations with respect to the variables used. The first chapter includes

a discussion of the structure inherent in the first Jacobian matrices of the multiplication

maps and a weighting system is introduced to help keep track of the structure of ideals

that occur after sucessive steps of the Thom-Boardman computations.

The second chapter introduces some background material which, with chapter 3, moti-

vates interest in the research. It begins with a discussion of the geometry of a particular

stratification of the dth symmetric product of a nondegenerate compact complex curve �
of degree � in � � . This chapter concludes with a proof of a proposition from [17]. Define

the following:
� ��� �	��
 �
� ��� ������� ��� � ������������� �"!#�$�%���'&

and
( �)
 �
� ��*��������+��,.-�/0��������� �"!#�$�%��*%&1�

Consider the following commutative diagram

� ��� �
2

��

// (

��
��� � � � �

� 3 // � ,.-�/

The proposition states that the family of hyperplane sections of � ,
� ��� �

24$5 ��� � � � , is

versal if and only if

��� � � � 36 5 ��,.-�/
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is transverse to the given stratification of � ,.-�/ .
The third chapter concerns the connection between secant maps and the polynomial

multiplication maps. Conjecturally, the normal form for the secant map is complex ana-

lytically isomorphic, at the germ level, to products of polynomial multiplication maps.

Then we state Varley’s conjecture that the Thom-Boardman invariant for these maps can

be computed using the Euclidean algorithm. It is known that each term of the Thom-

Boardman symbol of a map represents the dimension of the Zariski tangent space of the

fiber of the map at each stage of the restrictions. My work has indicated that not only can

we compute this dimension, we can actually specify the linear equations of the tangent

space.

The computation of the invariant for classes of cases is the subject of the fourth

chapter. This chapter provides a proof of the stronger result for several classes of cases

depending on the relationship of the degrees of the two polynomials.

Monomial ideals � with a particular choice for the Thom-Boardman invariant are

constructed in chapter 5 along with a discussion about generalizing the construction to

polynomial ideals � without changing the invariant. An example of such a generalization

illustrates the need for imposing some nondegeneracy conditions on the coefficients of

the variables. We discuss the possibilities for those conditions and pose an interesting

question about them.

The sixth chapter contains a discussion of special determinants of the successive Jaco-

bians of the ideals defined by the multiplication maps. The special symbol is realized by

taking only these determinants and gives us inequalities for the full invariant for the ideal.

This final chapter concludes with a brief discussion of the direction for further research

on this problem.



CHAPTER 1

PRELIMINARIES

Here are some basic definitions and constructions for the Thom-Boardman symbol and

polynomial multiplication maps, as well as some tools for dealing with the computations

with which we are concerned. This chapter concludes with a few examples which provide

insight in later discussions.

1.1 THE THOM-BOARDMAN INVARIANT TB

We want to define the symbol ��� , where
� ����� �
�������
����� � is the Thom-Boardman invariant

associated to a �	� map of manifolds. We will follow the construction used in [3]. The

construction below, originally by Thom, is given for maps between manifolds of arbitrary

dimensions. The algorithm depends upon taking successive restrictions of the map to the

singular locus of the previous restriction. At some stage in the algorithm, it is possible

that the singular locus may fail to be a manifold. However, Boardman’s work generalized

Thom’s work using jet spaces, which are manifolds and which allow us to perform the

calculations even when the singular locus of a particular map is not a manifold, or if any

of the restricted loci fails to be manifold.

We say that a point is of class � 3 for a function 
 if the dimension of the kernel of the

derivative of 
 at � is � . By the derivative of 
 at � we simply mean the map taking the

tangent space at � to the source space to the tangent at 
 ��� � to the target. Then the subset

of � of points of class � 3 is denoted � 3 ��
 � �

4
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For example, if we think of the projection of a sphere to a plane, the map is two to one

everywhere except the equator. At the equator the map is one to one. The planes tangents

to the sphere are projected to planes in the target except at the equator. Planes tangent to

the sphere at the equator project to lines in the target. The equator is the singular locus of

this map in that regard, while the other points are considered regular points of the map.

The points away from the equator are of class ��� � while the points on the equator are of

class � � �
Let

�
be an ideal in the algebra � of germs at a given point of � � maps of manifolds


�� � 4$5�� � 
 � ��
�� � 
	� ������� � 
 � � � where � and � have dimensions 
 and � respec-

tively. Take � �
������� � ��� to be local coordinates on � . The Jacobian extension, � � � , is

the ideal spanned by
�

and all the minors of order � of the Jacobian matrix ( 
 
 3�� 
 ��� ),
denoted � � , formed from partial derivatives of functions 
 in

�
. Since the determinant of

this matrix is multilinear and since 
 
 � 
 ��� ��
 
 � 
 ����
 � � 
 ��� , the Jacobian extension

is independent of the coordinate system chosen, hence is an invariant of the ideal. We say

that � 3 � is critical if � 3 ������ but � 3�� � � ��� . That is, the critical extension of
�

is
�

adjoined with the least order minors of the Jacobian matrix of
�

for which the extension

does not coincide with the whole algebra. If every size minor of � � is a unit in ��� then

the map was of full rank at the given point already and the critical extension is the ideal
�

itself. Note that
��� � 3 � �

Now we shift the lower indices to upper indices of the critical extensions by the rule

� 3 � � ��� �13! � � . We repeat the process described above with the resulting ideals until

we have a sequence of critical extensions of
�

,

��� � 3�" �#� � 3!$ � 3�" ��� �%�%� � � 3!& � 3!&(' " ������� 3�" � �*)

where ) is the maximal ideal of � � Then the Thom-Boardman symbol, #%$ � � � , is given

by ��� �
���+� ������� ����� � � The purpose of switching the indices is that doing so allows us to
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express #%$ � � � as follows:

� � � ����� !�� � � � � � �+� � ����� !�� � � � 3�" � � � ����� � ��� � ����� !�� � � � 3!&(' " ������� 3�" � �

where the rank of an ideal is defined to be the maximal number of independent coordinates

from the ideal and the corank is the number of variables minus the rank.

Geometrically speaking, � � is the dimension of the Zariski tangent space � � to the fiber

in � of the map germ 
 at zero of this fiber as a subscheme of M defined by the ideal
�

,

and � � is the dimension of � � to the fiber of the map germ on the subscheme of � defined

by � 3 � ' " ����� � 3�" � . It follows that #%$ � � � is a non-increasing sequence of non-negative

integers. � � is actually the class of points having the Thom-Boardman symbol
�
, and

� ����
 � is the subset of points of the source space of 
 of class � � � Consider the following

example.

Example 1.1.1 The Whitney Cusp

x1

y1y2

x2

y1

The Whitney cusp map is realized by the map

��� �
� ��� �
	 4$5 ����� ��
 � � ��� � ��� �

giving the ideal
��� !������ � ��
 � � ��� � ���
� � Then,

� ��� !��
����

� � ��
 ��� � �� �
��

�
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Since we are considering the map-germ at zero, � !�� � � � � ! � � � � � So we take the 2x2

minors of � ��� ! which is just ��� ��� � ��� ! � �
�
� � � 
 ��� . Notice the connection between the

algebra and the geometry of the situation. The zero set of this expression,
�
� � � 
 ��� , is

precisely the singular locus in the source space. This singular locus is the set of points

where the tangent lines to the source map to points in the target under the derivative of the

map. Then � �	� �
and

� � ��� !�� ��� � � � ���
�

The fact that this is not the ideal ��� � � ���
� is reflected by the fact that the tangent space to

the restriction of the cusp map has a singularity at the origin. The tangent at the origin

maps to the cusp point of the target while the other tangent lines map to tangent lines of

the cuspidal curve away from the cusp point.

�%� � ��� ! �
��
� � � �
� �

��

����� !�� � �%� � ��� ! � � � � �
Then �+� � �

and

� � � � ��� !�� ��� �
� ��� � �

#%$ � ��� ! �	��� � � � � � This example is related to the � �
� � case given in the last section of this

chapter.

1.2 POLYNOMIAL MAPS

Although the following is valid over any algebraically closed field of characteristic zero,

for the sake of this discussion we will always work over � . Without any loss of generality,

we may assume our polynomials are monic.

Let � � be the set of monic complex polynomials in one variable of degree � . � ����
� � by the map sending 
 ��� �	� � � 
	� � � � � � � � 
 �%�%� 
	� � to the � -tuple � � � � � � ������� � � � � � � �
� � .
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If we take 
 ��� � of degree � as above and � ��� � � � � 
�� � � � � � � � 
 �%�%� 
�� � of degree

� , then the product 	 ��� � � 
 � ��� � is a monic polynomial of the form 	 ��� � � � �  � 
� �  � � � � �  � � � 
 �%�%� 
 � � where the � � ’s are polynomials in the coefficients of 
 and � . We

can also assume that � � � . The � � ’s are as shown below:�������������������� �������������������

� �  � � � � � � � � 
�� � � �� �  � � ��� � � � � 
�� � � � 
 � � � � � � � �
and� �  � � � � � � � � 
�� � � � 
 �

3! �
	 �  � � � � 3 � � � for �
� �

� �  � � � � � � � � 
 �
3! �
	 �  � � � � 3 � � � for �����
� �

� �  � � � � �
3! �
	 �  � � � � 3 � � � for ��� � �

This gives us maps

� �
� � � � � � � � 4$5 � �  �

defined by

� � � ������� � � � � � � � � ������� � � � � � � 	 4$5 � � �  � � � ������� � � � � �
We are interested in the map germ � �
� � at zero.

1.3 THE FIRST JACOBIAN OF ����� �

Let � �
� � be the ideal generated by � �  � � � � � �  � � � ������� � � � defined by the multiplication

map � �
� � . There is an interesting fact that becomes obvious when taking the Jacobian

��� �
� � . Taking the � � ’s in descending order from � 
 � 4 �
to

�
, and the � 3 ’s and � 3 ’s in

ascending order from
�

to � 4 �
and

�
to � 4 �

respectively, we get the following:

��� �
� ���

���������
� � � �%�%� � � � �%�%�� � � � � � �%�%� � � � � � � �%�%�� � � � � � � � � �%�%� � � � � � � � � � �%�%�
...

. . . . . .

����������



9

This is the Sylvester matrix for 
 and � . The rank of the Sylvester matrix for two polyno-

mials when evaluated at the origin (in our case, 
 ��� � � � � ��� ��� � � � � ) is the larger of the

two degrees and thus the corank is the smaller. This gives the first entry of TB( � �
� � ) for

any � � � ; � � � ����� !�� � � ��� �
� � �	� � . However, the determinants of this matrix are large

and complicated and the structure of � � � � �
� � is not as helpful. The following section

gives us an important tool in discovering the successive entries of the Thom-Boardman

symbol.

1.4 ELIMINATION

Since the Thom-Boardman symbol is independent of the choice of variables, by using

the expressions with linear terms in the � ’s, � � ������� � � �  � � � , we may eliminate the � ’s and

rewrite the remaining � ’s as functions of the � ’s. The new expressions are of the form:

�� � � � � �� �  � � � ������� � �� �  ��� �
��
� ������� �

�� � � � are expressions in the � 3 ’ �

�� � � �� �  � ������� � �� � � � have linear terms � � � ����� � � � � � � respectively.

This gives us a map
�� �
� � � � � 405 � � defined by � � � ������� � � � � � � 	 4$5 � �� � � � ������� � �� � � � Let

� �
� � denote the ideal in �
�
� � ������� � � � � ��� generated by the

�� � ’s obtained from the map
�� �
� � .

The notation ��� � � is shortened to � when there is no ambiguity. Also, since the context is

clear from here on, it is preferable to commit a slight abuse of notation by dropping the
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use of the tilde. The first Jacobian of the ideal � � � �
� � is the matrix

�
� �

�������������������

� �%�%� � � � !�� ' "
��� � '�� � !�� ' "

��� � '���� " �%�%� � !�� ' "
��� � ' "� �%�%� � � � !�� ' $

��� � '�� ' " � !�� ' $
��� � '�� � !�� ' $

��� � '���� " �%�%� � !�� ' $
��� � ' "

...
...

...� � ! �
��� " � ! �

��� $ �%�%� � ! �
��� � '�� �%�%�

� ! � ' "
���
	

� ! � ' "
��� " � ! � ' "

��� $ �%�%� � ! � ' "
��� � '�� �%�%�

...
...

...

� ! 	
���
	

� ! 	
��� " � ! 	

��� $ �%�%� � ! 	
��� � '�� �%�%� � ! 	

��� � ' "

��������������������

Recall that each � � has at most one linear term with coefficient 1 and the rest of the terms

are at least quadratic. The �"� � -antidiagonal of a matrix � � 3 � � is the set of entries on a

diagonal line drawn from the entry � � � to the entry � �
� . In other words, the sum of the

indices of the relevant entries is � 
 �
.

The ��� 4 ��� -antidiagonal of �
� contains all ones from the linear terms and no other

non-zero entry of �
� has a constant term. If � � � � � � 4 � has no terms with factors of

index less than � � This shows that all entries above the ��� 4 ��� -antidiagonal are zero. At

the origin, this matrix has corank � consistent with the Sylvester matrix discussion above.

The column that corresponds to the partial 
 � 
 � � is the first column from the left

containing no ones and is important in the computations of determinants with linear

terms. Indeed, it contains expressions with linear terms in the variables in order from

the last entry of that column up to the first. For that reason this column is called the crit-

ical column. An example of this nice structure of �
� is below.

Example 1.4.1 �
���
� �
Note that the critical column is the fourth column.
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� � � 4 ����� 4 ����� 
 �
���
�

� � 4 ��� 4 ����� 
 ���
� 4 ��� 
 ���������� 4 ��� 4 ��� 
 ���

� 4 ��� 4 ��	 
 �����
���
4 ��� 4 ��� 
 ���

� � 4 ��	 ����	���� 4 ���

4 ��� 
 ���
� � � 4 ��� �����
���

�������������

Notice that the triangle of zeros in the top left corner is reflected by a triangle of zeros

along the bottom of the matrix just previous to the critical column. This will always

happen and can be confirmed by computing the appropriate partial derivatives of the � ’s.

We see this by noting that the � � ’s giving the zeros are the ones of index lower than � 4 � �
These expressions have the variables � � ������� � � � in at least quadratic terms as seen in the

original multiplication. They also contain terms with factors in the variables � � ������� � � � � �
from the substitution performed in the elimination process. However, they do not contain

any terms with factors with index between � and � �

1.5 THE WEIGHTING STRUCTURE

We impose a weighting system on the � 3 ’s as follows:

� � � � � 4��
� �"� � � �

for � � �	�
� � � 3 � � � 4 � for �	� 
 � � � �������
��� 4 � &

� � � 3 � � � � � � � 3 � 
 � � � �
�

In general, the weight of a product of variables is the sum of the weights of the individuals.

