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Research in regular languages and their associated computational problems has been

revitalized by the rapid development of the Internet and its applications. The construction

of finite automata from regular expressions is of central importance to a variety of prac-

tical problems, including DFA construction in Unix systems, lexical scanning, Internet

searching, content-based network service, and computational biology.

First, a “smart” parsing algorithm is developed which constructs a parse tree with at

most
���������
	

nodes from a regular expression with
�

literals. Based on smart parsing,

two NFA construction algorithms are presented. The first one works on the NFA from

Thompson’s construction, eliminating as many auxiliary states as possible while main-

taining Thompson’s properties. It is shown that the resulting NFA is a minimized

Thompson’s NFA, which means that no auxiliary states can be eliminated without vio-

lating the defining properties of Thompson NFA.

The second construction method is based on smart parsing and “divide and conquer.”

From a regular expression with
�

literals, we construct a normalized NFA with � � states

and � � transitions in the worst case.

Finally, it is shown that the Emptiness-of-complement problem for semi-extended

regular expressions is ������������� -complete. If this problem could be solved in

����������� , it would lead to the first known equivalence between a time complexity

class and a space complexity class.
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Chapter 1

Introduction and Literature Review

1.1 Background

Research in regular languages and their associated computational problems has been revi-

talized by the rapid development of the Internet and its applications. In particular, the

construction of finite automata from regular expressions is of central importance to the

interprocess communication [11], string pattern matching [3, 12], approximate string

pattern matching [9], lexical scanning [1], content-based network service [15], regular

expression compilation in VLSI layout design [21], computational biology [12], and DFA

construction from regular expressions such as RegEx implemented in the UNIX operating

system [16].

Using regular expressions for pattern searching is widely known and well understood.

It is regarded as a precise, succinct way to specify patterns of interest. However, as a

computation model, the NFA (nondeterministic finite automaton) is a more useful tool

for pattern matching. Simulation of NFAs for pattern matching is a basic method used

for text searching. So the construction of finite automata from regular expressions is of

central importance.

1.2 Terminology

We follow the same notations as used in [1]. By an alphabet, we mean a finite non-empty

set of symbols. In this thesis, we use � to denote an alphabet. If � is an alphabet, ���

1
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denotes the set of all finite strings of symbols in � . The empty string is denoted by � . Any

subset of � � is a language over � .

Definition 1 A regular expression over an alphabet � is defined as follows [1]:

1. � ,
�

and � for each ��� � are regular expressions denoting the regular language � ��� ,
the empty set and ���	� respectively;

2. If 
 � � 
 � are regular expressions denoting the languages � � � � � , respectively, then
� 
 �� 
 � 	 , � 
 � 
 � 	 and

� 
 � � 	 are regular expressions, denoting � �� � � , � � � � and

� � � , which we call alternation, concatenation, and star, respectively;

3. All regular expressions can be defined by the above rules.

We use � � 
 	 to denote the language denoted by a regular expression 
 .

We define the length of a regular expression to be the number of occurrences of char-

acters, � ,
�

and the above three operations. This is slightly different from the definition

used elsewhere [1, 7] (In their definition, the concatenation operation is not counted in

the length of the regular expression.) Observe that the length we use is at most double the

length used in [1, 7] for every regular expression.

For each character occurrence, we call it a literal. The number of literals in a regular

expression means the number of character occurrences. Because a character set (alterna-

tion between characters as in � ������ ) behaves like a single character, we call it a literal

also.

Regular expressions have been used in a variety of practical applications to specify

regular languages, which will be covered later in this chapter. The problem of deciding

whether a given string belongs to the language denoted by a particular regular expression

can be implemented efficiently using finite automata which are now defined.
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Definition 2 A nondeterministic finite automaton (NFA for short) � is defined as a

5-tuple
� � � � ��� ����� ����	��

where

1. � is the finite set of states of the control;

2. � is the alphabet from which input symbols are chosen;

3.
�

is the state transition function which maps �	� � � � � ��� 	 to the set of subsets of

� ;

4.
���

in � is the initial state of the finite control;

5.
��
 � is the set of final (or accepting) states.

For all � � � and � � � ,
��� � � � 	 is the set of all states reachable from state � by any

single edge labeled � . The label � can be any alphabet character in � or � .

We can extend the transition function to a larger domain, i.e. extend
�

to ����� � � 	 �
�
�
� � ��� 	 ��� � � � 	 .
First, for � 
 � , we define � -closure

� � 	 as the set of states reachable from some states

of � by � or more � -transitions.

Then, for � 
 � and � � � � we define � recursively as:

��� � � � 	 � �

��� � � � 	 � � -closure
� � 	

��� � � � � 	 � ��� ������� � � � 	�� � 	�� � 	

��� � � � 	 � ������� ��� � � � 	

A language accepted by � , denoted by ��� , is defined as

��� �
� ��� � � �! ��� � ��� � � � 	#"$�&%

�
� �
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Definition 3 We call an NFA a normalized NFA (NNFA for short) if

1. It has a unique start state and a unique final state;

2. The start state does not have any in-transitions, and the final state does not have any

out-transitions.

Definition 4 An NFA � is a deterministic finite automaton (DFA for short) if there

are no � -transitions and  ��� � � � 	  �� � for all � ��� and ��� � .

Clearly, every DFA is an NFA, and it is shown in [2], for each NFA � there is a DFA
�

, such that � � � 	 � � � � 	 . The construction of
�

from � will be covered in later

sections.

Throughout this thesis our model of computation is a uniform cost sequential RAM

which is used in [1].

In our algorithmic analysis, we use � , � , and � notations. We say � ��� 	 ��� �	� ��� 	 	 ,
if there are positive constants

�
and

� �
, s.t. for all

��
 �#�
, � ��� 	 � ��� ��� 	

. Similarly, we

say � ��� 	 �� �	� ��� 	 	 , if there are positive constants
� � � ���

, and
� �

, s.t. for all
��
 �#�

,
� ��� ��� 	 � � ��� 	 � ����� ��� 	

; � ��� 	 ��� �	� ��� 	 	 , if there are positive constants
�

and
� �

, s.t.

for all
��
 � �

, � ��� 	�
 ��� ��� 	
.

1.3 From Regular Expression to NFA

There are two basic methods of converting a regular expression to an equivalent NFA.

One is due to Thompson [6], and the other is due to McNaughton and Yamada [5].

In [6], Thompson gave a linear time and space construction to convert a regular expres-

sion to an equivalent NFA with � -transitions, as illustrated in Figure 1.1. In the figure,

unlabeled arcs represent �
�

transitions. We will follow this convention in the rest of this

thesis unless otherwise specified.

In an NFA, we call a state auxiliary if it has only � -transitions from other states;
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a

empty set aempty string

star operation

concatenation

alternation

Figure 1.1: Thompson’s Construction of NFA

otherwise, we call it a transition state. In Chapter 3, we will show that auxiliary states are

candidates for deletion to make our NFA more compact. One nice property of Thompson’s

construction is that there are at most two transitions with the same label leaving each state

in the resulting NNFA, and we call this property Thompson property.

In [1], Algorithm 1.1 was given to eliminate all the auxiliary states and � -transitions.

algorithm � -elimination

Input: any NFA � � � � � � ��� ��� � ����	
Output: NFA ��� � � ��� � ��� ��� � ����� ��� � 	
such that � � ��� 	 � � � � 	 and ��� has no � -transitions.

��� � � � ��� � � � �  � � ��� � � � 	 ����� � ��	 � ��� � �
for each

� ����� and � � ��
�
� � � � 	�� � � �  � � ��� � � � 	 � � � ��� � � � 	 � � � � ��
 � � � ��

�
�
� � �  � � ��� � � � 	 � � %

�
� �

Algorithm 1.1: � -elimination

We call the above procedure � -elimination.
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Another basic method to convert a regular expression to an NFA is based on Berry and

Sethi’s [10] improvement to McNaughton and Yamada’s method [5]. The basic idea is to

have a distinct state for each character occurrence in the regular expression and to make

the transition from � to � if ���
� � appears in some substring of the language � � � 	 , where ���
and � � denote the characters labeling the states � and � , respectively. By this convention,

each state is labeled with an alphabet symbol except the start state. To transform such

a construction into the form in our definition, we can label each transition
�
�
� � 	 by � ’s

symbol.

The figure 1.2 illustrates McNaughton and Yamada’s method.

a b c d

(ab)*c*d

pseudo-start
state

d

c

c

a

ba

c

d

Figure 1.2: McNaughton and Yamada’s Construction of NFA

Surprisingly, we can view McNaughton and Yamada’s NFA as the result of � -

elimination from Thompson’s construction. Each state in McNaughton and Yamada’s

NFA corresponds to a transition state in Thompson’s construction.

There is a path from transition state � to transition state � in Thompson’s construction

if and only if there is a path with the edges spelling the string from state � to state � in

McNaughton and Yamada’s NFA.
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1.4 Regular Expression Pattern Matching

One immediate application of converting a regular expression to an NFA is regular expres-

sion pattern matching by NFA simulation. Beginning with an NFA and a string, the fol-

lowing procedure determines the sequence of state sets for the given input. The NFA used

here can be constructed by either Thompson’s method or McNaughton and Yamada’s

method or any other method.

algorithm NFA Simulation

Input: An NFA � and a string � � � � ������� ��� in � � .
Output: The sequence of states set � � � � ��� ����� � ��� such that

��� � � � �  � � ��� � � � � ������� ��� 	 �
for 


�
� � to

	
do

if 
 � � then ��� � � � ��� �
else ��� � � ��
 ������������ � � ��� 	
mark each

�
in ��� as considered

mark each
�

in � � ��� as unconsidered���  �  �
� ���

while
���  �  not empty do

Find and delete
�
, the first element of

���  � 
for each

�
in
��� � �

�
	

do

if
�

is unconsidered then

mark
�

as considered

add
�

to
���  �  and to ���

fi

end(for)

end(while)

end(for)

end(simulation)

Algorithm 1.2: NFA Simulation Algorithm

The algorithm runs in one step for each character in the input string. In each step of

the simulation, the procedure takes a subset of the NFA states ��� , and finds a new state set



8

����� � reachable from ��� by taking a transition labeled with � ��� � and some � -transitions if

possible. In the next section, we will use the idea in this procedure to give an algorithm to

construct a DFA from an NFA.

The time needed for this algorithm is bounded by the following theorem given in [1].

Theorem 1 Suppose � is an NFA that has no more than
�

transitions leaving any vertex

with the same label, and suppose � has 	 states. Then the simulation algorithm takes

� � � 	 � 	
steps on an input string of length

�
.

At its most general, the problem of matching a regular expression in a string may be

characterized as follows: Given a string � and a regular expression � , locate all substrings

of � that match � .

Based on the above definition, the universe is the set of all substrings of � . Unfor-

tunately, the cardinality of this set is quadratic in the length of � . Moreover, searching

this universe may yield overlapping and nested results. For this reason, implementations

attempting a general search will restrict the search to find and report only a linear subset

of the possible solutions. These arbitrary linearizing restrictions, which often alter the

semantics of the search, appear to be simple, but are difficult to formalize, difficult to use

precisely, and may be difficult to implement efficiently in some circumstances.

