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Abstract

We have studied the finite-size behavior at magnetic phase transitions by using extensive

Monte Carlo simulations. For the second-order transition in the simple cubic Ising model,

we have investigated the critical behavior by implementing the Wolff cluster flipping algo-

rithm and data analysis with histogram reweighting in quadruple precision arithmetic. By

analyzing data with cross correlations between various thermodynamic quantities obtained

from the same data pool, we have obtained the critical quantities with precision that ex-

ceeds all previous Monte Carlo estimates. For the first-order “spin-flop” transition in the 3D

anisotropic Heisenberg antiferromagnet in an external field, we have explored the finite-size

behavior of the transition between the Ising-like antiferromagnetic state and the canted,

XY -like state. Finite-size scaling for a first-order phase transition where a continuous sym-

metry is broken is developed using an approximation of Gaussian probability distributions

with a phenomenological “degeneracy” factor, q, included. Our theory yields q = π, and

it predicts that for large linear dimension L the field dependence of all moments of the or-

der parameters as well as the fourth-order cumulants exhibit universal intersections, where

the values of these intersections can be expressed in terms of the factor q. The agreement



between our theory and high-resolution multicanonical simulation data implies a heretofore

unknown universality can be invoked for first-order phase transitions.

Index words: Monte Carlo simulations, phase transition, finite-size behavior, critical
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Chapter 1

Introduction

Generally speaking, a phase in a thermodynamic system has some uniform physical proper-

ties. During a phase transition, some specific properties would change dramatically, often

discontinuously. If the first derivative of the free energy (F = kBT lnZ, where kB is the

Boltzmann constant, T is the temperature, and Z is the partition function [6]) with respect

to some thermodynamic variable is discontinuous at the transition point, this transition is

denoted as first-order. Likewise, if the first derivative of the free energy is continuous but

the second derivative is discontinuous, the transition is termed second-order. A second-order

transition is usually named as a critical transition, and the temperature at which the transi-

tion takes place is called the critical temperature [1]. Fig. 1.1(a, b) describe the characteristic

behaviors for a first-order phase transition, where the curves of the free energy F for the

ordered and disordered states meet at the transition temperature Ttr with different slope

values, and the internal energy U = −T 2∂(F/T )/∂T is separated by the latent heat at Ttr.

In contrast, Fig. 1.1(c, d) are corresponding to a second-order phase transition, where the

free energy F varies continuously at the critical temperature Tc [1].

The research on phase transitions has long been a popular area in various scientific fields.

Even after many years of study, there remain open questions even for the Ising universality

1



Figure 1.1: Schematic variation of the free energy F and the internal energy U with tem-
perature T . (a, b) and (c, d) are for systems undergoing first-order and second-order phase
transitions, respectively. Graph is taken from Ref [1].

class, which is a well studied case in statistical mechanics. In the past several decades,

extensive effort by numerical and theoretical approaches has been under taken to understand

the nature and classification of phase transitions.

In general, a phase transition is between a disordered phase and an ordered phase. To

distinguish the two phases, an order parameter is a quantity of the system that is non-zero in

the ordered phase while it is identically zero in the disordered phase. It changes dramatically

at the transition point.

2



For different kinds of systems, the order parameter would be defined differently. In a

ferromagnet, the spontaneous magnetization is the order parameter. In a liquid-gas system,

it would be the density difference between the liquid phase and the gas phase. As for liquid

crystals, it would be the degree of the orientational order [1, 6, 7].

For a second-order phase transition, it has been showed that the thermodynamic prop-

erties follow a set of power laws near the critical temperature Tc [1, 8, 9]. For example, in a

magnetic system the spontaneous magnetization m, the specific heat C, the susceptibility

χ, and the correlation length ξ vary as follow,

m ∝ εβ, (1.1)

C ∝ ε−α + bC , (1.2)

χ ∝ ε−γ + bχ, (1.3)

ξ ∝ ε−ν (1.4)

where ε = |1− T/Tc|, bC and bχ are analytic background terms, and the powers are denoted

as “critical exponents”.

In addition, it is believed that the values of the critical exponents are the property of

the system itself (such as the lattice dimension), and they are independent of the parame-

ters contained in the model, such as the interaction coupling J , or the lattice type of the

model (e.g. square or triangle). This important and striking property of second-order phase

transitions is known as universality. Thus, different models in the same universality class

have common critical exponents [1, 10]. (The values of critical exponents do depend on the

dimension of the lattice though.)

However, the fundamental concepts mentioned above are valid only in the thermodynamic

limit (L → L∞). In a finite-size system, these properties may not hold. For example, the

correlation length ξ is a quantity to describe the dimension of correlated spins in a system.

3



Based on Eq. (1.4), it diverges as the temperature approaches to the critical point (ν is

positive). But in a system of finite size, the correlation length ξ won’t be greater than

the lattice dimension. This means that there is a “cut-off” in the divergence of ξ. Similar

effects occur at other quantities as well. And this is called the finite-size effect [1,7,10]. Due

to the finite-size effect, the effective transition point and the effective values of the critical

exponents in a finite system would be different than those in an infinite size system. To

extract the values for different thermodynamic quantities at L→ L∞, we can use finite-size

scaling methods [11–14], which will be discussed in the following chapters.

Similar to a second-order transition, there exists finite-size effect in a first-order transition

as well. In contrast, the above-mentioned power laws and the universality hypothesis do not

hold for a first-order transition. As the correlation length does not diverge in a first-order

transition, a different approach for finite-size scaling is needed.

High-resolution study of finite-size behavior at phase transitions play an important role

for developing theories, and Monte Carlo simulation is one of the best suited methods for

delivering quantitative information. In this work, multiple simulation algorithms (Metropolis

algorithm [15], Wolff cluster flipping algorithm [16], and multicanonical sampling [17]) have

been implemented based on requirements, and data for different models have been analyzed

with similar techniques, such as the histogram reweighting method.

In the next chapter we will define the 3D Ising model, describe the Monte Carlo sampling

method, demonstrate the histogram reweighting techniques [18,19], cross correlation analy-

sis [20, 21] and finite-size scaling methods [11–13, 22]. The results of high-resolution Monte

Carlo simulations of critical behavior will be presented in Chapter 3. In Chapter 4 we will

clearly define the 3D XXZ Heisenberg model to study the “spin-flop” transition (between

the Ising-like antiferromagnetic state and the rotationally degenerate, canted XY -like state),

delineate the simulation methodology used to generate data for different lattice sizes, and

provide a theoretical formulation for the understanding of the finite-size behavior of this

4



model. In Chapter 5 we will present the results of careful simulations which are then used

to test the theory. Our conclusions are summarized in Chapter 6.
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Chapter 2

Model and methods for a

second-order transition

2.1 Three-dimensional Ising model

We have considered the simple cubic, ferromagnetic Ising model with nearest-neighbor in-

teractions on L × L × L lattices with periodic boundary conditions in zero magnetic field.

Each of the lattice sites i has a spin, σi, which can take on the values σi = +1 for spin up

and σi = −1 for spin down. The Hamiltonian is given by

H = −J
∑

〈i,j〉
σiσj, (2.1)

where 〈i, j〉 denotes distinct pairs of nearest-neighbor sites and J > 0 is the interaction

constant. We also define the dimensionless energy E as

E = −
∑

〈i,j〉
σiσj. (2.2)
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In discussing the critical properties of the Ising model, it is easier to deal with the inverse

temperature, so we define the dimensionless coupling constant K = J/kBT and use K for

the discussion.

2.2 Related work and remaining questions for the 3D

Ising model

The Ising Model [23] has long played an important role in the theory of phase transitions,

and has served as a testing ground for new numerical and theoretical approaches. While

the exact solution for the one-dimensional Ising model has been published in 1925 [23] and

the two-dimensional Ising model has been solved in 1944 [24], the analytical solution for

three dimensions is still a mystery. Nevertheless, Monte Carlo simulations [25], nonequilib-

rium relaxation Monte Carlo [26], Monte Carlo renormalization group [27,28], field-theoretic

methods [29,30] and high-temperature series expansions [31] have provided precise informa-

tion about the nature of the phase transition [32] by the end of the last century, although in

some cases the results did not agree within the error bars.

Simulations were insufficient to validate Rosengren’s “exact conjecture”, which claimed

that the critical temperature of the 3D simple cubic Ising model is given by tanh (J/kBTc) =

(
√

5− 2) cos (π/8) [33]. In addition, Fisher pointed out that other “exact conjectures” gave

quite similar numerical values [34]. Therefore, although precise values did exist for the 3D

Ising critical temperature, there still remain unanswered questions. (For a rather complete

review of results prior to 2002 see Ref. [32].)

Recent developments have reinvigorated interest in the critical behavior of the 3D Ising

model. The conformal bootstrap method, using the constraints of crossing symmetry and

unitarity in conformal field theories, has given unparalleled precision in the estimates for the

critical exponent ν for the 3D Ising model [4, 35, 36]. New Monte Carlo simulations based

7



on non-perturbative approaches [37–39] and tensor renormalization group theory with high-

order singularity value decomposition [40] also yielded very precise results. Although Zhang

claimed to have solved the 3d Ising model exactly [41], Wu, McCoy, Fisher and Chayes [42–44]

have given very convincing arguments that this “exact” solution is simply incorrect.

Many systems characterized by short-range interactions and a scalar order parameter

(such as the unidirectional magnetization or the density) belong to the Ising universality

class. This universality class comprises not only the anisotropic systems (e.g. a spin-1
2

Ising

model with nearest neighbor interactions, a spin-1 model with nearest neighbor interactions),

but also models for alloys, gas-liquid systems and liquid mixtures [45]. By examining the

critical behavior of the 3D Ising model, it will provide a valuable benchmark for comparison

with results for other models presumed to be in the Ising universality class.

2.3 Sampling methods

The Wolff cluster flipping algorithm [16] has been applied to sample the states on the sim-

ple cubic lattice, as it is more efficient than using the Metropolis algorithm [15] when the

simulated temperature is very closed to the critical point (where there exists a critical slow-

ing down). Clusters are grown and flipped sequentially, and they are generated by drawing

bonds to all nearest neighbors of the growing cluster with probability

p = 1− e−2Kδσiσj . (2.3)

To accelerate the Wolff algorithm, the energy and magnetization are calculated by only

looking at the spins that actually get flipped in the process. Instead of flipping spins im-

mediately, they were set to be zero temporarily and a list of those spins was maintained.

By setting the spins in that cluster equal to zero we don’t calculate the internal energy
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of the cluster since the energy change only comes from the edges of the cluster. However,

the change of the magnetization is related to the number of spins in the cluster. After the

changes have been calculated, we go back and set all of the “zeroed” spins to their correct

value (flipped from their original value). Thus, the energy and magnetization are calculated

once, then the changes are added to them to get the updated values.

New random numbers were generated by using the Mersenne Twister generator [46]. We

have implemented the Mersenne Twister algorithm with both 32-bit word length and 53-bit

word length. No difference was detected under statistical error between data from both

versions.

Simulations were performed at K0 = 0.221 654, which is an estimate for the critical

inverse temperature Kc by MCRG analysis [28] and also used in an earlier, high resolution

Monte Carlo study [25]. Lattices sizes studied were L = 16, 24, 32, 48, 64, 80, 96, 112,

128, 144, 160, 192, 256, 384, 512, 768, and 1024. For each system 2 × 105 Wolff steps were

discarded for equilibrium before measurements were taken. Even for the largest lattice size,

L = 1024, the energy had reached the equilibrium value by 130 000 cluster steps, and then

the simulation was run another ten times the equilibrium relaxation time before the data

accumulation began. For L ≤ 768, we started from an ordered state and the relaxation to

equilibrium was less than a thousand Wolff flips in all cases [47]. Our procedure insured

that not only equilibrium had been reached but also the correlation with the initial states

had been lost. For L = 1024, we started from a random state, but our procedure insured

that the system had reached the equilibrium and that more than 10 times the equilibrium

relaxation time had elapsed before collecting data measurements. From 6000 runs to 12 000

runs of 5× 106 measurements for each lattice size were performed. In total, around 2× 107

CPU core hours were used and more than 5TB data were generated by using 5 different

Linux clusters. For the largest lattice, L = 1024, the average cluster size is around 1.1×106,
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and the run length for a single run is around 4000 times the correlation time for the internal

energy.

2.4 Quantities to be analyzed

In tradition, it has been difficult to estimate the critical exponent ν of the correlation length

from Monte Carlo simulation data because few quantities are able to provide a direct mea-

surement. Ferrenberg and Landau [25] showed that ν can be estimated more precisely if

multiple quantities, including traditional quantities which have the same critical properties,

are included. The logarithmic derivative of any power of the magnetization

∂ ln 〈|m|i〉
∂K

=
1

〈|m|i〉
∂〈|m|i〉
∂K

=
〈|m|iE〉
〈|m|i〉 − 〈E〉, (2.4)

which for i = 1, 2, ..., can yield the ν estimate. In our analysis, we have considered the

logarithmic derivatives of 〈|m|〉, 〈|m|2〉, 〈|m|3〉 and 〈|m|4〉. In addition, we also included the

Binder’s (reduced) magnetization cumulant U2i [3] defined by

U2i = 1− 〈|m|
2i〉

3〈|m|i〉2 , i = 1, 2, 3, ... (2.5)

whose derivative with respect to K is able to estimate ν as well. In our analysis, we have

considered the second-order, fourth-order and sixth-order cumulants U2, U4 and U6. For the

fourth-order cumulant U4, for instance, we have

∂U4

∂K
= − 1

3〈|m|2〉2 (〈m4E〉 − 〈m4〉〈E〉) +
2〈m4E〉
3〈|m|2〉3 (〈m2E〉 − 〈m2〉〈E〉). (2.6)
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The inverse critical temperature Kc(L) can be estimated from the locations of the peaks

in the above quantities as well as the specific heat,

C = K2L−d(〈E2〉 − 〈E〉2), (2.7)

the derivative of |m| with respect to K,

∂〈|m|〉
∂K

= 〈|m|E〉 − 〈|m|〉〈E〉, (2.8)

the finite-lattice susceptibility,

χ′ = KLd(〈|m|2〉 − 〈|m|〉2), (2.9)

and the zero of the fourth-order energy cumulant,

Q4 = 1− 〈(E − 〈E〉)4〉
3〈(E − 〈E〉)2〉2 . (2.10)

Note that in Eq. (2.9), it is the finite-lattice susceptibility, but not the “true” susceptibility

calculated from the variance of m, χ = KLd(〈m2〉 − 〈m〉2), which has no peak for finite L.

(For sufficiently long runs, 〈m〉 = 0 for zero magnetic field, so that any peak in χ is merely

due to the finite statistics of the simulation.). All of the above quantities were calculated by

using the GCC Quad-Precision Math Library which provides quadruple (128-bit) precision.

2.5 Finite-size scaling analysis

The critical behavior of a system in the thermodynamic limit at a second-order phase transi-

tion can be extracted from the size dependence of the singular part of the free energy density.

This finite-size scaling theory was first developed by Fisher [11–13,22].
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According to finite-size scaling theory, (assume homogeneity and hyperscaling), and us-

ing L (linear dimension) and T (temperature) as variables, the free energy of a system is

described by the following scaling ansatz,

F (L, T ) = L−(2−α)/νF(εL1/ν , hL(γ+β)/ν), (2.11)

where ε = (T−Tc)/Tc (Tc is the critical temperature for the infinite-lattice), h is the magnetic

field, the critical exponents α, β, γ and ν are the infinite lattice values, and F is the scaling

function. The choice of the scaling variable x = εL1/ν is motivated by the observation that

the correlation length, which diverges as ε−ν as the transition is approached, is limited by

the lattice size L. Various thermodynamic properties can be determined from Eq. (2.11) and

have corresponding scaling forms, e.g.,

m = L−β/νM0(εL1/ν), (2.12)

χ = Lγ/νχ0(εL1/ν) + bχ, (2.13)

C = Lα/νC0(εL1/ν) + bC , (2.14)

where M0(x), χ0(x) and C0(x) are scaling functions, and bχ, bC are analytic background

terms. x is the only relevant thermodynamic variable, as we are interested in zero-field

properties (h = 0).

A number of different practical implementations based on finite size scaling (FSS) schemes

have been derived and successfully applied to the analysis of the critical phenomena [25,32,

37]. In the following analysis, we determine the effective transition temperature very precisely

based on the location of peaks in multiple thermodynamic quantities as discussed in Sec. 2.4.
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For example, as for a finite lattice, the peak of the specific heat C occurs at the temper-

ature where the scaling function C0 is maximum, i.e., when

∂C0(x)

∂x

∣∣∣∣
x=x∗

= 0. (2.15)

The temperature where the peak is located is the finite-lattice (effective) “transition” tem-

perature Tc(L), on the condition x = x∗ which varies with L asymptotically as

Tc(L) = Tc + Tcx
∗L−1/ν . (2.16)

The FSS ansatz is valid only for sufficiently large lattice size L and T sufficiently close to

Tc. Corrections to scaling and finite-size scaling appear for smaller systems and temperatures

away from Tc must be taken into account. There are two kinds of correction terms, one is

due to the irrelevant scaling fields which can be expressed in terms of an exponent θ, e.g.

a1ε
θ+a2ε

2θ+ · · · , while the other is due to the non-linear scaling fields, e.g. b1ε
1 +b2ε

2 + · · · .

The temperatures that we consider in our analysis differ from Tc (or ε = 0) by amounts

proportional to L−1/ν (Eq. (2.16)), so that the correction terms can be expressed by the

power-law a1L
−θ/ν + a2L

−2θ/ν and b1L
−1/ν + b2L

−2/ν .