The weight of a sum or sum of products is defined only if all of the terms of the sum have

equal weight, i.e. the sum is weighted homogeneous. Then the weight of the sum is the

weight of any of the terms.
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It is worth noting that the � � ’s have homogeneous weight and each � � has weight

� 
 � 4 � . In particular, � � � � � � � � � 
 �
and � � � � � � � 
 � � Also 
 � � � 
 � 3 has weight

� � � �
� 4 � � � 3 � ��� 4 � 
 � . Since � � � � �	� � � � � � � � 4 �
, 
 � � � 
 � 3 has weight � ��
 � � � � � 
 � 3 � 4 � �

The weight of the entries of matrix �
���
� � are equal on each of the anti-diagonals. This tells

us where linear terms are possible in the matrix. Also, there is additional structure, to be

discussed in a later section, inherent in the � ’s that tells us which monomials can and

cannot appear in each � , and thus in each partial.

1.6 EXAMPLES

This is a good place to consider some examples of the computation of the Thom-

Boardman invariant, TB(
�

), for an ideal
�

given by a map 
 � � � 4$5 � � . The example

given earlier, the Whitney cusp map, provided us the opportunity to explore the process

visually as well as computationally. The Whitney cusp map has the same TB-invariant

as the polynomial multiplication map, � �
� � , shown below. There are two other examples

shown here, ��� � � and ��� � � � which provide insight into the computations.

Example 1.6.1 �%	 � 


Consider � �
� � with 
 ��� � � � � 
 � � � 
 � � , � ��� � � � 
�� . Then,

� � � � � � � � �
	 4$5 � � � 
�� � � � 
 � � � � � � � � �
After eliminating the variable b,

� �
� �	��� � � 4 �
� � � 4 � � � ��� �

�
� �
� �	�
�� � 4 � � �
4 � � 4 � �

��
�

The corank of �
� �
� � is one, so #%$ � � �
� � �	� � � ������� � � Also � !�� � � �
� �
� � �	� �
so we need the

� ��� minors of �
� �
� � which is the determinant of the whole matrix. We adjoin 4 � � 4 � � � �
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to the ideal � �
� � to get

� � � ��� � � � �
� � �

and

�%� � � �
�� � �
� � � �

��
�

Again, the rank and corank of the Jacobian matrix are both one. #%$ � � �
� ��� � � � � � ������� � ,
��� � � �%� � � � � � � � , and we get

� � � � � �
� �	��� � � � � � � �

The next corank is obviously
�

and we may stop, therefore

#%$ � � �
� � �	��� � � � ����#%$ � ��� ! � �
Example 1.6.2 ���
� �


 ��� � � � � 
 � � ��� 
 � � � � 
 � � � 
 � �
� ��� �	� ��� 
�� ��� � 
�� � � 
�� �

��� � � � � � � � � � � � � � � � � � � � � � � � �
�
	 405 � ��� ������� � � � �
After elimination of the coefficients of the polynomial � as described above,������������ �����������

��� � �
� � �

� � �
� � � 4 � � � � � 
 � � 
 �

� � � �� 4 � �� 4 � � �� � � 4 � � � � 4 � � � � � 
 � � �� � � 4 � � � �� 
 � � � ��� �	� � � �
�� 4 � � � � 4 �

� ��
 � � � � � � � 4 � � � ���
� � 4 � � � � 
 � � � � � � � 4 � � � �� �

Let ���.� � � � �������
� � � � . Then

�
� � � � �

����� � � � ��� � � $� � � � $ � � � "� � � $ ��� � � � ��
� ��� � � � $  � $� � � � "� � � $ ��� � � �� � �
	  � � $$ � � � $ � $�  � � " ���

� $� � � $ � � � "� � � $ ��� � � �� � �
	  � � " ��� � �
	 ���  � � $ � " � � � " � $�� � "� � � $ ��� � � �� � �
	 � �
	 ��� � �
	 � $�� � �
	 � $�

� ����
�
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The corank of �
� � � � is 3, which gives #%$ � � � � � � � �
�
������� � . And since the rank of

�
� � � � is 1, we adjoin the � � � minors of �
� � � � to � � � � to get � � � � � � . In practice, we

then find a generating set for � � � � � � and repeat the process using this Jacobian extension.

A generating set is:

� � � � � � ��� � � � � � � � 
 � �� � � � � 4 � �� � � � �
Repeating the process:

�%� � � � � � �

���������
� � � �

� � �� � � � � �� � � 4
�
� � �� � � �

����������
����� !�� � � �%� � � � � � �	� �

� � � � � � � � � � � �� � � � � 
 � �� � � � � � � �
Again:

�%� � � � � � � � �

���������
� � � �

� ��� � � � � �� � � �
� � � �

� ��������
����� !�� � � �%� � � � � � � � �	� �

� � � � � � � � � � � � � �� � � � � � � � � � �
We continue until we get the maximal ideal � � � ������� � � � � � � of �

�
� � ������� � � � � ��� �

�%� � � � � � � � � � �

���������
� � � � � �� � � �
� � � �
� � � �

����������
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����� !�� � � �%� � � � � � � � � � �	� �
� � � � � � � � � � � � � � � � � � � � � � � � � �

which is the maximal ideal and hence #%$ � � � � � � � �
�
� � � � � � � � The following is an

example of the class of cases � �
� � � where � is a positive integer.

Example 1.6.3 ���
� 	

��� � � � � � � � � � � � � � � � �
	 4$5 � � � � � � � � � � � � ���������� ��������
� � � � � 4 � � � � � 
 � ��� � � � � 4 �

�� 
 � � � �� 
 � � � �� �	� 4 � � � � 4 � � � � 
 � � � ���
� � 4 � � � � 
 � � � ��

�
� � � � �

���������
� � 4 � � � 4 � � � 
 �

� � �� 4 � � 4 � � � 
 � � � � � � � � 4 � �
4 � � 4 � � 
 � � � 4 � � 4 � � 
 � � � � �

4 � � 
 � � � � 4 � � � � � � �

� ��������
����� !�� � � �
� � � � �	� �

� � � � � � ��� � � � � � � � � � 4 � � � � � � � � 4 � � � � � � � � 
 � � � � � � �

� � � � � � � �

������������

� � � �
� � �� � �

� � �
� � 4

�
� � �� ���

� � 4�� � � �� � � �
� � �� � � �

�������������
����� !�� � � �%� � � � � � �	� �

� � � � � � � � � � � � � � � � � � � � � �
We have shown #%$ � � � � � �	� �"� � ��� �



CHAPTER 2

THE ���
	 SYMMETRIC PRODUCT OF A CURVE OF DEGREE � .

Let � be a smooth, nondegenerate connected compact complex curve of degree � in � � .

We want to define the ��� � symmetric product of � , stratify that space, and consider the

inherent geometry of the stratification. The point is to understand and prove a proposition,

to be given later, stated but not proved in an exposition of joint work by Malcolm Adams,

Clint McCrory, Ted Shifrin and Robert Varley [17].

2.1 SOME DEFINITIONS

Definition 2.1.1 For a nonsingular complex curve � , the � � � symmetric product, denoted

� ,.-�/ , is the � -fold product of � with itself modulo the action of
�
- , the symmetric group

on � elements. Hence, � ,.-�/ is the set of unordered � -tuples of points of � .

Definition 2.1.2 A divisor * of � is a finite formal sum: * � 
 ��� � 
 �%�%� 
 
 ��� � ,
where 
 3 ��� and � 3 � � for all � � � ������� � � . The degree of * is the sum of the 
 3 ,
������* ��� �3 	 � 
 3 . A divisor of � is called effective if 
 3 � �

for all � � � �������
� � .

We say that two linear subspaces of a finite dimensional linear space are transversal if

their sum is the whole space. This leads to the following definition for maps found in [3]:

Definition 2.1.3 Let 
 � � 5 � be a smooth map (at least 	 � ) of a manifold � to a

manifold � containing a submanifold � � . Then 
 is said to be transversal to � � at a point

� � � if either

16
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i) 
 � � � �� � � or

ii) the image of the tangent space to � at a under the derivative 
 � � is transversal to the

tangent space to � � at � (i.e. 
 � ��� � � 
 � 2 , � / � � � � 2 , � / � � .

2.2 TWO IMPORTANT PROPOSITIONS

Now we consider the following two propositions.

Proposition 2.2.1 If � is a nonsingular complex curve, for any ��� �
, the symmetric

product � ,.-�/ � � 
 effective divisors of degree � on � & is a complex manifold (or a nonsin-

gular complex variety) of dimension � , [21].

Proof: � ,.-�/ � � - � � - where � � �
- acts on � � ��� � ������� � � - � � � - by � ��� � �

����� , � / � ��� , � / �������
� ��� ,.-�/ � , i.e. the map:


 � �������
� ��&�� // � - � // � -

defined by:

� � // � 3 � // � ��� � ��� �

is realized by � ��� � ��� �	� � � , 3 / � ����� ��� � � . If � is affine, then so is � - � � - [12],pg126.

Let’s first consider the case when �)�	� � , affine 1-space. Let 
 � ������� ��
 - ��� � be the

roots of the degree � monic polynomial

��� 4 
 � � �%�%� ��� 4 
 - �	� � - 4 � � �

 �
�������
��
 - � � -
� � 
 �%�%��� �

- �

 �
�������
��
 - �

where the � 3 are the elementary symmetric functions of 
 �
������� ��
 � . We have the following

commutative diagram:

�

 �$����� ��
 - �_

��

��� � � - //

��

��� � � - � � -
yyttt

tt
ttt

ttt

����� � � ,.-�/

� � � ������� � � - � � -
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But the quotient map is invariant under the action of
�
- and the map ��� � � - � � - 4$5 � - is,

in fact, an isomorphism. Thus ��� � � ,.-�/ � � � - .

Now we consider the case of � , a smooth curve. We have the map:

� - 4$5 � ,.-�/

(ordered � -tuple) 	 405 (corresponding unordered � -tuple).

Suppose we have � � � ��� �
������� � � - � � � - , where the � 3 ’s are not necessarily distinct.

Rename � 3 by � � if � 3 � � � . Then by reordering the entries by the new indices, we can

consider � � of the form:

� � � ��� �
������� � � � � ��� ������� ��� �������
� � � � �%�%� � � � �

where there are 
 3 entries for each distinct � 3 , for � � � �������
� � , where 
 � ���%�%� � 
 � ,
� �3 	 � 
 3 � � .

Consider

� � � � " � � � $ � �%�%��� � � ��� �
- �

� is the stablizer �1��!�� ��� � � � �
- . This is the only relevant subgroup: for if we have

an element � � �
- � �

�� � , then there is a neighborhood � of � in � ,.-�/ such that

� ��� ���	� is empty. Such a � is not relevant to our quotient map around � � . Take disjoint

neighborhoods � 3 of � 3 ��� , for each � � � �������
� � of the � distinct points. We can identify

each neighborhood � 3 with an open unit disc � 3 in � centered at a point 
 3 � � such that
�

 3 4 
 � � ��� for all � ���� .

Consider the product neighborhood

� � � � "� � �%�%��� � � &�

with the action of � , now indentified with

� � "� � �%�%��� � � &�
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with the action of
� � " � �%�%��� � � & �

Now

� � "� � �%�%��� � � &�

embeds into ��� � � - where the action is induced by the action of
� � " � �%�%� � � � & � �

- � So

we have the following

� � "� � �%�%�"� � � &� �

� // ��� � � - // ��� � � � " � � � " � �%�%��� ��� � � � & � � � &

But earlier we saw that ��� 3 � ��� � � ��� � � � ��� . The map becomes

� � � "� � �%�%��� � � &� � � � � � " � �%�%��� � � & � 6 5 � � " � �%�%��� � � & �

the right hand side of which is a complex manifold of dimension � . This implies � ,.-�/ is a

complex manifold of dimension �"�

Proposition 2.2.2 Let � be a nonsingular compact complex curve. For each � � �
and


 �
������� � 
 � � �
such that 
 � 
 �%�%� 
 
 � � � , let

� � 
 �
������� � 
 � �	��
#* ��� ,.-�/ � * � 
 � � � 
 �%�%� 
 
 ��� � for distinct points� � ������� � � � ��� &1�

Then
� � 
 �	��
 � � 
 � �������
� 
 � ��& � � ,.-�/

is a locally closed submanifold of dimension � . And

� ��
 � � 
 � with 
 running over � � �
and 
 �&� �%�%� � 
 � � � � 
 � 
 �%�%� 
 
 � � ��&

is a complex analytically locally trivial stratification of � ,.-�/ , [21].

First we need to develop a language in which we may discuss the above statement.

At that point, most of the proposition is easily proved. The proof of the complex analytic
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local triviality property for
�

, however, depends on introducing the deformation theory

developed by V.I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko in [3]. Once this

perspective is put into place, the proof is readily seen. We start with a few definitions and

examples.

Definition 2.2.3 A subspace � of a topological space � is locally closed if it is the inter-

section of an open and a closed subset of � .

A general definition of a stratification of a topological space � is a decomposition of �
into disjoint subsets 
 ����& such that � ��� ��� and each ��� is a topological manifold

which is locally closed in � .

A stratification of a manifold is a finite collection of sub-manifolds (the strata) fol-

lowing the condition that the closure of each stratum consists of itself together with the

finite union of strata of smaller dimension.

Example 2.2.4 � � �	� �
� 4 �%�

... ...

����
 � �%� � � ����
 �
� 4 �%� � �
� � � � 4 � ��� .

Example 2.2.5 � ���
� 4 � ��� ��� 4 � ����
�� &

� is the plane, � is the line, and � is the point of intersection of the line and the plane in

the figure below. The strata are the plane minus the point (dimension 2), the line minus

the point (dimension 1) and the point (dimension 0).
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X

Y

p

����
 �
� 4 � �	� � ����
���� 4 � � � � ����
 
�� & � �
� 4 � ��� � 4 � � �

There is another definition of a stratification: Let � be a topological space and

� � � � � � where � � are locally closed and are � � manifolds. Then this stratification

of � is said to be locally finite if for every � ��� and there is some open neighborhood

� of � so that there are only finitely many � � such that �	� � � is nonempty. The disjoint

union is not required to be finite but must be locally finite. Our example 2.2.2 can be

reconsidered in this light as the disjoint union of singleton points and open intervals.

Now consider the following topological space formed by two “curved surfaces”. A

transversal slice at a point � looks like:

P

Consider an open neighborhood � of � . � is homeomorphic to a neighborhood of the

stratum containing the point crossed with a slice,
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x

This is a local triviality condition.