Two problems that any regular expression matching algorithm must address are:

� Where the beginning of the matching is, and if there are several, which one

should be reported;

� Starting from the state of the last match, which state should we follow for the

next one?

The most common restriction is the “leftmost longest match” rule, which is stated

as a POSIX standard: “The search is performed as if all possible suffixes of the string

were tested for a prefix matching the pattern; the longest suffix containing a matching

prefix is chosen, and the longest possible matching prefix of the chosen suffix is identified
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as the matching sequence.” However, in [14], Clark argued that the longest matching

does not make sense for highly formated text. Also, this approach seems impossible for

applications involving essentially infinite strings (for example, the data-stream transported

over the Internet).

algorithm shortest match

Input: an NFA and a string � � � � � � ����� ���
Output: The starting and ending position pairs of shortest matching

for
�
�
�

to  �  do

��� � � �
for 
 �

�
to

�
do

� � � � 

for
�
�
�

to  �  do

� �� � � �
for
�
�
�

to  �  do

for � � ��� � � ��� 	 do

� �� � �����
	 � � �� � ��� 	
for
�
�
�

to  �  do

for � � ��� � � � 	 do

� �� � �����
	 � � �� � ��� 	
�$�
� �

for
�
�
�

to  �  do

if
� � � then

�$�
�����
	

� � � � �� 	
if
�� � then

�
� �
�
� � � � � 
 	

for
�
�
�

to  �  do

if � �� � �
then � �� � � �

fi

for
�
�
�

to  �  do

��� � ��� ��
end

Algorithm 1.3: Shortest Matching Algorithm
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To answer the second question, we propose two possible solutions:

1. Begin the search again after the first character of the match or

2. Begin the search again after the last character of the match.

The first solution is preferred when we allow overlapping in the match, while the

second one reduces overlapping. The first choice may result in a large number of nested

solutions. The second is the one usually taken, but it creates a bias for reporting the

leftmost of overlapping matches.

Clark introduced the shortest matching solution defined in [14]. As argued in [14],

shortest matching is useful when we search in structured data formatted with tags like

SGML data and Internet data-stream. The time for such matching is � � � � � 	 , where
�

is

the number of the states in the NFA,
�

is the degree bound for any state and symbol, and
�

is the length of the string.

The modified version that allows � -transitions is presented in in Algorithm 1.3.

Based on Algorithm 1.3, we have theorem 2.

Theorem 2 The time needed for the above algorithm is � ����� � � � 	 	 , where
�

is the

length of the input string,
�

is the number of states and � is the number of transitions.

1.5 From NFA to DFA

The classical method to construct a DFA from an NFA is Rabin and Scott’s subset con-

struction as given in [8].

Algorithm 1.4 is a general procedure, which can be applied to an NFA with � -

transitions.
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From Algorithm 1.4, we know that each state in the DFA constructed by the Rabin-

Scott method is a state vector (a subset of the NFA’s states), and by the simulation algo-

rithm, we know NFA simulation is a “time-consuming” version of the DFA working on

an input string.

algorithm subset construction

Input: an NFA �
Output: a DFA

�
such that � � � 	 � � � � 	

� �
�
�

� ��� 	 � � � � � � � - � � � � � � � � ��� � � 	 �
while ��� � � ��� 	 � � � do

� ��� 	 � � � � � � ��� 	 � � � � ��� �
for each symbol ��� � and set of states

� �
�
���
�
� � 	 , where

� %
���

� �
� � -

� �
�
� �
�
� � � 	

� � � � � 	 � � �
if
�

does not belong to the domain of �

or to workset then

� ��� 	 � � � � � � ��� 	 � � � � � � �
fi

end for

end while

end

Algorithm 1.4: Rabin-Scott Subset Construction

Based on the above algorithm, we have the following theorem about the size of the

DFA constructed from an NFA without optimization.

Theorem 3 For each regular expression, the DFA constructed using Rabin-Scott’s subset

construction method from either the NFA by Thompson construction and or the NFA by

McNaughton and Yamada’s construction has the same number of states.
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Proof Suppose there are
�

literals in the regular expression. From McNaughton

and Yamada’s construction, we know the number of states equals the number of lit-

erals and there is a natural correspondence
� �

between each state and each literal. From

Thompson’s construction, we know the number of transition states equals the number of

literals in the regular expression, and there is also a “natural” correspondence
� �

between

each transition state and each literal.

So there is a natural correspondence
� � � �

between the states in McNaughton and

Yamada’s NFA and transition states in Thompson’s NFA. Let
�

be such a mapping from

the states in the McNaughton and Yamada’s NFA to the transition states in Thompson’s

NFA.

For a Thompson’s NFA, we define a projection function � , which takes a state set and

returns the corresponding transition state set.

For any state set in a Thompson’s NFA
�

, we have

� -
� �
�
� �
�
� � � 	

� � -
� �
�
� �
�
� �

�
� � 	 	

and
� �

� � -
� �
�
� �
�
� � � 	 	

�
� �

� � -
� �
�
� �
�
� �

�
� � 	 	 	

So the states constructed in the DFA by Thompson’s NFA have a one-to-one correspon-

dence with the states constructed in the DFA using McNaughton and Yamada’s NFA. So

the number of states in the DFA is equal whether we use Thompson’s NFA or McNaughton

and Yamada’s NFA when we have � -
� �
�
� �
�
�

in the Rabin-Scott subset construction. �

From the above theorem, we know that having � -transition in an NFA will not increase

the number of states to convert an NFA to a DFA. But one disadvantage to having auxiliary

states in an NFA is that there are more states in the state vector. This situation can be

improved when we consider the projection function for each state vector.
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1.6 Literature Review and Motivation

As mentioned in the previous sections, we know there are two basic methods available to

convert a regular expression into an NFA.

Based on these two methods, improvement algorithms were reported as follows. Berry

and Sethi formally derived and improved McNaughton and Yamada’s algorithm [5] for

converting regular expressions into NFA’s in [10]. More recently, Brüggemann-Klein [20]

presents a two-pass algorithm to compute McNaughton and Yamada’s NFA using the same

resource bounds as Berry and Sethi. Chang presented an algorithm in [7] that computes

the same NFA in the same asymptotic time � ��� 	 as Berry and Sethi, but it improves the

auxiliary space to � ����	 , where
�

is the length of the regular expression and
�
is the number

of literals. In Chang’s construction, the result has � ��� � states and � � transitions in [7]. It is

a version of McNaughton and Yamada’s construction which he called CNNFA. He proved

that there are no more transitions than in Thompson’s construction without optimization,

and the CNNFA is more efficient than the Thompson’s NFA for string matching.

McNaughton and Yamada’s NFA is more efficient than Thompson’s NFA in some

special cases. For example, if each alphabet symbol appears at most once in a regular

expression, then McNaughton and Yamada’s NFA is in fact a DFA. However, in gen-

eral, as argued in [1], working with an NFA without eliminating all � -transitions is more

efficient than working with an NFA after � -reduction, although the new NFA has fewer

states, because one disadvantage of McNaughton and Yamada’s NFA is that its worst case

number of edges is 	 �
� �

(and this can be achieved by adding stars to the regular expres-

sion). If
�����

is the number of occurrences of parentheses (right or left), then Thompson’s

NFA has only between �
� � ��� � �

and � � states and between �
� � ���

and � � � � edges.

For regular expression pattern matching, by theorem 1, we know that the following

factors affect the performance of NFA simulation:

1. number of states;
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2. number of transitions for certain characters;

3. degree bound for each state and character.

It is good if we can make the number of states, the number of transitions for certain

characters, and degree bound for each state and character as small as possible at the same

time. This is the primary goal of this thesis.

1.7 Organization of the Thesis

In this thesis, we report the following results:

1. We give a parsing algorithm that for any regular expression � with
�
literals, we have

a parse tree with
�
leaf nodes,

� � �
concatenation and alternation nodes, and at most

�
star nodes.

2. We give an algorithm which takes a “smart” parse tree as input, constructs a

Thompson’s NFA and deletes all possible auxiliary states, so that no auxiliary

states can be deleted without violation the Thompson property.

3. We give another algorithm that can construct an NFA with at most � � states and � �

transitions. This improves the best known algorithm by Chang in [7].

4. We proved that the emptiness-of-complement problem for semi-extended reg-

ular expression is ������������� -complete, and posed the question whether

������������� ���������������

The remainder of this thesis will be organized as follows: Chapter 2 presents the

“smart parsing” algorithm. Chapter 3 presents an algorithm that eliminates redundant

states in a TNFA so that no states can be further deleted. Chapter 4 gives another simple

construction algorithm that improves on the best previously known algorithm in [7] by

Chang. Chapter 5 is devoted to implementation details and performance testing results.
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Chapter 6 will prove that “Emptiness-of-complement” for semi-extended regular expres-

sion is ������������� -complete. Although it is about regular expressions, this result is

not closely related with the previous chapters, so this chapter has a separate introduction

and references. Conclusions are given in Chapter 7.



Chapter 2

Smart Parsing

In this chapter, we show that from a regular expression with
�

literals, we can construct

a parse tree with
�

leaf nodes (corresponding to the
�

literals in the regular expression),
��� � �
	

alternation and concatenation nodes and at most
�

stars. The parse tree constructed

here will be used in Chapters 3 and 4.

When we talk about converting a regular expression to an NFA, we need to know the

complexity of the regular expression. There are several reasonable criteria that can be

used in characterizing for the complexity of a regular expression:

1. the written length, which includes the literals, parentheses, and operations;

2. the number of literals and operations;

3. the weight functions: � � � � 	�� � � � � � 	 , where
�

is the corresponding parse tree of the

regular expression � by “some” parsing algorithm.

As a regular expression may contain an arbitrary number of parentheses to make it

more understandable, it is useful to translate a regular expression to a parse tree.

The other motivation for using a parse tree is that it is easy to optimize. Consider the

following example. For an arbitrary regular expression, it may not be in the simplest form:

take �
�
�
� � �  � 	 � � �  � 	 � 	 � as an example, it is easy to verify that � � � � 	 � � � � �  �  �  � 	 � 	 ,

which is in a simpler form. Another example is �
�
�
� � � � � � 	 � � 	 � � 	 � , a simpler form would

be � � � � 	 � � � � �  �  �  � 	 � 	 . For parsing techniques, please refer to [2] for more details.

16
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We list the properties of regular expressions that are useful to reduce the size of the

parse tree for regular expressions.

� � � 	 � � � � (2.1)

�  � � � (2.2)

� � � � (2.3)

�
�  � 	 � � � � (2.4)

� �  � 	 � � � � �  � � 	 � (2.5)

� � � � � 	 � � � �  � 	 � (2.6)

� � � 	 	 � � � 	 (2.7)

Figure 2.1 illustrates the difference between the smart parsing algorithm and the usual

“parsing” algorithm based on rule 2.6.

* *

.

