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Abstract

The following dissertation consists of two parts. Throughout this dissertation, we assume

that the spherical triangulation ∆ could be a part of a sphere with or without holes, or the

whole sphere S2. In the first part, given a set of function values and derivatives at scattered

data locations over a spherical surface, we first use the minimal energy method to find a

Hermite interpolation on the spherical spline spaces over a spherical triangulation ∆ of the

scattered data locations. We show that the minimal energy method produces a unique spher-

ical Hermite interpolation spline of the given scattered data with derivatives. Also we show

that the Hermite interpolatory surface converges to a given sufficiently smooth function f in

L2 and L∞ norm if the values are obtained from this f . That is, the surface of the spherical

Hermite interpolation spline resembles the given set of scattered data values and derivatives.

Some numerical results are given to demonstrate our method. In the second part, for any

integer r ≥ 0, we first give a method of Cr hole filling by the minimal energy quasi-Hermite

interpolation method and delicate care of Cr related boundaries. Then we present a method

to deal with point cloud with Cr continuity by using the minimal energy Hermite interpo-

lation method or minimal energy quasi-Hermite interpolation method, and our surface can



interpolate these points and their derivatives if they are given. Several numerical experiments

are presented to show our methods.
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Chapter 1

Introduction

Spline surfaces have been studied for more than 40 years, and have become very impor-

tant tools in approximation theory and numerical analysis, cf. [14], [3] and [37]. They have

found many applications in CAGD(computer-aided geometric design) which is concerned

with the approximation and representation of curves and surfaces that arise when these

objects have to be processed by a computer, CG(computer graphics), CAD(computer-aided

design), signal processing, numerical solution of ordinary differential equations and partial

differential equations, financial engineering etc., cf. [14], [3], [37], [9], [33], [36] and [15]. By

far the most important spline surfaces are polynomial spline surfaces like classical Bézier

patches defined on triangular and rectangular domains, B-spline surfaces defined on rect-

angular domains in terms of tensor product form and their extensions on higher dimension

domains, and spherical splines defined on sphere. Interpolation and approximation are the

main research interests. Many important achievements have been obtained, for example, the

de Casteljau algorithm, subdivision algorithms and smoothness conditions connecting two

surface patches, cf. [14], [13], [20], [3]. In particular, the most recent and important achieve-

ment is ALW method which enables us to use spline functions of any degree d and any

smoothness r with d ≥ 3r + 2 over a triangulation for numerical solution of partial differen-

tial equations and scattered data interpolation, cf. [9]. These results have been documented

in [Lai & Schumaker’07] monograph, cf. [37].

The theory of spherical splines on triangulations of the sphere S2 in R3 have been devel-

oped by P. Alfeld, M. Neamtu, and L. L. Schumaker in a series of papers [3]-[5]. Spherical
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splines are an interesting example for surfaces defined on surfaces and have important appli-

cations in geophysics and metrology which involve approximations of functions defined on

the sphere, cf. [13] and [37]. Many theories of bivariate polynomial splines on planar trian-

gulations carry over, but there are several significant differences because the sphere which

is a closed manifold much different from planar domains. For example, the summation of

barycentric coordinates is greater than one for any interior points while it is always one as in

planar domains, computation of the derivatives of functions defined on sphere, integration

of spherical splines over spherical triangulation and calculable spherical Sobolev space semi-

norms. In [40], M. Neamtu, and L. L. Schumaker studied approximation bounds of spherical

splines on functions in Sobolev spaces on the sphere, where a spherical spline of degree d is

a Cr function whose pieces are the restrictions of homogeneous polynomials of degree d to

the sphere. The bounds are expressed in terms of approximate seminorms defined with the

help of a natural radial projection, and are obtained using appropriate quasi-interpolation

operators. The derivatives of a Bézier-Bernstein polynomial defined on the sphere can be

obtained by calculating the restriction of derivatives of its homogeneous extension to R3 on

sphere S2.

Scattered data fitting has been studied widely. For planar domain case, Hermite inter-

polants in a triangulation of a planar domain was studied in [20], and the energy minimization

method for scattered data Hermite interpolation has been studied recently in [48]. For spher-

ical domain, minimal energy Lagrange interpolation using spherical splines was first studied

in [4], then studied in [11] with a modification of energy functional, where triangulations in

these papers are the whole sphere. In this dissertation, we first study the minimal energy

method for Hermite interpolation problem on the sphere S2 in R3. The notion of spherical

Hermite interpolation with first order directional derivatives was introduced in [22]. We use

a general notation of Hermite interpolation discussed in [20] and [48] with a change of deriva-

tives with respect to latitude and longitude direction. The Hermite interpolation problem

does have an important practical application. In 2007, a satellite called GOCE (Gravity
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field and steady-state Ocean Circulation Explorer) will be launched to collect gravitational

vectors over sampling points around the Earth. Together with the geopotential data from

CHAMP (CHAllenging Minisatellite Payload) which is a German small satellite mission for

geoscientific and atmospheric research and its applications, we have location data and its

derivatives up to second order for the geopotential function around the Earth, cf. [25]. The

purpose of the satellite is to get a more accurate estimate of geopotential near the surface of

the Earth. An important intermediate step is to estimate the geopotential very accurately

at the orbital level of the satellite, cf. [12]. This motivates us to use spherical spline sur-

faces to solve Hermite interpolation problem over scattered data on the sphere, and make

them resemble the shape of the given data values and approximate the geopotential very

accurately.

On the second part of this dissertation, we study hole filling and Cr scattered data smooth

fitting with centralizable data. Scattered data interpolation and hole filling are important

research questions and there are many papers about the planar domain case, e.g.,cf. [14],

[16], [32], [34], [30] and [31]. For spherical domains, we use the minimal energy method for

quasi-Hermite interpolation (cf. Definition 3.1.1) to deal with hole filling problem. Mainly we

use this method to find a spherical spline surface satisfying Hermite interpolation conditions

only at the vertices of boundary edges of curved polygon holes.

We always assume that the spherical triangulation ∆ is a part of a sphere with or without

holes, or the whole sphere throughout this dissertation. Our main contributions lie in the

following.

• Given a set of scattered data with derivatives, we use minimal energy method to

construct Hermite interpolation on spherical spline spaces over a spherical triangulation

∆ of the scattered data locations. Then we show that the minimal energy method

produces a unique Hermite spherical interpolation spline of given scattered data with

derivatives. Finally we show that the Hermite interpolation spline converges to a given

sufficiently smooth function f in L2 and L∞ if the values are obtained from this f .
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Hence the surface of the Hermite spherical spline interpolation resembles the given set

of derivatives.

• For any integer r ≥ 0, we first give a method of Cr hole filling using the minimal

energy quasi-Hermite interpolation over a spherical triangulation of polygonal holes on

the sphere. Then we implement several numerical experiments for r = 0, 1, and 2 to

demonstrate our method.

• For any integer r ≥ 0, we deal with centralizable point cloud by using the minimal

energy Hermite interpolation method or the quasi-Hermite interpolation method to

get a surface with global Cr continuity. Our surface can interpolate data locations

and derivatives up to rth order if they are given. Also we implement experiments for

r = 0, 1, and 2 to show our method.

The organization of dissertation is as follows. Chapter 2 presents the basic topics of

spherical splines as preliminaries. Chapter 3 addresses the minimal energy method for Her-

mite interpolation. Chapter 4 is devoted to surface design based on spherical splines, and it

includes hole filling and Cr scattered data fitting. The last chapter, Chapter 5, focuses on

numerical experiments to support our methods and theories in Chapter 3 and Chapter 4.



Chapter 2

Preliminaries

In this chapter, we review well-established notations and theory in spline spaces defined on

triangulations of the unit sphere S2 in R3. The spaces are natural analogs of the bivariate

spline spaces discussed in [37], and are made up of pieces of trivariate homogeneous poly-

nomials restricted to S2. Thus, they are piecewise spherical harmonics. As we shall see,

virtually the entire theory of bivariate polynomial splines on planar triangulation carries

over, although there are several significant differences. Spherical splines are an interesting

example of surfaces defined on surfaces, and the sphere is a closed manifold much different

from planar domain, cf. [13]. We divide this chapter into three sections, and discuss the basic

theory of spherical splines and approximation properties of spherical splines.

2.1 Spherical triangulations and radial projection

In this section we introduce some basic notation, definitions and lemmas used throughout

this dissertation. These contents including proof can be found in [40], [37] and [10]. Let S2

denote the unit sphere in R3. Given two points u, v on S2 that are not antipodal, i.e., they

do not lie on a line through the origin. Then the points u,v divide the great circle passing

through u,v into two circular arcs. We write ûv for the shorter of the arcs. Its length is

just the geodesic distance between u,v. Now let us give definitions for a spherical triangle,

spherical triangulation and a regular spherical triangulation.

Definition 2.1.1. Given three points v1, v2 and v3 on the unit sphere S2 which lie strictly

in one hemisphere. Then we define the associated spherical triangle τ := < v1, v2, v3 > to

5
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be the set of points on S2 that lie in the region bounded by the three circular arcs v̂1v2, v̂2v3

and v̂3v1, which are called edges of the spherical triangle τ . And the points v1, v2 and v3 are

called vertices of τ . We say τ is non-degenerate if τ has nonzero area.

Definition 2.1.2. A set of spherical triangles ∆ := {Ti}N
1 is called a spherical tri-

angulation provided that the intersection of two triangles in ∆ is empty, or is a common

vertex or common edge. We write Ω :=
⋃N

i Ti for associated domain. If Ω = S2, then we say

that ∆ covers S2.

In this dissertation, we are interested in cases where ∆ covers S2 and where ∆ does

not cover S2. Note that the hole filling problem is the second case. To state results on the

relationship between the number #V of vertices, number #E of edges, and number #T of

triangles in a spherical triangulation, we have to distinguish between the cases when ∆ covers

S2 and when it does not. First we consider the case when ∆ does not cover S2.

Definition 2.1.3. Let ∆ be a spherical triangulation of a domain Ω ⊂ S2. Then we say

that ∆ is shellable provided it consists of a single triangle, or if it can be obtained from a

shellable triangulation of ∆̃ by adding one triangle T such that T intersects ∆̃ precisely along

one or two edges. We say that ∆ is regular provided that ∆ is shellable, or it can be obtained

from a shellable triangulation ∆̃ by removing one or more shellable subtriangulations, all of

whose vertices are interior vertices of ∆̃.

It is easy to show that for regular spherical triangulation that does not cover S2, exactly

the same Euler relations as in the planar case hold.

Theorem 2.1.4. (Euler relations that ∆ does not cover S2, cf. [37] ) Let ∆ be a regular

triangulation, and #VB, #VI , #EB, #H and #T denote the number of boundary vertices,

interior vertices, boundary edges, holes and triangles respectively. Then we have

1) #EB = #VB,

2) #EI = 3 #VI + VB -3 + 3#H,
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3) #T = 2#VI + #VB -2 + 2#H.

For case that ∆ is regular and covers the whole unit sphere S2, we can state the following

properties of ∆( cf. [37]).

1) For ∆ to exist the cardinality of V must be at least 4.

2) The number #E of edges of ∆ is related to the number of triangles as #E = 3#T/2.

3) The number of vertices #V and the number of triangles #T are related as #E =

3(#V − 2).

4) The number of vertices #V and the number of triangles #T are related as #T =

2(#V − 2).

To study spherical spline space we need a notion of the size of a spherical partition.

Given a spherical triangle τ let |τ | denote the diameter of the smallest spherical cap

containing τ and let ρτ denote the diameter of the largest spherical cap contained in τ . Then

|∆| = max{|τ |, τ ∈ ∆}

ρ∆ = min{ρτ , τ ∈ ∆}

are correspondingly the diameter of the largest triangle in ∆ and the diameter of the smallest

spherical cap inscribed in ∆.

Definition 2.1.5. Let β be a positive real number. A triangulation ∆ is said to be β-

quasi-uniform provided that

|∆|
ρ∆

≤ β.

It is well-known that in the planar case, the smallest angle of a quasi-uniform triangulation

is bounded below by 1/β, see [35]. We make use of a concept of a natural radial projection

developed in [40] to relate properties of planar quasi-uniform triangulations to the spherical

ones. It will be clear from our construction that we need to bound triangulation size. In

order to use the results of [40], we need to choose this bound to be 1.
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Figure 2.1: Radial mapping of a spherical triangle to a planar triangle.

Definition 2.1.6. (cf. [40]) Fix a spherical triangle τ with |τ | ≤ 1. Define rτ to be the

center of a spherical cap of smallest possible radius containing τ , and let Tτ be the tangent

plane touching S2 at rτ . We define the radial projection Rτ from Tτ into S2 by

w := Rτ w̄ :=
w̄

|w̄| ∈ S2, w̄ ∈ Tτ .

Since Rτ is one-to-one, R−1
τ is well-defined. Let τ̄ be the image of τ under R−1

τ .

Let ρτ̄ and |τ̄ | be diameters of the inscribed and outscribed circles of τ̄ correspondingly.

It is not too difficult to check that

|τ | ≤ |τ̄ | ≤ K1|τ |,

K−1
2 ρτ ≤ ρτ̄ ≤ K2ρτ , (2.1.1)

for some positive constants K1 and K2 (cf. [40]). However we make use of the following

Lemma 2.1.7. (cf. [10]) Let τ be a spherical triangle with |τ | ≤ 1. Let τ̄ denote the image

of τ under the map R−1
τ . Then

2 tan
|τ |
2

= |τ̄ | (2.1.2)
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and

2 tan
ρτ

2
≤ ρτ̄ . (2.1.3)

Proof. By the definition of Rτ the center of the smallest spherical cap containing τ

is the center of the circle outscribing τ̄ . Let v̄ be one of the vertices of τ̄ . The center of

the unit sphere O, v̄ and rτ form a right triangle with the leg Orτ of length 1, the leg v̄rτ

having length
|τ̄ |
2

and the angle ∠v̄Orτ having radian measurement
|τ |
2

. Then (2.1.2) follows

immediately.

The largest spherical cap σ contained in τ is mapped onto an ellipse ǫ in the plane Tτ

which is contained in τ̄ . The largest circle σ̄ contained in τ̄ has a radius
ρτ̄

2
greater than

or equal to rǫ which is the radius of the largest circle contained in the ellipse. Let o be the

center of σ and v be any point on the boundary δσ of the cap. Let ō and v̄ be the images

of o and v under R−1
τ respectively. Then rǫ can defined by rǫ := minv∈δσ{|ō− v̄|}. Note now

that

|ō − v̄| ≥ tan |o − v|, ∀v ∈ δσ.

Therefore

ρτ̄

2
≥ rǫ ≥ tan

ρτ

2

and we have (2.1.3).

Since great circles are mapped into straight lines under the inverse of the radial projection

Rτ , any cluster of spherical triangles ω with |ω| ≤ 1 is mapped into a planar triangulation

ω̄.

Lemma 2.1.8. (cf. [10], [37]) Let ∆ be a β-quasi-uniform triangulation of the unit sphere

with |∆| ≤ 1. Let Θ∆ denote the smallest angle of ∆. There exists a constant A1 such that

Θ∆ ≥ 1

A1β
. (2.1.4)
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Proof. Fix a spherical triangle τ ∈ ∆ and construct the radial projection Rτ . By

Lemma 2.1.7 we have

|τ̄ |
ρτ̄

≤ tan |τ |
2

tan ρτ

2

≤ 2 tan
1

2
β.

Since τ̄ is a planar triangle, its every angle is bounded below by 1
A1β

with A1 := 2 tan 1
2
.

Since the corresponding spherical angles are even greater (2.1.4) follows.

We will need another lemma comparing areas Aτ of spherical triangles to the size param-

eters |∆| and ρ∆ characterizing spherical triangulations.

Lemma 2.1.9. (cf. [10], [37])For every spherical triangle τ ∈ ∆ with |∆| ≤ 1

πρ2
∆

5
≤ Aτ ≤ π|∆|2

4
. (2.1.5)

Proof. The area Aτ of a spherical triangle is bounded above by the area of the smallest

spherical cap containing τ . The diameter of this cap is |τ |. Without loss of generality we

assume that the center of this cap is located at the north pole. Then

Aτ ≤
∫ 2π

0

∫ |τ |/2

0

sin ηdηdθ = 2π(1 − cos(|τ |/2)) ≤ π
|∆|2
4

.

Similarly, Aτ is bounded below by the area of the largest spherical cap contained in τ , which

by the definition has a diameter ρτ . Therefore

Aτ ≥ 2π(1 − cos(ρτ/2)) ≥ πρ2
∆

5
.

Another result that we need concerning β-quasi-uniform triangulations is a bound on the

number of triangles nk in the k-th disk around τ . We denote the union of all triangles in ∆

that share the vertex v by star1(v). Define recursively

starℓ(v) := ∪{star1(w) : w is a vertex of starℓ−1(v)}, ℓ > 1,

and

starℓ(τ) := ∪{starℓ(w) : w is a vertex of τ}, ℓ > 1.
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Lemma 2.1.10. (cf. [37])Suppose ∆ is a β-quasi-uniform triangulation such that |∆| ≤ 1.

Then for any triangle τ ∈ ∆ and any k ≥ 0 the number nk of triangles in stark(τ) is

nk ≤ 5β2

4
(2k + 1)2, (2.1.6)

and

nk ≥ 2

πβ2
(2k + 1)2. (2.1.7)

Proof. Note that stark(τ) is contained in a spherical cap of radius R = (2k +1) |∆|
2

and

area AR = 2π(1 − cos R). By Lemma 2.1.9 we have

πρ2
∆

5
≤ Aτ .

Then

nk
πρ2

∆

5
≤ AR = 2π(1 − cos R) ≤ πR2.

Therefore

nk ≤ 5β2(2k + 1)2

4
.

On the other hand, stark(τ) contains a spherical cap of radius r = (2k + 1)ρ∆

2
and area

Ar = 2π(1 − cos r). Then by Lemma 2.1.9

2r2 ≤ 2π(1 − cos r) = Ar ≤ nk
π|∆|2

4
,

therefore

nk ≥ 2(2k + 1)2

πβ2
.

2.2 Spherical polynomials

In this section, we introduce the key buildings for spherical splines. Throughout this disser-

tation, we write v for a point on the unit sphere S2 in R3, when there is no confusion. At

times we will also use v to denote the corresponding unit vector. Before introducing spherical

polynomials, first we need to discuss spherical barycentric coordinates.
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2.2.1 Spherical barycentric coordinates

In this subsection we define an analog of planar barycentric coordinates on the sphere and

analyze some of their basic properties as well as two important differences as compared to

planar barycentric coordinates. We start by introducing a special set of coordinates in R3

which will be used later to construct barycentric coordinates on the sphere, see [3].

Definition 2.2.1. (cf. [3]) Let V := {v1,v2,v3} be a basis for R3. We call

T := {v ∈ R3 : v = b1v1 + b2v2 + b3v3, bi ≥ 0} (2.2.1)

the trihedron generated by V . Each v ∈ R3 can be written in the form

v = b1v1 + b2v2 + b3v3. (2.2.2)

We call b1, b2, b3 the trihedral coordinates of v with respect to V .

