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Introduction

This thesis consists of two part. The first part develops a theory of support theory for
Iwahori-Hecke algebras of classical type, which is based on [NX]. The second part gives an
isomorphism theorem between Schur algebras of type B and type A, and discuss its corol-

laries, which is based on | ]. Throughout the thesis, let k£ denote a field of characteristic

p.

Part I: Support theory for Iwahori-Hecke algebras

Support varieties have been developed in a variety of contexts that involve categories which
are Frobenius (i.e., where injectivity and projectivity are equivalent) and have a monoidal
tensor structure. The monoidal tensor structure generally arises from a Hopf structure on an
underlying algebra. Examples of such categories include modules for finite group schemes,
quantum groups and Lie superalgebras (cf. [FP1, ] [FPe], | 1, [ ). More re-
cently, the key properties of support varieties have be used to create axiomatic support
theory and tensor triangular geometry. Very little is known about extracting geometric
properties from Frobenius categories where there is no underlying coproduct.

In this thesis, we will develop a support variety theory for the Iwahori-Hecke algebra
for the symmetric group (i.e., type A), and for Iwahori-Hecke algebras for other classical

groups. In general, the module category for Iwahori-Hecke algebras lacks a tensor structure.
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This presents major difficulties in executing important constructions. Our modified theory of
support varieties differs from approaches proposed using the Hochschild cohomology (cf. [1]).
In those contexts, varieties can be defined, however it is not clear how (i) these varieties can
be computed and (ii) how they can be used in the general theory. It is anticipated that our
methods along with several recent developments in extending the theory in type A to other
Weyl groups (cf. [ , |) might lead to a general finite generation results entailing
the cohomology ring and the creation of a general theory of supports with realizations for
arbitrary Iwahori-Hecke algebras.

The first part of the thesis is organized as follows. In Chapter 1, we introduce the Hecke
algebras of classical type that will be used throughout the thesis (including Part IT). The
following chapter, Chapter 3, provides the definition and details of the results on transfer and
its relationship to cohomology for all types. In Chapter 4, using the explicit description of
the cohomology ring R, := H*(#H,(X4), C) due to Benson, Erdmann and Mikaelian | ] we
show that (i) Ry := H*(H,(X,),C) is finitely-generated and (ii) Ext}, s,)(C, M) is finitely
generated as a Ry-module for any composition A. Here M is a finite-dimensional H,(X,)-
module. The results above allow one to use the ideas involving branching to Young subgroups
from Hemmer and Nakano [HIN1] to construct support varieties for any H,(X,). These ideas
were important for the recent proof of the Erdmann-Lim-Tan Conjecture | | by Cohen,
Hemmer and Nakano | ] that involved computing the complexity of the Lie module. Our
results rely heavily on the work of Dipper and Du (cf. [DD, Du]) that provides the technical
machinery to prove many of the results in this section.

Following the seminal work of Alperin, we define complexity for #,(X;)-modules in
Chapter 5. The main point of this section is to utilize the representation theory of the
Iwahori-Hecke algebras to demonstrate that the complexity of a module is in fact equal to
the dimension of its support variety (as defined in Chapter 4). As an application we prove

that the complexity of any module is less than the complexity of the trivial module. Note



that without a tensor structure (as in our case) this is a non-trivial fact. Subsequently, in
Chapter 6, we compute the complexities and varieties for Young and permutation modules,
which extends the earlier work in | | for symmetric groups to Iwahori-Hecke algebras of
type A.

In Chapter 7, we construct a new invariant for Specht modules called the graded di-
mension and relate this graded dimension to the product of cyclotomic polynomials. This
definition in conjunction with results for relative cohomology allows us to show that the
vertex of the Specht module satisfies certain numerical constraints. As a by-product, we
are able to explicitly compute the vertex of Specht modules for a certain class of partitions.
Finally, in Chapter 8, we apply our results for Iwahori-Hecke algebras of type A with various
Morita equivalences to construct support varieties for Iwahori-Hecke algebras of types B/C
and D, and show that the complexity of modules for these algebras is equal to the dimension
of the corresponding varieties. Several open questions of further interest are posed at the

end of the paper.

Part 1I: Coordinate constructions of ¢-Schur algebras

Schur-Weyl duality has played a prominent role in the representation theory of groups and
algebras. The duality first appeared as method to connect the representation theory of the
general linear group GL, and the symmetric group ¥4. This duality carries over naturally
to the quantum setting by connecting the representation theory of quantum GL, and the
Iwahori-Hecke algebra H,(34) of the symmetric group 2.

Let U,(gl,) be the Drinfeld-Jimbo quantum group. Jimbo showed in [Jim] that there
is a Schur duality between U,(gl,) and H,(X4) on the d-fold tensor space of the natural
representation V' of U,(gl,). The ¢-Schur algebra of type A, Sé*(n,d), is the centralizer

algebra of the H,(X4)-action on V&,
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It is well-known that the representation theory for U,(gl,) is closely related to the rep-
resentation theory for the quantum linear group GL,,. The polynomial representations GL,
coincide with modules of Sﬁ(n, d) with d > 0. The relationship between objects are depicted

as below:
K[MMn)* < Uy(gl,)

! l
KIMPm)IG = Spn.d) —~ VO, (3)
The algebra U,(gl,) embeds in the dual of the quantum coordinate algebra k[M;*]; while
Sy (n,d) can be realized as its d-th degree component. The reader is referred to ["W] for a
thorough treatment of the subject.
The Schur algebra S (n, d) and the Iwahori-Hecke algebra #,(3,) are structurally related

when n > d.
o There exists an idempotent e € Sﬁ(n, d) such that eSé*(n, d)e ~ H,(Xq);
« An idempotent yields the existence of Schur functor Mod (S, (n, d)) — Mod(H4(24));
« SX(n,d) is a (1-faithful) quasi-hereditary cover of H,(3,)"

The second part of the thesis aims to investigate the representation theory of the ¢g-Schur
algebras of type B that arises from the coideal subalgebras for the quantum group of type A.
We construct, for type B = C, the following objects in the sense that all favorable properties

mentioned in the previous section hold:

K[Mg ,(n)]* < Ug,(n)
l !
KIME ()]~ SEy(nd) —~ V' = HE,(d)

'The algebra S? (n,d) is 1-faithful under the conditions that ¢ is not a root of unity or if ¢2 is a primitive
fth root of unity then ¢ > 4.
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For our purposes it will be advantageous to work in more general setting with two parameters
¢ and @, and construct the analogs k[M§ (n)] of the quantum coordinate algebras. Then
we prove that the dth degree component of k[M5 ,(n)]* is isomorphic to the type B g-Schur
algebras. The coordinate approach provide tools to study the representation theory for the
algebra k[ Mg (n)]* and for the ¢-Schur algebras simultaneously. The algebra U5 ,(n), unlike
U,(gl,), does not have an obvious comultiplication. Therefore, its dual object, k[M§ ,(n)],
should be constructed as a coalgebra; while in the earlier situation k[M*(n)] is a bialgebra.

In Chapter 9, an isomorphism theorem between the ¢g-Schur algebras of type B and type

A (under an invertibility condition) is established:

S

S5, d) = @ SH[n/2],4) ® Si([n/2],d — ). (1)

i=0

One can view this as a “lifting” of the Morita equivalence (via the Schur functor) Theo-
rem 7.1.1(a) proved by Dipper-James [D.J1].

As a corollary of our isomorphism theorem, we obtain favorable properties for our coideal
Schur algebras, see Chapter 11-Chapter 12. In particular, with the Morita equivalence we are
able to show that Sg’q(n, d) is a cellular algebra and quasi-hereditary. Moreover, in § 11.3,
we are able give a complete classification of the representation type of Sg’q(n,d). In the
following section (Chapter 12), we are able to demonstrate that under suitable conditions,
the Schur algebra S§  (n, d) is a quasi-hereditary one-cover for ngq (d). We also exhibit how
the representation theory of Squ(n, d) is related to Rouquier’s Schur-type algebras that arise
from the category O for rational Cherednik algebras.

In the one-parameter case (i.e., ¢ = ), the algebra Uf(n) is the coideal subalgebra U*
or U? of U,(gl,) in [BW] (see also [E5]). To our knowledge, there is no general theory for
finite-dimensional representations for the coideal subalgebras (cf. [Le] for establishing their

Cartan subalgebras), and in some way our paper aims to establish results about “polynomial”

xiii



representations for Uf(n). The corresponding Schur algebras therein are denoted by S* or
S’ to emphasize the fact that they arise from certain quantum symmetric pairs of type A
IIT/TV associated with involutions 2 or 7 on a Dynkin diagram of type A,,. Namely, we have

the identification below:

Ul ifn=2r+1; S/(r,d) ifn=2r+1,
UB(n) = S(n,d) =

U ifn = 2r, S'(r,d) ifn=2r.

There are many cases when the Morita equivalence will hold, in particular when (i) ¢ is
generic, (ii) ¢ is an odd root of unity, or (iii) ¢ is an (even) fth root of unity if ¢ > 4d.
There are several generalizations of the g-Schur duality for type B. A comparison of the
algebras regarding the aforementioned favorable properties will be given in Chapter 13. Since
all these algebras are the centralizing partners of certain Iwahori-Hecke algebra actions, they
are different from the ones appearing in the Schur duality (see [[Tu2]) for type B/C quantum

groups, and are different from the coordinate algebras studied by Doty [Do].

Xiv



Part 1

Support varieties of Iwahori-Hecke

algebras



Chapter 1

Iwahori-Hecke algebras of classical

type

1.1 Multiparameter Iwahori-Hecke algebras

Let (W,S) be a Coxeter system. For each s € S, let ¢, € k*. Assume that ¢; = ¢ if s
and ¢ are conjugate in W. For every w € W, let ¢, := ¢s, ...qs for a reduced expression
w = 8 ...8;, which is well-defined. Let q := (qu)wew -

The Iwahori-Hecke algebra of (W, S) with parameter q, denoted by Hq(W, S), is the free

k-module with basis

{Ty,: weW}

and with multiplication defined by

Tows, if ((ws) > l(w),
T, T :=

qsTws + (¢s — 1)T,,, otherwise,

for we W and s € S, where £ : W — N is the length function of (W, 5).



If g = g€ k™ for all s € S, we write Hy(W,S) := Hq(W,S). When S is understood from
the context, we write Hq(W) := Hq(W, S).

For a subset J < S, let (W;,J) be the Coxeter subsystem of (W,S), and q; :=
(qw)wew,. The Iwahori-Hecke algebra Hq, (W, J) is a subalgebra of Hq(W, S), and we write
Hq,(Wy) :=Hq, (W, J). Subalgebras arising in this way are called parabolic subalgebras.

There is an automorphism # and an antiautomorphism * of Hq (W, S) defined by:

T = (1) @gy(T,) ", and T o= T,

w

The maps # and * are both involutions. We will also use the dual Vv defined by:

T = q, ' Ty .

1.2 Some modules over Iwahori-Hecke algebras

We will use right modules over Iwahori-Hecke algebras, unless stated otherwise. The algebra

Hq(W, S) has two distinguished one-dimensional modules:
(i) the trivial module k, where T, acts as ¢, and
(ii) the alternating module sgn, where T, acts as (—1)4®),

The trivial module and alternating module coincide exactly when ¢, = —1 for all simple
reflection s. When q = (1),ew these specialize to the usual trivial and alternating modules
of the group algebra kW.
For any Hq (W, S)-module M, one can define a dual (left) module M* := Homy (M, k),
where the action of Hq(W, S) is given by h - f: m — h*m for h e Hq(W,S) and f e M*.
In general, the tensor product of two Hq(W,S)-modules is not an Hq (W, S)-module,

since Hq(W, S) is not a Hopf algebra. However, the automorphism # lets us define, for each

3



H,(W,S)-module M, a new module M# with the same underlying vector space and with

action given by h-m := h#m for h € Hq(W,S) and f € M*. This is denoted by
M ®sgn := M*,

which specializes for q = (1)yew to tensoring with the alternating module.

1.3 Iwahori-Hecke algebras of type A

Let X4 be the symmetric group on d letters, and S be the set of simple transpositions in
Y4 The pair (34, d) is a Coxeter system. The [wahori-Hecke algebra of type A, denoted by
”Hé(d — 1), is defined to be Hq(X4, S).
Since all simple transpositions are conjugate in Y4, there exists some g € k™ such that
qs = q for all s € S. Therefore, we may write H?(d — 1) instead of HqA(d —1).
For1<i<d-—1,lets;:=(i,i+ 1) € Xy, and T} := Ty,. It is known that, ’H?(d —1)is

generated by T1,...,Ty 1 subject to the following relations:
(i) Braid relations:
LT T = T TiTi, 1<i<d-2,
T.T, =TT, i— > 1;

(ii) Quadratic relation:

(T, —)(T,+1)=0, l<i<d-—1

Let [ be the smallest integer such that 1+ ¢+ --- 4+ ¢~! = 0, and set [ := oo if no such
integer exists. If ¢ € k™ is a primitive jth root of unity, then [ = j. Furthermore, if ¢ is not

root of unity, then H,(3,) is semisimple. Note that ged(l,p) = 1 when [ # .



1.3.1 Partitions and compositions

Let A(d) := {) & d} be the set of all compositions of d, and let AT (d) := {\ - d} be the set
of all partitions of d. Given two compositions A, u € A(d) (resp. partitions), let u = A\ (resp.
i = A) if g is finer than A. A partition/composition A of d is called [-parabolic if every part
of X is either 1 or [, and it is simple [-parabolic provided that exactly one part of A is [ and
all other parts are 1’s.

A partition A = (A1, A, ... ) is called l-restricted if \; — A\j;1 <1 — 1 for all 7. The set of
the [-restricted partitions of d will be denoted by At (d). A partition A is called I-reqular if

its transpose X' is [-restricted. The set of all [-regular partitions of d is denoted by Af (d).

reg

1.3.2 Parabolic subalgebras

For a composition A = (A1, Ag,...) € A(d), let 3 be the corresponding Young subgroup of
Y4, that is ¥y = ¥y, x 3, x ---, and let Sy be the simple transpositions in ). Associated

to this Young subgroup, there is a corresponding parabolic subalgebra of H?(Ed):
Hq(Xn) 1= Hq(Ex,55).

Clearly,
Ho(S) = HI M -1 Q@H, M — 1)@+

1.3.3 Simple modules and Specht modules

In this subsection, we assume that p = 0. We refer the reader to [D.J1] and [Mat] for details
about the representation theory of H,(X,). The major classes of representations parallel
those for the modular representation theory of the symmetric group. For each A € A*(d),

there is a g-Specht module of the Twahori-Hecke algebra H,(34), denoted by S*. If X € AL, (d),

reg



then S* has a unique simple quotient, denoted by D*. One obtains a complete collection
of non-isomorphic simple modules D* for A € A}t (d) for #,(34)-module in this way. These

simple modules are self-dual and absolutely irreducible.

For a composition A € A(d), set

Ty = Z Ty.

’wEZA

Define the permutation module M* := zyH,(X4). One also has the isomorphism M?* =~
1ndzzg‘i)) k. Given X € A*(d), there is a unique indecomposable direct summand of M*
containing S* that is the Young module Y*. All other summands are Young modules whose
partitions are strictly greater than A in the dominance ordering. Furthermore, Y >~ Y* if
and only if A = pu.

The simple H,(34)-modules can also be indexed by Af (d). For A € Al (d) denote the
corresponding simple module by Dy. It is a fact that Dy = socy, (s d)(S)‘). The relationship
between these two labellings is given by:

D=~ Dy ®sgn for any A e AL (d). (1.1)

reg

We remark that that tensoring with the alternating module turns Specht modules into dual

Specht modules and vice-versa (cf. [J1, 6.7], [Mat, Exer. 3.14)):

S*®@sgn = (SM)* = Sy (1.2)

1.4 Iwahori-Hecke algebras of type B/C

The Coxeter group of type B/C, denoted by WB(d), can be realized as the signed symmetric

group on {+1,...,+d}. Let s¥ := (1,-1), s; := (i, +1)(—i,—i — 1) and S := {s; : 0 <



i<d} < WB(d). The Iwahori-Hecke algebra of type B/C, denoted by Hg(d), is defined to be
Hoq(Wa, S).

The generators in S are in two conjugacy classes: the conjugacy class of sg, and the
conjugacy class of sq,...,54-1. Let Q := g5, and ¢ := g5,. We write 1, ,(d) = 13 (d).

Let Tp® := Ty, and T; := T,,. It is known that, Hg, (d) is generated by Ty, Ty, ..., Ty

subject to the following relations:

(i) Braid relations:
.

TBT,TBT, = TyTBT, TP,

\ LT Ti = T TiT 1, l<i<d-2,

T,T; = T;T;, i —jl>1;
\
(ii) Quadratic relations:

(T = Q)Ty +1) =0,

(T; —q)(T; + 1) =0, I1<i<d-—-1

We have an embedding of type A Iwahori-Hecke algebra into type B Iwahori-Hecke alge-

bra corresponding to the embedding W (d — 1) — WEB(d):

H(d 1) — HE ,(d),

T, — 1T, 1<i:1<d-—1.

