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This thesis explores randomized algorithms for finding Hamilton cycles in cubic

graphs.

After giving some basic definitions, we discuss an algorithm for generating

random 3-regular graphs. This is used for testing. Then two approaches for finding

Hamilton cycles in random cubic graphs are presented, a random permutation

method and a Markov chain method. Finally, we compare the performance of

these two approaches and describe a backtracking algorithm for checking the hamil-

tonicity of a graph. The latter can be applied to graphs of modest size for which

the randomized algorithms can not find a Hamilton cycle.
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Chapter 1

Introduction

1.1 Basic Definitions

A graph G = (V, E) consists of a set V of vertices and a set E of edges. The

graphs which are objects of study in this thesis are undirected and simple (no loops

or multiple edges). In order to generate simple graphs we may encounter general

graphs, which are undirected but may contain loops and multiple edges. For a simple

graph the edge set E consists of unordered pairs of distinct vertices. The order of

G is the number of vertices |V |, often denoted by n.

We say a vertex u is adjacent to a vertex v if (u, v) is an edge of G, and edge

(u, v) is incident with vertices u and v. The degree of a vertex v is the number of

edges incident with it. A graph G = (V, E) is r-regular if every vertex in G has

degree r. A 3-regular graph, also known as cubic graph, is a regular graph of degree

3.

Given an undirected graph, a matching is a subset of edges M ⊆ E such that

for all vertices v ∈ V, at most one edge of M is incident to v . We say v is matched

if some edge of M is incident with v . A maximum matching is a matching of

maximum cardinality, that is a matching M such that for any matching M ′ , we

have |M | ≥ |M ′|. A perfect matching is a matching in which every vertex is

matched.

A path from a vertex u to a vertex v in a graph G = (V, E) is a sequence

< v0, v1, ..., vk > of vertices such that u = v0, v = vk and (vi−1, vi) ∈ E for

1
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i = 1, 2, ..., k. A path < v0, v1, ..., vk > forms a cycle if v0 = vk and the path

contains at least one edge. A path < v0, v1, ..., vk > is a simple cycle if it is a cycle

and v1, v2, ..., vk are distinct. A Hamilton cycle of an undirected graph G = (V, E)

is a simple cycle that contains each vertex in V . A graph that contains a hamiltonian

cycle is a hamiltonian graph; otherwise, it is a nonhamiltonian graph.

Note that removing a Hamilton cycle from a cubic graph leaves a perfect

matching. So a hamiltonian cubic graph always contains a perfect matching. If we

take a perfect matching out of a cubic graph, the edges left might form a Hamilton

cycle, in which case the graph is hamiltonian. There are some cubic graphs which

contain perfect matchings but are nonhamiltonian; Figure 4.2 gives an expample.

1.2 Outline of the Thesis

This thesis explores randomized algorithms for finding Hamilton cycles in random

cubic graphs. It is well known that the problem of determining hamiltonicity of

cubic graphs is NP-complete [6], so no polynomial time deterministic algorithm is

known or expected. Hence randomized algorithms are of interest. We have experi-

mented with two approaches to finding Hamilton cycles, which we call the random

permutation method and the Markov chain approach. In general terms the Markov

chain algorithm was found to be the faster of the two, and to give the correct result

in most cases.

The body of the thesis consists of 4 sections.

The first section gives a description of how we generate a cubic graph randomly.

We use an algorithm which takes e2 permutations of {0, 1, ... , 3n−1} on average to

generate a cubic graph. This algorithm is used to generate cubic graphs on which

the algorithms for finding Hamilton cycles are tested.
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In the second section, we explain a random permutation method for finding

Hamilton cycles in a cubic graph which requires Θ(
√

n) permutations in most cases.

First we find a maximum matching for the cubic graph. Of course, if the maximum

matching is not perfect then there is no perfect matching and the graph is not

hamiltonian. Then we remove the perfect matching from the cubic graph, and check

to see if the edges remaining form a Hamilton cycle. If not, permute the graph and

try again; we call this a trial. After Θ(
√

n) trials without finding a Hamilton cycle,

we consider the cubic graph to be likely nonhamiltonian. The random permutation

method takes time O(n2), since a random permutation of the whole graph takes

time Θ(n) and finding a maximum matching takes O(n
√

n) time [9].