Equation (2.2.2) defining the trihedral coordinates can be written as a system of three

equations for bi’s: 


vx
1 vx

2 vx
3

vy
1 vy

2 vy
3

vz
1 vz

2 vz
3







b1

b2

b3




=




vx

vy

vz




,

where vx denotes the x-coordinate of v, etc. The matrix above is nonsingular since v1,v2,v3

are linearly independent. Using Crammer’s rule we immediately have

b1 =
det(v, v2, v3)

det(v1, v2, v3)
, b2 =

det(v1, v, v3)

det(v1, v2, v3)
, b3 =

det(v1, v2, v)

det(v1, v2, v3)
, (2.2.3)

where

det(v1, v2, v3) = det




vx
1 vx

2 vx
3

vy
1 vy

2 vy
3

vz
1 vz

2 vz
3




and so forth. Equations above show that the bi’s are ratios of volumes of tetrahedra.

The concept of homogeneity plays a very important role in the construction of spherical

spline functions. Let us present a formal definition and relate it to trihedral coordinates.
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Definition 2.2.2. (cf. [3], [4], [37])Given an arbitrary integer d,a trivariate function F

is said to be homogeneous of degree d provided that for every real number α 6= 0,

F (αv) = αdF (v), v ∈ R3\{0}. (2.2.4)

Let

Hd := {p ∈ Pd : p is homogeneous of degree d},

where Pd is the space of trivariate polynomials of degree d. Then we refer to Hd as the space

of homogeneous trivariate polynomials of degree d.

By definition, we have bi(αv) = αbi(v) for all α ∈ R, i = 1, 2, 3, this implies that the bi’s

are homogeneous linear functions of v of degree of homogeneity 1.

We summaries some additional properties of trihedral coordinates in the following

Lemma 2.2.3. (cf. [3])

1) {bi(v), i = 1, 2, 3} is a linearly independent set,

2) If L is the space of trivariate linear homogeneous polynomials, then L = span{b1, b2, b3},

3) bi(vj) = δij , i, j = 1, 2, 3,

4) bi(v) > 0 for all v in the interior of trihedron T .

Proof. 1) Suppose there are scalars α1, α2, α3 such that

α1b1(v) + α2b2(v) + α3b3(v) = 0, ∀v ∈ R3. (2.2.5)

Define v0 := α1v1 + α2v2 + α3v3. By uniqueness of trihedral coordinates, we must have

αi = bi(v0), i = 1, 2, 3.

Then (2.2.5) implies
3∑

i=1

α2
i = 0,

and thus αi = 0, i = 1, 2, 3.

2) Since bi’s are homogeneous linear functions, clearly

span{b1, b2, b3} ⊂ L
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Let P (x, y, z) = ax+by+cz+d ∈ L. Since P (x, y, z) is linearly homogeneous P (αx, αy, αz) =

αP (x, y, z), ∀α ∈ R. Choose α 6= 1. Then we must have

α(ax + by + cz) + d = α(ax + by + cz) + αd

and thus d = 0. Then P (x, y, z) = ax+by+cz, and L = span{x, y, z}. Since x, y, z are linearly

independent dim(L) = 3. Since b1, b2, b3 are linearly independent and dim(span{b1, b2, b3}) =

3, L = span{b1, b2, b3}.

3) Consider for some vj, j = 1, 2, 3,

vj =
3∑

i=1

bi(vj)vi.

Then

(bj(vj) − 1)vj +
3∑

i=1,i6=j

bi(vj)vi = 0.

Since vi’s are linearly independent we must have

bj(vj) = 1

bi(vj) = 0, i 6= j.

4) If bi(v) = 0 for some i, then v =
∑3

j=1,j 6=i bj(v)vj. Hence v ∈ span{bj , j 6= i}, thus v is

not in the interior of T . Thus if v is in the interior of T we must have bi(v) 6= 0 for all i. By

the definition of T bi(v) > 0 for i = 1, 2, 3, and all v in the interior of T .

Theorem 2.2.4. (cf. [3]) Let R be any nonsingular matrix. Then

bR
i (Rv) = bi(v), i = 1, 2, 3, (2.2.6)

where bR
i are the trihedral coordinates of Rv with respect to {Rv1, Rv2, Rv3}.

Proof. Multiplying (2.2.2) by R, we have

Rv = b1Rv1 + b2Rv2 + b3Rv3.
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Since R is nonsingular matrix, so det(R) 6= 0. Using Crammer’s rule we immediately have

bR
1(Rv) =

det(Rv, Rv2, Rv3)

det(Rv1, Rv2, Rv3)
=

det(R)det(v, v2, v3)

det(R)det(v1, v2, v3)
,

bR
2(Rv) =

det(Rv1, Rv, Rv3)

det(Rv1, Rv2, Rv3)
=

det(R)det(v1, v, v3)

det(R)det(v1, v2, v3)
,

bR
3(Rv) =

det(Rv1, Rv2, Rv)

det(Rv1, Rv2, Rv3)
=

det(R)det(v1, v2, v)

det(R)det(v1, v2, v3)

where

det(v1, v2, v3) = det




vx
1 vx

2 vx
3

vy
1 vy

2 vy
3

vz
1 vz

2 vz
3




Therefore, bR
1(Rv) = b1(v), bR

2(Rv) = b2(v), bR
3(Rv) = b3(v).

Theorem 2.2.5. (cf. [3]) The three planes spanned by pairs of the vi’s divide R3 into

eight trihedra. The functions b1, b2, b3 have constant signs on each of the eight trihedra. In

particular, v ∈ T if and only if bi ≥ 0, i = 1, 2, 3.

Proof. Let T ijk denote a trihedron generated by {(−1)iv1, (−1)jv2, (−1)kv3}, i, j, k ∈

{0, 1}. Note that T 000 = T and each of the eight trihedra can be described this way. Fix

i, j, k. We show that for all v in the interior of T ijk b000
1 (b1(v) with respect to T ) has a

constant sign.

Let bijk
1 be the first trihedral coordinate of v in the interior of T ijk with respect to T ijk. Note

that by Lemma 2.2.3, bijk
1 (v) > 0 for any such v. Then

bijk
1 (v) =

det(v, (−1)jv2, (−1)kv3)

det((−1)iv1, (−1)jv2, (−1)kv3)

= (−1)i det(v, v2, v3)

det(v1, v2, v3)
= (−1)ib000

1 (v).

Since bijk
1 (v) > 0 by above b000

1 has a constant sign in the interior of T ijk.
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Now we introduce spherical barycentric coordinates and relate their properties to the

set of trihedral coordinates. We also describe the two important differences between planar

barycentric coordinates and spherical barycentric coordinates.

Definition 2.2.6. (cf. [3]) Assume intersection of S2 with the trihedron T generated by

V is a spherical triangle τ , then the spherical barycentric coordinates of a point v on

S2 relative to τ are the unique real numbers b1, b2, b3 such that

v = b1v1 + b2v2 + b3v3. (2.2.7)

The spherical barycentric coordinates of a point v with respect to τ are exactly the same

as the trihedral coordinates of v with respect to T . This implies they have the following

properties:

Lemma 2.2.7. (cf. [3], [37]) For any non-degenerate spherical triangle τ :=< v1, v2, v3 >,

we have

1) bi(vj) = δij , i, j = 1, 2, 3,

2) The bi are ratios of volumes of tetrahedra,i.e., b1 is the ration of the signed volume of the

tetrahedra t1 :=< 0, v, v2, v3 > and t :=< 0, v1, v2, v3 >, with a similar interpretation,

3) For all v in the interior of τ , bi(v) > 0,

4) If a point v lies on an edge of τ , then one of its spherical barycentric coordinates

vanishes, i.e., bi vanishes on the edge of τ opposite to vi for all i = 1, 2, 3. The remaining

two spherical barycentric coordinates are ratios of sines of geodesic distances, rather

then ratios of geodesic distances,

5) If the edges of a spherical triangle τ are extended to great circles, the sphere is divided

into eight regions. The spherical barycentric coordinates b1, b2, b3 have constant signs

on each of these eight regions,
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6) Spherical barycentric coordinates are infinitely differentiable functions of v,

7) The spherical barycentric coordinates of a point v on the sphere relative to one spherical

triangle τ can be computed from those relative to another spherical triangle by matrix

multiplication,

8) The spherical barycentric coordinates of a point v are rotation invariant, i.e., they

depend only on the relative positions of v and v1, v2, v3 to each other,

9) The span of the spherical barycentric coordinates b1(v), b2(v), b3(v) relative to any tri-

angle is always the three-dimensional linear space obtained by restricting the space L

of linear homogeneous polynomials on R3 to the sphere S2,and is thus independent of

the triangle,

10) In contrast to the usual barycentric coordinates on the planar triangles which always

sum to 1, b1(v) + b2(v) + b3(v) > 1, if v ∈ τ and v 6= v1, v2, v3. And this is most

significant difference as compared to planar case.

Proof. Apply Lemma 2.2.3, Theorem 2.2.4 and Theorem 2.2.5.

We now show that spherical barycentric coordinates can also be expressed in terms of

certain natural angles associated with the geometry. Let ni denote the unit normal vectors

to the planes Pi := span(V \vi), i = 1, 2, 3. The orientation of these vectors is chosen to be

consistent with the orientation of the vectors vi relative to Pi, i.e.,

sgn det(v1, v2, v3) = sgn det(n1, v2, v3) =

sgn det(v1, n2, v3) = sgn det(v1, v2, n3).

For a point v ∈ S2, let the angles αi, βi, be defined by the dot products

sin αi := v · ni, sin βi := vi · ni, i = 1, 2, 3.

The αi represent oriented angles between the vector v and the planes Pi, while the βi are the

analogous angles between vi and Pi. For nontrivial spherical triangles, det(v1, v2, v3) 6= 0,
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and therefore sin βi 6= 0, i = 1, 2, 3.

Theorem 2.2.8. (cf. [3]) The spherical barycentric coordinates of a point v ∈ S2 with

respect to a triangle τ are given by

bi(v) =
sin αi

sin βi

, i = 1, 2, 3. (2.2.8)

Proof. Let i, j,k denote the unit coordinate vectors and ‖ ·‖ the usual Euclidean norm.

Define

d1 := det




i vx
2 vx

3

j vy
2 vy

3

k vz
2 vz

3




,

d2 := det




vx
1 i vx

3

vy
1 j vy

3

vz
1 k vz

3




,

d3 := det




vx
1 vx

2 i

vy
1 vy

2 j

vz
1 vz

2 k




.

Then n1 = di/‖di‖, and thus

sin αi

sin βi
=

v · ni

vi · ni

=
v · di/‖di‖
vi · di/‖di‖

=
v · di

vi · di

. (2.2.9)

It is easy to check that

vi · di = det(v1, v2, v3), i = 1, 2, 3,

and that

v · d1 = det(v, v2, v3),

v · d2 = det(v1, v, v3),

v · d3 = det(v1, v2, v).

Then by (2.2.9) and the property (2.2.3) of trihedral coordinates we get (2.2.8).
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Lemma 2.2.9. (cf. [2]) Let C be the unit circle in R2 centered at the origin, and let A

be a circular arc with vertices v1 6= v2 which are not antipodal. Let b1, b2 denote the circular

barycentric coordinates of v ∈ C relative to A. Then

b1(v) =
sin(θ2 − θ)

sin(θ2 − θ1)
,

b2(v) =
sin(θ − θ1)

sin(θ2 − θ1)
, (2.2.10)

where θ, θ1, θ2 are the polar coordinates of v,v1,v2 respectively.

Proof. Since

v1 = (cos θ1, sin θ1)
T

v2 = (cos θ2, sin θ2)
T

v = (cos θ , sin θ )T

and

v = b1v1 + b2v2,

the circular barycentric coordinates of v are solving the system:


 cos θ1 cos θ2

sin θ1 sin θ2





 b1

b2


 =


 cos θ

sin θ


 .

We immediately get the result.

Theorem 2.2.10. (cf. [3]) For each i = 1, 2, 3, let Ci be the great circle passing through

the points v ∈ S2 and vi ∈ V , and let yi denote the intersection of Ci with the edge of τ

opposite to vi. Then the spherical barycentric coordinates of v can be computed as

bi =
sin δi

sin(δi + γi)
, i = 1, 2, 3, (2.2.11)

where δi is the signed geodesic distance (measured along Ci) from yi to v, and γi is the signed

geodesic distance from v to vi.
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Proof. It suffices to prove (2.2.11) for i = 1. By Lemma 2.2.9 if v ∈ C1 it can be

expressed relatively to y1 and v1 as:

v =
sin δ1

sin(δ1 + γ1)
v1 +

sin γ1

sin(δ1 + γ1)
y1.

By the same lemma we can write y1 as a linear combination of v2 and v3 only. Then by the

uniqueness of barycentric coordinates

b1 =
sin δ1

sin(δ1 + γ1)
.

Similarly, we can show the result for i = 2, 3.

2.2.2 Homogeneous Bernstein-Bézier polynomials

Since the spherical polynomials are the restriction to S2 of certain homogeneous trivariate

polynomials, we first study the homogeneous Bernstein-Bézier polynomials. Let Pd denote

the space of polynomials of total degree d on R3. Recall that the dimension of Pd is
(

d+3
3

)

and that the set of classical Bernstein polynomials

Bd
ijkl(v) :=

d!

i!j!k!ℓ!
bi
1b

j
2b

k
3b

ℓ
4, i + j + k + ℓ = d (2.2.12)

forms a basis for Pd (cf. [3]).

Let Hd denote the space of polynomials of degree d which are homogeneous of degree d.

Lemma 2.2.11. (cf. [3], [37]) The space Hd is an
(

d+2
2

)
dimensional subspace of Pd. More-

over, if we choose v4 to be the origin in the above construction of the Bernstein polynomials,

then the set {Bd
ijk0 : i + j + k = d} forms a basis for Hd.

Proof. Let f, g ∈ Hd, and α ∈ R. Then

(i) (f + g)(αv) = f(αv) + g(αv) = αf(v) + αg(v) = α(f + g)(v)

(ii) ∀β ∈ R, βf(αv) = βαf(v) = α(βf)(v).

Thus Hd is a subspace of Pd.
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Let f =
∑

0≤i+j+k≤d cijkx
iyizk be in Hd. Since f is homogeneous of degree d we must

have for all α ∈ R

αd
∑

0≤i+j+k≤d

cijkx
iyizk =

∑

0≤i+j+k≤d

αi+j+kcijkx
iyizk

and thus
∑

0≤i+j+k≤d

(αd − αi+j+k)cijkx
iyizk = 0.

Since {xi, yi, zk, 0 ≤ i + j + k ≤ d} is a linearly independent set

(αd − αi+j+k)cijk = 0 (2.2.13)

Choose α 6= 1. Then (2.2.13) implies

cijk = 0, ∀i + j + k 6= d,

and

f =
∑

i+j+k=d

cijkx
iyizk.

It follows that {xi, yi, zk, i + j + k = d} spans Hd and thus dim(Hd) =
(

d+2
2

)
.

Next, we show that the set {Bn
ijk0 : i + j + k = d} forms a basis for Hd. Since {Bd

ijkl :

i + j + k + ℓ = d} is a linearly independent set, so is {Bd
ijk0 : i + j + k = d}. Each Bd

ijk0 is a

homogeneous polynomial of degree d, thus

span{Bd
ijk0 : i + j + k = d} ⊂ Hd.

Since

dim{span{Bd
ijk0 : i + j + k = d}} =

(
d + 2

2

)
= dim(Hd)

we complete the proof.

For convenience, we drop the last subscript and introduce the following definition.

Definition 2.2.12. (cf. [3])Let T be a trihedron generated by {v1, v2, v3}, and let b1(v),

b2(v), b3(v) denote the trihedral coordinates as functions of v ∈ R3. Given an integer d ≥ 0,
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we define the homogeneous Bernstein-Bézier basis polynomials of degree d on T to

be the set of polynomials

Bd
ijk(v) :=

d!

i!j!k!
bi
1(v)bj

2(v)bk
3(v), i + j + k = d. (2.2.14)

We call

P (v) :=
∑

i+j+k=d

cijkB
d
ijk(v) (2.2.15)

a homogeneous Bernstein-Bézier (HBB-) polynomial of degree d.

Many properties of classical, planar, Bernstein-Bézier polynomials hold for HBB-

polynomials. We present several important results.

The first one is the classical de Casteljau algorithm to evaluate P at points in R3 :

Theorem 2.2.13. (de Casteljau algorithm , cf. [3]) Suppose we want to evaluate the

HBB-polynomial at a point w with trihedral coordinates b1, b2, b3.

Set c0
ijk := cijk, i + j + k = d.

For ℓ = 1 to d

For i + j + k = d − ℓ

cℓ
ijk := b1c

ℓ−1
i+1,j,k + b2c

ℓ−1
i,j+1,k + b3c

ℓ−1
i,j,k+1.

Then P (w) = cd
000.

Proof. Let B0
000(w) = 1. Suppose

cℓ−1
ijk =

∑

r+s+t=ℓ−1

ci+r,j+s,k+tB
ℓ−1
rst (w)

for some ℓ and all i, j, k such that i + j + k = d − ℓ + 1. By the definition

cℓ
ijk = b1c

ℓ−1
i+1,j,k + b2c

ℓ−1
i,j+1,k + b3c

ℓ−1
i,j,k+1 = b1

∑

r+s+t=ℓ−1

ci+1+r,j+s,k+tB
ℓ−1
rst +

b2

∑

r+s+t=ℓ−1

ci+r,j+1+s,k+tB
ℓ−1
rst + b3

∑

r+s+t=ℓ−1

ci+r,j+s,k+1+tB
ℓ−1
rst =

∑

r+s+t=ℓ−1

(b1ci+1+r,j+s,k+t + b2ci+r,j+1+s,k+t + b3ci+r,j+s,k+1+t)
(ℓ − 1)!

r!s!t!
br
1b

s
2b

t
3 =
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∑

r+s+t=ℓ−1

ci+1+r,j+s,k+tb
r+1
1 bs

2b
t
3

(ℓ − 1)!

r!s!t!
+

∑

r+s+t=ℓ−1

ci+r,j+1+s,k+tb
r
1b

s+1
2 bt

3

(ℓ − 1)!

r!s!t!
+

∑

r+s+t=ℓ−1

ci+r,j+s,k+1+tb
r
1b

s
2b

t+1
3

(ℓ − 1)!

r!s!t!
=

∑

r+1+s+t=ℓ

r + 1

ℓ
ci+1+r,j+s,k+tb

r+1
1 bs

2b
t
3

ℓ!

(r + 1)!s!t!
+

∑

r+1+s+t=ℓ

s + 1

ℓ
ci+r,j+1+s,k+tb

r
1b

s+1
2 bt

3

ℓ!

r!(s + 1)!t!
+

∑

r+1+s+t=ℓ

t + 1

ℓ
ci+r,j+s,k+1+tb

r
1b

s
2b

t+1
3

ℓ!

r!s!(t + 1)!
=

∑

r′+s+t=ℓ

r′

ℓ
ci+r′,j+s,k+tb

r′

1 bs
2b

t
3

ℓ!

r′!s!t!
+

∑

r+s′+t=ℓ

s′

ℓ
ci+r,j+s′,k+tb

r
1b

s′

2 bt
3

ℓ!

r!s′!t!
+

∑

r+s+t′=ℓ

t′

ℓ
ci+r,j+s,k+t′b

r
1b

s
2b

t′

3

ℓ!

r!s!t′!
=

∑

r+s+t=ℓ

r + s + t

ℓ
ci+r,j+s,k+tB

ℓ
rst =

∑

r+s+t=ℓ

ci+r,j+s,k+tB
ℓ
rst .