1.5 Iwahori-Hecke algebras of type D

The Coxeter group of type D, denoted by WP(d), can be realized as the even signed sym-

metric group on {£1,...,+d}. Let s¥ = (1,-1)(2,-2), s; := (i,i + 1)(—i,—i — 1) and



S = {s;: 0 <i<d} e WB(d). Note that s = s¢s159, therefore, WP(d) is a subgroup
of WB(d). The Iwahori-Hecke algebra of type B(C), denoted by Hj(d), is defined to be
Ho(WP(d),S).
The generators S are in a single conjugacy class. Let ¢ := q,,. We write H)(d) := H{(d).
Let TP := T, and T; :=T;, for 1 < i< d— 1. It is known that, H.)(d) is generated by

TP, Ty, ..., Ty subject to the following relations:

(i) Braid relation:

-

TPT, = TTP, i=lor3<i<d-l1,
TPTTY = ToTPT,

LTinT; = T 1T, 1<i<d-2,

Ty = T;T;, i —j[>1;
\
(ii) Quadratic relation:

(T9 = (T3’ + 1) = 0,

(T; —q)(T;+1) =0, 1<i<d-1.

We have an embedding of type A Iwahori-Hecke algebra into type D Iwahori-Hecke

algebra corresponding to the embedding W4 (d — 1) — WP(d):

Hi(d—1) — HD(d),

I;~T, 1<i<d-l,

and we have an embedding of type D Iwahori-Hecke algebra into type B Iwahori-Hecke



algebra corresponding to the embedding WP (d) — WB(d):

Hy (d) = Hoor4(d),
90— Ty Ty,

T,—T;, 1<i<d-—1.



Chapter 2

Transfer maps and cohomology

In this chapter, we fix a Coxeter system (W, S), and the sets I, J and K which are subsets

of S.

2.1 Parabolic subgroups

Let I and J be subsets of K. We abuse the notation by letting Wy /W, W \Wg and
W \Wg /W, denote the sets of distinguished left/right/double coset representatives, respec-
tively. The are the minimal length elements in the corresponding cosets. For a distinguished
double coset representative w € Wi\Wg /W, the intersection W} n W) is always a parabolic
subgroup of Wy, where W := w™'Wrw. More precisely, there exists a unique subset of K,

denoted by I n J, such that Wyw~; = W' n W

10



2.2 Induction, restriction and conjugation functors of
modules

Let I € K. For a Hq(W;)-module M, the induction of M from I to K, denoted by indf M,
is the Hq(Wik)-module
indj® M == M @, ;) Ha(Wk).

Let J € K. For a Hq(Wg)-module M, the restriction of M from K to J, denoted by res’y M,
is the Hq(W;)-module

res’ M := M @y, Ha(Wy).

Let w € W \Wg/W,. For a Hq(W;)-module M, the conjugation of M by w, denoted by
conf M, is the Hq(Wiw~s)-module

COH}U M = M®Hq(W1) T, < M®7—Lq(W1) Hq(WK)

Theorem 2.2.1 (Mackey Decomposition, [Jo, Theorem 2.29]). For a Hq(Wi)-Hq(Wi)-
bimodule M,

resf indf M~ P  ind..,cony M.
wEWI\WK/WJ

2.3 Transfer, restriction and conjugation maps
For an algebra A and an A-A-bimodule M, let

M4 :={meM: am = ma,for all a € A}.

Definition 2.3.1. Let M be a Hq(Wi)-Hq(Wi)-bimodule.

(i) Let J < K. The inclusion gives the restriction map resg y : MM*aWK) < NfHa(Ws),
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(ii) ([Jo, L]) Let I < K. The transfer map try g : MWV — pHa(Wi) jg

try g (m) := Z T.)mT,.
”LUEW]\WK

(iil) Let w e W,\Wx/W,. The conjugation map cony,, : MW — pfHaWrens) g

cony o, (m) := T, 'mT,,.

Theorem 2.3.2 ([Jo, Theorem 2.30]). For m € M*a(Wi),

resK,J tI‘],K(m) = Z tr]me,J(Tngw).
’LUEW]\WK/WJ

2.4 Transfer, restriction and conjugation maps on Ext®

For Hq(Wk)-modules M and N, and hy, hy € Hq(Wk), let
(hlfhg)(m) = f(mhl)hQ
This makes Homy (M, N) a Hq(Wk)-Hq(Wk)-bimodule. Moreover,

Homyy, w,) (M, N) = Homy (M, N)Ha(W1),

12



Therefore, the transfer map, restriction map and conjugation map in Definition 2.3.1 induces

maps on extension groups:

tr[’K : EXt;‘lq(WI) (M, N) — EXt;—[q(WK)(M7 N),
resg,j - EXt;‘lq(WK) (M7 N) — EXt;—Lq(WJ)(M7 N),

CONy 4 - EXt;{q(W[) (M, N) — EXt;—[q(W[me)<M7 N)

Proposition 2.4.1. Let My, My, M; be three Hoq(Wi)-Hoq(Wi)-bimodules, and I,J < K.

The following statements hold.

(i) For a € Exty (M, Ma),

try k resg (o) = atrr g Ly, w),

where 1y w,) s the identity element in the Hq(Wi)-Hq(Wi) bimodule Ho(Wr).

(i) For o€ Exty ) (Mi, M), B € Extsy . (Ma, Ms),

Botrrk(a) =tryg(resg s (5) o a).

(ili) For av € Extyy gy, (M1, Mz), B € Exty gy, (M2, M3),

tr],K(ﬁ) oo = tl"[’K(ﬁ @) resKJ(oz)).

(iv) For I = J < K, and a € Ext3;_y,) (M1, Ma),

trJ,K tI'],J(Oé) = tI']’K(OO.
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(v) For a € Ext3 y,) (M, Ma),

resg g try g(o) = Z trrwng g (T aTy).
weWr\Wg /W;

Proof. (i) Since o commutes with Hq (W),

trr g resg (o) = Z T aT, = « Z T, Ty = atrr g Ly w).
weW\Wg WEWI\WK

(ii) Since 8 commutes with Hq(Wi),

6 o tI‘LK(Oé) = ﬁ @) Z Tu\)/OéTw = Z Tl;/ (I‘GS[Q[(B) o Oé)Tw = tI'[,K(I‘eSK,[<6) @) a).

wEW]\WK UIEWK/WI

(iii) The result follows from similar arguments in (ii).

(iv) For every wy € W, \W; and wy € W,\Wk, it is clear that wijwy € W/ \Wg. So,

try g try(a) = Z Z Ty w0y, = Z T oT, = try g(a).
’LUQEWJ\WK w1€W]\WJ wEW]\WK

(v) Viewing a as an element in Homy, w,) (M7, M) for some Hq(W;)-module M7, the result

follows from applying Theorem 2.3.2 to Homy,, qw,)(M], Ms). ]

Proposition 2.4.2. Let w € Wi\Wy such that Wi* = W;. For every a € Exty (M, N),
cony, resg (o) = resg y(a).
Proof. Since T\, € Hq(Wik), T\, commutes with «, so

cony , resg r(a) = TJl resg ()T, = Tulew resk (o) = resg j(a). O
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2.5 Finiteness theorem

Theorem 2.5.1. Let I < K, and assume that try g 1y w,) is invertible in Hq(Wk). Let
M be a Noetherian Hq(Wr)-module. If Exty, ) (k, M) is Noetherian over Exty,_ .y, (k, k),

then Exty, ) (k, M) is Noetherian over Ext3; (k. k).

Proof. For a Hq(Wr)-module N, let

T(N) = ker(trLK . EXt;'[q(W])(k7 N) — EXt;_tq(WK)(k;, N))

Since try g 1y w,) is invertible, by Proposition 2.4.1(i), tr; x splits resg ;. Therefore,

Ext3, v (k, N) = Extyy gy, (b, N) @ T(N).

Let (Li)ien be an ascending chain of Ext3; (K, k)-submodules of Ext3, (K, M).
Then,

This gives an ascending chain of Ext3;_y,)(k, k)-submodules of Ext3, ) (k, M), which must
terminate by the Noetherian assumption. Proposition 2.4.1(iii) shows that T'(k)L; < T(M).

On the other hand L; < Ext}; g, (k,M). Thus, L; n T(k)L; = 0, hence the original

ascending chain (L;);,n terminates as well. O

For type A and characteristic 0, Theorem 2.5.2 below gives a criteria when try x 1 is

invertible.

Theorem 2.5.2. Suppose that the characteristic of k is 0. If X\ is a maximal l-parabolic

subcomposition of n then try, 1 is invertible in H,(3,).

Proof. See [Du, Theorem 2.7]. O

15



Chapter 3

Cohomology and support varieties of

type A Iwahori-Hecke algebras

For the remainder of Part I, we choose k := C.

We focus on type A in this chapter. Every Young subgroup ¥, is a parabolic subgroup
Wrof W =3,

For a composition A & d, the Young subgroup ¥, is a parabolic subgroup of ¥;. This
means that, for W = >, with S being the set of simple transpositions, there exists some
subset Jy < S such that W;, = X\. We write try , := tr;, j, and resy, := res;, j,.

Let ¢ € k* be a primitive [th root of unity, and suppose that ¢ # 1. For a composition
A, let H, (X)) be the corresponding Iwahori-Hecke algebra. Let Ry := EXt;—LqA(ZA)(k’ k) be
the cohomology ring of ’HqA(E ») under the Yoneda product. For a natural number d, set
Rq := R4 to be the cohomology ring with respect to the trivial composition (d). Assume
that all modules for H,(X,) are finite-dimensional. Let mod(H,(X,)) be the category of

finite dimensional H,(X,)-modules. For an M € mod(H,(X,)), set

H.(HQ(Z)\)? M) = EXt;—lq(E,\)(ka M)7

16



which is an Ry-module.

3.1 Restriction maps on cohomology

Given a simple [-parabolic subcomposition v of A\, R, ~ R; and

klz,] ® Aly,], 1>2,
R, =

k[yu]v [ = 27

for some x, and ¥, such that degz, = 2 — 2 and degy, = 2] — 3. Set z, := y> when [ = 2.

The ring R, has a reduced commutative subring
R, = k[z,].

According to Proposition 2.4.2; we could choose z, and y, for all simple [-parabolic v = A
compatibly such that con z, = z,» and con?y, = y,» for where w is the double coset
representative in ,\X, /3, and v = A is the unique simple [-parabolic subcomposition

such that X} = ¥, .

Theorem 3.1.1. Let A = (Aq, ..., \p) = n be a composition and set A/l := (|[\1/l], ..., | Am/l])-

Moreover, let p = X\ be a maximal l-parabolic subcomposition. The following statements hold.

(i) The restriction map resy,, induces an isomorphism
~ Zial
I“eS)\# . R)\ - (RVI ®®RV‘A/”‘)

where vy, ...,V are all simple [-parabolic subcomposition of p. Moreover, the induced

isomorphism

b))
~ bV AL
resy, : Ry = (R?‘ ”)

17



is independent of the choice of L.

(ii) Under the isomorphism above,

% %
X|n/l [n/U RIN/1 A/l

is the restriction of the projection map Rl@)l”/” — RZ®|A/”,

Proof. (i) Since Hy(X)) = Qi Hq(Xn,), it follows by Kiinneth theorem that Ry =~ Q)] Ra,.
Hence, it is enough to prove the result of res) , for the trivial partition A = (n). Let v - n be
an [-parabolic partition conjugate to p. The isomorphism induced by res) , has been proved
in [ ]. By Proposition 2.4.2, resy , and res, induce the same isomorphism.

(ii) Let v — n be an [-parabolic partition conjugate to y. Then, Ry = R,"" =~ R, So,
it suffices to prove the result for partition A where every part is a multiple of [, and p is a
maximal [-parabolic partition. Since res(,) , = resy, ores) x and the restriction map res(,),

is given by projection, the result follows. [

For a composition A, we set
~ ( ~ PRV
Byimresi) (R ®. By )

where vy, ...,v5 are all simple [-parabolic subcomposition of some maximal [-parabolic
subcomposition g of A. This definition matches the previous definition R, before for sim-
ple l-parabolic v. By Theorem 3.1.1, }N%,\ does not depend on the choice of p, and it is a

commutative reduced subring of Ry. Moreover, R) is a finitely generated Ry-module.

3.2 Finite generation of cohomology

Theorem 3.2.1. Let )\ be a partition of d.
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(i) Ry is a Noetherian k-algebra.
(ii) If M € mod(Hy(Xy)) then H*(H,(Xx), M) is a Noetherian Ry-module.

Proof. (i) We can conclude this statement by applying the Kiinneth theorem and | ,
Theorem 1.1].
(ii) First consider the case when A\ = (). Then one can directly prove using explicit projective
resolutions for #H,(%;) (cf. [[XN, 5.1]) that for any simple H,(%;)-module S, H*(#,(%;),S)
is a Noetherian R;-module. Now using induction on the composition length and the long
exact sequence in cohomology, it follows that the statement of (b) holds for a Noetherian
H,(2;)-module M.

Next consider the case when A = ({*,1%). Any simple H,(\)-module is an outer tensor

product S = S| X S, X ---X S, X k¥ By the Kiinneth theorem,

H*(Hy(X2), §) = H*(H,(X1), 51) @ H (Hg(30), 52) @ - - - @ H* (H,(X1), Sa)-

which is a Noetherian Ry-module from the preceding paragraph. By an inductive argument
on the composition length, the statement holds for Ra ).

Now consider the case when A = (d) and let u = (I*,1°) be a maximal Il-parabolic
partition of A. According to Theorem 2.5.2, tr, ) 1 is invertible in H,(X,). Therefore, by
Theorem 2.5.1, the statement for Ry follows from the statement for R,,.

Finally, let A\ = (A1, A2,...,A¢) be a partition of d. Any simple H,(A)-module is an
outer tensor product S = 57 XSy X - - - [x].5; By the Kiinneth theorem and the fact that the
Noetherian statement holds for #();) for j = 1,2,...,¢, one can conclude that H*(#,(X,), S)
is a Noetherian Rj-module. Again by an inductive argument one can now conclude the

statement of part (ii). O
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3.3 Support theory

Set Wy := MaxSpec é,\. According to Theorem 3.2.1 the set W), is an affine homogeneous
variety. Given M € mod(#H,(X,)), define the (relative) support variety Wy (M) as the variety
of the annihilator ideal, Jy (s,)(k, M), in R, for its action on H*(H,(X5), M). These support
varieties are closed, conical subvarieties of W).

For each p = A, there exists a restriction map in cohomology resy , : W, — W, which
is induced by the inclusion of H,(X,) < H4(Xx). We can now formulate a definition for the

support varieties for modules in mod(H,(2,)).
Definition 3.3.1. Let M € mod(H,(X,)).

(i) The support variety of M is defined as

VA(M) = | res} (W, (M)).

HEA

(ii) In the case when A = (d),

Vit (M) = V(M) = | ] restyy ,(W,.(M)).
p=(d)

By using the functoriality of the restriction map and the fact that the restriction maps

are finite maps, one can state the following proposition.
Proposition 3.3.2. Let W be closed subvariety of W,.
(i) dimW = dimres} ,(W).
(ii) resy, = res}  oresy .

Next we present below several elementary properties of these support varieties. The

proofs from [Ben, §5.7] can be used to verify these facts.
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Proposition 3.3.3. Let M; € mod(H,(Xq)) for j = 1,2,3. Then

(i) Let 0 — My — My — M3 — 0 be a short exact sequence in mod(H,(Xy)). If X3 is the

symmetric group on three letters and o € X3 then

Vi(My1y) € Va(Moy(2)) U Va(Mo(s)).

(11) V/\(Ml @MQ) = V)\<Ml) U V)\<M2)

The following proposition gives a simplification of the formulas given in Definition 3.3.1

via maximal [-parabolic subcompositions.

Proposition 3.3.4. Let u = X be a mazximal [-parabolic subcomposition, and let M €

mod(H,(Xy)).
(i) For every mazimal l-parabolic subcomposition j = X, Wx(M) = res} (W,(M)).

(ii) The support variety of M is

M) = | resi, (W,(M)).
l-parabolic
BEX

(iii) For any mazimal l-parabolic subcomposition u = X,

VA(M) = resy ,(V.(M)).

Proof. (i) Consider the transfer map

tru t Jag e, (B, M) = Jay (s, (k, M)
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and the restriction map
res,\# . JHq(EA)(k:v M) g JHq(EH)(k7 M)

According to Proposition 2.4.1(i) and Theorem 2.5.2, tr, yoresy, = a id as an endomor-
phism of J,(s,)(k, M) for some unit a € H,(X)). One has res} ,otry | = id as an endomor-
phism of W, (M), from which the result follows.

