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Abstract

We develop a theory of support varieties for Iwahori-Hecke algebras of type A, which

detects natural homological properties such as the complexity of modules. Furthermore, we

extend the theory to Hecke algebras of classical type with the help of Morita equivalences

between Iwahori-Hecke algebras of classical type.

Schur algebras of classical type are centralizer algebras of the action of Hecke algebras

of classical type on tensor spaces. We give an isomorphism theorem between Schur alge-

bras of type B and type A, which enables us to address the questions of cellularity, quasi-

hereditariness and representation type of Schur algebras of type B, and also discuss possible

approach to generalize the result to type D.
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Introduction

This thesis consists of two part. The first part develops a theory of support theory for

Iwahori-Hecke algebras of classical type, which is based on [NX]. The second part gives an

isomorphism theorem between Schur algebras of type B and type A, and discuss its corol-

laries, which is based on [LNX]. Throughout the thesis, let k denote a field of characteristic

p.

Part I: Support theory for Iwahori-Hecke algebras

Support varieties have been developed in a variety of contexts that involve categories which

are Frobenius (i.e., where injectivity and projectivity are equivalent) and have a monoidal

tensor structure. The monoidal tensor structure generally arises from a Hopf structure on an

underlying algebra. Examples of such categories include modules for finite group schemes,

quantum groups and Lie superalgebras (cf. [FP1, FP2] [FPe], [NPal], [BNPP]). More re-

cently, the key properties of support varieties have be used to create axiomatic support

theory and tensor triangular geometry. Very little is known about extracting geometric

properties from Frobenius categories where there is no underlying coproduct.

In this thesis, we will develop a support variety theory for the Iwahori-Hecke algebra

for the symmetric group (i.e., type A), and for Iwahori-Hecke algebras for other classical

groups. In general, the module category for Iwahori-Hecke algebras lacks a tensor structure.
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This presents major difficulties in executing important constructions. Our modified theory of

support varieties differs from approaches proposed using the Hochschild cohomology (cf. [L]).

In those contexts, varieties can be defined, however it is not clear how (i) these varieties can

be computed and (ii) how they can be used in the general theory. It is anticipated that our

methods along with several recent developments in extending the theory in type A to other

Weyl groups (cf. [DPS2, DPS3]) might lead to a general finite generation results entailing

the cohomology ring and the creation of a general theory of supports with realizations for

arbitrary Iwahori-Hecke algebras.

The first part of the thesis is organized as follows. In Chapter 1, we introduce the Hecke

algebras of classical type that will be used throughout the thesis (including Part II). The

following chapter, Chapter 3, provides the definition and details of the results on transfer and

its relationship to cohomology for all types. In Chapter 4, using the explicit description of

the cohomology ring Rd :“ H‚pHqpΣdq,Cq due to Benson, Erdmann and Mikaelian [BEM] we

show that (i) Rλ :“ H‚pHqpΣλq,Cq is finitely-generated and (ii) Ext‚
HqpΣλqpC,Mq is finitely

generated as a Rλ-module for any composition λ. Here M is a finite-dimensional HqpΣλq-

module. The results above allow one to use the ideas involving branching to Young subgroups

from Hemmer and Nakano [HN1] to construct support varieties for any HqpΣdq. These ideas

were important for the recent proof of the Erdmann-Lim-Tan Conjecture [ELT] by Cohen,

Hemmer and Nakano [CHN] that involved computing the complexity of the Lie module. Our

results rely heavily on the work of Dipper and Du (cf. [DD, Du]) that provides the technical

machinery to prove many of the results in this section.

Following the seminal work of Alperin, we define complexity for HqpΣdq-modules in

Chapter 5. The main point of this section is to utilize the representation theory of the

Iwahori-Hecke algebras to demonstrate that the complexity of a module is in fact equal to

the dimension of its support variety (as defined in Chapter 4). As an application we prove

that the complexity of any module is less than the complexity of the trivial module. Note
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that without a tensor structure (as in our case) this is a non-trivial fact. Subsequently, in

Chapter 6, we compute the complexities and varieties for Young and permutation modules,

which extends the earlier work in [HN1] for symmetric groups to Iwahori-Hecke algebras of

type A.

In Chapter 7, we construct a new invariant for Specht modules called the graded di-

mension and relate this graded dimension to the product of cyclotomic polynomials. This

definition in conjunction with results for relative cohomology allows us to show that the

vertex of the Specht module satisfies certain numerical constraints. As a by-product, we

are able to explicitly compute the vertex of Specht modules for a certain class of partitions.

Finally, in Chapter 8, we apply our results for Iwahori-Hecke algebras of type A with various

Morita equivalences to construct support varieties for Iwahori-Hecke algebras of types B{C

and D, and show that the complexity of modules for these algebras is equal to the dimension

of the corresponding varieties. Several open questions of further interest are posed at the

end of the paper.

Part II: Coordinate constructions of q-Schur algebras

Schur-Weyl duality has played a prominent role in the representation theory of groups and

algebras. The duality first appeared as method to connect the representation theory of the

general linear group GLn and the symmetric group Σd. This duality carries over naturally

to the quantum setting by connecting the representation theory of quantum GLn and the

Iwahori-Hecke algebra HqpΣdq of the symmetric group Σd.

Let Uqpglnq be the Drinfeld-Jimbo quantum group. Jimbo showed in [Jim] that there

is a Schur duality between Uqpglnq and HqpΣdq on the d-fold tensor space of the natural

representation V of Uqpglnq. The q-Schur algebra of type A, SA
q pn, dq, is the centralizer

algebra of the HqpΣdq-action on V bd.
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It is well-known that the representation theory for Uqpglnq is closely related to the rep-

resentation theory for the quantum linear group GLn. The polynomial representations GLn

coincide with modules of SA
q pn, dq with dą 0. The relationship between objects are depicted

as below:
krMA

q pnqs˚ Ðâ Uqpglnq

Ó Ó

krMA
q pnqs˚

d » SA
q pn, dq ñ V bd ð HqpΣdq

The algebra Uqpglnq embeds in the dual of the quantum coordinate algebra krMA
q s; while

SA
q pn, dq can be realized as its d-th degree component. The reader is referred to [PW] for a

thorough treatment of the subject.

The Schur algebra SA
q pn, dq and the Iwahori-Hecke algebra HqpΣdq are structurally related

when n ě d.

• There exists an idempotent e P SA
q pn, dq such that eSA

q pn, dqe » HqpΣdq;

• An idempotent yields the existence of Schur functor ModpSA
q pn, dqq Ñ ModpHqpΣdqq;

• SA
q pn, dq is a (1-faithful) quasi-hereditary cover of HqpΣdq1

The second part of the thesis aims to investigate the representation theory of the q-Schur

algebras of type B that arises from the coideal subalgebras for the quantum group of type A.

We construct, for type B “ C, the following objects in the sense that all favorable properties

mentioned in the previous section hold:

krMB
Q,qpnqs˚ Ðâ UB

Q,qpnq

Ó Ó

krMB
Q,qpnqs˚

d » SB
Q,qpn, dq ñ V bd

B ð HB
Q,qpdq

1The algebra SA
q pn, dq is 1-faithful under the conditions that q is not a root of unity or if q2 is a primitive

ℓth root of unity then ℓ ě 4.
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For our purposes it will be advantageous to work in more general setting with two parameters

q and Q, and construct the analogs krMB
Q,qpnqs of the quantum coordinate algebras. Then

we prove that the dth degree component of krMB
Q,qpnqs˚ is isomorphic to the type B q-Schur

algebras. The coordinate approach provide tools to study the representation theory for the

algebra krMB
Q,qpnqs˚ and for the q-Schur algebras simultaneously. The algebra UB

Q,qpnq, unlike

Uqpglnq, does not have an obvious comultiplication. Therefore, its dual object, krMB
Q,qpnqs,

should be constructed as a coalgebra; while in the earlier situation krMA
q pnqs is a bialgebra.

In Chapter 9, an isomorphism theorem between the q-Schur algebras of type B and type

A (under an invertibility condition) is established:

SB
Q,qpn, dq –

d
à

i“0

SA
q prn{2s, iq b SA

q ptn{2u, d ´ iq. (1)

One can view this as a “lifting” of the Morita equivalence (via the Schur functor) Theo-

rem 7.1.1(a) proved by Dipper-James [DJ4].

As a corollary of our isomorphism theorem, we obtain favorable properties for our coideal

Schur algebras, see Chapter 11-Chapter 12. In particular, with the Morita equivalence we are

able to show that SB
Q,qpn, dq is a cellular algebra and quasi-hereditary. Moreover, in § 11.3,

we are able give a complete classification of the representation type of SB
Q,qpn, dq. In the

following section (Chapter 12), we are able to demonstrate that under suitable conditions,

the Schur algebra SB
Q,qpn, dq is a quasi-hereditary one-cover for HB

Q,qpdq. We also exhibit how

the representation theory of SB
Q,qpn, dq is related to Rouquier’s Schur-type algebras that arise

from the category O for rational Cherednik algebras.

In the one-parameter case (i.e., q “ Q), the algebra UB
q pnq is the coideal subalgebra Uı

or Uȷ of Uqpglnq in [BW] (see also [ES]). To our knowledge, there is no general theory for

finite-dimensional representations for the coideal subalgebras (cf. [Le] for establishing their

Cartan subalgebras), and in some way our paper aims to establish results about “polynomial”

xiii



representations for UB
q pnq. The corresponding Schur algebras therein are denoted by Sı or

Sȷ to emphasize the fact that they arise from certain quantum symmetric pairs of type A

III/IV associated with involutions ı or ȷ on a Dynkin diagram of type An. Namely, we have

the identification below:

UB
q pnq ”

$

’

’

&

’

’

%

Uȷ
r if n “ 2r ` 1;

Uı
r if n “ 2r,

SB
q pn, dq ”

$

’

’

&

’

’

%

Sȷpr, dq if n “ 2r ` 1;

Sıpr, dq if n “ 2r.

There are many cases when the Morita equivalence will hold, in particular when (i) q is

generic, (ii) q is an odd root of unity, or (iii) q is an (even) ℓth root of unity if ℓą 4d.

There are several generalizations of the q-Schur duality for type B. A comparison of the

algebras regarding the aforementioned favorable properties will be given in Chapter 13. Since

all these algebras are the centralizing partners of certain Iwahori-Hecke algebra actions, they

are different from the ones appearing in the Schur duality (see [Hu2]) for type B/C quantum

groups, and are different from the coordinate algebras studied by Doty [Do].
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Part I

Support varieties of Iwahori-Hecke

algebras

1



Chapter 1

Iwahori-Hecke algebras of classical

type

1.1 Multiparameter Iwahori-Hecke algebras

Let pW,Sq be a Coxeter system. For each s P S, let qs P kˆ. Assume that qs “ qt if s

and t are conjugate in W . For every w P W , let qw :“ qs1 . . . qst for a reduced expression

w “ s1 . . . st, which is well-defined. Let q :“ pqwqwPW .

The Iwahori-Hecke algebra of pW,Sq with parameter q, denoted by HqpW,Sq, is the free

k-module with basis

tTw : w P W u

and with multiplication defined by

TwTs :“

$

’

’

&

’

’

%

Tws, if ℓpwsq ą ℓpwq,

qsTws ` pqs ´ 1qTw, otherwise,

for w P W and s P S, where ℓ : W Ñ N is the length function of pW,Sq.
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If qs “ q P kˆ for all s P S, we write HqpW,Sq :“ HqpW,Sq. When S is understood from

the context, we write HqpW q :“ HqpW,Sq.

For a subset J Ď S, let pWJ , Jq be the Coxeter subsystem of pW,Sq, and qJ :“

pqwqwPWJ
. The Iwahori-Hecke algebra HqJ

pWJ , Jq is a subalgebra of HqpW,Sq, and we write

HqJ
pWJq :“ HqJ

pWJ , Jq. Subalgebras arising in this way are called parabolic subalgebras.

There is an automorphism # and an antiautomorphism ˚ of HqpW,Sq defined by:

T#
w :“ p´1qℓpwqqwpTw´1q´1, and T ˚

w :“ Tw´1 .

The maps # and ˚ are both involutions. We will also use the dual _ defined by:

T_
w :“ q´1

w Tw´1 .

1.2 Some modules over Iwahori-Hecke algebras

We will use right modules over Iwahori-Hecke algebras, unless stated otherwise. The algebra

HqpW,Sq has two distinguished one-dimensional modules:

(i) the trivial module k, where Tw acts as qw, and

(ii) the alternating module sgn, where Tw acts as p´1qℓpwq.

The trivial module and alternating module coincide exactly when qs “ ´1 for all simple

reflection s. When q “ p1qwPW these specialize to the usual trivial and alternating modules

of the group algebra kW .

For any HqpW,Sq-module M , one can define a dual (left) module M˚ :“ HomkpM,kq,

where the action of HqpW,Sq is given by h ¨ f : m ÞÑ h˚m for h P HqpW,Sq and f P M˚.

In general, the tensor product of two HqpW,Sq-modules is not an HqpW,Sq-module,

since HqpW,Sq is not a Hopf algebra. However, the automorphism # lets us define, for each

3



HqpW,Sq-module M , a new module M# with the same underlying vector space and with

action given by h ¨ m :“ h#m for h P HqpW,Sq and f P M˚. This is denoted by

M b sgn :“ M#,

which specializes for q “ p1qwPW to tensoring with the alternating module.

1.3 Iwahori-Hecke algebras of type A

Let Σd be the symmetric group on d letters, and S be the set of simple transpositions in

Σd. The pair pΣd, dq is a Coxeter system. The Iwahori-Hecke algebra of type A, denoted by

HA
q pd ´ 1q, is defined to be HqpΣd, Sq.

Since all simple transpositions are conjugate in Σd, there exists some q P kˆ such that

qs “ q for all s P S. Therefore, we may write HA
q pd ´ 1q instead of HA

q pd ´ 1q.

For 1 ď i ď d ´ 1, let si :“ pi, i ` 1q P Σd, and Ti :“ Tsi . It is known that, HA
q pd ´ 1q is

generated by T1, . . . , Td´1 subject to the following relations:

(i) Braid relations:
$

’

’

&

’

’

%

TiTi`1Ti “ Ti`1TiTi`1, 1 ď i ď d ´ 2,

TiTj “ TjTi, |i ´ j| ą 1;

(ii) Quadratic relation:

pTi ´ qqpTi ` 1q “ 0, 1 ď i ď d ´ 1.

Let l be the smallest integer such that 1 ` q ` ¨ ¨ ¨ ` ql´1 “ 0, and set l :“ 8 if no such

integer exists. If q P kˆ is a primitive jth root of unity, then l “ j. Furthermore, if q is not

root of unity, then HqpΣdq is semisimple. Note that gcdpl, pq “ 1 when l ‰ 8.

4



1.3.1 Partitions and compositions

Let Λpdq :“ tλ ( du be the set of all compositions of d, and let Λ`pdq :“ tλ $ du be the set

of all partitions of d. Given two compositions λ, µ P Λpdq (resp. partitions), let µ ( λ (resp.

µ $ λ) if µ is finer than λ. A partition/composition λ of d is called l-parabolic if every part

of λ is either 1 or l, and it is simple l-parabolic provided that exactly one part of λ is l and

all other parts are 1’s.

A partition λ “ pλ1, λ2, . . . q is called l-restricted if λi ´ λi`1 ď l ´ 1 for all i. The set of

the l-restricted partitions of d will be denoted by Λ`
respdq. A partition λ is called l-regular if

its transpose λ1 is l-restricted. The set of all l-regular partitions of d is denoted by Λ`
regpdq.

1.3.2 Parabolic subalgebras

For a composition λ “ pλ1, λ2, . . . q P Λpdq, let Σλ be the corresponding Young subgroup of

Σd, that is Σλ – Σλ1 ˆ Σλ2 ˆ ¨ ¨ ¨ , and let Sλ be the simple transpositions in Σλ. Associated

to this Young subgroup, there is a corresponding parabolic subalgebra of HA
q pΣdq:

HqpΣλq :“ HqpΣλ, Sλq.

Clearly,

HqpΣλq – HA
q pλ1 ´ 1q b HA

q pλ2 ´ 1q b ¨ ¨ ¨ .

1.3.3 Simple modules and Specht modules

In this subsection, we assume that p “ 0. We refer the reader to [DJ1] and [Mat] for details

about the representation theory of HqpΣdq. The major classes of representations parallel

those for the modular representation theory of the symmetric group. For each λ P Λ`pdq,

there is a q-Specht module of the Iwahori-Hecke algebra HqpΣdq, denoted by Sλ. If λ P Λ`
regpdq,
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then Sλ has a unique simple quotient, denoted by Dλ. One obtains a complete collection

of non-isomorphic simple modules Dλ for λ P Λ`
regpdq for HqpΣdq-module in this way. These

simple modules are self-dual and absolutely irreducible.

For a composition λ P Λpdq, set

xλ :“
ÿ

wPΣλ

Tw.

Define the permutation module Mλ :“ xλ HqpΣdq. One also has the isomorphism Mλ –

ind
HqpΣdq

HqpΣλq
k. Given λ P Λ`pdq, there is a unique indecomposable direct summand of Mλ

containing Sλ that is the Young module Y λ. All other summands are Young modules whose

partitions are strictly greater than λ in the dominance ordering. Furthermore, Y λ – Y µ if

and only if λ “ µ.

The simple HqpΣdq-modules can also be indexed by Λ`
respdq. For λ P Λ`

respdq denote the

corresponding simple module by Dλ. It is a fact that Dλ “ socHqpΣdqpS
λq. The relationship

between these two labellings is given by:

Dλ – Dλ1 b sgn for any λ P Λ`
regpdq. (1.1)

We remark that that tensoring with the alternating module turns Specht modules into dual

Specht modules and vice-versa (cf. [J1, 6.7], [Mat, Exer. 3.14]):

Sλ b sgn – pSλ1

q˚ :“ Sλ1 . (1.2)

1.4 Iwahori-Hecke algebras of type B/C

The Coxeter group of type B/C, denoted by WBpdq, can be realized as the signed symmetric

group on t˘1, . . . ,˘du. Let sB0 :“ p1,´1q, si :“ pi, i ` 1qp´i,´i ´ 1q and S :“ tsi : 0 ď
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iă du Ď WBpdq. The Iwahori-Hecke algebra of type B/C, denoted by HB
qpdq, is defined to be

HqpWd, Sq.

The generators in S are in two conjugacy classes: the conjugacy class of s0, and the

conjugacy class of s1, . . . , sd´1. Let Q :“ qs0 and q :“ qs1 . We write HB
Q,qpdq “ HB

qpdq.

Let TB
0 :“ Ts0 and Ti :“ Tsi . It is known that, HB

Q,qpdq is generated by TB
0 , T1, . . . , Td´1

subject to the following relations:

(i) Braid relations:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

TB
0 T1T

B
0 T1 “ T1T

B
0 T1T

B
0 ,

TiTi`1Ti “ Ti`1TiTi`1, 1 ď i ď d ´ 2,

TiTj “ TjTi, |i ´ j| ą 1;

(ii) Quadratic relations:

$

’

’

&

’

’

%

pTB
0 ´ QqpTB

0 ` 1q “ 0,

pTi ´ qqpTi ` 1q “ 0, 1 ď i ď d ´ 1.

We have an embedding of type A Iwahori-Hecke algebra into type B Iwahori-Hecke alge-

bra corresponding to the embedding WApd ´ 1q ãÑ WBpdq:

HA
q pd ´ 1q ãÑ HB

Q,qpdq,

Ti ÞÑ Ti, 1 ď i ď d ´ 1.

1.5 Iwahori-Hecke algebras of type D

The Coxeter group of type D, denoted by WDpdq, can be realized as the even signed sym-

metric group on t˘1, . . . ,˘du. Let sD0 :“ p1,´1qp2,´2q, si :“ pi, i ` 1qp´i,´i ´ 1q and
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S :“ tsi : 0 ď iă du P WBpdq. Note that sD0 “ s0s1s0, therefore, WDpdq is a subgroup

of WBpdq. The Iwahori-Hecke algebra of type B(C), denoted by HB
qpdq, is defined to be

HqpWDpdq, Sq.

The generators S are in a single conjugacy class. Let q :“ qs1 . We write HD
q pdq :“ HD

q pdq.