By including correction terms, the estimate for Tc(L) can be expressed to be

Tc(L) = Tc + A′0L
−1/ν(1 + A′1L

−ω1 + A′2L
−2ω1 + · · ·

+B′1L
−ω2 +B′2L

−2ω2 + · · ·+ C ′1L
−(ω1+ω2) + · · ·

+D′1L
−ων +D′2L

−2ων + · · ·+ E ′1L
−ωNR + · · · ), (2.17)

where ωi (i = 1, 2, ...) are the correction exponents, ων = 1/ν is the correction exponent

corresponding to the non-linear scaling fields [48], and ωNR is the correction exponent due to

the breaking of the rotational invariance of the lattice [49]. As we have defined the coupling
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as K = J/kBT , Kc(L) can be expressed as

Kc(L) = Kc + A0L
−1/ν(1 + A1L

−ω1 + A2L
−2ω1 + · · ·

+B1L
−ω2 +B2L

−2ω2 + · · ·+ C1L
−(ω1+ω2) + · · ·

+D1L
−ων +D2L

−2ων + · · ·+ E1L
−ωNR + · · · ), (2.18)

We first estimate the critical exponent ν using the quantities discussed in Sec. 2.4. And

then insert it into Eq. (2.18), so that there is one less unknown parameter to do the non-

linear fit to Eq. (2.18). To do this, we can use the critical scaling form without the prior

knowledge of the transition coupling Kc

∂U2i

∂K

∣∣∣∣
max

= Ui,0L
1/ν(1 + a1L

−ω1 + a2L
−2ω1 + · · ·

+ b1L
−ω2 + b2L

−2ω2 + · · ·+ c1L
−(ω1+ω2) + · · ·

+ d1L
−ων + d2L

−2ων + · · ·+ e1L
−ωNR + · · · ), (2.19)

∂ ln 〈|m|i〉
∂K

∣∣∣∣
max

= Di,0L
1/ν(1 + a1L

−ω1 + a2L
−2ω1 + · · ·

+ b1L
−ω2 + b2L

−2ω2 + · · ·+ c1L
−(ω1+ω2) + · · ·

+ d1L
−ων + d2L

−2ων + · · ·+ e1L
−ωNR + · · · ), (2.20)

Once ν is determined from the fit of Eq. (2.19) and Eq. (2.20), we can estimate the critical

inverse temperature Kc with a fixed value of ν.

In addition, the inverse transition temperature can also be determined by the Binder’s

fourth-order cumulant crossing technique [3]. As the lattice size L → ∞, the fourth-order

magnetization cumulant U4 → 0 for K < Kc and U4 → 2/3 for K > Kc. For large enough
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lattice sizes, curves for U4 cross as a function of inverse temperature at a “fixed point” U∗,

and the location of the crossing “fixed point” is Kc. U4 can be plotted as a function of K for

different lattice sizes, and the location of the intersections between curves for the two lattice

sizes is given by

Kcross(L, b) = Kc + a1L
−1/ν−ω1

(
b−ω1 − 1

b1/ν − 1

)
+ a2L

−1/ν−ω2

(
b−ω2 − 1

b1/ν − 1

)
+ · · · , (2.21)

where L is the size of the smaller lattice, b = L′/L is the ratio of two lattice sizes, and ω1,

ω2 are correction exponents in the finite-size scaling formulation.

2.6 Data analysis methods

2.6.1 Histogram reweighting

One limitation on the resolution of Monte Carlo simulations near phase transition is that

it needs to perform a large number of runs at different temperature to precisely locate the

peaks in response functions. Using histograms we can extract more information from a single

Monte Carlo simulation [18,19], because samples taken from a known probability distribution

can be translated into samples from another distribution over the same state space.

First, an importance sampling Monte Carlo simulation is carried out at the inverse tem-

perature K0, which generates configurations with a probability proportional to the Boltz-

mann weight, exp(−K0E). The probability of simultaneously observing the system with

total (dimensionless) energy E and total magnetization M is,

PK0(E,M) =
1

Z(K0)
W (E,M) exp(−K0E), (2.22)
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where Z(K0) is the partition function, and W (E,M) is the number of configurations with

energy E and magnetization M .

Then, a histogram H0(E,M) of the energy and the magnetization at K0 is constructed,

which can provide an estimate for the equilibrium probability distribution. It becomes exact

in the limit of an infinite-length run. Thus,

H0(E,M) =
N

Z(K0)
W̃ (E,M) exp(−K0E), (2.23)

where W̃ (E,M) is an estimate for the true density of states W (E,M) and N is the number

of measurements made. For an infinite-length run, we can replace W (E,M) with W̃ (E,M),

which will yield the relationship between the histogram measured at K = K0 and the

(estimated) probability distribution for arbitrary (neighboring) K,

PK(E,M) =
H0(E,M)e∆KE

∑
H(E,M)e∆KE

, (2.24)

where ∆K = K0−K. Based on PK(E,M), the average value of any function f(E,M) of E

and M at the coupling K, can be calculated,

〈f(E,M)〉K =
∑

E,M

f(E,M)PK(E,M). (2.25)

As K can be varied continuously, the histogram method is able to locate the peaks

for different thermodynamic derivatives precisely (e.g. applying the golden-section search

method [50]) in a certain reliable range. In this way, the critical behavior can be studied

with high resolution by using Monte Carlo.
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2.6.2 Jackknife method with cross correlations

Ideally, in a Monte Carlo simulation, the current configuration only depends on the previous

configuration (Markov chain). But in practice, it is also likely to be correlated to the earlier

configurations. Generally, the farther away two configurations are, the less correlation.

Because of the memory of Markov chain, neighboring measurements in the time-series are

correlated, such that the fluctuations look to be smaller than they should be. To deal with

this issue, we can consider blocks of original data, and use jackknife resampling [51].

An important advance by Weigel and Janke [20, 21] was the innovative observation that

the cross correlation between different quantities could lead to systematic bias in the esti-

mates of critical quantities extracted from the data (in the same data pool originally).

As for a set (sample) of n measurements of a random variable x = (x1, x2, · · · , xn), and

an estimator θ̂ = f(x). We wish to estimate the value and error of θ̂. The jackknife focuses

on the samples that leave out one measurement at a time. We define the jackknife average,

xJi , by,

xJi =
1

n− 1

∑

j 6=i
xj, (2.26)

where i = 1, 2, · · · , n, so xJi is the average of all the x values except xi. Similarly, we define

θ̂Ji = f(xJi ). (2.27)

We state that, the jackknife estimate of θ̂ = f(x) is the average of θ̂Ji , i.e.

θ̄ =
1

n

n∑

i=1

θ̂Ji =
1

n

n∑

i=1

f(xJi ), (2.28)
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and the jackknife error σ(θ̂), is given by,

σ(θ̂) =

[
n− 1

n

n∑

i=1

(θ̂Ji − θ̄)2

]1/2

. (2.29)

In Eq. (2.28) and Eq. (2.29), each data block has only one element. More generally, there

can exist multiple adjacent elements in each block. For example, we can have n data blocks,

where each block has Nb = N/n adjacent elements (N is the total number of measurements

in the time series).

If attempting to extract the parameter θ̂ based on multiple estimates θ̂(k)(k = 1, 2, 3 · · · )

from the same original time-series data, there will be significant cross correlation between

estimates θ̂(k) and θ̂(l). For instance, we can determine a number of estimates for ν from

different approaches (more discussion will be at Sec. 3.1). Let’s denote them to be ν(k)(k =

1, 2, 3 · · · ). Although different ν(k) are determined by different quantities, they are from the

same original dataset, since quantities are calculated based on the same configurations of

the system.

To reduce the cross correlation effectively, we can consider the jackknife covariance matrix

G [51]. For a number of estimates θ̂(k), the rth row, cth column entry of matrix G is given

by,

Grc(θ̂) =
n− 1

n

n∑

i=1

(θ̂
J,(r)
i − θ̄(r))(θ̂

J,(c)
i − θ̄(c)). (2.30)

The m different estimates θ̂(k)(k = 1, 2, · · · ,m) for the same parameter θ̂, should have

the same expectation. Therefore, the estimated value for θ̂ can be determined by a linear

combination,

θ̄ =
m∑

k=1

αkθ̂
(k). (2.31)

where
∑

k αk = 1. Based on the cross correlation analysis from Refs. [20, 21], a Lagrange

multiplier would be introduced, where the constraint
∑

k αk = 1 is enforced to minimize the
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variance,

σ2(θ̂) =
m∑

k=1

m∑

l=1

αkαl(〈θ̂(k)θ̂(l)〉 − 〈θ̂(k)〉〈θ̂(l)〉). (2.32)

The optimal choice for the weights is as follows,

αk =

∑m
l=1[G(θ̂)−1]kl∑m

k=1

∑m
l=1[G(θ̂)−1]kl

, (2.33)

where G(θ̂)−1 is the inverse of the covariance matrix. The weights are bounded to be 0 ≤

αk ≤ 1 traditionally. However, the optimal choices given in Eq. (2.33) are the more general

unbounded weights, which can be negative. The negative weights may lead to the average

lying outside the range of individual estimates, where individual variances are connected due

to cross correlations. Thus, they can help alleviate the effect of cross correlations.

Based on the optimal choice for the weights, the variance can be expressed by,

σ2(θ̂) =
1

∑m
k=1

∑m
l=1[G(θ̂)−1]kl

. (2.34)

2.7 Testing methodology and quality control

At such a level of resolution of this study, the finite precision of the pseudo-random number

generator and the restriction of a variable stored in the memory are some new challenges.

In the Wolff algorithm, the probability of adding a spin to the cluster is related to K by

p = 1− e−2Kδσiσj .

At the desired simulated coupling K0 = 0.221 654, when this probability is converted to

a 32-bit unsigned number for comparison with pseudo-random numbers generated in the

simulation, it will be truncated from 1537987121.70821 to 1537987121 due to the finite
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precision. When such number is reconverted back into a value of K, the result differs from

0.221 654 in the 10th decimal place. For the largest system sizes, L = 1024, this is only

a factor of 20 smaller than the statistical error. By performing simulations with a 53-bit

pseudo-random number generator we have verified that this is not significant for the current

analysis, but for future studies of larger systems and/or higher precision, a 32-bit random

number generator would not suffice. For the data analysis we used the corrected effective

K0 instead of 0.221 654 and for L = 1024 we used the multiple-histogram method [19] to

combine results for the 32- and 53-bit pseudorandom number generators.

To estimate the critical quantities (e.g. ν and Kc) by using the finite-size scaling analysis

with high precision, it is necessary to look for the peak values of derivatives of the ther-

modynamic quantities and their corresponding locations with very high resolution. Double

precision may not be enough to fulfill the task, since the imprecision will accumulate during

calculation. So the quadruple precision arithmetic has been used in the data analysis (GCC

Quad-Precision Math Library).

In addition, both the Wolff cluster flipping algorithm and the Metropolis single spin-

flip algorithm have been implemented to simulate the 323 systems. For each algorithm, a

total of 3× 1010 measurements were taken. The Wolff cluster simulation for L = 32 was also

performed with the MRG32K3A random number generator from Pierre L’Ecuyer, “Combined

Multiple Recursive Random Number Generators”, Operations Research, 47, 1 (1999), 159-

164. (We used the implementation by Guskova, Barash and Shchur in their rngavxlib random

number library [52].) The values of the maxima and the corresponding locations in all

quantities agree, to within the error bars, with those from the Metropolis simulations and

the Wolff simulations by using the Mersenne twister. Also, the t-test comparisons yielded

no p-values less than 0.2. Thus, the problems found by Ferrenberg et al. [53] using other

random number generators were not noticeable here.
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Chapter 3

Results: critical behavior in the

simple cubic Ising model

3.1 Critical exponent of the correlation length ν and

the critical coupling Kc

3.1.1 Finite-size scaling analysis to determine ν

First, we performed an analysis with only one correction term,

Xmax = X0L
1/ν(1 + a1L

−ω1), (3.1)

where X is the quantity we have used to estimate the critical exponent ν: the logarithmic

derivatives ∂ ln 〈|m|i〉/∂K for i = 1, 2, 3, 4; the magnetization cumulant derivatives ∂U2i/∂K

for i = 1, 2, 3. Least-squares fits have been performed for Eq. (3.1). χ2 per degree of freedom

(dof) is used as the quality of the fit, and ideally it is approximately 1 (with values too large
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Table 3.1: Results for the critical exponent ν with Eq. (3.1) when only considering one
correction term as a function of Lmin, where Lmin is the minimal lattice size that is included
into the fit.

Lmin ν
16 0.629 756(32)
24 0.629 765(42)
32 0.629 749(48)
48 0.630 05(13)
64 0.629 83(13)
80 0.629 80(14)
96 0.629 72(12)
112 0.629 61(10)
128 0.629 56(11)
144 0.629 63(14)
160 0.629 554(95)

indicating a poor quality of fit while values too small indicating that the error is too large).

In our analysis, the χ2 per dof is between 0.50 to 1.73 which is a reasonable range.

By calculating the covariance matrix and doing the cross-correlation analysis, we give

estimates for ν in Table 3.1, where the minimum lattice size included in the analysis, Lmin,

is eliminated one by one.

In Fig. 3.1, we see that the estimated value for the critical exponent ν seems to be stable

for small values of Lmin (Lmin = 16, 24, 32). And there is a sudden jump from Lmin = 32

to Lmin = 48. Finally, ν value tends to be stable at the large lattices (Lmin ≥ 112), around

0.629 60.

The finite-size effect is strong for small lattice sizes. We observe that there is a systematic

decrease in the value of ν as Lmin increases. Thus, only considering one correction term is

insufficient. But the first three values for ν seem to be abnormal. This is because a single

correction term attempts to account for all finite-size effects with estimates for different sizes
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Figure 3.1: Results for the critical exponent ν when only considering one correction term as
a function of Lmin, where Lmin is the minimal lattice size that is included into the fit.

having different uncertainties. Therefore, the value of the correction exponent from such fits

differs from the theoretical prediction (0.8303(18)) [4]. Including small lattices, the estimate

for the correction exponent ω is larger than 0.8303 and the resulting estimate for ν is smaller

than it should be. ν seems to be stable at around 0.629 75 when Lmin ≤ 32. However, all

fitting (unknown) parameters would vary altogether in order to minimize the least squares in

a high-dimension loss function space. Since a single correction term contributes differently for

different system sizes, it would result in inconsistent estimates for ν and ω. In consequence,

more correction terms need to be taken into account for a high precision analysis.

Because of the lack of a sufficient number of degrees of freedom, it is difficult to include

two or more unknown correction exponents as fitting parameters. However, the conformal
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bootstrap [4, 35], gives a theoretical prediction for the confluent correction exponents,

ω1 = 0.8303(18), ω2 ≈ 4. (3.2)

In correction term corresponding to the non-linear scaling fields [48],

ων = 1/ν. (3.3)

Also, a correction term due to the breaking of the rotational invariance of the lattice [49]

may play a role,

ωNR = 2.0208(12). (3.4)

In our analysis, any types of correction terms in Eq. (2.19) and Eq. (2.20) are permitted

to contribute an amount of correction, such that it is statistically significant. But due to

the finite precision of our estimates for thermodynamic quantities and the limited number

of system sizes in the analysis we found that including more than three correction terms did

not lead to meaningful fits. Consistent estimates for the asymptotic values of the critical

exponent ν have been yielded by performing least squares fits with 7 different combinations

of three correction terms. We have found that the best fit was obtained by using ω1 = 0.83,

ω2 = 4 and ων = 1.6. We will now show these results in detail.

For the reasons stated above, the fitting model for the peak value of quantity X is,

Xmax = X0L
1/ν(1 + a1L

−ω1 + a2L
−ω2 + a3L

−ων ). (3.5)

We have analyzed the data fitting model Eq. (3.5) for three cases: using one fixed correction

exponent ω1 = 0.83; two fixed exponents ω1 = 0.83, ω2 = 4; and three fixed exponents

ω1 = 0.83, ω2 = 4, ων = 1.6, respectively. The results for ν are shown in Table 3.2.
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Table 3.2: Estimates for ν with: one fixed correction exponent ω1 = 0.83, two fixed exponents
ω1 = 0.83, ω2 = 4, and three fixed exponents ω1 = 0.83, ω2 = 4, ω3 = 1.6 as a function of
Lmin.

Lmin ν(ω1 fixed) ν(ω1,2 fixed) ν(ω1,2,3 fixed)
16 0.631 814(18) 0.630 806(30) 0.630 072(45)
24 0.631 046(26) 0.630 513(40) 0.630 049(57)
32 0.630 722(33) 0.630 241(55) 0.629 980(77)
48 0.630 350(48) 0.630 278(78) 0.629 99(11)
64 0.630 319(62) 0.630 21(11) 0.630 06(15)
80 0.630 285(78) 0.630 10(15) 0.629 93(21)
96 0.630 25(10) 0.629 93(18) 0.629 90(29)
112 0.630 14(13) 0.630 01(17) 0.629 93(18)
128 0.630 04(15) 0.630 04(15) 0.629 84(22)
144 0.629 85(18) 0.629 85(18) 0.629 96(26)

By looking at Fig. 3.2, we observe that, with only one fixed confluent correction exponent

(ω1 = 0.83) being considered, the estimated value for the critical exponent ν decreases

systematically up to Lmin = 128. After that, the ν value seems to converge. Also, χ2 per dof

is very high when Lmin is small, which indicates that only considering one correction term

into the fit is inadequate, especially for the small lattice sizes (Lmin = 16, 24, 32). When

considering two fixed confluent correction exponents (ω1 = 0.83, ω2 = 4), ν decreases as Lmin

increases for Lmin ≤ 96. The ν value appears to be statistically fluctuating when Lmin ≥ 96.

Still, χ2 per dof is high when Lmin is small, which means that two correction terms are still

not enough for small lattice sizes (Lmin = 16, 24) within our resolution. Compared with

the analysis with only one fixed correction exponent, the estimated values for ν are highly

consistent when Lmin ≥ 128. This is because when Lmin becomes large enough, the second

confluent correction term contributes little.
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0.629 912
ω1 = 0.83, ω2 = 4, ων = 1.6

ω1 = 0.83, ω2 = 4
ω1 = 0.83

Lmin

ν

16014412811296806448322416

0.6320

0.6315

0.6310

0.6305

0.6300

0.6295

Figure 3.2: Results for the critical exponent ν when considering one fixed correction exponent
ω1 = 0.83, two fixed exponents ω1 = 0.83, ω2 = 4, and three fixed exponents ω1 = 0.83,
ω2 = 4, ων = 1.6 as a function of Lmin.