(ii) For each p = A, let i/ be a maximal [-parabolic subcomposition of p. Therefore, by (i),

Va(M) = | J resg (W (M)
HEA

= U resy , res;, (W, (M))
)

- U resy (W (M)).

l-parabolic
pw'EX

(iii) The result follows from (ii) and the fact that every l-parabolic subcomposition of A is

contained in a given maximal [-parabolic subcomposition up to conjugacy. Il

3.4 Varieties and induction

The following proposition states how relative support behave under induction.
Proposition 3.4.1. Let v, i, A be three compositions such that p = X and M € mod(H,(X,)).
(i) W)\(indz M) = res} ,(W,.(M)).

(ii) W,,(indz M) = Upep Unewa TF respu o (Wa(M)), where

Wapp = W E X,\EN/E, 1 oo = v o}
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(iii) V,\(indz\t M) = resy ,(V.(M)).

Proof. (i) This follows by applying Frobenius reciprocity:
EXt;'[q(E)\)(k7 lndl); M) = EXt’.Hq(EH)(k7 M)
(ii) The result follows from the following calculation.

W,,(indl’) M) =W, ( @ ind..,cony M ) Theorem 2.2.1

WES,\Sy /S,

= U W, (ind;,. ., con}) M) Proposition 3.3.3(ii)
WES,\ Sy /Ty

— U res,, (W (cony, M)) (1)

wEEH\Z)\/EV

= U Tf I‘eS:wWwﬁu(Wywmu(M))

weX,\Sa /Sy

:U U Tfres,"jw@(Wa(M))'

o= WEWa, p,v
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(iii) We proceed with the following calculation.

V,\(indﬁ M) = U resi’y(Wy(indZ\L M)) Definition 3.3.1
VEA
= U resy , U U T vestu o (Wa(M)) (ii)
VEA aFEp wewa, u,v

=UU U s, T rest  (Wa (M)

VEA akEp WEWq,pu,v

- U U U T* resyu ,uw resyu , (Wa (M)

VEN oL WEW, v

-UJU U 7 rest (wa(an)) wes,

VEX aEp WEWea,pu,v

— U U U resy ,(Wo(M)) T# € Hy(S))

VEX a1 WEWa, v

=U U res) (Wa(M))

a}:’u vEX

WeWa, p,v

= U resy ,,(Wa(M)) for v =a, 1€ wq,
akEp
= res) ,(V.(M)). Definition 3.3.1

We end this section with a result that will useful for computing support varieties in the
case when one has some information about the vertex of a module. In particular this will be

applied in case of Young vertices.

Proposition 3.4.2. Let p1 = \. Suppose that M is an Hq(Xx)-module and N is an H,(E,)-
module such that M| indl’) N and N|resy M. Then Vy(M) = res} ,(V,(N)).

Proof. Using Proposition 3.3.3(ii) and Proposition 3.4.1(iii), we obtain

(M) < VA(indz N) = rest(Vu(N)).
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It follows from the Definition 3.3.1 that

res ,(Vu(N)) € resy ,(V(M)) < Va(M).
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Chapter 4

Rates of growth

4.1 Complexity of modules

Let {d,}n>0 be a sequence of nonnegative integers. The rate of growth r(d,.) of this sequence
is the smallest nonnegative integer ¢ for which there exists a positive real number C' such
that d, < C'-n°! for all n > 1. If no such d exists, set r(d,) := 0.

Alperin [A, §4] first defined the notion of complexity of modules for finite groups. We
can also state this for Iwahori-Hecke algebras. Our goal will be to relate the complexity to

the dimension of the support varieties defined in the previous chapter.

Definition 4.1.1. Let M € mod(H,(34)) and let
'—>P2—>P1—>P0—>M—>O

be the minimal projective resolution of M. The complexity cy, s, (M) of M is defined as

r(dim B,).
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4.2 Complexity and growth rate of Ext*

For Iwahori-Hecke algebras, the conventional proofs to relate the dimension of the support
variety to (i) the rate of growth of certain extension groups and (ii) the complexity of the
module do not work because of the absence of the tensor product (i.e., a comultiplication on
Hy(Sa).

We first prove that the complexity can still be interpreted as the rate of growth of certain
Ext-groups related to taking the direct sum of simple, Specht, Young and permutation

modules.
Theorem 4.2.1. Let M € mod(H,(Xq)). The following quantities are equal.
(©) cnyma(M);
(ii) T(EXt;{q(zd)(@AeAjeg(d)DA’ M));
(iif) r(Ext}y, s, (@n-a5", M));
(iv) r(Bxtyy, ) (@r-aY ™, M));
(v) r(Exty,, s, (@a-aM?, M)).

Proof. (i) = (ii). This follows by using the standard arguments (cf. [Ben, Prop. 5.3.5]).
(iii) < (ii), (iv) < (ii). One can apply [Ben, Prop. 5.3.5] to deduce these statements.

(ii) < (iii). This will be proved by using induction on the dominance order of partitions
<. Set s := T(Ext;{q(zd)(@),\de’\,M)). If A be maximal with respect to < then S* = D*.
Consequently,

T(Ext;%q(zd)(D’\, M)) < s.

By induction suppose that for every p > 7, we know r(Exty, v, (D", M)) < s. We need to
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show that r(Extj, (D7, M)) < s. There exists a short exact sequence of the form
0->N-—->S" —->D" -0 (4.1)
with N having composition factors of the form D* with p > 7. Therefore,
r(Ext3, s,)(D7, M)) < max{r(Exty, (S, M)),r(Ext3, s, (N, M))} < s.
(iii) < (iv). This statement will be proved in a similar fashion as above. Set
y = r(Extly, s, (@xn-a¥™, M)).

Let A be maximal with respect to < so Y* = S* and r(Ext;[q(Zd)(S’\, M)) < y. Suppose that
for any p>7, r(Exty, s, (5", M)) <y. It will suffice to show that r(Ext3, v, (S7, M)) <.

There is a short exact sequence of the form
085" ->Y 70 (4.2)
with Z having a Specht filtration with factors of the form S* with p > 7. Consequently,
r(Ext3, 5,57, M)) < max{r(Ext3, s, (Y7, M)),r(Exty, s, N, M))} <y.

(iv) = (v). The statement follows because every Young module appears as a summand of a

permutation module, and the summands of the permutation modules are Young modules. [
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4.3 Complexity and support varieties

We now can relate the complexities of modules in mod(#,(X4))) to the dimension of their

support varieties. Furthermore, every module in mod(#,(X,)) has complexity less than or

equal to the complexity of the trivial module. Note that for Hopf algebras this is an easy

consequence of tensoring a minimal projective resolution of the trivial module by the given

module M.

Corollary 4.3.1. Let M € mod(H,(X4)). Then,
(1) cay(z (M) = dim Vi, (s,) (M),

(i) crym(M) < sy (k).

Proof. (i) Since resj , is a finite map, dimresfy , W\(M) = dim W)(M). Next by using the

argument given in [Fv, p. 105-106] one has
r(Extsy, s, (k, M)) = dim Wy (M).

Then,

Cry(sq) (M) =7 <EXt;{q(Zd) <<‘B M, M) )

A-d

_ o A
= max 7 (Extj, (v, (M7, M))

Theorem 4.2.1

= max{r(Ext3, sk, M))} Frobenius reciprocity

Ad

= max{dim W, (M)}

= rf\lfslc{dlm res(y  Wa(M)}

A-d

= dlm V'Hq(Ed) (M)

29
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(ii) From part (i),

C'Hq(Ed)<M) = dlm VHq(Ed)(M) < dlm VHq(Ed) (k) = CHq(Ed) (k’)
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Chapter 5

Permutation modules and Young

modules

5.1 Support varieties of permutation modules

In this chapter we will use our established properties on complexity and support varieties,
in addition to the theory of Young vertices, to give an formula for the complexities of the
permutation modules {M*} and the Young modules {Y*}. This is accomplished by first
determining their support varieties as images of the map resj, (resp. res; o) for some
partition p(\)) on the support varieties of the trivial module.

Let | | denote the floor function. Note that the Krull dimension of the cohomology ring
H*(H,(24)), k) or equivalently dim Vs, (k) is |d/I]. We can now determine the complexity

and support varieties for the permutation modules M*:

Proposition 5.1.1. Let A = (A\1,..., \s) = d and M* be a permutation module for H,(X4).
Then:

(1) Vayma) (M) = resfy \(Vag,my (k)
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(i) cpymg (MA) = 200 [N/l

Proof. The statement (i) follows immediately from Proposition 3.4.2 since M* =~ indi k and
k is a direct summand of res{ M* by Theorem 2.2.1.
One can deduce (ii) follows from (i) since the map resf, , preserves dimension (Proposi-

tion 3.3.2) and dim(Vy,(s,)(k)) is determined by Theorem 3.1.1. O

5.2 Support varieties of Young modules

Dipper-Du [DD, 5.8 Theorem] determines the vertex of the Young module Y* for H,(%,) as
Hq(3,00) where p(X) is constructed as follows. Notice that any A - d has a unique /-adic

expansion of the form:

A = Ap) + Al (5.1)

where A[o] is an [-restricted partition of d and Ay} is a partition. Define the partition:
p(A) := (Pl 1Pal) (5.2)

The partition Ajg) can be obtained by successively striping horizontal rim [-hooks from A,
and |App| is the number of such hooks removed. The following theorem demonstrates that

the complexity of the Young module Y is [Apy].

Theorem 5.2.1. Let A d with Y the corresponding Young module for H,(Xy). Then
(1) VHq(gd)(Y)‘) = resz,p()\)(VHq(Zp(A))(k))'
(ii) cp, (V) = [Al-

Proof. Part (i) follows from Proposition 3.4.2. In order to prove (ii) take the dimension on

both sides of (i) and recall from Proposition 3.3.2 that reszk d),p(n) Preserves dimension, and the
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dimension of the support variety of the trivial module is also determined in Theorem 3.1.1.

]

As a consequence of the aforementioned theorem, we recover the well-known fact that Y
is projective exactly when A is p-restricted. Furthermore, from Theorem 5.2.1(ii), one can
see that for a block B of weight w, there are Young modules in B of every possible complexity

{0,1,...,w}. The following result characterizes Young module of complexity one.

Corollary 5.2.2. A nonprojective Young module Y* has complexity one if and only if \ is

of the form (uy + 1, o, . .., jts) where (p1, fa, - . ., jts) 18 l-restricted.

Proof. From Theorem 5.2.1, Apy; = (1) precisely when the l-adic expansion of A has the form

/\[0] + (l)l. L]

In all known cases that the complexity has been computed for permutation, Young,
Specht and simple modules, the answers for the symmetric group in characteristic p>0
coincide with the answer for the Iwahori-Hecke algebra in characteristic zero at a pth root

of unity:.

5.3 Support varieties of blocks

In this section we will apply our prior computation for Young modules to give an explicit
description for the location of the support varieties for modules in a block B of H,(3,). For a
Specht module H,(3,)-module, Sy, let By be the block of H,(X,) containing S\. We remark
that all the composition factors of a given Specht module lie in the same block. Note that
by Nakayama rule, By = B, if and only if A and p have the same [-core.

Let d = cg) + cp1jl be the unique [-adic expansion of d, so 0 < cjg) <!, and d = ajo) + a)l
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is another expansion, with 0 < apg). Then afg; = cg) and ap) < ¢p1; and

Now suppose B, is a block of H,(X;) with weight w and l-core fi - d —lw. Let lw = cpyjl
and

Pmax = (171" 1 d. (5.3)

Let @ = (fi1, fi2,...). The algebra H,(pmax) is the Young vertex for Y* where u =
(fi1 + lw, fiz, . ..). Furthermore, if By = B, then > A and the Young vertex of Y* is of the

form

p(A) = (1701, 1),

where ajg) = d — lw and a;) < w. Therefore,

/Hq<2p(>\)) < HQ(ZPmax>‘

That is, the Young vertices for the Young modules in a block are all contained in a unique

vertex H,(pmax), which is the vertex for the Young module y At (),

Define the support of the block to be Vi, (5,)(Bx) := Vi, s, (@pes, D) We now give a

precise location for the support variety for a block of the Iwahori-Hecke algebra H,(X,).

Theorem 5.3.1. Let By be a block of H,(X4) of weight w and let M be a finite-dimensional

module in By. Let p := pmax for the block By. Then:
(1) Vi, (Br) = Vaty(2) (Buen, S*) = Vaty(s) (Bpen, Y");
(ii) res(ay,o (Vi (o) () = Vaty(z) (Ba);

(iii) V’Hq(Zd)(M) < res(d),p(VHq(p)(k));
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(iv) ch(gd)(M) < w.

Proof. (i) Since S* has a filtration with sections being irreducible modules and Y* has a

filtration with sections being Specht modules, one has using the definition of support in § 3.3,

Vitga) (Br) 2 Vi (50) (@per, S*) 2 Vi, (50) (Bper, V).

For the other inclusion, one needs to apply the ordering of factors on these filtrations.

From Theorem 4.2.1, we have exact sequences of the form
0>N—->8 D" -0 (5.4)

where the composition factors in N are of the form D* with p > 7. By induction we can

assume that Vi, (s,)(N) S Vi, ,) (@puer, S*) and Proposition 3.3.3, it follows that

Vi, 50 (D7) € Va2 (S7) U Va2 (V) € Va5, (Bpues, S¥).

Therefore, Vi, ) (@uer, S*) = Vi =) (Bx). A similar inductive argument using (Eq. (4.2))

can be used to prove that

Vity(50) (@per, V") = Vigy(50)(Br) = Vi (5) (Bpen, S*)-

(ii) From (i), Vi, (s, (Br) = Vi, s.)(@ae, Y*). Now by analysis prior to the statement of

the theorem,

Vita(2) (@re8, Y ) = Vom0 (Y?) = 1e8(a) 0 (Vay () (K))-

(iii) This follows because for any M in By, Vi, (s,)(M) S Vi, s, (Ba) by Proposition 3.3.3.

(iv) This follows by considering dimension and applying (ii) and (iii). O
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Chapter 6

Specht modules, vertices, and

cohomology

In this chapter, we will consider the question of computing vertices for Specht modules. This
will entail introducing a graded dimension for Specht modules, in addition to, considering

the relative cohomology for Iwahori-Hecke algebras of Young subgroups.

6.1 Weights of partitions

For a partition A and a natural number [, the [-weight of A\, denoted by wt;\, is the number
of I-hooks that we could consecutively remove from the partition A to reach the [-core of A,
denoted by core;A. For a natural number n, we set the [-weight of n to be the [-weight of the
trivial partition (n), so wtyn = wt;(n) = |n/l]. For a partition A, let |A| be the sum of parts

in A. It is clear that || = |core;A| + Iwt;A. We say that A has small [-core if |coreA| <.

Lemma 6.1.1. Let A be a partition and | be a natural number. The number of hooks whose

lengths are multiple of | is wt;(\), the l-weight of \.

Proof. We will prove the result with the help of l-abacus of partition A\. Suppose that
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A= (A, ..., \), and let b; :== \; — i + r. The beads of the [-abacus occupies positions b;.
Hooks of length multiple of [ are in bijection with the moves of a bead at b; to an unoccupied
position b; — [k, which is in the same runner with b;, for some £ > 1. The number of such

moves is exactly the [-weight of \. [

6.2 Dimensions of Specht modules

1™
1-t

For an integer n, let the t-integer be [n], := . When t = 1, one applies limits to obtain
[n]1 = n. We will now define a graded version of the dimension for Specht modules (also
referred to as the graded dimension) that involves the divisibility of cyclotomic polynomials.

For a partition A, let
Al re
dim, S* := —nul[l]t

[ Lieslhile”
where [ is the set of all hooks of A and h; is the hook length of the hook 7. By hook length
formula, we have dim; S* = dim S*. The graded dimension of the partition \ is the generic
degree of the partition A up to a power of ¢ [Car, §13.5], and the graded dimension is a

polynomial with nonnegative integer coefficients | , §I11.6].

Theorem 6.2.1. Let ®,(t) be the l-th cyclotomic polynomial in t. Then,
dinlt S)\ — H®l<t)wtl|)\|fwtl)\ — H (pl(t)wtl|corel)\|’
! !
where | runs over all natural number. In particular,

dim SA _ prtprp\\—wtpr)\ _ | |pwtpr\corepr)\|7
b, p,r

where p runs over all primes and r runs over all natural number.

Proof. Let | be an arbitrary natural number. When [ = 1, there are no factors ®(¢) in
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dim; $*, and wti|A\| — wt;A = 0. Now assume that [ > 2. Applying Lemma 6.1.1 to
the trivial partition (|\|), the number of times ®;(t) dividing the numerator of dim; S* is
wti(|[A|) = wt;|A\|. Similarly, applying Lemma 6.1.1 to partition A, the number of times
®(t) dividing the denominator dim, S* is wt;\. Therefore, ®;(¢) divides dim, S* exactly
wty|A| — wt; A many times.

