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 Nucleosides have been studied as potential anti-viral and anti-cancer agents.  A 

number of nucleosides have been discovered with significant antiviral activity.  However, 

toxicities and side effects as well as the emergence of drug resistant viral strains limit the 

usefulness of the currently available nucleosides as anti-viral agents.  Furthermore, the 

disadvantage of normal nucleosides and their analogs is that the glycosidic bond is 

subjected to enzymatic hydrolysis by phosphorylase.  To overcome these problems, we 

need to synthesize new agents, among which are carbocyclic nucleoside analogs.  In this 

thesis, the new carbocyclic L-Nucleoside with 5’-methylene group was synthesized and 

the new scheme was designed to synthesize the similar analogs. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Nucleoside analogs have been widely studied as potential anti-viral and anti-

cancer agents.  In the early 1980’s, the acquired immunodeficiency syndrome (AIDS) 

appeared and the human immunodeficiency virus (HIV) was discovered.  Since then, 

intensive research on nucleosides has been carried out in order to find effective agents 

against HIV and other viruses, such as herpes simplex virus (HSV-1 and HSV-2), 

cytomegalovirus (CMV), Epstein-Barr virus (EBV), of which infections are prevalent  

in AIDS patients.1  From these efforts, a number of nucleosides have been discovered 

with significant antiviral activity (Figure 1.1).  Among them, 3’-azido-3’-

deoxythymidine (AZT, 1.1),2 2’, 3’-dideoxycytidine (ddC, 1.2),3 2’, 3’-didehydro-3’-

deoxythymidine (d4T, 1.3),4 (-)-(2’R,5’S)-1-(2-hydroxymethyl-oxathiolan-5-

yl)cytosine (3TC, 1.4),5 Abacavir (1.5),6 2’,3’-dideoxyinosine (ddI, 1.6)7 exhibited 

potent anti-HIV activity and were approved by the FDA.  On the other hand, 2’-

fluoro-5-methyl-uridine (FMAU, 1.7) and 2’-fluoro-5-iodo-uridine (FIAU, 1.8) 

exhibited anti HSV properties.8,9,10,11  However, toxicities and side effects as well as 

the emergence of drug resistant viral strains limit the usefulness of the currently 

available nucleosides as anti-HIV agents.  Furthermore, the disadvantage of normal 

nucleosides and their analogs is that the glycosidic bond is subjected to enzymatic 

hydrolysis by phosphorylase.  To overcome these problems, we need to synthesize 

new agents, among which are carbocyclic nucleoside analogs.  

Carbocyclic nucleosides (Carba-nucleosides), where the furanose oxygen of 

normal nucleosides is replaced by a methylene group which is resistant to nucleoside 

phosphorylase, have received attention due to the unique structure features in the last 

two decades.12,13,14  A number of carbocyclic nucleosides have been identified and  
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synthesized, and some of them exhibit interesting biological activity.15  Carbocyclic 

nucleosides, aristeromycin (1.9)16 and neplanocin (1.10)17, were isolated from 

Streptomyces citricolor and Actinoplanacea ampullariella, respectively.  Both 

compounds exhibit interesting biological activity.18  Synthetic carbocyclic nucleosides  
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such as carbovir (1.11), carba-oxetanocin A (1.12) and carba-oxetanocin G (1.13) 

exhibit anti-HIV activities.19  Oral bioavailabilities of these compounds are increased 

since greater metabolic stability toward the phosphorylase enzymes, and higher 

lipophilicity is achieved due to the replacement of oxygen by methylene group.15 

  In general, two steps are involved in the synthesis of carbocyclic nucleosides: 

a) the synthesis of the required carbocyclic moiety bearing suitable functional groups; 

and b) the construction or introduction of the base moiety with high regio- and stereo-

selectivity. The first step is the main problem while the second step is much more 
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easily resolved through the so-called linear and convergent approaches.  Most of the 

carbocyclic nucleosides can be classified according their carba ring size. 

 

Three-Membered Carbocyclic Nucleosides 

There are three types of three-membered carbocyclic nucleosides.20  The first 

type of three-membered carbocyclic nucleosides has its own characteristics as 

compared to other two types since its base is directly connected to the sugar moiety by 

a N-glycosidic bond.20  Many of this kind of carba-nucleoside were synthesized in 

recent years,21 however, both in vitro or in vivo experiments failed to show any 

significant biological activity. 
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The second type of three-membered carbocyclic nucleosides20 is the 

cyclopropylmethyl analogs, which were synthesized as conformationally rigid  
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rotamers of the carbocyclic analogs of acyclovir (1.14) of ganciclovir (1.15).  They 

have a methylene spacer between the base and the carbocyclic ring. However, only a 

few of them have pronounced biological activity.  In 1998, carbocyclic nucleoside 

analog 1.16 was found to exhibit strong antiviral activity.22  When comparing antiviral 

activity against HSV-1, 1’S,2’R-enantiomer (1.17) has twenty times higher activity 

than 1.16.  In addition, it also shows 10 times greater anti-VZV potency than 

acyclovir.23 

The third type of three-membered carba-nucleoside (1.18 and 1.19) with 

broad-spectrum antiviral activity was reported by Zemlicka et al in 1998.24  Both of 

them are very effective against human cytomegalovirus (HCMV), murine 

cytomegalovirus (MCMV) and EBV. 