Definition 2.2.6 A stratified topological space � � � � � � is locally topologically trivial

if for every � � � there exists an open neighborhood � of � , an open neighborhood �

of � in � � (where � ��� � ), and a topological space
�

such that � is homeomorphic to

� � � .

Let’s look at an example of a space which is not locally topologically trivial. Consider

from example 2.2.3, a different decomposition of that space into the punctured plane and

the line, � � �
� 4 � � ��� � If we look at the point of intersection, the neighborhood looks

like:

which is not a product space. But if we take the decomposition to be as in the example,

(i.e. the point, the line minus the point, and the plane minus the point), then at � the

tangential part � is just the point � and
�

is the whole neighborhood. So now � �
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� � � is locally topologically trivial. Complex analytically locally trivial is much stronger.

Complex analytically locally trivial requires that � be complex analytically isomorphic to

� � � .

Another useful concept is that of partitions of integers [2]:

Definition 2.2.7 A partition � of a positive integer � is a finite, nonincreasing sequence

of positive integers � �
�������
��� � (the “parts”) such that � �3 	 � � 3 ��� . We write ��� �
�������
��� � �
for the partition denoted by � , and write ��� � for “ � is a partition of � ”. Let � ��� �
denote the set of all partitions of � .

Note we have 
 � � , since the integers 
 3 are positive for � � � ������� � � , 
 � ��
�� �
�%�%� � 
 � and � �3 	 � 
 3 � � .

Now consider an ordering “ � ” on the partitions of an integer � given by � � ��� if � �
can be obtained from � , possibly after reordering, by partitioning one or more elements

of � .

It’s easy to see that “ � ” defines a partial ordering on � ��� � . Since � is a trivial parti-

tioning of itself, ��� � . Transitivity is an obvious consequence of the way in which one

partition is obtained from another. Antisymmetry is also obvious: for if � � is obtained from

partitioning parts of � and � is obtained from partitioning parts of � � , then the partitions

of parts must have been the trivial partitionings. This ordering is only a partial ordering

on � ��� � . To see this, let � � � � ���+� ��� �
�
� � � � � � � ��� � � � � �

�
� � � � � � � � � �	� � �
� and

consider � � ��� � �
with � � �0� � � � � �

�
� � � � � � Then � � ��� � � by

� � � 
 � . But � � � cannot be

obtained from � , nor can � be obtained from ��� � by any partitionings.

Consider
� � 
 � � � ,.-�/ , 
 � � 
 �
������� � 
 � � . We defined

� � 
 � to be the set 
#* �

 � � � 
 �%�%� 
 
 ��� � where the � 3 are distinct points of � & . There are � independent param-

eters, the � 3 , ��� � �������
� � , needed to describe
� � 
 � and this gives ����
 � � 
 � � � . Since

the � 3 are distinct,
� � 
 � can be written locally as

� � � 
 � ��* � � � � � � � 
 ��� � 
 � � � � � �%�%��� � � � 
 � � � 
 � � � �
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where varying 
 3 � 3 in
� � 
 � amounts to moving � 3 along the curve � . This gives

� � � 
 � ��* � � � � � � � 
 ��� � 
 ��� ��� � �%�%�"� � � � 
 � � � 
 ��� � �

� � ��� � � � � � �%�%��� ��� � � � �

�

���� ��� ��� ����� � � � ��� � � ��� ����� � � � � 4 � ����� � ��� �� � ������� � �� � � ������� � �"!#�
�� 3 !�� � ��� ��� � ��� ��� � � � � � ���&��� � � 3 �

� � ��� � � � ��� ��� � � � � � �%�%��� ��� � � � �
� � ��� � � � � �

(i.e.
� � 
 � is a submanifold of � ,.-�/ ).

Since � ,.-�/ � � - � � - , we may order the 
 3 so that 
 � � 
�� � �%�%� � 
 � and


 � � . We may also assume, without loss of generality, that re-ordering occurs naturally

whenever necessary for the following discussion.

Consider 
 ��� � � � �������
� � � with � ones,

� � 
 � �)
#* ��� ,.-�/ such that * � � � 
 �%�%� 
 � - where the� 3 � � are distinct &1�

For example, if � �
�

and � is a plane cubic, we get * � � � 
 ��� 
 � � as the formal

sum of distinct points on a line (i.e. a hyperplane of the plane) intersecting � in the most

general way, nowhere tangent to � . This line, � may become tangent to � , as it sweeps

through the points of � , at some point ��� , i.e., two points “come together” at ��� . Then we

have * � � � � � 
�� . We take note that the general point of � , � / does not occur as � � � �
For general � and * � � � � � 
�� � 
 �%�%� 
	� - � � ,such that � 3 ���� � , 
 � � � ������� � � 4 � ,

and � 3 �� � � if � �� � , * � � � �"� � � �������
� � � is in the closure of
� � � ������� � � � . In general,

the elements in the closure of
� � 
 � are exactly the divisors in

� � 
 � and the divisors

obtained when two or more points come together. This corresponds to adding two or more

of the 
 3 . In other words
� � 
 � � � � � 
 � if and only if 
 �*
 � as partitions of � . Notice

that if
� � 
 � � � � � 
 � with 
 � � � 
 � � ������� � 
 �� � and 
 � � 
 �
������� � 
 � � then � � � so
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����
 � � 
 ��� � ����
 � � 
 � . In fact, from the discussion on partitions, it can be seen that if


 � 
 � as partitions of � , then � � � .

Lemma 2.2.8
� � 
 � is a locally closed subset of � ,.-�/ .

Proof: Let � � � � ,.-�/ 4 � � � 
 � 4 � � 
 � � . For each 
 , � � is open in � ,.-�/ . � � 
 � �
� � � � � 
 � so

� � 
 � is locally closed.

Therefore we have that the
� � 
 � are locally closed, disjoint submanifolds of � ,.-�/

where the closure of each
� � 
 � consists of itself and a finite union of submanifolds,

� � 
 � � , of smaller dimension. We have just proved that
�

is a stratification of � ,.-�/ . Now,

we must establish the complex analytical local triviality property for
�

. We establish this

in the next section by using a little deformation theory.

2.3 DEFORMATIONS

The primary reference for this version of deformation theory is from [3].

Definition 2.3.1 Let ��� � be manifolds. A map-germ � 5 � at a point � of � is an

equivalence class of maps � � � 5 � , each of which is defined on some neighborhood �

of � in � , where two maps are equivalent if they coincide on some neighborhood � of �
in � .

Definition 2.3.2 Let � be a point of a manifold � . A deformation of � is a smooth map-

germ � from a manifold � , to � at a point 0 in � for which � � � � � � . � is called the

base of the deformation.

Let � be a Lie-group acting on � and let � and � � be two deformations of � with

the same base � . We say � and � � are � ��� �	� � �
� � � if one can be carried to the other by
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the action of an element ��� of � smoothly depending on � (i.e. if � ��� � � ��� � ����� � where

� 	 405 ��� is a smooth map-germ �
� � � � 405 � � � � � ) . Let

� � �
� � � � � 5 �
� � � �
be a smooth map. The deformation induced from � by � is the deformation � � � of �
with the base � � given by

�	� � � � ��� � �	� � �	�&��� � � �

for all � � in � � .

Definition 2.3.3 A deformation � of � is versal if every deformation of � is equivalent to

one induced from � . A versal deformation is miniversal if the dimension of the base has

the least possible value.

Arnold shows that in the finite dimensional case, a deformation which is versal at first

order (i.e. with respect to tangent spaces, infinitesimally versal) is versal [3],pg 151.

Example 2.3.4

Take �#� to be the set of monic polynomials 	 � 
 � in �
�

 � of degree 
 � �

. We take � �
to be the group of translations of the form 
 	5 
 
 � for � � � acting on � � � Consider

� � � �#� with � � � 
 � . Then a deformation of 
 � with base � is given by a family of

monic polynomials 	 � 
 � of the form

	 � 
 �	� 
 � 
 � � � � 
 � � � 
 �%�%� 
 � �
where � � ������� ��� � � � are functions on � vanishing at 0. Such a deformation of 
 � is versal

if the corresponding map � � � 5 ��� is transversal at 
 � to the orbit � � 
 � . If we take

a minimal transversal (one of minimum dimension to still be transversal to � � 
 � ) we get
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the miniversal deformation. In our case, this amounts to taking the Tschirnhausen trans-

formation which eliminates the 
 � � � term of the equation. The miniversal deformation of


 � in �#� is

�	� � � 
 � �
�4$5 �"�#� � 
 � �

where

� � ��
 
 � 
 � � � � 
 � � � 
 �%�%� 
 � � such that � 3 � � & �

� is versal, and 
 � represents the base point in �	��� � 
 � � .

Remark 2.3.5 Thinking of miniversal deformations in this way by looking at transver-

sality to the orbits of � , makes it clear that if we have an inducing map � from a deforma-

tion � to a miniversal deformation � � , then � is versal if and only if � is submersive. So

we actually have uniqueness at first order of inducing maps to miniversal deformations.

It is enough to consider the deformation of 
�� ( 
 -times a point, 
 � � ) when

looking at the deformation of a divisor * � � 
 ��� � 
 �%�%� 
 
 ��� � for two reasons. First,

the deformation of a smooth point (1 times a point) is trivial. The only place anything can

happen is at points where the multiplicity is greater than one so that points can “split”, i.e.

when 
 has a non-trivial partition. Also, since � is a Hausdorff space and the � 3 ’s were

taken to be distinct then on a germ level we have

��� ,.-�/ ��* � � � � ��� , � " / � 
 � � � � � �%�%��� ��� , � & / � 
 ��� � � �

The deformation of * � is the product of the deformations of 
 3 � 3 for � � � �������
� � . Recall

that

����, � / � 
�� � �� ��� , � / � 
 � � � � �
�� ��� � � � � � � ������� � � � �
�� monic polynomials of degree 
+&1�
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New we let � 3 be the set of monic polynomials in �
�

 � of degree 
 3 . We say that

	 � � 	 � ������� � 	 � � is of type 
 � denoted 	 � 
 � � if 	 3 � � 3 for every � � � �������
� � . Now

define

���%�
��

3 	 � � 3 ��
 	 � 
 � � � 4 tuples (of monic polynomials) of type 
 &1�

Then take ��� ��� �3 	 � � 3 where � 3 is the group of translations 
 
 	5 
 
 � 3 � � 3 ��� & acting

on � 3 . Denote � 
 � " ������� � 
 � & � by 
 � . Let � 3 be a miniversal deformation of 
 ��� � � 3
and take ��� � � �3 	 � � 3 . Since

����,.-�/ ��* � � � � ��� � " � � � � �%�%�"� ��� � & � � � � � ��
3 	 � � 3 �

given * � of type 
 , we have the following maps of germs:

��� ,.-�/ ��* � ���
((QQQQQQQQQQQQ 	 // �	��� � 
 � �

�

//// �"����� 
 � �

� �3 	 � ��� ��� � 
 3 � � � �

OO � 66nnnnnnnnnnnn

given by * � ��� ,.-�/ ��* � � ,
* 		5 � � 	 � 
 � �

�	5 	 � 
 �

where � is realized by applying the appropriate Tschirnhausen transformation to each 	 3 ,
and � is an inclusion. Note that the right hand side triangle formed by the maps � , � and

the isomophism ��
3 	 � ��� ��� � 
 3 � � � � 4$5 �"����� 
 � �

is not commutative. We may think of the germ �	��� � 
 � � as the germ �
� � � � where

� �
��
3 	 � 
 � , 3 / � ��� , 3 /��� ' $ �������
��� , 3 /� ��&

and � 3 � 	 3 � 
 � � � 
 ��� 
 � ��� � � 
 ��� � � 
 �%�%� 
 � � , (i.e., 
 � is the point 0 in �	��� � 
 � � and

�"��� � 
 � � ). Then

�	��� � 
 � �
�4$5 �"����� 
 � �
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is the miniversal deformation of 
 � � ��� . Since � is transversal to the orbits of � � �
�	��� � 
 � � �� �"��� � ��� � 
 � � �

Recall that we have a nondegenerate embedding of � into � � with degree � . The

incidence correspondence,
� ��� � , is the set

� ��� �	��
 �
� ��� ������� ��� � ������������� �"!#�$�%���'&

while
( �)
 �
� ��*��������+��,.-�/0��������� �"!#�$�%��*%&1�

Then we have the following commutative diagram:

�
� ��� � � //
_

��

�
� ��* � � � � �
_

��

� ��� � �

� //

2
��

(
�

��
��� � � � �

� 3 // ��� ,.-�/ ��* � �

� � // * � � �%�
Putting this diagram together with the previous one gives the following diagram:

� ��� �
2

��

�

� // (
�

��
��� � � � �

� 3 // ��� ,.-�/ ��* � � 	 // ��� �

// ���
We want to know that � is a submersion. But ��� ,.-�/ ��* � � is isomorphic to

��
3 	 � ��� , ��� / � 
 3 � � � � � � � ��

3 	 � ��� ��� �
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and each ��� ��� � 
 3 � � � � � is isomorphic to the set of monic polynomials of degree 
 3 in one

variable. We already have the diagram:

��� ,.-�/ ��* � � �
%%LLLLLLLLLL 	 // �	��� � 
 � �

��
3 	 � ��� ��� � 
 3 � � � �


OO

where � is the Tschirnhausen transformation which is submersive. So � is actually a versal

deformation of 
 � with base ��� ,.-�/ ��* � � and � � ��� ,.-�/ ��* � � 4$5 �	��� � � � is a submersion.

Corollary 2.3.6 The stratum
� � 
 3 ������� � 
 � � through * � in ��� ,.-�/ ��* � � is precisely the

pre-image � � � � � � �)
	
 � � � 
 �%�%� 
 
 � � � & where � 3 � ��� � � 3 � .

Proof: Take a point of �	��� � � � that is not the origin. That point represents a divisor near * �
in the base of a deformation. But we took �	� 3 � � � to be a miniversal deformation at each

point and took ��� to be the product space. So the pre-image of that point is not * � , does

not have the same multiplicities, so is not in the same stratum. But � is a submersion, so

� � � � � � is smooth, hence is the statum
� � 
 � containing * � .

This gives the complex analytic local triviality property of the stratification
�

, since

the stratification by type of �	��� � � � is complex analytically locally trivial for the point

stratum 0, and we just pull back the structure along
� � 
 � at * � .

2.4 THE PROPOSITION

Now we are ready for the statement of the promised proposition.