Then

cd
000 =

∑

r+s+t=d

cr,s,tB
d
rst(w) = P (w).

The second important result is the subdivision algorithm to show how to write p in HBB-

polynomials on each of the subtriangles. This result is the analog of the classical subdivision

algorithm for bivariate BB-polynomials.

Theorem 2.2.14. (Subdivision algorithm, cf. [3], [37]) Let {cℓ
ijk} be the coefficients pro-

duced by de Casteljau algorithm using trihedral coordinates b1, b2, b3 of a point w ∈ T with

vertices {v1, v2, v3}. Then

P (v) =





∑
i+j+k=d ci

0,j,kB
d
ijk;1(v), v ∈ T1 = {w, v2, v3}

∑
i+j+k=d cj

i,0,kB
d
ijk;2(v), v ∈ T2 = {v1, w, v3}

∑
i+j+k=d ck

i,j,0B
d
ijk;3(v), v ∈ T3 = {v1, v2, w},

(2.2.16)

where Bd
ijk;ν are Bernstein-Bézier polynomials associated with the trihedron Tν , ν = 1, 2, 3.
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Proof. Suppose v ∈ T1, and

P (v) =
∑

i+j+k=d

ci,j,kB
d
ijk(v) (2.2.17)

with respect to T , and

P (v) =
∑

i+j+k=d

ci,j,k;1B
d
ijk;1(v)

with respect to T1. We claim that cijk;1 = ci
0,j,k. The trihedral coordinates of w with respect

to T are determined by

w = a1v1 + a2v2 + a3v3.

The trihedral coordinates of v with respect to T are determined by

v = b1v1 + b2v2 + b3v3

and with respect to T1 are determined by

v = c1w + c2v2 + c3v3.

Then

v = c1(a1v1 + a2v2 + a3v3) + c2v2 + c3v3 =

c1a1v1 + (c1a2 + c2)v2 + (c1a3 + c3)v3.

The uniqueness of barycentric coordinates implies that

b1 = c1a1,

b2 = c1a2 + c2,

b3 = c1a3 + c3.

By (2.2.17)

P (v) =
∑

i+j+k=d

cijk
d!

i!j!k!
bi
1b

j
2b

k
3 =

∑

i+j+k=d

cijk
d!

i!j!k!
ci
1a

i
1(c1a2 + c2)

j(c1a3 + c3)
k.
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Using binomial expansion and rearranging the terms we get

P (v) =
∑

i+j+k=d

cijk
d!

i!j!k!
ci
1a

i
1(

∑

r+s=j

j!

r!s!
cr
1a

r
2c

s
2)(

∑

ℓ+m=k

k!

ℓ!m!
cl
1a

l
3c

m
3 ) =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

cijk
d!

i!r!s!ℓ!m!
ci+r+ℓ
1 cs

2c
m
3 ai

1a
r
2a

ℓ
3 =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

cijk
(i + r + ℓ)!

i!r!ℓ!
Bd

i+r+ℓ,s,m;1a
i
1a

r
2a

ℓ
3 =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

ci,r+s,ℓ+m
(i + r + ℓ)!

i!r!ℓ!
ai

1a
r
2a

l
3B

d
i+r+ℓ,s,m;1 =

∑

i+j+k=d

∑

r+s=j

∑

ℓ+m=k

ci,r+s,ℓ+mBi+r+ℓ
i,r,ℓ Bd

i+r+ℓ,s,m;1.

Introducing a new index of summation p = i + r + ℓ, and since

∑

i+r+ℓ=p

ci,r+s,ℓ+mBi+r+ℓ
i,r,ℓ = ci+r+ℓ

0,s,m

we have

P (v) =
∑

p+s+m=d

(
∑

i+r+ℓ=p

ci,r+s,ℓ+mBp
i,r,m)Bd

p,s,m;1 =

∑

p+s+m=d

Cp
0,s,mBd

p,s,m;1.

A similar proof works for v ∈ T2 and for v ∈ T3.

The third important result is smoothness conditions for joining two HBB-polynomials. The

following theorem establishes necessary and sufficient conditions for two HBB-polynomials

to join together smoothly across a plane trough the origin in the sense that the polynomials

and their usual directional derivatives as trivariate functions are continuous as we cross the

plane.

Theorem 2.2.15. (Smoothness conditions, cf. [3])Let T and T̂ be trihedra generated by

vertices V = {v1,v2,v3} and V̂ = {v2,v3,v4}. Let

P (v) =
∑

i+j+k=d

cijkB
d
ijk(v)
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and

P̂ (v) =
∑

i+j+k=d

ĉijkB̂
d
ijk(v),

where {Bd
ijkl} and {B̂d

ijkl} are the Bernstein-Bézier basis functions associated with T and T̂ .

Then P and P̂ and all of their derivatives up to order m agree on the face shared by T and

T̂ if and only if

ĉijk =
∑

r+s+t=i

cr,j+s,k+tB
i
rst(v4) (2.2.18)

for all i = 0, ..., m and all j, k such that i + j + k = d.

Proof. Suppose

Q(v) =
∑

i+j+k+ℓ=d

CijklB
d
ijkl(v) (2.2.19)

and

Q̂(v) =
∑

i+j+k+ℓ=d

ĈijklB̂
d
ijkl(v), (2.2.20)

where

Cijkl :=





cijk, if ℓ = 0

0, otherwise
(2.2.21)

and

Ĉijkl :=





ĉijk, if ℓ = 0

0, otherwise
(2.2.22)

and Bd
ijkl(v) are the usual BB-polynomials of degree d associated with the trihedron with

vertices {v1, v2, v3, 0} and B̂d
ijkl(v) are those associated with the trihedron with vertices

{v4, v2, v3, 0}. It is well-known that these polynomials join with Cm continuity if and only if

Ĉijkl =
∑

r+s+t+u=i

Cr,j+s,k+t,ℓ+uB
i
rstu(v4), i = 0, ..., m. (2.2.23)

In view of (2.2.21) and (2.2.22) we can choose ℓ = u = 0. In this case, (2.2.23) holds if and

only if (2.2.18) holds. But P = Q and P̂ = Q̂, proof is complete.
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2.2.3 Spherical Bernstein-Bézier polynomials

The spherical Bernstein-Bézier polynomials are the restriction of HBB-polynomials on the

sphere. In this subsection, we discuss the existence of homogeneous extensions for functions

defined on the sphere, the directional derivatives of spherical functions, the smoothness

conditions to join two SBB-polynomials, and the calculation of integration on the sphere.

Let us first present the definition of SBB-polynomials.

Definition 2.2.16. (cf. [3]) The restriction of an HBB-polynomial of degree d to the

points on the unit sphere is called a spherical Bernstein-Bézier (SBB-) polynomial of

degree d.

Now we state the existence of homogeneous extensions.

Lemma 2.2.17. (cf. [4]) Suppose f is a function defined on S2 and let t ∈ R. Then

Ft(v) := ‖v‖tf(v/‖v‖) (2.2.24)

is the unique homogeneous extension of f of degree t to all of R3\{0}, i.e., Ft|S2 = f , and

Ft is homogeneous of degree t.

Proof. The assertion is an immediate consequence of the definition.

Many properties of SBB-polynomials follow naturally from the properties of HBB-

polynomials.

Theorem 2.2.18. (cf. [4]) The polynomials {Bd
ijk, i + j + k = d} restricted to S2 are

linearly independent.

Proof. Suppose

P (v) =
∑

i+j+k=n

cijkB
d
ijk(v) = 0

for all v ∈ S2. By Lemma 2.2.17 there exists the unique homogeneous extension of P (v) to all

of R3 of degree d. Then P (v) = 0 for all v ∈ R3. The linear independence of the Bd
ijk’s implies

that cijk = 0, i + j + k = d and thus the Bd
ijk’s restricted to S2 are linearly independent.
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de Casteljau and subdivision algorithms can also be applied to the polynomials restricted on

the sphere. Now we turn to a question how to compute derivatives of spherical functions and

in particular SBB-polynomials. Let us define what we mean by the derivatives of a spherical

function.

Definition 2.2.19. (cf. [4])We define the directional derivative Dgf of f at a point

v ∈ S2 by

Dgf(v) := DgF (v) = gT∇F (v), (2.2.25)

where F is some homogeneous extension of f , and ∇F is the gradient of the trivariate

function F .

While a polynomial of degree d has a natural homogeneous extension to R3, a general

function f on S2 has infinitely many different extensions. The value of its derivative may

depend on which extension we take. The following lemma shows that we get the same value

for derivatives no matter what degree extension we take.

Lemma 2.2.20. (cf. [4]) Suppose f is a function on S2 and g is a tangent vector to S2 at

a point v. Then the value of Dgf(v) can be computed from (2.2.25) using any homogeneous

extension of f .

Proof. Let F be a homogeneous extension of f , and let C be a C1 smooth curve on

S2 passing through the point v, parameterized by a parameter θ such that C(θ) = v and

C ′(θ) = g for θ = 0. By the chain rule we obtain

df(C(θ))

dθ
|θ=0 =

dF (C(θ))

dθ
|θ=0 = gT∇F (v) = DgF (v).

This shows that DgF (v) does not depend on the degree of homogeneity of F since the

left-hand side clearly depends only on f = F |S2.

Let us continue with directional derivatives of barycentric coordinates.
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Lemma 2.2.21. (cf. [4]) Let g be a given unit vector in R3. Then

Dgbi = bi(g). (2.2.26)

Proof. Let τ = {v1, v2, v3} and v ∈ S2. By (2.2.25), we have

Dgb1 = gT∇b1 = gT∇
(

1

det(v1, v2, v3)
det

(



x

y

z




, v2, v3

))

=
1

det(v1, v2, v3)

(
g1det

(



1

0

0




, v2, v3

)
+ g2det

(



0

1

0




, v2, v3

)

+ g3det

(



0

0

1




, v2, v3

))

=
det(g, v2, v3)

det(v1, v2, v3)
= b1(g),

Dgb2 = gT∇b2 = gT∇
(

1

det(v1, v2, v3)
det

(



x

y

z




, v2, v3

))

=
1

det(v1, v2, v3)

(
g1det

(
v1,




1

0

0




, v3

)
+ g2det

(
v1,




0

1

0




, v3

)

+ g3det

(
v1,




0

0

1




, v3

))

=
det(v1, g, v3)

det(v1, v2, v3)
= b2(g),
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and

Dgb3 = gT∇b3 = gT∇
(

1

det(v1, v2, v3)
det

(
v1, v2,




x

y

z




))

=
1

det(v1, v2, v3)

(
g1det

(
v1, v2,




1

0

0




)
+ g2det

(
v1, v2,




0

1

0




)

+ g3det

(
v1, v2,




0

0

1




))

=
det(v1, v2, g)

det(v1, v2, v3)
= b3(g).

So the proof is complete.

Proposition 2.2.22. (cf. [4]) Suppose P is an SBB-polynomial. Then

DgP (v) = bT (g)∇bP, (2.2.27)

where

∇b := (
∂

∂b1
,

∂

∂b2
,

∂

∂b3
)T . (2.2.28)

Proof. By the definition, we have

DgP (v) = gT∇P (v) = gT




∂P
∂b1

∂b1
∂x

+ ∂P
∂b2

∂b2
∂x

+ ∂P
∂b3

∂b3
∂x

∂P
∂b1

∂b1
∂y

+ ∂P
∂b2

∂b2
∂y

+ ∂P
∂b3

∂b3
∂y

∂P
∂b1

∂b1
∂z

+ ∂P
∂b2

∂b2
∂z

+ ∂P
∂b3

∂b3
∂z




=




g1
∂b1
∂x

+ g2
∂b2
∂y

+ g3
∂b3
∂z

g1
∂b1
∂x

+ g2
∂b2
∂y

+ g3
∂b3
∂z

g1
∂b1
∂x

+ g2
∂b2
∂y

+ g3
∂b3
∂z




T 


∂P
∂b1

∂P
∂b2

∂P
∂b3

.



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So we get

DgP (v) = gT




∂b1
∂x

∂b2
∂x

∂b3
∂x

∂b1
∂y

∂b2
∂y

∂b3
∂y

∂b1
∂z

∂b2
∂z

∂b3
∂z







∂P
∂b1

∂P
∂b2

∂P
∂b3




Therefore,

DgP (v) =




gT∇b1

gT∇b2

gT∇b3




T

∇bP =




b1(g)

b2(g)

b3(g)




T

∇bP.

We now turn to the problem of computing higher derivatives of SBB-polynomials. Let c0
ijk :=

cijk be the Bézier coefficients of P of degree d, and let g1, ..., gm, 1 ≤ m ≤ d, be a set of

direction vectors. For each 1 ≤ ℓ ≤ m, let cℓ
ijk, i + j + k = d − ℓ, be the intermediate values

obtained in carrying out de Casteljau algorithm using b(gℓ). That is, cℓ
ijk is obtained from

the recursion

cℓ
ijk = b1(gℓ)c

ℓ−1
i+1,j,k + b2(gℓ)c

ℓ−1
i,j+1,k + b3(gℓ)c

ℓ−1
i,j,k+1, ℓ = 1, ..., m.

It follows that cℓ
ijk depend on the vectors g1, ..., gℓ, but not on their ordering.

Theorem 2.2.23. (cf. [4]) For any 0 ≤ m ≤ d,

Dg1,...,gmP (v) := Dg1
· · ·DgmP (v) =

d!

(d − m)!

∑

i+j+k=d−m

cm
ijkB

d−m
ijk (v). (2.2.29)

Proof. By Lemma 2.19, for i + j + k = d,

Dg1
Bd

ijk(v) =
d!

i!j!k!
[ibi−1

1 bj
2b

k
3Dg1

b1 + jbi
1b

j−1
2 bk

3Dg1
b2 + kbi

1b
j
2b

k−1
3 Dg1

b3] =

d[Bd−1
i−1,j,k(v)b1(g1) + Bd−1

i,j−1,k(v)b2(g1) + Bd−1
i,j,k−1(v)b3(g1)].

Substituting this in

Dg1
P (v) =

∑

i+j+k=d

cijkDg1
Bd

ijk(v)

and rearranging terms we get (2.2.29) for m = 1. The general result follows by induction.
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Now we consider derivatives at the vertices of triangles. It is clear from the properties of

trihedral coordinates that the values of an SBB-polynomial P at the vertices of its domain

triangle are given by P (v1) = cd00, P (v2) = c0d0, P (v3) = c00d. The derivatives of P at the

vertices of τ also have a simple form.

Proposition 2.2.24. (cf. [4]) For all 0 ≤ m ≤ d,

Dg1,...,gmP (v1) =
d!

(d − m)!
cm
d−m,0,0,

Dg1,...,gmP (v2) =
d!

(d − m)!
cm
0,d−m,0,

Dg1,...,gmP (v3) =
d!

(d − m)!
cm
0,0,d−m. (2.2.30)

Proof. Consider P (v1). By Theorem 2.2.23

Dg1,...,gmP (v1) =
d!

(d − m)!

∑

i+j+k=d−m

cm
ijkB

d−m
ijk (v1),

where

Bd−m
ijk (v1) =

(d − m)!

i!j!k!
b1(v1)

ib2(v1)
jb3(v1)

k =
(d − m)!

i!j!k!
1i0j0k = 1,

if i = d − m, j = 0, k = 0 and is 0 otherwise. Thus

Dg1,...,gmP (v1) =
d!

(d − m)!
cm
d−m,0,0.

Let us consider the question when two polynomials on adjoining surface triangles join

smoothly across a common edge e.

Theorem 2.2.25. (cf. [3], [37]) Suppose Q and Q̂ are polynomials as in (2.2.19) and

(2.2.20) and let τ and τ̂ be the surface triangles with a common edge e. Then the restrictions

of Q and Q̂ to S2, P and P̂ , along with their derivatives up to order m join continuously

along e, i.e., for every point v ∈ e and every curve c ∈ Ŝ crossing e at v,

Dj
cP (v) = Dj

cP̂ (v), j = 0, ..., m, (2.2.31)
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if and only if

ĉijk =
∑

r+s+t=i

cr,j+s,k+tB
i
rst(v4), (2.2.32)

for all i = 0, ..., m and all j, k such that i + j + k = d.

Proof. Suppose (2.2.31) holds for all v ∈ e and for all c ∈ S2 crossing e at v. Since

P and P̂ are polynomials of degree d, by Lemma 2.2.17 there exist unique homogeneous

extensions of degree d which thus must be our Q and Q̂. Since Q|S2 = P and Q̂|S2 = P̂

Dj
cQ(v) = Dj

cQ̂(v), j = 0, ..., m, (2.2.33)

for every point v ∈ e and every curve c ∈ S2 crossing e at v. Now we claim that (2.2.33)

holds for any v on the common face of tetrahedra corresponding to τ and τ̂ . Let v belong

to the common face of T and T̂ . Clearly, if v 6= 0, there exist v′ ∈ e and λ ∈ R, such that

v = λv′. Since Q and Q̂ are homogeneous of degree d

Q(v) = Q(λv′) = λdQ(v′),

and similarly for Q̂. Then we have

Dj
cQ(v) = λdDj

cQ(v′) = λdDj
cQ̂(v′) = Dj

cQ̂(v), j = 0, ..., m.

By the Theorem 2.2.15

ĉijk =
∑

r+s+t=i

cr,j+s,k+tB
i
rst(v4).

For the other direction, suppose (2.2.32) holds. Then by Theorem 2.15 Q(v) and Q̂(v) join

smoothly across the common face, i.e.,

DjQ(v) = DjQ̂(v), j = 0, ..., m, (2.2.34)

for any v on the face. This condition holds for any curve on the common face and thus for

the edge e as well. Since Q(v)|e = P (v) and Q̂(v)|e = P̂ (v) (2.2.34) holds for the restrictions.

In particular,

∇P (v) = ∇P̂ (v), v ∈ e.
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Now let c be a curve on the sphere-like surface S2, then by the chain rule

∇P (v) = ∇cDcP (v) = ∇cDcP̂ (v) = ∇P̂ (v),

and so on. Thus we have the result for any v ∈ e and any curve c crossing e at v.

For many practical applications it is necessary to compute integrals of piecewise polyno-

mial functions. Evaluating integrals of spherical polynomials is considerably more difficult

than in the planar case. Recall that for planar triangles, the integral of a Bernstein basis

polynomial of degree d is equal to the area of the corresponding triangle divided by d+1, see

[37]. Thus, the value of the integral does not depend on the particular basis polynomial or on

the precise shape of the triangle. Unfortunately, this wonderful and attractive property does

not carry over to spherical polynomials. In general, for two different triangles, the values of

the integrals are different unless the two triangles are similar. Moreover, the integrals of the

Bernstein basis polynomials of degree d associated with a single triangle are also different in

general.

To compute integrals in this case we propose a mapping of a surface triangle τ to a planar

triangle τ̄ by means of radial projection defined in Section 2.1. This will enable us to use a

standard integration technique for planar triangles.