The Markov chain results by Alistair Sinclair [12] motivated our second method,

in which a series of small changes are made to the matching instead of permuting the

whole graph. This is discussed in third section. Starting with a perfect matching, we

remove and add some edges to the original matching until another perfect matching

is generated. We then check to see if the edges remaining after removing the perfect

matching form a Hamilton cycle. In this way we apply the program for finding a

maximum matching only once. Our experimental results show that this approach

takes much less time than the previous one.

In the last section we compare the performance of the two algorithms for finding

Hamilton cycles in cubic graphs. We also describe a backtracking algorithm to

examine if the likely nonhamiltonian graphs are actually nonhamiltonian. Then we

present execution profiles for the Markov chain method and draw some conclusions

about directions for future work.



Chapter 2

Generating Random 3-regular Graphs

In this chapter, we describe a method of randomly generating 3-regular graphs with

no loops or multiple edges. A loop in a graph is an edge which joins a vertex to

itself. A multiple edge occurs when there is more than one edge joining two different

vertices.

2.1 Algorithm Description

For a 3-regular graph, there are 3 edges incident to every vertex. We can associate

a vertex with 3 half-edges, then randomly pair those half-edges to obtain a cubic

graph. For a cubic graph of n vertices (where n is even), there are 3n/2 edges. For

a graph of n vertices, there will be 3n/2 pairs, with each pair representing an edge.

Since the pairing is random, it might contain loops or multiple edges. We have to

make sure that the graph we generate does not contain any loops or multiple edges.

We use 3i , 3i + 1 and 3i + 2 to represent the half-edges associated with vertex

i, where i = 0, 1, ..., n − 1 , and an adjacency matrix of size n × 3 to represent the

graph, with the 3n entries in the adjacency matrix representing the pairings. For

example, for the cubic graph G of Figure 2.1 we have

G = (V, E) where V = {0, 1, 2, 3, 4, 5} and

E = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.
The corresponding adjacency structure is shown in Figure 2.2.

4
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Figure 2.1: Cubic graph G.
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Figure 2.2: The adjacency structure of G.

Our implementation stored each graph as an array of adjacency lists rather than

an n×3 matrix. The reason for that is an n×3 array requires allocation of contiguous

space for 3n elements in main memory. For large n, this memory allocation failed.

The array of adjacency lists, being more flexible, worked for larger values of n before

memory allocation failed.

Our algorithm for generating a random cubic graph with n vertices is summarized

in steps 1-5 below:

1. Clear the adjacency matrix and randomly permute {0, 1, ... , 3n−1} to obtain

half-edges i0 , i1 , ... , and i3n−1.
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2. Every other two consecutive half-edges are paired starting with (i0, i1).

3. If the pairing ever forms a loop or multiple edge, this trial is considered to

have failed and the procedure starts over again with step 1.

4. If a pair does not form a loop or multiple edge, the corresponding edge is added

to the adjacency matrix.

5. A cubic graph is returned as soon as the adjacency matrix contains 3n/2 pairs.

Figures 2.3 to 2.6 illustrate this algorithm for 6 vertices. The graph corresponding

to the successful permutation and pairing of Figure 2.6 is shown in Figure 3.1.

Clearly the vertex associated with i is i/3, while / here denotes the integer

quotient function. To check for the existence of a loop is simple. For any ij and

ij+1 with j even , if ij/3 = ij+1/3, then ij and ij+1 are associated with the same

vertex, so it forms a loop. To check whether a pair forms a multiple edge, we can

see if vertex ij/3 is already adjacent to ij+1/3 by reading the current adjacency list

for vertex ij/3 to see if ij+1/3 has already been entered.

2.2 Experimental Results

Bender and Canfield have shown in [1] that the probability that a random pairing

produces a graph with no loops or multiple edges is e
1−r2

4 for an r-regular graph.

Thus for r = 3 the probability of obtaining a cubic graph is e−2. What Bender

and Canfield actually show in [1] is that the number of loops and the number of

multiple edges are both asymptotically Poisson distributed with mean 1, and are

asymptotically independent. For a variable N with mean λ the Poisson distribution

gives

P (N = k) = λk

k!eλ for k = 0, 1, 2, ...
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Table 2.1: Average number of trials to generate a cubic graph (over 1000 runs).

