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Abstract

Due to recent advances of modern technology, abundant data are collected in many scientific areas. The

developments in theory and methodology for sufficient dimension reduction (SDR) have provided a powerful

tool to study such high dimensional data. Most existing methods are aiming at estimating the basis matrix

and structural dimension of the central subspace (CS). This dissertation is composed with three parts. In the

first study, we introduce stable estimation procedures for several aspects of a sufficient dimension reduction

matrix, including a stable method for estimating structural dimension, a Grassmann Manifold sparse estimate

for the CS, a stable nonsparse estimate for the CS. In the second study, in order to obtain a reliable estimate

for correlated predictors, we uncover the underlying relationship between ridge regression and measurement

error regression. With such a connection, we propose a general SDR estimation procedure to obtain an

estimate from a different subspace instead of the targeted population parameter space. In the third study,

we combine the stable and pseudo approach together and tackle the small n large p problem for dimension

reduction. Theoretical results are established for our methods and the efficacy of the proposed methods is

demonstrated by simulation studies and real data analyses.

Index words: Grassmann manifold, measurement regression, penalized estimator, ridge regression,
subsampling, sufficient dimension reduction.
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Chapter 1

Overview

The goal of a regression analysis is to understand the conditional distribution of the univari-

ate response Y given a p × 1 predictor vector X. Attention is often restricted to the mean

function E(Y |X), and perhaps the variance function Var(Y |X). As the dimensionality of the

data has been significantly increased in the recent decades, many traditional statistical tools

fail due to the “curse of dimensionality” (Bellman, 1961). Hence, dimension reduction has

become one of the most popular topics in the statistical fields. Dimension reduction is useful

not only for computational efficiency, but also for improving the accuracy of the analyses.

Among many dimension reduction methods, principal component analysis (PCA) as a

multivariate technique is probably the most well-known approach. It has been used in almost

any area with large number of variables. PCA explains the covariance structure through a few

linear combinations of the variables. It has interpretation purpose and should be considered

as an intermediate step in much larger investigation. However, PCA as a dimension reduction

method in the regression sense is a naive approach, or marginal dimension reduction approach

because it reduces the dimension of X without considering any information from Y .

Sufficient dimension reduction (SDR) that also reduces the dimension of predictors through

a few linear combinations of the predictors, but it incorporates the information from the re-
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sponse variable as well. The goal of SDR (Li, 1991; Cook, 1994, 1996) is to infer the dimension

reduction subspace S(B), which is spanned by the columns of a p× d matrix B, such that:

Y X|BTX, where stands for independence. This expression states that for a given value

of BTX, the distribution of Y is independent of X. When the intersection of all dimension

reduction subspaces itself is a dimension-reduction subspace, it is called the central subspace

(CS) and denoted by SY |X (Cook, 1996). The dimension d of the CS, which is the number

of linearly independent columns of the basis matrix B, is called the structural dimension of

the CS (Cook, 1996). Conditions for the existence of the CS are developed by Cook (1998)

and Yin et al. (2008). In this dissertation, we assume that the CS exists. Inferences in

SDR usually contain two parts: estimating the structural dimension d, and estimating the

basis matrix B of the CS. Typical estimators of the CS are usually obtained by using dimen-

sion reduction matrices. These methods include well-known sliced inverse regression (SIR;

Li 1991), principal Hessian directions (PHD; Li 1992) and sliced inverse variance estimate

(SAVE; Cook and Weisberg 1991). The structural dimension of the CS is typically estimated

by the number of nonzero eigenvalues of the dimension reduction matrix, while a basis matrix

of the CS is estimated by their corresponding eigenvectors. There are many existing meth-

ods to estimate d, including chi-square test (Li, 1991), modified BIC criterion (Zhu et al.,

2006) and more recently, the sparse eigenvalue decomposition (SED) procedure (Zhu et al.,

2010a). Cook (2004) reformulated a dimension reduction matrix as a least squares approach

over a Grassmann Manifold. This reformulation makes many techniques in the least squares

approach become available for the purpose of dimension reduction. For instance, Li (2007)

developed sparse sufficient dimension reduction methods (SSDR) by reformulating equivalent

least squares estimators for dimension reduction matrices and then adapted penalization ap-

proaches. The SED (Zhu et al., 2010a) method reformulates the eigen-decomposition method

as a least squares approach, then adapts penalization approaches such as LASSO (Tibshirani,

1996) or adaptive LASSO (Zou, 2006).
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Variable selection is another important problem in the literature of SDR. Similarly to

that of Cook (2004), Yin and Hilafu (2015) formally defined central variable selection space,

SVY |X, to be the column space of α where the columns of α consist of unit vectors of ej

with jth element 1 and 0 otherwise, such that Y X|αTX. They discussed the differences

between SDR and sufficient variable selection (SVS). One approach to achieve SVS is the

use of penalized method with SDR procedures. Many existing methods (Ni et al., 2005; Li,

2007; Zhou and He, 2008; Wang and Yin, 2008; Chen et al., 2010) impose a penalization to

the estimated SY |X in order to obtain SVY |X.

In this dissertation, we focus on developing methodologies in SDR and SVS. In particular,

we propose stable and pseudo estimates for SDR and SVS. In Chapter 2, we introduce stable

estimation procedures for several aspects of a sufficient dimension reduction matrix. We

first propose a stable method for estimating structural dimension, which only selects the

correct directions in the central subspace with no false positive selection. We then provide

a Grassmann Manifold sparse estimate for the central subspace. By using subsampling, we

develop an ensemble method to obtain a stable nonsparse estimate for the central subspace.

This ensemble idea is also used to stabilize the choice of the number of slices in sliced inverse

methods. Theoretical results are established, and the efficacy of the proposed stable methods

is demonstrated by simulation studies and the analysis of Hitters’ salary data.

In Chapter 3, we study the case of high correlations among predictors, which is a com-

monly encountered problem in many fields. For example, the prostate cancer data (Stamey

et al., 1989) which examines the correlation between the level of prostate specific antigen

and a number of clinical measures in men who were about to receive a radical prostatectomy

is of this type. This phenomenon usually results in unstable estimates with large standard

errors (Hoerl and Kennard, 1970). Among many existing methods, ridge regression (Hoerl

and Kennard, 1970) is a popular approach to handle such a problem. However, selection

criterion of a possible optimal ridge tuning parameter is always difficult and it is only avail-
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able in linear models, hence, model-dependent. We propose a new concept of pseudo SDR.

We uncover the underlying relationship between ridge regression and measurement error re-

gression. With such a connection, we propose a general SDR estimation procedure to obtain

an estimate from a different subspace instead of the targeted population parameter space.

Using an ensemble idea, our proposed pseudo estimate is better than the traditional estimate

or a ridge estimate for highly correlated predictors, and avoids the difficulties for choosing

a particular ridge tuning parameter. In addition, we propose a variable selection procedure

based on the a pseudo confidence interval. When the sample size is small, we propose to

pool many extrinsic samples together to enlarge the sample size. Our approach is useful

when the original sample size is small, especially for a small n large p problem. With an

enlarged sample, a small n large p problem becomes to a classic large n small p problem. By

using multiple extrinsic samples, a nonsparse estimate can be obtained through an ensemble

idea over each extrinsic sample estimate and a sparse estimate can be obtained based on the

empirical confidence interval of estimates from multiple extrinsic samples. Theoretical prop-

erties are studied for pseudo estimators. Our method requires no parametric assumptions on

the underlying model. The effectiveness of the newly proposed methods are demonstrated

by simulation studies and two real data analyses.

In Chapter 4, we study another challenging problem in statistics, the small n (sample size)

large p (number of predictors) problem. We will tackle this problem by combining both stable

and pseudo estimation methods. Meinshausen and Bühlmann (2010) uses subsampling in

their method to achieve stable variable selection. However, when the original observed sample

size is relatively small, traditional re-sampling methods, such as subsampling, reduce the

effective sample size even further in the estimation procedure. In this study, we propose an

extrinsic sampling approach to ensure sufficient effective sample size. We illustrate extrinsic

sampling methods by using ordinary least squares and sliced inverse regression. Simulation

results demonstrate the effectiveness of our methods.
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The connections between our approach and Meinshausen and Bühlmann (2010) suggest

that we shall be able to establish similar theory. On the other hand, the extrinsic sample

also brings different aspects, and perhaps difficulties. Our future work will investigate and

establish such theories and apply our algorithm in other areas with small n large p data.
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Chapter 2

Stable sufficient dimension reduction1

2.1 Introduction

Dimension reduction that reduces the dimension of predictors is useful not only for compu-

tational efficiency, but also for improving the accuracy of analysis. Let Y be a univariate

response and X = (x1, x2, ..., xp)
T be a p× 1 predictor vector. The goal of dimension reduc-

tion (Li, 1991; Cook, 1996, 1994) is to infer the dimension reduction subspace S(B), which

is spanned by the columns of a p × k matrix B, such that: Y X|BTX, where stands

for independence. This expression states that for a given value of BTX, the distribution of

Y is independent of X. When the intersection of all dimension reduction subspaces itself is

a dimension-reduction subspace, it is called the central subspace (CS) and denoted by SY |X

(Cook, 1996). The dimension k of the CS, which is the number of linearly independent

columns in B, is called the structural dimension of the CS (Cook, 1996). Conditions for

the existence of the CS are developed by Cook (1998) and Yin et al. (2008). In this arti-

cle, we assume that the CS exists. Inferences in dimension reduction usually contain two

parts: estimating the structural dimension k, and estimating B, a basis matrix of the CS.

1 Wu, W. and Yin, X. (2015). Stable estimation in dimension reduction. Journal of Computational and
Graphical Statistics, 24(1):104-120. Reprinted here with permission of publisher.
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Classical estimators of the CS are usually obtained by using dimension reduction matrices.

These methods include well-known sliced inverse regression (SIR; Li 1991), principal Hessian

directions (PHD; Li 1992) and sliced inverse variance estimate (SAVE; Cook and Weisberg

1991). The structural dimension of the CS is typically estimated by the number of nonzero

eigenvalues of the dimension reduction matrix, while a basis matrix of the CS is estimated by

their corresponding eigenvectors. There are many existing methods to estimate k, including

chi-square test (Li, 1991), modified BIC criterion (Zhu et al., 2006) and more recently, the

sparse eigenvalue decomposition (SED) procedure (Zhu et al., 2010a). Cook (2004) reformu-

lated a dimension reduction matrix as least squares approach over a Grassmann Manifold.

This reformulation makes many techniques in the least squares approach become available

for the purpose of dimension reduction. For instance, Li (2007) developed sparse sufficient

dimension reduction methods (SSDR) by reformulating equivalent least squares estimators

for dimension reduction matrices and then adapted penalization approaches. The SED (Zhu

et al., 2010a) method reformulates the eigen-decomposition method as a least squares ap-

proach, then adapts penalization approaches such as LASSO (Tibshirani, 1996) or adaptive

LASSO (Zou, 2006). These penalized methods can achieve a quite accurate estimate, when

the tuning parameter is chosen correctly. While methods like SED or SSDR have achieved

great success, their results can be influenced greatly by the selection of tuning parameters

in the penalization steps.

In this paper, we propose stable procedures for dimension reduction so that the influence

of the selection of tuning parameters is reduced when the penalization approach is used. In

addition, we propose an ensemble idea with a subsampling scheme to improve the accuracy

of the estimates. The paper is organized as follows: In Section 2.2.1, we combine a subsam-

pling method and random weights scheme to stabilize the estimate of the SED method; in

Section 2.2.2, we propose a Grassmann Manifold sparse estimate, providing a new sparse

sufficient dimension reduction estimate and combining it with a subsampling and random
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weights approach to achieve the stability of the estimate; in Section 2.2.3, we propose an

ensemble approach to combine results from different subsamples with a threshold idea to ob-

tain a stable non-sparse estimate for the CS. In addition, we aggregate dimension reduction

matrices with different numbers of slices in the inverse methods to overcome the well-known

issue for choosing the number of slices. In Section 2.3 we conduct simulation studies. We

conclude our paper with a short discussion in Section 2.4. All proofs and additional materials

are arranged in the supplementary file (Web Appendix A−H).

In this paper, for dimension reduction we will work with the standardized predictors

Z = Σ−1/2
x (X − E(X)) such that E(Z) = 0 and Σz = Ip where Σx and Σz are covariance

matrices of X and Z, respectively. This is because the CS found in the Z-scale can be

easily transformed back to the X-scale (Cook, 1998). However, for variable selection in

Section 2.2.2, our discussion will focus on the original X-scale. This is because sparsity is

not generally transformed from one scale to another scale. That is, if a model is sparse in

the X-scale, it does not mean it is sparse in the Z-scale, or vice versa. We also assume that

the sample covariance of X based on a random sample (Yi,Xi) for i = 1, · · · , n, is invertible.

Remarks on a non-invertible sample covariance matrix of X can be found in Section 2.4.

2.2 Stable estimation in dimension reduction

To obtain a stable estimate, we mainly use three ideas: subsampling, random weights and

ensemble. For subsampling, Theorem 1 of Meinshausen and Bühlmann (2010) established

a general upper bound of the expected number of falsely selected variables by using sub-

sampling for any procedure that is not worse than random guessing. This result holds for

most of the existing dimension reduction methods that consistently estimate the CS. Thus

we omit its result and theoretical discussion here, but only adopt the subsampling scheme

in our algorithms for dimension reduction. However, for the use of random weights in di-
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mension reduction, while the idea is similar, the technique and setup are different, and so

are the results. Hence, we will establish respective theoretical results in Section 2.2.1 where

the structural dimension is estimated, and in Section 2.2.2 where the sparse estimate of the

CS is obtained. In Section 2.2.3, an ensemble idea is proposed to obtain a stable non-sparse

estimate of the CS. Furthermore, we use the ensemble idea to overcome the issue of using a

fixed number of slices in the inverse dimension reduction methods.

2.2.1 Estimating structural dimension

Suppose that a dimension reduction matrix M is constructed using the standardized predic-

tors Z, then a typical eigen-decomposition solution can be rewritten as

M =

p∑
i=1

β̃iηiη
′
i, (2.1)

where β̃i and ηi are the corresponding eigenvalues and eigenvectors of M. The number of

nonzero eigenvalues of β̃i is the estimated structural dimension k̂, while their corresponding

eigenvectors span the estimated CS. Having such an η̂ = (η1, · · · , ηp), in order to obtain a

more accurate k̂, we adopt a penalized method, similar to that of Zhu et al. (2010a):

ˆ̃β = arg min
˜β

(
‖M−

p∑
i=1

β̃iηiη
T
i ‖2 +λ

p∑
i=1

|β̃i|
Wi

)
, (2.2)

subject to η̂′η̂ = Ip, and W = (W1, · · · ,Wp)
′ is a known weight vector based on the estimates

of β̃i for i = 1, · · · , p. The notation ‖ · ‖ refers to the Frobenius norm for a matrix. The

L1 penalization of adaptive LASSO (Zou, 2006) shrinks some eigenvalues exactly to zero,

depending on the tuning parameter λ. The structural dimension is then estimated by the

number of non-zero eigenvalues. Although the penalty term is the same, our formulation is

slightly different from Zhu et al. (2010a), in which we treat η̂ as fixed while they simulta-
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neously estimated it. They showed that with a well-chosen tuning parameter λ, the SED

procedure can provide a very accurate k̂. They provided an information criterion to select

the tuning parameter, but the choice of its range is critical. We want to develop a sub-

sampling and random weights approach to stabilize the choice of the tuning parameter, as

Meinshausen and Bühlmann (2010) did for the linear model. To do so, we first reformulate

(2.1) as:

Ỹ =

p∑
j=1

β̃jxj = X̃β̃, (2.3)

where Ỹ = vec(M), β̃ = (β̃1, · · · , β̃p)′, and X̃ = (x̃1, · · · , x̃p) = (η1 ⊗ η1, · · · , ηp ⊗ ηp).

Model (2.3) can be viewed as a regression model with no error term. Note that X̃ has a

simple structure as X̃′X̃ = (η1 ⊗ η1, · · · , ηp ⊗ ηp)′(η1 ⊗ η1, · · · , ηp ⊗ ηp) = Ip because ηi’s are

orthonormal eigenvectors. If A and B are the column indexes of X̃, it is easy to verify that

X̃′AX̃B = 0, if A ∩B = ∅.

Let W be a p× p diagonal matrix with diagonal entries Wkk = Wk for all k = 1, · · · , p,

where Wk are generated from Uniform[u, 1] for some u ∈ (0, 1). Meinshausen and Bühlmann

(2010) suggested an effective range for u ∈ (0.2, 0.8), and to sample Wk’s independently as

Wk = u with probability pw ∈ (0, 1), and Wk = 1 otherwise. Let X̃w = X̃W , then

X̃w = (W1η1 ⊗ η1, · · · ,Wpηp ⊗ ηp) =
(

(
√
W1η1)⊗ (

√
W1η1), · · · , (

√
Wpηp)⊗ (

√
Wpηp)

)
,

and model (2.3) becomes to

Ỹ = X̃wβ, (2.4)

where Wβ = β̃. Moreover, we have

(X̃w)′X̃w =W ′X̃′X̃W =W ′W = D = diag(W 2
i ). (2.5)

10



With the random weights, the optimization problem (2.2) is simplified as

β̂ = arg min
β

(
‖ Ỹ − X̃wβ ‖2 +λ

p∑
i=1

|βi|

)
, (2.6)

which is a LASSO problem (Tibshirani, 1996). Hence, we can use the techniques from

Meinshausen and Bühlmann (2010). Let I be a random subsample drawn from {1, ..., n}

without replacement, and Ŝλ(I) = {k : β̂λk 6= 0} be the selected set by (2.6) with tuning

parameter λ for the random subsample I. We define the selection probability for a set

K ⊆ {1, ..., p} and selected tuning parameter λ to be

Π̂λ
K = P ∗{K ⊆ Ŝλ(I)}. (2.7)

For a given cutoff probability πthr and a tuning parameter range Λ0, the set of stable pre-

dictors is

Ŝstable = {k : max
λ∈Λ0

(Π̂λ
k) ≥ πthr}. (2.8)

Meinshausen and Bühlmann (2010) suggested that the subsample size is [n/2] and a rea-

sonable range for πthr is [1/2, 1) and the stability selection results are little sensitive to the

choices of πthr.

To establish the theoretical result for the estimator of (2.6) using random weights, the

Sparse Riesz Condition (Zhang and Huang, 2008; Meinshausen and Bühlmann, 2010) needs

to be satisfied by X̃w in (2.4). Let

φmin(m) = min
|A|=m,v∈Rm

‖ X̃w
Av ‖2

p2 ‖ v ‖2
, φmax(m) = max

|A|=m,v∈Rm

‖ X̃w
Av ‖2

p2 ‖ v ‖2
(2.9)

for ranks 0 ≤ m ≤ p. In (2.9), φmin(m) and φmax(m) are called minimum and maximum

eigenvalues of the design X̃w
A of rank m ≤ p. The Sparse Riesz Condition is satisfied if

11



φmin(m) and φmax(m) are bounded below from 0 and above from ∞ for all m ≤ p:

0 < φ∗ ≤ φmin(m) ≤ φmax(m) ≤ φ∗ <∞ ∀m ≤ p, (2.10)

where φ∗ and φ∗ are some positive finite constants. Properties of φmin(m) and φmax(m) can

be found in Zhang and Huang (2008) and Meinshausen and Bühlmann (2010). Lemma 1 in

Web Appendix A indicates that for design X̃w
A of rank m in model (2.4), the Sparse Riesz

Condition is satisfied.