Lemma 2.2.26. (cf. Proposition 4.1 in [4]) Let τ be a spherical triangle and τ̄ its radial

projection as in Section 2.1. Suppose |τ | ≤ 1 and Rτ denotes the radial projection defined by

Rτ ω̄ := ω̄
|ω̄|

for ω̄ ∈ τ̄ . If σ and σ̄ denote the Lebesgue measures on τ and τ̄ correspondingly

then ∫

τ

f(ω)dσ(ω) =

∫

τ̄

f(Rτ ω̄)|ω̄|−3dσ̄(ω̄). (2.2.35)

Proof. Without loss of generality assume that the tangent plane Tτ is z = 1. Recall

that ω̄
|ω̄|

= ω, and for ω = (x, y, z) we can write ω̄ = (x′, y′, 1) with x′ = x/z and y′ = y/z.

Then dσ̄ = dx′dy′. For the spherical measure recall that dσ = sin φdφdθ, where φ and θ are

spherical coordinates of ω defined by

x = cos θ sin φ



35

y = sin θ sin φ

z = cos φ.

Therefore

x′ = cos θ tan φ

y′ = sin θ tan φ.

We can compute the partial derivatives

∂x′

∂θ
= − sin θ tanφ,

∂x′

∂φ
= cos θ sec2 φ,

∂y′

∂θ
= cos θ tan φ,

∂y′

∂φ
= sin θ sec2 φ.

Then, by definition, we have

|∂(x′, y′)

∂(θ, φ)
| =

∣∣∣∣∣∣
det

( −sinθtanφ cosθsec2φ

cosθtanφ sinθ sec2 φ

)∣∣∣∣∣∣

Therefore,

|∂(x′, y′)

∂(θ, φ)
| = | − sin2 θ tan φ sec2 φ − cos2 θ sec2 φ tanφ|

= tan φ sec2 φ =
sin φ

cos3 φ

and hence using cos φ = z = |ω̄|−1 we get (2.2.35).

2.2.4 Non-homogeneous spherical polynomials

In this subsection, we define non-homogeneous spherical polynomials and trace their prop-

erties to the properties outlined above for homogeneous polynomials, see [29].

In Theorem 1 of [29] it is shown that Pd = Hd⊕Hd−1, i.e., Hd⊕Hd−1 restricted to the unit

sphere is identical to the space Pd of trivariate non-homogeneous polynomials of degree d
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restricted to the unit sphere. Therefore the set {Bd
ijk, i+j+k = d}∪{Bd−1

ijk , i+j+k = d−1}

forms a basis for Pd. We call spherical polynomials in Pd non-homogeneous spherical

polynomials, and we can express a non-homogeneous spherical polynomial P in terms of

BB-basis functions as

P (v) =
∑

i+j+k=d

aijkB
d
ijk(v) +

∑

i+j+k=d−1

cijkB
d−1
ijk (v).

With this definition it is easy to see that the methods of evaluating values (de Casteljau’s

algorithm), taking derivatives and computing integrals with homogeneous polynomials can

be easily applied to non-homogeneous polynomials.

2.3 Approximation of Spherical Splines

In this section, we discuss how well smooth functions defined on S2 can be approximated

by spherical polynomials and spherical splines. It consists of two subsections, first one is

Spherical Sobolev Spaces and Seminorms, the second one is Approximation by Spherical

Polynomials.

2.3.1 Spherical Sobolev Spaces and Seminorms

In this subsection we introduce notations of spherical Sobolev spaces and seminorms that

annihilate spherical polynomials, also state some relating results, see [40]. To define Sobolev-

type norms and seminorms for functions on the unit sphere, we need to use a concept of a

homogeneous extension. Recall that a trivariate function f(v) is homogeneous of degree n if

f(αv) = αnf(v), ∀v ∈ R3\{0}, α 6= 0. (2.3.1)

Also recall that by Lemma 2.2.17, every spherical function f has a unique homogeneous

extension of degree n to R3\{0} defined by

fn(u) = |u|nf
(

u

|u|

)
. (2.3.2)
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Let Ω be a domain on S2 such that |Ω| ≤ 1, and let Ω̄ denote the image of Ω under

the inverse radial projection as defined in Section 2.1. We will be relating properties of a

spherical function f defined on Ω to the properties of its homogeneous extension fn restricted

to Ω̄, and we denote such a restriction by f̄n, i.e., f̄n := fn|Ω̄.

Fix 1 ≤ p ≤ ∞. Assume k is a nonnegative integer and B is an open set in R2. Recall

that the corresponding classical Sobolev space W k,p(B) is the space of functions on B whose

derivatives up to order k belong to Lp(B) [1]. A norm on W k,p(B) can be defined as

‖g‖k,p,B :=
∑

γ1+γ2≤k

||Dγ1

ξ Dγ2

η g‖p,B, (2.3.3)

where Dγ1

ξ Dγ2
η = ∂γ1+γ2

∂ξγ1∂ηγ2
.

Definition 2.3.1. ([40]) Suppose that {(Γj, φj)} is an atlas for Ω. Let {αj} be a parti-

tion of unity subordinate to the atlas. We define spherical Sobolev spaces W k,p(Ω) as

follows:

W k,p(Ω) := {f : (αjf) ◦ φ−1
j ∈ W k,p(φj(Γj)), for all j}. (2.3.4)

with norm ||f ||k,p,Ω :=
∑

j ||(αjf) ◦ φ−1
j ||W k,p(φj(Γj)).

Then the Sobolev space W k,p(Ω) is just the space of all functions f defined on Ω for

which ||f ||k,p,Ω is finite. It is well known that this definition does not depend on the choice

of the atlas and the partition of unity, in the sense that other choices will give rise to the

same space with a norm that is equivalent to the above one, see [7] and [39]. Now we give

definition of Sobolev-type seminorm on the sphere.

Definition 2.3.2. Let Ω ⊂ S2, and let f ∈ W k,p(Ω) for some k > 0 and 1 ≤ p ≤ ∞.

Then we define Sobolev-type seminorm of f on W k,p(Ω) to be

|f |k,p,Ω :=
∑

|α|=k

‖Dαfk−1‖p,Ω, (2.3.5)

where ‖Dαfk−1‖p,Ω is understood as the Lp-norm of the restriction of the trivariate function

Dαfk−1 to Ω. For k = 0, the above seminorm reduces to the usual Lp − norm

|f |0,p,Ω = ||f ||Lp(Ω).
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Let us present several elementary facts of concerning homogeneous extensions and semi-

norms to end this subsection.

Lemma 2.3.3. (cf. [40]) 1) Let k, n ∈ Z+, and suppose f is a function defined on Ω,

with |Ω| ≤ 1. Then f ∈ W k,p(Ω) if and only if f̄n ∈ W k,p(Ω̄).

2)Let f ∈ W k,p(Ω) for some k ≥ 1 with |Ω| ≤ 1. Then (Dαfk−1)|Ω ∈ Lp(Ω) for all multi-

indices α such that |α| = k.

3) Let Ω ( S2 with |Ω| ≤ 1. Suppose f ∈ W k,p(Ω) and let f̄m and f̄n be two homogeneous

extensions of f restricted to Ω̄. Then

||f̄m||k,p,Ω̄ ≤ C3||f̄n||k,p,Ω̄,

for some constant C3 depending only on k, m, and n. This implies that the Sobolev norm of

f̄n = fn|Ω̄ does not depend in an essential way on the degree n of the homogeneous extension

of f that is used to define fn.

Proposition 2.3.4. (cf. [40]) Let Ω ⊂ S2 with |Ω| ≤ 1. Then there exist positive con-

stants C1, C2 depending only on k and p such that for every f ∈ Wk,p(Ω)

C1|f |k,p,Ω ≤ |f̄k−1|k,p,Ω̄ ≤ C2|f |k,p,Ω. (2.3.6)

Our last proposition shows that the semi-norm defined by (2.3.5)annihilates certain homo-

geneous polynomials.

Proposition 2.3.5. (cf. [40]) Suppose Ω is an open connected subset of S2. Let f ∈

W k,p(Ω) and k ≥ 2. |f |k,p,Ω = 0 if and only if f is a homogeneous spherical polynomial of

degree k − 1.

2.3.2 Approximation Order of Spherical Polynomials

In this subsection, we mainly discuss the error bounds of spherical spline approximation.

First we presents some important inequalities, then local approximation, finally the local

stable basis, existence of Quasi-interpolant, and approximation order of spherical splines.
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Given a homogeneous trivariate polynomial P in BB form (2.2.15), let c be a vector of

its coefficients. Let ‖c‖∞,τ and ‖c‖p,τ denote its ℓ∞ and ℓp norms on a spherical triangle τ

respectively. Then we have following lemma.

Lemma 2.3.6. (cf. [40], [10]) Any homogeneous polynomial P of degree d in Bernstein-

Bézier form (2.2.15) with respect to a spherical triangle τ with |τ | ≤ 1 satisfies the property

A1 ‖c‖∞,τ ≤ ‖P‖∞,τ ≤ A2‖c‖∞,τ (2.3.7)

and

A3A
1/p
τ ‖c‖p,τ ≤ ‖P‖p,τ ≤ A2A

1/p
τ ‖c‖p,τ (2.3.8)

for any 1 ≤ p < ∞. Here A1, A2 are positive constants independent of τ , P and p. A3 depends

d, p and the smallest angle of τ .

Proof. Proof of (2.3.7) can be found in [40]. For (2.3.8) fix 1 ≤ p < ∞. By Lemma 4.4

in [40] there exists a positive constant K3 depending on d, p and the smallest angle Θτ of τ

such that

A−1/p
τ ‖P‖p,τ ≤ ‖P‖∞,τ ≤ K3A

−1/p
τ ‖P‖p,τ . (2.3.9)

Then using (2.3.7) and ‖c‖p,τ ≤
(

d+2
2

)
‖c‖∞,τ we get

A
1/p
τ

K3
A7

(
d + 2

2

)−1/p

‖c‖p,τ ≤ A
1/p
τ

K3
A1‖c‖∞,τ ≤ A

1/p
τ

K3
‖P‖∞,τ ≤ ‖P‖p,τ .

Similarly, by (2.3.9)

‖P‖p,τ ≤ A1/p
τ ‖P‖∞,τ ≤ A2A

1/p
τ ‖c‖∞,τ ≤ A2A

1/p
τ ‖c‖p,τ .

Therefore we obtain (2.3.8) with A3 := A1

K3

(
d+2
2

)−1/p
.

Next we need Markov-type inequality for spherical polynomials.

Lemma 2.3.7. (cf. [40], [10]) Let P be a trivariate homogeneous polynomial of degree d

defined on a spherical triangle τ with |τ | ≤ 1. There exist constants A4 depending on d and
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Θτ only, and A5 depending on d, such that

|P |k,∞,τ ≤ A10

(tan ρτ

2
)k
‖P‖∞,τ , (2.3.10)

and

|P |k,p,τ ≤ A5

(tan ρτ

2
)k
‖P‖p,τ (2.3.11)

for 1 ≤ p < ∞. Here ρτ is a the diameter of the largest spherical cap contained in τ .

Proof. For the first equation in (2.3.11) we modify the proof of Proposition 4.3 in [40]

by replacing (2.1.1) with (2.1.3). To prove (2.3.10) we apply Lemma 4.4 in [40] to both sides

of (2.3.11) to get

|P |k,∞,τ ≤ A11K

(tan ρτ

2
)k
‖P‖∞,τ

for some K depending on d − k and Θ∆.

Now we express a bound on the values of certain spherical functions in terms of its 2nd

Sobolev semi-norm over a spherical triangle.

Lemma 2.3.8. (cf. [10], [37]) Let τ be a spherical triangle such that |τ | ≤ 1 and suppose

f ∈ W 2,p(τ) vanishes at the vertices of τ , that is f(vi) = 0, i = 1, 2, 3. Then for all v ∈ τ ,

|f(v)| ≤ A6

(
tan

|τ |
2

)2

|f |2,∞,τ , (2.3.12)

for some positive constants A6 independent of f and τ . Moreover, if f is a homogeneous

polynomial of degree d, then

|f(v)| ≤ A7A
−1/p
τ

(
tan

|τ |
2

)2

|f |2,p,τ (2.3.13)

for some positive constants A7 dependent only on d, p and the smallest angle in τ .

Proof. Let Rτ be the radial projection defined before. Let v̄i, i = 1, 2, 3 denote the

vertices of a planar triangle τ̄ , which is the image of τ under the inverse of Rτ and v̄ = R−1
τ v

for v ∈ τ . Recall that |τ̄ | = 2 tan |τ |
2

by Lemma 2.1.7
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Let fδ(v) = |v|δf
(

v
|v|

)
be the homogeneous extension of f to R3\{0} of degree δ = 0 or

1, and let f̄δ denote its restriction to the planar triangle τ̄ . By Lemma 3.2 in [40], f̄δ belongs

to W 2,p(τ̄ ). Note also that f̄δ(v̄i) = |v̄i|δfδ(
v̄i

|v̄i|
) = |v̄i|δf( v̄i

|v̄i|
) = |v̄i|δf(vi) = 0, i = 1, 2, 3.

Therefore by Lemma 6.1 in [26], we have for every v̄ ∈ τ̄

|f̄δ(v̄)| ≤ 12|τ̄ |2|f̄δ|2,∞,τ̄ . (2.3.14)

Since f(v) = f( v̄
|v̄|

) = f̄δ(v̄)
|v̄|δ

and |v̄|δ ≥ 1 for all v̄ ∈ τ̄ ,

|f(v)| ≤ |f̄δ(v̄)| ≤ 48

(
tan

|τ |
2

)2

|f̄δ|2,∞,τ̄ ,

by (2.3.14). By Proposition 2.3.4 we get (2.3.12) with A6 = 48K6.

If f is a homogeneous polynomial, then its second derivatives are homogeneous polyno-

mials and by (2.3.9) we have

|f |2,∞,τ ≤ K8A
−1/p
τ |f |2,p,τ

and

|f |′2,∞,τ ≤ K8A
−1/p
τ |f |′2,p,τ

for some K8 depending on d, p and the smallest angle in τ . Hence

|f(v)| ≤ 48K6

(
tan

|τ |
2

)2

|f |2,∞,τ ≤ A7A
−1/p
τ

(
tan

|τ |
2

)2

|f |2,p,τ

This completes the proof with A7 = 48K6K8.

Definition 2.3.9. Let ∆ a regular spherical triangulation which is a part of sphere with

or without holes or the whole sphere. For d ≥ 1 and r ≥ 0, two integers with d ≥ 3r + 2, we

define S−1
d (∆) to be the space of homogeneous splines of degree d and smoothness −1, i.e.

S−1
d (∆) := {s : s|τ ∈ Hd, ∀τ ∈ ∆}.

And we define Cr spline spaces with degree d as

Sr
d(∆) := S−1

d (∆) ∩ Cr(S2).
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Although the construction of stable basis is a delicate process, as pointed out in [18],

the construction presented there for the bivariate analog of Sr
d(∆) also carries over to the

spherical spline spaces Sr
d(∆). We shall briefly outline the construction after presenting some

definitions, and also use the spline spaces that have a local basis to solve the interpolation

problem on the sphere.

Let

D := ∪τ∈∆{ξτ
ijk, i + j + k = d}, (2.3.15)

with ξτ
ijk := iu+jv+kw

d
for τ =< u, v, w > be the set of domain points associated with ∆ and

d. It is well known that each spline in S0
d(∆) is uniquely determined by associating one Bézier

coefficient with each domain point. A subset M ⊂ D is called a minimal determining set

for Sr
d(∆) if the values of the coefficients of s ∈ Sr

d(∆) associated with domain points in M

uniquely determine all of the coefficients of s.

Definition 2.3.10. (cf. [40], [37]) A basis {Bξ}ξ∈M for a space S of splines on a triangu-

lation ∆ is a stable local basis, if there exists an integer ℓ and constants 0 < C1 < C2 < ∞

depending only on d and the smallest angle θ∆ in the triangulation ∆ such that

1) for each ξ ∈ M, supp(Bξ) ⊆ starℓ(vξ) for some vξ of ∆,

2) for all {cξ}ξ∈M,

C1maxξ∈M|cξ| ≤ ‖
∑

ξ∈M

cξBξ‖∞,S2 ≤ C2maxξ∈M|cξ|. (2.3.16)

The construction of a stable local basis using the Bernstein-Bézier representation of

splines in Sr
d(∆) when d ≥ 3r + 2 is outlined in [40] with a reference to [18]. Now let us

show it. Given a minimal determining set, we can construct a basis {Bξ}ξ∈M for Sr
d(∆) by

requiring

µηBξ = δξ,η, η ∈ M, (2.3.17)
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where µη is the linear functional which picks the coefficient associated with the domain

point η. In particular, Bξ has the property that the coefficient associated with ξ is 1 while

the coefficients associated with all other points in M are zero. The remaining coefficients of

Bξ are computed using smoothness conditions.

For any given spline space Sr
d(∆), there are many possible choices for a minimal deter-

mining set M. A choice of M presented in [18] leads to a basis with the following properties,

where for each ξ, Ωξ := supp(Bξ) and τξ is the triangle in which ξ lies.

Proposition 2.3.11. (cf. [40]) Let {Bξ}ξ∈M be the basis for Sr
d(∆) corresponding to the

minimal determining set M described in [18]. Then there exist constants C3, ..., C9 depending

only on d, p and the minimal angle in ∆ such that for each ξ ∈ M,

1) there exists a vertex vξ ∈ ∆ such that Ωξ ⊆ star3(vξ),

2) ‖Bξ‖∞,S2 ≤ C3,

3) |µξs| ≤ C4‖s‖∞,τξ
, for all s ∈ Sr

d(∆),

4) |µξs| ≤ C5A
−1/p
τξ ‖s‖p,τξ

, for all s ∈ Sr
d(∆), and for every τ ∈ ∆,

5) ‖Bξ‖p,τ ≤ C6A
1/p
τ ,

6) #Iτ ≤ C7, where Iτ := {ξ : τ ⊂ Ωξ},

7) |Bξ|k,∞,τ ≤ C8ρ
−k
τ , for all 0 ≤ k ≤ d

8) |Bξ|k,p,τ ≤ C9ρ
−k
τ A

1/p
τ , for all 0 ≤ k ≤ d.

The proof of the above lemma can be found in [40]. Furthermore, the analysis of the

proof of 8) of the above lemma leads to a refinement of 8) as follows. Using (2.1.1) instead

of (2.1.3) in [40] one gets

|Bξ|k,p,τ ≤ C9

(
tan

ρτ

2

)−k

A1/p
τ (2.3.18)

with C9 = A7C6, see [10].
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It was shown in [40] that with the basis defined above one can construct a quasi-

interpolation operator Q : Lp(S
2) → Sr

d(∆) which achieves the optimal approximation prop-

erty. Indeed, extend the linear functionals µξ to all of Lp(S
2) using Hahn-Banach theorem.

