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ABSTRACT 

 The objective of this research is to characterize the dynamics of ecological networks.  

The work presented here takes a systems approach.  It establishes a total system view of 

ecosystem behaviors and behavioral relationships before drilling down to details.  The research is 

a blend of synthesis and analysis.  We synthesize a “function-structure-process” framework that 

provides the high-level context for a full range of ecological system functions and their 

implementation.  The implementation architecture of ecosystems is the network.  Within this 

context, and based on an extensive review of the complex systems and network literature, we 

synthesize a view of ecological network dynamics.  This view, in turn, is the basis for the central 

hypothesis of the research: ecological networks are ever-changing networks with propagation 

dynamics that are punctuated, fractal, and enabled by indirect effects.  At this point, analysis 

becomes the focus of the work.  We define, design, and develop an ecological network dynamics 

model to analyze and fully test the hypothesis.  Our innovative modeling approach seeks to 

emulate features of real-world ecological networks.  The approach does not make a priori 

assumptions about ecological network dynamics, but rather lets the dynamics develop as the 

model simulation runs.  The model software development effort is substantial and includes not 

 



only a comprehensive implementation of ecological network processes but also a full 

complement of analysis capabilities and graphics generation procedures.  Model analysis results 

corroborate our hypothesis.  We see that ecological networks exhibit fractal behavior in space 

and time.  Network events have punctuated time series and power-law/fractal distributions.  We 

see that ecological networks “flicker.”  (Network structure is not static and network flows are not 

steady state.)  We see that indirect effects play a prominent role in ecological network dynamics.  

When observing the total behavioral picture, we can glimpse a general equivalence – a 

universality – in ecological network dynamics.  We notice that these dynamics exhibit 

fundamentally the same form of behavioral statistics across spatial and temporal scales and even 

across processes.   The same, apparently universal, principles seem to apply. 
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CHAPTER 1 

INTRODUCTION 

Ecological systems take the form of networks.  The broad purpose of my doctoral 

research is to increase understanding of ecological networks and the principles that characterize 

ecological network dynamics.  To accomplish that, we employ a systems approach and proceed 

as follows.  We create a functionality-driven framework that defines the ecological system 

function-structure-process landscape and guides our investigations.  We hypothesize a view of 

ecological network dynamics principles based on the framework and the extant complexity and 

network literature.  To test the hypothesis, we create a new approach for modeling ecological 

networks and exploring their dynamics.  We develop software to implement the model.  The 

model simulation results provide corroboration for the hypothesized principles of ecological 

network dynamics. 

The research described in this dissertation is innovative and original in many respects.  

The full set of approaches and methods employed here has not before been applied to ecological 

systems.  The work represents a “fresh look” at ecological network dynamics.  I have begun with 

substantial experience from my own long-time career in systems engineering and with principles 

from systems theory, complexity theory, and network theory across many disciplines.  I have 

assimilated, extended, and combined these resources in new ways to create this fresh look at 

ecological systems.  That process is the working definition of innovation and creativity.  

Creativity is “the ability to discover new relationships, to look at subjects from new perspectives, 
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and to form new combinations from two or more concepts already in the mind.” 1  Scientific 

discovery often arises from “picking up the stick from the other end.” 2  The other end, in this 

case, is the systems engineer’s perspective. 

Here’s a brief section-by-section description of the document.  Chapter 2 discusses the 

systems engineering perspective and related perspectives that are reflected in this research.  A 

function-structure-process (FSP) framework can provide a unifying context for exploring 

principles of ecological network dynamics.  Chapter 3 describes the synthesis of this contextual 

framework.  In Chapter 4, we synthesize a network-centric view of ecological system dynamics.  

We begin with a discussion of the nature of complex system self-organized order which leads to 

the notion of a domain of attraction.  We then identify and define the characteristics of the 

ecological network dynamics associated with that attractor.  In Chapter 5, we discuss our 

innovative approach to ecological network modeling.  We model these networks (as well as their 

nodes) as discrete dynamic systems.  We incorporate pertinent features of real-world ecological 

networks.  We include analysis and graphics generation capabilities.  We describe the model 

simulation software that we have developed to implement the model.  Chapter 6 is all about 

results.  Outputs of the model simulation runs are scrutinized and analyzed and results are 

generated.  Important research conclusions are presented in Chapter 7. 

There are six appendices.  The literature review is the subject of Appendix A.  Because 

ecological systems consistently take the form of complex networks, a comprehensive 

understanding of ecological systems requires an in-depth understanding of systems theory, 

complexity theory, and network theory.  Accordingly, I have conducted an extensive review of 

                                                 
1 J. R. Evans, Creative Thinking in the Decision and Management Sciences, South-Western Publishing, 

1991. 
2 Herbert Butterfield, The Origins of Modern Science, Macmillan, 1960. 
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the classic to the most recent literature in these areas.  That is evident throughout this 

dissertation.  There are abundant excerpts from and references to the pertinent literature.  In 

addition, I have documented my review of the network literature in a series of three papers on 

complex network structure and dynamics.  Since the papers are unpublished, I have provided 

some brief introductory comments and a listing of the contents for each of the three papers in 

Appendix A.  (The complete papers are available upon request.)  In this research, our ecological 

network model is cellular automata based.  Appendix B provides an introduction to cellular 

automata modeling along with a well-known example – the sandpile model.  We have developed 

the software that implements the ecological network model using the MATLAB3 programming 

environment and language.  Appendix C contains a glossary of the software program variables.  

The glossary includes a set of naming conventions for the variables and a definition for each of 

the more than one hundred variables used in the model.  Appendix D contains the software 

master m-file – which implements the model core process flow.  Appendix E contains the m-file 

that implements the model analysis activities.  Appendix F contains the m-file that implements 

the model graphics generation procedures.  Each of the m-files is heavily commented to describe 

and document the software. 

 

 

                                                 
3 MATLAB release R2009a, The MathWorks, Inc., February 12, 2009. 
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CHAPTER 2 

RESEARCH PERSPECTIVES 

This research fundamentally reflects a systems engineering perspective.  My personal 

background and intentions are important motivating factors.  During my career as a systems 

engineer at Bell Laboratories, I have learned a lot about the practice of systems engineering and 

the systems approach.  Since the early 2000s, it has been my intention to apply this perspective 

and the associated skills and approaches to ecological systems.  That is an underlying theme of 

my research and this dissertation. 

Related perspectives are covered in the following subsections. 

2.1 A Blend of Synthesis and Analysis 

Let’s start with some simple definitions.4  The term synthesis comes from the Greek 

syntithenai: to put together.  The term analysis comes from the Greek analyein: to break apart.  

In systems investigations, analysis alone is not enough. 

Much doctoral research in the sciences, however, focuses on analysis and follows an 

essentially reductionist approach.  The researcher identifies an area of interest; drills down to 

some narrow, specialized subset; and then investigates that subset in depth – all with the 

objective of discovery.  The resulting discovery, however, is likely to be isolated in the sense 

that it is not adequately “connected” to a larger context.  (We’ll have a further explanation of the 

potential problems with the reductionist approach in a moment.) 

My research takes a systems approach to scientific discovery.  It does not focus solely on 

analysis, but rather is a blend of synthesis and analysis.  The synthesis work provides the 
                                                 
4 Merriam-Webster Online, http://www.merriam-webster.com/. 
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required higher level system “connections” and context.  Research results are not isolated, but 

rather are appropriately integrated into a total system picture. 

All systems efforts include both synthesis and analysis to some degree.  The process is 

incremental, cyclic, and iterative as illustrated in Figure 2.1. 

Synthesis

Analysis 

Systems work typically requires 
traversing this loop multiple 
times in an incremental fashion. 

 
 

Figure 2.1    Combined Synthesis and Analysis 

In the work described in this dissertation, synthesis is most prominent in: 

 Creating a functionality-driven view of the function-structure-process landscape of 

ecological systems (Chapter 3). 

 Creating a network-centric view of the principles of ecological system dynamics 

(Chapter 4). 

Analysis is most prominent in: 

 Developing an ecological network model to test our hypothesized view of ecosystem 

network dynamics (Chapter 5). 

 Analyzing the model simulation output and generating results (Chapter 6). 

Potential Problems with the Reductionist Approach 

Reductionism is analysis-based: it breaks systems apart.  The reductionist approach is 

predicated on “the belief that in every complex system the behavior of the whole can be 

understood entirely from the properties of its parts.” 5  “The past three centuries of science have 

been predominantly reductionist, attempting to break complex systems into simple parts, and 

                                                 
5 Fritjof Capra, The Web of Life, Anchor Books Doubleday, 1996. 
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those parts, in turn, into simpler parts.” 6  “In recent years the practice of science has become 

increasingly reductionist in seeking to understand phenomena by detailed study of smaller and 

smaller components.” 7 

The structure of ecological systems (and other complex systems) is a network – and a 

network can be represented as a hierarchy.  Figure 2.2 depicts the reductionist approach in terms 

of a network hierarchy. 

 
 

. . . 

. . . 
. . . 

Level  i

Level  i + 2 

Subsystem (node) isolated 
for detailed investigation. 

Level  i + 1

More Aggregation 

Less Aggregation 

(a) Reductionist Approach (b) Network Hierarchy 

Figure 2.2    Reductionist Approach and Network Hierarchy 

Part (a) of the figure shows the analysis-based reductionist approach of drilling down the system 

network hierarchy in order to conduct a detailed investigation of an increasingly specialized 

subsystem.  At each level of the hierarchy, a subsystem (network node) is selected for further 

study, network connections (links) are broken, and the associated information typically is lost.  

“The reductionist likes to move from the top down, gaining precision of information about 

fragments as he descends, but losing information content about the larger orders he leaves 

                                                 
6 Stuart Kauffman, At Home in the Universe – The Search for Laws of Self-Organization and Complexity, 

Oxford University Press, 1995. 
7 Eugene Odum and Gary Barrett, Fundamentals of Ecology Fifth Edition, Thomson Brooks/Cole, 2005. 
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behind.” 8  Part (b) of the figure suggests that the number of broken network connections can be 

substantial.  We see that the top-level view of the network is highly aggregated.  Each time we 

move one level down the hierarchy we de-aggregate, i.e., we decompose each composite 

network node into its component network.  As we proceed down, level-by-level, the network 

view rapidly expands and the number of network nodes and links rapidly increases.  At the 

bottom level shown in the figure, we isolate a node for detailed investigation.  Not only do we 

have a few broken direct connections, but also a very large number of broken indirect 

connections.  The resulting information loss can be substantial.9 

Here are two additional comments about the reductionist problems of isolation and 

information loss from noted authors.  Odum and Barrett10 say that reductionism is 

“specialization in isolation.”  Bar-Yam11 states: “Indeed, one of the main difficulties in 

answering questions or solving problems … is that we think the problem is in the parts, when it 

is really in the relationships between them.”  The relationships/interactions among the parts – the 

connections – make all the difference. 

                                                

We have highlighted potential problems with the reductionist approach.  Reductionism, 

of course, has been a valuable tool for hundreds of years and continues to be a valuable tool.  

The key, in my opinion, is to use it prudently in the context of a holistic systems approach. 

There is yet another problem.  Look again at the bottom of Figure 2.2, part (b).  The 

reductionist approach can leave us with a “node-centric” view of the system under investigation.  

 
8 Paul Weiss, a pioneer in general systems theory. 
9 The information loss that results from broken connections in reductionist ecological investigation can be 

quantified.  Please see Yackinous, Reductionism and Information Loss in Ecological Investigation, 
March 25, 2009 (unpublished; available from the author). 

10 Eugene Odum and Gary Barrett, Fundamentals of Ecology Fifth Edition, Thomson Brooks/Cole, 2005. 
11 Yaneer Bar-Yam, Making Things Work – Solving Complex Problems in a Complex World, NECSI 

Knowledge Press, 2004. 
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System behavior, however, is primarily determined by network characteristics, not node 

characteristics.  Networks trump nodes.  We’ll discuss that next. 

2.2 Network Thinking 

Networks occupy a central role in my research.  The structure of an ecological system is a 

network – which consists of nodes (structural elements) and links (node structural connections).  

What most determines the behavior of the system?  Is it the individual nodes or is it the interplay 

of the network as a whole?  Reductionist scientific research is conducted by drilling down and 

isolating a system component (node) for detailed analysis.  It is assumed that understanding a 

system is all about understanding the nodes.  That is incorrect.  It is not all about the nodes.  It is 

about the network.  To understand a complex system, network thinking is required. 

Network thinking trumps node thinking.  Many respected investigators and authors agree.  

Herbert Simon12 declares that system behavior is determined more by the organization and 

relationships of the system components than by the detailed properties of each of the 

components.  Solé and Goodwin13 say: “Interactions, not individuals, are the key ingredients of 

behavioral complexity.”  Tamas Vicsek14 suggests: “The laws that describe the behavior of a 

complex system are qualitatively different from those that govern its units.”  Paul Krugman15 

relates that Philip Anderson – a Bell Labs scientist, a Nobel laureate in physics, and sometimes 

called the “father” of complexity theory – believes that system collective behavior cannot be 

determined from individual unit behavior.   

                                                 
12 Herbert Simon, The Sciences of the Artificial, MIT Press, 1996. 
13 Ricard Solé and Brian Goodwin, Signs of Life – How Complexity Pervades Biology, Basic Books, 

2000. 
14 Tamas Vicsek, Complexity: The Bigger Picture, Nature, July 2002. 
15 Paul Krugman, The Self-Organizing Economy, Blackwell Publishers, 1996. 
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Because system behavior depends primarily on network dynamics and not on node 

details, we might ask whether, under some circumstances, nodes can be replaced without 

substantially changing network behavior.  The answer seems to be yes.  Ervin Laszlo16 has 

observed that a range of complex “people” systems – e.g., consumers, investors, teams, societies, 

cultures – change individual “parts” all the time yet seem to maintain essentially the same 

properties.  John Holland17 has said (in the context of system diversity): “If we remove one kind 

of agent [node] from the system, creating a ‘hole,’ the system typically responds with a cascade 

of adaptations resulting in a new agent that ‘fills the hole’.”  …  “The ecosystem interactions are 

largely re-created, although the agents are quite different.”  And the network maintains 

coherence.  In a complex adaptive system, “a pattern of interactions disturbed by the extinction 

of component agents often reasserts itself, though the new agents may differ in detail from the 

old.” 

2.3  “Flickering” Dynamics 

Traditionally, much network modeling and analysis assumes a static network structure, 

steady-state network flows, and (sometimes) linear system behavior.18  We, on the other hand, 

do not make these a priori assumptions about network dynamics.  Our objective is to model and 

analyze ecological networks in order to determine the nature of their dynamics.  We envision an 

ever-changing network structure, non steady-state flows, and nonlinear system behavior. 

                                                 
16 Ervin Laszlo, The Systems View of the World, G. Braziller, 1972. 
17 John Holland, Hidden Order – How Adaptation Builds Complexity, Helix Books, 1996. 
18 All system models incorporate simplifying assumptions.  This is necessary to reduce a complex real-

world situation to something that is tractable and amenable to, e.g., mathematical or numerical 
analysis.  In her recent book (M. Mitchell, Complexity: A Guided Tour, Oxford University Press, 
2009), Melanie Mitchell discusses the well-known and pertinent quote by statistician George E. P. 
Box: “All theoretical models are wrong, but some are useful.” 
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Odum and Barrett say “There are no equilibriums [in ecological systems], but there are 

pulsing balances.” 19  We see these “pulsing” dynamics in our work here.  Ecological network 

events have power-law distributions and punctuated time series.  Individual events can be small 

or large.  They can be gradual or abrupt.  We see not steady-state behavior, but fluctuating 

dynamics in space and time.  Ecological networks “flicker.” 20 

2.4 Universality 

We will see that ecological network behavior often is not dependent on scale.  It is scale 

invariant.  It is self-similar at all scales.  The phrase self-similar at all scales is the definition of 

fractal behavior.21  [We’ll have much more to say about fractals in Chapter 4.  The topic is very 

important to our understanding of the dynamics of ecological networks.] 

Many ecological processes exhibit this self-similarity.  A given process will exhibit 

fundamentally the same behavioral statistics across spatial scales and across temporal scales.  An 

even broader type of self-similarity can be observed.  Ecological systems exhibit the same form 

of dynamics across processes.  There seems to be a general equivalence – a universality – in 

ecological network dynamics.  The same, apparently universal, principles apply across space, 

time, and process. 

 

 

                                                 
19 Eugene Odum and Gary Barrett, Fundamentals of Ecology Fifth Edition, Thomson Brooks/Cole, 2005. 
20 Here’s the definition from Merriam-Webster Online (http://www.merriam-webster.com/). 

flicker – 1. to move irregularly or unsteadily : flutter,  2. to burn or shine fitfully or with a fluctuating 
light. 

21 Solé et al, Criticality and Scaling in Evolutionary Ecology, Trends in Ecology and Evolution, 
April 1999. 
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CHAPTER 3 

FUNCTION-STRUCTURE-PROCESS FRAMEWORK 

A function-structure-process (FSP) framework can provide a unifying context for 

exploring principles of ecological network dynamics.  The framework can be the vehicle for 

comprehensive and disciplined identification of ecological system functions, the structure 

(architecture) upon which the system functions are implemented, and the processes that operate 

within that architecture to deliver the functions.  We have begun the synthesis of such a 

framework and, at this point in time, have achieved a high-level view of the framework.  Since 

my current research deals with general principles of ecological network dynamics, the high-level 

view is sufficient for the work at hand.22  Further, more detailed development of the framework 

would require follow-on work by me and/or interested others. 

This section describes the synthesis of the contextual framework.  We begin with 

fundamentals and build from there. 

Read any ecology article, attend any ecology lecture, or read any ecology book.  You’re 

likely to see/hear something about function, structure, and/or process.  These terms are very 

frequently used, but very rarely defined.  Often the only sense you get is that structure has 

something to do with physical form while function and process have something to do with 

activity.  Clarity is sorely lacking.  In Section 3.1, we clearly define, describe, and discuss these 

concepts and how they are related.  We indicate which of them is primary – and which are 

                                                 
22 The high-level view, furthermore, is perhaps the most crucial.  As noted in Chapter 2, drilling down to 

narrow, specialized investigations in a reductionist fashion without an understanding and awareness of 
the total system picture can yield faulty results due to broken connections, information loss, and 
analysis in isolation. 
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secondary (derived).  We describe how they interact with each other and with the ecosystem 

environment.  In Section 3.2, we see that this set of concepts leads us to a framework for 

ecological system dynamics – a framework that can help guide us toward a comprehensive 

understanding of ecological systems. 

3.1 Understanding Function, Structure, and Process 

3.1.1 Primary vs. Secondary 

3.1.1.1 Function Is Primary 

Flux (or we might also say movement or activity) is primary.  Flux – from the Latin 

fluere, to flow – can be defined as a continuous moving on or passing by; a continued flow.23  As 

the John Travolta character in the movie Phenomenon says: “Everything is on its way to 

somewhere.” 

David Bohm24 has proposed that the primary characteristic of reality is this flux/ 

movement/activity.  He says that reality is “a set of forms in an underlying universal movement.”  

Bohm provides some historical background:  “The notion that reality is to be understood as 

[movement] is an ancient one, going back at least to Heraclitus, who said that everything flows.  

In more modern times, Whitehead was the first to give this notion a systematic and extensive 

development.”  [Alfred North Whitehead (in the twentieth century) developed The Philosophy of 

Organism – the conviction that reality is composed principally of flows rather than objects.]  

Throughout Bohm’s book, “the central underlying theme [is] the unbroken wholeness of the 

                                                 
23 Merriam-Webster Online, http://www.merriam-webster.com/. 
24 David Bohm, Wholeness and the Implicate Order, Ark Paperbacks, 1983.  (I note that Bohm, along 

with many other investigators, uses the term process loosely – and without defining it.  Bohm, at times, 
implies that process is synonymous with the underlying flux.   My view is that process is a derived 
expression of this flux.) 
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totality of existence as an undivided flowing movement without borders.”  “Not only is 

everything changing, but all is flux.” 

Flux is primary.  Function is the concept we use to describe system flux or activity.  

System “functioning means showing activity.”  “Ecosystem functioning reflects the collective life 

activities of plants, animals, and microbes.” 25  Function is primary. 

3.1.1.2 Structure and Process Are Secondary 

How is system function achieved?  The answer is – via system structure and process.  

Structure represents a particular derived system implementation that can realize system function 

– via particular derived active mechanisms (which depend on this structure) called process.  

Structure is derived from function – it is a derived platform upon which derived processes 

execute. 

Several respected investigators and authors support this perspective.  Yaneer Bar-Yam26 

notes that “the function of the system dictates its structure.”  A very well-known design principle 

makes the same statement: “form ever follows function.”  Architect Louis Sullivan coined that 

phrase in 1896.27  The general principle has been applied across system design disciplines 

(building architecture, engineering, many others) for years.  David Bohm28 has some interesting 

insights.  He observes that modern physics seems to say that elementary particles such as 

electrons, protons, and neutrons (i.e., structure) are primary – and that physical phenomena are 

abstractions of the motions of the particles.  But the particles can be created, transformed, 

                                                 
25 These two quotes are from Shahid Naeem, Frank B. Golley, et al, Biodiversity and Ecosystem 

Functioning, Ecological Society of America, Issues in Ecology, Number 4, Fall 1999 
(http://www.epa.gov/watertrain/pdf/issue4.pdf ). 

26 Yaneer Bar-Yam, Making Things Work – Solving Complex Problems in a Complex World, NECSI 
Knowledge Press, 2004. 

27 Louis Sullivan, The Tall Office Building Artistically Considered, Lippincott's Magazine, March 1896. 
28 David Bohm, Wholeness and the Implicate Order, Ark Paperbacks, 1983. 
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annihilated – they are transitory – and so must be derived or “abstracted from some deeper level 

of movement.” 

Structure and process are derived from function.  Structure and process are transitory 

and secondary. 

3.1.2 Definitions and Relationships 

3.1.2.1 Definitions 

Function Definition 

Function describes system activity – what the system does.  The word function comes 

from the Latin fungi, to perform.  Examples of ecological system functions performed in 

operational (as opposed to developmental) time frames include production, consumption, 

decomposition, and storage.  Function is a primary characteristic of any system.  For teleological 

systems, function is the raison d’etre (reason or justification for existence) of the system.  For 

ecological systems (non-teleological systems) the reason for existence, or whether there is a 

reason, is not known. 

Structure Definition 

Structure is derived from function and specifies system physical form.  Merriam-

Webster29 defines structure as “the arrangement of particles or parts” in a system.  Ecological 

systems consistently take the form of networks.  Network structure is comprised of nodes 

(structural elements) and links (node structural connections). 

Process Definition 

Process is derived from function and depends on structure.  Processes are active flows 

which execute on the platform of structure to deliver function.  The word process comes from the 

                                                 
29 Merriam-Webster Online, http://www.merriam-webster.com/. 
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Latin processus and procedere – meaning procedure.  Merriam-Webster’s definition of process 

includes “something going on” and “a series of actions” that “lead toward a particular result.” 

3.1.2.2 Relationships 

Figure 3.1 illustrates the relationships among function, structure, and process. 

 

 

Structure Process 

Function 

Environment 

Primary 
Secondary  

Structure Process 

Function 

Environment 

Energy/Matter 

Flow 

B.   Flow Relationship A.   Primary/Secondary Relationship 

 
Figure 3.1    Function, Structure, and Process Relationships 

Part A depicts the primary/secondary relationship that we have been discussing.  Both structure 

and process are derived from function and both the function-to-structure relationship and the 

function-to-process relationship are one-to-many.  Process further depends on structure and, to 

achieve any given function, the structure-to-process relationship is also one-to-many.  All of the 

relationships are in the context of environment.  Part B of the figure depicts the flow relationship 

in ecological systems.  Process is flow through structure that delivers function in the context of 

environment.  In ecological systems, the flow “currency” is energy/matter.  Function is the 

outcome of the process/structure interaction – or as stated in the book Philosophy and Design30 – 

“process and structure co-produce function in the context of environment.” 

                                                 
30 Philosophy and Design – From Engineering to Architecture, edited by Vermaas et al, Part 2, chapter by 

Kristo Miettinen, Springer Netherlands, 2008. 
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Consider an ecological system compartment model.  The system structure depicted in 

such a (network) model supports processes that deliver functions.  The following multi-part 

description of process applies.  A process is: 

 a (sub)system input/output relationship that realizes a function. 

 a dynamic “thread” through system compartments and connections. 

 a “compound flow” that encompasses some set of system compartments, system adjacency 

“simple flows,” and system inputs and outputs. 

In set-theoretic notation, the definition can be expressed as: 

 achieved isfunction  system a,,2,1,,,,Process thatsuchnjiwhereyfxz iijii   

In the expression, the z’s are system inputs, the x’s are state variables (representing 

compartments), the f ’s are flows (over connections), the y’s are system outputs, i and j are 

indices in the range 1 to n, and n is the number of system compartments.  A process, therefore, is 

a sequentially ordered k-tuple of system inputs, compartments, flows, and outputs such that a 

system function is achieved. 

We see that process is an end-to-end flow path across system (model) structure often 

driven by input(s) from the environment and producing output(s) to the environment.  A function 

is the net result of the occurrence of the process. 

3.2 A Framework for Ecological System Dynamics 

3.2.1 What, How, and Why 

There are two quintessential questions that must be addressed in order to understand an 

ecological (natural) system or to understand and build a human-generated (artificial) system.  
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What does the system do?  How does the system do it?  Yaneer Bar-Yam31 agrees and echoes the 

sentiment when he says: “Scientists look at something and want to understand what it does, and 

how it does it.”  The “what” is described by the system’s functions.  The “how” is described by 

the system’s implementation, i.e., the implemented structure and implemented processes that 

realize the system functions. 

There is also a third question: Why?  This question can be viewed as teleological – 

having to do with the purpose of the system.  When building an artificial (human-generated) 

system, we can answer this question.  If we didn’t know why we were building a system, we 

wouldn’t build it.  In a commercial/industrial setting, for example, it is the system stakeholders 

that provide the answer.  For an ecological system, on the other hand, we are not in a position to 

answer the “why” question – or even to know (scientifically) if there is an answer. 

To understand an ecological system, at best we can begin to address and answer the 

“what” (function) question and the “how” (structure and process) question. 

3.2.2 Developing the Framework 

So let’s address the what and how questions in a systematic way.  Let’s develop a 

framework that addresses the questions; embodies the concepts of function, structure, and 

process; and therefore can serve as a basis for a comprehensive understanding of ecological 

systems.  A high-level view of the resulting framework is provided in Figure 3.2. 

 

                                                 
31 Yaneer Bar-Yam, Making Things Work – Solving Complex Problems in a Complex World, NECSI 

Knowledge Press, 2004. 
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Ecological System 
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(Networks) 

System 
Structure 

Figure 3.2    Framework for Ecological System Dynamics 

As shown, the two major partitions of the framework address what and how, respectively.  The 

left-hand partition covers “what the system does”, i.e., the system functions.  The right-hand 

partition covers “how the system does it” – the system implementation, i.e., the implemented 

structure and implemented processes that realize the system functions. 

Let’s first consider the left-hand ecological system function partition.  John Holland32 

favors a two-tier model of complex adaptive systems – an upper tier that represents the “slow 

dynamics” of long-term system development and a lower tier that represents the “fast dynamics” 

                                                 
32 John Holland, Hidden Order – How Adaptation Builds Complexity, Helix Books, 1996. 
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of short-term system operation.  David Bohm33 has said that to understand a system, we must 

understand the way “in which it forms, maintains itself, and ultimately dissolves.”  As shown in 

Figure 3.2, we take Bohm’s and Holland’s guidance and partition ecological system functions 

into developmental functions (long-term dynamics) and operational functions (short-term 

dynamics).  The developmental functions involve forming and dissolving.  The operational 

functions involve maintaining – and apply when the long-term dynamics can be assumed to be 

negligible.  Ecological system developmental functions34 include evolution (microevolution and 

macroevolution) and succession.  Ecological system operational functions include production, 

consumption, and decomposition. 

There is a third function partition shown in Figure 3.2 which is extremely important.  

This partition consists of a small interacting set of core functions that span the slow and fast 

dynamics regimes.  I believe that an understanding of these core functions of self-organization, 

regulation/adaptation, and propagation is crucial for a comprehensive understanding of 

ecological systems.  Self-organization 35 is perhaps the key underlying enabler of all ecosystem 

functionality.  It is my view that an ecological system’s regulation/adaptation to its environment 

and propagation of energy/matter are involved in or contribute to essentially all developmental 

and operational functions.36  Ecological systems (networks) self-organize in order to adapt and 

propagate in support of operational and developmental functions. 

                                                 
33 David Bohm, Wholeness and the Implicate Order, Ark Paperbacks, 1983. 
34 Bill Yackinous, Evolution and Universal Development Concepts, March 2009 discusses developmental 

functions and models. 
35 See Bill Yackinous, Thermodynamic Entropy and Order in Ecological Systems, March 2009 for a 

discussion of self-organization principles and characteristics. 
36 See Bill Yackinous, Control Aspects of Ecological Systems, March 2009 for a discussion of adaptation 

and propagation in system control. 
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Next let’s consider the right-hand side of Figure 3.2 – ecological system function 

implementation, i.e., the implemented structure and implemented processes that realize the 

system functions.  System structure takes the form of network architecture.  System processes are 

active flows which execute on network structure to deliver ecological system function. 

Networks: Complex ecological systems consistently take the form of networks.  A 

comprehensive understanding of ecological systems, therefore, requires an in-depth 

understanding of complex networks.37  Networks occupy a central role in my research. 

System Processes: There are exceptions, but in general end-to-end processes tend to get 

neglected.  In my extensive survey of the classic and recent network literature, for example, I 

found that most investigation to date in the scientific community has focused on the structure of 

networks.  Investigation of end-to-end processes on networks lags way behind.  This type of 

behavior is typical of many western scientific pursuits.  In our reductionist research, we drill 

down and isolate a system component (node) for detailed analysis.  In so doing we break 

network connections, sever system end-to-end processes, and lose valuable information.38  

Process concepts are also under-utilized in traditional ecological modeling.  “Process” is 

employed primarily in a fragmented pair-wise sense.  Process and process equations are used 

mostly to explain and calculate compartment-to-compartment pair-wise flows of the model 

currency.  System processes must be given new respect if we are to achieve a comprehensive 

understanding of ecological systems. 

This framework has and will continue to provide guidance to me in my work and in my 

efforts to better understand ecological systems.  Other investigators are certainly welcome to use 

                                                 
37 See the Yackinous series of three papers on complex network structure and dynamics (Appendix A). 
38 See Bill Yackinous, Reductionism and Information Loss in Ecological Investigation, March 2009. 
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the framework – and to offer suggestions for its elaboration and improvement.  It is still a “work 

in progress.” 

3.2.3 The Three Core Functions of the FSP Framework 

Self-organization, in a sense, is the underlying enabling function that makes all other 

functions possible.  I have researched self-organization extensively in my literature review39 and 

I have written about it.40  In Chapter 4, we’ll discuss self-organization and see that it plays an 

important role in our synthesis of a view of ecological network dynamics. 

Regulation/adaptation is the system control function.41  The need for this function in 

ecosystems is profound: it is required for system survival.  In ecological systems, 

regulation/adaptation is homeorhetic – it maintains “pulsing states within limits.”  “There are no 

equilibriums [in ecological systems], but there are pulsing balances.” 42  The homeorhetic 

control mechanisms are diffuse.  Patten and Odum made that case in 1981.  They explained that 

the control mechanisms “are all the factors, processes and interactions ... which serve to mediate 

the movement or transformation of energy-matter.” 43  The interplay of material cycles and 

energy flows generates a self-controlling homeorhesis that allows an ecological system to adapt 

and respond to system perturbations.  (As we shall see, these behaviors are fully consistent with 

the view of ecological network dynamics developed in Chapter 4.)  The interactions and 

interplay inherent in regulation/adaptation are provided by the propagation function. 

                                                 
39 See for example Bak 1996, Kauffman 1995, Krugman 1996, Müller 1996, Solé and Bascompte 2006. 
40 See Bill Yackinous, Thermodynamic Entropy and Order in Ecological Systems, March 2009. 
41 See Bill Yackinous, Control Aspects of Ecological Systems, March 2009 for a detailed discussion of 

this function. 
42 These two quotes are from Eugene Odum and Gary Barrett, Fundamentals of Ecology Fifth Edition, 

Thomson Brooks/Cole, 2005. 
43 Patten and Odum, The Cybernetic Nature of Ecosystems, The American Naturalist, Volume 118, 1981. 
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Propagation is the fundamental and essential means of interaction among nodes in an 

ecological network and between the network and its environment.  In my research, the 

propagation function becomes the focus.  In the remainder of this dissertation document, 

propagation is the centerpiece of much of the synthesis, modeling, and analysis activities. 

3.3 New Perspective on Statics and Dynamics 

In the traditional perspective, structure is often treated as a static property of a system.  

Function and process yield the system dynamics.  I suggest a new perspective in which all three 

are dynamic.  Bohm44 supports the notion that structure is dynamic: All systems “are in a 

continual movement of growth and evolution of structure … .”  Certainly in longer-term 

developmental time frames, system structure changes with time.  Even in shorter-term 

operational time frames, system structure – represented as a network – is not static.  Network 

node state changes continually occur and network links continually become active and inactive 

as required by the system functions/processes and the system environment.  The network 

“flickers.”  Everything is changing all the time.  Everything is dynamic.  As David Bohm has 

said:  “All is flux.” 

 

 

                                                 
44 David Bohm, Wholeness and the Implicate Order, Ark Paperbacks, 1983. 
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CHAPTER 4 

A VIEW OF ECOLOGICAL NETWORK DYNAMICS 

The core functions of the FSP framework provide the context for defining the attractor 45 

of complex ecological network dynamics and for synthesizing a view of those dynamics. 

We begin with a discussion of the nature of complex system self-organized order which 

leads to a definition of the domain of attraction.  We then synthesize a view of the ecological 

network dynamics associated with that attractor.  We take both an operational perspective and a 

characteristics perspective on the dynamics.  The synthesis is solidly based on our 

comprehensive literature review. 

4.1 The Nature of Order in Complex Ecological Systems 

4.1.1 Self-Organization 

Self-organization is a fundamental core function of complex ecological systems.  Stuart 

Kauffman46 has explored this function extensively and seeks its general principles.  He says that 

order “arises naturally and spontaneously because of these principles of self-organization – laws 

of complexity that we are just beginning to understand.”  “Self-organization … may be the 

ultimate wellspring of [the] dynamical order” that underlies the origin, development, and 

operation of living systems.  Several other prominent authors and researchers have explored the 

subject as well – in the context of a variety of both living systems and nonliving systems.  We’ll 

provide a sampling in the following paragraphs. 

                                                 
45 We will refer to this attractor as the domain of attraction for ecological network dynamics. 
46 Stuart Kauffman, At Home in the Universe – The Search for Laws of Self-Organization and 

Complexity, Oxford University Press, 1995. 
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Fritjof Capra47 claims that philosopher Immanuel Kant (in 1790) was “the first to use the 

term ‘self-organization’ to define the nature of living organisms.”  Capra says the hallmark of 

self-organization is “the striking emergence of new structures and new forms of behavior.”  The 

work of Ilya Prigogine (1977 Nobel laureate in chemistry) demonstrates that.  “The first, and 

perhaps most influential, detailed description of self-organizing systems was the theory of 

‘dissipative structures’ by the Russian-born chemist and physicist Ilya Prigogine” developed in 

the 1970s.  Prigogine’s vehicle for investigation included Bénard cells.  These are hexagonal 

convection cells that appear spontaneously when a thin layer of liquid is heated from below.  It is 

a nonequilibrium (temperature nonuniformity) threshold phenomenon – that exhibits 

spontaneous self-organization.  Prigogine also studied the BZ (Belousov-Zhabotinskii) chemical 

reaction – in which a combination of appropriate chemicals plus energy yields a reaction solution 

whose color oscillates from red to blue to red at regular time intervals.  It’s a self-organized 

chemical clock.  Note that both of these phenomena require an input of energy that is dissipated 

by the system.  Prigogine introduced the term dissipative structures to describe the principle that 

“in open systems dissipation becomes a source of order.” 

Odum and Barrett48 weigh in on the subject of self-organization.  They cite the work of 

Prigogine as well as the work of Bob Ulanowicz.  “A major key to ecosystem development is the 

concept of self-organization, based on Prigogine’s theory of non-equilibrium thermodynamics.  

Self-organization can be defined as the process whereby complex systems consisting of many 

parts tend to organize to achieve some sort of stable, pulsing state in the absence of external 

interference. ... Self-organized ecosystems can only be maintained by a constant flow of energy 

                                                 
47 Fritjof Capra, The Web of Life, Anchor Books Doubleday, 1996. 
48 Eugene Odum and Gary Barrett, Fundamentals of Ecology Fifth Edition, Thomson Brooks/Cole, 2005. 
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through them; therefore, they are not in thermodynamic equilibrium.  ...  Ulanowicz49 used the 

term ascendency for the tendency for self-organizing, dissipative systems to develop complexity 

of biomass and network flows over time.” 

Paul Krugman50 (2008 Nobel laureate in economics – and a professor at Princeton 

University and a columnist for the NY Times) discusses the importance of the concept of self-

organization – across disciplines.  “The most provocative claim of the prophets of complexity is 

that complex systems often exhibit spontaneous properties of self-organization.”  “I believe that 

the ideas of self-organization theory can add substantially to our understanding of the economy.”  

“In the last few years the concept of self-organizing systems ... has become an increasingly 

influential idea that links together researchers in many fields, from artificial intelligence to 

chemistry, from evolution to geology.” 

4.1.2 The Domain of Attraction 

Nonlinear dynamics theory51 defines three types of attractors for the dynamics of 

complex systems – point attractors, limit cycle or periodic attractors, and strange attractors.  

These attractor types were derived based on systems of relatively low complexity.  In my view, 

the reason for working with low complexity systems is that these are the systems that are 

amenable to mathematical and numerical analyses.  The question then arises: Does this attractor 

classification scheme apply equally well to very complex systems such as ecological systems?  

My research findings suggest that it does not – at least not entirely.  Conventional nonlinear 

dynamics theory seems to be incomplete.  Stephen Wolfram’s work on cellular automata52 seems 

                                                 
49 For example, in Robert Ulanowicz, Ecology, the Ascendent Perspective, Columbia University Press, 

1997. 
50 Paul Krugman, The Self-Organizing Economy, Blackwell Publishers, 1996. 
51 See Yackinous, Fundamentals of Nonlinear Dynamics, November 27, 2007. 
52 See, for example, Schiff, Cellular Automata, Wiley-Interscience, 2008. 
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to support this point of view.  Cellular automata (CA) are discrete dynamical systems.  Wolfram 

has defined four classes of CA.  Classes I, II, and III have dynamics that correspond to the three 

known classes of attractors, i.e., point attractors, periodic attractors, and strange attractors, 

respectively.  Class IV cellular automata dynamics, on the other hand, are not well-understood 

and they do not correspond to a conventional attractor type.  Class IV CA seem to be much more 

complex systems.  Another question then arises: What is the attractor(s) for very complex 

systems?  One objective of my research is to begin to address that question.  I have coined a term 

and refer to the attractor of the dynamics of self-organized complex ecological networks as the 

domain of attraction.  A high-level narrative rationale for this domain follows. 

Warren Weaver’s53 ranges of complexity have been influential over the years and are a 

useful way of thinking about complexity.  Figure 4.1 illustrates the ranges. 

 
 

Complexity 
Range: 

Degree of 
Order: 

ORGANIZED
SIMPLICITY

ORGANIZED
COMPLEXITY

DISORGANIZED 
COMPLEXITY 

Low Degree of 
Complexity: High Low 

High Low Moderate 

Figure 4.1    Weaver’s Ranges of Complexity 
 

Let’s make some additions to Figure 4.1 to illustrate degree of complexity and order – as 

a way of introducing the concept of domain of attraction.  Figure 4.2 depicts degree of 

complexity vs. Weaver’s ranges. 

                                                 
53 Warren Weaver, Science and Complexity, American Scientist, 1948. 
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Figure 4.2    Degree of Complexity 

Solé and Goodwin54 offer support for this depiction: “A properly defined complexity measure … 

should reach its maximum at some intermediate levels between the order of a perfect crystal and 

the disorder of a gas.” … “The point of maximal complexity is sharply defined. This is where 

complexity lives.” 

Consistent with Solé and Goodwin’s pronouncement, Figure 4.3 depicts degree of order 

vs. Weaver’s ranges. 

Weaver’s Complexity Ranges 
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Weaver’s Complexity Ranges  

Figure 4.3    Degree of Order 

                                                 
54 Solé and Goodwin, Signs of Life – How Complexity Pervades Biology, Basic Books, 2000. 
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Highly complex systems seem to be poised in an agile, responsive domain between “too 

ordered” and “too disordered” behavior. 

Let’s now combine these notions of “just right” (flexible) order and high complexity – 

and define what I call the domain of attraction.  See Figure 4.4. 

Domain of 
attraction: 

• Flexible 
order 

• Maximal 
complexity 

 

Lower Complexity 
High 

Complexity Lower Complexity 

Order

Flexible 
Order 

Frozen 
Order 

Disorder

System Behavior  

Figure 4.4    The Domain of Attraction 

The domain of attraction is characterized by maximum complexity and flexible order –conditions 

that appear to help optimize system sustainability and survivability.  This domain is where well-

functioning ecological systems reside.  The edge-of-order location is a “good place to be … 

where, on average, we all do best.” 55  Stuart Kauffman56 offers many important insights 

regarding the edge-of-order location: 

 “Life evolves toward a regime that is poised between order and chaos.” 

 “Life exists at the edge of chaos” – near a phase transition, in the language of physics. 

                                                 
55 Stuart Kauffman quoted in Bak, How Nature Works, Springer-Verlag, 1996. 
56 Stuart Kauffman, At Home in the Universe – The Search for Laws of Self-Organization and 

Complexity, Oxford University Press, 1995.  Kauffman uses the term “chaos.”  In my view the 
conventional, non-scientific use of that term has implications that are inaccurate in the context of this 
investigation.  I prefer the term “disorder.” 
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 “It is a lovely hypothesis, with considerable supporting data, that genomic systems lie in 

the ordered regime near the phase transition to chaos.”  These systems are not too rigidly 

ordered, not unordered, but just right. 

 To cope with a complex environment, networks must not be too rigid – they need order 

and flexibility.  “How do … networks achieve both stability and flexibility?  The new 

and very interesting hypothesis is that networks may accomplish this by achieving a kind 

of poised state balanced on the edge of chaos.” 