With three correction exponents, two for confluent corrections (ω1 = 0.83, ω2 = 4) and

one for the non-linear scaling fields (ων = 1.6), the estimate for the critical exponent ν shows

statistical fluctuation. The values for χ2 per dof for each quantity is reasonable (between

0.53 to 1.78). But, all estimates for the critical exponent ν > 0.629 97 if Lmin < 80, while

ν < 0.629 97 if Lmin ≥ 80. It looks like that there is still a very small systematic decrease of ν

as Lmin increases, which indicates that three correction terms may not be adequate to account

for all finite-size effects for small lattice sizes (L ≤ 80) with such precision. Therefore, the

value for ν is estimated by taking the average of ν obtained from different fits for different

Lmin varying from 80 to 144, ν = 0.629 912. To estimate the error of ν, we used the jackknife

method on estimates of ν from three correction term analysis using different ranges of Lmin:
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Table 3.3: Results for the critical exponent ν from jackknife analysis on estimates for ν that
are from the three correction terms analysis for values of Lmin within the ranges shown (with
Eq. (3.5)).

Lmin ν
16-144 0.629 97(21)
24-144 0.629 96(19)
32-144 0.629 95(16)
48-144 0.629 94(16)
64-144 0.629 94(15)
80-144 0.629 912(86)
96-144 0.629 908(81)

consider estimates for ν from Lmin = 96 to 144, then do a jackknife analysis to estimate

the value and error of ν. Add one ν value corresponding to Lmin = 80, then do a jackknife

analysis from Lmin = 80 to 144. Do this one by one, up to the analysis from Lmin = 16 to

144. Results are shown in Table 3.3.

Based on the values of Lmin to estimate the value of ν (from 80 to 144), we find

ν = 0.629 912(86). (3.6)

3.1.2 Finite-size scaling analysis to determine Kc

To estimate the critical coupling Kc, we have considered the location of zero of the fourth-

order energy cumulant Q4 and the peak location of following quantities:

• the logarithmic derivatives, ∂ ln 〈|m|i〉/∂K for i = 1, 2, 3, 4;

• the magnetization cumulant derivatives, ∂U2i/∂K for i = 1, 2, 3;

• the specific heat, C;

• the derivative of the modulus of the magnetization, ∂〈|m|〉/∂K;
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Figure 3.3: Size dependence of the finite-lattice effective critical temperatures estimated
from L = 96 to 1024. (Error bars are smaller than the size of the mark for every system
size.)

• the finite-lattice susceptibility, χ′.

Fig. 3.3 shows the finite-lattice effective critical temperatures estimated from L = 96 to

1024 as a function of lattice size. Error bars are smaller than the size of the mark for every

system size.

First, an analysis with one correction term was performed to estimate the critical coupling

Kc,

Kc(L) = Kc + A0L
−1/ν(1 + A1L

−ω1), (3.7)
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Table 3.4: Results for the critical coupling Kc when only considering one correction term as
a function of Lmin with Eq. (3.7).

Lmin Kc

16 0.221 654 621 8(13)
24 0.221 654 623 9(16)
32 0.221 654 624 9(19)
48 0.221 654 623 4(27)
64 0.221 654 625 3(45)
80 0.221 654 626 1(62)
96 0.221 654 630 0(78)
112 0.221 654 630 2(69)
128 0.221 654 630 2(63)
144 0.221 654 628(13)
160 0.221 654 630 3(85)

where the critical exponent was fixed to be ν = 0.629 912, and the correction exponent ω1

is a fitting parameter (unfixed). The χ2 per degree of freedom is acceptable, except in the

situation where Lmin = 16 for ∂〈|m|〉/∂K, the χ2 pof is high (2.76).

By calculating the covariance matrix and doing the cross correlation analysis, Kc was

estimated as shown in Table 3.4. The minimum lattice size Lmin that is taken into account

is eliminated one by one.

In Fig. 3.4, we observe that, the estimated value for the critical coupling Kc appears to

be stable if Lmin ≥ 96, around 0.221 654 630.

With the help of the theoretical prediction, we have considered one fixed correction

exponent ω1 = 0.83, two fixed exponents ω1 = 0.83, ω2 = 4, and three fixed exponents

ω1 = 0.83, ω2 = 4, ων = 1.6, to the fitting model Eq. (3.8)

Kc(L) = Kc + A0L
−1/ν(1 + A1L

−ω1 + A2L
−ω2 + A3L

−ων ). (3.8)
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Figure 3.4: Results for the critical coupling Kc with only one correction term included in
the fitting as a function of Lmin.

(Similar to the analysis to determine ν, seven different combinations of the three correction

terms have been analysed and the results were rather insensitive to the choice of the model

on the estimate for Kc. The best fit was obtained by using ω1 = 0.83, ω2 = 4 and ων = 1.6.)

The results for Kc are shown in Table 3.5.

In Fig. 3.5, when only one fixed confluent correction exponent (ω1 = 0.83) is included,

there is a systematic decrease for the estimated value for the critical coupling Kc if Lmin ≤ 80.

The Kc value appears to be stable if Lmin ≥ 80. The value for the χ2 per dof is very

high when Lmin is small, which indicates that the quality of the fit is not good with one

correction term when the lattice size is small (Lmin = 16, 24, 32). When considering two
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Table 3.5: Fitted values for Kc with: (left column) one correction term (fixed exponent
ω1 = 0.83); (center column) two correction terms (fixed exponents ω1 = 0.83, ω2 = 4; and
(right column) three correction terms (fixed exponents ω1 = 0.83, ω2 = 4, ω3 = 1.6) as a
function of Lmin.

Lmin Kc(ω1 fixed) Kc(ω1,2 fixed) Kc(ω1,2,3 fixed)
16 0.221 654 656 2(10) 0.221 654 639 3(11) 0.221 654 625 7(21)
24 0.221 654 638 8(11) 0.221 654 630 8(12) 0.221 654 625 7(24)
32 0.221 654 634 3(11) 0.221 654 630 7(12) 0.221 654 625 3(32)
48 0.221 654 630 7(12) 0.221 654 630 5(12) 0.221 654 623 2(30)
64 0.221 654 628 4(13) 0.221 654 628 4(13) 0.221 654 623 4(60)
80 0.221 654 627 5(14) 0.221 654 627 5(15) 0.221 654 625 0(75)
96 0.221 654 626 0(17) 0.221 654 626 0(16) 0.221 654 627 9(97)
112 0.221 654 625 9(18) 0.221 654 626 0(18) 0.221 654 625 0(49)
128 0.221 654 625 8(21) 0.221 654 625 8(21) 0.221 654 626 3(48)
144 0.221 654 627 0(25) 0.221 654 627 0(25) 0.221 654 627 1(34)

fixed confluent correction exponents (ω1 = 0.83, ω2 = 4), the Kc value decreases as Lmin

increases if Lmin = 80. After that, the Kc value appears to be statistically fluctuating.

Still, χ2 per dof is high when Lmin is small, which means that two correction terms are not

enough for small lattice sizes (Lmin = 16, 24) to account for the finite-size effects. Also, the

estimates for Kc with one and with two fixed correction exponents are highly consistent when

Lmin ≥ 64. This is because the second confluent correction term contributes little when Lmin

becomes large enough. Thus, these two analyses tend to generate similar results.

In addition, when three correction exponents are included in the analysis, two for con-

fluent corrections (ω1 = 0.83, ω2 = 4) and one for non-linear scaling fields (ων = 1.6), the χ2

per dof for each quantity is decent except the following cases:

• χ2 per dof = 2.52, if Lmin = 144 for ∂ ln 〈|m|〉/∂K,

• χ2 per dof = 2.41, if Lmin = 144 for ∂ ln 〈|m|2〉/∂K,

• χ2 per dof = 2.34, if Lmin = 144 for χ′,
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Figure 3.5: Results for the critical coupling Kc when considering one fixed correction expo-
nent ω1 = 0.83, two fixed exponents ω1 = 0.83, ω2 = 4, and three fixed exponents ω1 = 0.83,
ω2 = 4, ων = 1.6 as a function of Lmin.

• χ2 per dof = 2.89, if Lmin = 144 for ∂U4/∂K,

• χ2 per dof = 2.84, if Lmin = 144 for ∂U6/∂K.

We argue that this is because of the lack of degrees of freedom when Lmin is large.

The estimated value for the critical coupling Kc appears to be statistically fluctuating.

The fluctuation of Kc when Lmin ≤ 80 is larger than the one when Lmin ≥ 80. Additionally,

finite-size effects reduce for larger lattice sizes. Based on the average of Kc for Lmin = 80

to 144, we estimate Kc = 0.221 654 626 2. Similarly, a jackknife analysis has been done on

the estimates for the error bar of Kc which are obtained from the three correction terms

analysis. Table 3.6 shows the results.
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Table 3.6: Results for the critical coupling Kc from jackknife analysis on estimates for Kc

that are from the three correction terms analysis with Eq. (3.8).

Lmin Kc

16-144 0.221 654 625 5(42)
24-144 0.221 654 625 4(41)
32-144 0.221 654 625 4(41)
48-144 0.221 654 625 4(40)
64-144 0.221 654 625 8(33)
80-144 0.221 654 626 2(23)
96-144 0.221 654 626 6(18)

Q4

∂U6/∂K

∂U4/∂K
∂U2/∂K

C
∂〈|m|〉/∂K
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∂ ln 〈|m|4〉/∂K
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Figure 3.6: Size dependence of the residual difference between measured Kc and fitted values
including one fixed correction term.
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Based on values of Lmin from 80 to 144, we estimate Kc = 0.221 654 626 2(23), whereas

using Lmin = 16 to 144, the estimate for the critical coupling is, Kc = 0.221 654 625 5(42).

Therefore, we conclude that from the finite-size scaling analysis, with conservative error bars,

is

Kc = 0.221 654 626(5). (3.9)

As seen in Fig. 3.6, effects of higher order correction terms are clearly visible.

3.1.3 Crossing technique of the 4th-order magnetization cumulant

As the lattice size L→∞, the fourth-order magnetization cumulant U4 → 0 for K < Kc and

U4 → 2/3 for K > Kc [54]. For large enough lattice sizes, curves for U4 cross as a function

of inverse temperature at a “fixed point” U∗, and the location of the crossing “fixed point”

is Kc. Because the lattices are not infinitely large, finite-size correction terms have to be

taken into account, and not all curves cross at a common intersection point (as in Fig. 3.7).

However, Fig. 3.7 gives us a preliminary estimate for Kc.

The locations of the cumulant crossings between two system sizes have been fitted to

Eq. (2.21) with one correction term. All of the fitting parameters are unknown and allowed

to vary independently (no fixed values for ν and ω). Table 3.7 shows the corresponding

results, where Lmin is the minimum lattice size taken into account.

In addition, the locations of the cumulant crossings have been fitted to Eq. (2.21) with

two correction terms. Results are shown in Table 3.8.

For Lmin ≥ 80, the calculation gives identical values for the two correction exponents.

This is because we lack precision to include two correction terms for the crossing technique.

In Fig. 3.8, the critical coupling appears to be stable when Lmin ≥ 96. By taking the

average of Kc values for Lmin ≥ 96, the value of Kc is estimated to be 0.221 654 628 4. A
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Figure 3.7: Inverse temperature K dependence of the fourth-order magnetization cumulant
U4 for L× L× L Ising lattices.

Table 3.7: Results for the critical coupling Kc obtained using the cumulant crossing technique
with one correction term.

Lmin Kc dof χ2 per dof
16 0.221 654 628 72(41) 131 1.64
24 0.221 654 626 85(50) 115 1.10
32 0.221 654 626 17(58) 100 1.06
48 0.221 654 624 63(75) 86 0.88
64 0.221 654 625 44(91) 73 0.89
80 0.221 654 626 3(11) 61 0.90
96 0.221 654 627 7(12) 50 0.84
112 0.221 654 628 0(15) 40 0.93
128 0.221 654 628 4(17) 31 1.04
144 0.221 654 627 8(22) 23 1.18
160 0.221 654 629 3(24) 16 1.29
192 0.221 654 629 5(33) 10 1.70
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Table 3.8: Results for the critical coupling Kc by using cumulant crossing technique with
two correction terms.

Lmin Kc dof χ2 per dof
16 0.221 654 624 83(95) 129 0.94
24 0.221 654 624 9(10) 113 0.96
32 0.221 654 624 50(80) 98 0.85
48 0.221 654 624 63(85) 84 0.90
64 0.221 654 625 4(10) 71 0.91

Two correction terms
One correction term

24

K c

Lmin

192160144128112968064483216

0.221654634

0.221654632

0.221654630

0.221654628

0.221654626

0.221654624

0.221654622

Figure 3.8: Results for the critical coupling Kc using cumulant crossings with one correction
term and two correction terms as a function of the minimum size used in the fits Lmin.
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Table 3.9: Results for the critical coupling Kc by using jackknife analysis on estimates for Kc

that are from the cumulant crossing technique with one correction term analysis for different
ranges shown.

Lmin Kc

16-144 0.221 654 627 4(49)
24-144 0.221 654 627 3(47)
32-144 0.221 654 627 3(46)
48-144 0.221 654 627 5(45)
64-144 0.221 654 627 8(34)
80-144 0.221 654 628 1(24)
96-144 0.221 654 628 4(16)
112-144 0.221 654 628 6(14)
128-144 0.221 654 628 7(12)

jackknife analysis has been done on the estimates for the error bar of Kc which are from the

one correction term analysis. Results are shown in Table 3.9.

Using results for Lmin (96 to 192) we estimate

Kc = 0.221 654 628(2). (3.10)

3.1.4 Alternative finite-size scaling analysis

In Sec. 3.1.1, a finite-size scaling analysis was performed based on the magnitude of quantities

at the peak locations. Alternatively, critical exponents can be estimated by looking at

quantities at the estimate for Kc (denoted Kest
c = 0.221 654 626, i.e. the estimated value for

infinite critical coupling Kc).

X(K = Kest
c ) = X0L

λ(1 + a1L
−ω1 + · · · ), (3.11)
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where X is the quantity being applied to determine the critical exponent λ. As for the

susceptibility and the specific heat Eq. (3.11) includes an analytic background term.

The critical exponent ν can be estimated from derivatives of magnetization cumulants

and logarithmic derivatives of the magnetization at Kest
c . By including three fixed correction

exponents to the fitting model, calculating the jackknife covariance matrix, and performing

the cross correlation analysis, we find ν to be

ν = 0.629 93(10). (3.12)

This result is consistent with ν = 0.629 912(86), the value of ν estimated from Eq. (3.6).

By examining the scaling behavior of the susceptibility at Kest
c , we have found that

γ/ν = 1.963 90(45) . Combining this value with our estimate for ν from Eq. (3.6), and

assuming that exponent estimates for γ and ν are independent, we have determined the

critical exponent γ of the magnetic susceptibility to be

γ = 1.237 08(33). (3.13)

Also, we performed an analysis of the susceptibility at constant U4 as suggested by Hasen-

busch [37]. Fixing U4 = 0.4655 and including the higher order confluent corrections to scaling

we found that γ = 1.237 01(28), a value that is almost identical to, and with only a slightly

smaller error bar than γ = 1.237 08(33), the value obtained from finite-size scaling of the

susceptibility.

Similarly, by considering the critical behavior of |m| at Kest
c , we obtained

β/ν = 0.518 01(35), or

β = 0.326 30(22). (3.14)
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Because of the large analytic background in the specific heat (see Eq. (2.14)), it was

not possible to extract estimates of the exponent α with comparable precision to the other

exponents evaluated here. For this reason, we have not quoted an estimated value.

3.2 Probability distribution P (m) of the order param-

eter m

The probability distribution P (m) of the order parameter m is a seminal quantity for

studying the finite-size scaling of critical phenomena. It contains the information needed

to calculate all order parameter related quantities such as the Binder cumulant U4 =

1 − 〈m4〉 /(3 〈m2〉2), the susceptibility χ = K(〈m2〉 − 〈m〉2), etc. Also, it can complement

the use of critical exponents in determining the critical behavior of a universality class.

According to finite-size scaling theory [54, 55], and assuming hyperscaling and using

L (linear dimension), m (order parameter), and ξ (correlation length) as variables, the

probability distribution of the order parameter is described by the scaling ansatz,

P (m,L, ξ) = Lβ/νP̃ (mLβ/ν , L/ξ), (3.15)

where β is the order parameter exponent, ν is the correlation length exponent, and

P̃ (mLβ/ν , L/ξ) is the scaling function.

Fig. 3.9 shows the scaled probability distribution P (m)L−β/ν as a function of mLβ/ν at

the critical point Kc = 0.221 654 626 for finite lattice sizes (L = 16, 32, 96, and 256). Here, β

and ν are critical exponents for infinite lattices, and β/ν = 0.518 01(35) [2]. The peak values

of the scaled P (m)L−β/ν decreases as the lattice size L increases. Also, systematic deviations

from scaling occur in the region of the tails of the distributions. In the thermodynamic limit

(L =∞), the probability distribution P (m) should be universal up to a rescaling of m.
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Figure 3.9: Scaled probability distribution P (m)L−β/ν as a function of mLβ/ν at the critical
point Kc = 0.221 654 626 [2].

Based on the estimate for the critical point in Sec. 3.1.2, data were reweighted to Kc =

0.221 654 626 by using histogram reweighting techniques [18, 19]. To obtain the probability

distribution P (m) at Kc, for each occurrence of the order parameter, the corresponding

population of the bin of the histogram was incremented by exp((K0−Kc)E), where E is the

total dimensionless energy of the system. The histogram was then normalized to determine

P (m).

3.2.1 Simple ansatz

First, we performed a nonlinear least-squares fit, where the reciprocals of the statistical

errors were taken as the weighting factors to the loss function, with the “improved” ansatz
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of Ref. [56],

P (m) = ALβ/ν exp



−

[(
mLβ/ν

m0

)2

− 1

]2 [
b

(
mLβ/ν

m0

)2

+ c

]
 , (3.16)

where A, m0, b, and c are unknown fitting parameters, and β/ν = 0.51801(35). Note that

m0 is a scale-invariant (but not universal) quantity.

Fig. 3.10 shows the difference between the Monte Carlo data and the fit corresponding

to Eq. (3.16). It also illustrates the error bars for the Monte Carlo data. From Fig. 3.10 we

observe that when the lattice size L is small, e.g. L = 16, a pattern in the difference between

MC data and the fit is very clear. This means that the fitting ansatz, Eq. (3.16), does not

perform well for small L to within the statistical uncertainty. For larger L (e.g. L = 1024),

the difference between the distribution and the fit to the ansatz is of the same magnitude as

the statistical error, so no systematic deviation is observed.