Proposition 2.4.1 The family of hyperplane sections of � ,
� ��� �

24$5 ��� � � � , is versal if

and only if ��� � � � 36 5 � ,.-�/ is transverse to the stratification of � ,.-�/ by type.
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There is still work to do before the proof of this proposition. The proposition is stated

from the algebro-geometric point of view of deformation theory which differs from the

version given earlier.

An algebro-geometric deformation of a complex space � is a flat family � �4$5 �

together with an isomorphism �

�
4$5�� � � � � � , where � and

�
are complex spaces, � is a

morphism, and 0 is a base point in the base space
�

.

� � �

���� � �

� �4$5 �
is said to be versal if given any other deformation � 5 � there exists a

morphism � 5 �
such that � �� � ��� � .

When the possibility of misunderstanding exists, the above deformation will be called

“algebro-geometric deformations”, and the previous deformations are “deformations in

the sense of Arnold”.

Consider the diagram:

� ��� �
2

��

// ( //

��

��� � � �
���

��� � � � �

� 3 // ��� ,.-�/ ��* � � 	 // �	� � � �
where �	� � � � is the germ �	��� � � � constructed earlier. We are interested in an algebro-

geometric miniversal deformation, ��� � � ���4$5 �	� � � � , of the fiber over 
 � � � ���	� � � � .
Recall ���%��� �3 	 � � 3 . Let � 3 4$5 � 3 be the miniversal family over the � th factor. Then

��� � � � � � ��
3 	 � �
� 3 � �	� � � �%�%�"�	�� 3 � � � � � � �

and � �4$5 ��� is a miniversal deformation.

Consider the composition ��
 � ����� � � � 4$5 �	� � � � . If this composition is a submer-

sion the differential map �
� 	 � ��� � � � � 4$5 � � �	� � is onto, and since ��� � � � �405 �	� � � � is
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miniversal, the deformation of * � over the smooth germ � ��� � � � ��� � � is infinitesimally

versal and therefore versal. Now we are ready to prove the proposition.

Proof: Suppose � is transverse to
�

at * � : This says that

�+
 ��� �
�
� 	 � 
 ��� 	 � � � 
 � �	� ��� 	 ��� ,.-�/ � �

Since � is submersive, � �
�
� 	 ���+
 ��� �

�
� 	 � 
 ��� 	 � � � 
 � � � � � � �	� � � But we know that �

maps the stratum
� � 
 � to 0 in � and the tangent space of the stratum at * � is mapped by

� �
�
� 	 to 0 in � � �	� � .
So �+
 �	� 
�� � �

�
� 	 � � �

�
� 	 ���+
 ��� �

�
� 	 � �	� � � �	� � which says �	� 
�� � is a submersion,

and hence the family
� ��� �

24$5 ��� � � � is versal.

Now assume the family
� ��� �

24$5 ��� � � � is a versal deformation of the fiber * � �

 � � ��� � � . We have maps

� ��� � � � ��� � �
�

� 3 // ��� ,.-�/ ��* � � 	 // �	� � � �
There might not be a unique miniversal deformation ��� ,.-�/ ��* � � 5 �	� � � � , so we introduce

a map
� � � ��� � ��� ��� � � 4$5 �	� � � �

which can be any map inducing the germ of 
 at � � . Then by the uniqueness at first order

of inducing maps to the miniversal deformation we have

�

�
�
� 	 � �	� 
 � � �

�
� 	 �

Since
�

is versal at first order (i.e. versal), then
�

� is onto. So

�+
 � � �
�
� 	 �	� � � �	� �	� �+
 �	� 
 � � �

�
� 	 � � �

�
� 	 ���+
 ��� �

�
� 	 � �

But since � �
�
� 	 � ��� � � � 
 � � �	� �

we get

� �
�
� 	 ���+
 ��� �

�
� 	 � 
 ��� 	 � � � 
�� � � � � � �	� �
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Since we know � �
�
� 	 � ��� 	 ��� ,.-�/ � 4$5 � � �	� � is surjective with � � � � � � 	 � � � 
�� � ,

and since the subspaces of � � 	 ��� ,.-�/ � which contain � � 	 � � � 
 � � correspond one-to-one to

the subspaces of � � �	� � , it follows that

�+
 ��� �
�
� 	 � 
 ��� 	 � � � 
 � � � ��� 	 ��� ,.-�/ �

This is the transversality condition.



CHAPTER 3

SECANT MAPS AND VARLEY’S CONJECTURE

After the statement of the proposition in the previous chapter, C. McCrory discusses what

he calls a “closely related map, whose local geometry reflects the global geometry of [the

incidence correspondence].” [17]. The map he describes is the secant map. He mentions

the reason for studying this map is that, in the case of a nonhyperelliptic smooth curve

� , the Gauss map of the theta divisor corresponds in a particular way to the secant map

of the canonical embedding of � � The main focus of his work with Adams, Shifrin, and

Varley was on invariants of Gauss maps of theta divisors, which leads to a question about

invariants of related secant maps [1].

3.1 THE NORMAL FORM FOR SECANT MAPS

The following discussion is lifted almost entirely from the unpublished notes of R. Varley

[21], some of which is of a conjectural nature.

Suppose � be a smooth, nondegenerate compact complex connected curve of degree

� in � � . Let
�

be a divisor in � , � / and define
��

to be the span of
�

on � � � � � in

other words
�� � ��
#� � ��� � � � such that

� ��� � � &1� Let
� � � , � / be the open set


 ��� � , � / such that
��

is a hyperplane of � � &1� The secant map can be defined in terms of

the embedding:

Definition 3.1.1 The secant map s is the morphism,

� � � 4$5 ��� � ���
� 	 4$5 �� �

34
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A related universal construction is the space

� ����� � � ��
 � � ��*�������, � /�����,.-�/ such that
� � *%&

along with the morphism

� �
� - � � ����� � � 4$5 � ,.-�/
� � ��*�� 	 4$5 * �

Let r � �����
������� ��� � � � m � � 
 � ������� � 
 � � � and assume 
 3 � � � and � 3 ��
 3 for � �� ������� � � � and � � � � allowing some of the � 3 to be zero. A point � � � ��* � � � � ����� � � is

said to be of type � r m � if
�
� ������� � 
 �%�%� 
 � � � � � * � �*
 ��� � 
 �%�%� 
 
 � � � � The germ

of � �
� - at a point � � � ��* � � of type � r m � is isomorphic to a product of multiplication

maps

� � " � � " � � " � � � $(� � $ � � $ � �%�%��� � ��� � ��� � ��� � � � � � " � � � �%�%��� � � & � � �

The relationship of � �
� - to � is that � is induced from � �
� - by the inclusion

� � ��� � ��� 4$5 � ,.-�/
� 	 4$5 � � � �

More precisely, let � � � 4$5 � ����� � � denote the map
� 	 4$5 � � ��*�� � where * � �� ��� �

Fix
�
� � � � let � � � ��� � � � be the hyperplane

��
� , and let * � � � ,.-�/ be the divisor

� � ��� � Then the pair of maps � � ��� � induces a complex analytic embedding of the secant

map germ � � � � � � � � 4$5 � ��� � � � ��� � � in the map germ

� �
� - � �
� ����� � � � � � � ��* � � � 4$5 ��� ,.-�/ ��* � � �

Claim 3.1.2 The map � �
� - is complex analytically locally trivial along strata.

In other words, there is a “reduced” map germ
� �
� - such that � �
� - and

� �
� - � � � � are

R-L equivalent as complex analytic map germs around corresponding base points. Here
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� � � denotes the identity map on � -space, and R-L equivalence refers to the right-left

equivalence found in [3].

Assuming the claim is true leads to an interesting consequence for the structure of the

secant map germ when � is transverse to the stratum
� � m � at * � � If the germ ��� ��� � � is

transverse to the stratification of � ,.-�/ , then �
�

� �
� - � � ��� � -  � as complex analytic map

germs around corresponding base points. Therefore we get the following result:

Conjecture 3.1.3 If � � ��� � � � 5 � ,.-�/ is transverse at � � to the stratification
�

, (or equiv-

alently, if the family of hyperplane sections of � in ��� � � � induces a versal deformation of

the fiber * � ��� � � � over � � ) then, as complex analytic map germs at corresponding

base points,

� � � � - � � � � �
� -
� � � " � � " � � " � � � $ � � $ � � $ � �%�%�"� � ��� � ��� � ��� � � � � � " � � � �%�%��� � � & � � �

In other words, under the right conditions, studying invariants for secant maps comes

down to studying invariants for polynomial multiplication maps. In the case of the Thom-

Boardman invariant, the symbol for a product of polynomial multiplication maps is the

component-wise sum of the symbols for each of the factors; for some nice examples see

[1]. The symbol for any identity map is a tuple of zeros, and � � � � is the identity map

� � � for any � � � � Then it follows that #%$ � � � is that component-wise sum. Here is an

example of the secant map in light of the above discussion.

Example 3.1.4 ����� ��� � � � �	� �

Let
�
� � � � 
 ��� 
 � � � * � �

�
� � 
 � ��� 
 � � � The point in � � � ��* � � � � �

�
� � � is of type�� � � ��

� �
��

�

Assuming the above conjecture,

� � � � � � � � � � � �
� � � � � � � � � � � � �
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In order to get the TB-invariant for the right hand side, we add the symbols:

#%$ � � � � � � �	� #%$ � � �
� � � 
 #%$ � � � � � � 
 #%$ � � � � � �	� � � � � � 
 � � � � � 
 � � � � � � �"� � � �
If the computation of the TB-symbols for � �
� � were easily computed for any size

� and � , then the theory could be completed by a proof of Claim 3.1.2. However, the

computation involves the computation of all of the minors of a certain size of a pos-

sibly very large matrix. The following conjecture proposes a simple computation of the

invariant for exactly these maps.

3.2 VARLEY’S CONJECTURE

Consider the polynomial multiplication map � �
� � with fixed � � � . Consider the Euclidean

algorithm applied to � and � :

� � � � � 
 ��� � � ��� � �

� � � ����� 
 � � � � � � � ���
...

� � � � � � �  � � � � � � � � � � � �

Let
� ��������� be the tuple given by the Euclidean algorithm on � and � :

� ��������� � ��� ������� ��� ����� ������� ����� ������� ��� ��������� ��� � �

where � is repeated � � times, and � 3 is repeated � 3! � times.

Conjecture 3.2.1 Varley’s Conjecture: #%$ � � �
� � �	� � ��������� .

Computer calculations confirm this conjecture for all cases for which � 
 � � � � � The

memory demands for these calculations grows exponentially with the size of � and � 4 � .
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3.3 DETERMINANTS OF �
���
� �

Let � represent the weighting structure on �
�
� � ������� � � � � ��� given by

� � � � � 4�� (3.3.1)

� �"� � � �
for � � �	� (3.3.2)

� � � 3 � � � 4 � for �	� 
 � � � �������
��� 4 � & (3.3.3)

� � � 3 � � � � � � � 3 � 
 � � � �
� (3.3.4)

Suppose � �
� � � � �
� � ������� � � � � ��� be the ideal generated by the � � � � ������� � � � from the � �
� � -

map. Recall the following hold:

� 3 � � 3 � � � �������
� � � � � � (3.3.5)� 3 � � �������
� � � � �
(3.3.6)

� � � � �13 �	� � 
 ��� (3.3.7)

Proposition 3.3.1 The minors of any order of � � are weighted homogeneous.

Proof: Suppose � � �

 3 �
� is an � � � matrix. Then ��� � � � � is the sum of all possible

combinations of products 
 � � , � / 
 � � , � / ����� 
 � � , � / , where � ��� � is a permutation on � ele-

ments, in particular � ��� � �� � � � � for � �� � . Consider �
� �
� � � ��� ��� � with the rows and

columns labeled
� ������� ��� as usual. Then � ���"��
 � � � 
 � 3 and � � � 4 ��� � � � 
 �

.

� ��� ����� � � � � � � � � 4 � � � � � � �
� � 
 � 4 ��� 4 � � 4 � � �
� � 
 � 4 ��� 4 � 
 � �

when � 
 ��� � 4 � 
 � �
When � 
 � � � 4 � 
 �

then � ��� is a constant. This corresponds to the ��� 4 ��� -antidiagonal

mentioned in the first chapter. When � 
 � � � 4 � 
 �
the entry � ��� is above that

antidiagonal and is therefore zero.
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Let � be an � � � submatrix of �
���
� � with nonzero determinant. Take the � rows of

�
� �
� � that occur in � and name them � � � ��� ������� � � � and name the columns which occur

��� ������� � � � . Thus � ��� � � � � � � � 3 
 � 3 4 ��� 4 � 
 � � for � 3 
 � 3 � � 4 � 
 �
. Since

� �

 ����� � �

 � 
 � ����� and since 
 � �"� 3 ��& ��
 � 3 & �
� ��� � " � , � " / �%�%� � � � � , � � / � � � ��� 4 � 4 � � 
 ��

3 	 � �"� 3 
 � �"� 3 � �

� � ��� 4 � 4 � � 
 ��
3 	 � � 3 
 ��

3 	 � � 3
Which means that the weights of the terms of the determinant of � are dependent in

exactly the same way on the sums of the indices of the entries and hence are equal.

3.4 THE CRITICAL COLUMN

Recall that the critical column corresponds to the partial 
 � 
 � � � � and is the first column

from the left containing no ones. In fact, it contains every variable as a linear term in order

of ascending weight as the entries run down the column. This follows from the fact that,

given any ����� ��� � � , for
� � ��� � 4 �


 � � � 
 � � � � � 4 � � 
 terms of equal weight

Since no two variables have equal weight, � � is the only variable appearing in a linear

term of the partial, although it may appear with a coefficient other than 4 � � It also can

not appear in any nonlinear term of the partial, since that term would have to be of higher

weight and the partials are weighted homogeneous. For the sake of illustration, recall

�
� �
� � : ������������

� � � 4 ����� 4 ����� 
 �
���
�

� � 4 ��� 4 ����� 
 ���
� 4 ��� 
 ���������� 4 ��� 4 ��� 
 ���

� 4 ��� 4 ��	 
 �����
���
4 ��� 4 ��� 
 ���

� � 4 ��	 ����	���� 4 ���

4 ��� 
 ���
� � � 4 ��� �����
���

�������������
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The critical column is: ������������
4 �����

4 ����� 
 �
�
�

4 ���
4 ��	
4 ���

�������������
For general � � � , the � 4 � -antidiagonal contains all ones and thus the minors

needed for the first Jacobian extension of � �
� � are the � 4 � 
 �
minors. Since the � th

entry of the TB-invariant is the dimension of the Zariski tangent space to the fiber of the

map germ � �
� � on the subscheme of �
�
� � ������� � � � � ��� defined by � 3 � ' " ������� 3�" � , the

determinants with linear terms are the ones of primary interest at each stage. However, by

definition, we must consider all of the determinants, to compute the invariant.