 “Just between [order and chaos], just near this phase transition, just at the edge of chaos, 

the most complex behaviors can occur – orderly enough to ensure stability, yet full of 

flexibility and surprise.  Indeed, this is what we mean by complexity.” 

 “Perhaps networks just at the phase transition, just poised between order and chaos, are 

best able to carry out ordered yet flexible behaviors.” 

 “The transitional region between order and chaos [is] where complex behavior thrives.” 

Kauffman posits that perhaps this edge-of-order location, “ordered and stable, but still flexible, 

will emerge as a kind of universal feature of complex adaptive systems in biology and beyond.” 

Per Bak57 makes insightful observations about what system complexity is and is not.  Bak 

says: “A picture of nature in ‘balance’ often prevails.”  This is not true – even though it can seem 

so in the time scale of human perception.  “How can there be evolution if things are in balance?  

Systems in balance or equilibrium, by definition, do not go anywhere.”  Behavior of complex 

systems cannot be explained in a context of balanced equilibrium. 

Bak says further that systems in chaos are not highly complex.  Not much useful happens 

in the disordered regime.  Here, system behavior exhibits randomness; system fluctuations have 

                                                 
57 Per Bak, How Nature Works – The Science of Self-Organized Criticality, Springer-Verlag, 1996. 
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a white noise spectrum; there is no contingency, no memory, no correlation with past events.  

Bak observes that: “Chaos signals [time series] have a white noise spectrum, not 1/f.” … 

“However, precisely at the ‘critical’ point where the transition to chaos occurs, there is complex 

behavior, with a 1/f-like signal.  The complex state is at the border between predictable periodic 

behavior and unpredictable chaos.”  [We’ll cover 1/f signals in Section 4.3.2.2.] 

There is ample support for the idea that highly complex self-organized systems can reside 

in the domain of attraction.  Next, we want to synthesize a view of the ecological network 

dynamics associated with this domain.  We take both an operational viewpoint and a 

characteristics viewpoint on the dynamics. 

4.2 Ecological Network Dynamics:  Operational Viewpoint 

How do ecological networks operate in the domain of attraction?  A description of our 

hypothesized view follows. 

Reality is dynamic.  There are families of natural system networks in play at all times.  

The network nodes are available for interaction, and any given node can participate in multiple 

networks.  In response to some stimulus – say an input of energy or biomass – connections 

between nodes become active and begin formation of a network.  The ecological network can 

evolve to become a critically connected network with high complexity and flexible order.  The 

nodes of the network operate and interact locally and/or globally as necessary until the 

“processing” of the stimulus is completed.  If the system input is removed, the network 

connections eventually become inactive once more.  Network connections are not persistent – 

they are ever-changing – active when needed and inactive when not needed.  The network 

“flickers.”  The above scenario is repeated over and over again, in space and in time, as required 

by the real environment. 
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Ecological network operation is illustrated graphically in Figure 4.5. 

 t = t2 

One unit of 
input at time t2 

t = t1 

One unit of 
input at time t1 

 
Figure 4.5    Ecological Network Operation 

The figure displays two different moderate-sized propagation events that occur at two different 

instants of time.  At time t1 a unit of input is applied to a randomly selected input node.  The 

input causes that node to propagate (and turn red or “light up” as depicted in the figure).  

Propagation results in flows to nearby nodes.  Some of those downstream nodes then propagate 

to other nodes, and so on.  The process continues until no further propagation flow occurs.  We 

see that node interaction begins locally, but can extend globally.  As a result of this propagation 

event, the states of all the involved nodes have changed.  At the next instant (time t2), we have a 

different set of network initial conditions, potentially a different input node, and therefore a 

different propagation event.  Different nodes will “light up.”  The network flickers.  (A good 

visual metaphor would be blinking lights on a holiday tree.) 

4.3 Ecological Network Dynamics:  Characteristics Viewpoint 

How can we statistically characterize the ecological network dynamics associated with 

the domain of attraction – and with the above operational behavior?  We identify and define the 

characteristics here. 
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4.3.1 Punctuated Dynamics 

Geologist/anthropologist Charles Lyell [1797–1875] formulated the philosophy of 

uniformitarianism or gradualism which claimed that smooth gradual processes were at work in 

natural systems.  A small cause yielded a small effect.  All things could be explained by linear 

extrapolation.  Darwin apparently accepted this view – he stated that evolution is smooth and 

gradual; he even denied the existence of evolutionary mass extinctions.  [This is according to Per 

Bak.58] 

Gould and Eldredge disagreed and instead offered a “punctuated equilibrium” 

explanation (e.g., in their classic 1977 paper59).  “Punctuated equilibrium is the idea that 

evolution occurs in spurts instead of following the slow, but steady path that Darwin suggested.  

Long periods of stasis with little activity in terms of extinctions or emergence of new species are 

interrupted by intermittent bursts of activity.”  [Quote is from Bak.] 

My view is that punctuated dynamics – not gradualism – are at work in ecological 

systems.  I suggest that the dynamics of complex ecological networks exhibit such behavior.  

The time series of ecological system events are punctuated and the event probability distribution 

follows a power law.  There is a wide distribution of events – from the ordinary (gradual and 

expected) to the extreme (abrupt and unexpected). 

Black Swans 

“Black Swans” are extreme events – unlikely, unexpected, high impact events.  They 

reside at the “long tails” of power-law/fractal event distributions.  The Black Swan metaphor, 

perhaps mentioned first in John Stuart Mill, A System of Logic, 1860, has been used many times 

since.  It is currently most associated with Karl Popper and his work on The Problem of 
                                                 
58 Ibid. 
59 Gould and Eldredge, Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered, 

Paleobiology, Spring 1977. 
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Induction (I see only white swans – therefore all swans are white – except when they are not – 

etc.).  There is a recent book on the subject by Nassim Taleb.60 

A pictorial illustration of the black swan region of a power-law event distribution is 

provided in Figure 4.6. 

 

 

Prob {Event} 

Event variable
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(Cause/Effect 

Balance) 

Unexpected Events 
(Cause/Effect 

Imbalance) 

Black Swan Region

Power-law distribution 

Figure 4.6    Black Swan Region 

This punctuated dynamics perspective represents a challenge for many of us.  Linear 

explanations are pervasive in our thinking.  Acceptance of nonlinear, punctuated behavior is a 

challenge. 

4.3.2 Fractal Behavior 

In my research work, I am finding that complex system behavior in the domain of 

attraction is generally not dependent on scale.  Rather, it is scale invariant; it is self-similar at all 

scales.  The phrase self-similar at all scales is the definition of fractal behavior.61  Euclidian 

geometry is human-made, but fractal geometry is the geometry of nature.  Fractal behavior is 

central to our understanding of the dynamics of ecological networks.  Fractals are very 

                                                 
60 Nassim Taleb, The Black Swan, Random House, 2007. 
61 Solé et al, Criticality and Scaling in Evolutionary Ecology, Trends in Ecology and Evolution, 

April 1999. 
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widespread in nature – not only spatially but also temporally.  This section addresses these 

important ideas. 

Complex ecological networks exhibit a wide range of system responses (a power-

law/scale-invariant/fractal distribution of responses).  The responses occur within well-defined 

statistical laws.  What are the well-defined statistical laws – graphically and mathematically?  

Figure 4.7 presents a graphical view of scale-invariant/fractal behavior. 
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of 

Event
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Log – Log 
representation

Event Distribution

Likelihood 
of 

Event 

Power-law curve

Event Time Series

Punctuated 
dynamics are 

observed.

Event 
Quantity 

Time  
 

Figure 4.7    Scale-Invariant/Fractal Behavior – Graphics 

The upper left panel of the figure shows that a fractal event distribution follows a power-law 

curve.62  The upper right panel indicates that, in log-log coordinates, the event distribution 

becomes a straight line.  Examples of events include: network formation events, network 

                                                 
62 Those who early noticed, studied, and wrote about power-law behavior include Pareto (1890s); Yule 

(1920s); Zipf (1930s); Herbert Simon (1950s); and Benoit Mandelbrot (1990s).  More recently, many 
complex system investigators have joined this group. 
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propagation events, … , earthquakes, rain, and heart rate.  Examples of event variables include: 

node degree, event size, spatial dimension, temporal duration, and frequency content.  The event 

distributions show that there is a wide spectrum of possible events. “Small” events are more 

likely, but “large” events can occur and do occur. Small events are expected; large events should 

be expected as well.  The lower panel of Figure 4.7 illustrates the form of a fractal time series 

(event fluctuations over time).  The dynamics are clearly punctuated.  We’ll focus on temporal 

fractal behavior in Section 4.3.2.2. 

Next, here’s a brief overview of scale-invariant/fractal mathematics.  Newman63 states 

that scale-invariant/fractal “refers to any functional form f(x) that remains unchanged to within a 

multiplicative factor under a rescaling of the independent variable x.  In effect this means power-

law forms, since these are the only solutions to f(ax) = bf(x).”  Any scale – within the power-law 

interval of applicability – will exhibit statistically the same behavior.  Solé et al64 provide a 

similar development: Consider the distribution function, N(s).  The variable s could be spatial or 

temporal.  N(s) is said to follow a power law if 

   sCsN  

Here C is a constant and   is a given exponent, often called the scaling exponent.  The reason 

why these laws are characteristic of scale-invariant/fractal behavior is that they are the only 

functions displaying invariance under scale change.  If we look at a larger or smaller scale, that 

is, if we take 

sas '  

where a is a multiplicative factor, it is not difficult to see that 

                                                 
63 Newman, The Structure and Function of Complex Networks, SIAM Review, May 2003. 
64 Solé et al, Criticality and Scaling in Evolutionary Ecology, Trends in Ecology and Evolution, 

April 1999. 
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   sNCsN ''   

or, in other words, a change of scale does not modify the basic statistical behavior.  We have 

self-similar behavior at all scales.  

Showing that a power-law event distribution is a straight line in log-log coordinates is 

simple.  Taking the logarithm of both sides of the power-law equation, we obtain 

  sCsN logloglog   

In log-log space this, of course, is the equation of a straight line with slope equal to the negative 

of the scaling exponent. 

Before moving on to a more detailed treatment of fractals in space and time, I’d like to 

provide additional perspectives on these subjects from the literature. 

From Solé et al65: 

 “The patterns displayed by many natural systems do not allow for a simple description 

using Euclidean geometry: they present scale-invariance; that is, no characteristic length 

measure can be obtained from them.  Therefore, when observed at different resolutions, 

they display the same pattern.  This is the case of river networks and mountains, tree 

branching and blood vessels or forest spatial structures.  Even at the molecular level, 

fractals can be observed: if we analyse the linear distribution of nucleotides in a DNA 

chain, a self-similar pattern can also be detected.” 

 “Fluctuations in ecological systems are known to involve a wide range of spatial and 

temporal scales, often displaying self-similar (fractal) properties.” 

 “Fractals are widespread in nature and have features that look the same when there is a 

change in scale [spatial or temporal]: they are called ‘self-similar’.  In biology, self-similar 

                                                 
65 Ibid. 
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patterns are known to occur [in space] at many levels.  But fractals are also present in time: 

the fluctuations of a given quantity can appear the same when observed at different 

temporal resolutions.  This is the case for heartbeat intervals, epidemics in small islands, 

breeding bird populations or the fossil record.”  

From Solé and Bascompte66: 

“A striking, widespread feature of many complex systems is that some of their properties 

are reproduced at different scales in such a way that we perceive the same patterns when 

looking at different subparts of the same system.  This property, known as scale-invariance, 

is widespread in many systems under nonequilibrium conditions.  This is the case for 

ecological systems, where flows of energy enter into the system and are dissipated at 

different, interconnected scales [see local-to-global dynamics – Section 4.3.3].  The origin 

of such fractal patterns, named after the pioneering work by Benoit Mandelbrot67, is a 

fundamental problem in many areas of science.  Actually, empirical evidence has been 

mounting in support of the unexpected possibility that many different systems arising in 

disparate disciplines such as physics, biology, and economy may share some intriguingly 

similar scale invariant features.” 

We will now focus on spatial scale-invariant/fractal behavior and then temporal scale-

invariant/fractal behavior in the next two subsections, respectively. 

4.3.2.1 Fractal Behavior in Space 

In this subsection, we’ll look at examples of human-generated spatial fractals and then 

natural spatial fractals.  Following that, we’ll discuss spatial fractals in networks. 

                                                 
66 Solé and Bascompte, Self-Organization in Complex Ecosystems, Princeton University Press, 2006. 
67 Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, 1990. 
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4.3.2.1.1 Human-Generated Spatial Fractals and Natural Spatial Fractals 

Note that human-generated spatial fractals can appear exactly the same at different scales.  

Spatial fractals in nature, on the other hand, are usually so only in the statistical sense – i.e., their 

features are statistically, rather than exactly, the same when observed and measured at different 

scales.  [The same is true for temporal fractals.] 

A good way to explain some spatial fractals is via examples.  First we look at examples 

of human-generated spatial fractals.  A mechanism68 for generating fractal objects takes the form 

of a recursive process in which self-similar objects of different size are repeated.  The 

dimensional relationship of such a spatial fractal can be written as: 

drg   

where g = the number of smaller self-similar structural elements in the next larger self-similar 

element, r = the ratio of the characteristic measure of the larger to the smaller element, and d = 

the fractal dimension.  For this process, d ≠ an integer and d < the geometric dimensionality.  

The self-similar objects have a power-law size distribution N(s): 

  dsCsN   

where s = object size, d = fractal dimension, and C is a constant. 

                                                 
68 The sources for this development are Csermely, Weak Links – Stabilizers of Complex Systems, 2006 

and Solé and Bascompte, Self-Organization in Complex Ecosystems, 2006. 
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Figure 4.8 provides examples of the so-called Sierpinski Gasket and Koch Curve. 

 
 

Koch Curve  Sierpinski Gasket  

Figure 4.8    Human-Generated Spatial Fractals – Examples 

In the figure, parameter n is the iteration number.  In each of the two examples, the last form 

shown is a more fully developed view of the fractal – after several more iterations. 

For the Sierpinski Gasket:    g = r d         3 = 2 d        d ≈ 1.58 

For the Koch Curve:    g = r d         4 = 3 d        d ≈ 1.26 

Next let’s look at examples of natural spatial fractals.  A very well-known spatial fractal 

in nature is shown in Figure 4.9.69 

 
 

Figure 4.9    Natural Spatial Fractal 

                                                 
69 Fractal Geometry, Yale University at http://classes.yale.edu/fractals/. 
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The entire tree, the four major quadrants, and each quadrant’s major branches, minor branches, 

and twigs – all are self-similar with a power law size distribution. 

Some three-dimensional natural fractals have the characteristic of maximum surface area 

for a given volume.  This characteristic is very beneficial for filtering and purification processes.  

You will not be surprised, therefore, to hear that human lungs and wetlands are two more 

examples of natural structures that are rich in fractals. 

4.3.2.1.2 Spatial Fractals in Networks 

For a simple two-dimensional lattice network at percolation,70 we can visually observe 

spatial fractal behavior.  See the following diagram. 

 
Figure 4.10    Spatial Fractal Behavior in a Lattice Network 

The network spatial configuration is statistically self-similar at all length scales. 

For more complex network configurations, it is not so easy to show spatial fractal 

behavior.  For many real-world complex networks, spatial fractal characteristics cannot be 

observed from a network diagram (Figure 4.11). 

 

                                                 
70 Network percolation is described in Section 4.3.6. 
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Figure 4.11    Real-world Complex Network 

An important reason is that the spatial parameters defined for networks such as the one 

illustrated in the figure do not correspond to physical dimensions, e.g.: 

 Path length is not a physical length – rather it is the number of links traversed from node i  

to node j. 

 Shortest path from node i  to node j is the path length with the smallest number of links. 

 Characteristic path length is the average of all shortest paths in the network. 

 Network diameter is the longest of all the shortest paths in the network. 

Several methods, however, have been developed to determine the “length” fractal dimension of 

complex networks that exhibit power-law/fractal behavior.  One approach is the “box covering” 

method. 

Description of the box covering method71, 72 :  For a given network and a box size B , a 

box is defined as a set of nodes for which the shortest path length  between any two nodes i 

and j in the box is smaller than 

ji

B .  We cover the entire network with such boxes.  The 

minimum number of boxes required to cover the network is denoted by BN .  Note that 

                                                 
71 Song, Gallos, Havlin, and Makse, How To Calculate the Fractal Dimension of a Complex Network, 

Journal of Statistical Mechanics, March 2007. 
72 Song, Havlin, and Makse, Self-Similarity of Complex Networks, Nature, January 2005. 
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Figure 4.12 shows an example of the box covering procedure for a very simple network.  

For each value of the box size B , we search for the number of boxes needed to tile the entire 

network such that each box contains nodes separated by a distance B  . 

 
Figure 4.12    Example of Box Covering Procedure 


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 BBN   is considered a measure of the distribution of path lengths in the network.  (More 

precisely, it is a measure of the distribution of shortest path lengths in the network.) 
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Plots of path length distributions using data from several types of real-world fractal 

complex networks are provided in Figure 4.13.73  Values of the fractal dimension, dB, are 

calculated. 

l  
2 4 8 16 32

l  
2 4 8 16

WWW: a part of the WWW composed 
of 325,729 web pages that are 
connected if there is a URL link from 
one page to another. 
dB = 4.1 
Actors: a social network where the 
nodes are 392,340 actors linked if 
they were cast together in at least 
one film. 
dB = 6.3 

PIN (protein interaction network): the 
biological networks of protein–protein 
interactions found in Homo sapiens 
(946 proteins) and Escherichia coli 
(429 proteins) linked if there is a 
physical binding between them. 
Homo sapiens  dB = 2.3 
Escherichia coli  dB = 2.3 

 
Figure 4.13    Path Length Distributions of Real-world Fractal Complex Networks 

The distributions in the figure plot NB/N, where N = the number of nodes in the network, vs. B .  

Since these are log-log plots, the straight lines fit to the data represent power laws: 
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4.3.2.2 Fractal Behavior in Time 

4.3.2.2.1 Principles of Temporal Fractal Behavior 

At the beginning of Section 4.3.2, we presented a graphical view of scale-invariant/fractal 

behavior [Figure 4.7].  The lower panel of that figure [repeated here as Figure 4.14] illustrates 

the form of a scale-invariant/fractal event time series (ecological fluctuations over time).74  A 

                                                 
73 Ibid. 
74 Solé and Goodwin, Signs of Life – How Complexity Pervades Biology, Basic Books, 2000. 
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wide range of events (from very small to very large) and punctuated dynamics are evident.  We 

will now explore temporal fractal behavior in more detail. 

 

Event Time Series 

Event 
Quantity 

Time

Figure 4.14    Ecological Fluctuations Over Time 

 

Let’s start by posing several questions.  Does the apparently noise-like time series of 

Figure 4.14 exhibit scale-invariant/fractal behavior in time?  To show that, can we derive an 

ecological fluctuation distribution function that takes the form of a power law?  What is the 

significance of fractal behavior in time?  We will answer these questions and more in the 

following paragraphs. 

First, we’ll derive an ecological fluctuation distribution function and show that it takes 

the form of a power law.  Time interval and frequency are inversely related.  We know from 

signal processing theory that the relevant distribution function for a fluctuating time series is the 

so-called frequency spectrum – which indicates the contribution of each frequency to the overall 

time series.  We can transform a time domain representation (time series) into a frequency 

domain representation (frequency spectrum) via the Fourier transform, defined by: 
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The resulting frequency spectrum of a fluctuating noise-like signal has one of a family of forms 

depicted in the graph of Figure 4.15.75 

 
Figure 4.15    Frequency Spectra of Noise-like Time Signals 

The family of frequency spectra shown in the graph can be expressed as: 
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75 This graph has been adapted from Halley 1996 and Csermely 2006. 
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The behavior here, therefore, follows a power law – it is scale-invariant/fractal.  [The 

mathematical description above is completely analogous to the spatial scale-invariant/fractal 

description.]  Because the expression for P(f) can, of course, be written as 

  f
fP

1
  

these dynamics are often called “1/f noise.”  Different values of the spectral exponent correspond 

to different “colors” of noise: 
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The white and pink colors are assigned by analogy with the visible light spectrum.  White light 

contains equal amounts of all visible light frequencies.  By analogy, white noise has a flat 

spectral density, containing equal amounts of all frequencies.  As you can observe from the 

graph, the pink noise spectrum emphasizes the lower frequencies.  By analogy with the visible 

spectrum, where lower frequencies are red, pink noise is “reddened” relative to white noise – 

hence it is pink.  Brown noise (from Brownian motion) has a spectrum that corresponds to that of 

a signal doing a random walk. 

With respect to complex system behavior, pink 1/f noise is the most interesting and most 

important.  It represents the dynamics of ecological fluctuations.  Csermely76 says: “Pink noise is 

encountered in a wide variety of systems … and is suggested to be a characteristic feature of 

system complexity.”  Halley77 says: “There are good reasons to believe that the structure of 

environmental fluctuation is well described by a phenomenon called 1/f-noise.”  …  “Recent 

                                                 
76 Csermely, Weak Links – Stabilizers of Complex Systems, Springer, 2006. 
77 Halley, Ecology, Evolution and 1/f-noise, Trends in Ecology and Evolution, January 1996. 
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analyses of data, results of models, and examination of basic 1/f-noise properties suggest that 

pink 1/f-noise, which lies midway between white noise and the random walk, might be the best 

null model of environmental variation [fluctuations in time].”  Environmental fluctuation 

“processes behave in an essentially fractal way, having statistical self-similarity on all scales.” 

Let’s discuss further the significance of fractal behavior in time.  For ecological 

fluctuations, there is a wide range of possible events.  Halley78 (again) says: “Ecologists expect 

both rare and common events to be important.  The diversity of a desert ecosystem, for example, 

will be influenced by numerous small changes each day.  Some rare events, such as desert 

storms, will have longer-lasting influence.  [Pink] 1/f-noise is a way of describing these kinds of 

events.” 

As depicted in the pink 1/f noise frequency spectrum [Figure 4.15], events with low 

frequency content (gradual changes in time) are more likely than events with high frequency 

content (abrupt changes in time), but both can occur and do occur.  In ecosystems, gradual 

behavior occurs more often and is expected  – but abrupt behavior also occurs and should be 

expected.  [Recall the black swans.]  It is well-known from signal processing theory that any 

fluctuating signal in time can be represented by a sum of sine waves.  The frequency of each of 

these component sine waves is equal to the inverse of its period – the time it takes for one 

complete oscillation: 

periodtheisT

frequencyisf

where
T

f
1



 

                                                 
78 Ibid. 
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In a fluctuating signal, low-frequency content means larger time periods and more slowly 

changing dynamics.  High-frequency content means smaller time periods and more rapidly 

changing dynamics. 

Another very significant aspect of scale-invariant/fractal behavior in time is self-

similarity at all scales.  For systems that are fractal in time, we can show analytically that time 

behavior is self-similar at all time scales.  Since frequency behavior of such systems follows a 

power law and is scale-invariant, and since f = 1/T, then time interval T also follows a power law 

and is scale-invariant: 
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If we now look at a larger or smaller time scale, that is, if we take 

TbT '  

where b is a multiplicative factor, it is not difficult to see that 

   TPCTP ''   

or, in other words, a change of scale does not modify the basic statistical behavior.  We have 

fractal self-similar behavior at all time scales. 

Figure 4.1679 illustrates time self-similarity for Ising model magnetization fluctuations. 

                                                 
79 Solé and Goodwin, Signs of Life – How Complexity Pervades Biology, Basic Books, 2000. 
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Figure 4.16    Self-Similarity of Temporal Fractals – Ising Model 

In an analogous manner, ecological phenomena exhibit self-similarity at all time scales. 

A broader type of self-similarity can also be observed.  Ecological systems exhibit the 

same form of dynamics across phenomena and across time (and space).  There seems to be a 

universality – an equivalence – in ecological network dynamics.  We discuss dynamical 

equivalence across time in the following paragraphs. 

Dynamical Equivalence across Time 

Ecological system networks exhibit the same form of dynamics in very different time 

frames.  In this sense, shorter-term operational dynamics match longer-term developmental 

dynamics.  There is a general dynamical equivalence across time frames.  The same, apparently 

universal, principles apply. 

Consider an ecological network of species.  Different phenomena (functions/processes) 

occur in different time frames.  We can characterize the functions/processes in terms of events 

that occur.  In short-term operational time frames we have, for example, biomass/energy 

propagation events.  In long-term developmental time frames we have, for example, 
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macroevolution events, i.e., extinction events and speciation events.  We can describe system 

dynamics therefore, in any time frame, in terms of: 

• Event distribution (likelihood of event vs. event variable). 

• Event time series (event quantity vs. time). 

This representation of ecological system dynamics has the same form across all time frames.  It 

is in this sense that we have dynamical equivalence across time.  Figure 4.17 illustrates the time 

series behavior of the network of species for short-term and long-term time frames. 

Macroevolution Event Time Series: 

Propagation 
Event 

Time (minutes/hours)

Propagation Event Time Series:

Size 

Extinction 
Event 
Size 

Time (millions of years)  
 

Figure 4.17    Dynamical Equivalence across Time Frames 

The behavioral dynamics of the network have the same form across these vastly different time 

frames.  The upper graph shows ecological fluctuations in a short time interval (short-term 

dynamics).  The lower graph shows ecological fluctuations in a very long time interval (very 

long-term dynamics).  The two graphs reflect the same statistical principles. 
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4.3.2.2.2 Heart Rate Dynamics:  An Example of Temporal Fractal Behavior 

The sources for this example are Solé and Goodwin80 and Ivanov, Goldberger, et al.81 

Health “is revealed as a subtle emergent property of the dynamic complexity of living 

organisms” [Solé and Goodwin].  Health is the “normal” condition and a dynamic attractor for 

living systems.  Can we identify characteristics of the “healthy state”? 

Consider heart function.  In healthy human beings, heart rate is not steady.  It shows 

significant spontaneous variation.  As part of the body’s physiological network, a healthy 

circulatory subsystem is responsive to what is going on in the body’s other subsystems and in the 

body’s environment.  Healthy heart function has characteristics of agility and responsiveness.  

We will see that healthy heart dynamics exhibit scale-invariant/fractal behavior in time. 

A group at Beth Israel Hospital in Boston, under the direction of Ary Goldberger, has 

been investigating heart dynamics with the tools available from nonlinear analysis and 

complexity theory.  They have considered both healthy individuals and those with various types 

of cardiac arrhythmias.  Time series of instantaneous heart rate for a healthy subject and for two 

individuals with cardiac disease show important differences.  See Figure 4.18. 

 

                                                 
80 Ibid. 
81 Ivanov, Goldberger, et al, Scaling Behavior of Heartbeat Intervals obtained by Wavelet-Based 

Time-Series Analysis, Nature, Volume 383, 1996. 
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(c) Diseased Heart 2 (b) Diseased Heart 1 (a) Healthy Heart  
 

Figure 4.18    Heart Rate Time Series 

The healthy heart exhibits a wide range of variability and responsiveness (punctuated dynamics).  

The diseased heart behavior is much more orderly:  the heart rate of one shows an orderly 

oscillation and the other is nearly constant.  The diseased hearts are not responding effectively to 

their environments.  “Here, too much order is a sign of danger” [Solé and Goodwin]. 

Fourier analysis was applied to the three time series – to yield a frequency spectrum for 

each of the cases.  See Figure 4.19. 

(c) Diseased Heart 2 (b) Diseased Heart 1 (a) Healthy Heart  
 

Figure 4.19    Heart Rate Frequency Spectra 
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The healthy heart result suggests a pink 1/f noise spectrum -- a broad range of frequencies with 

emphasis on the lower frequencies.  This spectrum suggests temporal scale-invariant/fractal 

dynamics.  The diseased heart cases, as expected, do not exhibit such behavior. 

To illustrate the healthy heart self-similarity in time, Goldberger examined different time 

scales as shown in Figure 4.20. 

 
 

Figure 4.20    Healthy Heart Self-Similarity in Time 

The one-tenth boxed area of an upper time series plot is expanded in the next lower time series 

plot.  The resulting three time series at three different time scales are statistically self-similar.  At 

each scale, we see similar fluctuations. 
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4.3.3 Local-to-Global Dynamics 

Local-to-global dynamics, another important characteristic of ecological networks, are 

consistent with scale-invariant/fractal behavior.  Our discussion here has two parts: (a) “small-

world” networks as facilitators of the dynamics and (b) the role of system regulation/adaptation 

and propagation. 

4.3.3.1 Small-World Networks as Facilitators of Local-to-Global Dynamics 

Many real-world complex network systems, including ecological systems, are “small-

world” network systems – i.e., they possess high clustering and short characteristic path 

lengths.82  These small-world attributes facilitate local-to-global dynamics.  The high clustering 

attribute is extremely effective for local processing of stimuli.  The short path length attribute 

provides efficient propagation channels between distant parts of the system, thereby supporting 

any dynamical process taking place on the network that requires global propagation and 

processing.  In ecological systems, these capabilities are essential to facilitate effective handling 

of stimuli from the environment.  In response to some stimulus – say an input of energy, 

biomass, or information – an ecological network processes locally and/or connects globally as 

appropriate until the “processing” of the stimulus is completed.  Solé and Bascompte83 say it this 

way: In ecological systems, “flows of energy [or biomass, etc.] enter into the system and are 

dissipated at different, interconnected scales.” 

4.3.3.2 The Role of System Regulation/Adaptation and Propagation 

Regulation/adaptation and propagation are two key core functions of complex ecological 

systems.  The need for regulation/adaptation is profound – it is required for system survival.  

Propagation is the fundamental and essential means of interaction among nodes in an ecological 

                                                 
82 Yackinous, The Structure of Complex Networks, November 5, 2007. 
83 Solé and Bascompte, Self-Organization in Complex Ecosystems, Princeton Univ Press, 2006. 
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network and between the network and its environment.  The two functions work together to 

achieve, in a local-to-global manner, “life as a relaxation phenomenon.” 84 

Life as a Relaxation Phenomenon 

Ecological system regulation/adaptation and propagation can be viewed as the means of 

handling perturbations that impinge upon an ecological network.  To survive, every living 

system must respond (adapt) effectively to stimuli from its environment.  The stimulus can be 

considered a source of tension, and the response as a relaxation.  When an ecological network 

receives a stimulus (e.g., energy, biomass, information) from its environment, the input is often 

propagated and dissipated locally – yielding local relaxation in the system.  When some stimulus 

cannot be dissipated locally, tension persists.  As the stimulus inputs continue, tension gradually 

increases.  Local tensions can accumulate and may develop to a point where global propagation 

(of the energy/matter/information) suddenly occurs – yielding global relaxation in the system.  

The set of local and global system relaxation events exhibit scale-invariant/fractal behavior in 

space and in time.  Any event can have small or large extent and duration – as well as anything 

in between. 

Peter Csermely says that living system functions “cannot be performed in the absence of 

widespread network communication.”  They cannot be performed without local-to-global 

dynamics. 

Local network processing can spawn global processing.  Global network processing can 

potentially change the state of any involved network node – which can affect subsequent local 

processing.  Global behavior can spawn local behavior.  We thereby have local-to-global-to-local 

dynamics. 

                                                 
84 This view is inspired by Peter Csermely, Weak Links, Springer, 2006. 
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4.3.4 Indirect Effects 

Due to the work of Dr. B. C. Patten and colleagues at the University of Georgia and 

elsewhere, the dominance of indirect effects in ecological networks is widely recognized.  

Indirect effects are an important characteristic of the ecological network dynamics principles 

being developed here. 

Indirect effects are exhibited via ecological network propagation events.  A propagation 

event is often a cascade that can involve many network nodes and propagation paths – many of 

which are indirect paths.  I hypothesize that propagation event dynamics are punctuated, fractal, 

and have local-to-global reach.  I expect indirect effects dynamics to be consistent with 

propagation event and path length dynamics.  In particular: 

 Indirect effects with shorter indirect propagation paths are more likely, but indirect 

effects with longer propagation paths can occur and do occur. 

 Indirect effects dynamics are punctuated rather than continuous. 

 Indirect effects exhibit fractal behavior. 

 Indirect effects support local-to-global processing. 

Indirect effects dynamics obviously have a lot to do with propagation path length dynamics.  

Ecological network structure and the ecological processes that operate on that structure can 

inform us about path length dynamics and, therefore, indirect effects dynamics. 

Consider network structure.  As noted in the previous subsection, ecological networks 

have scale-invariant, small-world network structure.85  Such networks have high clustering and 

relatively low characteristic path length (typically less than 6 or so).  Local connections are via 

direct paths (path length = 1) or short indirect paths (path length > 1).  Global connections are 

                                                 
85 Yackinous, The Structure of Complex Networks, November 5, 2007. 
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mostly via indirect paths of short to moderate length.  Ecological network structure is consistent 

with shorter, rather than longer, propagation path lengths. 

The table86 of Figure 4.21 provides empirical evidence of the low characteristic path 

length and high clustering associated with real-world ecological networks.  Focus on the two 

food web entries in the figure (the shaded entries).  The table indicates network size (number of 

nodes), the characteristic path length , and the clustering coefficient C for each network.  For 

comparison we have also included the characteristic path length  and clustering 

coefficient  of a comparable random network (i.e., a random network having the same 

number of nodes and links as the real network).  In my paper on network structure [see the 

footnote], I explained that a low characteristic path length is one that is close to that of a 

comparable random network and a high clustering coefficient is one that is much higher than that 

of a comparable random network.  These effects can be clearly seen in the table of Figure 4.21. 



random

randomC

 

                                                 
86 The table has been adapted from Albert and Barabási, Statistical Mechanics of Complex Networks, 

2002 and is described in Yackinous, The Structure of Complex Networks, November 5, 2007. 
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Network Size   
random  C  randomC  

(#nodes) 

World Wide Web 153127 3.1 3.35 0.1078 0.00023 

Los Alamos Lab 
co-authorship 

52909 5.9 4.79 0.43 1.8x10-4 

Medical 
co-authorship 

1520251 4.6 4.91 0.066 1.1x10-5 

Physics 
co-authorship 

56627 4.0 2.12 0.726 0.003 

Neuroscience 
co-authorship 

209293 6 5.01 0.76 5.5x10-5 

E. coli substrate 
graph 

282 2.9 3.04 0.32 0.026 

E. coli reaction 
graph 

315 2.62 1.98 0.59 0.09 

Ythan estuary 
food web 

134 2.43 2.26 0.22 0.06 

Silwood Park 
food web 

154 3.40 3.23 0.15 0.03 

C. Elegans 282 2.65 2.25 0.28 0.05 

Electric power 
grid 

4941 18.7 12.4 0.08 0.005 

  
Figure 4.21    Empirical Data for Several Real Networks 

Next consider two real-world ecological processes that operate on that network structure 

– and what they tell us about path length and indirect effects dynamics.  Both of the following 

examples suggest that, although paths of all lengths can and do occur, shorter path lengths are 

more likely.  They suggest that path length dynamics, and therefore indirect effects dynamics, 

exhibit power-law/fractal behavior. 

Lévy Flights 

Here’s some corroborating evidence that propagation path lengths have a power-

law/fractal distribution.87  In foraging, what is the best statistical strategy to adopt in order to 

                                                 
87 Vishwanathan et al, Optimizing the Success of Random Searches, Nature, October 1999. 
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search efficiently for “target sites”?  Analysis shows that search efficiency depends on the 

probability distribution of flight lengths (or flight times) taken by a forager.  Results indicate that 

a long-tailed power-law distribution of flight lengths, corresponding to Lévy flight motion, 

represents an optimal strategy.  Lévy flights are characterized by the following distribution 

function: 

 

2


 





and

lengthflightthewhere

P





 

This power-law distribution is depicted in the log-log plot of Figure 4.22.  These results have 

been verified experimentally. 

 Plog

log  

Figure 4.22    Lévy Flight Probability Distribution 

 
Ant Colonies Find and Use Shortest Routes 

Here is evidence that when multiple paths (with differing path lengths) exist between 

pairs of nodes in an ecological network, the paths with the shortest lengths are more likely to be 

used. 

Ant colonies solve the “shortest route” problem (aka the Operations Research traveling 

salesman problem) when traveling to/from a food source.88  When foraging for food, an ant 

secretes a chemical called pheromone to mark its trail.  Shorter routes are traveled in less time 

                                                 
88 See Schiff, Cellular Automata, Wiley-Interscience, 2008. 
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and get more pheromone deposited more quickly than longer routes.  Other ants prefer to travel a 

trail richer in pheromones, so the shorter routes get reinforced.  After a brief transient period, this 

process finds the shortest route – which all ants will then use.  Following this same process, an 

ant colony will find the shortest route from the nest to each food source as well as the shortest 

route between food sources – that is, the ant colony solves the OR shortest route/traveling 

salesman problem. 

This is no small feat.  To visit each of the destination sites (food sites), and then return to 

the origin site (nest) – there are effectively (n – 1)! / 2 possible routes.  With, say, 15 sites – there 

are over 43 billion possible routes. 

A cellular automata model has been developed by Dorigo and Gambardella89 that mimics 

the behavior of ants and achieves near-optimal to optimal solutions to the traveling salesman 

problem.  This cellular automata model is as good as or better than competing Operations 

Research solution approaches.  [My modeling approach is cellular automata based.  See 

Chapter 5.] 

4.3.5 Critical Connectivity 

Critical connectivity is another characteristic of ecological network dynamics.  

Ecological networks and other complex system networks can reach critical connectivity in the 

domain of attraction.  This connectivity is sparse connectivity.  Ecological networks are sparsely 

connected networks – with just enough connections to provide full or nearly full node-to-node 

access via direct and (mostly) indirect paths. 

                                                 
89 Dorigo and Gambardella, Ant Colonies for the Traveling Salesman Problem, Biosystems, Volume 43, 

1997. 
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Stuart Kauffman has conducted several modeling and analysis efforts in this area of 

investigation using Boolean network models.  We’ll summarize his work in the following 

paragraphs. 

Boolean Network Models 

Stuart Kauffman90 has modeled and analyzed large, complex, randomly constructed 

Boolean (2 states per node) directed networks.  His “NK model” analysis considers networks 

with n nodes and k inputs per node (k is the node mean in-degree).  Sample networks with given 

n and k values are assembled – and the behavior of those networks is studied.  For large n, the 

results indicate: 

k = 1    nothing interesting happens (“too orderly”). 

k = n    massively chaotic – small perturbations cause massive changes in behavior. 

k = 4 or 5    chaotic behavior. 

k = 2    flexible “order arises, sudden and stunning.” 

For these networks, a node mean in-degree value of 2 represents critical connectivity.  With large 

n and k = 2, the network looks like a “scrambled jumble” but it behaves in an orderly fashion.  

“These networks are not too orderly.  Unlike the k = 1 network, they are not frozen like a rock, 

but are capable of complex behaviors.”  Kauffman says that his results “apply to networks of all 

sorts.”  This “is almost certainly merely the harbinger of similar emergent order in whole 

varieties of complex systems.” 

A related effort is Stuart Kauffman’s NKC macroevolution model91 – where n is the 

number of traits of a species, k is the number of other traits a given trait is affected by, and c is 

the number of couplings between species.  Some results from Kauffman’s modeling/analysis are 

                                                 
90 Stuart Kauffman, At Home in the Universe – The Search for Laws of Self-Organization and 

Complexity, Oxford University Press, 1995. 
91 Kauffman’s work is described in Solé and Goodwin, Signs of Life, Basic Books, 2000. 

61 



depicted in Figure 4.23.  [Note that, in the figure, the ordinate “Connectivity” is related to the 

number of species connections – which is not the typical definition of connectivity.] 

 
Figure 4.23    Macroevolution Critical Connectivity 

For low connectivity, nothing much happens (little or no activity).  For high connectivity, 

nothing useful happens.  There is much disordered activity – Red Queen dynamics all the time.  

At a critical connectivity, there are coevolutionary events of all sizes – that follow a power law – 

that match observed behavior in the fossil record.  Macroevolution activity apparently occurs in 

the context of a species network at critical connectivity. 

Kauffman says further that “astonishingly simple rules, or constraints, suffice to ensure 

that unexpected and profound dynamical order emerges spontaneously.”  “If the network is 

‘sparsely connected’ [e.g., k = 2], then the system exhibits stunning order.”  “Our intuitions about 

the requirements for order have, I contend, been wrong for millennia.  We do not need careful 

construction; we do not require crafting.  We require only that extremely complex webs of 

interacting elements are sparsely coupled.” 
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4.3.6 Network Percolation 

Critical connectivity of ecological networks and other complex networks is achieved in a 

phase transition phenomenon known as network percolation.  As the number of links increase, a 

network rather abruptly transitions from fragmented to connected.  When the number of links is 

small, a network is likely to be fragmented into many small clusters of nodes.  As links increase, 

the clusters grow, at first by connecting to isolated nodes and later by coalescing with other 

clusters.  A phase transition occurs when many clusters crosslink spontaneously to form a single 

giant cluster.  The network transitions from a state in which most clusters are small to a state in 

which all or nearly all nodes are joined together in the single giant cluster.  Note that network 

percolation is abrupt – a threshold phenomenon – separating two well-defined phases.  In the 

subcritical phase, we have short-range (local) interactions.  In the critical phase, we add long-

range (global) interactions. 

Traditional percolation theory was originally studied in physics and statistical mechanics.  

It was first applied to lattices and later to random graphs.  The reason for this, in part, is that 

these two cases are the ones amenable to mathematical and numerical analyses.  In the following 

paragraphs, therefore, we look at a random network example and a lattice network example, 

respectively.  It is expected that the general principles noted there will be useful for networks of 

all sorts – including ecological networks. 

Newman92 depicts network growth and transition behavior for an undirected random 

network in Figure 4.24.  [Note that, in the figure – and in much of the network literature – 

“clusters of nodes” are termed “components.”] 

 

                                                 
92 Newman, The Structure and Function of Complex Networks, SIAM Review, May 2003. 
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kmean degree 

Figure 4.24    Network Percolation in an Undirected Random Network 

 
We define  as the mean component size, S  as the fraction of the graph occupied by the 

giant component, and  as the mean degree.  We plot the mean component size (solid line), 

excluding the giant component if there is one, and the giant component size (dotted line), for a 

Poisson random graph.  The phase transition occurs at 

 s

 k

1 k .  This is also the point at which 

 diverges.  In the figure, you can see the dramatic growth of mean component size as we 

approach the transition – and then the collapse as the giant component appears.  Adding more 

links after the transition occurs changes the giant component size very little – although the 

additional links could significantly change network behavior from order to disorder (see 

Figure 4.23). 

 s

The critical value of k in the Boolean analysis of the previous subsection is k = 2, while in 

the percolation analysis of this subsection it is k = 1.  The factor of 2 difference is explained by 

the fact that in the Boolean analysis the network is directed and in the percolation analysis the 
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network is undirected.  Each adjacent connection in an undirected network equals two adjacent 

connections in a directed network. 

