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Abstract

Let G be a simple simply connected algebraic group scheme defined over an algebraically

closed field of characteristic p > 0. Let T be a maximal split torus in G, B ⊃ T be a Borel

subgroup of G and U its unipotent radical. Let F : G→ G be the Frobenius morphism. For

r ≥ 1 define the Frobenius kernel, Gr, to be the kernel of F iterated with itself r times. Define

Ur (respectively Br) to be the kernel of the Frobenius map restricted to U (respectively B).

Let X(T ) be the integral weight lattice and X(T )+ be the dominant integral weights.

It is well known that the representations for G1 are equivalent to the restricted repre-

sentations for g = Lie(G). Over the past 25 years, there has been a lot of progress in the

computations of cohomology groups for Frobenius kernels, H•(Gr, H
0(λ)). Historically, the

computations were done for fields of characteristic p > h, where h is the Coxeter number.

The computations of particular importance are H2(U1, k), H2(Br, λ) for λ ∈ X(T ),

H2(Gr, H
0(λ)) for λ ∈ X(T )+, and H2(B, λ) for λ ∈ X(T ). The above cohomology groups for

the case when the field has characteristic 2 one computed in this thesis. These computations

complete the picture started by Bendel, Nakano, and Pillen for p ≥ 3 [BNP2].
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Chapter 1

Introduction

1.1 Preliminaries

Throughout the thesis, we will follow the basic conventions provided in [Jan1]. Let G be a

connected semisimple algebraic group over an algebraically closed field, k, of prime charac-

teristic, p > 0; assume that G is simply connected. Let g = Lie(G) be the Lie algebra of G.

For r ≥ 1, let Gr be the rth Frobenius kernel of G. Let T be a maximal split torus in G and

Φ be the root system associated to (G, T ). The positive (respectively negative) roots are Φ+

(respectively Φ−), and ∆ is the set of simple roots. Let B ⊃ T be the Borel subgroup of G

corresponding to the negative roots and let U be the unipotent radical of B. For a given root

system of rank n denote the simple roots α1, α2, . . . , αn, adhering to the ordering used in

[Jan2] (following Bourbaki). In particular, for type Bn, αn denotes the unique short simple

root; for type Cn, αn denotes the unique long simple root; for type F4 α1 and α2 are the short

simple roots; for type G2, α1 is the unique short simple root. If α ∈ Φ, and α =
∑n

i=1miαi

then the height of α is defined by ht(α) : =
∑n

i=1mi.

Let E be the Euclidean space associated with Φ, and the inner product on E will be

denoted by 〈, 〉. For any root α denote the dual root by α∨ =
2α

〈α, α〉
. Let ω1, ω2, . . . , ωn be

the fundamental weights and X(T ) be the integral weight lattice spanned by these funda-

mental weights. The set of dominant integral weights is denoted by X(T )+ and the set of

pr-restricted weights is Xr(T ). The simple modules for G are indexed by the set X(T )+

and denoted by L(λ), λ ∈ X(T )+ with L(λ) = socGH
0(λ), where socGH

0(λ) is the socle of

the G-module H0(λ). where H0(λ) = indG
Bλ. Here λ denotes the one-dimensional B-module

obtained by extending the character λ ∈ X(T )+ to U trivially.

1
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Given a G-module, M , then composing a representation of M with F results in a new

representation where Gr acts trivially, where M (r) denotes the new module. For any λ in

X(T ), the λ weight space of M is the prλ weight space of M (r). One the other hand if V is

a G-module on which Gr acts trivially, then there is a unique G-module M , with V = M (r).

We denote M = V (−r).

1.2 Example

Let G = GLn(F ), the group of n×n invertible matrices. The Lie algebra, g = Lie(G) = sln,

the n×n matrices with determinant 1, corresponding to Type An−1. The maximal split torus

inG is T = {diagonal matrices}. The Borel subgroup ofG isB = {lower triangular matrices}.

The unipotent radical of B is U = {lower triangular matrices, with 1 on the diagonal}.

Let V = kn and e1, . . . , en denote the canonical basis of kn. Note that ei is an eigenvector

for T . Let εi be the corresponding weight associated to ei. Then {ε1, ε2, . . . , εn} form a basis

for X(T ).

W , the Weyl group, permutes {ε1, . . . , εn}; thus, W ∼= Sn, the symmetric group on

n letters. Φ = {εi − εj|1 ≤ i, j ≤ n, i 6= j} and Φ+ = {εi − εj|1 ≤ i < j ≤ n}.

∆ = {αi = εi − εi+1|1 ≤ i ≤ n}.

1.3 History

A central question in representation theory of algebraic groups is to understand the structure

and the vanishing of the line bundle cohomology, Hn(λ) = Hn(G/B,L(λ)) for λ ∈ X(T ).

The computation of the rational cohomology groups is fundamental in the understanding of

the line bundle cohomology, in particular the calculation of H•(B, λ). It is well known that

the representations for G1 are equivalent to the restricted representations for g = Lie G.

Over the past 25 years, there has been a lot of progress in the computations of cohomology

groups of Frobenius kernels. The calculations that are of significant importance are:
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(1) Hn(u, k)

(2) Hn(U1, k)

(3) Hn(B1, λ), for λ ∈ X(T )

(4) Hn(Br, λ), for λ ∈ X(T )

(5) Hn(B, λ), for λ ∈ X(T )

(6) Hn(G1, H
0(λ)), for λ ∈ X(T )+

(7) Hn(Gr, H
0(λ)), for λ ∈ X(T )+

Historically, these computations were realized for large primes. In 1983, Friedlander and Par-

shall [FP1] calculated various cohomology groups of algebraic groups. They started with the

special case when G is the general linear group with coefficients in the adjoint representation.

They extended the idea further to general algebraic groups with coefficients in V (r), where

V is a G-module. Also in this paper, they calculated Gr-cohomology groups of degrees 1 and

2 with coefficients over the trivial module and p 6= 2, 3.

These results were later extended by Andersen and Jantzen [AJ], determining (6) for

p ≥ h, where h is the Coxeter number (i.e. h = 〈ρ, α∨〉+ 1, more precisely, h =the height

of the highest root + 1). In this paper, Andersen and Jantzen also determined (3) for

λ = w · 0 + pν for p > h, where w ∈ W and ν ∈ X(T ). Their results originally had

restrictions on the type of root system involved, which were removed by Kumar, Lauritzen,

and Thomsen [KLT].

A fundamental computation related to understanding line bundle cohomology is the cal-

culation of H•(B, λ). In [BNP2], the authors calculated H2(B, λ) using the H2-calculations

for Frobenius kernels and Lie algebras. In 1984, Andersen [And] began to study the B-

cohomology. In particular he calculated H•(B,w ·0), where w ∈ W . More recently, Andersen

and Rian [AR] proved some general results on the behavior of H•(B, λ) and developed some
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new techniques to enable the calculation of all B-cohomology in degree at most 3 when

p > h. They calculated H2(B, λ) and H3(B, λ) explicitly for λ ∈ X(T ) and p > h. For higher

cohomology groups, they proved the following theorem [AR, 3.1,6.1]:

Theorem 1.3.1. Suppose p > h. Let w ∈ W, ν ∈ X(T ). Then we have for all i

(a) Hi(B,w · 0 + pν) ∼= Hi−l(w)(B, ν)

(b) Hi(B, pλ) = 0 for i > −2 · ht(λ)

In the past 15 years, the computations of the cohomology listed in (1)–(7) has focused

on small primes. In 1991, Jantzen [Jan2] calculated (1)–(3), (6) for n = 1 and all primes.

Jantzen used basic facts about the structure of the root systems and isomorphisms relating

the different cohomology groups. Bendel, Nakano, and Pillen used Jantzen’s results to get

(4),(7) for n = 1 and all p in [BNP1]. In 2004, Bendel, Nakano, and Pillen [BNP2] worked

out (1)–(7) for n = 2 and p ≥ 3.

Knowledge about the second cohomology groups is important because of the information

it gives us about central extensions of the underlying algebraic structures.

1.4 Outline of Computations

In recent work, Bendel, Nakano, and Pillen [BNP2] calculated H2(Gr, H
0(λ)) for p ≥ 3

by reducing the calculations down to H2(u, k). We will use similar strategies as [BNP2] to

calculate H2(Gr, H
0(λ)) when p = 2. For this calculation, we will first obtain some other

calculations. The first step uses the following isomorphism to reduce the calculation to the

Br-cohomology.

H2(Gr, H
0(λ))(−r) ∼= indG

B(H2(Br, λ)(−r)). (1.4.1)

The use of the Lyndon-Hochschild-Serre spectral sequence reduces the problem to the B1-

cohomology. The problem is further reduced to the computation of H2(U1, k) via the isomor-

phism

H2(B1, λ) ∼= (H2(U1, k)⊗ λ)T1 . (1.4.2)
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This isomorphism tells us that the B1-cohomology can easily be determined by looking at

particular weight spaces of H2(U1, k). That is H2(B1, λ) ∼= H2(U1, k)−λ.

The B-cohomology completes the calculations for the second cohomology groups for

p = 2. In [BNP1] the authors found that H1(B, λ) is at most one-dimensional as is the case

for H2(B, λ). The second B-cohomology group was first determined in [BNP2] for p ≥ 3 and

for p > h by [And] using a different method.

Theorem 1.4.1. Let p ≥ 3 and λ ∈ X(T ).

(a) Suppose p > 3 or Φ is not of type G2. Then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, for w ∈ W and l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −pkβ − plα, with 0 ≤ l < k and α, β ∈ ∆,

0 else.

(b) Suppose p = 3 and Φ is of type G2. Then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −pkβ − plα, with 0 ≤ l < k and α, β ∈ ∆,

where k 6= l + 1 if β = α1 and α = α2

0 else.

In [BNP2] the authors explicitly determined H2(u, k),H2(U1, k),H
2(Br, λ),H2(Gr, λ), and

H2(B, λ) for p ≥ 3. For p = 2, a similar strategy will be used by using the above isomor-

phisms.

The thesis will first start by reminding the reader of some results of Lie algebra coho-

mology. In [BNP2] the authors determined possible weights that occur involving sums of

positive roots that arise in the calculations, which also hold for p = 2. This calculation

then allows us to calculate the B1-cohomology as both a T -module and a B-module as
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described in Section 5. These results can be used to give a complete answer for H2(Br, λ) for

p = 2. The results for the Br-cohomology are used to calculate both the B-cohomology and

the Gr-cohomology. First, by applying the inverse limit to the Br-cohomology results, we

can calculate H2(B, λ) in Section 6. In Section 7, by applying the induction functor to the

Br-cohomology results, we can find H2(Gr, H
0(λ)). Finishing off the p = 2 calculations com-

pletes the entire picture for the second cohomology groups of Frobenius kernels for all primes.

H2(u, k)

Friedlander-Parshall
Spectral sequence, p ≥ 3

��
H2(U1, k)

H•(B1, λ) ∼= H•(U1, k)−λ

��
H2(B1, λ)

LHS Spectral sequence

��
H2(Br, λ)