The way to get the determinants with linear terms is to utilize the submatrix whose

anitdiagonal is the � 4 � -antidiagonal of ones and adjoin one row and one column. This

means that the only linear terms that can appear in any of the determinants of the first

Jacobian matrix are linear terms in the entries of the lower right hand � � � submatrix of

�
� �
� � � In later Jacobian matrices, they are the linear terms which appear outside of the

rows and columns used to make the determinant 1 submatrix.

3.5 STRENGTHENING VARLEY’S CONJECTURE

Denote 
 � � � 
 � � � � by
�
� � since it contains � � as its only linear term. Then the determinants

of primary interest are the ones of the form:

�	� � �
� � 
 terms of degree 2 or more

It is important to notice that the linear terms that appear in � � � �
� � � given the structure

of the critical column, are the ones in
�
� � for � going from 0 to � 4 �

and the ones already

linear in � �
� ��� These are the linear terms � � ������� � � ������� � � � � ��� �
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This observation gives insight into an extended version of Varley’s conjecture: not only

can one give the dimension of the Zariski tangent space corresponding to the Jacobian

extension of B computed at each stage of the algorithm, one can also predict the linear

equations which define that tangent space. The first � 4 � variables appear as linear terms

in the generators for ���
� � � In the extended conjecture, the variables appear as linear terms

in each of the Jacobian extensions as follows.

Conjecture 3.5.1 Let #%$ � ���
� � ��� ��� � ���+� ������� ����� � . Then the a generating set of the Jaco-

bian extension � 3 � � 3 � ' " �%�%��� 3�" � �
� � , � � � , contains the variables � � � �%�%� � � � � � �13 � as

linear terms.

Remark 3.5.2 A second observation here is that the second entry of the TB-symbol is

now apparent from the above discussion. Since there are exactly 
 !��0
 � ��� 4 �1& linear

terms in � 3�" � , �%� 3�" � has exactly 
 !��0
 � ��� 4 �1& ones along an antidiagonal and no

more. Therefore � !�� � � � � 3�" � � � 
 !�� 
 � ��� 4 �1& � which implies that the second entry

is �+� � ����� !�� � � �%� 3�" � �	��
 � �0
 � ��� 4 �1&1� Also, it follows that � ��� � �
� � �	� � � � � � � � � � � �



CHAPTER 4

CLASSES OF CASES

The extended version of Varley’s Conjecture can be proven when certain relationships

hold between the degrees � and � of the polynomials. This chapter is devoted to those

proofs. Notice that the goal is to prove Varley’s original conjecture and that the proof of

the extended version comes essentially for free. Often we are required to find a generating

set of expressions for an ideal. When this occurs, one may assume that the generators can

be obtained in practice by using the Groebner package in Maple.

4.1 � �
� �

This first case is similar to the Example 1.5.1, the Whitney cusp map. In fact, it is equiv-

alent to the generalized Whitney cusp. For more details on this, refer to [6],[3]. Although

this case is already known, it is worthwhile proving it here. The Thom-Boardman symbol

#%$ ��� �
� � � is a tuple of � ones. This case is more easily seen using the ideal � , the ideal

generated by the coefficients before eliminating variables.

Proposition 4.1.1 #%$ ��� �
� � � ��� � � � �������
� �� ��� �

��� � � �
�

Proof:


 ��� � � � � 
 � � � � � � � � 
 �%�%� 
 � � and � ��� � � � 4 �
� �
� � � � � � ������� � � � � � � � �
	 4$5 � � � � � 
�� � � � � � 
 � � � � � � � � � � 
 � � � � � ������� � � � � �� �
� ��� � � � � � 
�� � � � � � 
 � � � � � � � � � � 
 � � � � � ������� � � � � �
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as an ideal in �
�
� � ������� � � � � � � � �

The expressions give us the resultant matrix expected when taking the partial deriva-

tives with respect to � as the first column and the derivatives with respect to the � 3 ’s in

descending order in the � ’s for the following columns.

��� �
� �	�

�������������������

4 � � � � ����� �
4 � � � � 4 � � � �����
4 � � � � � 4 � � �����
4 � � � � � � 4 � �����

...
. . .

...

4 � � � ����� � 4 � �
4 � �

� ����� � 4 �

� ������������������

Since ����� !�� � � ��� �
� � � � � � #%$ � � �
� � � � � � ��������� and we take the full determinant of the

matrix for our only “minor”. Notice

��� �
� � 4 � 4 � � � ���
� �

�������������������

� 4 � � � � ����� �
4 � � � � � � � �����
4 � � � � � � � �����
4 � � � � � � � �����

...
. . .

...

4 � � � ����� � � �
4 � �

� ����� � �

� ������������������

is the companion matrix to the polynomial � ��� �	� � � 
 � � � � � � � � 
 �%�%� 
 � � � 
 ��� � � Then

the determinant of �����
� � is the polynomial � � � � 
 � � � � � � � � 
 �%�%� 
 � � � � � 
 � � � where

we have “ 
 ” if � is odd and “ 4 ” if � is even. We may ignore the sign of ��� � ��� �
� � and

adjoin 
 � � � to � �
� � . Then the critical Jacobian extension of � �
� � is

� � � ����
 � � � � � � � � 4 � � � � � � 4 � � � � �
� ����� � � � � � �
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We find a generating set for this ideal and get the equivalent ideal

� � � � � � � � 4 � � � � � � 4 � � � ����� � � � 4 � � � � � � � � �
This is not the maximal ideal � � � � � � � � � ����� � � � � � � in the polynomial ring over � in those

variables. We look for the critical extension of � � � . The Jacobian matrix is

�%� � � �
� �	�

�������������������

� � � � � � � � ����� �
4 � � � �����
4 � � � � �����
4
� � � � � � �����
...

. . .
...

4 ��� 4 � � � � � � � ����� � � �
� � ����� � �

� ������������������

This time ����� !�� � � � � � � �
� � ��� � � and #%$ � � �
� � ��� � � � � ��������� and we must adjoin the

entire determinant, ��� ��� �%� � � �
� � � � � � � � � , to get the critical extension. This lowers the

power of � that appears in the first entry and changes � � 4 � � � � to simply � � . Then our

critical extension is

� � � � � �
� �	��� � � � � � � � � � 4 � � � � � � 4 � � � ����� � � �
� � � � �

Obviously, repeating this process will continue to lower the power of the first expression

listed and give us the next � 3 � Each repetition gives us another 1 in the Thom-Boardman

invariant. The method stops when we reach

� � � � �%�%� � � � �
� �	��� � � � � ������� � � � � � � �
We had � � as a generator after the first process, i.e. in � � � �
� � � � � � � in � � � � � �
� � � and� � � � in � � � � � � � �
� � � Similarly, we get � � � � in

� � �%�%� � �
� ��� �

�  �
� �
� � �
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Therefore, we get � � 	 � � , � � � / in

� � �%�%� � �
� ��� �

� � �  �
� �
� � �

and the Thom-Boardman invariant for � �
� � is � � � � �������
� �� ��� �

��� � � �
� for any choice of � .

Notice that the linear terms appeared in order: � � � � �
� ����� � � � � � were present as

linear terms in ���
� � and � appeared as a linear term on the last phase of the algorithm.

This proves the extended version of Varley’s conjecture for � �
� � .

4.2 � ��� �

Proposition 4.2.1 #%$ ��� �
� ���	� ��� �

Proof:


 ��� �	� � � 
 � � � � � � � � 
 �%�%� 
 � � and � ��� � � � � 
�� � � � � � � � 
 �%�%� 
�� �
The coefficients of the product are:������������������������������ �����������������������������

� � � � �	� � � � � 
�� � � �� � � � � � � � � � 
�� � � � 
 � � � � � � � �� � � � � � � � � � 
�� � � � 
 � � � � � � � � 
 � � � � � � 4 �
...� � � � � � � 
�� � � � 
 �

3! �
	 � � 3 � � � for � � �
...� � � �	� � � � � � � 
 � � � � � � 
 �%�%� 
 � � � � � �� � � � � � � � � � � 
 � � � � � � 
 �%�%� 
 � � � � � �
...�
� � � � � �
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The equations for elimination are:������������������� ������������������

� � � � � 4 � � � �� � � � � 4 � � � � 
 � �� � �� � � � � 4 � � � � 
 � � � � � � � � � 4 � �� � �
...� � � � � 4 � � � � 
 terms of higher order � �

� � � �
...� � � 4 � � 
 terms of higher order � � �� � �

Notice that each � 3 has 4 � 3 as a linear term and all the other terms involve only the � ’s

with higher index.

The remaining coefficients are:

� � � � � � � � 4 � � � � � 
 �%�%� 
 � � � � � 4 � � 
 higher order terms � �

The only terms in � � � � involving � � are the first term, 4 � � � � � � and the one from the

substitution of � � , � � � � � 4 � � 
 �%�%� � � There are no linear terms in the remaining coefficients

so there are no unit entries in the matrix. Then the first column of �
� �
� � , the one whose

entries are the partials 
 � � � � � 
 � � , is ����������������

4 � � � � �
4 � � � � �
4 � � � � �

...

4 � � �
4 � �

�����������������

Since the rank of this matrix at the origin is zero, the size of the critical minor is
� �� � In other words, the critical minors are the entries themselves. This is enough for the

proof of the conjecture. Regardless of what the other columns hold, the entries of the
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first column give us every variable � 3 as a linear term. Adjoining those to � �
� � gives

� � � �
� � � � � � � � � ������� � � � � � � �

4.3 ��� � � � , �����

Let
�

and � be ideals in �
� � ��������� � � ��� � such that #%$ � � ��� ��� �
���+� ������� ����� � and #%$ ��� � �

� ���
� � � ������� � � ��� � Define an ordering, “ � ” , on the symbols as follows. Suppose � � � � �
for � from 1 to some � , and differs in the � 
 �

entry. If ���  � �����  � , then #%$ � � ���
#%$ ����� � For example, � � � � �	� � � � � � � � � � �

For this case, the equality #%$ ��� �
� � � �	� � �"� � ����� is proved by proving both

#%$ ��� �
� � � �
� � �"� � ����� and #%$ ��� �
� � � �	� � �"� � ����� �

The first of these two proofs is contained here, while the second proof can be found in

chapter 6.

Note that we already know � � � � from the Sylvester matrix argument and � � � ,

�+� � 
 � �0
 � � 4 � ���1& ��� (since ����� ) by the remark at the end of chapter 3, but we will

not need to use these facts directly here.

Claim 4.3.1 #%$ ��� �
� � ���
� � �"� � ����� �

Proof:


 ��� �	� � �
� 
 � �
� � � � �
� � � 
 �%�%� 
 � � and � ��� � � � � 
�� � � � � � � � 
 �%�%� 
�� �
After the elimination process described in the first chapter, � �
� � � is generated by the

expressions of the form:�� � � �
� � � � � , � � � / � � � 
 higher order terms � �
� �"� 4 � � �� �
� � � � higher order terms � �
� �"� 4 � � �
The � � ������� � , � � � / � � � appear as linear terms in the coefficients (and therefore in the defining

equations for the Zariski tangent space). So they can be eliminated the same way the



48

coefficients of the polynomial of lesser degree were eliminated. This is called the reduced

case, and the reduced ideal obtained from an ideal � is denoted
�
� . Recall that the TB-

invariant is independent of the coordinates taken, so #%$ � � �	� #%$ �
�
� � �

After this reduction, there are no linear terms in the generators of
�
� �
� � � . In fact, the

weights of the remaining reduced coefficients are all greater than � � � the highest weight for

any variable, not just the ones which were eliminated. The highest weight of the remaining

variables is � . Denote the non-zero reduced expressions by

� �
�  � �%� �
�  � � ����� �%� , �  � / �

where the index indicates the weights. The only variables not eliminated are

� , � � � / � � � , � � � / �  �
������� � � �
� � ���

Since there are no linear equations in the � 3 ’s, the Jacobian matrix has dimension � � �
and rank zero. To get � � �

� �
� � � , we use the
� � �

minors, the partials with respect to the

remaining variables. But,

� � 
�� 3
 � � �	� � ��� 3 � 4 � � � �
� �

This means that the weights of the partials cannot be lower than � � 4 � 
 � � For � � � ,

no linear terms can occur in � � �
� �
� � � , thus

�+� � ����� !�� � � �%� � �
� �
� � � �	� �

as expected.

If � � � , the weights of the partial derivatives of the 
�� 3 � 
 � � have weights ranging

from one to � 4 �
and it is possible that every variable appears in a linear term in

those minors of the matrix associated to this step of the process. If that happens, then

#%$ ��� � � � � ��� ��� ��� � � � � If some of the variables do occur in linear terms, but not all � of

them, then � � � � � Either way, #%$ ��� � � � � �	� ��� ��� � � � � � �"��� ����� �
Now, if � ��� then the argument repeats. In other words, the partials of the 
�� 3�� 
 � �

have weights ranging from � � 4 � to � � 4 �
and cannot possibly produce linear terms. We
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can continue taking partials until the weights of the adjoined minors are less than � , that

is, when � � 
 � 4 � �
� � 4 �
where � is the number of times partials have been taken at

that phase of the computation. Thus �	� � and #%$ ��� �
� � � �
� � �"� � ����� �
Why can we ignore the generators of higher weights? Because the entries of the TB-

symbol only change when the dimension of the Zariski tangent space falls, (i.e. when we

get new variables as linear terms in the expressions for our minors). The expressions of

higher weight do not affect the outcome. Notice that in the case of � �
� � � we may even

ignore the original � ’s after the first Jacobian extension.

4.4 ��	
����
 � 	

The above class of cases covers the case � �
� � when � is even. The techniques used to

prove it, however, do not extend to the more general case � �
�  � � � except in the case where

� � � � This is because, for any choice of � and � with � � � , there is one lowest weight

expression in � , and its partial with respect to the highest weight variable gives a unique

lowest weight partial. It is easy to see that there are at least two partials of every other

weight, except for the highest weight partial which has weight equal to that of one of

the original expressions. It follows that only the lowest weight expression in each critical

Jacobian extension is unique by weight. In the case of � � �  � � � , there are only two expres-

sions in the reduced case,
�
� � with which to contend. Only the two lowest weights of any

of the successive partials ever enter the argument. One is unique and the other provides

the inequality. The case is shown here. Again, we have an inequality that we can prove

using the above techniques, with a proof of equality later.

The proof of #%$ ��� � �  � � � � � � �"��� 
 � � ��� begins the same as the above argument.