Next consider a lattice network analysis from Albert and Barabási.93  Figure 4.25 shows 

two snapshots of a regular lattice whose edges (links) are present with probability p and absent 

with probability 1 - p.  For small p, only a few edges are present and only small clusters of nodes 

connected by edges can form.  At larger values of p – specifically at critical probability pc , 

called the percolation threshold  – a percolating cluster of nodes connected by edges appears. 

 
Figure 4.25    Percolation in a Two-Dimensional Lattice Network 

 
For this illustration of percolation, nodes are placed on a 25x25 square lattice.  In the snapshot on 

the left, which is below the percolation threshold, the connected nodes form isolated clusters.  In 

the snapshot on the right, which is slightly above the percolation threshold (and slightly above 

critical connectivity), the network percolates. 

4.4 Hypothesis 

We have synthesized an operational view and a characteristics view of ecological 

network dynamics.  The operational view shows that ecological networks are “flickering” 

                                                 
93 Albert and Barabási, Statistical Mechanics of Complex Networks, Reviews of Modern Physics, 

January 2002. 
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networks.  They continually change with time.  The characteristics view shows that ecological 

networks possess the following behavioral characteristics: 

 Punctuated behavior 

 Fractal behavior in space and time 

 Local-to-global propagation 

 Dominance of indirect effects 

We hypothesize that these two views comprehensively describe the behavioral dynamics 

of ecological networks.  We must now test and corroborate (or falsify) this hypothesis.  We have 

developed a sophisticated model (Chapter 5) for that purpose. 

To accomplish the hypothesis testing, we proceed as follows.  We model the operation of 

a propagating ecological network.  We proceed to collect operational data and perform analysis 

in five areas as outlined here: 

• Network operational propagation flow 

 Construct node-and-link flow diagrams at selected model time steps. 

 Compile input, output, stock, and flow value histories. 

• Propagation events 

 Determine propagation event size for each model time step. 

 Construct propagation event time series. 

 Construct propagation event distributions. 

• Path Length 

 Calculate path lengths. 

 Construct path length time series. 

 Construct path length distributions. 

66 



• Indirect Effects 

 Use path length data to perform indirect effects analysis. 

 Demonstrate dominance of indirect effects. 

• Network Connectivity 

 Construct node degree distributions. 

 Examine network connection densities and coverage. 

 

The modeling and analysis results will test our hypothesis.  The network node-and-link 

flow diagrams and the input, output, stock, and flow value histories will provide direct visual 

evidence of network operation and test the operational view.  They will also provide some 

evidence of network behavioral characteristics.  The remaining four categories of analyses will 

fully test the characteristics view.  Specifically, the propagation event and path length statistics 

will test for the presence of punctuated, fractal, and local-to-global behaviors.  Indirect effects 

analysis will determine whether indirect effects are dominant and also whether they are 

punctuated, fractal, and enablers of local-to-global propagation.  Network connectivity analysis 

will test for node degree fractal behavior.  We will also be able to examine related network 

connection traits.  Our hypothesis, therefore, will be fully and comprehensively tested. 

The requirements, design, and development of the ecological network dynamics model 

are covered in Chapter 5.  The resulting model software includes the modeling of the operation 

of propagating ecological networks, the required analysis activities, and the needed graphics 

generation capabilities. 
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CHAPTER 5 

A NEW APPROACH TO MODELING ECOLOGICAL NETWORK DYNAMICS 

5.1 Model Requirements 

Our objective is to model complex real-world ecological networks as discrete dynamic 

systems in order to observe and analyze their behavior at each model simulation time step as well 

as their composite behavior over all model simulation time steps. 

5.1.1 Model Features 

Model feature summary list: 

 Cellular automata based 

 Spatial as well as relational node interactions 

 Real-world network structure characteristics 

 Preferential attachment capabilities 

 Various node stock and node propagation rules 

 Aspects of both aggregate and individual-based modeling 

 Dynamic network model is linked to an underlying ecological network 

compartment model 

Discussion of features: 

The model (actually a family of models) is cellular automata based.  Cellular automata 

provide an excellent metaphor for complex ecological networks.  The cells represent the network 

nodes and the cell interactions represent the network links.  A cellular automaton can be 

described as an array of interacting finite state machines.  In the network context, each finite-

state-machine node is a discrete dynamic system.  The total network (array), therefore, can be a 
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very complex discrete dynamic system.  Note that we do not adhere strictly to all definitional 

restrictions of cellular automata.  For example, we do not require that all cells be identical and 

that they all be updated simultaneously at each model time step. 

Much traditional network modeling (ecological and otherwise) does not include physical 

space and length considerations – rather only relational length considerations (i.e., the path 

length between any two nodes is defined as the number of links traversed).  Since our cellular 

automata based models are defined on a physical grid, we can explicitly represent both spatial 

and relational aspects of networks. 

We design the network model to reflect the structure characteristics of real-world 

ecological networks.  The cellular automata structure can most straightforwardly model lattice 

networks.  Such networks have a high clustering coefficient [i.e., a node’s neighbors are likely to 

also be neighbors of each other] and high characteristic path length [defined as the average 

shortest path length taken over all pairs of nodes in a network].  Most real-world ecological (and 

other) networks, however, are not lattice networks – they are scale-invariant (with respect to 

node degree) small-world networks with high clustering and low characteristic path length.  The 

high clustering is consistent with the modularity found in many real networks.  The low 

characteristic path length facilitates the efficient global (network-wide) interaction required by 

real networks.  To achieve these real-world structure features in our network model, we augment 

the usual cellular automaton neighborhoods – following the lead of Watts and Strogatz94 and 

Newman and Watts95.  For node interaction, we use local von Neumann neighborhoods, local 

extended von Neumann neighborhoods, and a global neighborhood concept.  (The authors just 

                                                 
94 Watts and Strogatz, Collective Dynamics of ‘Small-World’ Networks, Nature, June 1998. 
95 Newman and Watts, Scaling and Percolation in the Small-World Network Model, Physical Review E, 

December 1999. 
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noted use the term ”short cuts” to describe such global access.)  Figure 5.1 illustrates these 

neighborhoods for node interaction.96 

 
Figure 5.1    Neighborhoods for Node Interaction 

(a) (b)

Part (a) of the figure illustrates three types of von Neumann neighborhoods – with grid spacing 

ranges from the center node of 1, 2, and 3, respectively.  We will refer to the range = 1 nearest-

neighbor case as a local neighborhood and the range = 2 next-nearest-neighbor case as a local 

extended neighborhood.  We will not use the range = 3 case.  Part (b) of the figure illustrates 

some node-to-node global neighborhood connections. 

Albert and Barabási97 were probably the first to identify “preferential attachment” as a 

mechanism that dynamically generates scale-invariant small-world complex networks.  The 

process produces the “hub” nodes often seen in many types of real networks.  In ecological 

networks, keystone species can be regarded as hubs.  In our modeling, we use compartment and 

node preferential attachment in both local neighborhoods and global neighborhoods.  This should 

help the model achieve the scale-invariant degree distribution – and the high clustering and low 

characteristic path length – observed in real-world complex networks. 

We can implement various node stock and node propagation rules.  Our models are 

discrete dynamic models.  The node stock and node propagation rules are therefore discrete.  A 

                                                 
96 The figure is adapted from Newman and Watts 1999. 
97 Albert and Barabási, Statistical Mechanics of Complex Networks, Reviews of Modern Physics, 

January 2002. 
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node will accumulate stock in unit increments until a threshold (thd) is reached.  At that point, 

the node will propagate a unit flow to each of a number of destinations based on criteria defined 

and specified in the model (including neighborhoods and preference as discussed above) until the 

total propagation flow quantity (npfq, where npfq ≤ thd) is exhausted.  The values of thd and 

npfq can be varied.  Note that stock and flow rules and values are kept quite simple in our model.  

Stock values can be 0, 1, 2, … , thd.  All individual flows are unit (value = 1) flows. 

We include aspects of both aggregate and individual-based98 modeling.  Typical 

ecological network compartment models (stock and flow models) are aggregate models.  We 

model the aggregate compartments – and individual nodes within the compartments.  We 

observe and analyze both aggregate and individual-based behavior. 

Our dynamic ecological network model is linked to an underlying ecological network 

compartment model.  Any pre-existing compartment model is a candidate for this.  The 

compartment model diagram, adjacency matrix, input vector, and output vector are particularly 

relevant.  For our model development effort, we have selected a particular compartment model – 

and we describe it in the next subsection. 

5.1.2 Underlying Ecological Network Compartment Model 

Our dynamic ecological network model is linked to a pre-existing underlying ecological 

network compartment model.  The compartment model that we use is an estuary aquatic model 

that was developed by Chip Small, Nicole Gottdenker, and Bill Yackinous in 2005 as a course 

project in ECOL 8580 – Dr. B. C. Patten’s course in systems ecology at the University of 

Georgia.  The compartment model diagram, adjacency matrix, input vector, and output vector are 

provided here. 

                                                 
98 Individual-based modeling is the term often used in Ecology.  Agent-based modeling seems to be the 

more broadly used term – across disciplines. 
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The compartment model diagram is provided in Figure 5.2. 
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Figure 5.2    Estuary Aquatic Compartment Model 

The adjacency matrix, input vector, and output vector follow. 

Adjacency Matrix: Input Vector: 
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Output Vector: 

Y = (yi) =   1087643 0000 yyyyyy
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5.1.2.1 Compartment-to-Node Transition 

We model the dynamics of individual nodes within the compartments – and we maintain 

a view of the dynamics of the aggregate compartments as well.  The node network contains 100 

nodes and there is an average of 10 nodes per compartment.  The transition from network 

compartments to network nodes includes some important connection-based considerations.  

Network connection density (also called connectance) is given by 

networktheinverticesofnumbern

degreenodeortcompartmenvertexmeank
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n
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In our case, the number of vertices is being increased by a factor of 10.  To keep the network 

density constant, the mean vertex (node) degree must also increase by a factor of 10.  That 

would occur in the following scenario: if compartment C1 connects to compartment C2, then 

every node in C1 connects to every node in C2.  On the other hand, if we want to keep mean 

vertex degree constant, network density would decrease by a factor of 10.  The most realistic 

situation may lie somewhere between these two extremes.  In a real-world ecological network, 

we would not expect every individual in C1 to interact with every individual in C2.  Initially at 

least, we will hold network density constant – and see how it goes. 

5.1.2.2 Predetermined/Candidate/Operational Adjacency Matrices 

There are also considerations regarding the interpretation of adjacency matrices in the 

transition from conventional compartment modeling to the network dynamics modeling 

presented here.  In conventional compartment modeling, direct propagation links are determined 

a priori and are represented in the adjacency matrix.  The network dynamics modeling presented 

here differs.  The operational propagation links among nodes are not determined a priori – they 
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are part of what is being modeled and are known only a posteriori.  In this approach, the usual 

adjacency matrix represents candidate propagation links.  In addition to candidate adjacency 

matrices, later we introduce the concept of operational adjacency matrices – which represent 

realized propagation links. 

The values of network density and mean node degree associated with a candidate 

adjacency matrix will, in general, differ from the values associated with operational adjacency 

matrices.  Candidate adjacency matrix values serve as an upper bound for operational adjacency 

matrix values. 

5.1.3 Analysis Requirements 

A key objective of this effort is to observe and analyze model behavior at each model 

simulation time step as well as composite behavior over all simulation time steps. 

Model analysis activities: 

Generate network node-and-link propagation diagrams – diagrams that apply to an 

individual time step and diagrams that are cumulative over time steps – and display 

them for selected time steps. 

Determine network cumulative flow values.  The flows shall be graphically depicted in 

network propagation diagrams displayed at selected time steps. 

Track and record network input, output, and stock values at each time step – and plot and 

display cumulative values over time. 

Calculate and plot network propagation event data.  Network propagation event size is 

equal to the number of nodes involved in propagation – at a given time step.  Develop 

and plot the event time series (event size vs. time).  Check for punctuated dynamics.  

Develop and plot the event distribution (number of events vs. event size) using both 

normal coordinates and log-log coordinates.  Check for power-law/fractal behavior.  Take 
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the discrete Fourier transform (DFT) of the network propagation event time series to 

obtain its frequency spectrum.  Check for “1/f noise” behavior and temporal fractal 

behavior. 

Calculate network propagation path lengths.  Plot the path length time series (path length 

vs. time).  Plot path length distributions.  Does propagation path length exhibit 

punctuated dynamics and power-law/fractal behavior? 

Use path length data to calculate network indirect effects and direct effects.  Plot the 

results.  Check for punctuated behavior and dominance of indirect effects. 

Analyze network connectivity.  Develop and plot network node degree distributions.  Do 

they exhibit degree scale invariance (fractal behavior)?  Calculate network node mean 

degree and network connection density for each time step.  At any given time step, does 

the network achieve critical connectivity and percolate?  At what value of node mean 

degree?  [The theoretical value for a directed random network is node mean degree = 2.]  

What is the size of the resulting giant component, i.e., the proportion of network nodes 

linked together? 

5.1.4 Intermezzo 

From the above model requirements, it should be clear that we endeavor to rigorously 

define, develop, and analyze a realistic dynamic model of complex ecological networks.  We are 

not, however, attempting to describe detailed behavior of a particular real-world ecological 

network.  (Recall, for example, that our relatively simple input, stock, and flow rules and values 

are not intended to match any specific ecosystem network.)  We are developing a new approach 

here that differs in some respects from traditional ecological network compartment modeling and 

subsequent network environ analysis. 
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My intention is to provide a new perspective on the behavioral dynamics of ecological 

networks.  The focus of my modeling effort is to determine common behaviors and general 

characteristics of the dynamics across a spectrum of ecological networks. 

The compartment modeling/network environ analysis perspective and my behavioral 

dynamics modeling/analysis perspective are complementary: each can contribute to the 

understanding of the other.  The first perspective employs steady-state/linear analysis that 

effectively models the mean-value behavior of an ecological network.  The second perspective 

does not utilize steady-state/linear assumptions but rather allows the pulsing, punctuated 

dynamics often observed in ecological networks to develop.  The results from each perspective 

should help in interpreting the results from the other. 

[As follow-on work, I will consider investigating the use of EcoNet99 (post stock and 

flow) to do network environ analysis on my model – at least the path length and indirect effects 

portion – and compare that with my results.  Note, however, that individual-based models and 

aggregate models may or may not yield similar results.  There is a NetLogo model (the Wolf 

Sheep Predation model) that illustrates the case of dissimilar results.100] 

5.2 Model Programming Design and Development 

The MATLAB R2009a programming environment101 is being used to develop the 

ecological network propagation dynamics model. 

                                                 
99 Kazanci and Tollner, EcoNet, A New Software for Ecological Model Simulation and Network Analysis, 

Ecological Modeling, 2007. 
100 Wilensky, NetLogo Wolf Sheep Predation Model, Center for Connected Learning and Computer-

Based Modeling, Northwestern University, 2005.  
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation(docked) 

101 The MathWorks, Inc., February 12, 2009. 
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A high-level summary of the programming design and development of our dynamics 

model is provided in this section.  Details are provided in Appendices C through F.  The 

dynamics model software has four major subsets: 

1. Model network structure, parameters, and relationships 

2. Propagation process 

3. Analysis activities 

 Network input, output, stock, and flow analysis 

 Network propagation event analysis 

 Path length analysis 

 Indirect effects analysis 

 Network connectivity analysis 

4. Graphics generation 

 Network propagation diagrams 

 Comprehensive set of other analysis graphics 

Within each subset, we establish and initialize the associated program variables.  Appendix C 

contains a glossary of these variables.  The glossary includes a set of naming conventions for the 

variables and a definition for each of the more than one hundred variables used in the model.  

Appendix D contains the software master m-file – which implements major subsets 1 and 2 

(above).  Appendix E contains the analysis m-file that implements the analysis activities major 

subset.  Appendix F contains the graphics m-file that implements the graphics generation major 

subset.  The development of each of the dynamics model software m-files proceeds in 

manageable groupings called MATLAB program cells.  Furthermore, each of the m-files is 

heavily commented to describe and document the software. 
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High-level summaries of the four major subsets of the dynamics model software are 

provided in the next four subsections, respectively. 

5.2.1 Model Network Structure, Parameters, and Relationships 

The model network structure, parameters, and relationships subset describes the model 

network and sets the stage for propagation processing.  In this portion of the software we specify 

the underlying ecological network compartment model (i.e., specify its adjacency matrix, input 

vector, and output vector); build the model network node grid and its relationship to the 

compartments; identify the network input nodes and output nodes; define variables for the values 

of model network inputs, outputs, and stocks as they change with time; and create the needed 

node adjacency matrices. 

We are modeling the dynamics of propagation in complex ecological networks.  This, of 

course, requires that we define a network node adjacency matrix that is derived from the 

underlying compartment adjacency matrix.  The node adjacency matrix is a “candidate” 

adjacency matrix that represents candidate propagation links.  The compartment to node 

transformation approach that we use preserves network density (connectance) from the 

compartment adjacency matrix to the node candidate adjacency matrix.  Per our model 

requirements, however, we need more “adjacency” information than that provided by the basic 

node adjacency matrix.  We need the following: 

1. For each from-node, must know the candidate connect-to nodes (network node adjacency 

matrix). 

2. For each of the candidate connect-to nodes, must know the adjacency type so that we can 

implement our neighborhood concept. 
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3. For each candidate connect-to node, must know the home compartment number so that we 

can implement our compartment preference concept. 

4. For each of the candidate connect-to nodes in each of the candidate connect-to 

compartments, must know the node attachment preference strength so that we can 

implement our node preferential attachment concept. 

Item 1 is the basic network node adjacency matrix.  Items 2 through 4 represent persistent data 

that could be stored, for convenience, in adjacency-like matrices – but with differing element 

definitions.  We have, therefore, defined four persistent adjacency/adjacency-like matrices: 

Matrix 1 (named AA) – basic node adjacency 

Matrix 2 (named AAT) – connect-to node adjacency type 

Matrix 3 (named ACN) – connect-to node compartment number 

Matrix 4 (named AAP) – connect-to node attachment preference strength 

Since the basic node adjacency matrix AA is a candidate adjacency matrix, we have also defined 

a set of network node operational adjacency (AAO) matrices and arrays that represent the actual 

propagation links formed as the network operates and develops over time.  Furthermore, since 

we need to keep track of the amount of flow between nodes and compartments over time, we 

have defined flow-value arrays for that purpose. 

In this portion of the software, we also specify the node stock and propagation rules and 

the number of model simulation time steps. 

5.2.2 Propagation Process 

The propagation process subset is the core of our software model of propagation 

dynamics in ecological networks.  The process proceeds by model simulation time step, by 

stages within a time step, and by node propagation events within a stage.  Figure 5.3 provides a 
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simple depiction of the propagation process.  In the figure, the input node is green, propagating 

nodes are red, and non-propagating nodes are white.  Note that this “tree” depiction allows a 

given node to appear in more than one stage and, therefore, accommodates cycling. 

 
 

s = 4 stage = s = 0 
Time step i 

s = 2 s = 3s = 1

…
 …
 

…
 

…
 

Figure 5.3    Depiction of the Propagation Process 

At each model simulation time step, a unit input is applied to a randomly selected input node.  

That input may or may not cause the node to propagate (per the node stock and propagation 

rules).  If the node propagates, we enter stage 1 of the time step.  We have a node propagation 

event and a unit of stock flows to each of several connect-to nodes.102  Each unit flow represents 

a node propagation instance.103  If the flow causes one or more of the connect-to nodes to 

propagate, we enter stage 2 – and so on. When we reach a stage where there are no more 

propagating nodes, the simulation time step concludes.  The propagation process, therefore, has 

three primary nested loops: 

1. Time step loop 

2. Stage loop 

3. Node propagation event loop 

                                                 
102 A node propagation event involves one “from” node and multiple “to” nodes. 
103 A node propagation instance is a subset of a propagation event and involves one “from” node and one 

“to” node. 
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Throughout the total propagation process there are also flow control logical constructs as 

required. 

Time step loop: 

A model simulation run consists of NumTS time steps.  The time step loop, therefore, has 

NumTS iterations.  Each model simulation time step can consist of multiple stages.  At Stage 0, 

the input stage, a unit input is applied to a randomly selected input node.  Every time step has a 

Stage 0 input.  Propagation stages begin with Stage 1. 

Stage loop: 

Stage 1 is the first potential propagation stage.  Stage 1 can have zero or one node 

propagation events – zero if the input node does not propagate and one if it does.  If the node 

does propagate, we move to stage 2.  Stage 2 (and any subsequent stages) can have zero, one, or 

more than one node propagation events.  Whenever a given stage has one or more propagating 

nodes, we move to the next stage.  [The presence of multiple propagation stages indicates that a 

“cascade” is in progress.]  When we reach a stage where there are no more propagating nodes, 

the simulation time step concludes.  The number of propagation stages for the time step is the 

last stage number minus 1. 

Node propagation event loop: 

Any given propagation stage can have 0, 1, or more node propagation events. The extent 

of a node propagation event is determined by the total flow from the propagating node.  This is 

specified by variable npfq (node propagation flow quantity) – which is determined from the node 

stock and propagation rules.  Each individual event corresponds to an iteration of the node 

propagation event loop. 

Here’s how a node propagation event proceeds.  The from-node first attempts to 

propagate within its local neighborhood, then its extended local neighborhood, and finally its 
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global neighborhood [neighborhood selection processing].  Within each neighborhood, the from-

node attempts to propagate to its preferred compartments (e.g., species groups) in rank order 

[compartment selection processing].  Within each neighborhood and compartment, the from-

node propagates to its preferred to-nodes (e.g., species) according to their attachment preference 

probabilities [node selection and propagation instance processing] until the available flow 

quantity (per the node stock and propagation rules) is exhausted.  The node propagation event 

loop, therefore, contains three additional interior nested loops: 

a. Neighborhood selection loop 

b. Compartment selection loop 

c. Node selection and propagation instance loop 

 
Here is how we proceed with propagation process development.  We begin with a high-

level view of the program flow logic and progress to the detailed MATLAB code.  In this 

progression, we first define the high-level view of the flow logic and then define the basic 

propagation process variables (that show up in the high-level view).  Next we define the four 

sub-processes (and their variables) that are named in the high-level flow, i.e., input node 

processing, propagating node processing, output node processing, and node propagation instance 

processing.  We also provide expanded descriptions of other processing activities in the high-

level flow as required.  As we proceed, we define additional variables needed to store data for 

our subsequent analysis and graphics generation activities.  We then add all of this detail to the 

high-level program flow logic to yield the detailed MATLAB program code for the propagation 

process. 

See Appendix D for the master m-file which provides the detailed implementation of the 

model network and propagation process. 
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5.2.3 Analysis Activities 

The analysis activities subset covers our analysis of the dynamics of propagation in 

complex ecological networks.  The analysis categories are: 

 Network operational propagation flow analysis 

 Network propagation event analysis 

 Path length analysis 

 Indirect effects analysis 

 Network connectivity analysis 

These five categories are summarized in the following subsections. 

5.2.3.1 Network Operational Propagation Flow Analysis 

An important vehicle for depicting network operational propagation flow dynamics is the 

network node-and-link propagation flow diagram.  The variables and data needed to produce 

these network diagrams are generated in the first two major subsets of the model software (as 

implemented in the model master m-file).  The actual production of the diagrams is 

accomplished in the graphics generation major subset of the software (addressed in 

Section 5.2.4). 

An effective means of depicting network input, output, stock, and flow value histories 

includes the use of 3-D grid bar charts displayed at selected time steps.  We use an appropriate 

MATLAB 3-D/discrete-surface plotting capability.  For this set of history diagrams, the 

necessary variables and data are created in the master m-file and the chart production is 

accomplished in the graphics generation m-file. 

The full set of diagrams is expected to show continuing ecological network fluctuations 

without reaching a steady state. 
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5.2.3.2 Network Propagation Event Analysis 

For the entire simulation run (after all time steps), we perform over-time network 

propagation event analysis and then plot and display the results.  We calculate network 

propagation event size per-time-step (NetPESize_TS) in the master m-file.  The propagation 

event size at a time step is equal to the total number of node instances involved in propagation at 

that time step, i.e., the number of node propagation instances (variable nnpi) plus one (the input 

node).  Since any given node can participate in a propagation event multiple times (due to 

cycling), propagation event size can be larger than the number of physical nodes involved in the 

event and even larger than the total number of nodes in the network.  

We develop a network propagation event time series (event size vs. time) and plot/display 

the results.  We expect to observe punctuated dynamics.  We then develop a network propagation 

event distribution (number of events vs. size of events) as follows: 

 Sort the elements of NetPESize_TS from smallest to largest. 

 Define a size interval (≥ 1), partition the size domain into intervals, and count the number 

of events in each interval. 

 Generate a distribution with the ordered event size intervals as abscissa and the number 

of events in each of those size intervals as ordinate. 

 Plot and display the event distribution in both normal coordinates and log-log 

coordinates. 

We test for power-law/scale-invariant/fractal behavior of the network propagation event 

distribution. 
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We also perform discrete Fourier transform (DFT) analysis of the event time series to 

obtain its frequency spectrum and then test the spectrum for “1/f noise” behavior and temporal 

scale-invariant/fractal behavior. 

All of the network propagation event analysis plots are produced using the graphics 

generation m-file. 

5.2.3.3 Path Length Analysis 

We perform network path length analysis for the entire simulation run (after all time 

steps).  We develop a path length time series and path length distribution for that purpose.  We 

also perform path length analysis for each time step – and develop individual-time-step and 

cumulative path length distributions for that purpose.  For the entire simulation run and for 

selected time steps, we plot and display the results.  The source data needed to do this has been 

generated in the master m-file.  The plots are produced using the graphics generation m-file. 

5.2.3.3.1 Path Length Calculations 

Figure 5.4 depicts propagation flow and illustrates the path length calculations. 

Time step i 
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Figure 5.4    Path Length Calculations 
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The equations in the lower portion of the figure calculate  – the number of paths of length   

at stage s.  (The other equation parameters are defined shortly.)  Using this approach, we can 

calculate the path length numbers for a time step.  We can then calculate the simulation-run path 

length time series and distribution as well as per-time-step path length distributions.  The 

development follows. 
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Note that the number of internal flows from a propagating node is reduced by 1 for output 

nodes.  We need to distinguish between output propagating nodes and non-output propagating 

nodes and their respective flow quantities. 
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We use these equations to generate the path length time series and distributions.  We plot 

and display the distributions in both normal coordinates and log-log coordinates.  We test the 

time series for punctuated dynamics and test the distributions for power-law/fractal behavior. 

5.2.3.3.2 Integration over Space and Time 

Much network analysis is performed on a model of a network that is assumed to be at 

“steady state.”  The network does not change with time – at least not over the analysis 

observation interval.  The network nodes and their connections are persistent.  Analysis, 

therefore, is somewhat simplified.  Analysis becomes an exercise in integration over the network 

space.  To perform path length analysis, one begins by identifying all the paths of various lengths 
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across the steady-state network and counting them.  (To perform node degree analysis, one 

counts the number of connections from/to each node in the network.) 

One steady-state path length analysis technique is the “box covering” method (a version 

is described in Chapter 4).  This approach integrates over the network space.  For a given 

network, one generates boxes of size B .  Each box contains a set of nodes for which the 

maximum realized path length between any two nodes in the box is B .  The entire network is 

then covered with such boxes.  We count the number of boxes of each size.  The number of 

boxes of size B  required to cover the network is denoted by BN .  A plot of BN  vs. B  

provides the path length distribution for the network. 

My analysis work, on the other hand, does not make the “steady state” assumption.  An 

important objective of my research is to model and analyze the changing dynamics of ecological 

networks.  In my view, network structure and dynamics are not persistent.  They change with 

time – sometimes dramatically so.  My analysis work, therefore, must involve not only 

integration over network space, but also integration over time. 

How do I accomplish integration over space and time?  I start by performing spatial 

analysis at each individual point in time (the simulation time steps).  My initial idea for 

integrating the time steps was to calculate over-time cumulative path length data and analyzing 

that.  While the cumulative data has value, that approach does not work when attempting to 

develop an integrated path length distribution.  The resulting distribution is essentially a 

distribution of the average number of path lengths (vs. path length) over time.  A distribution of 

averages is not particularly meaningful or useful in a punctuated dynamics environment. 

A better idea for achieving integration over space and time is to devise a temporal analog 

to the spatial “box covering” approach mentioned above.  Instead of generating a collection of 
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boxes that covers a steady-state network and then counting the number of boxes over space, we 

can generate one maximum-length B  box at each point in time (time step) and then count the 

number of boxes of each size over time.  The result is a path length distribution that is integrated 

over space and time.  This distribution, and corresponding time series, effectively captures the 

path length punctuated dynamics.  In our model software, we develop this distribution and time 

series for the entire simulation run. 

5.2.3.4 Indirect Effects Analysis 

We perform a comprehensive set of indirect effects analyses.  We define and calculate 

individual-time-step and over-time-cumulative indirect effects indicators – and generate 

simulation-run time series for each of these indicators.  We develop an indirect-path-quantity 

time series and distribution as well as a direct-path-quantity time series and distribution for the 

simulation run.  The time series provide the number of indirect (or direct) paths at each time step 

vs. time.  We also develop a cumulative indirect-path-quantity time series and a cumulative 

direct-path-quantity time series for the simulation run.  Each provides the cumulative number of 

paths at each time step vs. time.  The source data needed for all this has been generated in the 

(see Section 5.2.3.3) path length analysis program cells of the analysis activities m-file.  The 

graphics are produced using the graphics generation m-file. 

We mathematically derive the conditions for indirect effects dominance and indirect 

effects prominence – and use the derivations to test our dynamics model simulation outcomes.   

Further descriptions of the indirect effects analyses are provided in the following two 

subsections. 
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5.2.3.4.1 Indirect Effects Calculations 

For each time step, we calculate individual-time-step and over-time-cumulative indirect 

effects (and direct effects) parameters.  We calculate the Direct Effects Ratio (DER), Indirect 

Effects Ratio (IER), and Indirect Effects Index (IEI) using the following expressions: 
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We plot and display the direct effect and indirect effect indicators – both the individual 

time-step values vs. time and the over-time-cumulative values vs. time – using the graphics 

generation m-file.  We observe the behavior and draw conclusions. 

We also develop (and plot) the simulation run indirect-path-quantity time series (number 

of indirect paths at each time step vs. time) and distribution as well as the direct-path-quantity 

time series (number of direct paths at each time step vs. time) and distribution.  We observe the 

behavioral dynamics.  Are indirect effects punctuated and fractal? 

5.2.3.4.2 Indirect Effects:  Dominance or Prominence? 

Ecological systems take the form of networks.  Network connections (links) between 

network nodes can be characterized as random variables.  The connections can be either direct or 

indirect.  If a node pair is connected, the connection path length is 1 for a direct connection and 

greater than 1 for an indirect connection. 
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Let’s represent the connection path length by a discrete random variable X with 

probability distribution function P{xi}: 
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It is my expectation [see, e.g., Section 4.4 and Section 5.2.3.3 of this document] and there 

is considerable evidence in the literature [see Song et al104, 105, Vishwanathan et al106, Odum and 

Barrett107, Schiff 108, Yackinous109] that, for real-world networks, the probability distribution 

function P{xi} is a power-law/fractal distribution given by: 

   
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Using data from complex biological networks, Song et al and Vishwanathan et al have calculated 

values of   that are in the neighborhood of 2. 

                                                 
104 Song, Havlin, and Makse, Self-Similarity of Complex Networks, Nature, January 2005. 
105 Song, Gallos, Havlin, and Makse, How To Calculate the Fractal Dimension of a Complex Network, 

Journal of Statistical Mechanics, March 2007. 
106 Vishwanathan et al, Optimizing the Success of Random Searches, Nature, October 1999. 
107 Eugene Odum and Gary Barrett, Fundamentals of Ecology Fifth Edition, Thomson Brooks/Cole, 

2005. 
108 Joel Schiff, Cellular Automata, Wiley-Interscience, 2008. 
109 Bill Yackinous, Reductionism and Information Loss in Ecological Investigation, March 25, 2009. 
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Since P{xi} is a probability function, its values must sum to 1: 
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The sum above has the same form as the so-called p-series: 
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The p-series always converges if p > 1 (in which case it is called the over-harmonic series).  

When p > 1, the sum of this series turns out to be equal to the Riemann zeta function evaluated at 

p:   p . 

Note that, while the p-series is infinite, our path length probability series is finite.  

However, assuming just 25 terms, the value of the path length series is close to the convergent 

value of the p-series.  For example, with an exponent of -1.7, the value of the path length series = 

1.9063 and  p  = 2.  With an exponent of -1.63, the value of the path length series is very close 

to 2 (i.e., 2.0021).  We will use “approximately equal” symbols when appropriate as we proceed. 

Continuing with our development, we can use the p-series and the Riemann zeta function 

to calculate constant C: 
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We can rewrite our path length probability sum relationship in the following way: 
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Relating this to direct and indirect connections, we have: 
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Figure 5.5 is a graph of the Riemann zeta function for real arguments >1.  [The figure is 

an adaptation of a graph from Wikipedia.] 

 
Figure 5.5    Riemann Zeta Function 

The ordinate is    and the abscissa is   – values of the path length distribution scaling 

exponent.  Typical path length scaling exponents are in the range: 

    21   
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5.2.3.5 Network Connectivity Analysis 

We perform both over-time and per-time-step network connectivity analysis.  The source 

data needed to do this is generated in the master m-file and stored as arrays AAO_t_TS and 

AAO_tc_TS: 

AAO_t_TS = operational node adjacency multidimensional array that provides an 

operational adjacency matrix for each individual time step per-time-step (100x100xNumTS) 

AAO_tc_TS = operational node adjacency multidimensional array that provides a cumulative 

operational adjacency matrix per-time-step (100x100x NumTS) 

The network connectivity analysis plots are produced using the graphics generation m-file. 

5.2.3.5.1 Node Degree Analysis 

We perform comprehensive node degree analysis.  We develop individual-time-step node 

degree vector arrays and node degree grid arrays.  Note that along with network propagation 

events, path length, and indirect effects – node degree exhibits punctuated dynamics.  That can 

be clearly seen by observing the node degree grids (node degree overlays on the network grid) at 

different points in time.  We need to develop node degree time series and distributions that 

capture those dynamics in an integrated fashion over space and time. 

Integration over Space and Time 

As discussed in Section 5.2.3.3.2, much network analysis is performed on a model of a 

network that is assumed to be at “steady state.”  Such analysis is spatial in nature.  To perform 

node degree analysis, one counts the number of connections from/to each node in the network 

space.  My analysis work does not make the steady-state assumption – and it has both spatial and 

temporal dimensions.  In my analysis, I need to integrate over both space and time. 

With respect to node degree distribution analysis, I start by performing spatial analysis at 

each individual simulation time step.  Similar to the path length distribution case, my initial idea 
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for integrating the time steps was to calculate over-time cumulative node degree data and 

generate the associated distributions.  That approach did not work in the path length distribution 

case and it does not work for node degree distributions either.  In the node degree case, the 

reasons are a bit different.  As node connections accumulate over time, node degree values 

increase.  When compared with node degree distributions calculated at individual high-

propagation time steps, the cumulative node degree distribution shifts to the right and changes 

shape quite drastically.  The lower-degree range falls and the mid- to upper-degree ranges rise.  

The resulting cumulative distributions do not seem to have any useful physical meaning. 

To accomplish integration over space and time, we devise a spatial/temporal approach 

very similar to the path length distribution approach.  For each degree type (out, in, and 

combined), we develop a time series of maximum node degree achieved at each individual time 

step and then generate the associated distribution.  The results are node degree distributions that 

are integrated over space and time.  The distributions, and corresponding time series, effectively 

capture the node degree punctuated dynamics. 

Another measure that may capture the node degree dynamics is the node mean degree 

achieved at each time step.  We calculate the per-time-step values of node mean degree (and the 

related network connection density).110  We then develop a simulation-run node-mean-degree 

time series and distribution.  We will compare the results of the maximum degree and mean 

degree approaches. 

Per-Time-Step Node Degree Distributions 

We also generate per-time-step node degree distributions.  We develop individual-time-

step node degree distributions as well as cumulative node degree distributions (cumulative from 

                                                 
110 Node mean degree is defined as the number of network edges divided by the number of nodes.  

Network connection density is defined as node mean degree divided by (number of nodes – 1). 
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time step one to the current time step) and examine them for useful information.  Each per-time-

step distribution provides the number of nodes with degree x vs. x.  For all of these node degree 

distributions, the analysis starting point is the generation of node degree arrays which provide 

degree of each node at each time step.  The per-time-step node degree distributions are 

developed as follows: 

 Sort the node degree values from smallest to largest. 

 Define a degree size interval (≥ 1), partition the degree size domain into those intervals, 

and count the number of nodes in each interval. 

 Generate a distribution with the ordered node degree intervals as abscissa and the number 

of nodes in each of those intervals as ordinate. 

 Plot and display each distribution in both normal coordinates and log-log coordinates. 

We test all of the resulting distributions for degree power-law/scale-invariant/fractal behavior. 

5.2.3.5.2 Other Connectivity Considerations 

We will attempt to perform network critical connectivity/percolation analysis.  At any 

given time step, the network may achieve critical connectivity and percolate.  If that occurs, what 

is the value of node mean degree?  [The theoretical value for a directed random network is node 

mean degree = 2.]  How many nodes are linked together and what is the fractional size of the 

resulting “giant component”?  To answer these questions, in addition to our above calculation of 

node mean degree, we calculate the following two individual-time-step parameters.  We 

calculate the number of nodes linked together at each time step [vector NumLN_t_TS].  For each 

individual propagation event, all involved nodes (all from-nodes and to-nodes) are linked 

together.  We also calculate the fractional size of the resulting candidate "giant component" at 
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each individual time step [vector CompSize_t_TS].  The size of the candidate giant component 

equals the number of nodes linked together divided by the total number of nodes in the network. 

Another important parameter is the network connection density – which we calculate at 

each time step.  We can then develop and plot several pertinent time series (e.g., node mean 

degree, network density, and number of linked nodes), identify time steps of potential critical 

connectivity, and observe the values of our network connectivity parameters at those time steps.  

We may be able to draw conclusions regarding important network connectivity traits. 

Please see Appendix E for the analysis m-file which provides the detailed 

implementation of all of the analysis activities. 

5.2.4 Graphics Generation 

The graphics generation subset produces the graphs and diagrams that result from our 

analysis of the dynamics of propagation in complex ecological networks.  The required graphics 

include: 

 Network node-and-link flow graphs 

 Network flow value diagrams and input, output, and stock histories 

 Network propagation event time series (event size vs. time) and distribution (number of 

events vs. size of events) 

 Network propagation event time series frequency spectrum 

 Path length time series and distributions (number of paths vs. path length) 

 Indirect effects and direct effects indicators vs. time 

 Indirect-path and direct-path time series (number of paths at each time step vs. time) and 

their distributions 

 Network node degree time series and distributions 

99 



 Network critical connectivity graphics 

 
Network flow graphics include node-and-link flow graphs, flow value diagrams, and 

input/output/stock history diagrams.  The MATLAB gplot function is used to generate the 

network node-and-link flow graphs.  An important advantage of gplot is that it preserves the 

spatial positioning of the network nodes.  We illustrate node-and-link flow at individual time 

steps as well as cumulative node-and-link flow over time.  For improved visual clarity, we color-

code the nodes involved in propagation (green for input nodes, red for propagating from-nodes, 

and dark blue for non-propagating to-nodes).  In addition to those graphs, cumulative flow value 

diagrams are generated to provide an "adjacency matrix" depiction of network flow.  Network 

input, output, and stock histories are also plotted (and displayed on 3-D network grid bar charts). 

The network propagation event graphics include a propagation event time series and 

distribution.  The distribution is plotted in both normal and log-log coordinates.  On the log-log 

plot, we fit a straight line to the data.  The slope and y-intercept of the straight line are used to 

create a power-law curve – which is then overlaid on the normal-coordinates plot of the network 

propagation event distribution for comparison purposes.  We also generate a network 

propagation event frequency spectrum and add an appropriate power-law overlay for 

comparison. 

The path length graphics consist of time series and associated distributions.  We produce 

a path length time series and integrated path length distribution using an approach analogous to 

the network “box covering” method.  We also produce a time series and integrated distribution 

based on the mean path length at each individual time step.  We generate distribution power-law 

overlays for both cases.  In addition, per-time-step path length distributions (for individual time 
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steps as well as cumulative across time steps) are generated so that their behavior can be 

examined. 

To illustrate ecological network indirect effects and direct effects, we produce a variety of 

time series and, in some cases, their corresponding distributions.  These graphics reveal the 

dominance of indirect effects.  We generate direct effects ratio, indirect effects ratio, and indirect 

effects index time series.  We also plot the cumulative behavior of these indicators.  We plot 

indirect path quantity and direct path quantity time series and their distributions – and overlay 

power-law curves on the distributions for comparison. 

The network connectivity graphics consist of node degree three-dimensional stem plots, 

appropriate node degree time series and distributions, and other connectivity graphs.  We plot 

node degree over the plane of the network grid at various simulation-run time steps.  These 

three-dimensional graphics illustrate the fluctuating dynamics of node degree over time.  We 

produce node degree time series and distribution plots that capture the dynamics.  We add 

power-law overlays to the distributions.  To test for network critical connectivity, we generate 

graphs that allow us to observe instances of possible criticality and the values of network 

connectivity parameters that occur at those instances. 

Please see Appendix F for the graphics m-file that implements the generation of all of 

these graphics. 
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CHAPTER 6 

RESULTS 

Our results are provided and described in five categories in the next five subsections, 

respectively.  The categories are: 

 Operational Propagation Flow 

 Network Propagation Events 

 Path Length 

 Indirect Effects 

 Network Connectivity 

 
6.1 Operational Propagation Flow Results 

Our modeling and analysis focus is network propagation.  To set the context for the 

results, we begin with the network propagation time series shown in Figure 6.1. 

 
Figure 6.1    Network Propagation Time Series 
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We’ll discuss details of this time series (and related statistical results) later.  For now, just note 

the ever-changing propagation behavior – from very small to very large propagation events.  

We’ll examine the propagation flow for eight specific events next.   The red selection circles in 

Figure 6.1 highlight those events. 

6.1.1 Network Node-and-Link Propagation Flow Results 

Let’s quickly review the propagation process.  At each model simulation time step, a unit 

input is applied to a randomly selected input node.  That input may or may not cause the node to 

propagate (per the node stock and propagation rules).  If the node propagates, then that from-

node propagates a unit of stock to each of several to-nodes.  Propagation proceeds by 

neighborhood, compartment preference, and node preference – in that order.  Figure 6.2 depicts a 

propagation from-node (in red) and its potential propagation to-nodes (in blue) for each of the 

three neighborhood levels. 