Number of vertices 10 100 1000 10000 100000
Avg. number of trials 7.37 7.57 6.95 7.27 7.41

In the case of 3-regular graphs, λ = 1 asymptotically when N is the number of

loops, so the probability of a loopless configuration is asymptotically e−1. The same

is true for the number of multiple edges, so by the asymptotic independence the

probability of a cubic graph approaches (e−1)(e−1) = e−2 for large order.

Therefore, we need e2 trials asymptotically on average to obtain a cubic graph.

The expected time is thus linear in n, but in the worst case, if every trial develops

a loop or a multiple edge, the time is unbounded.

Our experimental data (given in Table 2.1) shows that the expected number of

trials needed to generate a cubic graph is about 7.314, very close to e2 = 7.389 .

We use the following standard algorithm to produce a random permutation of

an array A of n elements:

procedure RandomPermute (A, m)

for i := 0 to m − 1 do

r := rand(i, m − 1)

Swap (A[i], A[r])

od

This calls a library function rand(x, y) which returns a random integer in the range

x..y. We initialize A[i] := i for 0 ≤ i ≤ 3n−1, so that RandomPermute(A,3n) returns

a random permutation of {0, 1, ..., 3n − 1} in the array A. Obviously, permuting 3n

elements takes time Θ(n).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

vertex 0 vertex 1 vertex 2 vertex 3 vertex 4 vertex 5

Figure 2.3: The original half-edges.

0 7 1 8 3 4 10 16 11 17 13 5 9 14 6 122 15

Figure 2.4: After random permutation.

0 7 1 8 3 4 10 16 11 17 13 5 9 14 6 122 15

multiple edge

loop

Figure 2.5: An unsuccessful pairing.

1 6 9 2 7 4 5 13 15 8 10 12 17 11 14 160 3

Figure 2.6: A successful random permutation and pairing.



Chapter 3

Random Permutation Method for Finding Hamilton Cycles

3.1 Algorithm Description

When we take a perfect matching out of a cubic graph, if the edges left form a

Hamilton cycle, then this cubic graph is a Hamiltonian graph. We use this fact to

find Hamilton cycles on cubic graphs. However, if the remaining edges do not form a

Hamilton cycle, it does not mean that the graph is nonhamiltonian. For example, if

we take the perfect matching M = {(0, 3), (1, 4), (2, 5)} out of G in Figure 2.1, the

remaining edges do not form a Hamilton cycle (as in Figure 3.1). But this graph is

actually a hamiltonian graph, for it has a Hamilton cycle < 0, 3, 5, 4, 1, 2, 0 >. In

this case we have to permute the graph and find a matching of it again until we find

a Hamilton cycle. If we still can not find a Hamilton cycle after a certain number

of permutations (which will depend on n ), we consider the input graph to be likely

nonhamiltonian.

0

21

3

4 5
Unmatched edges

Matching edges

Figure 3.1: G-M is not a Hamilton cycle.

Here is the algorithm in outline form:

RandomPermutation FindingHC(G, n)

9
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1. Find a maximum matching M. If M is not perfect, return “not hamiltonian”.

2. Check to see if G-M is a Hamilton cycle. If so, return “hamiltonian”.

3. Apply a random permutation to the vertices of G to obtain G’.

4. Find a maximum matching M’ of G’.

5. if G’-M’ is a Hamilton cycle, return “hamiltonian”.

6. Repeat 3-5 up to 100
√

n times; if no Hamilton cycle is found, return “probably

not hamiltonian”.

In our implementation, we use the existing program for finding a random max-

imum matching by Pecqueur and Kececioglu (see [9]). When Pecqueur’s code is

used for finding the maximum matchings it gives different matchings, in general, for

different permuted versions of G. They may not be completely random maximum

matchings, but the experimental results are consistent with the random hypothesis.

3.2 Analysis and Experiment Results

3.2.1 Average Number of Permutations Needed to Find a Hamilton

Cycle

It was proved by Robinson and Wormald in [10] that for almost all cubic graphs G

on n vertices (n even), the expected number of Hamilton cycles in G is

H(G) ∼=
(

4

3

)n
2

e

√
π

2n

b(n)∏
i=3

(1 + δi)
Zi(G)e−λiδi (3.1)

where Zi(G) is the number of i−cycles in G, λi = 2i

2i
, δi = (−1)i−1

2i , and b(n) goes

to infinity very slowly.