Then for every f ∈ Lp(τξ),

|µξf | ≤ C5A
−1/p
τξ

‖f‖p,τξ
, ξ ∈ M. (2.3.19)

This inequality implies that for each ξ, the carrier of the extended functional µξ is contained

in τξ, i.e., if f ≡ 0 on τξ, then µξf = 0. With (2.3.18) in mind we modify the proof of

Proposition 5.2 in [40] accordingly to get the following

Proposition 2.3.12. (cf. [40]) For each f ∈ Lp(S
2), let

Qf :=
∑

ξ∈M

(µξf)Bξ. (2.3.20)

Then Qg = g for all g ∈ Hd(S
2). Moreover, there exists a constant C10 depending only on

d, p and the smallest angle in ∆ such that for each triangle τ ∈ ∆,

|Qf |k,p,τ ≤ C10

(
tan

ρτ

2

)−k

‖f‖p,Ωτ , (2.3.21)

where Ωτ := ∪ξ∈Iτ Ωξ and Iτ := {ξ : τ ⊂ Ωξ}.

Theorem 4.2 in [40] states the existence of a spherical polynomial of degree d approxi-

mating f ∈ W d+1,p(τ) for |τ | ≤ 1 satisfying

|f − s|k,p,τ ≤ K ′
9|τ |d+1−k|f |d+1,p,τ .

for some positive constant K9 depending on d, p and the smallest angle of τ . With a little

modification in the proof we can see that in fact

|f − s|k,p,τ ≤ K9(tan
|τ |
2

)d+1−k|f |d+1,p,τ (2.3.22)

for a positive constant K9 depending on d, p and the smallest angle of τ . Using this inequality

we can prove the following result on local approximation.
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Theorem 2.3.13. (cf. [40], [10], [37]) Suppose τ ∈ ∆ is a spherical triangle with |τ | ≤ 1.

Let f ∈ W m+1,p(τ) for 0 ≤ m ≤ d such that (d − m)mod 2 = 0. There exists a spherical

homogeneous polynomial s of degree d such that for every 0 ≤ k ≤ m

|f − s|k,p,τ ≤ C11

(
tan

|τ |
2

)m+1−k

|f |m+1,p,τ . (2.3.23)

Here C11 is a constant that depends on p, m and θ∆. Moreover

|f − s|k,p,Ωτ ≤ C11

(
tan

|T ′|
2

)m+1−k

|f |m+1,p,Ωτ . (2.3.24)

Here T ′ is the largest triangle in Ωτ , i.e. |T | = max{|T | : T ∈ Ωτ}.

Proof. Fix m. By Theorem 4.2 in [40], there exists a spherical homogeneous polynomial

s′ of degree m such that for every 0 ≤ k ≤ m

|f − s′|k,p,τ ≤ C11|τ |m+1−k|f |m+1,p,τ . (2.3.25)

If we slightly modify the proof of Theorem 4.2 [40], i.e. replace (2.1.1) by (2.1.2), we can get

|f − s′|k,p,τ ≤ C11

(
tan

|τ |
2

)m+1−k

|f |m+1,p,τ . (2.3.26)

Since (d − m)mod 2 = 0, s = |v|d−ms′ is a homogeneous spherical polynomial of degree d.

Since on the unit sphere s′ ≡ s, their (k−1)-st extensions are the same, and we have (2.3.23).

To get (2.3.24), sum (2.3.23) over triangles in Ωτ . We are done.

Finally we describe a theorem on approximation order of spherical splines to end this chapter.

Theorem 2.3.14. ([40], [10], [37]) Let ∆ be a β-quasi-uniform spherical triangulation

with |∆| ≤ 1. Let 1 ≤ p ≤ ∞, d ≥ 3r + 2, and 0 ≤ k ≤ d. Then there exists a constant C12

depending only on d, p and the smallest angle in ∆, such that

|f − Qf |k,p,τ ≤ C12

(
tan

|T ′|
2

)m+1−k

|f |m+1,p,Ωτ , (2.3.27)

for all f ∈ W m+1,p(S2) and all τ ∈ ∆. Moreover, there exists a constant C13 such that

|f − Qf |k,p,S2 ≤ C13

(
tan

|∆|
2

)m+1−k

|f |m+1,p,S2, (2.3.28)
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for all f ∈ W m+1,p(S2) and all 0 ≤ k ≤ d such that Qf ∈ W k,p(S2). Here m is taken between

0 and d with (d − m) mod 2 = 0.

Proof. Let τ ∈ ∆ with |τ | ≤ 1. By Theorem 2.3.13 there exists a spherical homogeneous

polynomial s of degree d such that (2.3.23) holds. By the linearity of Q and the fact that Q

reproduces polynomials of degree d we can write

|f − Qf |k,p,τ ≤ |f − s|k,p,τ + |Q(f − s)|k,p,τ .

We now consider the last term in the above inequality. By (2.3.21)

|Q(f − s)|k,p,τ ≤ C10

(
tan

ρτ

2

)−k

‖f − s‖p,Ωτ .

Since ∆ is assumed to be β-quasi-uniform |ρτ | ≥ |T ′|
β

and therefore

tan
ρτ

2
≥ tan

|T ′|
2β

≥ 1

β2
tan

|T ′|
2

.

By Theorem 2.3.13

|Q(f − s)|k,p,τ ≤ C10C11(β)2k

(
tan

|T ′|
2

)−k (
tan

|T ′|
2

)m+1

|f |m+1,p,Ωτ

≤ C10C11(β)2k

(
tan

|T ′|
2

)m+1−k

|f |m+1,p,Ωτ .

Therefore we get (2.3.27) with C12 = C11(1 + C10β
2k).

To prove (2.3.28), we sum (2.3.27) over all triangles in ∆.

|f − Qf |k,p,S2 =
∑

τ∈∆

|f − Qf |k,p,τ ≤ C12

(
tan

|∆|
2

)m+1−k ∑

τ∈∆

|f |m+1,p,Ωτ

≤ C12

(
tan

|∆|
2

)m+1−k ∑

τ∈∆

∑

τ ′⊂Ωτ

|f |k,p,τ ′

= C12

(
tan

|∆|
2

)m+1−k ∑

τ ′∈∆

#{τ : τ ′ ⊂ Ωτ}|f |m+1,p,τ ′

≤ C12K10

(
tan

|∆|
2

)m+1−k ∑

τ ′∈∆

|f |m+1,p,τ ′.

Here K10 := max{#{τ : τ ′ ⊂ Ωτ}, τ ′ ∈ ∆} which is bounded by Lemma 2.1.10. Therefore

(2.3.28) holds with C13 = C12K10. We are done.



Chapter 3

Spherical Hermite Interpolation

In this chapter, we study spherical Hermite interpolation problem. Given a set of scattered

data with derivative values, we use the minimal energy method to find Hermite interpolation

on spherical spline spaces over a spherical triangulation of the scattered data locations. Note

that the spherical triangulation is a part of a sphere with or without holes, or the whole

sphere. We show that the minimal energy method produces a unique Hermite spherical

spline interpolation for a given scattered data with derivative values. Also we show that the

Hermite interpolation spline converges to a given sufficiently smooth function f if the values

are obtained from this f . That is, the surface of the Hermite interpolation spherical spline

resembles the given set of derivative values. We organize this chapter as the following. In

section 1, we give an overview of spherical Hermite interpolation. In section 2, we discuss

the existence and uniqueness of the Hermite data interpolatory splines with minimal energy.

In section 3, we study the approximation properties of spline interpolants. In section 4, we

give a computational method for minimal energy spherical Hermite interpolatory splines.

3.1 Overview

Definition 3.1.1. Let S2 denote a unit sphere in R3 and V = {vi = (xi, yi, zi)}n
i=1 be a

set of scattered points on S2. Suppose that we are given the following data values

fα,β
i , 0 ≤ α + β ≤ l, i = 1, · · · , n,

where l ≥ 0. Then the Hermite interpolation problem on-the-sphere is to find a smooth

function s ∈ Cm(S2) such that

Dα
φDβ

θ s(vi) = fα,β
i , 0 ≤ α + β ≤ l, i = 1, . . . , n. (3.1.1)

47
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where Dµ
φ and Dν

θ are the derivative along latitude and longitude direction respectively, and

in general we need m ≥ l. If we only interpolate partial values defined in (3.1.1), then we call

this kind of interpolation problem as quasi-Hermite interpolation on-the-sphere, and

we shall use this notion in Chapter 4 for hole filling problem and point cloud(scattered data)

problem. For Cr(r ≥ 0) hole filling problem, we may only interpolate the derivatives up to the

r-th order at vertices of boundary edges, that is, our surface is Hermite interpolation curve

when it is restricted to boundary curves. For point cloud problem, we may only interpolate

partial points or their derivatives.

In case l = 1, this definition is similar to the Definition 8 in [22] where the Hermite inter-

polation problem is to find a function s on the sphere such that s interpolates location values

and two first order independent direction derivatives. We have generalized this definition.

Note that we have a fixed coordinate (φ, θ) such that

x = sin(φ) cos(θ), y = sin(φ) sin(θ), z = cos(φ)

with φ ∈ [0, π] and θ ∈ [0, 2π]. If we use three-dimensional coordinate system in R3, then we

need to construct a smooth function s ∈ Cm(S2) such that

Dα
xDβ

y Dγ
z s(vi) = fα,β,γ

i , 0 ≤ α + β + γ ≤ l, i = 1, . . . , n. (3.1.2)

And this is a generalization of the planar case in [48]. It is easy to show these expressions are

equivalent to each other exception polar points. We use polar system to avoid the computing

trouble in polar points.

We shall use spherical spline functions to construct such an interpolative surface s. When

l = 0, this is a standard Lagrange interpolation problem and it was studied in [4], [11], [22].

In this chapter, we consider l ≥ 1. For l ≥ 1, it is a classical Hermite interpolation problem.

It has been studied in [4] with l = 1 by constructing C2 macro-elements. As pointed in [37],

it is also an analog of planar case with l 
 1 by constructing C l+1 macro-elements. However,

all the constructions require higher order derivative information than the given data. Also
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derivatives at edges are needed in order to make these macro-elements smooth across common

edges. Since such higher order derivatives and normal derivative information are not available

in practice, we have to use other techniques to estimate the needed information. As in the

case l = 0, one can use a minimal energy method to construct an interpolation spline. For

Hermite interpolation problem, we can also use minimal energy technique.

The interpolation problem with l ≤ 2 does have an important practical application. In

the year 2007, a satellite called GOCE(Gravity field and steady-state Ocean Circulation

Explorer) will be launched in December to collect gravitational vectors over sampling points

around the Earth . Together the geopotential data from CHAMP(CHAllenging Minisatellite

Payload which is a German small satellite mission for geoscientific and atmospheric research

and applications), we have

g(vi) up to a constant, Dxg(vi), Dyg(vi), Dzg(vi), i = 1, . . . , n

and

D2
xxg(vi), D

2
xyg(vi), D

2
yyg(vi), i = 1, . . . , n

will be available around the Earth for a large integer n, where g denotes the geopotential

function, cf. [25]. Let (φi, θi) be the spherical coordinate for point vi. Then the following

Dφg(vi) = Dxg(vi) cos(φi) cos(θi) + Dyg(vi) cos(φi) sin(θi) − Dzg(vi) sin(φi)

Dθg(vi) = −Dxg(vi) sin(φi) sin(θi) + Dyg(vi) sin(φi) cos(θi) (3.1.3)

as well as D2
φφg(vi), D

2
θφg(vi), D

2
θθg(vi) for all i = 1, . . . , n will be available. The purpose of

the satellite is to get more accurate estimate of geopotential near the surface of the Earth.

An important intermediate step is to estimate the geopotential very accurately at the orbital

level of the satellite, cf. [12] and [25]. That is, we want s to resemble the given data values.

More precisely, if f is sufficiently smooth over S2, we would like a spherical spline function

s ∈ Sr
d satisfying (3.1.1) and approximate f very well in the following sense:

‖f − s‖L∞(S2) ≤ C(tan
|△|
2

)l+1 (3.1.4)
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for a constant C dependent on f , where f is a sufficiently smooth function over S2. These

spherical splines were introduced in [3] more than 10 years ago and were used for scattered

data interpolation and fitting, e.g., [22] and [11]. Recall that space of spherical polynomial

splines

Sr
d(∆) := {s ∈ Cr(Ω) : s|T ∈ Hd(S

2), ∀T ∈ ∆},

where d ≥ 3r + 2 and Hd is a homogeneous polynomial spaces on sphere with degree d, and

Ω is the sphere domain bounded by ∆ which is a triangulation of the sphere projection of

data locations in R3 that could cover sphere S2 or could not cover S2.

For d ≥ 3r +2, the existence of Hermite interpolatory spline satisfying conditions (3.1.1)

can be easily understood from [4], [40], [37]. For the proof of uniqueness, see next section.

Next we are interested in how well the interpolatory spline resemble the given data. For only

location interpolation(standard Lagrange interpolation spline problem), the approximation

of spherical splines with the second order energy functional E2 was studied in [10]. The

researchers in [10] showed that the minimal energy interpolatory splines converges to values of

the given location data when the number of data values increases and the size of triangulation

decreases. Here we need to consider additional interpolation conditions except the location

values. Also we are going to use the third order energy functional E3. We want to attain an

analog of planar case in [48]. But the main difficulty lies in that we do not have the planar

counterpart of Taylor expansion on sphere. Our main theorems give the convergence rate of

minimal energy interpolation under two different norms.

3.2 Existence and Uniqueness of Spherical Hermite Minimal Energy Inter-

polation

In this section we first give a brief review of energy functionals and then give the the proof of

existence and uniqueness of minimal energy spherical Hermite interpolatory splines. Recall

that an energy functional E(f) is an expression for the amount of potential energy in a

thin elastic plate f that passes through the data points V over planar region. The potential
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energy of the thin plate is given by

E =

∫

Ω

[aH2 + bK] dxdy, (3.2.1)

where H and K are mean curvature and Gaussian curvature of the surface S and a and b

are constants which depend on the materials of the plate, cf. [43]. In particular,

H =
κ1 + κ2

2
=

(1 + f 2
x)fyy − 2fxfyfxy + (1 + f 2

y )fxx

(1 + f 2
x + f 2

y )
3
2

and

K = κ1κ2 =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2
,

where κ1 and κ2 are the principle curvatures of the surface of the plate. Suppose that fx ≈ 0

and fy ≈ 0 when the plate has small deflections. The potential energy E can be simplified

in the following form:

E(f) =

∫

Ω

[a(fxx + fyy)
2 − 2(1 − ω)(fxxfyy − f 2

xy)] dxdy,

where the parameter ω is a constant depending on the material at the hand, cf. [24]. For

simplicity, we choose a = 1 and ω = 0. That is,

E(f) =

∫

Ω

[f 2
xx + 2f 2

xy + f 2
yy] dxdy, (3.2.2)

=

∫

Ω

[
2∑

k=0

(
2

k

)
[(

∂

∂x
)k(

∂

∂y
)2−kf ]2

]
dxdy (3.2.3)

which is commonly used in the literature, cf. [21]. In [48] the following energy functional was

taken:

E(f) =

∫

Ω

[
l̄+2∑

k=0

(
l̄ + 2

k

)
[(

∂

∂x
)k(

∂

∂y
)l̄+2−kf ]2

]
dxdy.

For spherical domain, the energy functional in [4] was defined as

E(f) =

∫

S2

(∆∗f)2 dµ,

where ∆∗ is the Laplace-Beltrami operator, µ is the Lebesgue measure on S2, and the integral

in this definition is taken over the unit sphere. Because the Laplace-Beltrami operator only
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annihilates constants. In [11], the researchers introduced an alternative functional motivated

by Sobolev-type seminorms defined in [40] (also see Section 2 in Chapter2) like the following

Eδ(f) =

∫

S2

∑

|γ|=2

(Dγfδ)
2 dµ, (3.2.4)

where and γ = (γ1, γ2, γ3) with |γ| = γ1 +γ2 +γ3, Dγ = Dγ1
x Dγ2

y Dγ3
z is a standard differential

operator, fδ is the unique homogeneous extension of f of degree δ to R3\{0} defined by

fδ(v) = |v|δf( v
|v|

). If the degree d of homogeneous spline space is even, then δ is taken 0; if

odd, δ is taken 1. After evaluating the second order partial derivatives, Dαfδ are restricted

to S2 and are then integrated.

In this dissertation, we take some changes from the above functionals and use a general-

ized version of the energy functional E(f) which can be represented as

Eδ(s) =

∫

Ω

[
l̄+2∑

k=0

(
l̄ + 2

k

)
[(

∂

∂x
)k(

∂

∂y
)l̄+2−ksδ]

2

]
dxdy, (3.2.5)

where Ω is a connected domain bounded by a triangulation ∆ of a part or whole sphere. For

s ∈ Sr
d(∆), we can use energy functional

Eδ(s) =
∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|Dαsδ|2 dµ. (3.2.6)

It is equivalent to the following one.

Eδ(s) =
∑

τ∈∆⊆S2

∫

τ

[
l̄+2∑

k=0

(
l̄ + 2

k

)
[(

∂

∂x
)k(

∂

∂y
)l̄+2−ksδ]

2

]
dxdy.

When l̄ = 0, we call the Eδ(s) in (3.2.6) as the second order energy functional E2
δ ; When

l̄ = 1, we call it the third order energy functional E3
δ . In this dissertation, we mainly

focus on above two energy functionals. In general, we need l ≥ 1 for E3 and l ≥ 0 for E2.

To establish the existence and uniqueness of spherical splines in Sr
d(∆) interpolating

conditions (3.1.1) and minimizing (3.2.6), we need the following.

Lemma 3.2.1. Let ∆ be a spherical triangulation of an interested domain and suppose

f 6= 0. Then
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1) E2
0(f) = 0 if and only if f is a constant,

2) E2
1(f) = 0 if and only if f is a trivariate homogeneous linear polynomial on S2.

Proof. The proof can be found in [11]

Lemma 3.2.2. Let ∆ be a spherical triangulation of an interested domain and suppose

f 6= 0. Then

1) E3
0(f) = 0 if and only if f is a trivariate homogeneous linear polynomial on S2,

2) E3
1(f) = 0 if and only if f is a trivariate homogeneous quadratic polynomial on S2.

Proof. If E3
δ (f) = 0, then by definition, Dαfδ = 0 on every triangle τ ∈ ∆ for |α| =

3. Consider δ = 1. Since f1 is linear homogeneous, Dαf1 is homogeneous of degree −2,

and therefore, by the uniqueness of homogeneous extensions, (Dαf1|τ )−2 = Dαf1. On the

other hand, by definition, (Dαf1|τ )−2(v) = |v|−2(Dαf1|τ)( v
|v|

). As we noted above, Dαf1|τ =

0, and therefore Dαf1 = 0 as well. Hence f1 is a polynomial of degree at most 2. Since

it is a homogeneous quadratic function, f1 must be a homogeneous quadratic polynomial

on R3. Therefore by uniqueness of homogeneous extensions, f is a quadratic homogeneous

polynomial on τ . A similar proof works for δ = 0. The other direction is trivial from definition

(3.2.6).

Lemma 3.2.3. Let g be a trivariate homogeneous quadratic polynomial. If g and its first

order derivatives equal zero on three vertices of a non-degenerate triangle τ :=< v1, v2, v3 >,

then g ≡ 0 on τ .

Proof. Let g(x, y, z) = ax2 +by2+cz2 +dxy+exz+fyz, then taking partial derivatives

with respect to x, y, z, we get

gx(x, y, z) = 2ax + dy + ez, gy(x, y, z) = 2by + dx + fz, gz(x, y, z) = 2cz + ex + fy.