* *

a b

|

a b

Parse Tree by Usual Parsing Parse Tree by Smart Parsing

Figure 2.1: Parse Tree Comparison between Smart and Usual Parsing
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2.1 Algorithm Description

Algorithm 2.1 is the recursive version of the “usual” parsing technique for regular expres-

sions.

algorithm � ��� � � � � � � � � � � 	
Input: A regular expression conforming to our syntax, and

an deliminator for the end of the r.e

Output: Parse tree for this r.e.

Stack stk;

while
��� � � � � �
	 	

switch (
� � � � � 	 � ��� �
	 ) �

case ‘)’, END:

return � � � � � � � � � � 	 	 	 ;
case ‘(’:

� � ��� � � � 	 � � ��� � � � � � � ��� 	 ’ 	 	 ;
case ‘*’:

� � ��� � � � 	 � � � � � � � � � � � � 	 	������ ’
	 	

;

case ‘  ’:
�
� �
�
� � � � � � 	 	 ;

� �
�
� � ��� � � � � � � � � � � 	 ;

� � ��� � � � 	 � 	 	 � � � � � � � � � 	 	 ;
case LIT:

� � ��� � � � 	 � 	 	 � � � � � �
	 	 ;
default:

/
� �
� � ��� ������� � /

end(Switch)

end(While)

end

Algorithm 2.1: “Usual” Parsing Algorithm

The helper functions used in parsing are described as follows:

� � � � � � � 	 	 : Return the top of Stack
� � 	

;

� � � � � � � � ����� ’
	
: Make a node labeled with ‘

�
’ with child �

�
;
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� � � ��� � � � 	 � � � 	 : Push �
�

to Stack
� � 	

;

� � � � � � � 	 	 : Concatenate all the regular expressions on Stack
� � 	

.

From a regular expression, we have four kinds of nodes in the parse tree: leaf (literal)

nodes which correspond to characters in the regular expression, stars, alternations and

concatenations which correspond to the three operators allowed in the regular expression.

We call a node (corresponding to a sub-expression) 
 of a parse tree nullable if it is

1. a star node in the parse tree,

2. an alternation of a node with an empty string,

3. a concatenation of which both children are nullable or

4. It is an alternation of which at least one of the children is nullable.

A regular expression is nullable, if the root of its parse tree is nullable. It is easy to see

that 
 is nullable iff � ��� � 
 	 . We call a node non-nullable if it is not nullable. We use

the following data structure to represent a node in the parse tree:

Data Structure Node �
Op : can be a Star, Lit, Alternation, Concatenation

union �
Lchild, Rchild : when Op is Alternation or Concatenation

Child : when Op is Star

lit : when Op is Lit

�
�
For the rest of this thesis, we are assuming that no � occurs in a regular expression. To

handle this in a real world program, one could add a flag for each node in the parse tree,

say � 
 � � � � � 
 � � � , to specify whether this node contains an � or not. Whenever we make

an alternation between a node � and � , we check to see if � � � � � 	 ; if yes, do nothing, if

no, we set � 
 � � � � � 
 � � � to
�
.
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Whenever a star node is created, the following procedure
��� ��� � � �

� � � �
	

will be

invoked. The argument root identifies the node over which the star will be created.

algorithm
��� ��� � � �

� � � �
	

Input: A Parse Tree

Output: A Parse Tree without Star over nullable node

if not
��� � � � � � � � � � � � 	 then

return

else if � � � � � � � � ‘*’ then

� � � � � � � � � � � �


� �

return

else if � � � � � � � � ‘.’ then

� � � � � � � � ‘  ’
��� ��� � � �

� � � � � � ��� 
 � � 	
��� ��� � � �

� � � � � 
 ��� 
 � � 	
return

else if � � � � � � � � �  ’ then
��� ��� � � �

� � � � � � ��� 
 � � 	
��� ��� � � �

� � � � � 
 ��� 
 � � 	
return

fi

end

Algorithm 2.2:
��� ��� � �

Procedure

For the construction of a star node, we use the following procedure:

algorithm 	
	 � � ��� � ��� 
 � � 	

Input: A Parse Tree

Output: A Parse Tree rooted with ‘*’ whose child is the input

if
��� � � � � � � � ��� 
 � � 	 then
��� ��� � � � ���



� � 	

fi

� � � � �
� � � �

�
��� � ���

’
	

� � � � � � �


� �
�
���


� �

end

Algorithm 2.3: Improved Star Operation
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For the construction of other types of nodes, we use the same procedure described in

[2].

Because the algorithm described above behaves smarter than the “usual” parsing algo-

rithm, we call it the “smart parsing” algorithm.

2.2 Analysis of the Smart Parsing Algorithm

In this section, we first give a proof for the correctness of the algorithm presented above;

then we give the analysis for the node-number complexity and time and space complexity

of the smart parsing algorithm.

2.2.1 Correctness of the Algorithm

Theorem 4 Smart parsing produces a parse tree which is equivalent to the one produced

by the usual parsing algorithm. Moreover, the new parse tree contains no star nodes with

a nullable child.

Proof To see that the first assertion is correct, we show � � � � � , where � �
��� ��� � � �

�
	
.

We have the following cases:

1. If � is not nullable, then � � � and � � � � � ;
2. If � � ���

� � ��� , then � � ��� and � � � � � ;
3. If � � ��� � , then � � ��� ��� � � �

�
	
� ��� (as we do not have star whose child is nullable),

� � � � � ;
4. If � � �

�
�
�
, where �

�
and �

�
are nullable, � � �

�
�
�
�
� 	
� �

�
�
�  � � 	 � � � � �  � � 	 � ;

5. If � � �
�  � � , where at least one of �

�
or �

�
is nullable, then we can apply a

��� ��� � �

procedure to �
�

and �
�
;
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The second assertion of the theorem is true because the result of
��� ��� � � �

�
	

is always

non-nullable by induction.

This completes the proof. �

2.2.2 Parsing Tree Node Complexity

We have the following theorem that bounds the number of nodes in the parse tree.

Theorem 5 For a regular expression with
�

literals, we can construct a parse tree

with internal nodes labeled with concatenation, alternation and star, and each leaf node

labeled with a literal. There are exactly
�
leaf nodes,

� � �
alternations and concatenations

and at most
�

stars.

Proof Let us analyze the generation of the parse tree of a regular expression. There

are three kinds of nodes in a parse tree:

1. Leaf nodes;

2. Internal nodes with out-degree
�

(star);

3. Internal nodes with out-degree � (concatenation and alternation).

In the construction, each leaf node corresponds to one alphabet character (or it will be

merged with other nodes). So there are exactly
�

leaves.

By a standard property of trees, we know

� ��� � � � ����	 � � ��� ������� ����	��

so the number of leaves is
�

more than the binary nodes (alternation and concatenation).

Because we have at most
�

leaf nodes,

�
�
	 � � � � � � � � � 
 � � 	 � 	 � � � � � � � � � � � 
 � � 	 � �
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The key new property of our parse tree is that Each star does not have a

nullable child. By using this property, we can show that a tree with
�

leaves having
�

stars must be nullable.

The base case obviously holds, for a regular expression with
�

literal � , we know it

has at most
�

star, in the form � � .
Induction step: Suppose for any regular expression with

�
literals, if it has

�
stars, it

must be nullable.

For any regular expression with
� � �

literals, if the root is a star, we know the child

of the root can not be a star as we do not have a star over a nullable node. If the child

is marked with alternation, the two subtrees have
� �

and
� �

literals respectively; we know

that neither � � nor � � can have
� �

or
� �

stars, or the new node is nullable. Similarly, we

have the same

So, we have an equivalent parse tree having at most
��� � �

nodes. �

Based on the above theorem, when we write down a regular expression from a parse

tree, we need to add at most
��� ���
	

pairs of parenthesis to make the regular expression

unambiguous, and we have the following lemma about the property of a regular expres-

sion:

Lemma 1 For each regular expression with
�

literals, there is an equivalent one with

length � � .

This is a better result than the
� � ��� � �
	 � � result in Chang’s thesis [7].

2.2.3 Time and Space Analysis

The following theorem bounds the time needed for this algorithm:

Theorem 6 The construction of the parse tree can be done in linear time w.r.t the size of

the regular expression.
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Proof During the construction, each node will be marked as nullable or non-nullable,

but once a node is marked as non-nullable, it will not be visited anymore (except one test

when it is a root and we try to put it as a child for a star) during
��� ��� � �

from the algorithm.

So the time for
��� ��� � �

is bounded by the number of nodes generated from the regular

expression, which is bounded by the length of the regular expression.

And the time needed for other operations is to scan the regular expression from left

to right and construct the parse tree using procedure � � ��	 
 � � � � , 	
	 � � � , 	 	 � � � and

	
	 � � ��� , so the overall time for the construction is linear w.r.t the size of the regular

expression.

�

For space complexity, Chang gave an algorithm in [7] based on operator grammar [2]

and showed the extra space needed is bounded by the
�
, which is the number of literals in

the regular expression.

2.3 Parsing Regular Expressions with More Operators

We know that the alternation, concatenation, and star are powerful enough to denote any

regular language. But sometimes, it is useful to have more operators like option operator

� , which is postfix and denotes that a regular expression occurs zero or one time; and plus

operator
�

which is also postfix and denotes a regular expression occurs one (at least one)

or more times.

To include these features in, we only need to add the following

��� � � � � � � � � � 	 � � � � �
��� � � � � � � � � ��	 � ��� � � � � � � � � 	
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2.4 More Optimizing Techniques and Further Research

For an
�
-literal regular expression, we know there are

�
Kleene stars in the worst case (take

� � � � � � ����� as an example), so our upper bound is in fact a lower bound. When we apply

another equivalent formula 2.5, we can get an even more compact parse tree.

Based on the parsing algorithm given above, we pose the following question: Can we

get a reduced regular expression with some parameter in polynomial time? To formalize

this problem, for each regular expression, we have a weight function � � � � 	 , the regular

expression � � with the minimum weight that is equivalent with � , the goal is to find ��� in

polynomial time such that � � � 	 � � � ��� 	 � � � ��� 	 and � � � ��� 	 � � � � � ��� 	 , What we hope

is that � is a constant.



Chapter 3

Minimized TNFA

In this chapter, we give a construction for minimized NFA with Thompson’s property

(TNFA for short). To our knowledge, this is the first algorithm that can minimize a TNFA

in polynomial time, and in fact, all the time needed for this algorithm is linear w.r.t the

length of the regular expression.

3.1 Algorithm

Algorithm 3.1 constructs an TNFA from the parse tree obtained by smart parsing in

Chapter 2.

The � � ��	 
 � � � � , 	 	 � � � , 	 	 � � � and 	
	 � � ��� works as illustrated in Figure 1.1.

Recall in Chapter 1, we classified the states of the TNFA into two classes: a state is

auxiliary if it has only � -transitions from other states; otherwise, we call it a transition

state. Auxiliary states are the candidates for deletion in this thesis. When we delete an

auxiliary state, we merge all of its out-transitions to those states having � -transitions.