HO
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Figure 1. 4  

Four-membered carbocyclic nucleosides 

Oxetanocin A (1.20)25 is the first and only known example of a naturally 

occurring four-membered ring nucleoside.  Further studies showed both oxetanocin A 

and its synthetic analog oxetanocin G (1.21) exhibited good antiviral activity against 

HIV.  However, the oxetanosyl-N-glycosyl bond of these two compounds was 

unstable.  Later, other investigators successfully synthesized carba-oxetanocin A 

(1.12) and G (1.13) which showed excellent antiviral activity.26  Additional synthetic  

work has been conducted to prepare related carbocyclic nucleosides analogs of 

oxetanocin, and some of the analogs show potent antiviral activity.25,27  Racemic 
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carba-oxetanosyl 5-(halovinyl)uracil (1.22) had excellent activity against VZV. 2’-

Nor-carba-oxetanocin G (1.23) showed antiviral activity comparable to that of 

acyclovir against HSV-1, HSV-2 and VZV, and was about ten fold more potent than 

acyclovir against human cytomegalovirus (HCMV).  
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Five-membered carba-nucleosides 

Carbovir and related carba-nucleosides 

(-)-Carbovir (1.11) was reported to exhibit similar potency to AZT in 

selectively inhibiting HIV reverse transcriptase (RT).22  However, clinical trial of (-)-

carbovir was stopped because of its pharmacokinetic and toxicological problems.  As a 

prodrug of carbovir, abacavir (1.5)28 was synthesized with higher oral bioavailability.  

Moreover, it can penetrate the central nervous system (CNS) as high as AZT, which 

has been approved by FDA as Ziagen®.   

Following Abacavir’s success, many chemists began to synthesize carbovir 

derivatives.  Several strategies were developed to synthesize carbovir and its analogs 

as below:  

(i) synthesis from natural (-)-aristermomycin A (1.9);29   

(ii) linear approaches with stepwise construction of the guanine moiety 

from precursor, (1R, 4S)-1-amino-4-(hydroxymethyl)-2-cyclopentene 

(1.24);30  

(iii) enantioselective aynthesis of (-)-carbovir involves Trost’s palladium-

catalyzed nucleophilic coupling of purine bases with allylic carbonates 

or acetates, such as compound 1.25,31 1.26,32,33 1.27,34 acetoxy 

tosylamide (1.28),35 2-substituted 2-azabicyclo[2.2.1]hept-5-ene-3-one 

(1.29),36 and hemiester (1.30).37   

In this review, Scheffold’s and Crimmins’ synthetic routes to (-)-carbovir is 

briefly described below.  (S)-(cyclopent-2-enyl) methanol (1.1.3) was chosen as the 

starting material.  Homoallylic alcohol was readily prepared from racemic 3-

chlorocyclopentene (1.1.1) by two-step procedure in 54% overall yield.  Sequential 

treatment of the homoallylic alcohol at room temperature with BuLi, CO2 and I2 in 

THF led to the crystalline cyclic iodocaronate.  Elimination of HI from 1.1.4 was 

effected with DBU under a vigorous stream of CO2 to give the key precursor (1.1.5).  

Reaction of 1.1.5 with 2-amino-6-chloropurine in THF/DMSO with 10% Pd catalyst  
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yielded (-)-carbovir precursor (1.1.6) in 59% yield.  Hydrolysis of 1.1.6 with 0.33 N 

NaOH gave (-)-carbovir in 71% yield as shown in Scheme 1.1.34 

Crimmins and King reported an efficient alternative approach recently.  