We eliminate the variables of the lowest degree polynomial. In this case, the generators

of � � �  � � � have weight 3 and up to ��� 
 �
� There are ��� 4 �

distinct variables appearing
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in linear terms in these generators. In fact, they are, as expected, the lower indexed coef-

ficients for the polynomial of highest degree. Denote these as � � ������� � � � � � � � (as usual).

After passing to the reduced case,
�
� � ��� � �  � ��� � �  � � where the indices indicate the

weight of the reduced generators, and the remaining two variables have weights 1 and 2.

Just as in the above case, the two variables do not appear in linear terms in the critical

Jacobian extensions until the � th extension. The generators of � � �%�%� � �� ��� �

�
� have weight 2

and above, thus � � �%�%� � �� ��� �

�
� has possibly one linear term of weight 2 but no more. The

rank of �%� � �%�%� � � � is at most one. This proves

#%$ ��� � �  � � � �
� �"� � � �������
� �� ��� �

�
� � � � � �



CHAPTER 5

MONOMIAL AND POLYNOMIAL MODELS

5.1 MONOMIAL IDEALS �����������

In this section we construct monomial ideals � with a desired Thom-Boardman symbol
� � ��� �
������� ����� � as described below.

Consider the Euclidean algorithm applied to � and � :

� � � � � 
 ��� � � ��� � �

� � � ����� 
 � � � � � � � ���
...

� � � � � � �  � � � � � � � � � � � �

Let
� ��������� be the Thom-Boardman symbol given by the Euclidean algorithm on � and � :

� ��������� � ��� ������� ��� ����� ������� ����� ������� ��� ��������� ��� � �

where � is repeated � � times, and � 3 is repeated � 3! � times.

Now we construct a monomial ideal ����������� � �
� � ��� ��� ������� � ��� � with weighting

structure consistent with the weighting structure on � �
� � , which has #%$ �"����������� � �
� ��������� . In order to do this, we start at the last entry of #%$ �"����������� � , and consider the

maximal ideal

) � ����� �
� ��� ������� � ��� � � � � � � ������� � ��� � �

We define the weighting structure for ����������� and ) � by taking � ��� 3 � � � . Then we

“integrate” the first � � variables in ) � with respect to � � & , i.e. we multiply each of them
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by ��� & . (The term “integrate” is used loosely here but with good cause. This process is the

opposite of taking � of an ideal where we take the partial derivatives.)

We repeat this process, working our way backwards through
� ��������� . The result is

an ideal generated by a set of monomials, therefore the weighted homogeneous property

of the generators of the constructed ideals is trivially guaranteed. We take � 3 to be the

resulting monomial with weight � . Notice that � �  �
������� � ��� were not affected by any of

the integrations. Hence, � �  3 � ���  3 for � � � ������� ��� 4 � �
By construction,

�����������	�������  � ������� � ��� ���
�  � ������� ���
�  � �

and

�
� � ��������� � ��� � � �����  � ������� � ��� � ����� 4 � ����� � � �����  �
������� � ��� � 
��
�  �
 ��� ������� � 
��
�  �
 ��� � �

where ����� 4 � ����� is the monomial ideal constructed in the same way from ) ����� , � � � � � /
in �

� � ��������� � � ����� , � � � � � / � , but considered as an ideal in �
� � ��������� � ��� � �

For � � � � � denote the ideal �"����� � � � � � � � ���  � ������� � ��� � � �
� � ��������� � ��� �

by � , � / ��� � � � �
Example 5.1.1 #%$ �"��� � �

�
� � ���

�
� � � � � � �

The example was chosen because we already know both symbols #%$ � � � � � � and
� � � �

�
�

are �
�
� � � � � � � . Using the algorithm above, start with

) � � ��� �
� ��� � � � � � � � �
The last entry � � in

� � � �
�
� is

�
and integrating the first variable with respect to � � gives

the ideal

� , � / � � � � � ���"��� � � � � � ��� � � � � � �
�	� ��� � � � ��� � � � � � � � �
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Taking the first Jacobian:

� � , � / � � � � � �

���������
� � � � � �
� � � �
� � � �
� � � �

� ��������

The corank of this matrix is
� �	��� ��� � � , � / � � � � � ��� � � �
� and � � � , � / � � � � ����) � hence

#%$ �"� , � / � � � � � ��� � � The next step in the construction:

� � � �
��, � /��"� � � � � ��� � � � ��� � � � � � �
�

� � , � / �"� � � � �

���������
�
� � � � � �
� � � �
� � � �
� � � �

� ��������

The corank of this matrix is
� � ��� ��� � � , � / � � � � � � � � � � � and � � � , � / �"� � � �	� � , � / � � � � �

and it is easy to see that #%$ �"� , � / �"� � � � ����� � � � � �
Repeating the process with � � � �

gives the ideal

��, � /��
�
� � � � ��� � � � ��� � � � � � � � with #%$ �"���

�
� � � � ��� � � � � � � �

Now for the last step in building the desired ��� � �
�
� , since � � �

�
we integrate the first

three expressions with respect to � � to get

��� � �
�
� ����� � � � � � ��� � � � � �� � � �
� �
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Then,

� ��� � �
�
� �

���������
� � � � � � � � � � �
� � � ��� �
� � � � � �
� � � �

����������
����� !�� � � � ��� � �

�
� � �

�
Adding the � � � minors to ��� � �

�
� gives

� � ��� � �
�
� ����� � � � ��� � � � � � �
� �

So we have constructed ��� � �
�
� such that #%$ �"��� � �

�
� � ���

�
� � � � � � � �

The above example illustrates an important property of the constructed monomial

ideals. Notice that in the example for �
� � �

� � ����� � � �	� ��, 3 /���� 4 ��� � � �
and

#%$ �"����� � � � �	� � ����#%$ �"� , 3 / ��� 4 ��� � � � � �
This turns out to be the case for arbitrary � and � .

Lemma 5.1.2 � , � / ��� 4 � ����� � � � ����������� .

Proof: Let 
 � � � �  � and let � 3 be the monomials in ����������� with the convention that

� 3 � � 3 � � &� & �%�%� � � 	� 	 , where � � � � and 
 � � �
if � � � � . Also note that the last � 4 � of

the � 3 ’s are linear, corresponding to the ���  � ������� ���
� above, and the others correspond to

the �
�  � ������� ���
�  � .
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Then
��� �
� � � has one of the following forms:


 � 3

 � 3 � � � &� & �%�%� � � 	� 	 if � �� 
 � � ������� ��� �#& (5.1.1)


 � 3

 ��� � � 
 ��� 3 � � &� & �%�%� � � � � �� � �%�%� � � 	� 	 (5.1.2)


 � 3

 ��� � �

if � ������ and � �� 
 � � ������� ��� � & (5.1.3)


 � 3

 � 3 � �

if �	� 
 � 
 � �������
��� & (5.1.4)

The first Jacobian looks like:

� � �

���������
��� "
� � "

��� "
� � $ ����� ��� "

� � �
��� $
� � "

��� $
� � $ ����� ��� $

� � �...
...

. . .
...

��� �
� � "

��� �
� � $ ����� ��� �

� � �

����������
which has the block form:

� � �
��
� � �
� �

��

where
�

is the ��� 4 ���	� ��� 4 ��� identity matrix. We want to take the � 4 � 
 �
minors

of � � and show they are in the ideal generated by the entries in the � � � column since the

ideal so generated is the ideal � , � / ��� 4 � ����� . The non-zero entries of �*� not in the � � �

column are all multiples of � � 	� 	 (by formula 5.2), and therefore already in the ideal with

generator
��� �
� � �

. The generators of ����������� are multiples of the elements in the � � � column

of � � . So

� � �����������	� � 
 
 � 3

 ��� &

�3 	 � � ���  � ������� � ���  � �
which is � , � / ��� 4 � ����� by construction.

Corollary 5.1.3 #%$ �"����������� �	� � ��������� .

Proof:

#%$ �"����������� � � ��� ��#%$ �"��, � / ��� 4 � ����� � � by construction
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� ��� ��#%$ �"����� 4 � ����� � � by definition

� ��� � � ��� 4 � ����� � by induction

� � ��������� by definition.

5.2 GENERALIZING TO POLYNOMIAL IDEALS

A natural question to ask at this point is how to perturb the monomial generators of

����������� to polynomial generators to get a new ideal without changing the invariant
� ��������� . The example given above, ��� � �

�
� , is helpful in this regard.

Let �  � � �
�
� be the ideal generated by the monomials in ��� � �

�
� with one of the

expressions changed to a binomial. In particular, let
� �� �

and take

�  � � �
�
� ����� � � � � � ����� � 
 � � � � ��� � � �� � � �
� �

Then

� �  � � �
�
� �

���������
� � � �

�
�
� � � ��� � � 
 � � � � ��� �
� � � � � �

� � � � � � � � � � �

����������
The � � � -minors of this matrix adjoined to � �  � � �

�
� give the ideal

� � �  � � �
�
� � ����� � � ��� � � � � � � � �

The Thom-Boardman symbol for �  � � �
�
� is �

�
� � � � � instead of the desired �

�
� � � � � � � .

In fact, let � � � �
�
� be as general as possible, i.e. the weighted homogeneous ideal with

generators

� � � � � 
 
 � � � � � 
 
 � � � � ��� 
 
 � ��� � 
 
 � � � �

� � � � � � � � � 
 ��� � � � � � 
 � � ��� � � 
 � � � � � ��� 
 � � � � ��� � 
 � � � � �

� � ��� � � �
� 
 ��� � � � ��� 
 � � � � � � � 
 � � � � � � � 
 � � � � � ��� � 
 � � � � ��� � � 
 ��� � � �
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 ��� ��� � 
 ��� ��� � �
� ��� � � � � � 
 � � � � � ��� 
 � � � � � ��� � 
 � � � � ��� � 
 � � � � � � � 
 � � � � � ��� � � 
 � � � � ��� �
 ��� � � � � � 
 ��� � � � � � 
 � � � � � ��� � � 
 � � � � � � �

Computations of #%$ � � � � �
�
� � showed the invariant to be the two-tuple �

�
� � � � How-

ever, the ideal � � � � has TB-invariant �
�
� � � � � � � � � � � �

�
� � This implies that there must be

some conditions on the coefficients of each of the terms that will guarantee the desired

equality.

5.3 IMPOSING THE RIGHT NONDEGENERACY CONDITIONS

What conditions can we put on a polynomial ideal � ��������� , graded by weight, to guarantee

that #%$ � � ��������� � � � ��������� � Inherent in the algorithm for finding the Thom-Boardman

invariant is the fact that for any ideal
�

, #%$ � � ��� ��� �
��#%$ � � 3�" � � � � It follows that any

condition placed on the generators of the ideal � ��������� must also hold for the generators

for the successive Jacobian extensions of � ��������� �
Also, in the proofs of the inequalities in chapter 4, sections 3 and 4, the symbol for the

invariant was the same as
� ��������� in the � � position only when the variables appeared in

linear terms as soon as possible by weight, provided we are working in the reduced case

at each stage of the argument. Although it is clear from the discussion in � � � �
that the

arguments used only work for certain choices of � and � � there is some merit in requiring

that the variables appear in linear terms exactly when necessary to obtain the TB-invariant

desired. Obviously a condition of this type cannot be defined only by weight, since the

weights of the critical minors are not all distinct.

There is also some concern about pure powers of low weight variables appearing in

low weight generators, thereby appearing as linear terms too soon in the algorithm. Exper-

iments show that Varley’s conjecture implies subtle properties for � �
� � � For example, in

� � � � even slightly changing the coefficient of the 4 � � � � � term in � � by any
� �� �

causes
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� �� to appear one extension too soon, giving a TB-symbol of �
�
� � � � � instead of the correct

symbol �
�
� � � � � � � for � � � � � This indicates that, for general � and � , slight changes in

the ideal � �
� � can change the TB-symbol significantly. Therefore, not only do the weights

and pure powers of the variables influence the TB-invariant, but also the coefficients of

the nonlinear terms.

In order to make wise predictions about the non-degeneracy conditions on a polyno-

mial ideal required to obtain the TB-invariant
� ��������� , we return to the ideals � �
� � to look

for clues.



CHAPTER 6

USING THE CRITICAL COLUMNS

Although the first chapter provides a definition of the critical column, there are often

several columns which turn out to be quite important in the computation of the Thom-

Boardman invariant. We need a more relaxed definition for a column to be critical that

includes the previous one.

6.1 THE CRITICAL COLUMNS

The first critical column is the one previously mentioned, i.e. the one that corresponds to

taking the partials 
 � 
 � � � � and is the first column from the left containing no ones and

containing every variable as a linear term in order of ascending weight as the entries run

down the column. For each stage of the computation of the Thom-Boardman invariant,

there is a critical column, which may or may not be the same as the first one. Suppose the

� � entry of the symbol has been computed. Then the critical column for that matrix (with

corank � � ) is the ��� 4 � � 
 � � th-column, which corresponds to taking the partials with

respect to � � �13 � � Notice that according to the extended version of Varley’s conjecture,

� � �13 � is the lowest indexed (highest weight) variable that does not appear in a linear term

in the extension for which this matrix is the Jacobian matrix.

In general terms, for an ideal of weighted homogeneous polynomials, the critical

column of the Jacobian matrix of that ideal is the column which corresponds to taking

the partials with respect to the highest weight variable not appearing in the ideal as a

linear monomial in one of the polynomial generators. An alternative definition exists in
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taking the column associated to the the partials with respect to the next weight variable

after the lowest weight variable that did appear as a linear monomial. In the polynomial

case, these two are the same. However, in a more general case, these two definitions may

disagree in the critical columns – and thus in � ��� �"! (defined next) – in a significant way.

In the case of ���
� � , the first Jacobian matrix is of a particularly nice form:����������������������

� �%�%� � � � !�� ' "
��� � '�� � !�� ' "

��� � '���� " �%�%� � !�� ' "
��� � ' "� �%�%� � � � !�� ' $

��� � '�� ' " � !�� ' $
��� � '�� � !�� ' $

��� � '�� �%�%� � !�� ' $
��� � ' "

...
...

...� � ! �
��� " � ! �

��� $ �%�%� � ! �
��� � '�� �%�%�

� ! � ' "
���
	

� ! � ' "
��� " � ! � ' "

��� $ �%�%� � ! � ' "
��� � '�� �%�%�

...
...

...

� ! "
���
	

� ! "
��� " � �%�%� � � ! "

��� � '�� �%�%� � ! "
��� � ' "

� ! 	
���
	

� � �%�%� � � ! 	
��� � '�� �%�%� � ! 	

��� � ' "

�����������������������

Recall that the nonzero entries of any anti-diagonal of this matrix all have the same weight,

the triangle of zeros whose base runs along the bottom of the matrix has the same number

of zeros as the triangle at the top left-hand corner, and there are � 4 � ones in the antidi-

agonal of ones.