When one specializes to ¢t = 1, the result follows from the fact that ®,-(1) = p when p is

a prime, and ®,(1) = 1 when n is not a prime power. ]

6.3 Relative cohomology

In this subsection, we follow the constructions in [[Ho] and provide a discussion of relative
cohomology for Iwahori-Hecke algebra. Let M be a H,(X4)-module, and let A = d be a
composition. A relatively H,(X)-projective resolution of M is a resolution of M consisting
of relatively H,(X,)-projective H,(X4)-modules and that splits as resolution of H,(X))-
modules. Among all such resolutions, there exists a minimal resolution, that is one where
there kernels contain no relatively projective summands. The growth rate of the minimal
relatively H,(3))-projective resolution of M is called the complexity of M, denoted by
Can (M) 1= €y (20, Hq(52)) (M)

All relatively H,(X,)-projective resolutions are homotopic to each other, and the relative

Ext between two H,(34)-modules M and N is defined as
Ext{y, (s34, 00 (M N) := H* (Homy, 5,y (Py, V),

where Py is any relatively H,(3,)-projective resolution of M.
Using the same argument as in the proof of self-injectivity of group algebras, one can

show that relatively H,(X,)-projective modules are also relatively H,(\)-injective modules.
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Therefore, all relatively H,(3))-projective resolutions with finite length must have length 0.
In particular, cg\ (M) = 0 if and only if M is relatively H,(X,)-projective. As in the ordinary
cohomology case, we showed in Theorem 4.2.1 that we can test projectivity of a module M
by calculating Ext;[q(zd)(D, M) for all simple modules D. The same result holds for relative
cohomology as well. More precisely, a H,(X4)-module M is relatively H,(X,)-projective if
and only if Ext(y (s, 2, (D, M) = 0 for all simple H,(¥4)-module D and n > 1.

The fact above gives us the following lemma.

Lemma 6.3.1. Let 0 — M; — My — Ms — 0 be a short exact sequence of Hq(X4)-modules.

If any two of My, My and Ms are relatively H,(3))-projective, then so is the third.

Proof. Let M; and M; be the two modules that are relatively #,(2,)-projective, and let Mj
be the third module. The relative complexities of M; and M; are zero, so for positive integer
n and Simple Hq(z)\)-mOdule D, EXt?’Hq(Ed),'Hq(E)\))(D7Mi) = EXt?HQ(Ed),Hq(E)\))(‘D7Mj> =
0. Using the long exact sequence of cohomologies, we get EXt?Hq(Ed),Hq(E/\))(D7Mk) = 0.

Therefore, the relative complexity of M, is zero, and My, is relatively H,(2))-projective. [

An interesting problem would be to determine whether a suitable support variety theory

can be established for the relative cohomology (H,(34), Hqe(2))).

6.4 Vertices for some Specht modules

We begin this section by discussing blocks and relatively projectivity.

Theorem 6.4.1. Let By be the block of H,(X4) indexed by a partition A - d. Every module

M in By is relatively H,(3,)-projective for p = (1", 1leoreidl)

Proof. According to Theorem 5.2.1, every Young module in the block B* is relatively H,(X,)-

projective. Young modules have a Specht filtration. By an induction similar to Theorem 4.2.1
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and Lemma 6.3.1, all Specht modules in By are H,(3,)-projective. Since Specht modules
in B, admits filtrations by simple modules in By, by an inductive argument similar to The-
orem 4.2.1 and Lemma 6.3.1, all simple modules in B, are relatively H,(2,)-projective.

Therefore, by Lemma 6.3.1, all modules in B is relatively H,(X,)-projective. O

By using the previous result on relative projectivity and information about the graded

dimension one can obtain information about the vertex for Specht modules.

Theorem 6.4.2. Let A be a partition, and p, = (1, 1"\‘_‘”). Assume that | is prime. Then

the vertex of S is p, for some a that satisfies

Wt — Z wtpr[corep A| < a < wyA.

r=2

In particular, if X\ has small I"-core for r = 2 then a = wt;\.

Proof. 1t is shown in [DD, Section 1.8] that the vertex of an arbitrary module, particularly
S*, is of form p, for some natural number a.

Let p, := (11, ["ulAl=a 1eorld) - Since S* is H, (X, )-projective,
Al oA AL 3IAL @A
res;, S | res; ind,; ! S

The right hand side of the equation above is a free H,(3;,)-module, so the left hand side
reslﬁ);l S? is a projective H, (25, )-module, and has dimension divisible by [vulM=e Note that
one can verify that the projective modules in ‘H,(%;) have dimension divisible by [ by using
their realization as Young modules.

So, according to Theorem 6.2.1,

wiy|A| —a < Z Wty [corepr Al

r=1
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Therefore,

a = wiy|A| — 2 wtyr[corepr A| = wiy A — Z Wty [corepr Al

r=1 r=2
Theorem 6.4.1 insures that the module S*, which is in the block By, is relatively H,,(pwt, )-

projective. If p, is the vertex of S*, then p, = py,, which implies that a < wt;\. ]

As a consequence of Theorem 6.4.2, one can compute the vertices for Specht modules for

partitions whose some of the parts is less than 2.

Corollary 6.4.3. Let \ be a partition. Assume that [ is prime. If |\| <I?, then the vertex

Of SA s (lwtl)\’ 1|corel>\\)_

Proof. For every r = 2, |corepA| < |A| <", hence A has small ["-core. The result follows

from Theorem 6.4.2. O

Remark 6.4.4. For the group algebra of symmetric groups k¥, [[.im] calculated the vertex
and the support variety of S* for many partitions, in particular, when |\| < p?, where p is
the characteristic of k, This can be used in conjunction with the realization of the cohomo-
logical support varieties as rank varieties to compute the complexity of Specht modules for
symmetric groups. For Iwahori-Hecke algebras, the question of realization of the support

varieties as rank varieties remains open, as well as the computation of support varieties for

S* when |\ <12
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Chapter 7

Cohomology and support variety of

classical type

7.1 Morita equivalences

We will apply our results for Iwahori-Hecke algebra for other classical groups. Our discus-
sion will follow the one given in [ , Section 6]. Recall that . (d), Hg ,(d) and H, (d)

denotes Iwahori-Hecke algebras of type Ay, By and Dy, respectively. Consider the following

polynomials
d—1 '
Qe = 1] @+ (7.1)
i=1—d
and
d—1 .
fr(q) =2 [(1+q). (7.2)
i=1

We summarize the various Morita equivalence theorems for Hg,q(d) and HqD(d) (cf. [DJ4,

(4.17)], [, (3.6) (3.7)]).
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Theorem 7.1.1. (i) If f2(Q,q) is invertible in k, then
a R
Hg,q(d) ~Morita @Hq (Z — 1) X Hq (d — 7 — 1)
i=0

(i) If fP(q) is invertible in k and d is odd, then

(d—1)/2
HY(d) ~vorita @B HE(i — 1) @ Hir(d — i — 1).
i=0

(iii) If f2(d) is invertible in k and d is even, then

d/2—1
H (d) ~Morita A(d/2) ® P Ho(i — 1) @H)(d—i—1).

=0

where A(d/2) is specified in [Hul, 2.2, 2.4].

7.2 Support theory for A(m)

Let d be even and set m = d/2. The algebra A(m) as defined in [Hu1] is an example of a Zo-
graded Clifford system (cf. [Hul, Section 4]). Set B = A(m) and B, be the augmentation
ideal of B. Furthermore, let A = H,(3(mm)) be the subalgebra in B corresponding to By
(in the Clifford system), and A, be its augmentation ideal. Then B - A, = A, - B. Now
one can consider the quotient B = B//A =~ C[Z,] (the group algebra of the cyclic group of
order 2).

From [CK, 5.3 Proposition], one can apply the spectral sequence and the fact that B is

a semisimple algebra to show that

H*(B,C) = H*(A,C)%. (7.3)
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In fact one can show that H*(A, C) is an integral extension of H*(B,C). If M is a finite-
dimensional B-module, we will declare that V(M) := V4(M) which is defined in Defini-
tion 3.3.1.

Next we will compare the notion of complexity in mod(B) versus mod(A). Since B
is a free A-module, any projective B-resolution restricts to a projective A-resolution, thus
cg(M) = ca(M). On the other hand, by [Iu1, 4.4 Corollary], all simple B-modules are sum-
mands of simple A-modules induced to B. By applying the characterization of complexity

given in Theorem 4.2.1(i)(ii) and Frobenius reciprocity, one obtains cg(M) = cs(M).

7.3 Support theory for type B and type D

Let £; be the algebras and f; := f?(Q,q) (resp. fP(q)) be the polynomials as described
in Theorem 7.1.1 under the Morita equivalence with ’Hg’q(d) (resp. ”HqD (d)). For notational

convenience, set

HE (d), ® =B,
H(d) = ad) (7.4)
HD(d), ®=D.

Let F : Mod(?—[ﬁ’(d)) — Mod(&;) be functor that provides the equivalence of categories
when f, is invertible. Under the equivalence of categories, one can define support varieties

for modules over 1 (d) as follows. Let M be a finite-dimensional module for g (d). Then
Vg (@) (M) = Ve, (F(M)).

The support varieties for £; can be obtained by taking the support varieties for Iwahori-Hecke

algebras of type A. We have the following theorem that extends Corollary 4.3.1.
Theorem 7.3.1. Let M be a finite-dimensional module for ’Hf(d) with fq invertible. Then
(i) CH;?;(d)(M) = dim VHg’(d)(M)-

44



(i) cpzay(M) < ¢4 (C) = 141
Proof. (i) Let S = @, S; be the direct sum of all simple Hi(d)-modules. Using the Morita
equivalence, F'(S) is the direct sum of all simple £;-modules. Furthermore, by using our
results for the Iwahori-Hecke algebra for type A,

Cuzia(M) = r(Exti, (S, M))

a

— r(Extg,(F(S), F(M)))

— dim Vg, (F(M))
(ii) One has that
: d

Let L be the irreducible £;-module such that F'(C) = T. Under the categorical equivalence,
the trivial module C goes to the simple £;-module labelled by the partition ((d), &f). The

statement now follows because

d

e (o) (C) = dim Ve, (T) = H . O

By using the Morita equivalence one can prove analogs of Theorem 5.3.1 for the blocks of
Hi(d) and obtain the location of their support varieties for various modules. One can pose
an interesting question if one can (i) extend the support variety theory for Iwahori-Hecke
algebra of types By and D, to even roots of unity, and (ii) if a theory of support varieties

can be developed for Iwahori-Hecke algebras of other Coxeter groups.
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Part 11

Coordinate constructions of ¢g-Schur

algebras
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Chapter 8

Quantum coordinate (co)algebras

In Part II, we use a different quadratic relation in the definition of Hecke algebras:
(T —q¢ )T +q)=0.

The quadratic relations used in Part [ and Part II produce isomorphic Iwahori-Hecke alge-

bras.

In this section, we fix d, and let ® € {A; 1, By, Dy} be the type of algebras we consider.

Let
( (
WAd—1),® = Ag_4, HMNd—1),® = Agq,
o . o . _
W™= 4 WB(d),® = By, and Mgy = HP (d),® =By,
WD(d)7CD = Dd7 HqD(d),CD = Dd'
\ \
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8.1 Tensor spaces

Let
[—r,r] N Z, n=2r+1,
I(n) := (8.1)
[—r,r] nZ\{0}, n =2r.
The space of d-tuples I(n)? admits actions of W®. For i = (ig,...,iq_1) € I(n)? and a simple

reflection s € W2, let

p
(Z()a sy bi—2, 05, b1, Y41, - - aZd—l)v § = 54, 1< J < d— 17
1. e . . . B
1-5:= 1 <_207ll7"'7zd—1>7 5= 38,
. . . . D
k(_Z07_Zla7/27"'7zd—1)7 §= 8-

Let V be the free k-vector space with basis {v; : i € I(n)}. The tensor space V®¢ admits
a basis {v; : i€ I(n)?}, where v; := v, ® - - ®v;, ,. We can extend the actions of W?® on
I(n)? to actions of 7—[2 on V& Fori= (ig,...,iq_1) € I(n)? the type A action by T} for

1<j<d-—1isgiven by

Vi.s; s Lj—1 <1j,
T = —1 . .
vi - T = 9 q "Visy, ti—1 = 1,
-1 . .
Vi, + (@7 — Qui, i1 >y,
\

while the action by T is

(T O<i0,

B
. . = —1 .
Yi TO ’ 9 Q Vi-sg5 0= 20,

Vi.sg T+ (Qfl — Q)Ui, 0> 19,
\
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and the action by Tp is

Vs.4D, —ig < 11,
vi - Ty = 3 q Vg, —ip = 11,
| Vi T (' —qu, —io> iy
8.2 ¢-Schur algebras
We generalize the construction of ¢-Schur algebras in [P\, §3.5]. Consider the free algebra

k[M(n)] == ki« 0,5 € I(n)).
We equip k[M (n)] with a comultiplication

A k[M(n)] — E[M(n)]®k[M(n)],

i > Z Ty & x4,

lel(n)

which makes k[M (n)] a coalgebra.

The tensor space V& is a right comodule for k[M(n)], and the structure map is given

by
7 VO S VeI QE[M(n)],
vy > Z v @ Ty,
jel(n)?
where

Lij = Tig,jo -+ Lig_1,ja—1-
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Let Jfl* be the two-sided ideal generated by elements in Table 8.1. Let J(]f the sum of the

two-sided ideal Jél* and the right ideal generated by elements in Table 8.2, and J(E) the sum

of the two-sided ideal Jél\ and the right ideal generated by elements in Table 8.3.

(J ~im~1)
L1iTmj — q_lxmjxli (:7 <> or (<7 :)
T1iTmj — qTmjTili (=,>) or (>,=)
LT — Ty Ll (<,>)or (>,<)or (=,=)
TpiTmj — TmjZl — (Tmity (<, <)
T1iTmj — TmjTu + QTiy; (>, >)

Table 8.1: Type A relation for 7, 5,1,m € I(n), where ¢ := ¢! — q.

Ty — Qx—l—z
Ty — T—]—
Ty — T — Qr_y

G
(

<:7 >) or (>7 :)

(<,>)or (>,<)or (=,=)
(<, <)

(>,>)

Table 8.2: Type B relation for , j, [, m € I(n), where @ =Q7—Q.

(j ~tm _l)
Tl — T T (=,<)or (<,=)
TpiTmj — T T (=,>) or (>,=)
TpiTmj — T T (<,>)or (>,<)or (=,=)
DT — T T — QT (<, <)
LTy — T T + QT iy (>,>)

Table 8.3: Type D relation for 4, j,I,m € I(n), where §:= ¢! —q.

It is straightforward to verify that Jg is a coideal of k[M(n)]. Let

kMg (n)] := k[M

(n)/Jq -

Note that this is only a coalgebra, but not an algebra. The right k[M (n)]-comodule V® is

automatically a right k[Mg (n)]-comodule.
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The type ® quantum Schur algebra Sg’(n, d) is defined to be
o o P *
Sq (n,d) :== k[M (n)]3.

Then, VP is a left Sg(n, d)-module.

It is routine to check that the left action of SZ(n, d) and the right action of g commute.

Moreover,

Sq (n,d) = Endye (VE7).

When (Q = ¢, it is known that S}iq(n, d) admits a geometric realization (cf. |

well as a Schur duality, which is compatible with the type A duality as follows:

EIMAM)]* - k[MA(n)]5 ~ Si(n,d) — ~ HX}d-1)
v y®d N
SB.(n,d) ~ ~  H,(d)

(8.2)

) as

Remark 8.2.1. The category of homogeneous right k[MZ (n)]-comodules of degree d is equiv-

alent to the category of left Sg’ (n, d)-modules.

8.3 A combinatorial realization of ngq(n, d)

It is well-known that the algebra S Sq(n, d) admits a geometric realization via isotropic partial

flags (cf. [ ]). This flag realization of S}’ (n,d) admits a combinatorial /Twahori-Hecke

algebraic counterpart that generalizes to a two-parameter upgrade (cf. [LL]), i.e.,

Sgen.d) = P Homgs (2, Heg TAHE )
A\, ueAB (n,d)
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where

A= zInEN )\0614‘22/\_1 _)\17ZZ)\z:2d+]- 1fﬂ=27"+1,
A%,d):{ €T | }

{N= Nt eN" | Ay = =X, 2, A = 2d} if n = 2r.
(8.4)

Note that in [L.L], the set AB(2r,d) is identified as a subset of AB(2r + 1,d) through the
embedding
(N)ierny = Aoy oo s A, LA A,

For any X € AB(n,d), let W be the parabolic subgroup of W® generated by the set

S - {S)\U s/\1+)\27 ceey 8)\1+...+)\7«_1} lf n = 27’,
(8.5)
B {S Bk 70 J+A S[%OJ+A1+...+,\T,1} if n=2r+1
For any subset X <« W, A\, u € AB(n,d) and a Weyl group element g, set
Tx = ), T, = Twyew,)s = Ty = Tw,. (8.6)
weX
The right Hqu—linear map below is well-defined:
/\u R HQq — T HQ ¢ Tu T)ir (8.7)

The maps qﬁf\u with A, € AB(n,d), g a minimal length double coset representative for
WX\WP/W, forms a linear basis for the algebra Sf (n,d). The multiplication rule for
S5,4(n,d) is given in [LL], and it is rather involved in general. Here we only need the

following facts:

Lemma 8.3.1. Let \, N, u, i’ € AB(n,d), and let g, g be minimal length double coset repre-
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sentatives for W\\WB/W,. Then
(a) ‘g\yé‘()]\//“/ =0 unless p = N;

1 1
(b) ¢>\u¢lgm’ - iu’ - g\uqbuu"

8.4 Dimension of ¢-Schur algebras

It is well-known [P\W] that S;*(n,d) have several k-bases indexed by the set

(aij)ij € N/ Z aij =dp,

and hence the dimension is given by

2+d—1

dimy S (n, d) = (” * ) > (8.8)

In [LL, Lemma 2.2.1] a dimension formula is obtained via several bases of Sg ,(n,d) with
the following index set:

[—r,—1] x I(n) if n = 2r;
(aij)ij € NI_ Z a; = d , I_ =
(.)€l ([-r,—1] x I(n)) U ({0} x [-r,—1]) ifn=2r+1.
(8.9)
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That is, I_ < I(n)? correspond to the shaded region below:

a_r —r : a_rr r | | _
: Ay —r I I Ay
I o
| | |
a-1,-110-11 | [~TT "7~ ° L
7777777777777 T | |
! 1 Qoo |
a1 1 | [T e
|
l L
| |
: Qr,—r | | Qe
Qr,—r \ Ay - A
it n=2r itn=2r+1
Consequently,
2r2+d—1 .
: I |+d-1 ) ifn=2m
dimy, Sg,4(n, d) = (' | J ) = (8.10)

(272227””) ifn=2r+1.