Let TD
0 :“ TsD0

, and Ti :“ Tsi for 1 ď i ď d ´ 1. It is known that, HD
q pdq is generated by

TD
0 , T1, . . . , Td´1 subject to the following relations:

(i) Braid relation:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

TD
0 Ti “ TiT

D
0 , i “ 1 or 3 ď i ď d ´ 1,

TD
0 T2T

D
0 “ T2T

D
0 T2,

TiTi`1Ti “ Ti`1TiTi`1, 1 ď i ď d ´ 2,

TiTj “ TjTi, |i ´ j| ą 1;

(ii) Quadratic relation:

$

’

’

&

’

’

%

pTD
0 ´ qqpTD

0 ` 1q “ 0,

pTi ´ qqpTi ` 1q “ 0, 1 ď i ď d ´ 1.

We have an embedding of type A Iwahori-Hecke algebra into type D Iwahori-Hecke

algebra corresponding to the embedding WApd ´ 1q ãÑ WDpdq:

HA
q pd ´ 1q ãÑ HD

q pdq,

Ti ÞÑ Ti, 1 ď i ď d ´ 1,

and we have an embedding of type D Iwahori-Hecke algebra into type B Iwahori-Hecke
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algebra corresponding to the embedding WDpdq ãÑ WBpdq:

HD
q pdq ãÑ HB

Q“1,qpdq,

TD
0 ÞÑ TB

0 T1T
B
0 ,

Ti ÞÑ Ti, 1 ď i ď d ´ 1.

9



Chapter 2

Transfer maps and cohomology

In this chapter, we fix a Coxeter system pW,Sq, and the sets I, J and K which are subsets

of S.

2.1 Parabolic subgroups

Let I and J be subsets of K. We abuse the notation by letting WK{WJ , WIzWK and

WIzWK{WJ denote the sets of distinguished left/right/double coset representatives, respec-

tively. The are the minimal length elements in the corresponding cosets. For a distinguished

double coset representative w P WIzWK{WJ , the intersection Ww
I XWJ is always a parabolic

subgroup of WK , where Ww
I :“ w´1WIw. More precisely, there exists a unique subset of K,

denoted by Iw X J , such that WIwXJ “ Ww
I X WJ .
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2.2 Induction, restriction and conjugation functors of

modules

Let I Ď K. For a HqpWIq-module M , the induction of M from I to K, denoted by indK
I M ,

is the HqpWKq-module

indK
I M :“ M bHqpWIq HqpWKq.

Let J Ď K. For a HqpWKq-module M , the restriction of M from K to J , denoted by resKJ M ,

is the HqpWJq-module

resKJ M :“ M bHqpWJ q HqpWJq.

Let w P WIzWK{WJ . For a HqpWIq-module M , the conjugation of M by w, denoted by

conw
I M , is the HqpWIwXJq-module

conw
I M :“ M bHqpWIq Tw Ď M bHqpWIq HqpWKq.

Theorem 2.2.1 (Mackey Decomposition, [Jo, Theorem 2.29]). For a HqpWIq-HqpWIq-

bimodule M ,

resKJ indK
I M –

à

wPWIzWK{WJ

indJ
IwXJ con

w
I M.

2.3 Transfer, restriction and conjugation maps

For an algebra A and an A-A-bimodule M , let

MA :“ tm P M : am “ ma, for all a P Au.

Definition 2.3.1. Let M be a HqpWKq-HqpWKq-bimodule.

(i) Let J Ď K. The inclusion gives the restriction map resK,J : MHqpWKq ãÑ MHqpWJ q.
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(ii) ([Jo, L]) Let I Ď K. The transfer map trI,K : MHqpWIq Ñ MHqpWKq is

trI,Kpmq :“
ÿ

wPWIzWK

T_
w mTw.

(iii) Let w P WIzWK{WJ . The conjugation map conI,w : MHqpWIq Ñ MHqpWIwXJ q is

conI,wpmq :“ T´1
w mTw.

Theorem 2.3.2 ([Jo, Theorem 2.30]). For m P MHqpWIq,

resK,J trI,Kpmq “
ÿ

wPWIzWK{WJ

trIwXJ,JpT_
w mTwq.

2.4 Transfer, restriction and conjugation maps on Ext‚

For HqpWKq-modules M and N , and h1, h2 P HqpWKq, let

ph1fh2qpmq :“ fpmh1qh2.

This makes HomkpM,Nq a HqpWKq-HqpWKq-bimodule. Moreover,

HomHqpWIqpM,Nq “ HomkpM,NqHqpWIq.
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Therefore, the transfer map, restriction map and conjugation map in Definition 2.3.1 induces

maps on extension groups:

trI,K : Ext‚
HqpWIqpM,Nq Ñ Ext‚

HqpWKqpM,Nq,

resK,J : Ext‚
HqpWKqpM,Nq Ñ Ext‚

HqpWJ qpM,Nq,

conI,w : Ext‚
HqpWIqpM,Nq Ñ Ext‚

HqpWIwXJ qpM,Nq.

Proposition 2.4.1. Let M1,M2,M3 be three HqpWKq-HqpWKq-bimodules, and I, J Ď K.

The following statements hold.

(i) For α P Ext‚
HqpWKqpM1,M2q,

trI,K resK,Ipαq “ α trI,K 1HqpWIq,

where 1HqpWIq is the identity element in the HqpWIq-HqpWIq bimodule HqpWIq.

(ii) For α P Ext‚
HqpWIqpM1,M2q, β P Ext‚

HqpWKqpM2,M3q,

β ˝ trI,Kpαq “ trJ,KpresK,Jpβq ˝ αq.

(iii) For α P Ext‚
HqpWKqpM1,M2q, β P Ext‚

HqpWIqpM2,M3q,

trI,Kpβq ˝ α “ trI,Kpβ ˝ resK,Ipαqq.

(iv) For I Ď J Ď K, and α P Ext‚
HqpWIqpM1,M2q,

trJ,K trI,Jpαq “ trI,Kpαq.
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(v) For α P Ext‚
HqpWIqpM1,M2q,

resK,J trI,Kpαq “
ÿ

wPWIzWK{WJ

trIwXJ,JpT_
w αTwq.

Proof. (i) Since α commutes with HqpWKq,

trI,K resK,Ipαq “
ÿ

wPWIzWK

T_
w αTw “ α

ÿ

wPWIzWK

T_
w Tw “ α trI,K 1HqpWIq.

(ii) Since β commutes with HqpWKq,

β ˝ trI,Kpαq “ β ˝
ÿ

wPWIzWK

T_
w αTw “

ÿ

wPWK{WI

T_
w presK,Ipβq ˝ αqTw “ trI,KpresK,Ipβq ˝ αq.

(iii) The result follows from similar arguments in (ii).

(iv) For every w1 P WIzWJ and w2 P WJzWK , it is clear that w1w2 P WIzWK . So,

trJ,K trJ,Ipαq “
ÿ

w2PWJ zWK

ÿ

w1PWIzWJ

T_
w1w2

αTw1w2 “
ÿ

wPWIzWK

T_
w αTw “ trI,Kpαq.

(v) Viewing α as an element in HomHqpWIqpM
1
1,M2q for some HqpWIq-module M 1

1, the result

follows from applying Theorem 2.3.2 to HomHqpWIqpM
1
1,M2q.

Proposition 2.4.2. Let w P WIzWK such that Ww
I “ WJ . For every α P Ext‚

HqpWKqpM,Nq,

conI,w resK,Ipαq “ resK,Jpαq.

Proof. Since Tw P HqpWKq, Tw commutes with α, so

conI,w resK,Ipαq “ T´1
w resK,IpαqTw “ T´1

w Tw resK,Jpαq “ resK,Jpαq.
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2.5 Finiteness theorem

Theorem 2.5.1. Let I Ď K, and assume that trI,K 1HqpWIq is invertible in HqpWKq. Let

M be a Noetherian HqpWIq-module. If Ext‚
HqpWIqpk,Mq is Noetherian over Ext‚

HqpWIqpk, kq,

then Ext‚
HqpWKqpk,Mq is Noetherian over Ext‚

HqpWKqpk, kq.

Proof. For a HqpWIq-module N , let

T pNq :“ kerptrI,K : Ext‚
HqpWIqpk,Nq Ñ Ext‚

HqpWKqpk,Nqq.

Since trI,K 1HqpWIq is invertible, by Proposition 2.4.1(i), trI,K splits resK,I . Therefore,

Ext‚
HqpWIqpk,Nq – Ext‚

HqpWKqpk,Nq ‘ T pNq.

Let pLiqiPN be an ascending chain of Ext‚
HqpWKqpk, kq-submodules of Ext‚

HqpWKqpk,Mq.

Then,

Ext‚
HqpWIqpk, kqLi “ Ext‚

HqpWKqpk, kqLi ‘ T pkqLi “ Li ‘ T pkqLi.

This gives an ascending chain of Ext‚
HqpWIqpk, kq-submodules of Ext‚

HqpWKqpk,Mq, which must

terminate by the Noetherian assumption. Proposition 2.4.1(iii) shows that T pkqLi Ď T pMq.

On the other hand Li Ď Ext‚
HqpWKqpk,Mq. Thus, Li X T pkqLj “ 0, hence the original

ascending chain pLiqiPN terminates as well.

For type A and characteristic 0, Theorem 2.5.2 below gives a criteria when trI,K 1 is

invertible.

Theorem 2.5.2. Suppose that the characteristic of k is 0. If λ is a maximal l-parabolic

subcomposition of n then trλ,n 1 is invertible in HqpΣnq.

Proof. See [Du, Theorem 2.7].
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Chapter 3

Cohomology and support varieties of

type A Iwahori-Hecke algebras

For the remainder of Part I, we choose k :“ C.

We focus on type A in this chapter. Every Young subgroup Σλ is a parabolic subgroup

WI of W :“ Σd

For a composition λ ( d, the Young subgroup Σλ is a parabolic subgroup of Σd. This

means that, for W “ Σd with S being the set of simple transpositions, there exists some

subset Jλ Ď S such that WJλ “ Σλ. We write trλ,µ :“ trJλ,Jµ and resλ,µ :“ resJλ,Jµ .

Let q P kˆ be a primitive lth root of unity, and suppose that q ‰ 1. For a composition

λ, let HqpΣλq be the corresponding Iwahori-Hecke algebra. Let Rλ :“ Ext‚
HA

q pΣλq
pk, kq be

the cohomology ring of HA
q pΣλq under the Yoneda product. For a natural number d, set

Rd :“ Rpdq to be the cohomology ring with respect to the trivial composition pdq. Assume

that all modules for HqpΣλq are finite-dimensional. Let modpHqpΣλqq be the category of

finite dimensional HqpΣλq-modules. For an M P modpHqpΣλqq, set

H‚pHqpΣλq,Mq :“ Ext‚
HqpΣλqpk,Mq,
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which is an Rλ-module.

3.1 Restriction maps on cohomology

Given a simple l-parabolic subcomposition ν of λ, Rν – Rl and

Rν “

$

’

’

&

’

’

%

krxνs b Λryνs, l ą 2,

kryνs, l “ 2,

for some xν and yν such that deg xν “ 2l ´ 2 and deg yν “ 2l ´ 3. Set xν :“ y2ν when l “ 2.

The ring Rν has a reduced commutative subring

rRν :“ krxνs.

According to Proposition 2.4.2, we could choose xν and yν for all simple l-parabolic ν ( λ

compatibly such that conw
ν xν “ xνw and conw

ν yν “ yνw for where w is the double coset

representative in ΣνzΣλ{Σν and νw ( λ is the unique simple l-parabolic subcomposition

such that Σw
ν “ Σνw .

Theorem 3.1.1. Let λ “ pλ1, . . . , λmq ( n be a composition and set λ{l :“ ptλ1{lu, . . . , tλm{luq.

Moreover, let µ ( λ be a maximal l-parabolic subcomposition. The following statements hold.

(i) The restriction map resλ,µ induces an isomorphism

resλ,µ : Rλ
„
ÝÑ

´

Rν1 b ¨ ¨ ¨ b Rν|λ{lu|

¯Σ|λ{l|

where ν1, . . . , νtn{lu are all simple l-parabolic subcomposition of µ. Moreover, the induced

isomorphism

resλ,µ : Rλ
„
ÝÑ

´

R
b|λ{l|
l

¯Σλ{l
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is independent of the choice of µ.

(ii) Under the isomorphism above,

resn,λ :
´

R
btn{lu
l

¯Σtn{lu

Ñ

´

R
b|λ{l|
l

¯Σλ{l

is the restriction of the projection map R
btn{lu
l Ñ R

b|λ{l|
l .

Proof. (i) Since HqpΣλq –
Âm

i“1HqpΣλi
q, it follows by Künneth theorem that Rλ –

Âm
i“1Rλi

.

Hence, it is enough to prove the result of resλ,µ for the trivial partition λ “ pnq. Let ν $ n be

an l-parabolic partition conjugate to µ. The isomorphism induced by resλ,ν has been proved

in [BEM]. By Proposition 2.4.2, resλ,µ and resλ,ν induce the same isomorphism.

(ii) Let ν $ n be an l-parabolic partition conjugate to µ. Then, Rλ – R
Σ|µ{l|
µ – R

Σ|ν{l|
ν . So,

it suffices to prove the result for partition λ where every part is a multiple of l, and µ is a

maximal l-parabolic partition. Since respnq,µ “ resλ,ν ˝ respnq,λ and the restriction map respnq,µ

is given by projection, the result follows.

For a composition λ, we set

rRλ :“ res´1
λ,µ

´

rRν1 b . . . rRν|λ{l|

¯Σλ{l

,

where ν1, . . . , ν|λ{l| are all simple l-parabolic subcomposition of some maximal l-parabolic

subcomposition µ of λ. This definition matches the previous definition rRν before for sim-

ple l-parabolic ν. By Theorem 3.1.1, rRλ does not depend on the choice of µ, and it is a

commutative reduced subring of Rλ. Moreover, Rλ is a finitely generated rRλ-module.

3.2 Finite generation of cohomology

Theorem 3.2.1. Let λ be a partition of d.
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(i) Rλ is a Noetherian k-algebra.

(ii) If M P modpHqpΣλqq then H‚pHqpΣλq,Mq is a Noetherian Rλ-module.

Proof. (i) We can conclude this statement by applying the Künneth theorem and [BEM,

Theorem 1.1].

(ii) First consider the case when λ “ plq. Then one can directly prove using explicit projective

resolutions for HqpΣlq (cf. [KN, 5.1]) that for any simple HqpΣlq-module S, H‚pHqpΣlq, Sq

is a Noetherian Rl-module. Now using induction on the composition length and the long

exact sequence in cohomology, it follows that the statement of (b) holds for a Noetherian

HqpΣlq-module M .

Next consider the case when λ “ pla, 1sq. Any simple Hqpλq-module is an outer tensor

product S “ S1 b S2 b ¨ ¨ ¨ b Sa b kbs By the Künneth theorem,

H‚pHqpΣλq, Sq – H‚pHqpΣlq, S1q b H‚pHqpΣlq, S2q b ¨ ¨ ¨ b H‚pHqpΣlq, Saq.

which is a Noetherian Rλ-module from the preceding paragraph. By an inductive argument

on the composition length, the statement holds for Rpla,1sq.

Now consider the case when λ “ pdq and let µ “ pla, 1sq be a maximal l-parabolic

partition of λ. According to Theorem 2.5.2, trµ,λ 1 is invertible in HqpΣλq. Therefore, by

Theorem 2.5.1, the statement for Rλ follows from the statement for Rµ.

Finally, let λ “ pλ1, λ2, . . . , λtq be a partition of d. Any simple Hqpλq-module is an

outer tensor product S “ S1 b S2 b ¨ ¨ ¨ b St By the Künneth theorem and the fact that the

Noetherian statement holds for Hpλjq for j “ 1, 2, . . . , t, one can conclude that H‚pHqpΣλq, Sq

is a Noetherian Rλ-module. Again by an inductive argument one can now conclude the

statement of part (ii).
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3.3 Support theory

Set Wλ :“ MaxSpec rRλ. According to Theorem 3.2.1 the set Wλ is an affine homogeneous

variety. Given M P modpHqpΣλqq, define the (relative) support variety WλpMq as the variety

of the annihilator ideal, JHqpΣλqpk,Mq, in rRλ for its action on H‚pHqpΣλq,Mq. These support

varieties are closed, conical subvarieties of Wλ.

For each µ ( λ, there exists a restriction map in cohomology res˚
λ,µ : Wµ Ñ Wλ which

is induced by the inclusion of HqpΣµq Ď HqpΣλq. We can now formulate a definition for the

support varieties for modules in modpHqpΣλqq.

Definition 3.3.1. Let M P modpHqpΣλqq.

(i) The support variety of M is defined as

VλpMq :“
ď

µ(λ

res˚
λ,µpWµpMqq.

(ii) In the case when λ “ pdq,

VHqpΣdqpMq :“ VpdqpMq “
ď

µ(pdq

res˚
pdq,µpWµpMqq.

By using the functoriality of the restriction map and the fact that the restriction maps

are finite maps, one can state the following proposition.

Proposition 3.3.2. Let W be closed subvariety of Wν.

(i) dimW “ dim res˚
λ,νpW q.

(ii) res˚
λ,ν “ res˚

λ,µ ˝ res˚
µ,ν.

Next we present below several elementary properties of these support varieties. The

proofs from [Ben, §5.7] can be used to verify these facts.
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Proposition 3.3.3. Let Mj P modpHqpΣdqq for j “ 1, 2, 3. Then

(i) Let 0 Ñ M1 Ñ M2 Ñ M3 Ñ 0 be a short exact sequence in modpHqpΣλqq. If Σ3 is the

symmetric group on three letters and σ P Σ3 then

VλpMσp1qq Ď VλpMσp2qq Y VλpMσp3qq.

(ii) VλpM1 ‘ M2q “ VλpM1q Y VλpM2q.

The following proposition gives a simplification of the formulas given in Definition 3.3.1

via maximal l-parabolic subcompositions.

Proposition 3.3.4. Let µ ( λ be a maximal l-parabolic subcomposition, and let M P

modpHqpΣλqq.

(i) For every maximal l-parabolic subcomposition µ ( λ, WλpMq “ res˚
λ,µpWµpMqq.

(ii) The support variety of M is

VλpMq “
ď

l-parabolic
µ(λ

res˚
λ,µpWµpMqq.

(iii) For any maximal l-parabolic subcomposition µ ( λ,

VλpMq “ res˚
λ,µpVµpMqq.

Proof. (i) Consider the transfer map

trµ,λ : JHqpΣµqpk,Mq Ñ JHqpΣλqpk,Mq
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and the restriction map

resλ,µ : JHqpΣλqpk,Mq Ñ JHqpΣµqpk,Mq

According to Proposition 2.4.1(i) and Theorem 2.5.2, trµ,λ ˝ resλ,µ “ a id as an endomor-

phism of JHqpΣλqpk,Mq for some unit a P HqpΣλq. One has res˚
λ,µ ˝ tr˚

µ,λ “ id as an endomor-

phism of WµpMq, from which the result follows.

(ii) For each µ ( λ, let µ1 be a maximal l-parabolic subcomposition of µ. Therefore, by (i),

VλpMq “
ď

µ(λ

res˚
λ,µpWµpMqq

“
ď

µ(λ

res˚
λ,µ res

˚
µ,µ1pWµ1pMqq

“
ď

l-parabolic
µ1(λ

res˚
λ,µ1pWµ1pMqq.

(iii) The result follows from (ii) and the fact that every l-parabolic subcomposition of λ is

contained in a given maximal l-parabolic subcomposition up to conjugacy.

3.4 Varieties and induction

The following proposition states how relative support behave under induction.

Proposition 3.4.1. Let ν, µ, λ be three compositions such that µ ( λ and M P modpHqpΣµqq.

(i) Wλpindλ
µMq “ res˚

λ,µpWµpMqq.

(ii) Wνpindλ
µMq “

Ť

α(µ

Ť

wPwα,µ,ν
T#
w res˚

νw,αpWαpMqq, where

wα,µ,ν :“ tw P ΣµzΣλ{Σν : α “ νw X µu.
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(iii) Vλpindλ
µMq “ res˚

λ,µpVµpMqq.

Proof. (i) This follows by applying Frobenius reciprocity:

Ext‚
HqpΣλqpk, ind

λ
µMq – Ext‚

HqpΣµqpk,Mq.

(ii) The result follows from the following calculation.