Robinson and Wormald also proved in [11] that the number of matchings in G is

M(G) ∼=
(

4

3

)n
2 √

2e1/4
b(n)∏
i=3

(1 + εi)
Zi(G)d−λiεi (3.2)
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where εi = (−1)i

2i .

The distribution of Zi(G) for fixed i is asymptotically Poisson with mean λi,

as shown in [13] and [14]. These references also show that the distribution of

Z3(G), Z4(G), ... , Zb(G) are asymptotically independent for any fixed b or for b =

b(n) which is sufficiently slowly growing. Then the probability of Z3(G) = c3 ,

Z4(G) = c4, ... , Zb(G) = cb is

Pc3,c4,...cb
∼=

b∏
i=1

λci
i

ci!
e−λi (3.3)

Let H =
(

4
3

)n
2 e

√
π
2n

, and Hc3,...cb
= H

∏b(n)
i=3 (1 + δi)

Zi(G)e−λiδi .

Let M =
(

4
3

)n
2
√

2e1/4, and Mc3,...,cb
= M

∏b(n)
i=3 (1 + εi)

Zi(G)d−λiεi. Then

E ′
(

M

H

)
∼=

∑
c3,c4,...,cb≥0

Pc3,...cb

Mc3,...,cb

Hc3,...,cb

(3.4)

Here the asymptotic distributions for H and M are for almost all cubic graphs

as n → ∞, and E ′ denotes an expectation over a suitable subset containing almost

all cubic graphs.

Let i = 2k + 3. As n → ∞ (3.4) becomes

E ′
(

M
H

) ∼= M
H

exp
∑

i≥0 (λi((1 + δi)/(1 + εi) − 1 − δi − εi))

∼= M
H

exp
(∑

k≥0
1

(2k+3)
1

(22k+3−2)

) (3.5)

The simplication for (3.5) follows from noting that (1+δi)/(1+εi)−1−δi−εi = 0

whenever i is even. The exponential evaluates to about 1.06570. Then (3.5) becomes

E′
(

M

H

)
∼= 2e−3/4

√
n × 1.06570 ∼= 0.568026

√
n

So after 0.568026
√

n permutations on average we should find a Hamilton cycle.

Our experimental results show that the average number (over 1000 runs) of permu-

tations needed by RandomPermutation FindingHC for finding a Hamilton cycle is

about 0.5034
√

n (see Table 3.1 and Figure 3.2) .
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Table 3.1: Average number of trials to find a Hamilton cycle using random permu-
tation method.

order n avg. no. of trials avg. no. of trials×n−1/2

10 1.62 0.512
20 2.36 0.527
30 2.81 0.513
40 3.20 0.505
50 3.59 0.507
60 3.92 0.506
70 4.27 0.510
80 4.61 0.515
90 4.79 0.504

100 5.12 0.512
200 7.07 0.499
400 10.39 0.519
500 11.76 0.525
600 12.45 0.508
700 13.10 0.495
800 16.08 0.568
900 17.47 0.582

1000 17.79 0.562
2000 22.40 0.500
3000 26.06 0.475
4000 31.80 0.502
5000 39.44 0.557
6000 40.98 0.529
7000 42.43 0.507
8000 43.29 0.483
9000 44.41 0.468

10000 47.82 0.478
20000 64.20 0.453
30000 82.50 0.476
40000 94.50 0.472
50000 104.41 0.466
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Figure 3.2: Average number of permutations needed to find a Hamilton cycle in a
random cubic graph using random permutation method (average of 1000 runs per
data point).

3.2.2 Average Running Time for Each Random Permutation

After removing a perfect matching from the cubic graph, if the remaining edges do

not form a Hamilton cycle, we have to permute the graph and find another max-

imum matching on the permuted graph. Before permuting, we generate a random

permutation of the n numbers {0, 1, ..., n−1}. Then we take two steps to randomly

permute the graph. First, the permutation is applied to the individual entries in

the adjacency lists. Then the permutations is applied to create a new mapping from

vertices to adjacency lists (using a new array of n elements).

As discussed in Chapter 2, randomly permuting n elements takes Θ(n) time, the

first step in permuting a graph takes time Θ(n) and the second step also takes time

Θ(n). So the total time taken to permute a graph of n vertices is Θ(n).