In the following we provide a concrete description for the 2-dimensional algebra ngq(Q, 1).

Proposition 8.4.1. The algebra 35761(2, 1) is isomorphic to the type A Twahori-Hecke algebra
Ho-1(22).
Proof. The index set here is I(2) = {—1,1}. The coalgebra k[M{ (2)]: has a k-basis {a =

T 1_1,b=x_1; =x;_1}. Note that z1; = a+ (Q — @~ 1)b. The comultiplication is given by

A(CL) = Z Jffl’k@l’k,fl =a®a+ b®b,
k=1 (8.11)

ABD)=bRa+(a+(Q-Q N Rb=bRa+a®Rb+ (Q —Q bR
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Hence, the algebra structure of S§ (2,1) = k[M§ ,(n)]} has a basis {a*,b*} such that

a*a*(a) = (a®a)*(A(a)) =1, a*a*(b) = (a®a)*(A(b)) =0,
a*b*(a) = 0 = b*a*(a), a*b*(b) = 1 = b*a*(b), (8.12)

b*b*(a) =1, b*b*(b) = (Q —Q7),

Therefore, the multiplication structure of SS}Q(Z 1) is given by
a*a* = a*, a*b* =b* =b*a*, bb* = (Q — Q )b* +a*. (8.13)

]

Remark 8.4.2. We expect that the algebra Sg ,(2,d) is isomorphic to k[t]/(Py(t)) for some

polynomial P, € k[t], for d > 1.
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Chapter 9

The isomorphism theorem

The entire section is dedicated to the proof of an isomorphism theorem (Theorem 9.1.1)
between the Schur algebras of type B and type A that is inspired by a Morita equivalence

theorem due to Dipper and James [DJ1].

9.1 The statement

Recall from We define a polynomial P € k[Q, q] by

d—1

2@ =[] @7+d). (9.1)

i=1—d

We remark that at the specialization Q = g, the polynomial f2(Q,q) is invertible if (i) ¢ is
generic, (i) ¢? is an odd root of unity, or (iii) ¢? is a primitive (even) £th root of unity for

{>d.

Theorem 9.1.1. If f2(Q,q) is invertible in the field k, then we have an isomorphism of

k-algebras:

QL

®: S5 ,(n,d) — P SH[n/2],1) @ Si(|n/2], d — ). (9.2)

1=0
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Example 9.1.2. For n = 2,d = 1, Theorem 9.1.1 gives the following isomorphism
S6.4(2,1) = (S2(1,0) ® 57 (1,1)) @ (S2H(1,1) ® S;(1,0)) = k1, @ k1,

where 1,, 1, are identities. We recall basis {a*,b*} of S§ ,(2,1) from Proposition 8.4.1. The

following assignments yield the desired isomorphism:
a*— 1, +1,, b*—-Q ', +Ql, (9.3)

We note that it remains an isomorphism if we replace —Q'1, + @1, in Eq. (9.3) by Q1, —
01,

9.2 Morita equivalences between Iwahori-Hecke alge-

bras
Following [1DJ4], we define elements uf € Hg (d), for 0 <i < d, by
i—1 i—1
uf = [T . TTPT . Ty 4+ Q), wy =[[(Tr.. . TWIPTy... To— Q7). (9.4)
£=0 0=0

It is understood that ug =1 = ug .

For a,b € N such that a + b = d, we define an element v, by

Vap = up — Ty, Ut € Hg’q(d), (9.5)

Wa,b “a
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where wgp, € Yg4p, in two-line notation, is given by

1 - a a+1 -~ a+b
Wap =

b+1 -+ b+a 1 - b

Finally, when f2(Q, q) is invertible, Dipper and James constructed an idempotent
€ab = ZIZ;waﬂva,b) (96)

for a+b = d, where 2, , is some invertible element in (3, x 3;)(see [D.J4, Definition 3.24]).

Below we recall some crucial lemmas used in [DJ4].
Lemma 9.2.1. Let a,b e N be such that a +b=d. Then:
(a) The elements ug lie in the center of ’Hg’q(d),
(b) Fora+b>d, u, Hp (d)ui = 0.
¢) Fora+b=d, egy HE (d)eas = €ap Ho(Da x Xp) and eq, commutes with Hy(E, x L),
) Q.q ) ’ q B q
(d) Fora+d=d, eqyHp o (d) = vap H o(d),

(e) There is a Morita equivalence

d
Hg,q(d) ~ Morita @ €i,d—i Hg,q (d)ei?d,i.

1=0

9.2.1 The actions of u) and u;

Consider the following decompositions of V' into k-subspaces:
V = V;o@v<0 = V>D(‘BV<07
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where

@ kv, ifn=2r+1
V>() = @ ]{TUZ‘, V20 = O<i<r (97)

1<i<r .
Voo if n = 2r,

@ kv, iftn=2r+1
V<Q = @ k‘Ui, V<0 = —r<i<0 (98)

—r<is—1 .
V<o if n =2r.

Hence, one has the following canonical isomorphisms:
Sy ([n/2],d) ~ Endya sy (VE),  Sp(In/2],d) ~ Endya s, (VES). (9.9)

In the following, we introduce two new bases {w] } and {w; } for the tensor space to help

us understand the u;—r—action. First define some intermediate elements, for 0 <i < r,j € N:

w:(_j) = and  w;;;) = (9.10)
(7Q " +Q)vi, =0, 0, i=0.
For a nondecreasing tuple I = (iy,...,i4) € ([0,7] n Z)¢, we further define elements w; and
wy by
Wiy = Wilgy Wy = Wiy (9.11)

+ _ ot + - - - . . _
wp = w; w wp =wg id71)®wid(j), where j = max{k :ig_ = iq}

(9.12)
For arbitrary J € ([0,7] n Z)?, there is a shortest element g € ¥4 such that g~1.J is nonde-
creasing and set

+ ot - _
w; —wg_lJTg, wy; =w

T, (9.13)

g~tJ
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Lemma 9.2.2. For I € ([0,r] n 7)1,
viuy =wj, wvrugy =w;y. (9.14)

Proof. For non-decreasing I, the result follows from a direct computation. For general

1

I, there exists a shortest element g € X; such that ¢~ is non-decreasing. Then, by

Lemma 9.2.1(a),

+ + + + +
viug = vig1 Tyuy = vigug Ty = wlg,ng = wy. L]

Example 9.2.3. Let d = 7 and let [ = (0,1,1,2,3,3,3). We have

Wi = Wog) ® Wig) @ Wiy @ Wy @ Wy @ Wiy @ wyy).
For J := (0,2,1,1,3,3,3) = I'syso,

'UJ}_ = ’U);_TgTQ.

Example 9.2.4. In the following we verify Lemma 9.2.2 for small d’s. Let d = 2,1 = (1,1)

and hence w; = wf(o) ® wf(l). Since uy = (TYTPT) + Q)(TP + Q), we can check that indeed
vrug = (0 @ v)(MIY'Th + Q)T + Q) = (11 @ wiy) )Ty’ + Q) = wy.
Now we define K-vector spaces
Wiy = Vs W=V,

By Lemma 9.2.1(a), u; and uj are in the center of Hqu(d), hence W4, and W are naturally

Hg’qB(d)—module via right multiplication. Moreover, wTy = Q'w for all w € W<, and
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wTy = —Qu for all we W2,
Lemma 9.2.5. We have Wl = V&) and W, = VEuy .
Proof. We only give a proof for the first claim, and a proof for the second claim can be

obtained similarly. For 1 < i < d,

(V>®O(z'—1) QV.o® V®(d—i)>u;
—(Vao @ VEV @ VOU-NTIT, . Tiyul
=(VLo® Vfo(i_l) ® V®(d_i))Q_1T1T2 .. .Ti_lu; Lemma 9.2.1(a) and Tou;r = Q_lu;

§V>®0i ® V®(d‘i)u;. V>®0i is a H,(2;)-module
Next, an induction proves that for 0 < ¢ < d,
V@i ® V@(d—i) _ V>®07, ® V®(d_i),

from which the result follows. O]

Lemma 9.2.6. Let p; : V& — Vgod be the projection map. For I € ([0,7] N Z)% and J €

L7l nZ), pa(wi) = crv_; and pg(w7) = cyvu_y for some invertible elements cr,cy e K*.
Pa\Wy J

Proof. When I, J are non-decreasing, and when d = 2, the result follows from a direct

1

computation. For general I (or J), there exists a shortest element g € ¥4 such that Ig~' (or

Jg™') is non-decreasing. The result follows from an induction on the length of g. [

Lemma 9.2.7. (i) The map v; — w] gives an isomorphism of H,(X4)-modules VE —

d
W4,.

ii) The map vy — w; gives an isomorphism of Hq(Xq)-modules VEI — W .
I q <0 <0
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Proof. Since u; (resp. uy) is in the center of ’Hg,q(d) by Lemma 9.2.1(a), the map v; —
w} (resp. vr — wy) is clearly H,(X,)-equivariant. Surjectivity of this map follows from

Lemma 9.2.5, and injectivity of this map follows from Lemma 9.2.6. [

9.2.2 The actions of v,
Lemma 9.2.8. Fora+b=d, V&u,;, = (VE @ VE )4y

Proof. It follows from Eq. (9.5) and Lemma 9.2.5 that
V& = (VE VI, T, yug = (VI @VE)uy T, yug = (V@ VEJvay.

For b<i <d,

ToThTs .. ~ﬂ—1va,b

=17 TN T Ty 1) (Tosr - - Tima)uy T, ul Eq. (9.5)
=T7 TN T TV T - Ty)uy (Tysr - .- Ti-1) T, yus w, commutes with Th 1, . . .
=Tr ' Ty  wyy + QM ) (T - - - Tim1) Ty ud Eq. (9.4)
=Q ' Ty wy (Tog . Tim1) T, ut Lemma 9.2.1
=Q 1yt .Tb_l(TbH .. -ﬂ—l)U;Twa: u, commutes with Ty q,. ..
=Q ' Ty Ty - Ti1)Vap Eq. (9.5)

Then, for b<i < d,
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(V2@ VR " @V @ VU)o,

:(V> 0 ® Vgg ® Vg)(iibil) ® V®(d7i))T0T1T2 e E_an,b

—Q (Voo @ VE@VET D @Ol TN Ty . Tiy Yuay

S(VERVL @ VIV @VEIY Ty . Tiiy )vay

c(VE QVEIT @ Ve,

An induction shows that for b < i < d,

V>®(§b+1) is a Hy(Xp11)-module

Vg(i_b) is a Hy(X;_p)-module

V& @ Vet-i g V®(d"')va,b _ V>®§ ® Vg)(i—b) ® V®(d‘i)va,b,

from which the result follows.

For a + b = d, consider the projections

d b
Pab - Ve V<®0‘1®V§0,

Lemma 9.2.9. Fora+b=d, let

o VOV D VEL

be the projection map. Then, for I € ([0,7] N Z)* and J € ([~r,r] N Z)°,

Pos((vs ®vr) T, ,) = cr,yvr @ py(vy)

for some invertible cr ; € K*, where py is defined in Lemma 9.2.6. Moreover,

Pap((wy ®vr)Ty,,) = crycivr @v_y
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for some invertible cy j,c; € K*.

Proof. First note that (v; @ vi)Tw,, = cry(V; @ V)Wap + X,y , Co(Vs @ vr)g for some

invertible ¢; ; € K™ and some ¢, € K, where g < w,; under the Bruhat order. Hence,

Pop((v7 ®v1) T, ,) = Paplcrr(vy @ vr)wap + Z cg(vy ®vr)g)

g <Wq,b

= cratlp (i ®@us) + D oty (0 @ vr)g)

g <wa,b

= CI,JP;J;(UI ®uvy) = 101 @ pp(vy).

By Lemma 9.2.6, py(w;) = cyv_; for some c¢; € K*. Therefore, p; ,((w; ® vi)Ty,,) =
cr,gvr @ py(wy) = cr ycsvr @ v_j. O

Lemma 9.2.10. For [ € ([0,7] n Z)* and J € ([1,7] N Z)®, pap((v7 @ v1)vap) = cv_1 @v_y

for some ce K*.

Proof.

Pap((V @ V1)Vap) = Pap((Vs @ UI)“(,_Twa,bu:) Eq. (9.5)
= pas((w; ® U[)Tw%bu:) Lemma 9.2.2
= Pap(Pap((wy @vr) T, ,)uy)
= pas(crycs(vr @v_y)ul) Lemma 9.2.9
= pap(criciwi @v_y) Lemma 9.2.2

= crycipa(w]) ®v_y

= cr,yCrcgv—1 Q@ v_y. Lemma 9.2.6
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Lemma 9.2.11. For a +b = d, the map vy ® vy — (v; @ vr)vap gives an isomorphism of

H(Z,) ® H(Zp)-modules V4, @ VE§ — V&iy, .
Proof. Since

Tliva,b:
Tip, b+1<i<a+b-1,

the map is H(X,) ® H(Xp)-equivariant. The injectivity follows from Lemma 9.2.10, and the

surjectivity follows from Lemma 9.2.8. O

9.3 The proof of the isomorphism theorem

Finally, we are in a position to prove the isomorphism theorem.

Proof of Theorem 9.1.1.

Sg,q(n, d) = End?—tg,q(d)(v®d)

= End@osigd eia i B, (desa s (V®dei7d_i) Lemma 9.2.1(e)

= @ End, 8 (e, (VEeia-s)
0O<i<d

) EndHA(Zi)®HA(Zd_i)(V®d'l)i7d_i) Lemma 9.2.1(c)(d)
o<i<d ! !

— ®i ®(d—i) )
o<i<d ! !

= @D Endyac,) (V) @ Endyars, , (VE™)
0<i<d

= @ S)([n/2],i) ® S, (In/2],d — ). Eq. (9.9)
o<i<d
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9.4 Simple modules

As an immediate consequence of the Morita equivalence theorem one obtains a classification

of irreducible representations for S (n, d).

Theorem 9.4.1. If f2(Q, q) is invertible in the field k then there is a bijection
{Irreducible representations of Sg ,(n,d)} < {(A, p) = (di,ds) | di + dy = d},

where number of parts of A\ and p is no more than n. In particular, the standard modules
over S ,(n, d) are of the form V(N RV (u), where V(X) (resp. V(X)) are standard modules
over S (n,dy) (resp. Si(n,dy)).
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Chapter 10

Schur functors

10.1 Schur functors

For type A it is well-known that, provided n > d, there is an idempotent e* = e¢*(n,d) €

Sy (n,d) such that e*Sp}(n, d)e® ~ H,(3q), and a Schur functor
F2,: Mod(SH(n,d)) — Mod(Hy(2q)), M — e*M. (10.1)

In the following proposition we construct the Schur functor for S§ ,(n, d) when |n/2] > d.

Proposition 10.1.1. If|n/2| > d then there is an idempotent e® = €®(n, d) € S§ ,(n, d) such
that €BS5 ,(n,d)e® ~ e (d) as k-algebras, and e®SG ,(n,d) ~ V& as (S5 ,(n, d), He o (d))-

bimodules..

Proof. Recall A®(n,d) from Eq. (8.4) and ¢{, from Eq. (8.7). Let €® = ¢, where

ww?

0,...,0,1,...,1,0...,0) € AB(2r,d) if n = 2r;

(10.2)
0,...,0,1,...,1,0...,0) e AB(2r + 1,d) ifn=2r+1.
—

L 2d+1
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Note that such w is well-defined only when r = |n/2| > d. By Lemma 8.3.1, we have

o fA=w=p

ePed eP = (10.3)

A
0 otherwise.