Condensation of lithiated (S)-4-benzyl-2-oxazolidinone (1.2.1) with pentenoic pivalic  
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mixed anhydride provided 1.2.2.  Use of the Evans’ dialkyl boron triflate protocol for 

diastereoselevtive syn aldol condensation with acrolein produced product 1.2.3 

(de>99%).  The ring closure was accomplished by exposure of a CH2Cl2 solution of 

diene 1.2.3 to 10% of the Grubbs catalyst to form the cyclopentenol 1.2.4, which was 

reduced to diol 1.2.5 with lithium borohydride.  Diol 1.2.5 was then converted to 

diacetate 1.2.6, followed by reaction of 1.2.6 with 2-amino-6-chloropurine in the  
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presence of Pd(0) catalyst and sodium hydride to give an 86:14 mixture of the 

carbocyclic nucleoside 1.2.7 (65% yield after chromatography) and the corresponding 

N7 coupling product (not shown).  Treatment of the chloropurine 1.2.7 with 

cyclopropylamine in ethanol followed by hydrolysis of the acetate produced 1.2.8 in 

81% overall yield.  Alternatively, direct hydrolysis of with sodium hydroxide 

produced (-)-carbovir. 

(+)-L-Carbovir and its analogs also were prepared with similar approaches 

described above.  Chu’s group reported the synthesis of (+)-L-carbovir and its analog 

1.3.10 in 1998 (Scheme 1.3).38  They started from the optical active enone (1.3.1), 

followed by 1, 4-addition, DIBAL reduction, benzoyl protection and deprotection of 

acetal group to obtain compound 1.3.4.  Treatment of 1.3.4 with trimethyl 

orthoformate afforded the cyclic orthoester (1.3.5), which was subsequently subjected 

to a thermal elimination reaction with acetic anhydride to form the cyclopentane 

(1.3.6).  Finally, the heterocyclic base was introduced by a Mitsunobu reaction.  

(-)-5’-Norcarbovir (1.31), (+)-5’-norcarbovir (1.32) and their corresponding 

triphosphate analogs have also been reported.39  Both of them and some of their 

analogs have been reported to be good HIV RT inhibitors.                                                                                    

               
Aristeromycin, neplanocin A and related carbocyclic 

Aristeromycin and neplanocin A are naturally occurring carbocyclic 

nucleosides.  Aristeromycin inhibits cell division and elongation in rice plants and 

prohibits AMP synthesis in mammalian cells.40  Aristeromycin was synthesized from 

the saturated tetrol (1.33) or aminotriol (1.34).  Aminotriol was prepared as shown in 

Scheme 1.4.41 

Neplanocin A (1.10) shows a wide range of biological activities.  It is an 

antitumor antibiotic, and active against vaccinia virus, parainfluenza, measles and 

VSV in vitro.14  It is also good inhibitor of S-adenosylhomocysteine hydrolase.40  The 

synthesis of neplanocin usually uses unsaturated tetrol (1.35) and the unsaturated  
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aminotriol (1.36) as the key intermediates.  The unsaturated tetrol was prepared as 

shown in Scheme 1.5.42 
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(-)-5’-Noraristeromycin (1.37) is found to have broad-spectrum antiviral 

activity.  It is active against vaccinia virus (VV) and vesicular stomatitis virus (VSV), 

measles, respiratory syncytial virus (RSV) and human cytomegalo virus (HCMV).  

The toxicity is also decreased in comparison with other carbocyclic nucleosides 

because it can avoid the formation of toxic 5’-phosphate since it doesn’t have 5’-

hydroxy group.43  (+)-5’-Noraristeromycin (1.39) shows good activity against hepatitis  
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B virus (HBV).44  However, C-4’-O-methylated analogs (1.38, 1.40) were found to be 

much less effective, which indicates that a free hydroxyl hydrogen at C-4’ was 

essential for the biological properties of 5’-noraristeromycin.45 

 

 

BMS-200457 and other cyclopentyl carbocyclic 

In 1997, Bisacchi et. al. reported a practical 10-step asymmetric synthesis of 

BMS-200475 (1.6.7), which is a remarkably potent inhibitor of HBV in vitro with low 

cytotoxicity.46  He used chiral cyclopentyl epoxide (1.6.3) as a key intermediate, 

which can be prepared from commercially available sodium cyclopentadienide (1.6.1) 

with 63% overall yield in three steps.  The epoxide ring (1.6.3) was opened by 6-

benzyloxy-2-aminopurine with presence of LiH at 125°C. Then the purine amino 

group was protected by monomethoxytrityl (MMT) group.  Dess-Martin oxidation of 

compound 1.6.5 followed by Nysted methylenation afforded compound 1.6.6 followed 

by deprotection of compound 1.6.6 to give BMS-200457. 