Table 3.10 shows the results of fitting the data to Eq. (3.16). We can tell that the quality

of fit is not good when L ≤ 80, as the value of the χ2 per degree of freedom (p.o.f.) is large.

It decreases for larger L, and the quality of fit becomes good for the largest lattice sizes.

Based on the variance of the fit parameters b and c of Eq. (3.16) for different lattice sizes,

we have estimated their values and errors for L =∞ as,

b = 0.1553(6), c = 0.7783(4). (3.17)

Ref. [56] determined the less precise values b = 0.158(2) and c = 0.776(2) which agree with

our results within the error bars.
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Figure 3.10: The purple (dark grey) line is the difference between the Monte Carlo data and
the fit corresponding to Eq. (3.16), while the orange (light grey) line is the error bar for the
Monte Carlo data (top: L = 16, middle: L = 96, bottom: L = 1024).
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Table 3.10: The parameters m0, b, and c for the probability distribution P (m), fitted to the
ansatz Eq. (3.16). The last column χ2 per degree of freedom (dof) characterizes the quality
of the fit.

L m0 b c χ2 per dof
16 1.411 97 (26) 0.2408 (17) 0.836 86 (77) 381.82
24 1.411 12 (12) 0.209 24 (70) 0.819 38 (40) 70.96
32 1.410 761 (82) 0.195 20 (48) 0.810 45 (21) 24.87
48 1.410 437 (74) 0.181 97 (43) 0.800 87 (25) 6.98
64 1.410 440 (46) 0.176 01 (29) 0.796 07 (26) 3.70
80 1.410 351 (48) 0.172 20 (31) 0.793 03 (33) 2.23
96 1.410 345 (57) 0.169 77 (35) 0.791 04 (34) 1.74
112 1.410 250 (59) 0.167 85 (37) 0.789 39 (42) 1.47
128 1.410 362 (71) 0.166 74 (46) 0.788 09 (36) 1.32
144 1.410 153 (85) 0.165 37 (54) 0.786 93 (37) 1.24
160 1.410 217 (98) 0.164 62 (62) 0.786 39 (42) 1.18
192 1.410 189 (67) 0.163 36 (85) 0.784 99 (46) 1.12
256 1.410 281 (87) 0.1620 (11) 0.783 59 (47) 1.08
384 1.410 18 (11) 0.1560 (14) 0.781 98 (49) 1.04
512 1.410 33 (19) 0.1589 (16) 0.781 04 (71) 1.02
768 1.411 06 (48) 0.1575 (43) 0.781 68 (77) 1.02
1024 1.410 65 (66) 0.1544 (82) 0.780 76 (98) 1.01

3.2.2 Sophisticated ansatz

The systematic deviation observed for smaller system sizes led us to modify ansatz Eq. (3.16)

by adding various forms of correction terms to see if a revised ansatz could fit the data well

even for smaller lattices. We approximated P (m) by using different forms, e.g. adding

correction terms in the exponent, adding different correction terms in the pre-exponential

factor (|m|ω, |m|, |m|2, ...), and adding correction terms in both the exponent and the pre-

exponent factor. We have found that the following “improved” ansatz gives a surprisingly
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good approximation to P (m) over quite a wide range of L and m:

P (m) = ALβ/ν exp



−

[(
mLβ/ν

m0

)2

− 1

]2 [
a

(
mLβ/ν

m0

)4

+ b

(
mLβ/ν

m0

)2

+ c

]
 , (3.18)

where A, m0, a, b, and c are unknown fit parameters, and as before β/ν = 0.51801(35).

Fig. 3.11 is analogous to Fig. 3.10, but shows the difference between the Monte Carlo

data and the fits to Eq. (3.18). Based on Fig. 3.11, one can see that even for L = 16 the

residual discrepancy is comparable to the statistical error. By using Eq. (3.18) as the fitting

function, the maximal difference between MC data and the fit for L = 16 is around 0.0004,

which is 1/10 of that in Fig. 3.10 which used Eq. (3.16) as the fitting function. Thus, the

quality of fitting to ansatz Eq. (3.18) is much higher than that of Eq. (3.16) for small L, and

within the statistical errors, Eq. (3.18) performs much better than Eq. (3.16) as a fitting

function.

Results for fitting to the functional form Eq. (3.18) are shown in Table 3.11. The values

of the χ2 per dof show that the quality of fit is good even for small lattice sizes. Generally

speaking, the error bars for the fit parameters (m0, a, b, and c) become larger as L increases.

This is because the statistical errors of the raw data are greater for larger lattice sizes (see

the dashed line in Fig. 3.11).

Fig. 3.12 shows the results of the fit parameters a, b, and c of the probability distribution

P (m), approximated by the ansatz Eq. (3.18). The horizontal axis is chosen to be L−ω,

where ω = 0.8303(18) [4], so that the leading corrections to scaling are linearized [54]. There

is an apparent deviation for L = 768 and L = 1024, but the error bars for those sizes are so

large that their contributions to the fit are less significant. (There are many more “bins” in

the histogram for very large L so there are fewer entries in each bin.) To within statistical

errors, there are noticeable finite-size effects for a, b, and c. By doing extrapolations to the
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Figure 3.11: Analogous to Fig. 3.10, but the fit is corresponding to Eq. (3.18) (top: L = 16,
middle: L = 96, bottom: L = 1024).
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Table 3.11: The parameters m0, a, b, and c for the probability distribution P (m), fitted
by the ansatz Eq. (3.18). The last column χ2 per degree of freedom (dof) characterizes the
quality of the fit.

L m0 a b c χ2 per dof
16 1.408 684 (19) 0.025 01 (21) 0.169 36 (31) 0.839 36 (33) 1.31
24 1.408 497 (27) 0.016 44 (15) 0.160 64 (23) 0.821 24 (36) 1.03
32 1.408 456 (44) 0.013 10 (14) 0.155 53 (12) 0.812 03 (26) 1.04
48 1.408 432 (61) 0.010 46 (15) 0.150 02 (24) 0.802 20 (27) 1.02
64 1.408 588 (49) 0.009 26 (21) 0.147 51 (29) 0.797 27 (31) 1.03
80 1.408 573 (53) 0.008 62 (25) 0.145 55 (40) 0.794 16 (39) 1.02
96 1.408 611 (73) 0.008 22 (27) 0.144 27 (54) 0.792 13 (45) 1.02
112 1.408 564 (70) 0.007 84 (28) 0.143 47 (75) 0.790 43 (51) 1.01
128 1.408 714 (64) 0.007 54 (36) 0.143 26 (61) 0.789 10 (48) 1.02
144 1.408 490 (82) 0.007 48 (45) 0.142 07 (76) 0.787 93 (55) 1.02
160 1.408 580 (92) 0.007 27 (56) 0.141 94 (93) 0.787 36 (48) 1.01
192 1.408 497 (91) 0.007 31 (52) 0.140 53 (99) 0.785 97 (42) 1.01
256 1.408 672 (95) 0.006 75 (65) 0.1409 (12) 0.784 48 (58) 1.01
384 1.408 489 (87) 0.006 57 (74) 0.1396 (20) 0.782 80 (89) 1.01
512 1.408 55 (12) 0.006 01 (98) 0.1404 (26) 0.7817 (15) 1.01
768 1.408 87 (20) 0.0047 (16) 0.1434 (59) 0.7821 (19) 1.01
1024 1.408 72 (29) 0.0036 (26) 0.1462 (91) 0.7806 (29) 1.01

thermodynamic limit, their values are estimated as follows,

a = 0.0050(6), b = 0.137(1), c = 0.7785(3). (3.19)

Comparing the results of fitting to the two ansatzes, Eq. (3.16) and Eq. (3.18), one can see

that the estimates for c from both fits agree with each other to within error bars. However,

the value of b determined for Eq. (3.16) is larger than that for Eq. (3.18). We believe that

this is a consequence of the correction term corresponding to b in Eq. (3.16) attempting

to account for additional finite-size corrections which are addressed explicitly by the term

corresponding to a in Eq. (3.18).
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Figure 3.12: Variation of fitting parameters a, b, and c for ansatz Eq. (3.18) as functions of
L−ω. The abscissa is chosen such that the leading corrections to scaling could be linearized [3],
where ω = 0.8303(18) [4]. The solid lines show extrapolations to L =∞ for L ≥ 32.
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Figure 3.13: Tail probability distribution of the order parameter (average of the left and
right tails) in the log scale, where mLβ/ν ≥ 2.25, for different lattice sizes L. The lines are
the best fits with Eq. (3.18).

Overall, we have observed that the functional form Eq. (3.18) permits a high quality

nonlinear least-squares fit to the P (m) data. Although the quality of fit for Eq. (3.16) is

reasonable for large lattice sizes, it is poor for small lattice sizes. The addition of a correction

term (Eq. (3.18)) allows for a high-quality fit for P (m) over a larger range of system sizes. We

have observed a noticeable finite-size effect for the fit parameters a, b, and c, thus Eq. (3.18)

is a high-resolution approximation expression for P (m) in the thermodynamic limit.

3.2.3 Tail distribution

The tails of the order parameter probability distributions have relatively few entries and

do not contribute substantially to the fits. Therefore, we examine them in a finer manner.
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Fig. 3.13 shows the logarithm of the tail distributions, where mLβ/ν ≥ 2.25. The values of

the MC data are the averages of the left and right tails. The solid lines are the best fits to

Eq. (3.18). The tail data for L = 256 fluctuate too much to present clearly in the figure.

Therefore, we applied a smoothing technique, where each data point is the mid-point of a

linear fit to 10 consecutive points. The shape of the scaled probability distribution differs

noticeably from the thermodynamic limit, as there are non-negligible corrections to scaling.

The values of P (m) are small at the tail region, and their statistical errors are relatively high,

thus, data in the tails contribute less to the fit than those near the peaks. Although their

contributions are less significant, Fig. 3.13 still indicates that the fit by Eq. (3.18) performs

relatively well in the tail region, at least for mLβ/ν ≤ 2.75.

3.3 Self-consistency check

Inspired by a recent work [57], where the 3D percolation was studied by Monte Carlo simula-

tions, the quoted error bar can be justified by observing the Monte Carlo data away from the

critical point by 3 error bars. The underlying idea is that if the quoted error bar is reliable,

the off-critical behavior would be noticeable in the Monte Carlo data at points away from

the estimated value by a few times of the error bar.

Following is the cumulant’s ansatz [3],

U4(L) = U∗(1 + cL−ω1), (3.20)

where U4(L) is the fourth-order cumulant for system size L and U∗ is the ”fixed point”.

To justify our quoted error bars for the crossing technique, Kc = 0.221 654 628(2), we

performed an analysis for the fourth-order magnetization cumulant at K = 0.221 654 622,

0.221 654 628, and 0.221 654 634 respectively in Fig. 3.14. The value of parameter c was
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Figure 3.14: Plot of the fourth-order magnetization cumulant as a function of L for fixed K
values. The value of c was estimated by doing a fit for U4 by Eq. (3.20). The dashed line
indicates our asymptotic value for U∗.

estimated by doing a fit for the cumulant by Eq. (3.20). It was generated at the estimated

critical coupling, with a fixed correction exponent ω1 = 0.83, over the range of L = 144 to

1024. It can be seen that, the data at K = 0.221 654 622 and K = 0.221 654 634 begin to

diverge as L increases, while the data at K = 0.221 654 628 converge to U∗ = 0.465 48(5).

Our estimate agrees with 0.465 45(13) from Blöte et al [58], but higher than 0.465 306(34)

from Deng and Blöte [59].

Likewise, a plot of the derivative of the fourth-order magnetization cumulant is shown

in Fig. 3.15. Based on the FSS estimate Kc = 0.221 654 626(5) in Sec. 3.1.2, the data away

from the estimated critical point by 3 error bars have a noticeable divergence.
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Figure 3.15: Plot of the derivative the 4th order magnetization cumulant as a function of L
for fixed K values. The value of a1 was estimated by doing a fit for ∂U4/∂K by Eq. (3.11).

All in all, Fig. 3.14 and Fig. 3.15 indicate that our quoted error bars for Kc from the

crossing technique and the FSS are reliable.

3.4 Discussion

The combination of an efficient cluster-flipping Wolff algorithm, histogram reweighting tech-

nique, a cross-correlation jackknife analysis, and high statistics data processing enables us

to achieve the high resolution results presented in this work. Table 3.12 and Fig. 3.16 shows

the comparison between estimates for Kc and ν with other high-resolution results from sim-

ulation and theory. In Fig. 3.16, the boxes represent the quoted error bars in both ν and Kc

assuming independent errors.
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Table 3.12: Comparison of our results for the critical coupling Kc and the critical exponents
ν, γ with other recently obtained values. The number marked with * is not given by the
reference directly, but is calculated by Fisher’s scaling law γ = ν(2 − η). The error is
calculated using simple error propagation, which assumes that ν and η are independent and
uncorrelated.

a Special purpose computer.
b Monte Carlo study of the non-linear relaxation function.
c Conformal bootstrap

Reference Method Kc ν γ
Butera and Comi(2002) [31] HT series 0.221 655(2) 0.629 9(2) 1.237 1(1)
Blöte et al.(1999) [58]a MC 0.221 654 59(10) 0.630 32(56) 1.237 2(13)*
Deng and Blöte(2003) [59] MC 0.221 654 55(3) 0.630 20(12) 1.237 2(4)*
Ozeki and Ito(2007) [26]b MC NLR 0.221 654 7(5) 0.635(5) 1.255(18)*
Weigel and Janke(2010) [21] MC 0.221 657 03(85) 0.630 0(17) 1.240 9(62)*
Hasenbusch(2010) [37] MC 0.221 654 63(8) 0.630 02(10) 1.237 19(21)*
Kaupuz̃s(2011) [38] MC 0.221 654 604(18)
Kos et al.(2016) [36]c CB 0.629 971(4) 1.237 075(8)*
Wang et al.(2014) [40] tensor RG 0.221 654 555 5(5)
Rosengren(1986) [33] conjecture 0.221 658 63 · · ·
This work (no assumptions) MC 0.221 654 630(7) 0.629 60(15) 1.236 41(45)
This work (constrained fits) MC 0.221 654 626(5) 0.629 912(86) 1.237 08(33)
This work (U4 crossings) MC 0.221 654 628(2)
This work (constant U4) MC 1.237 01(28)

Our estimate for the critical exponent of the correlation length ν = 0.629 912(86) (in

Sec. 3.1.1) is perfectly consistent (i.e. within error bars) with the recent conformal boot-

strap result of Kos et al. [36], as well as that from an older work by El-Showk et al. [4]. In

addition, our result agrees with the high-temperature result of Butera and Comi [31], Monte

Carlo result of Deng and Blöte [59], and nonequilibrium relaxation Monte Carlo result of

Ozeki and Ito [26]. Also, our result agrees well with the Monte Carlo result of Hasenbusch [37]

but is lower than that of Weigel and Janke [21]; however, within the respective error bars

there is agreement although we have substantially higher precision than either of these pre-
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Figure 3.16: Recent high-resolution estimates for Kc and ν obtained using different methods.

vious studies. Our system sizes and statistics are substantially greater than those used by

Weigel and Janke, and Hasenbusch examined the behavior of the ratio of partition functions

Za/Zp, and the second moment correlation length over the linear lattice size ξ2/L so the

methodologies are not identical. Our estimate for Kc differs from that obtained by Kaupuz̃s

et al [38] using a parallel Wolff algorithm by an amount that barely agrees to within the error

bars. Somewhat perplexingly, they were able to fit their data to two rather different values

of ν, so no comparison of critical exponents is possible. The recent tensor renormalization

group result for Kc [40] does not agree with our result; in fact the difference is many times

the respective error bars.
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To place these results in perspective, it is interesting to note that as far back as 1982

Gaunt’s high temperature series expansions [60] gave the estimate Kc = 0.221 66(1) and in

1983 Adler [61] estimated 0.221 655 < Kc < 0.221 656 with confluent corrections included in

the analysis.

Neither Rosengren’s “exact conjecture” nor Zhang’s so-called “exact” solution agree with

our numerical values, thus adding further evidence to the already strong arguments that

neither are, in fact, correct.

In Sec. 3.1.4, we have estimated the critical exponents by using an alternative finite-

size scaling analysis. The critical exponent of the correlation length is estimated to be

ν = 0.629 93(10), which is consistent with our estimate in Sec. 3.1.1. While our final estimate

is slightly lower than the best alternative values, there is agreement to within the error bars.

Also, our estimate γ = 1.237 08(33) is consistent with the conformal bootstrap estimates

given by Kos et al. [36], El-Showk et al. [4], and slightly smaller than the Monte Carlo

estimates by Deng and Blöte [59], Hasenbusch [37], and Weigel and Janke [21]; but, once

again, there is overlap within the respective error bars.
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Chapter 4

Models and methods for a first-order

transition where a continuous

symmetry is broken

4.1 Three-dimensional anisotropic Heisenberg model

There has been a great interest in the XXZ Heisenberg antiferromagnetic model in an

external field for many years [5, 62–66]. The Hamiltonian of this model is given by,

H = J
∑

〈i,j〉
[∆(SixSjx + SiySjy) + SizSjz]−H

∑

i

Siz, (4.1)

where the classical spins Si are unit vectors with components (Six, Siy, Siz) on sites i of a

simple cubic lattice with linear size L, and J > 0 is the exchange coupling between nearest-

neighbor pairs of spins. ∆ is the uniaxial exchange anisotropy, which we set to ∆ = 0.8 in this

work. (A recent high-resolution study about the 3D XXZ Heisenberg antiferromagnet was

implemented with ∆ = 0.8.) An external magnetic field H is applied along the z-axis, which
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Figure 4.1: Spin configurations for different phases in the XXZ Heisenberg model in an
external field. Illustrated are spin configurations of the two sublattices in the (a) antiferro-
magnetic (AF); and (b) spin-flop (SF) phases. θSF is the angle that the spins make with
respect to the applied field.

is the easy axis of the model. The first summation is over all 〈i, j〉 pairs of nearest-neighbor

sites and the second summation is over all N = L3 spins on the lattice.