By assumption, we have

g(xi, yi, zi) = ax2
i + by2

i + cz2
i + dxiyi + exizi + fyizi = 0, i = 1, 2, 3
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and

gx(xi, yi, zi) = 2axi + dyi + ezi = 0, i = 1, 2, 3,

gy(xi, yi, zi) = 2byi + dxi + fzi = 0, i = 1, 2, 3,

gz(xi, yi, zi) = 2czi + exi + fyi = 0, i = 1, 2, 3.

Therefore we have 


x1 y1 z1

x2 y2 z2

x3 y3 z3







2a

d

e




=




0

0

0




,




x1 y1 z1

x2 y2 z2

x3 y3 z3







d

2b

f




=




0

0

0




,

and 


x1 y1 z1

x2 y2 z2

x3 y3 z3







e

f

2c




=




0

0

0




.

Since triangle τ is non-degenerate, so det(v1, v2, v3) 6= 0. Hence by Crammer rule we get that

a, b, c, d, e, f are all zeros. We are done.

Let ∆ be a triangulation of the domain of interest over the unit sphere. Assume that the

data locations vi, i = 1, · · · , n are vertices of ∆. Let Sr
d(∆) be the spherical spline space of

degree d ≥ 3r + 2 and r ≥ l over ∆. To approximate f , we choose a linear space S ⊆ Sr
d(∆)

of polynomial splines of degree d defined on a triangulation ∆ as above. For a given set of

data fα,β
i , 0 ≤ α + β ≤ l, i = 1, · · · , n, let

Uf := {s ∈ Sr
d(∆), Dα

θ Dβ
φs(vi) = fα,β

i , i = 1, · · · , n , 0 ≤ α + β ≤ l}. (3.2.7)

When d ≥ 3r+2, it is known that Uf is not empty when S is big enough, cf. [4] and [40]. That

is, there exists a spline sf ∈ Sr
d(∆) satisfying the interpolation conditions (3.1.1). We shall
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use the energy functional E defined in the previous section to find an Hermite interpolatory

spline of good shape in the following sense: Sf ∈ Uf and

E(Sf) = min{E(s), s ∈ Uf}. (3.2.8)

Let us first show that Sf exists and is unique. First of all, it is clear that Uf is a nonempty

convex set in a finite dimensional space Sr
d(∆). Let

W = {s ∈ Sr
d(∆), Dα

θ Dβ
φs(vi) = 0, 0 ≤ α + β ≤ l, i = 1, · · · , n, }, (3.2.9)

and

X := {f ∈ B(S) : f |τ ∈ C3(τ), ∀τ ∈ ∆},

where B(S) is the set of all bounded real-valued functions on the sphere S2. For each triangle

τ ∈ ∆, let

〈f, g〉E,τ :=

∫

τ

∑

|α|=l̄+2

Dαfδ Dαgδ.

Then

〈f, g〉E :=
∑

τ∈∆⊆S2

〈f, g〉E,τ

is a semidefinite inner product on X. Let ||f ||E,τ and ||f ||E be the associated seminorms.

We can see that < ·, · > is an inner product on the linear space W defined in (3.2.9) and

E(s)
1
2 is a norm on W .

Lemma 3.2.4. Let E be defined as (3.2.6). Then ‖s‖E := E(s)1/2 = 〈s, s〉
1
2

E is a norm on

W induced by energy functional.

Proof. Clearly, we have ‖s‖E ≥ 0 and ‖αs‖E = α‖s‖E for any real number α by

definition. Now let us show that triangle inequality is true. In fact, by Cauchy-Schwarz
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inequality, we have

‖s + t‖2
E =

∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|Dα(sδ + tδ)|2 dµ

=
∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|Dαsδ + Dαtδ|2 dµ

=
∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|(Dαsδ)
2 + 2DαsδD

αtδ + (Dαtδ)
2| dµ

≤
∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|Dαsδ|2 + 2|DαsδD
αtδ| + |Dαtδ|2 dµ

≤ E(s) + E(t) + 2(
∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|Dαsδ|2 dµ)1/2(
∑

τ∈∆⊆S2

∫

τ

∑

|α|=l̄+2

|Dαtδ|2 dµ)1/2

= E(s) + E(t) + 2E(s)
1
2 E(t)

1
2

= (E(s)
1
2 + E(t)

1
2 )2

= (‖s‖E + ‖t‖E)2.

Hence

‖s + t‖E ≤ ‖s‖E + ‖t‖E.

Finally we need to show that ‖s‖E = 0 implies s ≡ 0. Note that ‖s‖E = 0 implies that s

is a homogeneous polynomial of degree at most l̄ + 1. The zero interpolation conditions at

vertices vi, i = 1, 2, 3 implies that s ≡ 0. Indeed if E is the second order energy function,

then l̄ = 0 and s is a trivariate homogeneous function with degree at most 1. So we attain

s ≡ 0 by Lemma 3.2.1. If E is the third order energy function, then l̄ = 1 and s is a trivariate

homogeneous function with degree at most 2. Therefore we prove s ≡ 0 by Lemma 3.2.2 and

Lemma 3.2.3. We are done.

Let sf be any spline in the set Uf defined above. It is easy to see that Uf = sf + W . The

minimization problem in (3.2.8) can be written as

E(Sf) = min{E(sf + w), w ∈ W}.
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Thus, the solution Sf can be written as Sf = sf − Psf , where P is the linear projector

P : X → W defined by

E(f − Pf) = min
w∈W

E(f + w),

for all f ∈ X. Since W is a Hilbert space with respect to 〈·, ·〉E, Pf is uniquely defined and

is characterized by

〈f − Pf, w〉E = 0, ∀w ∈ W. (3.2.10)

Moreover

‖Pf‖E ≤ ‖f‖E (3.2.11)

for all f ∈ X. In fact, 〈f − Pf, w〉E = 0 implies that 〈Pf, w〉E = 〈f, w〉E, so by Cauchy-

Schwarz inequality we have

|〈Pf, w〉E| ≤ |〈f, w〉E| ≤ ‖f‖E‖w‖E

Hence, if ‖w‖E 6= 0, then we have

|〈Pf,
w

‖w‖E
〉E| ≤ ‖f‖E.

By the definition of norm, we complete the proof of (3.2.11).

Therefore, there exists a unique Sf ∈ Uf such that the energy norm E(Sf ) is minimal

and we have proved the following theorem

Theorem 3.2.1. There exists a unique spline in Sr
d(∆) minimizing (3.2.8)

3.3 Approximation Power of Spherical Hermite Interpolation Splines

This section devotes to the study of convergence of minimal energy Hermite interpolatory

splines. We have to assume that ∆ is a triangulation of data locations vi, i = 1, · · · , n.

Note that Psf is characterized by

〈sf − Psf , w〉E = 0, for all w ∈ W.
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Here the inner product 〈f, g〉E is induced by the energy norm in the sense that E(f) =

〈f, f〉E. By (3.2.11), we have

‖Psf‖E ≤ ‖sf‖E . (3.3.1)

Lemma 3.3.1. Let T be a spherical triangle such that |T | ≤ 1, and suppose that

Dµ
θ Dν

φf(vi) = 0 for i = 1, 2, 3 and 0 ≤ µ + ν ≤ l and f ∈ C l+2(T ). Then for all v ∈ T ,

|f(v)| ≤ K(tan
|T |
2

)l+2|f |l+2,∞,T (3.3.2)

for some positive constant K independent of f and T , where |f |l+2,∞,T denotes the maximal

norm of the (l + 2)th derivative of f over T .

Proof. Let RT be the radial projection defined in [40]. Let v̄i, i = 1, 2, 3 denote the

vertices of a planar triangle T̄ , which is the image of T under the inverse of RT and v̄ = R−1
T v

for v ∈ T . Recall from [10] that |T̄ | = 2 tan |T |
2

.

Let fl+1(v) = |v|l+1f( v
|v|

) be the homogeneous extension of f to R3 \ {0} of degree l + 1

and let f̄l+1 denote its restriction to the planar triangle T̄ . By Lemma 3.2 in [40], f̄l+1

belongs to W l+2
p (T̄ ). Note that f̄l+1(v̄i) = |v̄i|l+1f(vi) and Dµ

θ Dν
φf(vi) = 0 for i = 1, 2, 3 and

0 ≤ µ + ν ≤ l, then Dα
xDβ

y f̄(v̄i) = 0, α + β = 0, · · · , l, i = 1, 2, 3. Therefore by Lemma 4.1 in

[48], we have for every v̄ ∈ T̄

|f̄l+1(v̄)| ≤ C|T̄ |l+2|f̄l+1|l+2,∞,T̄ (3.3.3)

Since f(v) = f̄l+1(v̄)

|v̄|l+1 and |v̄| ≥ 1 for all v̄ ∈ T̄ ,

|f(v)| ≤ |f̄l+1(v̄)| ≤ C(tan
|T |
2

)l+2|f̄l+1|l+2,∞,T̄

by (3.3.3). By Proposition 3.4 in [40], there exists a positive constant K such that we get

|f(v)| ≤ CK(tan
|T |
2

)l+2|f |l+2,∞,T .

This completes the proof.
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We now are ready to establish an approximation property of Sf . Without loss of gener-

ality, we may assume that ∆ is a triangulation of the entire unit sphere. Let us first have

a quick review of Theorem 2.3.14 for the seminorm approximation properties of spherical

spline space Sr
d(∆) with d ≥ 3r + 2.

Note that when p = ∞, Qf can be chosen to be an interpolatory spline by Theorem 2.3.14.

We first consider the standard L2 norm approximation on the entire sphere S2.

Theorem 3.3.1. Suppose Sr
d is a spline space defined on a β-quasi-uniform triangulation

△ with |△| ≤ 1, d ≥ 3r + 2 and (d − l) mod 2 = 1 for l defined in (3.2.7). There exists a

constant C depending only on d and β, such that the minimal energy interpolant Sf defined

in (3.2.8) satisfies

‖f − Sf‖L2(S2) ≤ C(tan
|△|
2

)l+2|f |l+2,∞,S2 (3.3.4)

for all f ∈ Cr+2(S2) and some l with r ≥ l.

Proof. Since Sf = Qf − PQf , we have

||Sf − f ||L2(S2) ≤ ||Qf − f ||L2(S2) + ||PQf ||L2(S2).

and by using the above Lemma 3.3.1,

||PQf ||2L2(S2) =
∑

T∈∆

||PQf ||2L2(T )

=
∑

T∈∆

∫

T

|PQf |2 dµ

≤
∑

T∈∆

||PQf ||2∞,T

∫

T

dµ

≤
∑

T∈∆

AT ||PQf ||2∞,T

≤
∑

T∈∆

AT C(tan
|T |
2

)2l+4|PQf |2l+2,∞,T

≤
∑

T∈∆

CC1(tan
|T |
2

)2l+4|PQf |2l+2,2,T

≤ C2(tan
|∆|
2

)2l+4||PQf ||2E

≤ C2(tan
|∆|
2

)2l+4||Qf ||2E
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by using (3.3.1). Here AT denotes the area of spherical triangle T . By the approximation

property of Qf from Theorem 2.3.14 with k = 0, p = ∞ and m = l + 1, one has

‖f − Qf‖∞,S2 ≤ C(tan
|△|
2

)l+2|f |l+2,∞,S2

and

|Qf |l+2,∞,S2 ≤ K|f |l+2,∞,S2.

We have

||Sf − f ||L2(S2) ≤ C(tan
|△|
2

)l+2|f |l+2,∞,S2.

We are done.

Next we study the error Sf − f in the maximum norm.

Theorem 3.3.2. Suppose Sr
d is a spline space defined on a β-quasi-uniform triangulation

△ with |△| ≤ 1, d ≥ 3r + 2 and (d − l) mod 2 = 1 for l defined in (3.2.7). There exists a

constant C depending only on d and β, such that the minimal energy interpolant Sf defined

in (3.2.8) satisfies

‖f − Sf‖L∞(S2) ≤ C(tan
|△|
2

)l+1|f |l+2,∞,S2 (3.3.5)

for all f ∈ Cr+2(S2).

Proof. Again we use Sf = Qf − PQf to have

||Sf − f ||∞,S2 ≤ ||Qf − f ||∞,S2 + ||PQf ||∞,S2.

There exists a triangle T0 ∈ ∆ such that ||PQf ||∞,S2 = ||PQf ||L∞(T0). By using Lemma 3.3.1,

||PQf ||L∞(T0) ≤ C|T0|l+2|PQf |l+2,∞,T0
.

Since PQf is a spherical polynomial of degree d, |PQf |l+2,∞,T0
≤ C|PQf |l+2,2,T0

/|T0| ≤

C‖PQf‖E/|T0|. By (3.3.1), ‖PQf‖E ≤ ‖Qf‖E ≤ 4π‖Qf‖l+2,∞,S2. Thus,

‖Sf − f‖∞,S2 ≤ ‖Qf − f‖∞,S2 + C|∆|l+24π‖Qf‖l+2,∞,S2/|T0|.
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By the approximation property of Qf from Theorem 2.3.14 with k = 0 and m = l + 1, we

have

||Sf − f ||L∞(S2) ≤ C(tan
|△|
2

)l+1|f |l+2,∞,S2.

Therefore we have proved the theorem.

3.4 Computational Method for Spherical Hermite Interpolation Spline

In this section we describe how the minimal energy Hermite interpolation methods are imple-

mented in practice. Given V := {v ∈ S2} a set of points on the unit sphere with real numbers

{f(v), v ∈ V}, we construct a regular spherical triangulation ∆ which is a part of sphere

with or without holes or the whole sphere. For d ≥ 1 and r ≥ 0, two integers with d ≥ 3r+2,

define S−1
d (∆) to be the space of homogeneous splines of degree d and smoothness −1, i.e.

S−1
d (∆) := {s : s|τ ∈ Hd, ∀τ ∈ ∆}.

Then let

Sr
d(∆) := S−1

d (∆) ∩ Cr(S2).

It is understood from [4] and [40] that for d ≥ 3r + 2 there is more than one interpolating

spline in set Uf defined by (3.2.7). A typical way to use the extra degrees of freedom is to

minimize a functional E(s) measuring smoothness of s. Let

Eδ(s) =
∑

τ∈∆⊆S2

∫

τ

(♦sδ)
T (♦sδ)dσ, (3.4.1)

where ♦ is a vector of second order differential operators defined for a trivariate function h

by

♦h =




D2
xxh

D2
yyh

D2
zzh

√
2D2

xyh
√

2D2
xzh

√
2D2

yzh




, (3.4.2)
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or a vector of third order differential operators defined for a trivariate function h by

♦h =




D3
xxxh

D3
yyyh

D3
zzzh

√
3D3

xxyh
√

3D3
xxzh

√
3D3

xyyh
√

3D3
xzzh

√
3D3

yyzh
√

3D3
yzzh

√
6D3

xyzh




. (3.4.3)

In (3.4.1) sδ is the unique homogeneous extension of s of degree δ to R3 \ {0} defined by

sδ = |v|δs( v
|v|

). As we discussed in Chapter 3 we use δ = 0 or δ = 1. After evaluation ♦sδ is

restricted to the unit sphere and then integrated. In case of second order energy functional

we use (3.4.2) and in third order energy functional we use (3.4.3). By Theorem 3.2.1, there

exists a unique minimal energy functional Hermite interpolation solution. Now we explain

how to compute minimal energy interpolating spherical splines. We use a coefficient vector

c to represent each spline function in S−1
d (∆)

s|τ =
∑

i+j+k=d

cτ
ijkB

d,τ
ijk , τ ∈ ∆

c := (cτ
ijk), i + j + k = d, τ ∈ ∆.

When s ∈ Sr
d(∆),to ensure the Cr continuity across each interior edge of ∆, we impose

smoothness conditions, i.e., the conditions in Theorem 2.2.25 for every edge of ∆. Let H

denote the smoothness matrix such that

Hc = 0

if and only if s ∈ Sr
d(∆).
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To simplify the data management we linearize the triple indices of BB-coefficients cijk

and correspondingly the indices of BB-basis functions Bd
ijk. From the properties of SBB-

polynomials, we have

cd00 = f(v1), c0d0 = f(v2), c00d = f(v3)

and

∂P

∂θ
|v1

= d

[
∂b1

∂θ
cd,0,0 +

∂b2

∂θ
cd−1,1,0 +

∂b3

∂θ
cd−1,0,1

]
=

∂f

∂θ
|v1

,

∂P

∂φ
|v1

= d

[
∂b1

∂φ
cd,0,0 +

∂b2

∂φ
cd−1,1,0 +

∂b3

∂φ
cd−1,0,1

]
=

∂f

∂φ
|v1

,

∂P

∂θ
|v2

= d

[
∂b1

∂θ
c1,d−1,0 +

∂b2

∂θ
c0,d,0 +

∂b3

∂θ
c0,d−1,1

]
=

∂f

∂θ
|v2

,

∂P

∂φ
|v2

= d

[
∂b1

∂φ
c1,d−1,0 +

∂b2

∂φ
c0,d,0 +

∂b3

∂φ
c0,d−1,1

]
=

∂f

∂φ
|v2

,

∂P

∂θ
|v3

= d

[
∂b1

∂θ
c1,0,d−1 +

∂b2

∂θ
c0,1,d−1 +

∂b3

∂θ
c0,0,d

]
=

∂f

∂θ
|v3

,

∂P

∂φ
|v3

= d

[
∂b1

∂φ
c1,0,d−1 +

∂b2

∂φ
c0,1,d−1 +

∂b3

∂φ
c0,0,d

]
=

∂f

∂φ
|v3

,

on each triangle τ ∈ ∆. We can calculate the derivatives up to l-th order, then assemble

interpolation conditions into a matrix I, according to the order in which the coefficient

vector c is organized. Then Ic = F is the linear system of equations such that a coefficient

vector c solving it corresponds to a spline s interpolating f and its l-th order derivatives

fα,β, α + β = l at the data sites V.

Next fix δ = d mod(2). The problem of minimizing (3.4.1) over Sr
d(∆) can be formulated

as follows:

minimize cTEc, subject to Hc = 0 and Ic = F.



64

Here the energy matrix E is defined as follows. E = diag(Eτ , τ ∈ ∆) is a diagonally block

matrix. Each block Eτ is associated with a triangle τ and contains the following entries

Eτ
ij :=

∫

τ

♦(Bi)
T
δ ♦(Bj)δdσ, (3.4.4)

where Bi denotes a BB-polynomial basis function (2.2.12) of degree d corresponding to the

order of the linearized triple indices (i, j, k), i + j + k = d.

By the method of Lagrange multiplier method, let

L(c, η, γ) :=
1

2
cTEc + ηTIc + γTHc.

be a Lagrangian function. We need to find a local minimizer of L(c, η, γ). That is

∂

∂c
L(c, η, γ) = 0,

∂

∂η
L(c, η, γ) = 0,

∂

∂γ
L(c, η, γ) = 0.

Hence, we have

1

2
(E + ET)c + ITη + HTγ = 0, Ic = 0, Hc = 0.

By the symmetry of matrix E, we need to solve the linear system



E IT HT

I 0 0

H 0 0







c

η

γ




=




0

F

0




.

Here γ and η are vectors of Lagrange multiplier coefficients. Note that E is a singular matrix.