Earlier in 1987, Ernest J. Prisbe reported synthesis of compound 1.7.5 as a 

racemic mixture.  The compound showed good activity against HSV-1, HSV-2 and 

vaccinia virus. 47 

BMS-200457 and compound 1.7.5 have similar structure. Both of them are D-

carbocyclic nucleoside with 5’-methylene group and show good antiviral activities.  
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Therefore, it is of interest to synthesize the corresponding L-carbocyclic nucleosides 

with 5’-methylene group as potent antiviral agents. 
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CHAPTER 2 

RESULTS AND DISCUSSION 

Our strategy for 5’-methylene carbocyclic L-nucleosides is similar to that for 

the regular carbocyclic nucleosides.  Some of the 5’-methylene carbocyclic 

nucleosides have been synthesized by a similar method as BMS-200457 (Scheme 

1.6).46  This approach is similar to Scheme 1.7 which involved the opening of epoxide 

ring, which gave a racemic mixture.47  However, Scheme 1.6 is only proper for the 2’-

deoxy derivatives and hard to use directly for the synthesis of ribose derivatives.  

Scheme 1.7 used a racemic mixture as key intermediate and is not proper for the 

development of a regio- and stereo-selective synthesis.  Therefore, we devised our 

own synthetic approach (Scheme 2.1), in which cyclopentenone (G) can serve as a 

chiral intermediate to obtain the alcohol D.   In addition, it also can be converted to the 

triflate (B) or the cyclopentylamine (C).  The compound B and C can serve as the 

common intermediates for the synthesis of pyrimidine and purine carbocyclic 

nucleosides by coupling B with the corresponding heterocycles or construction of 

heterocycles by linear approaches from the intermediate C.  

For the synthesis of L-cyclopentyl nucleosides, (+)-cyclopentenone (2.2.1) was 

selected as a chiral starting material, which was prepared from D-ribose in 3 steps 

using the procedure of Ali et al.48  Compound 2.2.1 was converted to the 

cyclopentanone (2.2.2) by a modified procedure reported by Wolfe et al.49  Treatment 

of 2.2.1 with a solution of lithium bis(tert-butoxymethyl)cuprate at –30 °C gave the 

optically pure cyclopentanone (2.2.2) as a single isomer in 87% yield.   

Several different reactions were conducted in order to introduce the 5’-

methylene group as illustrated in Scheme 2.3.  First, we tried a modified Mannich 

reaction, in which the cyclopentanone was treated with trioxane and N- 
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OO OO

O

a: (t-BuOCH2)2CuLi, t-BuOMe/THF, -30 oC, 30 min.

Scheme 2.2

O O
D-Ribose

3steps a

80%

2.2.1 2.2.2

Ref 34

 

Methylanilinium trifluoroacetate (TAMA) in anhydrous THF under reflux for 3 days, 

during which most of the starting material was decomposed and no desired product 

was observed.50  The reaction did not go because of the mild acidity of TAMA, which 

caused decomposition of the cyclopentanone.  Then, we tried to treat the 

cyclopentanone with LDA in anhydrous THF at –78 °C for 2 h followed by the 

addition of formaldehyde.51  The reaction mixture was continuously stirred at –78 °C 

for 3 h, then temperature was increased to –10 °C, however, no reaction was observed.   

Further increasing the temperature caused the starting material to decompose.  The 

reaction did not go because of the poor reactivity of the formaldehyde.  Finally, we 

tried to use Eschenmoser’s salt.52  Cyclopentanone was treated with LDA in 

anhydrous THF at –78 °C for 2 h followed by the addition of the Eschenmoser’s salt.  

The reaction mixture was continuously stirred at –78 °C for 4 h and room temperature 

for 10 h, iodomethane added and kept stirred for 5 h, followed by washing with water 

solution of sodium bicarbonate, and purification by silica gel column to give the 5’-

methylene cyclopentanone (2.3.3) in 90% total yield from 2.2.2. 
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Reduction of 5-methylene cyclopentanone with sodium borohydride gave 

regioselectively the α-alcohol (2.4.1) in 92% yield.  Another key intermediate 5’-

methylene cyclopentylamine (2.4.3) was prepared from alcohol (2.4.1): treatment of 

2.4.1 with methanesulfonyl chloride afforded the mesyl derivative in quantitative 

yield.  The treatment of mesyl derivative with lithium azide in hot DMF for 4 h gave 

the azide (2.4.2) in 88% yield.  Reduction of 2.4.2 by lithium aluminum hydride in hot 

THF afforded the amino derivative 2.4.3. 

Usually, the bases can be introduced to the sugar moiety by direct introduction 

of the heterocycle or construction via precursors.  There are four different strategies to  
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introduce a base to a functionalized cyclopentane. 

1. by nucleophilic displacement of an activated α hydroxyl group (MsO-, 

TsO-, see Figure 2.1)53,54  

OR

HO HO

X Y X Y

B

R=Ms, Ts; X,Y=H, OH, F...