The phase diagram has been studied by various methods for many years, e.g. renormal-

ization group [67] and mean field theory [68]. We now believe that an antiferromagnetic

(AF) phase exists at low temperature and low field, where the nearest-neighboring spins

point in opposite directions along the axis given by the anisotropy (as shown in Fig. 4.1(a));

a spin-flop (SF) phase exists at low T and higher H, in which the spins are tilted with

continuous rotational symmetry about the field direction (see Fig. 4.1(b)). In addition, a

paramagnetic (P) phase with no long range order exists at high T and/or at high H.

4.2 Related work and remaining questions for the 3D

XXZ Heisenberg antiferromagnet

Finite-size scaling at both first-order and second-order transitions between phases with dis-

crete numbers of states is now relatively well established and extremely successful at describ-

ing phase transition behavior in the thermodynamic limit from Monte Carlo data produced
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for finite-size systems [1, 11, 13, 69–72]. The simplest case of a first-order transition, namely

the first-order, field driven transition in the 2-dimensional Ising model below its critical

point, was studied using Monte Carlo simulations by Binder and Landau [70]; and to a good

approximation the probability distribution of the order parameter at the first-order transi-

tion could be described by the sum of the Gaussians representing the two coexisting states

in the finite system. For the temperature driven first-order transition in the q-state Potts

model a similar theoretical development could be used, but a factor of “q” needed to be

included in the Gaussian representing the q-fold degenerate ordered state [71]. Monte Carlo

simulations of the q = 10 Potts model on L×L lattices verified this finite-size behavior [72].

As for the first-order phase transition where a continuous symmetry is broken, there

are neither theoretical predictions nor good data from simulations regarding the finite-size

behavior. A “fruit fly” model is thus necessary to help provide an understanding of this

case, and we consider the uniaxially anisotropic, three-dimensional (3D) Heisenberg antifer-

romagnet in an external field, H, is exactly such a candidate model. Substantial interest

has been shown to this model for a number of decades, mostly are about the phase diagram

and ordered structures clarifications and the nature of the multicritical point identifica-

tion [5, 62–65,73–77].

Both the SF-to-P and the AF-to-P phase transitions are of second-order. They belong

to the XY and the Ising universality classes, respectively. However, the phase transition

between the AF and SF phases is of the first-order. The point T = Tb where the three

phases meet was determined to be a bicritical point in the three-dimensional (3D) Heisenberg

universality class. Fig. 4.2 shows the corresponding phase diagram in the neighboring area

of the bicritical point. In earlier work, the spin-flop boundary for the anisotropic Heisenberg

antiferromagnet in an applied field was located rather precisely [5, 65], thus this model is

actually a fertile testing ground for the study of finite-size effects at a first-order transition

where a continuous symmetry is broken.

57



Figure 4.2: Phase diagram for the 3D anisotropic Heisenberg model in an applied magnetic
field, H, near the bicritical point [5]. Both the temperature, T , (kB is Boltzmann’s constant)
and the external field are normalized by the exchange constant J . The order parameter for
the antiferromagnetic phase is m̃z and for the spin-flop phase is ~ψ. The z-component of the
uniform magnetization is mz.

The phase diagram near the bicritical point in the temperature T and field H plane is

shown in Fig. 4.2, where the meeting point of the three phase transition lines is estimated

to be at kBTb/J = 1.025 ± 0.0025 and Hb/J = 3.89 ± 0.01 [5, 65]. Note that here we are

not concerned with the phase boundaries near the bicritical point but rather shall study

the finite-size effects associated with the first-order transition from the AF phase to the SF

phase at T = 0.95J/kB, T = 0.80J/kB, and T = 0.60J/kB at a transition field H t.
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4.3 Sampling methods

For T = 0.95J/kB two different Monte Carlo methods were used to carry out the simula-

tions, where simple cubic lattices with even values of L and periodic boundary conditions

were considered. Simulations for L ≤ 60 were first performed using a standard Metropolis

algorithm [15] with the R1279 shift register random number generator [1]. Runs of length

3× 107 MCS were performed for all lattice sizes and the number of independent runs ranged

from 10 for L = 30 to 1035 for L = 60. For L = 60 Metropolis sampling had great difficulty

tunneling between the two states on opposite sides of the spin-flop transitions. Therefore, to

ensure that the sampling was truly ergodic for L = 60, L = 80 and L = 100, we implemented

multicanonical sampling [17]. Multicanonical simulations were then performed for the entire

range of sizes so that results could be compared with those from Metropolis sampling. The

multicanonical sampling probability was determined iteratively for each L until the multi-

canonical probability density Pmuca(E) of the energy is “flat” enough, see Fig. 4.3. Then

runs of length 107 MCS were carried out. To determine averages and error bars a total of

100 independent runs were made for L = 30 and the number increased with increasing size

until 900 independent runs were used for L = 100. For smaller lattices, there was agreement

between the data generated using the two different sampling methods and the results could

be combined for the analysis. For the multicanonical runs the Mersenne Twister random

number generator was used [1]. For T = 0.80J/kB and T = 0.60J/kB, similar multicanonical

simulations mentioned above were applied to generate data for L = 10 up to L = 50 and

L = 10 up to L = 40 respectively.

Histogram reweighting techniques [18] were applied to extract thermodynamic quantities

for fields near the values used in the simulations. For the largest lattices, comparisons were

made between runs made at adjacent field values and reweighted results to ensure that we

were not reweighting beyond the reliable range of fields.
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Figure 4.3: Multicanonical probability density Pmuca(E) of the energy with different itera-
tions for L = 100 at T = 0.95J/kB.

4.4 Theory and quantities to be analyzed

4.4.1 General relations and order parameters

For small enough fields, H < H t(T ), and low temperatures, T , the anisotropic Heisenberg

antiferromagnet exhibits Neél-type two-sublattice order on the simple cubic (or other bi-

partite three-dimensional) lattices. This order is described by the staggered magnetization

(with the two interpenetrating sublattices of the L×L×L lattice denoted by indices 1 and

2 )

m̃z =
1

L3

(∑

i∈1

Siz −
∑

i∈2

Siz

)
. (4.2)
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For H > 0 we also expect to have a non-zero uniform magnetization mz (per spin)

mz =
1

L3

(∑

i∈1

Siz +
∑

i∈2

Siz

)
. (4.3)

At the transition field, H = H t(T ), there is a first-order phase transition to the “spin-

flop” phase described by a two-component order parameter involving the transverse spin

components

ψα =
1

L3

(∑

i∈1

Siα −
∑

i∈2

Siα

)
, α = (x, y) . (4.4)

Both ψx, ψy are equivalent and form the components of a vector order parameter ~ψ with

XY symmetry. Fig. 4.2 shows the phase diagram near the bicritical point Tb, and Fig. 4.4

describes the schematic variation of the free energy with the magnetic field H (for simplicity,

the temperature dependence of H t(T ) is suppressed in Fig. 4.4) along with its derivative

mz,∞ = 〈mz〉T,L→∞ as well as the order parameter ψ∞ =
√
〈ψ2

x + ψ2
y〉T,L→∞. Henceforth, a

subscript “∞” means that we are referring to properties in the thermodynamic limit. Note

that the variable mz,∞ is the thermodynamically conjugate variable to the magnetic field,

with F being the Gibbs free energy per spin [78],

mz,∞ = −(∂F/∂H)T . (4.5)

Defining the transition field in the thermodynamic limit as H t, we note that mz,∞ at H t

must jump from mAF
z,∞ in the antiferromagnetic phase to a larger value mSF

z,∞ in the spin-flop

phase. At the transition field the free energies of the two phases are equal, F = Ft, and the

free energy differences (per spin) in the two phases relative to this value are, to leading order

∆FAF = (H t −H)mAF
z,∞ , H ≤ H t , (4.6)

61



F

0

m
z,∞

H
t

H

0

ψ
∞

AF

SF

∆F
SF

∆F
AFF

t

m
z,∞

AF

m
z,∞

SF

AF

AF

SF

SF

Figure 4.4: Schematic variation of thermodynamic quantities with field H for T < Tb:
(top) Free energy F (T,H). The absolute magnitude of the free energy differences ∆FAF ,
∆FSF in the antiferromagnetic (AF) and spin-flop (SF) phases are relative to the free energy
(per spin) at the transition (Ft). Near the transition field H t these free energy differences
vary linearly with H; (middle) Magnetization mz,∞ along the field direction. At H t a jump
occurs from mAF

z,∞ (in the thermodynamic limit, L → ∞) in the AF phase to mSF
z,∞ in the

SF phase. Near H t the variation of mz,∞ with H is linear; (bottom) Absolute value of the
order parameter of the SF phase, ψ∞. Since the AF-SF transition is first-order, ψ∞ jumps
discontinuously from zero to a non-zero value when H = H t.
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∆FSF = (H t −H)mSF
z,∞ , H ≥ H t . (4.7)

The total free energy difference between phases then becomes (continuing both phases into

their metastable region and ignoring the inequalities in Eqs. (4.6), (4.7))

∆F ≡ ∆FSF −∆FAF = (H −H t)(mAF
z,∞ −mSF

z,∞)

= −(H −H t)∆m, (4.8)

where we have introduced ∆m = (mSF
z,∞−mAF

z,∞) to represent the jump in the magnetization

mz in the thermodynamic limit at the transition (see Fig. 4.4). Note that ∆F > 0 for

H < H t since mAF
z,∞ < mSF

z,∞.

We can use Eqs. (4.6) - (4.8) to construct the statistical weights of the two phases

in a large, but finite, system in a field H ≈ H t. The most naive assumption would be

aAF ∝ exp(−∆FAFL
3/kBT ), aSF ∝ exp(−∆FSFL

3/kBT ). However, this assumption, using

a common normalization factor, disregards the difference in degeneracy of the two phases.

While the AF phase is two-fold degenerate (n = 1, one-component order parameter), in the

SF phase a continuous (XY -model like) symmetry is broken (n = 2, two-component order

parameter). How this difference enters in the weights is not obvious, unlike in the simpler

case of the thermally driven q-state Potts model [79] with Hamiltonian

H = −J
∑

〈i,j〉
σiσj, (4.9)

where σi = 1, 2, ..., q and a bond is formed between nearest neighbors only if they are in the

same state. In the q-state Potts model, the high-temperature phase is non-degenerate and

the low-temperature phase is simply q-fold degenerate. There, an extra factor q appears in

the weight of the low-temperature phase multiplying the Boltzmann factor. It is unclear

(at least to us) what this factor q must be when dealing with a continuous symmetry.
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Thus, we introduce an analogous factor q phenomenologically to account for the difference in

degeneracy between the phases at the coexistence point in the thermodynamic limit (H =

H t). As we shall see, in full analogy with the Potts model, this factor leads to shifts of

characteristic finite-size induced features (e.g. position of the maximum of the magnetic

susceptibility or specific heat, minimum of the various cumulants, etc.). Observing these

features in the simulations should provide numerical estimates for this degeneracy factor q

for the present problem. In the next subsection we shall advance a hypothesis for the value

of q.

We now postulate the “equal weight rule” [71] for the statistical weights of the two

phases, i.e. aAF = N exp(−∆FAFL
3/kBT ) and aSF = N q exp(−∆FSFL

3/kBT ), with a

normalization factor N . Requiring aAF + aSF = 1 yields

aAF = exp(∆FL3/kBT )/[q + exp(∆FL3/kBT )] , (4.10)

aSF = q/[q + exp(∆FL3/kBT )] , (4.11)

as expected.

Formally, the factor q can be absorbed by redefining the weights as

aAF = exp(∆F ′L3/kBT )/[1 + exp(∆F ′L3/kBT )], aSF = 1/[1 + exp(∆F ′L3/kBT )], with

∆F ′ = ∆F − (kBT/L
3) ln q. This shows that finite-size induced shifts of characteristic

features scaling as (kBT/L
3) ln q will occur.

4.4.2 Order parameter distribution at the transition in the ther-

modynamic limit

Before going further, we use the transition between the disordered and ordered states for

the q-state Potts model to provide some insight about the effective degeneracy factor for the
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AF to SF transition in the anisotropic Heisenberg model. For the q-state Potts model in the

thermodynamic limit exactly at the transition temperature, the probability distribution of

the order parameter P (~ψ) is simply the sum of q + 1 weighted delta functions,

P (~ψ) = δ(~ψ) +

q∑

k=1

δ(~ψ − ~ψk), (4.12)

where the ~ψk are the discrete values of the order parameter in the ordered phase [80]. The

first term on the right hand side of Eq. (4.12) represents the disordered phase and the second

term represents the (degenerate) ordered phase. In the current case a similar expression holds

except that the ~ψ are continuous. We, therefore, conjecture that

P (m̃z, ψ) = [δ(m̃z − m̃z,∞) + δ(m̃z + m̃z,∞)]δ(ψ) +

∫ 2π

0

δ(m̃z)δ(ψ − ψ∞)dφ, (4.13)

where the order parameter ~ψ is written in terms of the magnitude ψ and angle φ in the

(ψx, ψy) plane, and we have integrated over φ. The index “∞” indicates that the thermo-

dynamic limit was taken first and then H → H t. Since there is no dependence upon φ, the

integral gives 2π. Integration over m̃z then yields

P (ψ) = 2δ(ψ) + 2πδ(ψ − ψ∞) , (4.14)

or the relative weight of the two phases is simply π!

Eq. (4.13) merely indicates that in the thermodynamic limit and for H = H t, we have

phase coexistence between pure AF phases (m̃z = ±m̃z,∞, ~ψ = 0) and pure SF phases

(~ψ = (ψ∞, φ), in polar coordinates in the (ψx, ψy)-plane, and m̃z = 0). The distribution

of the order parameters is simply characterized by the appropriate Dirac delta-functions.

Making contact with formulation of Eqs. (4.10), (4.11), where the relative weights of the

two phases at H t was denoted by the phenomenological parameter q, we find that the joint
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(unnormalized) distribution of the order parameters m̃z, ψ = |~ψ| becomes

P∞(m̃z, ψ) = [δ(m̃z − m̃z,∞) + δ(m̃z + m̃z,∞)]δ(ψ) + 2qδ(m̃z)δ(ψ − ψ∞) . (4.15)

The normalization constant for this distribution is

N∞ =

+1∫

−1

dm̃z

1∫

0−

dψP∞(m̃z, ψ) = 2 + 2q . (4.16)

From Eqs. (4.15), (4.16) we can easily obtain the moments and cumulants of both order

parameters (the notation 〈· · · 〉∞ means that an average over both phases at the transition

point in the thermodynamic limit is taken)

〈|~ψ|〉∞ = ψ∞q/(1 + q) , (4.17)

〈ψ2〉∞ = ψ2
∞q/(1 + q) , (4.18)

〈ψ4〉∞ = ψ4
∞q/(1 + q) , (4.19)

〈|m̃z|〉∞ = m̃z,∞/(1 + q) , (4.20)

〈m̃2
z〉∞ = m̃2

z,∞/(1 + q) , (4.21)

〈m̃4
z〉∞ = m̃4

z,∞/(1 + q) . (4.22)

Hence, the fourth-order cumulants simply become

Uxy
∞ ≡ 1− 〈ψ4〉∞/[3〈ψ2〉2∞] = 1− 1 + q

3q
, (4.23)

and

U z
∞ ≡ 1− 〈m̃4

z〉∞/[3〈m̃2
z〉2∞] = (2− q)/3 . (4.24)

66



Of course, these results do not invoke the assumption of Gaussian distributions of the

order parameters for finite L {see Eqs. (4.25), (4.29), (4.30) or a similar assumption for

PL(m̃z) that will be used below}. Thus, Eqs. (4.17)-(4.24) are not affected in any way by

deviations from Gaussian distributions in the wings of the actual distributions for finite L.

Eqs. (4.17)-(4.24) permit stringent tests of this theory by simulations using the following

recipe: Suppose an accurate estimate of H t is known from suitable finite-size extrapolation

(e.g. using Eq. (4.28); other choices will be given below). Then, a very large system can be

simulated (for which no transitions between the pure phases occur for very long runs) right

at H = H t, once starting in the AF phase and once starting in the SF phase, to obtain very

accurate estimates of m̃z,∞ and of ψ∞. From the distributions of the order parameters in

these pure phases, accurate estimates of the staggered susceptibilities χ̃AFxy , χ̃SFxy , χ̃AFzz , and

χ̃SFzz , can also be extracted. Extrapolations of the estimates for 〈|~ψ|〉L, 〈|m̃z|〉L, 〈ψ2〉L, 〈m̃2
z〉L,

Uxy
L and U z

L at H = H t towards L = ∞ should provide estimates for the factors q/(1 + q)

and 1/(1 + q) in Eqs. (4.17), (4.20) as well as the cumulants, Eqs. (4.23), (4.24).

Eqs. (4.17) - (4.24) also define (almost) universal intersection points when we study

analogous averages for finite L as a function of the field H. 〈|~ψ|〉L, 〈|m̃z|〉L, 〈ψ2〉L, 〈m̃2
z〉L,

Uxy
L and U z

L are all analytic functions of H, saturating for |∆F |L3/kBT >> 1. For the

cumulants these saturation values are trivial, e.g. U z(H < H t) = 1, U z(H > H t) = 0. But

we will show later that they will agree with Eqs. (4.17) - (4.24), up to corrections of order L−
3
2

or L−3 for |∆F |L3/kBT = 0. Unlike second-order transitions for which only cumulants, e.g.

Uxy
L and U z

L, have unique intersection points at the transition, for this first-order transition

both the individual moments and the cumulants exhibit this feature of common intersection

points at H = H t.
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4.4.3 Two-gaussian approximation for the magnetization distribu-

tion

While Eqs. (4.17)-(4.24) describe the behavior of the system when we first set H = H t and

then take the limit L → ∞, it is also of great interest to explore the leading corrections to

the limiting behavior when L is large but finite.

Following general considerations of statistical physics [81], in pure phases, for large but

finite size systems, we expect Gaussian distributions for the densities of extensive thermo-

dynamic variables rather than δ-functions. A simple case to consider is the uniform mag-

netization for which Gaussian distributions for the (scalar) quantity mz in the two phases

would give a distribution,

PL(mz) ∝
aAF√
χAFzz

exp
{
− [mz − (mAF

z,∞ + χAFzz ∆H)]2

2kBTχAFzz /L
3

}

+
aSF√
χSFzz

exp
{
− [mz − (mSF

z,∞ + χSFzz ∆H)]2

2kBTχSFzz /L
3

}
, (4.25)

where

∆H ≡ H −H t, (4.26)

χAFzz , χ
SF
zz are the susceptibilities at H = H t in the two phases, and aAF , aSF are the statistical

weights of the two phases at H = H t.