 
Figure 6.2    Explanation of Neighborhoods 

Propagation is first attempted within the local neighborhood, then the extended local 

neighborhood, and finally the global neighborhood.  Within each neighborhood, propagation is 

to preferred compartments (e.g., species groups) in rank order.  Within each neighborhood and 

preferred compartment, propagation is to preferred nodes (e.g., species) according to their 
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attachment preference probabilities.  Propagation proceeds until the from-node flow quantity is 

exhausted.  For these results, we have set the node flow quantity parameter to four.  Note that if 

the propagating node is also an output node, it propagates one unit of flow to the external 

environment and three units of flow internally.  Otherwise, four units of flow are propagated 

internally. 

Network node-and-link propagation flow diagrams follow.  In each diagram, the 

backgro

he title of 

each di

und is the network spatial grid consisting of 100 nodes.  The solid lines represent 

propagation-flow links.  Here’s the node color code.  The green node is the propagating input 

node.  The red nodes are subsequent propagating nodes.  The dark blue nodes are propagation to-

nodes that do not propagate further.  Any of these nodes could also be an output node. 

Figure 6.3 displays the diagrams for four small network propagation events.  T

agram gives the time step number and the event size (number of involved nodes). 

 

 
Figure 6.3a    Network Propagation Flow (small propagation events) 
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Figure 6.3b    Network Propagation Flow (small propagation events) 

At time step 2, the input node (which is also an output node) propagates one unit of stock to the 

external environment (not shown explicitly), one unit of stock to each of two nodes in the local 

neighborhood, and one unit of stock to a node in the extended local neighborhood.  At time step 

28, the input node (also an output node) propagates to one node in the local neighborhood and 

two nodes in the global neighborhood.  At time step 32, we have a 3-stage network propagation 

event involving local, extended local, and global neighborhoods.  The event size is only 10, but it 

has a relatively large network span.  The time step 237 event is also a 3-stage event, but has more 

local processing.  Count the colored nodes.  The count does not equal the event size.  The red 

propagating node on the right is involved more than once.  It is first a propagation from-node and 

then a propagation to-node.  This is our first glimpse of cycling in the model network. 

Figure 6.4 displays diagrams for two mid-size network propagation events (at time steps 

64 and 204).  The event sizes are 77 and 55, respectively. 
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Figure 6.4    Network Propagation Flow (mid-size propagation events) 

We see a mix of local, extended local, and global neighborhoods being utilized.  We see 

relatively large network spans.  Significant cycling is evident.  An approximate “back of the 

envelope” expression for cycling index can be defined as follows: 

 
sizeevent

countnodesizeevent
indexcycling

flowsnpropagatioofnumbertotal

flowsnpropagatiocyclingofnumber
indexcycling





 

Using this expression, at time step 64, the cycling index is approximately 0.4.  At time step 204, 

the cycling index is about 0.3. 

Two of the largest individual-time-step network propagation events are illustrated in 

Figures 6.5 and 6.6.  Compared to the mid-size events, we see greater network span and higher 

levels of local-to-global processing here.  A large fraction of all network nodes are involved.  

There is lots of cycling going on.  The node-and-link diagram of Figure 6.5 has a cycling index 

of about 0.7, and the diagram of Figure 6.6 has a cycling index around 0.6. 
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Figure 6.5    Network Propagation Flow (large event; time step 152) 

 

 
Figure 6.6    Network Propagation Flow (large event; time step 514) 

On the right-hand-side of each of the figures, we have added a depiction of the network 

operational adjacency matrix for the time step.  For the 100x100 matrices, the markers (blue 

dots) indicate ones and white space indicates zeros.  The matrices have ones distributed 
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throughout with a particular concentration near the matrix major diagonal (more about this 

pattern shortly). 

As we look back over the above figures (the time series and the diagrams for the eight 

represe

propagation flow over time to see 

the den

ntative time steps), several things become evident.  Propagation behavior over time is 

punctuated.  Most events, and perhaps all of the mid-size to large events, exhibit local-to-global 

propagation behavior.  Cycling is prominent.  The network continually changes with time – and 

sometimes dramatically so.  The view of the network operational dynamics is clear: we are 

dealing with ever-changing, “flickering” ecological networks. 

It is also instructive to look at the network cumulative 

se web of node interactions that develops and the participation of (very nearly) the entire 

network in propagation. 

 
Figure 6.7    Cumulative Propagation Flow (time step 100) 
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Figure 6.8    Cumulative Propagation Flow (time step 1000) 

Figure 6.7 displays the cumulative propagation flow at time step 100 (i.e., the cumulative flow 

from time steps 1 through 100).  The colored (light blue) nodes are the nodes participating in 

propagation.  By time step 100, very few network nodes are not participating.  Figure 6.8 

displays the cumulative propagation flow at time step 1000 (the cumulative flow for the entire 

simulation run).  Only one node (node 75 – when counting top-to-bottom and left-to-right) does 

not participate in propagation.  Here’s why: as it turns out node 75 is not an input node, not in the 

local or extended local neighborhoods of potential connecting nodes, and has low attachment 

preference strength.  Node 75 is in danger. 

Figures 6.7 and 6.8 include a depiction of the network operational adjacency matrix on 

the right-hand-side of each of the figures.  We see that the distribution pattern of ones and zeros 

for these cumulative matrices is similar to the distribution pattern that we saw earlier for the 

individual-time-step matrices – only denser.  All of these matrices have ones distributed 
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throughout with a particular concentration near the matrix major diagonal (again – more about 

this pattern shortly – at the end of the subsection). 

The cumulative operational adjacency matrix depictions show where the network 

connections are, but do not show the intensity (flow value) of the connections.  We have devised 

a companion view that provides the cumulative flow values of these connections.  Figure 6.9 

displays the cumulative flow value “adjacency matrix” (or intensity matrix) at time step 100.  

Figure 6.10 displays the cumulative intensity matrix at time step 1000. 

 
Figure 6.9    Cumulative Flow Value "Adjacency Matrix" (time step 100) 

 

110 



 
Figure 6.10    Cumulative Flow Value "Adjacency Matrix" (time step 1000) 

The underlying distribution pattern in Figures 6.9 and 6.10 is the same as the pattern in Figures 

6.7 and 6.8, respectively.  We can, however, make an important additional observation: the 

highest flow intensities also tend to concentrate near the matrix major diagonal. 

What is the significance of the adjacency matrix and intensity matrix patterns – and our 

observations about them?  Herbert Simon has offered an explanation.  In work published in 

1976, Simon111 said: 

For real-world complex systems, if we construct an intensity matrix which reflects the 

intensity of interactions, “the large entries will be close to the diagonal, for these near-

diagonal entries represent the interactions among elements that are close neighbors.” 

                                                 
111 Herbert Simon, How Complex Are Complex Systems?, Proceedings of the Biennial Meeting of the 

Philosophy of Science Association, Volume 2, 1976. 
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The reasons for this involve complex system architecture.  Simon112 had earlier explained that 

complex system architecture is very often hierarchical: 

“Empirically, a large proportion of the complex systems we observe in nature exhibit 

hierarchic structure.” 

and that these hierarchic complex systems are very often nearly decomposable, i.e., at a given 

level of hierarchy, interactions among subsystems are weaker – often orders of magnitude 

weaker – than interactions within subsystems: 

For example, “in organic substances, intermolecular forces will generally be weaker than 

molecular forces, and molecular forces than nuclear forces.” 

So, close-neighbor (within a subsystem) interactions occur with higher intensity – as reflected by 

larger values close to the major diagonal of the intensity matrix.  Furthermore, Simon113 

suggested that close-neighbor interactions occur with higher frequency: 

“It is probably true that in social as in physical systems, the higher frequency dynamics are 

associated with the subsystems, the lower frequency dynamics with the larger systems.” 

Higher frequency close-neighbor interactions are reflected by a higher concentration of ones 

close to the major diagonal of the adjacency matrix.  We have observed these effects, described 

by Simon, in our adjacency matrix and intensity matrix results in Figures 6.5 through 6.10. 

6.1.2 Input/Output/Stock Histories 

We can generate representations of cumulative input, output, and stock values for the 

nodes in our model network at each simulation time step.  The representations are three-

                                                 
112 Herbert Simon, The Architecture of Complexity, Proceedings of the American Philosophical Society, 

Volume 106, December 1962. 
113 Ibid. 
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dimensional bar charts overlaid on the network node grid.  Results for time steps 100, 400, 700, 

and 1000 are displayed in the following sets of diagrams. 

Figure 6.11 displays the input value results.  Recall that there is one-unit-valued input to 

a randomly selected input node at each time step.  In the underlying ecological network 

compartment model, five of the ten compartments are input compartments.  There are, therefore, 

approximately 50 input nodes (~ 50% of the nodes) in our network node model.  (I say 

“approximately” because I have randomly assigned nodes to compartments using a random 

number generator.)  In the figure, some of the zero-valued grid elements are blocked from view 

by nonzero-valued elements.  Since these are cumulative charts, the sequence of diagrams in 

Figure 6.11 shows monotonically increasing input values. 

 
Figure 6.11    Cumulative Node Input Value Grid 

113 



Figure 6.12 displays the cumulative output value results.  At each time step, each 

propagating node that is also an output node sends one unit-valued output to the external 

environment.  If the node propagates more than once at a time step (cycling), it outputs more 

than once at the time step.  In the underlying ecological network compartment model, six of the 

ten compartments are output compartments – so there are approximately 60 output nodes in our 

network node model.  Some nodes, of course, are both input nodes and output nodes.  Again, 

since these are cumulative charts, the sequence of diagrams in Figure 6.12 shows monotonically 

increasing values. 

 
Figure 6.12    Cumulative Node Output Value Grid 

 
Figure 6.13 provides the cumulative stock value of each of the network nodes.  The node 

stock value initial conditions have been set using a uniform random assignment of zero to three 

before the start of the simulation run.  A node propagation threshold of four and a node 
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propagation flow quantity of four are used for the simulation run, i.e., when node stock value 

becomes equal to (or greater than) 4, the node propagates 4 units of stock.  As shown in Figure 

6.13, therefore, node stock values continually change but remain in the zero-to-three range. 

 
Figure 6.13    Cumulative Node Stock Value Grid 

 
6.2 Network Propagation Event Results 

Figure 6.14 displays the network propagation event time series and distribution.  The 

time series plots network propagation event size vs. time.  Network propagation event size at a 

time step is equal to the total number of node instances involved in propagation at that time step, 

i.e., the number of node propagation instances (variable nnpi) plus one (for the initial input node 

instance).  Since any given node can participate in propagation more than once at a time step 

(due to cycling), propagation event size can be larger than the number of physical nodes involved 

in propagation at the time step and sometimes larger than the total number of nodes in the 
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network.  The resulting time series clearly indicates punctuated and local-to-global dynamics – 

with many small events but also medium, large, and even a few very large propagation events 

interspersed.  Smaller events are mostly local and larger events are global.  The network 

propagation event distribution (number of events vs. size of events) shown in Figure 6.14 is 

derived from the time series. 

 
 

Figure 6.14    Network Propagation Event Time Series and Distribution 

Let’s take a closer look at the distribution with the help of Figure 6.15.  At the upper left-

hand corner of the figure, we again see the distribution plotted in normal coordinates.  The curve 

is definitely “long-tailed” and perhaps it is a power-law curve. 
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Figure 6.15    Network Propagation Event Distribution Set 

Let’s see if we can confirm power-law behavior.  First, we note that a power-law curve has the 

form 

 xCy  

where C is a constant and   is the power or scaling exponent.  Taking the logarithm of both 

sides of the power-law equation, we obtain 

xCy logloglog   

In log-log space this, of course, is the equation of a straight line with y-intercept equal to logC 

and slope equal to the negative of the scaling exponent.  So here is the determining question: 

does our network propagation event distribution approximate a straight line in log-log 

coordinates?  The log-log plot of our propagation event distribution is shown at the upper right-

hand corner of Figure 6.15.  We fit a straight line to the data points and observe that the equation 

of the log-log straight line is 
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5.35.1  xy  

Now let’s do one more plot in normal coordinates (lower half of Figure 6.15).  We plot our 

original propagation event distribution (in blue) and overlay the power-law distribution 

calculated from the log-log plot (in red).  The equation of the power-law overlay is 
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As shown in the figure, the fit is quite good!  Power-law dynamics are confirmed.  Network 

propagation events exhibit power-law/fractal behavior in space. 

Next question: is network propagation event behavior also fractal in time?  To answer 

that question, we need to examine a time-related distribution function that captures the 

apparently “noise-like” 114 ecological fluctuations represented by the network propagation event 

time series.  We know from signal processing theory that the relevant distribution function is the 

so-called frequency spectrum – which indicates the contribution of each frequency to the overall 

time series.  (Recall that frequency and signal time period are inversely related.)  We examine 

the frequency spectrum looking for the power-law “pink 1/f noise” characteristic, i.e., a broad 

range of frequencies with emphasis on the lower frequencies.  A power-law “pink 1/f noise” 

spectrum is a necessary condition for temporal fractal behavior. 

The network propagation event frequency spectrum is obtained by taking the discrete 

Fourier transform (DFT) of the discrete propagation event time series.  The result is shown in the 

top diagram of Figure 6.16. 

 
114 “Apparently” is the operative word here.  These ecological fluctuations are not noise. 
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Figure 6.16    Network Propagation Event Frequency Spectrum 

[Note that the normalized frequency abscissa in the figure is somewhat arbitrary.  The frequency 

range depends on the signal sampling frequency which depends on the time duration of a time 

step (sampling frequency in Hz = 1/time step duration).  Because my model is intended to apply 

to a broad set of real ecological networks, I have not specified any particular time step duration.]  

Since the lower frequencies are of most interest, the middle diagram of Figure 6.16 focuses in on 

the first 20 percent or so of the waveform.  The spectrum appears to follow a power-law curve, 

but I cannot confirm this with a straight-line log-log plot.  The accuracy of the Fourier transform 

data is not high enough for that.115  On the bottom diagram of Figure 6.16, however, I do overlay 

                                                 
115 The accuracy of these discrete Fourier transform computations is limited by the relatively short length 

of the signal time series.  Much improved accuracy would result from signal lengths on the order of 
10,000 or even 25,000 time steps.  Such values, however, are way beyond the capacity of my 
computer. 
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a power-law curve on the frequency spectrum for comparison.  The power-law curve parameters 

are chosen for “best fit.”  The equation of the power-law overlay is: 

  2.1150  xy  

In a power-law equation, when the independent variable is zero, the dependent variable goes to 

infinity.  To avoid that situation, I have shifted the independent variable by one.  The frequency 

spectrum fit to a power-law curve is good.  This result116 strongly suggests that the spectrum 

reflects “pink 1/f noise” and that network propagation event behavior is fractal in time. 

Overall, our propagation event results indicate that network propagation event behavior is 

punctuated, local-to-global, and fractal in space and time. 

6.3 Path Length Results 

Path length is essentially a spatial concept.  Our analysis results, however, show that 

propagation path length behavior changes (in dramatic punctuated fashion) with time – so that 

time considerations are also very important.  To fully capture path length dynamics, therefore, 

we have devised an approach that integrates over both space and time.  The approach is a 

spatial/temporal analog of the network “box covering” method for path length analysis 

(discussed in Chapters 4 and 5).  Our approach uses the maximum path length achieved at a time 

step as a measure of path length behavior at that time step.  Figure 6.17 shows the corresponding 

path length time series and space/time integrated distribution for the simulation run. 

 

                                                 
116 Notice that our results here are quite similar to the results of the heart rate dynamics analysis that we 

discussed in Chapter 4. 
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Figure 6.17    Path Length Time Series and Integrated Distribution 

The time series is clearly punctuated and exhibits convincing evidence of local-to-global 

propagation.  Path length values vary from very small (local propagation) to large (global 

propagation).  The integrated path length distribution is “long-tailed” and suggests a power-law 

curve.  [Note that the path length distribution is a bit “ragged.”  This is due to the small interval 

size on the abscissa (it’s equal to 1) and, therefore, the relatively small number of samples per 

interval.  The simulation run consists of 1000 time steps, but less than 300 are propagation time 

steps.  These < 300 time steps yield path lengths from 1 to 22.  In the distribution, we have a 

relatively large number of abscissa intervals (22) and a relatively small number of sample sets 

(less than 300).  There are no “interval smoothing” effects here.  The distribution data set is large 

enough to yield definitive behavior results, but not large enough to yield a “smooth” curve 

connecting the data points.  Of course, more time steps would be expected to reduce or eliminate 
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the raggedness.  In the literature, I’ve seen cellular automata models (e.g., the sandpile model 

and a model for binary genetic networks) that use 25,000 time steps.  For my complex ecological 

network model, however, I am limited to 1000 time steps by the capabilities of my computer.] 

We take a closer look at the path length distribution via Figure 6.18.  The upper-left 

diagram in the figure is a repeat of the path length distribution plotted in normal coordinates. 

 
Figure 6.18    Integrated Path Length Distribution Set 

Let’s see if we can confirm power-law behavior.  Let’s see if the log-log plot of the path length 

distribution approximates a straight line.  That plot is shown in the upper-right of Figure 6.18.  

We fit a straight line to the data points and observe that the equation of the log-log straight line is 

1.25.1  xy  

In the lower half of Figure 6.18, we plot our original normal-coordinates path length distribution 

(in blue) and overlay the power-law distribution calculated from the log-log plot (in red).  The 

equation of the power-law overlay is 
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As shown in the figure, the fit is good.  Power-law dynamics are confirmed.  Path length exhibits 

fractal behavior. 

Here’s an interesting side point.  Network diameter is defined as the longest of the 

shortest path lengths between any two nodes in a network.  Note that the longest path length in 

an integrated path length distribution (as defined here) serves as an upper bound for the network 

diameter of the simulation-run network.  For the simulation run that we are analyzing: 

22diameterNetwork  

 
In Chapter 5, we mathematically derived a distribution-dependent condition for 

dominance of indirect effects: if the path length distribution scaling exponent is greater than 1 

and less than 1.7, then indirect effects are dominant.  Our data results here satisfy that condition.  

According to the mathematics, indirect effects should dominate in this simulation run!  In the 

next subsection, we discuss indirect effects results.  We will see if our indirect effects data results 

agree with the mathematical prediction.  [Hint:  they do.] 

To obtain the above path length time series and distribution results (Figures 6.17 and 

6.18), the measure of path length behavior that I chose was the maximum path length achieved at 

each time step.  Are our observations and conclusions about path length dynamics sensitive to 

the choice of this “measure”?  Let’s pick another measure and see.  Let’s try the mean path 
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length achieved at each time step as the measure.117  Figure 6.19 provides the resulting mean 

path length time series and integrated distribution set. 

 

 
 

Figure 6.19    Mean Path Length Time Series and Distribution Set 

 
The time series (top diagram) is clearly punctuated and exhibits convincing evidence of local-to-

global propagation (for the same reasons given above for Figure 6.17).  The integrated path 

length distribution (mid-left diagram) is “long-tailed” and suggests a power-law curve.  In the 

log-log plot of the distribution (mid-right diagram), we fit a straight line to the data points and 

observe that the equation of the log-log straight line is 

                                                 
117 The mean path length that we use here is an average at each individual time step and not an average 

over time.  We know that averages over time “smooth” and lose the instantaneous dynamics of a 
network.  Do individual-time-step averages (means) preserve instantaneous dynamics?  We will see. 
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9.11.2  xy  

The bottom diagram plots the normal-coordinates path length distribution from the mid-left 

diagram (in blue) and overlays a power-law distribution (in red).  The difference between the 

data plot (blue) and the curve-fit overlay (red) at mean path length equal to one is due to “cutoff 

effects.”  For the data plot, I considered only time steps with propagation (which have a 

minimum mean path length of one).  This “cuts off” the data distribution at mean path length = 1 

and alters the low end (low abscissa values) of the curve-fit overlay.  The equation of the power-

law overlay is 
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Path length power-law/fractal behavior is corroborated.  Important additional points are 

suggested by the results shown in Figure 6.19.  Our path length analysis is not particularly 

sensitive118 to the “measure” of path length dynamics that we use – as long as that measure 

reflects the time-varying nature of the dynamics.  It appears that individual-time-step averages 

(means) do reflect and generally preserve those dynamics.  It appears that it is valid to use such 

mean values in this and other similar analyses.  [We will use this approach again (in a later 

subsection) in our node degree analysis.] 

Overall, our results here indicate that path length exhibits punctuated dynamics, local-to-

global propagation, and fractal behavior. 

 

 
118 Although the specific distribution parameters differ somewhat, the analysis general conclusions 

(punctuated, local-to-global, and fractal behavior) are the same. 
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6.4 Indirect Effects Results 

We have defined several ecological network direct effects and indirect effects indicators.  

The direct effects ratio equals the number of direct paths (path length = 1) divided by the total 

number of paths.  The indirect effects ratio equals the number of indirect paths (path length > 1) 

divided by the total number of paths.  The indirect effects index equals the number of indirect 

paths divided by the number of direct paths.  These indicators are defined for a given simulation-

run network at a given point in time. 

Figure 6.20 provides the individual-time-step time series for each of the indicators, i.e., 

the individual-time-step values vs. time.  Perhaps the first thing that you notice about the figure 

is that all of these time series are highly punctuated.  There is not a hint of gradual or continuous 

behavior.  Next, you may notice that the direct effects ratio time series looks particularly “dense” 

with values of 1.  Why is that?  Recall, from the network propagation event time series and 

distribution, that most propagation events are small.  In small one-stage propagation events, all 

paths are direct paths.  These events yield all the 1 values in the direct effects time series.  Notice 

also that there are quite a few values of two-thirds and one-half in that time series.  Due to the 

propagation granularity in the model, small two-stage events often have twice as many direct 

paths as indirect paths and small three-stage events often have an equal number of direct and 

indirect paths.  These effects yield the two-thirds and 0.5 values, respectively.  The appearance 

of the direct effects ratio time series is simply a reflection of the large number of small 

propagation events.  The indirect effects ratio time series in Figure 6.20, on the other hand, is a 

reflection of the high percentage of indirect paths that occur in mid-size to large propagation 

events.  For these events, 50% to 90% or more of the paths are indirect paths.  The indirect 

effects index time series (the bottom diagram in the figure) shows that the number of indirect 
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paths can be 5 to 10 or more times the number of direct paths at these time steps.  For the larger 

propagation events, therefore, indirect effects far exceed direct effects. 

 

 
 

Figure 6.20    Indicator Individual-Time-Step Time Series 

 
Earlier in this chapter, in the node-and-link propagation flow diagrams, we saw that the 

mid-size to large propagation events have broad network span.  From a single (local) input node, 

there is propagation to an extensive (global) portion of the network.  The path between any two 

given nodes is very often an indirect path.  Clearly, indirect effects are enablers of local-to-global 

processing. 

Okay, we see that indirect effects are dominant at high-propagation time steps.  Are 

indirect effects dominant overall?  To answer that question, we can look at the over-time 
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cumulative indicator time series in Figure 6.21.  At any given time (time step), each of these time 

series shows the cumulative value of the indicator up to that point in time. 

 

 
 

Figure 6.21    Indicator Cumulative Time Series 

 
The first thing we notice here (compared with Figure 6.20) is that these cumulative averages 

“smooth” the instantaneous dynamics.  The cumulative direct effects ratio settles in at a value of 

about 0.17.  The cumulative indirect effects ratio reaches and maintains a value of about 0.83.  

Cumulative direct paths are < 20% of total paths and cumulative indirect paths are > 80% of total 

paths.  The cumulative number of indirect paths is almost 5 times (actually 4.8 times) the number 

of direct paths.  The 4.8 result is confirmed by the indirect effects index time series (bottom 

diagram of Figure 6.21).  The following figure is also interesting. 
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Figure 6.22    Cumulative Path Quantity Time Series 

Figure 6.22 shows the cumulative quantity of indirect paths vs. time and the cumulative quantity 

of direct paths vs. time.  Both plots are monotonically increasing (actually non-decreasing) as 

expected, but note the final values.  There are about 6000 direct paths and almost 30000 indirect 

paths (that’s the 4.8 factor again). 

Indirect effects are definitely dominant. 

 

Next, we want to turn to path quantity time series and distributions – and test them for 

fractal behavior.  Figure 6.23 provides the indirect path results. 
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Figure 6.23    Indirect Path Quantity Time Series and Distribution 

The time series (upper diagram in the figure) shows that there are very small (or zero) quantities 

of indirect paths at time steps corresponding to small propagation events and very large 

quantities of indirect paths at time steps corresponding to mid-size and large propagation events.  

For the largest propagation events, the quantity exceeds 2000.  The lower-left diagram in 

Figure 6.23 displays the indirect path quantity distribution.  The lower-right diagram repeats that 

distribution (in blue) and adds a power-law overlay (in red) for comparison.  The equation of the 

power-law overlay is: 

2610  xy  

The fit is good.  Indirect path quantity is fractal. 
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The analogous set of results for direct paths is provided in Figure 6.24. 

 
Figure 6.24    Direct Path Quantity Time Series and Distribution 

The equation of the power-law overlay (shown in red on the lower-right diagram) is: 

  24105.1  xy  

Direct path quantity is also fractal. 

In summary, our results here show that indirect effects are dominant and that they are 

punctuated, enablers of local-to-global propagation, and exhibit fractal behavior. 

 

6.5 Network Connectivity Results 

Along with network propagation events, path length, and indirect effects, our results 

show that network connectivity exhibits punctuated, fluctuating dynamics.  Node degree (the 

number of connections to/from a node) is an important indicator of network connectivity.  Let’s 

observe node degree behavior at several representative time steps.  As shown on Figure 6.25, we 
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have selected three time steps (32, 64, and 152) that correspond to small, mid-size, and large 

propagation events, respectively. 

 
Figure 6.25    Network Propagation Time Series with Selections 

 
To observe node degree behavior at those time steps, we have devised three-dimensional 

node degree grids (node degree overlays on the network grid).  The node “in-degree” results are 

displayed in Figure 6.26 and the “combined-degree” (in-degree plus out-degree) results are 

displayed in Figure 6.27. 
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Figure 6.26    Node In-Degree Grid at Representative Time Steps 
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Figure 6.27    Node Combined-Degree Grid at Representative Time Steps 

 
Figures 6.26 and 6.27 clearly illustrate the fluctuating dynamics of node degree over 

time.  You can see that the instantaneous dynamics are ever-changing. 

Before we proceed, note that there are some model “granularity effects” at play here.  

Since individual node inputs always occur in increments of 1, the effects are minimized for the 

in-degree case.  For the out-degree case, on the other hand, granularity effects are maximized.  

Individual node outputs occur in quanta of 3 or 4.  Out-degree data contains the most “jumps.”  

The combined-degree case lies between the in-degree and out-degree cases.  These granularity 
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effects show up especially in some of the distribution results, e.g., the combined-degree 

distribution of Figure 6.29 (that follows). 

Next, we focus on node degree time series and distributions.  We need to be able to 

capture the fluctuating dynamics (depicted in Figures 6.26 and 6.27) in an integrated fashion 

over space and time.  To accomplish that, we use a spatial/temporal approach very similar to the 

path length approach (discussed and applied earlier).  The first measure of node degree dynamics 

that we use is the maximum node degree achieved at each individual time step.  The results are 

displayed in the time series and distribution sets of Figures 6.28 and 6.29 for in-degree and 

combined-degree, respectively.  Observe Figure 6.28. 

 
 

Figure 6.28    Node In-Degree Time Series and Distribution Set 
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The time series is clearly punctuated.  The integrated node degree distribution is “long-tailed” 

and suggests a power-law curve.  On the log-log plot, we fit a straight line to the data points and 

observe that the equation of the log-log straight line is 

4.22.2  xy  

Finally, we plot the original normal-coordinates path length distribution (in blue) and overlay the 

power-law distribution calculated from the log-log plot (in red).  The equation of the power-law 

overlay is 
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As shown in the figure, the fit is good given that the largest value of node degree here is 10 – so 

that we are working with only about 10 data points.  Power-law dynamics are corroborated.  

Node in-degree exhibits fractal behavior. 
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Consider Figure 6.29 for a moment. 

 
 

Figure 6.29    Node Combined-Degree Time Series and Distribution Set 

These combined-degree results are similar to the in-degree results.  The granularity effects that 

we mentioned earlier are reflected in the “jumps” in the distribution and the deviation from the 

power-law overlay curve in that region.  Still, power-law dynamics and node combined-degree 

fractal behavior are corroborated. 

Another measure that can capture the node degree dynamics is the node mean degree 

achieved at each time step.  [Node mean degree is defined as the number of network edges 

divided by the number of network nodes.]   The node-mean-degree time series and distribution 

set is shown in Figure 6.30. 
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Figure 6.30    Node Mean Degree Time Series and Distribution Set 

We see a punctuated time series and a “long-tailed” power-law node degree distribution.  Even 

though we are dealing here with both granularity effects and relatively few data points, node-

mean-degree power-law dynamics and fractal behavior are corroborated. 

 
Let us now examine some other important network connectivity traits.  To do this, we use 

the set of time series provided in Figure 6.31. 
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Figure 6.31    Network Connectivity Time Series Set 

The first time series is the node mean degree time series.  The second is the network connection 

density time series.  Network connection density (also called connectance) is given by 

networktheinnodesofnumbern

degreemeannodek
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Since node mean degree and network connection density differ only by a multiplicative factor, 

these two time series have the same form.  The third time series provides the number of linked 

nodes at each time step. 

Let’s look at the time series values at the time steps that correspond to the largest 

propagation events in the simulation run: time steps 152, 514, and 859.  At these time steps, the 
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number of linked nodes ranges from 69 to 75 – out of 100 nodes in the network.  This is a very 

significant fraction of the total network.  Although our model does not support a full network 

critical connectivity/percolation analysis,119 our results here strongly suggest that network 

critical connectivity is achieved at these three time steps.  We know that, for a directed random 

network at critical connectivity, the theoretical value of node mean degree is 2.  For our network, 

we see from Figure 6.31 that node mean degree is approximately 2 at all three of our “critical” 

time steps.  We also see that network connection density is approximately 0.02 at these time 

steps. 

rafting.  We require only 

that extremely complex webs of interacting elements are sparsely coupled.” 

                                                

So – at the highest-propagation, highest-density time steps, node mean degree is 

approximately 2 and network connection density is approximately 0.02.120  This is very sparse 

connectivity!  As Stuart Kauffman121 has said in a somewhat similar context (Boolean 

networks), this result should “blow your socks off.”  Kauffman says further that “astonishingly 

simple rules, or constraints, suffice to ensure that unexpected and profound dynamical order 

emerges spontaneously.”  “If the network is ‘sparsely connected’, then the system exhibits 

stunning order.”  “Our intuitions about the requirements for order have, I contend, been wrong 

for millennia.  We do not need careful construction; we do not require c

 
119 A full network critical connectivity/percolation analysis would require development of multiple 

clusters at each simulation time step.  If the multiple clusters should coalesce into a “giant cluster” that 
covers a major fraction of the network, then critical connectivity/percolation is achieved.  Our model 
has one input and, therefore, develops just one cluster per time step.  We can, however, observe that 
even a single cluster can approach a giant cluster at high-propagation time steps. 

120 Note that the actual operational values of node mean degree and network connection density that are 
achieved by our model network are much less than the candidate values.  For comparison, the 
candidate node adjacency matrix yields a node mean degree of 30.35 and a node connection density of 
0.31. 

121 Stuart Kauffman, At Home in the Universe – The Search for Laws of Self-Organization and 
Complexity, Oxford University Press, 1995. 
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In a 1976 paper, Herbert Simon122 also talks about sparseness.  “It will be convenient to 

represent the interconnectedness of a system by an incidence matrix [adjacency matrix], a matrix 

of zeros and ones, the (i, j)th element being 1 if the ith element interacts with the jth, and 0 

otherwise.  There are a number of different reasons why we might expect most real-world 

systems to have rather sparse incidence matrices.”  The “different reasons” involve the hierarchy 

and nearly decomposable properties of complex systems – discussed earlier in this chapter. 

Our results here can be summarized as follows.  Ecological network connectivity exhibits 

punctuated, fluctuating dynamics.  Node degree is fractal.  It appears that network critical 

connectivity is achieved at high-propagation time steps.  All of this occurs in sparsely connected 

networks. 

 

 

                                                 
122 Herbert Simon, How Complex Are Complex Systems?, Proceedings of the Biennial Meeting of the 

Philosophy of Science Association, Volume 2, 1976. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The work presented here is an innovative and effective blend of synthesis and analysis.  

Early on, we synthesize a functional framework to set the context and direction for the work.  In 

systems engineering, I have found that such a framework is essential for specifying and guiding 

the design and development of an artificial (human-made) system.  In systems ecology, I believe 

that such a framework is equally essential for understanding natural systems, i.e., ecosystems.  

The framework identifies three “core functions” of ecosystems: self-organization, 

adaptation/regulation, and propagation.  This set of interrelated functions is fundamentally 

important to my research.  The propagation function becomes the focus for the work.  The 

framework also recognizes that ecological systems consistently take the form of networks.  The 

implementation architecture of ecosystems is the network.  Next, based on an extensive review of 

the complex systems and network literature, we synthesize a view of the propagation dynamics 

of ecological system networks.  This view, in turn, is the basis for the central hypothesis of the 

research: ecological networks are ever-changing, “flickering” networks with propagation 

dynamics that are punctuated, fractal, local-to-global, and enabled by indirect effects.  At this 

point, analysis takes the spotlight in the work.  We define, design, and develop an ecological 

network dynamics model to analyze and fully test the hypothesis.  We make every effort to 

produce a realistic ecological network propagation model, e.g., we link our node model to an 

underlying existing and verified ecological network compartment model; we spatially distribute 

the network nodes and implement von Neumann propagation neighborhoods for further realism; 
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we include the preferential attachment behavior that is observed in many real-world networks.  

The resulting model software development effort is very substantial and includes not only a 

comprehensive implementation of the propagation process but also a full complement of analysis 

capabilities and graphics generation capabilities.  We analyze and display the dynamics of 

operational propagation flow, network propagation events, propagation path length, indirect 

effects, and network connectivity. 

Our modeling, analysis, and results fully and comprehensively test and corroborate the central 

hypothesis of the research – as summarized in the following five paragraphs: 

We have analyzed operational propagation flow for a range of propagation events from 

very small to very large.  Several points are evident.  Flow behavior over time is punctuated.  

Many propagation events, and perhaps all of the mid-size to large events, have large network 

span and exhibit local-to-global propagation behavior.  Lots of cycling is evident in the flow 

diagrams.  The network continually changes with time – and sometimes dramatically so.  The 

view of the network operational dynamics is clear: we are dealing with ever-changing, 

“flickering” ecological networks. 

Our network propagation event analysis results complement the propagation flow results 

– and go further.  The network propagation event time series indicates punctuated and local-to-

global dynamics – with many small events but also medium, large, and even a few very large 

propagation events interspersed.  The corresponding event distribution confirms power-law 

dynamics.  Network propagation events exhibit fractal behavior in space.  The event frequency 

spectrum strongly suggests “pink 1/f noise” and fractal behavior in time as well. 

To capture the network time-varying path length dynamics, we have devised an analysis 

approach that integrates over both space and time.  We first use the maximum path length 
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achieved at a time step as a measure of path length behavior at that time step.  Examination of 

the resulting time series and distribution confirms that path length exhibits punctuated, local-to-

global, and fractal characteristics.  We also checked this path length distribution against a 

condition for dominance of indirect effects that we had previously derived mathematically.  The 

path length distribution satisfies that condition.  Accordingly, indirect effects should dominate in 

our model network.  (They do.)  Next, to test the sensitivity of the time series/distribution 

analysis results to our choice of the “measure” of path length dynamics, we chose another 

measure (mean path length achieved at each time step) and performed the analysis again.  

Although the specific parameter values of the resulting distribution differed somewhat from the 

first case, the same general behavior (punctuated, local-to-global, and fractal) was confirmed. 

To analyze ecological network indirect effects dynamics, we have defined several indirect 

effects indicators, calculated their values at each individual time step, and plotted the resulting 

time series.  We see that the time series are highly punctuated – with no sign of gradual or 

continuous behavior.  We see, at time steps of larger propagation events, that indirect effects far 

exceed direct effects.  The number of indirect paths can be 5 to 10 or more times the number of 

direct paths.  Given the large number of indirect paths and the global span of network 

propagation in these cases, we can conclude that indirect effects are enablers of local-to-global 

processing.  In addition to their dominance at high-propagation time steps, are indirect effects 

dominant overall?  To answer that question, we have developed indicator over-time cumulative 

time series.  Results show that cumulative direct paths are < 20% of total paths and cumulative 

indirect paths are > 80% of total paths.  The cumulative number of indirect paths is almost 5 

times the number of direct paths.  Indirect effects are dominant overall.  Next, we turn to path 

quantity time series and distributions – and test them for fractal behavior.  Results show that 
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indirect path quantity is fractal (and so is direct path quantity).  In summary, indirect effects are 

dominant and they are punctuated, enablers of local-to-global propagation, and exhibit fractal 

behavior. 

Network connectivity also exhibits punctuated, fluctuating dynamics.  Node degree (the 

number of connections to/from a node) is an important indicator of network connectivity.  Using 

three-dimensional node degree grids, we observe dramatically changing node degree behavior 

over time.  We need to capture those fluctuating dynamics in our node degree time 

series/distribution analyses.  To do that, we use an integrated spatial/ temporal approach very 

similar to the path length approach (applied earlier).  The first measure of node degree behavior 

that we use is the maximum node degree achieved at each individual time step.  The resulting 

time series is punctuated and the power-law distribution indicates node degree fractal dynamics.  

The second measure of node degree behavior that we use is the node mean degree achieved at 

each time step.  Again, the results show a punctuated time series and a power-law distribution 

that indicates node degree fractal dynamics.  Next, we examine some other important network 

connectivity traits.  Our analysis results strongly suggest that network critical connectivity is 

achieved at time steps that correspond to the largest propagation events.  At these highest-

propagation highest-density time steps, node mean degree is approximately 2 and network 

connection density is approximately 0.02.  This is very sparse connectivity.  In summary, our 

results indicate that ecological network connectivity exhibits punctuated, fluctuating dynamics.  

Node degree is fractal.  Network critical connectivity is likely achieved at high-propagation time 

steps.  All of this occurs in sparsely connected networks. 
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Our ecological network dynamics model reflects the probabilistic nature of real-world 

ecological networks: 

The model is probabilistic in many key respects, i.e., in the spatial distribution of nodes 

(and, therefore, their compartments); in the establishment of model network initial conditions; in 

the application of ecological network inputs to input nodes; in the node-to-compartment 

attachment preferences; and in the node-to-node attachment preferences.  The probabilistic 

nature of the model and the simulation runs authentically reflects the “chance and change” 

aspects123 of real ecosystems.  Each simulation run, although different in specifics, demonstrates 

the same general behaviors.  The principles we have developed here are robust – and in many 

respects are universal (more on robustness and universality next). 

The model and the principles that it represents are robust: 

Model general results are insensitive to changes in specific model settings (e.g., node 

propagation threshold, node propagation flow quantity).  Results are not sensitive to variations in 

initial conditions.  Results are robust with respect to choice of measure of the instantaneous 

dynamics of a given network propagation parameter.  It seems that any reasonable measure will 

do – e.g., when determining path length dynamics or node degree dynamics, both extrema 

measures and mean measures yield the same general behaviors. 

The principles that we have identified and described in this research are robust and universal: 

We have corroborated our research central hypothesis and have demonstrated dynamics 

principles that apply across many important dimensions of ecological networks.  From a careful 

review of the literature, one can surmise that these principles may apply to a wide range of 

systems in other disciplines and subject areas as well.  In the course of our work, we have 

                                                 
123 William Holland Drury Jr., Chance and Change, University of California Press, 1998. 
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encountered additional robust and universal principles.  The operational adjacency matrix 

pattern and operational intensity matrix pattern that we observe in our ecological system model 

seems to be a general characteristic – not only of ecosystems, but also of many real-world natural 

systems.  Our work here also suggests that the network connectivity sparseness that we observe 

in our model results is a general characteristic of effective ecological networks and, apparently 

(from the literature), of natural networks across disciplines. 

When observing the total behavioral picture, we see a general equivalence – a 

universality – in ecological network dynamics.  Our broad set of dynamics results all exhibit 

fundamentally the same form of behavioral statistics.  These behaviors and the principles they 

represent apply across space and time – across network parameters, processes, and phenomena 

– and, it seems, they may also apply to a wide range of systems across other disciplines and 

subject areas as well.  These are emerging universal principles. 
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APPENDIX A 

REVIEW OF NETWORK LITERATURE 

THE STRUCTURE AND DYNAMICS OF COMPLEX NETWORKS 

This effort includes the most recent perspectives on complex system networks and the 

resulting implications for ecological systems. 

I have written a series of three informal papers on the structure and dynamics of complex 

networks: 

 Yackinous, The Structure of Complex Networks, November 5, 2007. 

 Yackinous, Fundamentals of Nonlinear Dynamics, November 27, 2007. 

 Yackinous, The Dynamics of Complex Networks, March 25, 2008. 

These papers document my thorough literature review of these three areas.  (They also serve as a 

vehicle for me to express my views on the subjects.)  I will not repeat the full content of the 

papers here.  I’ll provide some brief introductory comments and a listing of the contents for each 

of the three papers.  Please refer to the complete papers for additional detail.  They are available 

from the author. 

The Structure of Complex Networks 

We begin this paper by describing the fundamental concepts and properties that 

characterize the structure of networked systems.  A primary underlying goal of the series of 

papers is to increase our understanding of real systems (particularly ecological systems).  

Therefore, we next take a comprehensive look at empirical data from real networks – with an 

emphasis on properties that are common to many of them.  We then consider a theoretical view: 

we review mathematical developments relevant to complex system networks and their properties. 
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A listing of the paper’s content follows: 

1. Introduction 
2. Concepts, Characteristics, and Definitions 

2.1 Random and Non Random Networks 
2.2 Important Network Properties 

2.2.1 Path Length 
2.2.2 Clustering 
2.2.3 Degree Distribution 

2.3 Small-World Characteristics 
2.4 Scale-Free Characteristics 
2.5 Weak Link Characteristics 

3. Empirical View – Real Networks 
4. Theoretical View – Mathematics of Model Networks 

4.1 Poisson Random Graphs 
4.1.1 Poisson Degree Distribution 
4.1.2 Transition to a Giant Component 
4.1.3 Other Random Graph Properties 

4.2 Generalized Random Graphs and Scale-Free Networks 
4.3 Small-World Networks 

5. Next Steps 
 

Fundamentals of Nonlinear Dynamics 

Before tackling the combination of complex network structure and complex network 

dynamics, we need an introductory understanding of the (nonlinear) dynamics of more basic 

systems.  In this paper, therefore, we explore the dynamics of single node systems and the 

dynamics of very small networks consisting of only a few nodes.  After thereby gaining some 

understanding of nonlinear dynamics of systems at that level, we move on to consider the 

dynamics of complex networks in the next (third) paper in the series. 