Figure 2.1  

 

2    by ring opening of an epoxide (Figure 2.2)55,56,57,58 
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HO HO

X Y X Y

B

OHO

X,Y=H, OH, F,...

Figure 2.2  

 

3 by a Mitsunobu reaction (Figure 2.3)59 

OH

HO HO

X Y X Y

B

X,Y=H, OH, F,...

Figure 2.3  

 

4    by a Michael 1,2-addition (Figure 2.4)60,61 

HO HO

X Y X Y

B

Z

Z

X, Y=H, OH, F,...; Z=NO2

Figure 2.4  

 

Among all these methods, 1 and 3 were apparently best for our key precursor.  

First, we prepared both the methylated and tosylated precursor to try to introduce the 

base by method 1, however, we failed to get any product with this method.  Then, we 
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tried the Mitsunobu reaction without success.  A possible explanation may be the 

stereo-hindrance of the tert-butoxyl group at 5 position.   

After failure of the direct introduction of the base moiety, we started to 

construct the guanine moiety (Scheme 2.5).   

We followed the procedure described by Shealy et al.62,63  The coupling 

reaction of cyclopentylamine (2.4.3) with 2-amino-4,6-dichloropyrimidine in the 

presence of triethylamine afford 2.5.1 in 87% yield.  The isopropylidene group was 

selectively removed by a mixture of concentrated HCl and MeOH(1:75, v/v) to obtain 

a diol, which was directly used for diazotization with (p-chlorophenyl) diazonium 

chloride.  The diazo derivative was reacted with zinc dust to give di-amino derivative 

(2.5.2).  The treatment of 2.5.2 with triethyl orthoformate in the presence of 

concentrated HCl gave the 2-amino-6-chloropurine analog, which was then 

hydrolyzed by 2 N HCl to afford the desired guanine derivative (2.5.3).   

 In summary, we developed a new strategy to synthesis compound 2.5.3.  The 

complete scheme is shown in Scheme 2.6.  
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CHAPTER 3 

EXPERIMENT 

Melting points were determined on a Mel-temp II apparatus and are 

uncorrected. Nuclear magnetic resonance spectra were recorded on a Bruker 400 

AMX spectrometer at 400 MHz for 1H NMR with tetramethylsilane as the internal 

standard. Chemical shifts(δ) are reported in parts per million (ppm), and signals are 

reported as s (singlet), d(doublet), t(triplet), q(quartet), m(multiplet), or br s(broad 

singlet). UV spectra were recorded on a Beckman DU-650 spectrophotometer. Optical 

rotations were measured on a Jasco DIP-370 digital polarimeter.  Mass spectra were 

recorded on a Micromass Autospec high-resolution mass spectrometer. TLC was 

performed on Uniplates (silica gel) purchased from Analtech Co. Column 

chromatography was performed using silica gel G (TLC grade, >440 mesh) for 

vacuum flash column chromatography.  Elemental analyses were performed by 

Atlantic Microlab Inc., Norcross, GA. 

(2S,3S,4S)-4-(tert-Butoxymethyl)-2,3-(isopropylidenedioxy)-1-

cyclopentanone (2.2.2). To a suspension of potassium tert-butoxide (16.43 g, 146.4 

mmol) and anhydrous tert-butylmethyl ether (525 mL) cooled to –78 °C, sec-

butyllithium (1.3 M in cyclohexane, 112.7 mL, 146.4 mmol) was added dropwise over 

10 min under nitrogen.  After stirring 2.5 h at –78 °C, a solution of LiBr (2 M, 25.44 g 

of LiBr in 145 mL of THF) was added dropwise to the resulting mixture over 10 min 

at –78 °C and then allowed to warm to –15 °C (ice-salt bath) and stirred for 30 min at 

–15 °C.  Upon recooling to –78 °C a solution of CuBr.SMe2 (15.05 g, 71.75 mmol) in 

diisopropylsulfide (75 mL) was added dropwise over 10 min and the viscous dark 

solution stirred for 1 h.  A solution of the enone 2.2.1 (7.4 g, 48 mmol) in THF (67 

mL) was added dropwise over 5 min.  The reaction mixture was allowed to warm to  

 29 



 30  
 

–30 °C over 15 min, stirred at this temperature for an additional 30 min, then 

quenched with 168 mL of AcOH/MeOH (1:1), which was poured into 1680 mL of 

NH4Cl/ NH4OH (pH = 9).  After removing the aqueous layer, the organic layer was 

washed with 1:1 mixture of saturated NH4Cl and 3% NH4OH solutions (3 X 400 mL) 

and brine (400 mL).  The organic phase was dried (MgSO4), filtered, concentrated, 

and purified by silica gel column chromatography with 10-20% EtOAc in hexanes to 

give 2.2.2 (10.13g, 87.1%) as a solid: mp. 64-65 °C; [α]26
D 185.36° (c 1.15, CHCl3); 