Wνpindλ
µMq “ Wν

˜

à

wPΣµzΣλ{Σν

indν
µwXν con

w
µ M

¸

Theorem 2.2.1

“
ď

wPΣµzΣλ{Σν

Wνpindν
µwXν con

w
µ Mq Proposition 3.3.3(ii)

“
ď

wPΣµzΣλ{Σν

res˚
ν,µwXνpWµwXνpconw

µ Mqq (i)

“
ď

wPΣµzΣλ{Σν

T#
w res˚

νw,νwXµpWνwXµpMqq

“
ď

α(µ

ď

wPwα,µ,ν

T#
w res˚

νw,αpWαpMqq.
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(iii) We proceed with the following calculation.

Vλpindλ
µMq “

ď

ν(λ

res˚
λ,νpWνpindλ

µMqq Definition 3.3.1

“
ď

ν(λ

res˚
λ,ν

ď

α(µ

ď

wPwα,µ,ν

T#
w res˚

νw,αpWαpMqq (ii)

“
ď

ν(λ

ď

α(µ

ď

wPwα,µ,ν

res˚
λ,ν T

#
w res˚

νw,αpWαpMqq

“
ď

ν(λ

ď

α(µ

ď

wPwα,µ,ν

T#
w res˚

λw,νw res˚
νw,αpWαpMqq

“
ď

ν(λ

ď

α(µ

ď

wPwα,µ,ν

T#
w res˚

λ,αpWαpMqq w P Σλ

“
ď

ν(λ

ď

α(µ

ď

wPwα,µ,ν

res˚
λ,αpWαpMqq T#

w P HqpΣλq

“
ď

α(µ

ď

ν(λ
wPwα,µ,ν

res˚
λ,αpWαpMqq

“
ď

α(µ

res˚
λ,αpWαpMqq for ν “ α, 1 P wα,µ,ν

“ res˚
λ,µpVµpMqq. Definition 3.3.1

We end this section with a result that will useful for computing support varieties in the

case when one has some information about the vertex of a module. In particular this will be

applied in case of Young vertices.

Proposition 3.4.2. Let µ ( λ. Suppose that M is an HqpΣλq-module and N is an HqpΣµq-

module such that M | indλ
µN and N | resλµM . Then VλpMq “ res˚

λ,µpVµpNqq.

Proof. Using Proposition 3.3.3(ii) and Proposition 3.4.1(iii), we obtain

VλpMq Ď Vλpindλ
µNq “ res˚

λ,µpVµpNqq.
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It follows from the Definition 3.3.1 that

res˚
λ,µpVµpNqq Ď res˚

λ,µpVµpMqq Ď VλpMq.
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Chapter 4

Rates of growth

4.1 Complexity of modules

Let tdnuně0 be a sequence of nonnegative integers. The rate of growth rpd‚q of this sequence

is the smallest nonnegative integer c for which there exists a positive real number C such

that dn ď C ¨ nc´1 for all n ě 1. If no such d exists, set rpd‚q :“ 8.

Alperin [A, §4] first defined the notion of complexity of modules for finite groups. We

can also state this for Iwahori-Hecke algebras. Our goal will be to relate the complexity to

the dimension of the support varieties defined in the previous chapter.

Definition 4.1.1. Let M P modpHqpΣdqq and let

¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ M Ñ 0

be the minimal projective resolution of M . The complexity cHqpΣdqpMq of M is defined as

rpdimP‚q.
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4.2 Complexity and growth rate of Ext‚

For Iwahori-Hecke algebras, the conventional proofs to relate the dimension of the support

variety to (i) the rate of growth of certain extension groups and (ii) the complexity of the

module do not work because of the absence of the tensor product (i.e., a comultiplication on

HqpΣdq).

We first prove that the complexity can still be interpreted as the rate of growth of certain

Ext-groups related to taking the direct sum of simple, Specht, Young and permutation

modules.

Theorem 4.2.1. Let M P modpHqpΣdqq. The following quantities are equal.

(i) cHqpΣdqpMq;

(ii) rpExt‚
HqpΣdqp‘λPΛ`

regpdqD
λ,Mqq;

(iii) rpExt‚
HqpΣdqp‘λ$dS

λ,Mqq;

(iv) rpExt‚
HqpΣdqp‘λ$dY

λ,Mqq;

(v) rpExt‚
HqpΣdqp‘λ$dM

λ,Mqq.

Proof. (i) “ (ii). This follows by using the standard arguments (cf. [Ben, Prop. 5.3.5]).

(iii) ď (ii), (iv) ď (ii). One can apply [Ben, Prop. 5.3.5] to deduce these statements.

(ii) ď (iii). This will be proved by using induction on the dominance order of partitions

E. Set s :“ rpExt‚
HqpΣdqp‘λ$dS

λ,Mqq. If λ be maximal with respect to E then Sλ “ Dλ.

Consequently,

rpExt‚
HqpΣdqpD

λ,Mqq ď s.

By induction suppose that for every µ B τ , we know rpExt‚
HqpΣdqpD

µ,Mqq ď s. We need to
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show that rpExt‚
HqpΣdqpD

τ ,Mqq ď s. There exists a short exact sequence of the form

0 Ñ N Ñ Sτ Ñ Dτ Ñ 0 (4.1)

with N having composition factors of the form Dµ with µB τ . Therefore,

rpExt‚
HqpΣdqpD

τ ,Mqq ď maxtrpExt‚
HqpΣdqpS

τ ,Mqq, rpExt‚
HqpΣdqpN,Mqqu ď s.

(iii) ď (iv). This statement will be proved in a similar fashion as above. Set

y :“ rpExt‚
HqpΣdqp‘λ$dY

λ,Mqq.

Let λ be maximal with respect to E so Y λ “ Sλ and rpExt‚
HqpΣdqpS

λ,Mqq ď y. Suppose that

for any µB τ , rpExt‚
HqpΣdqpS

µ,Mqq ď y. It will suffice to show that rpExt‚
HqpΣdqpS

τ ,Mqq ď y.

There is a short exact sequence of the form

0 Ñ Sτ Ñ Y τ Ñ Z Ñ 0 (4.2)

with Z having a Specht filtration with factors of the form Sµ with µB τ . Consequently,

rpExt‚
HqpΣdqpS

τ ,Mqq ď maxtrpExt‚
HqpΣdqpY

τ ,Mqq, rpExt‚
HqpΣdqpN,Mqqu ď y.

(iv) “ (v). The statement follows because every Young module appears as a summand of a

permutation module, and the summands of the permutation modules are Young modules.
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4.3 Complexity and support varieties

We now can relate the complexities of modules in modpHqpΣdqqq to the dimension of their

support varieties. Furthermore, every module in modpHqpΣdqq has complexity less than or

equal to the complexity of the trivial module. Note that for Hopf algebras this is an easy

consequence of tensoring a minimal projective resolution of the trivial module by the given

module M .

Corollary 4.3.1. Let M P modpHqpΣdqq. Then,

(i) cHqpΣdqpMq “ dimVHqpΣdqpMq,

(ii) cHqpΣdqpMq ď cHqpΣdqpkq.

Proof. (i) Since res˚
d,λ is a finite map, dim res˚

pdq,λ WλpMq “ dimWλpMq. Next by using the

argument given in [Ev, p. 105-106] one has

rpExt‚
HqpΣλqpk,Mqq “ dimWλpMq.

Then,

cHqpΣdqpMq “r

˜

Ext‚
HqpΣdq

˜

à

λ$d

Mλ,M

¸¸

Theorem 4.2.1

“max
λ$d

rpExt‚
HqpΣdqpM

λ,Mqq

“max
λ$d

trpExt‚
HqpΣλqpk,Mqqu Frobenius reciprocity

“max
λ$d

tdimWλpMqu

“max
λ$d

tdim res˚
pdq,λ WλpMqu

“ dim
ď

λ$d

res˚
pdq,λ WλpMq Proposition 3.3.2

“ dimVHqpΣdqpMq Definition 3.3.1.
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(ii) From part (i),

cHqpΣdqpMq “ dimVHqpΣdqpMq ď dimVHqpΣdqpkq “ cHqpΣdqpkq.
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Chapter 5

Permutation modules and Young

modules

5.1 Support varieties of permutation modules

In this chapter we will use our established properties on complexity and support varieties,

in addition to the theory of Young vertices, to give an formula for the complexities of the

permutation modules tMλu and the Young modules tY λu. This is accomplished by first

determining their support varieties as images of the map res˚
d,λ (resp. res˚

d,ρpλq for some

partition ρpλq) on the support varieties of the trivial module.

Let t u denote the floor function. Note that the Krull dimension of the cohomology ring

H‚pHqpΣdqq, kq or equivalently dimVHqpΣdqpkq is td{lu. We can now determine the complexity

and support varieties for the permutation modules Mλ:

Proposition 5.1.1. Let λ “ pλ1, . . . , λsq ( d and Mλ be a permutation module for HqpΣdq.

Then:

(i) VHqpΣdqpM
λq “ res˚

pdq,λpVHqpΣλqpkqq;
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(ii) cHqpΣdqpM
λq “

řs
i“1tλi{lu.

Proof. The statement (i) follows immediately from Proposition 3.4.2 since Mλ – indd
λ k and

k is a direct summand of resdλ Mλ by Theorem 2.2.1.

One can deduce (ii) follows from (i) since the map res˚
pdq,λ preserves dimension (Proposi-

tion 3.3.2) and dimpVHqpΣλqpkqq is determined by Theorem 3.1.1.

5.2 Support varieties of Young modules

Dipper-Du [DD, 5.8 Theorem] determines the vertex of the Young module Y λ for HqpΣdq as

HqpΣρpλqq where ρpλq is constructed as follows. Notice that any λ $ d has a unique l-adic

expansion of the form:

λ “ λr0s ` λr1sl, (5.1)

where λr0s is an l-restricted partition of d and λr1s is a partition. Define the partition:

ρpλq :“
`

l|λr1s|, 1|λr0s|
˘

. (5.2)

The partition λr0s can be obtained by successively striping horizontal rim l-hooks from λ,

and |λr1s| is the number of such hooks removed. The following theorem demonstrates that

the complexity of the Young module Y λ is |λr1s|.

Theorem 5.2.1. Let λ $ d with Y λ the corresponding Young module for HqpΣλq. Then

(i) VHqpΣdqpY
λq “ res˚

d,ρpλqpVHqpΣρpλqqpkqq.

(ii) cHqpΣdqpY
λq “ |λr1s|.

Proof. Part (i) follows from Proposition 3.4.2. In order to prove (ii) take the dimension on

both sides of (i) and recall from Proposition 3.3.2 that res˚
pdq,ρpλq preserves dimension, and the
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dimension of the support variety of the trivial module is also determined in Theorem 3.1.1.

As a consequence of the aforementioned theorem, we recover the well-known fact that Y λ

is projective exactly when λ is p-restricted. Furthermore, from Theorem 5.2.1(ii), one can

see that for a block B of weight w, there are Young modules in B of every possible complexity

t0, 1, . . . , wu. The following result characterizes Young module of complexity one.

Corollary 5.2.2. A nonprojective Young module Y λ has complexity one if and only if λ is

of the form pµ1 ` l, µ2, . . . , µsq where pµ1, µ2, . . . , µsq is l-restricted.

Proof. From Theorem 5.2.1, λr1s “ p1q precisely when the l-adic expansion of λ has the form

λr0s ` p1ql.

In all known cases that the complexity has been computed for permutation, Young,

Specht and simple modules, the answers for the symmetric group in characteristic pą 0

coincide with the answer for the Iwahori-Hecke algebra in characteristic zero at a pth root

of unity.

5.3 Support varieties of blocks

In this section we will apply our prior computation for Young modules to give an explicit

description for the location of the support varieties for modules in a block B of HqpΣdq. For a

Specht module HqpΣdq-module, Sλ, let Bλ be the block of HqpΣdq containing Sλ. We remark

that all the composition factors of a given Specht module lie in the same block. Note that

by Nakayama rule, Bλ “ Bµ if and only if λ and µ have the same l-core.

Let d “ cr0s ` cr1sl be the unique l-adic expansion of d, so 0 ď cr0s ă l, and d “ ar0s ` ar1sl
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is another expansion, with 0 ď ar0s. Then ar0s ě cr0s and ar1s ď cr1s and

HqpΣpl
ar1s ,1

ar0s qq ď HqpΣpl
cr1s ,1

cr0s qq.

Now suppose Bµ is a block of HqpΣdq with weight w and l-core µ̃ $ d´ lw. Let lw “ cr1sl

and

ρmax “ p1d´lw, lwq $ d. (5.3)

Let µ̃ “ pµ̃1, µ̃2, . . .q. The algebra Hqpρmaxq is the Young vertex for Y µ where µ “

pµ̃1 ` lw, µ̃2, . . .q. Furthermore, if Bλ “ Bµ, then µD λ and the Young vertex of Y λ is of the

form

ρpλq “ p1ar0s , lar1sq,

where ar0s ě d ´ lw and ar1s ď w. Therefore,

HqpΣρpλqq ď HqpΣρmaxq.

That is, the Young vertices for the Young modules in a block are all contained in a unique

vertex Hqpρmaxq, which is the vertex for the Young module Y µ̃`plwq.

Define the support of the block to be VHqpΣdqpBλq :“ VHqpΣdqp‘µPBλ
Dµq We now give a

precise location for the support variety for a block of the Iwahori-Hecke algebra HqpΣdq.

Theorem 5.3.1. Let Bλ be a block of HqpΣdq of weight w and let M be a finite-dimensional

module in Bλ. Let ρ :“ ρmax for the block Bλ. Then:

(i) VHqpΣdqpBλq “ VHqpΣdqp‘µPBλ
Sµq “ VHqpΣdqp‘µPBλ

Y µq;

(ii) respdq,ρpVHqpρqpkqq “ VHqpΣdqpBλq;

(iii) VHqpΣdqpMq Ď respdq,ρpVHqpρqpkqq;
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(iv) cHqpΣdqpMq ď w.

Proof. (i) Since Sµ has a filtration with sections being irreducible modules and Y µ has a

filtration with sections being Specht modules, one has using the definition of support in § 3.3,

VHqpΣdqpBλq Ě VHqpΣdqp‘µPBλ
Sµq Ě VHqpΣdqp‘µPBλ

Y µq.

For the other inclusion, one needs to apply the ordering of factors on these filtrations.

From Theorem 4.2.1, we have exact sequences of the form

0 Ñ N Ñ Sτ Ñ Dτ Ñ 0 (5.4)

where the composition factors in N are of the form Dµ with µ B τ . By induction we can

assume that VHqpΣdqpNq Ď VHqpΣdqp‘µPBλ
Sµq and Proposition 3.3.3, it follows that

VHqpΣdqpD
τ q Ď VHqpΣdqpS

τ q Y VHqpΣdqpNq Ď VHqpΣdqp‘µPBλ
Sµq.

Therefore, VHqpΣdqp‘µPBλ
Sµq “ VHqpΣdqpBλq. A similar inductive argument using (Eq. (4.2))

can be used to prove that

VHqpΣdqp‘µPBλ
Y µq “ VHqpΣdqpBλq “ VHqpΣdqp‘µPBλ

Sµq.

(ii) From (i), VHqpΣdqpBλq “ VHqpΣdqp‘λPBµY
λq. Now by analysis prior to the statement of

the theorem,

VHqpΣdqp‘λPBµY
λq “ VHqpΣdqpY

ρq “ respdq,ρpVHqpρqpkqq.

(iii) This follows because for any M in Bλ, VHqpΣdqpMq Ď VHqpΣdqpBλq by Proposition 3.3.3.

(iv) This follows by considering dimension and applying (ii) and (iii).
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Chapter 6

Specht modules, vertices, and

cohomology

In this chapter, we will consider the question of computing vertices for Specht modules. This

will entail introducing a graded dimension for Specht modules, in addition to, considering

the relative cohomology for Iwahori-Hecke algebras of Young subgroups.

6.1 Weights of partitions

For a partition λ and a natural number l, the l-weight of λ, denoted by wtlλ, is the number

of l-hooks that we could consecutively remove from the partition λ to reach the l-core of λ,

denoted by corelλ. For a natural number n, we set the l-weight of n to be the l-weight of the

trivial partition pnq, so wtln “ wtlpnq “ tn{lu. For a partition λ, let |λ| be the sum of parts

in λ. It is clear that |λ| “ |corelλ| ` lwtlλ. We say that λ has small l-core if |corelλ| ă l.

Lemma 6.1.1. Let λ be a partition and l be a natural number. The number of hooks whose

lengths are multiple of l is wtlpλq, the l-weight of λ.

Proof. We will prove the result with the help of l-abacus of partition λ. Suppose that
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λ “ pλ1, . . . , λrq, and let bi :“ λi ´ i ` r. The beads of the l-abacus occupies positions bi.

Hooks of length multiple of l are in bijection with the moves of a bead at bi to an unoccupied

position bi ´ lk, which is in the same runner with bi, for some k ě 1. The number of such

moves is exactly the l-weight of λ.

6.2 Dimensions of Specht modules

For an integer n, let the t-integer be rnst :“
1´tn

1´t
. When t “ 1, one applies limits to obtain

rns1 “ n. We will now define a graded version of the dimension for Specht modules (also

referred to as the graded dimension) that involves the divisibility of cyclotomic polynomials.

For a partition λ, let

dimt S
λ :“

ś|λ|

i“1rist
ś

iPIrhist
,

where I is the set of all hooks of λ and hi is the hook length of the hook i. By hook length

formula, we have dim1 S
λ “ dimSλ. The graded dimension of the partition λ is the generic

degree of the partition λ up to a power of t [Car, §13.5], and the graded dimension is a

polynomial with nonnegative integer coefficients [Mac, §III.6].

Theorem 6.2.1. Let Φlptq be the l-th cyclotomic polynomial in t. Then,

dimt S
λ “

ź

l

Φlptq
wtl|λ|´wtlλ “

ź

l

Φlptq
wtl|corelλ|,

where l runs over all natural number. In particular,

dimSλ “
ź

p,r

pwtpr |λ|´wtprλ “
ź

p,r

pwtpr |coreprλ|,

where p runs over all primes and r runs over all natural number.

Proof. Let l be an arbitrary natural number. When l “ 1, there are no factors Φ1ptq in

37



dimt S
λ, and wt1|λ| ´ wt1λ “ 0. Now assume that l ě 2. Applying Lemma 6.1.1 to

the trivial partition p|λ|q, the number of times Φlptq dividing the numerator of dimt S
λ is

wtlp|λ|q “ wtl|λ|. Similarly, applying Lemma 6.1.1 to partition λ, the number of times

Φlptq dividing the denominator dimt S
λ is wtlλ. Therefore, Φlptq divides dimt S

λ exactly

wtl|λ| ´ wtlλ many times.

When one specializes to t “ 1, the result follows from the fact that Φprp1q “ p when p is

a prime, and Φnp1q “ 1 when n is not a prime power.

6.3 Relative cohomology

In this subsection, we follow the constructions in [Ho] and provide a discussion of relative

cohomology for Iwahori-Hecke algebra. Let M be a HqpΣdq-module, and let λ ( d be a

composition. A relatively HqpΣλq-projective resolution of M is a resolution of M consisting

of relatively HqpΣλq-projective HqpΣdq-modules and that splits as resolution of HqpΣλq-

modules. Among all such resolutions, there exists a minimal resolution, that is one where

there kernels contain no relatively projective summands. The growth rate of the minimal

relatively HqpΣλq-projective resolution of M is called the complexity of M , denoted by

cd;λpMq :“ cpHqpΣdq,HqpΣλqqpMq.

All relatively HqpΣλq-projective resolutions are homotopic to each other, and the relative

Ext between two HqpΣdq-modules M and N is defined as

Ext‚
pHqpΣdq,HqpΣλqqpM,Nq :“ H‚pHomHqpΣdqpP

‚
λ , Nqq,

where P ‚
λ is any relatively HqpΣλq-projective resolution of M .

Using the same argument as in the proof of self-injectivity of group algebras, one can

show that relatively HqpΣλq-projective modules are also relatively Hqpλq-injective modules.
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Therefore, all relatively HqpΣλq-projective resolutions with finite length must have length 0.