We call a state or a state set deletable if it can be deleted without violating the defining

property of TNFA.

From [13], we know NFA (without � -transition) minimization in general is ���������� -

hard. But we will show that we can get a minimized TNFA such that no auxiliary state

can be deleted without violation of the defining property of TNFA. And the construction

26
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algorithm
� � � � � � ��	 � �

� � �
� � � �

	
Input: a parse tree � � � � by smart parsing

Output: an NFA with Thompson’s property

switch
���
�
� �
� � � �

	
case LIT:

return � � ��	 
 � � � � � � � � � 	
case

�  ’:�
�
� � � � � � ��	 � �

� � � � ��� 
 � � � � � � � 	 	
� � �

� � � � � ��	 � �
� � � 
 ��� 
 � � � � � � � 	 	

return 	
	 � � � ��� � � 	

case
� � ’:�

�
� � � � � � ��	 � �

� � � � ��� 
 � � � � � � � 	 	
� � �

� � � � � ��	 � �
� � � 
 ��� 
 � � � � � � � 	 	

return 	
	 � � � ��� � � 	

case
���

’:�
�
� � � � � � ��	 � �

� � � � �


� � �
� � � �

	 	
return 	

	 � � ��� ����	
end

end

Algorithm 3.1: Thompson’s Construction from a Parse Tree

has the following properties:

� The size of the TNFA is linear w.r.t the number of literals in the regular expres-

sion by smart parsing algorithm;

� The construction runs in linear time w.r.t the size of the regular expression;

� The number of states is minimized in a sense that no auxiliary state can be

deleted without violating the defining property of TNFA.

To proceed, let’s analyze how transition states and auxiliary states get generated. From

Figure 1.1, we know there are at most
�

transition states in TNFA for a regular expression

with
�

literals, which are the final states when we generate the TNFA for a character. The

auxiliary states are generated due to the adding of the starting states and final states. When
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a new start state is added, start states of sub-TNFAs become auxiliary; when a new final

state is added, it is auxiliary.

When we try to delete some auxiliary states, we need to make sure the resulting NFA

will not violate the property of TNFA. Intuitively, we need to examine all subsets of the

auxiliary states, which will make the overall run time exponential. In the following, we

will show that the sequence of examining the auxiliary states can be localized. This may

be regarded as the most significant contribution in this chapter.

We call a set of auxiliary states deletable if the deletion of these auxiliary states results

in a TNFA. And we call it undeletable if it is not deletable. We may have some undeletable

states in a deletable set, as when we talk about the set, we only care about the resulted

NFA is a TNFA. But we do not have to guarantee that it is a TNFA after deletion of a

single auxiliary state.

For ease of analysis, we use the following notation. For any two auxiliary states �
� � ,

we define

��� � iff there is an � -transition from � to �
and

��� � � iff there is an � -transition path that only touches auxiliary states from � to �

We define a relation
�
� � �

� �
�
� � � � 	 over auxiliary states if there exists another state �

such that ��� � and ���
�
. And we use

� � � 	 to denote � ’s brother if its brother exists

and
� � � 	 to denote those states � such that ��� � .

Property 1: There is no auxiliary state cycle in the TNFA constructed by
� � � � � � ��	 � �

� �
.

Referring to Figure 1, the first time an � -cycle can appear in the TNFA is during the

star construction. However, even then, an � -cycle is created only if the child node already

contains an � -path running from the start to the final. However, since we always assume

that the child of a star is not nullable, this will not happen.
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1

2
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Alternation

Star

Figure 3.1: Illustration of Brother Relation

From this property, we know � is a partial order, and by topological sorting described

below, we can get the sequence of the auxiliary states that we can examine to see if we

can further remove auxiliary states from the TNFA.

1. For each auxiliary state � , put it to queue if there is no � such that � � � ;
2. Remove one element � from the queue, and for those states � that have � -transition

in to � , delete � from � � s auxiliary-state-transition-in list, put � in the queue if � is

the only one in the list before deletion;

3. Repeat step (2) until the queue is empty.

Property 2: For any ��� � , there is no auxiliary state
�

s.t
�
� � and

�
� � .

Proof The auxiliary states that contain two out � -transitions in the TNFA constructed

are:

i. the start state of an alternation,

ii. the start state of a star,

iii. the final state of an NFA to which the last star operation is applied.
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For each state with two � -transitions, the two auxiliary states are either in two sub-

NFAs that do not have any transition in between (the first case) or are separated by one or

more transition states (the second and third cases). �

Using the above two properties of the TNFA, we have the following lemma:

Lemma 2 Suppose
�

is a deletable set. Then there exists a state � such that we can

either delete � first, and then delete
� � ��� � , or delete ��� � � � � 	 � first, and then delete

� � ��� � � � � 	 � .

Proof The contrapositive of the above theorem is: if we can neither delete � first,

and then delete
� � ��� � , nor delete ��� � � � � 	 � first, and then delete

� � ��� � � � � 	 � , then
�

is not a deletable set.

If we can neither delete � nor delete ��� � � � � 	 � , there must be a state � � � � � 	 that

have more transitions to violate the degree bound property of TNFA. From Property 2, we

know �
%
�
� � � 	 .

If � � �
, when delete

�
, all � ’s out-transitions will be merged to its ancestor’s, and

cause some states have more transitions to violate the degree bound of TNFA. This makes
�

not deletable.

If �
%� �

, we know delete � or ��� � � � � 	 � will have no effect on the deletability on the

other states, making
�

undeletable. �

Property 3: Each auxiliary state has at most one brother state. This follows from the

same proof as for property 2.

We need to take a look at a state’s brother. But from Property 3, we know for each

state, there is at most
�

brother, and we have Algorithm 3.2 based on the above topological

sorting to reduce � -transitions. In the following pseudo-code, for an auxiliary state � , we

use 

� 
 � � � � � � 	 to represent “All of � ’s children are either transition states or visited”.



31

algorithm Reduce

Input: a TNFA

Output: a TNFA without deletable auxiliary state set

for each auxiliary state �

mark � as unvisited

put it to queue if there is no auxiliary

state � such that ��� � and mark

� as ready

repeat the following until the queue is empty:

take one state � out of the queue

case � marked as deleted

break

case � is deletable

mark it as deleted

merge its transitions to
� �
�
	
’s transitions

add its
� �
�
	

to queue if 

� 
 � � � � ��� � � 	 	

mark
� �
�
	

as ready

break

case � is not deletable and
� �
�
	

is ready

if � � � � � � 	 � is deletable

mark � and
� �
�
	

as deleted

merge their transitions to
� �
�
	
’s transition

else

mark � as undeletable

fi

add its
� �
�
	

to queue if 

� 
 � � � � ��� � � 	 	

mark
� �
�
	

as ready

break

case � is not deletable and
� �
�
	

is not ready

break

end(repeat)

end

Algorithm 3.2: Procedure to Reduce � -transitions



32

We have the following theorem about the property of the Algorithm 3.2:

Theorem 7 The TNFA produced by procedure 
 � � � � � does not have a non-empty

deletable auxiliary state subset.

Before proving the theorem, we need the following lemma:

Lemma 3 For any two auxiliary states � and � , if � � � � and � is not deletable, then

� � � � � is not deletable.

Proof Suppose � � � � � is deletable. Then for any state
� � � � � 	 ��� � � 	 � � � � will not

violate the Thompson’s property (there are no more than two transitions with the same

label), but there exists an auxiliary state � � � � � 	 .
If � � � , then � can not have any

�
-violations for each

� � � � � ��� , or these violations

will be propagated to those states in
� �
�
	
. This will make � � � � � not deletable.

If �
%
� � , from property 2, there is no � -transition from � to � , so the deletion of � will

not affect the transitions of � , and � � � � � is not deletable. �

Now, we are ready to give the proof for the theorem:

Proof Based on the description, we know there is no state � such that � � � is

deletable, as we have examined each auxiliary state one at a time.

Suppose there is a state set � � ����� � � ����� ��� � � that is deletable. Because there is no aux-

iliary state cycle, we can partition this deletable set into paths. And each state set in a

path can not make the other states in other paths deletable. So we only need to consider

an auxiliary state set � � � � ��� � � � ����� ��� � � � � , such that
�
� � � � �

� �
� ����� ��� � � ��� � � � �

� � � , using lemma 3
	 � �

times, we know � � � � ��� � � � ����� ��� � � � � is not deletable.

So the non-empty deletable set does not exist. �

After giving the description of the work done on each auxiliary state, we finish this

section.



33

For each auxiliary state, we must decide if this state can be deleted. To make this

decision, we check to see if merging the state’s out-transition with its ancestors’ transitions

causes one of the ancestors to violate the Thompson’s property. In a similar way, we can

check to see if a state pair � � � � � � 	 � is deletable.

The following is a summary of our algorithm:

1. Construct a parse tree from the regular expression by our smart parsing algorithm

presented above;

2. Construct a TNFA (without auxiliary state cycle) from the parse tree;

3. While topologically sorting the auxiliary states, examine each auxiliary state to see

if it can be deleted; if yes, delete it and merge its transitions with its ancestors’.

3.2 Time and Space Analysis of the Algorithm

In this section, we give the analysis of the time needed for this algorithm.

From the above algorithm, the time needed is to traverse the parse tree constructed by

our smart parsing algorithm presented in previous chapter. For each node in the parse tree,

we need constant time to do � � ��	 
 � � � � , 	 	 � � ��� , 	 	 � � � and 	
	 � � � , so the overall

time needed to construct an NFA without auxiliary state cycle is linear w.r.t the size of the

parse tree.

From Thompson’s construction, we know there are at most
� �

states and
� � � transitions

in the worst case.

Theorem 8 The overall time for the deletion of the auxiliary states is bounded by the

number of the states in the TNFA.

Proof Notice the number of � -transitions is bounded by the number of the nodes in

the parse tree, and the overall number of states in the list will never increase. Once the state
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got deleted, we do not have to keep the list and its deletion doesn’t affect other auxiliary

states’ list. So the overall time needed is � � 	 of � -transitions
� 	 of auxiliary states

	
�

� ����	 . �

The extra space needed during the construction is the parse tree and the lists for each

auxiliary state that keeps which states have � -transition in. Because the bound of the

number of � -transitions, this is also in � ����	 .



Chapter 4

Simple NNFA Construction

In this chapter, we show: For a parse tree with
�

leaf nodes, we can construct an NFA

with � � states and � � transitions in the worst case. Combined with the parsing algorithm

presented in Chapter 2, for a regular expression with
�

literals, we can construct an NFA

with � � states and � � transitions in the worst case. And our algorithm runs in linear time

w.r.t the length of the regular expression. This improves the construction algorithm given

by Chang in [7], which constructs an NFA with � ��� � states and
� � � � � � 	 � � transitions in

the worst case. The method we present is much simpler and easier to implement, as we

use only naive ideas: divide and conquer.

4.1 Construction Algorithm

Just like all the divide and conquer algorithms, our algorithm consists of two stages: First,

the construction method for regular expressions that are small; second, combining the

NFAs constructed from sub-expressions.