Invoking the analogy of these equations to the case of the Potts model energy distribution

[cf. Eq. (IV.21) in Ref. [1]], we conclude that the susceptibility peak should scale as

χmax
zz ≈

χAFzz + χSFzz
2

+
(∆m)2L3

4kBT
(4.27)

in analogy to the specific heat of the Potts model. Note that the location of this maximal

magnetization fluctuation (i.e. susceptibility of the z-component of the uniform magnetiza-
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tion) occurs when the two weights are equal, i.e. aAF = aSF = 1/2. This condition readily

yields q exp(−∆FL3/kBT ) = 1, i.e. ∆F/kBT = ln q/L3, or

(Hmax −H t)/kBT = −[∆mL3]−1 ln q . (4.28)

Since mAF
z,∞ < mSF

z,∞, the position of the susceptibility maximum relative to the transition

point must shift to smaller fields, Hmax < H t, and scale with size like L−3.

The susceptibility at the transition point H t is smaller by a factor 4q/(1 + q)2 than χmax
zz

for L→∞.

One important caveat, however, is that for the weight for the low temperature phase

of the Potts model, the factor q reflecting the degeneracy of the ordered phase is known.

In contrast, here the value of a similar factor representing the difference in degeneracies of

the spin-flop and antiferromagnetic phases is unknown unless we rely on the hypothesis of

Eq. (4.14) that q = π.

4.4.4 SF phase order parameter distribution

We next consider the distribution of the SF order parameter ~ψ. For H < H t, i.e. in the AF

phase, there is simply a Gaussian distribution about zero since the transverse spin component

is disordered,

PAF
L (~ψ) = N exp

(
−

~ψ 2

2kBT χ̃AFxy /L
3

)
, (4.29)

where we introduced the notation χ̃αβ for the tensor of staggered susceptibilities, and χ̃AFxy

stands for the xy-components of the staggered susceptibility in the AF phase.

The order parameter distribution in the SF phase is more interesting,

P SF
L (~ψ) = N exp

[
− (~ψ 2 − ψ2

∞)2

8ψ2
∞kBT χ̃

SF
xy /L

3

]
, (4.30)
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where now χ̃SFxy denotes the xy-component of the staggered susceptibility in the spin-flop

phase. Note that a 4th order polynomial in ~ψ is needed in the argument of the exponential

function in Eq. (4.30) to bring out the circular symmetry in the (ψx, ψy)-plane correctly. Near

the peak (|~ψ| ≈ ψ∞) the argument of the exponential reduces to the expected quadratic form,

i.e. −(ψ − ψ∞)2/(2kBT χ̃
SF
xy /L

3).

In the vicinity of the transition field, H t, we now make the standard superposition ap-

proximation,

〈ψ2〉L = aAF 〈ψ2〉AF + (1− aAF )〈ψ2〉SF , (4.31)

〈ψ4〉L = aAF 〈ψ4〉AF + (1− aAF )〈ψ4〉SF , (4.32)

where

aAF = 1/[1 + q exp(Z)] , (4.33)

where we have written Z =−∆FL3/kBT , and the moments 〈· · · 〉AF , 〈· · · 〉SF refer to the

order parameter distributions in the “pure” AF and SF phases respectively.

Of course, we could repeat the calculation of Eqs. (4.15)-(4.24) for finite L, replacing the

delta functions by the appropriate Gaussian distributions, e.g. Eqs. (4.29) and (4.30).

From the general result for the fourth-order cumulant, we immediately conclude that for

H t, Uxy
L differs from U∗=Uxy

∞ only by corrections of order L−3 and

Uxy
L |Ht= 1− 1 + q

3q

[
1 + (

4kBT χ̃
SF
xy

ψ2
∞

− 4kBT χ̃
AF
xy

qψ2
∞

)
1

L3

]
. (4.34)

If we use the value q = π, we find that Uxy
∞ ≈ 0.56056.

Taking the derivative of the expression for the cumulant to find the minimum, and writing

Y=q exp(Z), we find the location of the minimum is given by Ymin ≈ 2kBT χ̃
AF
xy /((ψ∞)2L3).
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Hence

Hmin = H t − kBT [lnq − lnYmin]

∆mL3
. (4.35)

Thus, the shift in the location of the minimum scales as L−3, but the leading term is actually

lnL/L3. At the minimum, the value of Uxy
L is

Uxy
L,min ≈ const − ψ2

∞L
3

24kBT χ̃AFxy
, (4.36)

which means that Uxy
L,min approaches −∞ proportional to −L3 as L approaches infinity.

In addition, Eq. (4.29) can be used to evaluate the 4th-order cumulant in the following

way. The normalization factor N is given by,

N−1 = 2π

∞∫

0

ψdψ exp(−ψ2L3/(2kBT χ̃
AF
xy ))

= 2kBTπχ̃
AF
xy /L

3 . (4.37)

This factor N is only applicable for the order parameter moments of a “pure” AF phase

and has nothing to do with the normalization factor used to derive Eq. (4.10). The second

moment is simply

〈ψ2〉AF = 2kBT χ̃
AF
xy /L

3 (4.38)

and the fourth moment

〈ψ4〉AF = 2(2kBT χ̃
AF
xy /L

3)2 . (4.39)

Hence

UAF
L = 1− 〈ψ4〉AF/[3〈ψ2〉2AF ] = 1/3. (4.40)

Note that for a two-component order parameter, a different normalization of UL would be

required for a Gaussian distribution to yield zero in the disordered phase.
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In order to obtain the moments of the order parameter of the SF phase using Eq. (4.30),

we have to compute the integrals

〈ψ2〉SF = 2πN
∞∫

0

ψdψ ψ2 exp
[
− (ψ2 − ψ2

∞)2L3

8ψ2
∞kBT χ̃

SF
xy

]
, (4.41)

〈ψ4〉SF = 2πN
∞∫

0

ψdψψ4 exp
[
− (ψ2 − ψ2

∞)2L3

8ψ2
∞kBT χ̃

SF
xy

]
, (4.42)

where the normalization factor N is given by

N−1 = 2π

∞∫

0

ψdψ exp
[
− (ψ2 − ψ2

∞)2L3

8ψ2
∞kBT χ̃

SF
xy

]

= 2ψ∞π
√

2πkBT χ̃SFxy L
−3/2 . (4.43)

Similarly, writing ψ2 = x, we conclude

〈ψ2〉SF = πN
∞∫

0

dxx exp
[
− (x− ψ2

∞)2L3

8ψ2
∞kBT χ̃

SF
xy

]
≈ ψ2

∞ (4.44)

with negligibly small correction. However, a non-trivial correction term arises in the fourth

moment,

〈ψ4〉SF = πN
∞∫

0

dxx2 exp
[
− x2 − 2xψ2

∞ + ψ4
∞

8ψ2
∞kBT χ̃

SF
xy /L

3

]

≈ ψ4
∞ + 4ψ2

∞kBT χ̃
SF
xy /L

3 . (4.45)

The ratio UL in the ordered SF phase hence becomes

USF
L = 1− 〈ψ4〉SF/(3〈ψ2〉2SF ) =

2

3
− 4kBT χ̃

SF
xy

3L3ψ2
∞

. (4.46)
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Invoking the superposition approximation of Eq. (4.31)-(4.33) we find that the 4th-order

cumulant for the SF order parameter then becomes

Uxy
L = 1− [1 + q exp(Z)][q exp(Z)[1 + 4kBT χ̃

SF
xy /(ψ

2
∞L

3)] + 2(2kBT χ̃
AF
xy /(ψ

2
∞L

3))2]

3[q exp(Z) + 2kBT χ̃AFxy /(ψ
2
∞L

3)]2
.

(4.47)

The weighted averages of the order parameter moment in the AF and SF phases becomes

〈|~ψ|〉L =
{
ψ∞
[
1− kBT χ̃SFxy /(2L3ψ2

∞)
]
q exp(Z) +

√
πkBT χ̃AFxy /(2L

3)
}/

[1 + q exp(Z)] .

(4.48)

4.4.5 AF phase order parameter distribution

The AF order parameter distribution for this one-component order parameter in the AF

phase is a double Gaussian, analogous to Eq. (4.25),

PAF
L (m̃z) ∝ exp

[
−(m̃z − m̃z,∞)2L3/(2kBT χ̃

AF
zz )
]

+ exp
[
−(m̃z + m̃z,∞)2L3/(2kBT χ̃

AF
zz )
]
, (4.49)

whereas in the SF phase it is given by a single Gaussian

P SF
L (m̃z) =

√
L3/(2πkBT χ̃SFzz ) exp

[
− m̃2

zL
3/(2kBT χ̃

SF
zz )
]
. (4.50)

From these distribution and superposition approximations analogous to Eqs. (4.31) - (4.33),

it is straightforward to calculate the various moments of the staggered magnetization and

the cumulant. Then, at the transition, the fixed point value of the cumulant is

U z
L |Ht=

2− q
3

+
1 + q

3

[2qkBT χ̃
SF
zz

m̃2
z,∞

− 4
kBT χ̃

AF
zz

m̃2
z,∞

] 1

L3
. (4.51)
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This means that, as expected, the asymptotic value of the cumulant coincides with the result

from the treatment using delta function distributions. Again the correction to this result is

small, of order L−3; and choosing q = π, we find the fixed point value of the cumulant is

U z
∗ ≈ −0.38.

Using Eqs. (4.49) and (4.50) we can straightforwardly obtain the second and fourth

moments 〈m̃2
z〉, 〈m̃4

z〉 in both phases and apply a superposition approximation. The resulting

cumulant is

U z
L = 1− [1 + q exp(Z)]

3

1 + 6kBT χ̃
AF
zz

m̃2
z,∞L

3 + 3(kBT χ̃
AF
zz )2

(m̃2
z,∞L

3)2
+ 3q exp(Z)(kBT χ̃

SF
zz )2

(m̃2
z,∞L

3)2)

[1 + kBT χ̃AFzz /(m̃
2
z,∞L

3) + q exp(Z)kBT χ̃SFzz /(m̃
2
z,∞L

3)]2
. (4.52)

The weighted averages of the order parameter moment in the AF and SF phases becomes

〈|m̃z|〉L =
m̃z,∞

[1 + q exp(Z)]
+
q exp(Z)

√
2kBT χ̃SFzz /(πL

3)

[1 + q exp(Z)]
. (4.53)

4.4.6 Maximum slope of the cumulant and cumulant crossings

We have shown that the cumulant at H = H t is of order unity but reaches a deep minimum

(of order −L3 for L→∞) at a point where H t −H ∝ L−3 (on the AF side of the spin-flop

transition when the cumulant of the SF-order parameter is considered). In order to achieve

a variation of order L+3 in an interval of order L−3, the maximum slope of the cumulant in

the interval between the minimum and the crossing point must then be of order L6. On the

other hand, we can easily show that the slope of the cumulant right at H = H t still is only

of order L3, namely

kBT
dUxy

L

dH

∣∣∣∣
Ht

=
1

3q
∆mL3 . (4.54)

Thus, significant curvature should appear in the plot of Uxy
L vs. H near H t, since the slope

first increases from zero at the cumulant minimum to a value of order L6 and then decreases
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to a value of order L3 at H = H t. The location of the intersection point, which corresponds

to a cumulant value of order unity, hence must be very close to H t (|Hcross − H t| ∝ L−6)

also. On a scale of H − H t of order L−3 (the regime over which the variable Z exhibits

a significant variation) differences in cumulant intersections of order L−6 are completely

negligible. Consequently, the spread of the cumulant intersections is very small, although

in a strict sense there is no unique cumulant crossing point. Two cumulants for linear

dimensions L and L′ = L + δ that differ slightly (δ ≈ 0) can be shown to cross for Hcross

given by

Hcross −H t

kBT
∆m =

1 + q

q

[
4kBT χ̃

AF
xy /ψ

2
∞ − 4qkBT χ̃

SF
xy /ψ

2
∞

]
L−6 . (4.55)

This equation is derived by a Taylor expansion of UL+δ simultaneously in the small

variables H − H t and δ/L. This result verifies the above argument that the scale for the

shift of the cumulant crossing is negligibly small in comparison with that for the shift of

the cumulant minimum. The shift of the intersection point thus scales as the square of the

inverse volume, while the regime over which the transition is spread out is given by

∆Z = 1 , ∆H/kBT = 1/[∆mL3] . (4.56)

The situation is analogous to the case of the (temperature driven) transition in the Potts

model, cf. Vollmayr et al. [82]. As in the latter case, and unlike the simple, field driven

first-order transition of an Ising ferromagnet below Tc, there is no “equal height rule” of the

order parameter distribution at the transition. Eqs. (4.29), (4.37) show that the peak height

at ~ψ = 0 scales proportional to the volume, L3, while the height of the “rim” |~ψ| = ψ∞ only

scales like the square root of the volume, L3/2, cf. Eqs. (13), (14), and (23) of Vollmayr et

al. [82].

Useful information can be readily extracted about the mean square order parameter 〈ψ2〉

as a function of the field H near the transition field H t.
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The superposition approximation (Eqs. (4.31), (4.32)) readily shows that 〈ψ2〉 is described

by a simple scaling function of Z, namely

〈ψ2〉/ψ2
∞ = [b+ q exp(Z)]/[1 + q exp(Z)], (4.57)

where we have introduced the abbreviation

b = (2kBT χ̃
AF
xy )/(ψ2

∞L
3) . (4.58)

Note that the quantities ψ∞, χ̃AFxy (and ∆m which is needed to convert the scale of

H − H t to Z) can be estimated directly from simulations. For runs of modest length for

very large systems precisely at H = H t, transitions between the phases can be avoided due

to metastability. Starting in the AF and SF states respectively will permit measurements

in the pure phases. (H t is already known with high precision). For the correct choice of q,

all choices of (sufficiently large) L should then lead to perfect collapse on a master curve,

Eq. (4.57), that is explicitly predicted.

The value of the order parameter at the location of the maximum slope is

〈ψ2〉 =
1

2
ψ2
∞ +

kBT χ̃
AF
xy

ψ2
∞L

3
, (4.59)

which is independent of the value of “q”. Since ψ∞ and χ̃AFxy can be measured independently,

we have a non-trivial test of the double Gaussian approximation. The value of the slope at

the transition field H = H t is

d〈ψ2〉
d(H/kBT )

∣∣∣∣
Ht

= ∆mL3 q

(1 + q)2
(1− 2kBT χ̃

AF
xy

ψ2
∞L

3
)ψ2
∞ . (4.60)
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We also note that for H = H t, i.e. Z = 0, Eq. (4.57) predicts 〈ψ2〉/ψ2
∞ = (b+q)/(1+q) ≈

q/(1 + q), as expected from Eq. (4.18). When 〈ψ2〉/ψ2
∞ is plotted vs H, all curves for large

L will intersect for H = H t at this value.

4.4.7 Staggered susceptibility maxima

In the absence of symmetry breaking staggered fields, the staggered susceptibility compo-

nents χ̃′zz and χ̃′xy, referring to the z-component m̃z and the xy-components ~ψ of the staggered

magnetization, are defined as follows

kBT χ̃
′
zz = L3(〈m̃2

z〉L − 〈|m̃z|〉2L) , (4.61)

kBT χ̃
′
xy = L3(〈ψ2〉L − 〈|~ψ|〉2L) . (4.62)

Note that Eq.(4.61) yields the usual staggered susceptibility in the AF phase, and Eq. (4.62)

in the SF phase. Of course, in the phases where no spontaneous order exists, we simply have

from the standard fluctuation relations

kBT χ̃zz = L3〈m̃2
z〉L , SF phase , (4.63)

kBT χ̃xy = L3〈ψ2〉L , AF phase . (4.64)

It is well known that a unique expression for the staggered susceptibility in both phases

would require consideration of the limit of an applied staggered field (conjugate to the

appropriate order parameter) approaching zero after the thermodynamic limit had been

taken. This, however, would be quite inconvenient within the context of simulations.

As already discussed above, the moments 〈· · · 〉L are computed from the corresponding

moments 〈· · · 〉AF , 〈· · · 〉SF in the pure phases, taking an average with the corresponding
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weights aAF , 1−aAF . For the second moments, this has already been considered above; here

we supply the results for the first moments. For the AF phase we find

〈|m̃z|〉AF ≈ m̃z,∞ , 〈m̃2
z〉AF ≈ m̃2

z,∞ + kBT χ̃
AF
zz /L

3 , (4.65)

which together with Eq. (4.61) yields the correct result χ̃′zz = χ̃AFzz in the AF phase. For the

SF phase we find

〈|~ψ|〉SF ≈ ψ∞(1− kBT χ̃SFxy /(2L3ψ2
∞)) , 〈ψ2〉SF ≈ ψ2

∞ . (4.66)

From Eqs. (4.31), (4.38), (4.44), (4.53), (4.48), (4.49), and (4.50), it is straightforward to ob-

tain the expressions for the staggered susceptibilities kBT χ̃
′
zz, kBT χ̃

′
xy defined in Eqs. (4.61),

(4.62). These expressions show nicely that in the AF phase, i.e. for Z → −∞

χ̃
′AF
zz = χ̃AFzz , χ̃

′AF
xy = 2χ̃AFxy

(
1− π

4

)
. (4.67)

Recall that the AF phase plays the role of the disordered phase for the SF order. Likewise,

χ̃
′SF
zz = χ̃SFzz

(
1− 2

π

)
, χ̃

′SF
xy = χ̃SFxy , (4.68)

since here the SF phase plays the role of the disordered phase for AF order.