In particular, cd;λpMq “ 0 if and only if M is relatively HqpΣλq-projective. As in the ordinary

cohomology case, we showed in Theorem 4.2.1 that we can test projectivity of a module M

by calculating Ext‚
HqpΣdqpD,Mq for all simple modules D. The same result holds for relative

cohomology as well. More precisely, a HqpΣdq-module M is relatively HqpΣλq-projective if

and only if ExtnpHqpΣdq,HqpΣλqqpD,Mq “ 0 for all simple HqpΣdq-module D and n ě 1.

The fact above gives us the following lemma.

Lemma 6.3.1. Let 0 Ñ M1 Ñ M2 Ñ M3 Ñ 0 be a short exact sequence of HqpΣdq-modules.

If any two of M1, M2 and M3 are relatively HqpΣλq-projective, then so is the third.

Proof. Let Mi and Mj be the two modules that are relatively HqpΣλq-projective, and let Mk

be the third module. The relative complexities of Mi and Mj are zero, so for positive integer

n and simple HqpΣλq-module D, ExtnpHqpΣdq,HqpΣλqqpD,Miq “ ExtnpHqpΣdq,HqpΣλqqpD,Mjq “

0. Using the long exact sequence of cohomologies, we get ExtnpHqpΣdq,HqpΣλqqpD,Mkq “ 0.

Therefore, the relative complexity of Mk is zero, and Mk is relatively HqpΣλq-projective.

An interesting problem would be to determine whether a suitable support variety theory

can be established for the relative cohomology pHqpΣdq,HqpΣλqq.

6.4 Vertices for some Specht modules

We begin this section by discussing blocks and relatively projectivity.

Theorem 6.4.1. Let Bλ be the block of HqpΣdq indexed by a partition λ $ d. Every module

M in Bλ is relatively HqpΣρq-projective for ρ “ plwtlλ, 1|corelλ|q

Proof. According to Theorem 5.2.1, every Young module in the block Bλ is relatively HqpΣρq-

projective. Young modules have a Specht filtration. By an induction similar to Theorem 4.2.1
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and Lemma 6.3.1, all Specht modules in Bλ are HqpΣρq-projective. Since Specht modules

in Bλ admits filtrations by simple modules in Bλ, by an inductive argument similar to The-

orem 4.2.1 and Lemma 6.3.1, all simple modules in Bλ are relatively HqpΣρq-projective.

Therefore, by Lemma 6.3.1, all modules in Bλ is relatively HqpΣρq-projective.

By using the previous result on relative projectivity and information about the graded

dimension one can obtain information about the vertex for Specht modules.

Theorem 6.4.2. Let λ be a partition, and ρa :“ pla, 1|λ|´alq. Assume that l is prime. Then

the vertex of Sλ is ρa for some a that satisfies

wtlλ ´
ÿ

rě2

wtlr |corelrλ| ď a ď wtlλ.

In particular, if λ has small lr-core for r ě 2 then a “ wtlλ.

Proof. It is shown in [DD, Section 1.8] that the vertex of an arbitrary module, particularly

Sλ, is of form ρa for some natural number a.

Let ρ̄a :“ p1la, lwtl|λ|´a, 1corel|λ|q. Since Sλ is HqpΣρaq-projective,

res
|λ|
ρ̄a S

λ ‌ res
|λ|
ρ̄a ind

|λ|
ρa S

λ .

The right hand side of the equation above is a free HqpΣρ̄aq-module, so the left hand side

res
|λ|
ρ̄a S

λ is a projective HqpΣρ̄aq-module, and has dimension divisible by lwtl|λ|´a. Note that

one can verify that the projective modules in HqpΣlq have dimension divisible by l by using

their realization as Young modules.

So, according to Theorem 6.2.1,

wtl|λ| ´ a ď
ÿ

rě1

wtlr |corelrλ|.
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Therefore,

a ě wtl|λ| ´
ÿ

rě1

wtlr |corelrλ| “ wtlλ ´
ÿ

rě2

wtlr |corelrλ|.

Theorem 6.4.1 insures that the module Sλ, which is in the block Bλ, is relatively Hqpρwtlλq-

projective. If ρa is the vertex of Sλ, then ρa ( ρwtl , which implies that a ď wtlλ.

As a consequence of Theorem 6.4.2, one can compute the vertices for Specht modules for

partitions whose some of the parts is less than l2.

Corollary 6.4.3. Let λ be a partition. Assume that l is prime. If |λ| ă l2, then the vertex

of Sλ is plwtlλ, 1|corelλ|q.

Proof. For every r ě 2, |corelrλ| ď |λ| ă lr, hence λ has small lr-core. The result follows

from Theorem 6.4.2.

Remark 6.4.4. For the group algebra of symmetric groups kΣd, [Lim] calculated the vertex

and the support variety of Sλ for many partitions, in particular, when |λ| ă p2, where p is

the characteristic of k, This can be used in conjunction with the realization of the cohomo-

logical support varieties as rank varieties to compute the complexity of Specht modules for

symmetric groups. For Iwahori-Hecke algebras, the question of realization of the support

varieties as rank varieties remains open, as well as the computation of support varieties for

Sλ when |λ| ă l2.
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Chapter 7

Cohomology and support variety of

classical type

7.1 Morita equivalences

We will apply our results for Iwahori-Hecke algebra for other classical groups. Our discus-

sion will follow the one given in [BEM, Section 6]. Recall that HA
q pdq, HB

Q,qpdq and HD
q pdq

denotes Iwahori-Hecke algebras of type Ad, Bd and Dd, respectively. Consider the following

polynomials

fB
d pQ, qq :“

d´1
ź

i“1´d

pQ ` qiq (7.1)

and

fD
d pqq :“ 2

d´1
ź

i“1

p1 ` qiq. (7.2)

We summarize the various Morita equivalence theorems for HB
Q,qpdq and HD

q pdq (cf. [DJ4,

(4.17)], [P, (3.6) (3.7)]).
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Theorem 7.1.1. (i) If fB
d pQ, qq is invertible in k, then

HB
Q,qpdq „Morita

d
à

i“0

HA
q pi ´ 1q b HA

q pd ´ i ´ 1q.

(ii) If fD
d pqq is invertible in k and d is odd, then

HD
q pdq „Morita

pd´1q{2
à

i“0

HA
q pi ´ 1q b HA

q pd ´ i ´ 1q.

(iii) If fD
q pdq is invertible in k and d is even, then

HD
q pdq „Morita Apd{2q ‘

d{2´1
à

i“0

HA
q pi ´ 1q b HA

q pd ´ i ´ 1q.

where Apd{2q is specified in [Hu1, 2.2, 2.4].

7.2 Support theory for Apmq

Let d be even and set m “ d{2. The algebra Apmq as defined in [Hu1] is an example of a Z2-

graded Clifford system (cf. [Hu1, Section 4]). Set B “ Apmq and B` be the augmentation

ideal of B. Furthermore, let A “ HqpΣpm,mqq be the subalgebra in B corresponding to B1

(in the Clifford system), and A` be its augmentation ideal. Then B ¨ A` “ A` ¨ B. Now

one can consider the quotient B “ B{{A – CrZ2s (the group algebra of the cyclic group of

order 2).

From [GK, 5.3 Proposition], one can apply the spectral sequence and the fact that B is

a semisimple algebra to show that

H‚pB,Cq – H‚pA,CqZ2 . (7.3)
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In fact one can show that H‚pA,Cq is an integral extension of H‚pB,Cq. If M is a finite-

dimensional B-module, we will declare that VBpMq :“ VApMq which is defined in Defini-

tion 3.3.1.

Next we will compare the notion of complexity in modpBq versus modpAq. Since B

is a free A-module, any projective B-resolution restricts to a projective A-resolution, thus

cBpMq ě cApMq. On the other hand, by [Hu1, 4.4 Corollary], all simple B-modules are sum-

mands of simple A-modules induced to B. By applying the characterization of complexity

given in Theorem 4.2.1(i)(ii) and Frobenius reciprocity, one obtains cBpMq “ cApMq.

7.3 Support theory for type B and type D

Let Ed be the algebras and fd :“ fB
d pQ, qq (resp. fD

d pqq) be the polynomials as described

in Theorem 7.1.1 under the Morita equivalence with HB
Q,qpdq (resp. HD

q pdq). For notational

convenience, set

HΦ
q pdq :“

$

’

’

&

’

’

%

HB
Q,qpdq, Φ “ B,

HD
q pdq, Φ “ D.

(7.4)

Let F : ModpHΦ
q pdqq Ñ ModpEdq be functor that provides the equivalence of categories

when fn is invertible. Under the equivalence of categories, one can define support varieties

for modules over HΦ
q pdq as follows. Let M be a finite-dimensional module for HΦ

q pdq. Then

VHΦ
q pdqpMq :“ VEdpF pMqq.

The support varieties for Ed can be obtained by taking the support varieties for Iwahori-Hecke

algebras of type A. We have the following theorem that extends Corollary 4.3.1.

Theorem 7.3.1. Let M be a finite-dimensional module for HΦ
q pdq with fd invertible. Then

(i) cHΦ
q pdqpMq “ dimVHΦ

q pdqpMq.
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(ii) cHΦ
q pdqpMq ď cHΦ

q pdqpCq “ td
l
u.

Proof. (i) Let S “
À

i Si be the direct sum of all simple HΦ
q pdq-modules. Using the Morita

equivalence, F pSq is the direct sum of all simple Ed-modules. Furthermore, by using our

results for the Iwahori-Hecke algebra for type A,

cHΦ
q pdqpMq “ rpExt‚

HΦ
q pdq

pS,Mqq

“ rpExt‚
EdpF pSq, F pMqqq

“ dimVEdpF pMqq

“ dimVHΦ
q pdqpMq.

(ii) One has that

cHΦ
q pdqpMq “ dimVEdpF pMqq ď

Z

d

l

^

.

Let L be the irreducible Ed-module such that F pCq “ T . Under the categorical equivalence,

the trivial module C goes to the simple Ed-module labelled by the partition ppdq,Hq. The

statement now follows because

cHΦ
q pdqpCq “ dimVEdpT q “

Z

d

l

^

.

By using the Morita equivalence one can prove analogs of Theorem 5.3.1 for the blocks of

HΦ
q pdq and obtain the location of their support varieties for various modules. One can pose

an interesting question if one can (i) extend the support variety theory for Iwahori-Hecke

algebra of types Bd and Dd to even roots of unity, and (ii) if a theory of support varieties

can be developed for Iwahori-Hecke algebras of other Coxeter groups.
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Part II

Coordinate constructions of q-Schur

algebras
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Chapter 8

Quantum coordinate (co)algebras

In Part II, we use a different quadratic relation in the definition of Hecke algebras:

pT ´ q´1qpT ` qq “ 0.

The quadratic relations used in Part I and Part II produce isomorphic Iwahori-Hecke alge-

bras.

In this section, we fix d, and let Φ P tAd´1,Bd,Ddu be the type of algebras we consider.

Let

WΦ :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

WApd ´ 1q,Φ “ Ad´1,

WBpdq,Φ “ Bd,

WDpdq,Φ “ Dd,

and HΦ
q :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

HA
q pd ´ 1q,Φ “ Ad´1,

HB
Q,qpdq,Φ “ Bd,

HD
q pdq,Φ “ Dd .
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8.1 Tensor spaces

Let

Ipnq :“

$

’

’

&

’

’

%

r´r, rs X Z, n “ 2r ` 1,

r´r, rs X Z zt0u, n “ 2r.

(8.1)

The space of d-tuples Ipnqd admits actions of WΦ. For i “ pi0, . . . , id´1q P Ipnqd and a simple

reflection s P WΦ, let

i ¨ s :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pi0, . . . , ij´2, ij, ij´1, ij`1, . . . , id´1q, s “ sj, 1 ď j ď d ´ 1,

p´i0, i1, . . . , id´1q, s “ sB0 ,

p´i0,´i1, i2, . . . , id´1q, s “ sD0 .

Let V be the free k-vector space with basis tvi : i P Ipnqu. The tensor space V bd admits

a basis tvi : i P Ipnqdu, where vi :“ vi0 b ¨ ¨ ¨ b vid´1
. We can extend the actions of WΦ on

Ipnqd to actions of HΦ
q on V bd. For i “ pi0, . . . , id´1q P Ipnqd, the type A action by Tj for

1 ď j ď d ´ 1 is given by

vi ¨ Tj :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

vi¨sj , ij´1 ă ij,

q´1vi¨sj , ij´1 “ ij,

vi¨sj ` pq´1 ´ qqvi, ij´1 ą ij,

while the action by TB
0 is

vi ¨ TB
0 :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

vi¨s0 , 0ă i0,

Q´1vi¨s0 , 0 “ i0,

vi¨s0 ` pQ´1 ´ Qqvi, 0ą i0,
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and the action by TD
0 is

vi ¨ TD
0 :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

vi¨sD0 , ´i0 ă i1,

q´1vi¨sD0 , ´i0 “ i1,

vi¨sD0 ` pq´1 ´ qqvi, ´i0 ą i1.

8.2 q-Schur algebras

We generalize the construction of q-Schur algebras in [PW, §3.5]. Consider the free algebra

krMpnqs :“ kxxi,j : i, j P Ipnqy.

We equip krMpnqs with a comultiplication

∆ : krMpnqs Ñ krMpnqs b krMpnqs,

xi,j ÞÑ
ÿ

lPIpnq

xil b xlj,

which makes krMpnqs a coalgebra.

The tensor space V bd is a right comodule for krMpnqs, and the structure map is given

by

τ : V bd Ñ V bd b krMpnqs,

vi ÞÑ
ÿ

jPIpnqd

vj b xj,i,

where

xi,j :“ xi0,j0 . . . xid´1,jd´1
.
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Let JA
q be the two-sided ideal generated by elements in Table 8.1. Let JB

q the sum of the

two-sided ideal JA
q and the right ideal generated by elements in Table 8.2, and JD

q the sum

of the two-sided ideal JA
q and the right ideal generated by elements in Table 8.3.

pj „ i,m „ lq
xlixmj ´ q´1xmjxli p“,ăq or pă,“q

xlixmj ´ qxmjxli p“,ąq or pą,“q

xlixmj ´ xmjxli pă,ąq or pą,ăq or p“,“q

xlixmj ´ xmjxli ´ pqxmixlj pă,ăq

xlixmj ´ xmjxli ` pqxmixlj pą,ąq

Table 8.1: Type A relation for i, j, l,m P Ipnq, where pq :“ q´1 ´ q.

pi „ ´i, l „ ´lq “ pi „ 0, l „ 0q

xli ´ Q´1x´l´i p“,ăq or pă,“q

xli ´ Qx´l´i p“,ąq or pą,“q

xli ´ x´l´i pă,ąq or pą,ăq or p“,“q

xli ´ x´l´i ´ pQx´li pă,ăq

xli ´ x´l´i ` pQx´li pą,ąq

Table 8.2: Type B relation for i, j, l,m P Ipnq, where pQ :“ Q´1 ´ Q.

pj „ ´i,m „ ´lq
xlixmj ´ q´1x´m´jx´l´i p“,ăq or pă,“q

xlixmj ´ qx´m´jx´l´i p“,ąq or pą,“q

xlixmj ´ x´m´jx´l´i pă,ąq or pą,ăq or p“,“q

xlixmj ´ x´m´jx´l´i ´ pqx´mix´lj pă,ăq

xlixmj ´ x´m´jx´l´i ` pqx´mix´lj pą,ąq

Table 8.3: Type D relation for i, j, l,m P Ipnq, where pq :“ q´1 ´ q.

It is straightforward to verify that JΦ
q is a coideal of krMpnqs. Let

krMΦ
q pnqs :“ krMpnqs{JΦ

q .

Note that this is only a coalgebra, but not an algebra. The right krMpnqs-comodule V bd is

automatically a right krMΦ
q pnqs-comodule.
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The type Φ quantum Schur algebra SΦ
q pn, dq is defined to be

SΦ
q pn, dq :“ krMΦ

q pnqs˚
d.

Then, V b
d is a left SΦ

q pn, dq-module.

It is routine to check that the left action of SΦ
q pn, dq and the right action of HΦ

q commute.

Moreover,

SΦ
q pn, dq – EndHΦ

q
pV bdq. (8.2)

When Q “ q, it is known that SB
q,qpn, dq admits a geometric realization (cf. [BKLW]) as

well as a Schur duality, which is compatible with the type A duality as follows:

krMA
q pnqs˚ � krMA

q pnqs˚
d » SA

q pn, dq ñ ð HA
q pd ´ 1q

Y V bd X

SB
q,qpn, dq ñ ð HB

q,qpdq

Remark 8.2.1. The category of homogeneous right krMΦ
q pnqs-comodules of degree d is equiv-

alent to the category of left SΦ
q pn, dq-modules.

8.3 A combinatorial realization of SB
Q,qpn, dq

It is well-known that the algebra SB
q,qpn, dq admits a geometric realization via isotropic partial

flags (cf. [BKLW]). This flag realization of SB
q,qpn, dq admits a combinatorial/Iwahori-Hecke

algebraic counterpart that generalizes to a two-parameter upgrade (cf. [LL]), i.e.,

SB
Q,qpn, dq “

à

λ,µPΛBpn,dq

HomHB
Q,q

pxµHB
Q,q, xλ HB

Q,qq, (8.3)
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where

ΛBpn, dq “

$

’

’

&

’

’

%

␣

λ “ pλiqiPIpnq P Nn
ˇ

ˇ λ0 P 1 ` 2Z, λ´i “ ´λi,
ř

i λi “ 2d ` 1
(

if n “ 2r ` 1;

␣

λ “ pλiqiPIpnq P Nn
ˇ

ˇ λ´i “ ´λi,
ř

i λi “ 2d
(

if n “ 2r.

(8.4)

Note that in [LL], the set ΛBp2r, dq is identified as a subset of ΛBp2r ` 1, dq through the

embedding

pλiqiPIpnq ÞÑ pλ´r, . . . , λ´1, 1, λ1, . . . λrq.

For any λ P ΛBpn, dq, let Wλ be the parabolic subgroup of WB generated by the set

$

’

’

&

’

’

%

S ´ tsλ1 , sλ1`λ2 , . . . , sλ1`...`λr´1u if n “ 2r;

S ´ ts
t
λ0
2

u
, s

t
λ0
2

u`λ1
, . . . , s

t
λ0
2

u`λ1`...`λr´1
u if n “ 2r ` 1.

(8.5)

For any subset X Ă W , λ, µ P ΛBpn, dq and a Weyl group element g, set

TX “
ÿ

wPX

Tw, T g
λµ “ TpWλqgpWµq, xλ “ T 1

λλ “ TWλ
. (8.6)

The right HB
Q,q-linear map below is well-defined:

ϕg
λµ : xµHB

Q,q Ñ xλHB
Q,q, xµ ÞÑ T g

λµ. (8.7)

The maps ϕg
λµ with λ, µ P ΛBpn, dq, g a minimal length double coset representative for

WλzWB{Wµ forms a linear basis for the algebra SB
Q,qpn, dq. The multiplication rule for

SB
Q,qpn, dq is given in [LL], and it is rather involved in general. Here we only need the

following facts:

Lemma 8.3.1. Let λ, λ1, µ, µ1 P ΛBpn, dq, and let g, g1 be minimal length double coset repre-
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sentatives for WλzWB{Wµ. Then

(a) ϕg
λµϕ

g1

λ1µ1 “ 0 unless µ “ λ1;

(b) ϕ1
λµϕ

g
µµ1 “ ϕg

λµ1 “ ϕg
λµϕ

1
µµ1.

8.4 Dimension of q-Schur algebras

It is well-known [PW] that SA
q pn, dq have several k-bases indexed by the set

$

&

%

paijqij P NIpnq2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPIpnq2

ai,j “ d

,

.

-

,

and hence the dimension is given by

dimk S
A
q pn, dq “

ˆ

n2 ` d ´ 1

d

˙

. (8.8)

In [LL, Lemma 2.2.1] a dimension formula is obtained via several bases of SB
Q,qpn, dq with

the following index set:

$

&

%

paijqij P NI´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pi,jqPI´

ai, “ d

,

.

-

, I´ “

$

’

’

&

’

’

%

r´r,´1s ˆ Ipnq if n “ 2r;

pr´r,´1s ˆ Ipnqq Y pt0u ˆ r´r,´1sq if n “ 2r ` 1.