Inverse Limit

~~~~
~~

~~
~~

~~
~~

~~
~~

Induction

""EE
EE

EE
EE

EE
EE

EE
EE

EE

H2(B, λ) H2(Gr, H
0(λ))

Figure 1.1: Summary of the process for the calculations



Chapter 2

Restricted Lie algebra cohomology

2.1 Observations on U1-cohomology

Recall that H·(u, k) is computed by using the exterior algebra and the following complex:

k
d0→ u∗

d1→ Λ2(u)∗
d2→ Λ3(u)∗ → . . . .

However, this only works when p ≥ 3. When p ≥ 3, then H·(U1, k) can be computed from

H·(u, k) by using the Friedlander-Parshall spectral. However, this spectral sequence only

holds for p ≥ 3. To calculate H•(U1, k), for p = 2, we must take a different approach. For

p = 2, the restricted Lie algebra cohomology is computed by the following complex [Jan1,

9.15].

k
d0→ u∗

d1→ S2(u)∗
d2→ S3(u)∗ → . . . .

The differential d1 is a derivation on S•(u∗) and is thus determined by its restriction to u∗.

We will look at the following composition of maps

u∗
d1
↪→ S2(u)∗

π→ Λ2(u)∗

where π is a surjection with kernel {f 2 : f ∈ u∗} and ∂ = π◦f being the coboundary operator

for the ordinary Lie algebra cohomology, i.e. the dual of Λ2(u) → u with a ∧ b 7→ [a, b]. The

differentials are given as follows: d0 = 0 and d1 : u∗ → S2(u)∗ with

(d1φ)(x1 ⊗ x2) = −φ([x1, x2])

where φ ∈ u∗ and x1, x2 ∈ u. For the higher differentials, we identify Sn(u)∗ ∼= Sn(u∗). Then

the differentials are determined by the following product rule:

di+j(φ⊗ ψ) = di(φ)⊗ ψ + (−1)iφ⊗ dj(ψ).

7
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2.2 Basic Results

In [BNP2], the authors calculated the ordinary Lie algebra cohomology, then used the first

quadrant spectral sequence

Ei,j
2 = Si(u∗)(1) ⊗ Hj(u, k) ⇒ H2i+j(U1, k)

to calculate the restricted Lie algebra cohomology. However, this spectral sequence is only

valid for p ≥ 3. Our approach will start with the calculations of the restricted Lie algebra

cohomology.

The following results will help identify some limitations on which tensor products φα⊗φβ

or linear combinations can represent cohomology classes when char k = 2. Using the additive

property of differentials and the fact that differentials preserve the T action, then we are

interested in tensor products that have the same weight. Recall the following theorem from

Jantzen, [Jan2]

Theorem 2.2.1. H1(U1, k) ∼= H1(u, k)

Recall the following definition from [BNP2].

Definition 2.2.2. An expression
∑
cα,βφα ⊗ φβ ∈ S2(u∗) is in reduced form if cα,β 6= 0 and

for each pair (α, β) cα,β appears at most once.

Proposition 2.2.3. Let x =
∑
cα,β φα ⊗ φβ be an element in S2(u∗) in reduced form of

weight γ for some γ ∈ X(T ) and γ 6∈ 2X(T ). If d2(x) = 0, then d1(φα) = 0 for at least one

α appearing in the sum.

Proof. Observe for any α ∈ Φ+, if d1(φα) =
∑
cδ,γφδ ⊗ φγ, then ht(δ) < ht(α) and ht(γ) <

ht (α) for all δ, γ. For all α and β appearing in the sum for x, choose a root σ with ht(σ)

being maximal. Without loss of generality, we may assume φσ appears in the second factor

of the tensor product. Consider the corresponding term cα,σφα ⊗ φσ. Computing d2(x), one

of the components will be cα,σd1(φα)⊗ φσ. By height considerations, φσ appears in no other

terms. So it is not a linear combination of the other terms and we must have d1(φα) = 0. �
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Corollary 2.2.4. (a) Let x ∈ H2(U1, k) be a representative cohomology class in reduced

form having weight γ for some γ ∈ X(T ), γ 6∈ 2X(T ). Then one of the components of

x is of the form φα ⊗ φβ for some simple root α ∈ ∆ and positive root β ∈ Φ+ (with

α+ β = γ).

(b) Suppose φα ⊗ φβ represents a cohomology class in H2(U1, k). Then one of three things

must happen either

(i) α, β ∈ ∆,

(ii) α ∈ ∆, then d1(φβ) =
∑

σ1+σ2=β cσ1,σ2 φσ1⊗ σ2, then cσ1,σ2 = ±2 for all decompo-

sitions of β (that is the structure constant is even), or

(iii) α = β and α ∈ Φ+.

Proof. Part (a) follows immediately from the previous proposition and Jantzen’s theorem

since the first cohomology is generated by the simple roots. For part (b) let’s first assume

that α = β, then

d2(φα ⊗ φα) = d1(φα)⊗ φα + φα ⊗ d1(φα) = 2d1(φα)⊗ φα = 0.

Now, assume that α 6= β, then α is simple. By assumption d2(φa ⊗ φβ) = 0. We have

d2(φα ⊗ φβ) = d1(φα)⊗ φβ + φα ⊗ d1(φβ) = φα ⊗ d1(φβ).

Hence, d1(φβ) = 0, and so either β ∈ ∆ or if β = σ1 + σ2 then cσ1,σ2 = ±2, for all decompo-

sitions of β. �

2.3 Root Sums

As mentioned in the introduction, the computation of H2(U1, k) involves information about

B1- and B-cohomology. In this process, certain sums involving positive roots arise. Suppose

x ∈ H2(U1, k) has weight γ ∈ X(T ). Then by Corollary 2.2.4, γ = α + β for α ∈ ∆ and

β ∈ Φ+ and α 6= β. Given such roots α and β, we want to know whether there exists a
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weight σ ∈ X(T ), β1, β2 ∈ ∆, and integers 0 ≤ i ≤ p − 1 and m ≥ 0 such that any of the

following hold:

α+ β = 2σ (2.3.1)

α+ β = β1 + 2σ (2.3.2)

α+ β = iβ1 + 2mβ2 + 2σ. (2.3.3)

Given γ a weight of H2(U1, k), then there is a weight ν ∈ X(T ) such that H2(B,−γ+pν) 6= 0,

as seen stated in the introduction from [And]. Using information on B-cohomology from

Andersen [And], then γ must satisfy equation (2.3.3). Note that (2.3.2) are special cases of

(2.3.3) (i.e. when i = 0 and m = 0. For more details on how these equations arise see [BNP2].

Equation (2.3.1) arises from the reduction H2(B1, k) = H2(U1, k)
T1 .

Remark 2.3.1. These sums noted above are only valid when 2 does not divide the index of

connection.

2.4 U1-cohomology

We state the theorem which describes H2(U1, k) when p = 2. In the next chapter, we explain

the proof for each type. In the following theorem, the right hand side is a list of T weights,

except for u∗, that occur in our T -module, H2(U1, k).

Theorem 2.4.1. As a T -module,

(a) If Φ = An, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ
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(b) If Φ = Bn, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ

⊕
⊕

1≤i≤n−3

−(sαi
sαn−1) · 0 + 2αn ⊕

⊕
1≤i≤n−1

2(αi + αi+1 + . . .+ αn)

(c) If Φ = Cn, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ

⊕
⊕

1≤i≤n−3

−(sαi
sαn) · 0 + 2αn−1 ⊕

⊕
1≤i≤n−1

2(αi + αi+1 + . . .+ αn)

⊕−(sαn−1sαn) · 0

(d) If Φ = Dn, n ≥ 4, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ

⊕−(sαn−3sαn−1) · 0 + 2(αn−2 + αn) ⊕−(sαn−3sαn) · 0 + 2(αn−2 + αn)

⊕
⊕

1≤i≤n−3

−(sαn−1sαn) · 0 + 2(αi + . . .+ αn−2)

(e) If Φ = E6, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ

⊕−(sα2sα3) · 0 + 2(α4 + α5) ⊕−(sα2sα3) · 0 + 2(α4 + α5 + α6)

⊕−(sα2sα5) · 0 + 2(α3 + α4) ⊕−(sα3sα5) · 0 + 2(α2 + α4)

⊕−(sα2sα6) · 0 + 2(α1 + α3 + α4 + α5)
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(f) If Φ = E7, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ

⊕−(sα2sα5) · 0 + 2(α1 + α3 + α4) ⊕−(sα3sα5) · 0 + 2(α2 + α4)

⊕−(sα2sα3) · 0 + 2(α2 + α3) ⊕−(sα2sα3) · 0 + 2(α4 + α5 + α6)

⊕−(sα2sα3) · 0 + 2(α4 + α5 + α6 + α7) ⊕−(sα2sα5) · 0 + 2(α3 + α4)

(g) If Φ = E8, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕
⊕

α,β,γ∈∆
α+β 6∈Φ+

α+β+γ∈Φ+

−(sαsβ) · 0 + 2γ

⊕−(sα2sα5) · 0 + 2(α1 + α3 + α4) ⊕−(sα2sα3) · 0 + 2(α4 + α5 + α6)

⊕−(sα2sα3) · 0 + 2(α4 + α5 + α6 + α7) ⊕−(sα3sα5) · 0 + 2(α2 + α4)

⊕−(sα2sα3) · 0 + 2(α4 + α5 + α6 + α7 + α8)

⊕−(sα2sα3) · 0 + 2(α4 + α5)

(h) If Φ = F4, then

H2(U1, k) ∼= (u∗)(1) ⊕
⊕

α,β∈∆

α+β 6∈Φ+

−(sαsβ) · 0 ⊕−(sα1sα3) · 0 + 2α2

⊕−(sα1sα3) · 0 + 2(α2 + α3) ⊕ 2(α2 + α3)⊕ 2(α1 + α2 + α3)

⊕ 2(α2 + α3 + α4)⊕ 2(α1 + α2 + α3 + α4) ⊕ 2(α1 + α2 + 2α3 + α4)

⊕ 2(α2 + α3 + α4)

(i) If Φ = G2, then

H2(U1, k) ∼= (u∗)(1) ⊕ 2(α1 + α2).



Chapter 3

Proof of Theorem 2.4.1

3.1 Type An, p - n+ 1

Since An is simply laced and p = 2, so all the structure constants are ±1. Suppose x ∈

H2(U1, k) has weight γ ∈ X(T ). From the above corollary, we know that γ = α + β for

some roots α ∈ ∆ and β ∈ Φ+, with α 6= β. Since p - n + 1, then we can use equations,

(2.3.1)-(2.3.3).

Proposition 3.1.1. Let p = 2, α ∈ ∆, β ∈ Φ+, and α 6= β. Then there is no weight

σ ∈ X(T ) such that α+ β = 2σ.

Proof. Consider α + β = 2
∑
miαi. Since all coefficients of the positive roots are 0 or 1 in

type An, then α = β, which contradicts the hypothesis. �

Proposition 3.1.2. Let p = 2, α ∈ ∆, β ∈ Φ+, and α 6= β. Then, there is no simple root

β1 ∈ ∆ and σ ∈ X(T ) such that α+ β = β1 + 2σ.

Proof. Consider α + β = β1 + 2
∑
miαi. Since α = αi for some i, then σ ∈ ∆. Thus the

only possibility for β is αi + αi−1 or αi + αi+1. Then x ∈ H2(U1, k) has only one component

and by Corollary 2.2.4(a) β ∈ ∆. So, there does not exist β1 ∈ ∆ and σ ∈ X(T ) such that

α+ β = β1 + 2σ. �

Proposition 3.1.3. Let p = 2, α ∈ ∆, β ∈ Φ+, and α 6= β. If α+ β is a weight of H2(U1, k)

and there exists β1, β2 ∈ ∆, σ ∈ X(T ), 0 < i < p, and m ≥ 0 such that

α+ β = iβ1 + 2mβ2 + 2σ,

then one of the following holds

13
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(a) α+ β is a solution to equation (2.3.1) or (2.3.2)

(b) If n ≥ 3, then α + β = αi−1 + αi+1 + 2αi or α + β = αi−1 + αi−2 + 2αi or α + β =

αi+1 + αi+2 + 2αi for i ≤ n− 2.

Proof. First note that we only have to consider the cases i = 0, 1 since p = 2, and the σ will

absorb part of β. Furthermore, since p = 2 if m ≥ 2, then by choosing a different σ ∈ X(T ),

these equation reduce down to m ≤ 1. Also, if i = 0 = m, then the equation is the same as

(2.3.2), which is done. If i = 0,m = 1, then we have that α+β = 2(β2 +σ) and so σ = 0, but

then we are back into equation (2.3.1). If i = 1,m = 1, then σ = 0, which is a specific case

of equation (2.3.2). So, the only thing we have to check is the case when i = 1,m = 0. Since

α = αi, then σ ∈ ∆ and β = αi−2 +αi−1 +αi, β = αi +αi+1 +αi+2, or β = αi−1 +αi +αi+1,

which are the cases above. So β1 and β2 are either the 2 simple roots on either side of σ or

to the right (left) of α. �

3.2 p|n+ 1

Note thatX(T )/ZΦ ∼= Zn+1 and n is odd. Moreover,X(T )/ZΦ = {tω1+ZΦ : t = 0, 1, . . . , n}.

Now

tω1 =
t

n+ 1
(nα1 + (n− 1)α2 + . . .+ αn).

By revising (3.1)-(3.3), we are now looking for α ∈ ∆, β ∈ Φ+ satisfying

α+ β = 2tω1 + 2σ (3.2.1)

α+ β = β1 + 2tω1 + 2σ (3.2.2)

α+ β = iβ1 + 2mβ2 + 2tω1 + 2σ, (3.2.3)

where σ ∈ ZΦ. Since 2tω1 must lie in ZΦ, 2t
n+1

∈ Z and 2|n + 1, it follows that t
s
∈ Z,

where s := n+1
2

. If 2| t
s

then we are done because (3.2.1)-(3.2.3) would reduce to the orig-

inal (2.3.1)-(2.3.3) with σ lying in the root lattice, and the above arguments apply. So, we

can assume that t
s
6≡ 0 (mod 2). Consider α + β =

∑n
i=1miαi, then mi ∈ {0, 1, 2} for
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i = 1, 2, . . . , n and mi can be 2 for at most one i. To examine the possibilities, reduce

t

n+ 1
(nα1 + (n− 1)α2 + . . .+ 2αn−1 + αn) mod 2, so that we are looking at sequences of

0’s and 1’s, looking like (1, 0, 1, 0, . . . , 0, 1). One of the zeroes is a 2, and at most two other

zeroes can be made into a one by using the above equations. So, we have the following:

∑
miαi = iβ1 + 2mβ2 + (1, 0, 1, 0, . . . , 0, 1) (mod 2).

Since the roots of An are those when the 1’s are consecutive, then n ≥ 9 has a trivial solution.

Looking at A3, A5, and A7 separately it is easy to check that no additional cohomology

classes occur, and the only classes that occur are weights of the form α + β = sαsβ · 0 and

α+ 2γ + β = sαsβ + 2γ, where α+ β is not a root and α+ γ + β is a root.

3.3 Type Bn

Consider the case when Φ = Bn. The Lie algebra, u, associated with the root system

Bn has some structure constants that are 2 so we have to consider these when looking

at the proof. After examining the structure of the Lie algebra with the structure con-

stants, we noticed that the structure constant is 2 when the resulting root has a coef-

ficient of 2 in the the αn spot and αn is broken up between the two other roots, i.e.

[αn, αi + αi+1 + . . . + αn] = 2(αi + αi+1 + . . . + 2αn). For Bn, X(T )/ZΦ ∼= Z2

where ωn = 1
2
(α1 + 2α2 + . . . + nαn) is a generator, which forces us to revise (3.2.1)-(3.2.3)

in the following way. We are looking for α, β ∈ Φ+ satisfying

α+ β = 2tωn + 2σ (3.3.1)

α+ β = β1 + 2tωn + 2σ (3.3.2)

α+ β = iβ1 + 2mβ2 + 2tωn + 2σ, (3.3.3)

where σ ∈ ZΦ and t = 0, 1. In the resulting weight, (which is written with respect to the

simple root basis), we must have at least 2 odd numbers. For simplicity, the weight will be

written in the following form: (i1, i2, . . . , in), where ij is the coefficients of the αj term. If ij
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is even for all j, then our weight is a multiple of 2 times a weight, which it is easy to check

that is always in the kernel, with extra classes. If there is only one odd number, then clearly

there must be some 2’s in the weight. If all of the two’s occur after the odd number, then

this is a root and thus it is in the previous image. On the other hand if all of the 2’s occur

before the odd number, then because of the pattern of the roots we can only have one 2

before it. In which case, there is only one term in the class, φαi
⊗ φαi+αi+1

. Also, there can’t

be more than one 2 between the 2 odd numbers in the weight. This comes from the fact that

there is no way to break up this weight into a sum of a simple root and a positive root.

For the other possibilities, consider the following weight, (0, 0, . . . , 0, 1, 0, . . . , 0, 1, 2) with

the first 1 in the ith spot, which is given by φαi
⊗ φαn−1+2αn . Using the above observation

about the structure constants, this is in the kernel because the structure constant is 2 when

we take the differential. Now, besides this weight, then the 1’s, 2’s, and 3’s that show up

in the weight must all be connected. In particular, the 2’s and 3’s must all be connected,