Since W, is the trivial group, z, = 1 € Hgﬂ(d) and hence ¢7  is uniquely determined by

1 — T,. Therefore, e®Sg  (n,d)e® and Hqu(d) are isomorphic as algebras.

Now from Section 8.3 we see that there is a canonical identification

Ve~ P oz Ho, > D Homﬂg’q(xw’}—[g’q,x#?{g’q), (10.4)

peAB (n,d) ueAB (n,d)

and hence the maps ¢f,,, with p € AB(n,d), g a minimal length coset representative for

WB/W,, forms a linear basis for V®?. Again by Lemma 8.3.1, we have

g it A= w;

ol =1 (10.5)

0 otherwise.

Hence, e®S§ ,(n, d) has a linear basis {¢9,,} where € A®(n,d), g a minimal length double
coset representative for W,\WP/W,. Therefore V® and e®Sg (n,d) are isomorphic as

(S5 4(n, d), Hg, ,(d))-bimodules. O

We define the Schur functor of type B by
F2,: Mod(S5 ,(n,d)) — Mod(Hg ,(d)), M > eBM. (10.6)
Define the inverse Schur functor by

Gy : Mod(Hg, ,(d)) — Mod(Sg ,(n,d)), M — HomeBSaq(md)eB(eBSSq(n,d),M). (10.7)
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In below we define a Schur-like functor F ; : Mod(S§ (n,d)) — Mod(ng(d)) using

Theorem 9.1.1, under the same invertibility assumption: recall ® from Eq. (9.2), let

d

€ = 6?1,5[ = o (P er([n/2],i) @ e*(|n/2],d — i)). (10.8)

=0

Note that €S ,(n,d)e" ~ DL Hy(Eir1) ® Hy(Xair1), and hence left multiplication by
¢ defines a functor Mod(Sg ,(n,d)) — Mod(G—);l:O Hy(Eir1) ® Hy(X4—i+1)). Hence, we can
define

F) 4 Mod(Sg ,(n,d)) — Mod(Hg ,(d)), M — Fg'(€ M), (10.9)

where Fp is the Morita equivalence for the Iwahori-Hecke algebras given by
Fu : Mod(H3,(d)) — Mod ( P Hy(Sie1) ® ’Hq(zd_m)) . (10.10)

Under the invertibility condition, one can define an equivalence of categories induced from

® as below:

IsH

Fs : Mod(SB, (n, d)) — Mod (@sﬁ([n/zm ® SA([n/2],d — z’)). (10.11)

i=0
In other words, we have the following commutativity of functors:

Proposition 10.1.2. Assume |n/2] > d > i > 0 and that f} is invertible. The diagram

below commutes:

d

Mod(SB,,(n,d)) 2 Mod (@O SA([n/2],4) ® SA(|n/2),d - i))
lFZ,d lié) F[/:}L/2],i®F[‘?L/2J,d77L (10'12)

Mod(Hg,,(d)) S BN Mod(él—)Hq(Ei+1)®Hq(Ed—i+1)>

1=0

69



Remark 10.1.3. We expect that Proposition 10.1.2 still holds if we replace the functor Ff%d

therein by F f’ -

10.2 Existence of idempotents

We construct additional idempotents in Schur algebras of type B that will be used later in

Section 11.3.

Proposition 10.2.1. There exists an idempotent e € S§ (n',d) such that eSg (', d)e ~

Squ(n, d) if either one of the following holds:
(a) n' =n andn’ =n (mod 2);
(b) n' =2r"+1>=n=2r.

Proof. We use the combinatorial realization in Section 8.3. For (a) we set

e=> ¢, (10.13)
v
where v runs over the set

{y=1(0,...,0,%...,%0...,0) € AB(n/,d)} if (a) holds;

—
AB(n,d)], = { n

{y=1(0,...,0,% ....% 1% ...,%0...,0) € AB(n/,d)} if (b) holds.
~—— ~—

) (10.14)

By Lemma 8.3.1 we have

W A e AP, d)n;

egs e = (10.15)

0 otherwise.
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It follows by construction that eSg (n',d)e and S ,(n,d) are isomorphic as algebras. [

10.3 Existence of spectral sequences

Let A be a finite dimensional algebra over a field k£ and e be an idempotent in A. Doty,
Erdmann and Nakano [ ] established a relationship between the cohomology theory
in Mod(A) versus Mod(eAe). More specifically, they construct a Grothendieck spectral
sequence which starts from extensions of A-modules and converges to extensions of eAe-
modules.

There are two important functors involved in this construction. The first functor is an
exact functor from Mod(A) to Mod(eAe) denoted by F (that is a special case of the classical
Schur functor) defined by F(—) = e(—). The other functor is a left exact functor from
Mod(eAe) to Mod(A), denoted G defined by G(—) = Homy(Ae, —). This functor is right
adjoint to F.

In | ], the aforementioned construction was used in the quantum setting to relate
the extensions for quantum GL,, to those for Iwahori-Hecke algebras. For |n/2] = d there
exists an idempotent e € S§ (n,d) such that He ,(d) = eSg 4(n, d)e. Therefore, we obtain
a relationship between cohomology of the type B Schur algebras with the Iwahori-Hecke

algebra of type B.

Theorem 10.3.1. Let [n/2] > d with M € Mod(S§ ,(n,d)) and N € Mod(Hg, ,(d)). There

exists a first quadrant spectral sequence

Ey) = Extip

B () (M, R'G(N)) = Ext’]  (eM,N).

HG.q(d)

iG(—) = ' ®d _
where R7G( )—Extfﬂg’q(d)(v ,—)-

We can also compare cohomology between S§ (n,d) and Sg ,(n',d) where n’ > n since
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there exists an idempotent e € S5 (n',d) such that S5 (n,d) = eS§ (n/,d)e thanks to

Proposition 10.2.1.

Theorem 10.3.2. Let M € Mod (S ,(n',d)) and N € Mod(Sg ,(n,d)). Assume that either
(a) n' =n andn’ =n (mod 2);
(by " =2r'"+1>=n=2r.

Then there exists a first quadrant spectral sequence

EY = Extfgg o, o(M,RIG(N)) = Extit

SQq(n’d)(eM,N).

where RIG(—) = Extgqu(n,d)(eSg,q(n’, d),—).
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Chapter 11

Cellularity, quasi-hereditariness and
representation type of ¢-Schur

algebras of type B

11.1 Cellularity

We start from recalling the definition of a cellular algebra following [G1]. A k-algebra A is
cellular if it is equipped with a cell datum (A, M, C, =) consisting of a poset A, a map M
sending each A € A to a finite set M()), a map C sending each pair (s,t) € M(\)? to an
element C’s):t € A, and an k-linear involutory anti-automorphism = satisfying the following

conditions:
(C1) The map C is injective with image being an k-basis of A (called a cellular basis).

(C2) For any Ae A and s,te M()), (C)* = C)\.
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(C3) There exists 7,(s",s) € k for A € A,s,8 € M()) such that for all a € A and s,t € M()\),

aCyy = Z ra(s',5)Co,  (mod A-)).
s'eM ()

Here A_ ) is the k-submodule of A generated by the set {C[, , 1 p<A;8",t" € M(p)}.

For a cellular algebra A, we define for each X\ € A a cell module W (\) spanned by C2,

s € M(X), with multiplication given by

aCy = Y. 14(s',5)CL (11.1)

s'eM(X)

For each A € A we let ¢y : W(A) x W(A) — k be a bilinear form satisfying
C.C = da(Cs,CYCY, (mod Ay). (11.2)

It is known that the type A ¢-Schur algebras are always cellular, and there could be
distinct cellular structures. See | | for a parallel approach on the cellularity of centralizer

algebras for quantum groups.

Example 11.1.1 (Mathas). Let A = A%(d) be the set of all partitions of d, and let A’ = A’(d)
be the set of all compositions of d. For each composition A € A’; let 3, be the corresponding

Young subgroup of ¥;. Set
wx= Y, T € Hy(Sa).

WED )

It is known the ¢-Schur algebra admits the following combinatorial realization:

St (n,d) = Endy, s (@rentr He(Sa)) = @B Homyy, s (2, Ho(Sa), 23 Ho(Za))-

A ueN’
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The finite set M () is given by M (X\) = | |, SSTD(A, ), where

HeEN

SSTD(\, 1) = {semi-standard A-tableaux of shape p}. (11.3)
For p + d, denote the set of shortest right coset representatives for 3, in 34 by
D, ={weXy| lgw) = L(w) + {(g) for all g€ X,}. (11.4)

Let t* be the canonical A-tableau of shape ), then for all A-tableau t there is a unique
element d(t) € D, such that td(t) = t. The cellular basis element, for A € A, s € sstd(\, u), t €

sstd(\, v), is the given by
Cs):t(xah) = o Z Ty 2xTuwh, (11.5)
s,t

where the sum is over all pairs (s, ) such that p(s) =s,v(t) =t

Example 11.1.2 (Doty-Giaquinto). The poset A is the same as in Example 11.1.1, and we
have A = $4A™. It is known that the algebra S2(n, d) admits a presentation with generators
E;,F(1<i<n-—1)and 1,(A € A). The map = is the anti-automorphism satisfying

Ef=F, F*=FE, 1%=1,

7 K

For each A € A we set A} = {u e A" | p < A\}. Note that A is saturated and it defines
a subalgebra S (AY) of S;}(n,d) with a basis {Z, | 1 < s < d,} for some dy € N. Let
Zg € Sﬁ(n,d) be the preimage of T, under the projection Sﬁ(n,d) — S,(AY) that is the

identity map except for that it kills all 1, where 1 < X. The finite set M () is given by

MO = {1,2,...,dy). (11.6)
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Finally, for A € A,s,t € M()\), we set

A
Cﬁ,t

=zl ay. (11.7)

We show that the isomorphism theorem produces a cellular structure for qu(n, d) using

any cellular structure on the ¢-Schur algebras of type A. For any n,d we fix a cell datum

(An.g, Myg, Cp g, *) for Sj(n,d). Define

d
AB = AB(n, d) = |_|A[n/2],i X Aln/QJ’d_Z’, (11.8)
=0

as a poset with the lexicographical order. For A = (A(V, A\(?) € AB we define M® by
d
MBA) = || Mz i(AD) x My jopa—i(A®). (11.9)

=0

The map CP® is given by, for s = (s, s®), t = (W @) € M, 101, (AD) x Mp2pa-i(A?) <
ME(A),

) (2)
(C®)ox = (Crua)aw s @ (Clayaga—i)iee - (11.10)
Finally, the map = is given by
) @ ) ()
# 1 (Clay21) 0 40 ® (Clnjaga—i)ae g = (Ciny21i) i g0 ® (Clajatd—i) o o) (11.11)

Corollary 11.1.3. If the invertibility condition in Theorem 9.1.1 holds, then Sg’q(n, d) is a

cellular algebra with cell datum (AB, MB,CB «).

Proof. Condition (C1) follows from the isomorphism theorem; while Condition (C2) follows

directly from Eq. (11.11). Condition (C3) follows from the type A cellular structure as
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follows: for ay € S2([n/2],4) and ay € S;(|n/2],d — i),

e €] .
al(c[n/z],i)?u),tu) = Z 71(111) (u(1)75(1))<C[n/2],i)1)1\(1),£(1) (mod SZ,A([”/QL i)(< A(l))),
uMeMy, 91, (AM)
) @ ‘
az(cln/zj,d—i)?@),gm = Z ré? (u@),5(2))(Cln/zj,d—i)ﬁ(n,m (mod SZIA (In/2],d —i)(< )\(2)))-

w@eM, 4 ;(\D)

That is, for a = a; ® ag € SH([n/2],4) @ S} (|n/2),d — i) < SE(n,d),

a(CP)} = > re (u,8)(CP) mod S (n, d)(< \),
u:(u<1)7u<2>)
€M /01,s AD) X My 04— i (A2))

where rB(u,5) = ri (u®, s0)r? (u® §@) is independent of . O

11.2 Quasi-hereditary structure

Following | ], a k-algebra A is called quasi-hereditary if there is a chain of two-sided
ideals of A:
OC11C[2C...CIHZA

such that each quotient J; = I;/I;_; is a hereditary ideal of A/I; ;. It is known [GL] that
if A is cellular and ¢, # 0 (cf. Eq. (11.2)) for all A € A then A is quasi-hereditary.

An immediate corollary of our isomorphism theorem is that qu(n, d) is quasi-hereditary
under the invertibility condition. We conjecture that this is a sufficient and necessary con-

dition and provide some evidence for small n.

Corollary 11.2.1. If the invertibility condition in Theorem 9.1.1 holds, then S}f’(n, d) is

quasi-hereditary.
Proof. Let ¢f with v € A,; be such a map for S2(r,j). Fix A = (AW, X)) € Ao, %
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Appara—i © A% 5 = (50, 50) ¢ = (W A®) € My i(AV) x Mipyopas(A?) < MB(N), we

have

(1) 1) @) @
C2,C% = (Clay214)am 5 (Cruj21.)in) ) © (Clnjagd—i)a) g (Clinj2td—i)io) g2

= ¢ (CO, o) (C2, CP)C2 mod SE(n, d) (< N).

]

Recall that in Proposition 8.4.1 we see that Sg’q(Q, 1) ~ Hg_l(Zg). In the following we
show that the known cellular structure (due to Geck/Dipper-James) fails when f® = Q=2 +1

is not invertible.

Example 11.2.2. Let S5 (2,1) ~ H31(5s) = k[t]/* — (@' — Q)t + 1). We have

b

o]

A= {A:mw:H}, M(X) = {t =67}, M(p) = {s =
The cellular basis elements are

Ch= > QUwT,=1+Q't, Ch= > Quw)T,=1

wEeXg WENI X 21

Firstly, we have CEC! = 1 = C¥ and hence ¢, is determined by ¢,(Cs, Cs) = 1, which is

nonzero. For A we have
CiCh=1-Q 2+ (Q*+1)Q 't =(Q*+1)Cimod A ).

That is, ¢, is determined by ¢,,(C;, Cy) = (Q~?+1), which can be zero when f® = Q72+1 = 0.
Therefore, 557 4(2,1) is not quasi-hereditary in an explicit way.
One can also see that ngq(Q, 1) is not quasi-hereditary because if it were then it would

have finite global dimension. However, ”Hg,l (3J2) is a Frobenius algebra with infinite global
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dimension.

Conjecture 11.2.3. The algebra ngq(n,d) is quasi-hereditary if and only if f2(Q,q) is

invertible.

11.3 Representation Type

Let A be a finite-dimensional algebra over a field k. A fundamental question one can ask
about A is to describe its representation type. The algebra A is semisimple if and only
if every finite-dimensional module (i.e., M € mod(A)) is a direct sum of simple modules.
This means that indecomposable modules for A are simple. If A admits finitely many finite-
dimensional indecomposable modules, A is said to be of finite representation type. If A does
not have finite representation type A is of infinite representation type.

A deep theorem of Drozd states that finite dimensional algebras of infinite representation
type can be split into two mutually exclusive categories: tame or wild. An algebra A has tame
representation type if for each dimension there exists finitely many one-parameter families
of indecomposable objects in mod(A). The indecomposable modules for algebras of tame
representation type are classifiable. On the other hand, the algebras of wild representation
type are those whose representation theory is as difficult to study as the representation theory
of the free associative algebra k{(x,y) on two variables. Classifying the finite-dimensional

k{x,y)-modules is very much an open question.

11.3.1 Summary: Type A results

The following results from [[XN, Theorem 1.3(A - C)] summarize the representation type for
the g-Schur algebra for type A over k. Assume that ¢ € £* has multiplicative order [ and

g+ 1.
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Theorem 11.3.1. The algebra S?(n,r) is semusimple if and only if one of the following
holds:

(i) n=1;
(i) q is not a root of unity;
(ii) q is a primitive lth root of unity and r <lI;
(i) n=2,p=0,1=2 andr is odd;
(iv) n=2,p=3,1=2andr is odd with r <2p + 1.

Theorem 11.3.2. The algebra S?(n, r) has finite representation type but is not semi-simple

if and only if q is a primitive lth root of unity with | < r, and one of the following holds:
(1)) n =3 and r <2l;
(i) n=2,p#0,1>3 and r <lIp;
(iii) n =2, p=0 and either | = 3, orl =2 and r is even;
(iv) n=2,p=3,1=2 andr even with r <2p, orr is odd with 2p +1 < r <2p? + 1.

Theorem 11.3.3. The algebra Sg‘(n,r) has tame representation type if and only if ¢ is a

primitive [th root of unity and one of the following holds:
(i) n=3,1=3,p#2andr ="17,8;
(i) n=3,1=2andr =4,5;

(iii) n=4,1=2 and r = 5;

(lv) n=2,1=23,p=2o0orp=3andpl <r<(p+1)l;

(v) n=2,1=2 p=3andre{6,19,21,23}.
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11.3.2 Representation type of algebras related to type A Schur

algebras

In this section we summarize some of the fundamental results that are used to classify the
representation type of Schur algebras. The first proposition can be verified by using the

existence of the determinant representation for S2(n,r1) (cf. [EN, Proposition 2.4B]).