For
�
-literal and � -literal regular expressions, we construct NFAs as illustrated in

Figure 4.1.

Following the convention in previous chapters, we use unlabeled edge to denote an

� -transition in a diagram for an NFA. Recall that an NNFA is an NFA in which there is no

transition to the start state and there is no transition from the final state. With this property,

we know the NNFA is suitable for recursive construction. And this is coincident with the

recursive property of regular expressions.

35
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Figure 4.1: Construction of NFA from 1,2-literal regular expression
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From Chapter 3, we know there are auxiliary states and redundant transitions that can

be removed from the NFA. So when we combine two sub-NFAs together, we may need to

delete some states and transitions as described in Chapter 3. This will make the algorithm

complicated. To handle this, we propose the following lazy schema for the construction.

As the candidate states for deletion must be either the start or the final state of an

NNFA, we use special labels: “
�

” and “ � ” for the start and final state of the NNFA. One

advantage of this is when we make an alternation, we still have a single start state and

final state, so these two special states are not labeled the same as other states until they

become inner states which, a condition makes them not special anymore.

The combining procedure is very similar with naive Thompson’s construction, but it

does special construction for alternation and concatenation illustrated by Figure 4.2, 4.3,

4.4.

4.2 Analysis

For an NNFA
�

, we ��� to denote the number of states and � � to denote the number of

transitions. We define � ��� � ���	� 	 to be
�

if and only if there is only one transition to the

final state of
� �

and all the transitions from the start state of
� �

is labelled with � , or there

is only one transition from the start state of
� �

and all the transitions from the final state

of
� �

is labelled with � .

Going through the NNFAs in Figure 4.1, it is easy to verify:

Alternation

merge the start state and the final state

Figure 4.2: Illustration of Alternation
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Fact 1 For each regular expression � with
�

literal, there is an NNFA
�

s.t � � ��� , � � � �

if � is not nullable, and ��� � � , � � � � if it is.

Fact 2 For each regular expression � with � literals, there is an NNFA
�

s.t � � � �
,

� � � � if � is not nullable, and ��� � � , � � � �
if it is.

Based on the construction algorithm, we have the following recursive relation:

� � � ��� ��� � � � � ��� � � � � ��� � ���	� 	 (4.1)

� � ��� ��� � � � � � � ��� � � (4.2)

� ��� � � � � � � � (4.3)

� � � ��� � � � � � � ��� (4.4)

� � ��� ��� � � � � � � ��� (4.5)

� ��� � � � � � � � (4.6)

And we know for any regular expression � and any character
�
, we have � � � � � � 	 � �

and � � � � � � 	 � � .
The main theorem in this chapter is:

After Concatenation

Figure 4.3: Illustration of Concatenation
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c
Concatenation
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c

a single in-transition

Final State has

deleted
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Figure 4.4: Illustration of Concatenation when � ���������	� 	
�
�

Theorem 9 For each regular expression with
� 
��

literals, the resulting NNFA from the

above construction has

1. � � � � states and � � � �
transitions if it is not nullable;

2. � � � � states and � � � � transitions if it is nullable but the root is not a star;

3. � � states and � � � � transitions if the root is a star.

Proof Based on Smart Parsing presented in Chapter 2, we know that we never have

a star over a star. Thus, the first assertion implies the third assertion based on the star in

Thompson’s construction as illustrated in Figure 1.1.

So we need to consider only the regular expression whose parse tree is labeled with

alternation or concatenation at the root. We prove this by structure induction. For each

regular expression whose parse tree having
� �

literals in its left child and
� �

literals in its

right child, we have the following cases:

1.
��� � � �

�
�
, which is handled in Case 1;

2.
���
�
� �
��� , which is handled in Case 2;

3. one of
� �

and
� �

is
�

and the other is

 �

, which is handled in Case 3;

4. one of
� �

and
� �

is � and the other is

 �

, which is handled in Case 4;
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5.
����� � � 
 �

, which is handled in Case 5.

For each case, based on the label of the root and whether it is nullable, we have the

following � sub-cases:

i. The root is labeled with alternation and is nullable;

ii. The root is labeled with alternation and is non-nullable;

iii. The root is labeled with concatenation and is nullable;

iv. The root is labeled with concatenation and non-nullable.

We give a detailed proof for Case 1 and 5, and we leave the details for the other cases

to readers.

Case 1
���
�
�

and
� �
� � or

���
� � and

� �
�
�

Because alternation is symmetric, if the root of the parse tree is alternation and
�

is

non-nullable, then both
� �

and
�	�

are non-nullable. So � � ��� ��� � � � � � � � �
and

� � ��� ��� � � � � � � .
If

�
is nullable, the worst case is that both

���
and

�	�
are nullable; it is easy to verify

that � � ��� ��� � � � � � � � � and � � ��� ��� � � � �
��� .

To represent the above proof, list the bounds of the number of states and transitions as

follows:

� � ��� ��� �
���� ���
��� � � � � non-nullable

� � ��� � � � nullable

� � ��� ��� �
���� ���

� � � � � �
non-nullable

� � � � � � � nullable
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Similarly, we have the following argument for the concatenation case: If the root of

the parse tree is concatenation and
�

is non-nullable, then at least either
� �

or
�	�

is non-

nullable. So ��� � ��� � ����� ��� � � � � � � � � � � � � � �
	 � � and � � � ��� � ����� � � � � � � � � 	
�

� � � � � � .

If the root of the parse tree is concatenation and
�

is nullable, then both of
� �

and
�	�

are non-nullable. So ��� � ��� � � � � � � � � � � and � � � ��� � � � �
��� � � � � � .

� � � ��� �
���� ��� � � ��� �

� � non-nullable

� � ��� � � � nullable

� � � ��� �
���� ���
� � � � � � non-nullable

� � � � � � � nullable

Case 2
���
�
� �
� �

In this case � � ��� � � � � � , and we have:

� � ��� ��� �
���� ��� � �

� � � � � non-nullable

� � � � � � � nullable

� � ��� ��� �
���� ��� � �

� � � � �
non-nullable

� � � � � � � � nullable

� � � ��� �
���� ��� �

�
��� � � � non-nullable

� �
��� � � � nullable

� � � ��� �
���� ��� � �

� � � � �
non-nullable

� � � � � � � � nullable

Case 3
���
�
�

and
� � 
 �
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In this case � � ��� � � � � � �� � , and we have:

� � ��� ��� �
���� ��� � �

� � � � � � � � � non-nullable

� ���
	 � � � � � � � � � � � � � � � � � �
	 � � � � � nullable

� � ��� ��� �
���� ��� � �

� � � � � � � � � � �
non-nullable

� ���
	 � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � nullable

� � � ��� �
���� ��� � ���
	

� � � � � � � � � � � � � � � � � � � �
	 � � � � � non-nullable

� � � �� � � � � � � nullable

� � � ��� �
���� ��� � ���
	

� � � � � � � � � � � � � � � � � � � � � � 	 � � � � �
non-nullable

� � � � � � � � � � � � � nullable

Case 4
���
� � and

� � 
 �

In this case, � � � � � � � � � �� � , and we have:

� � ��� ��� �
���� ��� � �

� � � � � � � � � � � non-nullable

� � � �� � � � � � � nullable

� � ��� ��� �
���� ��� � �

� � � � � � � � � � �
non-nullable

� � � � � � � � � � � � � nullable

� � � ��� �
���� ��� � ���
	

� � � � � ��� � � � � � � � � � � �
	 � � � � � non-nullable

� � � �� � � � ��� � � � nullable

� � � ��� �
���� ��� � �

� � � � � � � � �
non-nullable

� � � � � � � � � � � � � nullable

Case 5
��� � � � 
 �
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Based on the recursive relation, it is easy to verify that the following is true.

� � ��� ��� �
���� ��� � �

����� � � � 	�� � � � � � � non-nullable

� � ����� � � � 	�� � � � � � � nullable

� � ��� ��� �
���� ��� � �

����� � � � 	�� � � � � � � �
non-nullable

� � ����� � � � 	�� � � � � � � nullable

� � � ��� �
���� ��� � �

����� � � � 	�� ��� � � � � non-nullable

� � ����� � � � 	�� � ��� � � � nullable

� � � ��� �
���� ��� � �

����� � � � 	�� � � � � � � �
non-nullable

� � ����� � � � 	�� � � � � � � nullable

This completes the proof. �

4.3 Time and Space Analysis

The following two theorems will bound the time needed for this algorithm:

Theorem 10 The construction of the parse tree can be done in linear time w.r.t the size of

the regular expression.

Proof During the construction, each node will be marked as nullable or non-nullable,

but once a node is marked as non-nullable, it will not be visited anymore (except one test

when it is a root and we try to put it as a child for a star).

And the time needed for other operations is to scan the regular expression from left to

right, so the overall time for the construction is linear w.r.t the size of the regular expres-

sion. �

Theorem 11 The overall time for the NFA construction from a parse tree is bounded by

the number of nodes in the parse tree.
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Proof At each step, we need to do one or more of the following:

1. Add new states;

2. Add new transitions;

3. Change � -transitions to character-transitions.

The time spent on changing the � -transitions to character-transitions is bounded by the

number of � -transitions ever created in the NFA. Because once an � -transition is changed

to a character-transition, it can not be changed anymore. So the overall time needed is

at most double the time for creating new transitions plus the time on creating new states.

From the theorem stating that the number of states is bounded by � � and the number of

transitions is bounded by � � , we know the number of states and transitions is bounded

linearly by the number of literals in the regular expression. �

4.4 More Optimization Techniques

In this section, we will give techniques that can be used to further the optimization of the

construction.

The first method we will introduce is a contraction method that is based on a simple

idea. Whenever we need to add � -transitions from a state set to another state set, we will

add a new state if and only if the following function evaluates to be true: 
 � � ��� � � 	 if
� �
�
� 	 � � � � 	 �	� �

�
� 	 � � � � � 	 , where

� �
�
	

specifies the number of final states in the NFA

for � and � � � 	 specifies the number of start states in the NFA for � . Using this technique,

we never have fewer transitions when we have more states.

The second optimizing technique is: instead of pre-computing the optimal NFA for

regular expression up to
�

literals, we can pre-compute the optimal NFA for regular

expression with up to
�
, say � literals.
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4.5 Conclusion

We presented a very simple algorithm to construct NNFA with fewer states and transitions

which improves Chang’s work in [7]. No elaborate data structures are required in this

algorithm, and it is very easy to implement.



Chapter 5

Implementation and Experimental Results

We implemented both construction algorithms as part of a Unix text search tool: xgrep,

which does extended regular expression pattern matching. In this chapter, we first show

the heuristics used in our implementation and discuss the representation of an NFA, which

affects the performance. Then we show the comparison between Simple NFA presented

in Chapter 4 (SNFA for short), minimized Thompson’s NFA (mTNFA for short), original

Thompson’s NFA (TNFA), and McNaughton and Yamada’s NFA (MYNFA for short) with

regard to the number of states, the number of transitions, NFA simulation time, and the

time needed for pattern matching using “lazy construction.”