Let φ∗ = minm≤p φmin(m), φ∗ = maxm≤p φmax(m), and define:

C =
φ∗

φ∗
, r1 = 1 + C, r2 =

3C

2
. (2.11)

THEOREM 1. Let q be the number of nonzero coefficients in model (2.4), and Ŝλ =

{k : β̂λk 6= 0} be the set of selected predictors using (2.6). For r1 and r2 defined in (2.11),

suppose q ≥ 1, the following assertions hold for all penalization tuning parameter λ ≥ inf{λ :

r1q + 1 ≤ p}:

q̂(λ) ≤ q̃ = #{j : β̂λj 6= 0 or j ∈ S} ≤ r1q, (2.12)

B̃2(λ) =‖ (I− P̂)X̃wβ ‖2≤ r2
qλ2

φ∗p2
, (2.13)

where P̂ is the projection to the span of the selected design vectors {x̃wj , j ∈ Ŝλ},

∆2
2(λ) =

∑
j∈S

|βj|21{β̂λj =0} ≤ r2
qλ2

φ∗φ∗p4
, (2.14)

and q̂(λ) is the cardinality of Ŝλ; B̃2(λ) measures the bias of the estimated model, and

∆2
2(λ) counts the sum of squared nonzero coefficients in the true model that are missed in

the estimated model, respectively.
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For a given weight W , (2.14) provides an upper bound of the sum of the coefficients of

the variables that are missed in the selection procedure but have large coefficients in the true

model. An immediate consequence of Theorem 1 leads to the following result.

THEOREM 2. Let Wk be uniformly generated from [u, 1] for some u ∈ (0, 1). Let S be the

set of predictors having nonzero coefficients in model (2.4), and q be the cardinality of S. If

Ŝλ is the set of selected predictors using (2.6) , for any λ ≥ inf{λ : r1q + 1 ≤ p},

Ŝλ ∩ Sc = ∅, (2.15)

and

(S \ Ssmall) ⊆ Ŝλ, (2.16)

where Ssmall = {k : βk ≤
√

1.5qλ/u2}.

Theorem 1 and Theorem 2 are proved in Web Appendix B and Web Appendix C, respec-

tively. Result (2.15) states that the stable estimate of structural dimension selects no noise

directions in the CS, meaning that the false positive selection is avoided by the proposed

method. Result (2.16) concludes that all directions with sufficiently large signals, having

eigenvalues greater than
√

1.5qλ/u2, will be selected, although directions with small signals

will be ignored. In general, we don’t want to miss directions with small positive eigenvalue

coefficients. Practically, however, leaving out weak signals (directions with small eigenvalue

coefficients) will have no major effects on later analysis, since all sufficiently strong signals are

kept in the downstream analysis. In addition, the magnitude of the eigenvalues (smallness,

hence, the weakness of the signals) can be controlled by λ and u. Therefore, any adverse

effect, if possible, can be reduced and controlled by the analyst.

Comparing to the results of Meinshausen and Bühlmann (2010), Theorem 2 requires

weaker assumptions. These advantages are gained because model (2.4) has no error term,
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and because of the special orthogonal structure of predictors X̃w in (2.5). To implement

the stable algorithm, we incorporate subsampling and randomized weight schemes in the

following steps.

1. Draw a random subsample of size bn/2c without replacement from the original sample,

and obtain the dimension reduction kernel matrix Mn
2

from the subsample.

2. Obtain an estimate for the subsample.

• Generate random weights ŵi, i = 1, 2, ..., p, as: fix a u ∈ (0.2, 0.8) and fix a

threshold probability pw ∈ (0, 1), sample random variables ui from U(0, 1) inde-

pendently. If ui ≤ pw, let ŵi = u, otherwise let ŵi = 1.

• Apply eigenvalue decomposition on Mn
2

to obtain a set of orthonormal eigenvec-

tors η̂i. Solve (2.6) for β̂ by fixing the values η̂i with the random weights ŵi

generated above. Obtain the number of non-zero elements in β̂ as an estimate of

structural dimension for these weights.

• Repeat above steps N1 times and obtain N1 estimates of the structural dimensions

for the subsample.

• For a given cutoff probability πthr described in (2.8), the sample πththr quantile of

these N1 estimates is our estimated k̂ for this subsample.

3. Repeat Steps 1 and 2 N2 times to obtain N2 estimates of the structural dimension. For

a given cutoff probability πthr described in (2.8), the sample πththr quantile of these N2

estimates is our estimated k̂.

In the second sub-step in Step 2, we fix the values η̂i as the eigenvectors of Mn
2

and only

estimate ˆ̃β. Zhu et al. (2010a) used the iterative algorithm to simultaneously estimate both

ˆ̃β and η̂i. Both algorithms give very similar results (not reported) except our algorithm is

less computationally intensive. In Step 2, we use the same BIC criterion as in Zhu et al.
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(2010a) to select the tuning parameter. Our algorithm implements N12 = N1 × N2 total

computations to obtain a stable result. We set N1 = N2 = 500, u = 0.5, pw = 0.8, and

πththr = 0.85 in our simulation studies.

2.2.2 Sparse estimation of the central subspace

In this section, we propose a general method for obtaining a sparse solution when a matrix

belongs to a Grassmann Manifold. Suppose that V = (v1, · · · , vk) is a p × k matrix in a

Grassmann Manifold with rank k. Set V ∗ = (V, V ⊥) so that V ∗ is a p×p nonsingular matrix.

Then one can always find a nonsingular symmetric matrix G such that V ∗′GV ∗ = Ip, and

construct a symmetric and positive definite matrix M so that

MV ∗ = GV ∗D, (2.17)

where D is a diagonal matrix with chosen ρ1 > ρ2 > · · · > ρp > 0. Thus V can be

regarded as the eigenvectors of M corresponding to the eigenvalues of ρ1, · · · , ρk, under

the constraint V ′GV = Ik. Equation (2.47) is established in Web Appendix D. We now

provide a Grassmann Manifold sparse estimate for V under aforementioned G,D (hence,

M) setup. Note that for given a V we can construct an eigen-decomposition problem as

above. However, given such an M and G, one can find a unique solution for V ∗ (hence, V )

and D. The following result provides an equivalent solution.

Corollary 1. Let mi, i = 1, · · · , p denote the columns of M1/2, which is the square-root of M

as defined in (2.47), and let α and β be p× k matrices. Consider the following optimization

problem

(α̂, β̂) = min
α,β

{
p∑
i=1

‖ G−1mi −αβTmi ‖2
G

}
(2.18)

subject to αTGα = Ik, where the norm is the inner product with respect to G. Then β̂j ∝ vj,
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where β̂j is the jth column of β̂ and vj is the eigenvector of M corresponding to the jth

largest eigenvalue in the eigenvalue problem mentioned above.

To obtain a sparse estimate, we can simply add a penalty term

(α̂, β̂) = min
α,β

{
p∑
i=1

‖ G−1mi −αβTmi ‖2
G +λ

p∑
h=1

|βjh|
Wh

}
. (2.19)

Corollary 2. Given α in (2.19), for each β̂j, j = 1, · · · , k let

θ̂j = min
θj

{
‖ Ỹ − X̃θj ‖2 +λ

p∑
h=1

|θjh|
Wh

}
, (2.20)

where X̃ = M1/2, Ỹ = M1/2αj and the weights Wh are uniformly generated from [u, 1] for

some u ∈ (0, 1). Then θ̂j = β̂j.

Corollary 1 and Corollary 2 can be directly proved following Proposition 1 to Proposition

3 of Li (2007). Thus we omit their proofs. We call this the Grassmann Manifold sparse

estimate (GMSE) method. Suppose that in (2.47) the chosen ρ1 > ρ2 > · · · > ρp > 0 are all

bounded below by 0 and above by∞, then the Sparse Riesz Condition is satisfied. Therefore,

we have the following result.

THEOREM 3. Let S be the set of predictors having nonzero coefficients in model (2.47)

and q be the cardinality of S. Let Ŝλ denote the set of selected predictors using (2.20). The

φmin and φmax are defined in the same way as in (2.9); and u2 = νφmin(m)/m for any

ν ∈ ((3/κ)2, 1/
√

2), and m = C̄q2. Assume that

φmax(C̄q
2)

φ
3/2
min(C̄q2)

<
C̄

κ
(2.21)

for some C̄ > 1 and some κ ≥ 4. If q ≥ 3, for any λ > inf{λ : r1q + 1 ≤ p} with r1 defined
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in (2.11), there exists some p̃ ∈ (0, 1) such that for all πthr ≥ 1− p̃

Ŝλ ∩ Sc = ∅, (2.22)

and

(S \ Ssmall) ⊆ Ŝλ, (2.23)

where Ssmall = {k : βk ≤
√

1.5C̄q3/2λ}.

Theorem 3 is proved in Web Appendix E. The results of Theorem 3 are similar to the

results of Theorem 2. However, Theorem 3 cannot be directly applied to M, a dimension

reduction matrix obtained based on the original predictors X. This is because the dimension

of M is k < p, which means that some eigenvalues of M are 0, hence, are not bounded by

0. Thus the Sparse Riesz Condition is violated. Nevertheless, we can fix this problem by

working on Mδ = M + δG for some positive constant δ, where G = Σ̂x. Then results of

Theorem 3 hold for Mδ as long as δ > 0 ( See Web Appendix D for details). Empirical

evidence in Web Appendix F shows little effect of varying δ on the estimates. Note that

our approach is proposed due to a referee’s question on the theoretical development for

Li (2007)’s approach. Li (2007)’s method used an additional tuning parameter λ2 for the

purpose of uniqueness of the eigenvectors in theory, but added difficulties for us when proving

our result, as this violates the Sparse Riesz Condition. In addition, the selection of λ2 in Li’s

algorithm adds extra computation time, while our computation time is less but results are

essentially the same. See Web Appendix G for a further detailed comparison of our method

with Li (2007)’s approach.

A stable Grassmann Manifold Sparse Estimate (SGMSE) for the CS can then be obtained

by the following steps:

1. Draw a random subsample of size bn/2c without replacement from the original sample,

and form a sample dimension reduction matrix Mn
2
.
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2. Test the structural dimension k̂ of Mn
2

based on the subsample by existing methods

such as the stable algorithm mentioned in Section 2.2.1. If k̂ = k, proceed to next

step. Otherwise, go back to step 1 and draw another random subsample.

3. For a small positive constant δ > 0, let Mn
2
,δ = Mn

2
+ δG where G is the covariance

matrix of the subsample. Find the usual estimate of β based on Mn
2
,δ without the

LASSO constraint as an initial value for α.

4. Find a solution for the subsample.

• Generate random weights wjh, h = 1, 2, ..., p, for fixed j, j = 1, · · · , k as: fix an

u ∈ (0.2, 0.8) and fix a threshold probability pw ∈ (0, 1), sample random variables

uh from U(0, 1) independently. If uh ≤ pw, let wjh = u, otherwise let wjh = 1.

• Given a fixedα, solve k independent LASSO problems (2.20) to obtain an estimate

β̂ = (β̂1, ..., β̂k) with the generated weights.

• For a fixed β̂, carry out singular value decomposition of G−1/2Mn
2
,δβ = UDV T ,

and update α = G−1/2UV T

• Repeat the two previous sub-steps until the procedure converges, and we have an

estimate β̂ for these generated random weights.

• Repeat the four previous sub-steps N1 times and obtain N1 sparse estimates

β̂
1
, · · · , β̂

N1
.

• For each xi, if its frequency of appearing in β̂
1
, · · · , β̂

N1
is less than the preset

cutoff probability πthr, set all the elements in the ith row of all β̂
1
, · · · , β̂

N1
to

0, say, β̂
1

s, · · · , β̂
N1

s . Then, the first k eigenvectors of
∑N1

i=1 β̂
i

s(β̂
i

s)
′ will be our

estimate, say, β̂
s

for this subsample in the step.

5. Repeat Steps 1 to 4 N2 times to obtain N2 estimates β̂
s,1
· · · , β̂

s,N2
. For each xi, if its

frequency of appearing in β̂
s,1
· · · , β̂

s,N2
is less than the preset cutoff probability πthr,
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set all the elements in the ith row of all β̂
s,1
· · · , β̂

s,N2
to 0, say, β̂

s,1

s · · · , β̂
s,N2

s . Then

the first k eigenvectors of
∑N2

i=1 β̂
s,i

s (β̂
s,i

s )′ will be the final estimate.

In the simulation studies, we use the BIC criterion of Li (2007) for selecting tuning param-

eters. We also set N1 = 500, N2 = 500, u = 0.5, pw = 0.8, and πththr = 0.85.

2.2.3 Ensemble approaches in dimension reduction

In this section, we introduce an ensemble approach to obtain a stable nonsparse estimate of

the central subspace based on subsample with a threshold, and we also solve the well-known

problem in the sliced inverse methods: the choice of number of slices, by using the ensemble

idea.

2.2.3.1 Nonsparse estimation of the central subspace

Let M be a method-specific dimension reduction kernel matrix based on the standardized

predictors Z. We propose the following general algorithm to provide a nonsparse estimate

of the CS with subsampling, assuming the structural dimension is known.

1. Draw a random subsample of size bn/2c without replacement from the original sam-

ple, and form a sample dimension reduction matrix Mn
2

based on the standardized

predictors Z of the subsample.

2. Test the structural dimension k̂ of Mn
2

based on the subsample by existing methods

such as the stable procedure proposed in Section 2.2.1. If k̂ = k, proceed to the next

step. Otherwise, go back to step 1 and draw another random subsample.

3. Obtain an estimated p × k basis matrix β̂ = (β̂1, ..., β̂k) of the CS and covariance

matrix Σ̂i, x for the accepted subsample.
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4. Repeat Step 1 to Step 3N2 times to obtainN2 estimated basis matrices β̂1, · · · , β̂N2
and

covariance matrices Σ̂1,x, · · · , Σ̂N2,x. Let M̂ = 1
N2

N2∑
i=1

(Σ̂
−1/2

i,x β̂i)(Σ̂
−1/2

i,x β̂i)
′. Conduct

an eigenvalue decomposition of M̂. The final estimate of basis directions is β̂
f

=

(β̂f1 , ..., β̂
f
k ) where β̂fj ’s, for j = 1, · · · , k are eigenvectors of M̂ corresponding to the k

largest eigenvalues of M̂.

In this approach, we find a new use of subsampling in nosparse estimation. In addition,

the second step is a threshold idea that filters out the estimates due to sampling bias. This

adaptive step can significantly improve the estimation accuracy for the CS after combin-

ing results from low-noise level subsamples. The ensemble idea in Step 4 that aggregates

subsampling estimates differs from that of Xia et al. (2002) where they aggregated local

estimates to obtain a final solution, and that of Yin and Li (2011) where they assembled

estimates with different methods from the entire data.

2.2.3.2 The number of slices in inverse dimension reduction methods

A well-known problem in the sliced inverse methods such as SIR (Li, 1991) and SAVE (Cook

and Weisberg, 1991) is that the results are not stable if the number of slices changes. A

referee asked a question that whether this is an issue in SED method and if so, whether we

can stabilize it. This is also an issue in the SED method and so we adopt an ensemble idea

to stabilize the solution and further improve it with the subsampling idea. Note that this

ensemble idea has been used by Yin and Li (2011), in which intuitively the repeated use of

the data will enhance the accuracy of the results.

We define the following ensemble dimension reduction matrix (using SIR as our example):

M =
∑
H∈H

MH =
∑
H∈H

{
H∑
i=1

piE(Z|Y )E(Z|Y )′

}
(2.24)

where MH is the dimension reduction kernel matrix using H slices and H is a range of
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reasonable choices for H. A reasonable choice for H is typically between 5 and 25, depend-

ing on the sample size. Since each MH estimates the same CS, the aggregation in (2.24)

is equivalent to calculating the expectation of MH over H. This approach is particularly

useful in our proposed method because we use a penalized estimation procedure for nonzero

eigenvalues. When adding the MH together, the differences in the eigenvalues become rel-

atively larger. In this way, the signals in the CS are amplified compared to random noise

directions. Our stable procedure incorporating subsampling further improves this ensemble

method, stabilizing the tuning parameters (see related simulation studies in Web Appendix

H).

2.3 Simulations

In this section, we conduct numerical studies to evaluate the performance of our proposed

stable methods. We first focus on the stable estimation of structural dimension of the CS.

Then we demonstrate the stable procedure to estimate the CS in both the sparse case and

the nonsparse case. Finally, we apply our proposed method to analyze a real data set.

2.3.1 Estimating structural dimension

We compare results between the original SED method and the proposed stable procedure for

SIR, PHD and SAVE using the same models that were used by Zhu et al. (2010a). Consider
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the following six models which were used in Zhu et al. (2010a),

Y = 3X1 + σε, (2.25)

Y = (X1 +X2)3 + 2 exp (X3 +X4) + σε, (2.26)

Y = 2 cos(X1) + σε, (2.27)

Y = 2 cos(X1) + cos(X2) + σε, (2.28)

Y = 2X2
1 + σε, (2.29)

Y = 2X2
1 +X2

2 + σε. (2.30)

The predictors X = (X1, · · · , Xp) are generated from a p-dimensional multivariate normal

distribution with mean 0 and covariance matrix Ip. In each case, the error ε is generated

independently from the standard normal distribution. The noise level σ is set to be 0.25

according to Zhu et al. (2010a). We use p = 10 predictors with sample size n = 400 for all

models. For example, in model (2.26), among all 10 predictors, only two linear combinations

of all 10 predictors are associated with the response Y . Hence, in this case the structural

dimension is 2. Models (2.25) and (2.26) are estimated by SIR; models (2.27) and (2.28)

are estimated by PHD; and models (2.29) and (2.30) are estimated by SAVE. For SIR and

SAVE, H = 10 slices are used.

Figure 2.1 is the plot of accuracy for identifying structural dimension over 100 data

replicates versus the tuning parameter values for the six models respectively. We use the

algorithm described in Section 2.2.1 with N12 = 500 × 500. It shows that with a good

choice of the penalization tuning parameter, the original SED procedure (dashed lines) can

successfully estimate the structural dimension with high accuracy. For stable procedures

(solid lines), high accuracy can be achieved by a much wider range of tuning parameters.

Hence, the stable procedures significantly increase the chance of correctly estimating the

structural dimension.
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Figure 2.1: Accuracy of Stable SED for testing structural dimension
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2.3.2 Estimating the central subspace

2.3.2.1 The sparse case

To illustrate the effectiveness of the stable procedure in obtaining a sparse estimate of the

CS, we compare results from the original dimension reduction methods, GMSE, and stable

GMSE (SGMSE) for the models used by Li (2007):

Y = sign(βT1X) log(|βT2X + 5|) + 0.2ε, (2.31)

Y = cos(2βT1X)− cos(βT2X) + 0.5ε. (2.32)

Model (2.31) is simulated to compare results for SIR with β1 = (1, 1, 1, 1, 0, ..., 0)T , β2 =

(0, ..., 0, 1, 1, 1, 1)T , and p = 20. Model (2.32) is simulated to compare results for PHD

method, where β1 = (1, 0, ..., 0)T , β2 = (0, 1, 0, ..., 0)T and p = 10. The predictors Xi and

the error term ε are generated independently from the standard normal distribution. For

the SIR model, we use a sample size n = 200 with 10 slices. For the PHD model, the sample

size is n = 400. In addition, we use SAVE with model (2.30) with the same settings in

Section 2.3.1. The constant δ is set to be 0.01 in GMSE and SGMSE procedures.