which follows from Proposition 2.2.3 and the observation about the structure constants. In

the weight, we can only have one 3, which follows from Corollary 2.2.4 and the structure of

the roots. The way the roots are structured in Bn, if a 3 occurs, then if it’s not in the αn

spot, then 2’s must follow it and a 1 must occur before the 3 with 2 between the 1 and the 3.

So that leaves us with a weight looking like (0, . . . , 0, 1, 2, 3, 2, . . . , 2). say the 3 is in the ith

spot. If there is more than one 2 that appears after the 3, then after taking the differential

of φαi
⊗ φxα , you see that the term pαi

⊗ φxa ⊗ φxb
for some xa and xb can’t cancel out and

thus not in the kernel. So, we have that the only possible class is (0, . . . , 0, 1, 2, 3, 2) and this

is in the kernel.

If t = 0, then the arguments in Section 3.1 apply, the only difference we have now is that

in the roots, 2’s exist and so 3’s can appear in the weights. We also know that (0, . . . , 0, 1, 2, 3)

can also happen and it’s easy to check that it is in the kernel.

Including the weights that occur when Φ is of type An, Bn also includes the weights of

the form αi + αi+1 + . . .+ αn for 1 ≤ i ≤ n− 1.
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3.4 Type Cn

Again, X(T )/ZΦ ∼= Z2. Using ω1 = α1 + α2 + . . .+ αn−1 + 1
2
αn as a generator, which forces

us to revise (3.2.1)-(3.2.3) in the following way. We are looking for α, β ∈ Φ+ satisfying

α+ β = 2tω1 + 2σ (3.4.1)

α+ β = β1 + 2tω1 + 2σ (3.4.2)

α+ β = iβ1 + 2mβ2 + 2tω1 + 2σ, (3.4.3)

where σ ∈ ZΦ and t = 0, 1. Like we did with type Bn we have to check when t = 0 and t = 1.

First, besides the weight (0, . . . , 0, 1, 0, . . . , 2, 1), (with cohomology class φαi
⊗φ2αn−1+αn is in

the kernel because [αn−1, αn−1 +αn] ≡ 0 (mod 2)), then all the 1’s, 2’s, and 3’s in the weight

must be connected. First, if it satisfies (3.4.1), then the weight is twice a root. And it is easy

to check that there are extra terms in the class besides φα⊗φα and is in the kernel. If there is

one odd number in the weight, then it must be a 1 and 2’s must appear. If the 2’s only appear

before or after the 1, then there can only be one 2 because of the structure of the roots, and

there is only one term in the class with β not simple and [α, β] 6≡ 0 (mod 2). If the 2’s occur

before and after then it must look like (0, . . . , 0, 2, 1, 2, 0, . . . , 0), which you can’t write as a

sum of a simple root and a positive root. Unless we had (0, . . . , 0, 2, 1, 2), where there is only

one way to write this, which doesn’t satisfy Corollary 2.2.4. So, there must be at least two

odd numbers appearing in the weight. Note that (0, . . . , 0, 1, 2, . . . , 2, 1, 0, . . . , 0) can’t occur

and if the last 1 were in the αn spot, then it would be a root, and thus in the previous image.

If there are no 3’s in the weight and there is more than one 2 in the weight, then because

of the structure of the roots, the last 2 must be in the αn−1 spot and a 1 must be in the αn

spot, which is a root. If 3’s do appear in the weight, then there can only be one 3 and it must

be in the αn−1 spot with a 1 in the αn spot. If it’s not in the αn−1 spot, then by calculating

differentials it’s easy to see that a 1 can’t occur before the 3 and it were just 2’s then you

have a αi⊗αj in the term that can’t be cancelled (with a 3 in the αi spot and the first 2 in the

αj spot). So we have that a 3 must appear in the αn−1 spot. Now putting all of this together
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than the only possibilities for roots are (i) (0, . . . , 0, 3, 1), which is in the cohomology since

the structure constant is 2; (ii) (0, . . . , 0, 1, 3, 1) which isn’t in the kernel because there is

only one way to write it and doesn’t satisfy corollary 3.1; (iii) (0, . . . , 1, 2, 3, 1) which isn’t in

the kernel after taking the differential; or (iv) (0, . . . 1, 2, . . . , 2, 3, 1) but there are only two

ways to write this and after taking the differential only one way to get φαi−1
⊗ φαn−1 ⊗ φβ

with the structure constant not 2. So the only classes that appear in this cohomology group

are those stated in Theorem 2.4.1.

Including the weights that occur when Φ is of type An, type Cn also includes the weights

of the form αi + αi+1 + . . .+ αn for 1 ≤ i ≤ n− 1 and sαn−1sαn · 0.

3.5 Type Dn

When Φ = Dn, |X(T )/ZΦ| = 4. If n is odd then X(T )/ZΦ ∼= Z4 and if n is even then

X(T )/ZΦ ∼= Z2 × Z2, again forcing us to revise equations (2.3.1)-(2.3.3).

First let’s look at the case when n is odd.

ωn =
1

2
(α1 + 2α2 + . . .+ (n− 2)α2 +

n− 2

2
αn−1 +

n

2
αn)

is a generator and we are looking for α, β ∈ Φ+ satisfying

α+ β = 2tωn + 2σ (3.5.1)

α+ β = β1 + 2tωn + 2σ (3.5.2)

α+ β = iβ1 + 2mβ2 + 2tωn + 2σ, (3.5.3)

where σ ∈ ZΦ and t = 0, 1. Now, since we need t(n−2)
2

∈ Z, then t ≡ 0 (mod 2), and then

need to look at the particular cases when t = 0, 2. Let’s first look at the case when t = 0.

Note that the weight can have a maximum of one 3 in it because the largest coefficient is a

2, and so by using the above equations and looking at the roots there is only one 3; also, the

last 2 in the weight must be in the αn or αn−1 spot, but can’t both be 2’s. We claim that

if there are no 3’s involved in the weight, then there can be at most two 2’s involved. First
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we can see that there can’t be any 2’s prior to the first 1 involved in the weight because

there would be no way to write the weight as a sum of a positive root and a simple root.

So, there can be only 2’s after the first 1 in the weight. Now, again by the root structure

we have that there must be another 1 and must occur in either the αn or the αn−1 spot.

So, there are two possibilities for weights (i) (0, . . . , 0, 1, 2, . . . , 2, 1) with α = αn−1 and (ii)

(0, . . . , 0, 1, 2, . . . , 2, 1, 2) with α = αn. Now when we split up all the ways of writing these

weights as a sum of two positive roots, then after taking the differential, we find that in (i)

φαn−1 ⊗ φαi
⊗ φβ but this can’t show up again because αn−1 + αi isn’t a root except when

i = n − 2. Similarly for (ii) φαn ⊗ φαi
⊗ φβ, where the first 2 shows up in the αi spot, but

this can’t show up again because αn + αi isn’t a root except when i = n− 2. Thus the only

extra classes that show up are (0, . . . , 0, 1, 2, 2, 1) and (0, . . . , 0, 1, 2, 1, 2).

Now, let’s consider the case when t = 2, then α + β ≡ (0, . . . , 0, 1, 1) mod 2. Again the

root structure tells us that there can only be at most one 3 in the weight, and there must be

a 1 preceding the 3, which follows by the fact that we have to write the weight as a sum of a

simple root and a positive root. So, the only possibilities are (1) (0, . . . , 0, 1, 3, 2, . . . , 2, 1, 1),

(2) (0, . . . , 0, 1, 2, . . . , 2, 3, 2, . . . , 2, 1) or (3) (0, . . . , 0, 1, 2, . . . , 2, 3, 1, 1), where the 3 is in the

ith position. In each of these cases, after taking the differential, we have the following factor

φαi
⊗ φαi−1+αi+αi+1

⊗ φβ, but this only shows up once and so can’t cancel out with anything

and thus not in the kernel. So, no weight in the cohomology involves a 3. So, now we are

left with one of 3 possibilities left if the weight involves any 2’s: (i)(0, . . . , 0, 2, . . . , 2, 1, 1),

(ii)(0, . . . , 0, 1, 2, . . . , 2, 1, 1), or (iii)(0, . . . , 0, 1, 1, 2, . . . , 2, 1, 1). The last two cases the weight

is in the previous image. And is easy to check that the first case is in the kernel and thus

gives us an extra cohomology class.

When n is even, then things become a little more difficult. Now we have 2 generators,

ω1 = α1+ . . .+αn−2+ 1
2
αn−1+ 1

2
αn and ωn = 1

2
(α1+2α2+ . . .+(n−2)αn−2)+

n−2
4
αn−1+ n

4
αn.

Then we must revise our equations (3.5.1)-(3.5.3) in the following way.

α+ β = 2tω1 + 2sωn + 2σ (3.5.4)
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α+ β = β1 + 2tω1 + 2sωn + 2σ (3.5.5)

α+ β = iβ1 + 2mβ2 + 2tω1 + 2sωn + 2σ, (3.5.6)

where i = 0, 1,m ≥ 0, s, t = 0, 1, σ ∈ ZΦ, and α, β ∈ Φ+.

When s = t = 0, then this brings us up to the same case when t = 0 when n is odd. Let’s

first look at the case when s = 1, t = 0, which reduces down to the case when n is odd and

t = 2. If t = 1, s = 0, then n ≤ 12 because otherwise there are too many odd numbers in the

weight. However the root structure tells us that if there are any 3’s in the weight, then there

must be 1’s in the αn and the αn−1 spots, then we have that n ≤ 6, but since n is even, then

n = 4, 6. When n = 4, then this is reduced down to the case when s = t = 0. When n = 6,

then we are reduced down to the case when s = 1, t = 0. Now if s = t = 1, then notice that

the only thing that changes are the αn and the αn−1 spots in the weight and we have already

considered these cases previously.

Including the weights that occur when Φ is of type An, Dn also includes the weights of the

form sαη−3sαn−1+2(αn−2+αn), sαη−3sαn+2(αn−2+αn), and sαη−3sαn−1+2(αi+αi+1+. . .+αn−2)

for 1 ≤ i ≤ n− 3.

3.6 The Exceptional cases

If Φ is one of the exceptional root systems (i.e., E6, E7, E8, F4, or G2), then determining the

U1 cohomology reduces to looking at finitely many cases. To do this, a program in GAP

was written to calculate all different weights that satisfy equations (2.3.1)-(2.3.3). Then

calculating all the differentials of the cohomology classes that satisfy the possible weights to

see if they were in the kernel. Note that if Φ = E7, this is the only case where the index of

connection is even. So, instead of running the program once (when t = 0), then we had to

run it twice, the other time letting t = 1. Note, that the long simple roots in type F4 are

α3, α4 and the long simple root in type G2 is α2. A complete list of the possible weights and

classes for the exceptional cases is seen in Appendix 2.



Chapter 4

B1-cohomology

4.1 T -module structure

In this section, we compute H2(B1, λ) for all λ ∈ X(T ) as both a T -module and as a B-

module. The B1 cohomology is related to the U1 cohomology by the Lyndon-Hochschild-Serre

spectral sequence for U1 / B1. Using the spectral sequence and the fact that T1
∼= B1/U1,

the following characterization follows

H2(B1, λ) ∼= H2(U1, λ)T1 ∼= (H2(U1, k)⊗ λ)T1 .

So, it suffices to determine the −λ weight space of H2(U1, k) relative to T1. So, we have that

H2(B1, λ) ∼= H2(U1, k)−λ, where λ = {λ+ pν ∈ H2(U1, k) | ν ∈ X(T )}.

Furthermore it is enough to compute H2(B1, λ) for λ ∈ X1(T ), which follows from the fact

that if λ = λ0 + pλ1, then

H2(B1, λ) = H2(B1, λ0 + pλ1) ∼= H2(B1, λ0)⊗ pλ1,

for unique weights λ0 ∈ X1(T ) and λ1 ∈ X(T ).

4.2 Case i: λ = 0

We will first calculate H2(B1, λ) as a T -module, when λ = 0.

21
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Theorem 4.2.1. Let p = 2. Then as a T -module, H2(B1, k) ∼= (u∗)(1), except in the following

cases:

(a) If Φ = A3, then

H2(B1, k) ∼= (u∗)(1) ⊕ (ω1 − ω2 + ω3)
(1) ⊕ ω

(1)
2 .

(b) If Φ = B3, then

H2(B1, k) ∼= (u∗)(1) ⊕ ω
(1)
1 ⊕ (−ω1 + ω2)

(1).

(c) If Φ = B4, then

H2(B1, k) ∼= (u∗)(1) ⊕ (ω1 − ω2 + ω3 − ω4)
(1) ⊕ (ω2 − ω4)

(1) ⊕ (−ω2 + ω3)
(1)

⊕ (−ω1 + ω2)
(1) ⊕ ω

(1)
1 .

(d) If Φ = Bn for n 6= 3, 4, then

H2(B1, k) ∼= (u∗)(1) ⊕
⊕

2≤i≤n−1

(−ωi−1 + ωi)
(1) ⊕ ω

(1)
1 .

(e) If Φ = Cn, then

H2(B1, k) ∼= (u∗)(1) ⊕
⊕

2≤i≤n−2

(−ωi−1 + ωi − ωn−1 + ωn)(1)

⊕ (−ωn−2 + ωn)(1) ⊕ (ω1 − ωn−1 + ωn)(1).

(f) If Φ = D4, then

H2(B1, k) ∼= (u∗)(1) ⊕ (ω1 − ω2 + ω3)
(1) ⊕ (ω2 − ω4)

(1) ⊕ (ω2 − ω3)
(1)

⊕ (ω1 − ω2 + ω4)
(1) ⊕ (−ω2 + ω3 + ω4)

(1) ⊕ (−ω1 + ω2)
(1)

(g) If Φ = Dn, for n ≥ 5, then

H2(B1, k) ∼= (u∗)(1) ⊕
n−3⊕
i=1

(−ωi + ωi+1)
(1) ⊕ (ω1)

(1) ⊕ (−ωn−2 + ωn−1 + ωn)(1)
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(h) If Φ = F4, then

H2(B1, k) ∼= (u∗)(1) ⊕ (−ω1 + ω2 − ω4)
(1) ⊕ (−ω1 + ω2 − ω3 + ω4)

(1)

⊕ (ω1 − ω3 + ω4)
(1) ⊕ (ω1 − ω2 + ω3)

(1) ⊕ (ω2 − ω3)
(1) ⊕ (ω1 − ω4)

(1).

(i) If Φ = G2, then

H2(B1, k) ∼= (u∗)⊕ (−ω1 + ω2)
(1)

Proof. Once the weights from Theorem 2.4.1 are expressed in terms of the fundamental

weights, then check which ones are T1 invariant (i.e. multiples of 2). For example, in type

A3, the weight α1 + α3 = 2ω1 − 2ω2 + 2ω3 α1 + 2α2 + α3 = 2ω2. Therefore, the weights

α1 + α3 = sα1sα3 · 0 and α1 + 2α2 + α3 = sα1sα3 + 2α2 are in the H2(B1, k) cohomology. �

4.3 Case ii: λ arbitrary

Recall the fact that if λ 6= 0 and H2(B1, λ) 6= 0, then λ is of the form λ = w · 0+2ν for some

w ∈ W and ν ∈ X(T ). (In our case, l(w) = 2.) The following lemma gives the unique weight

ν such that λ = w · 0 + 2ν ∈ X1(T ).

Lemma 4.3.1. Let p = 2. For w = sαi
sαj

∈ W with i < j we define

νw =

 ωi − ωk + ωj, if αi, αj separated by a single vertex, αk

ωi + ωj, otherwise

except in the following cases:

νw =



ωn−3 − ωn−2 + ωn−1 − ωn, if Φ = Bn, w = sαn−3sαn−1

ωi + ωn−1 − ωn, if Φ = Bn, w = sαi
sαn−1 , i 6= n− 3

ωi − ωn−1 + ωn, if Φ = Cn, w = sαi
sαn , i 6= n− 2

−ωn−2 + 2ωn−1, if Φ = Cn, w = sαn−1sαn

Then sαi
sαj

· 0 + 2νw ∈ X1(T ).
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Proof. We are only interested in weights λ in H2(U1, k) that could add to the B1-cohomology.

For λ a weight in H2(U1, k), then write λ = sαi
sαj

· 0 + 2ν. Note that ai and αj are not

connected except when Φ is of type Cn and w = sαn−1sαn . Without loss of generality we can

assume i < j. The νw is determined after writing w · 0 in the fundamental weight basis. �

Now that the unique νw is identified, H2(B1, λ) can easily be calculated for arbitrary λ.

Theorem 4.3.2. If p = 2, then as a T -module,

H2(B1, λ) = 0

except in the following cases.

(a) If λ = sαi
sαj

· 0 + 2νw ∈ X1(T ) for αi, αj not separated by a single vertex, then

H2(B1, λ) = ν(1)
w .

(b) λ = sαi