In fact, the structure of this matrix is even nicer than mentioned above. To see this

additional structure, consider the original coefficients in terms of the � 3 ’s and � 3 ’s:�������������������� �������������������

� �  � � � � � � � � 
�� � � �� �  � � ��� � � � � 
�� � � � 
 � � � � � � � �
and� �  � � � � � � � � 
�� � � � 
 �

3! �
	 �  � � � � 3 � � � for �
� �

� �  � � � � � � � � 
 �
3! �
	 �  � � � � 3 � � � for �����
� �

� �  � � � � �
3! �
	 �  � � � � 3 � � � for ��� � �
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The equations for elimination are:������������������� ������������������

� � � �	� 4 � � � �� � � � � 4 � � � � 
 � �� � �� � � � � 4 � � � � 
 � � � � � � � � � 4 � �� � �
...� � � � � 4 � � � � 
 terms of higher order � �

� � � �
...� � � 4 � � � � 
 terms of higher order � � �� � �

Using this substitution, the expressions for the generators become:����������������������������� ����������������������������

� � � �	� � � � � � � 
 � � � � � 4 � � � ��� 
 � � � �  � � 4 � � � � 
 � �� � � � 
 �%�%� 
 � � � � � 4 � � 
 �%�%� �� � � � � � � � � � � 
 � � � � � � � 4 � � � ��� 
 � � � � � 4 � � � � 
 � �� � � � 
 �%�%� 
 � � � ��� 4 � � 
 �%�%� �
...� � � � � � � � � � � 
 � � � � � �  �
� 4 � � � ��� 
 �%�%� 
 � � � ��� 4 � � 
 �%�%� �
...� � � �	� � � � 4 � � � ��� 
 �%�%� 
 � � � � � � � 4 � � 
 �%�%� �� � � � � � � � 4 � � � � 
 � �� � � � 
 �%�%� 
 � � � � � � � 4 � � 
 �%�%� �
...� � �13 � � � � 4 � � �13 
 �%�%� � 
 �%�%� 
 � � � � �13 � 4 � � 
 �%�%���
...

We can see that the quadratic terms, the ones which give us linear terms in the derivatives,

are apparent. For example, notice the anti-diagonals of the matrix for � �
� � in � 3.4. Not

only are the weights of the anti-diagonal entries equal, the same linear term appears, up to

possibly different coefficients. This is a result of the shifting of the indices by one in the

quadratic terms in the successive � ’s. For instance, � � � � � 4 � � � �  � � � � � 
 �%�%� , while� � � � � 4 � � � � � � � � 
 �%�%� , and � � � � � 4 � � � � � � � � � � 
 �%�%� � Because of the weighted

homogeneity of the expressions, if there are two quadratic terms involving a particular
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� 3 , those terms must have the same factors. Along with squares this accounts for the

possible difference in the coefficients of linear terms of the derivatives; there may be two

copies of � 3 � � in � � depending on � and � 4 � � It also gives us a nice structure for the

Jacobian matrix that can be exploited.

6.2 ����� �"!

Let 4 �
� 3 denote weight � 4 � expressions which contain � 3 in a linear term, and consider

�
� �
� � as it appears in the following block form:����������������������

� � �%�%� � � 4 �
� � � � 4 �

� � � � �%�%� 4 �
� � � �� �%�%� � � 4 �

� � � � 4 �
� � � � 4 �

� � � � �%�%� 4 �
� � � �

. . . . . .� 4 �
� � � � �%�%� 4 �

� �  � 4 �
� � 4 �

� � � � �%�%� 4 �
� �

4 �
� � � � 4 �

� � � � �%�%� 4 �
� �  � 4 �

� � 4 �
� � � � 4 �

� � � � �%�%� 4 �
� �

...

...

4 �
� � � � � �%�%� � 4 �

� �

�����������������������

Notice the antidiagonal containing � � as its only linear terms. Any entries to the right and

below that antidiagonal have no linear terms. This is also inherent in the structure of the� 3 ’s. The higher weight � 3 ’s and the higher weight derivatives cannot include the smaller

weight variables in a quadratic term. For instance, � � has weight � 
 � . Any term of�
� with as a factor � � � � must be at least a cubic since the rest of the term must have

weight � 
 � 4 �
and there are no variables of that weight.

Recall that the first critical column, which appears first on the right of the vertical bar,

has all of the variables appearing in linear terms. In order to get a determinant with linear

terms, the ones in the ��� 4 ��� antidiagonal must be utilized along with the entries above

and including the “ � � ” antidiagonal. As one can see from the structure of �
� �
� � , the only
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variables that can be obtained in linear terms in these determinants are � � ������� � � � � � � In

particular, these linear terms can be gotten from the � determinants using only the critical

column and the determinant one ��� 4 ��� � ��� 4 ��� submatrix. Denote this submatrix by

� � for ease of notation. Denote by � 3 the determinant obtained in this way such that


 � 3�� 
 � 3 � a constant.

The ideal obtained by adjoining only � � ������� � ��� � � to � �
� � gives a special extension,

denoted � � ��� �"! � �
� � � such that � �
� � � � � ��� �"! � �
� � � � � � �
� � � In general, the symbol � ��� �"!
indicates that only the determinants with linear terms coming from the critical column at

that stage of the process have been adjoined to the ideal in question to get that extension.

We would like to know that we can repeat this process without cancellation of linear

terms occurring in the minors or in minors corresponding to successive iterations of the

algorithm.

Consider any matrix constructed by bordering � � by one row and one column as fol-

lows: ������������

� � �%�%� � � � � � �� �%�%� � � 4 �
� � � � � � � �

. . .
...� 4 �

� � � � �%�%� 4 �
� �  � � �


 � � � 
 � � � �%�%� 
 �  � 
 � �

�������������
The determinant of this matrix is

� � � 4 
 � � � � � 4 
 � � ��� �  � 4 �%�%� 4 
 ��� � � � 
 higher order terms � �

In the polynomial multiplication case, � has a linear term and each 
 3 and � 3 has a

linear term. Therefore, the only linear term which can appear in the determinant is the one

from � . We are interested in the quadratic terms as well. The only possible sources for

quadratic terms are those already in � , and those from the multiplication of linear terms

from the 
 ’s and � ’s. The quadratic term from � is not of interest in this argument, since
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the factors are of index less than � � Since all of the linear terms from the first Jacobian

matrix are negative, the linear term from � is negative and the quadratic terms from the


 � products are positive. In other words, the linear term and the relevant quadratic terms

in the determinant have the same sign. This is all we need. In the matrix �
� , the ones that

appear in the antidiagonal are all positive while the linear terms in the matrix all appear

with a negative coefficient. Then there is no cancellation of the important linear terms in

the minors of the second Jacobian matrix. In fact, addition of the linear terms results in

increasing coefficients at each step. Thus the we need not check the later phases of the

computation.

6.3 #%$���� �"!

One of the properities of � � ��� �"! � �
� � is that corank of its Jacobian matrix is 
 � � ��� 4

� ����� � which we know is � � for #%$ � � �
� � � � To see this, note that the rank of �
���
� � is already

known to be � 4 � , and the linear parts of the generators are � � �������
� � � � � � � . If � 4 � � � ,

then 
 � � �������
� � � � ��&
� 
 � � ������� � � � � � � ��& , and adjoining only � � ������� � ��� � � means that

����� �"! � �
� � has no new linear terms. Hence ����� !�� � � � � ��� �"! � �
� � ��� ��� 
 � � ��� 4 � ����� � If

� 4 � � � , adjoining � � ������� � ��� � � increases the number of linear terms to � , increasing the

rank of the Jacobian matrix to r, making ����� !�� � � �%� ��� �"! � �
� � � ��� 4 � � 
 � � ��� 4 � ����� �
Define #%$���� �"! � � �
� � � to be the symbol computed by taking � ��� �"! as our extension at

each stage of the computation. It is possible that the coranks of the Jacobian matrices

of � �
� � with all the determinants adjoined are smaller than the coranks of the Jacobian

matrices when only the special determinants are adjoined. Since the special determinants

are contained in the set of all determinants, the coranks cannot be larger. Thus

#%$ � � �
� � �
� #%$���� �"! � � �
� � � �
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If this were an equality, the proof of Varley’s Conjecture (and the extended version) would

be close at hand. All we would need to prove is that #%$ ��� �"! � � �
� � � � � ��������� � Let’s go

back to an example for now:

Example 6.3.1 ��� � 	

Using the Euclidean algorithm on 5 and 2:

5 � 2 � � 
 �
2 � 1 � � 
 �

� � � � ��� � �"� � � � � � � � �
The generators for ���
� � are:

� � � 4 � ��� ��� 
 ����� 
 ���

� � � 4 ��� ��� 4 ���
� 
 ��� ���

� 
 ��	

� � � ��� 4 ��	 ��� 4 ��� ��� 
 ��� ���
�

� � � 4 ��� ��� 
 ��� ���
�

The first Jacobian matrix:

�
� �
� � �

������������

� � � 4 � ��� 4 � ��� 
 �
���
�

� � 4 ��� 4 � ��� 
 ���
� 4 ��� 
 � ��� ���� 4 ��� 4 ��� 
 ���

� 4 ��� 4 ��	 
 � ��� ���
4 ��� 4 ��� 
 ���

� � 4 ��	 � ��	 ��� 4 ���

4 ��� 
 ���
� � � 4 ��� � ��� ���

�������������

#%$ � � �
� � �	� �"� ������� � �

Using only the first critical column,

�
� � ��� 
 ��� ��� 
 �

���
�
��� 4 � ��� ����� 4 ��� ���

� 
 ���
� �

�
	 � ��	 
 � ��� � 
 �

��� ���
� 4 � ��� � 
 ��� �����
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�%����� �"! 3 � � � �
� � �
�����������������
�

� � ��� �����  � ��� $ � ���	��� � �
��� �  ���
� � ��� � ��� $ ���  �
���
��� � �
��� � ����� $ � ���
���	��� $ � �
���	���  �
�����
� � � � �
��� � �
���  � ��� $
� � � ��� � �
���  ��� $ � ���  �
���
���
� � ��� � ���  ��� $ � ��� � ���  �
���	���
� ��� � ���  ��� $ � � ��� �
���
��� � ���

� ���  ��� $ � � � ��� �
�������

������������������
�

The rank of this matrix is the same as the rank of �
� �
� � . #%$���� �"! � � �
� �
� � �"� � � ��������� �
The critical column, therefore, stays the same. However, it is possible to get determinants

of � � � � �
� � with linear terms 4 � � � and 4 � � by using the original antidiagonal of ones

and either the first or second row of this new matrix and the critical column. In particular,

one can pick up any linear term that appears in the lower left block. In fact, one may pick

up any linear term that appears on the right hand side of the vertical line except the ones

in row three, but they do not help since they are the same as the ones below the horizontal

line. The special determinants are:

�
� � �

��� 
 � ��� �
�
� � � ��� 
 � ��� ��� 4 � �

�����
Adjoining those to � � ��� �"! � �
� � gives � � ��� �"! � � ��� �"! � �
� � with Jacobian matrix:

������������������������
�

� � �
� ���
���

� � � �
��� �
��� � �(�
��� $
� � ��� �����  � ��� $ � ���	��� � �
��� �  ���
� � ��� � ��� $ ���  �
���	��� � �
��� � ����� $ � ���
���	��� $ � �
���	���  �
�����
� � � � �
��� � �
���  � ��� $
� � � ��� � �
���  ��� $ � ���  �
���
���
� � ��� � ���  ��� $ � ��� � ���  �
���	���
� ��� � ���  ��� $ � � ��� �
���
��� � ���

� ���  ��� $ � � � ��� �
�������

� �����������������������
�

Notice that � !�� � � ��� � ��� �"! � � ��� �"! � �
� �
�	� � � #%$���� �"! � � �
� �
� ���"� � � � � ������� � � The new critical
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column is the last one. The variable � � does not appear in a linear term in

� � ��� �"! � � ��� �"! � �
� ���

And it does not appear as a linear term in the critical column of this latest matrix except

in a row we cannot access. The algorithm requires that we take all of the
� � � minors of

this matrix. Since the matrix is
� � � , this coincides with taking � ��� �"!�� We can take the

determinant of the top
� � � submatrix and get

det � � 4 ��� � � 
 �
�
� � ��

Adding at least this one gives us all we need. Since none of the others contain any new

variables in linear terms, adding them in does not change the rank of the matrix, nor can it

help us get any more linear linear terms. There is only one variable that has not appeared

so far, � � . As soon as we find one minor that will help us, we need not search any further.

We get the following matrix for �%� ���� �"! � � ��� �"! � � ��� �"! � �
� � �

���������������������������
�

� � � � � � � � � ���
� � �

� ��� ���
� � � � ��� � ��� � �(� ��� $
� � ��� � ���  � ��� $ � ��� ��� � � ��� �  ���
� � ��� � ��� $ ���  � ��� ��� � � ��� � � ��� $ � ��� ��� ��� $ � � ��� ���  � �����
� � � � � ��� � � ���  � ��� $
� � � ��� � � ���  ��� $ � ���  � ��� ���
� � ��� � ���  ��� $ � ��� � ���  � ��� ���
� ��� � ���  ��� $ � � ��� � ��� ��� � ���

� ���  ��� $ � � � ��� � ��� ���

� ��������������������������
�

#%$���� �"! � � �
� �
� ���"� � � � � � � � since the top
� � � submatrix of this matrix has determinant

� � � 
 � � 
 higher order terms

where 
 is some coefficient in � . In other words, all of the variables appear in linear terms

in the next extension. Notice that #%$%��� �"! � � �
� � � � � � � � ��� � and that this is a special case
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of � � �  � � ��� In fact, the proof of equality for Varley’s Conjecture in the case of � � �  � � � is

based on this same idea. Instead of using the reduced case, we simply use #%$ ��� �"! �
Recall that #%$ � � � �  � � � � � � �"��� 
 � � ��� � and that #%$&��� �"! � � �
� � � � #%$ � � �
� � � for any

choice of ����� with � � � � So

#%$���� �"! � � � �  � � �
�	� #%$ � � � �  � � � �
� � �"��� 
 � � ���
Claim 6.3.2 #%$%��� �"! � � � �  � � � �	� � �"��� 
 � � ���
Obviously, proving this claim proves Varley’s Conjecture for this class of cases, and the

extended version is a natural product of the proof. Similarly, proving the following claim

will complete another class of cases already discussed. We start with proving the following

claim:

Claim 6.3.3 #%$%��� �"! � � �
� � � �	� � �"� � �����

Proof: The proof of this lies in the fact that, at every stage of the procedure, the critical

column is the first critical column. The first � � 4 � variables � � ������� � � �
� � � � � appear

in linear terms in the generators for � �
� � � � Consider the matrix �
� �
� � � associated to the

eliminated but not reduced case. There are � � 4 � ones on the antidiagonal, and the critical

column is the � � 4 � 
 �
column.