(8.9)
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That is, I´ Ă Ipnq2 correspond to the shaded region below:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a´r,´r a´r,r

. . .

a´1,´1 a´1,1

a1,´1 a11

. . .

ar,´r arr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

–

a´r,´r a´r,r

. . .

a00

. . .

ar,´r arr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

if n “ 2r if n “ 2r ` 1

Consequently,

dimk S
B
Q,qpn, dq “

ˆ

|I´| ` d ´ 1

d

˙

“

$

’

’

&

’

’

%

`

2r2`d´1
d

˘

if n “ 2r;

`

2r2`2r`d
d

˘

if n “ 2r ` 1.

(8.10)

In the following we provide a concrete description for the 2-dimensional algebra SB
Q,qp2, 1q.

Proposition 8.4.1. The algebra SB
Q,qp2, 1q is isomorphic to the type A Iwahori-Hecke algebra

HQ´1pΣ2q.

Proof. The index set here is Ip2q “ t´1, 1u. The coalgebra krMB
Q,qp2qs1 has a k-basis ta “

x´1,´1, b “ x´1,1 “ x1,´1u. Note that x11 “ a` pQ´Q´1qb. The comultiplication is given by

∆paq “
ÿ

k“˘1

x´1,k b xk,´1 “ a b a ` b b b,

∆pbq “ b b a ` pa ` pQ ´ Q´1qbq b b “ b b a ` a b b ` pQ ´ Q´1qb b b.

(8.11)
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Hence, the algebra structure of SB
Q,qp2, 1q “ krMB

Q,qpnqs˚
1 has a basis ta˚, b˚u such that

a˚a˚paq “ pa b aq˚p∆paqq “ 1, a˚a˚pbq “ pa b aq˚p∆pbqq “ 0,

a˚b˚paq “ 0 “ b˚a˚paq, a˚b˚pbq “ 1 “ b˚a˚pbq,

b˚b˚paq “ 1, b˚b˚pbq “ pQ ´ Q´1q,

(8.12)

Therefore, the multiplication structure of SB
Q,qp2, 1q is given by

a˚a˚ “ a˚, a˚b˚ “ b˚ “ b˚a˚, b˚b˚ “ pQ ´ Q´1qb˚ ` a˚. (8.13)

Remark 8.4.2. We expect that the algebra SB
Q,qp2, dq is isomorphic to krts{xPdptqy for some

polynomial Pd P krts, for d ě 1.
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Chapter 9

The isomorphism theorem

The entire section is dedicated to the proof of an isomorphism theorem (Theorem 9.1.1)

between the Schur algebras of type B and type A that is inspired by a Morita equivalence

theorem due to Dipper and James [DJ4].

9.1 The statement

Recall from We define a polynomial fB
d P krQ, qs by

fB
d pQ, qq “

d´1
ź

i“1´d

pQ´2 ` q2iq. (9.1)

We remark that at the specialization Q “ q, the polynomial fB
d pQ, qq is invertible if (i) q is

generic, (ii) q2 is an odd root of unity, or (iii) q2 is a primitive (even) ℓth root of unity for

ℓą d.

Theorem 9.1.1. If fB
d pQ, qq is invertible in the field k, then we have an isomorphism of

k-algebras:

Φ : SB
Q,qpn, dq Ñ

d
à

i“0

SA
q prn{2s, iq b SA

q ptn{2u, d ´ iq. (9.2)
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Example 9.1.2. For n “ 2, d “ 1, Theorem 9.1.1 gives the following isomorphism

SB
Q,qp2, 1q – pSA

q p1, 0q b SA
q p1, 1qq ‘ pSA

q p1, 1q b SA
q p1, 0qq – k1x ‘ k1y,

where 1x, 1y are identities. We recall basis ta˚, b˚u of SB
Q,qp2, 1q from Proposition 8.4.1. The

following assignments yield the desired isomorphism:

a˚ ÞÑ 1x ` 1y, b˚ ÞÑ ´Q´11x ` Q1y. (9.3)

We note that it remains an isomorphism if we replace ´Q´11x ` Q1y in Eq. (9.3) by Q1x ´

Q´11y.

9.2 Morita equivalences between Iwahori-Hecke alge-

bras

Following [DJ4], we define elements u˘
i P HB

Q,qpdq, for 0 ď i ď d, by

u`
i “

i´1
ź

ℓ“0

pTℓ . . . T1T
B
0 T1 . . . Tℓ ` Qq, u´

i “

i´1
ź

ℓ“0

pTℓ . . . T1T
B
0 T1 . . . Tℓ ´ Q´1q. (9.4)

It is understood that u`
0 “ 1 “ u´

0 .

For a, b P N such that a ` b “ d, we define an element va,b by

va,b “ ub ´ Twa,b
u`
a P HB

Q,qpdq, (9.5)
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where wa,b P Σa`b, in two-line notation, is given by

wa,b “

¨

˚

˝

1 ¨ ¨ ¨ a a ` 1 ¨ ¨ ¨ a ` b

b ` 1 ¨ ¨ ¨ b ` a 1 ¨ ¨ ¨ b

˛

‹

‚

.

Finally, when fB
d pQ, qq is invertible, Dipper and James constructed an idempotent

ea,b “ z̃´1
b,aTwb,a

va,b, (9.6)

for a`b “ d, where z̃b,a is some invertible element in HqpΣa ˆΣbq(see [DJ4, Definition 3.24]).

Below we recall some crucial lemmas used in [DJ4].

Lemma 9.2.1. Let a, b P N be such that a ` b “ d. Then:

(a) The elements u˘
d lie in the center of HB

Q,qpdq,

(b) For a ` bą d, u´
b HB

Q,qpdqu`
a “ 0.

(c) For a` b “ d, ea,b HB
Q,qpdqea,b “ ea,bHqpΣa ˆΣbq and ea,b commutes with HqpΣa ˆΣbq,

(d) For a ` d “ d, ea,bHB
Q,qpdq “ va,bHB

Q,qpdq,

(e) There is a Morita equivalence

HB
Q,qpdq „Morita

d
à

i“0

ei,d´i HB
Q,qpdqei,d´i.

9.2.1 The actions of u`
d and u´

d

Consider the following decompositions of V into k-subspaces:

V “ Vě0 ‘ Vă 0 “ Vą 0 ‘ Vď0,
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where

Vą 0 “
à

1ďiďr

kvi, Vě0 “

$

’

’

&

’

’

%

À

0ďiďr

kvi, if n “ 2r ` 1

Vą 0 if n “ 2r,

(9.7)

Vă 0 “
à

´rďiď´1

kvi, Vď0 “

$

’

’

&

’

’

%

À

´rďiď0

kvi, if n “ 2r ` 1

Vă 0 if n “ 2r.

(9.8)

Hence, one has the following canonical isomorphisms:

SA
q prn{2s, dq » EndHA

q pΣdqpV
bd

ě0 q, SA
q ptn{2u, dq » EndHA

q pΣdqpV
bd

ă 0 q. (9.9)

In the following, we introduce two new bases tw`
I u and tw´

I u for the tensor space to help

us understand the u˘
d -action. First define some intermediate elements, for 0 ď i ď r, j P N:

w`
ipjq

“

$

’

’

&

’

’

%

q´jv´i ` Qvi, i ‰ 0,

pq´2jQ´1 ` Qqvi, i “ 0,

and w´
ipjq

“

$

’

’

&

’

’

%

q´jv´i ´ Q´1vi, i ‰ 0,

0, i “ 0.

(9.10)

For a nondecreasing tuple I “ pi1, . . . , idq P pr0, rs X Zqd, we further define elements w`
I and

w´
I by

w`
piq “ w`

ip0q
, w´

piq “ w´
ip0q

, (9.11)

and then inductively (on d) as below:

w`
I “ w`

pi1,...,id´1q
b w`

idpjq
, w´

I “ w´
pi1,...,id´1q

b w´
idpjq

, where j “ maxtk : id´k “ idu

(9.12)

For arbitrary J P pr0, rs X Zqd, there is a shortest element g P Σd such that g´1J is nonde-

creasing and set

w`
J “ w`

g´1JTg, w´
J “ w´

g´1JTg (9.13)
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Lemma 9.2.2. For I P pr0, rs X Zqd,

vIu
`
d “ w`

I , vIu
´
d “ w´

I . (9.14)

Proof. For non-decreasing I, the result follows from a direct computation. For general

I, there exists a shortest element g P Σd such that Ig´1 is non-decreasing. Then, by

Lemma 9.2.1(a),

vIu
˘
d “ vIg´1Tgu

˘
d “ vIg´1u˘

d Tg “ w˘
Ig´1Tg “ w˘

I .

Example 9.2.3. Let d “ 7 and let I “ p0, 1, 1, 2, 3, 3, 3q. We have

w`
I “ w`

0p0q
b w`

1p0q
b w`

1p1q
b w`

2p0q
b w`

3p0q
b w`

3p1q
b w`

3p2q
.

For J :“ p0, 2, 1, 1, 3, 3, 3q “ Is3s2,

w`
J “ w`

I T3T2.

Example 9.2.4. In the following we verify Lemma 9.2.2 for small d’s. Let d “ 2, I “ p1, 1q

and hence wI “ w`
1p0q

b w`
1p1q

. Since u`
2 “ pT1T

B
0 T1 ` QqpTB

0 ` Qq, we can check that indeed

vIu
`
2 “ pv1 b v1qpT1T

B
0 T1 ` QqpTB

0 ` Qq “ pv1 b w`
1p1q

qpTB
0 ` Qq “ w`

I .

Now we define K-vector spaces

W d
ě0 “ V bdu`

d , W d
ă 0 “ V bdu´

d .

By Lemma 9.2.1(a), u`
d and u´

d are in the center of HB
Q,qpdq, hence W d

ě0 and W d
ă 0 are naturally

HB
Q,q Bpdq-module via right multiplication. Moreover, wT0 “ Q´1w for all w P W d

ě0 and
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wT0 “ ´Qw for all w P W d
ă 0.

Lemma 9.2.5. We have W d
ě0 “ V bd

ě0 u
`
d and W d

ă 0 “ V bd
ą 0u

´
d .

Proof. We only give a proof for the first claim, and a proof for the second claim can be

obtained similarly. For 1 ď i ď d,

pV
bpi´1q

ě0 b Vă 0 b V bpd´iqqu`
d

“pVą 0 b V
bpi´1q

ě0 b V bpd´iqqT0T1T2 . . . Ti´1u
`
d

“pVą 0 b V
bpi´1q

ě0 b V bpd´iqqQ´1T1T2 . . . Ti´1u
`
d Lemma 9.2.1(a) and T0u

`
d “ Q´1u`

d

ĎV bi
ě0 b V bpd´iqu`

d . V bi
ě0 is a HqpΣiq-module

Next, an induction proves that for 0 ď i ď d,

V bi b V bpd´iq “ V bi
ě0 b V bpd´iq,

from which the result follows.

Lemma 9.2.6. Let pd : V bd Ñ V bd
ď0 be the projection map. For I P pr0, rs X Zqd and J P

pr1, rs X Zqd, pdpw`
I q “ cIv´I and pdpw´

J q “ cJv´J for some invertible elements cI , cJ P Kˆ.

Proof. When I, J are non-decreasing, and when d “ 2, the result follows from a direct

computation. For general I (or J), there exists a shortest element g P Σd such that Ig´1 (or

Jg´1) is non-decreasing. The result follows from an induction on the length of g.

Lemma 9.2.7. (i) The map vI ÞÑ w`
I gives an isomorphism of HqpΣdq-modules V bd

ě0 Ñ

W d
ě0.

(ii) The map vI ÞÑ w´
I gives an isomorphism of HqpΣdq-modules V bd

ă 0 Ñ W d
ă 0.
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Proof. Since u`
d (resp. u´

d ) is in the center of HB
Q,qpdq by Lemma 9.2.1(a), the map vI ÞÑ

w`
I (resp. vI ÞÑ w´

I ) is clearly HqpΣdq-equivariant. Surjectivity of this map follows from

Lemma 9.2.5, and injectivity of this map follows from Lemma 9.2.6.

9.2.2 The actions of va,b

Lemma 9.2.8. For a ` b “ d, V bdva,b “ pV bb
ą 0 b V ba

ě0 qva,b.

Proof. It follows from Eq. (9.5) and Lemma 9.2.5 that

V bdva,b “ pV bb b V baqu´
b Twa,b

u`
a “ pV bb

ą 0 b V baqu´
b Twa,b

u`
a “ pV bb

ą 0 b V baqva,b.

For bă i ď d,

T0T1T2 . . . Ti´1va,b

“T´1
1 . . . T´1

b pTb . . . T1T0T1T2 . . . TbqpTb`1 . . . Ti´1qu
´
b Twa,b

u`
a Eq. (9.5)

“T´1
1 . . . T´1

b pTb . . . T1T0T1T2 . . . Tbqu
´
b pTb`1 . . . Ti´1qTwa,b

u`
a u´

b commutes with Tb`1, . . .

“T´1
1 . . . T´1

b pu´
b`1 ` Q´1u´

b qpTb`1 . . . Ti´1qTwa,b
u`
a Eq. (9.4)

“Q´1T´1
1 . . . T´1

b u´
b pTb`1 . . . Ti´1qTwa,b

u`
a Lemma 9.2.1

“Q´1T´1
1 . . . T´1

b pTb`1 . . . Ti´1qu´
b Twa,b

u`
a u´

b commutes with Tb`1, . . .

“Q´1T´1
1 . . . T´1

b pTb`1 . . . Ti´1qva,b. Eq. (9.5)

Then, for bă i ď d,
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pV b
ą 0 b V

bpi´b´1q

ě0 b Vă 0 b V bpd´iqqva,b

“pVą 0 b V bb
ą 0 b V

bpi´b´1q

ě0 b V bpd´iqqT0T1T2 . . . Ti´1va,b

“Q´1pVą 0 b V bb
ą 0 b V

bpi´b´1q

ě0 b V bpd´iqqT´1
1 . . . T´1

b pTb`1 . . . Ti´1qva,b

ĎpV bb
ą 0 b Vą 0 b V

bpi´b´1q

ě0 b V bpd´iqqpTb`1 . . . Ti´1qva,b V
bpb`1q

ą 0 is a HqpΣb`1q-module

ĎpV bb
ą 0 b V

bpi´bq

ě0 b V bpd´iqqva,b. V
bpi´bq

ě0 is a HqpΣi´bq-module

An induction shows that for b ď i ď d,

V bb b V bpb´iq b V bpd´iqva,b “ V bb
ą 0 b V

bpi´bq

ě0 b V bpd´iqva,b,

from which the result follows.

For a ` b “ d, consider the projections

pa,b : V
bd Ñ V ba

ď0 b V bb
ă 0 ,

Lemma 9.2.9. For a ` b “ d, let

p1
a,b : V

bd Ñ V ba b V bb
ă 0

be the projection map. Then, for I P pr0, rs X Zqa and J P pr´r, rs X Zqb,

p1
a,bppvJ b vIqTwa,b

q “ cI,JvI b pbpvJq

for some invertible cI,J P Kˆ, where pb is defined in Lemma 9.2.6. Moreover,

p1
a,bppw´

J b vIqTwa,b
q “ cI,JcJvI b v´J
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for some invertible cI,J , cJ P Kˆ.

Proof. First note that pvJ b vIqTwa,b
“ cI,JpvJ b vIqwa,b `

ř

găwa,b
cgpvJ b vIqg for some

invertible cI,J P Kˆ and some cg P K, where g ă wa,b under the Bruhat order. Hence,

p1
a,bppvJ b vIqTwa,b

q “ p1
a,bpcI,JpvJ b vIqwa,b `

ÿ

g ăwa,b

cgpvJ b vIqgq

“ cI,Jp
1
a,bpvI b vJq `

ÿ

g ăwa,b

cgp
1
a,bppvJ b vIqgq

“ cI,Jp
1
a,bpvI b vJq “ cI,JvI b pbpvJq.

By Lemma 9.2.6, pbpw
´
J q “ cJv´J for some cJ P Kˆ. Therefore, p1

a,bppw´
J b vIqTwa,b

q “

cI,JvI b pbpw
´
J q “ cI,JcJvI b v´J .

Lemma 9.2.10. For I P pr0, rs X Zqa and J P pr1, rs X Zqb, pa,bppvJ b vIqva,bq “ cv´I b v´J

for some c P Kˆ.

Proof.

pa,bppvJ b vIqva,bq “ pa,bppvJ b vIqu´
b Twa,b

u`
a q Eq. (9.5)

“ pa,bppw´
J b vIqTwa,b

u`
a q Lemma 9.2.2

“ pa,bpp
1
a,bppw´

J b vIqTwa,b
qu`

a q

“ pa,bpcI,JcJpvI b v´Jqu`
a q Lemma 9.2.9

“ pa,bpcI,JcJw
`
I b v´Jq Lemma 9.2.2

“ cI,JcJpapw`
I q b v´J

“ cI,JcIcJv´I b v´J . Lemma 9.2.6
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Lemma 9.2.11. For a ` b “ d, the map vI b vJ ÞÑ pvJ b vIqva,b gives an isomorphism of

HpΣaq b HpΣbq-modules V a
ě0 b V b

ą 0 Ñ V bdva,b.

Proof. Since

Tiva,b “

$

’

’

&

’

’

%

Ti`a, 1 ď i ď b,

Ti´b, b ` 1 ď i ď a ` b ´ 1,

the map is HpΣaq b HpΣbq-equivariant. The injectivity follows from Lemma 9.2.10, and the

surjectivity follows from Lemma 9.2.8.

9.3 The proof of the isomorphism theorem

Finally, we are in a position to prove the isomorphism theorem.

Proof of Theorem 9.1.1.

SB
Q,qpn, dq “ EndHB

Q,qpdqpV
bdq

“EndÀ
0ďiďd ei,d´i HB

Q,qpdqei,d´i
pV bdei,d´iq Lemma 9.2.1(e)

“
à

0ďiďd

Endei,d´i HB
Q,qpdqei,d´i

pV bdei,d´iq

“
à

0ďiďd

EndHA
q pΣiqbHA

q pΣd´iq
pV bdvi,d´iq Lemma 9.2.1(c)(d)

“
à

0ďiďd

EndHA
q pΣiqbHA

q pΣd´iq
pV bi

ě0 b V
bpd´iq

ą 0 q Lemma 9.2.11

“
à

0ďiďd

EndHA
q pΣiq

pV bi
ě0 q b EndHA

q pΣd´iq
pV bd´i

ą 0 q

“
à

0ďiďd

SA
q prn{2s, iq b SA

q ptn{2u, d ´ iq. Eq. (9.9)
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9.4 Simple modules

As an immediate consequence of the Morita equivalence theorem one obtains a classification

of irreducible representations for SB
Q,qpn, dq.

Theorem 9.4.1. If fB
d pQ, qq is invertible in the field k then there is a bijection

tIrreducible representations of SB
Q,qpn, dqu Ø tpλ, µq $ pd1, d2q | d1 ` d2 “ du,

where number of parts of λ and µ is no more than n. In particular, the standard modules

over SB
Q,qpn, dq are of the form ∇pλq b∇pµq, where ∇pλq (resp. ∇pλq) are standard modules

over SA
q pn, d1q (resp. SA

q pn, d2q).
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Chapter 10

Schur functors

10.1 Schur functors

For type A it is well-known that, provided n ě d, there is an idempotent eA “ eApn, dq P

SA
q pn, dq such that eASA

q pn, dqeA » HqpΣdq, and a Schur functor

FA
n,d : ModpSA

q pn, dqq Ñ ModpHqpΣdqq, M ÞÑ eAM. (10.1)

In the following proposition we construct the Schur functor for SB
Q,qpn, dq when tn{2u ě d.

Proposition 10.1.1. If tn{2u ě d then there is an idempotent eB “ eBpn, dq P SB
Q,qpn, dq such

that eBSB
Q,qpn, dqeB » HB

Q,qpdq as k-algebras, and eBSB
Q,qpn, dq » V bd as pSB

Q,qpn, dq,HB
Q,qpdqq-

bimodules..

Proof. Recall ΛBpn, dq from Eq. (8.4) and ϕg
λµ from Eq. (8.7). Let eB “ ϕ1

ωω, where

ω “

$

’

’

’

’

’

&

’

’

’

’

’

%

p0, . . . , 0, 1, . . . , 1
loomoon

2d

, 0 . . . , 0q P ΛBp2r, dq if n “ 2r;

p0, . . . , 0, 1, . . . , 1
loomoon

2d`1

, 0 . . . , 0q P ΛBp2r ` 1, dq if n “ 2r ` 1.