sαj

· 0 + 2νw ∈ X1(T ) for αi, αj separated by a single vertex, (i.e. j=i+2) then

H2(B1, λ) ∼= ν(1)
w ⊕ ω

(1)
i+1.

except in the following cases

(i) If Φ = Bn and j = n, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ωn−1 − ωn)(1)

(ii) If Φ = Bn and w = sαn−3sαn−1, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ωn−2 − ωn)(1)

(iii) If Φ = Bn and w = sαi
sαn−1 for i 6= n− 3, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ωi + ωn)(1).
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(iv) If Φ = Cn and w = sαi
sαn for i 6= n− 1, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ωi − ωn−2 + ωn−1)

(1).

(v) If Φ = Cn and w = sαn−1sαn, then

H2(B1, λ) ∼= ν(1)
w .

(vi) If Φ = Dn and w = sαn−3sαn−1, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ωn−2 − ωn)(1) ⊕ (ωn)(1)

(vii) If Φ = Dn and w = sαn−3sαn, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ωn−2 − ωn−1)

(1) ⊕ (ωn−1)
(1)

(viii) If Φ = E6 and w = sα2sα3, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ω4 − ω5)

(1) ⊕ (ω5 − ω6)
(1) ⊕ ω

(1)
6

(ix) If Φ = E6, E7, E8 and w = sα2sα5, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ω4 − ω3)

(1) ⊕ (ω3 − ω1)
(1) ⊕ ω

(1)
1

(x) If Φ = E6, E7, E8 and w = sα3sα5, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ω4 − ω2)

(1) ⊕ ω
(1)
2

(xi) If Φ = E7 and w = sα2sα3, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ω4 − ω5)

(1) ⊕ (ω5 − ω6)
(1) ⊕ (ω6 − ω7)

(1) ⊕ ω
(1)
7

(xii) If Φ = E8 and w = sα2sα3, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ω4 − ω5)

(1) ⊕ (ω5 − ω6)
(1) ⊕ (ω6 − ω7)

(1)

⊕ (ω7 − ω8)
(1) ⊕ ω

(1)
8
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(xiii) If Φ = F4 and w = sα1sα3, then

H2(B1, λ) ∼= ν(1)
w ⊕ (ω2 − ω3)

(1) ⊕ (ω3 − ω4)
(1)

Proof. The relationship between the U1 and the B1 cohomology (as a T -module), as given

in equation 1.4.2, gives us,

H2(B1, λ) ∼= H2(U1, k)−λ
∼=

⊕
ν

H2(U1, k)−λ+pν ,

for λ ∈ X1(T ). From Lemma 4.3.1, the unique weight νw such that λ = sαi
sαj

+pνw ∈ X1(T ).

So we now have that

H2(B1, λ) ∼=
⊕

σ

H2(U1, k)λ+2σ.

We want to find σ such that λ = −(sαi
sαj

) + 2σ is a weight of H2(U1, k).

For example, if Φ is of type B4 and w = Sα2sα4 , then λ = sα2sα4 · 0 + 2νw. Writing the

weights α2 +α4 and α2 +2α3 +α4 in terms of λ, we have sα2sα4 +2νw and sα2sα4 +2νw +2α3.

So, σ = νw for the first term and σ = νw + 2α3 = ω3 − ω4 for the second term.

�

4.4 B-module structure

Now the T structure of H2(B1, λ) can be used to determine the B-module structure. Recall

that H2(B1, λ) is a subquotient of S2(u∗)−λ. Since B acts on u by the adjoint action, then

for α ∈ Φ, Dist(B) =
〈(

Hi

m

)
, Xn

α

n!

〉
acts on u∗. Where Hi = (dφi)(1) where φi are a basis for

Hom(Gm, T ) ∼= Zr [Jan1, II.1.11]. In particular since u corresponds to the negative roots,

then it’s only necessary to look at Xn
α

n!
for α ∈ Φ−. The action from [Hum, 26.3] is defined by

Xn
α

n!
(u⊗ v) =

∑
k

(
Xk

α

k!
u⊗ Xn−k

α

(n− k)!
v). (4.4.1)

Using the results in the previous section. If H2(B1, λ) has an answer consisting of only one

factor, then this forms a 1-dimensional module. However, it remains to be determined if the

cohomology m-dimensional submodule, and whether it is an indecomposable module. As

before, we will first look at this with the trivial module, then move on to arbitrary weights.
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4.5 case i: λ = 0

Theorem 4.5.1. Let p = 2 then as a B-module, H2(B1, k) ∼= (u∗)(1). Except in the following

cases:

(a) Φ = A3, then H2(B1, k) ∼= (u∗)(1) ⊕M , where M is a 2-dimensional indecomposable

B-module with factors (ω1 − ω2 + ω3)
(1) and ω

(1)
2

(b) If Φ = B3, then H2(B1, k) ∼= (u∗)(1) ⊕M , where M is a 2-dimensional indecomposable

B-module with factors (ω1)
(1) and (−ω1 + ω2)

(1)

(c) If Φ = B4, then H2(B1, k) ∼= (u∗)(1)⊕M1⊕M2, where M1 is a 2-dimensional indecom-

posable B-module with factors (ω2 − ω4)
(1), and (ω1 − ω2 + ω3 − ω4)

(1), and M2 is a

3-dimensional indecomposable B-module with factors ω
(1)
1 , (−ω1 + ω2)

(1), (−ω2 + ω3)
(1)

(d) If Φ = Bn, then

H2(B1, k) ∼= (u∗)(1) ⊕M

where M is an (n− 1)-dimensional indecomposable B-module with factors,

ω
(1)
1 , (−ω1 + ω2)

(1), (−ω2 + ω3)
(1), . . . , (−ωn−2 + ωn−1)

(1)

(e) If Φ = Cn, then

H2(B1, k) ∼= (u∗)(1) ⊕M

where M is an (n− 1)-dimensional indecomposable B-module with factors

(ω1 − ωn−1 + ωn)(1), (−ω1 + ω2 − ωn−1 + ωn)(1), (−ω2 + ω3 − ωn−1 + ωn)(1), . . . ,

(−ωn−3 + ωn−2 − ωn−1 + ωn)(1), (−ωn−2 + ωn)(1).

(f) If Φ = D4, then

H2(B1, k) ∼= (u∗)(1) ⊕M1 ⊕M2 ⊕M3,

where M1 is a 2-dimensional indecomposable B-module with factors (ω2 − ω4)
(1) and

(ω1 − ω2 + ω3)
(1); M2 is an a 2-dimensional indecomposable B-module with factors
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(ω2 − ω3)
(1) and (ω1 − ω2 + ω4)

(1); M3 is a 3-dimensional indecomposable B-module

with factors ω
(1)
1 , (−ω1 + ω2)

(1), (−ω2 + ω3 + ω4)
(1).

(g) If Φ = Dn, then H2(B1, k) ∼= (u∗)(1) ⊕M , where M is a (n− 1)-dimensional indecom-

posable B-module with factors

ω
(1)
1 , (−ω1 + ω2)

(1), (−ω2 + ω3)
(1), . . . , (−ωn−3 + ωn−2)

(1), (−ωn−2 + ωn−1 + ωn)(1).

(h) If Φ = F4 then

H2(B1, k) ∼= (u∗)(1) ⊕M

where M is a 6-dimensional indecomposable module with factors

(ω2 − ω3)
(1)(ω1 − ω2 + ω3)

(1), (ω1 − ω3 + ω4)
(1), (−ω1 + ω2 − ω3 + ω4)

(1),

(ω1 − ω4)
(1), (−ω1 + ω2 − ω4)

(1).

(i) If Φ = G2, then H2(B1, k) ∼= (u∗)(1) ⊕ (−ω1 + ω2)
(1).

Proof. Using 4.4.1 and Theorem 4.2.1, then we can determine which weights combine as the

factors of an indecomposable module. For example, consider the case when Φ is of type A4

and w = sα1sα3 . The cohomology classes for this w are

φα1 ⊗ φα1+α2+α3 + φα1+α2 ⊗ φα2+α3 and

φα1 ⊗ φα3

X2
−α2

(φα1 ⊗ φα1+α2+α3 + φα1+α2 ⊗ φα2+α3) = φα1 ⊗ φα3

and

X2
−α2

(φα1 ⊗ φα3) = 0

Since I can get from one cohomology class to the other class, then these factors form an

indecomposable module. �
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4.6 case ii: λ arbitrary

Now, let’s consider the cohomology for arbitrary λ.

Theorem 4.6.1. Let p = 2 and λ = w · 0 + pνw where w = sαi
sαi+2

, then

H2(B1, λ) ∼= M,

where M is a 2-dimensional indecomposable B-module with hdB M ∼= ω
(1)
i+1 and

socB M = ν
(1)
w . Except in the following cases:

(a) If Φ = Bn with w = sαn−2sαn , then

H2(B1, λ) ∼= M

where M is a 2-dimensional indecomposable B-module with hdB M = (ωn−1 − ωn)(1)

and socB M = ν
(1)
w .

(b) If Φ = Bn and w = sαn−3sαn−1 , then

H2(B1, λ) ∼= M,

where M is a 2-dimensional indecomposable B-module with hdB M = (ωn−2 − ωn)(1)

and socB M = ν
(1)
w .

(c) If Φ = Bn and w = sαi
sαn−1 with i 6= n− 3, then

H2(B1, λ) ∼= M,

where M is a 2-dimensional indecomposable B-module with hdB M = (ωi + ωn)(1) and

socB M = ν
(1)
w .

(d) If Φ = Cn and w = sαi
sαn with i 6= n− 2, then

H2(B1, λ) ∼= M,

where M is a 2-dimensional indecomposable B-module with

hdB M = (ωi − ωn−2 + ωn−1)
(1) and socB M = ν

(1)
w .
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(e) If Φ = Dn and w = sαn−3sαn−1 then

H2(B1, λ) ∼= M,

where M is a 3-dimensional indecomposable B-module with factors

(ωn)(1), (ωn−2 − ωn)(1), (ωn−3 − ωn−2 + ωn−1)
(1).

(f) If Φ = Dn and w = sαn−3sαn then

H2(B1, λ) ∼= M,

where M is a 3-dimensional indecomposable B-module with factors

ω
(1)
n−1, (ωn−2 − ωn−1)

(1), (ωn−3 − ωn−2 + ωn)(1).

(g) If Φ = E6 and w = sα2sα3, then

H2(B1, λ) ∼= M,

where M is a 4-dimensional indecomposable B-module with factors

ω
(1)
6 , (ω5 − ω6)

(1), (ω4 − ω5)
(1), ν(1)

w .

(h) If Φ = E6, E7, E8 and w = sα2sα5, then

H2(B1, λ) ∼= M,

where M is a 4-dimensional indecomposable B-module with factors

ω
(1)
1 , (ω3 − ω1)

(1), (ω4 − ω3)
(1), ν(1)

w .

(i) If Φ = E6, E7, E8 and w = sα3sα5, then

H2(B1, λ) ∼= M,

where M is a 3-dimensional indecomposable B-module with factors

ω
(1)
2 , (ω4 − ω2)

(1), ν
(1)
w .
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(j) If Φ = E7 and w = sα2sα3, then

H2(B1, λ) ∼= M,

where M is a 5-dimensional indecomposable B-module with factors

ω
(1)
7 , (ω6 − ω7)

(1), (ω5 − ω6)
(1), (ω4 − ω5)

(1), ν(1)
w .

(k) If Φ = E8 and w = sα2sα3, then

H2(B1, λ) ∼= M,

where M is a 6-dimensional indecomposable B-module with factors

ω
(1)
8 , (ω7 − ω8)

(1), (ω6 − ω7)
(1), (ω5 − ω6)

(1), (ω4 − ω5)
(1), ν(1)

w .

(l) If Φ = F4 and w = sα1sα3, then

H2(B1, λ) ∼= M,

where M is a 3-dimensional indecomposable B-module with factors

(ω3 − ω4)
(1), (ω2 − ω3)

(1), (ω1 − ω2 + ω3)
(1).

Proof. For (i), this comes from the previous theorem for H2(B1, k) as a B-module. Following

the setup found in the beginning of the section. For example, consider the case when Φ = A4

and w = sα1sα3 . Then, the cohomology classes for this w are

φα1 ⊗ φα1+α2+α3 + φα1+α2 ⊗ φα2+α3 and

φα1 ⊗ φα3 .

Consider

X2
−a2

2!
(φα1 ⊗ φα1+α2+α3 + φα1+α2 ⊗ φα2+α3) = φα1 ⊗ φα3

and

X2
−a2

2!
(φα1 ⊗ φα3) = 0
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Since I can get from one cohomology class to another, then this forms an indecomposable

module. A similar calculation is done with the other cases. All of the cohomology classes are

found in Appendix A. The factors in the modules are those in Theorem 4.3.2. �

Remark 4.6.2. For the indecomposable B-modules in the preceding theorems, the factors

are listed in order with the first factor listed is the head and the last factor listed is the socle.

Corollary 4.6.3. Let p = 2 and λ, γ ∈ X(T ).

(a) If λ 6∈ pX(T ) and λ 6= w · 0 + pσ for some w ∈ W with l(w) = 2 and σ ∈ X(T ), then

H2(B1, λ) = 0.

(b) If α ∈ ∆, then H2(B1, pγ − α) = 0.



Chapter 5

Br-Cohomology

To calculate H2(Br, λ) for r > 1, we will first state a few lemmas for specific weights before

stating the final theorem.

5.1 case i: λ = 0

To calculate the Br-cohomology, we will first look at the case when λ = 0.

Lemma 5.1.1. Let p = 2 and λ ∈ X(T ). Then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=

 prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

0 otherwise

except in the following cases:

(a) If Φ = A3, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=


prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − ω2, γ ∈ X(T ),

0 otherwise

(b) If Φ = B3, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=


prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (ω2 − ω1), γ ∈ X(T ),

0 otherwise

33
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(c) If Φ = B4, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=



prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ω2 + ω3), γ ∈ X(T ),

prγ, if λ = pr−lγ − (ω1 − ω2 + ω3 − ω4),

γ ∈ X(T ),

0 otherwise

(d) If Φ = Bn, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=



prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ωn−2 + ωn−1),

γ ∈ X(T ),

0 otherwise

(e) If Φ = Cn, then

HomBr/Bl
(k,H2(B1, k)

(l−1)⊗plλ) ∼=


prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ωn−2 + ωn) γ ∈ X(T ),

0 otherwise

(f) If Φ = D4, then

HomBr/Bl
(k,H2(B1, k)

(l−1)⊗plλ) ∼=



prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (ω1 − ω2 + ωi), i ∈ {3, 4},

γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ω2 + ω3 + ω4),

γ ∈ X(T ),

0 otherwise
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(g) If Φ = Dn, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=



prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ωn−2 + ωn−1 + ωn),

γ ∈ X(T ),

0 otherwise

(h) If Φ = F4, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=



prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ω1 + ω2 − ω4),

γ ∈ X(T ),

0 otherwise

(i) If Φ = G2, then

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼=


prγ, if λ = pr−lγ − α, α ∈ ∆, γ ∈ X(T ),

prγ, if λ = pr−lγ − (−ω1 + ω2), γ ∈ X(T ),

0 otherwise

Proof. We have

HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗ plλ) ∼= HomBr−l
(k,H2(B1, k)

(−1) ⊗ λ)(l)

∼= HomBr−l
(−λ,H2(B1, k)

(−1))(l).

with H2(B1, k) stated in Theorem 5.3, it’s necessary to consider the B-socle of H2(B1, k). In

general, this is the B-socle of u∗, which is
∑

β∈∆ kβ by [Jan2]. However, when the cohomology

is not u∗, then this accounts for the additional weights. (These extra cases come from the

special cases in Theorem 4.5.1.) �

With the use of this lemma gives us an easy formula to compute H2(Br, k) from H2(B1, k).

However, to define this, the use the Lyndon-Hochschild-Serre (LHS) spectral sequence is

necessary, which is defined for B1/Br as follows:

Ei,j
2 = Hi(Br/B1,H

j(B1, λ)) =⇒ Hi+j(Br, λ).
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Proposition 5.1.2. Let p = 2. Then H2(Br, k) ∼= H2(B1, k)
(r−1).

Proof. To prove this, we will use induction on r. Assume that r > 1. Now, let’s look at Ei,1
2 =

Hi(Br/B1,H
1(B1, k)). By [Jan2] we know that H1(B1, k) = 0 and thus Ei,1

2 = 0. Now applying

the previous lemma with l = 1 and λ = 0, we have E0,2
2 = HomBr/B1(k,H

2(Br/B1, k)) = 0.

Since all differentials going into and out of E2,0
2 are zero, and by the induction hypothesis

we have that

H2(Br, k) ∼= E2,0
2 = H2(Br−1, k)

(1) ∼= H2(B1, k)
(r−1).

�

5.2 case ii: λ = plσ

Lemma 5.2.1. Let 0 ≤ l < r, and α ∈ ∆.

(a) Then

H2(Br,−plα) ∼=

 k if l > 0

0 otherwise

(b) Suppose Φ is of type A3. Then

H2(Br,−plω2) ∼=

 k if l > 0

0 otherwise

(c) Suppose Φ is of type B3. Then

H2(Br,−pl(ω2 − ω1)) ∼=

 k if l > 0

0 otherwise

(d) Suppose Φ is of type B4 and λ = −pl(−ω2 + ω3) or λ = −pl(ω1 − ω2 + ω3 − ω4). Then

H2(Br, λ) ∼=

 k if l > 0

0 otherwise
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(e) Suppose Φ is of type Bn. Then

H2(Br,−pl(−ωn−2 + ωn−1)) ∼=

 k if l > 0

0 otherwise

(f) Suppose Φ is of type Cn. Then

H2(Br,−pl(−ωn−2 + ωn)) ∼=

 k if l > 0

0 otherwise

(g) Suppose Φ is of type D4 and λ = −pl(ω1 − ω2 + ωi) for i ∈ {3, 4}