Locating the staggered susceptibility maximum and estimating its height is also an inter-

esting task. Using the abbreviation q exp(Z) = Y , we find from d(〈m̃2
z〉 − 〈|m̃z|〉2)/dY = 0

that the maximum occurs for

Y ≈ 1 +

[
2kBT χ̃

SF
zz

L3

(
1− 2

π

)
− 2kBT χ̃

AF
zz

L3

]/(
m̃2
z,∞ − 2

√
2kBT χ̃SFzz
πL3

)
≈ 1 , (4.69)
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and its height is

kBT χ̃
′,max
zz

∼=
L3m̃2

z,∞
4

(
1− 2

√
2kBT χ̃SFzz
πL3m̃2

z,∞

)
. (4.70)

This means that the leading correction is reduced by a factor of order L−3/2. We also note

that exactly at H = H t (i.e., Y = q), χ̃′zz/χ̃
′,max
zz = 4q/(1 + q)2 ≈ 0.733 (if we assume q = π).

Estimation of this ratio offers yet another route to test the value of q.

The scaling function for χ̃
′
xy is given by

kBT χ̃
′

xy = L3(AY 2 +BY + C)/(1 + Y )2, (4.71)

where the expressions A,B,C are given (to the necessary order in inverse powers of L) by

A = kBT χ̃
SF
xy /L

3, (4.72)

B = ψ2
∞ − 2ψ∞

√
πkBT χ̃AFxy /(2L

3), (4.73)

C = 2kBT χ̃
AF
xy (1− π/4)/L3. (4.74)

So from this expression one can see clearly the “switching” between the two susceptiblities

of the “background” phases, which result from this expression when Y = 0 or Y = ∞,

respectively, while

Y = Ymax = (B − 2C)/(B − 2A) ≈ 1 + (2A− 2C)/B (4.75)

yields the susceptibility maximum.

Thus, to leading order all susceptibility maxima occur at the same location, namely for

Z = Zmax = − ln q , Hmax = H t +
kBT ln q

∆mL3
, (4.76)

79



but higher order corrections (of order L−6) differ. In both cases, the maximum staggered

susceptibility also varies proportional to L3 but has a L−3/2 correction,

kBT χ̃
′,max
xy

∼= L3ψ2
∞

1

4

(
1−

√
2πkBT χ̃AFxy /(ψ

2
∞L

3)
)
, (4.77)

and χ̃
′,max
zz is given by Eq. (4.70). Here, too, χ̃′xy for H = H t is smaller than χ̃

′,max
xy by the

same factor 4q/(1 + q)2 as quoted above.

We now turn to the divergence of the susceptibility χ̃SFxy as L→∞: Fisher and Privman

[83] predicted for isotropic, n-component magnets that kBT χ̃xy = 〈ψ2〉L3 = L3ψ2
∞/n +

const L2(n − 1)/(n + 2) while Chen and Landau [84] predicted 〈ψ2〉L3 = L3ψ2
∞/n +

const L2(n−1)/n (for n = 3). Thus, the leading correction is of order 1/L (rather than L−3,

as found in Eq. (4.66)). Fisher and Privman predict that L3(〈ψ2〉−〈|~ψ|〉2) varies proportional

to (n − 1)L rather than being the finite constant obtained here. It would be interesting to

test these predictions (based on spin wave theory) using suitable numerical results for the

present model, but this is a task that must be left for future work.

4.5 Limitations of the phenomenological theory

At this point, we comment on an important distinction between the order parameter cumu-

lant intersection for first-order transitions and for second-order transitions. At second-order

transitions, for L → ∞ corrections to scaling can be ignored and the cumulant is a regular

function of the variable Z = tL1/ν , ν being the correlation length critical exponent and t

being the reduced distance from the transition point. The slope of the cumulant dUL/dt at

the transition point hence is of the same order as the inverse shift L−1/ν of the susceptibility

maximum.
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The L−3 correction to Eqs. (4.34), (4.51) is simply a “correction to finite-size scaling”

for first-order transitions, analogous to those that appear in finite-size scaling at second-

order transitions. However, in the latter case these corrections involve a second, non-trivial

exponent (different from 1/ν), while here the inverse volume L−3 is the only variable that

leads to correction terms in the finite-size scaling description. Since the resolution of the

numerical data is insufficient to quantitatively resolve any of these correction term effects,

they shall not be discussed further. We also note that further terms are expected due to

corrections to the Gaussian approximation for the probability distribution, e.g. the result

UAF
L = 1/3 for the cumulant of the XY -order parameter in the AF phase is also expected to

have a 1/L3 correction (related to higher order correlation functions) which has been ignored

here but seems rather relevant numerically. In addition, corrections of order exp(−L/ξ),

where ξ is the appropriate correlation length of the AF and/or SF order, have been ignored.

These become important, however, if H t is sufficiently close to the bicritical point.

There is another, rather different limitation to our phenomenological treatment: The

superposition approximation, Eqs. (4.31) and (4.32), which assumes that the total order

parameter distribution PL(ψx, ψy) is a superposition of Gaussians for the AF phase (centered

at ψx = 0, ψy = 0) and of the ordered phase (centered at ψ2
x + ψ2

y = ψ2
∞) with appropriate

weights, is not accurate away from the peaks of the distribution. The same applies for the

distribution of the order parameter P (m̃z) for the AF phase. In the latter case, the problem

is well understood: far from the transition (H � H t) the distribution P (m̃z) near m̃z = 0 is

dominated by “slab configurations” where a domain with m̃z = −m̃spont
z is separated by two

domain walls (“antiphase domain boundaries”) from domains with m̃z = +m̃spont
z (where

m̃spont
z is the value of the order parameter where P (m̃z) has its peak). Thus, P (m̃z) is not

controlled by a Boltzmann factor containing the volume L3, but rather by the surface area

L2,

P (m̃z ≈ 0) ∝ exp(−2L2fint/kBT ) , (4.78)
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with fint the interfacial excess free energy per unit area (interfacial tension). This “slab con-

figuration” with two planar interfaces is compatible with the periodic boundary conditions,

of course.

For a two-component order parameter, the “antiphase domain boundaries” are spread

out over the entire volume, and the “phase” of the order parameter gradually rotates from

zero to 2π as the system is traversed. Thus, for H � H t, we have

P (ψx ≈ 0, ψy ≈ 0) ∝ exp(−2LΓ/kBT ), (4.79)

where Γ is essentially the “helicity modulus” [85]. For H near H t, however, mixed phase

configurations will occur with states mz ≈ mAF
z , m̃z ≈ ±m̃z,∞, ψ ≈ 0 coexisting with states

mz ≈ mSF
z , m̃z ≈ 0, |~ψ| ≈ ψ∞ with comparable weights. Such mixed phases require more

complex “interfaces” in which the order parameters “interpolate” between their coexisting

phase values. The generalization of Eqs. (4.78) and (4.79) is unknown.
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Chapter 5

Results: spin-flop transition in the 3D

XXZ Heisenberg antiferromagnet

5.1 Transition field H t

The simulations were performed below the bicritical point Tb at fixed temperature T =

0.95J/kB, T = 0.80J/kB and T = 0.60J/kB, and we varied the external field H in order to

determine the phase transition from AF to SF. When not shown, error bars in the figures

showing our results are smaller than the size of the symbols.

The probability densities of the energy E per site are shown at the transition field H t
L

for different lattice sizes L in Fig. 5.1. For each size we chose the finite-size transition field

to be located at the point at which the (symmetric) peaks in the probability density for the

energy were of equal heights.

As for T = 0.95J/kB (Fig. 5.1(a)), while the dip between the peaks was rather shallow

for L = 40, it rapidly became quite deep for increasing values of L in agreement with the

predictions of Binder [86] and Lee and Kosterlitz [87] for a first-order transition.
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Figure 5.1: Probability density of the energy at the transition field H t
L for different lattice

sizes L at (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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For smaller values of L the probability density was almost flat, and the resultant thermo-

dynamic properties showed such substantial finite-size rounding that it was not possible to

extract useful information about the asymptotic behavior. For this reason, we shall not show

raw data for L < 40 for T = 0.95J/kB in the figures that follow. Similarly, Fig. 5.1(b) and

Fig. 5.1(c) show a double-peak graph of the probability density of the energy at T = 0.80J/kB

and T = 0.60J/kB, but data for L < 20 are not shown for both figures.

The probability densities of the z-component for the magnetization mz per site at T =

0.95J/kB are shown at the transition field for different lattice sizes L in Fig. 5.2(a). For

each size we chose the finite-size transition field to be located at the same point at which

the (symmetric) peaks in the probability distribution for the energy were of equal heights.

These data show that the distributions of mz contain two clear, asymmetric peaks of different

heights; moreover, these data cannot be described solely by the sum of two Gaussians. Recall

that the minimum between the two peaks represents phase coexistence inside the simulation

box with one slab in a state |m̃z| ≈ m̃z,∞, ψ = 0 and the other slab having |m̃z| ≈ 0, |~ψ| = ψ∞

with the two slabs separated by a complex interface connected by the periodic boundary

conditions. If we “separate” the distributions into two peaks by choosing the minimum

probability as the separation point, we can measure the “weight” of each peak by numerically

integrating the probability under each peak. To a high degree of precision, the peaks for each

of the lattices sizes, L, then have equal weights. Likewise, Fig. 5.2(b) shows the probability

density of the z-component for the magnetization mz per site at T = 0.80J/kB.

The values of the transition field for each lattice size, L, as determined by the equal

heights of the two peaks in the probability densities for the energy, are plotted in Fig. 5.3.

Fig. 5.3(a) describes the case for T = 0.95J/kB. It shows very nicely that the variation is

linear with L−3 for L ≥ 40. The estimated transition field in the thermodynamic limit is

H t/J = 3.83830(5). Also shown are the positions of the minima of the 4th-order cumulant of

the energy. These agree almost perfectly with the values extracted from the locations of the
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Figure 5.2: Probability density of the z-component of the magnetization at the transition
field H t

L for different lattice sizes L. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.3: Extrapolation of the locations of the transition fields determined from the “equal
height” rule for peaks in the probability distribution of the energy and from the minimum of
the 4th order cumulant of the energy vs the inverse volume of the system. (a) T = 0.95J/kB,
(b) T = 0.80J/kB, (c) T = 0.60J/kB.

87



peaks in the probability distributions. Likewise, Fig. 5.3(b) corresponds to T = 0.80J/kB,

and the transition field in the thermodynamic limit is estimated H t/J = 3.74053(6), by

performing an extrapolation to L = ∞ for L ≥ 30. Fig. 5.3(c) is for T = 0.60J/kB.

Extrapolating to L =∞ for L ≥ 24, the transition field is H t/J = 3.65813(5).

From the extrapolation of the peak positions of PL(mz) (and of the values of the first

moments
∫
dmzmzPL(mz) for each peak) we can estimate mAF

z,∞ and mSF
z,∞ and hence obtain

the difference ∆m = mSF
z,∞ − mAF

z,∞ ≈ 0.0352(4) for T = 0.95J/kB, ∆m ≈ 0.092(1) for

T = 0.80J/kB, and ∆m ≈ 0.159(1) for T = 0.60J/kB. Since the factor ∆mL3 exceeds

kBT/J by a factor from about 103 to 1.8 × 104 when L varies from L = 30 to L = 80 at

T = 0.95J/kB, it is plausible that H t can be located with excellent precision, as shown in

Figs. 5.3 and 5.4. The fact that all extrapolations, using both quantities from the AF phase

and from the SF phase, yield the same transition field H t to very good precision, reinforces

the conclusion of Ref. [5] that there is a direct first-order transition between the two phases

with no intervening biconical phase.

The variation of the positions of the peaks in the susceptibilities of the uniform magneti-

zation as well as both the z-component of the staggered magnetization and of the SF-order

parameter for T = 0.95J/kB, T = 0.80J/kB and T = 0.60J/kB are shown in Fig. 5.4. As

for T = 0.95J/kB, excluding the values for L = 30, 40 as probably being outside the asymp-

totic region, we fitted the remaining values to obtain an asymptotic value. The positions of

all three susceptibilities extrapolate with L−3 to a value of H t/J = 3.83830(8). This is in

perfect agreement with the result of the extrapolations presented in Fig. 5.3(a). Using the

slope of the susceptibility for mz and Eq. (4.28) we estimate an effective value q ≈ 3.7 which

is slightly larger than the estimate of π as suggested in Sec. 4.4.2.

For T = 0.80J/kB, extrapolations have been done for L ≥ 30. And the estimated

value for the transition field in the thermodynamic limit is H t/J = 3.74054(9). A similar

estimation for the degeneracy factor is q ≈ 3.6.
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Figure 5.4: Size dependence of the finite-size lattice transition field H t
L determined from the

locations of the maxima of multiple susceptibilities vs L−3. (a) For T = 0.95J/kB, lattice
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T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.

90



At T = 0.60J/kB, by performing extrapolations to L = ∞ for L ≥ 24, the transition

field in the thermodynamic limit is H t/J = 3.65814(7). The estimated degeneracy factor is

q ≈ 3.7.

The locations of the minima for the cumulants of both order parameters as well as those

of the energy and the uniform magnetization mz extrapolated to the thermodynamic limit

are also shown in Fig. 5.5 vs the inverse volume, L−3. (The variation of multiple cumulants

will be discussed in Sec. 5.2.) Based on Fig. 5.5(a) for T = 0.95J/kB, the observed variation

with lattice size agrees with the predictions of our simple double Gaussian theory and, again,

we find a common intersection point of H t/J = 3.83830(7). The asymptotic size regime,

however, appears to begin only for L ≥ 40. The observation that the depth of the minima

decreases very strongly with increasing L is compatible with a scaling as ≈ −L3 as observed

in the Potts model [82]. A similar figure for T = 0.80J/kB is shown in Fig. 5.5(b), where

extrapolations are for data L ≥ 30. The transition field at L = ∞ is estimated to be

H t/J = 3.74054(8). At T = 0.60J/kB (Fig. 5.5(c)), by performing extrapolations for data

L ≥ 24, the transition field in the thermodynamic limit is H t/J = 3.65814(7).

By using the Clausius-Clapeyron relation, the slope dH t/dT of the coexistence curve in

the H-T phase diagram is given by [6],

dH t/dT = ∆E/(T∆m), (5.1)

where ∆E is the latent heat and ∆m is the uniform magnetization change of the phase

transition. Table 5.1 shows the estimates of the slope dH t/dT at different temperature (T =

0.95J/kB, 0.80J/kB, 0.60J/kB) by using the Clausius-Clapeyron relation. As T decreases,

∆E first increases then decreases, while ∆m monotonically increases. With Eq. (5.1), the

estimated slope dH t/dT monotonically decreases as T decreases.
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Table 5.1: Estimates for the latent heat ∆E, the uniform magnetization change of the phase
transition ∆m, and the slope dH t/dT of the coexistence curve in the H-T phase diagram
by using the Clausius-Clapeyron relation and the one by using a B-spline interpolation at
different temperature (T = 0.95J/kB, 0.80J/kB, 0.60J/kB).

T/(J/kB) ∆E ∆m dH t/dT (Eq. (5.1)) dH t/dT (interpolation)
0.95 0.0250(7) 0.0352(4) 0.75(2) 0.78(3)
0.80 0.039(1) 0.092(1) 0.53(2) 0.54(2)
0.60 0.0271(8) 0.159(1) 0.28(1) 0.29(2)

At T = 0, the transition field between SF and AF is H t/J = 3.6 [62]. By applying a

B-spline interpolation, we can also estimate the slope dH t/dT , as shown in Table 5.1. The

values of slope dH t/dT from the Clausius-Clapeyron relation and those from the interpola-

tion agree with each other. Fig. 5.6 shows the H-T phase diagram for the 3D anisotropic

Heisenberg model in an external field, where the dashed curve is a B-spline interpolation.

5.2 Fourth-order cumulants

The behavior of the fourth-order cumulant of the z-component of the magnetization, mz, seen

in Fig. 5.7, shows a clear minimum for each lattice size which sharpens and moves towards

larger fields as the lattice size increases at T = 0.95J/kB, T = 0.80J/kB and T = 0.60J/kB.

With increasing L the value of the minimum decreases.

The fourth-order cumulant of the energy, seen in Fig. 5.8 also shows a single minimum

that sharpens and moves slowly towards higher fields and becomes deeper as the lattice size

increases.

In Figs. 5.9 - 5.11 we show the variation of the fourth-order cumulant of the z-component

of the order parameter with field at T = 0.95J/kB, T = 0.80J/kB, and T = 0.60J/kB
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Figure 5.6: Phase diagram for the 3D anisotropic Heisenberg model in an external field,
where the dashed curve is a B-spline interpolation.

respectively. As the lattice size increases the crossing points move systematically towards

slightly larger fields and the values of the cumulant at the crossing points decrease. In fact,

the reduction in the value of U z
L at the crossing seems to accelerate and there is no indication

of convergence for the range of lattice sizes studied so from these data alone we cannot tell

if the prediction from our simple phenomenological theory is verified. However, in Sec. 5.4

we give a tentative interpretation of this behavior in terms of crossover behavior between

critical behavior dominated by the bicritical point (prevailing for small L) towards first-order

finite-size behavior.

Data for the fourth-order cumulant of the xy-component of the order parameter at T =

0.95J/kB, T = 0.80J/kB, and T = 0.60J/kB respectively, shown in Fig. 5.12 - 5.14, reveal

similar behavior except that the minimum occurs at fields lower than the field of the crossing

point and moves towards higher fields as the size increases. As for three temperatures, the
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crossing point values are just below Uxy
∞ = 0.6 and are higher than the predicted value of

Uxy
∞ = 0.56056 assuming an effective value of q = π. However, the bottom portions of

Fig. 5.12 - 5.14 show a clear tendency for the crossing point values to decrease slightly with

increasing size, and the predicted value is not inconsistent with an extrapolation to L =∞.

[Note: Use of Uxy
∞ = 0.6 in Eq. (4.23) would yield q = 5.]

5.3 Individual moments

As a check on the assumptions about the degeneracy of the SF order parameter, in Fig. 5.15

we show the order parameter distribution in the xy plane at the transition field H t
L for an

L = 60 lattice at T = 0.95J/kB. The contours of constant absolute value are almost perfectly

circular and show a clear jump from the non-zero value in the SF-phase to a small value in

the AF-phase which differs from zero only because of finite size effects.

The probability distributions of the SF order parameter ψ at T = 0.95J/kB, T =

0.80J/kB, and T = 0.60J/kB are shown at the transition field for different lattice sizes

L in Fig. 5.16. For each size we chose the finite size transition field to be located at the same

point at which the (symmetric) peaks in the probability distribution for the energy were of

equal heights. These data show that the distributions contain two clear peaks at ±ψ∞ cor-

responding to the SF order and a peak centered about zero corresponding to the AF phase.