(10.2)
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Note that such ω is well-defined only when r “ tn{2u ě d. By Lemma 8.3.1, we have

eBϕg
λµe

B “

$

’

’

&

’

’

%

ϕg
λµ if λ “ ω “ µ;

0 otherwise.
(10.3)

Since Wω is the trivial group, xω “ 1 P HB
Q,qpdq and hence ϕg

ωω is uniquely determined by

1 ÞÑ Tg. Therefore, eBSB
Q,qpn, dqeB and HB

Q,qpdq are isomorphic as algebras.

Now from Section 8.3 we see that there is a canonical identification

V bd »
à

µPΛBpn,dq

xµHB
Q,q »

à

µPΛBpn,dq

HomHB
Q,q

pxω HB
Q,q, xµHB

Q,qq, (10.4)

and hence the maps ϕg
ωµ, with µ P ΛBpn, dq, g a minimal length coset representative for

WB{Wµ, forms a linear basis for V bd. Again by Lemma 8.3.1, we have

eBϕg
λµ “

$

’

’

&

’

’

%

ϕg
ωµ if λ “ ω;

0 otherwise.
(10.5)

Hence, eBSB
Q,qpn, dq has a linear basis tϕg

ωµu where µ P ΛBpn, dq, g a minimal length double

coset representative for WωzWB{Wµ. Therefore V bd and eBSB
Q,qpn, dq are isomorphic as

pSB
Q,qpn, dq,HB

Q,qpdqq-bimodules.

We define the Schur functor of type B by

FB
n,d : ModpSB

Q,qpn, dqq Ñ ModpHB
Q,qpdqq, M ÞÑ eBM. (10.6)

Define the inverse Schur functor by

GB
d : ModpHB

Q,qpdqq Ñ ModpSB
Q,qpn, dqq, M ÞÑ HomeBSB

Q,qpn,dqeBpeBSB
Q,qpn, dq,Mq. (10.7)
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In below we define a Schur-like functor F 5
n,d : ModpSB

Q,qpn, dqq Ñ ModpHB
Q,qpdqq using

Theorem 9.1.1, under the same invertibility assumption: recall Φ from Eq. (9.2), let

ϵ5 “ ϵ5
n,d “ Φ´1p

d
à

i“0

eAprn{2s, iq b eAptn{2u, d ´ iqq. (10.8)

Note that ϵ5SB
Q,qpn, dqϵ5 »

Àd
i“0HqpΣi`1q b HqpΣd´i`1q, and hence left multiplication by

ϵ5 defines a functor ModpSB
Q,qpn, dqq Ñ Modp

Àd
i“0HqpΣi`1q b HqpΣd´i`1qq. Hence, we can

define

F 5
n,d : ModpSB

Q,qpn, dqq Ñ ModpHB
Q,qpdqq, M ÞÑ F´1

H pϵ5Mq, (10.9)

where FH is the Morita equivalence for the Iwahori-Hecke algebras given by

FH : ModpHB
Q,qpdqq Ñ Mod

´

à

i

HqpΣi`1q b HqpΣd´i`1q

¯

. (10.10)

Under the invertibility condition, one can define an equivalence of categories induced from

Φ as below:

FS : ModpSB
Q,qpn, dqq Ñ Mod

´ d
à

i“0

SA
q prn{2s, iq b SA

q ptn{2u, d ´ iq
¯

. (10.11)

In other words, we have the following commutativity of functors:

Proposition 10.1.2. Assume tn{2u ě d ě i ě 0 and that fB
q is invertible. The diagram

below commutes:

ModpSB
Q,qpn, dqq Mod

´ d
À

i“0

SA
q prn{2s, iq b SA

q ptn{2u, d ´ iq
¯

ModpHB
Q,qpdqq Mod

´ d
À

i“0

HqpΣi`1q b HqpΣd´i`1q

¯

Fs

F 5
n,d

d
À

i“0
FA

rn{2s,i
bFA

tn{2u,d´i

FH

(10.12)
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Remark 10.1.3. We expect that Proposition 10.1.2 still holds if we replace the functor F 5
n,d

therein by FB
n,d.

10.2 Existence of idempotents

We construct additional idempotents in Schur algebras of type B that will be used later in

Section 11.3.

Proposition 10.2.1. There exists an idempotent e P SB
Q,qpn

1, dq such that eSB
Q,qpn

1, dqe »

SB
Q,qpn, dq if either one of the following holds:

(a) n1 ě n and n1 ” n pmod 2q;

(b) n1 “ 2r1 ` 1 ě n “ 2r.

Proof. We use the combinatorial realization in Section 8.3. For (a) we set

e “
ÿ

γ

ϕ1
γγ, (10.13)

where γ runs over the set

ΛBpn1, dq|n “

$

’

’

’

’

’

&

’

’

’

’

’

%

tγ “ p0, . . . , 0, ˚, . . . , ˚
loomoon

n

, 0 . . . , 0q P ΛBpn1, dqu if paq holds;

tγ “ p0, . . . , 0, ˚, . . . , ˚
loomoon

r

, 1, ˚, . . . , ˚
loomoon

r

, 0 . . . , 0q P ΛBpn1, dqu if pbq holds.

(10.14)

By Lemma 8.3.1 we have

eϕg
λµe “

$

’

’

&

’

’

%

ϕg
λµ if λ, µ P ΛBpn1, dq|n;

0 otherwise.
(10.15)
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It follows by construction that eSB
Q,qpn

1, dqe and SB
Q,qpn, dq are isomorphic as algebras.

10.3 Existence of spectral sequences

Let A be a finite dimensional algebra over a field k and e be an idempotent in A. Doty,

Erdmann and Nakano [DEN] established a relationship between the cohomology theory

in ModpAq versus ModpeAeq. More specifically, they construct a Grothendieck spectral

sequence which starts from extensions of A-modules and converges to extensions of eAe-

modules.

There are two important functors involved in this construction. The first functor is an

exact functor from ModpAq to ModpeAeq denoted by F (that is a special case of the classical

Schur functor) defined by Fp´q “ ep´q. The other functor is a left exact functor from

ModpeAeq to ModpAq, denoted G defined by Gp´q “ HomApAe,´q. This functor is right

adjoint to F .

In [DEN], the aforementioned construction was used in the quantum setting to relate

the extensions for quantum GLn to those for Iwahori-Hecke algebras. For tn{2u ě d there

exists an idempotent e P SB
Q,qpn, dq such that HB

Q,qpdq – eSB
Q,qpn, dqe. Therefore, we obtain

a relationship between cohomology of the type B Schur algebras with the Iwahori-Hecke

algebra of type B.

Theorem 10.3.1. Let tn{2u ě d with M P ModpSB
Q,qpn, dqq and N P ModpHB

Q,qpdqq. There

exists a first quadrant spectral sequence

Ei,j
2 “ ExtiSB

Q,qpn,dq
pM,RjGpNqq ñ Exti`j

HB
Q,qpdq

peM,Nq.

where RjGp´q “ ExtjHB
Q,qpdq

pV bd,´q.

We can also compare cohomology between SB
Q,qpn, dq and SB

Q,qpn
1, dq where n1 ě n since
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there exists an idempotent e P SB
Q,qpn

1, dq such that SB
Q,qpn, dq – eSB

Q,qpn
1, dqe thanks to

Proposition 10.2.1.

Theorem 10.3.2. Let M P ModpSB
Q,qpn

1, dqq and N P ModpSB
Q,qpn, dqq. Assume that either

(a) n1 ě n and n1 ” n pmod 2q;

(b) n1 “ 2r1 ` 1 ě n “ 2r.

Then there exists a first quadrant spectral sequence

Ei,j
2 “ ExtiSB

Q,qpn1,dq
pM,RjGpNqq ñ Exti`j

SB
Q,qpn,dq

peM,Nq.

where RjGp´q “ Extj
SB
Q,qpn,dq

peSB
Q,qpn

1, dq,´q.
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Chapter 11

Cellularity, quasi-hereditariness and

representation type of q-Schur

algebras of type B

11.1 Cellularity

We start from recalling the definition of a cellular algebra following [GL]. A k-algebra A is

cellular if it is equipped with a cell datum pΛ,M,C, ˚q consisting of a poset Λ, a map M

sending each λ P Λ to a finite set Mpλq, a map C sending each pair ps, tq P Mpλq2 to an

element Cλ
s,t P A, and an k-linear involutory anti-automorphism ˚ satisfying the following

conditions:

(C1) The map C is injective with image being an k-basis of A (called a cellular basis).

(C2) For any λ P Λ and s, t P Mpλq, pCλ
s,tq

˚ “ Cλ
t,s.
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(C3) There exists raps1, sq P k for λ P Λ, s, s1 P Mpλq such that for all a P A and s, t P Mpλq,

aCλ
s,t ”

ÿ

s1PMpλq

raps1, sqCλ
s1,t pmod Aăλq.

Here Aăλ is the k-submodule of A generated by the set tCµ
s2,t2 : µăλ; s2, t2 P Mpµqu.

For a cellular algebra A, we define for each λ P Λ a cell module W pλq spanned by Cλ
s ,

s P Mpλq, with multiplication given by

aCs “
ÿ

s1PMpλq

raps1, sqC 1
s. (11.1)

For each λ P Λ we let ϕλ : W pλq ˆ W pλq Ñ k be a bilinear form satisfying

Cλ
s,sC

λ
t,t ” ϕλpCs, CtqC

λ
s,t pmod Aăλq. (11.2)

It is known that the type A q-Schur algebras are always cellular, and there could be

distinct cellular structures. See [AST] for a parallel approach on the cellularity of centralizer

algebras for quantum groups.

Example 11.1.1 (Mathas). Let Λ “ ΛApdq be the set of all partitions of d, and let Λ1 “ Λ1pdq

be the set of all compositions of d. For each composition λ P Λ1, let Σλ be the corresponding

Young subgroup of Σd. Set

xλ “
ÿ

wPΣλ

Tw P HqpΣdq.

It is known the q-Schur algebra admits the following combinatorial realization:

SA
q pn, dq “ EndHqpΣdqp‘λPΛ1xλHqpΣdqq “

à

λ,µPΛ1

HomHqpΣdqpxµHqpΣdq, xλ HqpΣdqq.
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The finite set Mpλq is given by Mpλq “
Ů

µPΛ1 SSTDpλ, µq, where

SSTDpλ, µq “ tsemi-standard λ-tableaux of shape µu. (11.3)

For µ $ d, denote the set of shortest right coset representatives for Σµ in Σd by

Dµ “ tw P Σd | ℓpgwq “ ℓpwq ` ℓpgq for all g P Σµu. (11.4)

Let tλ be the canonical λ-tableau of shape λ, then for all λ-tableau t there is a unique

element dptq P Dλ such that tdptq “ t. The cellular basis element, for λ P Λ, s P sstdpλ, µq, t P

sstdpλ, νq, is the given by

Cλ
s,tpxαhq “ δα,µ

ÿ

s,t

Tdpsq´1xλTdptqh, (11.5)

where the sum is over all pairs ps, tq such that µpsq “ s, νptq “ t.

Example 11.1.2 (Doty-Giaquinto). The poset Λ is the same as in Example 11.1.1, and we

have Λ “ ΣdΛ
`. It is known that the algebra SA

q pn, dq admits a presentation with generators

Ei, Fip1 ď i ď n ´ 1q and 1λpλ P Λq. The map ˚ is the anti-automorphism satisfying

E˚
i “ Fi, F ˚

i “ Ei, 1˚
λ “ 1λ.

For each λ P Λ we set Λ`
λ “ tµ P Λ` | µ ď λu. Note that Λ`

λ is saturated and it defines

a subalgebra SqpΛ
`
λ q of SA

q pn, dq with a basis txs | 1 ď s ď dλu for some dλ P N. Let

xs P SA
q pn, dq be the preimage of xs under the projection SA

q pn, dq Ñ SqpΛ
`
λ q that is the

identity map except for that it kills all 1µ where µ ę λ. The finite set Mpλq is given by

Mpλq “ t1, 2, . . . , dλu. (11.6)
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Finally, for λ P Λ, s, t P Mpλq, we set

Cλ
s,t “ xs1λx

˚
t . (11.7)

We show that the isomorphism theorem produces a cellular structure for SB
Q,qpn, dq using

any cellular structure on the q-Schur algebras of type A. For any n, d we fix a cell datum

pΛn,d,Mn,d, Cn,d, ˚q for SA
q pn, dq. Define

ΛB “ ΛBpn, dq “

d
ğ

i“0

Λrn{2s,i ˆ Λtn{2u,d´i, (11.8)

as a poset with the lexicographical order. For λ “ pλp1q, λp2qq P ΛB, we define MB by

MBpλq “

d
ğ

i“0

Mrn{2s,ipλ
p1qq ˆ Mtn{2u,d´ipλ

p2qq. (11.9)

The map CB is given by, for s “ psp1q, sp2qq, t “ ptp1q, tp2qq P Mrn{2s,ipλ
p1qq ˆ Mtn{2u,d´ipλ

p2qq Ă

MBpλq,

pCBqλs,t “ pCrn{2s,iq
λp1q

sp1q,tp1q b pCtn{2u,d´iq
λp2q

sp2q,tp2q . (11.10)

Finally, the map ˚ is given by

˚ : pCrn{2s,iq
λp1q

sp1q,tp1q b pCtn{2u,d´iq
λp2q

sp2q,tp2q ÞÑ pCrn{2s,iq
λp1q

tp1q,sp1q b pCtn{2u,d´iq
λp2q

tp2q,sp2q . (11.11)

Corollary 11.1.3. If the invertibility condition in Theorem 9.1.1 holds, then SB
Q,qpn, dq is a

cellular algebra with cell datum pΛB,MB, CB, ˚q.

Proof. Condition (C1) follows from the isomorphism theorem; while Condition (C2) follows

directly from Eq. (11.11). Condition (C3) follows from the type A cellular structure as
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follows: for a1 P SA
q prn{2s, iq and a2 P SA

q ptn{2u, d ´ iq,

a1pCrn{2s,iq
λp1q

sp1q,tp1q ”
ÿ

up1qPMrn{2s,ipλ
p1qq

rp1q
a1

pup1q, sp1qqpCrn{2s,iq
λp1q

up1q,tp1q pmod SA
q prn{2s, iqpăλp1qqq,

a2pCtn{2u,d´iq
λp2q

sp2q,tp2q ”
ÿ

up2qPMr,d´ipλp2qq

rp2q
a2

pup2q, sp2qqpCtn{2u,d´iq
λp2q

up2q,tp2q pmod SA
q ptn{2u, d ´ iqpăλp2qqq.

That is, for a “ a1 b a2 P SA
q prn{2s, iq b SA

q ptn{2u, d ´ iq Ă SB
q pn, dq,

apCBqλs,t ”
ÿ

u“pup1q,up2qq

PMrn{2s,ipλ
p1qqˆMtn{2u,d´ipλ

p2qq

rBa pu, sqpCBqλu,t modSB
q pn, dqpăλq,

where rBa pu, sq “ r
p1q
a1 pup1q, sp1qqr

p2q
a2 pup2q, sp2qq is independent of t.

11.2 Quasi-hereditary structure

Following [CPS1], a k-algebra A is called quasi-hereditary if there is a chain of two-sided

ideals of A:

0 Ă I1 Ă I2 Ă . . . Ă In “ A

such that each quotient Jj “ Ij{Ij´1 is a hereditary ideal of A{Ij´1. It is known [GL] that

if A is cellular and ϕλ ‰ 0 (cf. Eq. (11.2)) for all λ P Λ then A is quasi-hereditary.

An immediate corollary of our isomorphism theorem is that SB
Q,qpn, dq is quasi-hereditary

under the invertibility condition. We conjecture that this is a sufficient and necessary con-

dition and provide some evidence for small n.

Corollary 11.2.1. If the invertibility condition in Theorem 9.1.1 holds, then SB
q pn, dq is

quasi-hereditary.

Proof. Let ϕA
ν with ν P Λr,j be such a map for SA

q pr, jq. Fix λ “ pλp1q, λp2qq P Λrn{2s,i ˆ

77



Λtn{2u,d´i Ă ΛB, s “ psp1q, sp2qq, t “ ptp1q, tp2qq P Mrn{2s,ipλ
p1qq ˆ Mtn{2u,d´ipλ

p2qq Ă MBpλq, we

have

Cλ
s,sC

λ
t,t “ pCrn{2s,iq

λp1q

sp1q,sp1qpCrn{2s,iq
λp1q

tp1q,tp1q b pCtn{2u,d´iq
λp2q

sp2q,sp2qpCtn{2u,d´iq
λp2q

tp2q,tp2q

” ϕA
λp1qpC

p1q
s , C

p1q
t qϕA

λp2qpC
p2q
s , C

p2q
t qCλ

s,t modSB
q pn, dqpăλq.

Recall that in Proposition 8.4.1 we see that SB
Q,qp2, 1q » HA

Q´1pΣ2q. In the following we

show that the known cellular structure (due to Geck/Dipper-James) fails when fB “ Q´2`1

is not invertible.

Example 11.2.2. Let SB
Q,qp2, 1q » HA

Q´1pΣ2q “ krts{xt2 ´ pQ´1 ´ Qqt ` 1y. We have

Λ “

!

λ “ B µ “

)

, Mpλq “ tt “ 1 2 u,Mpµq “

!

s “
1
2

)

.

The cellular basis elements are

Cλ
tt “

ÿ

wPΣ2

Q´ℓpwqTw “ 1 ` Q´1t, Cµ
ss “

ÿ

wPΣ1ˆΣ1

Q´ℓpwqTw “ 1.

Firstly, we have Cµ
ssC

µ
ss “ 1 “ Cµ

ss and hence ϕµ is determined by ϕµpCs, Csq “ 1, which is

nonzero. For λ we have

Cλ
ttC

λ
tt “ 1 ´ Q´2 ` pQ´2 ` 1qQ´1t ” pQ´2 ` 1qCλ

tt modAăλ.

That is, ϕλ is determined by ϕµpCt, Ctq “ pQ´2`1q, which can be zero when fB “ Q´2`1 “ 0.

Therefore, SB
Q,qp2, 1q is not quasi-hereditary in an explicit way.

One can also see that SB
Q,qp2, 1q is not quasi-hereditary because if it were then it would

have finite global dimension. However, HA
Q´1pΣ2q is a Frobenius algebra with infinite global
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dimension.

Conjecture 11.2.3. The algebra SB
Q,qpn, dq is quasi-hereditary if and only if fB

d pQ, qq is

invertible.

11.3 Representation Type

Let A be a finite-dimensional algebra over a field k. A fundamental question one can ask

about A is to describe its representation type. The algebra A is semisimple if and only

if every finite-dimensional module (i.e., M P modpAq) is a direct sum of simple modules.

This means that indecomposable modules for A are simple. If A admits finitely many finite-

dimensional indecomposable modules, A is said to be of finite representation type. If A does

not have finite representation type A is of infinite representation type.

A deep theorem of Drozd states that finite dimensional algebras of infinite representation

type can be split into two mutually exclusive categories: tame or wild. An algebra A has tame

representation type if for each dimension there exists finitely many one-parameter families

of indecomposable objects in modpAq. The indecomposable modules for algebras of tame

representation type are classifiable. On the other hand, the algebras of wild representation

type are those whose representation theory is as difficult to study as the representation theory

of the free associative algebra kxx, yy on two variables. Classifying the finite-dimensional

kxx, yy-modules is very much an open question.

11.3.1 Summary: Type A results

The following results from [EN, Theorem 1.3(A - C)] summarize the representation type for

the q̄-Schur algebra for type A over k. Assume that q̄ P kˆ has multiplicative order l and

q̄ ‰ 1.
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Theorem 11.3.1. The algebra SA
q̄ pn, rq is semisimple if and only if one of the following

holds:

(i) n “ 1;

(i) q̄ is not a root of unity;

(ii) q̄ is a primitive lth root of unity and r ă l;

(iii) n “ 2, p “ 0, l “ 2 and r is odd;

(iv) n “ 2, p ě 3, l “ 2 and r is odd with r ă 2p ` 1.