or λ = −pl(−ω2 + ω3 + ω4). Then

H2(Br, λ) ∼=

 k if l > 0

0 otherwise

(h) Suppose Φ is of type Dn. Then

H2(Br,−pl(−ωn−2 + ωn−1 + ωn)) ∼=

 k if l > 0

0 otherwise

(i) Suppose Φ is of type F4. Then

H2(Br,−pl(−ω1 + ω2 − ω4)) ∼=

 k if l > 0

0 otherwise

(j) Suppose Φ is of type G2. Then

H2(Br,−pl(ω2 − ω1)) ∼=

 k if l > 0

0 otherwise

Proof. (a) When r = 1, H2(B1,−α) = 0 by Corollary 4.6.3. Now assume r > 1 and consider

the case that l = 0. We will use the LHS spectral sequence

Ei,j
2 = H2(Br/B1,H

j(B1,−α)) ⇒ Hi+j(Br,−α).
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Ei,0
2 = Hi(Br/B1,HomB(k,−α)) = 0 and Ei,2

2 = Hi(Br/B1,H
2(B1,−α)) = 0, from Theorem

4.6.1. Consider E1,1
2 = H1(Br/B1,H

1(B1,−α)). Let’s first look at H1(B1,−α), which is given

to us in [Jan2, 3.5]. In general H1(B1,−α) = k except when Φ is of type A3, D4, Dn in the

following cases.

(i) If Φ = A3, then

H1(B1,−α1) = k ⊕ (−ω1 + ω3)
(1)

and

H1(B1,−α3) = k ⊕ (ω1 − ω3)
(1)

(ii) If Φ = D4, then

H1(B1,−α1) = k ⊕ (−ω1 + ω3)
(1) ⊕ (−ω1 + ω4)

(1),

H1(B1,−α3) = k ⊕ (ω1 − ω3)
(1) ⊕ (−ω3 + ω4)

(1),

and

H1(B1,−α4) = k ⊕ (ω1 − ω4)
(1) ⊕ (ω3 − ω4)

(1).

(iii) If Φ = Dn, then

H1(B1,−αn−1) = k ⊕ (−ωn−1 + ωn)(1)

and

H1(B1,−αn) = k ⊕ (ωn−1 − ωn)(1).

So, now we can apply [BNP1, Thm 2.8(C)] and we have that E1,1
2 vanishes. Hence

E2,0
2 = E1,1

2 = E0,2
2 = 0 in all cases and so H2(Br,−α) = 0.

Now assume l > 0. We use the LHS spectral sequence again.

Ei,j
2 = Hi(Br/Bl,H

j(Bl,−plα)) ⇒ Hi+j(Br,−plα).
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First consider Ei,1
2 = Hi(Br/Bl,H

1(Bl, k) ⊗ −plα). By [BNP1, Thm 2.8(C)] we have that

Ei,1
2 = 0. From the case l = 0, we have

E2,0
2 = H2(Br/Bl,−plα) ∼= H2(Br−l,−α)(l) = 0.

So, H2(Br,−plα) = E0,2
2 . From Lemma 5.1.1, one can conclude

E0,2
2 = HomBr/Bl

(k,H2(Bl, k)⊗ plα) ∼= HomBr/Bl
(k,H2(B1, k)

(l−1) ⊗−plα) ∼= k.

Hence, the result follows.

For (b)-(j) the argument is analogous. As before, the case r = 1 follows from Corollary

4.6.3. For r > 1 and l = 0, we use the spectral sequence

Ei,j
2 = Hi(Br/B1,H

j(B1,−λ)) ⇒ Hi+j(Br,−λ)

for λ defined as in the statement of the theorem for these cases. Note that in all of these

cases, H1(B1,−ωi) = 0 and so one immediately gets Ei,1
2 = 0 and as before Ei,0

2 = 0 = Ei,2
2 .

For the case l > 0, the same argument is used as the −plα case. �

5.3 case iii: λ arbitrary

To compute H2(Br, λ) for λ 6∈ prX(T ), let’s first start with some special computations when

Φ is not simply laced. Define the following indecomposable B-modules, where all of the

factors are listed from top to bottom:

• NBn is the two-dimensional indecomposable B-module with factors α3 and k.

Furthermore, NBn
∼= H1(B1,−αn−1)

(−1) [Jan2, 3.6].

• NCn is the n-dimensional indecomposable B-module with factors

ω1, ω2 − ω1, ω3 − ω2, . . . , ωn − ωn−1.

Furthermore, NCn
∼= H1(B1, k)

(−1). [Jan2, 3.6]

• NF4 is the three-dimensional indecomposable B-module with factors α3 + α4, α3, k.

Furthermore NF4
∼= H1(B1,−α2)

(−1) [Jan2, 3.6].
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• NG2 is the two-dimensional indecomposable B-module with factors α2 and k.

Furthermore NG2
∼= H1(B1,−α2)

(−1) [Jan2, 3.7].

Notice that if N is one of the above modules, then N ⊗ λ remains indecomposable for

any weight λ.

Lemma 5.3.1. (a) If Φ is of type Bn, F4, G2, then H1(U1, N) ∼= H1(u, N), where N is one

of the modules defined above.

(b) If Φ is of type Bn, F4, G2, then H1(U1, N) is defined as follows:

(i) H1(U1, NBn) has a T -basis {α1, α2, . . . , αn−1, αn−1 + αn, 2αn, αn−1 + 2αn}.

(ii) H1(U1, NCn) has a T -basis

{α1, α2, . . . , αn−2, αn, αn−1 + αn, 2αn−1, 2αn−1 + αn, αn−2 + 2αn−1}

(iii) H1(U1, NF4) has a T -basis {α1, α2, α4, α2 + α3, 2α3, α2 + 2α3, 2α3 + α4}.

(iv) H1(U1, NG2) has a T -basis {α1, α1 + α2, 2α2, 2α1 + α2}.

Proof. (a) Consider the following exact sequence:

0 → H1(U1, N) ↪→ H1(u, N) → Homs(u, Nu)

where Homs(u, Nu) is the set of all maps that are additive and satisfy the property:

φ(ax) = apφ(x). In our case we have that Homs(u, Nu) ∼= (u∗)(1) So, we now have the

following exact sequence: 0 → H1(U1, N) ↪→ Λ1(u∗) ⊗ N → (u∗)(1) Since u∗ is spanned by

the negative roots, then this last map is the 0-map. Therefore, H1(U1, N) ∼= H1(u, N).

(b) To calculate H1(u, N), we use [Jan1, I.9.15]: k ⊗N → u∗ ⊗N → Λ2(u∗)⊗N.

So, it is first necessary to calculate ker(u∗ ⊗N → Λ2(u∗)⊗N) by [Jan2, I.9.17]

di(m⊗ ψ) =
∑

j

mj ⊗ (φj ∧ ψ) +m⊗ d1
i (ψ),
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where d′i is the differential defined in Section 2.1 and ψ ∈ Φ. For example, when Φ is of

type B3, then N is an indecomposable B-module with factors α3 = m1 and k = m0. Then

xγ ·m0 = 0 and

xγ ·m1 =

 m0 γ = −α3

0 else

Therefore, d0(m0) = 0 and d0(m1) = x∗−α3
⊗ m0. Furthermore, we get that

d1(m0 ⊗ ψ) = m0⊗d′1(ψ) and d1(m1⊗ψ) = m0⊗(x−α3∧ψ) + m1⊗d′1(ψ). It is necessary to

determine when any linear combination of these maps (both with the same map) returns 0.

After checking all possible weights, the possible weights are {α1, α2, α3, α2+α3, α2+2α3, 2α3}.

Now it is necessary to check which weights are in the previous image k ⊗N → u∗ ⊗N . The

weight α3 is in the previous image because α3 is one of the factors of our module and

1⊗ α3 = α3 ⊗ 1. The other calculations are similar. �

Theorem 5.3.2. (a) If Φ is of type Bn, then

H2(Br, NBn⊗λ)(−r) ∼=



ν if λ = prν − plα, α ∈ ∆, 0 ≤ l < r and α ∈ ∆

for l 6= r − 1 if α = αn−1, and l 6= 0 if α = αn

ν if λ = pγ − (αn−1 + αn)

M ⊗ ν if λ = prν − pr−1αn−1

M ⊗ ν if λ = prν

0 otherwise

where M is an indecomposable module with factors αn and k.
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(b) If Φ is of type Cn

H2(Br, NCn ⊗ λ)(−r) ∼=



ν if λ = prν − plα, with α ∈ ∆, 0 ≤ l < r and

where l 6= r − 1 if α = αn, αn−2 and l 6= 0 if

α = αn−1

ν if λ = prν − (αn−1 + αn)

M ⊗ ν if λ = prν − pr−1α where α ∈ {αn−2, αn}

M ⊗ ν if λ = prν

0 else

where M is an indecomposable module with factors αn−1 and k.

(c) If Φ is of type F4

H2(Br, NF4 ⊗ λ)(−r) ∼=



ν if λ = prν − plα, with ≤ l < r and α ∈ ∆

l 6= r − 1 when α ∈ {α2, α4}

ν if λ = pγ − (α2 + α3)

ν if λ = pγ − (α3 + α4)

M ⊗ ν if λ = prν − pr−1α for α ∈ {a2, α4}

ν if λ = prν

0 otherwise

where M is the two-dimensional indecomposable module with factors α3 and k.

(d) If Φ is of type G2

H2(Br, NG2 ⊗ λ)(−r) ∼=



ν if λ = prν − plα, α ∈ ∆0 ≤ l < r − 1,

l 6= 0 when α = α2

ν if λ = pγ − (α1 + α2)

M ⊗ ν if λ = prν − pr−1α2

ν if λ = prν

0 otherwise

where M1 is the two-dimensional indecomposable module with factors α1 and k.
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5.4 Statement of Theorem

With the use of the previous calculations, we can compute H2(Br, λ) for any r and λ ∈ Xr(T ).

Theorem 5.4.1. Let p = 2 and λ ∈ Xr(T ). Then

(a) If Φ is not of type A3, Bn, Cn, Dn, F4, or G2, then

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 2 or 0,

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

ν(r) if λ = prν − plα, with 0 < l < r, α ∈ ∆

ν(r) if λ = prν − ptβ − plα, with 0 ≤ l < t < r,

α, β ∈ ∆

0 else

(b) If Φ is of type A3, then

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = prν

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

ν(r) if λ = prν − plα, with 0 < l < r, α ∈ ∆

ν(r) if λ = prν − ptβ − plα, with

0 ≤ l < t < r, α, β ∈ ∆

ν(r) if λ = prν + pr−1α2 − plα, with

0 ≤ l < r − 1, α ∈ ∆

(ν + ω1)
(r) ⊕ (γ + ω3)

(r) if λ = prν + pr−1ω2 − plα, with

0 ≤ l < r − 1, α ∈ ∆

0 else
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(c) If Φ is of type B3. Then,

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1

ν(r) if λ = prν − ptβ − plα, with

0 ≤ l < t < r, α, β ∈ ∆

ν(r) λ = prν − plα with 0 ≤ l < r, α ∈ ∆

(ν + ω1)
(r) ⊕ (ν + ω3)

(r) λ = prν − pr−1α2 − plα, with

0 ≤ l < r − 1, α ∈ ∆

ν(r) λ = prν − pl+1(α2 + α3)− plα2, with

0 ≤ l < r − 1

M
(r)
B3
⊗ ν(r) λ = prν − pr−1α2 − plα, with

0 ≤ l < r − 1, α ∈ ∆

M
(r)
B3
⊗ ν(r) λ = prν − pr−1α3 − plα2 with

0 ≤ l < r − 1,

0 else
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(d) If Φ is of type B4. Then,

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1

ν(r) if λ = prν − ptβ − plα, with 0 ≤ l < t < r,

α, β ∈ ∆

ν(r) λ = prν − plα with 0 ≤ l < r, α ∈ ∆

ν(r) λ = prν − pl+1(α3 + α4)− plα2, with

0 ≤ l < r − 1

(ω1 ⊕MB4)
(r) ⊗ ν(r) λ = prν − pr−1αi − plα, with i ∈ {1, 3},

0 ≤ l < r − 1, α ∈ ∆

M
(r)
B4
⊗ ν(r) λ = prν − pr−1α4 − plα3 with

0 ≤ l < r − 1,

0 else
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(e) If Φ is of type Bn. Then,

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1

ν(r) if λ = prν − ptβ − plα, with 0 ≤ l < t < r,

α, β ∈ ∆

ν(r) λ = prν − plα with 0 ≤ l < r, α ∈ ∆,

and l 6= r − 1 if α = αn−1

ν(r) λ = prν − pl+1(αn−1 + αn)− plαn−1 with

0 ≤ l < r − 1

M
(r)
Bn
⊗ ν(r) λ = prν − pr−1αn−1 − plα, with

0 ≤ l < r − 1,

M
(r)
Bn
⊗ ν(r) λ = prν − pr−1αn − plαn−1, with

0 ≤ l < r − 1, α ∈ ∆

0 else
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(f) If Φ is of type Cn. Then,

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

ν(r) if λ = prν + pl(w · 0) with 0 ≤ l < r − 1,

l(w) = 2

ν(r) if λ = prν − plα with 0 ≤ l < r, α ∈ ∆

and l 6= r − 1 if α = αn

ν(r) if λ = prν − ptβ − plα with

0 ≤ l < t < r, α, β ∈ ∆

ν(r) λ = prν − pl(αn−1 + αn) with

0 ≤ l < r − 1,

M (r) ⊗ ν(r) if λ = prν − pr−1αn − plα with

0 ≤ l < r − 1, α ∈ ∆

M (r) ⊗ ν(r) if λ = prν − pr−1α where α ∈ {αn−1, αn}

H1(Br−1,M
(−1) ⊗ λ1) ⊕ λ = pλ1

H2(Br−1, λ1)

0 else

with M defined as in Theorem 5.3.2.
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(g) If Φ is of type D4, then

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r) if λ = pr−1(w · 0 + pν)

with l(w) = 2, 0

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

ν(r) if λ = prν − plα, with 0 < l < r,

α ∈ ∆

ν(r) if λ = prν − ptβ − plα,

with 0 ≤ l < t < r, α, β ∈ ∆

ν(r) if λ = prν + pr−1α2 − plα,

with 0 ≤ l < r − 1, α ∈ ∆

(ν + ω1)
(r)⊕ if λ = prν + pr−1ω2 − plα,

(ν + ω3)
(r) ⊕ (ν + ω4)

(r) with 0 ≤ l < r − 1, α ∈ ∆

0 else

(h) If Φ is of type Dn, n ≥ 5, then

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r) if λ = pr−1(w · 0 + pν) with l(w) = 2, 0

ν(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

ν(r) if λ = prν − plα, with 0 < l < r, α ∈ ∆

ν(r) if λ = prν − ptβ − plα, with 0 ≤ l < t < r,

α, β ∈ ∆

ν(r) if λ = prν + pr−1αi − plα, with

0 ≤ l < r − 1,

α ∈ ∆, i 6= n− 1, n

(ν + ωn−1)
(r) ⊕ (ν + ωn)(r) if λ = prν + pr−1ωn−2 − plα,

with 0 ≤ l < r − 1α ∈ ∆

0 else
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(i) If Φ is of type F4. Then

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pv) with l(w) = 0, 2

ν(r) if λ = prν + plw · 0 with l(w) = 2,

0 ≤ l < r − 1

ν(r) if λ = prν − plα with 0 ≤ l ≤ r − 1, α ∈ ∆

ν(r) if λ = prν − ptβ − plα with 0 ≤ l < t < r

α, β ∈ ∆

ν(r) if λ = prν − pl+1(α3 + β)− plα2 with

0 ≤ l < r − 1, β ∈ {α2, α4}

M
(r)
F4
⊗ ν(r) if λ = prν − pr−1α2 − plα with

0 ≤ l < r − 1, α ∈ ∆

M (r) ⊗ ν(r) if λ = prrν − pr−1α4 − plα2 with

0 ≤ l < r − 1

0 else

with M defined as in Lemma 5.3.1(b)

(j) If Φ is of type G2. Then,

H2(Br, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

ν(r) if λ = prν + plw · 0 with l(w) = 2,

0 ≤ l < r − 1

ν(r) if λ = prν − plα with 0 ≤ l < r, α ∈ ∆

ν(r) if λ = prν − ptβ − plα with 0 ≤ l < t < r

α, β ∈ ∆

ν(r) if λ = prν − pl+1(α1 + α2)− plα2 with

0 ≤ l < r − 1

M
(r)
G2
⊗ ν(r) if λ = prν − pr−1α2 − plα with

0 ≤ l < r − 1, α ∈ ∆

0 else



50

Proof. We will use induction on r. For r = 1, the claim reduces to Theorem 4.6.1. Suppose

r > 1. Set λ = λ0 + pλ1 where λ0 ∈ X1(T ) and λ1 ∈ X(T ). From the LHS spectral sequence

Ei,j
2 = Hi(Br/B1,H

j(B1, λ0)⊗ pλ1) ⇒ Hi+j(Br, λ).

Case 1: λ0 6≡ 0 and λ0 6≡ −α mod pX(T ), with α ∈ ∆.

In this case we have Ei,0
2 = 0 and Ei,1

2 = 0 [Jan2, 3.2]. Then, we have

H2(Br, λ) = E2 ∼= E0,2
2 = HomBr/B1(k,H

2(B1, λ0)⊗ pλ1.

by Lemma 5.1.1 this expression is zero unless λ0 = w · 0 + pνw for some w ∈ W with

l(w) = 2 and νw as given in Lemma 4.3.1. Assume λ0 is of this form. Then by Theorem

4.6.1, the B-module H2(B1, λ0) has simple socle of weight pνw and E0,2
2 vanishes unless

p(νw + λ1) ∈ prX(T ). This implies λ0 = w · 0 + prν with l(w) = 2 and ν ∈ X(T ). Moreover,

H2(Br, λ) ∼= ν(r) for such weights. To summarize: if λ0 6≡ 0 and λ0 6≡ −α mod pX(T ), with

α ∈ ∆, and r > 1 then

H2(Br, λ) ∼=

 ν(r) if λ = prν + w · 0, with l(w) = 2,

0 else

Case 2: Suppose λ0 ≡ −α mod pX(T ), with α ∈ ∆.

Then λ0 = pωα − α by [Jan2, 3.3], except in the following cases:

• Φ is of type Bn with α = αn−1, then λ0 = 2(ωn−1 − ωn)− αn−1.

• Φ is of type Cn with α = αn, then λ0 = 2(−2ωn−1 + ωn)− αn.

• Φ is of type F4 with α = α2, then λ0 = 2(ω2 − ω3)− α2.

• Φ is of type G2 with α = α2, then λ0 = 2(−ω1 + ω2)− α2.

If Φ 6= Cn with λ ≡ −αn mod pX(T ), then Ei,0
2 = 0. By Corollary 4.6.3, it follows that

Ei,2
2 = 0. Therefore

H2(Br, λ) ∼= E1,1
2 = H1(Br/B1,H

1(B1, λ0)⊗ pλ1).

Now assume that Φ is of type Cn. Then by [Jan2, 3.5] we have

E1,1
2
∼= H1(Br/B1, p(ωα + λ1)) ∼= H1(Br−1, ωα + λ1)

(1).



51

Now, [BNP2, 2.8] implies that E1,1
2 = 0 unless ωα + λ1 = pr−1ν − pk−1β for some β ∈ ∆ and

some 0 < k < r. Moreover, in this case H2(Br, λ) ∼= ν(r), except in the following cases:

• if Φ = Bn, n 6= 4, β = αn−1 and k = r − 1; in which case H2(Br, λ) ∼= M
(r)
Bn
⊗ ν(r)

• if Φ = B4, β = αi, i ∈ 1, 3 and k = r − 1; in which case H2(Br, λ) ∼= M
(r)
B4
⊗ ν(r)

• if Φ = Cn, β = αn and k = r − 1; in which case H2(Br, λ) ∼= MCn ⊗ ν(r)

• if Φ = F4, β = α2 and k = r − 1; in which case H2(Br, λ) ∼= MF4 ⊗ ν(r)

• if Φ = G2, β = α2 and k = r − 1; in which case H2(Br, λ) ∼= MG2 ⊗ ν(r)

If Φ is of type A3. Here pωi − αi = ω2 for i ∈ {1, 3}. Now applying [Jan2, 3.5(b)] yields

E1,1
2