These peaks cannot be described solely by Gaussians since the states describing phase coexis-

tence (from about |~ψ| ≈ 0.2 to |~ψ| ≈ 0.36 at T = 0.95J/kB) are not yet strongly suppressed.

If we “separate” the distributions into two peaks by choosing the minimum probability as

the separation point, we can measure the “weight” of each peak by numerically integrating

the probability under each peak. As shown in Table 5.2 the relative weight of the sum of

the “ordering” peaks and the disordered peak depends upon the exact choice of H t and is

also slightly dependent upon the choice of L. For our best estimate of H t/J = 3.838305
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at T = 0.95J/kB, the value appears to be converging for large L at the estimate of q = π

that was obtained earlier using the two Gaussian approximation. Similar behavior happens

for T = 0.80J/kB and T = 0.60J/kB as well. Note that the result q = π was already pre-

dicted from the two delta-function distribution appropriate to the thermodynamic limit in

Eq. (4.14).

For completeness we show the probability of the AF order parameter vs m̃z in Fig. 5.17.

For small systems two peaks are seen at ±m̃∞ with a broad plateau in between, but as L

increases three distinct peaks develop. One peak, centered about m̃z = 0 is for the SF phase
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Figure 5.15: Contours for the order parameter distribution PL(~ψ) with ~ψ = (ψx, ψy) being
the two component order parameter comprising the xy-components of the staggered magne-
tization in the spin-flop phase for an L = 60 lattice at H = H t

L at T = 0.95J/kB. Different
colors denote the magnitude of the probability (from the center outwards the probability
first decreases and then increases again).
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Table 5.2: Estimates for qeff from the ratio of probability distributions of the weights of
the peaks for different values of L. (Top) T = 0.95J/kB, (Middle) T = 0.80J/kB, (Bottom)
T = 0.60J/kB.

L H t/J = 3.838300 H t/J = 3.838305 H t/J = 3.838310
60 3.31(23) 3.42(30) 3.53(28)
80 3.15(24) 3.36(26) 3.75(29)
100 2.82(30) 3.19(29) 3.82(30)

L H t/J = 3.740520 H t/J = 3.740525 H t/J = 3.7405230
30 3.20(29) 3.24(32) 3.27(30)
40 3.16(23) 3.27(25) 3.38(21)
50 3.06(33) 3.28(27) 3.51(31)

L H t/J = 3.658125 H t/J = 3.658130 H t/J = 3.658135
28 3.30(21) 3.39(23) 3.48(26)
32 3.22(26) 3.36(30) 3.51(31)
40 3.04(24) 3.31(28) 3.62(31)

with no AF order and the peaks at ±m̃∞ are for the AF ordered phase. Again, the minima

between the peaks can be interpreted in terms of phase coexistence.

Perhaps the most striking results of our study emanate from Eqs. (4.17), (4.18), (4.20),

and (4.21). Plots of 〈|~ψ|〉L, 〈ψ2〉L, 〈|m̃z|〉L, and 〈m̃2
z〉L, vsH should show common intersection

points for different L at H t. These features would not occur at a second-order transition,

but are nicely consistent with our phenomenological theory. In Figs. 5.18 to 5.23 we show

data for the first and second moments of ψ, m̃z and, for completeness, mz near the transition.

From Eqs. (4.17) and (4.18) we conclude that

〈|~ψ|〉L|Ht

ψ∞
=
〈ψ2〉L|Ht

ψ2
∞

=
q

1 + q
≈ 0.7585 (5.2)
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and from Eqs. (4.20) and (4.21)

〈|m̃z|〉L|Ht

m̃z,∞
=
〈m̃2

z〉L|Ht

m̃2
z,∞

=
1

1 + q
≈ 0.2415 . (5.3)

Here too, the data show small but systematic shifts with increasing system size and we

can only say that the predictions are consistent with the current data which yield

At T = 0.95J/kB

〈|~ψ|〉L|Ht

ψ∞
≈ 0.77(3)

〈ψ2〉L|Ht

ψ2
∞

≈ 0.74(3)

〈|m̃z|〉L|Ht

m̃z,∞
≈ 0.32(4)

〈m̃2
z〉L|Ht

m̃2
z,∞

≈ 0.26(3).

At T = 0.80J/kB

〈|~ψ|〉L|Ht

ψ∞
≈ 0.78(3)

〈ψ2〉L|Ht

ψ2
∞

≈ 0.75(4)

〈|m̃z|〉L|Ht

m̃z,∞
≈ 0.30(4)

〈m̃2
z〉L|Ht

m̃2
z,∞

≈ 0.24(3).

At T = 0.60J/kB

〈|~ψ|〉L|Ht

ψ∞
≈ 0.79(4)

〈ψ2〉L|Ht

ψ2
∞

≈ 0.76(3)

〈|m̃z|〉L|Ht

m̃z,∞
≈ 0.29(4)

〈m̃2
z〉L|Ht

m̃2
z,∞

≈ 0.25(3).

These values are in quite reasonable agreement with predictions although more precise

values would be needed to draw strong conclusions. However, the discrepancies between

the measured and predicted values noted above can probably be attributed to the difference

in the location of the intersections and our best estimate for the transition field in the

thermodynamic limit. Using more precise data on still larger systems to extrapolate the

small finite size variations to L → ∞ could give slightly different estimates than quoted

above but would require prohibitively large resources at the present time.

An alternative approach is to base our analysis on Eq. (4.60) which describes the slope

of 〈ψ2〉L at the transition field H t as a function of H/kBT . From the corresponding plot of

d〈ψ2〉L/d(H/J)|Ht , normalized by J∆mL3ψ2
∞/kBT , vs L−3 we expect linear behavior whose

intercept is q/(1+q)2 ≈ 0.182 if q = π. Such a plot, shown in Fig. 5.24 is, indeed, reasonably

compatible with this conjecture.
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Figure 5.18: Variation of the SF order parameter vs magnetic field for different lattice sizes.
(a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.19: Variation of the square of the xy-component of the order parameter vs magnetic
field for different lattice sizes. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.20: Variation of the AF order parameter vs magnetic field for different lattice sizes.
(a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.21: Variation of the square of the z-component of the order parameter vs magnetic
field for different lattice sizes. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.22: Variation of the z-component of the magnetization vs magnetic field for different
lattice sizes. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.23: Variation of the square of the z-component of the magnetization vs magnetic
field for different lattice sizes. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.24: Variation of the “normalized” slope of 〈ψ2〉L with respect to H at the transition
field H t vs the inverse volume L−3 of the system. The straight line is a linear extrapolation
to the thermodynamic limit. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T = 0.60J/kB.
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Figure 5.25: Finite size scaling plot for 〈ψ2〉L. The heavy, solid curve shows the asymptotic
theoretical behavior in the limit L = ∞. (a) T = 0.95J/kB, (b) T = 0.80J/kB, (c) T =
0.60J/kB.
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Near the transition, where b can be neglected, Eq. (4.57) leads to a simple finite size

scaling expression for ψ2 that is tested in Fig. 5.25 in which ψ2 is plotted vs. (H − H t)L3

where (a) H t/J = 3.83830 for T = 0.95J/kB, (b) H t/J = 3.74053 for T = 0.80J/kB, and

(c) H t/J = 3.65813 for T = 0.60J/kB. For large enough values of L and H −H t, the values

for ψ2 collapse onto a single curve representing a simple analytic scaling function describing

the behavior near the transition between these two different ordered phases. For large but

negative values of H−H t, curves should instead approach the small constant b in Eq. (4.57)

which goes to zero as L−3. The data bear out these predictions.

5.4 Crossover effect between bicritical and spin-flop re-

gions

Here we want to consider the effect of the nearby bicritical point on the finite-size behavior

of the fourth-order cumulant of m̃z leading to the dramatic variation in crossing points in

Fig. 5.9 to 5.11.

When the normal distance dSF (T,H) from the SF-P phase boundary inside the region of

SF order is rather small, the correlation length ξSF of order parameter fluctuations is very

large. As is standard for critical phenomena, this is described by the power law ξSF ∝ d
−νxy
SF ,

where νxy is the (universal) critical exponent of the XY model. Likewise, in the region of the

AF phase close to the AF-P phase boundary, the correlation length ξAF of fluctuations of

the AF order parameter is very large, ξAF ∝ d−νIAF , dAF (T,H) being the normal distance from

the AF-P phase boundary, and νI the critical exponent of the Ising universality class. These

power laws, however, apply only for a state point (T,H) that is not too close to the bicritical

point (Tb, Hb). Close to the bicritical point, all components of the staggered magnetization

are simultaneously critical, and the fluctuations are characterized by Heisenberg criticality,

with ξ ∝ d−νH , where d is the distance of the state point from the bicritical point. This
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Figure 5.26: Phase diagram near the bicritical point showing crossover (shaded regions)
between the bicritical and spin-flop regions. (Crossover regions between the bicritical point
and other phase boundaries are omitted for clarity.)

latter relation applies when d is sufficiently small and outside the two shaded regions in the

schematic sketch, Fig. 5.26. Within the shaded regions, a smooth crossover to the first-order

behavior at the spin-flop boundary occurs.

We conclude that near the AF-SF phase boundary for T < Tb(H) there is a region where

order parameter fluctuations of Heisenberg model type occur, and the correlation length ξ of

these fluctuations only gradually diminishes with the distance from the bicritical point. Even

at the chosen temperature T = 0.95J/kB, this correlation length must still be fairly large;

and while we have not determined it directly, we can safely conclude this since probability

distributions of energy (Fig. 5.1), magnetization (Fig. 5.2), and order parameter components

are still very broad for L = 40. Moreover, for smaller L the two coexisting phases can hardly
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be recognized from these distributions. The broadness of the peaks for L = 40 in these

figures is evidence that the corresponding (staggered) susceptibilities are still very large as

well.

From these observations we can also conclude that the behavior of various cumulants at

T = 0.95J/kB are still Heisenberg-like when L� 40, and when L ≈ 40 a gradual crossover

from this critical behavior to the behavior characteristic for the first-order transition begins

to set in.

To provide quantitative evidence for this scenario, we recall that for a Heisenberg an-

tiferromagnet the order parameter distribution PL( ~̃m) exhibits full rotational symmetry in

order parameter space. Using polar coordinates

~̃mz = m̃ cos θ, ~̃mx = m̃ sin θ cosϕ, ~̃my = m̃ sin θ sinϕ, (5.4)

we can write PL

(
~̃m
)
d~̃m = PL(m̃)m̃2dm̃ sin θdθdϕ, where only a distribution PL(m̃) of the

magnitude m̃ of the order parameter is needed.

The order parameter cumulant of the Heisenberg model

UH = 1− 〈( ~̃m2
)2〉/(3〈 ~̃m2〉2) (5.5)

at criticality is well known [88,89]

UH
∗ = 0.620(1). (5.6)

But Eq. (5.5) is not what has been computed in the main text of this paper, where rather

cumulants of ~̃mz {Eq. (4.24)} or the transverse order parameter ~ψ = ( ~̃mx, ~̃my) {Eq. (4.23)}

were considered. However, it turns out that it is straightforward to consider these quantities

U z, Uxy for Heisenberg criticality as well, and actually both of them can be expressed in
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terms of UH . In order to see this, we first note that

〈 ~̃m2〉 =

∞∫

0

m̃4PL(m̃)dm̃

/ ∞∫

0

m̃2PL(m̃)dm̃, (5.7)

〈( ~̃m2
)2〉 =

∞∫

0

m̃6PL(m̃)dm̃

/ ∞∫

0

m̃2PL(m̃)dm̃, (5.8)

the angular part simply cancels out in both expressions. Now from symmetry it is trivial to

conclude that

〈 ~̃m2

z〉 =
1

3
〈 ~̃m2〉, 〈ψ2〉 =

2

3
〈 ~̃m2〉, (5.9)

while in 〈m̃4
z〉, 〈ψ4〉 the angular parts contribute, but are straightforward to compute, e.g.

〈 ~̃m4

z〉 =

∞∫
0

m̃6PL(m̃)dm̃
π∫
0

cos4 θ sin θdθ

∞∫
0

m̃2PL(m̃)dm̃
π∫
0

sin θdθ

=
1

5
〈( ~̃m2

)2〉 (5.10)

and similarly

〈ψ4〉 =
8

15
〈( ~̃m2

)2〉. (5.11)

Thus, we find

U z = 1− 3

5

〈( ~̃m2
)2〉

〈 ~̃m2〉2
=

9

5
UH −

4

5
, (5.12)

and

Uxy = 1− 2

5

〈( ~̃m2
)2〉

〈 ~̃m2〉2
=

6

5
UH −

1

5
. (5.13)

Using Eq. (5.6), we hence predict that in the bicritical region,

U z
∗ ≈ 0.316(2), Uxy

∗ ≈ 0.544(1). (5.14)
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Looking at Fig. 5.9 for T = 0.95J/kB, we see that for L = 40, L = 50, we still have

spurious cumulant crossing somewhere in the region of U z
L ≈ 0.34(3), while for larger L

the crossings move towards significantly smaller values. For the pair L = (80, 100) the

crossing point is negative. We recall that a degeneracy constant q = π (see Eq. (4.24))

implies U z
∞ = (2 − q)/3 = −0.3805. Thus a tentative interpretation of the behavior seen

in Fig. 5.9 is a slow crossover from bicritical behavior to first-order-scaling. With respect

to Uxy
∗ , Fig. 5.12 did not indicate massive crossover behavior; but this can be understood

since Uxy
∗ does not differ much from the first-order scaling prediction Uxy

∞ ≈ 0.56. Thus, the

crossover between these values is “masked” by the standard corrections to finite-size scaling.

For T = 0.80J/kB, Fig. 5.10 shows that the cumulant crossing point for pair L = (40, 50)

is U z
L ≈ −0.20(5). It looks similar to that for pair L = (80, 100) at T = 0.95J/kB. At

T = 0.60J/kB (Fig. 5.11), the crossing point for pair L = (32, 40) is U z
L ≈ −0.40(7). This

indicates that there is a more obvious first-order-scaling behavior as T decreases, which is

further away from the bicritical point.

5.5 Discussion

In order to provide an understanding of the finite-size behavior of a first-order transition

from a state with simple, discrete degeneracy to a state with an infinite degeneracy, we have

performed both theoretical and simulational studies of a uniaxially anisotropic Heisenberg

antiferromagnet on finite, simple cubic lattices in an external field H applied along the easy

axis.

A phenomenological theory was presented based upon phase coexistence in the thermo-

dynamic limit with probability distributions of the system in each phase described by delta

functions. We hypothesized that the relative weights of the AF and SF phases are 2 and 2π

by integrating over the angle φ of the two-component SF order parameter. For finite volume,
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this description was generalized in terms of suitable Gaussian distributions, which led to the

prediction that the moments and cumulants of the order parameters of both phases show

common intersection points for large L at the transition field H t (apart from corrections of

order L−3). The values predicted for these intersections depend upon the effective, relative

degeneracy q = π. We then tested these somewhat speculative predictions via large scale

Monte Carlo simulations.

We determined the finite-size behavior of the model by performing high resolution Monte

Carlo simulations. The phase transition can be located quite precisely by using an equal

height rule for the probability distribution for the internal energy, and we find that an

“equal weight” rule applies for the order parameter at the transition. The locations of

the minima in the cumulants for the antiferromagnetic order, spin-flop order, and internal

energy extrapolate to the same transition field in the thermodynamic limit as does the “equal

weight” rule for the magnetization as predicted by the double Gaussian approximation.

Different predictions from the theory yield consistent values for the effective value of the

degeneracy q but only for quite large values of L. Therefore, we conclude that the simple

theory based upon a double Gaussian distribution provides a complete picture of the finite-

size effects at first-order transitions between phases with different symmetries of the order

parameters. Since the underlying theory does not depend on the fine characteristics of the

model, this means that a heretofore unknown kind of universality at a first-order transition

has been identified.
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Chapter 6

Conclusion

In this work, we have investigated the finite-size behavior at phase transitions with very high

precision by using extensive and careful Monte Carlo simulations with specialized algorithms.

In the case of a second-order transition, we have studied a 3D Ising model with the Wolff

cluster flipping algorithm, histogram reweighting, and finite-size scaling including cross-

correlations using quadruple precision arithmetic for the analysis. Using a wide range of

system sizes, with the largest containing more than 109 spins, and including corrections to

scaling, we have obtained results for the inverse critical temperature Kc as well as critical

exponents ν and γ that are comparable in precision to those from the latest sophisticated

theoretical predictions and can provide independent verification of the predictions from those

methods. Our values provide further numerical evidence that none of the purported “exact”

values are correct.

Also, we have determined the probability distribution P (m) of the order parameter m at

the critical temperature in a high-resolution manner. The high quality of the distribution

permitted us to obtain a precise functional form to describe P (m) in the thermodynamic

limit. This expression for P (m) and its parameters provide a valuable benchmark for com-

parison with results for other models presumed to be in the Ising universality class.
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We have also explored the finite-size scaling for a first-order phase transition where a

continuous symmetry is broken, and a theory was developed by using an approximation of

Gaussian probability distributions with a phenomenological “degeneracy” factor, q, included.

We implemented multicanonical Monte Carlo simulations on the three-dimensional, XXZ

Heisenberg antiferromagnet in an external field in order to study the finite-size behavior on a

L×L×L simple cubic lattice for the first-order “spin-flop” transition between the Ising-like

antiferromagnetic state and the canted, XY -like state.

For the “spin-flop” transition from a state with simple, discrete degeneracy to a state

with an infinite rotationally degeneracy, our theory yielded the effective “degeneracy” factor

q = π, and it predicted that for large linear dimension L the field dependence of all moments

of the order parameters as well as the fourth-order cumulants exhibit universal intersections.

The values of these intersections at the spin-flop transition point can be expressed in terms

of the factor q, and corrections to leading order should scale as L−3. Since the value of q

is independent of the fine characteristics of the model (such as the temperature T and the

uniaxial exchange anisotropy ∆), and the good agreement between our theory and simulation,

it implies a heretofore unknown universality can be invoked for first-order phase transitions.
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