This paper first introduces fundamental concepts of nonlinear dynamical systems: rate 

equations, state space, and attractors.  These concepts are then applied to a simple example (to 

help ease us into our nonlinear dynamics investigations).  Next, we get into a comprehensive 

description of attractors – with interesting examples and illustrations.  Following that, we address 

the phenomenon of bifurcation which plays an important role in our understanding of the 
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complex nonlinear dynamics of ecological systems.  We then explain dependence on initial 

conditions and the resulting unpredictability of nonlinear systems.  Finally, we discuss the fact 

that much system behavior seems to be general – universal – and independent of the details of a 

given specific system. 

A listing of the paper’s content follows: 

1. Introduction 
2. Fundamental Concepts 

2.1 Rate Equations 
2.2 State Space 
2.3 Attractors 

3. Starting Simple 
4. Types of Attractors 
5. Bifurcation and Complex Nonlinear Behavior 
6. Unpredictability 
7. Universality 
8. Next Steps 
 

The Dynamics of Complex Networks 

The first paper in this series of papers on the structure and dynamics of complex 

networks addressed network structure.  The second paper in the series introduced and 

investigated the fundamentals of nonlinear dynamics.  This third (and final) paper in the series 

tackles the integration of these two areas of study.  Here, we explore the complex nonlinear 

dynamics of structurally complex networks.  Our goal is a more complete understanding of real-

world complex networks – and ecological networks in particular. 

Our understanding of the dynamics of networked systems is nascent.  In this paper, we 

discuss what is known and what is hypothesized.  Some of the hypotheses may conflict with our 

intuition and our long-held views.  They will challenge our usual linear way of thinking (because 

complex system dynamics are often nonlinear). 
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Early on, this paper addresses scaling, power laws, and fractals.  After establishing an 

equivalence among these three concepts, we explore both spatial and temporal fractals in some 

detail.  A so-called critical state appears to be an attractor for complex network dynamics.  Then 

we discuss self-organized criticality and pertinent associated concepts.  The next topic is the 

dynamics of network phase transitions.  We consider network percolation as well as other phase 

transitions.  Following that, we look at examples of processes that take place on networks – from 

epidemic processes to network growth processes and more.  Finally, we provide a brief 

commentary on ecosystem management as it relates to the network dynamics that we have 

discussed in this paper. 

Here’s the listing of the paper’s content: 

1. Introduction 
1.1 The Series of Papers on Complex Networks 
1.2 The Importance of Dynamics 
1.3 Summary of the Document 

2. Scaling, Power Laws, and Fractals 
2.1 Equivalence 
2.2 Fractals in Space and Time 

2.2.1 Spatial Fractals 
2.2.2 Temporal Fractals 

3. Self-Organized Criticality 
3.1 Bak’s Self-Organized Criticality Hypothesis 
3.2 An Example of Self-Organized Criticality 
3.3 Local and Global Processing on Networks 

3.3.1 Scale-Free and Small-World Networks 
3.3.2 Adaptation – Life as a Relaxation Phenomenon 

4. Percolation and Other Network Phase Transitions 
4.1 Percolation in Networks 
4.2 Other Topological Phase Transitions in Networks 

5. Processes Taking Place on Networks 
5.1 Epidemic Processes on Networks 
5.2 Network Failure/Attack Processes 
5.3 Macroevolution Processes 
5.4 Discrete Dynamical Processes on Networks 
5.5 Network Growth via Preferential Attachment 

6. A View of Ecosystem Management 
7. Concluding Remarks 
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APPENDIX B 

INTRODUCTION TO CELLULAR AUTOMATA MODELING 

Let’s begin with some perspectives on cellular automata modeling.  Xin-She Yang124 

says: “A cellular automaton (CA) is a rule-based computing machine, which was first proposed 

by von Neumann in the early 1950s and the systematic studies were pioneered by Wolfram from 

the 1980s.  Since a cellular automaton consists of space and time, it is essentially equivalent to a 

dynamical system that is discrete in both space and time.  The evolution of such a discrete 

system is governed by certain updating rules rather than differential equations.  Although the 

updating rules can take many different forms, most common cellular automata use relatively 

simple rules.”  Phillip Bonacich125 comments on cellular automata usage in network research: 

Cellular automata (CA) can be used in simulations of network processes and network evolution 

by identifying adjacent vertices in a network with neighboring cells in a cellular automaton. 

Note that a cellular automata model can be used to model ecological systems for which it 

is difficult or infeasible to solve or even formulate the system differential equations of traditional 

ecological models.  A well-known example can serve to introduce cellular automata modeling. 

 

                                                 
124 Xin-She Yang, An Introduction to Computational Engineering with Matlab, Cambridge International 

Science Publishing, 2006. 
125 Phillip Bonacich, Cellular Automata for the Network Researcher, UCLA Department of Sociology, 

June 10, 2002. 
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The Sandpile Cellular Automaton 

Take a look at the sandpile depicted in Figure B1.126 

 
Figure B1    The Sandpile Metaphor 

As suggested by the figure we add sand slowly, one grain at a time.  At first, the grains 

stay where they land.  These initial grains are basically independent and their behavior is 

described solely by gravity and friction forces.  But, as the sand pile gets larger and its slope 

increases, we reach a regime where avalanches involving grains in interaction are occurring all 

the time.  At this critical state we no longer have independent grains, but rather one complex 

system with its own emergent dynamics.  This new state cannot be anticipated from the 

properties of the individual parts. 

The sandpile is a metaphor for a network system that can be modeled as a cellular 

automaton.  The sandpile resides on a grid.  The grid cells are the network nodes, the cell 

interactions are the network links, and the grains of sand are the network flow currency.  Figure 

B2 illustrates the sandpile cellular automaton model.127 

                                                 
126 The diagram and its description are from Solé et al, Criticality and Scaling in Evolutionary Ecology, 

Trends in Ecology and Evolution, April 1999. 
127 The diagram is from Solé and Goodwin, Signs of Life – How Complexity Pervades Biology, Basic 

Books, 2000. 
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Figure B2    The Sandpile Cellular Automaton Model 

Here’s a mathematical description of the model.128  The sandpile resides on a two-

dimensional grid (NxN) with cells having coordinates (x,y).  The state Z(x,y) of any cell is a 

number from 0 to 4: 

   4,3,2,1,0, yxZ  

To apply input to the system, choose a cell randomly and increase Z by 1: 

    1,,  yxZyxZ  

Repeat the input process at each model time step (iteration step).  Grains of sand are propagated 

through the network via a propagation rule, e.g.: 

   

   
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   
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
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
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As propagation progresses, avalanches can and do occur.  The size of an avalanche equals the 

number of cascading propagation events that occur at a given time step. 

                                                 
128 Per Bak, How Nature Works – The Science of Self-Organized Criticality, Springer-Verlag, 1996. 
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Here’s a summary of model results.  The sandpile (network) operational “evolution” 

proceeds as follows: 

At first there are no avalanches. 

After many time steps we get a small avalanche. 

Eventually we get a medium avalanche (and more small ones). 

Eventually we get a large avalanche (and more small and medium ones). 

Small, medium, and large (scale-invariant/fractal) avalanches continue indefinitely. 

For this model, Bak et al129 have measured the scaling exponent of the power-law avalanche 

event distribution as ≈ 1.1. 

Figures B3 and B4 illustrate the sandpile cellular automata model results in graphical 

form.130  Figure B3 shows the avalanche event distribution. 

 
 

Figure B3    Avalanche Event Distribution 

The log-log plot approximates a straight line (power-law/scale-invariant/fractal behavior).  

Figure B4 provides the avalanche event time series. 

                                                 
129 Bak et al, Self-Organized Criticality: An Explanation of 1/f Noise, Physical Review Letters, Volume 

59, July 1987. 
130 Both diagrams are from Solé and Goodwin, Signs of Life, Basic Books, 2000. 
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Figure B4    Avalanche Event Time Series 

The parameter N=50 is the grid dimension (NxN grid) and parameter t=25000 is the total number 

of time steps in the simulation run.  The dynamics are clearly punctuated. 

 
Finally, here are some observations on the cellular automata model results: 

The results of the simple model are very complex. 

Domain of attraction dynamics create fractals: 

• Avalanche size distribution is scale-invariant and fractal in space. 

• Avalanche time series is 1/f and fractal in time. 

Before reaching criticality, the response to small perturbations is small  approximates 

linear behavior. 

At criticality, the response to small perturbations could be very large  nonlinear behavior. 

 
Apparently one cannot derive sandpile criticality results analytically.  It has been attempted 

many times without success.  We need to use modeling/simulation. 
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APPENDIX C 

GLOSSARY OF MATLAB VARIABLES BY CATEGORY 

Network propagation takes place in stages within time steps within a simulation run.  We use the 
following conventions for naming MATLAB variables. 
 
Variable suffixes (lower case preceded by an underbar): 
Variable_s = variable that applies to an individual stage within a time step 
Variable_sc = variable that is cumulative over stages within a time step 
Variable_t = variable that applies to an individual time step within a simulation run 
Variable_tc = variable that is cumulative over time steps within a simulation run 
 
Variable extensions (upper case preceded by an underbar): 
These extend variables over stages and over time steps.  Each extension effectively adds one 
dimension to a variable. 
Variable_S = variable per stage (provides values for each stage in a time step) 
Variable_TS = variable per time step (provides values for each time step in a simulation run) 
Variable_S_TS = variable per stage per time step (provides values for each stage in a time step 
and each time step in a simulation run) 
 
Suffixes and extensions can be used in combination. 
 
 
Underlying ecological network compartment model variables: 
A = compartment model adjacency matrix (10x10) with ones to identify allowable compartment 
connections and zeros otherwise. 
zL = compartment model input logical vector (10x1) with ones to identify input compartments 
and zeros otherwise. 
yL = compartment model output logical vector (1x10) with ones to identify output compartments 
and zeros otherwise. 
 
Model network grid variables: 
NNG = node-number grid matrix (10x10).  Nodes are numbered 1 to 100 sequentially – from 
grid column to column (single index). 
NCG = node-compartment grid matrix (10x10) in which the elements identify a node’s home 
compartment number. 
NHCL = node-to-home-compartment logical matrix (10x100) with a one to identify a node’s 
home compartment number and zeros otherwise. 
NCCL = node-to-connecting-compartment logical matrix (10x100) with ones to identify the 
connecting (connect-to) compartments and zeros otherwise. 
QNinC = quantity of nodes in each compartment (10x1). 
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NCoord = node-coordinate matrix (100x2) in which each row provides a spatial coordinate pair 
that represents one node. 
 
Number of model simulation time steps variable: 
NumTS = number of model simulation time steps (1x1).  The number should be on the order of 
1000. 
 
Node stock and node propagation rules variables: 
thd = the node stock threshold for propagation (1x1). 
npfq = the node propagation flow quantity (1x1). 
The relationship (npfq ≤ thd) is required.  The value (thd – npfq) is the node stock remaining 
after a node propagation event. 
 
Variables for model network inputs and outputs and their values: 
input_nodes = model network input-node column vector that provides the single index of each 
input node. 
INL = input-node logical grid matrix (10x10) with ones representing input nodes and zeros 
representing non-input nodes. 
output_nodes = model network output-node column vector that provides the single index of each 
output node. 
ONL = output-node logical grid matrix (10x10) with ones representing output nodes and zeros 
representing non-output nodes. 
IOL = input/output-node logical matrix (2x100) with row 1 ones to identify input nodes, row 2 
ones to identify output nodes, and zeros otherwise. 
INVG_tc = input-node-value-grid matrix (10x10) with values (0, 1, 2, … ) in which each 
element represents the cumulative value of the input to that node. 
INVG_tc_TS = input-node-value-grid multidimensional array (10x10xNumTS) with values (0, 
1, 2, … ) in which each element represents the cumulative value of the input to that node at the 
specified time step. 
ONVG_tc = output-node-value-grid matrix (10x10) with values (0, 1, 2, … ) in which each 
element represents the cumulative value of the output from that node. 
ONVG_tc_TS = output-node-value-grid multidimensional array (10x10xNumTS) with values (0, 
1, 2, … ) in which each element represents the cumulative value of the output from that node at 
the specified time step. 
ICV_tc = input-compartment-value vector (1x10) with values (0, 1, 2, … ) in which each 
element represents the cumulative value of the input to that compartment. 
ICV_tc_TS = input-compartment-value multidimensional vector (1x10xNumTS) with values (0, 
1, 2, … ) in which each element represents the cumulative value of the input to that compartment 
at the specified time step. 
OCV_tc = output-compartment-value vector (1x10) with values (0, 1, 2, … ) in which each 
element represents the cumulative value of the output from that compartment. 
OCV_tc_TS = output-compartment-value multidimensional vector (1x10xNumTS) with values 
(0, 1, 2, … ) in which each element represents the cumulative value of the output from that 
compartment at the specified time step. 
SIV_tc = system-input-value scalar with values (0, 1, 2, … ) which represents the cumulative 
value of the input to all compartments (or all nodes). 
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SIV_tc_TS = system-input-value vector (1xNumTS) with values (0, 1, 2, … ) which represents 
the cumulative value of the input to all compartments (or all nodes) at a specified time step.  
Since a unit input is applied at each simulation time step, SIV_tc_TS is incremented by one each 
time step. 
SOV_tc = system-output-value scalar with values (0, 1, 2, … ) which represents the cumulative 
value of the output from all compartments (or all nodes). 
SOV_tc_TS = system-output-value vector (1xNumTS) with values (0, 1, 2, … ) which represents 
the cumulative value of the output from all compartments (or all nodes) at a specified time step. 
 
Variables for model network stock values: 
NSVG_tc = node-stock-value-grid matrix (10x10) with values (0, 1, 2, … , thd) in which each 
element represents the cumulative value of the stock of that node. 
NSVG_tc_TS = node-stock-value-grid multidimensional array (10x10xNumTS) with values (0, 
1, 2, … , thd) in which each element represents the cumulative value of the stock of that node at 
the specified time step. 
CSV_tc = compartment-stock-value vector (1x10) with values (0, 1, 2, …) in which each 
element represents the cumulative value of the stock of that compartment. 
CSV_tc_TS = compartment-stock-value multidimensional vector (1x10xNumTS) with values (0, 
1, 2, …) in which each element represents the cumulative value of the stock of that compartment 
at the specified time step. 
SSV_tc = system-stock-value scalar with values (0, 1, 2, … ) which represents the cumulative 
value of the total system stock, i.e., the cumulative value of the stock of all compartments (or all 
nodes). 
SSV_tc_TS = system-stock-value vector (1xNumTS) with values (0, 1, 2, … ) which represents 
the cumulative value of the total system stock, i.e., the cumulative value of the stock of all 
compartments (or all nodes) – at a specified time step. 
 
Compartment selection order variables: 
Each node has candidate connecting compartments.  When the node propagates, we need a 
randomly generated compartment selection order for these connecting compartments so that we 
can simulate compartment preference and selection of destination.  Variables QNCC and CSO 
satisfy the need. 
QNCC = quantity-of-node-connecting-compartments row vector (1x100). 
Each element of QNCC represents the quantity of the corresponding node’s connect-to 
compartments. 
CSO = compartment-selection-order matrix (10x100) in which each column’s non-zero elements 
provide the selection order of the corresponding node’s connect-to compartments. 
 
Variables for network node adjacency matrices: 
AA = network node adjacency matrix (100x100). 
This is the basic network node adjacency matrix with ones to identify allowable node 
connections and zeros otherwise. 
AAT = adjacency adjacency-type matrix (100x100) with element values (1, 2, 3). 
This node “adjacency matrix” provides the adjacency type of connect-to nodes: a local neighbor 
is type 1, an extended local neighbor is type 2, a global neighbor is type 3.  Adjacency type is 
part of the node connection priority order. 
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ACN = adjacency compartment-number matrix (100x100) with element values (1 to 10). 
This node “adjacency matrix” provides the home compartment number of connect-to nodes.  
Compartment number is part of the node connection priority order within each adjacency type. 
AAP = adjacency attachment-preference-strength matrix (100x100) (element values: 0 to 1). 
This node “adjacency matrix” provides the node attachment preference strength of each connect-
to node so that we can implement our preferential attachment concept.  Attachment preference is 
part of the node connection priority order within adjacency type and compartment number. 
NAPS = node-to-attachment-preference-strength vector (1x100) (element values: 0 to 1). 
Row vector NAPS provides each connect-to node’s randomly generated attachment preference 
strength.  It is used to generate adjacency matrix AAP. 
 
Variables for network node “operational” adjacency matrices and arrays: 
These three variables provide adjacency matrices and arrays which represent the changing state 
of the network as it operates and develops.  We refer to these as “operational” adjacency 
matrices/arrays.  The “O” in the following variable names is for “operational.” 
AAO_t = cumulative operational node adjacency matrix for an individual time step (100x100). 
This matrix applies to an individual time step.  AAO_t is cumulative over all node propagation 
instances over all stages of the time step.  The matrix is updated at every propagation instance 
within a stage. 
AAO_t_TS = per-time-step operational node adjacency multidimensional array (100x100x 
NumTS). 
This array provides the completed cumulative operational adjacency matrix AAO_t for each 
individual time step.  AAO_t_TS(:, :, k) = completed AAO_t for time step k. 
AAO_tc_TS = per-time-step over-time-cumulative operational node adjacency multidimensional 
array (100x100x NumTS). 
This array consists of cumulative adjacency matrices.  Its adjacency matrices are cumulative over 
time (over the time steps in the simulation run) and the array is updated at every time step. 
AAO_tc_TS(:, :, k) = AAO_tc_TS(:, :, k-1) + AAO_t_TS(:, :, k).  In this adjacency matrix sum, 
if any element > 1 then element = 1. 
 
Variables for network flow value “adjacency” multidimensional arrays: 
ANFV_tc_TS = adjacency node-flow-value multidimensional array (100x100xNumTS) with 
values (0, 1, 2, … ). 
This “adjacency” multidimensional array provides the over-time cumulative values of the direct 
flows between adjacent nodes.  The matrices of the multidimensional array are cumulative over 
the simulation run.  The array is updated as flows occur (in time-step stages) and is saved at 
every time step. 
ACFV_tc_TS = adjacency compartment-flow-value multidimensional array (10x10xNumTS) 
with values (0, 1, 2, … ). 
This “adjacency” multidimensional array provides the over-time cumulative values of the direct 
flows between adjacent compartments.  The matrices of the multidimensional array are 
cumulative over the simulation run.  The array is updated as flows occur (in time-step stages) 
and is saved at every time step. 
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Basic propagation process variables: 
PENodeS = propagation-event-node-set column vector (temporary variable). 
NumCStages = current number of completed propagation stages (scalar) (temporary variable). 
NumCStages_TS = per-time-step row vector of the total number of propagation stages in each 
individual completed time step (1xNumTS). 
AvFlow = the currently available-flow for a propagating from-node (scalar) (temporary 
variable).  When a node propagation event occurs, the starting value of AvFlow is npfq. 
FNode = propagating from-node (scalar) (values are 1 to 100) (temporary variable). 
TNodeS = candidate to-node-set column vector = candidate propagation-instance-node-set 
column vector (temporary variable). 
TNodeSC = to-node-set-compartments column vector (temporary variable). 
TNodeSCR = ranks of to-node-set-compartments column vector (temporary variable). 
RTNodeS = revised to-node-set column vector (temporary variable). 
RTNodeSAPS = revised to-node-set-attachment-preference-strengths column vector (temporary 
variable). 
RTNodeSAPP = revised to-node-set-attachment-preference-probabilities column vector 
(temporary variable). 
SNode = propagation instance selected-node (scalar) (values are 1 to 100) (temporary variable). 
 
Input node processing variables: 
INS_t = input-node-selection row vector for an individual time step (1x100) with randomly 
assigned selection numbers that are generated anew at each simulation time step. 
InputNode_t = selected input-node for an individual time step (scalar) (values are 1 to 100).  
Value is generated anew at each simulation time step. 
INSL_t = input-node-selection-logical matrix for an individual time step (10x10) (values are 0, 
1) with a one to identify the selected input node and zeros elsewhere. 
INSL_t_TS = per-time-step input-node-selection-logical multidimensional array 
(10x10xNumTS) with matrix values (0, 1) that provides, for each time step, a matrix with a one 
to identify the selected input node and zeros elsewhere.  Use INSL_t_TS to plot per-time-step 
network propagation diagrams. 
INSL_tc_TS = per-time-step over-time-cumulative input-node-selection-logical 
multidimensional array (10x10x NumTS) (matrix values are 0, 1).  INSL_tc_TS is an over-time 
cumulative version of INSL_t_TS for plotting the over-time network propagation diagram at 
each time step. 
 
Propagating node processing variables: 
PNL_sc = stage-cumulative propagating-node-logical grid matrix (10x10) (values are 0, 1) that 
identifies propagating nodes for a single time step.  The matrix is cumulative over the stages of 
the time step and is updated at every time step stage.  The matrix has ones to identify the 
propagating nodes (where the propagation condition is satisfied) and zeros elsewhere. 
PNL_t_TS = per-time-step multidimensional array of individual time step (stage-cumulative) 
propagating-node-logical matrices (10x10xNumTS) (matrix values are 0, 1).  PNL_t_TS 
contains the PNL_sc matrix for each time step.  PNL_t_TS(:, :, k) = PNL_sc for time step k.  
PNL_t_TS is used for plotting network propagation diagrams. 
PNL_tc_TS = per-time-step over-time-cumulative propagating-node-logical multidimensional 
array (10x10x NumTS) (matrix values are 0, 1) that provides matrices that are cumulative over 
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time (over the simulation run time steps) and are updated at every time step.  PNL_tc_TS is used 
for plotting network propagation diagrams. 
PNL_tc_TS(:, :, k) = PNL_tc_TS(:, :, k-1) + PNL_t_TS(:, :, k) 
nnpe_s_S_TS = number-of-node-propagation-events multidimensional vector 
(1x #stages xNumTS) that provides the number of node propagation events (which equals the 
number of propagating nodes) in each individual propagation stage of a time step for each time 
step. Multidimensional vector nnpe_s_S_TS is used for path length analysis. 
nnpe_sc = stage-cumulative number-of-node-propagation-events (scalar). 
nnpe_sc_TS = per-time-step stage-cumulative number-of-node-propagation-events vector 
(1xNumTS) that provides the cumulative (total) number of node propagation events over stages 
in a completed time step for each time step.  Vector nnpe_sc_TS is a stage-cumulative version of 
nnpe_s_S_TS. 
nopn_s_S_TS = number-of-output-propagating-nodes multidimensional vector 
(1x #stages xNumTS) that provides the number of output propagating nodes in an individual 
stage for each propagation stage of each time step.  Multidimensional vector nopn_s_S_TS is 
used for path length analysis. 
nopn_sc = stage-cumulative number-of-output-propagating-nodes (scalar). 
nopn_sc_TS = per-time-step stage-cumulative number-of-output-propagating-nodes vector 
(1xNumTS) that provides the cumulative (total) number of output propagating nodes over stages 
in a completed time step for each time step.  Vector nopn_sc_TS is a stage-cumulative version of 
nopn_s_S_TS. 
 
Output node processing variables: 
OPNL_sc = stage-cumulative output-propagating-node-logical matrix (10x10) with values (0, 1) 
that provides, for a time step, a stage-cumulative matrix with ones to identify the output 
propagating nodes and zeros elsewhere.  The matrix is updated at every time step stage. 
OPNL_t_TS = per-time-step multidimensional array (10x10xNumTS) of individual time step 
stage-cumulative output-propagating-node-logical matrices (matrix values are 0, 1).  The array 
contains the OPNL_sc matrix for each time step.  OPNL_t_TS(:, :, k) = OPNL_sc for time step 
k.  OPNL_t_TS is used for plotting network propagation diagrams. 
OPNL_tc_TS = per-time-step over-time-cumulative output-propagating-node-logical 
multidimensional array (10x10x NumTS) (matrix values are 0, 1) that provides matrices that are 
cumulative over time (over the simulation run time steps) and are updated at every time step.  
OPNL_tc_TS is used for plotting network propagation diagrams. 
 
Node propagation instance processing variables: 
nnpi_sc = stage-cumulative number-of-node-propagation-instances (scalar). 
nnpi_sc_TS = per-time-step stage-cumulative number-of-node-propagation-instances vector 
(1xNumTS) that provides the cumulative (total) number of node propagation instances in an 
individual completed time step for each time step.  Vector nnpi_sc_TS is used for network 
propagation event analysis. 
NetPESize_TS = per-time-step network-propagation-event-size vector (1xNumTS) that provides 
the size of the network propagation event in a completed time step for each time step.  
NetPESize_TS(k) = nnpi_sc_TS(k) + 1.  NetPESize_TS is used for network propagation event 
analysis. 
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Network propagation event analysis variables: 
NetPESize_TS = per-time-step network-propagation-event-size vector (1xNumTS) that provides 
the size of the network propagation event in a completed time step for each time step.  
NetPESize_TS(k) = nnpi_sc_TS(k) + 1.  NetPESize_TS is used for network propagation event 
analysis. 
nsi = network propagation event size-interval (scalar) with values ≥ 1. 
nintervals = number of intervals (scalar) (temporary variable). 
NetPEDistr = network propagation event distribution matrix (#size intervals x 2) in which 
column 1 contains event size intervals in ascending order and column 2 contains the number of 
events in each of those size intervals. 
The following variables are used to create the frequency spectrum of the network propagation 
event time series. 
Lsig = length of signal time series (scalar), i.e., the length of the network propagation event time 
series. 
NFFT = next power of 2 up from Lsig (scalar).  This is an input to the MATLAB fft (fast Fourier 
transform) function. 
PEdft = propagation event discrete Fourier transform vector (1 x NFFT). 
PEssAmp = propagation event single-sided amplitude vector (1 x NFFT/2+1). 
normfreq = vector of normalized frequency values (1 x NFFT/2+1). 
numpoints = number of frequency spectrum points for partial spectrum (scalar).  The maximum 
number of points available = NFFT/2+1. 
freq = vector of normalized frequency values for partial spectrum (1 x numpoints). 
amp = vector of amplitude values for partial spectrum (1 x numpoints). 
 
Path length analysis variables: 
PLmax_TS = NumCStages_TS = maximum path length in each time step (1x NumTS). 
PLltmax = maximum element in PLmax_TS = long-term maximum path length in all time steps 
(scalar). 
plsi = path length size interval (scalar). 
nplintervals = number of path length intervals (scalar) (temporary variable). 
MaxPLDistr = maximum path length distribution matrix (#size intervals x 2).  Column 1 
contains the path length intervals and column 2 contains the number of events in each of those 
length intervals. 
PLDistr_t_TS = per-time-step path length distribution multidimensional array (PLltmax x 2 x 
NumTS) that provides the path length distribution matrix (number of paths vs. length) for each 
time step. 
PLDistr_tc_TS = path length distribution multidimensional array (PLltmax x 2 x NumTS) that 
provides the over-time-cumulative path length distribution per time step. 
PLmean_TS = time series vector that provides the mean path length in each individual time step 
(1x NumTS). 
PLsum = weighted sum of path lengths in an individual time step (scalar) (temporary variable). 
PLtotal = total number of paths in an individual time step (scalar) (temporary variable). 
mplsi = mean path length size interval (scalar). 
nmplintervals = number of mean path length intervals (scalar) (temporary variable). 
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MeanPLDistr = mean path length distribution matrix (#size intervals x 2).  Column 1 contains 
the path length intervals and column 2 contains the number of events in each of those length 
intervals. 
 
Indirect effects analysis definitions and variables: 
DER = Direct Effects Ratio.  DER is defined as the number of paths of length 1 divided by the 
total number of paths. 
IER = Indirect Effects Ratio.  IER is defined as the number of paths of length > 1 divided by the 
total number of paths. 
IEI = Indirect Effects Index.  IEI is defined as the number of paths of length > 1 divided by the 
number of paths of length 1. 
The following vector variables contain time series (individual time-step values vs. time) of the 
direct effect and indirect effect indicators. 
DER_t_TS = Direct Effects Ratio for each individual time step in the simulation run per time 
step (1 x NumTS). 
IER_t_TS = Indirect Effects Ratio for each individual time step in the simulation run per time 
step (1 x NumTS). 
IEI_t_TS = Indirect Effects Index for each individual time step in the simulation run per time 
step (1 x NumTS). 
The following vector variables contain time series (over-time-cumulative values vs. time) of the 
direct effect and indirect effect indicators. 
DER_tc_TS = per-time-step over-time-cumulative Direct Effects Ratio (1 x NumTS). 
IER_tc_TS = per-time-step over-time-cumulative Indirect Effects Ratio (1 x NumTS). 
IEI_tc_TS = per-time-step over-time-cumulative Indirect Effects Index (1 x NumTS). 
The following vector variables provide path quantity time series (number of paths at each time 
step vs. time) and corresponding distributions. 
IndPathQ_TS = indirect-path-quantity time series vector (1 x NumTS). 
IndPathQDistr = indirect-path-quantity distribution matrix (#size intervals x 2). 
ipsi = indirect-path size interval (scalar). 
nipintervals = number of indirect-path intervals (scalar) (temporary variable). 
DirPathQ_TS = direct-path-quantity time series vector (1 x NumTS). 
DirPathQDistr = direct-path-quantity distribution matrix (#size intervals x 2). 
dpsi = direct-path size interval (scalar). 
ndpintervals = number of direct-path intervals (scalar) (temporary variable). 
The following vector variables provide cumulative path quantity time series (cumulative number 
of paths at each time step vs. time). 
CuIndPathQ_TS = cumulative-indirect-path-quantity time series vector (1 x NumTS). 
CuDirPathQ_TS = cumulative-direct-path-quantity time series vector (1 x NumTS). 
 
Network connectivity analysis variables: 
NodeODeg_t_TS = node-out-degree multidimensional array (1x100xNumTS) that provides a 
node out-degree vector for each individual time step per time step. 
NodeIDeg_t_TS = node-in-degree multidimensional array (1x100xNumTS) that provides a node 
in-degree vector for each individual time step per time step. 
NodeCDeg_t_TS = node-combined-degree multidimensional array (1x100xNumTS) that 
provides a node combined-degree vector for each individual time step per time step. 
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NodeODegGrid_t_TS = node-out-degree-grid multidimensional array (10x10xNumTS) that 
provides a node out-degree grid for each individual time step per time step. 
NodeIDegGrid_t_TS = node-in-degree-grid multidimensional array (10x10xNumTS) that 
provides a node in-degree grid for each individual time step per time step. 
NodeCDegGrid_t_TS = node-combined-degree-grid multidimensional array (10x10xNumTS) 
that provides a node combined-degree grid for each individual time step per time step. 
ODmax_t_TS = vector (1x NumTS) that provides the maximum out-degree in each time step per 
time step. 
IDmax_t_TS = vector (1x NumTS) that provides the maximum in-degree in each time step per 
time step. 
CDmax_t_TS = vector (1x NumTS) that provides the maximum combined-degree in each time 
step per time step. 
ODltmax_t = long-term maximum out-degree in all time steps (scalar). 
IDltmax_t = long-term maximum in-degree in all time steps (scalar). 
CDltmax_t = long-term maximum combined-degree in all time steps (scalar). 
The following three variables are two-column node degree distribution matrices.  Column 1 
contains the node degree intervals and column 2 contains the number of events in each of those 
intervals. 
MaxODDistr = maximum out-degree distribution matrix (#size intervals x 2). 
MaxIDDistr = maximum in-degree distribution matrix (#size intervals x 2). 
MaxCDDistr = maximum combined-degree distribution matrix (#size intervals x 2). 
mdsi = maximum node degree size interval (scalar). 
nmdintervals = number of maximum node degree intervals (scalar) (temporary variable). 
CompMD = compartment mean degree (scalar). 
CompNetDen = compartment network connection density (scalar). 
CandNMD = "candidate" node mean degree (scalar). 
CandNetDen = "candidate" node network connection density (scalar). 
NMD_t_TS = node mean degree for each individual time step per time step (1xNumTS). 
NMD_tc_TS = over-time-cumulative node mean degree per time step (1xNumTS). 
Node mean degree is equal to the number of network edges divided by the number of network 
nodes. 
NetDen_t_TS = network density for each individual time step per time step (1xNumTS). 
NetDen_tc_TS = over-time-cumulative network density per time step (1xNumTS). 
Network connection density is equal to node mean degree divided by (number of nodes – 1). 
nmdsi = node mean degree size interval (scalar). 
nnmdintervals = number of node mean degree intervals (scalar) (temporary variable). 
NMDDistr = node mean degree distribution matrix (#size intervals x 2).  Column 1 contains the 
node mean degree intervals and column 2 contains the number of events in each of those mean 
degree intervals. 
NodeODeg_tc_TS = node-out-degree multidimensional array (1x100xNumTS) that provides an 
over-time-cumulative node out-degree vector per time step. 
NodeIDeg_tc_TS = node-in-degree multidimensional array (1x100xNumTS) that provides an 
over-time-cumulative node in-degree vector per time step. 
NodeCDeg_tc_TS = node-combined-degree multidimensional array (1x100xNumTS) that 
provides an over-time-cumulative node combined-degree vector per time step. 
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ODmax_tc_TS = vector (1x NumTS) that provides the maximum cumulative out-degree per time 
step. 
IDmax_tc_TS = vector (1x NumTS) that provides the maximum cumulative in-degree per time 
step. 
CDmax_tc_TS = vector (1x NumTS) that provides the maximum cumulative combined-degree 
per time step. 
ODltmax_tc = long-term maximum cumulative out-degree across time steps (scalar). 
IDltmax_tc = long-term maximum cumulative in-degree across time steps (scalar). 
CDltmax_tc = long-term maximum cumulative combined-degree across time steps (scalar). 
dsi = degree size interval (scalar). 
ndintervals = number of degree intervals (scalar) (temporary variable). 
The following three multidimensional arrays each provide a two-column node degree 
distribution matrix for each individual time step per time step.  In each matrix, column 1 contains 
the ordered node degree size intervals and column 2 contains the number of nodes in each of 
those size intervals.   
ODegDistr_t_TS = multidimensional array that provides the node out-degree distribution for 
each individual time step per time step (#size intervals x 2 x NumTS). 
IDegDistr_t_TS = multidimensional array that provides the node in-degree distribution for each 
individual time step per time step (#size intervals x 2 x NumTS). 
CDegDistr_t_TS = multidimensional array that provides the node combined-degree distribution 
for each individual time step per time step (#size intervals x 2 x NumTS). 
The following three multidimensional arrays each provide a two-column over-time-cumulative 
node degree distribution matrix per time step.  In each matrix, column 1 contains the ordered 
node degree size intervals and column 2 contains the number of nodes in each of those size 
intervals. 
ODegDistr_tc_TS = multidimensional array that provides the node over-time-cumulative out-
degree distribution per time step (#size intervals x 2 x NumTS). 
IDegDistr_tc_TS = multidimensional array that provides the node over-time-cumulative in-
degree distribution per time step (#size intervals x 2 x NumTS). 
CDegDistr_tc_TS = multidimensional array that provides the node over-time-cumulative 
combined-degree distribution per time step (#size intervals x 2 x NumTS). 
NumLN_t_TS = number of linked nodes for each individual time step per time step (1xNumTS). 
CompSize_t_TS = candidate giant component size for each individual time step per time step 
(1xNumTS). 
At time step i, CompSize_t_TS(i) equals NumLN_t_TS(i) divided by the total number of nodes 
in the network. 
 
Graphics generation variables: 
tsn = time step number (scalar). 
NCoord = node-coordinate matrix (100x2) in which each row provides a spatial coordinate pair 
that represents one node. 
PNCoord = propagating-node-coordinate matrix in which each row provides a spatial coordinate 
pair that represents a propagating node.  Each instance of the matrix applies to a single time step. 
INCoord = input-node-coordinate matrix that provides a spatial coordinate pair that represents an 
input node.  Each instance of the matrix applies to a single time step. 
fvsi = flow value size interval (scalar). 
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nfvintervals = number of flow value intervals (scalar) (temporary variable). 
ANFVsubset = node flow value subset “adjacency matrix” (100 x 100) (temporary variable). 
NodeCDegGridz = matrix for plotting node-combined-degree-grid zero values (10x10) 
(temporary variable). 
NodeCDegGridnz = matrix for plotting node-combined-degree-grid nonzero values (10x10) 
(temporary variable). 
NodeIDegGridz = matrix for plotting node-in-degree-grid zero values (10x10) (temporary 
variable). 
NodeIDegGridnz = matrix for plotting node-in-degree-grid nonzero values (10x10) (temporary 
variable). 
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APPENDIX D 

DYNAMICS MODEL MASTER M-FILE 

%% Model of Ecological Network Propagation Dynamics 
%  Master m-file 
  
%% > Model network structure, parameters, and relationships 
  
%% Specify underlying ecological network compartment model 
% A = compartment model adjacency matrix (10x10) 
A = [0 0 0 0 1 0 0 0 0 0; 
     1 0 0 0 0 0 1 0 0 0; 
     0 1 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 1 1 1; 
     1 1 1 1 0 0 1 1 1 1; 
     1 1 1 1 0 0 1 1 1 1; 
     0 0 0 0 0 1 0 0 0 0; 
     1 1 0 0 0 0 1 0 0 0; 
     0 0 1 0 0 1 0 1 0 1; 
     0 0 0 0 0 1 0 0 0 0]; 
% zL = compartment model input logical vector (10x1) 
zL = [0; 
      0; 
      1; 
      1; 
      1; 
      1; 
      1; 
      0; 
      0; 
      0]; 
% yL = compartment model output logical vector (1x10) 
yL = [0 0 1 1 0 1 1 1 0 1]; 
  
%% Build the model network node grid and its relationship to compartments 
% NNG = node-number grid matrix (10x10) 
NNG = [1 11 21 31 41 51 61 71 81 91; 
       2 12 22 32 42 52 62 72 82 92; 
       3 13 23 33 43 53 63 73 83 93; 
       4 14 24 34 44 54 64 74 84 94; 
       5 15 25 35 45 55 65 75 85 95; 
       6 16 26 36 46 56 66 76 86 96; 
       7 17 27 37 47 57 67 77 87 97; 
       8 18 28 38 48 58 68 78 88 98; 
       9 19 29 39 49 59 69 79 89 99; 
      10 20 30 40 50 60 70 80 90 100]; 
  
%% 
% NCG = node-compartment grid matrix (10x10) using function randi 
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% NCG = randi(10,10); 
% NCG = 
%      9     2     7     8     5     3     8     9     4     1 
%     10    10     1     1     4     7     3     3     9     1 
%      2    10     9     3     8     7     6     9     6     6 
%     10     5    10     1     8     2     7     3     6     8 
%      7     9     7     1     2     2     9    10    10    10 
%      1     2     8     9     5     5    10     4     3     2 
%      3     5     8     7     5    10     6     2     8     6 
%      6    10     4     4     7     4     2     3     8     5 
%     10     8     7    10     8     6     2     7     4     1 
%     10    10     2     1     8     3     3     5     6     4 
  
%% 
% QNinC = quantity of nodes in each compartment (10x1) 
QNinC = [sum(sum(NCG==1)); 
         sum(sum(NCG==2)); 
         sum(sum(NCG==3)); 
         sum(sum(NCG==4)); 
         sum(sum(NCG==5)); 
         sum(sum(NCG==6)); 
         sum(sum(NCG==7)); 
         sum(sum(NCG==8)); 
         sum(sum(NCG==9)); 
         sum(sum(NCG==10))]; 
% QNinC = 
%      9 
%     11 
%     10 
%      8 
%      8 
%      9 
%     10 
%     12 
%      8 
%     15 
  
%% 
% NHCL = node-to-home-compartment logical matrix (10x100) 
NHCL = zeros(10,100); 
for j = 1:100; 
    NHCL(NCG(j),j) = 1; 
end 
  
%% 
% NCCL = node-to-connecting-compartment logical matrix (10x100) 
NCCL = zeros(10,100); 
for j = 1:100; 
    NCCL(:,j) = A(:,NCG(j)); 
end 
  
%% Specify the number of model simulation time steps 
NumTS = 1000; 
  
%% Specify the node stock and node propagation rules 
% thd = node stock threshold for propagation (scalar) 

177 



thd = 4; 
% npfq = node propagation flow quantity (scalar) 
npfq = 4; 
  
%% Identify the model network input nodes and output nodes 
% input_nodes = input-node column vector (#input nodes x1) 
% INL = input-node logical grid matrix (10x10) 
[rows, columns] = find(NHCL(zL==1,:)==1); 
input_nodes = columns; 
INL = zeros(10,10); 
INL(input_nodes) = 1; 
  
%% 
% output_nodes = output-node column vector (#output nodes x1) 
% ONL = output-node logical grid matrix (10x10) 
[rows, columns] = find(NHCL(yL==1,:)==1); 
output_nodes = columns; 
ONL = zeros(10,10); 
ONL(output_nodes) = 1; 
  
%% 
% IOL = input/output-node logical matrix (2x100) 
IOL = zeros(2,100); 
IOL(1,input_nodes) = 1; 
IOL(2,output_nodes) = 1; 
  
%% Define variables for the values of model network inputs 
% INVG_tc = input-node-value-grid matrix (10x10) 
% (values are 0, 1, 2, …) 
% preallocation and initialization 
INVG_tc = zeros(10,10); 
% INVG_tc_TS = input-node-value-grid multidimensional array (10x10xNumTS) 
% (values are 0, 1, 2, …) 
% preallocation and initialization 
INVG_tc_TS = zeros(10,10,NumTS); 
% ICV_tc = input-compartment-value vector (1x10) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
ICV_tc = zeros(1,10); 
% ICV_tc_TS = input-compartment-value multidimensional vector (1x10xNumTS) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
ICV_tc_TS = zeros(1,10,NumTS); 
% SIV_tc = system-input-value scalar (values are 0, 1, 2, … ) 
% preallocation and initialization 
SIV_tc = 0; 
% SIV_tc_TS = system-input-value vector (1xNumTS) (values are 0, 1, 2, … ) 
% preallocation and initialization 
SIV_tc_TS = zeros(1,NumTS); 
  
%% Define variables for the values of model network outputs 
% ONVG_tc = output-node-value-grid matrix (10x10) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
ONVG_tc = zeros(10,10); 
% ONVG_tc_TS = output-node-value-grid multidimensional array (10x10xNumTS) 