Theorem 11.3.2. The algebra SA
q̄ pn, rq has finite representation type but is not semi-simple

if and only if q̄ is a primitive lth root of unity with l ď r, and one of the following holds:

(i) n ě 3 and r ă 2l;

(ii) n “ 2, p ‰ 0, l ě 3 and r ă lp;

(iii) n “ 2, p “ 0 and either l ě 3, or l “ 2 and r is even;

(iv) n “ 2, p ě 3, l “ 2 and r even with r ă 2p, or r is odd with 2p ` 1 ď r ă 2p2 ` 1.

Theorem 11.3.3. The algebra SA
q̄ pn, rq has tame representation type if and only if q̄ is a

primitive lth root of unity and one of the following holds:

(i) n “ 3, l “ 3, p ‰ 2 and r “ 7, 8;

(ii) n “ 3, l “ 2 and r “ 4, 5;

(iii) n “ 4, l “ 2 and r “ 5;

(iv) n “ 2, l ě 3, p “ 2 or p “ 3 and pl ď r ăpp ` 1ql;

(v) n “ 2, l “ 2, p “ 3 and r P t6, 19, 21, 23u.
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11.3.2 Representation type of algebras related to type A Schur

algebras

In this section we summarize some of the fundamental results that are used to classify the

representation type of Schur algebras. The first proposition can be verified by using the

existence of the determinant representation for SA
q̄ pn, r1q (cf. [EN, Proposition 2.4B]).

Proposition 11.3.4. If SA
q̄ pn, r1q b SA

q̄ pn, r2q has wild representation type then SA
q̄ pn, r1 `

nq b SA
q̄ pn, r2q has wild representation type.

Next we can present a sufficient criteria to show that the tensor product of type A Schur

algebras has wild representation type.

Proposition 11.3.5. Suppose that the Schur algebras SA
q̄ pn, r1q and SA

q̄ pn, r2q are non-

semisimple algebras. Then SA
q̄ pn, r1q b SA

q̄ pn, r2q has wild representation type.

Proof. First note that SA
q̄ pn, rq is a quasi hereditary algebra and if SA

q̄ pn, rq is not semisimple

then it must have a block with at least two simple modules.

Suppose that S1, S2, S3 are three simple modules in SA
q̄ pn, r1q with Ext1SA

q̄ pn,r1q
pS1, S2q ‰ 0

and Ext1SA
q̄ pn,r1q

pS2, S3q ‰ 0. Note that via the existence of the transposed duality,

Ext1SA
q̄ pn,r1q

pSi, Sjq – Ext1SA
q̄ pn,r1q

pSj, Siq

for i, j “ 1, 2, 3. Similarly, let T1, T2 be two simple modules for SA
q̄ pn, r2q with Ext1SA

q̄ pn,r2q
pT1, T2q ‰

0. Then the Ext1-quiver for SA
q̄ pn, r1q b SA

q̄ pn, r2q will have a subquiver of the form as in

Figure 11.1 below. This quiver cannot be separated into a union of Dynkin diagrams or ex-

tended Dynkin diagrams. Consequently, SA
q̄ pn, r1q b SA

q̄ pn, r2q must has wild representation

type.

The other case to consider is when the blocks of SA
q̄ pn, r1q and SA

q̄ pn, r2q have at most

two simple modules. Let Bj be a block of SA
q̄ pn, rjq for j “ 1, 2 with two simple modules.
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Figure 11.1:

There are four simple modules in B1 bB2 and the structure of the projective modules are the

same as regular block for category O for the Lie algebra of type A1 ˆA1 (cf. [FNP, 4.2]).

The argument in [FNP, Lemma 4.2] can be use to show that B1 bB2 has wild representation

type.

The results in [EN, Theorem 1.3(A - C)] entail using a different parameter q̄ than the

parameter q in our paper. The relationship is given by q̄ “ q´2 or equivalently q2 “ pq̄q´1

with SA
q pn, dq – SA

q̄ pn, dq. This means that

• q is generic if and only if q̄ is generic,

• q2 is a primitive lth root of unity if and only if q̄ is a primitive lth root of unity;

• if q is a primitive 2s-th root of unity if and only if q̄ is a primitive s-th root of unity;

• if q is a primitive p2s ` 1q-th root of unity if and only if q̄ is a primitive p2s ` 1q-th

root of unity.

Now let n1 ě n. By Proposition 10.2.1, under suitable conditions on n1 and n, there

exists an idempotent e P SB
Q,qpn

1, dq such that SB
Q,qpn, dq – eSB

Q,qpn
1, dqe. By using the proof

in [EN, Proposition 2.4B], one has the following result.

Proposition 11.3.6. Let n1 ě n with n1 ě n and n1 ” n pmod 2q.

(a) If SB
Q,qpn, dq is not semisimple then SB

Q,qpn
1, dq is not semisimple.

82



(b) If SB
Q,qpn, dq has wild representation type then SB

Q,qpn
1, dq has wild representation type.

11.3.3 Type B Results

Throughout this section, let SB
Q,qpn, dq be the q-Schur algebra of Type B under the condition

that the polynomial fB
d pQ, qq ‰ 0. Moreover, assume that q2 ‰ 1 (i.e., q ‰ 1 or a primitive

2nd root of unity). One can apply the isomorphism in Theorem 9.1.1 to determine the

representation type for SB
Q,qpn, dq from the Type A results stated in Section 11.3.1.

Theorem 11.3.7. The algebra SB
Q,qpn, dq is semisimple if and only if one of the following

holds:

(i) n “ 1;

(ii) q is not a root of unity;

(iii) q2 is a primitive lth root of unity and dă l;

(iv) n “ 2 and d arbitrary;

Proof. The semisimplicity of (i - iii) follow by using Theorem 9.1.1 with Theorem 11.3.1.

The semisimplicity of (iv) follows by Theorem 9.1.1 and the fact that SA
q p1, dq is always

semisimple.

Now assume that q2 is a primitive lth root of unity, d ě l, n ě 3 and l ě 3. Consider the

case when n “ 3. From Theorem 9.1.1,

SB
Q,qp3, dq –

d
à

i“0

SA
q p2, iq b SA

q p1, d ´ iq. (11.12)

If d ě l then SA
q p2, lq appears as a summand of SB

Q,qp3, dq (when i “ d ´ l). For l ě 3,

SA
q p2, lq » SA

q̄ p2, lq is not semisimple. It follows that SB
Q,qp3, dq is not semisimple for d ě l.

One can repeat the same argument for n “ 4 to show that SB
Q,qp4, dq is not semisimple for
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d ě l. Now apply Proposition 11.3.6(a) to deduce that SB
Q,qpn, dq is not semisimple for n ě 3

and d ě l.

Theorem 11.3.8. The algebra SB
Q,qpn, dq has finite representation type but is not semisimple

if and only if q2 is a primitive lth root of unity with l ď d, and one of the following holds:

(i) n ě 5, l ď dă 2l;

(ii) n “ 3, p “ 0 and l ď d;

(iii) n “ 3, p ě 2 and l ď dă lp;

(iv) n “ 4, p “ 0, l “ 2 and d ě 4 with d odd.

(v) n “ 4, p ě 3, l “ 2 and 4ă d ď 2p ´ 1 with d odd.

The algebra SB
Q,qpn, dq has tame representation type if and only if

(vi) n “ 3, l “ 2, p “ 3 and d “ 6;

(vii) n “ 3, l ě 3, p “ 2 or 3 and lp ď dă lpp ` 1q;

(viii) n “ 4, l “ 2, p “ 3 and d “ 7.

Proof. We first reduce our analysis to the situation where n “ 3 and 4. Assume that n ě 5

so rn{2s ě 3 and tn{2u ě 2. By Theorem 11.3.1, the algebras SA
q p2, lq and SA

q pi, l ` jq are

not semisimple for i ě 3, j ě 0, and hence neither are SA
q prn{2s, l ` jq and SA

q ptn{2u, lq for

n ě 5, j ě 0. Therefore, SA
q prn{2s, l ` jq b SA

q ptn{2u, lq has wild representation type by

Proposition 11.3.5. It follows that SB
Q,qpn, dq has wild representation type for d ě 2l, n ě 5.

When l ď dă 2l and n ě 5, one can use Theorem 9.1.1 in conjunction with Theorem 11.3.2

to prove that SB
Q,qpn, dq has finite representation type.

Now consider the case when n “ 3. The isomorphism (11.12) indicates that we can

reduce our analysis to considering SA
q p2, rq. From this isomorphism and Theorem 11.3.2,
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one can verify that (i) when p “ 0 then SB
Q,qp3, dq has finite representation type (but is not

semisimple) for l ď d, (ii) when pą 0 then SB
Q,qp3, dq has finite representation type (but is

not semisimple) for l ď dă lp, and (iii) when pą 0, SB
Q,qp3, dq has infinite representation type

for d ě lp.

For n “ 3, one can also see that under conditions (vi) and (vii), SB
Q,qp3, dq has tame

representation type. Moreover, one can verify that SB
Q,qp3, dq has wild representation type in

the various complementary cases.

Finally let n “ 4. From Proposition 11.3.5, SA
q p2, lq bSA

q p2, lq and SA
q p2, lq bSA

q p2, l ` 1q

has wild representation type for l ě 3. Therefore, SB
Q,qp4, dq has wild representation type for

d ě 2l and l ě 3. For l “ 2, the same argument can be used to show that SB
Q,qp4, dq has wild

representation type for d-even and d ě 4.

This reduces us to analyzing SB
Q,qp4, dq when l “ 2 and d ě 4 is odd. By analyzing the

components of SB
Q,qp4, dq via the isomorphism in Theorem 9.1.1, one can show that for d

odd: (i) SB
Q,qp4, dq has finite representation type (not semisimple) for 4 ď d ď 2p ´ 1 and

p ě 3, (ii) SB
Q,qp4, dq has finite representation type (not semisimple) for d ě 4 and p “ 0,

(iii) SB
Q,qp4, dq has wild representation type for d ě 2p ` 1 for p ě 5, and (iv) SB

Q,qp4, dq has

wild representation type for d ě 2p ` 3 for p “ 3. One has then show that SB
Q,qp4, 7q for

p “ 3, l “ 2 has tame representation type since the component SA
q p2, 6q b SA

q p2, 1q has tame

representation type and the remaining components have finite representation type.

Note that for the case q̄ “ 1 (i.e., q2 “ 1) one obtains the classical Schur algebra for type

A, one can use the results in [Erd] [DN1] [DEMN] to obtain classification results in this case

for SB
Q,qpn, dq.
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Chapter 12

Quasi-hereditary covers

In this section we first recall results on 1-faithful quasi-hereditary covers due to Rouquier

[Rou]. Then we demonstrate that our Schur algebra is a 1-faithful quasi-hereditary cover of

the type B Iwahori-Hecke algebra via Theorem 9.1.1. Hence, it module category identifies the

category O for the rational Cherednik algebra of type B, see Theorem 12.3.3. A comparison

of our Schur algebra with Rouquier’s Schur-type algebra is also provided.

12.1 1-faithful covers

Let C be a category equivalent to the module category of a finite dimensional projective

k-algebra A, and let ∆ “ t∆pλquλPΛ be a set of objects of C indexed by an interval-finite

poset structure Λ. Following [Rou], we say that C (or pC,∆q) is a highest weight category if

the following conditions are satisfied:

(H1) EndCp∆pλqq “ k for all λ P Λ;

(H2) If HomCp∆pλq,∆pµqq ‰ 0 then λ ď µ;

(H3) If HomCp∆pλq,Mq “ 0 for all λ P Λ then M “ 0;
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(H4) For each ∆pλq P ∆ there is a projective module P pλq P C such that kerpP pλq Ñ ∆pλqq

has a ∆-filtration, i.e., finite filtrations whose quotients are isomorphic to objects in

∆.

Let A-mod be the category of finitely generated A-modules. The algebra A is called a

quasi-hereditary cover of B if the conditions below hold:

(C1) A-mod admits a highest weight category structure pA-mod,∆q;

(C2) B “ EndApP q for some projective P P A-mod;

(C3) The restriction of F “ HomApP,´q to the category of finitely generated projective

A-modules is fully faithful.

Quasi-hereditary covers are sometimes called highest weight covers since the notion of highest

weight category corresponds to that of split quasi-hereditary algebras [Rou, Theorem 4.16].

We also say that pA,F q is a quasi-hereditary cover of B. Moreover, a category C (or the pair

pC, F q) is said to be a quasi-hereditary cover of B if C » A-mod for some quasi-hereditary

cover pA,F q of B.

Following [Rou], a quasi-hereditary cover A of B is i-faithful if

ExtjApM,Nq » ExtjBpFM,FNq for j ď i, (12.1)

and for all M,N P A-mod admitting ∆-filtrations. Furthermore, a quasi-hereditary cover

pC, F q of B is said to be i-faithful if the diagram below commutes for some quasi-hereditary

cover pA,F 1q of B:
C A-mod

B-mod
F

»

F 1

Rouquier proved in [Rou, Theorem 4.49] a uniqueness theorem for the 1-faithful quasi-

hereditary covers which we paraphrase below:
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Proposition 12.1.1. Let B be a finite projective k-algebra that is split semisimple, and

let pCi, Fiq for i “ 1, 2 be 1-faithful quasi-hereditary covers of B with respect to the partial

order ďi on IrrpBq. If ď1 is a refinement of ď2 then there is an equivalence C1 » C2 of

quasi-hereditary covers of B inducing the bijection IrrpC1q » IrrpBq » IrrpC2q.

12.2 Rational Cherednik algebras

Let pW,Sq be a finite Coxeter group, and let AW be the corresponding rational Cherednik

algebra over Crhu;u P U s as in [Rou], where U “
Ů

sPStsu ˆ t1, . . . , esu and es is the size

of the pointwise stabilizer in W of the hyperplane corresponding to s. If W “ WBpdq and

S “ ts0, s1u then U “ tpsi, jq | 0 ď i, j ď 1u. In this case we assume that

hps1,0q “ h, hps1,1q “ 0, hps0,iq “ hi for i “ 0, 1. (12.2)

Remark 12.2.1. In [EG] the rational Cherednik algebra Ht,c is defined for a parameter t P C,

and a W -equivariant map c : S Ñ C. The two algebras, AW and Ht,c, coincide if t “ 1,

hps,0q “ 0 and hps,1q “ cpsq for all s P S.

Let OW be the category of finitely generated AW -modules that are locally nilpotent for

SpV q. It is proved in [GGOR] that pOW ,∆W q is a highest weight category of HpW q-mod

∆W “ t∆pEq :“ AW bSpV q¸W E | E P IrrpW qu,

See [Rou, 3.2.1–3] for the partial order ď on IrrpW q. Let Λ`
2 pdq be the poset of all bipartitions

of d on which the dominance order E is given by λE µ if, for all s ě 0,

s
ÿ

j“1

|λ
p1q

j | ď

s
ÿ

j“1

|µ
p1q

j |, |λp1q| `

s
ÿ

j“1

|λ
prq

j | ď |µp1q| `

s
ÿ

j“1

|µ
prq

j |. (12.3)
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For λ P Λ`
2 pdq, set

WB
λ pdq “ Cd

2 ¸ pΣλp1q ˆ Σλp2qq, (12.4)

Set

Iλp1q “ t1, . . . , |λp1q|u, Iλp2q “ t|λp1q| ` 1, . . . , du. (12.5)

Following [Rou, 6.1.1], there is a bijection

Λ`
2 pdq Ñ IrrpWBpdqq, λ “ pλp1q, λp2qq ÞÑ χλ “ ind

WBpdq

WB
λ pdq

pχλp1q b ϕp2qχλp2qq, (12.6)

where χλ is the irreducible character of WBpdq corresponding to λ, and ϕp2q is the 1-

dimensional character of CIλp2q

2 ¸ ΣIλp2q whose restriction to C
Iλp2q

2 is det and the restriction

to ΣIλp2q is trivial.

Rouquier showed that the order ď is a refinement of the dominance order E under an

assumption on the parameters h, hi’s for the rational Cherednik algebra as follows:

Lemma 12.2.2. [Rou, Proposition 6.4] Assume that W “ WBpdq, h ď 0 and h1 ´ h0 ě

p1 ´ dqh (see Eq. (12.2)). Let λ, µ P Λ`
2 pdq. If λE µ, then χλ ď χµ on IrrpW q.

Remark 12.2.3. The assumption in Lemma 12.2.2 on the parameters is equivalent to cps0q “

h1 ě 0 using Etingof-Ginzburg’s convention.

Let KZW be the KZ functor OW Ñ HpW q-mod. We paraphrase [Rou, Theorem 5.3] in

our setting as below:

Proposition 12.2.4. If W “ WBpdq and HpW q “ HB
Q,qpdq, then pOW , KZW q is a quasi-

hereditary cover of HpW q-mod. Moreover, the cover is 1-faithful if pq2 ` 1qpQ2 ` 1q ‰ 0.

It is shown in [Rou] that under suitable assumptions, OWBpdq is equivalent to the module

category of a Schur-type algebra SRpdq which does not depend on n using the uniqueness

property Proposition 12.1.1. Below we give an interpretation in our setting.
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Let Λ2pdq be the set of all bicompositions of d. In [DJM] a cyclotomic Schur algebra over

Qpq,Q,Q1, Q2q for each saturated subset Λ Ă Λ2pdq, which specializes to cyclotomic Schur

algebras SQpΛq over k is defined (see Section 13.2). Moreover, in [Rou] an algebra SQpΛq is

defined that is Morita equivalent to SQpΛq as given below:

SRpdq :“ EndHB
Q,qpdqpPdq, Pd :“

à

λPΛ`
2 pdq

mλHB
Q,qpdq. (12.7)

where mλ is defined in Eq. (13.11). Note that SRpdq does not depend on n. Set

FR
d p´q “ HomSRpdqpPd,´q : SRpdq-mod Ñ HB

Q,qpdq-mod. (12.8)

Proposition 12.2.5. [Rou, Theorem 6.6]

(a) The category ModpSRpdqq is a highest weight category for the dominance order;

(b) pSRpdq, FR
d q is a quasi-hereditary cover of HB

Q,qpdq;

(c) The cover pSRpdq, FR
d q is 1-faithful if

pq2 ` 1qpQ2 ` 1q ‰ 0, and fB
Q,qpdq ¨

d
ź

i“1

p1 ` q2 ` ¨ ¨ ¨ ` q2pi´1qq ‰ 0. (12.9)

The category O for the type B rational Cherednik algebra together with its KZ functor

can then be identified by combining Propositions 12.1.1, 12.2.4 and 12.2.5. In other words,

the following diagram commutes if Eq. (12.9) holds:

OWBpdq SRpdq-mod

HB
Q,qpdq-mod

KZ
WBpdq

»

FR
d
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12.3 1-faithfulness of SB
Q,qpn, dq-mod

Let ℓ be the multiplicative order of q2 in kˆ. In this section we use the following assumptions:

fB
d pQ, qq “

d´1
ź

i“1´d

pQ´2 ` q2iq P kˆ, r :“ tn{2u ě d, ℓ ě 4. (12.10)

As a consequence, there exists a type B Schur functor by Proposition 10.1.1. For type A,

it is known in [HN2] that the q-Schur algebra is a 1-faithful quasi-hereditary cover of the

type A Iwahori-Hecke algebra if ℓ ě 4. Moreover, Theorem 9.1.1 applies and hence we will

see shortly that SB
Q,qpn, dq is a 1-faithful quasi-hereditary cover of HB

Q,qpdq. Furthermore,

Proposition 12.1.1 implies that we have a concrete realization for the category O for the

type B rational Cherednik algebra together with its KZ functor using our Schur algebra.

Corollary 12.3.1. If fB
d P kˆ, then SB

Q,qpn, dq-mod is a highest weight category.

Proof. It follows immediately from the isomorphism with the direct sum of type A q-Schur

algebras that SB
Q,qpn, dq-mod is a highest weight category.

In below we characterize a partial order for highest weight category SB
Q,qpn, dq-mod ob-

tained via Corollary 12.3.1 and the dominance order for type A. Denote the set of all N -step

partitions of D by ΛApN,Dq. Set

∆A
N,D “ t∆Apλq | λ P ΛApN,Dqu. (12.11)

Now ∆A
N,D is a poset with respect to the dominance order E on ΛApN,Dq. It is well known

that for all nonnegative integers N and D, pSA
q pN,Dq-mod,∆A

N,Dq is a highest weight cate-

gory.
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Recall FS from Eq. (10.11) and ΛBpn, dq from Eq. (11.8). Set

∆B
n,d “ t∆Bpλq :“ F´1p∆Apλp1qq b ∆Apλp2qqq | λ “ pλp1q, λp2qq P ΛBpn, dqu. (12.12)

Now ∆B
n,d is a poset with respect to the dominance order (also denoted by E) on ΛBpn, dq Ă

Λ`
2 pdq. Hence, pSB

q pn, dq-mod,Eq is a highest weight category.