Pecqueur gives the running time for finding a maximum matching as O(m
√

n),

where m is the number of edges. For cubic graphs this is O(n
√

n), since m = 3
2
n.
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Compared to that, the time taken to permute a graph is relatively small. This

observation suggests a way to improve our algorithm, as discussed in Chapter 4.

3.2.3 For a Large Number of Vertices, Almost All Cubic Graphs are

Hamiltonian

To find the probability of hamiltonicity in cubic graphs, we ran the Random permu-

tation method program on cubic graphs randomly generated using the procedure of

Chapter 2. Robinson and Wormald proved in [11] that almost all r-regular graphs

are hamiltonian for any fixed r ≥ 3 for sufficiently large n. We have run this pro-

gram 10000 times for a range of values of n, and the experimental results are shown

in Figure 3.3. The actual values of n for which the data were generated are 6, 8,

10,...,20, 24, 30, 34, 36, 40, 50,...,100, 120,..., 200. Notice that for each value n > 140

tested, the number of likely nonhamiltonian graphs found were 0 out of 10000 cubic

graphs generated.
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Figure 3.3: Number of nonhamiltonian graphs in 10000 cubic graphs.



Chapter 4

Markov Chain Approach for Finding Hamilton Cycles

According to Pecqueur [9] it takes O(n
√

n) time to find a maximum matching in a

cubic graph on n vertices, while the time needed for permuting the graph is Θ(n). In

the random permutation method, finding a maximum matching and permuting the

graph have to be called Θ(
√

n) times. There would seem to be room to improve our

algorithm by reducing the time spent on finding a maximum matching and permuting

the whole graph. The analysis in [5] suggests an approach based on a rapidly mixing

Markov chain, which generates nearly uniform perfect matchings starting with our

original perfect matching by making some changes to it. In this method the time

required for finding a maximum matching becomes a one-time cost. This has the

potential to reduce the expected time performance for almost all cubic graphs to

O(n
√

n). Our experiments support the hypothesis that the Markov chain method

achieves this goal.

4.1 Algorithm Description

First find a random maximum matching of the input cubic graph using the program

by Pecqueur [9]. If the maximum matching is a perfect matching, take this matching

out of the cubic graph. If the remaining edges form a Hamilton cycle, then this graph

is hamiltonian. If the matching is not a perfect matching, then the graph is definitely

not hamiltonian. So far this is the same as in the previous approach. Now if the

edges remaining after removing the perfect matching do not form a Hamilton cycle,

15
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we transform the perfect matching to another one by removing and adding some

edges to the original matching, then check to see if we have got a Hamilton cycle.

If no Hamilton cycle has been found after 50
√

n perfect matchings, the input cubic

graph is then considered to be likely nonhamiltonian.

In [7] Sinclair defined Mk(G) to be the set of matchings of size k in G and a

Markov chain MCpm(G) with state space N = Mn(G) ∪ Mn−1(G). Note that N

includes auxiliary states in the Markov chain, namely nearly-perfect matchings in

G. Transitions in the chain are: in any state M ∈ N, choose an edge e = (u, v) ∈ E

uniformly at random, and then

1. if M ∈ Mn(G) and e ∈ M , move to state M ′ = M − e

2. if M ∈ Mn−1(G) and u, v are unmatched in M , move to M ′ = M + e

3. if M ∈ Mn−1(G), u is matched to w in M , and v is unmatched in M , move to

M ′ = (M + e) − (u, v)

4. in all other cases, do nothing

We modify the algorithm by Sinclair for efficiency, obtaining the following algorithm

for transforming a perfect matching into another one:

Procedure TransformPerfectMatching(G, M)

1. Choose a vertex x of G at random. Let v = x, (v, u) ∈ M , and M ′ = M .

2. Let M ′ = M ′ − {(u, v)}. If entering from step 3, swap the roles of x and

v with probability 0.5. Let a, b 6= v be adjacent to u. If a or b = x, let

M ′ = M ′ ∪ {(u, x)} and return M ′, which now is perfect.