∼= H1(Br/B1, p(ω1⊕ω3)⊗ pλ1) ∼= H1(Br−1, ω1 +λ1)

(1)⊕H1(Br−1, ω3 +λ1)
(1). As before,

by [BNP2, 2.8] the cohomology vanishes unless λ = prν−pkαi−α where i ∈ {1, 3}. Moreover,

H2(Br, λ) ∼= γ(r), unless k = r − 1, in which case

H2(Br, λ)(−r) ∼= γ ⊕ (γ + (−1)j(ω1 − ω3)).

Adding prγw as defined in Lemma 4.3.1 to λ results in the more symmetric statement

H2(Br, p
rγ + pr−1ω2 − α) ∼= (γ + ω1)

(r) ⊕ (γ + ω2)
(r).

If Φ is of type Dn, then by similar computations as to type A3, it follows that if Φ = D4

then H2(Br, p
rγ + pr−1ω2 − α) ∼= (γ + ω1)

(r) ⊕ (γ + ω3)
(r) ⊕ (γ + ω4)

(r) and if Φ = Dn for

n ≥ 5 we have H2(Br, p
rγ + pr−1ωn−2 − α) ∼= (γ + ωn−1)

(r) ⊕ (γ + ωn)(r).

If Φ is of type Bn with λ0 ≡ αn−1 (mod pX(T )), or Φ is of type F4 with λ0 ≡ α2

(mod pX(T )), or Φ is of type G2 with λ0 ≡ α2 (mod pX(T )). Then, define ν ∈ X(T )

via λ = pν − αn−1. Then from [Jan2, 3.6] H1(B1, λ) ∼= M (1) ⊗ ν(1) and so H2(Br, λ) ∼=

H1(Br−1,M ⊗ ν)(1) and apply Theorem 5.3.2.

Furthermore, if Φ is of type B3, then by similar computations from above, we have that

H2(Br, λ) ∼= (γ+ω1)
(r)⊕(γ+ω3)

(r) when λ = prω1−pr−1α1−α = prω3−pr−1α3−α. If Φ is of

type B4, then by the same computations as in case A3 and the results for Bn above show that

H2(Br, λ) ∼= (ω1 +γ)(r)⊕ (MB4⊗γ)(r) when λ = prω1−pr−1α1−α = pr(ω3−ω4)−pr−1α3−α

If Φ = Cn and α = αn, then λ0 ≡ 0 (mod pX(T )), which is excluded.
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Case 3: Now assume λ0 = 0. First assume that Φ is not of type Cn. Then Ei,1
2 = 0 for

all i by [Jan2, 3.3]. From Lemma 5.1.1 one obtains that E0,2
2 = 0 unless λ = prγ − pα, with

α ∈ ∆ or if λ is one of those listed in (i)-(iv) or (vi)-(viii), then by Lemma 5.1.1(B), then

H2(Br, λ) ∼= ν(r), as claimed. Now if E0,2
2 = 0. This implies that

E2 = E2,0
2
∼= H2(Br/B1, pλ1) ∼= H2(Br−1, λ1)

(1).

If Φ is of type Cn, then by Lemma 5.1.1

E0,2
2 = HomBr/B1(k,H

2(B1, k)
(1) ⊗ pλ1) ∼= HomBr−1(k,H

2(B1, k)⊗ λ1)
(1) = 0.

Now, consider, E2,0
2 = H2(Br/B1,HomB1(k, pλ1)) ∼= H2(Br−1, λ1)

(1) and

E0,1
2 = HomBr/B1(k,H

1(B1, k)⊗ pλ1) ∼= HomBr−1(k,M ⊗ λ1)
(1) and the map

d2 : E0,1
2 → E2,0

2 . We want to show that d2 is the 0-map. But, E0,1
2 6= 0 if and only if

λ1 = pr−1ν − (ωn − ωn−1), and E2,0
2
∼= H2(Br−1, p

r−1ν − (ωn − ωn−1)) = 0, by our previous

calculations with case (i).

Now, consider E1,1
2 = H1(Br/B1,H

1(B1, k)⊗pλ1) ∼= H1(Br−1,M⊗λ1), whereM is defined

as in Section 5.3 (as in [Jan2]). Since E1,1
2 6= 0, then we must consider E3,0

2 . We want to show

d2 : E1,1
2 → E3,0

2 is the zero-map. Note that the factors of M are not in the root lattice, and

so for E1,1
2 6= 0, then λ1 6∈ ZΦ. For λ1 6∈ ZΦ, then E3,0

2 = H3(Br−1, λ1) = 0 by [Jan1, II.4.10].

Therefore, d2 is the zero-map. �



Chapter 6

B–Cohomology

6.1

Using the Br–cohomology results, the B–cohomology and the Gr–cohomology can both be

computed. Here, we will calculate H2(B, λ) for all λ ∈ X(T ). Cline, Parshall, and Scott [CPS]

gives a relationship between the Br-cohomology and the B-cohomology:

H2(B, λ) ∼= lim
←−

H2(Br, λ).

Assume that λ ∈ X(T ) with H2(B, λ) 6= 0, then λ 6= 0. Choose s > 0 such that

(i) the natural map Hn(B, λ) → Hn(Br, λ) is nonzero for all r ≥ s.

By choosing a possibly larger s, we can further assume that

(ii) | 〈λ, α∨〉 | < ps−1 for all α ∈ ∆.

From Theorem 5.4.1 and condition (ii), then H2(Br, λ) is one-dimensional for all r ≥ s.

Furthermore, since H2(B, λ) has trivial B-action, condition (i) implies that H2(Br, λ) ∼= k

for all r ≥ s.

On the other hand, if there exists an integer s such that H2(Br, λ) ∼= k for all r ≥ s, then

H2(B, λ) ∼= lim
←−

H2(Br, λ) ∼= k. Therefore, Theorem 5.4.1 yields:
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Theorem 6.1.1. Let p = 2 and λ ∈ X(T ).

(a) If Φ is simply laced, then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −ptβ − plα, with 0 ≤ l < t and α, β ∈ ∆,

0 else.

(b) If Φ is of type Bn, then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −ptβ − plα, with 0 ≤ l < t and α, β ∈ ∆,

k if λ = −pl+1(αn−1 + αn)− plαn−1 with 0 ≤ l,

0 else.

(c) If Φ is of type Cn, then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −ptβ − plα, with 0 ≤ l < t and α, β ∈ ∆,

k if λ = −pl+1(αn−1 + αn) with 0 ≤ l,

0 else.

(d) If Φ is of type F4, then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −ptβ − plα, with 0 ≤ l < t and α, β ∈ ∆,

k if λ = −pl+1(α3 + β)− plα2 with 0 ≤ l and β ∈ {α2, α4},

0 else.
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(e) If Φ is of type G2, then

H2(B, λ) ∼=



k if λ = plw · 0, with 0 ≤ l, l(w) = 2,

k if λ = −plα, with 0 < l and α ∈ ∆,

k if λ = −ptβ − plα, with 0 ≤ l < t and α, β ∈ ∆,

k if λ = −pl+1(α1 + α2)− plα2 with 0 ≤ l,

0 else.

Proof. We want condition (ii) above to be satisfied, that is:

| 〈λ, α∨〉 | < ps−1 for all α ∈ ∆

For example, consider the case when Φ = A3 and λ = prν+ pr−1α2− plβ. Fix s large enough

such that s ≤ r. We want the following inequality to be satisfied.

|
〈
prν + pr−1α2 − plβ, α∨

〉
|

= |pr 〈ν, α∨〉+ pr−1 〈α2, α
∨〉 − pl 〈β, α∨〉 | < ps−1

Therefore,

|pr−s+1 〈ν, α∨〉+ pr−s 〈α2, α
∨〉 − pl−s+1 〈β, α∨〉 | < 1

Note that 〈ν, α∨〉 ∈ Z, 〈α2, α
∨〉 = −1, 2, and 〈β, α∨〉 = 0,−1, 2. Since the left hand side

must be < 1, then we have that ν = 0. And, so we are left with

|pr−s 〈α2, α
∨〉 − pl−s+1 〈β, α∨〉 | < 1.

But, since r ≥ s then if 〈α2, α
∨〉 = −1 and I am subtracting something to result in the

left hand side being greater than 1, then the inequality is not satisfied for any value of

< 〈α2, α
vee〉.

Now consider, 〈α2, α
∨〉 = 2 then the second term, 〈α2,∨〉, is never greater than 1 and

thus |pr−s 〈α2, α
∨〉−pl−s+1 〈β, α∨〉 | 6< 1. Therefore, λ doesn’t satisfy condition (ii) above, and

so for this particular λ, H2(B, λ) = 0. A similar computation is used for the other cases. �



Chapter 7

Gr-Cohomology

Now that the Br-cohomology has been calculated, the Gr-cohomology of induced modules

(H0(λ), where λ ∈ X(T )+) can be determined. From [Jan1, II.12.2], one has the following

isomorphism, which holds independently of the prime:

H1(Gr, H
0(λ))(−r) ∼= indG

B H1(Br, λ)(−r)

for any λ ∈ X(T )+. Recall the following theorem from [BNP2, 6.1], which generalizes the

above isomorphism.

Theorem 7.0.2. Let λ ∈ X(T )+ and p be an arbitrary prime. Then

H2(Gr, H
0(λ))(−r) ∼= indG

B H2(Br, λ)(−r).

7.1 r = 1 case

In particular, one has the following isomorphism H2(G1, H
0(λ))(−1) ∼= indG

B(H2(B1, λ)(−1)).

Using the results from the B1-cohomology, the G1-cohomology can easily be determined.

Theorem 7.1.1. Let p = 2

(a) Let λ = pν, then

H2(G1, H
0(λ)) ∼= indG

B(u∗ ⊗ ν)(1)

except when Φ is of type A3, Bn, Cn, Dn, F4, or G2. Then

H2(G1, H
0(λ)) ∼= indG

B(H2(B1, k)⊗ ν)(1).
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(b) If λ 6∈ pX(T ) and H2(G1, H
0(λ)) 6= 0 then λ = w · 0+ pν with l(w) = 2 and ν ∈ X(T ).

(c) Let λ = sαsβ · 0 + pν where α, β ∈ ∆ are not connected and are not separated by a

single vertex. Furthermore suppose Φ is not of type Bn with w = sαi
sαn−1 and Φ is not

of type Cn with w = sαi
sαn, then

H2(G1, H
0(λ)) ∼= H0(ν)(1).

If the Br-cohomology involves an indecomposable B-module, then it is necessary to deter-

mine the G1-cohomology structure separately. First consider the following modules, with the

factors listed from top to bottom.

• M has factors αi and k corresponding to w = sαsβ where α, β are separated by a single

vertex, unless otherwise noted in one of the following modules.

• If Φ = Bn and w = sαn−2sαn , then M has factors αn−1 and k

• If Φ = Bn and w = sαn−3sαn−1 then M has factors αn−2 and k

• If Φ = Bn and w = sαi
sαn−1 with i 6= n− 3 then M has factors αn and k.

• If Φ = Cn and w = sαi
sαn with i 6= n− 2 then M has factors αn−1 and k.

• If Φ = Dn and w = sαn−3sαn−1 then M has factors αn−2 + αn, αn−2 and k.

• If Φ = Dn and w = sαn−3sαn then M has factors αn−2 + αn−1, αn−2 and k.

• If Φ = E6 and w = sα2sα3 then M has factors α4 + α5 + α6, α4 + α5, α4 and k.

• If Φ is of type E6, E7, E8 and w = sα2sα5 then M has factors α1 + α3 + α4, α3 + α4, α4

and k.

• If Φ is of type E6, E7, E8 and w = sα3sα5 then M has factors α2 + α4, α4 and k.

• If Φ = E7 and w = sα2sα3 then M has factors α4 +α5 +α6 +α7, α4 +α5 +α6, α4 +α5, α4

and k.
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• If Φ = E8 and w = sα2sα3 then M has factors α4 + α5 + α6 + α7 + α8, α4 + α5 + α6 +

α7, α4 + α5 + α6, α4 + α5, α4 and k.

• If Φ = F4 and w = sα1sα3 then M has factors α2 + α3, α2 and k.

If λ = w · 0 + pν ∈ X(T )+ for w ∈ W where w is one of the reflections listed above, then

H2(G1, H
0(λ)) ∼= indG

B(M ⊗ ν)(1).

The structure of these modules are listed in Appendix C.

7.2 General case

For r > 1, using the isomorphism in Theorem 7.0.2, we can use the Br cohomology results,

found in Theorem 5.11 and apply the induction functor to get the following theorem.

Theorem 7.2.1. Let p = 2, r > 1 and λ ∈ X(T )+. Then

(a) If Φ is not of type A3, Bn, Cn, Dn, F4, or G2, then

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2,

H0(ν)(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

H0(ν)(r) if λ = prν − plα, with 0 < l < r, α ∈ ∆

H0(ν)(r) if λ = prν − ptβ − plα

with 0 ≤ l < t < r, α, β ∈ ∆

0 else
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(b) If Φ = A3, then

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν)

H0(ν)(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

H0(ν)(r) if λ = prν − plα, with 0 < l < r,

α ∈ ∆

H0(ν)(r) if λ = prν − ptβ − plα,

with 0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) if λ = prν + pr−1α2 − plα,

with 0 ≤ l < r − 1, α ∈ ∆

H0(ν + ω1)
(r) ⊕H0(ν + ω3)

(r) if λ = prν + pr−1ω2 − plα,

with 0 ≤ l < r − 1, α ∈ ∆

0 else
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(c) If Φ is of type B3. Then,

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν), l(w) = 0, 2

H0(ν)(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1

H0(ν)(r) if λ = prν − ptβ − plα,

with 0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) λ = prν − plα with 0 ≤ l < r, α ∈ ∆

H0(ν + ω1)
(r) ⊕H0(ν + ω3)

(r) λ = prν − pr−1α2 − plα, with

0 ≤ l < r − 1, α ∈ ∆

H0(ν)(r) λ = prν − pl+1(α2 + α3)− plα2 with

0 ≤ l < r − 1

indG
B(M

(r)
B3
⊗ ν)(r) λ = prν − pr−1α2 − plα, with

0 ≤ l < r − 1, α ∈ ∆

indG
B(M

(r)
B3
⊗ ν)(r) λ = prν − pr−1α3 − plα2 with

0 ≤ l < r − 1,

0 else
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(d) If Φ is of type B4. Then,

H2(Gr, λ) ∼=



H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

H0(ν)(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1

H0(ν)(r) if λ = prν − ptβ − plα,

with 0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) λ = prν − plα with 0 ≤ l < r, α ∈ ∆

ν(r) λ = prν − pl+1(α3 + α4)− plα2

with 0 ≤ l < r − 1

H0(ω1 + ν)(r)⊕ λ = prν − pr−1αi − plα with i ∈ {1, 3},

indG
B(MB4 ⊗ ν)(r) 0 ≤ l < r − 1, α ∈ ∆

indG
B(M

(r)
B4
⊗ ν)(r) λ = prν − pr−1α4 − plα3

with 0 ≤ l < r − 1,

0 else
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(e) If Φ is of type Bn. Then,

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

H0(ν)(r) if λ = prν + plw · 0,

with l(w) = 2, 0 ≤ l < r − 1

H0(ν)(r) if λ = prν − ptβ − plα,

with 0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) λ = prν − plα with 0 ≤ l < r, α ∈ ∆

H0(ν)(r) λ = prν − pl+1(αn−1 + αn)− plαn−1

with 0 ≤ l < r − 1

indG
B(M

(r)
Bn
⊗ ν)(r) λ = prν − pr−1αn−1 − plα,

with 0 ≤ l < r − 1, α ∈ ∆

indG
B(M

(r)
Bn
⊗ ν)(r) λ = prν − pr−1αn − plαn−1

with 0 ≤ l < r − 1,

0 else
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(f) If Φ is of type Cn. Then,

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

H0(ν)(r) if λ = prν + pl(w · 0) with 0 ≤ l < r − 1,

l(w) = 2

H0(ν)(r) if λ = prν − plα with 0 ≤ l < r, α ∈ ∆

and l 6= r − 1 if α = αn

H0(ν)(r) if λ = prν − ptβ − plα with 0 ≤ l < t < r

α, β ∈ ∆

H0(ν)(r) λ = prν − pl+1(αn−1 + αn)− plαn−1

with 0 ≤ l < r − 1

indG
B(M ⊗ ν)(r) if λ = prν − pr−1αn − plα with

0 ≤ l < r − 1, α ∈ ∆

indG
B(M ⊗ ν)(r) if λ = prν − pr−1α where α ∈ {αn−1, αn}

indG
B H1(Br−1,M

(−1) ⊗ λ1) λ = pλ1, where λ1 ∈ Xr−1(T )

⊕ indG
B H2(Br−1, λ1)

0 else

with M defined in Lemma 5.3.1.
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(g) If Φ is of type D4, then

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r) if λ = pr−1(w · 0 + pν), l(w) = 2, 0

H0(ν)(r) if λ = prν + plw · 0 with l(w) = 2,

0 ≤ l < r − 1,

H0(ν)(r) if λ = prν − plα with 0 < l < r,

α ∈ ∆,

H0(ν)(r) if λ = prν − ptβ − plα with

0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) if λ = prγ + pr−1α2 − plα with

0 ≤ l < r − 1, α ∈ ∆

H0(ν + ω1)
(r) ⊕H0(ν + ω3)

(r) if λ = prγ + pr−1ω2 − plα with

⊕H0(ν + ω4)
(r) 0 ≤ l < r − 1, α ∈ ∆

0 else

(h) If Φ is of type Dn, n ≥ 5, then

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r) if λ = pr−1(w · 0 + pν), l(w) = 2, 0

H0(ν)(r) if λ = prν + plw · 0, with l(w) = 2,

0 ≤ l < r − 1,

H0(ν)(r) if λ = prν − plα, with 0 < l < r,

α ∈ ∆

H0(ν)(r) if λ = prν − ptβ − plα with

0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) if λ = prν + pr−1αi − plα with

0 ≤ l < r − 1, α ∈ ∆, i 6= n− 1, n

H0(ν + ωn−1)
(r) ⊕H0(ν + ωn)(r) if λ = prγ + pr−1ωn−2 − plα,

with 0 ≤ l < r − 1, α ∈ ∆

0 else
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(i) If Φ is of type F4. Then

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pv) with l(w) = 0, 2

H0(ν)(r) if λ = prν + plw · 0 with l(w) = 2,

0 ≤ l < r − 1

H0(ν)(r) if λ = prν − plα with 0 ≤ l ≤ r − 1,

α ∈ ∆

H0(ν)(r) if λ = prν − ptβ − plα with

0 ≤ l < t < rα, β ∈ ∆

H0(ν)(r) if λ = prν − pl+1(α3 + β)− plα2

with 0 ≤ l < r − 1, β ∈ {α2, α4}

indG
B(M

(r)
F4
⊗ ν)(r) if λ = prν − pr−1α2 − plα with

0 ≤ l < r − 1, α ∈ ∆

indG
B(M (r) ⊗ ν)(r) if λ = prrν − pr−1α4 − plα2

with 0 ≤ l < r − 1

0 else