Although we can use a least squares solution to the singular linear system above, we use

the following iterative method introduced in [8] which is much more efficient to obtain the

coefficient vector of spherical spline Hermite interpolation. For simplicity, let us consider the

following singular linear system:

 A LT

L 0





 c

λ


 =


 F̄

Ḡ


 .

It can be solved by using the following iterative method [8]

 A LT

L −ǫI





 c(ℓ+1)

λ(ℓ+1)


 =


 F̄

Ḡ − ǫλ(ℓ)


 ,
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for ℓ = 0, 1, . . ., where ǫ > 0 is a fixed number, e.g. ǫ = 10−4, λ(ℓ) is iterative solution of a

Lagrange multiplier coefficient vector with λ0 = 0 and I is the identity matrix. The above

matrix iterative steps can in fact be rewritten as follows:

(A +
1

ǫ
LT L)c(ℓ+1) = AF̄c(ℓ) +

1

ǫ
LT Ḡ

with c(0) = 0. Note that the size of the above linear system is much smaller than of the

original one. The iterations converge very quickly as shown in the following theorem. In our

numerical experiments, a few iterations (less than 10) often suffice. A general convergence

theorem is proved in [8]. To state the convergence result, we need the following definition.

Definition 3.4.1. (cf. [8])Let A be a square matrix of size n×n and L be a rectangular

matrix of size m × n. We say a matrix A is positive definite with respect to L if cT Ac ≥ 0,

and Ac = 0, Lc = 0 imply that c = 0.

Theorem 3.4.1. (cf. [8]) Suppose that A is symmetric and positive definite with respect

to L. Then the matrix A+ 1
ǫ
LT L is always invertible for any ǫ > 0. Furthermore, there exists

a constant C such that

‖c(ℓ+1) − c‖ ≤ Cǫ‖c(ℓ) − c‖, for all ℓ ≥ 0.

It is easy to see that E is symmetric and nonnegative definite with respect to L = (I;H).

Thus, the iterative method converges to the vector c, which is the coefficient vector of the

unique interpolating spline minimizing (3.4.1). This furnishes a computational algorithm like

the following.

Algorithm of spherical Hermite minimal energy interpolation:

step1. Find the center of data sets, and project them to the unit sphere S2.

step2. Triangulate the points on the unit sphere corresponding to the projection of data sets

to get a triangulation ∆.
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step3. Calculate the function values and derivatives up to the l-th order(l ≥ 0 defined by

(3.2.7)) on each vertex of triangulation ∆, and assemble these conditions into matrix

form Ic = F, here c denotes the coefficient vector.

step4. Assemble smoothness conditions into matrix form Hc = 0.

step5. Compute all derivatives up to third order. Calculate the energy functional on the

triangulation ∆ and write it in form cTEc, where E (could be the second or third

order energy functional) is a diagonal block matrix and each block element is the

energy functional on each triangle T ∈ ∆.

step6. Apply Lagrangian multiplier method to get the linear system




E IT HT

I 0 0

H 0 0







c

η

γ




=




0

F

0




.

step7. Solve the linear system in step 6 to get c.

step8. Computing maximal and relative error.

We shall show our numerical results in chapter 5 to demonstrate effectiveness of our

method.



Chapter 4

Surface Design Based on Spherical Splines

Holes filling and scattered data smooth fitting are important and difficult research fields in

CAGD(Computer Aided Geometric Design), especially for high order continuity. They have

been widely studied in planar domains for at least over twenty years. In this chapter, we study

above problems in a spherical domain which is much different from a planar one and present

them in two parts. In first part, we study the method to fill holes with Cr(r ≥ 0) continuity

using spherical splines if the surrounding surface and mending surface have the same degree

of SBB-polynomials. Otherwise we approximate the boundary information of holes. In some

cases, we also need the mending surface to satisfy certain interpolation conditions, and we

call this problem as hole filling and data fitting. This problem has not been studied in the

literature before. In second part, we deal with point cloud using spherical splines to get a

smooth and visually fair surface to interpolate the given data locations and their derivatives.

Our surface is Cr (r ≥ 0) globally continuous. We give examples of C0, C1 and C2 continuity

to demonstrate our methods.

4.1 Spherical Spline Method for Hole Filling

4.1.1 Overview

In complex surface modeling and surface design, we often encounter a curved polygonal

hole(N− sided hole) when assembling several surface patches together. Usually these given

surface patches are spline surface patches. We have to find a mending surface patch to fill

the hole such that the modified surface is Ci or Gi(i = 0, i = 1 or 2) globally continuous.

In some applications, the mending surface patch to fill the hole may be required to satisfy

67
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certain interpolation conditions. In a planar domain, several researchers have already tested

some ideas, e.g. rectangular patches, triangular patches, multisided patches, subdivision algo-

rithm and etc. See, e.g., [Hahn’89], [Gregory’89], [Jones’88], [Zheng and Ball’97], [Chui and

Lai’2000].

Figure 4.1: Data with one hole .
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Figure 4.2: Projection of data with one hole onto the unit sphere.

We study the sphere case for the first time. One typical situation is that a given smooth

surface is defined over the entire unit sphere except for a polygonal cap, see Fig. 4.1 and

Fig. 4.2. Such a surface is said to have a hole. To fill the surface over the cap, we need

to get a regular triangulation of holes which share common edges with the triangulation of

surrounding surface over the boundary curves of holes. To get global Cr (r ≥ 0) surface, we

first use Cr (r ≥ 0) smoothness conditions across interior edges of triangles in a triangulation
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of holes to guarantee interior parts of holes Cr (r ≥ 0) smoothness. Second, we deal with Cr

(r ≥ 0) related boundaries. We compute the values over a discrete set of points along the

curve of the hole over the boundary of the cap and derivatives up to r-th order at vertices of

boundary edges, also we use the smoothness conditions across boundary edges to determine

the undetermined points from 1-th to r-th layers from boundary edges. After above processes,

we have constructed a spherical spline surface with global Cr (r ≥ 0)continuity. And the

original and resulting spherical spline surface form a visually smooth surface over the entire

unit sphere if the discrete set of points are dense enough. See [16] for C1 hole-filling using

bivariate spline functions over planar domains. We shall present our numerical method for

Cr(r ≥ 0) hole filling in next subsection.

In this chapter, we propose to use Cr (r ≥ 0) spherical spline patches to handle the

filling problem. Our filling spherical surface only matches the boundary values exactly for

surrounding spherical spline patches which form a curved polygonal hole with the same

degree of SBB-polynomials of filling holes, and it is a common assumption for exactly hole

filling that a mending surface is the same type as its surrounding surface(cf. [34]). Otherwise,

we need to approximate the boundary curve and derivative on the boundaries of holes.

4.1.2 Spherical Spline Method for Filling Curved Polygonal Holes

Now let us describe our new method for filling curved polygon hole on the sphere. For

simplicity, we assume that there exists a domain Ω on the unit sphere S2 such that the

projection of hole H onto S2 is Ω. That is, the intersection of the spherical surface S2 and the

line passing through the center of the sphere S2 and a point of the curve of the hole forms a

boundary curve of a domain Ω. Suppose that ∂Ω can be divided into a finite non-overlapping

arc segments in great circle p1, · · · , pn such that ∂Ω =
⋃n

i=1 pi with pi ∩ pi+1 = vi+1, i =

1, · · · , n − 1, and pn ∩ p1 = v1. That is, Ω is a circulated curved polygonal cap of S2.
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Figure 4.3: Data with two holes.
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Figure 4.4: Projection of the data with two holes onto the unit sphere.

In a general situation, there maybe many disjoint holes, see Fig. 4.3 and Fig. 4.4 for two

holes’ case. But we deal with these holes with same procedure. So we only describe how to

fill one hole.

We first partition the curved polygonal cap Ω into a collection ∆ of spherical triangles.

Let Vb = {v1, · · · , vn} be the collection of boundary vertices of sphere triangulation ∆,

pi = (vi, vi+1) be the boundary edges from starting point vi to ending point vi+1, i = 1, · · · , n

(note vn+1 = v1) and calculate the r−th(r=0,1,or 2) derivatives of surrounding surface at

these vertices vi, i = 1, . . . , n. We evenly divide the chord connecting vi and vi+1 by inserting

d − 1 (d is the degree of SBB-polynomial) points and then project them to circulated edge

ei, denote these points on the ei by ijb for i = 1, · · · , n, j = 1, · · · , d − 1. Let Ub =
⋃

ijb,
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and V∂Ω = Vb

⋃
Ub. We evaluate the curve C of hole as well as derivatives of the points in

Vb. For r ≥ 0, to make mending patch smoothly connect the surrounding surface h with

Cr continuity, we construct a spherical spline surface Sf on ∆ to interpolate the values on

points in V∂Ω and derivatives up to r-th order at points of Vb, also we need Cr conditions

across the boundaries of surrounding surface. The Cr related boundaries need delicate care.

For C0 smoothness to connect the originally given surface h, we only need to interpolate

the boundary values at the nd distinct points on the boundary ∂Ω.

v2

v3

v1

∗ : inserted points

◦ : interpolated vertices

+ : points determined by smoothness conditions across interior edges or minimal energy.

Figure 4.5: Domain points of S0
5 for one triangle of mending surface with boundary edge v̂2v3

and vertex v1 inside hole.
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v2

v3

v1

∗ : inserted points

◦ : interpolated vertices

+ : points determined by smoothness conditions across interior edges or minimal energy.

Figure 4.6: Domain points of S0
8 for one triangle of mending surface with boundary edge v̂2v3

and vertex v1 inside hole.

These points consist of n distinct vertices vi, i = 1, · · · , n and (n − 1)d distinct inserting

points ijb for i = 1, · · · , n, j = 1, · · · , d − 1 on n sides of the boundary ∂Ω, see Fig. 4.5 and

Fig. 4.6. Denote the values of C over the points in V∂Ω by a vector fbc0. Let c be the vector

of spline coefficients in SBB−form as in Chapter3. By our construction, we have

ijb =
vi +

j(vi+1 − vi)

d

‖vi +
j(vi+1 − vi)

d
‖
, i = 1, · · · , n, j = 1, · · · , d − 1.

We first compute the barycentric coordinates of ijb for i = 1, · · · , n, j = 1, · · · , d − 1 in the

corresponding triangles of mending surface. Then we can write interpolation conditions on

these points and vertices in matrix form:

Ibc0c = fbc0. (4.1.1)
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v2

v3

v1

∗ : inserted points

◦ :points determined by quasi-Hermite interpolation

+ : points determined by smoothness conditions across interior boundary or minimal energy

⋄ : points determined by C1 smoothness conditions across boundary v̂2v3 and interior edges

⋆ : point determined by C1 smoothness condition across boundary v̂2v3

Figure 4.7: Domain points of S1
5 for one triangle of mending surface with boundary edge v̂2v3

and vertex v1 inside hole.

For C1 continuity, we need quasi-Hermite interpolation at vertices of boundary ∂Ω, C0

interpolation on the points ijb, i = 1, · · · , n, j = 2, · · · , d− 2, and C1 smoothness conditions

on points denoted by ⋄ and ⋆ in Fig. 4.7. We can express above C1− related boundary

conditions in terms of coefficient vector c and assemble them into matrix form:

Ibc1c = fbc1. (4.1.2)
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v2v2v2

v3v3v3

v1v1v1

∗ : inserted points

◦ : points determined by quasi-Hermite interpolation

+ : points determined by smoothness conditions across interior boundary or minimal energy

⋄ : points determined by C1 smoothness conditions across boundary v̂2v3

⋆ : points determined by C2 smoothness conditions across the boundary v̂2v3 and C1

smoothness conditions across interior edges

△ : points determined by C1 smoothness conditions across the boundary v̂2v3 and C2

smoothness conditions across interior edges

� : points determined by C2 smoothness conditions across boundary edge v̂2v3 and interior

edges

• : point determined by C2 smoothness conditions across boundary edge v̂2v3

Figure 4.8: Domain points of S2
8 for one triangle of mending surface with boundary edge v̂2v3

and vertex v1 inside hole.

Similarly, for C2 connection, we need quasi-Hermite interpolation at vertices of boundary

∂Ω, C0 interpolation on the points ijb, i = 1, · · · , n, j = 3, · · · , d − 3, C1 smoothness

conditions on points shown in Fig. 4.7, and C2 smoothness conditions on points demonstrated

in Fig. 4.8. We also can express above C2− related boundary conditions in terms of coefficient
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vector c and assemble them into matrix form:

Ibc2c = fbc2. (4.1.3)

By the same process, we can express Cr− related boundary (r ≥ 3) connection conditions

in terms of coefficient vector c and assemble them into matrix form:

Ibcrc = fbcr. (4.1.4)

For simplicity, we denote all above Cr(r ≥ 0) boundary related conditions by Ibcc = fbc.

In some applications, we are also given some data inside the hole in addition to the given

boundary of surface patches. Let us write the scattered data {(xi, yi, zi), i = 1, · · · , P} over

the Ω in matrix form: Ivc = fv. For convenience, we combine the interpolation conditions

Ibcc = fbc and Ivc = fv together and denote them by Ic = f .

Let Uf = {s ∈ Sr
d(∆), Ic = f} be the collection of all spherical splines in Sr

d(∆) which

interpolates the given data and satisfies Cr− related boundary conditions. Now our method

to fill the hole is to find Sf ∈ Sr
d(∆) (d ≥ 3r + 2 for r ≥ 0) such that Sf ∈ Uf and

E(Sf) = min{E(s), s ∈ Uf}. (4.1.5)

That is, we need to solve the following minimization problem:

minimize cTEc, subject to Hc = 0 and Ibcc = fbc, Ivc = fv,

(4.1.6)

where E is the energy functional matrix explained in Chapter 3, Ibcc = fbc for Cr− related

boundary conditions explained above, and H for the smoothness conditions across the interior

edges of triangles of mending surface. Since Uf is not empty, it is easily understood there

exists a minimal energy solution for our hole filling problems, see Section 3.2.

Energy functional E helps us to determine all the remaining coefficients in SBB poly-

nomial representation and reduces the bumpiness of the surface. In [16], (4.1.6) was called

the minimal energy filling and fitting problem. we shall solve spherical case using Lagrange

multiplier method described in Chapter3.
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By the method of Lagrange multiplier, let

L(c, η, γ) :=
1

2
cTEc + ηTIc + γTHc.

be a Lagrangian function. We need to find a local minimizer of L(c, η, γ). That is

∂

∂c
L(c, η, γ) = 0,

∂

∂η
L(c, η, γ) = 0,

∂

∂γ
L(c, η, γ) = 0.

Hence, we have

1

2
(E + ET)c + ITη + HTγ = 0, Ic = 0, Hc = 0.

By the symmetry of matrix E, we need to solve the linear system




E IT HT

I 0 0

H 0 0







c

η

γ




=




0

f

0




.

Here γ and η are vectors of Lagrange multiplier coefficients. Note that the above coefficient

matrix is a singular matrix. Although we can use a least squares solution to the singular linear

system above, we use the iterative method introduced in [8] which is much more efficient

to obtain the coefficient vector of spherical spline quasi-Hermite interpolation, also see the

description in Chapter 3.

It is easy to see that E is symmetric and nonnegative definite with respect to L = (I;H).

Thus, the iterative method converges to the vector c, which is a coefficient vector of the

interpolating spline minimizing (4.1.5). This furnishes a computational algorithm of the hole

filling like the following.

Algorithm of spherical hole filling with Cr(integer r ≥ 0) continuity:

step1. Determine the spherical triangulation of surrounding surface and mending surface

which share common boundaries.

step2. Find a spherical spline to approximate the surrounding surface.
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step3. Compute the Cr− related boundary conditions Ibcc = fbc as described in this section,

here c denotes the coefficient vector, integer r(≥ 0) denote the order of global continuity

of the finalized surface.

step4. Calculate the interpolation conditions to satisfy the given data in the hole if there are

any such data and assemble them into matrix form Ivc = fv. Otherwise we skip this

step.

step5. Assemble Cr smoothness conditions across the interior edges of mending surface into

matrix form Hc = 0.

step6. Calculate the energy functional on the triangulation ∆ of mending surface and write it

in form cTEc, where E is a diagonal block matrix and each block element is the energy

functional on each triangle T ∈ ∆.

step7. Apply iterative method described in Chapter 3 to solve the following linear system

attained by Lagrangian multiplier method:



E IT HT

I 0 0

H 0 0







c

η

γ




=




0

f

0




,

where I and f come from the combination Ic = f of Ibcc = fbc and Ivc = fv.

step8. Solve the linear system in step 6 to get c.

step9. Visualize the surrounding surface and mending surface.

Numerical examples in Chapter 5 demonstrate that spherical splines are excellent for

hole filling.

4.2 Spherical Splines for Point Cloud

In this section, we construct a spherical spline Cr(r ≥ 0) surface to interpolate the given

data locations and their derivatives (if they are given like Satellite data, cf. [25]) by using
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the minimal energy Hermite interpolation(l ≥ 0) method or minimal energy quasi-Hermite

interpolation method.

Let P be a set of point cloud in 3D Euclidean space R3. Suppose that there is a 3D trian-

gulation associated with the point cloud. That is, there exists a piecewise linear interpolation

I which interpolates all the points in the point cloud. In order to use spherical splines for

construct a smooth interpolation of the point cloud, we introduce a concept that the point

cloud is centralizable.

Definition 4.2.1. We call the point cloud is centralizable if there exists a center

O ∈ R3 such that for any point p ∈ I, the ray from O to p does not intercept any other point

in the piecewise linear interpolant I.

For example, in the following two figures, we are given a set of point cloud in the right

hand side of the figure, and a triangulation associated with the point cloud is shown in the

right of the figure. We show them from different viewing points.

Figure 4.9: Original point cloud and a triangulation of the centralizable point cloud.
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Figure 4.10: Original point cloud and a triangulation of the centralizable point cloud from a

different point of view.

Figure 4.11: Original point cloud and a triangulation of the non-centralizable point cloud.

We shall focus on the centralizable point cloud. For a non-centralizable point cloud, we

need cut off some data to make the modified data centralizable.
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Figure 4.12: Modified head data(left) and a spherical triangulation ∆(right).

For example, the point cloud in Fig. 4.11 is not centralizable near the areas of ears, eyes,

and shoulders. After cutting off these areas, we have a modified point cloud as shown in the

left of Fig. 4.12. A triangulation of the modified head data is shown in the right of Fig. 4.12.

When the point cloud P is centralizable, each point p in the P can be projected onto the

unit sphere S2 with center O by the ray from O passing through the point p. This induces

point vi on the unit sphere and we can use the induced points vi to find a triangulation

∆. Here ∆ could be the whole sphere or a part of a sphere with or without holes. So

we can use spherical splines over ∆ to construct a smooth (continuously differentiable or

r−th continuously differentiable) surface which interpolates the given points in P and their

derivatives if they are given. Now let us give an algorithm for Cr(integer r ≥ 0) point cloud

to interpolate the given points and their derivatives if they are given by using the minimal

energy Hermite interpolation method or the minimal energy quasi-Hermite interpolation

method.