Proposition 11.3.4. If S?(n, ) ® Sé*(n,rg) has wild representation type then S?(n, r1+

n) @ S(n,ry) has wild representation type.

Next we can present a sufficient criteria to show that the tensor product of type A Schur

algebras has wild representation type.

Proposition 11.3.5. Suppose that the Schur algebras S;?(n,rl) and S?(n,rg) are non-

semisimple algebras. Then Sﬁ(n,rl) ® Sj?(n, r9) has wild representation type.

Proof. First note that SqA(n, 1) is a quasi hereditary algebra and if S?(n, r) is not semisimple
then it must have a block with at least two simple modules.
Suppose that S;, Sy, S3 are three simple modules in S(?(n, r1) with Ext}qé( 1)(51, Sy) # 0
q

n,r

and Extgé(n Tl)(Sg, S3) # 0. Note that via the existence of the transposed duality,
q K

EX)E}%; (S“ Sj) = Ethg (Sj, Sz)

(n,r1) (n,r1)

fori,j = 1,2,3. Similarly, let 77, T5 be two simple modules for S?(n, r9) With EXt,IS?(n,TQ)(Tl’ Ty) #
0. Then the Ext'-quiver for S52(n,r1) ® S2(n,r;) will have a subquiver of the form as in
Figure 11.1 below. This quiver cannot be separated into a union of Dynkin diagrams or ex-
tended Dynkin diagrams. Consequently, S?(n, r) ® Sg(n, r9) must has wild representation
type.

The other case to consider is when the blocks of S3(n,r1) and S2(n,r;) have at most

two simple modules. Let B; be a block of S?(n,'r’j) for j = 1,2 with two simple modules.
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Figure 11.1:

There are four simple modules in B; ® B, and the structure of the projective modules are the

same as regular block for category O for the Lie algebra of type A; x Ay (cf. | , 4.2]).
The argument in | , Lemma 4.2] can be use to show that B; ® B, has wild representation
type. Il

The results in [N, Theorem 1.3(A - C)] entail using a different parameter ¢ than the

2 1

parameter ¢ in our paper. The relationship is given by ¢ = ¢~2 or equivalently ¢* = (7)~

with S2(n,d) = S2(n,d). This means that

q is generic if and only if ¢ is generic,

¢? is a primitive Ith root of unity if and only if ¢ is a primitive /th root of unity;

if ¢ is a primitive 2s-th root of unity if and only if ¢ is a primitive s-th root of unity;

if ¢ is a primitive (2s + 1)-th root of unity if and only if ¢ is a primitive (2s + 1)-th

root of unity.

Now let n’ = n. By Proposition 10.2.1, under suitable conditions on n’ and n, there
exists an idempotent e € Sg (n’, d) such that S5 (n,d) = eSg (n',d)e. By using the proof

in [[EN, Proposition 2.4B], one has the following result.
Proposition 11.3.6. Let ' = n withn’ = n and n’ =n (mod 2).

(a) If S§ ,(n,d) is not semisimple then S§ ,(n/,d) is not semisimple.
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(b) If 5’57(1(71, d) has wild representation type then ngq(n’, d) has wild representation type.

11.3.3 Type B Results

Throughout this section, let ngq(n, d) be the g-Schur algebra of Type B under the condition
that the polynomial f?(Q,q) # 0. Moreover, assume that ¢> # 1 (i.e., ¢ # 1 or a primitive
2nd root of unity). One can apply the isomorphism in Theorem 9.1.1 to determine the

representation type for ngq(n, d) from the Type A results stated in Section 11.3.1.

Theorem 11.3.7. The algebra qu(n, d) is semisimple if and only if one of the following

holds:
(i) n=1;
(ii) q is not a root of unity;

(iii) ¢* is a primitive lth root of unity and d <I;
(iv) n =2 and d arbitrary;

Proof. The semisimplicity of (i - iii) follow by using Theorem 9.1.1 with Theorem 11.3.1.
The semisimplicity of (iv) follows by Theorem 9.1.1 and the fact that S;'(1,d) is always
semisimple.

Now assume that ¢? is a primitive /th root of unity, d > [, n > 3 and [ > 3. Consider the

case when n = 3. From Theorem 9.1.1,

U

S5.4(3:d) = @ SH2,i) ® Sy (1,d — ). (11.12)

=0

If d > I then S2}(2,1) appears as a summand of S5 (3,d) (when i = d —1). For | > 3,
S(2,1) = S2}2,1) is not semisimple. It follows that S5 (3, d) is not semisimple for d > 1.

One can repeat the same argument for n = 4 to show that 557(1(4, d) is not semisimple for
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d = 1. Now apply Proposition 11.3.6(a) to deduce that ngq(n, d) is not semisimple for n > 3
and d > [. [

Theorem 11.3.8. The algebra ngq(n, d) has finite representation type but is not semisimple

if and only if ¢ is a primitive lth root of unity with | < d, and one of the following holds:
(1)) n=5,1<d<2l;

(ii)) n=3,p=0andl < d;

(i) n=3,p=>2andl < d<lp;

(iv) n=4,p=0,1=2and d >4 with d odd.
(v)n=4,p=3,1=2and4d<d<2p—1 withd odd.

The algebra S’gﬂ(n, d) has tame representation type if and only if

(vi) n=3,1=2,p=3and d = 6;

(vii) n=3,1=23,p=2o0r3 andlp <d<lIl(p+1);

(viii) n =4,1=2,p=3 andd =717.

Proof. We first reduce our analysis to the situation where n = 3 and 4. Assume that n > 5
so [n/2] = 3 and |n/2] = 2. By Theorem 11.3.1, the algebras S;'(2,1) and S) (i, 1 + j) are
not semisimple for i > 3,5 > 0, and hence neither are S ([n/2],1 + j) and S}(|n/2|,1) for
n = 5,7 = 0. Therefore, S}([n/2],1 + j) ® S;([n/2].1) has wild representation type by
Proposition 11.3.5. It follows that Sg7q(n, d) has wild representation type for d > 2l,n > 5.
When | < d< 2l and n > 5, one can use Theorem 9.1.1 in conjunction with Theorem 11.3.2
to prove that Sg ,(n,d) has finite representation type.

Now consider the case when n = 3. The isomorphism (11.12) indicates that we can

reduce our analysis to considering Sf(2,r). From this isomorphism and Theorem 11.3.2,
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one can verify that (i) when p = 0 then S§ (3, d) has finite representation type (but is not
semisimple) for I < d, (ii) when p> 0 then S§ ,(3,d) has finite representation type (but is
not semisimple) for [ < d <Ip, and (iii) when p >0, qu(i%, d) has infinite representation type
for d = Ip.

For n = 3, one can also see that under conditions (vi) and (vii), Sg,(3,d) has tame
representation type. Moreover, one can verify that ngq(?), d) has wild representation type in
the various complementary cases.

Finally let n = 4. From Proposition 11.3.5, 52(2,1) ® S(2,1) and S}(2,1) ® S (2,1+1)
has wild representation type for [ > 3. Therefore, ngq (4,d) has wild representation type for
d > 2l and | > 3. For | = 2, the same argument can be used to show that S§ (4, d) has wild
representation type for d-even and d > 4.

This reduces us to analyzing S5 ,(4,d) when [ = 2 and d > 4 is odd. By analyzing the
components of Sg7q(4,d) via the isomorphism in Theorem 9.1.1, one can show that for d
odd: (i) 5§ ,(4,d) has finite representation type (not semisimple) for 4 < d < 2p — 1 and
p = 3, (ii) Sg’q(ll,d) has finite representation type (not semisimple) for d > 4 and p = 0,
(i) Sg 4(4,d) has wild representation type for d > 2p + 1 for p > 5, and (iv) S (4, d) has
wild representation type for d > 2p + 3 for p = 3. One has then show that 587(1(4, 7) for
p = 3, | = 2 has tame representation type since the component Sﬁ(Q, 6) ® ij(Q, 1) has tame
representation type and the remaining components have finite representation type.

]

Note that for the case ¢ = 1 (i.e., ¢*> = 1) one obtains the classical Schur algebra for type
A, one can use the results in [Frd] [DN1] | ] to obtain classification results in this case

for S§ ,(n, d).
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Chapter 12

Quasi-hereditary covers

In this section we first recall results on 1-faithful quasi-hereditary covers due to Rouquier
[Rou]. Then we demonstrate that our Schur algebra is a 1-faithful quasi-hereditary cover of
the type B Iwahori-Hecke algebra via Theorem 9.1.1. Hence, it module category identifies the
category O for the rational Cherednik algebra of type B, see Theorem 12.3.3. A comparison

of our Schur algebra with Rouquier’s Schur-type algebra is also provided.

12.1 1-faithful covers

Let C be a category equivalent to the module category of a finite dimensional projective
k-algebra A, and let A = {A(\)}iea be a set of objects of C indexed by an interval-finite
poset structure A. Following [Rou], we say that C (or (C,A)) is a highest weight category if

the following conditions are satisfied:
(H1) Endc(A(N)) = k for all X e A;
(H2) If Home(A(XN), A(p)) # 0 then A <

(H3) If Home(A(X), M) =0 for all A € A then M = 0;
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(H4) For each A(\) € A there is a projective module P()\) € C such that ker(P(\) — A(\))
has a A-filtration, i.e., finite filtrations whose quotients are isomorphic to objects in

A.

Let A-mod be the category of finitely generated A-modules. The algebra A is called a

quasi-hereditary cover of B if the conditions below hold:

(C1) A-mod admits a highest weight category structure (A-mod, A);
(C2) B = End4(P) for some projective P € A-mod,;

(C3) The restriction of FF = Homy (P, —) to the category of finitely generated projective

A-modules is fully faithful.

Quasi-hereditary covers are sometimes called highest weight covers since the notion of highest
weight category corresponds to that of split quasi-hereditary algebras | , Theorem 4.16].
We also say that (A, F) is a quasi-hereditary cover of B. Moreover, a category C (or the pair
(C, F)) is said to be a quasi-hereditary cover of B if C ~ A-mod for some quasi-hereditary
cover (A, F) of B.

Following [Rou], a quasi-hereditary cover A of B is i-faithful if

Ext)y(M, N) ~ Extj(FM, FN) for j <i, (12.1)

and for all M, N € A-mod admitting A-filtrations. Furthermore, a quasi-hereditary cover
(C, F) of B is said to be i-faithful if the diagram below commutes for some quasi-hereditary

cover (A, F") of B:

C — y  A-mod

B-mod
Rouquier proved in | , Theorem 4.49] a uniqueness theorem for the 1-faithful quasi-

hereditary covers which we paraphrase below:
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Proposition 12.1.1. Let B be a finite projective k-algebra that is split semisimple, and
let (Ci, F;) for i = 1,2 be 1-faithful quasi-hereditary covers of B with respect to the partial
order <; on Irr(B). If <y is a refinement of <o then there is an equivalence C; ~ Co of

quasi-hereditary covers of B inducing the bijection Irr(Cy) ~ Irr(B) ~ Irr(Cy).

12.2 Rational Cherednik algebras

Let (W,S) be a finite Coxeter group, and let Ay be the corresponding rational Cherednik
algebra over Clh,;u € U] as in [Rou], where U = | | _o{s} x {1,...,es} and e, is the size
of the pointwise stabilizer in W of the hyperplane corresponding to s. If W = WE(d) and

S = {so, 51} then U = {(s;,4) | 0 < ¢,j < 1}. In this case we assume that
h(sl,O) = h, h(sl,l) = 0, h(SO,i) = h, fOI“ i = O, 1. (12.2)

Remark 12.2.1. In [[(5] the rational Cherednik algebra H; . is defined for a parameter ¢t € C,
and a W-equivariant map ¢ : S — C. The two algebras, Ay and H,., coincide if ¢t = 1,

h(s0) = 0 and hs1) = c(s) for all s€ S.

Let Ow be the category of finitely generated Ay -modules that are locally nilpotent for

S(V). It is proved in | | that (Ow, Aw) is a highest weight category of H(W)-mod
AW = {A(E) = AW ®S(V)><1W E ’ Ee II“I“(W)},

See [Rou, 3.2.1-3] for the partial order < on Irr(W). Let A3 (d) be the poset of all bipartitions

of d on which the dominance order < is given by A <y if, for all s > 0,

S S S S

1 1 r T
DT 2 A+ I < D+ Y 1) (12.3)
=1 j=1 j=1 j=1
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For \ € AJ(d), set

Wi(d) = Cf % (S x Bye), (12.4)
Set
L) = (LMD, L@) = {AD] 4 1. d). (12.5)
Following [Rou, 6.1.1], there is a bijection
B
A7 (d) = (WD), A= (A AP) =y = indjpe ) (oo ©® 6P ), (12.6)

where Y, is the irreducible character of W®(d) corresponding to A, and ¢ is the 1-
dimensional character of C’QIA(Z) X Y1, (2) Whose restriction to CQI*@) is det and the restriction
to Xy, (2) is trivial.

Rouquier showed that the order < is a refinement of the dominance order < under an

assumption on the parameters h, h;’s for the rational Cherednik algebra as follows:

Lemma 12.2.2. [Rou, Proposition 6.4] Assume that W = W(d), h < 0 and hy — hy >
(1 —=d)h (see Eq. (12.2)). Let N\, € A3 (d). If X <, then x\ < x, on Irr(W).

Remark 12.2.3. The assumption in Lemma 12.2.2 on the parameters is equivalent to ¢(sg) =

hi = 0 using Etingof-Ginzburg’s convention.

Let KZw be the KZ functor Oy — H(W)-mod. We paraphrase [Rou, Theorem 5.3] in

our setting as below:

Proposition 12.2.4. If W = WB(d) and H(W) = ’Hg,q(d), then (Ow, KZw) is a quasi-

hereditary cover of H(W)-mod. Moreover, the cover is 1-faithful if (¢* + 1)(Q* + 1) # 0.

It is shown in | ] that under suitable assumptions, Oysg) is equivalent to the module
category of a Schur-type algebra S®(d) which does not depend on n using the uniqueness

property Proposition 12.1.1. Below we give an interpretation in our setting.
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Let Ao(d) be the set of all bicompositions of d. In | | a cyclotomic Schur algebra over
Q(q, Q, Q1,Q2) for each saturated subset A < Ay(d), which specializes to cyclotomic Schur
algebras S (A) over k is defined (see Section 13.2). Moreover, in [Rou] an algebra Sg(A) is

defined that is Morita equivalent to Sg(A) as given below:

S™(d) == Endys (Pa). Pai= @ maHg,(d). (12.7)
AeAT (d)

where m,, is defined in Eq. (13.11). Note that S®(d) does not depend on n. Set
F}(—) = Homgr gy (P, —) : S"*(d)-mod — Hg’q(d)—mod. (12.8)

Proposition 12.2.5. [l?ou, Theorem 6.6]
(a) The category Mod(S®(d)) is a highest weight category for the dominance order;
(b) (SR(d), F}) is a quasi-hereditary cover of Hg’q(d);
(¢) The cover (S®(d), FY) is 1-faithful if

d
(@ + 1)@ +1)#0, and f5.(d) - [[Q+¢+-+¢Y)#0. (12.9)

i=1
The category O for the type B rational Cherednik algebra together with its KZ functor
can then be identified by combining Propositions 12.1.1, 12.2.4 and 12.2.5. In other words,

the following diagram commutes if Eq. (12.9) holds:

OWB(d) = > SR(d)—HlOd

KZW]% /Fé"

ngq(d)—mod
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12.3 1-faithfulness of S; (n,d)-mod

Let ¢ be the multiplicative order of ¢? in k*. In this section we use the following assumptions:

d—1

BQRo=[]@2+¢) ek, ri=[n2>d (>4 (12.10)

i=1—d

As a consequence, there exists a type B Schur functor by Proposition 10.1.1. For type A,
it is known in | | that the ¢-Schur algebra is a 1-faithful quasi-hereditary cover of the
type A Iwahori-Hecke algebra if ¢ > 4. Moreover, Theorem 9.1.1 applies and hence we will
see shortly that S35 (n,d) is a I-faithful quasi-hereditary cover of Hg, ,(d). Furthermore,
Proposition 12.1.1 implies that we have a concrete realization for the category O for the

type B rational Cherednik algebra together with its KZ functor using our Schur algebra.
Corollary 12.3.1. If f} € k*, then S§ ,(n,d)-mod is a highest weight category.

Proof. Tt follows immediately from the isomorphism with the direct sum of type A ¢-Schur

algebras that 5’57(1(71, d)-mod is a highest weight category. O

In below we characterize a partial order for highest weight category 5’57(1(71, d)-mod ob-
tained via Corollary 12.3.1 and the dominance order for type A. Denote the set of all N-step
partitions of D by A*(N, D). Set

Anp = {A%N) | Ae AN, D)} (12.11)

Now Aﬁa p is a poset with respect to the dominance order < on A*(N, D). It is well known

that for all nonnegative integers N and D, (S}(N, D)-mod, Ay ) is a highest weight cate-

gory.
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Recall Fg from Eq. (10.11) and A®(n, d) from Eq. (11.8). Set
ALy ={AP(N) = FHAMAD) @ AR AD)) [ A = AV AP e AP(n,a)}.  (12.12)

Now Ag,d is a poset with respect to the dominance order (also denoted by <) on A(n,d) =

A3 (d). Hence, (S7(n,d)-mod, <) is a highest weight category.