1H NMR (CDCl3) δ 4.62 (d, J=5.3Hz, 1H, 2-H), 4.23 (d, J=5.3Hz, 1H, 3-H), 3.50(dd, 

J=2.3,8.5Hz, 1H, 6-H), 3.35 (dd, J=2.6,8.5Hz, 1H, 6-H) 2.71 (dd, J=8.9,17.9Hz, 1H, 

5-H), 2.54 (d, J=8.9Hz, 1H, 4-H), 2.05 (d, J=17.9Hz, 1H, 5-H), 1.43 (s, 3H, CH3), 

1.11 (s, 9H, tert-Butyl). Anal. Calcd for C13H22O4: C, 64.44; H, 9.15. Found: C, 64.18; 

H, 9.13. HR-FAB MS Obsd: m/z 243.1596. Calcd for C13H22O4: m/z 243.1596 

(M+H)+. 

(2S,3S,4S)-4-(tert-Butoxymethyl)-2,3-(isopropylidenedioxy)-5-

(methylenyl)-cyclopentanone (2.3.3)   To a solution of compound 2.2.2 (1 g, 4.1 

mmol) in anhydrous THF (50 mL) at –78 °C, LDA (1.5 M in cyclohexane, 2.7 mL) 

was added. The reaction mixture was stirred for 3 h at –78 °C, Eschenmosar’s salt (2.8 

g, 15.3 mmol) was added to with continual stirring at the same temperature for 3 more 

hours, warmed up to room temperature and stirred for another 8 h, Iodomethane (15 

mL) added, the mixture was stirred at room temperature for another 4 h. The mixture 

was filtered and concentrated to dryness. The residue was purified by flash silica gel 

column with 10% ethyl acetate in hexanes to give 2.3.3 0.94 g (90% yield) as a solid: 

mp. 30-31 °C, [α]26
D 221.03° (c 0.11, CH2Cl2); 1H NMR (CDCl3) δ 6.23 (s, 1H, 7-H), 

5.52 (s, 1H, 7-H) 4.59 (d, J=5.2Hz, 1H, 2-H), 4.48 (d, J=5.2Hz, 1H, 3-H), 3.64 (d, J=8 

Hz, 1H, 6-H), 3.35 (d, J=8 Hz, 1H, 6-H), 3.08 (s,1H, 4-H), 1.37 (s, 3H, CH3), 1.1 (s, 

3H, CH3), 1.07 (s, 9H, tert-Butyl). Anal. Calcd for C14H22O4⋅0.1Hexane: C, 66.12; H,  
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8.72. Found: C, 66.68; H, 8.79. HR-FAB MS Obsd: m/z 255.1557. Calcd for 

C14H23O4: m/z 255.1518 (M+H) +. 

(1R,2R,3S,4S)-4-(tert-Butoxylmethyl)-2,3-(isopropylidenedioxy)-5-

(methylenyl)-cyclopentane-1-ol (2.4.1)  To a solution of compound 2.3.3 (0.3 g, 

1.2mmol) in methanol (50 mL), cerium chloride heptahydride (0.6 g) and sodium 

boron hydride (88.8   mg, 2.4 mmol) was added at 0 °C, stirred for 20 min and filtered 

with Celite pad. The filtrate was washed concentrated to dryness and purified by flash 

silica gel column with 10% EtOAc in hexane to give 0.27 g of compound 2.4.1 (89% 

yield) as a solid : mp. 34-35 °C.  [α]26
D 27.03° (c 0.1, CH2Cl2); 1H NMR (CDCl3) δ 

5.25 (s, 1H, 7-H), 5.11 (s, 1H, 7-H), 4.51 (m, 1H, 1-H), 4.11 (m, 2H, 2-H, 3-H),  3.45 

(dd, J=3.6, 8 Hz, 1H, 6-H), 3.26 (dd, J=3.6, 8 Hz, 1H, 6-H), 2.62 (s, 1H, 4-H), 2.26 (d, 

J=10 Hz, 1H, OH, D2O exchangeable) 1.39 (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.11 (s, 

9H, tert-Butyl). Anal. Calcd for C14H24O4: C, 65.60; H, 9.44. Found: C, 65.61; H, 