5.1 Some Heuristics Used in Implementation

The first heuristic we took is treating unions over characters as a literal. Take
� �  �  �  � 	

as an example, we need only one node to represent it. Thompson’s original construction

will divide it into � ,
�
,
�
,
�
, and then combine the NFAs by adding more states, but this

can be done by using two states
� � � �
	 and four transitions

� � � � � �
	��
� � � � � �
	��
� � � � � �
	�� and
� � � � � �
	 .

The second heuristic we took is trying to reduce the number of stars by smart parsing

algorithm presented in Chapter 2.

The third heuristic we took is treating NEWLINE and EOF the same as ordinary

symbol: transitions for NEWLINE and EOF in each state are constructed. This saves

the work needed to determine whether the current symbol is NEWLINE or EOF.
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5.2 Representation of an NFA

Each NFA consists of a set of states and transitions. Because each reachable state must

appear among the transitions at least once, we can represent an NFA by a list of transitions,

the start state, and the final state. Based on how the triple
� � � � � � 	

is stored, we have the

following three representations:

1. State-Indexed Representation: Those transitions that have the same starting state are

stored in the same list. The advantage of this approach is that if there are not many

transitions from a state, the storage needed is small, and it is efficient for pattern

matching.

2. Alphabet-Indexed Representation: For each ��� � � � ��� , we have a list of transitions

whose label is � . The advantage of this representation is that it is efficient for storage

and simulation if most of the characters in the regular expression are unique.

3. State-and-Alphabet-Indexed Representation: This is a multiple-indexed representa-

tion. It is indexed by state first, and then indexed by alphabet. The advantage of this

representation is that there may be a lot of empty entries for each state and symbol.

5.3 NFA Profile Comparison

In this section, we compare each construction with regard to the number of states and the

number of transitions.

Table 5.1: Number of States Comparison

RegEx MYNFA TNFA mTNFA SNFA��������� ����� � � 	 � � � � � � � � ��� � � � �
�����  ���  ����� � � 		� 	

� �
	
� � � � � 	 	

� �
	
� �� �����  � 	 �����  � 	 ����� ��� �  � 	 	 � � � � � � � � ��� � � � �

���  
 	 � � ���  
 	 � � � � � � � � � � � � � � � �
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Table 5.2: Number of Transitions Comparison

RegEx MYNFA TNFA mTNFA SNFA����� ��� ����� � � 	 � � � � � � � � � � � ������  ���  ����� � � 		� �
	

� � � � �
	 	 � � �
	
� �
	 � � � �

	� �����  � 	 �����  � 	 ����� ��� �  � 	 		� �
	

� � � � �
	
	
� � � � � � � 	���  
 	 � � ���  
 	 � � � � � � � � � � � � � � � � � �

5.4 NFA Simulation for Pattern Matching

Comparisons of NFA simulation time between SNFA, mTNFA, TNFA and, and MYNFA

are listed in Tables 5.3 and 5.4, where 
 �
� script LANGUAGE="JavaScript"

TYPE="text/javascript",


 � � (s*c*r*i*p*t*)* LANGUAGE = "JavaScript" T*Y*P*E*=*"

t*e*x*t/*j*a*v*a*s*c*r*i*p*t*". We use “mm:ss” to represent the time for

each simulation. For example, for SNFA simulation on 
 �
, it takes

�
minute and

� � � �

seconds, which is represented as “1:16.7”. The computer we used is a Sun Sparc 5, and

the text file used for testing is a
� � � � text file.

Table 5.3: NFA Simulation Time Comparison 1

RegEx SNFA m TNFA TNFA MYNFA
LANG 19.1 24.5 30.0 18.7

LANGUAGE 25.0 30.2 40.4 24.7
JavaScript 26.5 33.2 46.1 25.4

LAN*G 21.1 23.7 32.7 19.9
(LANG)*LANG 44.9 29.7 1:02.6 42.9


 �
1:16.7 1:31.4 2:46.5 1:14.7

5.5 Pattern Matching Tools

Using a DFA for pattern matching is more efficient than using an NFA, but constructing a

DFA is time consuming and can take as much as exponential time in the size of the NFA
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Table 5.4: NFA Simulation Time Comparison 2

RegEx SNFA mTNFA TNFA MYNFA
LL*AA*NN*GG* 28.2 31.8 53.3 24.47

LL*AA*NN*GG*UU*AA*GG*EE* 41.6 44.2 1:27.2 37.2
(JJ*aa*vv*aa*)*JavaScript 49.9 45.1 1:42.8 48.8
(LANG)*(LL*AA*N*G*)*UAGE 56.5 37.5 1:49.8 2:53.4


 � 2:00.2 1:34.9 5:29.0 30:23.4

we are working from. In [1], Aho reported a highly efficient heuristic: “lazy construction.”

When we need to do regular expression matching, we construct an NFA, but we do not

construct the DFA explicitly; instead, we construct it as needed: a transition is not stored

in the transition table until it is used once. Based on this idea, we have implemented the

TNFA construction as part of a text search tool xgrep. It is our understanding that “lazy

construction” was also used in grep and egrep. From our experiment, the tool runs

a little faster than egrep, grep for general regular expression pattern. We think the

following makes the difference:

1. Our NFA construction is a good choice to work from for DFA construction;

2. Lazy construction is good;

3. The heuristics used in our implementation are good;

4. grep and egrep are more general and can handle more.

We can not say that this is the result of smart construction of the TNFA, as the lazy

construction feature will make the program run like a DFA. But for NFA simulation, it

is much faster than the original TNFA, and memory consumption is reduced to half. For

large and complicated patterns which can not be handled by agrep [9], we think this is

a good tool for regular expression matching.
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For the experiments, we ran grep tools over P1 to P14 against testing files
� � ���

to
� � � � �

respectively, where
� � ���

is a file of size
� � � K, and for each file

� � 

� ���

,
�

 �
� � � � 
 � ��� 	 �

� � 
 � � � � � 
 � 	 . The computer we used is a Sun Sparc 5, and the time unit is a millisecond.

The patterns we used are listed in Table 5.5.

Table 5.5: RegEx Patterns

P1 GEOR
P2 GEORGIA
P3 GEORGIA S
P4 (GEORGIA)  (FLORIDA)
P5 (GEORGIA S)  (FLORIDA S)
P6 (G  F)(E  L)(O)(R)(G  I)(A  D) S
P7 ((GE)  (FL))((OR))((GI)  (ID))((A )  (A ))
P8 (GEOR*GIA)  (FLOR*IDA)
P9 (GE*ORGI*A)  (F*LORID*A)

P10 (G*EO*RGI*A)  (F*LO*RID*A)
P11 ((GE*)  (FL))((OR*))((GI*)  (ID))((A *)  (A ))S
P12 ((GE)*  (FL)*)((OR))((GI)  (ID))((A )*  (A ))*S
P13 GEORGIA IS A GREAT STATE, so is florida
P14 GEORGIA IS A GREAT STATE, *s*o* *i*s* *f*l*o*r*i*d*a*

Tables 5.6, 5.7, 5.8 list the run times of xgrep, grep, and egrep over different

patterns and files respectively.

To see the differences between these tools more clearly, we show the run time com-

parison between xgrep, grep, and egrep running P1, P7, and P14 over the files of

different sizes.

There is another text searching tool named agrep developed by Wu in [9], which

favors searching for small strings. When the pattern is small and is a plain string, it is

about 4 times faster than our tool. But for a normal regular expression, it is just like grep

or egrep. The other disadvantage of agrep is that it can not process arbitrary strings

and regular expressions.
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Table 5.6: xgrep Run Time

File P1 P2 P3 P4 P5 P6 P7
1 3103 2987 3065 3115 3216 3241 3271
2 3053 3070 3026 3147 3199 3140 3135
4 3168 3131 3154 3229 3267 3261 3250
8 3582 3552 3562 3669 3713 3728 3673

16 4325 4276 4317 4382 4417 4429 4412
32 6108 5865 5927 6001 6091 6051 5991
64 9201 9096 9117 9296 9248 9266 9229

128 15440 15440 15628 16070 15667 15825 15602
256 28325 28443 28524 28651 28334 28467 28269
512 59506 57896 59187 58369 58627 57757 59216
File P8 P9 P10 P11 P12 P13 P14

1 3230 3307 3228 3214 3197 3474 3751
2 3130 3203 3218 3216 3184 3440 3696
4 3275 3274 3307 3341 3306 3595 3831
8 3733 3734 3748 3748 3708 4002 4220

16 4424 4435 4470 4476 4534 4755 4938
32 5994 6130 6101 6093 6067 6335 6576
64 9250 9299 9219 9337 9362 9658 9689

128 15551 15786 15743 15660 15807 15987 16036
256 28565 28697 28392 28472 28495 28950 28810
512 58633 59718 59469 56660 56844 57321 58881

Observation: If a pattern is a short plain string, agrep will be the fastest one, based

on shift-or operation. As xgrep, grep, and egrep are all based on lazy construction,

the differences are small as DFA construction time is short for small patterns. In this case,

the NFA simulation time is a good criterion for evaluating an NFA.
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Table 5.7: egrep Run Time

File P1 P2 P3 P4 P5 P6 P7
1 3042 3015 2989 3092 3005 2967 3052
2 3380 3293 3344 3260 3373 3351 3344
4 3687 3619 3673 3731 3661 3572 3584
8 4273 4169 4138 4133 4187 4148 4191

16 5544 5466 5577 5481 5586 5546 5513
32 8054 7937 7931 7992 7948 8028 7898
64 13531 13452 13448 13397 13434 13399 13331

128 24098 23792 23954 23902 23907 23715 24088
256 45878 45976 46110 45974 46401 45717 46178
512 88535 87797 87722 87650 88127 87556 87981
File P8 P9 P10 P11 P12 P13 P14

1 3015 3028 3017 2994 3060 3038 3043
2 3289 3297 3306 3352 3340 3404 3410
4 3511 3654 3634 3792 3617 3606 3772
8 4128 4203 4164 4201 4181 4232 4203

16 5514 5538 5491 5502 5445 5564 5536
32 7917 7937 7934 7962 7985 7964 8062
64 13453 13426 13455 13611 13520 13541 13468

128 23778 23967 23972 23816 24009 23985 23936
256 45322 45778 45697 45900 46078 45525 45962
512 87883 87594 87629 88111 88070 87493 87904
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Table 5.8: grep Run Time

File P1 P2 P3 P4 P5 P6 P7
1 3145 2845 2808 2786 2799 2820 2802
2 3347 3012 2933 2893 2912 2912 2903
4 3806 3397 3224 3192 3116 3119 3102
8 4417 3900 3646 3441 3450 3489 3452

16 5531 4997 4551 4220 4203 4199 4245
32 7765 6854 6357 5703 5673 5706 5700
64 13659 11853 10038 8619 8705 8704 8761

128 23701 18993 17841 14904 14975 15030 15204
256 46763 37584 33983 28092 28182 28072 28397
512 93132 74642 69265 56745 55343 56062 56309
File P8 P9 P10 P11 P12 P13 P14

1 2928 2957 2987 2806 2935 2843 3186
2 3116 3190 3203 2904 3094 2943 3633
4 3518 3634 3731 3101 3521 3184 4547
8 4297 4540 4758 3494 4293 3640 6477

16 5924 6376 6715 4218 5824 4635 9986
32 9162 9972 10785 5784 8924 6457 17221
64 15573 17273 18865 8798 15112 10335 31829

128 28691 32625 35252 15177 27933 18301 61625
256 56124 63048 68607 28312 54799 34340 120994
512 112484 126935 138899 56668 107748 68840 242884
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Figure 5.1: Run-time Comparison (P1)
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Chapter 6

Emptiness-of-Complement for Semi-Extended Regular Expression is

������������� � Complete

In this chapter, we show that the emptiness-of-complement problem for semi-extended

regular expression is ������������� � complete from definition1. A semi-extended reg-

ular expression is a generalized regular expression with intersection. Although intersec-

tion does not increase the power of expressing (the language denoted by a semi-extended

regular expression is regular), it will make the expression shorter in most cases.