Lemma 12.3.2. Assume that SB
Q,qpn, dq is a quasi-hereditary cover of HB

Q,qpdq. If Eq. (12.10)

holds, then the cover is 1-faithful.

Proof. Write A “ SB
Q,qpn, dq, B “ HB

Q,qpdq, S 1 “ SA
q prn{2s, iq, S2 “ SA

q ptn{2u, d ´ iq for short.

We need to show that, for all M,N admitting ∆B-filtrations,

ExtiApM,Nq » ExtieAepF
B
n,dM,FB

n,dNq, i ď 1.

Recall FS from Eq. (10.11). Write FSM “
À

i M
1
i b M2

i and FSN “
À

i N
1
i b N2

i for some

M 1
i , N

1
i P ModpS 1q and M2

i , N
2
i P ModpS2q. From construction we see that all M 1

i ,M
2
i , N

1
i , N

2
i

admit ∆A-filtrations since M,N have ∆B-filtrations.

For tn{2u ě d ě i ě 0, we abbreviate the type A Schur functors (see Eq. (10.1)) by

F 1 “ FA
rn{2s,i, F

2 “ FA
tn{2u,d´i. Since the type A q-Schur algebras are 1-faithful provided ℓ ě 4,

for j ď 1 we have

ExtjS1pM
1
i , N

1
iq » ExtjHqpΣi`1q

pF 1M 1
i , F

1N 1
iq,

ExtjS2pM2
i , N

2
i q » ExtjHqpΣd´i`1q

pF 2M2
i , F

2N2
i q.

(12.13)
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We show first it is 0-faithful. We have

HomApM,Nq » HomÀd
i“0 S

1bS2

´

FSM,FSN
¯

»

d
à

i“0

HomS1pM 1
i , N

1
iq b HomS2pM2

i , N
2
i q

»

d
à

i“0

HomHqpΣi`1qpF
1M 1

i , F
1N 1

iq b HomHqpΣd´i`1qpF
2M2

i , F
2N2

i q

»

d
à

i“0

HomHqpΣi`1qbHqpΣd´i`1q

´

F 1M 1
i b F 1M2

i , F
2N 1

i b F 2N2
i

¯

»

d
à

i“0

HomHqpΣi`1qbHqpΣd´i`1qpFHF
5
n,dM,FHF

5
n,dNq

» HomBpF 5
n,dM,F 5

n,dNq.

(12.14)

Note that the second last isomorphism follows from Proposition 10.1.2. For 1-faithfulness,

we have

Ext1ApM,Nq »

d
à

i“0

`

pExt1S1pM 1
i , N

1
iq b HomS2pM2

i , N
2
i qq

‘ pHomS1pM 1
i , N

1
iq b Ext1S2pM2

i , N
2
i qq

˘

»

d
à

i“0

`

pExt1HqpΣi`1qpF
1M 1

i , F
1N 1

iq b HomHqpΣd´i`1qpF
2M2

i , F
2N2

i qq

‘ pHomHqpΣi`1qpF
1M 1

i , F
1N 1

iq b Ext1HqpΣd´i`1qpF
2M2

i , F
2N2

i qq

»

d
à

i“0

Ext1HqpΣi`1qbHqpΣd´i`1qpFHF
5
n,dM,FHF

5
n,dNq

» Ext1BpF 5
n,dM,F 5

n,dNq.

(12.15)

Theorem 12.3.3. Assume that W “ WBpdq, h ď 0, h1 ´h0 ě p1´dqh (see Eq. (12.2)) and

pq2 `1qpQ2 `1q P kˆ. If Eq. (12.10) holds, then there is an equivalence OW » SB
Q,qpn, dq-mod
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of quasi-hereditary covers. In other words, the following diagram commutes:

OW SB
Q,qpn, dq-mod

HB
Q,qpdq-mod

KZW

»

F 5
n,d

Proof. The theorem follows by combining Propositions 12.1.1, 12.2.4 and Lemmas 12.2.2,

12.3.2.

Remark 12.3.4. The uniqueness theorem for 1-faithful quasi-hereditary covers also applies

on our Schur algebras and Rouquier’s Schur-type algebras. That is, the following diagram

commutes provided Eq. (12.9) and Eq. (12.10) hold:

SRpdq-mod SB
Q,qpn, dq-mod

HB
Q,qpdq-mod

FR
d

»

F 5
n,d
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Chapter 13

Variants of q-Schur algebras of type

B/C

It is interesting that the type A q-Schur algebra admits quite a few distinct generalizations

in type B/C in literature. This is due to that the type A q-Schur algebra can be realized

differently due to the following realizations of the tensor space pknqbd: (1) A combinatorial

realization as a quantized permutation module (cf. [DJ2]); (2) A geometric realization as the

convolution algebra on GLn-invariant pairs consisting of a n-step partial flag and a complete

flag over finite field (cf. [BLM]).

In the following sections we provide a list of q-Schur duality/algebras of type B/C in

literature, paraphrased so that they are all over k, and with only one parameter q. These

algebras are all of the form EndHB
q pdqpV

bdq for some tensor space that may have a realization

V bd »
À

λPI M
λ via induced modules. Considering the specialization at q “ 1, we have

Mλ
ˇ

ˇ

q“1
“ ind

WBpdq

Hλ
U, Hλ ď WBpdq is a subgroup, U is usually the trivial module.

We summarize the properties of the q-Schur algebras in the following table:
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Coideal q-Schur Algebra Cyclotomic Schur Algebra Sakamoto-Shoji Algebra

SB
q pn, dq SqpΛq SB

q pa, b, dq

Index set I compositions λ “ pλiqiPIpnq bicompositions unclear

with constraints on λi λ “ pλp1q, λp2qq

Subgroup Hλ WBpλ0q ˆ Σpλ1,...λrq pC
|λp1q|

2 ˆ C
|λp2q|

2 q ¸ Σλ unknown

Module U trivial nontrivial

Schur duality pUB
q pnq,HB

q pdqq unknown pUqpgla ˆ glbq,HB
q pdqq

Cellularity new [LNX] known [DJM] unknown

Quasi-heredity new [LNX] known [DJM] unknown

Schur functor new [LNX] unknown unknown

For completeness a more involved q-Schur algebra (referred as the q-Schur2 algebras) of

type B is studied in [DS]. We also distinguish the coideal q-Schur algebras from the slim

cyclotomic Schur algebras constructed in [DDY].

13.1 The coideal Schur algebra SB
Q,qpn, dq

To distinguish SB
q pn, dq from the other variants we call them for now the coideal Schur

algebras since they are homomorphic images of coideal subalgebras.

For the equal-parameter case, a geometric Schur duality is established between HB
q pdq

and the coideal subalgebra UB
q pnq as below (cf. [BKLW]):

UB
q pnq

Ó

SB
q pn, dq ñ TB

geopn, dq » pknqbd » TB
algpn, dq ð HB

q pdq

Note that a construction using type C flags is also available, and it produces isomorphic

Schur algebras and hence coideals. A combinatorial realization TB
algpn, dq as a quantized

permutation module is also available along the line of Dipper-James.
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For the case with two parameters, the algebra SB
Q,qpn, dq, when n is even, was first intro-

duced by Green and it is called the hyperoctahedral q-Schur algebra [Gr2]. A two-parameter

upgrade for the picture above is partially available - a Schur duality is obtained in [BWW]

between the two-parameter Iwahori-Hecke algebra HB
Q,qpdq and the two-parameter coideal

UB
n over the tensor space QpQ, qq; a two-parameter upgrade for TB

rmpn, dq is studied in [LL]

- while a two-parameter upgrade for TB
geopn, dq remains unknown since dimension counting

over finite fields does not generalize to two parameters naively.

To our knowledge, this is the only q-Schur algebras for the Iwahori-Hecke algebras of

type B that admit a coordinate algebra type construction and a notion of the Schur functors

with the existence of appropriate idempotents.

13.2 Cyclotomic Schur algebras

The readers will be reminded shortly that the cyclotomic Iwahori-Hecke algebra Hpr, 1, dq

of type Gpr, 1, dq is isomorphic to HB
q pdq at certain specialization when r “ 2. For each

saturated subset Λ of the set of all bicompositions, Dipper-James-Mathas (cf. [DJM]) define

the cyclotomic Schur algebra SpΛq:

SqpΛq “ EndHB
q pdq T pΛq,

where T pΛq is a quantized permutation module that has no known identification with a

tensor space. While a cellular structure (and hence a quasi-heredity) is obtained for SqpΛq,

it is unclear if it has a double centralizer property. We also remark that there is no known

identification of TB
algpn, dq with a T pΛq for some Λ.

Let R “ Qpq,Q,Q1, Q2q. The cyclotomic Iwahori-Hecke algebra (or Ariki-Koike algebra)

H “ Hp2, 1, dq is the R-algebra generated by T∆
0 , . . . , T∆

d´1 subject to the relations below, for
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1 ď i ď d ´ 1, 0 ď j ă k ´ 1 ď d ´ 2:

pT∆
0 ´ Q1qpT∆

0 ´ Q2q “ 0, pT∆
i ` 1qpT∆

0 ´ q∆q “ 0, (13.1)

pT∆
0 T∆

1 q2 “ pT∆
1 T∆

0 q2, T∆
i T∆

i`1T
∆
i “ T∆

i`1T
∆
i T∆

i`1, T∆
k T∆

j “ T∆
j T∆

k . (13.2)

Next we rewrite the setup in . loc. cit. using the following identifications:

q∆ Ø q´2, T∆
i Ø q´1Ti. (13.3)

Under the identification, the Jucy-Murphy elements are, for m ě 1,

Lm “ pq∆q1´mT∆
m´1 . . . T

∆
0 . . . T∆

m´1

“ pqT∆
m´1q . . . pqT∆

0 q . . . pqT∆
m´1q

“ Tm´1 . . . T0 . . . Tm´1.

(13.4)

Then the cyclotomic relation is

pq´1TB
0 ´ Q1qpq´1TB

0 ´ Q2q “ 0, or pTB
0 ´ qQ1qpTB

0 ´ qQ2q “ 0. (13.5)

This is equivalent to our Iwahori-Hecke relation at the specialization below:

Q1 “ ´q´1Q, Q2 “ q´1Q´1. (13.6)

In summary we have the following isomorphism of k-algebras.

Proposition 13.2.1. The type B Iwahori-Hecke algebra HB
Q,qpdq is isomorphic to the cyclo-

tomic Iwahori-Hecke algebra Hp2, 1, dq at the specialization Q1 “ ´q´1Q,Q2 “ q´1Q´1.
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For a composition λ “ pλ1, . . . , λℓq P Nℓ of ℓ parts write

|λ| “ λ1 ` . . . ` λℓ, and ℓpλq “ ℓ. (13.7)

A bicomposition of d is a pair λ “ pλp1q, λp2qq of compositions such that |λp1q| ` |λp2q| “ d.

We denote the set of bicompositions of d by Λ2 “ Λ2pdq. A bicomposition λ is a bipartition

if λp1q, λp2q are both partitions. The set of bipartitions of d is denoted by Λ`
2 “ Λ`

2 pdq.

Following [DJM], the cyclotomic Schur algebras can be defined for any saturated subset

Λ of the set Λ2pdq of all bicompositions of d. That is, any subset Λ of Λ2 satisfying the

condition below:

If µ P Λ, ν P Λ`
2 pdq and ν Ź µ, then ν P Λ. (13.8)

For each Λ we define a cyclotomic Schur algebra SpΛq “ EndH p
À

λPΛmλHq , where

mλ “ u`

ℓpλp1qq
xλ, u`

ℓpλp1qq
“

ℓpλp1qq
ź

m“1

pLm ´ Q2q, xλ “
ÿ

wPΣλ

Tw, (13.9)

and Σλ “ Σ
p1q

λ ˆ Σ
p2q

λ is the Young subgroup of Σd. The specialization SQpΛq of SpΛq at

Q1 “ ´q´1Q,Q2 “ q´1Q´1 is then given by

SQpΛq “ EndHB
Q,q

˜

à

λPΛ

mλ HB
Q,q

¸

, (13.10)

where

mλ “ pL1 ´ q´1Q´1q . . . pLℓpλp1qq ´ q´1Q´1qxλ. (13.11)

Let T0pλ, µq be the set of semi-standard λ-tableaux of type µ, that is, any T “ pT p1q, T p2qq P

T0pλ, µq satisfies the conditions below:

(S0) T is a λ-tableau whose entries are ordered pairs pi, kq, and the number of pi, jq’s
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appearing is equal to µ
pkq

i ;

(S1) entries in each row of each component T pkq are non-decreasing;

(S2) entries in each column of each component T pkq are strictly increasing;

(S3) entries in T p2q must be of the form pi, 2q.

We note that the dimension of the cyclotomic Schur algebra Λ is given by

dimSQpΛq “
ÿ

λPΛ`
2 pdq

µ,νPΛ

|T0pλ, µq| ¨ |T0pλ, νq|. (13.12)

It is then define a “tensor space” TQpΛq “
À

λPΛmλHB
Q,q which has an obvious SqpΛq´HB

q pdq-

bimodule structure.

Example 13.2.2. Let

Λa,b “ Λa,bpdq “ tλ “ pλp1q, λp2qq P Λ2pdq | ℓpλp1qq ď a, ℓpλp2qq ď bu. (13.13)

Recall that the dominance partial order in Λ`
2 p1q is given by µ2 “ p ,∅q B µ1 “ p∅, q, and

hence Λ0,1p1q,Λ1,1p1q are saturated, while Λ1,0p1q is not. The cardinality of |T0pµ‚, µ‚q| is

given as below:

|T0pµ1, µ1q| “ 1 “ |T0pµ2, µ1q| “ |T0pµ2, µ2q|, |T0pµ1, µ2q| “ 0.

Note that T0pµ1, µ2q is empty since the only µ2-tableau of type µ1 is p∅, 1 2 q, which violates

(S3). Hence, the dimensions of these cyclotomic Schur algebras are

SqpΛ0,1p1qq “ 1, SqpΛ0,1p1qq “ 3.
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For d “ 2, the dominance order in Λ`
2 p2q is given by

λ5 “ p ,∅q B λ4 “

´

,∅
¯

B λ3 “ p , q B λ2 “ p∅, q B λ1 “

´

∅,
¯

.

The sets Λ0,2p2q,Λ1,2p2q, and Λ2,2p2q are saturated. The cardinality of |T0pλ‚, λ‚q| is given in

the following table
type\shape λ5 λ4 λ3 λ2 λ1

λ5 1 0 0 0 0

λ4 1 1 0 0 0

λ3 1 1 1 0 0

λ2 1 0 1 1 0

λ1 1 1 2 1 1

Hence, the dimensions are

dimSqpΛ0,2p2qq “ 3, dimSqpΛ1,2p2qq “ 7, dimSqpΛ2,2p2qq “ 15.

Recall that dimSB
q p2, dq “ d ` 1 for all d, hence the algebras SB

q and SqpΛq small ranks do

not match in an obvious way.

13.3 Sakamoto-Shoji Algebras

The cyclotomic Iwahori-Hecke algebra Hpr, 1, dq does admit a Schur-type duality (cf. [SS])

with the algebra Uqpgln1
ˆ . . . ˆ glnr

q where n1 ` . . . ` nr “ n. Hence, it specializes to the
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following double centralizer properties, for a ` b “ n:

Uqpgla ˆ glbq

Ó

SB
q pa, b, dq ñ T pa, b, dq “ pknqbd ð HB

q pdq

We will see in Eq. (13.17) that TB
0 acts as a scalar multiple on T pa, b, dq, which is different

from our TB
0 -action § 8.1. Consequently, the duality is different from the geometric one. We

could not locate an identification between SB
q pa, b, dq and SqpΛq for some Λ in the literature.

Now we set up the compatible version of the cyclotomic Schur duality introduced in [SS].

Let R1 “ QpQ, q1, u1, u2q, and let Hd,2 be the the R1-algebra generated by a1, . . . , ad subject

to the relations below, for 2 ď i ď d, 1 ď j ă k ´ 1 ď d ´ 1:

pa1 ´ u1qpa1 ´ u2q “ 0, pai ´ q1qpai ` pq1qq´1 “ 0, (13.14)

pa1a2q
2 “ pa2a1q2, aiai`1ai “ ai`1aiai`1, akaj “ ajak. (13.15)

With the identifications below one has the following result.

ai Ø Ti´1, q1 Ø q´1 (13.16)

Proposition 13.3.1. The type B Iwahori-Hecke algebra HB
Q,qpdq is isomorphic to the algebra

Hd,2 at the specialization u1 “ ´Q, u2 “ Q´1.

Let TQpa, b, dq “ V bd
a,b where Va,b “ ka ‘ kb is the natural representation of Uqpgla ˆ glbq

with bases tv
p1q

1 , . . . , v
p1q
a u of ka and tv

p2q

1 , . . . , v
p2q

b u of kb. The tensor space TQpa, b, dq admits

an obvious action of the type A Iwahori-Hecke algebra generated by T1, . . . , Td´1. The TB
0 -
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action on T pa, b, dq is more subtle as defined by

TB
0 “ T1 ˝´1 . . . ˝ Td´1 ˝´1 Sd´1 ˝ . . . ˝ S1 ˝ ϖ P EndpT pa, b, dqq, (13.17)

where ϖ is given by

ϖpx1 b . . . b xdq “

$

’

’

&

’

’

%

´Qx1 b . . . b xd if x1 “ v
p1q

i for some i;

Q´1x1 b . . . b xd if x1 “ v
p2q

i for some i,

(13.18)

and that Si is given by

Sipx1 b . . . b xdq “

$

’

’

&

’

’

%

Tipx1 b . . . b xdq if xi, xi`1 both lies in ka or kb;

. . . xi´1 b xi`1 b xi b xi`2 b . . . otherwise.
(13.19)

Define

SB
Q,qpa, b, dq “ EndHB

Q,qpdq pTQpa, b, dqq . (13.20)

It is proved in [SS] that there is a Schur duality as below:

Uqpgla ˆ glbq

Ó

SB
q pa, b, dq ñ T pa, b, dq ð HB

q pdq

Example 13.3.2. Let a “ b “ 1, d “ 2. Then TQp1, 1, 2q has a basis tv :“ v
p1q

1 , w :“ v
p2q

1 u.
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The TB
0 -action is given by

pv b vqTB
0 “ ´Qv b v,

pv b wqTB
0 “ ´Qv b w,

pw b vqTB
0 “ Q´1pw b v ` pq´1 ´ qqv b wq,

pw b wqTB
0 “ Q´1w b w.

Note that this is essentially different from the TB
0 -action for the coideal Schur algebra given

in § 8.1.

13.4 Slim cyclotomic Schur Algebras

The slim cyclotomic Schur algebra Spu1,...,urqpn, dq introduced in [DDY] is another attempt to

establish a Schur duality for the cyclotomic Iwahori-Hecke algebra Hpr, 1, dq. When r “ 2,

the algebra Spu1,u2qpn, dq has the same dimension as the coideal q-Schur algebra SB
Q,qp2n, dq;

while there is no counterparts for the algebra SB
Q,qp2n ` 1, dq.

It is conjectured in [DDY] that there is a weak Schur duality between the cyclotomic

Iwahori-Hecke algebras and certain Hopf subalgebras Uqppslnqptq of Uqppglnq for an integer t to

be determined. In our setting it can be phrased as follows:

Uqppglnq Ľ Uqppslnqptq

Ó

S
pA
q pn, dq Ñ Spq,qqpn, dq ñ Ωbd ð HB

q pdq

Here Spq,qqpn, dq “ EndHB
q pdqpTpq,qqpn, dqq is the centralizer algebra of the HB

q pdq-action on

a finite dimensional q-permutation module Tpq,qqpn, dq, while Ω is the (infinite-dimensional)

natural representation of Uqppglnq.
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We remark that it is called a weak duality in the sense that there are epimorphisms

Uqppslnqptq � Spq,qqpn, dq and HB
q pdq � EndSpq,qqpn,dqpΩ

bdq; while it is not a genuine double

centralizer property.
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