178 



% (values are 0, 1, 2, … ) 
% preallocation and initialization 
ONVG_tc_TS = zeros(10,10,NumTS); 
% OCV_tc = output-compartment-value vector (1x10) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
OCV_tc = zeros(1,10); 
% OCV_tc_TS = output-compartment-value multidimensional vector (1x10xNumTS) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
OCV_tc_TS = zeros(1,10,NumTS); 
% SOV_tc = system-output-value scalar 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
SOV_tc = 0; 
% SOV_tc_TS = system-output-value vector (1xNumTS) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
SOV_tc_TS = zeros(1,NumTS); 
  
%% Define variables for the values of model network stocks 
% NSVG_tc = node-stock-value-grid matrix (10x10) 
% (values are 0, 1, 2, … , thd) 
% initialization 
% Initial values of NSVG_tc are assigned randomly 
% in the range 0 to thd-1 
temp = randi([0,thd-1],10); 
NSVG_tc = temp; 
% NSVG_tc = 
%      0     1     0     1     3     1     3     0     2     3 
%      3     0     3     3     2     0     1     1     1     3 
%      1     0     0     0     1     3     0     3     2     1 
%      2     3     3     1     2     3     1     0     0     1 
%      0     0     3     0     1     1     0     0     2     1 
%      2     3     3     0     0     1     0     0     0     1 
%      1     2     0     3     0     1     3     2     1     2 
%      2     3     1     2     0     3     3     2     2     2 
%      2     0     1     2     0     1     2     2     3     3 
%      2     1     3     0     0     0     0     1     0     3 
%  
% NSVG_tc_TS = node-stock-value-grid multidimensional array (10x10xNumTS) 
% (values are 0, 1, 2, … , thd) 
% preallocation 
NSVG_tc_TS = zeros(10,10,NumTS); 
  
%% 
% CSV_tc = compartment-stock-value vector (1x10) 
% (values are 0, 1, 2, …) 
% preallocation 
CSV_tc = zeros(1,10); 
% initialization 
% For vector CSV_tc, the initial value of each of the 
% compartment elements is set equal to the sum of the initial stock values 
% of the contained nodes 
temp = NSVG_tc; 
for j=1:10; 
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    CSV_tc(1,j) = sum(temp(NHCL(j,:)==1)); 
end 
% CSV_tc = 
%     18    21     6    16    12    11    13    14     4    22 
%  
% CSV_tc_TS = compartment-stock-value multidimensional vector (1x10xNumTS) 
% (values are 0, 1, 2, …) 
% preallocation 
CSV_tc_TS = zeros(1,10,NumTS); 
  
%% 
% SSV_tc = system-stock-value scalar (values are 0, 1, 2, … ) 
% initialization 
% The initial value of SSV_tc is set equal to the 
% sum of the initial stock values of all compartments 
SSV_tc = sum(CSV_tc); 
% SSV_tc = 137 
%  
% SSV_tc_TS = system-stock-value vector (1xNumTS) (values are 0, 1, 2, … ) 
% preallocation 
SSV_tc_TS = zeros(1,NumTS); 
  
%% Generate compartment selection order 
% QNCC = quantity-of-node-connecting-compartments row vector (1x100) 
QNCC = sum(NCCL); 
% CSO = compartment-selection-order matrix (10x100) 
CSO = randi([100,1000],[10,100]); 
CSO(NCCL==0) = 0; 
% Order (1, 2, …) the non-zero values in each column of CSO: 
for j = 1:100 
    for i = 1: QNCC(j) 
        [C,I] = max(CSO); 
        % I is a row vector of the row numbers of the maximum in each 
        % column of CSO 
        CSO(I(j),j) = i; 
    end 
end 
  
%% Construct the network node basic adjacency matrix (AA) 
% AA = network node basic adjacency matrix for “candidate” 
% connections (100x100) 
AA = zeros(100,100);    % preallocation 
for j = 1:100    % columns (“from” nodes) 
    CCtemp = find(NCCL(:,j)==1);    % connect-to compartments 
    for k = 1:sum(NCCL(:,j))    % rows (connect-to compartments) 
        Ntemp = find(NHCL(CCtemp(k),:)==1);    % “to” nodes 
        AA(Ntemp,j) = 1; 
   nd  e
end 
  
%% Create a node adjacency-type “adjacency matrix” (AAT) 
% AAT = adjacency adjacency-type matrix (100x100) 
% (element values are 1, 2, 3) 
% AAT provides the adjacency type of “to” nodes 
% type 1 = local neighbor 
% type 2 = extended local neighbor 
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% type 3 = global neighbor 
AAT = zeros(100,100);    % preallocation 
for j = 1:100    % columns (“from” nodes) 
    N2temp = find(AA(:,j)==1);    % “to” nodes 
    for k = 1:sum(AA(:,j))    % rows (“to” nodes) 
        % grid comparison 
        if logical(abs(N2temp(k)-j)==1) || logical(abs(N2temp(k)-j)==10) 
            AAT(N2temp(k),j) = 1; 
        elseif logical(abs(N2temp(k)-j)==2) || logical(abs(N2temp(k)-j)==20) 
            AAT(N2temp(k),j) = 2; 
        else 
            AAT(N2temp(k),j) = 3; 
        end 
   nd  e
end 
  
%% Create a node compartment-number “adjacency matrix” (ACN) 
% ACN = adjacency compartment-number matrix (100x100) 
% (element values are 1 to 10) 
% ACN provides home compartment numbers of “to” nodes 
ACN = zeros(100,100);    % preallocation 
for j = 1:100    % columns (“from” nodes) 
    N2temp = find(AA(:,j)==1);    % “to” nodes 
    for k = 1:sum(AA(:,j))    % rows (“to” nodes) 
        ACN(N2temp(k),j) = find(NHCL(:,N2temp(k))==1); 
    end 
end 
  
%% Create a node attachment-preference-strength “adjacency matrix” (AAP) 
% First create a row vector (NAPS) of per-node randomly generated 
% attachment preference strengths and then create matrix AAP 
% NAPS = node-to-attachment-preference-strength vector (1x100) 
% (element values: 0 to 1) 
% AAP = adjacency attachment-preference-strength matrix (100x100) 
% (element values: 0 to 1) 
% AAP provides attachment preference strength of “to” nodes 
AAP = zeros(100,100);    % preallocation 
NAPS = rand(1,100); 
for j = 1:100    % columns (“from” nodes) 
    N2temp = find(AA(:,j)==1);    % “to” nodes 
    for k = 1:sum(AA(:,j))    % rows (“to” nodes) 
        AAP(N2temp(k),j) = NAPS(N2temp(k)); 
   nd  e
end 
  
%% Define network node “operational” adjacency matrices and arrays 
% Define a stage-cumulative operational node adjacency matrix 
% The matrix applies to an individual time step 
% AAO_t = cumulative operational node adjacency matrix (100x100) 
% AAO_t is cumulative over all node propagation instances 
% over all stages of a time step 
% The initial values of AAO_t are all zeros and the array must be 
% re-initialized to zeros at every time step 
% preallocation and initialization 
AAO_t = zeros(100,100); 
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%% 
% Define a per-time-step operational node adjacency multidimensional 
% array (AAO_t_TS) that provides the completed cumulative operational 
% adjacency matrix AAO_t for each individual time step 
% [AAO_t_TS(:,:,k) = completed AAO_t for time step k] 
% AAO_t_TS = per-time-step operational node adjacency multidimensional 
% array (100x100x NumTS) 
% preallocation and initialization 
AAO_t_TS = zeros(100,100,NumTS); 
  
%% 
% Define an operational node adjacency multidimensional array that 
% consists of over-time cumulative adjacency matrices 
% AAO_tc_TS = per-time-step over-time-cumulative operational node 
% adjacency multidimensional array (100x100x NumTS) 
% [AAO_tc_TS(:,:,k) = AAO_tc_TS(:,:,k-1) + AAO_t_TS(:,:,k)] 
% preallocation and initialization 
AAO_tc_TS = zeros(100,100,NumTS); 
  
%% Define a node-flow-value “adjacency” matrix and multidimensional array 
% Define an “adjacency” matrix that provides the over-time-cumulative 
% values of the direct flows between adjacent nodes as the network operates 
% over the simulation run 
% ANFV_tc = over-time-cumulative adjacency node-flow-value matrix 
% (100x100) (values are 0, 1, 2, … ) 
% preallocation and initialization 
ANFV_tc = zeros(100,100); 
% Define a per-time-step “adjacency” multidimensional array that provides 
% the over-time-cumulative values of the direct flows between adjacent 
% nodes at each time step 
% ANFV_tc_TS = per-time-step over-time-cumulative adjacency node-flow-value 
% multidimensional array (100x100xNumTS) (values are 0, 1, 2, … ) 
% preallocation and initialization 
ANFV_tc_TS = zeros(100,100,NumTS); 
  
%% Define a compartment-flow-value “adjacency” matrix and array 
% Define an “adjacency” matrix that provides the over-time-cumulative 
% values of the direct flows between adjacent compartments as the network 
% operates over the simulation run 
% ACFV_tc = over-time-cumulative adjacency compartment-flow-value matrix 
% (10x10) (values are 0, 1, 2, … ) 
% preallocation and initialization 
ACFV_tc = zeros(10,10); 
% Define a per-time-step “adjacency” multidimensional array that provides 
% the over-time-cumulative values of the direct flows between adjacent 
% compartments at each time step 
% ACFV_tc_TS = per-time-step over-time-cumulative adjacency 
% compartment-flow-value multidimensional array (10x10xNumTS) 
% (values are 0, 1, 2, … ) 
% preallocation and initialization 
ACFV_tc_TS = zeros(10,10,NumTS); 
  
%% > Propagation process flow 
  
%% Summary view of the propagation process 
% We are modeling the dynamics of propagation in complex ecological 

182 



% networks.  The propagation process is the core of the model.  The process 
% proceeds by model simulation time step, by stages within a time step, and 
% by node propagation events within a stage.  The propagation process, 
% therefore, has three primary nested loops: 
%   1. Time step loop 
%   2. Stage loop 
%   3. Node propagation event loop 
% Throughout the total propagation process there are also flow control 
% logical constructs as required. 
%  
% Time step loop: 
% A model simulation run consists of NumTS time steps.  The time step loop, 
% therefore, has NumTS iterations.  Each model simulation time step can 
% consist of multiple stages.  Stage 0 is the input stage.  A unit input i  s
% applied to a randomly selected input node.  At every time step, there is 
% a Stage 0 input.  Propagation stages begin with Stage 1. 
%  
% Stage loop: 
% Stage 1 is the first potential propagation stage.  Stage 1 can have zero 
% or one node propagation events – zero if the input node does not 
% propagate and one if it does.  If the node does propagate, we move to 
% stage 2.  Stage 2 (and any subsequent stages) can have zero, one, or more 
% than one node propagation events.  Whenever a given stage has one or mor  e
% propagating nodes, we move to the next stage.  [The presence of multiple 
% propagation stages indicates that a “cascade” is in progress.]  When we 
% reach a stage where there are no more propagating nodes, the simulation 
% time step concludes.  The number of propagation stages for the time step 
% is the last stage number minus 1. 
%  
% Node propagation event loop: 
% Any given propagation stage can have 0, 1, or more node propagation 
% events. The extent of a node propagation event is determined by the total 
% flow from the propagating node.  This is specified by variable npfq – 
% which is determined from the stock and propagation rules.  Each 
% individual event corresponds to an iteration of the node propagation 
% event loop. 
%  
% A node propagation event can be quite complex.  The node propagation 
% event loop, therefore, contains three additional interior nested loops: 
%   a. Neighborhood selection loop 
%   b. Compartment selection loop 
%   c. Node selection and propagation instance loop 
%  
% Here is how we proceed with propagation process development.  We begin 
% with a high-level view of the program flow logic and progress to the 
% detailed MATLAB code.  In this progression, we first define the 
% high-level view of the flow logic and then define the basic propagation 
% process variables (that show up in the high-level view).  Next we define 
% the four sub-processes (and their variables) that are named in the 
% high-level flow, i.e., input node processing, propagating node 
% processing, output node processing, and node propagation instance 
% processing.  We also provide expanded descriptions of other processing 
% activities in the high-level flow as required.  As we proceed, we define 
% additional variables needed to store data for our subsequent analysis 
% and graphics generation activities.  We then add all of this detail to 
% the high-level program flow logic to yield the detailed MATLAB program 
% code for the propagation process. 
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%% High-level view of the program flow for the overall propagation process 
% This is a narrative “pseudocode-like” rendering of the flow 
%  
% for i = 1:NumTS    % Time step loop 
% Perform input node processing 
% if input node stock < thd, continue 
% propagation-event-node-set = input node 
%    for j = 1:100    % Stage loop 
%    % loop upper limit is any number larger than maximum number of stages 
%    NumCStages = j - 1 
%    if propagation-event-node-set is empty, break 
%    Perform propagating node processing 
%       for k = 1:size of propagation-event-node-set  % Node propagation 
%                                                       event loop 
%       Available flow F = npfq 
%       from-node = propagation-event-node-set(k) 
%       if from-node is an output node, perform output node processing, 
%                                       F = F – 1 
%          for u = 1:3    % Neighborhood selection loop 
%          candidate to-node-set = to nodes with adjacency type u 
%          if to-node-set is empty, continue 
%          find to-node-set compartment numbers 
%          find ranks of to-node-set compartment numbers 
%             for v = 1:QNCC(from-node)    % Compartment selection loop 
%             revise to-node-set % to include only the nodes in compartment 
%                                  with rank v 
%             if revised to-node-set is empty, continue 
%                for w = 1:size of revised to-node-set    % Node selection 
%                                            and propagation instance loop 
%                find revised to-node-set attachment preference strengths 
%                find revised to-node-set attachment pref probability set 
%                determine selected-node  % use mnrnd(1, probability set) 
%                % propagate to selected-node 
%                Perform node propagation instance processing 
%                F = F - 1 
%                if F = 0, break 
%                further revise to-node-set by removing selected-node 
%                % proceed until propagate to all nodes in the set or 
%                  until flow is exhausted 
%                end 
%             if F = 0, break 
%             end 
%          if F = 0, break 
%          end 
%       end 
%    check for new node propagation events [>= thd] and 
%    populate propagation-event-node-set 
%    end 
% NumCStages_TS(i) = NumCStages 
% end 
  
%% Define the basic propagation process variables 
% PENodeS = propagation-event-node-set column vector (temporary variable) 
% initialization 
PENodeS = [ ]; 
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% NumCStages = current number of completed propagation stages (scalar) 
% (temporary variable) 
% initialization 
NumCStages = 0; 
% NumCStages_TS = per-time-step row vector of the total number of 
% propagation stages in each individual completed time step (1xNumTS) 
% preallocation and initialization 
NumCStages_TS = zeros(1,NumTS); 
% AvFlow = the currently available-flow for a propagating from-node 
% (scalar) (temporary variable) 
% initialization 
AvFlow = 0; 
% FNode = propagating from-node (scalar) (values are 1 to 100) (temporary 
% variable) 
% initialization 
FNode = [ ]; 
% TNodeS = candidate to-node-set column vector = candidate 
% propagation-instance-node-set column vector (temporary variable) 
% initialization 
TNodeS = [ ]; 
% TNodeSC = to-node-set-compartments column vector (temporary variable) 
% initialization 
TNodeSC = [ ]; 
% TNodeSCR = ranks of to-node-set-compartments column vector 
% (temporary variable) 
% initializatio  n
TNodeSCR = [ ]; 
% RTNodeS = revised to-node-set column vector (temporary variable) 
% initialization 
RTNodeS = [ ]; 
% RTNodeSAPS = revised to-node-set-attachment-preference-strengths 
% column vector (temporary variable) 
% initialization 
RTNodeSAPS = [ ]; 
% RTNodeSAPP = revised to-node-set-attachment-preference-probabilities 
% column vector (temporary variable) 
% initialization 
RTNodeSAPP = [ ]; 
% SNode = propagation instance selected-node (scalar) (values are 1 to 100) 
% (temporary variable) 
% initialization 
SNode = [ ]; 
  
%% Develop input node processing 
% Note that program code that is "commented" in this cell will be made 
% "active" in the overall propagation process cell 
  
% INS_t = input-node-selection row vector for an individual time step 
% (1x100) 
% preallocation and initialization 
INS_t = zeros(1,100); 
% INS_t = IOL(1,:) .* rand(1,100); 
% select the node with the highest random number 
% InputNode_t = selected input-node for an individual time step (scalar) 
% (values are 1 to 100) 
% initialization 
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InputNode_t = [ ]; 
% [C,I] = max(INS_t); 
% InputNode_t = I; 
% apply a unit input to the selected node 
% NSVG_tc(InputNode_t) = NSVG_tc(InputNode_t) + 1; 
  
% INSL_t = input-node-selection-logical matrix for an individual time step 
% (10x10) (values are 0, 1) 
% preallocation and initialization 
INSL_t = zeros(10,10); 
% Identify selected input node 
% INSL_t(InputNode_t) = 1; 
% INSL_t_TS = per-time-step input-node-selection-logical multidimensional 
% array (10x10xNumTS) (matrix values are 0, 1) 
% INSL_t_TS is used for network propagation diagram generation 
% preallocation and initialization 
INSL_t_TS = zeros(10,10, NumTS); 
% update at end of time step 
% INSL_t_TS(:, :, i) = INSL_t; 
% INSL_tc_TS = per-time-step over-time-cumulative 
% input-node-selection-logical multidimensional array (10x10xNumTS) 
% (matrix values are 0, 1) 
% preallocation and initialization 
INSL_tc_TS = zeros(10,10, NumTS); 
% update at end of time step 
% if i > 1 
% INSL_tc_TS(:, :, i) = INSL_tc_TS(:, :, i - 1) + INSL_t_TS(:, :, i); 
% else 
% INSL_tc_TS(:, :, i) = INSL_t_TS(:, :, i); 
% end 
  
% update the node, compartment, and system input and stock values 
% INVG_tc(InputNode_t) = INVG_tc(InputNode_t) + 1; 
% ICV_tc(NCG(InputNode_t)) = ICV_tc(NCG(InputNode_t)) + 1; 
% CSV_tc(NCG(InputNode_t)) = CSV_tc(NCG(InputNode_t)) + 1; 
% SIV_tc = SIV_tc + 1; 
% SSV_tc = SSV_tc + 1; 
% also update INVG_tc_TS, NSVG_tc_TS, ICV_tc_TS, CSV_tc_TS, SIV_tc_TS, and 
% SSV_tc_TS at end of time step 
  
%% Develop propagating node processing 
% Note that program code that is "commented" in this cell will be made 
% "active" in the overall propagation process cell 
  
% PNL_sc = stage-cumulative propagating-node-logical grid matrix (10x10) 
% (values are 0, 1) 
% preallocation and initialization 
PNL_sc = zeros(10,10); 
% identify propagating nodes 
% PNL_sc(PENodeS) = 1; 
% PNL_t_TS = per-time-step multidimensional array of individual time step 
% (stage-cumulative) propagating-node-logical matrices (10x10xNumTS) 
% (matrix values are 0, 1)  
% PNL_t_TS is used for network propagation diagram generation 
% preallocation and initialization 
PNL_t_TS = zeros(10,10, NumTS); 
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% update at end of time step 
% PNL_t_TS(:, :, i) = PNL_sc; 
% PNL_tc_TS = per-time-step over-time-cumulative propagating-node-logical 
% multidimensional array (10x10x NumTS) (matrix values are 0, 1) 
% preallocation and initialization 
PNL_tc_TS = zeros(10,10, NumTS); 
% update at end of time step 
% if i > 1 
% PNL_tc_TS(:, :, i) = PNL_tc_TS(:, :, i - 1) + PNL_t_TS(:, :, i); 
% else 
% PNL_tc_TS(:, :, i) = PNL_t_TS(:, :, i); 
% end 
  
% update the node, compartment, and system stock values 
% NSVG_tc(PENodeS) = NSVG_tc(PENodeS) - npfq; 
% Same compartment can occur more than once – so need loop 
% for jj = 1:size(PENodeS, 1)    % 1: number of propagating nodes 
% CSV_tc(NCG(PENodeS(jj))) = CSV_tc(NCG(PENodeS(jj))) - npfq; 
% end 
% SSV_tc = SSV_tc - npfq * size(PENodeS, 1); 
  
% nnpe_s_S_TS = number-of-node-propagation-events multidimensional vector 
% (1x #stages xNumTS) 
% nnpe_s_S_TS is used for path length analysis 
% preallocation and initialization 
nnpe_s_S_TS = zeros(1,15, NumTS); 
% update nnpe_s_S_TS for stage j and time step i 
% nnpe_s_S_TS(1, j, i) = size(PENodeS, 1); 
% nnpe_sc = stage-cumulative number-of-node-propagation-events (scalar) 
% preallocation and initialization 
nnpe_sc = 0; 
% update nnpe_sc for stage j 
% nnpe_sc = nnpe_sc + size(PENodeS, 1); 
% nnpe_sc_TS = per-time-step stage-cumulative 
% number-of-node-propagation-events vector (1xNumTS) 
% preallocation and initialization 
nnpe_sc_TS = zeros(1, NumTS)  ;
% update at end of time step 
% nnpe_sc_TS(i) = nnpe_sc; 
  
% nopn_s_S_TS = number-of-output-propagating-nodes multidimensional vector 
% (1x #stages xNumTS) 
% nopn_s_S_TS is used for path length analysis 
% preallocation and initialization 
nopn_s_S_TS = zeros(1,15, NumTS); 
% update nopn_s_S_TS for stage j and time step i 
% nopn_s_S_TS(1, j, i) = sum(ONL(PENodeS)); 
% nopn_sc = stage-cumulative number-of-output-propagating-nodes (scalar) 
% preallocation and initialization 
nopn_sc = 0; 
% update nopn_sc for stage j 
% nopn_sc = nopn_sc + sum(ONL(PENodeS)); 
% nopn_sc_TS = per-time-step stage-cumulative 
% number-of-output-propagating-nodes vector (1xNumTS) 
% preallocation and initialization 
nopn_sc_TS = zeros(1, NumTS); 
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% update at end of time step 
% nopn_sc_TS(i) = nopn_sc; 
  
%% Develop output node processing 
% Note that program code that is "commented" in this cell will be made 
% "active" in the overall propagation process cell 
  
% OPNL_sc = stage-cumulative output-propagating-node-logical matrix (10x10) 
% (values are 0, 1) 
% preallocation and initialization 
OPNL_sc = zeros(10,10); 
% identify output node 
% OPNL_sc(FNode) = 1; 
% OPNL_t_TS = per-time-step multidimensional array of individual time step 
% (stage-cumulative) output-propagating-node-logical matrices 
% (10x10xNumTS) (matrix values are 0, 1) 
% OPNL_t_TS is used for network propagation diagram generation 
% preallocation and initialization 
OPNL_t_TS = zeros(10,10, NumTS); 
% update at end of time step 
% OPNL_t_TS(:, :, i) = OPNL_sc; 
% OPNL_tc_TS = per-time-step over-time-cumulative 
% output-propagating-node-logical multidimensional array (10x10x NumTS) 
% (values are 0, 1) 
% preallocation and initialization 
OPNL_tc_TS = zeros(10,10, NumTS); 
% update at end of time step 
% if i > 1 
% OPNL_tc_TS(:, :, i) = OPNL_tc_TS(:, :, i - 1) + OPNL_t_TS(:, :, i); 
% else 
% OPNL_tc_TS(:, :, i) = OPNL_t_TS(:, :, i); 
% end 
  
% update the node, compartment, and system output values 
% ONVG_tc(FNode) = ONVG_tc(FNode) + 1; 
% OCV_tc(NCG(FNode)) = OCV_tc(NCG(FNode)) + 1; 
% SOV_tc = SOV_tc + 1; 
% also update ONVG_tc_TS, OCV_tc_TS, and SOV_tc_TS at end of time step 
  
%% Develop node propagation instance processing 
% Note that program code that is "commented" in this cell will be made 
% "active" in the overall propagation process cell 
  
% nnpi_sc = stage-cumulative number-of-node-propagation-instances (scalar) 
% preallocation and initialization 
nnpi_sc = 0; 
% propagate to selected node 
% nnpi_sc = nnpi_sc + 1; 
% nnpi_sc_TS = per-time-step stage-cumulative 
% number-of-node-propagation-instances vector (1xNumTS) 
% nnpi_sc_TS is used for network propagation event analysis 
% preallocation and initialization 
nnpi_sc_TS = zeros(1, NumTS)  ;
% update at end of time step 
% nnpi_sc_TS(i) = nnpi_sc; 
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% NetPESize_TS = per-time-step network-propagation-event-size vector 
% (1xNumTS) 
% NetPESize_TS is used for network propagation event analysis 
% preallocation and initialization 
NetPESize_TS = zeros(1, NumTS); 
% update at end of time step 
% if nnpi_sc_TS(i) > 1 
% NetPESize_TS(i) = nnpi_sc_TS(i) + 1; 
% else 
% NetPESize_TS(i) = 0; 
% end 
  
% update AAO_t 
% AAO_t(SNode, FNode) = 1; 
% update at end of time step 
% AAO_t_TS(:, :, i) = AAO_t; 
% if i > 1 
% AAO_tc_TS(:, :, i) = AAO_tc_TS(:, :, i - 1) + AAO_t_TS(:, :, i); 
% else 
% AAO_tc_TS(:, :, i) = AAO_t_TS(:, :, i); 
% end 
  
% update the node and compartment flow value matrices and arrays 
% ANFV_tc(SNode, FNode) = ANFV_tc(SNode, FNode) + 1; 
% ACFV_tc(NCG(SNode), NCG(FNode)) = ACFV_tc(NCG(SNode), NCG(FNode)) + 1; 
% also update ANFV_tc_TS and ACFV_tc_TS at end of time step 
% ANFV_tc_TS(:, :, i) = ANFV_tc; 
% ACFV_tc_TS(:, :, i) = ACFV_tc; 
  
% update the node, compartment, and system stock values 
% NSVG_tc(SNode) = NSVG_tc(SNode) + 1; 
% CSV_tc(NCG(SNode)) = CSV_tc(NCG(SNode)) + 1; 
% SSV_tc = SSV_tc + 1; 
% also update NSVG_tc_TS, CSV_tc_TS, and SSV_tc_TS at end of time step 
  
%% Develop other processing activities 
% Note that program code that is "commented" in this cell will be made 
% "active" in the overall propagation process cell 
  
% Develop processing for “candidate to-node-set = to nodes with 
% adjacency type u” 
% TNodeS = find(AAT(:, FNode) == u); 
% AAT row numbers are to-node numbers 
% TNodeS is a column vector of to-node numbers 
  
% Develop processing for “find to-node-set compartment numbers” 
% TNodeSC = ACN(TNodeS, FNode); 
% TNodeSC is a column vector of compartment numbers of the to-nodes 
% When more than one to-node has the same compartment number, 
% elements of TNodeSC are repeated 
  
% Develop processing for “find ranks of to-node-set compartment numbers” 
% TNodeSCR = CSO(TNodeSC, FNode); 
% TNodeSCR is a column vector of ranks of compartment numbers 
% of the to-nodes 
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% The row specification for CSO can contain repeated rows 
% TNodeSCR, therefore, can contain repeated ranks 
  
% Develop processing for “revise to-node-set to include only the nodes 
% in compartment with rank v” 
% RTNodeS = TNodeS(find(TNodeSCR == v)); 
% RTNodeS can contain zero, one, or more elements 
% MATLAB gives the same result with or without the “find” function 
  
% Develop processing for “find revised to-node-set attachment preference 
% strengths” 
% RTNodeSAPS = AAP(RTNodeS, FNode); 
% RTNodeSAPS is a column vector of attachment preference strengths 
% of the to-nodes 
  
% Develop processing for “find revised to-node-set attachment preference 
% probability set” 
% RTNodeSAPP = RTNodeSAPS / sum(RTNodeSAPS); 
% RTNodeSAPP is a column vector (set) of attachment preference 
% probabilities of the to-nodes 
  
% Develop processing for “determine selected-node” 
% SNode = RTNodeS(find(mnrnd(1, RTNodeSAPP) == 1)); 
% For 1 trial and to-node probability set RTNodeSAPP, MATLAB function 
% “mnrnd” provides a row vector of outcomes with a one to indicate the 
% selected node and zeros elsewhere.  Function “find” provides the index 
% of the selected node.  RTNodeS(index) provides the selected node number. 
% MATLAB gives the same result with or without the “find” function 
  
% Develop processing for “further revise to-node-set by 
% removing selected-node” 
% RTNodeS(RTNodeS == SNode) = [ ]; 
% This command simply removes SNode from RTNodeS 
  
% Develop processing for “check for new node propagation events and 
% populate propagation-event-node-set” 
% PENodeS = find(NSVG_tc >= thd); 
% We must check each node stock value to see if any are equal to or 
% greater than the node stock value threshold, thd.  Any node that 
% satisfies this condition is a propagating node that initiates a 
% node propagation event and becomes an element of PENodeS. 
  
%% Develop detailed program flow for the overall propagation process 
  
% Add all of the above detail to the high-level program flow logic 
% to yield the detailed MATLAB program code for the propagation process 
  
for i = 1:NumTS    % Time step loop 
INSL_t = zeros(10,10); 
PNL_sc = zeros(10,10); 
nnpe_sc = 0; 
nopn_sc = 0; 
OPNL_sc = zeros(10,10); 
nnpi_sc = 0; 
AAO_t = zeros(100,100); 
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% perform input node processing: 
% select an input node at random 
INS_t = IOL(1,:) .* rand(1,100); 
[C,I] = max(INS_t); 
InputNode_t = I; 
% apply a unit input to the selected node 
NSVG_tc(InputNode_t) = NSVG_tc(InputNode_t) + 1; 
% identify selected input node in grid 
INSL_t(InputNode_t) = 1; 
% update the node, compartment, and system input and stock values 
INVG_tc(InputNode_t) = INVG_tc(InputNode_t) + 1; 
ICV_tc(NCG(InputNode_t)) = ICV_tc(NCG(InputNode_t)) + 1; 
CSV_tc(NCG(InputNode_t)) = CSV_tc(NCG(InputNode_t)) + 1; 
SIV_tc = SIV_tc + 1; 
SSV_tc = SSV_tc + 1; 
% check for input node propagation 
if NSVG_tc(InputNode_t) < thd 
PENodeS = [ ]; 
% input node does not propagate 
% proceed to stage loop and “break” to update data for the time step 
else 
PENodeS = InputNode_t; 
% input node propagates 
% proceed to stage loop 
% after all propagation concludes, update data for the time step 
end 
  
  for j = 1:100    % Stage loop 
  % loop upper limit is any number larger than maximum number of stages 
  NumCStages = j - 1; 
  if isempty(PENodeS) == 1 
  break 
  end 
  % perform propagating node processing: 
  % identify propagating nodes in grid 
  PNL_sc(PENodeS) = 1; 
  % update the node, compartment, and system stock values 
  NSVG_tc(PENodeS) = NSVG_tc(PENodeS) - npfq; 
  % Same compartment can occur more than once – so need loop 
  for jj = 1:size(PENodeS, 1)    % 1: number of propagating nodes 
  CSV_tc(NCG(PENodeS(jj))) = CSV_tc(NCG(PENodeS(jj))) - npfq; 
  end 
  SSV_tc = SSV_tc - npfq * size(PENodeS, 1); 
  % update nnpe_s_S_TS for stage j and time step i 
  nnpe_s_S_TS(1, j, i) = size(PENodeS, 1); 
  % update nnpe_sc for stage j 
  nnpe_sc = nnpe_sc + size(PENodeS, 1); 
  % update nopn_s_S_TS for stage j and time step i 
  nopn_s_S_TS(1, j, i) = sum(ONL(PENodeS)); 
  % update nopn_sc for stage j 
  nopn_sc = nopn_sc + sum(ONL(PENodeS)); 
  
    for k = 1: size(PENodeS, 1)    % Node propagation event loop 
    AvFlow = npfq; 
    FNode = PENodeS(k); 
    if IOL(2, FNode) == 1  % if from-node is an output node 
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    % perform output node processing: 
    % identify output node in grid 
    OPNL_sc(FNode) = 1; 
    % update the node, compartment, and system output values 
    ONVG_tc(FNode) = ONVG_tc(FNode) + 1; 
    OCV_tc(NCG(FNode)) = OCV_tc(NCG(FNode)) + 1; 
    SOV_tc = SOV_tc + 1; 
    AvFlow = AvFlow - 1; 
    end 
  
      for u = 1:3    % Neighborhood selection loop 
      % candidate to-node-set = to nodes with adjacency type u 
      TNodeS = find(AAT(:, FNode) == u); 
      if isempty(TNodeS) == 1 
      continue 
      end 
      % to-node-set compartment numbers 
      TNodeSC = ACN(TNodeS, FNode); 
      % ranks of to-node-set compartment numbers 
      TNodeSCR = CSO(TNodeSC, FNode); 
  
        for v = 1:QNCC(FNode)    % Compartment selection loop 
        % revise to-node-set to include only the nodes in compartment 
        % with rank v 
        RTNodeS = TNodeS(find(TNodeSCR == v)); 
        if isempty(RTNodeS) == 1 
        continue 
        end 
        upperlimit = size(RTNodeS, 1); 
  
          for w = 1: upperlimit    % Node selection and 
                                   % propagation instance loop 
          % revised to-node-set attachment preference strengths 
          RTNodeSAPS = AAP(RTNodeS, FNode); 
          % revised to-node-set attachment preference probability set 
          % (normalized strengths) 
          RTNodeSAPP = RTNodeSAPS / sum(RTNodeSAPS); 
          % determine selected-node 
          SNode = RTNodeS(find(mnrnd(1, RTNodeSAPP) == 1)); 
          % perform node propagation instance processing: 
          % propagate to selected node 
          nnpi_sc = nnpi_sc + 1; 
          % update AAO_t 
          AAO_t(SNode, FNode) = 1; 
          % update the node and compartment flow value matrices 
          ANFV_tc(SNode, FNode) = ANFV_tc(SNode, FNode) + 1; 
          ACFV_tc(NCG(SNode), NCG(FNode)) = ... 
              ACFV_tc(NCG(SNode), NCG(FNode)) + 1; 
          % update the node, compartment, and system stock values 
          NSVG_tc(SNode) = NSVG_tc(SNode) + 1; 
          CSV_tc(NCG(SNode)) = CSV_tc(NCG(SNode)) + 1; 
          SSV_tc = SSV_tc + 1; 
          % Although we do, actually don’t need to update SSV 
          % variables (- or +) for internal propagation 
          % Net result is zero 
          AvFlow = AvFlow - 1; 
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          if AvFlow == 0 
          break 
          end 
          % further revise to-node-set by removing selected-node 
          RTNodeS(RTNodeS == SNode) = [ ]; 
          % reinitialize some variables 
          RTNodeSAPS = [ ] ; 
          RTNodeSAPP = [ ] ; 
          SNode = [ ] ; 
          % proceed until propagate to all nodes in the set or 
          % until flow is exhausted 
          end 
  
        % reinitialize 
        RTNodeS = [ ]; 
        if AvFlow == 0 
        break 
        end 
        end 
  
      % reinitialize variables 
      TNodeS = [ ] ; 
      TNodeSC = [ ] ; 
      TNodeSCR = [ ] ; 
      if AvFlow == 0 
      break 
      end 
      end 
  
    % reinitialize 
    FNode = [ ]; 
    end 
  
  % reinitialize 
  PENodeS = [ ]; 
  % check for new node propagation events and populate PENodeS 
  PENodeS = find(NSVG_tc >= thd); 
  end 
  
% update data for the time step 
NumCStages_TS(i) = NumCStages; 
NSVG_tc_TS(:, :, i) = NSVG_tc; 
  
INSL_t_TS(:, :, i) = INSL_t; 
if i > 1 
INSL_tc_TS(:, :, i) = INSL_tc_TS(:, :, i - 1) + INSL_t_TS(:, :, i); 
else 
INSL_tc_TS(:, :, i) = INSL_t_TS(:, :, i); 
end 
% In INSL_tc_TS, if any element > 1 then element = 1 
check1 = INSL_tc_TS(:, :, i); 
check1(check1 > 1) = 1; 
INSL_tc_TS(:, :, i) = check1; 
  
INVG_tc_TS(:, :, i) = INVG_tc; 
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ICV_tc_TS(:, :, i) = ICV_tc; 
CSV_tc_TS(:, :, i) = CSV_tc; 
SIV_tc_TS(1, i) = SIV_tc; 
SSV_tc_TS(1, i) = SSV_tc; 
  
% In PNL_sc, if any element > 1 then element = 1 
PNL_sc(PNL_sc > 1) = 1; 
PNL_t_TS(:, :, i) = PNL_sc; 
if i > 1 
PNL_tc_TS(:, :, i) = PNL_tc_TS(:, :, i - 1) + PNL_t_TS(:, :, i); 
else 
PNL_tc_TS(:, :, i) = PNL_t_TS(:, :, i); 
end 
% In PNL_tc_TS, if any element > 1 then element = 1 
check2 = PNL_tc_TS(:, :, i); 
check2(check2 > 1) = 1; 
PNL_tc_TS(:, :, i) = check2; 
  
nnpe_sc_TS(i) = nnpe_sc; 
nopn_sc_TS(i) = nopn_sc; 
  
% In OPNL_sc, if any element > 1 then element = 1 
OPNL_sc(OPNL_sc > 1) = 1; 
OPNL_t_TS(:, :, i) = OPNL_sc; 
if i > 1 
OPNL_tc_TS(:, :, i) = OPNL_tc_TS(:, :, i - 1) + OPNL_t_TS(:, :, i); 
else 
OPNL_tc_TS(:, :, i) = OPNL_t_TS(:, :, i); 
end 
% In OPNL_tc_TS, if any element > 1 then element = 1 
check3 = OPNL_tc_TS(:, :, i); 
check3(check3 > 1) = 1; 
OPNL_tc_TS(:, :, i) = check3; 
  
ONVG_tc_TS(:, :, i) = ONVG_tc; 
OCV_tc_TS(:, :, i) = OCV_tc; 
SOV_tc_TS(1, i) = SOV_tc; 
  
nnpi_sc_TS(i) = nnpi_sc; 
NetPESize_TS(i) = nnpi_sc_TS(i) + 1; 
  
% In AAO_t, if any element > 1 then element = 1 
AAO_t(AAO_t > 1) = 1; 
AAO_t_TS(:, :, i) = AAO_t; 
if i > 1 
AAO_tc_TS(:, :, i) = AAO_tc_TS(:, :, i - 1) + AAO_t_TS(:, :, i); 
else 
AAO_tc_TS(:, :, i) = AAO_t_TS(:, :, i); 
end 
% In AAO_tc_TS, if any element > 1 then element = 1 
check4 = AAO_tc_TS(:, :, i); 
check4(check4 > 1) = 1; 
AAO_tc_TS(:, :, i) = check4; 
  
ANFV_tc_TS(:, :, i) = ANFV_tc; 
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ACFV_tc_TS(:, :, i) = ACFV_tc; 
end 
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APPENDIX E 

DYNAMICS MODEL ANALYSIS M-FILE 

%% Model of Ecological Network Propagation Dynamics 
%  Analysis Activities m-file 
  
% We describe and develop the analysis activities program code 
% in the following order: 
%   > Network input, output, stock, and flow analysis 
%   > Network propagation event analysis 
%   > Path length analysis 
%   > Indirect effects analysis 
%   > Network connectivity analysis 
  
%% > Network input, output, stock, and flow analysis 
  
% An important vehicle for depicting network input, output, stock, 
% and flow dynamics is the network node-and-link propagation flow diagram. 
% Variables AAO_t_TS, AAO_tc_TS, INSL_t_TS, INSL_tc_TS, PNL_t_TS, 
% PNL_tc_TS, OPNL_t_TS, and OPNL_tc_TS are used to produce these diagrams. 
% Cumulative flow value diagrams provide an "adjacency matrix" depiction of 
% network flow.  Variables ANFV_tc_TS and ACFV_tc_TS can be used to 
% generate node flow value diagrams and compartment flow value diagrams, 
% respectively. 
  
% Network input, output, and stock histories can be plotted and displayed 
% on 3-D grid bar/stack charts.  We use an appropriate MATLAB 
% 3-D/discrete-surface plotting capability.  Some or all of the 
% following cumulative variables can be plotted: 
%  INVG_tc_TS = input-node-value-grid multidimensional array (10x10xNumTS) 
%  ICV_tc_TS = input-compartment-value multidimensional vector (1x10xNumTS) 
%  SIV_tc_TS = system-input-value vector (1xNumTS) 
%  ONVG_tc_TS = output-node-value-grid multidimensional array (10x10xNumTS) 
%  OCV_tc_TS = output-compartment-value multidimensional vector(1x10xNumTS) 
%  SOV_tc_TS = system-output-value vector (1xNumTS) 
%  NSVG_tc_TS = node-stock-value-grid multidimensional array (10x10xNumTS) 
%  CSV_tc_TS = compartment-stock-value multidimensional vector (1x10xNumTS) 
%  SSV_tc_TS = system-stock-value vector (1xNumTS) 
  
% The production of these diagrams/graphs is accomplished in the 
% graphics generation m-file. 
  
%% > Network propagation event analysis 
  
% For the entire simulation run (after all time steps), perform over-time 
% network propagation event analysis.  In the master m-file, we have 
% calculated network propagation event size per-time-step and have stored 
% the data in vector NetPESize_TS. 
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%% Develop network propagation event time series 
% Create network propagation event time series (event size vs. time). 
% Vector NetPESize_TS provides the data. 
  
% Time series = NetPESize_TS 
% We can plot and analyze the time series with or without 
% non-propagation events included. 
  
% With non-propagation time steps: 
NetPESize_TSwnp = NetPESize_TS; 
  
% Without non-propagation time steps: 
% remove non-propagation time steps (size = 1) from NetPESize_TS 
NetPESize_TS(NetPESize_TS == 1) = [ ]; 
  
%% Develop network propagation event distribution 
% Develop a network propagation event distribution (number of events vs. 
% size of events) as follows:   
%   Define a size interval (>= 1) and partition the NetPESize_TS domain 
%   into intervals. 
%   Count the number of events in each interval. 
%   Generate a distribution with the ordered event size intervals as 
%   abscissa and the number of events in each of those size intervals 
%   as ordinate. 
% Create a scalar variable that specifies the size interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
% Create a distribution matrix variable in which column 1 contains 
% the ordered event size intervals and column 2 contains the number 
% of events in each of those size intervals. 
  