9.65. HR-FAB MS Obsd: m/z 257 . Calcd for C14H25O4: m/z 257 (M+H)+. 

(1S,2R,3S,4S)-1-Azido-4-(tert-butoxylmethyl)-2,3-(isopropylidenedioxy)-5-

(methylenyl)-cyclopentane (2.4.2)   To a solution of compound 2.4.1 (1.5 g, 5.86 

mmol) in anhydrous methylene chloride (100 mL), methanesulfonyl chloride (1.5 g, 

13.1 mmol) and triethyl amine (1.09 g, 10.8 mmol) was added at 0 °C, stirred  for 30 

min and quenched with water. The aqueous layer was extracted with CH2Cl2 (3 X 50 

mL), combined, washed with brine (50  mL) and dried by magnesium sulfate, filtered 

and concentrated under reduced pressure. The residue was dissolved in 50 mL of 

anhydrous dimethyl formide (DMF) in the presence of sodium azide and was heated at 

140 °C for 4 h with stirring. After the reaction was completed, the reaction mixture 

was concentrated to dryness and purified by flash silica gel column with 5% EtOAc in 

hexane to give compound 2.4.2 1.45 g (88% yield) as a syrup.  [α]26
D 31.58° (c 0.1, 

CH2Cl2); 1H NMR (CDCl3) δ 5.28 (s, 1H, 7-H), 5.21 (s, 1H, 7-H), 4.69 (d, J=6.0 Hz, 

1H, 2-H), 4.23 (d, J=6.0 Hz,1H, 3-H), 3.66 (s, 1H, 1-H), 3.46 (m, 1H, 6-H), 3.3 
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(m,1H, 6-H), 2.71 (s, 1H, 4-H), 1.40 (s, 3H, CH3), 1.34 (s, 3H, CH3), 1.16 (s, 9H, tert- 

Butyl).  FAB MS Obsd: m/z 282 . Calcd for C14H24N3O4: m/z 282 (M+H)+. 

(1S,2R,3S,4S)-4-(tert-Butoxymethyl)-2,3-(isopropylidenedioxy)-5-

(methylenyl)-1-cyclopentanamine (2.4.3)  To a solution of compound 2.4.2 (1g, 3.5 

mmol) in anhydrous THF (60 mL), lithium aluminum hydride (168 mg, 4.2 mmol) 

was added at room temperature. The mixture was stirred under reflux for 2 h and 

quenched with methanol (10 mL) and filtered. The filtrate was concentrated to dryness 

and filtered by celite pad and washed the pad with 2% methanol in methylene chloride 

to give crude compound 2.4.3 696 mg (78% yield) which was used for next step 

without further purification.   1H NMR (CDCl3) δ 5.77 (d, J=3.2Hz, 1H, 7-H), 5.66 (s, 

1H, 7-H), 4.81 (s, 2H, 2-H, 1-H), 4.48 (d, J=5.2Hz, 1H, 3-H), 3.51 (m, 1H, 6-H), 3.38 

(m, 1H, 6-H), 2.86 (s, 1H, 4-H),  1.41 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.18 (s, 9H, 

tert-Butyl). FAB MS Obsd: m/z 256. Calcd for C14H26NO3: m/z 256 (M+H)+. 

(1S’,2R’,3S’,4S’)-2-Amino-4-[[4-(tert—butoxymethyl)-2,3-

(isopropylidenedioxy)-5-(methylenyl)cyclopentan-1-yl]amino]-6-

chloropyrimidine (2.5.1)  To a solution of compound 2.4.3 (870 mg, 3.41 mmol) in 

ethanol (70 mL), 2-amino-4,6-dichloropyrimidine (890 mg, 5.43 mmol) and Et3N (0.5 

mL) was added at room temperature and refluxed for 48 h under nitrogen.  The solvent 

was removed under reduced pressure and the residue was purified by silica gel column 

chromatography (0.2% methanol in chloroform) to give compound 2.5.1 1.13 g (87%, 

yield) as a solid: mp 140-141 °C.  [α]26
D –21.04 (c 0.25, CH2Cl2);  UV (MeOH) λmax 

286 nm, 237.5 nm; 1H NMR (CDCl3) δ 6.64 (s, 1H, NH, D2O exchangeable) 5.71 (s, 

1H, ArH), 5.6 (s, 1H, methylene-H), 5.27 (s, 1H, methylene-H), 4.98 (d, J= 6.4 Hz, 

1H, 2’-H), 4.8 (s, 1H, 1’-H), 4.41 (d, J= 6.4 Hz, 1H, 3’-H), 3.43(m, 1H, 6’-H), 3.31 

(m, 1H, 6’-H), 2.79 (s, 1H, 4’-H),  1.33 (s, 3H, CH3), 1.25 (s, 3H, CH3), 1.11 (s, 9H, 

tert-Butyl). FAB MS Obsd: m/z 383. Calcd for C18H28ClN4O4: m/z 383 (M+H)+. 
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(1’S,2’R,3’S,4’S)-4-[[4-(tert-Butoxymethyl)-2,3-dihydroxy-5-