6.1 Notations and Definitions

A semi-extended regular expression over an alphabet � is defined as follows [1]:

1. � ,
�

and � for each � � � are semi-extended regular expressions denoting � ��� , the

empty set, and ���	� respectively.

2. If 
 � � 
 � are semi-extended regular expressions denoting the languages � ��� � �

respectively, then
� 
 � � 
 � 	 , � 
 � 
 � 	 , � 
 � � 	 and

� 
 � " 
 � 	 are semi-extended

regular expressions, denoting � � � � � , � � � � , � � � , and � � " � � , respectively.

3. All semi-extended regular expressions can be generated by above rules.

1At the time of writing this chapter, I did not know, this is a known result presented in [6],
which was told to me by Charles Rackoff at Toronto. So the purpose of this chapter is showing our
proof, not claiming a new result. At the end of this chapter, I will indicate the differences between
my proof and the proof by Fürer in [6].
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In other words, semi-extended regular expressions are generalized regular expressions

with intersection.

For convenience, we will use � � � � � ����� �� ��� �
�
� ����� 
 and � �

� � � � to describe the expres-

sions more compactly. Also, we use expression to mean semi-extended regular expression

unless otherwise noted.

We use Sipser’s[5] definition of a one-tape deterministic Turing Machine as a
� �

tuple:

� � � � � � �
	 ��� � � � � � ����� � � � ����� ����� � 	 �
All Turing Machines considered in this paper halt on all inputs, in either state � ����� � � or

����� ����� � . For input string � � � � , we define
�
� � � � � � � � 	 to be the number of tape squares

scanned by the 
 ���
head of � as it processes string � . For a function � � � � � , as

in [5], we define the space complexity class �������� � � ��� 	 	 by

�������� � � ��� 	 	 � ��� 
 � � � � � � � � � � 	 � � � ����� � � � � � � � � � � � � � � � � 	 � � � � �  �  	 	 �
Formally, we say that a language � � 
 � �� is polynomial-time reducible to a language

� � 
 � �� , written as � � ��� � � , if there exists a polynomial-time computable function

� � � �� � � ��

such that for all � � � � � � � � ,
� � � ����� � � � 	 � � � �

We call the function � the reduction function, and the polynomial-time algorithm
�

that

computes � the reduction algorithm.

The space complexity class ������������� is defined as:

������������� �
��
�
� � ��������

� � ��� 	

where 	 is the length of the input.

A language � is said to be ������������� � complete if � belongs to �������������
and for all languages

� ��������������� ,
� ��� � .
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6.2 Preliminary Results

In many cases, semi-extended regular expressions provide a more compact representation

than regular expressions. For example, given a regular expression, we can find a string

that is accepted by the regular expression by scanning it, which can be done in linear

time. But for semi-extended regular expressions, this is not the case because the least

length string that is accepted by a semi-extended regular expression can be of exponential

size with respect to the size of the semi-extended regular expression.

The emptiness-of-complement problem for a language is to determine if the comple-

ment of the language is empty. This problem was discussed in [1, 13], and it is shown in

[4] that the problem for regular expressions is ���������� -complete.

Lemma 4 [4] The emptiness-of-complement problem for NFAs is ���������� -complete.

Lemma 5 We can construct an NFA from a semi-extended expression in � � � � 	 space

where
�

is the length of the semi-extended regular expression.

Proof It is easy to prove this by induction on the length of the semi-extended regular

expression. �

From the above two lemma, we know that the emptiness-of-complement problem

for semi-extended regular expressions can be solved in ������������� . To prove it

is ������������� -complete, we only need to show that for any problem solvable in

������������� , it can be reduced to the emptiness-of-complement problem for semi-

extended regular expressions.

6.3 Main Result

We state our main theorem as:
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Theorem 12 The emptiness-of-complement problem for semi-extended regular expres-

sions is ������������� � hard.

Proof Using the ideas in [5, 3], we give the following reduction.

Let � � ������������� be a language that is decided by a Turing Machine � . There

exists
	
, such that for each input � with length 	 , � runs in space � � � (By definition,

this should be ���
� ��� � . It is easy to convert � � ��� to the form of � ��� by choosing a larger

	
.) Let

�
� 	 � ; we know that the machine will use at most � � tape cells.

Let
	
� be a set of symbols disjoint from

	
with

 	 �  �  �  �  	  �

Each symbol of
	
� is understood to correspond in a one-to-one manner with a pair

� � � � 	 �
� � 	

.

Recall that a configuration is a string of the form
	
�
	
�
	
� . It shows the current tape

contents, the current state, and the currently scanned symbol. One configuration yields

another if the second can be obtained from the first by one legal move of the Turing

machine. The string � � � � � ������� ��� �
�

is rejected by machine � if and only if there is a

sequence of configurations

� � � � � � � � � � ���
such that

(i.) � � � � � � � � � 	 � ������� ��� � � � ����� �

(ii.) ��� yields ����� � for � � 

�	�

(iii.) ��� contains the rejecting state ��
��������� .
Let � � 	 � 	

� and assume � � � %��� . We will define a way in which certain strings

over � � � � �
can be interpreted as sequences of configurations. Then we will give

a semi-extended regular expression  such that � �  	 equals all strings which are not



61

rejecting computations. Thus

� � � � � 	���� � �  	 � � � � � � �
	 � �

This will complete our proof.

To proceed, define a block to be a string in the language of
� � � �
	 � � , that is, an

�
-bit integer in the range � � 


� � � followed by a symbol of � . A coded potential

configuration (cpc) is a concatenation of blocks, that is, a string in the language of

� � � � �
	 � � 	 � �

which contains every
�

-bit binary number in the range � � 

� � � exactly once and in the

right order. Thus, one way to obtain a cpc is to start with a legitimate configuration of �
having length � � , and insert

�
-bit counters, in proper sequence, before each symbol. As

we have defined it, however, removing all the � ’s and
�
’s from a cpc may not necessarily

leave a configuration of � , because there is nothing in our definition that says exactly one

state appears. This is why we call them coded potential configurations.

A sequence of cpc’s � � � � ��� � � � ��� will represent a rejecting computation of � on �
provided

(i.) � � encodes the initial configuration
� � � � � � 	 � ������� ��� � � �

���
� � ,

(ii.) ����� � encodes a legal successor configuration to the configuration encoded by ��� for

all � � 

� �

, and

(iii.) ��� encodes a rejecting configuration.

We will write out a semi-extended regular expression over � � � � � � �

��� � � � ����� � � � �  �
��� � � ��� �
	 �  �

��� �

��
� � � �  �

��� ��� � � � � �  � � � ��� ����� � �

which generates every string that is not a correct encoding of a rejecting computation.

A string fails to be a correct encoding of a rejecting computation in two ways:
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1. It is not in the correct format of encoding (it is not a sequence of blocks), which will

be generated by  � � � ����� � � � ;

2. It is a sequence of blocks, but we can’t get a valid rejecting computation from the

encoding. That is, the string violates at least one condition about a valid encoding

of a rejecting computation. Such strings are generated by

 �
��� � � ��� �
	 �  �

��� �

��
� � � �  �

��� ��� � � � � �  � � � ��� ����� � �

Each expression will be explained in more detail later.

We want � �  � � � ����� � � � 	 to be the complement of the language of

� �
�
� � � � �
	 � � 	 �

There are three ways a string � may fail for membership in � ��� � 	 : (1) � does not start

with � or
�

and end with a symbol in � ; (2) � contains a consecutive pair of symbols from

� ; or (3) � contains a run of � � � and
�
�
�

whose length is different from
�

. The expression

� �
� �

� � � � � � � � � � �
	 � � � �
�
� �

will generate errors of type (1) and (2), and the expression

���
� � � � � � ��� � � �
	 � ����� � � � �
	 � �

� ��� � � �
	 � �
� � � � �
	 � 	 � � � �

will generate errors of type (3). We have completed the first part of our proof:

 � � � ����� � � � � � � � ��� �

For a sequence of blocks, it fails to be a cpc for rejecting computation in at least one

of the following four ways:

1. The index error: the index in one block does not follow the previous one or the

index of the first block is not � � or the index of the last block is not
� � . These errors

are generated by  �
��� � � ��� �
	 ;
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2. The initial configuration is not correct, generated by  �
��� �


��
� � � ;

3. One configuration does not properly lead to the next configuration, generated by

 �
��� ��� � � � � ;

4. There is no rejecting configuration, generated by  � � � ��� ����� � .
Now we will turn to the construction of  �

��� � � ��� �
	 that will generate all strings which

contain an indexing error. That is, we want  �
��� � � ��� �
	 to generate all strings which contain

a substring of the form
� � � �

where
�

and
�
� are

���
bit binary numbers, but

� �
	 �
�
%
�
� � � �
	������ � � �

or (2) the index for the first block is not � � or the index for the last block is not
� � .

For the first case, suppose
�
�
�
� ����� � ��� � � � ����� �� ��� �

�
. We know the correct form for

�
� should

be
�
� �

�
� ����� � ��� �
� � ����� �� ��� �

�
. Now, let us further classify the errors as:

1. The error is from
� � ��� 
 	 � bit

2. The error is from
�


� �
	 �

bit

3. The error is from
�


� � ��� � 	 � bit

The following three regular expressions will detect the errors for each case:

� ��� � � � � � �
	 � � � �
�
� � � � � � � �
	 � � � �

� � � � � �
	 � � � � � �
	 � � � � 
 � � � �

� ��� � � � � � �
	 � � � �
�
� � � � � � � �
	 � � � �

�
� � � � �
	 � � � � 
 � � � �

� ���� � �
� � � � ��
� � �

� � � �
	 � � � � � �
	 � � � � � �
�
� � � � � � � �
	 � � � � � �
	 � � � � 
 � ��� � � 	�� � � � � � � �

take
� � � � ��� � � � ��� � � �

�
��� � � �

�
��� �
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For the second case, consider the regular expression

���
�
�
�
� � 	 � � � � � � 	 � �

� �
�
� � 	 � ����� � � � �

� �
�
� � 	 � � � � � � �
	 �

Scanning a string � � � ����� 	 left to right, we encounter a symbol where we may definitely

conclude that � does not begin with a prefix of the form � � � . Thus,

���
� �

� � � �
� � ����� � � � � ���

� �

generates all strings which fail to be a cpc because they don’t begin correctly. Similarly,

with
���
�
�
�
� �
	 ���

�
� �
	 � � ����� �

�
� �
	 � � � � ��� � � �
	 � �

we have that
���
� � �

��� �
generates all strings which fail to be a cpc because they don’t end correctly. Finally, let

 �
��� � � ��� �
	 � � � �

��
� � �
� � 	 � � � ��� � ���

Clearly,  �
��� � � ��� �
	 generates all strings that contain an indexing error.