% nsi = network propagation event size interval (scalar) 
% nintervals = number of intervals (scalar) (temporary variable) 
% NetPEDistr = network propagation event distribution matrix 
% (#size intervals x 2) 
  
% set and initialize variables 
nsi = 10; 
nintervals = ceil(max(NetPESize_TS) / nsi);    % rounded up 
NetPEDistr = zeros(nintervals, 2); 
% populate distribution matrix 
for j = 1: nintervals 
    NetPEDistr(j, 1) = j * nsi; 
    NetPEDistr(j, 2) = sum((j - 1) * nsi < NetPESize_TS & ... 
        NetPESize_TS <= j * nsi); 
end 
  
% in NetPEDistr, remove "x,y pairs" (rows) with zero propagation events 
% (i.e., with zero in column 2) 
% more time steps (samples) would likely fill zero-valued intervals 
NetPEDistr(find(NetPEDistr(:,2) == 0),:) = [ ]; 
  
%% Develop network propagation event frequency spectrum 
% Take the discrete Fourier transform (DFT) of the event time series 
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% to obtain its frequency spectrum.  Use the MATLAB fast Fourier transform 
% function (fft) to accomplish that.  The procedure follows. 
  
% NetPESize_TS = original NetPESize_TS with non-propagation events removed 
% Lsig = length of signal time series (scalar) 
% NFFT = next power of 2 up from Lsig (scalar) 
% PEdft = propagation event discrete Fourier transform vector (1 x NFFT) 
% PEssAmp = propagation event single-sided amplitude vector (1 x NFFT/2+1) 
% normfreq = vector of normalized frequency values (1 x NFFT/2+1) 
% numpoints = number of frequency spectrum points for partial spectrum 
% (scalar) (the maximum number of points available = NFFT/2+1) 
% freq = vector of normalized frequency values for partial spectrum 
% (1 x numpoints) 
% amp = vector of amplitude values for partial spectrum (1 x numpoints) 
  
Lsig = size(NetPESize_TS, 2); 
NFFT = 2^nextpow2(Lsig); 
PEdft = fft(NetPESize_TS, NFFT)/Lsig; 
PEssAmp = 2*abs(PEdft(1:NFFT/2+1)); 
normfreq = 100*linspace(0,1,NFFT/2+1); 
numpoints = 50; 
freq = normfreq(1:numpoints); 
amp = PEssAmp(1:numpoints); 
  
% plot the full frequency spectrum 
% plot(normfreq, PEssAmp) 
% title('Single-Sided Network Propagation Event Frequency Spectrum') 
% xlabel('Normalized Frequency (Hz)') 
% ylabel('Amplitude') 
  
% plot partial frequency spectrum 
% plot(freq, amp) 
% title('Network Propagation Event Frequency Spectrum (Partial)') 
% xlabel('Normalized Frequency (Hz)') 
% ylabel('Amplitude') 
  
% The resulting plots certainly suggest a "1/f noise" spectrum and fractal 
% behavior in time.  I cannot confirm this with a straight-line loglog 
% plot.  The accuracy of the Fourier transform data is not high enough for 
% that. 
  
% The accuracy of these discrete Fourier transform computations is limited 
% by the relatively short length of the signal time series.  Much improved 
% accuracy would result from signal lengths on the order of 10,000 or even 
% 25,000.  Such values, however, are way beyond the capacity of my 
% computer. 
  
%% > Path length analysis 
  
% Perform network path length analysis for the entire simulation run 
% (after all time steps). 
% Develop a path length time series and path length distribution. 
% Based on the path length equations that I have derived (see Chapter 5 
% of the dissertation document) and the data generated by the master 
% m-file, path length exhibits punctuated dynamics.  We need a measure 
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% that effectively captures those dynamics in the time series and 
% distribution.  A good measure is the maximum path length achieved at 
% each time step.  We develop a maximum-path-length time series and 
% distribution for the entire simulation run. 
% Note that our approach here has both spatial and temporal dimensions. 
% We investigate individual events at points in time rather than 
% cumulative activity over time. 
% Cunulative path length distributions depict over-time average activity. 
% Such distributions are not particularly meaningful in a 
% punctuated dynamics environment. 
  
% Also perform path length analysis at each time step. 
% Develop individual-time-step and cumulative (from time step one to the 
% current time step) path length distributions. 
% Each path length distribution provides the number of paths vs. 
% path length.  The equations for the path length distributions are given 
% in Chapter 5 of the dissertation document. 
  
% The source data needed for path length analysis has been generated 
% in the master m-file and stored as variables NumTS, NumCStages_TS, 
% nnpe_s_S_TS, nopn_s_S_TS, and npfq: 
%  NumTS = number of model simulation time steps 
%  NumCStages_TS = total number of propagation stages in each completed 
%  time step 
%  nnpe_s_S_TS = total number of propagating nodes per stage per time step 
%  nopn_s_S_TS = number of output propagating nodes per stage per time step 
%  npfq = node propagation flow quantity 
  
%% Develop path length time series for the entire simulation run 
% Develop the path length time series (maximum path length 
% at each time step vs. time) for the entire simulation run. 
  
% Define the time series vector (PLmax_TS) (1x NumTS) that provides the 
% maximum path length in each time step. 
% Define a scalar (PLltmax) that provides the long-term maximum 
% path length in all time steps. 
PLmax_TS = NumCStages_TS; 
PLltmax = max(PLmax_TS); 
  
% Time series = PLmax_TS 
% We can plot and analyze the time series with or without 
% non-propagation events included. 
  
% With non-propagation time steps: 
PLmax_TSwnp = PLmax_TS; 
  
% Without non-propagation time steps: 
% remove non-propagation time steps (path length = 0) from PLmax_TS 
PLmax_TS(PLmax_TS == 0) = [ ]; 
% in the spatial box-covering approach, such elements are sometimes 
% not removed -- but probably should be 
  
% Note that PLltmax is an upper bound for the network diameter 
% of the simulation-run network. 
  

199 



%% Develop path length distribution for the entire simulation run 
% Develop the path length distribution (number of events vs. 
% maximum path length) for the entire simulation run. 
% Note that our approach here (and the resulting distribution) is a 
% temporal analog of the spatial box-covering approach to developing 
% path length distribution.  See Chapter 4 of the dissertation document for 
% a description of the spatial box-covering approach. 
  
% Create a two-column path length distribution matrix (MaxPLDistr). 
% Column 1 contains the path length intervals and column 2 contains 
% the number of events in each of those length intervals. 
% Create a scalar variable that specifies the length interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
  
% plsi = path length size interval (scalar) 
% nplintervals = number of path length intervals (scalar) 
% (temporary variable) 
% MaxPLDistr = maximum path length distribution matrix 
% (#size intervals x 2) 
  
% set and initialize variables 
plsi = 1; 
nplintervals = ceil(max(PLmax_TS) / plsi);    % rounded up 
MaxPLDistr = zeros(nplintervals, 2); 
% populate distribution matrix 
for j = 1: nplintervals 
    MaxPLDistr(j, 1) = j * plsi; 
    MaxPLDistr(j, 2) = sum((j - 1) * plsi < PLmax_TS & ... 
        PLmax_TS <= j * plsi); 
end 
  
% in MaxPLDistr, remove "x,y pairs" (rows) with zero occurrences for the 
% length interval (i.e., with zero in column 2) 
% more time steps (samples) would likely fill zero-valued intervals 
MaxPLDistr(find(MaxPLDistr(:,2) == 0),:) = [ ]; 
  
% After developing individual-time-step path length distribution data 
% (next), we will develop another time-integrated path length distribution 
% using mean path length at each individual time step. 
% We will compare the mean-path-length time series and distribution with 
% the maximum-path-length time series and distribution (developed above) 
% and observe the relative dynamics. 
  
%% Develop individual-time-step path length distributions 
% Create a multidimensional array that provides the two-column path length 
% distribution matrix for each individual time step per time step. 
% In each matrix, column 1 contains the path length and column 2 contains 
% the number of paths for each of those lengths. 
% For matrix rows greater than the maximum path length for that time step, 
% column 2 contains zeros. 
% For non-propagation time steps, matrix column 2 contains all zeros. 
% PLDistr_t_TS = path length distribution per time step 
% (PLltmax x 2 x NumTS) 
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% initialization 
PLDistr_t_TS = zeros(PLltmax, 2, NumTS); 
for ii = 1: PLltmax 
    PLDistr_t_TS(ii, 1, :) = ii; 
end 
% populate distribution array 
for i = 1: NumTS 
    for j = 1: PLltmax 
        PLDistr_t_TS(j, 2, i) = npfq * sum(nnpe_s_S_TS(1, j : end, i)) -... 
            sum(nopn_s_S_TS(1, j : end, i)); 
   nd  e
end 
  
% can find propagating time steps and their maximum path lengths 
% from vector NumCStages_TS 
% can find propagating time steps and their network propagation event size 
% from vector NetPESize_TSwnp 
% before plotting the distribution for that time step, remove the rows 
% that contain zero in column 2 (if any) 
  
% Each of these distributions is for a single network propagation event. 
% Each distribution (normal coordinates plot) is monotonically decreasing 
% like a power-law curve, but falls more slowly than a power-law curve. 
% The log-log plot is not a straight line. 
% It appears that single network propagation events do not exhibit 
% path length power-law/fractal behavior. 
  
%% Develop mean path length time series for the entire simulation run 
% This development comes at this point in the sequence because variable 
% PLDistr_t_TS is required. 
  
% Develop the mean path length time series (mean path length 
% at each time step vs. time) for the entire simulation run. 
  
% Define variables PLmean_TS, PLsum, and PLtotal. 
% PLmean_TS = time series vector that provides the mean path length 
% in each individual time step (1x NumTS) 
% PLsum = weighted sum of path lengths in an individual time step (scalar) 
% (temporary variable) 
% PLtotal = total number of paths in an individual time step (scalar) 
% (temporary variable) 
  
% initialization and allocation 
PLmean_TS = zeros(1,NumTS); 
  
% populate time series vector 
for i=1:NumTS  % time steps 
    PLsum = 0; 
    for j=1:PLltmax  % rows of PLDistr_t_TS 
        PLsum = PLsum + (PLDistr_t_TS(j,1,i) * PLDistr_t_TS(j,2,i)); 
    end 
    PLtotal = sum(PLDistr_t_TS(:,2,i)); 
    PLmean_TS(i) = PLsum / PLtotal; 
end 
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% in time steps with no propagation, the above expression 
% yields 0/0 or NaN 
% replace the NaN elements with zeros 
PLmean_TS(isnan(PLmean_TS)) = 0; 
  
% Time series = PLmean_TS 
% We can plot and analyze the time series with or without 
% non-propagation events included. 
  
% With non-propagation time steps: 
PLmean_TSwnp = PLmean_TS; 
  
% Without non-propagation time steps: 
% remove non-propagation time steps (path length = 0) from PLmean_TS 
PLmean_TS(PLmean_TS == 0) = [ ]; 
  
%% Develop mean path length distribution for the entire simulation run 
% Develop the mean path length distribution (number of events vs. 
% mean path length) for the entire simulation run. 
  
% Create a two-column path length distribution matrix (MeanPLDistr). 
% Column 1 contains the path length intervals and column 2 contains 
% the number of events in each of those length intervals. 
% Create a scalar variable that specifies the length interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
  
% mplsi = mean path length size interval (scalar) 
% nmplintervals = number of mean path length intervals (scalar) 
% (temporary variable) 
% MeanPLDistr = mean path length distribution matrix (#size intervals x 2) 
  
% set and initialize variables 
% use the next statement only if mplsi = 1 
% PLmean_TS = round(PLmean_TS); 
mplsi = 0.25; 
nmplintervals = ceil(max(PLmean_TS) / mplsi);    % rounded up 
MeanPLDistr = zeros(nmplintervals, 2); 
% populate distribution matrix 
for j = 1: nmplintervals 
    MeanPLDistr(j, 1) = j * mplsi; 
    MeanPLDistr(j, 2) = sum((j - 1) * mplsi < PLmean_TS & ... 
        PLmean_TS <= j * mplsi); 
end 
  
% in MeanPLDistr, remove "x,y pairs" (rows) with zero occurrences for the 
% length interval (i.e., with zero in column 2) 
% more time steps (samples) would likely fill zero-valued intervals 
MeanPLDistr(find(MeanPLDistr(:,2) == 0),:) = [ ]; 
  
%% Develop cumulative path length distributions 
% Create another multidimensional array that provides the 
% over-time-cumulative two-column path length distribution matrix 
% per time step. 
% In each matrix, column 1 contains the path length and column 2 contains 
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% the number of paths for each of those lengths. 
% PLDistr_tc_TS = over-time-cumulative path length distribution 
% per time step (PLltmax x 2 x NumTS) 
  
% initialization 
PLDistr_tc_TS = zeros(PLltmax, 2, NumTS); 
for ii = 1: PLltmax 
    PLDistr_tc_TS(ii, 1, :) = ii; 
end 
% populate distribution array 
for i = 1: NumTS 
    if i > 1 
        PLDistr_tc_TS(:, 2, i) = PLDistr_tc_TS(:, 2, i - 1) + ... 
            PLDistr_t_TS(:, 2, i); 
    else 
        PLDistr_tc_TS(:, 2, i) = PLDistr_t_TS(:, 2, i); 
    end 
end 
  
% Each of these distributions is cumulative (from time step one to the 
% current time step) and is essentially an over-time average path length 
% distribution.  Each distribution (normal coordinates plot) is 
% monotonically decreasing like a power-law curve, but falls more slowly 
% than a power-law curve (and, interestingly, falls more rapidly than 
% individual-time-step distributions). 
% The log-log plot is not a straight line. 
% These distributions do not exhibit power-law/fractal behavior. 
% In a punctuated dynamics context, distributions of path length averages 
% may not be meaningful. 
% The cumulative values of the various path lengths, however, are useful. 
  
%% > Indirect effects analysis 
  
% Perform over-time and per-time-step network indirect effects analysis. 
% The source data needed to do this has been generated in the above 
% path length analysis program cells. 
  
% Calculate the Direct Effects Ratio (DER), Indirect Effects Ratio (IER), 
% and Indirect Effects Index (IEI) using the expressions provided in 
% Chapter 5 of the dissertation document. 
% DER equals the number of paths of length 1 divided by the total number 
% of paths.  IER equals the number of paths of length > 1 divided by the 
% total number of paths.  IEI equals the number of paths of length > 1 
% divided by the number of paths of length 1. 
% Generate time series for the direct effects and indirect effects 
% indicators – both the individual-time-step values vs. time and the 
% over-time-cumulative values vs. time. 
  
% Develop an indirect path quantity time series and distribution 
% as well as a direct path quantity time series and distribution 
% for the simulation run. 
% Each time series provides the number of paths at each time step vs. time. 
  
% Also develop a cumulative indirect path quantity time series and a 
% cumulative direct path quantity time series for the simulation run. 
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% Each time series provides the cumulative number of paths at each 
% time step vs. time. 
  
%% Develop individual-time-step time series for the indicators 
% Create vectors that provide time series (individual-time-step values 
% vs. time) for the direct effects and indirect effects indicators. 
% DER_t_TS = Direct Effects Ratio for each individual time step in 
% the simulation run per time step (1 x NumTS) 
% IER_t_TS = Indirect Effects Ratio for each individual time step in 
% the simulation run per time step (1 x NumTS) 
% IEI_t_TS = Indirect Effects Index for each individual time step in 
% the simulation run per time step (1 x NumTS) 
  
% preallocation and initialization 
DER_t_TS = zeros(1, NumTS); 
IER_t_TS = zeros(1, NumTS); 
IEI_t_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    DER_t_TS(i) = PLDistr_t_TS(1, 2, i) / ... 
        sum(PLDistr_t_TS(1:end, 2, i)); 
    IER_t_TS(i) = sum(PLDistr_t_TS(2:end, 2, i)) / ... 
        sum(PLDistr_t_TS(1:end, 2, i)); 
    IEI_t_TS(i) = sum(PLDistr_t_TS(2:end, 2, i)) / ... 
        PLDistr_t_TS(1, 2, i); 
end 
  
% in time steps with no propagation, the above expressions 
% yield 0/0 or NaN 
% replace the NaN elements with zeros 
DER_t_TS(isnan(DER_t_TS)) = 0; 
IER_t_TS(isnan(IER_t_TS)) = 0; 
IEI_t_TS(isnan(IEI_t_TS)) = 0; 
  
%% Develop cumulative time series for the indicators 
% Create vectors that provide time series (over-time-cumulative values 
% vs. time) for the direct effects and indirect effects indicators. 
% DER_tc_TS = per-time-step over-time-cumulative Direct Effects Ratio 
% (1 x NumTS) 
% IER_tc_TS = per-time-step over-time-cumulative Indirect Effects Ratio 
% (1 x NumTS) 
% IEI_tc_TS = per-time-step over-time-cumulative Indirect Effects Index 
% (1 x NumTS) 
  
% preallocation and initialization 
DER_tc_TS = zeros(1, NumTS); 
IER_tc_TS = zeros(1, NumTS); 
IEI_tc_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    DER_tc_TS(i) = PLDistr_tc_TS(1, 2, i) / sum(PLDistr_tc_TS(:, 2, i)); 
    IER_tc_TS(i) = sum(PLDistr_tc_TS(2:end, 2, i)) / ... 
        sum(PLDistr_tc_TS(:, 2, i)); 
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    IEI_tc_TS(i) = sum(PLDistr_tc_TS(2:end, 2, i)) / ... 
        PLDistr_tc_TS(1, 2, i); 
end 
  
% replace the NaN elements with zeros 
DER_tc_TS(isnan(DER_tc_TS)) = 0; 
IER_tc_TS(isnan(IER_tc_TS)) = 0; 
IEI_tc_TS(isnan(IEI_tc_TS)) = 0; 
  
%% Develop indirect path quantity time series 
% Develop the simulation run indirect path quantity time series 
% (number of indirect paths at each time step vs. time). 
% IndPathQ_TS = indirect-path-quantity time series vector (1 x NumTS) 
  
% preallocation and initialization 
IndPathQ_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    IndPathQ_TS(i) = sum(PLDistr_t_TS(2:end, 2, i)); 
end 
  
% We can plot and analyze the time series with or without 
% "zero events" (events that have zero indirect paths) included. 
  
% With zero-event time steps: 
IndPathQ_TSwze = IndPathQ_TS; 
  
% Without zero-event time steps: 
% remove zero-event time steps (quantity = 0) from IndPathQ_TS 
IndPathQ_TS(IndPathQ_TS == 0) = [ ]; 
  
%% Develop indirect path quantity distribution 
% Develop an indirect path quantity distribution (number of 
% propagation events vs. quantity of indirect paths) as follows:   
%   Define a size interval (>= 1) and partition the IndPathQ_TS domain 
%   into intervals. 
%   Count the number of events in each interval. 
%   Generate a distribution with the ordered event size intervals as 
%   abscissa and the number of events in each of those size intervals 
%   as ordinate. 
% Create a scalar variable that specifies the size interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
% Create a distribution matrix variable in which column 1 contains 
% the ordered event size intervals and column 2 contains the number 
% of events in each of those size intervals. 
  
% ipsi = indirect path size interval (scalar) 
% nipintervals = number of indirect path intervals (scalar) 
% (temporary variable) 
% IndPathQDistr = indirect path quantity distribution matrix 
% (#size intervals x 2) 
  
% set and initialize variables 
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ipsi = 100; 
nipintervals = ceil(max(IndPathQ_TS) / ipsi);    % rounded up 
IndPathQDistr = zeros(nipintervals, 2); 
% populate distribution matrix 
for j = 1: nipintervals 
    IndPathQDistr(j, 1) = j * ipsi; 
    IndPathQDistr(j, 2) = sum((j - 1) * ipsi < IndPathQ_TS & ... 
        IndPathQ_TS <= j * ipsi); 
end 
  
% in IndPathQDistr, remove "x,y pairs" (rows) with "zero events" 
% (i.e., with zero in column 2) 
% more time steps (samples) would likely fill zero-valued intervals 
IndPathQDistr(find(IndPathQDistr(:,2) == 0),:) = [ ]; 
  
%% Develop direct path quantity time series 
% Develop the simulation run direct path quantity time series 
% (number of direct paths at each time step vs. time). 
% DirPathQ_TS = direct-path-quantity time series vector (1 x NumTS) 
  
% preallocation and initialization 
DirPathQ_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    DirPathQ_TS(i) = PLDistr_t_TS(1, 2, i); 
end 
  
% We can plot and analyze the time series with or without 
% "zero events" (events that have zero direct paths) included. 
  
% With zero-event time steps: 
DirPathQ_TSwze = DirPathQ_TS; 
  
% Without zero-event time steps: 
% remove zero-event time steps (quantity = 0) from DirPathQ_TS 
DirPathQ_TS(DirPathQ_TS == 0) = [ ]; 
  
%% Develop direct path quantity distribution 
% Develop a direct path quantity distribution (number of 
% propagation events vs. quantity of direct paths) as follows:   
%   Define a size interval (>= 1) and partition the DirPathQ_TS domain 
%   into intervals. 
%   Count the number of events in each interval. 
%   Generate a distribution with the ordered event size intervals as 
%   abscissa and the number of events in each of those size intervals 
%   as ordinate. 
% Create a scalar variable that specifies the size interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
% Create a distribution matrix variable in which column 1 contains 
% the ordered event size intervals and column 2 contains the number 
% of events in each of those size intervals. 
  
% dpsi = direct path size interval (scalar) 
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% ndpintervals = number of direct path intervals (scalar) 
% (temporary variable) 
% DirPathQDistr = direct path quantity distribution matrix 
% (#size intervals x 2) 
  
% set and initialize variables 
dpsi = 10; 
ndpintervals = ceil(max(DirPathQ_TS) / dpsi);    % rounded up 
DirPathQDistr = zeros(ndpintervals, 2); 
% populate distribution matrix 
for j = 1: ndpintervals 
    DirPathQDistr(j, 1) = j * dpsi; 
    DirPathQDistr(j, 2) = sum((j - 1) * dpsi < DirPathQ_TS & ... 
        DirPathQ_TS <= j * dpsi); 
end 
  
% in DirPathQDistr, remove "x,y pairs" (rows) with "zero events" 
% (i.e., with zero in column 2) 
% more time steps (samples) would likely fill zero-valued intervals 
DirPathQDistr(find(DirPathQDistr(:,2) == 0),:) = [ ]; 
  
%% Develop cumulative indirect path and direct path quantity time series 
% Develop the cumulative indirect path quantity time series (cumulative 
% number of indirect paths at each time step vs. time). 
% CuIndPathQ_TS = cumulative-indirect-path-quantity time series vector 
% (1 x NumTS) 
  
% preallocation and initialization 
CuIndPathQ_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    CuIndPathQ_TS(i) = sum(PLDistr_tc_TS(2:end, 2, i)); 
end 
  
% Develop the cumulative direct path quantity time series (cumulative 
% number of direct paths at each time step vs. time). 
% CuDirPathQ_TS = cumulative-direct-path-quantity time series vector 
% (1 x NumTS) 
  
% preallocation and initialization 
CuDirPathQ_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    CuDirPathQ_TS(i) = PLDistr_tc_TS(1, 2, i); 
end 
  
%% > Network connectivity analysis 
  
% Perform comprehensive node degree analysis.  Develop individual-time-step 
% node degree vector arrays and node degree grid arrays.  Note that along 
% with network propagation events, path length, and indirect effects - node 
% degree exhibits punctuated dynamics.  That can be seen by observing the 
% node degree grids at different points in time.  We need to develop node 
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% degree time series and distributions that capture those dynamics in an 
% integrated fashion over space and time.  By analogy with our path length 
% development, a measure that effectively captures the dynamics is the 
% maximum node degree achieved at each time step.  We therefore develop a 
% simulation-run maximum-node-degree time series and distribution. 
  
% Another measure that may capture the dynamics is the node mean degree 
% achieved at each time step.  We calculate node mean degree and (the 
% related) network connection density.  We then develop a simulation-run 
% node-mean-degree time series and distribution. 
  
% Also develop individual-time-step node degree distributions and 
% cumulative (from time step one to the current time step) node degree 
% distributions.  Each distribution provides the number of nodes with 
% degree x vs. x. 
  
% To cap the network connectivity investigations, perform 
% network critical connectivity/percolation analysis. 
  
% The source data needed to do this analysis has been generated in the 
% master m-file and stored as arrays AAO_t_TS and AAO_tc_TS: 
%   AAO_t_TS = operational node adjacency multidimensional array that 
%   provides an operational adjacency matrix for each individual time step 
%   per-time-step (100x100x NumTS) 
%   AAO_tc_TS = operational node adjacency multidimensional array that 
%   provides an over-time-cumulative operational adjacency matrix 
%   per-time-step (100x100x NumTS) 
  
%% Develop individual-time-step node degree vector arrays 
% Develop multidimensional arrays that provide the out-degree, in-degree, 
% and combined-degree (both out and in) of each node at each 
% individual time step vs. time. 
% NodeODeg_t_TS = node-out-degree multidimensional array (1x100xNumTS) 
% that provides a node out-degree vector for each individual time step 
% per time step 
% NodeIDeg_t_TS = node-in-degree multidimensional array (1x100xNumTS) 
% that provides a node in-degree vector for each individual time step 
% per time step 
% NodeCDeg_t_TS = node-combined-degree multidimensional array (1x100xNumTS) 
% that provides a node combined-degree vector for each individual time step 
% per time step 
  
% preallocation and initialization 
NodeODeg_t_TS = zeros(1,100, NumTS); 
NodeIDeg_t_TS = zeros(1,100, NumTS); 
NodeCDeg_t_TS = zeros(1,100, NumTS); 
  
% calculate the vector values 
% external connections (inputs and outputs) with the environment are not 
% counted in these node degree calculations 
for i = 1: NumTS 
    NodeODeg_t_TS(1, :, i) = sum(AAO_t_TS(:, :, i)); 
    NodeIDeg_t_TS(1, :, i) = sum(transpose(AAO_t_TS(:, :, i))); 
    NodeCDeg_t_TS(1, :, i) = NodeODeg_t_TS(1, :, i) + ... 
        NodeIDeg_t_TS(1, :, i); 
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end 
  
%% Develop individual-time-step node degree grid arrays 
% Develop multidimensional arrays that provide out-degree, in-degree, 
% and combined-degree (both out and in) node grids at each 
% individual time step vs. time. 
% NodeODegGrid_t_TS = node-out-degree-grid multidimensional array 
% (10x10xNumTS) that provides a node out-degree grid for each 
% individual time step per time step 
% NodeIDegGrid_t_TS = node-in-degree-grid multidimensional array 
% (10x10xNumTS) that provides a node in-degree grid for each 
% individual time step per time step 
% NodeCDegGrid_t_TS = node-combined-degree-grid multidimensional array 
% (10x10xNumTS) that provides a node combined-degree grid for each 
% individual time step per time step 
  
% preallocation and initialization 
NodeODegGrid_t_TS = zeros(10,10, NumTS); 
NodeIDegGrid_t_TS = zeros(10,10, NumTS); 
NodeCDegGrid_t_TS = zeros(10,10, NumTS); 
  
% calculate the grid values 
% external connections (inputs and outputs) with the environment are not 
% counted in these node degree calculations 
for i=1:NumTS    % time steps 
    for j=1:10    % columns 
        for k=1:10    % rows 
            NodeODegGrid_t_TS(k, j, i) = NodeODeg_t_TS(1, k+10*(j-1), i); 
            NodeIDegGrid_t_TS(k, j, i) = NodeIDeg_t_TS(1, k+10*(j-1), i); 
            NodeCDegGrid_t_TS(k, j, i) = NodeCDeg_t_TS(1, k+10*(j-1), i); 
        end 
    end 
end 
  
%% Develop node degree time series for the entire simulation ru  n
% Develop a set of node degree time series (maximum node degree 
% at each time step vs. time) for the entire simulation run. 
  
% Define the time series vectors that provide the maximum node degrees 
% in each time step: 
% ODmax_t_TS = vector (1x NumTS) that provides the maximum out-degree 
% in each time step per time step 
% IDmax_t_TS = vector (1x NumTS) that provides the maximum in-degree 
% in each time step per time step 
% CDmax_t_TS = vector (1x NumTS) that provides the maximum combined-degree 
% in each time step per time step 
  
% Define scalars that provide the long-term maximum node degrees 
% in all time steps: 
% ODltmax_t = long-term maximum out-degree in all time steps (scalar) 
% IDltmax_t = long-term maximum in-degree in all time steps (scalar) 
% CDltmax_t = long-term maximum combined-degree in all time steps (scalar) 
  
% preallocation and initialization 
ODmax_t_TS = zeros(1, NumTS); 
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IDmax_t_TS = zeros(1, NumTS); 
CDmax_t_TS = zeros(1, NumTS); 
  
% calculate the variable values 
for i = 1: NumTS 
    ODmax_t_TS(i) = max(NodeODeg_t_TS(1, :, i)); 
    IDmax_t_TS(i) = max(NodeIDeg_t_TS(1, :, i)); 
    CDmax_t_TS(i) = max(NodeCDeg_t_TS(1, :, i)); 
end 
ODltmax_t = max(ODmax_t_TS); 
IDltmax_t = max(IDmax_t_TS); 
CDltmax_t = max(CDmax_t_TS); 
  
% We can plot and analyze the time series with or without 
% non-propagation events included. 
  
% With non-propagation time steps: 
ODmax_t_TSwnp = ODmax_t_TS; 
IDmax_t_TSwnp = IDmax_t_TS; 
CDmax_t_TSwnp = CDmax_t_TS; 
  
% Without non-propagation time steps: 
% remove non-propagation time steps (node degree = 0) from the 
% time series vectors: 
ODmax_t_TS(ODmax_t_TS == 0) = [ ]; 
IDmax_t_TS(IDmax_t_TS == 0) = [ ]; 
CDmax_t_TS(CDmax_t_TS == 0) = [ ]; 
  
% We use the in-degree and combined-degree cases for our plots. 
  
%% Develop node degree distributions for the entire simulation run 
% Develop a set of node degree distributions (number of events vs. maximum 
% node degree) for the entire simulation run. 
% Note that our approach here has both spatial and temporal dimensions. 
% We investigate individual events at points in time rather than 
% cumulative activity over time. 
% As suggested earlier, cunulative distributions are not particularly 
% meaningful in a punctuated dynamics environment. 
  
% Create two-column node degree distribution matrices. 
% Column 1 contains the node degree intervals and column 2 contains 
% the number of events in each of those intervals. 
% The matrices are defined as: 
% MaxODDistr = maximum out-degree distribution matrix (#size intervals x 2) 
% MaxIDDistr = maximum in-degree distribution matrix (#size intervals x 2) 
% MaxCDDistr = maximum combined-degree distribution matrix 
% (#size intervals x 2) 
  
% Create a scalar variable that specifies the node degree interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
% mdsi = maximum node degree size interval (scalar) 
% nmdintervals = number of maximum node degree intervals (scalar) 
% (temporary variable) 
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% set and initialize out-degree variables 
mdsi = 1; 
nmdintervals = ceil(max(ODmax_t_TS) / mdsi);    % rounded up 
MaxODDistr = zeros(nmdintervals, 2); 
% populate out-degree distribution matrix 
for j = 1: nmdintervals 
    MaxODDistr(j, 1) = j * mdsi; 
    MaxODDistr(j, 2) = sum((j - 1) * mdsi < ODmax_t_TS & ... 
        ODmax_t_TS <= j * mdsi); 
end 
  
% in MaxODDistr, remove "x,y pairs" (rows) with zero occurrences for the 
% degree interval (i.e., with zero in column 2) 
% more time steps (samples) would likely help fill zero-valued intervals 
MaxODDistr(find(MaxODDistr(:,2) == 0),:) = [ ]; 
  
% set and initialize in-degree variables 
mdsi = 1; 
nmdintervals = ceil(max(IDmax_t_TS) / mdsi);    % rounded up 
MaxIDDistr = zeros(nmdintervals, 2); 
% populate in-degree distribution matrix 
for j = 1: nmdintervals 
    MaxIDDistr(j, 1) = j * mdsi; 
    MaxIDDistr(j, 2) = sum((j - 1) * mdsi < IDmax_t_TS & ... 
        IDmax_t_TS <= j * mdsi); 
end 
  
% in MaxIDDistr, remove "x,y pairs" (rows) with zero occurrences for the 
% degree interval (i.e., with zero in column 2) 
% more time steps (samples) would likely help fill zero-valued intervals 
MaxIDDistr(find(MaxIDDistr(:,2) == 0),:) = [ ]; 
  
% set and initialize combined-degree variables 
mdsi = 1; 
nmdintervals = ceil(max(CDmax_t_TS) / mdsi);    % rounded up 
MaxCDDistr = zeros(nmdintervals, 2); 
% populate combined-degree distribution matrix 
for j = 1: nmdintervals 
    MaxCDDistr(j, 1) = j * mdsi; 
    MaxCDDistr(j, 2) = sum((j - 1) * mdsi < CDmax_t_TS & ... 
        CDmax_t_TS <= j * mdsi); 
end 
  
% in MaxCDDistr, remove "x,y pairs" (rows) with zero occurrences for the 
% degree interval (i.e., with zero in column 2) 
% more time steps (samples) would likely help fill zero-valued intervals 
MaxCDDistr(find(MaxCDDistr(:,2) == 0),:) = [ ]; 
  
% We use the in-degree and combined-degree cases for our plots. 
  
%% Calculate node mean degree and network connection density 
% Calculate node mean degree and network connection density for 
% each individual time step and cumulatively. 
% Node mean degree = number of edges divided by number of nodes 
% Network connection density = node mean degree divided by 
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% (number of nodes – 1) 
  
% For later comparisons, we calculate mean degree and network connection 
% density for the underlying compartment network and for the 
% "candidate" node network. 
  
% Underlying compartment network values: 
% CompMD = compartment mean degree (scalar) 
% CompNetDen = compartment network connection density (scalar) 
CompMD = sum(sum(A)) / 10; 
% CompMD = 3.200 
CompNetDen = CompMD / (10 - 1); 
% CompNetDen = 0.3556 
  
% "Candidate" node network values: 
% CandNMD = "candidate" node mean degree (scalar) 
% CandNetDen = "candidate" node network connection density (scalar) 
CandNMD = sum(sum(AA)) / 100; 
% CandNMD = 30.3500 
CandNetDen = CandNMD / (100 - 1); 
% CandNetDen = 0.3066 
  
%% Calculate individual-time-step node mean degree and connection density 
% NMD_t_TS = node mean degree for each individual time step per time step 
% (1xNumTS) 
% NetDen_t_TS = network density for each individual time step per time step 
% (1xNumTS) 
  
% preallocation and initialization 
NMD_t_TS = zeros(1, NumTS); 
NetDen_t_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    NMD_t_TS(i) = sum(sum(AAO_t_TS(:, :, i))) / 100; 
    NetDen_t_TS(i) = NMD_t_TS(i) / (100 - 1); 
end 
  
%% Calculate cumulative node mean degree and connection density values 
% NMD_tc_TS = over-time-cumulative node mean degree per time step 
% (1xNumTS) 
% NetDen_tc_TS = over-time-cumulative network density per time step 
% (1xNumTS) 
  
% preallocation and initialization 
NMD_tc_TS = zeros(1, NumTS); 
NetDen_tc_TS = zeros(1, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    NMD_tc_TS(i) = sum(sum(AAO_tc_TS(:, :, i))) / 100; 
    NetDen_tc_TS(i) = NMD_tc_TS(i) / (100 - 1); 
end 
  
%% Prepare individual-time-step node mean degree time series 
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% Time series = NMD_t_TS (from above) 
% We can plot and analyze the time series with or without 
% non-propagation events included. 
  
% With non-propagation time steps: 
NMD_t_TSwnp = NMD_t_TS; 
  
% Without non-propagation time steps: 
% remove non-propagation time steps (path length = 0) from PLmean_TS 
NMD_t_TS(NMD_t_TS == 0) = [ ]; 
  
%% Develop node mean degree distribution for the entire simulation run 
% Develop the node mean degree distribution (number of events vs. 
% node mean degree) for the entire simulation run. 
  
% Create a two-column node mean degree distribution matrix (NMDDistr). 
% Column 1 contains the node mean degree intervals and column 2 contains 
% the number of events in each of those mean degree intervals. 
% Create a scalar variable that specifies the mean degree interval. 
% Create a temporary scalar variable that specifies the number 
% of intervals. 
  
% nmdsi = node mean degree size interval (scalar) 
% nnmdintervals = number of node mean degree intervals (scalar) 
% (temporary variable) 
% NMDDistr = node mean degree distribution matrix (#size intervals x 2) 
  
% set and initialize variables 
nmdsi = 0.25; 
nnmdintervals = ceil(max(NMD_t_TS) / nmdsi);    % rounded up 
NMDDistr = zeros(nnmdintervals, 2); 
% populate distribution matrix 
for j = 1: nnmdintervals 
    NMDDistr(j, 1) = j * nmdsi; 
    NMDDistr(j, 2) = sum((j - 1) * nmdsi < NMD_t_TS & ... 
        NMD_t_TS <= j * nmdsi); 
end 
  
% in NMDDistr, remove "x,y pairs" (rows) with zero occurrences for the 
% mean degree interval (i.e., with zero in column 2) 
% more time steps (samples) would likely fill zero-valued intervals 
NMDDistr(find(NMDDistr(:,2) == 0),:) = [ ]; 
  
%% Develop cumulative node degree arrays 
% Consider the over-time-cumulative per-time-step case. 
% Develop multidimensional arrays that provide the over-time-cumulative 
% out-degree, in-degree, and combined-degree of each node vs. time. 
% NodeODeg_tc_TS = node-out-degree multidimensional array (1x100xNumTS) 
% that provides an over-time-cumulative node out-degree vector 
% per time step 
% NodeIDeg_tc_TS = node-in-degree multidimensional array (1x100xNumTS) 
% that provides an over-time-cumulative node in-degree vector 
% per time step 
% NodeCDeg_tc_TS = node-combined-degree multidimensional array 
% (1x100xNumTS) that provides an over-time-cumulative node combined-degree 
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% vector per time step 
  
% preallocation and initialization 
NodeODeg_tc_TS = zeros(1,100, NumTS); 
NodeIDeg_tc_TS = zeros(1,100, NumTS); 
NodeCDeg_tc_TS = zeros(1,100, NumTS); 
  
% calculate the vector values 
for i = 1: NumTS 
    NodeODeg_tc_TS(1, :, i) = sum(AAO_tc_TS(:, :, i)); 
    NodeIDeg_tc_TS(1, :, i) = sum(transpose(AAO_tc_TS(:, :, i))); 
    NodeCDeg_tc_TS(1, :, i) = NodeODeg_tc_TS(1, :, i) + ... 
        NodeIDeg_tc_TS(1, :, i); 
end 
  
%% Develop additional cumulative variables 
% Develop additional variables for the over-time-cumulative 
% per-time-step case. 
% Define vectors that provide the maximum degrees in each time step: 
% ODmax_tc_TS = vector (1x NumTS) that provides the maximum cumulative 
% out-degree per time step 
% IDmax_tc_TS = vector (1x NumTS) that provides the maximum cumulative 
% in-degree per time step 
% CDmax_tc_TS = vector (1x NumTS) that provides the maximum cumulative 
% combined-degree per time step 
% Define scalars that provide the long-term maximum cumulative degrees 
% across time steps: 
% ODltmax_tc = long-term maximum cumulative out-degree across time steps 
% (scalar) 
% IDltmax_tc = long-term maximum cumulative in-degree across time steps 
% (scalar) 
% CDltmax_tc = long-term maximum cumulative combined-degree across 
% time steps (scalar) 
  
% preallocation and initialization 
ODmax_tc_TS = zeros(1, NumTS); 
IDmax_tc_TS = zeros(1, NumTS); 
CDmax_tc_TS = zeros(1, NumTS); 
  
% calculate the variable values 
for i = 1: NumTS 
    ODmax_tc_TS(i) = max(NodeODeg_tc_TS(1, :, i)); 
    IDmax_tc_TS(i) = max(NodeIDeg_tc_TS(1, :, i)); 
    CDmax_tc_TS(i) = max(NodeCDeg_tc_TS(1, :, i)); 
end 
ODltmax_tc = max(ODmax_tc_TS); 
IDltmax_tc = max(IDmax_tc_TS); 
CDltmax_tc = max(CDmax_tc_TS); 
  
%% Develop per-time-step node degree distributions 
% Develop individual-time-step and over-time-cumulative network node degree 
% distributions (number of nodes with degree x vs. x) from the node degree 
% multidimensional arrays.  Develop out-degree, in-degree, and combined 
% (both out and in) degree distributions as follows: 
%   Define a degree size interval (>= 1) and partition the degree size 
%   domain into those intervals. 
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%   Count the number of nodes in each interval. 
%   Generate a distribution with the ordered node degree intervals as 
%   abscissa and the number of nodes in each of those intervals as 
%   ordinate. 
  
%% Develop individual-time-step node degree distributions 
% Develop distributions for the individual-time-step per-time-step case. 
% Create a scalar variable that specifies the size interval. 
% Create a temporary scalar variable that specifies the 
% number of intervals. 
% Create multidimensional arrays that provide a two-column degree 
% distribution matrix for each individual time step per time step. 
% In each matrix, column 1 contains the ordered node degree size intervals 
% and column 2 contains the number of nodes in each of those 
% size intervals. 
% For matrix rows > ODmax_t_TS(i) or IDmax_t_TS(i) or CDmax_t_TS(i), 
% respectively, column 2 contains zeros. 
  
% dsi = degree size interval (scalar) 
% ndintervals = number of degree intervals (scalar) (temporary variable) 
% ODegDistr_t_TS = out-degree distribution per time step 
% (#size intervals x 2 x NumTS) 
% IDegDistr_t_TS = in-degree distribution per time step 
% (#size intervals x 2 x NumTS) 
% CDegDistr_t_TS = combined-degree distribution per time step 
% (#size intervals x 2 x NumTS) 
  
% set and initialize out-degree variables 
dsi = 1; 
ndintervals = ceil(ODltmax_t / dsi);    % rounded up 
ODegDistr_t_TS = zeros(ndintervals, 2, NumTS); 
% populate distribution matrix 
for i = 1: NumTS 
    for j = 1: ndintervals 
        ODegDistr_t_TS (j, 1, i) = j * dsi; 
        ODegDistr_t_TS (j, 2, i) = ... 
            sum((j - 1) * dsi < NodeODeg_t_TS(1,:,i) ... 
            & NodeODeg_t_TS(1,:,i) <= j * dsi); 
   nd  e
end 
  
% set and initialize in-degree variables 
dsi = 1; 
ndintervals = ceil(IDltmax_t / dsi);    % rounded up 
IDegDistr_t_TS = zeros(ndintervals, 2, NumTS); 
% populate distribution matrix 
for i = 1: NumTS 
    for j = 1: ndintervals 
        IDegDistr_t_TS (j, 1, i) = j * dsi; 
        IDegDistr_t_TS (j, 2, i) = ... 
            sum((j - 1) * dsi < NodeIDeg_t_TS(1,:,i) ... 
            & NodeIDeg_t_TS(1,:,i) <= j * dsi); 
    end 
end 
  
% set and initialize combined-degree variables 
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dsi = 1; 
ndintervals = ceil(CDltmax_t / dsi);    % rounded up 
CDegDistr_t_TS = zeros(ndintervals, 2, NumTS); 
% populate distribution matrix 
for i = 1: NumTS 
    for j = 1: ndintervals 
        CDegDistr_t_TS (j, 1, i) = j * dsi; 
        CDegDistr_t_TS (j, 2, i) = ... 
            sum((j - 1) * dsi < NodeCDeg_t_TS(1,:,i) ... 
            & NodeCDeg_t_TS(1,:,i) <= j * dsi); 
   nd  e
end 
  
% Use the in-degree case for plots. 
% For a three-dimensional array, do not know a general way to remove 
% "x,y pairs" (rows) with zero occurrences for the degree interval 
% (i.e., with zero in column 2) from matrices that comprise the array. 
% Do that individually for specific matrices at time steps of interest. 
  