3. Select w ∈ {a, b} at random, and y such that (w, y) ∈ M ′, then let M ′ =

M ′ ∪ {(u, w)}. Let v = w and u = y and go to step 2.
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In this procedure, G is a cubic graph and M is a perfect matching of G. Figure

4.1 shows how one perfect matching is transformed into another. In (a) x = 5 is

chosen at random as the starting point. In (b) matching edge (5, 2) is removed

according to step 2. In (c) 0 is chosen at random from {0, 1} and (0, 2) is added

according to step 3. In (d) matching edge (0, 3) is removed (step 2), in (e) (3, 5) is

added (step 3), in which point the current matching is returned according to step 2.
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(a) The original perfect matching

(d) Remove (0,3) from M(c) Add (0,2) to M

(e) Add (3,5) to M

(b) Remove (2,5) from M 

Figure 4.1: A perfect matching of a cubic graph transformed into another perfect
matching on a cubic graph of 6 vertices.

For a graph which has a perfect matching but is not hamiltonian (an example

is shown in Figure 4.2), the TransformPerfectMatching procedure will never halt.

So we modify the procedure to halt and return “likely nonhamiltonian” after 50
√

n

perfect matching have been tested and no Hamilton cycle found.
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Figure 4.2: A nonhamiltonian cubic graph with a perfect matching.

The difference between this approach and the Random Permutation approach is

that we are making small changes to the perfect matching instead of permuting the

graph and finding a maximum matching again on the permuted graph. Intuitively,

this should save some time. We will discuss the experimentally observed performance

in the next chapter.

4.2 Number of Moves Made to the Original Matching to Find

Another Matching

In step 2 of TransformPerfectMatching, we have a 6= b and the procedure will ter-

minate if a or b = x. If every step is random, the chance of termination is 2
n
. We

call a step of TransformPerfectMatching a move. So we expect to take n
2

moves to

reach another perfect matching.

Our experimental results (Figure 4.3) show that it takes about 0.65n moves to

find another perfect matching.

4.3 Number of Trials needed to Find a Hamilton Cycle

We call the process of changing a perfect matching into another perfect matching a

trial. Since the transitions are random, we consider the perfect matching obtained

after the first one to be essentially random. As shown in Chapter 3, the expectation

of the ratio of the number of perfect matchings to the number of Hamilton cycles

is 0.568026
√

n for almost all cubic graphs. If our perfect matchings are completely
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Figure 4.3: Average number of moves needed to reach another perfect matching
from a perfect matching.

random and independent of each other, then we would need on average 0.568026
√

n

trials to find a Hamilton cycle in almost all random cubic graphs on n vertices. Our

experimental data (see Figure 4.4 and Table 4.1) shows that the average number

(over 1000 runs) of trials for finding a Hamilton cycle is about 0.5586
√

n.
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Figure 4.4: Average number of trials needed to find a Hamilton cycle in a cubic
graph using Markov chain method.
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4.4 Possible Improvement with Delayed Hamilton Cycle Checking

The performance of this approach is much better than the previous one. However we

explored the possibility of improving it further by delaying the checking of Hamilton

cycles.

In the original algorithm, we check if the remaining edges form a Hamilton cycle

after every trial. It might have wasted some time in checking too soon, before

the perfect matching is really independent of the previous one. Since the average

number of trials is 0.65n, we tried delaying the Hamilton cycle checking until a

certain number of trials, say cn (c < 0.65), had been completed since the last check

.

In our experiments we tested several values of c. The results for c = 0.3 and

c = 0.6, which are typical, are shown in Figure 4.5. All of them took more time than

the algorithm with no delay in checking. This is because checking Hamilton cycles

does not take a lot of time and we might have missed some cases in which only a

few transitions were made.
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Figure 4.5: Running time of delayed checking vs. without delayed checking for
Hamilton cycles.
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Table 4.1: Average number of trials to find a Hamilton cycle using Markov chain
method.

order n avg. no. of trials avg. no. of trials ×n−1/2

100 4.948 0.494
500 11.320 0.506

1000 16.722 0.528
2000 24.673 0.551
3000 30.275 0.552
4000 33.303 0.526
5000 41.121 0.581
6000 45.718 0.590
7000 45.191 0.540
8000 51.174 0.572
9000 53.099 0.559

10000 59.062 0.590
20000 80.701 0.570
30000 88.360 0.510
40000 117.760 0.588
50000 119.180 0.533
60000 148.930 0.608
70000 155.040 0.586
80000 149.060 0.527
90000 183.900 0.613