Algorithm of spherical splines for Cr(integer r ≥ 0) centralizable point cloud

step1. Find the center O of the point cloud.

step2. Project the points in P to the unit sphere S2 with center O and get a spherical trian-

gulation ∆ of these induced points.
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step3. First we compute the interpolation conditions of locations. Express these conditions

in terms of coefficient vector c described in Chapter 3 and assemble them into matrix

form:

Ivc =




f(v1)

...

f(vN)




,

where f is the distance function of point v ∈ P from the center O, i = 1, · · · , N , and

N is the number of points. Secondly we calculate the interpolated derivatives up to

l-th(l ≥ 1) order at these points if it is necessary. Express these conditions in terms of

coefficient vector c described in Chapter 3 and assemble them into matrix form:

IDc = fD.

Finally, we combine above two conditions into matrix form Ic = f for convenience of

explanation.

step4. Assemble Cr smoothness conditions across the interior edges of triangulation ∆ into

matrix form Hc = 0.

step5. Calculate the energy functional on triangulation ∆ and write it in form cTEc, where

E is a diagonal block matrix and each block element is the energy functional on each

triangle T ∈ ∆.

step6. Apply iterative method described in Chapter 3 to solve the following linear system

attained by Lagrangian multiplier method:




E IT HT

I 0 0

H 0 0







c

η

γ




=




0

f

0




,

step7. Solve the linear system in step 6 to get c.
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step8. Visualize the Cr spherical spline surface satisfying interpolatory conditions at points

in P and their derivatives if they are given.

We shall show the numerical results in Chapter 5.



Chapter 5

Numerical Experiments

5.1 Numerical Experiments for Hermite Interpolation

Example 5.1.1. We use spherical splines for Hermite data interpolation. For simplicity,

we consider a standard triangulation ∆0 of the unit sphere consisting of eight congruent

triangles with six vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), and (0, 0,−1). Then

we refine uniformly ∆0 by dividing each triangle into four subtriangles using the midpoint of

edges and denote resulting triangulation by ∆1. We continue the uniform refinement of ∆1

to get ∆2 and so on. We use the following test functions f1(x, y, z) = 1 + 0.3x8 + e0.2y3

+ z,

f2(x, y, z) = sin(9θ)sin9(φ) + sin(φ), f3(x, y, z) = 1 + 0.3x8 + y2 + z and their derivatives.

Then we find the spherical spline interpolation of the test functions.

Sr
d(∆) \ f f1 f2 f3

S1
5(∆2)(H) 0.0066 0.56347118414855 0.0054

S1
5(∆2)(L) 0.0091 1.29355264798577 0.0078

S1
5(∆3)(H) 5.4632e − 004 0.09049253039397 5.1111e − 004

S1
5(∆3)(L) 6.4169e − 004 0.12874756706204 6.0932e − 004

S1
5(∆4)(H) 3.3701e − 005 0.00792839967325 3.1337e − 005

S1
5(∆4)(L) 4.1030e − 005 0.00982450777267 3.8608e − 005

S1
5(∆5)(H) 2.0407e − 006 3.891376065110475e− 004 2.1941e − 006

S1
5(∆5)(L) 2.4374e − 006 8.433571002092188e− 004 2.6213e − 006

Table 5.1: Maximal Errors of Hermite and Lagrange Interpolation with Second Order Energy

Functional for Sf ∈ S1
5(∆).

83
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Sr
d(∆) \ f f1 f2 f3

S1
5(∆2)(H) 0.0026 0.29951914264812 0.0020

S1
5(∆2)(L) 0.0110 2.07964802160888 0.0100

S1
5(∆3)(H) 4.5779e − 004 0.06134015319020 4.1373e − 004

S1
5(∆3)(L) 0.0017 0.11405534351457 0.0017

S1
5(∆4)(H) 9.5467e − 005 0.00786475557904 8.4862e − 005

S1
5(∆4)(L) 1.1594e − 004 0.01378199826989 1.8782e − 004

S1
5(∆5)(H) 9.1351e − 006 4.236873067426927e− 004 8.5212e − 006

S1
5(∆5)(L) 1.3884e − 005 0.00508637393995 2.0715e − 005

Table 5.2: Maximal Errors of Hermite and Lagrange Interpolation with Third Order Energy

Functional for Sf ∈ S1
5(∆).

Sr
d(∆) \ f f1 f2 f3

S1
5(∆2)(H) 0.0022 0.28173559207428 0.0024

S1
5(∆2)(L) 0.0030 0.64677632399289 0.0035

S1
5(∆3)(H) 1.8211e − 004 0.04524626519699 2.2747e − 004

S1
5(∆3)(L) 2.1390e − 004 0.06437378353102 2.7118e − 004

S1
5(∆4)(H) 1.1234e − 005 0.00396419983663 1.3933e − 005

S1
5(∆4)(L) 1.3677e − 005 0.00491225388633 1.7166e − 005

S1
5(∆5)(H) 6.8025e − 007 1.945688032555237e− 004 9.7525e − 007

S1
5(∆5)(L) 8.1245e − 007 4.216785501046094e− 004 1.1651e − 006

Table 5.3: Relative Errors of Hermite and Lagrange Interpolation with Second Order Energy

Functional for Sf ∈ S1
5(∆).
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Sr
d(∆) \ f f1 f2 f3

S1
5(∆2)(H) 8.6519e − 004 0.14975957132406 8.7162e − 004

S1
5(∆2)(L) 0.0037 1.03982401080444 0.0045

S1
5(∆3)(H) 1.5260e − 004 0.03067007659510 1.8413e − 004

S1
5(∆3)(L) 5.7103e − 004 0.05702767175729 7.4299e − 004

S1
5(∆4)(H) 3.1822e − 005 0.00393237778952 3.7730e − 005

S1
5(∆4)(L) 3.8647e − 005 0.00689099913495 8.3505e − 005

S1
5(∆5)(H) 3.0450e − 006 2.118436533713464e− 004 3.7875e − 006

S1
5(∆5)(L) 4.6280e − 006 0.00254318696998 9.2075e − 006

Table 5.4: Relative Errors of Hermite and Lagrange Interpolation with Third Order Energy

Functional for Sf ∈ S1
5(∆).

We first consider the maximal errors. Table 5.1 and Table 5.2 are of the maximal errors

between Sf and f for f1, f2, and f3 with second order energy functional E2 and third order

energy functional E3 respectively. The maximal errors are computed on almost equally-spaced

points over the sphere. Table 5.1 and Table 5.2 demonstrate that the Hermite interpolation

approximate the original function f much better than Lagrange interpolation with the energy

functionals both E2 and E3.

Second, we compare the relative error ‖s(w)−f(w)‖∞
‖f(w)‖∞

in Table 5.3 with Energy functional

E2 and Table 5.5 with Energy functional E3. These two tables also show the relative errors

of the Hermite interpolation approximate the original function f much better than Lagrange

interpolation with the energy functionals both E2 and E3. Hence we can conclude that the

Hermite interpolatory spline surface approximates original function values much better than

Lagrange interpolatory spline surface under different energy functionals E2 and E3 in the

same spherical spline spaces.
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Example 5.1.2. In this example, we consider the spherical splines for Hermite data

interpolation under different energy functionals E2 and E3. We first construct the same

spherical triangulation as Example 5.1.1. But we use the following test functions f1(x, y, z) =

1

1 + x2 + y4 + z6
, f2(x, y, z) = 0.3x8 + e0.2y3

+ z3, f3(x, y, z) = sin(9θ)sin9(φ) and their

derivatives. Then we find the spherical spline interpolation of the test functions.

Sr
d(∆) \ f f1 f2 f3

S1
6(∆0)(E

3) 0.22987953695775 0.28835856415728 3.17386786740602

S1
6(∆0)(E

2) 0.25077741939099 0.29385403166936 2.97185896416610

S1
6(∆1)(E

3) 0.02435446430443 0.04569622953948 2.30544327515634

S1
6(∆1)(E

2) 0.05192221382849 0.09028894126441 2.08943150184926

S1
6(∆2)(E

3) 0.00901424186606 0.00447771701237 0.300999855221215

S1
6(∆2)(E

2) 0.01755117759007 0.00957941977496 0.61173496632118

S1
6(∆3)(E

3) 8.507097138034103e− 004 8.483952232785086e− 004 0.03632526957430

S1
6(∆3)(E

2) 0.00207573909188 0.00103445079261 0.09694695263925

S1
6(∆4)(E

3) 1.447067891197085e− 004 1.002341249083383e− 004 0.00271119947541

S1
6(∆4)(E

2) 1.455537539193363e− 004 6.509319827019411e− 005 0.00701754668327

Table 5.5: Maximal Errors of Hermite Interpolation with Second Order and Third Order

Energy Functionals for Sf ∈ S1
6(∆).

From the Table 5.5, we know that Hermite interpolation spline in S1
6(∆) with energy func-

tional E3 approximates the original function much better than the one with energy functional

E2.
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5.2 Numerical Experiments for Hole Filling

Figure 5.1: C1 Hole filling in S1
5(∆) for data with one hole .

Figure 5.2: C2 Hole filling in S2
8(∆) for data with one hole .

Example 5.2.1. We consider centralizble data sets and fill one hole with C1 and C2

continuity, also do the same thing for two holes. First we consider one hole data sets. In

Fig. 4.1 we show the original points, and in Fig. 4.2 we give one spherical triangulation of

these points. To fill the hole, we first project these points to unit sphere to get the spherical

triangulation. Then we can use the method in Chapter 4 to fill the hole with Cr continuity.
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The Fig. 5.1 shows C1 filling hole, and Fig. 5.2 is the C2 case.The spline surfaces look fair

and smooth.

Figure 5.3: C1 Hole filling S1
5(∆) for data with two holes .

Second, we deal with data sets with two holes, see Fig. 4.3 for original data and Fig. 4.4

for spherical triangulation. And we show the C1 hole filling in Fig. 5.3.

Example 5.2.2. We consider filling holes of surfaces with different differentiable con-

tinuity. For noncentralizable data sets of head in Fig. 4.11, we preprocess them to get the

cetralizable data sets as shown in Fig. 4.12.

Figure 5.4: The modified head data with missing top.

Then we first take off the top of the modified head data and get the triangulation with

missing top as shown in Fig. 5.4.
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Figure 5.5: C0 hole filling surface in S0
2(∆) (left) and a C1 quintic spline hole filling with

horns(right).

In the left of Fig. 5.5 , we show C0 hole filling using S0
2(∆) with partial interpolation of

missing data points, the figure looks continuous. In the right of Fig. 5.5,we give a C1 hole

filling spherical spline surface with a few data values over the missing top to create two horns

on the top of head. We repeat the experiments by using C2 spline space S2
8(∆). For simplicity,

we only show a C2 spherical spline surface which interpolates the values and derivative values

from the boundary of the missing top.

Figure 5.6: A C1 hole filling in S1
5(∆) without interpolation(left) and C2 hole filling in S2

8(∆)
with horns (right).
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5.3 Numerical Experiments for Point Cloud

Example 5.3.1. In this example, we consider the modified head data and get global C1

and C2 surface. The spherical triangulation of the modified head data is shown in the right of

Fig. 4.12. The following figures show the spherical spline surfaces to interpolate the modified

head data with C1 and C2 continuity.

Figure 5.7: C1 interpolatory spline surface in S1
5(∆)(left) and C2 interpolatory spline surface

in S2
8(∆)(right).

Example 5.3.2. We consider centralizable data as shown in Fig. 4.9 and Fig. 4.10. Its

spherical triangulation is shown in the following figure.
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Figure 5.8: Original scattered data(left) and its spherical triangulation(right).
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Figure 5.9: C1 interpolatory spline surface in S1
5(∆) from different view points.

Figure 5.10: C1 interpolatory spline surface in S1
5(∆) from different view points.
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Figure 5.11: C2 Hermite interpolatory spline surface with l = 1 in S2
8(∆) from different view

points.

Figure 5.12: C2 Hermite interpolatory spline surface with l = 1 in S2
8(∆) from different view

points.

Fig. 5.9 and Fig. 5.10 show the C1 spline surfaces to interpolate the given data sets. And

Fig. 5.11 and Fig. 5.12 are C2 Hermite interpolatory spline surface to interpolate the given

data sets and their first order derivatives. To ivestigate the global continuity, we draw the

graphs of the derivatives of spline surfaces to see whether they are continuous or not. If they
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looks continuous, then the spline surfaces are differentiable up to the given order derivatives.

We show the figures of derivatives with repect to θ and φ like the following.

Figure 5.13: First order derivatives w.r.t. θ(left) and w.r.t. φ(right) for C1 interpolatory

spline surface in S1
5(∆) .

Figure 5.14: First order derivatives w.r.t. θ(left) and w.r.t. φ(right) for C2 interpolatory

spline surface in S2
8(∆) .
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Figure 5.15: Second order derivative w.r.t. θθ for C2 interpolatory spline surface in S2
8(∆) .

Figure 5.16: Second order derivative w.r.t. θφ for C2 interpolatory spline surface in S2
8(∆) .
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Figure 5.17: Second order derivative w.r.t. φφ for C2 interpolatory spline surface in S2
8(∆) .

From Fig. 5.13, we know the interpolatory spline surface is C1. And Fig. 5.14, Fig. 5.15,

Fig. 5.16 and Fig. 5.17 demonstrate the interpolatory spline surface is C2.

Example 5.3.3. In this example, we create a mushroom with C1 continuity. Our spline

surfaces are in S1
6(∆). We implement it by using the minimal energy Hermite interpolation

method with l = 1. Our surfaces look smooth and fair.
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Figure 5.18: The mushroom data(left) and its spherical triangulation(right).
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Figure 5.19: The C1 interpolatory mushroom in S1
6(∆) from different point of view.

Example 5.3.4. In this example, we create a mushroom with C2 continuity. Our spline

surfaces are in S2
9(∆). We implement it by using the minimal energy Hermite interpolation

method with l = 2. Our surfaces look smooth and fair.
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Figure 5.20: The gourd data(left) and its spherical triangulation(right).
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Figure 5.21: The C2 gourd in S2
9(∆) from different point of view.

5.4 Conclusion and Future Work

For a spherical triangulation ∆ which is a part of a sphere with or without holes, or the

whole sphere and the domain bounded by ∆ in general can not be converted to a planar

domain, we get the following results:

(1) Given a set of scattered data with derivatives, we use minimal energy method to

construct Hermite interpolation on spherical spline spaces over a spherical triangulation

∆ of the scattered data locations. Then we show that the minimal energy method

produces a unique Hermite spherical interpolation spline of given scattered data with

derivatives. Finally we show that the Hermite interpolation spline converges to a given

sufficiently smooth function f in L2 and L∞ norm if the values are obtained from this

f . Hence the surface of the Hermite spherical interpolation spline resembles the given

set of derivatives.

(2) For any integer r ≥ 0, we first give a method of Cr hole filling using the minimal

energy quasi-Hermite interpolation over a spherical triangulation of polygonal holes on
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the sphere. Then we have implemented several numerical experiments for r = 0, 1,

and 2 to demonstrate our method.

(3) For any integer r ≥ 0, we deal with centralizable point cloud by using the minimal

energy Hermite interpolation method or quasi-Hermite interpolation method to get

the surface with global Cr continuity. Our surface can interpolate data locations and

derivatives up to rth order if they are given. Also we implemented experiments for

r = 0, 1, and 2 to show our method.

Some advantages are that all constrained conditions can be generalized to a solvable

linear system and our method is applicable to Cr case for any integer r ≥ 0. The shape

control is local although the solution is global. The figures look smooth and fair.

Our requirement of centralizable data may be too constrained for some application

although it is good for data given on sphere S2. For non-centralizable data, we either divide

it into several centralizable data sets with different centers or study the new methods to

construct surfaces defined on surfaces. Hence it is necessary to study how to connect two

sets of point clouds of different centers together, or the surfaces defined on surfaces(cf. [13]).

We leave them to our future studies.

Another work we would like to do is to find some practical applications in global warming

data process for our methods. Global warming refers to the increase in the average tem-

perature of the Earth’s near-surface air and oceans in recent decades and its projected

continuation. It has aroused extensive interests of scientists and politicians. Scientists have

studied global warming with computer models of the climate. These models are based on

physical principles of fluid dynamics, radiative transfer, and other process, with some sim-

plifications being necessary because of limitations in computer power. These models pre-

dict that the net effect of adding greenhouse gases is to produce a warmer climate ( cf.

http : //en.wikipedia.org/wiki/Global warming ). We hope to use our spherical spline

methods developed in this dissertation to approximate climate model more accurately, deal

with the collected temperature data more efficiently.
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Mathematical Methods for Curves and Sorfaces, Morten Dæhlen, Tom Lyche, Larry L.

Schumaker(eds), Vanderbilt University Press, Nashville & London, 1995, 11–20.

[3] Alfeld, P., M. Neamtu, and L. L. Schumaker, Berstein-Bézier polynomials on spheres
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[33] Höllig, Klaus, Finite element methods with B-splines, SIAM Society for industrial and

applied mathematics, Philadelphia, 2003.

[34] Jones, A. K., Nonrectangular surface patches with curvature continuity, Comuter-Aided

Design 20(6)(1988), 325–335.

[35] Lai, M. J., and L. L. Schumaker, On the approximation power of bivariate splines, Adv.

in Comp. Math. 9 (1998), 251–279.

[36] Lai, M. J. and P. Wenston, Bivariate Splines for Fluid Flows, Computers and Fluids

33(2004), pp. 1047–1073.

[37] Lai, M. J. and L. L. Schumaker, Spline Functions over Triangulations, Cambridge Uni-

versity Press, April 30, 2007.

[38] Le Gia, Q.T., Galerkin Approximation for Elliptic PDEs on Spheres, Journal of Approx-

imation Theory 130 (2004), 123–147.

[39] Lions, J., and E. Magenes, Non-Homogeneous Boundary Value Problems and Applica-

tions I, Springer-Verlag, 1972.

[40] Neamtu, M., and L. L. Schumaker, On the approximation order of splines on spherical

triangulations, Adv. in Comp. Math. 21 (2004), 3–20.



103

[41] Wahba, G., Spline interpolation and smoothing on the sphere, SIAM J. Sci. Statist.

Comput. 2 (1981), 5–16.

[42] Wahba, G., Vector Splines on the Sphere with applications to the estimation of vor-

ticity and divergence from discrete noisy data, Technical report no. 674, Department of

Statistics, University of Wisconsin-Madison, 1982.

[43] Willmore, T.J., Riemannian Geometry, Oxford University Prtess, New York, U.S.A.,

1997.

[44] Wu, J. B., L. Z. Ma, T. G. Jin and G. Z. Wang, The Construction of G2 Continuous

Surface on Irregular Topological Meshes, Progress in Natural Science, 8(2) (1998), 142–

149.

[45] Wu, J. B. and P. J. Zhang, Application of Circulant Matrix on Surface Modeling, Journal

of Guangdong University of Technology, 15(1) (1998), 83–89.

[46] Wu, J. B. and S. P. Wu, Nonhomogeneous Second Order Singular Hamiltonian Systems,

Journal of Zhejiang University, 30(3) (1996), 253–260.

[47] Wu, J. B. and P. J. Zhang. Necessary Conditions of Optimal Control under Mixed State-

Control Constraints, Journal of Guangzhou Normal University, 20(7) (1999), 12–17.

[48] Zhou, T., D. Han, M. J. Lai, Energy Minimization Method for Scattered Data Hermite

Interpolation, accepted for publication in Applied Numer. Math. 2007.