Since the main goal of sparse solution is variable selection, we report the true positive

rate (TPR): the ratio of the number of correctly identified active predictors to the number

of truly active predictors, and the false positive rate (FPR): the ratio of the number of

falsely identified active predictors to the number of true inactive predictors. Note that

0 ≤ TPR, FPR ≤ 1, and a better estimate has bigger TPR and smaller FPR. Table 2.6

reports the results by using 100 data replicates with N12 = 500×500 in the stable algorithm.

Among the three methods, SGMSE is the best. Simulation results comparing GMSE to

SSDR (Li, 2007) and their counterparts are reported in Web Appendix G.
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Models d Methods TPR FPR
SIR 1.000 1.000

Model (2.31) 2 GMSE SIR 1.000 0.023
SGMSE SIR 1.000 0.000

PHD 1.000 1.000
Model (2.32) 2 GMSE PHD 1.000 0.274

SGMSE PHD 1.000 0.095
SAVE 1.000 1.000

Model (2.30) 2 GMSE SAVE 1.000 0.263
SGMSE SAVE 1.000 0.058

Table 2.1: Stable Grassmann manifold sparse estimation

2.3.2.2 The nonsparse case

For the same models considered in Section 2.3.1, assuming the structural dimension k is

known, we apply corresponding methods to estimate the CS with the stable procedure de-

scribed in Section 2.2.3.1. We compare the accuracy of our estimates based on the vector cor-

relation coefficient that measures the distance between two subspaces S(A) and S(B), which

are spanned by the columns of p×k matrices A and B, respectively, with ATA = BTB = Ik.

The vector correlation coefficient q is defined by Hotelling (1936): q =
√
|BTAATB|, where

| · | is the determinant of a matrix. The range of q is between 0 and 1 and two subspaces with

a bigger value of q are closer to each other. This measure has been used by Ye and Weiss

(2003), and others. Similar distance measures between two subspaces may be used as well,

including trace correlation (Hooper, 1959), and a∆(A,B) = |A(ATA)−1AT−B(BTB)−1BT |

(Li et al., 2005).

We generate 100 data replicates of size n = 400 for each model defined in Section 2.3.1.

For each individual data replicate, N2 = 500 subsamples with size of bn/2c are sampled,

from all possible
(

400
200

)
subsamples, to implement the stable procedure following the algo-

rithm described in Section 2.2.3.1. We used 10 slices in SIR and SAVE and p = 10 for all
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models. The reported vector correlation coefficient in Table 2.2 is the average of 100 vector

correlations between the estimated CS and the true CS for each model. For each model we

compute the proportion of improvement by the stable procedure among 100 replicates. Ex-

cept for model (2.27), the stable procedure can produce more accurate nonsparse estimates

of the CS about 65% of the time. The average vector correlation coefficients are improved

for almost all models expect for model (2.27) where the stable method provides exactly the

same result as the original PHD method.

Models (2.25) (2.26) (2.27) (2.28) (2.29) (2.30)
Methods SIR PHD SAVE

Original Method 0.9964 0.9214 0.9910 0.9502 0.9866 0.9520
Stable Method 0.9968 0.9282 0.9910 0.9512 0.9868 0.9539

Percentage of Improvement 83% 73% 50% 67% 65% 75%

Table 2.2: Stable nonsparse estimates of the CS

2.3.3 Hitters’ salary data

Zhu et al. (2010a) applied their methodology to the Hitters’ salary data. The complete data

set can be obtained at http://www.psych.yorku.ca/lab/psy6140/bb/basedata.htm. This data

set contains the salary of 263 baseball hitters. There are 16 independent variables X1 to

X16: times at bat, hits, home runs, runs, runs batted in and walks in 1986, years in major

leagues, career times at bat, career hits, career home runs, career runs, career batted in,

career walks, put outs, assistances and errors. The response variable Y , is the logarithm of

annual salary in 1987.

We first use the stable SED with SIR to estimate the structural dimension for the Hitters’

salary data. We obtained k̂ = 2, which agrees with what Zhu et al. (2010a) found. We then

proceed to compare the estimates by SIR, GMSE-SIR and SGMSE-SIR, using k̂ = 2.

Table 2.3 summarizes the results. SIR produces non-sparse estimates and GMSE-SIR

shrinks 2 components in the two directions to 0, while SGMSE-SIR shrinks 12 components in
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SIR GMSE SIR SGMSE SIR

X
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

β̂1 β̂2

0.00098 0.14931
-0.01879 -0.50472
-0.15003 -0.18736
0.01264 0.03314
0.05042 0.02288
-0.02434 -0.46535
-0.97714 0.38114
0.00437 0.00207
-0.00522 0.00626
0.00429 0.03892
-0.00807 -0.09192
-0.00182 -0.04479
0.00278 0.06029
0.00002 -0.02131
0.00089 -0.03395
-0.13747 0.55423

β̂1 β̂2

0.00646 0.03065
-0.00170 -0.26082
0.05339 -0.83360
-0.00918 0.32519
-0.02336 0.27517
0.00851 -0.15560
0.99814 0.00000
-0.00471 -0.00458
0.00645 0.04596
0.00000 0.11614
0.00689 -0.05288

. 0.00071 -0.04548
-0.00150 0.02085
0.00029 0.00045
0.00214 -0.00559
-0.00231 0.09754

β̂1 β̂2

0.00670 0.15821

0.00000 -0.91943
0.00000 0.00000
0.00000 0.00000
-0.03853 0.00000

-0.00836 -0.31913

0.99909 0.00000
-0.00533 -0.02455
0.01260 0.12801
0.00000 0.00000
-0.00199 -0.09054
-0.00352 0.00000
0.00227 0.05004
0.00056 0.00062
0.00182 0.00933
0.00000 0.00000

v∆ = 0.2627 v∆ = 0.2919 v∆ = 0.1075

Table 2.3: Estimates for Hitters’ data

the two directions to 0 from which variables x3, x4, x10 and x16 are completely noninformative.

To evaluate which estimate is better, we use a similar measure based on the idea of Ye

and Weiss (2003) to measure the variation of each estimate. The variation (v∆) is computed

as one minus the vector correlation between the two estimates based on the entire sample

and a subsample (v∆ = 1 − q). The basic idea is that both estimates aim to estimate

the true central subspace. A better estimate will have a bigger value of vector correlation,

thus smaller v∆. We calculate the variation as the average of 100 variations (by using 100

subsamples). The variation for SIR is 0.2627, the variation for GMSE-SIR is 0.2919, while

the variation for SGMSE-SIR is 0.1075. Thus the result of SGMSE-SIR is the best.
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2.4 Discussion

In this paper, we proposed stable estimation procedures for four aspects of dimension re-

duction: estimating structural dimension, obtaining a sparse estimate of the CS, providing

a nonsparse estimate of the CS and solving the number of slices issue in the sliced inverse

methods. Our stable procedures in dimension reduction methods always gain accuracy as

simulation studies indicated, compared with the usual approaches. In the subsampling step

of the stable procedure, we used half bn/2c of the original sample as suggested by Mein-

shausen and Bühlmann (2010). However, different choices of subsample size may be used.

On the other hand, the cutoff percentage πthr of choosing important variables in the sub-

sample is also arbitrary. A bigger value of πthr gives more stable and more sparse selection

results, but may miss some important variables. If πthr is too small, the algorithm may

not be effective in the variable selection sense. The proposed choices of the parameters

by Meinshausen and Bühlmann (2010) worked well in our study, and the overall merits of

subsampling and random weights used in penalized dimension reduction methods have been

well illustrated by the simulation results in our investigation.

Our proposed stable methods work for the case where n > p and the sample covariance

matrix of predictors is invertible. An interesting question is how to establish stable dimension

reduction methods for the case where n < p or highly correlated predictors. Cook et al. (2007)

and Li and Yin (2008) developed dimension reduction methods when the sample covariance

matrix is not invertible, and stable procedures incorporating these methods will be a future

research topic. However, when p becomes divergent, effective dimension reduction methods

have yet to be developed before considering any stable estimation procedure. This can be

an even more challenging problem.
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Appendix A

The Sparse Riesz Condition controls the range of eigenvalues of covariance matrices of subsets

of a fixed number of design vectors. We will show in Lemma 1 below that for design X̃w
A of

rank m, in model (2.4), the Sparse Riesz Condition is satisfied, and in Lemma 2 that the

Sparse Riesz Condition guarantees a finite bound.

Lemma 1 and Lemma 2 are needed to prove Theorem 1 and Theorem 3.

Lemma 1. For model (2.4), for any X̃w
A of rank m ≤ p, where A ⊆ {1, 2, · · · , p} with

|A| = p, the Sparse Riesz Condition (2.10) is satisfied.

Proof: In model (2.4), for design X̃w
A of rank m, we have

‖ X̃w
Av ‖2

p2 ‖ v ‖2
=

(X̃w
Av)′X̃w

Av

p2v′v
=

v′DAv

p2v′v
=

m∑
i=1

W 2
Aiv

2
i

p2
m∑
i=1

v2
i

.

The Sparse Riesz Condition is satisfied, because

φmin(m) = min
|A|=m,v∈Rm

‖ X̃w
Av ‖2

p2 ‖ v ‖2
= min
|A|=m,v∈Rm

m∑
i=1

W 2
Aiv

2
i

p2
m∑
i=1

v2
i

≥ min
|A|=m,v∈Rm

m∑
i=1

u2v2
i

p2
m∑
i=1

v2
i

=
u2

p2
,

since WAi are generated from [u, 1] for some u > 0. For the same reason,

φmax(m) = max
|A|=m,v∈Rm

‖ X̃w
Av ‖2

p2 ‖ v ‖2
= max
|A|=m,v∈Rm

m∑
i=1

W 2
Aiv

2
i

p2
m∑
i=1

v2
i

≤ max
|A|=m,v∈Rm

m∑
i=1

v2
i

p2
m∑
i=1

v2
i

=
1

p2
.

Therefore, 0 < u2

p2
≤ φmin(m) ≤ φmax(m) ≤ 1

p2
<∞ for all m ≤ p. 2

Lemma 2. Let φmin(m) and φmax(m) be defined as in (2.9) and the Sparse Riesz Condition
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(2.10) holds. Let Sk ⊂ {1, · · · , p}, X̃w
k = (x̃j, j ∈ Sk) and Σ1k = (X̃w

1 )′X̃w
k /n, Then

‖ v ‖2

φZmax(|S1|)
≤‖ Σ

−1/2
11 v ‖2≤ ‖ v ‖2

φZmin(|S1|)
, (2.33)

for all v of proper dimension, and that

‖ βk ‖2
1≤
‖ X̃w

k βk ‖2 |Sk|
nφZmin(|Sk|)

. (2.34)

Proof: Let v,h ∈ R|S1| and v = Σ
1/2
11 h. Hence, Σ

−1/2
11 v = h. By Lemma 1, since the Sparse

Riesz Condition (2.10) holds, we have that φmin(|S1|) ≤ ‖X̃w
1 h‖2

n‖h‖2 ≤ φmax(|S1|).

Note that ‖ X̃w
1 h ‖2= n ‖ v ‖2 and ‖ h ‖2=‖ Σ

−1/2
11 v ‖2.

So φmin(|S1|) ≤ ‖v‖2

‖Σ−1/2

11 v‖2
≤ φmax(|S1|), and 1

φmax(|S1|) ≤
‖Σ−1/2

11 v‖2
‖v‖2 ≤ 1

φmin(|S1|) , which

yields (2.33). The Cauchy-Schwarz inequality implies that ‖ βk ‖2
1≤‖ βk ‖2 |Sk|. By the

Sparse Riesz Condition, φmin(|Sk|) ≤
‖X̃w

k βk‖2

n‖βk‖2
=⇒‖ βk ‖2≤ ‖X̃w

k βk‖2
nφmin(|Sk|)

, which yields (2.34).

2

Appendix B

Proof of Theorem 1. The goal of Theorem 1 is to find upper bounds of (2.12), (2.13),

and (2.14). Since S = {k : βk 6= 0} is the set of important predictors in the true model, we

define the following sets in Table 2.4 to facilitate our proof.

nonzero βj : j ∈ S zero βj : j 6∈ S
S1: selected j S3 S4

S2 = Sc1 S5 S6

Table 2.4: Definitions of sets
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In our case, q̂ = q1 = |S1|. Define Qkj to be the selection of variables in Sk from Sj:

Qkjβj = βk, β′1 = β′3Q31, βk = {βj, j ∈ Sk}.

Let X̃w
i = (x̃j, j ∈ Si), define

Σjk =
1

n
(X̃w

j )′X̃w
k , fj = (X̃w

Sj
)′(Y − X̃wβ)/λ, j = 1, 3, 4. (2.35)

By (2.5), we have

Σjk =

 Di/p
2 j = k,

0 j 6= k.
(2.36)

where Di = diag(W 2
ij), j = 1, · · · , qi. So

Σ−1
ii = p2D−1

i = p2diag(W−2
ij ). (2.37)

With P1 be the projection from Rn to the span of {x̃j : j ∈ S1}, we define,

v1j =
λ√
n

Σ
−1/2
11 Q′j1fj, wk = (I−P1)X̃w

k βk. (2.38)

Since X̃wβ = X̃w
1 β1 + X̃w

2 β2 and (I−P1)X̃w
1 β1 = 0, then by (2.36),

‖ w2 ‖2=‖ (I−P1)X̃wβ ‖2=‖ (I−P1)X̃w
2 β2 ‖2=‖ X̃w

2 β2 ‖2=‖ W2β2 ‖2,

where Wi = D1/2
i = diag(Wij). The Karush-Kuhn-Tucker condition (KKT) states that a
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vector β̂ = (β̂1, · · · , β̂p)′ is the solution of (2.6) if and only if


x̃′j(Y − X̃wβ̂) = sgn(β̂j)λ, |β̂j| > 0;

|x̃′j(Y − X̃wβ̂)| ≤ λ, β̂j = 0.

(2.39)

In our case, the Karush-Kuhn-Tucker condition reduces to:

 x̃′j(Y − X̃wβ̂β̂) = λ, β̂j > 0;

|x̃′j(Y − X̃wβ̂β̂)| ≤ λ, β̂j = 0,

because β̂j’s are eigenvalues which are non-negative. Since S4 ∈ S1 contains variables of

nonzero estimates, by the Karush-Kuhn-Tucker condition and (2.35), each component of |f4|

is 1. Hence, ‖ f4 ‖2= |S4| = q4. Since |S| = q, S3 = S1 ∩ S, we have |S3| ≤ |S| = q. So

q1 = |S1| = |S3| + |S4| ≤ q+ ‖ f4 ‖2=⇒‖ f4 ‖2≥ q1 − q. Then by (2.38) and the property of

Q41,

‖ v14 ‖2 =
λ2

p2
f′4Q41(Σ

−1/2
11 )′Σ

−1/2
11 Q′41f4 =

λ2

p2
‖ Σ

−1/2
11 v ‖2

≥ λ2 ‖ v ‖2

nφmax(|S1|)
=
λ2f′4Q41Q

′
41f4

p2φmax(|S1|)
=

λ2 ‖ f4 ‖2

p2φmax(|S1|)
,

where the inequality follows (2.33) by setting v = Q′41f4. Hence, we have

‖ v14 ‖2≥ λ2(q1 − q)
p2φmax(|S1|)

. (2.40)

Next, we will establish the results in Theorem 1 in three steps.

Step 1: Establish an upper bound for ‖ v14 ‖2 + ‖ w2 ‖2.

Note that S2 = {j : β̂j = 0}. Hence, β̂2 = 0 implies that X̃wβ̂ = X̃w
1 β̂1 + X̃w

2 β̂2 = X̃w
1 β̂1.

From (2.35) we have, f1λ = (X̃w
1 )′(Y − X̃wβ̂) = (X̃w

1 )′(Y − X̃w
1 β̂1) =⇒ (X̃w

1 )′X̃w
1 β̂1 =
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(X̃w
1 )′Y − f1λ. Since Y = X̃wβ = X̃w

1 β1 + X̃w
2 β2,

(X̃w
1 )′X̃w

1 β̂1 = (X̃w
1 )′X̃w

1 β1 + (X̃w
1 )′X̃w

2 β2 − f1λ,

D1β̂1 = D1β1 − f1λ,

D−1
1 f1λ = β1 − β̂1.

Now, (X̃w
2 )′(Y −X̃wβ̂) = (X̃w

2 )′y−(X̃w
2 )′X̃wβ̂ = (X̃w

2 )′X̃w
1 β1 +(X̃w

2 )′X̃w
2 β2−(X̃w

2 )′X̃w
1 β̂1 =

D2β2. By the Karush-Kuhn-Tucker condition, |(X̃w
2 )′(y− X̃wβ̂)| is bounded above compo-

nentwise by λ, then |D2β2| is bounded above componentwise by λ. Moreover, since D2β2 is

positive in our case, D2β2 is bounded above componentwise by λ. In other words, W 2
i β2i ≤ λ

for i = 1, · · · , q2. Therefore,

‖ w2 ‖2=‖ W2β2 ‖2= β′2W ′2W2β2 = β′2D2β2 =

q2∑
i=1

β2iW
2
i β2i ≤

q2∑
i=1

β2iλ =‖ β2 ‖1 λ.

Next, we have,

v′14(v13 + v14) =
λ√
p2

f′4Q41(Σ
−1/2
11 )′

(
λ√
p2

Σ
−1/2
11 Q′31f3 +

λ√
p2

Σ
−1/2
11 Q′41f4

)

=
λ√
p2

f′4Q41(Σ
−1/2
11 )′

[
λ√
p2

Σ
−1/2
11 (Q′31f3 + Q′41f4)

]

=
λ√
p2

f′4Q41(Σ
−1/2
11 )′

(
λ√
p2

Σ
−1/2
11 f1

)

=
λ2

p2
f′4Q41Σ

−1
11 f1 = λ2f′4Q41D−1

1 f1

= λf′4Q41(β1 − β̂1) = λf′4(β4 − β̂4),

where the second to the last equality holds by D−1
1 f1λ = β1−β̂1. In our case, f4 is a vector of

1’s and β̂4 ≥ 0 componentwise. So f′4β̂4 ≥ 0 implies that v′14(v13 +v14) ≤ λf′4β4. Combining
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v′14(v13 + v14) and ‖ w2 ‖2, we have

‖ v14 ‖2 +v′14v13+ ‖ w2 ‖2≤‖ β2 ‖1 λ+ f′4β4λ.

By the definitions of sets Ai in Table 2.4, we have

‖ β2 ‖1 +f′4β4 =‖ β2 ‖1 + ‖ β4 ‖1=‖ β5 ‖1 + ‖ β0 ‖1≤‖ β5 ‖1 .

Hence, ‖ v14 ‖2 + ‖ w2 ‖2≤‖ β5 ‖1 λ + (−v14)′v13 ≤‖ β5 ‖1 λ+ ‖ v14 ‖‖ v13 ‖, where the

last inequality is obtained by the Cauchy-Schwarz inequality.