Lemma 12.3.2. Assume that Sg ,(n,d) is a quasi-hereditary cover of 1o, ,(d). If Eq. (12.10)

holds, then the cover is 1-faithful.

Proof. Write A = S5 (n,d), B =Hg, (d),5" = SX([n/2],4),5" = SX(|n/2],d — i) for short.
We need to show that, for all M, N admitting AB-filtrations,

Exty (M, N) =~ Extl, (F2,M,FP;N), i<l
Recall Fg from Eq. (10.11). Write FsM = @, M; ® M and FsN = @, N/ ® N/ for some
M/, N/ € Mod(S’") and M/, N' € Mod(S”). From construction we see that all M/, M N/, N/
admit A*-filtrations since M, N have AB-filtrations.

For |n/2] = d > i > 0, we abbreviate the type A Schur functors (see Eq. (10.1)) by

F' = F[j;\l s F "= F[n J21.d . Since the type A g-Schur algebras are 1-faithful provided ¢ > 4,

for 7 < 1 we have

Ext, (M, N]) ~ Ext}

Hq(Biy )(F/Mi/?F/Ni/)a

(12.13)

Extl, (M]', N}') ~ Ext]

2 (E B )(F//Mi”, F”Ni”).
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We show first it is O-faithful. We have

HOHlA(M, N) ~ H0m®§l:0 S'®S" <FSM, .FSN)

d
~ (—B Homg (M], N]) ® Homgr (M, N}')

2 12
D= iD= LD~ §

-
I
=}

Homy,, (s, ) (F'M], F'N;) ® Homy,, y(F" M, F"N)

(Ba—it1

(12.14)
HomHQ(Eiw‘—l)@HtJ(EdfiJrl) <F/Mz/ ® F/Mi”> F”Ni/ ® F”Ni”>

0

Homﬁq(ziﬂ)@?{q(zd%ﬂ)(FHFg,dM’ ‘FHF dN)
~ Homp(F, ,M, F) /N).

Note that the second last isomorphism follows from Proposition 10.1.2. For 1-faithfulness,

we have

d
ExtA (M,N) ~ @ ( Exts/ (M!, N!) ® Homg» (M, N!"))
=0

@ (Homg (M/, N]) ® Ext§, (M, N/')))

@&

((Exty,, (s, ) (FM, F'N]) @ Homay, (s, ) (F" M, F'NY))

i=0 (12.15)
® (Homyy, (s, (F'M}, F'N;) ® Ext%q(zd,,.H)(F "M, F"N}))
~ (;T%Ext%{q(xm)@%q(zd_m (FuF) M, FyF) 4N)
~ Exty(F) M, F) /N).
O

Theorem 12.3.3. Assume that W = WP(d), h <0, hy —ho = (1 —d)h (see Eq. (12.2)) and

(*+1)(Q*+1) € k*. If Eq. (12.10) holds, then there is an equivalence Ow =~ S§ (n,d)-mod
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of quasi-hereditary covers. In other words, the following diagram commutes:

12

Ow > S54(n, d)-mod

Km %bd
,

He,,(d)-mod

Proof. The theorem follows by combining Propositions 12.1.1, 12.2.4 and Lemmas 12.2.2,
12.3.2. 0

Remark 12.3.4. The uniqueness theorem for 1-faithful quasi-hereditary covers also applies
on our Schur algebras and Rouquier’s Schur-type algebras. That is, the following diagram

commutes provided Eq. (12.9) and Eq. (12.10) hold:

S (d)-mod - > S5 4(n, d)-mod

R /
Fd\ P,

H,q(d)-mod
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Chapter 13

Variants of ¢-Schur algebras of type
B/C

It is interesting that the type A ¢-Schur algebra admits quite a few distinct generalizations
in type B/C in literature. This is due to that the type A ¢-Schur algebra can be realized
differently due to the following realizations of the tensor space (k")®?: (1) A combinatorial
realization as a quantized permutation module (cf. [DJ2]); (2) A geometric realization as the
convolution algebra on GL,-invariant pairs consisting of a n-step partial flag and a complete
flag over finite field (cf. | ).

In the following sections we provide a list of ¢-Schur duality/algebras of type B/C in
literature, paraphrased so that they are all over k, and with only one parameter q. These
algebras are all of the form Enngs (d) (V®4) for some tensor space that may have a realization

Ved ~ @ et M A via induced modules. Considering the specialization at ¢ = 1, we have
M’\}qzl = indLVAB(d) U, Hy,<W?5(d)isasubgroup, U is usually the trivial module.

We summarize the properties of the g-Schur algebras in the following table:
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Coideal ¢-Schur Algebra

Cyclotomic Schur Algebra

Sakamoto-Shoji Algebra

SP(n,d) Sq(A) 59 (a,b,d)
Index set compositions A = (A;)e I(n) bicompositions unclear
with constraints on \; A= (AW, \3)
Subgroup H, WE(Xo) X Zpay,n) (C‘Q/\ml X Cg/\(m) x Xy unknown
Module U trivial nontrivial
Schur duality (Uf(n),?—[];(d)) unknown (U, (g, x g[b),Hf(d))
Cellularity new [LNX] known | ] unknown
Quasi-heredity new [LNX] known | ] unknown
Schur functor new [LNX] unknown unknown

For completeness a more involved g-Schur algebra (referred as the g-Schur? algebras) of
type B is studied in [D5S]. We also distinguish the coideal g-Schur algebras from the slim

cyclotomic Schur algebras constructed in | .

13.1 The coideal Schur algebra Squ(n, d)

To distinguish Sf (n,d) from the other variants we call them for now the coideal Schur
algebras since they are homomorphic images of coideal subalgebras.

For the equal-parameter case, a geometric Schur duality is established between HqB(d)

and the coideal subalgebra U*(n) as below (cf. | E
U (n)
l
SE(n, d) TE (n,d) ~ (k")® ~ T8 (n,d) — H(d)

Note that a construction using type C flags is also available, and it produces isomorphic

Schur algebras and hence coideals. A combinatorial realization T, ﬁg(n,d) as a quantized

permutation module is also available along the line of Dipper-James.
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For the case with two parameters, the algebra qu(n, d), when n is even, was first intro-
duced by Green and it is called the hyperoctahedral ¢-Schur algebra [Gr2]. A two-parameter
upgrade for the picture above is partially available - a Schur duality is obtained in [ ]
between the two-parameter Iwahori-Hecke algebra ’Hg,q(d) and the two-parameter coideal
UB over the tensor space Q(Q, q); a two-parameter upgrade for TS (n,d) is studied in [I.1]

- while a two-parameter upgrade for T glio(n, d) remains unknown since dimension counting
over finite fields does not generalize to two parameters naively.
To our knowledge, this is the only g-Schur algebras for the Iwahori-Hecke algebras of

type B that admit a coordinate algebra type construction and a notion of the Schur functors

with the existence of appropriate idempotents.

13.2 Cyclotomic Schur algebras

The readers will be reminded shortly that the cyclotomic Iwahori-Hecke algebra H(r, 1, d)
of type G(r,1,d) is isomorphic to ’HqB(d) at certain specialization when r = 2. For each
saturated subset A of the set of all bicompositions, Dipper-James-Mathas (cf. | ]) define

the cyclotomic Schur algebra S(A):
Sq<A> = EnquB(d) T(A),

where T'(A) is a quantized permutation module that has no known identification with a
tensor space. While a cellular structure (and hence a quasi-heredity) is obtained for S,(A),
it is unclear if it has a double centralizer property. We also remark that there is no known
identification of T}, (n, d) with a T'(A) for some A,

Let R = Q(q, @, Q1,Q2). The cyclotomic Iwahori-Hecke algebra (or Ariki-Koike algebra)

H = H(2, 1, d) is the R-algebra generated by T¢, ..., T5 , subject to the relations below, for
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1<i<d—1,0<j<k—1<d—2:

(T3 — QT3 — Q2) =0, (T7 + 1)(T3* — qa) = 0,

(TRTR) = (TPTP TATATA = T2 TATS

i+1+1 i+151 i+1)

TRTR = TRTR.

J

Next we rewrite the setup in . loc. cit. using the following identifications:

ga < q 2, TS o q 'T;

Under the identification, the Jucy-Murphy elements are, for m > 1,

L= (qa)"™"T5 ... T8 ... TS,

= (qTﬁfl) e (QTOA) cee (qTrﬁfl)

= m_l...TO...Tm—l-

Then the cyclotomic relation is

('8 — Q)¢ Ty — Q) =0, or (T3 — qQ1)(Ty’ — qQ2) = 0.

This is equivalent to our Iwahori-Hecke relation at the specialization below:

Qi=-q¢'Q, Q=q¢'Q"

In summary we have the following isomorphism of k-algebras.

(13.1)

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

Proposition 13.2.1. The type B [wahori-Hecke algebra Hgﬂ(d) is isomorphic to the cyclo-

tomic Twahori-Hecke algebra H(2,1,d) at the specialization Q; = —q¢'Q, Qs = ¢ 'Q~ L.
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For a composition A = (Aq, ..., \;) € N of ¢ parts write

A=A +...4+ N, and £(\) =" (13.7)

A bicomposition of d is a pair A\ = (A, A®) of compositions such that [AM| 4 [A?)| = d.
We denote the set of bicompositions of d by Ay = As(d). A bicomposition A is a bipartition
if A\, A\ are both partitions. The set of bipartitions of d is denoted by A = AJ (d).

Following [ |, the cyclotomic Schur algebras can be defined for any saturated subset
A of the set As(d) of all bicompositions of d. That is, any subset A of Ay satisfying the
condition below:

If pe A,veAf(d) and v = p, then v € A. (13.8)

For each A we define a cyclotomic Schur algebra S(A) = Endy (P, maH), where

e(AM)
mx = “Z(Ml))%? “Z(Am) = H (L — Q2), xx= Z T, (13.9)
m=1 WEX )\

and X, = Z(;) X 25\2) is the Young subgroup of ;. The specialization Sg(A) of S(A) at

Q1 =—q'Q,Q2 = ¢ Q" is then given by

So(A) =End,z [ D maHe, | (13.10)
@ AeA
where
my= (L1 —q'Q7Y)... (Lory — QY. (13.11)

Let To(\, 1) be the set of semi-standard A-tableaux of type u, that is, any 7' = (T™M, 7)) e

To(\, i) satisfies the conditions below:

(SO) T is a A-tableau whose entries are ordered pairs (i,k), and the number of (i,7)’s
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(%)

appearing is equal to p,; ;
(S1) entries in each row of each component T®) are non-decreasing;
(S2) entries in each column of each component T*) are strictly increasing;

(S3) entries in 7 must be of the form (7,2).

We note that the dimension of the cyclotomic Schur algebra A is given by

dimSo(A) = Y [T\ ml- [To(A,v)]. (13.12)

AeAT (d)
JIRZN

It is then define a “tensor space” To(A) = @, ma He,, which has an obvious Sy (A)—H] (d)-

bimodule structure.

Example 13.2.2. Let
Agp = Aap(d) = {1 = AV XD e Ay(d) | €AY) < a, (AP < b). (13.13)

Recall that the dominance partial order in AJ (1) is given by po = (00, @) > py = (2,0), and
hence Ag1(1),A11(1) are saturated, while A (1) is not. The cardinality of |To(fte, fte)| is

given as below:

[ To(per, pn)| = 1 = [To(pa, p1)| = |To(pas pe2)]s [ To(pa, p2)| = 0.

Note that 7o(u1, p12) is empty since the only po-tableau of type s is (&, 112]), which violates

(S3). Hence, the dimensions of these cyclotomic Schur algebras are
Sq(Aoa(1)) =1, S4(Aga(1)) = 3.
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For d = 2, the dominance order in AJ (2) is given by
As = (I, @) > Ay = <H,®) > A3 = (0,0) > A = (&,[1) > A\ = (@E) :

The sets Ao 2(2), A12(2), and As5(2) are saturated. The cardinality of |To(Ae, Ae)| is given in

the following table

type\shape | A5 Ay A3 Ao A
A5 1 0 0 0 O
A4 11 0 0 0
A3 1 1 1 0 0
Ao 1 0 1 1 0
A1 1 1 2 1 1

Hence, the dimensions are
dim Sq(A072(2)) = 3, dim Sq(A1’2(2)> = 7, dim Sq(A272(2)) = 15.

Recall that dim S;’(2,d) = d + 1 for all d, hence the algebras Sp’ and S,(A) small ranks do

not match in an obvious way.

13.3 Sakamoto-Shoji Algebras

The cyclotomic Iwahori-Hecke algebra H(r, 1, d) does admit a Schur-type duality (cf. [S5])

with the algebra U,(gl,, x ... x gl, ) where ny + ...+ n, = n. Hence, it specializes to the
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following double centralizer properties, for a + b = n:

Ug(gl, x gly)
!
SB(a,b,d) ~ T(a,b,d) = (k")® —~ H}(d)

We will see in Eq. (13.17) that T acts as a scalar multiple on T'(a, b, d), which is different
from our TP-action § 8.1. Consequently, the duality is different from the geometric one. We
could not locate an identification between S¢’(a, b, d) and Sy(A) for some A in the literature.

Now we set up the compatible version of the cyclotomic Schur duality introduced in [S5].
Let R' = Q(Q, ¢, u1,uz), and let Hyo be the the R'-algebra generated by ay, ..., aq subject

to the relations below, for 2 <1< d, 1 <j<k—-1<d-1:

(ay —up)(a; —ug) =0, (a; —¢)(a; + (¢))"' =0, (13.14)

(a102)* = (a201)%, @0 110; = Qi10:0541,  ara; = ajay. (13.15)
With the identifications below one has the following result.
ai T, ¢ <q! (13.16)

Proposition 13.3.1. The type B Twahori-Hecke algebra Hgﬂ(d) s isomorphic to the algebra

Hyo at the specialization u; = —Q), uy = QL.

Let Tg(a,b,d) = Va%d where V,;, = k% @ k is the natural representation of U,(gl, x gl,)
with bases {v%l), . ,v((ll)} of k* and {v?), . ,1)152)} of kb. The tensor space Tg(a,b, d) admits

an obvious action of the type A Iwahori-Hecke algebra generated by T1,...,Ty_1. The T2-
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action on T'(a,b,d) is more subtle as defined by
T8 =Tyo ... 0Ty 10 S5 10...08 owe End(T(a,b,d)), (13.17)
where w is given by

—Qr1®..Qxy ifxr = vz-(l) for some i;
(1 ®...Qry) = (13.18)

Q'11®..Qay ifx = vi@) for some i,

and that S; is given by

Ti(11®...®xq) if x;, x;.1 both lies in k* or k:
SZ(ZL'1® . @ZEd) =
R | &® Tit1 ® €Z; ® Tit2 ... otherwise.
(13.19)
Define
So.q(a,b,d) = Endys (o) (To(a,b,d)). (13.20)

It is proved in [S5] that there is a Schur duality as below:

Ug(gl, x gly)
|
SB(a,b,d) —~ T(a,b,d) —~ H(d)

Example 13.3.2. Let a = b = 1,d = 2. Then Ty(1,1,2) has a basis {v := vgl),w = vf)}.

103



The T2-action is given by

(v® v)ng =—-QuRu,
(v® w)Td3 = —QuvRw,
(W®V)Ty =Q (w®v+ (g7 —gv@w),

(w@w)Ty = Q 'w®w.

Note that this is essentially different from the T2 -action for the coideal Schur algebra given

in § 8.1.

13.4 Slim cyclotomic Schur Algebras

The slim cyclotomic Schur algebra Sy, ... .4,)(n, d) introduced in | ] is another attempt to

establish a Schur duality for the cyclotomic Twahori-Hecke algebra H(r, 1,d). When r = 2,
the algebra Sy, uy) (1, d) has the same dimension as the coideal ¢-Schur algebra S§ (2, d);
while there is no counterparts for the algebra qu(Zn +1,d).

It is conjectured in | ] that there is a weak Schur duality between the cyclotomic

Iwahori-Hecke algebras and certain Hopf subalgebras U, (gln)(t) of Uq(gA[n) for an integer ¢ to

be determined. In our setting it can be phrased as follows:

A~

Uyal,) 2 Uy(sl,)®

|
SAn,d)  — Sggnd) —~ Q% —~ HB(d)

Here Siq)(n,d) = Endyz ) (T{q.q)(n,d)) is the centralizer algebra of the #(d)-action on
a finite dimensional g-permutation module T{, ) (n, d), while § is the (infinite-dimensional)

natural representation of Uq(é\[n).
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We remark that it is called a weak duality in the sense that there are epimorphisms
Uy(s0,)® = S(4q(n,d) and H, (d) — Ends,  na(Q2®%); while it is not a genuine double

centralizer property.
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