(methylenyl)cyclopentan-1-yl]amino]-6-chloro-2,5-diaminopyrimidine (2.5.2)   A  

solution of compound 2.5.2 (191 mg, 5.02 mmol) in methanol (20 mL) containing 

concentrated HCl (0.27 mL) was stirred at room temperature for 2 h. The reaction 

mixture was neutralized with NaHCO3 solid at 0 °C and the mixture was concentrated 

to dryness. The residue was washed with MeOH and filtered. The filtrate was 

concentrated to dryness and the residue was used in the next step without further 

purification.  To a solution of p-chloroaniline (100 mg, 0.78 mmol) in concentrated 

HCl (0.45 mL) and water (0.9 mL), a solution of NaNO2 (60 mg, 0.86 mmol) in water 

(0.8 mL) was added dropwise at 0 °C.  The resulting cold solution was added to the 

solution of above residue in water (3.4 mL), acetic acid (3.4 mL) and sodium acetate 

trihydrate (1.45 g) at 0-5 °C. The reaction mixture was stirred at room temperature for 

18 h and the yellow solid precipitated. The solid was collected by filtration and used 

for the next step without further purification. A mixture of yellow solid, THF (3.4 

mL), ethanol (3.4 mL), water (3 mL), and acetic acid (0.3 mL) was heated and stirred 

at 70 °C. Zinc dust (0.26 g, 35 mmol) was added and the mixture was heated 65-70 °C 

for 20 min. The reaction mixture was filtered and the filtrate concentrated to dryness. 

The residue was purified by flash silica gel column chromatography with 1-3% 

methanol in CH2Cl2 to give crude compound 2.5.2 82 mg (46%, yield) as a foam.; UV 

λmax 203.5, 303.5nm (PH=7); 1H NMR (CDCl3 + D2O) δ 5.3 (s, 1H, 7-H), 5.22 (s, 1H, 

7-H), 4.7 (t, J= 5.6 Hz, 1H, 2’-H), 4.51 (d, J= 5.6Hz, 1H, 1’-H), 4.23 (d, J=5.6Hz, 1H, 

3’-H), 3.50(dd, J=2.3,8.5Hz, 1H, 6-H), 3.49 (m, 1H, 6’-H), 3.32 (m, 1H, 6’-H) 2.73 (s, 

1H, 4’-H), 1.15 (s, 9H, tert-Butyl). FAB MS Obsd: m/z 356. Calcd for C15H25ClN5O4: 

m/z 356 (M+H)+. 

(1’S,2’R,3’S,4’S)-9-[-2,3-Dihydroxy-4-(hydroxymethyl)-5-

(methylenyl)cyclopentan-1-yl]guanine (2.5.3)  To a mixture of compound 2.5.2 (65 

mg, 0.18 mmol) triethyl orthoformate (1.5 mL), and DMF (1 mL) was added 
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concentrated HCl (38 µL).  The mixture was stirred at 0-5 °C for 8 h, and then stirred 

at room temperature for 8 h. After the solvent was removed under reduced pressure,  

the residue was stirred in 50% acetic acid (2 mL) for 16 h at room temperature. The 

mixture was concentrated and the residue was stirred in ammonia-saturated methanol 

(5 mL) at room temperature for 4 h. The mixture was concentrated again to dryness to 

give the crude protected nucleoside, which was dissolved in 2 N HCl (5 mL) and the 

mixture was heated under reflux for 5 h. The mixture was then concentrated in 

vacuum at 50 °C. The residue was purified by silica gel column with 15% MeOH in 

CH2Cl2 to give 58 mg crude product which was further purified by HPLC (10-15% of 

acetonitrile in water) to give compound 2.5.3 23 mg (44%, yield).  [α]26
D –29.28° (c 

0.1, DMF); UV λmax 253.5 (ε=11954, PH=7), 255.5nm (PH=2), 269nm (PH=11); 1H 

NMR (DMSO-d6+D2O) δ 7.69 (s, 1H, 8-H) 5.17 (s, 1H, 7’-H), 5.04 (s, 1H, 7’-H), 

4.66 (m, 2H, 2’-H, 3’-H), 4.25 (s, 1H, 1’-H), 3.64(m, , 1H, 6’-H), 3.52 (m, 1H, 6’-H), 

2.38 (s, 1H, 4’-H) Anal. Calcd for C12H15N5O4⋅0.22Acetonitrile: C, 49.14; H, 5.16; N, 

23.88.  Found: C, 48.92; H, 5.10; N. 24.69. FAB MS Obsd: m/z 294. Calcd for 

C12H16N5O4: m/z 294 (M+H)+. 
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