�
� �
� � ���

����������������������

� � �%�%� � � 4 �
� �
� � � 4 �

� �
� � � �%�%� 4 �
� � � �� �%�%� � � 4 �

� �
� � � 4 �
� �
� � � 4 �

� �
� � � �%�%� 4 �
� � � �

. . . . . .� 4 �
� �
� � � �%�%� 4 �

� �  � 4 �
� � 4 �

� � � � �%�%� 4 �
� �

4 �
� �
� � � 4 �

� �
� � � �%�%� 4 �
� �  � 4 �

� � 4 �
� � � � 4 �

� � � � �%�%� 4 �
� �

...

...

4 �
� �
� � � � �%�%� � 4 �

� �

�����������������������
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which has corank r. The special determinants of this matrix with linear terms are

� � ������� � ��� � � as one can see from above. Then � ��� �"! � �
� � � has no linear terms other

than the ones already in � �
� � � � These determinants do help, however, in that they allow

us to access terms in rows that have been previously inaccessible since those rows were

used for a one in the antidiagonal of ones. In other words, the next Jacobian matrix is as

follows:

��������������������������������

� �%�%� � ����� � � ����� �

. . . � � . . .� � �%�%� � � �%�%�� � �%�%� � � 4 �
� �
� � � 4 �

� �
� � � �%�%� 4 �
� � � �� �%�%� � � 4 �

� �
� � � 4 �
� �
� � � 4 �

� �
� � � �%�%� 4 �
� � � �

. . . . . .� 4 �
� �
� � � �%�%� 4 �

� �  � 4 �
� � 4 �

� � � � �%�%� 4 �
� �

4 �
� �
� � � 4 �

� �
� � � �%�%� 4 �
� �  � 4 �

� � 4 �
� � � � 4 �

� � � � �%�%� 4 �
� �

...

...

4 �
� �
� � � � �%�%� � 4 �

� �

���������������������������������

Where the “ � ” indicates a possibly non-zero entry which plays no role, and the top 1

appears in the � th column corresponding to taking the derivative with respect to � � � � � The

corank of this matrix is � , so #%$%��� �"! � � �
� � � ��� ��� ��� ������� � � The determinants of this matrix

include ��� ������� � � � � � � � but not � 3 for �%� ��� � Each stage of the process simply moves us

up the critical column � rows at a time, giving us the next set of � special determinants

in order by index, also those variables in linear terms, and another � in #%$ ��� �"! � � �
� � � � .
Finally, at the last stage, the � th Jacobian matrix allows us to access the � �
� � � �������
� � �
� � �



70

terms that were not included in � �
� � � � The next Jacobian matrix will have full rank, hence

#%$���� �"! � � �
� � � �	����� ��� ������� ���� ��� �

�
� � � ��������� �

Now for the proof of Claim 6.3.2.:

Proof: This proof is almost complete by applying the previous methods. The first Jacobian

matrix is of size �"��� 
 � � � �"��� 
 � � with corank 2. By working up the critical column

by blocks of 2 for � 4 �
stages, we get ��� 4 � of the ��� 4 �

linear terms already

in � � �  � � � before there is any change in the rank/corank of the matrix. So, by this point,

#%$���� �"! � � � �  � � � �	� �"� � � �������
� �� ��� �

�
������� � since the corank of

� � � ��� �"! �%�%� � � ��� �"!� ��� �

� � �
� � �  � � �

is 2. However, the variables � � � � �
� and � � � � � both appear in linear terms in determinants

of this matrix. � � �  � � � already had � � � � � as a linear term in one of its generators. But

� � � � � is new in that respect. The next Jacobian has corank 1, which means the critical

column is now the last column. What is important to see at this point is the top of this

matrix. The top row will have zero entries until the last two columns where it will have

a constant and something of weight one, in that order. The weight 1 object is either � � �
with some coefficient, or it could be a zero entry. Either way, we cannot access that object

with any antidiagonal of ��� ones and that column, since the top row provides the last of

the ones in that antidiagonal, and the only one in that column. However, recall that the

� � � ��� 
 � � entry of the matrix is 4 � � � � � 
 � �� � . And that entry is part of the determinant

using the original �"��� 
 � ��� �"��� 
 � � matrix along with the top row of the matrix at this

stage. The next Jacobian has corank 1, but also has a nonzero determinant of weight 1,

namely the one which starts

� �*
 � 
 � � � � 4 � � � � � 
 � �� � � 
 �%�%�1� � � � � 
 ����� �
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We have shown

#%$���� �"! � � � �  � � � �	���"� �������
� �� ��� �

�
� � � � � �

Notice that all the classes of cases from chapter 3 are now proved to have the

invariant
� ��������� as claimed. Also notice that the results were derived in part from proving

#%$���� �"! � � �
� � � � � ��������� in those particular cases. It would be interesting to know how

often this identity is true for other cases. Another question that arises is about the nature

of ����� �"! � �
� � and how that ideal compares to � ���
� � � or even to ��� � � � � � Let’s see what

we can say about #%$%��� �"!"�

6.4 “SPECIAL” RESULTS

Consider the Euclidean algorithm applied to � and � . The first computation in the algo-

rithm is

� � � � � 
 ��� � � � ��� � � �

If � 4 � � � , then � � � �
and 
 � � ��� 4 � ����� ��� 4 � ����� � If � 4 ��� � , then � � � �

and 
 � � ��� 4 � ����� � � � Why mention something so obvious? It gives us a set up for a

discussion on the symbol
� ��������� .

Take � � � and set � � � � � � � � � � Let � �  � � 
 � � � � � � � � 4 � � � and
� �  � �


 !�� � � � � � � 4 � � � � Then by the aforementioned obvious fact and its application throughout

the Euclidean algorithm,
� ��������� � � � � ������� � � � � where � � � � 2 � the last nonzero

remainder, and � 2 � � � � ��������� which is repeated � 2  � times in the tuple.

Proposition 6.4.1 Fix ����� � with � � � � Then #%$%��� �"! � � �
� � � � � ��������� �

Proof: We have been thinking each of the Jacobian matrices at each phase as being the

previous Jacobian with the rows corresponding to the new special determinants stacked on
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top. Each “stack” is also weighted homogeneous by antidiagonals since they are deriva-

tives of weighted homogeneous expressions.

Let
� ��������� � � ���
�������
� � � � � #%$���� �"! � � �
� � � � ��� �
������� ��� ��� � � We already know � � ����
� �+� � � � from earlier discussions. In fact, we know that as long as the critical column

does not change from the first one, � � � � � for 
 � � ������� � � for some � � � . So,

without loss of generality, we can assume � 4 � � � � Then � �
� � has the � 4 � linear terms

with � � �������
� � � � � � � �&� � ��� �"! � �
� � is obtained by adjoining determinants � � ������� � ��� � � , thus

has the � linear terms with � � ������� � � � � � � The corank of � � � ��� �"! � �
� � is, as we know,


 � � ��� 4 � ����� � � 4 � �
Now the critical column has been shifted. It is no longer the � 4 � 
 �

column, but rather

the � 
 �
column, since there are ones sitting in each column before that one. We need to

know what sits in that column. The column has shifted by � 4 ��� 4 ��� � � � 4 � � � and all

of the linear terms appearing in this column in the first Jacobian appear in determinants

of � � � ��� �"! � �
� � � Because of the anitdiagonal weighting structure, and the fact that linear

terms appear when they can by weight in �
� �
� � , the linear terms in this column run

through � � ������� � � � where � � ��� 4 ��� 4 � � We already have � � ������� � � � � � as linear terms.

If � � � 4 �
there are no new linear terms and we stay in that critical column and

� � � �+� � � � � � � � Otherwise, there are new linear terms up to index � , and the corank

of the next Jacobian is � 4 � 4 � � But � � � 4 �
means that � 4 �
� � 4 ��� 4 ��� � and� � � � � 4 � � � so � � ��� � ��� � �

If ��� � 4 �
then � 4 � � � 4 ��� 4 ��� � which means that �%� � � � 4 � � � � � �

� � 4 � � ��� 4 ��� 4 ��� � But the corank of the next Jacobian, as stated above, is � 4 � 4 � �
� 4 �"��� 4 ��� 4 � � 4 � � ��� 4 �%��� 4 ��� 4 ���	��� � � Either way, � � ��� � �

We repeat this argument until we get to the last critical column. At each stage the

corank of the next Jacobian must stay the same or go down by the difference between

the number of distinct linear terms contained in the two extensions at that stage. When

you reach the last critical column the last argument is the same as the previous ones:
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you work your way up the last critical column by increments of � � � 4 � !�� � � where

S has corank � � � ��������� until you get to the top entry, which is � � � � by weight. Hence

#%$���� �"! � � �
� � � � � ��������� �
If � � � ����������� �

, how do we know that � � � � sits there instead of 0? The lowest weight

determinants at each stage are obtained by using � � , any ones from previous stages, and

the lowest weight entry in the critical column of the previous matrix, which obviously

comes from the previous lowest weight determinant. The first lowest weight determinant,

��� � � has factors of � � � � in every term except the linear term and it has every variable of

weight at least � in at least one expression. Since we are never considering the derivative

with respect to � � � � until the last column, the factor stays in the successive derivatives,

and in the right entries of the critical columns until the end. Also, � � � � contains the term

� � � �  �� � � �
A side note here is that Example 6.3.1 gives a nice example of the last matrix,

the stacking, and the presence of � � � � in the last column. Since #%$%��� �"! � � �
� � � �

#%$ � � �
� � � � we have also just proved:

Theorem 6.4.2 #%$ � ���
� � �
� � ���������

This is a special result (pardon the pun) for a very special ideal. As illustrated previ-

ouly, small changes in an ideal can result in changes in the Thom-Boardman invariant. In

fact, they can make a difference in #%$%��� �"! � Recall the example in � 5.2:

Let �  � � �
�
� be the following ideal generated by the monomials in ��� � �

�
� with one

of the expressions changed to a binomial:

�  � � �
�
� � � � � � � � � ����� � 
 ��� � ��� � � �� � � � � �



74

Then

� �  � � �
�
� �

���������
� � � ��

� � � ��� � � 
 � � � ��� �
� � � � � �

� � � � � � � � � � �

� ��������
The �+� � -minors of this matrix adjoined to � �  � � �

�
� give the ideal � � �  � � �

�
� �

��� � � � ��� � � � � � � � which has the Thom-Boardman symbol �
�
� � � � � instead of the desired

�
�
� � � � � � � � The highest weight variable not included in �  � � �

�
� as a linear term is

� � . So the critical column is the third one. And since the minors are two by two,

����� �"! �  � � �
�
� � ��� � � � ��� � � � � � � � � Then #%$&��� �"! �"�  � � �

�
� � � �

�
� � � � � � � � � ��������� �

We can also cook up another example where #%$ � � �	� � ��������� but #%$%��� �"! � � �
� � ��������� �

Example 6.4.3 #%$%��� �"! � � �
�
� ��� �	� � �

�
� ���

Let � �
�
� ��� be the following weighted homogeneous ideal:

�
�
� �
�� 4 � � � ��� � ��� � ��� 4

�
� � � �

�� � � � �
The first Jacobian matrix:

��� �
�
� ��� �

������ 4 � � � ��� ��� 4 � � � ��
� � � ��� 4 �� � �� � � � 4 � � ��� �

� � �

�������

� � � �
�
� ����������� � � � � ��� � ��� 4 � � � � � �� � � � �

�%� � � �
�
� ��� �

���������
�
� � � � �
��� � � �

4 � � � � �
� � �

����������
� � � � � �

�
� ��� � ��� � � � ��� � � � �
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� � � � � � � �
�
� ��� � ��� �
� ��� � � � �

So, #%$ � � �
�
� ��� � � �"� � � � � � � � �

�
� ��� � However, the first critical column of ��� �

�
� ��� is

the second one. Then

� � ��� �"! � �
�
� ��� � ��� � � � ��� 4 � � � � � � �

�%� � ��� �"! � �
�
� ��� �

������ � � � � � �
4 � � � � �
� � �

�������
� ���� �"! � � ��� �"! � �

�
� ��� ������� � � ��� 4 � � � � � � �

�%� ���� �"! � � ��� �"! � �
�
� ��� �

������
�
� � � � �

4 � � � � �
� � �

�������
� ���� �"! � ���� �"! � � ��� �"! � �

�
� ��� ����� � � � ��� � � � �

So, #%$���� �"! � � �
�
� ��� � ���"� � � � � � � � � � �

�
� ��� � This takes us right back to the question about

the exact conditions to impose on the generators of a polynomial ideal to guarantee that

the ideal has Thom-Boardman symbol
� ��������� � This is an open question that is a possible

area for later investigation. However, it is beyond the scope of this paper.

6.5 PRESENT STATE OF AFFAIRS

Present work includes proving certain identities that seem to hold. For instance, in the

cases that we’re able to confirm, it seems that � ��� �"! � is the same as � � . This supports

the evidence above for even more cases than have been checked. If this equivalence holds

for all choices of � and � � � � � , then so must Varley’s conjecture and its extension.

Even more compelling is that there seem to be identities in the first Jacobian which

indicate that all of the determinants of that matrix are dependent on the special determi-

nants in a consistent way. In particular, the identity


 � � � � � �

 � 3 � 
 � � � � � �


 � 3�� �
4 � � � � � � 


� � � �

 � 3�� �
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seems to hold for all � � � in every ����� � with ��� � � This relationship would indicate a

simple dependency of each column entry of �
� on the entries in the critical column.

There is also evidence for a close relationship between � ��� �"! � �
� � and � � � � � � � espe-

cially when working in the reduced case. Certainly they share the first and second entries

in their Thom-Boardman symbols (and conjecturally all the entries). In the non-reduced

case, they seem to share a lot of structure while specific relationships are unknown as of

now.



BIBLIOGRAPHY

[1] M. Adams, C. McCrory, T. Shifrin, R. Varley, Invariants of Gauss Maps of Theta

Divisors, Proc. Sympos. Pure Math., vol 54, pp 1-8, Amer. Math. Soc., Providence, RI,

1993.

[2] G. Andrews, Theory of Partitions, Addison-Wesley, Reading, Mass, 1976.

[3] V. I. Arnol � d, A. N. Varchenko, S. M. Guseı̆n-Zade, Singularities of Differentiable
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