100000 189.100 0.598



Chapter 5

Conclusion

5.1 Comparison of Two Approaches

As we mentioned earlier, the difference between these two approaches is that we

permute the whole graph and find a maximum matching on it again in the first

approach, and make changes to the original perfect matching to get another perfect

matching in the second approach. By using the Markov chain approach, we call

the function for finding a maximum matching only once, while using the random

permutation method we expect to call the function for finding a maximum matching

Θ(
√

n) times. Here we anticipate a significant performance improvement from the

Markov chain algorithm. There should also be some performance improvement due

to making changes to the original matching over permuting the whole graph.

In our experiments, the time taken for finding a maximum matching in a cubic

graph using Pecqueur’s code was observed to be approximately cn1.3. So the total

running time for the random permutation method is approximately cn1.8. Our data

(Figure 5.1) show that the time used for the Markov chain approach is only little

more than linear. The time saved by using the Markov chain approach is significant.

5.2 Backtracking method to examine if a likely nonhamiltonian

graph is actually hamiltonian

We consider a graph to be likely nonhamiltonian after a certain number of trials has

failed. Since the methods are randomized, no matter how many trials are run, a

22
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Figure 5.1: Running time comparison of two approaches.

likely nonhamiltonian graph might still turn out to be hamiltonian. That is why we

call a graph likely nonhamiltonian after the prescribed number of attempts at finding

a Hamilton cycle has found none. We used a backtracking method to determine if a

likely nonhamiltonian graph might actually be hamiltonian.

The idea of the backtracking method for searching for a Hamilton cycle is very

simple. Starting from a vertex v0, we arbitrarily choose an edge (v0, vi) as the first

edge in the path and record the current path, the length of the path and which

vertices have been tracked. Then arbitrarily choose a vertex vj from the vertices to

which vi is connected and vj 6= v0, add vj to the current path and update the path

information accordingly. Starting with vj, each time we choose a vertex vk to which

vj is connected and vk 6= vi to add to the current path if doing so will not run into

a situation in which we have to go back to a vertex which is already in the path. If

at a certain point, we have no choice but going back to a vertex which is already in

the path, then we back up one step in the search and try another possible branch of

the search tree. If the path length is n and the last vertex in the path is connected
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back to v0, then there is a Hamilton cycle. If we have explored all possible paths

starting from v0 with no success, then the graph is nonhamiltonian.

We have noted that deciding the existence of a Hamilton cycle in an arbitrary

cubic graph is an NP -complete problem. On a large number of vertices, the perfor-

mance of the backtracking search algorithm is very bad. But the good news is that

for large n the search for a Hamilton cycle is quite likely to be successful. In our

experiments, we did not have to call the backtracking program at all on large n.

In our experiment we did find some hamiltonian graphs among the likely non-

hamiltonian graphs. Table 5.1 gives the number hamiltonian graphs among the

likely nonhamiltonian graphs in 10000 cubic graphs tested.

Table 5.1: Number of likely nonhamiltonian graphs in 100000 cubic graphs and
number of hamiltonian graphs among the likely nonhamiltonian graphs.

number of likely nonhamiltonian number hamiltonian graphs among
order n graphs in 100000 cubic graphs the likely nonhamiltonian graphs

6 0 0
8 165 45

10 1397 9
12 1638 1
14 1372 0
16 1152 0
18 897 0
20 746 0

5.3 Conclusion and future improvements

In this thesis, we described a method for randomly generating cubic graph, then

two methods for finding Hamilton cycles and how the second method is better than

the first one for random cubic graphs. Finally an exhaustive search algorithm for

determining the hamiltonicity of a graph was discussed.
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In order to see which parts of the program take the most time, we timed each

of the major functions. The result (Figure 5.2) shows that the time taken on trans-

forming the perfect matching is the longest, then finding a maximum matching, then

generating a random cubic graph. Checking for Hamilton cycles takes the least time.

It is also seen that while generating a cubic graph and finding a maximum matching

are only called once, the transforming of a matching and checking for a Hamilton

cycle have been called many times. Thus if the later could be improved a little, we

would expect to save a lot of time. So a natural direction for future work would be

to improve the matching transformation and Hamilton cycle checking routines.
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