For  �
��� �


��
� � � , recall � � � � � ��� � � ��� is the input. We know that a bad start configura-

tion must take one of three forms:

1. It does not start with
� � � � � � 	 , which can be generated by:

� � � � � � � �
	 � � � � � � � � � � 	 	 � � � � �
	 � � 	 �

2. It does not put the ��� for 
 �
� ��� 	 � �

in the correct place, which can be generated

by:
�
�

�
�
� � � � �
	 � � 	 � � � � �
	 � � � � ��� 	 � � � � �
	 � � 	 �

3. It does not place blanks in the rest of the tape, which can be generated by:

� ���
� � � � � � � � �
	 � � 	 �	� � � � � �
	 � � � � 	 ��
 � � � � �
	 � � � ���	 � � � � �
	 � � 	 �
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Taking

 �
��� �


��
� � � � � � � � � �

�
�
� � �

�
�

� � � ���
� � � �

generates all strings that have an invalid initial cpc.

We can have a string without rejecting state to represent no rejecting configuration as

in the following:

 � � � ��� ����� � � � � � � �
	 � � � � � ������� ����� � � � 	 	 	 �

which is illustrated by 6.1.

a b c d e f

2
n

left border left border

Figure 6.1: The yield relation in two adjacent configurations

Finally, we construct  �
��� ��� � � � � to generate all strings whereby one configuration does

not properly lead to the next configuration. One configuration legally yields another when-

ever every three consecutive symbols in the first configuration correctly yield the corre-

sponding three symbols in the second configuration. Two symbols are corresponding

to each other if they are � � apart. Define the relation �������

 �

�

���
�

to consist of

those pairs
� � � � � ��� � 	 such that if � � � appears in three consecutive locations of a valid

configuration, then
��� � is an acceptable triple to appear in the corresponding window of

the succeeding configuration.

If all three of � , � , and
�

belong to
	

, (that is, none is of the form
� � � � 	 ), then we can

see that the possibilities for
��� � are:

� � � � � � � � 	 � � � � � � � � � � � 	 	 � � � � �
� � � � 	 � � 	 �

Thus, GOOD contains all  	  
� � �	� �  �  	 pairs of the latter form. The other pairs belonging

to GOOD have one symbol of the form
� � � � 	 � 	

� in the first triple. Specifically, for each
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left-moving transition of the machine

��� � � � 	 � � � � � � � � � 	

GOOD contains the
�  	  

�
pairs of the form

� � � � � 	 � � � � � � � 	 � � � � � � 	 � �
� � � � � 	 � � � 	 � � � � � � � 	�� � � � � � � 	 � � 	

where
�

and
�

vary freely over
	

. Similarly, for each right-moving transition of the

machine
��� � � � 	 � � � � � � � � 
 	

GOOD contains the
�  	  

�
pairs

� � � � � 	 � � � � � � � � � � 	 � 	 � � � � � � 	 � � � � � � � � � � 	 	 � � � � � � � 	�� � � � � 	 �
These three classes constitute all the pairs belonging to GOOD.

Defining BAD to be the complement of GOOD within �
�

� �
�

, we have an ordered

pair
� � ��� � � 	 � �

���
� �

���
such that � � is a valid configuration fails to satisfy the yields

relation if and only if there is a triple � � � of consecutive symbols in � � such that the

corresponding three positions in � � are occupied by a triple
��� � with

� � � � � ��� � 	 � BAD.

The next step in the construction of  �
��� ��� � � � � is to devise a way to generate all strings

of the form

� ��� ��� � � � � � � � �
in which

1. � � � ��� � � � � � � � � � � �
	 � 	 ;
2. ��� � � � � � �
	 � 	 , and we call attention to the repetition of � ;

3.
� � � � � ��� � 	 � � � � ;

4. � is a string in the language of
� � � � �
	

� � 	 � which contains one of the binary

numbers � � or
� � exactly once.
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It is the fourth condition that assures us the error will take place in consecutive cpc’s,

given that the string in question does not contain any of the errors already generated by

 � � � ����� � � � ,  �
��� � � ��� �
	 , or  �

��� �

��
� � � .

Let � denote a bit, either � or
�
, and consider the regular expression

���

� ��� � � �

� � � �
	 � �
�
�
� � � �
	 � � � �

� � � � �
	 � � � � � �
	 � � 	 �
� � �
� � � � �
	 � � � � � �
	 � � 	 �
� � � �
	 � �

�
�
� � � �
	 � � � �

� � � � �
	 � � 	
�
�

If � is a string generated by
���


� ��� � � , then the first
�

-bit number in � , and the third binary

number from the end of of � , both have their 
 -th bit from the left (
� � 
 � �

) equal to � ;

all binary numbers in the string � between these two contain the bit � , except for exactly

one, which is � � . Consequently, if we define

�
�
� � � � ��� �

� � � �
	 � � � � � �
	 � � � � � �
	 � �
� � � � �
	 � 	 �
� � � �
	 � � � � � �
	 � � � � � �
	 ���

and
� 


� ��� � � � � �

� ��� � � � � �


� ��� � � �

it follows that
�
�
� � � � ��� � �

�
� � � � ��� "

��
� � �

� 

� ��� � �

generates precisely the strings satisfying conditions (i) through (iv) above. We may thus

take

 �
��� ��� � � � � � � � � � � �
	 � � �

�
�
� � � � ��� � ���
	��

�
�
� � � � ��� 	 � � � � � �
	 � �
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Obviously, each semi-extended regular expression is bounded by a polynomial, so the

above construction can be carried out in polynomial time, which completes the proof.

�

Based on the above theorem and Lemmas 5.1 and 5.2, we have the following corollary:

Corollary 1 The emptiness-of-complement problem for semi-extended regular expression

is ������������� � complete.

6.4 Fürer’s Proof

Fürer’s proof is sketched in this section.

Let � be a nondeterministic � � � � space-bounded Turing Machine. We choose

another code for the sequence of subsequent ID’s of � , and call this code a computation

of � . For convenience, use � to specify the start of an ID and 	 to specify the end of an

ID.

Let � � � � � � � � ����� � � � be the sequence of subsequent instantaneous descriptions of the

Turing Machine � , where � � �
is the initial ID corresponding to the input � and � � � is an

accepting ID. We define ��� � to be the
� �

th symbol in � � � � 
 � � � � � ����� � 	�� � � � � � � ��� � � � �
�
	

.

Let
� � �

be the marked binary number
�

of length
�

and
� � ���

be the reversed word of it.

They define the word:

� � � ��� 	 � � � � � ����� � ��� � � ��� � � � ��� � ��� � � � � � � � � � ����� � ��� � � �
��� � � � ���

� � � � � 	 � � � � � ��� � � ��� � � ��� � � � � � ��� � ��� � � � �
��� � � � ��� � � � � � 	 � � � �

There are ten cases of mistakes:

1. Two symbols with distance
� � �

do not match;

2. The word does not start correctly;
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3. The word does not end correctly;

4. A sub-word of length � � � � � with an � � � or 	 in the middle is not symmetric;

5. A binary number is not correctly marked;

6. A sub-word of length � � ��� with � in the middle is not of the form
� � � � � � ����� �

with � � 
 � � � � � and addition mod � � ;

7. 	 or
� � � appear other than as the pair 	 � � � ;

8. The initial ID is wrong;

9. A computation step is wrong;

10. No ID is accepting.

Comment:

From the above proof, we see that the two proofs are similar: both use a semi-extended

regular expression to encode a computation. The difference is that Fürer uses “Reverse”

to make detecting the successor relation easier, while we are using cpc to make the proof

simpler and easier to understand.

6.5 Does ����������� ��������������� ?

According to exercise 11.15 in [1], deciding emptiness of complement for semi-extended

regular expressions can be decided in deterministic exponential time. If this is correct,

and if our proof above is correct, then it follows that ������������� ������������� . As

of this time, however, we have been unable to find a solution to Exercise 11.15.
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Chapter 7

Conclusion

We propose two methods for NFA construction as better alternatives for the classical

Thompson’s NFA and McNaughton and Yamada’s NFA. Theoretical analysis and experi-

mental results showed that our proposed NFAs lead to a substantially more efficient way

of turning regular expressions into NFA’s and DFA’s than do other approaches in current

use.

Our benchmark result confirms the theoretical analysis that the NFA is smaller but

faster than both Thompson’s original construction and McNaughton and Yamada’s con-

struction. Thompson’s NFA contains redundant states and edges. In [7], he said to opti-

mize Thompson’s NFA, deep global analysis is often needed. From our knowledge, our

algorithm is the first one that solves the minimization problem for Thompson’s NFA such

that no states can be deleted without the violation of the defining property of Thompson’s

NFA. In contrast, the second method is efficiently constructed by a simple method, and

can be regarded as an optimized Thompson’s NFA.

We also proved that the emptiness-of-complement problem for semi-extended reg-

ular expression is ������������� � complete. And we posed a question asking whether

������������� � ����������� based on an exercise in [1]. If it turns out to be true, it

will be the first equivalence between time complexity class and space complexity class.

In conclusion, we propose the following questions for future research:

1. NFA minimization in general is ���������� -hard. If, however, we mark some subset

of states in the NFA as undeletable, can we minimize it in � ( like in this thesis, we

mark transition states as undeletable)?

71
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2. For a regular expression � , let

� � � � � 
�� � � 	 ������� ��	 �
�
� � � � 	 � � 


� � � � � � � � � � � � 	 � � � � 	 � �

The question is what kind of cost function will make the optimization constant

approximable, that is
�
�
� � � � 	 � � � � � � � 
�� � � 	 . For example, if we let the

�
�
� � � � 	 �

	 � � � � � � 
 � � , it is unlikely such approximation algorithm exists, because this is a

���������� -hard problem.

3. Investigate the relation between the compact TNFA defined here and the CNNFA

constructed by Chang in [7]. For example, is there a a succinctly described algo-

rithm that transform one kind of NFA to another?

4. Note that that there may be several minimized TNFAs, but such NFAs need not

have the smallest possible number of states, can we get the minimum, among all the

minimized TNFAs in polynomial time?

5. If we allow both intersection and binary counter in semi-extended regular expres-

sion, is the emptiness-of-complement problem even harder?
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