(j) If Φ is of type G2. Then,

H2(Gr, λ) ∼=



indG
B H2(B1, w · 0 + pν)(r−1) if λ = pr−1(w · 0 + pν) with l(w) = 0, 2

H0(ν)(r) if λ = prν + plw · 0 with l(w) = 2,

0 ≤ l < r − 1

H0(ν)(r) if λ = prν − plα with 0 ≤ l < r, α ∈ ∆

H0(ν)(r) if λ = prν − ptβ − plα with

0 ≤ l < t < r, α, β ∈ ∆

H0(ν)(r) if λ = prν − pl+1(α1 + α2)− plα2

with 0 ≤ l < r − 1

indG
B(M

(r)
G2
⊗ ν)(r) if λ = prν − pr−1α2 − plα with

0 ≤ l < r − 1, α ∈ ∆

0 else
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The structure of the induced modules in the above theorems are described in Section

7.1 and Appendix C. This appendix demonstrates that H2(Gr, H
0(λ)) does have a good

filtration.



Bibliography

[And] H.H. Andersen, Extensions of modules for algebraic groups, Amer. J. Math., 106,

(1984), 489-504.

[AR] H.H. Andersen and T. Rian, B-cohomology, Journal of Pure and Applied Algebra,

209, (2007), 537-549.

[AJ] H.H. Andersen and J.C. Jantzen, Cohomology of induced representations for alge-

braic groups, Math. Ann., 269, (1984), 487-525.

[BNP1] C.P. Bendel, D.K. Nakano, and C. Pillen, Extensions for Frobenius kernels, J.

Algebra, 272, (2004), 476-511.

[BNP2] C.P. Bendel, D.K. Nakano, and C. Pillen, Second cohomology groups for Frobenius

kernels and related structures, Advances in Mathematics, 209, 2007, 162-197.

[CPS] E. Cline, B.J. Parshall, L. Scott, Cohomology, hyperalgebras, and representations,

J. Algebra, 63, (1980), 98-123.

[FP1] E.M. Friedlander and B.J. Parshall, On the cohomology of algebraic and related

finite groups, Invent. Math., 74, (1983), 85-117.

[FP2] E.M. Friedlander and B.J. Parshall, Cohomology of Lie algebras and algebraic

groups, Amer. J. Math, 108, (1986), 235-253.

[Hum] James E. Humphreys, Introduction to Lie Algebras and Representation Theory,

Graduate Texts in Mathematics, 9, Springer, New York, NY, 1972

67



68

[Jan1] J.C. Jantzen, Representations of Algebraic Groups, Second Edition, Mathematical

Surveys and Monographs, 107, AMS, Providence, RI, 2003

[Jan2] J.C. Jantzen, First cohomology groups for classical Lie algebras, Progress in Math-
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Appendix A

Cohomology Classes

Table A.1: The following table is a list of the explicit

cohomology classes that show up in the U1-cohomology

Φ w cohomology class

An sαi
sαi+2

φαi+1
⊗ φαi+αi+1+αi+2

+ φαi+αi+1
⊗ φαi+1+αi+2

1 ≤ i ≤ n− 2 φαi
⊗ φαi+2

sαi
sαi+2

φαi+1
⊗ φαi+αi+1+αi+2

+ φαi+αi+1
⊗ φαi+1+αi+2

1 ≤ i ≤ n− 2 φαi
⊗ φαi+2

Bn sαi
sαn−1 φαi

⊗ φαn−1+2αn

1 ≤ i ≤ n− 3 φαi
⊗ φαn−1

e φαi
⊗ φαi+2αi+1+2αi+2+...+2αn + φαi+αi+1

⊗ φαi+αi+1+2αi+2+...+2αn

+ . . .+ φαi+αi+1...+αn−1 ⊗ φαi+αi+1...+αn−1+2αn

+φαi+αi+1...+αn−1+αn ⊗ φαi+αi+1...+αn−1+αn

sαi
sαi+2

φαi+1
⊗ φαi+αi+1+αi+2

+ φαi+αi+1
⊗ φαi+1+αi+2

1 ≤ i ≤ n− 3 φαi
⊗ φαi+2

sαn−2sαn φαn−2 ⊗ φαn

Cn sαn−1sαn φαn−1 ⊗ φ2αn−1+αn

sαi
sαn φαi

⊗ φ2αn−1+αn

1 ≤ i ≤ n− 3 φαi
⊗ φαn

e φαn ⊗ φ2αi+2αi+1+...+2αn−1+αn + φαi+...+αn ⊗ φαi+...+αn
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sαi
sαi+2

φαi+1
⊗ φαi+αi+1+αi+2

+ φαi+αi+1
⊗ φαi+1+αi+2

1 ≤ i ≤ n− 4 φαi
⊗ φαi+2

φαn ⊗ φαn−3+2αn−2+αn−1+αn + φαn−2+αn ⊗ φαn−3+αn−2+αn−1+αn

+φαn−3+αn−2+αn ⊗ φαn−2+αn−1+αn

sαn−3sαn−1 φαn−2 ⊗ φαn−3+αn−2+αn−1 + φαn−3+αn−2 ⊗ φαn−2+αn−1

φαn−3 ⊗ φαn−1

φαn−1 ⊗ φαn−3+2αn−2+αn−1+αn + φαn−2+αn−1 ⊗ φαn−3+αn−2+αn−1+αn

+φαn−3+αn−2+αn−1 ⊗ φαn−2+αn−1+αn

Dn sαn−3sαn φαn−2 ⊗ φαn−3+αn−2+αn + φαn−3+αn−2 ⊗ φαn−2+αn

φαn−3 ⊗ φαn

φαi
⊗ φαi+2αi+1+...+2αn−2+αn−1+αn+

φαi+αi+1
⊗ φαi+αi+1+2αi+2+...+2αn−2+αn−1+αn

sαn−1sαn + . . .+ φαi+...+αn−1 ⊗ φαi+...+αn−2+αn , 1 ≤ i ≤ n− 3

φαn−1 ⊗ φαn

sα1sα4 φα3 ⊗ φα1+α3+α4 + φα1+α3 ⊗ φα3+α4

φα1 ⊗ φα4

sα4sα6 φα5 ⊗ φα4+α5+α6 + φα4+α5 ⊗ φα5+α6

φα4 ⊗ φα6

φα6 ⊗ φα2+α3+2α4+2α5+α6 + φα5+α6 ⊗ φα2+α3+2α4+α5+α6

φα4+α5+α6 ⊗ φα2+α3+α4+α5+α6 + φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6

E6 sα2sα3 φα5 ⊗ φα2+α3+2α4+α5 + φα4+α5 ⊗ φα2+α3+α4+α5

+φα2+α4+α5 ⊗ φα3+α4+α5

φα4 ⊗ φα2+α3+α4 + φα2+α4 ⊗ φα3+α4

φα2 ⊗ φα3
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φα1 ⊗ φα1+α2+2α3+2α4+α5 + φα1+α3 ⊗ φα1+α2+α3+2α4+α5

φα1+α3+α4 ⊗ φα1+α2+α3+α4+α5 + φα1+α2+α3+α4 ⊗ φα1+α3+α4+α5

sα2sα5 φα3 ⊗ φα2+α3+2α4+α5 + φα3+α4 ⊗ φα2+α3+α4+α5

φα2+α3+α4 ⊗ φα3+α4+α5

E6 φα4 ⊗ φα2+α4+α5 + φα2+α4 ⊗ φα4+α5

φα2 ⊗ φα5

φα2 ⊗ φα2+α3+2α4+α5 + φα2+α4 ⊗ φα2+α3+α4+α5 + φα2+α3+α4 ⊗ φα2+α4+α5

sα3sα5 φα4 ⊗ φα3+α4+α5 + φα3+α4 ⊗ φα4+α5

φα3 ⊗ φα5

sα1sα4 φα3 ⊗ φα1+α3+α4

φα1 ⊗ φα4

sα4sα6 φα5 ⊗ φα4+α5+α6 + φα4+α5 ⊗ φα5+α6

φα4 ⊗ φα6

sα5sα7 φα6 ⊗ φα5+α6+α7 + φα5+α6 ⊗ φα6+α7

φα5 ⊗ φα7

φα1 ⊗ φα1+α2+2α3+2α4+α5 + φα1+α3 ⊗ φα1+α2+α3+2α4+α5

φα1+α3+α4 ⊗ φα1+α2+α3+α4+α5 + φα1+α2+α3+α4 ⊗ φα1+α3+α4+α5

E7 sα2sα5 φα3 ⊗ φα2+α3+2α4+α5 + φα3+α4 ⊗ φα2+α3+α4+α5 + φα2+α3+α4 ⊗ φα3+α4+α5

φα4 ⊗ φα2+α4+α5 + φα2+α4 ⊗ φα4+α5

φα2 ⊗ φα5

φα2 ⊗ φα2+α3+2α4+α5 + φα2+α4 ⊗ φα2+α3+α4+α5 + φα2+α3+α4 ⊗ φα2+α4+α5

sα3sα5 φα4 ⊗ φα3+α4+α5 + φα3+α4 ⊗ φα4+α5

φα3 ⊗ φα5
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φα7 ⊗ φα2+α3+2α4+2α5+2α6+α7 + φα6+α7 ⊗ φα2+α3+2α4+2α5+α6+α7

+φα5+α6+α7 ⊗ φα2+α3+2α4+α5+α6+α7

+φα4+α5+α6+α7 ⊗ φα2+α3+α4+α5+α6+α7

+φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6+α7

E7 sα2sα3 φα6 ⊗ φα2+α3+2α4+2α5+α6 + φα5+α6 ⊗ φα2+α3+2α4+α5+α6

φα4+α5+α6 ⊗ φα2+α3+α4+α5+α6 + φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6

φα5 ⊗ φα2+α3+2α4+α5 + φα4+α5 ⊗ φα2+α3+α4+α5 + φα2+α4+α5 ⊗ φα3+α4+α5

φα4 ⊗ φα2+α3+α4 + φα2+α4 ⊗ φα3+α4

φα2 ⊗ φα3

sα1sα4 φα3 ⊗ φα1+α3+α4 + φα1+α3 ⊗ φα3+α4

φα1 ⊗ φα4

sα4sα6 φα5 ⊗ φα4+α5+α6 + φα4+α5 ⊗ φα5+α6

φα4 ⊗ φα6

sα5sα7 φα6 ⊗ φα5+α6+α7 + φα5+α6 ⊗ φα6+α7

φα5 ⊗ φα7

E8 sα6sα8 φα7 ⊗ φα6+α7+α8 + φα6+α7 ⊗ φα7+α8

φα6 ⊗ φα8

φα1 ⊗ φα1+α2+2α3+2α4+α5 + φα1+α3 ⊗ φα1+α2+α3+2α4+α5

+φα1+α3+α4 ⊗ φα1+α2+α3+α4+α5 + φα1+α2+α3+α4 ⊗ φα1+α3+α4+α5

sα2sα5 φα3 ⊗ φα2+α3+2α4+α5 + φα3+α4 ⊗ φα2+α3+α4+α5 + φα2+α3+α4 ⊗ φα3+α4+α5

φα4 ⊗ φα2+α4+α5 + φα2+α4 ⊗ φα4+α5

φα2 ⊗ φα5

φα2 ⊗ φα2+α3+2α4+α5 + φα2+α4 ⊗ φα2+α3+α4+α5 + φα2+α3+α4 ⊗ φα2+α4+α5

φα4 ⊗ φα3+α4+α5 + φα3+α4 ⊗ φα4+α5

sα3sα5 φα3 ⊗ φα5
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φα8 ⊗ φα2+α3+2α4+2α5+2α6+2α7+α8 + φα7+α8 ⊗ φα2+α3+2α4+2α5+2α6+α7+α8

+φα6+α7+α8 ⊗ φα2+α3+2α4+2α5+α6+α7+α8

+φα5+α6+α7+α8 ⊗ φα2+α3+2α4+α5+α6+α7+α8

+φα4+α5+α6+α7+α8 ⊗ φα2+α3+α4+α5+α6+α7+α8

+φα2+α4+α5+α6+α7+α8 ⊗ φα3+α4+α5+α6+α7+α8

E8 sα2sα3 φα7 ⊗ φα2+α3+2α4+2α5+2α6+α7 + φα6+α7 ⊗ φα2+α3+2α4+2α5+α6+α7

+φα5+α6+α7 ⊗ φα2+α3+2α4+α5+α6+α7

+φα4+α5+α6+α7 ⊗ φα2+α3+α4+α5+α6+α7

+φα2+α4+α5+α6+α7 ⊗ φα3+α4+α5+α6+α7

φα6 ⊗ φα2+α3+2α4+2α5+α6 + φα5+α6 ⊗ φα2+α3+2α4+α5+α6

+φα4+α5+α6 ⊗ φα2+α3+α4+α5+α6 + φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6

φα5 ⊗ φα2+α3+2α4+α5 + φα4+α5 ⊗ φα2+α3+α4+α5 + φα2+α4+α5 ⊗ φα3+α4+α5

φα4 ⊗ φα2+α3+α4 + φα2+α4 ⊗ φα3+α4

φα2 ⊗ φα3

φα3 ⊗ φα1+2α2+2α3 + φα2+α3 ⊗ φα1+α2+2α3 + φα1+α2+α3 ⊗ φα2+2α3

sα1sα3 φα2 ⊗ φα1+α2+α3 + φα1+α2 ⊗ φα2+α3

φα1 ⊗ φα3

φα2 ⊗ φ2α1+3α2+4α3+2α4 + φα1+α2 ⊗ φα1+3α2+4α3+2α4

+φα1+2α2+2α3 ⊗ φα1+2α2+2α3+2α4 + φα1+2α2+2α3+α4 ⊗ φα1+2α2+2α3+α4

F4 φα1 ⊗ φα1+2α2+4α3+2α4 + φα1+α2+2α3 ⊗ φα1+α2+2α3+2α4

+φα1+α2+2α3+α4 ⊗ φα1+α2+2α3+α4

e φα1 ⊗ φα1+2α2+2α3+2α4 + φα1+α2 ⊗ φα1+α2+2α3+2α4 + φα1+α2+α3+α4

φα1 ⊗ φα1+2α2+2α3 + φα1+α2 ⊗ φα1+α2+2α3 + φα1+α2+α3 ⊗ φα1+α2+α3

φα2 ⊗ φα2+2α3+2α4 + φα2+α3+α4 ⊗ φα2+α3+α4

φα2 ⊗ φα2+2α3 + φα2+α3 ⊗ φα2+α3

G2 e φα1 ⊗ φα1+2α2
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Remark A.0.2. In the above table, e denotes the identity element. When w = sαi
sαj

when

i and j are not connected and aren’t separated by a single vertex, then in all of the classical

types, there is a single cohomology class: φαi
⊗ φαj

. In the exceptional cases, there are some

other classes that occur, and are demonstrated in Appendix B.



Appendix B

weights and cohomology classes in exceptional cases

Table B.1: The extra cohomology classes in H2(U1, k),

explicitly written out, for the exception groups.

Φ cohomology class weight

φα5 ⊗ φα2+α3+2α4+α5 + φα4+α5 ⊗ φα2+α3+α4+α5 (0, 1, 1, 2, 2, 0)

+φα2+α4+α5 ⊗ φα3+α4+α5

φα6 ⊗ φα2+α3+2α4+2α5+α6 + φα5+α6 ⊗ φα2+α3+2α4+α5+α6 (0, 1, 1, 2, 2, 2)

+φα4+α5+α6 ⊗ φα2+α3+α4+α5+α6

+φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6

E6 φα3 ⊗ φα2+α3+2α4+α5 + φα3+α4 ⊗ φα2+α3+α4+α5 (0, 1, 2, 2, 1, 0)

+φα2+α3+α4 ⊗ φα3+α4+α5

φα1 ⊗ φα1+α2+2α3+2α4+α5 + φα1+α3 ⊗ φα1+α2+α3+2α4+α5 (2, 1, 2, 2, 1, 0)

+φα1+α3+α4 ⊗ φα1+α2+α3+α4+α5 + φα1+α2+α3+α4 ⊗ φα1+α3+α4+α5

φα2 ⊗ φα2+α3+2α4+α5 + φα2+α4 ⊗ φα2+α3+α4+α5 (0, 2, 1, 2, 1, 0)

+φα2+α3+α4 ⊗ φα2+α4+α5

φα5 ⊗ φα2+α3+2α4+α5 + φα4+α5 ⊗ φα2+α3+α4+α5 (0, 1, 1, 2, 2, 0, 0)

E7 +φα2+α4+α5 ⊗ φα3+α4+α5

φα6 ⊗ φα2+α3+2α4+2α5+α6 + φα5+α6 ⊗ φα2+α3+2α4+α5+α6 (0, 1, 1, 2, 2, 2, 0)

+φα4+α5+α6 ⊗ φα2+α3+α4+α5+α6

+φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6
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φα7 ⊗ φα2+α3+2α4+2α5+2α6+α7 (0, 1, 1, 2, 2, 2, 2)

+φα6+α7 ⊗ φα2+α3+2α4+2α5+α6+α7

+φα5+α6+α7 ⊗ φα2+α3+2α4+α5+α6+α7

+φα4+α5+α6+α7 ⊗ φα2+α3+α4+α5+α6+α7

+φα2+α4+α5+α6+α7 ⊗ φα3+α4+α5+α6+α7

E7 φα3 ⊗ φα2+α3+2α4+α5 + φα3+α4 ⊗ φα2+α3+α4+α5 (0, 1, 2, 2, 1, 0, 0)

+φα2+α3+α4 ⊗ φα3+α4+α5

φα1 ⊗ φα1+α2+2α3+2α4+α5 + φα1+α3 ⊗ φα1+α2+α3+2α4+α5 (2, 1, 2, 2, 1, 0, 0)

+φα1+α3+α4 ⊗ φα1+α2+α3+α4+α5

+φα1+α2+α3+α4 ⊗ φα1+α3+α4+α5

φα2 ⊗ φα2+α3+2α4+α5 + φα2+α4 ⊗ φα2+α3+α4+α5 (0, 2, 1, 2, 1, 0, 0)

+φα2+α3+α4 ⊗ φα2+α4+α5

φα5 ⊗ φα2+α3+2α4+α5 + φα4+α5 ⊗ φα2+α3+α4+α5 (0, 1, 1, 2, 2, 0, 0, 0)

+φα2+α4+α5 ⊗ φα3+α4+α5

φα6 ⊗ φα2+α3+2α4+2α5+α6 + φα5+α6 ⊗ φα2+α3+2α4+α5+α6 (0, 1, 1, 2, 2, 2, 0, 0)

+φα4+α5+α6 ⊗ φα2+α3+α4+α5+α6

+φα2+α4+α5+α6 ⊗ φα3+α4+α5+α6

E8 φα7 ⊗ φα2+α3+2α4+2α5+2α6+α7 (0, 1, 1, 2, 2, 2, 2, 0)

+φα6+α7 ⊗ φα2+α3+2α4+2α5+α6+α7

+φα5+α6+α7 ⊗ φα2+α3+2α4+α5+α6+α7

+φα4+α5+α6+α7 ⊗ φα2+α3+α4+α5+α6+α7

+φα2+α4+α5+α6+α7 ⊗ φα3+α4+α5+α6+α7

φα3 ⊗ φα2+α3+2α4+α5 + φα3+α4 ⊗ φα2+α3+α4+α5 (0, 1, 2, 2, 1, 0, 0, 0)

+φα2+α3+α4 ⊗ φα3+α4+α5
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φα8 ⊗ φα2+α3+2α4+2α5+2α6+2α7+α8 (0, 1, 1, 2, 2, 2, 2, 2)

+φα7+α8 ⊗ φα2+α3+2α4+2α5+2α6+α7+α8

+φα6+α7+α8 ⊗ φα2+α3+2α4+2α5+α6+α7+α8

+φα5+α6+α7+α8 ⊗ φα2+α3+2α4+α5+α6+α7+α8

+φα4+α5+α6+α7+α8 ⊗ φα2+α3+α4+α5+α6+α7+α8

+φα2+α4+α5+α6+α7+α8 ⊗ φα3+α4+α5+α6+α7+α8

E8 φα1 ⊗ φα1+α2+2α3+2α4+α5 + φα1+α3 ⊗ φα1+α2+α3+2α4+α5 (2, 1, 2, 2, 1, 0, 0, 0)

+φα1+α3+α4 ⊗ φα1+α2+α3+α4+α5

+φα1+α2+α3+α4 ⊗ φα1+α3+α4+α5

φα2 ⊗ φα2+α3+2α4+α5 + φα2+α4 ⊗ φα2+α3+α4+α5 (0, 2, 1, 2, 1, 0, 0, 0)

+φα2+α3+α4 ⊗ φα2+α4+α5

φα2 ⊗ φα1+α2+α3 + φα1+α2 ⊗ φα2+α3 (1, 2, 1, 0)

φα3 ⊗ φα1+2α2+2α3 + φα2+α3 ⊗ φα1+α2+2α3 + φα1+α2+α3 ⊗ φα2+2α3 (1, 2, 3, 0)

F4 φα2 ⊗ φα2+2α3 (0, 2, 2, 0)

φα2 ⊗ φα2+2α3+2α4 (0, 2, 2, 2)

φα1 ⊗ φα1+2α2+2α3 + φα1+α2 ⊗ φα1+α2+2α3 (2, 2, 2, 0)

φα1 ⊗ φα1+2α2+2α3+2α4 + φα1+α2 ⊗ φα1+α2+2α3+2α4 (2, 2, 2, 2)

φα1 ⊗ φα1+2α2+4α3+2α4 + φα1+α2+2α3 ⊗ φα1+α2+2α3+2α4 (2, 2, 4, 2)

φα2 ⊗ φ2α1+3α2+4α3+2α4 + φα1+α2 ⊗ φ2α1+2α2+4α3+2α4 (2, 4, 4, 2)

+φα1+2α2+2α3 ⊗ φα1+2α2+2α3+2α4

G2 φα1 ⊗ φα1+2α2 (2, 4)

φα1 ⊗ φα1+3α2 + φα1+α2 ⊗ φα1+2α2 (2, 3)



Appendix C

Gr-cohomology module structure

C.1

The following lemma gives the module structure for the G1-cohomology, with all factors

listed from top to bottom.

Lemma C.1.1. Let p = 2 and M be a module as above with corresponding w ∈ W . Suppose

ν ∈ X(T ) with w · 0 + pν ∈ X(T )+.

(a) Suppose w = sαsβ with α + β 6∈ Φ+ and α + β + γ ∈ Φ+. Then 〈ν, α∨i 〉 ≥ 0 for

αi 6= α, β, γ, 〈ν, α∨〉 ≥ 1, 〈ν, γ∨〉 ≥ −1, 〈ν, β∨〉 ≥ 1. Let δ ∈ ∆ be such that δ + α ∈ Φ+

and δ 6= γ. Further,

(i) If 〈ν, γ∨〉 = −1, then indG
B(M ⊗ ν) = 0.

(ii) If 〈ν, γ∨〉 = 0, then indG
B(M ⊗ ν) ∼= H0(ν).

(iii) If 〈ν, γ∨〉 ≥ 1, 〈ν, δ∨〉 = 0, then indG
B(M ⊗ ν) ∼= H0(ν).

(iv) If 〈ν, γ∨〉 ≥ 1, 〈ν, δ∨〉 ≥ 1, then indG
B(M ⊗ ν) has factors H0(α+ ν) and H0(ν).

(b) Φ is of type Bn with w = sαn−2sαn. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n − 3,〈
ν, α∨n−2

〉
≥ 1,

〈
ν, α∨n−1

〉
≥ −1, 〈ν, α∨n〉 ≥ 1. Further,

(i) If
〈
ν, α∨n−1

〉
= −1 and 〈ν, α∨n〉 = 1, then indG

B(M ⊗ ν) = 0.

(ii) If
〈
ν, α∨n−1

〉
= −1 and 〈ν, α∨n〉 ≥ 2, then indG

B(M ⊗ ν) = H0(αn−1 + ν).

(iii) If
〈
ν, α∨n−1

〉
≥ 0 and 〈ν, α∨n〉 = 1, then indG

B(M ⊗ ν) = H0(ν).
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(iv) If
〈
ν, α∨n−1

〉
≥ 0 and 〈ν, α∨n〉 ≥ 2, then indG

B(M ⊗ ν) has factors H0(αn−1 + ν) and

H0(ν).

(c) Φ is of type Bn with w = sαn−3sαn−1. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n − 4,〈
ν, α∨n−3

〉
≥ 1,

〈
ν, α∨n−2

〉
≥ −1,

〈
ν, α∨n−1

〉
≥ 1 and 〈ν, α∨n〉 ≥ −1. Further,

(i) If 〈ν, α∨n〉 = −1, then indG
B(M ⊗ ν) = 0.

(ii) If 〈ν, α∨n〉 ≥ 0 and
〈
ν, α∨n−2

〉
= −1, then indG

B(M ⊗ ν) = H0(αn−2 + ν).

(iii) If 〈ν, α∨n〉 ≥ 0 and
〈
ν, α∨n−2

〉
≥ 0, then indG

B(M ⊗ ν) has factors H0(αn−2 + ν) and

H0(ν).

(d) Φ is of type Bn with w = sαj
sαn−1 with j 6= n−3. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n− 2, i 6= j,〈

ν, α∨j
〉
≥ 1,

〈
ν, α∨n−1

〉
≥ 1 and 〈ν, α∨n〉 ≥ −1. Further,

(i) If 〈ν, α∨n〉 = −1, then indG
B(M ⊗ ν) = H0(αn + ν).

(ii) If 〈ν, α∨n〉 ≥ 0, then indG
B(M ⊗ ν) has factors H0(αn + ν) and H0(ν).

(e) Φ is of type Cn with w = sαj
sαn with j 6= n − 2. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n − 2

and i 6= j,
〈
ν, α∨j

〉
≥ 1,

〈
ν, α∨n−1

〉
≥ −1, and 〈ν, α∨n〉 ≥ 1. Further,

(i) If
〈
ν, α∨n−2

〉
= 0 and

〈
ν, α∨n−1

〉
= −1, then indG

B(M ⊗ ν) = 0.

(ii) If
〈
ν, α∨n−2

〉
≥ 1 and

〈
ν, α∨n−1

〉
= −1, then indG

B(M ⊗ ν) = H0(αn−1 + ν).

(iii) If
〈
ν, α∨n−2

〉
= 0 and

〈
ν, α∨n−1

〉
≥ 0, then indG

B(M ⊗ ν) ∼= H0(ν).

(iv) If
〈
ν, α∨n−2

〉
≥ 1 and

〈
ν, α∨n−1

〉
≥ 0 then indG

B(NCn ⊗ ν) has factors H0(αn−1 + ν)

and H0(ν).

(f) Φ is of type Cn with w = sαn−2sαn. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n − 3,〈
ν, α∨n−2

〉
≥ 1,

〈
ν, α∨n−1

〉
≥ −1, and 〈ν, α∨n〉 ≥ 1. Further,

(i) If
〈
ν, α∨n−1

〉
= −1, then indG

B(M ⊗ ν) = 0.

(ii) If
〈
ν, α∨n−3

〉
= 0 or

〈
ν, α∨n−1

〉
= 0, then indG

B(M ⊗ ν) = H0(ν).
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(iii) If
〈
ν, α∨n−3

〉
≥ 1 and

〈
ν, α∨n−1

〉
≥ 1, then indG

B(M ⊗ ν) has factors H0(αn−2 + ν)