%% Develop cumulative node degree distributions 
% Develop distributions for the over-time-cumulative per-time-step case. 
% Create a scalar variable that specifies the size interval. 
% Create a temporary scalar variable that specifies the 
% number of intervals. 
% Create multidimensional arrays that provide a two-column cumulative 
% degree distribution matrix per time step. 
% In each matrix, column 1 contains the ordered node degree size intervals 
% and column 2 contains the number of nodes in each of those 
% size intervals. 
% For matrix rows > ODmax_tc_TS(i) or IDmax_tc_TS(i) or CDmax_tc_TS(i), 
% respectively, column 2 contains zeros. 
  
% dsi = degree size interval (scalar) 
% ndintervals = number of degree intervals (scalar) (temporary variable) 
% ODegDistr_tc_TS = cumulative out-degree distribution per time step 
% (#size intervals x 2 x NumTS) 
% IDegDistr_tc_TS = cumulative in-degree distribution per time step 
% (#size intervals x 2 x NumTS) 
% CDegDistr_tc_TS = cumulative combined-degree distribution per time step 
% (#size intervals x 2 x NumTS) 
  
% set and initialize out-degree variables 
dsi = 1; 
ndintervals = ceil(ODltmax_tc / dsi);    % rounded up 
ODegDistr_tc_TS = zeros(ndintervals, 2, NumTS); 
% populate distribution matrix 
for i = 1: NumTS 
    for j = 1: ndintervals 
        ODegDistr_tc_TS (j, 1, i) = j * dsi; 
        ODegDistr_tc_TS (j, 2, i) = ... 
            sum((j-1) * dsi < NodeODeg_tc_TS(1,:,i) ... 
            & NodeODeg_tc_TS(1,:,i) <= j * dsi); 
    end 
end 
  
% set and initialize in-degree variables 
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dsi = 1; 
ndintervals = ceil(IDltmax_tc / dsi);    % rounded up 
IDegDistr_tc_TS = zeros(ndintervals, 2, NumTS); 
% populate distribution matrix 
for i = 1: NumTS 
    for j = 1: ndintervals 
        IDegDistr_tc_TS (j, 1, i) = j * dsi; 
        IDegDistr_tc_TS (j, 2, i) = ... 
            sum((j-1) * dsi < NodeIDeg_tc_TS(1,:,i) ... 
            & NodeIDeg_tc_TS(1,:,i) <= j * dsi); 
   nd  e
end 
  
% set and initialize combined-degree variables 
dsi = 1; 
ndintervals = ceil(CDltmax_tc / dsi);    % rounded up 
CDegDistr_tc_TS = zeros(ndintervals, 2, NumTS); 
% populate distribution matrix 
for i = 1: NumTS 
    for j = 1: ndintervals 
        CDegDistr_tc_TS (j, 1, i) = j * dsi; 
        CDegDistr_tc_TS (j, 2, i) = ... 
            sum((j-1) * dsi < NodeCDeg_tc_TS(1,:,i) ... 
            & NodeCDeg_tc_TS(1,:,i) <= j * dsi); 
    end 
end 
  
%% Critical connectivity and percolation 
% At any given time step, the network may achieve critical connectivity 
% and percolate. 
% Create variables that provide the number of nodes linked together and 
% the fractional size of the resulting candidate "giant component" at each 
% individual time step.  For propagation at a particular time step, 
% all involved nodes are linked together.  The size of the candidate 
% giant component equals the number of nodes linked together divided by 
% the total number of nodes in the network. 
% NumLN_t_TS = number of linked nodes for each individual time step 
% per time step (1xNumTS) 
% CompSize_t_TS = candidate giant component size for each individual 
% time step per time step (1xNumTS) 
  
% preallocation and initialization 
NumLN_t_TS = zeros(1, NumTS); 
CompSize_t_TS = zeros(1, NumTS); 
  
% I have developed three approaches for calculating the 
% vector values – as follows. 
% Since we’ll use the third, the first two are "commented." 
  
% calculate the vector values 
% for i = 1: NumTS 
%     result = find(AAO_t_TS(:, 1, i) == 1); 
%     for j = 2 : 100    % find all to-nodes without repeats 
%         result = union(result, find(AAO_t_TS(:, j, i) == 1)); 
%     end 
%     % make sure the input node is included 
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%     result = union(result, find(INSL_t_TS(:, :, i) == 1)); 
%     NumLN_t_TS(i) = size(result, 1); 
%     CompSize_t_TS(i) = NumLN_t_TS(i) / 100; 
% end 
  
% calculate the vector values 
% for i = 1: NumTS 
%   temp1 = find(sum(transpose(AAO_t_TS(:, :, i))) > 0);  % find to-nodes 
%   temp2 = find(INSL_t_TS(:, :, i) == 1);  % find the input-node 
%   result = union(temp1, temp2);  % all linked nodes without repeats 
%   NumLN_t_TS(i) = size(result, 1); 
%   CompSize_t_TS(i) = NumLN_t_TS(i) / 100; 
% end 
  
% calculate the vector values 
for i = 1: NumTS 
  temp1 = find(sum(transpose(AAO_t_TS(:, :, i))) > 0);  % find the to-nodes 
  temp2 = find(sum(AAO_t_TS(:, :, i)) > 0);  % find the from-nodes 
  result = union(temp1, temp2);  % all linked nodes without repeats 
  NumLN_t_TS(i) = size(result, 2); 
  CompSize_t_TS(i) = NumLN_t_TS(i) / 100; 
end 
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APPENDIX F 

DYNAMICS MODEL GRAPHICS M-FILE 

%% Dynamics Model Graphics 
  
%% Network Node-and-Link Propagation Flow Graphics 
  
%% Time series with selected time steps 
% Figure name:  PF1 
% Figure title in doc:  Network Propagation Time Series 
  
% plot time series 
plot(NetPESize_TSwnp) 
hold on 
  
% define selection circles 
xx = [2 28 32 64 152 204 237 514]; 
yy = NetPESize_TSwnp(xx); 
  
% plot selection circles 
plot(xx,yy,'o','LineWidth',2, 'MarkerEdgeColor',[.824 .004 .216],... 
    'MarkerSize',8) 
hold off 
  
% use Plot Tools: 
% Title:  Network Propagation Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Network Propagation Event Size 
% time series color:  black 
% update display names and add a legend 
% black line – Time Series 
% red circles – Selected Time Steps 
  
%% Propagation flow at individual time steps 
% Figure names:  PF2, PF3 
% Figure layout:  each is 1x2 
% Figure title (doc): Network Propagation Flow (small propagation events) 
% tsn:  2, 28, 32, 237 
  
% Figure name:  PF4 
% Figure layout:  1x2 
% Figure title (doc): Network Propagation Flow (mid-size 
% propagation events) 
% tsn:  64, 204 
  
% tsn = time step number 
tsn = 2; 
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% establish axes 
axis square 
axis ([1 21 1 21]) 
axis off 
hold on 
  
% plot node grid 
xx= NCoord(:,1); 
yy= NCoord(:,2); 
plot(xx,yy,'o') 
hold on 
  
% plot propagation flow 
gplot(AAO_t_TS(:,:,tsn),NCoord,'-ok') 
hold on 
  
% use Plot Tools: 
% node grid: marker size 8 and edge color black 
% propagation event nodes: marker size 12 and face color dark blue: 
% RGB 11, 132, 199 
  
%% continue 
% plot and color propagating nodes (red) 
% PNCoord = propagating node coordinates 
PNCoord = NCoord; 
PNCoord(find(PNL_t_TS(:,:,tsn) == 0),:) = [ ]; 
xx= PNCoord(:,1); 
yy= PNCoord(:,2); 
plot(xx,yy,'o','MarkerFaceColor',[.824 .004 .216],'MarkerSize',12) 
hold on 
  
% plot and color input node (green) 
% INCoord = input node coordinates 
INCoord = NCoord; 
INCoord(find(INSL_t_TS(:,:,tsn) == 0),:) = [ ]; 
xx= INCoord(:,1); 
yy= INCoord(:,2); 
plot(xx,yy,'o','MarkerFaceColor',[0 1 .392],'MarkerSize',12) 
hold off 
  
% use Plot Tools: 
% Title:  Network Propagation Flow 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
% create and select second axes (if applicable) 
  
%% Propagation flow plus adjacency matrix at individual time step 
% Figure names:  PF5, PF6 
% Figure layout:  each is 1x2 
% Figure title (doc): Network Propagation Flow (large propagation event) 
% tsn:  152, 514 
  
% time step number 
tsn = 152; 
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% establish axes 
axis square 
axis ([1 21 1 21]) 
axis off 
hold on 
  
% plot node grid 
xx= NCoord(:,1); 
yy= NCoord(:,2); 
plot(xx,yy,'o') 
hold on 
  
% plot propagation flow 
gplot(AAO_t_TS(:,:,tsn),NCoord,'-ok') 
hold on 
  
% use Plot Tools: 
% node grid: marker size 8 and edge color black 
% propagation event nodes: marker size 10 and face color dark blue: 
% RGB 11, 132, 199 
  
%% continue 
% plot and color propagating nodes (red) 
PNCoord = NCoord; 
PNCoord(find(PNL_t_TS(:,:,tsn) == 0),:) = [ ]; 
xx= PNCoord(:,1); 
yy= PNCoord(:,2); 
plot(xx,yy,'o','MarkerFaceColor',[.824 .004 .216],'MarkerSize',10) 
hold on 
  
% plot and color input node (green) 
INCoord = NCoord; 
INCoord(find(INSL_t_TS(:,:,tsn) == 0),:) = [ ]; 
xx= INCoord(:,1); 
yy= INCoord(:,2); 
plot(xx,yy,'o','MarkerFaceColor',[0 1 .392],'MarkerSize',10) 
hold off 
  
% use Plot Tools: 
% Title:  Network Propagation Flow 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
% create and select second axes 
  
%% continue 
% establish axes 
axis square 
axis ([0 101 0 101]) 
hold on 
  
% plot depiction of adjacency matrix 
spy(AAO_t_TS(:,:,tsn)) 
hold off 
  
% use Plot Tools: 
% Title:  Depiction of Operational Adjacency Matrix 
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% Time step tsn 
% remove nz text box 
% x and y: change tick location and label from 0 to 1 
% x and y limits: -1 to 102 
% resize smaller than node grid 
  
%% Cumulative propagation flow plus adjacency matrix at a time step 
% Figure names:  PF7, PF8 
% Figure layout:  each is 1x2 
% Figure title (doc): Cumulative Propagation Flow 
% tsn:  100, 1000 
  
% time step number 
tsn = 100; 
  
% establish axes 
axis square 
axis ([1 21 1 21]) 
axis off 
hold on 
  
% plot node grid 
xx= NCoord(:,1); 
yy= NCoord(:,2); 
plot(xx,yy,'o') 
hold on 
  
% plot cumulative propagation flow 
gplot(AAO_tc_TS(:,:,tsn),NCoord,'-ok') 
hold off 
  
% use Plot Tools: 
% node grid: marker size 8 and edge color black 
% propagation event nodes: marker size 10 and face color light blue: 
% RGB 222, 235, 250 
  
% use Plot Tools: 
% Title:  Cumulative Propagation Flow 
% Time step tsn 
% create and select second axes 
  
%% continue 
% establish axes 
axis square 
axis ([0 101 0 101]) 
hold on 
  
% plot depiction of adjacency matrix 
spy(AAO_tc_TS(:,:,tsn)) 
hold off 
  
% use Plot Tools: 
% Title:  Depiction of Operational Adjacency Matrix 
% Time step tsn 
% remove nz text box 
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% x and y: change tick location and label from 0 to 1 
% x and y limits: -1 to 102 
% resize smaller than node grid 
  
%% Cumulative flow value "adjacency matrix" - with the specific flow values 
% Figure name:  PF9 
% Figure title (doc): Cumulative Flow Value "Adjacency Matrix" 
% tsn:  100 
  
% time step number 
tsn = 100; 
  
% establish axes 
axis square 
axis ([0 101 0 101]) 
hold on 
  
% ANFVsubset = node flow value subset “adjacency matrix” (100 x 100) 
% (temporary variable) 
  
% calculate "adjacency matrix" for each value of flow 
% plot each "adjacency matrix" on the same axes 
for k = 1: max(max(ANFV_tc_TS(:,:,tsn))) 
    ANFVsubset = ANFV_tc_TS(:,:,tsn); 
    ANFVsubset(ANFVsubset ~= k) = 0; 
    spy(ANFVsubset) 
    hold on 
end 
hold off 
  
% use Plot Tools: 
% Title:  Cumulative Flow Value 
% Time step tsn 
% remove nz text box 
% x and y: change tick location and label from 0 to 1 
% x and y limits: -1 to 102 
% color each plot a different color 
% use blue, green, red, purple, orange 
% marker size 14 
% add legend: flow value = 1; flow value = 2; flow value = 3; 
% flow value = 4; flow value = 5 
  
%% Cumulative flow value "adjacency matrix" - with flow value intervals 
% Figure name:  PF10 
% Figure title (doc): Cumulative Flow Value "Adjacency Matrix" 
% tsn:  1000 
  
% time step number 
tsn = 1000; 
  
% establish axes 
axis square 
axis ([0 101 0 101]) 
hold on 
  

223 



% fvsi = flow value size interval (scalar) 
% nfvintervals = number of flow value intervals (scalar) 
% (temporary variable) 
% ANFVsubset = node flow value subset “adjacency matrix” (100 x 100) 
% (temporary variable) 
  
% set variables 
fvsi = 10; 
nfvintervals = ceil(max(max(ANFV_tc_TS(:,:,tsn))) / fvsi);    % rounded up 
  
% calculate "adjacency matrix" for each interval of flow 
% plot each "adjacency matrix" on the same axes 
for k = 1: nfvintervals 
ANFVsubset = ANFV_tc_TS(:,:,tsn); 
ANFVsubset(ANFVsubset < (((k-1) * fvsi) + 1)) = 0; 
ANFVsubset(ANFVsubset > k * fvsi) = 0; 
spy(ANFVsubset) 
hold on 
end 
hold off 
  
% use Plot Tools: 
% Title:  Cumulative Flow Value 
% Time step tsn 
% remove nz text box 
% x and y: change tick location and label from 0 to 1 
% x and y limits: -1 to 102 
% make each plot a different shape/size/color 
% use dot/14/blue, dot/14/green, dot/14/red, circle/5/black, 
% square/5/black, triangle/6/black 
% add legend: flow value 1 to 10; flow value 11 to 20; flow value 21 to 30; 
% flow value 31 to 40; flow value 41 to 50; flow value 51 to 60 
  
%% Input/Output/Stock History Graphics 
  
%% Cumulative node input value at a time step 
% Figure name:  PF11 
% Figure layout:  2x2 
% Figure title (doc): Cumulative Node Input Value Grid 
% tsn:  100, 400, 700, 1000 
  
% time step number 
tsn = 100; 
  
% plot grid for 4 time steps on 4 axes 
bar3(INVG_tc_TS(:,:,tsn),'cyan') 
  
% use Plot Tools on each plot: 
% Title:  Cumulative Node Input Value Grid 
% Time step tsn 
% face color: light green 
% x and y limits: 0 to 11 
% z limits: modify if necessary 
% snap each plot to grid 
% move each plot 5 blocks toward center 
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%% Cumulative node output value at a time step 
% Figure name:  PF12 
% Figure layout:  2x2 
% Figure title (doc): Cumulative Node Output Value Grid 
% tsn:  100, 400, 700, 1000 
  
% time step number 
tsn = 100; 
  
% plot grid for 4 time steps on 4 axes 
bar3(ONVG_tc_TS(:,:,tsn),'cyan') 
  
% use Plot Tools on each plot: 
% Title:  Cumulative Node Output Value Grid 
% Time step tsn 
% face color: light blue 
% x and y limits: 0 to 11 
% z limits: modify if necessary 
% snap each plot to grid 
% move each plot 5 blocks toward center 
  
%% Cumulative node stock value at a time step 
% Figure name:  PF13 
% Figure layout:  2x2 
% Figure title (doc): Cumulative Node Stock Value Grid 
% tsn:  100, 400, 700, 1000 
  
% time step number 
tsn = 100; 
  
% plot grid for 4 time steps on 4 axes 
bar3(NSVG_tc_TS(:,:,tsn),'cyan') 
  
% use Plot Tools on each plot: 
% Title:  Cumulative Node Stock Value Grid 
% Time step tsn 
% face color: light pink 
% x and y limits: 0 to 11 
% z limits: modify if necessary 
% snap each plot to grid 
% move each plot 5 blocks toward center 
  
%% Network Propagation Event Graphics 
  
%% Time series and distribution 
% Figure name:  NetPE1 
% Figure layout:  2x1 
% Figure title (doc): Network Propagation Event Time Series and 
% Distribution 
  
% plot time series 
plot(NetPESize_TSwnp) 
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% use Plot Tools: 
% Title:  Network Propagation Event Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Network Propagation Event Size 
% color:  black 
% create and select second axes 
  
%% continue 
% plot distribution 
xx = NetPEDistr(:,1); 
yy = NetPEDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Network Propagation Event Distribution 
% x:  Network Propagation Event Size 
% y:  Number of Network Propagation Events 
% y lower limit: -10 
% color:  dark green 
% line width:  2 
  
%% Distribution set 
% Figure name:  NetPE2 
% Figure layout:  set of three – eyes and nose 
% Figure title (doc): Network Propagation Event Distribution Set 
  
% plot distribution 
xx = NetPEDistr(:,1); 
yy = NetPEDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Network Propagation Event Distribution 
% x:  Network Propagation Event Size 
% y:  Number of Network Propagation Events 
% y lower limit: -10 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot log-log distribution 
xx = log10(NetPEDistr(:,1)); 
yy = log10(NetPEDistr(:,2)); 
plot(xx,yy,'o') 
  
% use Plot Tools: 
% Title:  Log-Log Propagation Event Distribution 
% x:  log(Network Propagation Event Size) 
% y:  log(Number of Network Propagation Events) 
% marker size:  3 
% basic fitting:  linear with equation 
% color:  default blue 
% line width:  2 
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% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 1 to these axes 
% y lower limit: -10 
  
% prepare power-law overlay 
% obtain y-intercept (for C) and slope (for alpha) from linear equation on 
% the log-log axes 
% logC = y-intercept 
% C = 10.^(y-intercept) 
% alpha = slope 
% y = C*x.^alpha 
% y = (10.^(y-intercept))* x.^(slope) 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  NetPEDistr(:,1) 
% ysource:  (10.^(y-intercept))* NetPEDistr(:,1).^(slope) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Network Propagation Event Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Event Distribution with Power-Law Overlay 
% x:  Network Propagation Event Size 
% y:  Number of Network Propagation Events 
  
%% Frequency spectrum 
% Figure name:  NetPE3 
% Figure layout:  set of three – vertical 3x1 
% Figure title (doc): Network Propagation Event Frequency Spectrum 
  
% plot entire single-sided spectrum 
xx = normfreq; 
yy = PEssAmp; 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Single-Sided Network Propagation Event Frequency Spectrum 
% x:  Normalized Frequency (Hz) 
% y:  Amplitude 
% x lower limit = -2.5 
% y lower limit = -2.5 
% color:  default blue 
% line width:  1 
% create and select next axes 
  
%% continue 
% plot partial single-sided spectrum 
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xx = freq; 
yy = amp; 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Network Propagation Event Frequency Spectrum (Partial) 
% x:  Normalized Frequency (Hz) 
% y:  Amplitude 
% x lower limit = -.5 
% y lower limit = -2.5 
% color:  default blue 
% line width:  2 
% add markers to show points (+, 3) 
% create and select next axes 
  
%% continue 
% plot partial spectrum with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste partial spectrum from axes 2 to these axes 
% x lower limit = -.5 
% y lower limit = -2.5 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  100*linspace(0, 0.2, numpoints) 
% ysource:  50*[1:numpoints].^(-1.2) 
% This overlay is an arbitrary power-law overlay with parameters chosen to 
% suggest that the frequency spectrum is a “1/f noise” spectrum with 
% fractal behavior in time 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update curve display names and add a legend 
% blue line – Frequency Spectrum 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Frequency Spectrum with Power-Law Overlay 
% x:  Normalized Frequency (Hz) 
% y:  Amplitude 
  
%% Path Length Graphics 
  
%% Time series and distribution 
% Figure name:  PL1 
% Figure layout:  2x1 
% Figure title (doc): Path Length Time Series and Integrated Distribution 
  
% plot time series 
plot(PLmax_TSwnp) 
  
% use Plot Tools: 
% Title:  Path Length Time Series 
% x:  Time 
% x limits:  0 to 1001 

228 



% y:  Maximum Path Length 
% color:  black 
% create and select second axes 
  
%% continue 
% plot distribution 
xx = MaxPLDistr(:,1); 
yy = MaxPLDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Integrated Path Length Distribution 
% x:  Maximum Path Length 
% y:  Number of Events 
% y lower limit: -10 
% color:  dark green 
% line width:  2 
  
%% Distribution set 
% Figure name:  PL2 
% Figure layout:  set of three – eyes and nose 
% Figure title (doc): Integrated Path Length Distribution Set 
  
% plot distribution 
xx = MaxPLDistr(:,1); 
yy = MaxPLDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Integrated Path Length Distribution 
% x:  Path Length 
% y:  Number of Events 
% y lower limit: -10 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot log-log distribution 
xx = log10(MaxPLDistr(:,1)); 
yy = log10(MaxPLDistr(:,2)); 
plot(xx,yy,'o') 
  
% use Plot Tools: 
% Title:  Log-Log Integrated Path Length Distribution 
% x:  log(Path Length) 
% y:  log(Number of Events) 
% marker size:  3 
% basic fitting:  linear with equation 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
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% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 1 to these axes 
% y lower limit: -10 
  
% prepare power-law overlay 
% obtain y-intercept (for C) and slope (for alpha) from linear equation on 
% the log-log axes 
% logC = y-intercept 
% C = 10.^(y-intercept) 
% alpha = slope 
% y = C*x.^alpha 
% y = (10.^(y-intercept))* x.^(slope) 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  MaxPLDistr(:,1) 
% ysource:  (10.^( y-intercept))* MaxPLDistr(:,1).^( slope) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Integrated Path Length Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Integrated Path Length Distribution with Power-Law Overlay 
% x:  Path Length 
% y:  Number of Events 
  
%% Mean path length time series and distribution set 
% Figure name:  PL3 
% Figure layout:  set of four – eyebrow, eyes, and nose 
% Figure title (doc): Mean Path Length Time Series and Distribution Set 
  
% plot time series 
plot(PLmean_TSwnp) 
  
% use Plot Tools: 
% Title:  Mean Path Length Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Mean Path Length 
% color:  black 
% create and select next axes 
  
%% continue 
% plot distribution 
xx = MeanPLDistr(:,1); 
yy = MeanPLDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Integrated Path Length Distribution 
% x:  Mean Path Length 
% y:  Number of Events 
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% y limits: -10 to 125 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot log-log distribution 
xx = log10(MeanPLDistr(:,1)); 
yy = log10(MeanPLDistr(:,2)); 
plot(xx,yy,'o') 
  
% use Plot Tools: 
% Title:  Log-Log Integrated Path Length Distribution 
% x:  log(Mean Path Length) 
% y:  log(Number of Events) 
% x limits: -0.1 to 1 
% y limits: -1 to 2.4 
% marker size:  3 
% basic fitting:  linear with equation 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 2 to these axes 
% y limits: -10 to 125 
  
% prepare power-law overlay 
% obtain y-intercept (for C) and slope (for alpha) from linear equation on 
% the log-log axes 
% y = C*x.^alpha 
% y = (10.^(y-intercept))* x.^(slope) 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  MeanPLDistr(:,1) 
% ysource:  (10.^( 1.9))* MeanPLDistr(:,1).^( -2.1) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Integrated Path Length Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Integrated Path Length Distribution with Power-Law Overlay 
% x:  Mean Path Length 
% y:  Number of Events 
  
%% Comparison of individual time step and cumulative distributions 
% Figure name:  PL4 
% Figure layout:  set of four – 2x2 
% Figure title (doc): Path Length Distribution Comparison 
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% time step number 
tsn = 152; 
  
% plot individual time step distribution 
xx = PLDistr_t_TS(:,1,tsn); 
yy = PLDistr_t_TS(:,2,tsn); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Individual Time Step Path Length Distribution 
% Time step tsn 
% x:  Path Length 
% y:  Number of Paths 
% x limits:  0 to 25 
% y limits:  -100 to 1000 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot individual time step log-log distribution 
xx = log10(PLDistr_t_TS(:,1,tsn)); 
yy = log10(PLDistr_t_TS(:,2,tsn)); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Log-Log Individual Time Step Distribution 
% Time step tsn 
% x:  log(Path Length) 
% y:  log(Number of Paths) 
% x limits:  0 to 1.5 
% y limits:  0 to 4 
% Auto off 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot cumulative distribution 
xx = PLDistr_tc_TS(:,1,tsn); 
yy = PLDistr_tc_TS(:,2,tsn); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Cumulative Path Length Distribution 
% Time step tsn 
% x:  Path Length 
% y:  Number of Paths 
% x limits:  0 to 25 
% y limits:  -100 to 1000 
% color:  default blue 
% line width:  2 
% create and select next axes 
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%% continue 
% plot cumulative log-log distribution 
xx = log10(PLDistr_tc_TS(:,1,tsn)); 
yy = log10(PLDistr_tc_TS(:,2,tsn)); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Log-Log Cumulative Distribution 
% Time step tsn 
% x:  log(Path Length) 
% y:  log(Number of Paths) 
% x limits:  0 to 1.5 
% y limits:  0 to 4 
% Auto off 
% color:  default blue 
% line width:  2 
  
%% Indirect Effects Graphics 
  
%% Indicator individual time step time series 
% Figure name:  IE1 
% Figure layout:  3x1 
% Figure title (doc): Indicator Individual-Time-Step Time Series 
  
% plot direct effects ratio time series 
stem(DER_t_TS) 
  
% use Plot Tools: 
% Title:  Direct Effects Ratio Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Direct Effects Ratio 
% color:  default blue 
% marker:  none 
% create and select next axes 
  
%% continue 
% plot indirect effects ratio time series 
stem(IER_t_TS) 
  
% use Plot Tools: 
% Title:  Indirect Effects Ratio Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Indirect Effects Ratio 
% color:  default blue 
% marker:  none 
% create and select next axes 
  
%% continue 
% plot indirect effects index time series 
stem(IEI_t_TS) 
  
% use Plot Tools: 
% Title:  Indirect Effects Index Time Series 
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% x:  Time 
% x limits:  0 to 1001 
% y:  Indirect Effects Index 
% y limits:  0 to 15 
% color:  default blue 
% marker:  none 
  
%% Indicator cumulative time series 
% Figure name:  IE2 
% Figure layout:  3x1 
% Figure title (doc): Indicator Cumulative Time Series 
  
% plot cumulative direct effects ratio time series 
plot(DER_tc_TS) 
  
% use Plot Tools: 
% Title:  Cumulative Direct Effects Ratio Time Series 
% x:  Time 
% x limits:  -10 to 1005 
% y:  Cumulative Direct Effects Ratio 
% line width:  2 
% color:  default blue 
% create and select next axes 
  
%% continue 
% plot cumulative indirect effects ratio time series 
plot(IER_tc_TS) 
  
% use Plot Tools: 
% Title:  Cumulative Indirect Effects Ratio Time Series 
% x:  Time 
% x limits:  -10 to 1005 
% y:  Cumulative Indirect Effects Ratio 
% line width:  2 
% color:  default blue 
% create and select next axes 
  
%% continue 
% plot cumulative indirect effects index time series 
plot(IEI_tc_TS) 
  
% use Plot Tools: 
% Title:  Cumulative Indirect Effects Index Time Series 
% x:  Time 
% x limits:  -10 to 1005 
% y:  Cumulative Indirect Effects Index 
% line width:  2 
% color:  default blue 
  
%% Indirect path quantity time series and distribution set 
% Figure name:  IE3 
% Figure layout:  set of three – eyebrow and eyes 
% Figure title (doc): Indirect Path Quantity Time Series and Distribution 
  
% plot time series 
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plot(IndPathQ_TSwze) 
  
% use Plot Tools: 
% Title:  Indirect Path Quantity Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Quantity of Indirect Paths 
% color:  default blue 
% create and select next axes 
  
%% continue 
% plot distribution 
xx = IndPathQDistr(:,1); 
yy = IndPathQDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Indirect Path Quantity Distribution 
% x:  Quantity of Indirect Paths 
% y:  Number of Propagation Events 
% y limits:  -10 to 12  0
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 2 to these axes 
% y limits:  -10 to 120 
  
% prepare power-law overlay 
% y = C*x.^alpha 
% y = (1000000)*x.^(-2) 
% parameters chosen for "best fit" 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  IndPathQDistr(:,1) 
% ysource:  (1000000)* IndPathQDistr(:,1).^(-2) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Indirect Path Quantity Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Distribution with Power-Law Overlay 
% x:  Quantity of Indirect Paths 
% y:  Number of Propagation Events 
  
%% Direct path quantity time series and distribution set 
% Figure name:  IE4 
% Figure layout:  set of three – eyebrow and eyes 

235 



% Figure title (doc): Direct Path Quantity Time Series and Distribution 
  
% plot time series 
plot(DirPathQ_TSwze) 
  
% use Plot Tools: 
% Title:  Direct Path Quantity Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Quantity of Direct Paths 
% color:  default blue 
% create and select next axes 
  
%% continue 
% plot distribution 
xx = DirPathQDistr(:,1); 
yy = DirPathQDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Direct Path Quantity Distribution 
% x:  Quantity of Direct Paths 
% y:  Number of Propagation Events 
% y limits:  -10 to 200 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 2 to these axes 
% y limits:  -10 to 200 
  
% prepare power-law overlay 
% y = C*x.^alpha 
% y = (15000)*x.^(-2) 
% parameters chosen for "best fit" 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  DirPathQDistr(:,1) 
% ysource:  (15000)* DirPathQDistr(:,1).^(-2) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Direct Path Quantity Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Distribution with Power-Law Overlay 
% x:  Quantity of Direct Paths 
% y:  Number of Propagation Events 
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%% Cumulative indirect path quantity and direct path quantity time series 
% Figure name:  IE5 
% Figure layout:  2x1 
% Figure title (doc): Cumulative Path Quantity Time Series 
  
% plot cumulative indirect path quantity time series 
plot(CuIndPathQ_TS) 
  
% use Plot Tools: 
% Title:  Cumulative Indirect Path Quantity Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Cumulative Quantity of Indirect Paths 
% line width:  2 
% color:  default blue 
% create and select next axes 
  
%% continue 
% plot cumulative direct path quantity time series 
plot(CuDirPathQ_TS) 
  
% use Plot Tools: 
% Title:  Cumulative Direct Path Quantity Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Cumulative Quantity of Direct Paths 
% line width:  2 
% color:  default blue 
  
%% Network Connectivity Graphics 
  
%% Time series with selected time steps 
% Figure name:  NC1 
% Figure title in doc:  Network Propagation Time Series with Selections 
  
% plot time series 
plot(NetPESize_TSwnp) 
hold on 
  
% define selection circles 
xx = [32 64 152]; 
yy = NetPESize_TSwnp(xx); 
  
% plot selection circles 
plot(xx,yy,'o','LineWidth',2, 'MarkerEdgeColor',[.824 .004 .216],... 
    'MarkerSize',10) 
hold off 
  
% use Plot Tools: 
% Title:  Network Propagation Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Network Propagation Event Size 
% time series color:  black 
% update display names and add a legend 
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% black line – Time Series 
% red circles – Selected Time Steps 
  
%% Individual-time-step node “combined” degree grid 
% Figure name:  NC2 
% Figure layout:  3x1 
% Figure title (doc):  Node “Combined” Degree Grid at Representative Time 
% Steps 
% tsn:  32, 64, 152 
  
% tsn = time step number 
tsn = 32; 
  
% define a matrix NodeCDegGridz (10x10) (temporary variable) for plotting 
% node-combined-degree-grid zero values 
NodeCDegGridz = NodeCDegGrid_t_TS(:,:,tsn); 
NodeCDegGridz(NodeCDegGridz >= 1) = NaN; 
  
% plot grid zero values 
stem3(NodeCDegGridz) 
hold on 
  
% define a matrix NodeCDegGridnz (10x10) (temporary variable) for plotting 
% node-combined-degree-grid nonzero values 
NodeCDegGridnz = NodeCDegGrid_t_TS(:,:,tsn); 
NodeCDegGridnz(NodeCDegGridnz == 0) = NaN; 
  
% plot grid nonzero values 
stem3(NodeCDegGridnz, 'fill') 
hold off 
  
% use Plot Tools for overall plot: 
% Title:  Node Degree Grid for Small Propagation Event 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
% z:  Combined-Degree 
% z limits: 0 to 15 
% x,y limits: 0 to 11; y reverse; ticks from 1 to 10 in increments of 1 
% x,y grid lines off 
  
% use Plot Tools for zero value plot: 
% line width:  0.5 
% marker:  o and 5 
% color:  black 
  
% use Plot Tools for nonzero value plot: 
% line width:  2 
% marker:  o and 5 
% color:  default blue 
  
% create and select second axes 
% update tsn to second value 
% rerun this cell 
% repeat Plot Tools operations, but change plot title 
% Title:  Node Degree Grid for Mid-Size Propagation Event 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
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% create and select third axes 
% update tsn to third value 
% rerun this cell 
% repeat Plot Tools operations, but change plot title 
% Title:  Node Degree Grid for Large Propagation Event 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
  
%% Individual-time-step node “in” degree grid 
% Figure name:  NC3 
% Figure layout:  3x1 
% Figure title (doc):  Node “In” Degree Grid at Representative Time Steps 
% tsn:  32, 64, 152 
  
% tsn = time step number 
tsn = 32; 
  
% define a matrix NodeIDegGridz (10x10) (temporary variable) for plotting 
% node-in-degree-grid zero values 
NodeIDegGridz = NodeIDegGrid_t_TS(:,:,tsn); 
NodeIDegGridz(NodeIDegGridz >= 1) = NaN; 
  
% plot grid zero values 
stem3(NodeIDegGridz) 
hold on 
  
% define a matrix NodeIDegGridnz (10x10) (temporary variable) for plotting 
% node-in-degree-grid nonzero values 
NodeIDegGridnz = NodeIDegGrid_t_TS(:,:,tsn); 
NodeIDegGridnz(NodeIDegGridnz == 0) = NaN; 
  
% plot grid nonzero values 
stem3(NodeIDegGridnz, 'fill') 
hold off 
  
% use Plot Tools for overall plot: 
% Title:  Node Degree Grid for Small Propagation Event 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
% z:  In-Degree 
% z limits: 0 to 10 
% x,y limits: 0 to 11; y reverse; ticks from 1 to 10 in increments of 1 
% x,y grid lines off 
  
% use Plot Tools for zero value plot: 
% line width:  0.5 
% marker:  o and 5 
% color:  black 
  
% use Plot Tools for nonzero value plot: 
% line width:  2 
% marker:  o and 5 
% color:  default blue 
  
% create and select second axes 
% update tsn to second value 
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% rerun this cell 
% repeat Plot Tools operations, but change plot title 
% Title:  Node Degree Grid for Mid-Size Propagation Event 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
  
% create and select third axes 
% update tsn to third value 
% rerun this cell 
% repeat Plot Tools operations, but change plot title 
% Title:  Node Degree Grid for Large Propagation Event 
% Time step tsn, Event size = NetPESize_TSwnp(tsn) 
  
%% Node combined-degree time series and distribution set 
% Figure name:  NC4 
% Figure layout:  set of four – eyebrow, eyes, and nose 
% Figure title (doc): Node Combined-Degree Time Series and Distribution Set 
  
% plot time series 
plot(CDmax_t_TSwnp) 
  
% use Plot Tools: 
% Title:  Node Combined-Degree Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Node Combined-Degree 
% color:  black 
% create and select next axes 
  
%% continue 
% plot distribution 
xx = MaxCDDistr(:,1); 
yy = MaxCDDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Integrated Node Degree Distribution 
% x:  Node Maximum Combined-Degree 
% y:  Number of Events 
% y lower limit: -10 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot log-log distribution 
xx = log10(MaxCDDistr(:,1)); 
yy = log10(MaxCDDistr(:,2)); 
plot(xx,yy,'o') 
  
% use Plot Tools: 
% Title:  Log-Log Integrated Node Degree Distribution 
% x:  log(Node Maximum Combined-Degree) 
% y:  log(Number of Events) 
% marker size:  3 
% basic fitting:  linear with equation 
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% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 2 to these axes 
% y lower limit: -10 
  
% prepare power-law overlay 
% obtain y-intercept (for C) and slope (for alpha) from linear equation on 
% the log-log axes 
% y = C*x.^alpha 
% y = (10.^(y-intercept))* x.^(slope) 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  MaxCDDistr(:,1) 
% ysource:  (10.^( y-intercept))* MaxCDDistr(:,1).^( slope) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Integrated Node Degree Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Integrated Node Degree Distribution with Power-Law Overlay 
% x:  Node Maximum Combined-Degree 
% y:  Number of Events 
  
%% Node in-degree time series and distribution set 
% Figure name:  NC5 
% Figure layout:  set of four – eyebrow, eyes, and nose 
% Figure title (doc): Node In-Degree Time Series and Distribution Set 
  
% plot time series 
plot(IDmax_t_TSwnp) 
  
% use Plot Tools: 
% Title:  Node In-Degree Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Node In-Degree 
% color:  black 
% create and select next axes 
  
%% continue 
% plot distribution 
xx = MaxIDDistr(:,1); 
yy = MaxIDDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
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% Title:  Integrated Node Degree Distribution 
% x:  Node Maximum In-Degree 
% y:  Number of Events 
% y lower limit: -10 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot log-log distribution 
xx = log10(MaxIDDistr(:,1)); 
yy = log10(MaxIDDistr(:,2)); 
plot(xx,yy,'o') 
  
% use Plot Tools: 
% Title:  Log-Log Integrated Node Degree Distribution 
% x:  log(Node Maximum In-Degree) 
% y:  log(Number of Events) 
% marker size:  3 
% basic fitting:  linear with equation 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 2 to these axes 
% y lower limit: -10 
  
% prepare power-law overlay 
% obtain y-intercept (for C) and slope (for alpha) from linear equation on 
% the log-log axes 
% y = C*x.^alpha 
% y = (10.^(y-intercept))* x.^(slope) 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  MaxIDDistr(:,1) 
% ysource:  (10.^( y-intercept))* MaxIDDistr(:,1).^( slope) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Integrated Node Degree Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Integrated Node Degree Distribution with Power-Law Overlay 
% x:  Node Maximum In-Degree 
% y:  Number of Events 
  
%% Node mean degree time series and distribution set 
% Figure name:  NC6 
% Figure layout:  set of four – eyebrow, eyes, and nose 
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% Figure title (doc): Node Mean Degree Time Series and Distribution Set 
  
% plot time series 
plot(NMD_t_TSwnp) 
  
% use Plot Tools: 
% Title:  Node Mean Degree Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Node Mean Degree 
% color:  black 
% create and select next axes 
  
%% continue 
% plot distribution 
xx = NMDDistr(:,1); 
yy = NMDDistr(:,2); 
plot(xx,yy) 
  
% use Plot Tools: 
% Title:  Integrated Node Degree Distribution (Node Mean Degree) 
% x:  Node Mean Degree 
% y:  Number of Events 
% y lower limit: -10 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot log-log distribution 
xx = log10(NMDDistr(:,1)); 
yy = log10(NMDDistr(:,2)); 
plot(xx,yy,'o') 
  
% use Plot Tools: 
% Title:  Log-Log Integrated Node Degree Distribution (Node Mean Degree) 
% x:  log(Node Mean Degree) 
% y:  log(Number of Events) 
% marker size:  3 
% basic fitting:  linear with equation 
% color:  default blue 
% line width:  2 
% create and select next axes 
  
%% continue 
% plot distribution with power-law overlay 
% do this entirely with Plot Tools: 
  
% copy and paste distribution from axes 2 to these axes 
% y lower limit: -10 
  
% prepare power-law overlay 
% obtain y-intercept (for C) and slope (for alpha) from linear equation on 
% the log-log axes 
% y = C*x.^alpha 
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% y = (10.^(y-intercept))* x.^(slope) 
  
% add power-law overlay to axes (use Add Data on Plot Tools) 
% xsource:  NMDDistr(:,1) 
% ysource:  (10.^( y-intercept))* NMDDistr(:,1).^( slope) 
% color:  red  (RGB = 210  1  55) 
% line width:  2 
  
% update display names and add a legend 
% blue line – Integrated Node Degree Distribution 
% red line – Power-Law Overlay 
  
% add figure title and axis labels 
% Title:  Integrated Node Degree Distribution with Power-Law Overlay 
% x:  Node Mean Degree 
% y:  Number of Events 
  
%% Individual time step time series set 
% Figure name:  NC7 
% Figure layout:  3x1 
% Figure title (doc): Network Connectivity Time Series Set 
  
% plot direct effects ratio time series 
plot(NMD_t_TSwnp) 
  
% use Plot Tools: 
% Title:  Node Mean Degree Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Node Mean Degree 
% color:  darker blue 
% create and select next axes 
  
%% continue 
% plot indirect effects ratio time series 
plot(NetDen_t_TS) 
  
% use Plot Tools: 
% Title:  Network Connection Density Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Network Connection Density 
% color:  darker blue 
% create and select next axes 
  
%% continue 
% plot indirect effects index time series 
plot(NumLN_t_TS) 
  
% use Plot Tools: 
% Title:  Number of Linked Nodes Time Series 
% x:  Time 
% x limits:  0 to 1001 
% y:  Number of Linked Nodes 
% color:  darker blue 
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