Again by the Karush-Kuhn-Tucker condition, since S3 ∈ S1 contains variables of nonzero

estimates, each component of |f3| is 1. So ‖ f3 ‖2= |S3| = q3. By the property of Q31, we

have

‖ v13 ‖2 =
λ2

p2
f′3Q31Σ

−1
11 Q′31f3 =

λ2

p2
‖ Σ

−1/2
11 v ‖2

≤ λ2 ‖ v ‖2

p2φmin(|S1|)
=
λ2f′3Q31Q

′
31f3

p2φmin(|S1|)
=

λ2 ‖ f3 ‖2

p2φmin(|S1|)

=
λ2|S3|

p2φmin(|S1|)
,

where the inequality follows (2.33) by setting v = Q′31s3. Therefore, we have

‖ v14 ‖2 + ‖ w2 ‖2≤‖ β5 ‖1 λ+ ‖ v14 ‖
(

λ2|S3|
p2φmin(S1)

)1/2

. (2.41)

Define,

B1 =

(
qλ2

p2φ∗

)1/2

, B2 =

(
qλ2

p2φ∗

)1/2

, B2
2 = CB2

1 ,

where φ∗ = minm≤p φmin(m) and φ∗ = maxm≤p φmax(m).

Step 2: Establish (2.12).
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Assume S1 contains all labels j for nonzero βj:

S1 = {j : β̂j 6= 0 or j ∈ S}. (2.42)

In this case, S5 = ∅. So ‖ β5 ‖1= 0, S3 = S, and thus |S3| = q ≤ q1. Because(
λ2|S3|

p2φmin(S1)

)1/2

≤ B2 and ‖ w2 ‖2≥ 0, together with (2.41), we have that ‖ v14 ‖2 + ‖

w2 ‖2≤‖ v14 ‖ B2, which implies ‖ v14 ‖2≤‖ v14 ‖ B2, and ‖ v14 ‖≤ B2. Combining with

(2.40), we have,

(q1 − q)λ2

p2φ∗
≤ λ2(q1 − q)
p2φmax(|S1|)

≤‖ v14 ‖2≤ B2
2 ,

(q1 − q) ≤
qφ∗

φ∗
,

q1 ≤
φ∗

φ∗
q + q = Cq + q = r1q,

where r1 is defined in (2.11). Under assumption (2.42), S1 is taken as the largest possible

set which contains q̃ elements. In general, S1 doesn’t necessarily select all the variables with

nonzero coefficients in the true model. Hence,

q̂ = q1 = |S1| ≤ q̃ = #{j : β̂j 6= 0 or j ∈ S} ≤ r1q,

which is (2.12).

Step 3: Establish (2.13) and (2.14).

By Lemma 2, we have that

‖ β5 ‖2
1≤
‖ X̃w

5 β5 ‖2 |S5|
p2φmin(|S5|)

≤ ‖ X̃w
5 β5 ‖2 q

p2φ∗
,
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because by Table 2.4 |S3|+ |S5| = |S| = q =⇒ |S5| ≤ q and |S3| ≤ q. Note that S5 ⊆ S2,

‖ X̃w
5 β5 ‖2≤‖ X̃w

2 β2 ‖2=‖ w2 ‖2 .

Combining the above two inequalities,

‖ β5 ‖1 λ ≤

(
‖ X̃w

5 β5 ‖2 qλ

p2φ∗

) 1
2

≤
(
‖ w2 ‖2 qλ

p2φ∗

) 1
2

≤‖ w2 ‖ B2.

By the Cauchy-Schwarz inequality, ‖ v14 ‖ B2 ≤‖ v14 ‖2 +
B2

2

4
. So based on (2.41) we have

‖ v14 ‖2 + ‖ w2 ‖2 ≤‖ v14 ‖2 +
B2

2

4
+ ‖ w2 ‖ B2,

‖ w2 ‖2 ≤ B2
2

4
+ ‖ w2 ‖ B2.

One can easily show that x2 ≤ c + 2bx implies x2 ≤ (b +
√
b2 + c)2 ≤ 2c + 4b2. Setting

x =‖ w2 ‖, c =
B2

2

4
, 2b = B2, we obtain the result in (2.13),

‖ w2 ‖2≤ B2
2

2
+B2

2 =
3B2

2

2
=

3C

2
B2

1 = r2

(
qλ2

p2φ∗

)
, (2.43)

where r2 is defined in (2.11).

By the Sparse Riesz Condition, φmin(|S5|) ≤
‖X̃w

5 β5‖
2

p2‖β5‖2
=⇒‖ β5 ‖2≤ ‖X̃w

5 β5‖
2

p2φmin(|S5|) . Since

‖ X̃w
5 β5 ‖2≤‖ w2 ‖2, we have ‖ β5 ‖2≤ ‖w2‖2

p2φ∗
, which directly gives the result in (2.14) after

combining with (2.43): ‖ β5 ‖2≤ r2

(
qλ2

p4φ∗φ∗

)
. 2
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Appendix C

Proof of Theorem 2. Since we have shown that in model (2.4), the covariates Z

satisfy the Sparse Riesz Condition, it follows directly from the result (2.14) of Theorem 1,

∑
j∈S

|βj|21{β̂j=0} ≤ r2
qλ2

φ∗φ∗p4
= 1.5

φ∗

φ∗

qλ2

φ∗φ∗p4
=

1.5qλ2

φ2
∗p

4
≤ 1.5qλ2

u4
,

because 0 < u2

p2
≤ φ∗ ≤ φ∗ ≤ 1

p2
< ∞. Hence, ∀j ∈ Ŝλ, βj >

√
1.5qλ/u2. By definition of

Ssmall, we can conclude that (S \ Ssmall) ⊆ Ŝλ, which verifies (2.16).

By Lemma 1 of Meinshausen and Bühlmann (2006), a variable j 6∈ S is in the selected

set Ŝλ only if

|z′j(Y − X̃wβ̂
−j

)| ≥ λ, (2.44)

where β̂
−j

is the solution to (2.6) under the constraint of β̂−jj = 0. We can rewrite the

left-hand side as

|x̃′jY − x̃′jX̃
wβ̂
−j
| = |x̃′jX̃wβ − x̃′jX̃

wβ̂
−j
| = |x̃′jx̃jβj − x̃′jx̃jβ̂

−j
j | = 0.

The second equality is due to the orthogonal property of X̃w in (2.5). The last equality is

because βj = 0 and β̂−jj = 0. Hence, the condition (2.44) will never be satisfied because

λ > 0 which means that Ŝλ contains only variables in S. This completes the proof. 2

Appendix D

In this section, we explain how a matrix in the Grassmann Manifold can be written as an

eigen-decomposition solution, the link between the Grassmann Manifold and a dimension
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reduction matrix, and how to form an equivalent form for the purpose of obtaining a sparse

estimate.

Grassmann Manifold

Suppose that a p× k matrix V is in the Grassmann Manifold with rank k.

First, we can extend it to a nonsingular p× p matrix V ∗ = (V, V ⊥).

Second, applying singular value decomposition on V ∗, we have V ∗ = LΛR′ where the

columns of p× p matrix L and p× p matrix R are corresponding left and right eigenvectors

of V ∗, and Λ = (Λk,Λp−k) is a diagonal matrix with non-zero singular values of V ∗ being its

diagonal elements. Let

G = LΛ−2L′, (2.45)

we have V ∗
′
GV ∗ = RΛ′L′LΛ−2L′LΛR′ = Ip.

Let M = GV ∗DV ∗
′
G, where G is found by (2.45) and D can be any diagonal matrix

with diagonal terms being ρ1 >, · · · , > ρp > 0, then V ∗, G, and M will satisfy the basic

eigenvalue decomposition as

MV ∗ = GV ∗D. (2.46)

Hence, for any p× k matrix V in the Grassmann Manifold with rank k, the columns of

V are the eigenvectors of a symmetric and positive definite matrix M, whose corresponding

eigenvalues are ρ1, · · · , ρk, as long as ρ1 > · · · > ρk > 0. Typically, we would choose D so

that ρ1 > · · · , > ρp > 0, and all the eigenvalues are bounded below by 0 and above by ∞.

Link between the Grassmann Manifold and a dimension reduction matrix

We assume that the CS is sparse, which means that only some variables are related to the

response. Note that sparsity is not generally transformed from one scale to another scale.

That is, if a model is sparse in the X-scale, it does not mean it is sparse in the Z-scale.
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Thus our discussion will focus on the original X-scale. Suppose that the method specific

kernel matrix M is obtained based on the original predictors X. Basis directions are found

by conducting the generalized eigenvalue problem of the form

MV ∗ = GV ∗D, (2.47)

where columns of V ∗ = (v1, · · · , vp) are eigenvectors of M satisfying V ∗
′
GV ∗ = Ip and D is

a diagonal matrix with eigenvalues ρ1, ρ2, · · · , ρp of M in descending order. If the structural

dimension of the CS is k, then the first k orthogonal eigenvectors, say, V , form an estimate

of the central subspace.

Thus, in the Grassmann Manifold, we construct M, D and G from V , while in dimension

reduction, we have M and G to deduce V and D.

Our theoretical result in Section 2.2.2 in the paper requires that all eigenvalues are

bounded below from 0 and above from ∞ to satisfy the Sparse Riesz Condition. This is not

satisfied when we have a p× p dimension reduction matrix with k nonzero eigenvalues with

k < p.

To fix this, from (2.47), we have M = MV ∗V ∗−1 = GV ∗DV ∗
′
G. For some positive

constant δ, let Mδ = (M + δG) = GV (D + δIp)V
′G. We will have similar eigenvalue

decomposition on Mδ as

MδV
∗ = GV ∗Dδ, (2.48)

where Dδ is a diagonal matrix with eigenvalues ρ1+δ, ρ2+δ, · · · , ρp+δ. Since the eigenvectors

of Mδ are same as these of M, we can work on Mδ to estimate the basis directions of the

central subspace. After some algebra, it requires the ratios of maximum and minimum

eigenvalues for the matrix Mδ to be bounded below from 0 and above from ∞. Let m1 ≥
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· · · ≥ mp be the eigenvalues of Mδ, we have

m1 = ρ1 + δ, mp = ρp + δ.

Therefore, by choosing δ > 0, the eigenvalues of Mδ are bounded below from 0 and above

from ∞ so that the Sparse Riesz Condition will be satisfied. Under this condition, Theorem

3 applies to the dimension reduction matrix Mδ.

Appendix E

Proof of Theorem 3. Since the optimization problem (2.20) was developed based

on the generalized eigenvalue problem (2.48), we again have an “error-free” model in the

population: Ỹ = X̃β. If the Sparse Riesz Condition is satisfied, following (5.8) in Zhang

and Huang (2008), we have

‖ v14 ‖2 + ‖ w2 ‖2≤‖ β5 ‖1 λ+ ‖ v14 ‖
(

λ2|S3|
pφZmin(S1)

)1/2

. (2.49)

where v14, w2, S1, and S2 are defined in the same ways as in the proof of Theorem 1.

Following the same steps as in the proof of Theorem 1, we are able to obtain the following

two upper bounds:

q̂(λ) ≤ q̃ = #{j : β̂λj 6= 0 or j ∈ S} ≤ r1q, (2.50)

and ∑
j∈S

|βj|21{β̂λj =0} ≤ r2
qλ2

φ∗φ∗p2
, (2.51)

where r1, r2, φ∗, and φ∗ are defined in (2.11).

The rest of the proof follows mostly from the steps of Meinshausen and Bühlmann (2010)

in the proof of their Theorem 2.
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Lemma 3. Define C by (1 + C)q + 1 = C̄q2 and assume q ≥ 3. Let weights Wk be

generated randomly in [u, 1] as in (2.20), and let X̃w
k = X̃wWk for k = 1, · · · , p be the

corresponding rescaled predictor variables. For u2 = νφmin(C̄q2)/C̄q2 with ν > 0, it holds

under assumption (2.21) for all realizations Wk that

φwmax(C̄q
2)

φwmin(C̄q2)
≤ 3C

κ
√
ν
. (2.52)

Proof. We can follow exactly the same steps as in the proof of the Lemma 3 in Meinshausen

and Bühlmann (2010). The only remark we need to make is that C in our notation is their

C̄ while our C̄ is their C. Since the steps are similar, we omit the details.

Lemma 4. Let Ŝλ,w be the set {k : β̂λ,wk } of selected variables of the randomized lasso with

u ∈ (0, 1] and randomly sampled weights w. Suppose that u2 ≥ (3/κ)2φmin(C̄q2)/C̄q2, we

can show that

|Ŝλ,w ∪ S| ≤ C̄q2 and (S \ Ssmall) ⊆ Ŝλ,w, (2.53)

where Ssmall = {k : βk ≤
√

1.5C̄q3/2λ}.

Proof. The proof of this lemma follows from Theorem 1 and Lemma 4 of Meinshausen and

Bühlmann (2010). With Remark 2 in Zhang and Huang (2008), the equivalent condition of

(2.21) requires the existence of some C > 0 such that

φmax((1 + C)q + 1)

φmin((1 + C)q + 1)
< C,

where C is defined in (2.11). Hence, for all realizations Wi, if u2 ≥ (3/κ)2φmin(C̄q2)/C̄q2,
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by Lemma 3, φwmax(C̄q2)

φwmin(C̄q2)
is bounded. Therefore, (2.50) and (2.51) hold which give us

|Ŝλ,w ∪ S| ≤ (1 + C)q ≤ C̄q2,

and

∑
j∈S

|βj|21{β̂λj =0} ≤ (1.5C2)qλ2 ≤ (
√

1.5C̄q3/2λ)2, (2.54)

where the first inequality uses the fact that 1/φ∗φ∗ ≤ C and the second inequality follows

from C ≤ C̄q. Accordingly, (2.54) is equivalent to the second part of (2.53).

Lemma 5 Let pw be the probability of choosing weight u for each variable and 1 − pw the

probability of choosing weight 1. Define p̃ = pw(1− pw)C̄q
2

and let Π̂λ
k be the probability of

variable k being in the selected subset Ŝλ,w with respect to random sampling of the weights

w. Under assumptions of Theorem 3, for any λ ≥ inf{λ : r1q + 1 ≤ p},

max
k∈N

(Π̂λ
k) < 1− p̃, (2.55)

min
k∈S\Ssmall

(Π̂λ
k) ≥ 1− p̃, (2.56)

where Ssmall = {k : βk ≤
√

1.5C̄q3/2λ}.

Proof. Following Meinshausen and Bühlmann (2006), a variable j 6∈ S is in the selected set

Ŝλ,w only if

|x̃′j(Y − X̃wβ̂
−j

)| ≥ λ, (2.57)

where β̂
−j

is the solution to (2.20) under the constraint of β̂−jj = 0. Using Lemma 5 of

Meinshausen and Bühlmann (2010) and Lemma 4 above, we can show that the left-hand
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side of (2.57) is bounded by ‖ ((X̃w
B)′X̃w

B)−1(X̃w
B)′X̃w

j ‖1 λ ≤ 2−1/4λ < λ with probability

greater than or equal to pw(1 − pw)C̄q
2
, where set B = Ŝλ,w ∪ S and the first inequality is

based on Lemma 5 of Meinshausen and Bühlmann (2010). This leads to the result (2.55).

The consequence of Lemma 4 directly yields (2.56). Since our Lemma 5 is equivalent to

Theorem 3, the proof of Theorem 3 is complete. 2

Appendix F

In Section 2.2.2 in the paper, we used δ > 0 to have Mδ = (M+ δG) for GMSE and SGMSE

in order to satisfy the Sparse Riesz Condition. In this section, we investigate the choice

of δ in GMSE and SGMSE. Our empirical evidences show that the choices of the positive

constant δ have little effect on the final estimates. We ran simulations on the three models

in Section 2.3.2.1 in the paper, with different choices of δ = 0.001, 0.01, 0.1, 0.5. For the

same model and method, varying δ does not greatly change the results. In addition, for all

δ values, SGMSE is improved over GMSE. It seems that a smaller value of δ is preferable

because it results in a lower false positive rate. Hence, a rule of thumb for appropriate δ to

use in GMSE is between 0.001 to 0.01.

δ = 0.001 δ = 0.01 δ = 0.1 δ = 0.5
TPR FPR TPR FPR TPR FPR TPR FPR

SIR
GMSE SIR

SGMSE SIR
1.000 0.073
1.000 0.003

1.000 0.023
1.000 0.000

1.000 0.018
1.000 0.000

1.000 0.025
1.000 0.003

PHD
GMSE PHD
SGMSE PHD

1.000 0.268
1.000 0.085

1.000 0.274
1.000 0.095

1.000 0.380
1.000 0.140

1.000 0.350
1.000 0.154

SAVE
GMSE SAVE

SGMSE SAVE
1.000 0.283
1.000 0.063

1.000 0.263
1.000 0.058

1.000 0.304
1.000 0.069

1.000 0.451
1.000 0.151

Table 2.5: Additional simulation results for Section 2.3.2.1 I
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Appendix G

In this appendix, we compare GMSE to the sparse sufficient dimension reduction (SSDR)

method (Li, 2007), and SGMSE to stable SSDR (SSSDR).

Li’s SSDR starts with an equivalent formulation of eigen-decomposition as

min
α,β

p∑
i=1

‖ G−1mi −αβTmi ‖2
G +λ2tr(β

TGβ) +
k∑
j=1

λ1j

p∑
h=1

|βjh|, (2.58)

subject to αTGα = I, where the norm is the inner product with with respect to G. In

(2.58), G takes the form of the covariance matrix Σx of X, the values of mi are columns

of the square root of the method-specific dimension reduction matrix M and β is a p × k

matrix of which the columns are the basis directions of the central subspace. The λ2 and

λ1j’s are the tuning parameters corresponding to the L1 and L2 penalties. Then, Li (2007)

showed that the optimization problem (2.58) can be solved in an alternative way by solving

k independent LASSO problems for a given α as:

β̂j = min
βj

{
βTj (M + λ2G)βj − 2αTjMβj + λ1j

p∑
h=1

|βjh|

}
, (2.59)

subject to αTGα = I. For given βj’s, solving α is just a usual OLS problem. Li (2007) also

showed that (2.59) can be transformed into an equivalent problem as

β̂j = min
βj

{
‖ u∗ −m∗βj ‖2 +λ1j

p∑
h=1

|βjh|

}
, (2.60)

where,

m∗ =

 M1/2

√
λ2G

1/2

 , u∗ =

 M1/2αj

0

 .
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In the above SSDR method, by introducing subsampling and random weight we also develop

a Stable SSDR, which we call SSSDR.

However, the introduction of λ2 in SSDR is only for the uniqueness of the eigenvectors.

For this reason, Li’s algorithm gives an invariant result for any λ2 > 0. However, under this

formulation, the Sparse Riesz Condition is not always satisfied, even though λ2 is a nuisance

parameter. Thus, we are not able to prove the theoretical result, even if we believe the result

holds. In addition, with an information criterion to select λ2, it slows down the computing

speed. Nevertheless, the table below shows that in our simulations the two approaches have

very comparable results.

Original SSDR GMSE SSSDR SGMSE
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

SIR 1.000 1.000 1.000 0.012 1.000 0.022 1.000 0.001 1.000 0.002

PHD 1.000 1.000 1.000 0.171 1.000 0.249 1.000 0.044 1.000 0.058

SAVE 1.000 1.000 1.000 0.264 1.000 0.191 1.000 0.115 1.000 0.005

Table 2.6: Additional simulation results for Section 2.3.2.1 II

Appendix H

In this section, we include two simulation studies: one simulation shows the sensitivity of

sliced inverse methods to the choices of H; another simulation illustrates the stability of the

results using the ensemble method proposed in Section 2.2.3.2 in the paper. We used model

(2.25) for SIR and model (2.29) for SAVE as in Section 2.3 in the paper.

Figure 2.2 shows that for each fixed H = 5, 10, 15, 20, the results for SIR do vary but not

as much as these of SAVE (left column); stable procedures show significant improvement.

While results for SIR do vary, but results vary more for SAVE (right column). We now use

these four different numbers of slices to develop one aggregated dimension reduction matrix

as proposed in Section 2.2.3.2. Figure 2.3 shows that the ensemble method gives better and
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more stable results (left column), which are further improved by our newly developed stable

procedure (right column).

Figure 2.2: Sensitivity of sliced inverse methods to the choices of H
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Figure 2.3: Stabilizing the choice of H for inverse methods
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Chapter 3

Pseudo sufficient dimension reduction

and sufficient variable selection

3.1 Introduction

3.1.1 Sufficient dimension reduction and sufficient variable selec-

tion

Sufficient dimension reduction (SDR) has been one of the popular topics in statistics over

the past two decades or so. Suppose that Y is a response variable and X is a p× 1 predictor

vector. The basic idea of SDR is based on the SDR subspace. Let B be a p × d matrix, a

dimension reduction subspace is a space spanned by the columns of B such that Y X|BTX,

which means that for a given value of BTX, the distribution of Y is independent of X. Hence,

BTX contains all the regression information of Y |X. When the intersection of all dimension-

reduction subspaces itself is a dimension-reduction subspace, it is called the central subspace

(CS) and denoted by SY |X (Li, 1991; Cook, 1994, 1996). The number of columns for B is

called the structural dimension or dimensionality of the CS. The existence of the CS can be
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guaranteed under mild conditions (Cook, 1998; Yin et al., 2008). The CS is designed to give

a complete picture of the dependence of Y on X. Subspaces with specific interests are also

introduced by Cook and Li (2002) for the mean function, Yin and Cook (2002) for the kth

moment function, Zhu and Zhu (2009) for the variance function, and by Luo et al. (2014)

with a general function. Rich literature is available on the inferences of the CS (Li, 1991,

1992; Cook and Weisberg, 1991; Cook, 1998).

Variable selection is another important problem in the literature of SDR. Yin and Hilafu

(2015) discussed the differences between the model selection and the variable selection. They

also formally defined the central variable selection space, SVY |X, to be the column space of

α where the columns of α consist of unit vectors ej with jth element 1 and 0 otherwise,

such that Y X|αTX. Penalized approach is a popular way to achieve sufficient variable

selection. Many existing methods (Ni et al., 2005; Li, 2007; Zhou and He, 2008; Wang and

Yin, 2008; Wu and Yin, 2015b; Chen et al., 2010) impose a penalization to the estimated

SY |X in order to obtain SVY |X.

Most of the SDR methods require the inverse of the sample covariance matrix Σ̂x of

the predictors. However, in many applications, Σ̂x may be singular, hence, not invertible,

due to high correlations such as in Chemometrics, or with a large p small n data such as

in microarray studies. To handle the singularity of the covariance matrix, Chiaromonte

and Martinelli (2002) and Li and Li (2004) used principal component analysis (PCA) on

Σ̂x prior to applying SDR methods. As an ad hoc approach, it worked well, but it lacks

theoretical support to show why the estimated directions are in the CS. Li et al. (2007) and

Cook et al. (2007) combined a partial least squares approach with SDR, and they showed

that such estimated directions are in the CS. Zhong et al. (2005) used a ridge type sample

covariance estimate to avoid inverting the problematic sample covariance matrix. Li and Yin

(2008) transformed the dimension reduction problem into a least-squares formulation and

then applied a penalized approach to handle the singularity of the sample covariance matrix.
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Indeed, many SDR methods used a tiny tuning parameter as a ridge type estimator to deal

with possible singularity of the sample covariance matrix, such as those methods developed

by Xia et al. (2002), Wang and Xia (2008), Yin and Li (2011), Li et al. (2012, 2014); Cook

and Zhang (2014), Fukumizu et al. (2009) and Fukumizu and Leng (2014). However, whether

a ridge type estimator is in the correct CS SY |X remains to be a question. The answer we

propose to this question is that one cannot guarantee a ridge type estimator theoretically to

be in the right CS SY |X, but its sample estimate can be better than the usual estimate.

3.1.2 Review of ridge regression and measurement error

Ridge regression (Hoerl and Kennard, 1970) is one of the most well-known technique to

handle multi-collinearity. Consider a linear model,

Y = Xβ + ε, (3.1)

where Y is an n × 1 response vector, X is an n × p design matrix, β is a p × 1 parameter

vector, and εT = (ε1, ε2, ..., εn) are i.i.d. random noise. With a tuning parameter λ > 0, the

ridge estimator using the L2 penalty can be found explicitly as

β̂
ridge

= (X ′X + nλI)−1X ′Y, (3.2)

where I is the identity matrix. Its population version is βridge = (E[XX′] + λI)−1E[XY ].

Hoerl and Kennard (1970) showed that there exists a λ such that this estimator is better

than the OLS estimator in terms of mean squared errors (MSE). However, the choice of

λ is subjective and difficult (Gibbons, 1981; Kibria, 2003). More importantly, the existing

selection methods rely on a linear model assumption.
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In our study, we will show that the ridge regression is closely linked to SDR for measure-

ment error regression. In measurement error regression (Fuller, 1987), a surrogate variable

W that contains measurement error is obtained, whose relation to X is assumed to be the

following:

W = γ + ΓX + δ, (3.3)

where γ is a q-dimensional vector and Γ is a q × p matrix, which can be either known or

unknown in different cases. And δ is a q dimensional error vector which is independent of

X and Y . To further simplify our discussion, we focus on an important case: p = q, γ = 0

and Γ = I. Carroll and Li (1992) studied SDR in measurement regression for sliced inverse

regression (SIR; Li 1991) and Lue (2004) investigated the case for principal hessian directions

(PHD; Li 1992). Let U = ΣxwΣ−1
w W, where Σxw is the covariance matrix between X and W,

under a general condition, Li and Yin (2007) established the following result: SY |U = SY |X,

which can be equivalently written as

ΣwSY |W = ΣxSY |X. (3.4)

Li and Yin (2007) assumed that an auxiliary sample which provides information about the

relationship between the true predictor X and the surrogate predictor W is usually available

to estimate Σxw. Hence, one can recover SY |X by working on U. If W and X are related as

in (3.3) with γ = 0, immediately one can establish the following result.

Proposition 1 (Ridge equivalence) Assume that E[X] = 0, and the added error δ follows

a multivariate normal distribution Np(0, λI) with λ > 0. Let βOLS
w denote the OLS estimate

based on the error-prone predictor W and let βridge
x denote the ridge estimate based on the
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true predictor X, then

βOLS
w = βridge

x . (3.5)

The equivalence reveals the true nature of ridge regression. In the population sense,

the ridge estimate based on the observed X with tuning parameter λ is same as the OLS

estimate based on W under (3.3) with the specific error structure from Np(0, λI). Hence,

under certain conditions, the estimated direction βOLS
w is in the CS, SY |W, rather than in

SY |X as we wish.

3.1.3 Remarks

In ridge regression, since we have a model, the accuracy can be measured by the mean square

error (MSE), where MSE = E(β̂−β)′(β̂−β), in which β and β̂ are the respective population

parameter and its estimate. However, in dimension reduction, only the CS is unique while

the basis matrices may be different. Thus we use the criterion of Li et al. (2005)

∆(B̂,B) =‖ B̂(B̂
T
B̂)−1B̂

T
−B(BTB)−1BT ‖ (3.6)

to evaluate the accuracy of the estimated basis matrix B̂ if the true basis B is known. The

norm ‖ · ‖ is taken as the Frobenius norm such that ‖ D ‖=
√

trace(DDT ). A subtle point

is that if the direction is the most accurate, then we consider its estimation method to be the

best. This is because once the direction is estimated, many different approaches can be used

to build a model. For instance, James and Stein (1961) showed that a shrinkage estimator

is better than the OLS estimator in terms of MSE, though both directions are the same.

When a sample X of size n is observed, the sample covariance matrix of X is X ′X/n. It is

common to scale the data as Xscale = X/
√
n so that the diagonal elements of X ′scaleXscale are
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the sample variances of X . Under model (3.1), if we also scale the response as Yscale = Y/
√
n,

it is invariant to the use of (Xscale, Yscale) or (X , Y) in the estimation. However, the ridge

parameter in (3.2) will be different as λscale = λ/n, where λ is the ridge parameter using X

and λscale is the ridge parameter using Xscale. For our discussion later, the data are scaled.

3.1.4 Contributions and outline

In this paper, we explore the ridge regression by linking it to the measurement error re-

gression and sufficient dimension reduction (SDR). Such a connection not only helps us to

discuss the essence of ridge estimate from measurement error point of view which provides a

deeper understanding for an important, classical and well-known method, but also inspires

us to propose a new concept of pseudo SDR and develop a new procedure which is aimed at a

different parameter space than the parameter space of interest but produces better estimate

in practice. Our method doesn’t require a parametric assumption on the underlying model

between the predictors and response variable. Empirical evidence shows that when a prese-

lected ridge tuning parameter is available, our method can always improve it. If there is no

prior knowledge on the ridge tuning parameter, we can still improve the original estimate.

Hence, we bypass the difficulties in choosing a possible optimal ridge tuning parameter using

ensemble. Our approach is model-free and method-free. Thus it can be uniquely applied to

any SDR methods. Moreover, our method not only provides better estimate for highly cor-

related predictors, but also works for the case when correlations between predictors are mild

or small. In addition, we answer an interesting question in SDR: are ridge type estimators

for SDR methods are in the correct subspace? For the prostate cancer data, our proposed

method using a combination of SDR and ridge regression not only improves the accuracy

over existing methods but also sufficiently justifies the assumption of using a linear model

which was assumed by other studies. In Section 3.2, we introduce a new concept of pseudo

SDR and pseudo SVS based on the measurement error idea. We discuss a plan to select
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the tuning parameter and propose a stable approach using an ensemble of multiple pseudo

estimates. We will also discuss how to obtain a pseudo estimate for the structure dimension

in SDR. In Section 3.3, we provide algorithms to obtain pseudo estimates based on OLS and

SIR, as well as an algorithm for pseudo SVS. In Section 3.4, we show some numerical results

using simulations, analyze the prostate cancer data with highly correlated predictors, and

study the managerial role performance data (Warren et al., 1974) when measurement error

are contained in the predictors. Further comments are arranged in Section 3.5.

3.2 Pseudo SDR and Pseudo SVS

3.2.1 Pseudo SDR

When Σ̂x is not invertible, our approach is to add an error term to the predictor vector

so that the problem becomes to a measurement error regression as previously discussed in

Section 3.1.2. Unfortunately, because Σ̂x is not invertible, using the transformed U-scale

predictors as in Li and Yin (2007) will still fail to recover SY |X. Therefore, we propose, as

defined below, to use the W scale for estimating SY |W as an approximation to the estimator

of SY |X, based on (3.4). In general, we know that SY |W and SY |X are two different subspaces.

They are coincident, if Σw = constant × Σx. In the next section, we will discuss how to

obtain a good estimate for SY |W such that it can be a good estimate for SY |X as well.

Definition 1 (Pseudo SDR) Suppose that W = X + δ, where δ ∼ N(0,Σδ), then the

estimated SY |W is called the pseudo SDR estimator of SY |X, if it is treated as the estimated

SY |X.

As indicated by Proposition 1, the ridge estimator is a pseudo estimator for the OLS esti-

mator. However, we would like to point out that James-Stein’s estimator is not a pseudo

SDR estimator but a shrinkage estimator, as its direction is correct in SY |X. Estimators
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using diagonal sample covariance matrices are not pseudo SDR estimators either, because

the relationship in (3.4) does not hold for them in general.

When a sample X is observed, we can always create a surrogate sample W as described

in Definition 1 and obtain an estimate based on W as a pseudo estimate. Proposition 1

shows that a pseudo estimate for OLS is of the form

β̂ = β̂
pseudo

= (X ′X + nΣδ)
−1X ′Y. (3.7)

We can see that ridge estimator is a special case of (3.7) with Σδ = λI. In this paper, in

order to ease the discussion, we particularly choose Σδ = λI. If λ = 0, then SY |W = SY |X.

In Section 3.2.4.1, we will discuss on how to choose a proper λ for a given sample with fixed

p.

3.2.2 Pseudo SVS

Similar to the pseudo SDR, variable selection can be done using W instead. Therefore, a

pseudo central variable selection space, SVY |W, is a sufficient variable selection space based

on W, where W = X + δ with δ ∼ N(0,Σδ). Once W is created, there are many ways

to implement variable selection. For example, one can directly use a penalized approach

on W to obtain a sparse estimate. Note that although many penalized methods for the

linear model do not require inverting the sample covariance matrix of X, most of penalized

dimension reduction methods which are based on the least squares forms still need an inverse

of the sample covariance matrix. In such a case, pseudo variable selection becomes useful

when having difficulty inverting the sample covariance matrix. However, using a single W

to obtain one sparse estimate may not be accurate. We will hence propose the the following

non-penalized approach by creating many Ws.
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Bootstrap samples are useful to estimate the standard error of parameters and make

related inferences. In the regression, bootstrap typically can be done in two ways: (A)

treating the regressors as random and selecting bootstrap samples directly from the observa-

tions z′i = [Yi,Xi1, · · · ,Xip] or (B) treating the regressors as fixed and resampling from the

residuals ei of the fitted regression model. In (B), bootstrap observations are constructed

as Y ∗bi = Ŷi + e∗bi, where the Ŷi are the fitted values from the original regression and the

e∗bi are the resampled residuals for the bth bootstrap sample. However, there are situations

when bootstrap becomes inadequate in making inferences in regression analysis. For exam-

ple, when the ratio between the number of predictors p and the number of observations n

become closer and closer, i.e. n/p → 1, the performance of bootstrap estimates start to

break down very soon. Also when high correlations among predictors exist, bootstrap es-

timates are also questionable. Therefore, obtaining multiple pseudo estimates is a suitable

alternative to bootstrap samples in these situations. To obtain a sparse estimate of β, we

will discuss how an empirical confidence interval based on multiple pseudo estimates can

be used to determine which element of β is zero so that sparse estimation can be achieved

without using a penalized procedure.

In the linear model, it is known that the distribution of the regression coefficient βk

follows that

β̂k − βk
σ̂β̂k

∼ tn−p.

Therefore, if we can estimate the standard error of β̂k by surrogate samples, we can construct

empirical confidence intervals using extrinsic samples.

Definition 2 (Pseudo confidence interval)

If zi = {Yi,Xi} for i = 1, · · · , n is the original observed sample where Xi = (X1, · · · , Xp),

let z∗bi = {Yi,Wi} with Wi = X+ δi where δi ∼ N(0, λI) for i = 1, · · · , n and b = 1, · · · , N
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be N surrogate samples of size n. Suppose that β̂k is the estimated regression coefficient for

Xk based on original observed sample and β̂∗bk is the estimated regression coefficient for Xk

base on each surrogate sample, the standard error of β̂k can be estimated by S.E.∗(β̂∗k) =∑N
b=1

(β̂∗k−β̄
∗)2

(N−1)
, where β̄∗ is the average of β̂∗bk’s. If N is sufficiently large, a 100× (1− α)%

Pseudo Confidence Interval (PCI) can be obtained by β̂k ± zα/2S.E.∗(β̂∗k).

Definition 2 is very similar to the definition of bootstrap confidence interval except for each

W, the effective sample size is much greater than the bootstrap samples in calculating β̂∗bk.

The enlarged sample size significantly reduces the bias and variation caused by the bootstrap

samples especially for the case when the number of predictors p is close to the sample size n

or the correlations among predictors are high.

In many situations, the coefficient vector β in (3.1) is sparse meaning that some of its

components are zeros. Let S = {i : βi 6= 0} be the set of indices of nonzero components of β.

One goal in statistics is to infer S through a variable selection procedure (Tibshirani, 1996;

Meinshausen and Bühlmann, 2010; Shao and Deng, 2012). Using PCI as defined above can

also provide a sparse estimate for variable selection purpose. To be more specific, let β̂ be

the pseudo estimator as defined in (3.7), set β̃i = 0 if the 100× (1− α)% PCI of β̂i contains

0, otherwise set β̃i = β̂i. Let Ŝ = {i : β̃i 6= 0} be the set of indices of components selected

using PCI. We call this variable selection procedure based on PCI the pseudo SVS.

3.2.3 Estimating dimensionality

Sometimes it is reasonable to assume that the dimension d is known. For example in ridge

regression, d = 1. However, in general, d has to be estimated. Equation (3.4) indicates

that the dimension of SY |W is same as that of SY |X. Thus we propose the following pseudo

SDR approach to estimate d. We first randomly generated a λ̃k from U(l, u), where l and u

are small positive constants. We then use an available method, for example the sequential
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chi-square test (Li, 1991), to estimate the dimensionality of SY |W, say dλk . We repeat

this step m times and we estimate d by the mode of these dλk ’s for k = 1, ...,m. Note

that since the dimension of SY |W is same as that of SY |X, theoretically the estimation of

dimensionality based on W is independent of the choice of λk. By repeating m times, our

estimate is stabilized as being seen in (Wu and Yin, 2015b). Moreover, when the sample Σ̂x

is non-invertible, working on W is a feasible alternative.

3.2.4 Selection of tuning parameter

The most important thing in pseudo SDR is the selection of λ. A wise choice of λ ensures

the pseudo estimator is indeed a good estimator. Recall that even for the ridge estimator,

the most well-known and well-studied method, selection of tuning parameter is very difficult.

For instance, in the last several decades, many criteria are proposed by Hoerl et al. (1975);

Goldstein and Smith (1974); Obenchain (1975); Lindley and Smith (1972); Lawless and Wang

(1976); Dempster et al. (1977). Comprehensive comparisons by Gibbons (1981) and Kibria

(2003) showed that none of the above methods consistently outperforms the others. In such

a simplest model-based case, the selection of the tuning parameter is quite unsatisfactory to

a certain degree. Hence, it is difficult to develop an explicit formula to obtain the optimal λ

for a pseudo SDR estimator.

3.2.4.1 Selection procedure

Our goal is to have a rule of thumb to select the tuning parameter λ so that it works in

general for any dimension reduction method, when the sample covariance matrix is difficult

to be inverted. As previously pointed out, even in the ridge regression case, where we have

a particular model, selecting an optimal λ is a difficult task. As Gibbons (1981) and Kibria

(2003) studied, there is no universal criterion for choosing the best λ in this simplest case.

We expect more difficulties to define a universal criterion for selecting the best λ for a pseudo
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SDR estimator. Since SY |W = SY |X+δ, when λ becomes too large, SY |W departs from SY |X

and becomes closer to SY |δ which is the null space as Y δ. Therefore, we want to keep

λ to be small enough so that SY |W can still be a good approximation to SY |X. Empirical

evidence showed that an effective range for λ is between 0.0001 and 0.01.

We use the following example to illustrate our conjecture using a small quantity λ to

obtain the pseudo estimate. Consider a linear model:

Y = 3X1 + 5X2 + cε.

The predictors X = (X1, · · · , Xp), p = 10, are generated from a p-dimensional multivariate

normal distribution with mean 0 and covariance matrix Σx with diagonal elements σii = 1

and off-diagonal elements σij = 0 except for σ13 = σ31 = ρ, where ρ ∈ (0, 1) is the correlation

between X1 and X3. We use two setups: (A), without measurement error and (B), with
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Figure 3.1: Box plots of optimal ridge tuning parameter using X

measurement error by setting X̃ = X + δ, where δ ∼ N(0, 0.25I). Figure 3.1 shows the box

plots for the two setups: the left panel is for (A) and the right panel is for (B). For (A), we
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use the ridge formula (3.2) on X and run λ over the range [-1,1]. From there we choose λ

to be optimal if it has the smallest measure of accuracy. For (B), we first transform X̃ into

U using method proposed by Li and Yin (2007) and then repeat the same procedures as for

(A), except using U instead of X. We run 500 simulations for each setup. We can see that

when there is no measurement error, the optimal λ is around zero, and the range of optimal

λ becomes smaller when correlation is getting higher; when measurement errors are already

contained in the observed sample, the optimal tuning parameter is still near 0, similar to

that of the no measurement error case.

3.2.4.2 Ensemble approach

Section 3.2.4.1 provides an ad hoc method for choosing a tuning parameter. We realize that

a particular choice of small λ may not be the optimum. To partly circumvent the possibility

of choosing a bad tuning parameter, we propose an ensemble idea. Note that for any choice

of λ, equation (3.4) guarantees that the estimator using such a λ is a pseudo SDR estimator.

If a possible choice of λ can lead to a reasonable pseudo estimator, varying such λ will lead

to many reasonable pseudo estimators. We then can aggregate all these possible estimators

together to obtain a more stable estimate.

This idea is similar to that of Wu and Yin (2015b), where subsamples were used to obtain

a stable and better estimate. However, their approach cannot deal with collinear data due to

repeatedly using part of the same data. We call a method an intrinsic method if it repeatedly

uses part of or the entire data multiple times. The class of intrinsic methods includes the

work by Meinshausen and Bühlmann (2010); Zhu et al. (2010b); Yin and Li (2011), and more

recently by Cook and Zhang (2014). These intrinsic methods use part of or the entire data

multiple times to enhance the accuracy of the estimates by estimating the same population

parameter space, while our proposed method is to use a small perturbation of the data to

enhance the accuracy by estimating a variation of the targeted parameter space. We call the
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latter an extrinsic method. Note that our extrinsic method is specifically designed to deal

with ill conditioned covariance matrix. Therefore, this idea leads us to the new procedures

described in Section 3.3.

3.2.4.3 Improve ridge estimate with a given parameter

As summarized by Gibbons (1981) and Kibria (2003), many procedures have been proposed

to select a working ridge tuning parameter from different point of views. All these meth-

ods assume a linear model and none of them is consistently better than others in different

situations. We propose to improve ridge estimate based on a preselected tuning parameter

λ0 by aggregating different pseudo estimates based on different tuning parameters λi which

are randomly generated from the neighborhood of λ0, say (λ0 − 0.0005, λ0 + 0.0005). Our

empirical results in Section 3.4.2 show that this ensemble approach consistently improve

upon the ridge estimate using λ0. Compared with the procedure described in the last two

sections, when λ0 is preselected by some methods, we have prior knowledge for the range

of the optimal tuning parameter. When we don’t have a preselected tuning parameter, we

simply use a small quantity to start with, as discussed in Section 3.2.4.1. This idea is anal-

ogous to selecting the prior distribution in a Bayesian context. A noninformative prior is

used unless there is a specific distribution preferred to be the prior.

3.3 Illustrative algorithms

Suppose that the dimensionality d is known, our procedure is as follows: we generate a

random sample λ̃k, k = 1, ...,m from (l, u) uniformly, where l and u are small positive

constants and set λk = λ̃2
k. Let Bλk be the pseudo SDR estimator. Then the d eigenvectors

of
∑m

k=1 BλkB
T
λk

corresponding to the d largest eigenvalues will be our final estimate.
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To be more specific, we illustrate the pseudo SDR idea by using SIR. Assuming the

dimensionality d is known, a pseudo SIR estimator can be obtained using the following

procedure:

Algorithm 1 (Pseudo SDR)

1. Let l and u be small positive constants (say l = 0.001 and u = 0.005 for example).

Obtain m random numbers λ̃k from U(l, u).

2. For each λ̃k, let W = X + λ̃k∆̃ where ∆̃ is an n× p matrix with rows being generated

from δ ∼ N(0, I), and obtain the SIR matrix M (Li, 1991) based on W.

3. Solve the eigenvalue problem of the form Mνi = φiΣ̂wνi for i = 1, · · · , d where φi and

νi are eigenvalues and eigenvectors of M with φ1 > · · · > φp and Σ̂w is the sample

covariance of W. One pseudo SIR estimate can be obtained as Bλk = (ν1, · · · , νd).

4. The final pseudo SIR estimate is obtained as the d eigenvectors of
∑m

k=1 BλkB
T
λk

cor-

responding to its d largest eigenvalue.

Similarly, pseudo OLS estimate can be obtained using above steps by setting d = 1 and

Bλk = (W ′W)−1W ′Y. To implement pseudo SVS, we use the following steps:

Algorithm 2 (Pseudo SVS)

1. For the observed sample z = {Y,X}, create m extrinsic samples of size n as z∗ =

{Y,X} with W = X + λ̃k∆̃ where ∆̃ is an n×p matrix with rows being generated from

δ ∼ N(0, I). Then obtain an ordinary estimate β̂
∗
j based on the augmented sample z∗.

2. Repeat above steps N times to obtain N estimates β̂
∗
j for j = 1, · · · , N based on N

enlarged samples.
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3. To obtain sparse estimate, for any predictor k, we can obtain its empirical quantiles

based on the N estimates. If β̂
∗
α/2 ≥ 0 ≥ β̂

∗
1−α/2, where β̂

∗
α/2 is the (100 × α/2)th

percentile of the N estimates β̂
∗
j , we set all the kth element of β̂

∗
j to be 0. Then the

eigenvectors of M =
∑N

i=1 β̂
∗
j(β̂

∗
j)
′ will be used as our final estimate.

For linear models, OLS can be used and the first eigenvector β̂
∗

of M can be used as the

scaled final estimate. For nonlinear models, traditional SDR methods can be used and the

first d eigenvector β̂
∗

of M can be used as the basis for CS, where d is the structural dimension

of the CS that is known or can be estimated. In Step 4, we can also use a hard threshold that

is similar to Shao and Deng (2012) or replace β̂
∗
α/2 and β̂

∗
1−α/2 by β̄

∗±Φ−1(1−α/2)S.E.∗(β∗j)

where S.E.∗(β̂
∗
j) =

∑N
b=1

(
ˆβ
∗

j−
¯β
∗
)2

(N−1)
, β̄
∗

is the average of β̂
∗
j , and Φ(·) is the c.d.f. of standard

normal distribution.

Ensemble approach can help us obtain a more stable variable selection result. In specific,

one can simply repeat the steps in Algorithm 2 T times to obtain T sparse estimate. For

any predictor k, if the proportion of its occurrence among the T estimates is smaller than a

preselected cutoff point π, we set all the kth element of β̂
∗
j to be 0. Then the eigenvectors

of M =
∑T

i=1 β̂
∗
j(β̂

∗
j)
′ will be used as our final stable estimate. In our simulations, we set

π = 0.85.

3.4 Numerical study

In this section, we use simulations and two real data analyses to illustrate the idea of pseudo

estimates and advantages of pseudo methods including pseudo non-sparse estimation and

pseudo variable selection. In addition, we show the accuracy of estimating dimensionality

by using pseudo SDR approach introduced in Section 3.2.3.
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3.4.1 Estimation accuracy by Pseudo OLS and Pseudo SIR

To make comparisons between OLS and its corresponding pseudo method, and SIR and its

corresponding pseudo method, we consider three linear models for OLS:

Linear Model 1: Y = 3X1 + 5X2 + cε, (3.8)

Linear Model 2: Y = 3X1 + 1.5X2 + 2X5 + cε, (3.9)

Linear Model 3: Y = X2 + 2(X3 +X4) + cε, (3.10)

and three nonlinear models for SIR:

SIR Model 1: Y = (X1 +X2)3 + e(X3+X4) + cε, (3.11)

SIR Model 2: Y = X1/(0.5 + (5X2 + 1.5)2) + cε, (3.12)

SIR Model 3: Y = X1(X1 +X2 + 1) + cε. (3.13)

The predictors X = (X1, · · · , Xp) are generated from a p-dimensional multivariate normal

distribution with mean 0 and covariance matrix Σx of which diagonal elements σii = 1 and

off-diagonal elements σij = 0 except for σ12 = σ21 = ρ, where ρ ∈ (0, 1) is the correlation

between X1 and X2. The errors ε are generated independently from the standard normal

distribution. The noise level c is set to be 0.25 and we use p = 10 predictors with sample

size n = 400 for both models. We simulate two scenarios for each model to illustrate the

effectiveness of pseudo estimates. The first scenario is when the predictor data X contain

no measurement errors. In such a case, we directly obtain pseudo estimates based on X and

compare our results to the respective OLS and SIR estimates. The second scenario is when

the predictor data X̃ contain measurement errors. To simulate this situation, we artificially

created measurement error predictors X̃ by adding small errors to the original X . When
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measurement errors are present, we will use a result of Li and Yin (2007)’s U approach to

obtain pseudo estimates based on X̃ . In our simulations, we set l = 0.0001 and u = 0.005,

then aggregate over 500 estimates. Note that when there is no measurement error, U is

identical to X .
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Figure 3.2: Estimation accuracy of linear models
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Figure 3.2 illustrates the estimation accuracy of linear models (3.8) - (3.10) with and

without measurement errors using (3.6). For all three models, the left column shows that

when there are no measurement errors in the predictors, the pseudo estimates and OLS

estimates are similar when correlations between predictors are low. However, the pseudo

estimates outperform the OLS estimates when correlations between predictors become large.

When measurement errors are contained in the predictors, the right column shows that the

proposed pseudo estimates based on U are better than the Li and Yin (2007)’s estimates,

especially when correlations between predictors are high.

In our simulation studies, we generate λ̃k from a very small range (0.0001, 0.005) following

the reason discussed in Section 3.2.4.1. In order to validate our conclusion, we apply several

existing methods to choose the optimal tuning parameters: tuning parameters chosen by

Hoerl et al. (1975) which is denoted by (HKB), by Lawless and Wang (1976) which is

denoted by (LW), by Hocking et al. (1976) which is denoted by (HSL), and by Kibria (2003)

which is denoted by (K), respectively. These methods represent different points of views. For

example, HKB is a modified version of the original method proposed by Hoerl and Kennard

(1970) based on the structure of MSE, and LW is proposed from the Bayesian point of view.

As indicated by Table 3.1, the optimal tuning parameters for each of the linear models (3.8)-

(3.10) should indeed be small. We can also see from Table 3.1 that each method suggests

different tuning parameters. Therefore, by our ensemble step in the algorithm, we reduce

the risk of using a bad tuning parameter value.

Figure 3.3 illustrates similar results for nonlinear models (3.11) - (3.13) using pseudo SIR

estimates. For models without measurement error, the left column shows that, like linear

models, when correlations are low between predictors, the SIR estimates and the pseudo SIR

estimates are similar. However a significant improvement using the pseudo SIR estimates can

be found when the correlations between variables start to increase. When predictors have

measurement errors, the right column shows that the pseudo SIR estimates based on U are
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r
0 0.2 0.5 0.9 0.99 0.999

Model 1 no error

HKB 0.00072 0.00072 0.00072 0.00072 0.00071 0.00066
LW 0.00060 0.00058 0.00055 0.00051 0.00049 0.00045
HSL 0.00007 0.00007 0.00008 0.00008 0.00008 0.00008
K 0.00277 0.00417 0.00961 0.01902 0.02388 0.02906

Model 1 with error

HKB 0.00071 0.00072 0.00072 0.00071 0.00072 0.00069
LW 0.00059 0.00058 0.00055 0.00050 0.00049 0.00046
HSL 0.00007 0.00007 0.00008 0.00008 0.00008 0.00008
K 0.00250 0.00481 0.01802 0.02080 0.02296 0.02580

Model 2 no error

HKB 0.00160 0.00159 0.00158 0.00158 0.00141 0.00080
LW 0.00134 0.00113 0.00075 0.00035 0.00029 0.00074
HSL 0.00016 0.00017 0.00022 0.00042 0.00056 0.00058
K 0.00632 0.00653 0.00408 0.00386 0.00358 0.00231

Model 2 with error

HKB 0.00158 0.00160 0.00160 0.00159 0.00140 0.00077
LW 0.00133 0.00115 0.00077 0.00036 0.00029 0.00150
HSL 0.00016 0.00017 0.00022 0.00042 0.00055 0.00058
K 0.00598 0.00540 0.00447 0.00384 0.00362 0.00215

Model 3 no error

HKB 0.00276 0.00272 0.00269 0.00268 0.00273 0.00226
LW 0.00250 0.00242 0.00240 0.00238 0.00242 0.00188
HSL 0.00028 0.00028 0.00028 0.00030 0.00031 0.00031
K 0.01005 0.01010 0.00827 0.00780 0.00959 0.00812

Model 3 with error

HKB 0.00276 0.00268 0.00269 0.00272 0.00268 0.00227
LW 0.00249 0.00239 0.00239 0.00240 0.00236 0.00189
HSL 0.00028 0.00027 0.00028 0.00030 0.00031 0.00031
K 0.01091 0.00909 0.00837 0.00757 0.00900 0.00962

Table 3.1: Optimal ridge tuning parameters using existing methods

consistently better than the original SIR estimates based on U, especially when correlations

between predictors are high.

3.4.2 With a given tuning parameter

Corresponding to our discussion in Section 3.2.4.3, in this simulation, we illustrate how

pseudo estimates can be used to improve the existing ridge estimates with a tuning parameter

obtained by some criteria. We compare four different ridge estimates for OLS models using

tuning parameters chosen by the methods that used in Section 3.4.1.
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Figure 3.3: Estimation accuracy of SIR models

To make comparisons, we report ridge estimates using different tuning parameters chosen

by these methods, and pseudo ridge estimates assemble multiple estimates based on tuning
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parameters in the neighborhood, e.g. ±0.005, of the chosen tuning parameter. We also report

the OLS estimate and its corresponding pseudo estimate as discussed in Section 3.3. Using

r = 0.0 r = 0.5 r = 0.9

Original Pseudo Original Pseudo Original Pseudo
HKB 0.1164 0.1094 0.1461 0.1454 0.3752 0.3540
LW 0.1181 0.1175 0.1462 0.1456 0.3878 0.3813
HSL 0.1193 0.1183 0.1463 0.1462 0.3860 0.3791
K 0.1102 0.1172 0.1460 0.1440 0.3698 0.3531
OLS 0.1198 0.1164 0.1463 0.1456 0.3912 0.3825

Table 3.2: Improvement over existing ridge estimates

Model (3.8), Table 3.2 shows that all four ridge estimates improve the original OLS estimates.

In addition, all pseudo estimates improve the respective original estimates, except one case

for Kibria (2003)’s criteria where data are not correlated at all. Therefore, in general, if

there is no prior choice for the ridge tuning parameter, we can use the pseudo estimate to

improve the original OLS estimate. If there is a choice for ridge tuning parameter, we can

still obtain a better pseudo ridge estimate using the chosen tuning parameter.

3.4.3 Variable selection by pseudo SVS

In order to demonstrate pseudo variable selection based on multiple Ws for linear model,

we will use the following model from Zou (2006):

Y = 3X1 + 1.5X2 + 2X5 + cε. (3.14)

And for nonlinear model using SIR, we use the the following model from Li (1991):

Y = X1(X2 + 1.5) + cε. (3.15)
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The predictors Xi (i = 1,..., n) were i.i.d. standard normal vectors as well as the noise vector

ε. We set the pairwise correlation between Xj and Xk to be cor(Xj,Xk) = ρ|j−k|, in which

we vary the correlation coefficient between 0 and 0.999. The noise level c is set to be 0.1.

Since pseudo variable selection is useful for the case when correlations between variables

are high and the sample size is relatively small comparing to the number of predictors. We

simulate different situations of sample size and number of predictors (n, p) for (25, 10), (50,

20), (100, 40) and (200, 80) so that ratio between sample size and number of predictors are

2.5 for all cases. As mentioned in Section 3.2.2, pseudo variable selection is achieved based

on pseudo confidence interval which is very similar to bootstrap confidence interval. For

comparison purpose, we report the true positive rates (TPR) and false positive rates (FPR)

for variable selections based on pseudo confidence interval, bootstrap confidence interval,

and the empirical confidence interval using subsamples.

Table 3.3 and Table 3.4 illustate that when the correlations between predictors cause

no problem for inverting the sample covariance matrix. even for high correlation r = 0.9,

variable selections based on all empirical intervals in general perform very well for all (n,

p) combinations, but the FPRs for pseudo variable selections are lower than FPRs based

on bootstrap intervals and subsample intervals. However, when the correlation is too high,

r = 0.999, the sample covariance matrix is close to be singular, in such a case, the TPRs

decrease for all (n, p) combinations. For this situation, pseudo variable selections perform

much better than variable selections based on bootstrap and subsample intervals. This

advantage becomes significant when the sample size is sufficiently large.

3.4.4 Estimating dimensionality by pseudo SIR

We now demonstrate the estimation of dimensionality for a nonlinear model (3.12) using

the pseudo SIR method. As mentioned in Section 3.2.3, the pseudo estimate approach in

estimating dimensionality is theoretically stable with different added errors, and is extremely
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Table 3.3: TPRs and FPRs of pseudo SVS for linear model

PSVS Bootstrap Subsample

ρ TPR FPR TPR FPR TPR FPR

n = 25 p = 10

0 1.000 0.000 1.000 0.046 1.000 0.007
0.2 1.000 0.000 1.000 0.053 1.000 0.016
0.5 1.000 0.001 1.000 0.064 1.000 0.010
0.8 1.000 0.004 1.000 0.043 1.000 0.006
0.9 1.000 0.000 1.000 0.047 1.000 0.009

0.999 0.463 0.021 0.330 0.047 0.180 0.013

n = 50 p = 20

0 1.000 0.000 1.000 0.028 1.000 0.003
0.2 1.000 0.000 1.000 0.021 1.000 0.001
0.5 1.000 0.001 1.000 0.024 1.000 0.001
0.8 1.000 0.002 1.000 0.025 1.000 0.002
0.9 1.000 0.004 1.000 0.017 1.000 0.002

0.999 0.637 0.021 0.377 0.016 0.110 0.001

n = 100 p = 40

0 1.000 0.000 1.000 0.018 1.000 0.001
0.2 1.000 0.000 1.000 0.016 1.000 0.001
0.5 1.000 0.000 1.000 0.020 1.000 0.001
0.8 1.000 0.001 1.000 0.018 1.000 0.001
0.9 1.000 0.002 1.000 0.020 1.000 0.001

0.999 0.837 0.040 0.570 0.017 0.300 0.001

n = 200 p = 80

0 1.000 0.000 1.000 0.012 1.000 0.001
0.2 1.000 0.000 1.000 0.012 1.000 0.001
0.5 1.000 0.000 1.000 0.012 1.000 0.001
0.8 1.000 0.001 1.000 0.011 1.000 0.001
0.9 1.000 0.002 1.000 0.013 1.000 0.001

0.999 0.973 0.029 0.797 0.012 0.453 0.001

useful when the original methods fail. Again we choose l = 0.001, u = 0.005. The true model

(3.12) clearly has two dimensions. To make the comparison, we set correlations between two

of the predictors in each situation to be (0, 0.2, 0.5, 0.9, 0.999, 1). When the correlation is

equal to 1, it means that the two variables are the same and using predictor data X to test the

dimensionality will fail. For this part of our simulation, we use three different extreme cases:

X1 = X2, X1 = X3, and X3 = X4 representing situations where (1) important variables

are correlated with each other, (2) one important variable is correlated with unimportant

variables, and (3) unimportant variables are correlated with each other.
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Table 3.4: TPRs and FPRs of pseudo SVS for SIR model

PSVS Subsamples Bootstrap

ρ TPR FPR TPR FPR TPR FPR

n = 25 p = 10

0 0.850 0.125 0.625 0.000 0.400 0.000
0.2 0.875 0.131 0.575 0.000 0.300 0.000
0.5 0.825 0.038 0.500 0.000 0.125 0.000
0.8 0.850 0.000 0.475 0.000 0.075 0.000
0.9 0.850 0.000 0.375 0.000 0.000 0.000

0.999 1.000 0.000 0.000 0.000 0.000 0.000

n = 50 p = 20

0 0.960 0.083 0.620 0.000 0.215 0.000
0.2 0.900 0.043 0.585 0.000 0.195 0.000
0.5 0.890 0.068 0.545 0.000 0.115 0.000
0.8 0.940 0.009 0.500 0.000 0.015 0.000
0.9 0.990 0.011 0.490 0.000 0.000 0.000

0.999 1.000 0.014 0.005 0.000 0.000 0.000

n = 100 p = 40

0 0.995 0.044 0.935 0.000 0.540 0.000
0.2 1.000 0.038 0.905 0.000 0.510 0.000
0.5 1.000 0.039 0.845 0.000 0.500 0.000
0.8 1.000 0.011 0.570 0.000 0.500 0.000
0.9 1.000 0.011 0.515 0.000 0.435 0.000

0.999 1.000 0.009 0.035 0.000 0.000 0.000

n = 200 p = 80

0 1.000 0.024 1.000 0.000 0.885 0.000
0.2 1.000 0.019 1.000 0.001 0.860 0.000
0.5 1.000 0.020 0.985 0.001 0.655 0.000
0.8 1.000 0.007 0.795 0.001 0.510 0.000
0.9 1.000 0.010 0.565 0.001 0.500 0.000

0.999 1.000 0.008 0.125 0.000 0.005 0.000

Table 3.5 illustrates the testing accuracy of dimensionality by applying the sequential chi-

square test (Li, 1991) on X and using pseudo SIR with the sequential chi-square test on W

as described in Section 3.2.3. For comparison purpose, we also include the sparse eigenvalue

decomposition (SED, Zhu et al. 2010a) approach using pseudo SIR. Table 3.5 indicates

that both chi-square tests and SED based on the SIR matrix of X are very consistent for

cases when one important variable is correlated with unimportant variables and unimportant

variables are correlated with each other even for very high correlations. However, when X ′X

becomes non-invertible, testing based on X fails but the testing based on W is still very

consistent. When there are some high correlations between important variables, chi-square
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Table 3.5: Estimating structural dimension by pseudo SIR

ρ
0 0.5 0.9 0.99 0.999 0.9999 1

X1 and X2

Chi Square
SIR 0.930 0.985 0.280 0.045 0.040 0.060 0.000

pseudo SIR 0.930 0.985 0.260 0.035 0.030 0.050 0.030

SED
SIR 0.995 0.995 0.530 0.595 0.685 0.675 0.000

pseudo SIR 0.995 0.995 0.820 0.820 0.870 0.850 0.860

X1 and X3

Chi Square
SIR 0.955 0.965 0.935 0.965 0.945 0.945 0.000

pseudo SIR 0.955 0.965 0.935 0.975 0.945 0.965 0.970

SED
SIR 1.000 1.000 1.000 1.000 0.995 1.000 0.000

pseudo SIR 1.000 1.000 1.000 1.000 1.000 1.000 1.000

X2 and X3

Chi Square
SIR 0.960 0.955 0.955 0.955 0.940 0.950 0.000

pseudo SIR 0.965 0.955 0.960 0.970 0.940 0.945 0.950

SED
SIR 1.000 1.000 0.990 1.000 1.000 0.995 0.000

pseudo SIR 1.000 1.000 1.000 1.000 1.000 1.000 1.000

tests of both the usual and pseudo approaches underestimate the dimension because two

directions converge to one direction as the correlation between the two important variables

increase. In such a case, it is expected that two important variables are indistinguishable.

3.4.5 Real Data

3.4.5.1 Prostate cancer data

The prostate cancer data have been studied many times in the literature (Stamey et al.,

1989; Tibshirani, 1996; Zou and Hastie, 2005; Fu, 1998). A total of 97 male patients aged

from 41 to 79 have been examined to study the association between the level of prostate

specific antigen and a number of clinical measures in men who were about to receive a radical

prostatectomy. There are eight predictors including log cancer volume (lcavol), log prostate

weight (lweight), age of patient, log of benign prostatic hyperplasia amount (lbph), presence

or absence of seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason grade

(gleason), and percent Gleason grade 4 or 5 (pgg45). The response variable is the log
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prostate specific antigen level (lpsa). These data have been studied by Fu (1998) and Tutz

and Binder (2007) for ridge regression, and have also been analyzed by many others for

variable selection purposes (Tibshirani, 1996; Zou and Hastie, 2005). Before fitting an OLS
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Figure 3.4: Scatter plot of lpsa vs the 1st SIR direction

or ridge regression, we should always validate the assumption of fitting a linear model. Using

the method described in Section 3.2.3 to test the dimensionality of the underlying model,

we have d̂ = 1 which validates the single index assumption. A plot of the response versus

the first direction of SIR in Figure 3.4 shows a clear linear trend. The plot shows that a

curve using a spline with 5 degrees of freedom, a curve using a LOWESS smoothing and

the OLS line agree with each other well. Furthermore, we fitted a 3rd degree polynomial

regression. It turned out that only the linear term is significant. Therefore, this evidence

supports that fitting a linear model is sufficient. The advantage of using a pseudo SDR

method is that it doesn’t assume a parametric model. For variable selection purpose, we

compare our pseudo SVS result to LASSO. We compute the prediction error based on leave-
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one-out cross validation for each method, as well we the mean squared error based on using

all 97 observations.

The third column in Table 3.6 shows that the pseudo estimate consistently outperforms

all other methods. As a result of variable selection, LASSO excludes lcp and gleason from

the model while pseudo SVS excludes lcp, gleason and pgg45 from the model. However, the

estimated coefficient for pgg45 is very small in LASSO estimate (β̂pgg45 = 0.0024). Therefore,

these two variable selection methods mostly agree with each other.

3.4.5.2 Managerial role performance data

We use managerial role performance data to illustrate how pseudo estimates work when the

predictors already contain measurement error. The dataset was studied by Warren et al.

(1974), Fuller (1987) and Li and Yin (2007). The data contain a random sample of 98

Iowa farmers whose role performance as managers are measured as the response variable

(Y ). The four predictors are: knowledge of the economic phases of management directed

toward profit-making (X1), tendency to rationally evaluate means to an economic end (X2),

gratification obtained (X3), and amount of formal education (X4). The first three predictors

and the response variable are measured with questionnaires filled out by the managers and

contain measurement errors. The amount of formal education is measured without error.

Since the predictors in this data contain measurement errors, we will compare results using

pseudo methods to the results using the U approach proposed by Li and Yin (2007). Based

on Li and Yin (2007), we can obtain both Σw and Σδ. Therefore, we can directly obtain

U scale predictors as U = (I − Σ̂δΣ̂
−1
w )W. Our pseudo SIR method agrees with Li and

Yin (2007) that the estimated structural dimension is 1. To obtain pseudo estimate, we set

l = 0.0005 and u = 0.005 and then ensemble over 500 estimates. A plot of the response

versus the respective estimated predictor variable (not reported here) shows significant linear

relationship. By fitting a linear model, the last column in Table 3.6 reports the prediction
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error using leave-one-out cross-validation. Again, it indicates that the two pseudo estimates

are very consistent and have better accuracy than the corresponding U approach of Li and

Yin (2007). For this data, we also use LASSO and pseudo SVS for variable selection. But

neither approach excludes any variable from the model, indicating that all the predictors are

related to the response variable.

Table 3.6: PE for prostate cancer data and managerial role performance data

Prostate cancer Managerial role performance

MSE PE PE
Pseudo 0.444 0.532 U-SIR 0.0155

OLS 0.444 0.541 U-OLS 0.0161
Lasso 0.452 0.549 pseudo SIR 0.0152
Ridge 0.445 0.537 pseudo SIR 0.0152

3.5 Discussion

The pseudo SDR methods introduced in this article can be applied to a broad range of

applications in which the predictors are correlated. Although the pseudo SDR directions are

laying in a subspace that is different from the true parameter subspace in the population, it

can lead to a better estimate based on an observed sample. This relaxation on the parameter

space opens the door to search for a better estimate in a much larger space. Our study

showed that regardless of whether the observed predictors contain measurement errors or

not, the pseudo estimates can improve the classic estimates. In this paper, we only focus on

collinearity. However, we can extend the pseudo SDR to the “large p, small n” problem, as

its sample covariance matrix is not invertible either. Such a consideration is under current

investigation.

It is perhaps interesting and intuitively correct if we relax the positiveness of λ, especially

in terms of measurement error data. In highly correlated data, Hoerl and Kennard (1970)

showed that there exists a λ > 0 such that the ridge estimator is better than the OLS
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estimator. When we directly adopt the result of Li and Yin (2007), it is obvious that λ > 0,

as the covariance matrix of δ is positive definite. However, suppose that the true variables

in X are highly correlated, but X already has measurement error in the observations. Then

the covariance matrix of X is as if highly correlated with an error term. In such a case, if

this error term is too big, then based on the argument of Hoerl and Kennard (1970), instead

of adding a positive λ, we may need to add a negative λ so that the MSE will achieve its

minimum. The estimator should not be shrunk but expended. To illustrate this idea, we

use the same linear model and same setup on X in Section 3.2.4.1, instead of working on

U, we directly work on measurement error predictor X̃ = X + δ, where δ ∼ N(0, 0.25I).

Figure 3.5 shows the box plots for this setup. We use the ridge formula (3.2) on X̃ and run
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Figure 3.5: Box plot of optimal ridge tuning parameter using X̃.

λ over the range [-1,1]. From there we choose the λ to be the optimal if it has the smallest

measure of accuracy for the ridge estimate. We run 500 simulations for each setup. We

can see that when measurement errors are already contained in the observed sample, the

optimal tuning parameter is around a negative number. Its range is becoming smaller as the

correlation among predictors increases. Hence, in order to find a better pseudo estimate, we
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may relax the positiveness of the tuning parameter so that λ can be negative. Unfortunately,

this approach fails in practice because the method is too sensitive with respect to choosing

the “correct” value of the measurement error. In other words, the results are not stable in

the sense that they cannot consistently improve the classical estimates.

Appendix

Proof of Proposition 1. If γ = 0 and Γ = I, the relationship in (3.3) reduces to W = X+δ.

In such a case, E[W] = E[X] + E[δ] = 0 and

Σw = E[WW′] = E[(X + δ)(X + δ)′] = E[XX′ + δX′ + Xδ′ + δδ′]

= E[XX′] + E[δX′] + E[Xδ′] + E[δδ′] = E[XX′] + E[δδ′]

= Σx + Σδ, (3.16)

because X and δ are independent so that E[δX′] = E[Xδ′] = 0. Moreover, since δ is also

independent of Y ,

E[WY ] = E[(X + δ)Y ] = E[XY ] + E[δY ] = E[XY ]. (3.17)

For the surrogate predictors W, using (3.16) and (3.17), we can obtain the OLS estimate

based on W as

βow = (E[WW′])−1E[WY ] = (Σx + Σδ)
−1E[WY ]

= (Σx + Σδ)
−1E[XY ]

If Σδ = λI, βow = βrx. 2

78



Chapter 4

Extrinsic sufficient dimension reduction

4.1 Introduction

Among many active research areas in statistics, the “small n, large p” problem attracts more

and more attention with emergence of neuroimage data and micro-array data. Nowadays

it is common to have a dataset with only a few observations but hundreds of predictors or

covariates. If a underlying linear structure is assumed, the model is usually of the form:

Y = Xβ + ε, (4.1)

where Y is an n × 1 response vector, X is an n × p design matrix, β is a p × 1 parameter

vector, and εT = (ε1, ε2, ..., εn) are the i.i.d. random noises with E(ε) = 0. When a dataset

is observed with many predictors, β is often sparse in a sense that s < p components of it

are non-zero. To estimate the structure, one goal is to infer the set of non-zero components

of β which we denote by S = {i : βi 6= 0}.

Penalized approach has become a main stream of research to infer the set S from the data

(Tibshirani, 1996; Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006). With a proper
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amount of regularization, L1 penalty has shown its usefulness in many applications. However,

how to select the proper amount of regularization remains a controversial problem. To

conquer the challenge, Meinshausen and Bühlmann (2010) proposed a stability selection by

using a subsampling approach. Stability selection conservatively controls a certain familywise

type I error rate in multiple testing for finite sample size. In conjunction with penalized

estimation, stability selection has established a new usage of resampling in studying high

dimensional data beyond its traditional role as a tool for asymptotic statistical inference

in terms of standard errors, confidence intervals and statistical testing. An extension of

stability selection to sufficient dimension reduction (SDR) methods was studied by Wu and

Yin (2015b). Let B be a p× d matrix such that

Y X|BTX (4.2)

where stands for independence. The space spanned by the columns of B is called a

SDR subspace. If the intersection of all the SDR subspaces itself is a SDR subspace, it

is called the central subspace (CS, Cook 1994, 1996). Inference in SDR are focused on

estimating the basis matrix B of the CS. Typical estimators are usually obtained by using

dimension reduction matrices. These methods include well-known sliced inverse regression

(SIR; Li 1991), principal Hessian directions (PHD; Li 1992) and sliced inverse variance

estimate (SAVE; Cook and Weisberg 1991). Rich literatures on SDR methods are available

(Cook, 1998; Li, 1991, 1992; Cook and Weisberg, 1991; Yin, 2010).

In this paper, we take a completely different approach to effectively use observed sample

to facilitate estimating the underlying structure for high dimensional data. Instead of boot-

strapping or subsampling, we create surrogate samples by adding small amount of random

noises to the original sample so that we are not limited to the original observed data. This

idea is related to measurement error regression (Fuller, 1987) and surrogate samples (Li and

80



Yin, 2007). Since we create surrogate samples of data points which differ from the original

observed data, we call it an extrinsic sampling method, comparing with the traditional sub-

sampling or bootstrap which we call an intrinsic sampling method. In Section 4.2, we define

the intrinsic and extrinsic sampling schemes and discuss their differences and connections.

We also propose a way of obtaining extrinsic samples by adding noises with known structure

to the original sample. In Section 4.3, we discuss how to use extrinsic sampling to obtain

better penalized estimates for a n < p problem. In Section 4.4, we propose an innovative

approach to expand the original sample by using extrinsic sampling to increase the effective

sample size such that we can make a n < p problem become a n > p problem. Numerical

studies will be included in Section 4.5. We will conclude with a discussion in Section 4.6.

4.2 Extrinsic and intrinsic sampling

Re-sampling is a useful method to estimate known population parameter by reusing available

data. Jackknife was proposed by Tukey (1958) based on the idea of Quenouille (1949, 1956)

to estimate the bias and standard error (variance) of a statistic. Efron (1979) proposed the

bootstrap method as a generalization of jackknife. Bootstrap can be used to estimate the

sampling distribution of an estimator by resampling with replacement. Both parametric and

nonparametric bootstrap exist under different assumptions. When the parametric inference

is complicated or impossible for the calculation of standard errors, bootstrap is particularly

useful as a robust alternative to estimate the standard errors. Both bootstrapping and

jackknife can be used to study the asymptotic behavior of regression coefficients by estimating

standard errors, building confidence intervals, and conducting statistical testing. In-depth

study of bootstrap estimate of regression coefficients can be found in Bickel and Freedman

(1981) and Freedman (1981).
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One limitation of resampling with or without replacement is that the resulting sample

has a smaller effective sample size than the original sample. Since every unit in a sample of

size n has probability 1 − (1 − 1/n)n to appear in a sufficient bootstrap resample. So, the

expected length of a sufficient bootstrap resample is n∗ = [1− (1− 1/n)n]×n. For example,

if n = 400, then n∗ = 253. This drawback of traditional resampling amplifies as the original

sample size decreases and the correlation between predictors increases. Hence, we propose

an alternative extrinsic resampling approach.

4.2.1 Differences between extrinsic and intrinsic resampling

If X = {X1,X2, · · · ,Xn} is the original sample with n observations, aforementioned re-

sampling methods draw a sample X ∗ = {X∗1,X∗2, · · · ,X∗n} from X such that X∗i ∈ X . We

call any resampling method SI that satisfy above property an Intrinsic Resampling (IR)

method. Bootstrap is an IR scheme with the functionality of SI to be sample with re-

placement and subsampling is also an IR method with the functionality of SI to be sample

without replacement.

We now propose a different resampling method as follows. Let X = {X1,X2, · · · ,Xn}

be the original sample, an Extrinsic Resampling (ER) method SE generates a sample X ∗ =

{X∗1,X∗2, · · · ,X∗n} that is related to the original sample X , say, X∗i = Xi+δi, where δi follows

a distribution of Fδ, and X∗i may or may not be in the original sample X . Although different

methods can be used to obtain extrinsic samples X ∗, its relationship with the original sample

X is very important because the principle of obtaining extrinsic samples X ∗ is similar to

obtaining the intrinsic samples, that is to ensure the behavior of estimates based on the

resamples are similar to the estimates that are based on the original sample. However, since

the observations in the extrinsic samples are different from the original sample, the estimates

based on extrinsic samples may contain some bias.

82



4.2.2 Obtaining extrinsic samples

Our method to achieve such ER is to create surrogate samples W by enforcing known noises

to the original sample, which creates samples containing “measurement error” δ with known

distribution. There are many references and techniques available in the literature (Fuller,

1987) to study linear models for measurement error predictors. Usually, W and X are

assumed to be related through a linear model:

W = γ + ΓX + δ, (4.3)

where γ is a q-dimensional vector and Γ is a q × p matrix, which can be either known or

unknown in different cases. And δ is a q dimensional error vector which is independent of

X and Y . The relationship between the response Y and the true predictors X can be found

through the measurement error predictors W. A typical approach is transforming W to U as

U = ΣxwΣ−1
w W, where Σxw is the covariance matrix between X and W. This is essentially

a linear regression of X on W. An auxiliary sample which provides information about the

relation between the original predictor X and the surrogate predictor W is usually available

to estimate Σxw. After this linear transformation, one may proceed with the analysis as if

the errors are free in U. Extensive studies of estimation based on surrogate samples related

to SDR can be found in Carroll and Li (1992); Lue (2004); Li and Yin (2007) and Wu and

Yin (2015a).

An important case of (4.3) is when p = q and Γ = I. In such a case, if we generate δ

from a known distribution (e.g. N(0, σ2I)), a new sample can be created by ER scheme as

X∗ = X + δ. Let zi = {Yi,Xi} for i = 1, · · · , n be the originally observed sample of size

n, an extrinsic sample of size n can be drawn as z∗i = {Yi,X∗i } with X∗i = Xi + δi where

δi ∼ N(0, σ2I) and σ2 is a small constant for i = 1, · · · , n.
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4.3 Penalized extrinsic sampling approaches

In this section, we will introduce how extrinsic samples can be used to obtain a stable sparse

estimation when the original sample size is small and correlations between predictors are

high. One benefit of obtaining extrinsic samples following the way described in Section 4.2.2

is to reduce the estimation bias for highly correlated predictors. Wu and Yin (2015a) studied

the underlying connection between measurement error regression and ridge regression. They

showed that estimation based on the measurement error predictors as pseudo estimates are

better than using original predictors when predictors are highly correlated. Meanwhile, ER

approach can also be useful in penalized methods. We follow exactly the same idea of pseudo

estimates which uses selected variables of X∗ as the selected variables of X.

Meinshausen and Bühlmann (2010) proposed stability selection by using subsamples of

bn/2c to achieve stable variable selection. The idea of stability selection is to select variables

based on their empirical selection probability which is the frequency of each variable that

been selected using penalized procedure for each subsample. The selection probability for a

set K ⊆ {1, ..., p} and selected tuning parameter λ is defined to be

Π̂λ
K = P ∗{K ⊆ Ŝλ(I)}. (4.4)

For a given cutoff probability πthr and a tuning parameter range Λ0, the set of stable pre-

dictors is

Ŝstable = {k : max
λ∈Λ0

(Π̂λ
k) ≥ πthr}. (4.5)

Meinshausen and Bühlmann (2010) suggested the subsample size to be bn/2c and a rea-

sonable range for πthr to be [1/2, 1). They showed that the stability selection results are

little sensitive to the choices of πthr. To select variables for each subsample, Meinshausen

and Meinshausen and Bühlmann (2010) proposed to use randomized LASSO be solving the
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penalized optimization problem,

β̂ = arg min
β

(
‖ Y −Xβ ‖2 +λ

p∑
i=1

|βi|
wi

)
, (4.6)

where wi are generated from Uniform[u, 1] for some u ∈ (0, 1). Wu and Yin (2015b) extend

stability selection idea to a general nonlinear model setting of SDR.

However, an obvious limitation of using bn/2c as the sample size for the subsamples

is that if the original sample size n is very small, the variance of estimates based on each

subsample will be very large so that the final variable selection results may not be accurate.

Moreover, if the correlations between predictors are high, original stability selection method

may fail to select the correct sets of variable as a known pitfall of LASSO. Therefore, using

ER in stability selection brings advantages in two situations when the original method fails.

One is that the original sample size is small, and the other is that the correlations among

predictors are relatively high. To implement ER in the stability selection, following algorithm

can be used:

Algorithm 3 (Extrinsic stability selection)

1. For the observed sample zi = {Yi,Xi} for i = 1, · · · , n, create N extrinsic samples of

size n as z∗bi = {Yi,X∗i } with X∗i = X + δi where δi ∼ N(0, σ2I) for i = 1, · · · , n and

b = 1, · · · , N .

2. For each extrinsic sample z∗bi, obtain the sparse estimated regression coefficient β̂
∗
b =

(β̂∗b1, · · · , β̂∗bp) by solving (4.6).

3. For any predictor k, if its frequency of appearing in β̂
∗
b ’s is higher than the preset cutoff

probability πthr, then X∗b is kept in the variable selection procedure, otherwise excluded.

4. We select Xb as an active variable if X∗b is selected.
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4.4 Data augmentation by ER

We should note that for linear models, when n < p, traditional penalized method, such

as LASSO (Tibshirani, 1996), still work for original sample X, but using extrinsic samples

can improve the results when predictors are highly correlated. For dimension reduction, the

stable method proposed by Wu and Yin (2015a) does not work on X for n < p case as their

methods require an inverse of the covariance matrix of X. In this section, we will discuss

how to increase the effective sample size for estimation by ER approach.

Following the procedure described in Section 4.2.2, we can repeatedly obtain extrinsic

samples X̃ so that when we pool them together, we can obtain an extrinsic sample with a

much larger sample size than the original X . Therefore, for a n < p problem, we can always

obtain an extrinsic sample X ∗ with sample size n∗ > p. Then we can apply traditional

method to obtain an estimate. This approach transforms an unsolvable problem to a solvable

problem. Moreover, since multiple extrinsic samples of size n∗ can be generated, an ensemble

approach can be used to improve the accuracy of estimation.

Algorithm 4 (Estimation based on data augmentation)

1. For the observed sample zi = {Yi,Xi} for i = 1, · · · , n, create m extrinsic samples of

size n as z∗bi = {Yi,X∗i } with X∗i = X + δi where δi ∼ N(0, σ2I) for i = 1, · · · , n and

b = 1, · · · ,m.

2. Combine m extrinsic samples together to obtain an augmented extrinsic sample z̃∗ =

{z∗1i, z∗2i, · · · , z∗mi}. Then obtain an ordinary estimate β̂
∗
j based on the augmented sam-

ple z̃∗.

3. Repeat above steps N times to obtain N estimates β̂
∗
j for j = 1, · · · , N based on N

enlarged extrinsic samples.
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4. • A: To obtain nonsparse estimate, ensemble method can be used to obtain the

eigenvectors of M =
∑N

i=1 β̂
∗
j(β̂

∗
j)
′.

• B: To obtain sparse estimate, for any predictor k, we can obtain its empirical

quantiles based on the N estimates. If β̂
∗
α/2 < 0 < β̂

∗
1−α/2, where β̂

∗
α/2 is the

(100 × α/2)th percentile of the N estimates β̂
∗
j , we set all the kth element of β̂

∗
j

to be 0. Then the eigenvectors of M =
∑N

i=1 β̂
∗
j(β̂

∗
j)
′ will be used as our final

estimate.

In Step 4, our final estimates as based on X∗ for both sparse and nonsparse approaches.

This idea is closely related to the pseudo estimate that introduced by Wu and Yin (2015a).

Although the estimate based on each extrinsic sample may contain a small bias, we treat them

as the estimates for the correct parameter space. For linear models, OLS can be used and

the first eigenvector β̂
∗

of M can be used as the scaled final estimate. For nonlinear models,

traditional SDR methods can be used and the first d eigenvector β̂
∗

of M can be used as the

basis for CS, where d is the structural dimension of the CS that is known or can be estimated.

In Step 4B, we can also use a hard threshold that is similar to Shao and Deng (2012) or

replace β̂
∗
α/2 and β̂

∗
1−α/2 by β̄

∗ ± Φ−1(1− α/2)S.E.∗(β∗j) where S.E.∗(β̂
∗
j) =

∑N
b=1

(
ˆβ
∗

j−
¯β
∗
)2

(N−1)
,

β̄
∗

is the average of β̂
∗
j , and Φ(·) is the c.d.f. of standard normal distribution. The way of

obtaining sparse estimate in Step 4B is very different from the way in Step 3 of Algorithm 3.

As mentioned earlier, Algorithm 3 can only be used for OLS when n < p, but Algorithm 4

can be used to obtain sparse dimension reduction estimates when n < p because the sample

covariance matrix of the predictors in the augmented sample becomes invertible. Since the

enlarged sample makes the traditional estimation methods become available, one can also

adopt stable approach (Wu and Yin, 2015b) for each augmented sample in Step 4B to obtain

sparse estimate. Similarly, we can repeat the entire Algorithm 4 multiple times to obtain a

more stable sparse estimation result.
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4.5 Numerical study

In this section, we will use simulations to illustrate the effectiveness of our proposed methods.

We will use the following model from Zou (2006):

Model 1: Y = 3X1 + 1.5X2 + 2X5 + cε, (4.7)

to compare the results of stability selection using ER, subsampling as originally proposed

by Meinshausen and Bühlmann (2010), and bootstrap sampling p to illustrate the method

proposed in Section 4.3.

To demonstrate the method in Section 4.4 using SIR, we consider the the following

nonlinear model from Li (1991):

Model 2: Y = X1(X2 + 1.5) + cε. (4.8)

For both models, the predictors Xi = (Xi1, Xi2, · · · , Xip)
′ for i = 1, · · · , n were i.i.d. standard

multivariate normal vectors, as well as the noise vector ε. We set the pairwise correlation

between Xk and Xj to be cor(Xk, Xj) = ρ|k−j|, in which we vary the correlation coefficient

between 0 and 0.9. The noise level c is set to be 0.1. Since both methods introduced in

Section 4.3 and Section 4.4 provide sparse estimates for variable selection purposes, we report

the true positive rate (TPR): the ratio of the number of correctly identified active predictors

to the number of truly active predictors, and the false positive rate (FPR): the ratio of

the number of falsely identified active predictors to the number of true inactive predictors.

A better estimate should have bigger TPR and smaller FPR. Following the algorithms in

Section 4.3 and Section 4.4, when create the extrinsic samples, we set the variance of the

noise to be 0.005.
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Table 4.1: Stability selection with extrinsic sampling, subsampling, and bootstrap

Extrinsic Sampling Sub-sampling Bootstrap
p ρ TPR FPR TPR FPR TPR FPR

10

0 1.0000 0.0143 1.0000 0.0014 0.9900 0.0000
0.2 1.0000 0.0114 1.0000 0.0000 0.9967 0.0000
0.5 1.0000 0.0057 1.0000 0.0000 0.9933 0.0000
0.8 0.9967 0.0300 0.9400 0.0029 0.8533 0.0000
0.9 0.9467 0.0486 0.8100 0.0071 0.6600 0.0014

50

0 1.0000 0.0036 0.9867 0.0000 0.7067 0.0000
0.2 1.0000 0.0017 0.9933 0.0000 0.7900 0.0000
0.5 1.0000 0.0023 0.9967 0.0000 0.9333 0.0000
0.8 1.0000 0.0034 0.9400 0.0002 0.8567 0.0000
0.9 0.9667 0.0064 0.6933 0.0004 0.5767 0.0000

100

0 1.0000 0.0016 0.9300 0.0000 0.4167 0.0000
0.2 0.9967 0.0012 0.9733 0.0000 0.5933 0.0000
0.5 1.0000 0.0008 0.9967 0.0000 0.8433 0.0000
0.8 0.9833 0.0014 0.8967 0.0001 0.7800 0.0000
0.9 0.9333 0.0029 0.7133 0.0000 0.5900 0.0000

300

0 0.9900 0.0006 0.7367 0.0000 0.2067 0.0000
0.2 1.0000 0.0004 0.8067 0.0000 0.2333 0.0000
0.5 0.9933 0.0003 0.9400 0.0000 0.5767 0.0000
0.8 0.9967 0.0005 0.8967 0.0001 0.7533 0.0000
0.9 0.9067 0.0006 0.7233 0.0003 0.5767 0.0000

Table 4.1 provides TPRs and FPRs of using stability selection for model (4.7). Since

the effectiveness of using extrinsic samples in stability becomes significant when the original

sample size is relatively small and the correlations between predictors are relatively high,

we fix the samples size of each data that we generated to be n = 40 and set correlations

ρ between variables to be (0, 0.2, 0.5, 0.8, 0.9) respectively. To simulate n < p scenario, we

set the number of predictors to be (10, 50, 100, 300) respectively with p = 10 for comparison

purpose. The TPRs and FPRs are averaged over 500 simulated data for each situation.

From the output, we can see that when the correlation between predictors increase, using

ER in stability selection maintain a good performance while using subsampling and bootstrap

become insufficient especially as the number of predictors also increase. In such a case, TPRs

of subsampling and bootstrap sampling significantly decrease. Stability selection using ER
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outperform the other two sampling methods in almost all (n, p) combinations. We should

also note that, the reason for subsampling and bootstrap having small FPRs is because when

p gets large, both methods fail to select any variable. This is why the TPR and FPR decrease

the same time.

The data augmentation approach can be used for obtaining both sparse OLS and SIR

estimates when n < p. For linear model (4.7) using OLS, since LASSO can also solve

the n < p problem, we compare the TPRs and FPRs for LASSO with data augmentation

approach as described in Section 4.4. We also include the TPRs and FPRs by using stable

data augmentation approach. To obtain a stable estimate based on data augmentation, one

can simply repeat the steps in Algorithm 4 T times to obtain T sparse estimate. To obtain a

stable estimate, for any predictor k, if the proportion of kth elements among the T estimates

is smaller than a preselected cutoff point π, we set all the kth element of β̂
∗
j to be 0. Then

the eigenvectors of M =
∑T

i=1 β̂
∗
j(β̂

∗
j)
′ will be used as our final stable estimate. In our

simulations, we set π = 0.85.

Table 4.2 includes the TPRs and FPRs of LASSO estimate and sparse estimate based on

data augmentation using extrinsic samples and stable estimate as described above. We fix the

samples size of each data we generated to be n = 80 and set correlations between variables

ρ to be (0, 0.2, 0.5, 0.8, 0.9) respectively. To simulate n < p scenario, we set the number of

predictors to be (10, 40, 80, 120, 160) respectively with p = 10 and p = 40 for comparison

purpose. The TPRs and FPRs are averaged over 500 simulated data for each situation.

According to the results, we can see that when the number of predictors is relatively small,

the data augmentation approaches are significantly better than LASSO in terms of FPRs.

As the number of predictors increase, data augmentation approaches consistently remain

good performance and are as good as LASSO. We should keep in mind that since the data

augmentation approach (without the stabilizing step) is computationally much simpler than

LASSO, it is very effective to provide variable selection for n < p problem. We should
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Table 4.2: TPR and FPR of variable selection for linear model

LASSO Extrinsic Stable Extrinsic
p r TPR FPR TPR FPR TPR FPR

10

0 1.0000 0.3875 1.0000 0.0113 1.0000 0.0088
0.2 1.0000 0.3463 1.0000 0.0138 1.0000 0.0063
0.5 1.0000 0.2963 1.0000 0.0350 1.0000 0.0200
0.8 1.0000 0.2113 1.0000 0.1250 1.0000 0.1150
0.9 1.0000 0.1338 1.0000 0.1688 1.0000 0.1438

40

0 1.0000 0.1400 1.0000 0.0234 1.0000 0.0121
0.2 1.0000 0.1416 1.0000 0.0137 1.0000 0.0055
0.5 1.0000 0.1213 1.0000 0.0113 1.0000 0.0068
0.8 1.0000 0.1134 1.0000 0.0239 1.0000 0.0224
0.9 1.0000 0.0763 1.0000 0.0308 1.0000 0.0279

80

0 1.0000 0.1001 1.0000 0.0327 1.0000 0.0174
0.2 1.0000 0.0801 1.0000 0.0231 1.0000 0.0103
0.5 1.0000 0.0774 1.0000 0.0085 1.0000 0.0024
0.8 1.0000 0.0931 1.0000 0.0122 1.0000 0.0112
0.9 1.0000 0.0865 1.0000 0.0151 1.0000 0.0136

120

0 1.0000 0.0564 1.0000 0.1159 1.0000 0.0849
0.2 1.0000 0.0453 1.0000 0.0972 1.0000 0.0729
0.5 1.0000 0.0381 1.0000 0.0618 1.0000 0.0426
0.8 1.0000 0.0297 1.0000 0.0215 1.0000 0.0153
0.9 1.0000 0.0285 1.0000 0.0217 1.0000 0.0179

160

0 1.0000 0.0336 1.0000 0.0587 1.0000 0.0411
0.2 1.0000 0.0316 1.0000 0.0529 1.0000 0.0362
0.5 1.0000 0.0265 1.0000 0.0351 1.0000 0.0241
0.8 1.0000 0.0184 1.0000 0.0159 1.0000 0.0109
0.9 1.0000 0.0189 1.0000 0.0158 1.0000 0.0141

also notice that although the stability step requires additional computations, it result much

smaller FPRs in variable selection.

Table 4.3 provides the TPRs and FPRs for SIR model (4.8). Similar to Table 4.2, the

data augmentation approach selects variables with bigger TPRs and smaller FPRs.
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Table 4.3: TPR and FPR of variable selection for SIR model

Extrinsic Stable Extrinsic
p ρ TPR FPR TPR FPR

10

0 1.000 0.056 1.000 0.031
0.2 1.000 0.081 1.000 0.044
0.5 1.000 0.106 1.000 0.056
0.8 1.000 0.081 1.000 0.069
0.9 1.000 0.156 1.000 0.119

40

0 1.000 0.042 1.000 0.033
0.2 1.000 0.037 1.000 0.029
0.5 1.000 0.033 1.000 0.028
0.8 1.000 0.026 1.000 0.017
0.9 1.000 0.033 1.000 0.026

80

0 1.000 0.017 1.000 0.013
0.2 1.000 0.018 1.000 0.013
0.5 1.000 0.016 1.000 0.009
0.8 1.000 0.011 1.000 0.005
0.9 1.000 0.014 1.000 0.012

120

0 0.975 0.014 0.975 0.012
0.2 1.000 0.018 1.000 0.015
0.5 1.000 0.020 1.000 0.017
0.8 1.000 0.021 1.000 0.020
0.9 1.000 0.024 1.000 0.020

160

0 0.850 0.009 0.900 0.007
0.2 0.925 0.010 0.900 0.009
0.5 1.000 0.012 1.000 0.012
0.8 1.000 0.017 1.000 0.015
0.9 1.000 0.018 1.000 0.015

4.6 Discussion and future work

In this paper, we propose extrinsic sampling in stability selection for linear models in order

to improve the variable selection accuracy for n < p case. Our approach is especially useful

for the case when the size of observed sample is limited and predictors are correlated with

each other. Our empirical study shows that stability selection using ER outperforms using

subsampling as originally proposed by Meinshausen and Meinshausen and Bühlmann (2010).

We also propose to pool multiple extrinsic samples together to increase the effective sample
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size in order to make traditional SDR methods work for n < p problems. With multiple

enlarged samples generated, sparse estimates can be obtained based on empirical distribution

of estimates from each enlarged sample. Meanwhile, with estimates obtained from multiple

extrinsic samples, an ensemble step can improve accuracies of both sparse and nonsparse

estimates further.

In our simulations, we pool multiple extrinsic samples together to make sure that the

final enlarged sample size is m = 3 times larger than the number of predictors p. However,

choosing an optimal m could be one of our future investigations. Intuitively, the choice of

m should rely on the ratio between n and p. To create each extrinsic sample, we uses a

small quantity δ = 0.005 as the noise variance, which follows the suggestion by Wu and Yin

(2015a). However, we could also generate δ from an interval and use ensemble approach in

order to avoid using a possible bad δ.

The data augmentation approach creates an opportunity for statisticians to apply tradi-

tional methods for a n < p problem. While extra bias are introduced when extrinsic samples

are created, one can always refine their estimation methods to seek for a balance between

the bias and estimation accuracy because this bias is known and can be controlled by practi-

tioners. We treat the final estimate as a pseudo estimate based on X∗, the theory of linking

this pseudo estimate to the estimate based on X is another future research topic.
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