and H0(ν).

(g) Φ is of type Dn with w = sαn−3sαn−1. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n − 4,〈
ν, α∨n−3

〉
≥ 1,

〈
ν, α∨n−2

〉
≥ −1,

〈
ν, α∨n−1

〉
≥ 1, and 〈ν, α∨n〉 ≥ 0. Further,

(i) If
〈
ν, α∨n−2

〉
= −1 and 〈ν, α∨n〉 = 0, then indG

B(M ⊗ ν) = H0(αn−2 + αn + ν).

(ii) If
〈
ν, α∨n−2

〉
= −1 and 〈ν, α∨n〉 ≥ 1, then indG

B(M⊗ν) has factors H0(αn−2+αn+ν)

and H0(αn−2 + ν).

(iii) If
〈
ν, α∨n−2

〉
≥ 0 and 〈ν, α∨n〉 = 0, then indG

B(M⊗ν) has factors H0(αn−2 +αn +ν)

and H0(ν).

(iv) If
〈
ν, α∨n−2

〉
≥ 0 and 〈ν, α∨n〉 ≥ 1, then indG

B(M ⊗ ν) has factors

H0(αn−2 + αn + ν), H0(αn−2 + ν) and H0(ν).

(h) Φ is of type Dn with w = sαn−3sαn. Then 〈ν, α∨i 〉 ≥ 0 for 1 ≤ i ≤ n − 4,〈
ν, α∨n−3

〉
≥ 1,

〈
ν, α∨n−2

〉
≥ −1,

〈
ν, α∨n−1

〉
≥ 0, and 〈ν, α∨n〉 ≥ 1. Further,

(i) If
〈
ν, α∨n−1

〉
= −1 and 〈ν, α∨n〉 = 0, then indG

B(M ⊗ ν) = H0(αn−2 + αn−1 + ν).

(ii) If
〈
ν, α∨n−1

〉
= −1 and 〈ν, α∨n〉 ≥ 1, then indG

B(M ⊗ ν) has factors

H0(αn−2 + αn−1 + ν) and H0(αn−2 + ν).

(iii) If
〈
ν, α∨n−1

〉
≥ 0 and 〈ν, α∨n〉 = 0, then indG

B(M⊗ν) has factors H0(αn−2+αn−1+ν)

and H0(ν).

(iv) If
〈
ν, α∨n−1

〉
≥ 0 and 〈ν, α∨n〉 ≥ 1, then indG

B(M ⊗ ν) has factors

H0(αn−2 + αn−1 + ν), H0(αn−2 + ν) and H0(ν).

(i) Φ is of type E6 with w = sα2sα3. Then 〈ν, α∨1 〉 ≥ 0, 〈ν, α∨2 〉 ≥ 1, 〈ν, α∨3 〉 ≥ 1,

〈ν, α∨4 〉 ≥ −1, 〈ν, α∨5 〉 ≥ 0, and 〈ν, α∨6 〉 ≥ 0. Further,

(i) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0 and 〈ν, α∨6 〉 = 0. Then

indG
B(M ⊗ ν) = H0(α4 + α5 + α6 + ν).
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(ii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0 and 〈ν, α∨6 〉 ≥ 1. Then indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + ν) and H0(α4 + α5 + ν).

(iii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1 and 〈ν, α∨6 〉 = 0. Then indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + ν) and H0(α4 + ν).

(iv) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1 and 〈ν, α∨6 〉 ≥ 1. Then indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and H0(α4 + ν).

(v) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0 and 〈ν, α∨6 〉 = 0. Then indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + ν) and H0(ν).

(vi) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0 and 〈ν, α∨6 〉 ≥ 1. Then indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and H0(ν).

(vii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1 and 〈ν, α∨6 〉 = 0. Then indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + ν), H0(α4 + ν) and H0(ν).

(viii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1 and 〈ν, α∨6 〉 ≥ 1. Then indG
B(M⊗ν) has factors H0(α4+

α5 + α6 + ν), H0(α4 + α5 + ν), H0(α4 + ν) and H0(ν).

(j) Φ is of type E6, E7, E8 with w = sα2sα5. Then 〈ν, α∨i 〉 ≥ 0, if i ∈ {1, 3, 6, 7, 8},

〈ν, α∨2 〉 ≥ 1, 〈ν, α∨4 〉 ≥ −1, and 〈ν, α∨5 〉 ≥ 1. Further,

(i) If 〈ν, α∨1 〉 = 0, 〈ν, α∨3 〉 = 0 and 〈ν, α∨4 〉 = −1. Then

indG
B(M ⊗ ν) = H0(α1 + α3 + α4 + ν).

(ii) If 〈ν, α∨1 〉 = 0, 〈ν, α∨3 〉 ≥ 1 and 〈ν, α∨4 〉 = −1. Then indG
B(M ⊗ ν) has factors

H0(α1 + α3 + α4 + ν) and H0(α4 + ν).

(iii) If 〈ν, α∨1 〉 ≥ 1, 〈ν, α∨3 〉 = 0 and 〈ν, α∨4 〉 = −1. Then indG
B(M ⊗ ν) has factors

H0(α1 + α3 + α4 + ν) and H0(α3 + α4 + ν).

(iv) If 〈ν, α∨1 〉 ≥ 1, 〈ν, α∨3 〉 ≥ 1 and 〈ν, α∨4 〉 = −1. Then indG
B(M ⊗ ν)has factors

H0(α1 + α3 + α4 + ν), H0(α3 + α4 + ν) and H0(α4 + ν).



82

(v) If 〈ν, α∨1 〉 = 0, 〈ν, α∨3 〉 = 0 and 〈ν, α∨4 〉 ≥ 0. Then indG
B(M ⊗ ν) has factors

H0(α1 + α3 + α4 + ν) and H0(ν).

(vi) If 〈ν, α∨1 〉 = 0, 〈ν, α∨3 〉 ≥ 1 and 〈ν, α∨4 〉 ≥ 0. Then indG
B(M ⊗ ν) has factors

H0(α1 + α3 + α4 + ν), H0(α4 + ν) and H0(ν).

(vii) If 〈ν, α∨1 〉 ≥ 1, 〈ν, α∨3 〉 = 0 and 〈ν, α∨6 〉 ≥ 0. Then indG
B(M ⊗ ν) has factors

H0(α1 + α3 + α4 + ν), H0(α3 + α4 + ν) and H0(ν).

(viii) If 〈ν, α∨1 〉 ≥ 1, 〈ν, α∨3 〉 ≥ 1 and 〈ν, α∨4 〉 ≥ 0. Then indG
B(M⊗ν) has factors H0(α1+

α3 + α4 + ν), H0(α3 + α4 + ν), H0(α4 + ν) and H0(ν).

(k) Φ is of type E6, E7, E8 with w = sα3sα5. Then 〈ν, α∨i 〉 ≥ 0, if i ∈ {1, 2, 6, 7, 8},

〈ν, α∨3 〉 ≥ 1, 〈ν, α∨4 〉 ≥ −1, and 〈ν, α∨5 〉 ≥ 1. Further,

(i) If 〈ν, α∨2 〉 = 0 and 〈ν, α∨4 〉 = −1. Then indG
B(M ⊗ ν) = H0(α2 + α4 + ν).

(ii) If 〈ν, α∨2 〉 ≥ 1 and 〈ν, α∨4 〉 = −1. Then indG
B(M ⊗ ν) has factors H0(α2 + α4 + ν)

and H0(α4 + ν).

(iii) If 〈ν, α∨2 〉 = 0 and 〈ν, α∨4 〉 ≥ 0. Then indG
B(M ⊗ ν) has factors H0(α2 + α4 + ν)

and H0(ν).

(iv) If 〈ν, α∨2 〉 ≥ 1 and 〈ν, α∨4 〉 ≥ 0. Then indG
B(M ⊗ ν)has factors H0(α2 + α4 + ν),

H0(α4 + ν), and H0(ν).

(l) Φ is of type E6, E7, E8 with w = sα4sα6. Then 〈ν, α∨i 〉 ≥ 0 for i ∈ {1, 2, 3, 7, 8},

〈ν, α∨4 〉 ≥ 1, < 〈ν, α∨5 〉 ≥ −1, and 〈ν, a∨6 〉 ≥ 1. Further,

(i) If 〈ν, a∨5 〉 = −1, then indG
B(M ⊗ ν) = 0.

(ii) If 〈ν, a∨5 〉 = 0, then indG
B(M ⊗ ν) ∼= H0(ν).

(iii) If 〈ν, a∨5 〉 ≥ 1 and (〈ν, a∨2 〉 = 0 or 〈ν, a∨3 〉 = 0), then indG
B(M ⊗ ν) ∼= H0(ν).

(iv) If 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨2 〉 ≥ 1 and 〈ν, α∨3 〉 ≥ 1 then indG
B(M⊗ν) has factors H0(α4+ν)

and H0(ν).
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(m) Φ is of type E7 with w = sα2sα3. Then 〈ν, α∨i 〉 ≥ 0, if i ∈ {1, 5, 6, 7}, 〈ν, α∨2 〉 ≥ 1,

〈ν, α∨3 〉 ≥ 1, and 〈ν, α∨4 〉 ≥ −1. Further,

(i) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 = 0. Then

indG
B(M ⊗ ν) = H0(α4 + α5 + α6 + α7 + ν).

(ii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν) and H0(α4 + α5 + α6 + ν).

(iii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν) and H0(α4 + α5 + ν).

(iv) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν) and H0(α4 + ν).

(v) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν), and H0(α4 + α5).

(vi) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν) and H0(α4 + ν).

(vii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + ν) and H0(α4 + ν).

(viii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and

H0(α4 + ν).

(ix) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν) and H0(ν).

(x) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν) and H0(ν).

(xi) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + ν) and H0(ν).
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(xii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν)has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + ν) and H0(ν).

(xiii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 +α5 +α6 +α7 + ν), H0(α4 +α5 +α6 + ν), H0(α4 +α5) and H0(ν).

(xiv) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν), H0(α4 + ν) and H0(ν).

(xv) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 = 0. Then indG
B(M ⊗ ν) has

factors H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + ν), H0(α4 + ν) and H0(ν).

(xvi) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1 and 〈ν, α∨7 〉 ≥ 1. Then indG
B(M ⊗ ν) has

factors H0(α4+α5+α6+α7+ν), H0(α4+α5+α6+ν), H0(α4+α5+ν), H0(α4+ν),

and H0(ν).

(n) Φ is of type E8 with w = sα2sα3. Then 〈ν, α∨i 〉 ≥ 0, if i ∈ {1, 5, 6, 7, 8}, 〈ν, α∨2 〉 ≥ 1,

〈ν, α∨3 〉 ≥ 1, and 〈ν, α∨4 〉 ≥ −1. Further,

(i) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) = H0(α4 + α5 + α6 + α7 + α8 + ν).

(ii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M⊗ν) has factors H0(α4+α5+α6+α7+α8+ν) and H0(α4+α5+α6+α7+ν).

(iii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨7 〉 ≥ 1 and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ν) has factors H0(α4 +α5 +α6 +α7 +α8 +ν) and H0(α4 +α5 +α6 +ν).

(iv) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν)has factors H0(α4 + α5 + α6 + α7 + α8 + ν) and H0(α4 + α5 + ν).

(v) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν) and H0(α4 + ν).
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(vi) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ν) has factors H0(α4 +α5 +α6 +α7 +α8 +ν), H0(α4 +α5 +α6 +α7 +ν)

and H0(α4 + α5 + α6 + ν).

(vii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ν) has factors H0(α4 +α5 +α6 +α7 +α8 +ν), H0(α4 +α5 +α6 +α7 +ν)

and H0(α4 + α5 + ν).

(viii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M⊗ν) has factors H0(α4 +α5 +α6 +α7 +α8 +ν), H0(α4 +α5 +α6 +α7 +ν),

and H0(α4 + ν).

(ix) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + α6 + ν),

and H0(α4 + α5 + ν).

(x) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + α6 + ν),

and H0(α4 + ν).

(xi) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + ν), and

H0(α4 + ν).

(xii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors

H0(α4 +α5 +α6 +α7 +α8 + ν), H0(α4 +α5 +α6 +α7 + ν), H0(α4 +α5 +α6 + ν)

and H0(α4 + α5 + ν).

(xiii) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors

H0(α4 +α5 +α6 +α7 +α8 + ν), H0(α4 +α5 +α6 +α7 + ν), H0(α4 +α5 +α6 + ν)

and H0(α4 + ν).
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(xiv) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 =≥ 1, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and

H0(α4 + ν).

(xv) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors

H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and

H0(α4 + ν).

(xvi) If 〈ν, α∨4 〉 = −1, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 +α5 +α6 +α7 +ν), H0(α4 +α5 +α6 +ν), H0(α4 +α5 +ν), and H0(α4 +ν).

(xvii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν) and H0(ν).

(xviii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ν) has factors H0(α4 +α5 +α6 +α7 +α8 +ν), H0(α4 +α5 +α6 +α7 +ν)

and H0(ν).

(xix) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + α6 + ν)

and H0(ν).

(xx) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν)has factors H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + α5 + ν) and

H0(ν).

(xxi) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν), H0(α4 + ν) and H0(ν).
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(xxii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν) and H0(ν).

(xxiii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 = 0 and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + ν) and H0(ν).

(xxiv) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + α7 + ν), H0(α4 + ν) and H0(ν).

(xxv) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and H0(ν).

(xxvi) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + ν), H0(α4 + ν) and H0(ν).

(xxvii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 = 0. Then

indG
B(M⊗ν) has factors H0(α4+α5+α6+α7+α8+ν), H

0(α4+α5+ν), H
0(α4+ν)

and H0(ν).

(xxviii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 = 0, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν) and H0(ν).

(xxix) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 = 0, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + α7 + ν), H0(α4 + α5 + α6 + ν), H0(α4 + ν) and H0(ν).
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(xxx) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 =≥ 1, 〈ν, α∨7 〉 = 0, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν), H0(α4 + ν) and H0(ν).

(xxxi) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 = 0. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 + α5 + α6 + ν), H0(α4 + α5 + ν), H0(α4 + ν) and H0(ν).

(xxxii) If 〈ν, α∨4 〉 ≥ 0, 〈ν, α∨5 〉 ≥ 1, 〈ν, α∨6 〉 ≥ 1, 〈ν, α∨7 〉 ≥ 1, and 〈ν, α∨8 〉 ≥ 1. Then

indG
B(M ⊗ ν) has factors H0(α4 + α5 + α6 + α7 + α8 + ν),

H0(α4 +α5 +α6 +α7 + ν), H0(α4 +α5 +α6 + ν), H0(α4 +α5 + ν), H0(α4 + ν) and

H0(ν).

(o) If Φ is of type F4 and w = sα2sα4. Then 〈ν, α∨1 〉 ≥ 0, 〈ν, α∨2 〉 ≥ 1, 〈ν, α∨3 〉 ≥ −1, and

〈ν, α∨4 〉 ≥ 1. Further,

(i) If 〈ν, α∨3 〉 = −1 then indG
B(NF4 ⊗ ν) = 0.

(ii) If 〈ν, α∨3 〉 = 0, 1 or 〈ν, αv
1ee〉 = 0 then indG

B(NF4 ⊗ ν) ∼= H0(ν).

(iii) If 〈ν, α∨3 〉 ≥ 2 and 〈ν, αv
1ee〉 ≥ 1 then indG

B(NF4 ⊗ ν) has factors H0(α2 + ν) and

H0(ν).

(p) If Φ is of type F4 and w = sα1sα3. Then 〈ν, α∨1 〉 ≥ 1, 〈ν, α∨2 〉 ≥ −1, 〈ν, α∨3 〉 ≥ 1, and

〈ν, α∨4 〉 ≥ 0. Further,

(i) If 〈ν, α∨2 〉 = −1, 〈ν, α∨3 〉 = 1 and 〈ν, α∨4 〉 = 0 then indG
B(NF4 ⊗ ν) = 0.

(ii) If 〈ν, α∨2 〉 = −1, 〈ν, α∨3 〉 = 1 and 〈ν, α∨4 〉 ≥ 1 then indG
B(NF4⊗ν) = H0(α2+α3+ν).

(iii) If 〈ν, α∨2 〉 = −1, 〈ν, α∨3 〉 ≥ 2 and 〈ν, α∨4 〉 = 0 then indG
B(NF4 ⊗ ν) = H0(α2 + ν).

(iv) If 〈ν, α∨2 〉 = −1, 〈ν, α∨3 〉 ≥ 2 and 〈ν, α∨4 〉 ≥ 1 then indG
B(NF4 ⊗ ν) has factors

H0(α2 + α3 + ν) and H0(α2 + ν).

(v) If 〈ν, α∨5 〉 ≥ 0, 〈ν, α∨3 〉 = 1 and 〈ν, α∨4 〉 = 0 then indG
B(NF4 ⊗ ν) ∼= H0(ν).
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(vi) If 〈ν, α∨2 〉 ≥ 0, 〈ν, α∨3 〉 = 1 and 〈ν, α∨4 〉 ≥ 1 then indG
B(NF4 ⊗ ν) has factors

H0(α2 + α3 + ν) and H0(ν).

(vii) If 〈ν, α∨2 〉 ≥ 0, 〈ν, α∨3 〉 ≥ 2 and 〈ν, α∨4 〉 = 0 then indG
B(NF4 ⊗ ν) has factors

H0(α2 + ν) and H0(ν).

(viii) If 〈ν, α∨2 〉 ≥ 0, 〈ν, α∨3 〉 ≥ 2 and 〈ν, α∨4 〉 ≥ 1 then indG
B(NF4 ⊗ ν) has factors

H0(α2 + α3 + ν), H0(α2 + ν) and H0(ν).

Proof. The proof is similar for all these cases, so let’s just examine the general case when

w = sαsβ for any type. In particular, consider the case w = sαi
sαi+2

. Then w · 0 = ωi−1 −

2ωi + 2ωi+1 − 2ωi+2 + ωi+3. Let ν =
∑n

i=1 ciωi. If w · 0 + 2ν is dominant, then cj ≥ 0 for

j 6∈ {i, i+1, i+2}, ci ≥ 1, ci+1 ≥ −1 and ci+2 ≥ 1. To determine the structure of the induced

modules, the argument follows [BNP1, Proposition 3.4] with [BNP1, Lemma 3.3], which

explains that it is necessary to determine precisely when our module factors are dominant.

The module M ⊗ ν has factors αi + ν and ν. Consider

αi + ν =
i−2∑
j=1

cjωj + (ci−1 − 1)ωi−1 + (ci + 2)ωi + (ci+1 − 1)ωi+1 +
n∑

j=i+2

cjωj

which is dominant precisely when ci−1 ≥ 1 and ci+1 ≥ 1. Now, let’s look at the different

cases. If
〈
ν, α∨i+1

〉
= −1, then ν and αi + ν aren’t dominant and indG

B(M ⊗ ν) = 0. If〈
ν, α∨i+1

〉
= 0 or 〈ν, ai−1〉 = 0, then αi + ν isn’t dominant, but ν is, so using [BNP1] and

[Jan1, II.4.5], then indG
B(ν) = H0(ν); hence indG

B(M ⊗ ν) = H0(ν). If
〈
ν, α∨i+1

〉
≥ 1 and

〈ν, ai−1〉 and ≥ 1, then both αi + ν and ν are dominant. Again using [Jan1, II.4.5] and

[BNP1, 3.4] then indG
B(αi + ν) = H0(αi + ν) and indG

B(ν) = H0(ν). Hence indG
B(M ⊗ ν) has

factors H0(αi + ν) and H0(ν). Thus (a) follows. �


