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Abstract

As the rapid development of biotechnology, more complex data sets are now generated

to address extremely complex biological problems. It is challenging to develop new statis-

tical methods to analyze such data. In this thesis, I propose a nonparametric hypothesis test

and two statistical learning methods to solve biological problems arising from epigenomics,

metagenomics, and neuroimaging. First, the proposed test aims at testing the significance

of the interaction in bivariate smoothing spline ANOVA model. The derived asymptotic dis-

tribution of the test statistic unveils a new version of Wilks phenomenon, and the power is

minimax optimal in the sense of Ingster. The performance of the proposed test was demon-

strated on discovering differentially methylated regions in a genome-wide DNA methylation

study. Second, I propose a statistical learning method that simultaneously identifies micro-

bial species and estimates their abundances without using reference genomes. I show that

the proposed method achieves high accuracy in both simulated data and real metagenomic

data related to inflammatory bowel disease (IBD), type-2 diabetes (T2D) and obesity. Third,

I develop a model-based dictionary learning (MDL) method which provides an effective and

flexible framework for different types of data: continuous, discrete and categorical. It also



provides a general framework to model data with spatial or temporal correlation. The per-

formance of the MDL method was demonstrated in studying the brain connectivity and

learning the cell-type specific expression profile through spatial transcriptomic imaging.

Index words: Nonparametric inference, Smoothing spline ANOVA, Minimax,
Metagenomics, EM algorithm, Dictionary learning
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Chapter 1

The Minimax Hypothesis Testing in Smoothing Spline ANOVA Models:

Two-Way Case

1.1 Introduction

We consider the following nonparametric regression model,

Yi = f(xi) + εi, i = 1, . . . , n (1.1)

where Yi is the ith observation of the response variable, xi = (x
〈1〉
i , . . . , x

〈d〉
i ) is the ith

observation of d predictor variables, f is the nonparametric function to be estimated, and

εis are independently and identically distributed (IID) random errors following a normal

distribution with mean zero and variance σ2. A popular method for multivariate predictors

model-building is the smoothing spline analysis of variance (SS-ANOVA) model [1; 2]. In the

SS-ANOVA, we write

f(x) = f0 +
d∑
j=1

fj(x
〈j〉) +

∑
j,k

fj,k(x
〈j〉, x〈k〉) + . . . , (1.2)

where f0 is the grand mean, fjs are main effects, fj,ks are two-way interactions, and so

on. The identifiability of the terms in (1.2) is assured by side conditions through averaging

operators [1]. Insignificant higher-order interactions are often excluded to enhance the model

interpretability and predictive power; exclusion of all interactions yields the additive models

[3].

In practice, many problems, e.g., whether two curves are significantly different up to a

constant can be formulated by testing whether an interaction component in a SS-ANOVA
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model is zero. We shall present two examples which motivate our theory and methodology

development.

Example DNA methylation in case-control study. DNA methylation is an essential

epigenetic mechanism that regulates gene expression. Aberrant DNA methylation can con-

tribute to a number of human diseases including cancer [4]. In a typical case-control study of

DNA methylation [5], the DNA samples are extracted from the cells of patients with a disease

of interest (case group) and those of normal subjects (control group). The DNA methyla-

tion levels are then measured. Of the primary interest is to identify the genome regions that

have significantly different methylation levels, i.e., differentially methylated regions (DMRs),

between case and control groups. In particular, the data consists of (Mij, si, gj), where Mij

is the methylation level at the ith genome location of the jth subject, si denotes the ith

genome location, and gj equals to 1 if the jth subject is in the case group, equals to 0 if the

jth subject is in the control group. We assume Mij = f(si, gj) + εij, where εij is the random

error. With the SS-ANOVA decomposition,

f(s, g) = f0 + f1(s) + f2(g) + f1,2(s, g), (1.3)

we aim to test

H0 : f1,2(s, g) = 0 v.s. H1 : f1,2(s, g) 6= 0, (1.4)

which is equivalent to testing whether the methylation levels in two groups have same profiles

along the genome. �

Motivated by the real example, we consider a special case of general nonparamtric model

(1.1). That is the following nonparametric model with two predictors,

Yij = f(x
〈1〉
i , x

〈2〉
j ) + εij, i = 1, . . . , n, j = 1, . . . , a (1.5)

where Yij is the measurement of at the ith coordinate of jth subject, x
〈1〉
i ∈ X1 is the ith

coordinate (in time or space) of the measurement, x
〈2〉
j ∈ X2 is the group indicator for the

2



jth subject.The SS-ANOVA model (1.2) thus reduces to

f(x〈1〉, x〈2〉) = f0 + f1(x〈1〉) + f2(x〈2〉) + f1,2(x〈1〉, x〈2〉) (1.6)

where f0 is the grand mean, f1 is the temporal or spatial effect, f2 is the group effect, and f1,2

is the interaction. As evident in the examples, we are interested in testing the significance

of the interaction between x〈1〉 and x〈2〉 in model (1.6). That is, we aim to test

H0 : f1,2(x〈1〉, x〈2〉) = 0 v.s. H1 : f1,2(x〈1〉, x〈2〉) 6= 0. (1.7)

However, unlike classical linear ANOVA models having well developed hypothesis testing

procedures, the hypothesis testing in SS-ANOVA is still lacking. The major difficulty is that

unknown function f resides in an infinite dimensional space. Consequently, some subtle but

significant differences between functions f in H0 and those in H1 may be negligible in an

infinite dimensional space. Furthermore, a finite sample size makes it extremely difficult if not

impossible to distinguish the alternative hypothesis H1 from H0 in an infinite dimensional

space. In other words, the statistical power of a testing procedure may be very low. Moreover,

Cox et al. [6] showed that for the hypothesis of f being a polynomial versus f being smooth,

there is no uniformly most powerful (UMP) test. Another major difficulty of testing the

significance of interaction in SS-ANOVA model is that the null limiting distribution of test

statistic is had to obtain since the model under null hypothesis is also nonparametric.

There has been considerable recent work on the development of many statistical tests

on testing general departures from a parametric model. For example, Azzalini and Bowman

[7] proposed a test on checking whether the nonparametric regression model can reduce

to a parametric model; Xiang and Wahba [8] developed the symmetrized Kullback-Leibler

(SKL) test based on the SKL distance between the “parametric” function estimated under

the null hypothesis and the “smooth” function estimated under the alternative; When the

model under null hypothesis is parametric, there are several new efforts on developing the

minimax optimal test Fan et al. [9] proposed a generalized likelihood ratio test for testing

3



nonparametric regression models; Shang et al. [10] developed a penalized likelihood ratio

test in smoothing spline model. However, there is no general applicable hypothesis testing

methods when the model under the null hypothesis is nonparametric.

In this paper, we develop a nonparametric statistical inference framework for testing the

interaction in SS-ANOVA model. In particular, we aim to test H0 which is the functional

space only including the functions with main effects versus H1 which is functional space

including functions with both main effects and the interaction. We propose a “Wald Type”

test statistics and derive the asymptotic normality of our proposed test statistic. Moreover,

we unveil an interesting Wilks phenomenon, i.e., the asymptotic null distribution is free of

nuisance parameters.

To study the power of proposed test, we consider a slightly different alternative hypoth-

esis,

H∗1 : ||f1,2(x〈1〉, x〈2〉)||2 ≥ dn (1.8)

where ||·||2 is the L2 norm. Compared to the alternative hypothesis in (1.7), the neighborhood

within the distance to f1,2 = 0 smaller than dn is removed. Here the sequence dn is called

the distinguishable rate (or separation rate) [11; 12]. We prove that the proposed test has

the minimax distinguishable rate in the sense of Ingster and Suslina [11].

The article is organized as follows. Section 2 introduces the background of the SS-ANOVA

model, and Section 3 formulates the testing problem and constructs the test statistic. The

asymptotic distribution and optimal distinguishable rate are also derived in Section 3. Section

4 shows the simulation results of the proposed test statistics. In Section 5, we apply the

proposed test on a genome-wide DNA methylation data set and a neuroimaging data set

related to Alzheimer’s disease. The detailed proofs are given in Appendix.
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1.2 Fitting SS-ANOVA Models

In this section, we present the penalized least squares for fitting the SS-ANOVA model. The

optimization is performed in a tensor product reproducing kernel Hilbert space (RKHS).

1.2.1 Penalized least squares

The unknown function f in (1.5) is estimated through minimizing the penalized least squares

functional

1

na

n∑
i=1

a∑
j=1

(Yij − f(xij))
2 + λnJ(f) (1.9)

where xij = (x
〈1〉
i , x

〈2〉
j ), the quadratic functional J(f) quantifies the roughness of f and the

smoothing parameter λn controls the trade-off between the goodness-of-fit and the roughness

of f . The minimization of (1.9) shall be performed in a space H ∈ {f : J(f) <∞} in which

J(f) is a square seminorm. The evaluation functional [x]f = f(x) over H is assumed to be

continuous. A Hilbert space H in which the evaluation is continuous is called a reproducing

kernel Hilbert space (RKHS) possessing a kernel function K(·, ·), a nonnegative definite

symmetric function satisfying

K(x′,x) = K(x,x′) and 〈K(x, ·), f(·)〉 = f(x),

for any x,x′ ∈ X = X1 ×X2 and f ∈ H, where 〈·, ·〉 is the inner product in H. If K is also a

continuous function, Mercer’s Theorem [13] guarantees that there exists an orthogonal basis

(a.k.a. eigenfunctions) {φi}∞i=1 such that

K(x,x′) =
∞∑
i=1

ρiφi(x)φi(x
′)

where {ρi}∞i=0 are non-negative eigenvalues.
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1.2.2 SS-ANOVA decomposition on a tensor product RKHS

To incorporate SS-ANOVA for the estimation of the bivariate function in (1.9), we construct a

RKHS defined on a product domain. The RKHS on a product domain X1×X2 is conveniently

constructed by taking the tensor product of the RKHSs on marginal domains X1 and X2.

Let H〈1〉 and H〈2〉 denote the RKHSs on the marginal domain X1 and X2 respectively. Their

tensor product space is H = H〈1〉⊗H〈2〉, where ⊗ denotes the tensor product of two spaces.

Consider the one-way ANOVA decomposition of H〈1〉 on the marginal domain X1,

H〈1〉 = H〈1〉0 ⊕H
〈1〉
1 ,

where “parametric” space H〈1〉0 = {A〈1〉f |f ∈ H〈1〉} has the kernel K〈1〉0 , “nonparametric”

space H〈1〉1 = {(I −A〈1〉)f |f ∈ H〈1〉} has the kernel K〈1〉1 , A〈1〉 denotes an averaging operator

and I is the identity operator. Analogously, we have the one-way ANOVA decomposition of

H〈2〉 = H〈2〉0 ⊕H
〈2〉
1

on marginal domain X2 with corresponding kernels K〈2〉0 and K〈2〉1 . Thus, the two-way SS-

ANOVA decomposition of H = H〈1〉 ⊗ H〈2〉 is obtained through applying the distributive

law,

H = (H〈1〉0 ⊕H
〈1〉
1 )⊗ (H〈2〉0 ⊕H

〈2〉
1 )

= (H〈1〉0 ⊗H
〈2〉
0 )⊕ (H〈1〉0 ⊗H

〈2〉
1 )⊕ (H〈1〉1 ⊗H

〈2〉
0 )⊕ (H〈1〉1 ⊗H

〈2〉
1 )

= H00 ⊕H01 ⊕H10 ⊕H11, (1.10)

where H00 and H10 are “parametric” spaces, H01 and H11 are “nonparametric spaces”.

The corresponding kernels for the four RKHSs are K00 = K〈1〉0 K
〈2〉
0 , K01 = K〈1〉0 K

〈2〉
1 , K10 =

K〈1〉1 K
〈2〉
0 and K11 = K〈1〉1 K

〈2〉
1 respectively (by Theorem 2.5 [1]). For each subspace Hβ, β =

{00, 01, 10, 11}, we use the norm

〈f, f〉Hβ = 〈fβ, fβ〉H

6



where fβ is the projection of f from H to Hβ.

In this paper, we consider a special case of the above general construction. In particular,

we consider the tensor product RKHS

H = H〈1〉 ⊗H〈2〉 = Sm(I)⊗ R2,

whereH〈1〉 = Sm(I) is themth order Sobolev space,H〈2〉 = R2 is a two-dimensional Euclidean

space. In particular, the Sm(I) is defined as

Sm(I) ≡{f ∈ L2(I)|f (j) is absolutely continuous,

for j = 0, . . . ,m− 1 and f (m) ∈ L2(I)}.

For simplicity, we consider a homogeneous subspace Sm0 (I) of Sm(I) which has additional

constraints f (j)(0) = f (j)(1) for j = 0, 1, . . . ,m − 1. Our test can be easily generalized to

general Soblev space which is discussed in Section 6. We have the following the inner product,

〈f, f̃〉Sm0 (I) =

∫ 1

0

f(u)du

∫ 1

0

f̃(u)du+

∫ 1

0

f (m)(u)f̃ (m)(u)du,

defined on Sm0 (I). The one-way ANOVA decomposition is Sm0 (I) = {1}⊕{f ∈ Sm0 (I) :
∫ 1

0
f =

0}, and corresponding kernels are defined as

K〈1〉0 (x〈1〉, x̃〈1〉) = 1, K〈1〉1 (x〈1〉, x̃〈1〉) = (−1)m−1k2m(x〈1〉 − x̃〈1〉)

where kr(·) = B(·)/r! is the scaled Bernoulli polynomials [14]. For simplicity, we use K∗ to

denote K〈1〉1 in the rest of the paper. The inner product of R2 is defined as 〈f, f̃〉 = fT f̃ for

f ∈ R2. The one-way ANOVA decomposition is R2 = {1} ⊕ {f ∈ R2 : fT12 = 0} where 12

is the 2× 1 vector with all components being 1. The corresponding kernels are defined as

K〈2〉0 (x〈2〉, x̃〈2〉) = 1/2, K〈2〉1 (x〈2〉, x̃〈2〉) = 1(x〈2〉=x̃〈2〉) − 1/2

where 1 is an indicator function. The inner product 〈·, ·〉H on the tensor product space

Sm0 (I)⊗ Ra is induced by the 〈·, ·〉Sm0 (I) and the standard inner product of Euclidean space.
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1.2.3 Model fitting

We shall now fill in some details concerning the roughness penalty J used in the penalized

least squares (1.9). The roughness penalty is a square seminorm J(f) = J(f, f), where

J(f, g) =
∑

β θ
−1
β 〈f, g〉Hβ , β = 01, 10, 11, θβ are nonnegative weights of the roughness penalty

to make the inner products comparable. Since H01 is a parametric space of finite dimension,

we do not include penalty on this subspace and set θ01 to infinity. Thus we have

J(f, g) = θ−1
10 〈f, g〉H10 + θ−1

11 〈f, g〉H11 .

Since the smoothness of f is also controlled by λn, we assume θ10 + θ11 = 1 to avoid an

over-parametrization. Recall that the kernel functions for H10 and H11 are K10 and K11

respectively. Then, the kernel associated with J is KJ = θ10K10 + θ11K11.

Without loss of generality, we assume a = 2 which means that there is one subject in

case group and one subject in control group. Now, we will focus on minimizing the penalized

least squares functional (1.9). The minimizer of (1.9) can be found by solving a n-dimensional

convex problem based on the representer theorem [15]. We define the empirical kernel matrix

K10 ∈ R2n×2n and K11 ∈ R2n×2n as,

K10 =
1

2

K K

K K

 , K11 =
1

2

 K −K

−K K

 . (1.11)

where the (i, i′)th entry of K is 1
n
K∗(x〈1〉i , x

〈1〉
i′ ). The estimation then reduces to the mini-

mization of

1

2n
||y − Sd− nRc||22 + nλnc

TRc

with respect to d and c, where y = (Y11, . . . , Yn1, Y12, . . . , Yn2)T , R = θ10K10 + θ11K11,

S ∈ R2n×2 can be written as

S =

1n 1n

1n 0

 , (1.12)
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and 1n is a n × 1 vector with all components being 1. The estimates of d and c are (see

Chapter 3 of [1] for details),

ĉ =
1

n
[M−1 −M−1S(STM−1S)−1STM−1]y,

d̂ = (STM−1S)−1STM−1y,

where M = R + λnI2n and I2n is the 2n× 2n identity matrix. The fitted values of function

f are

f̂ = Sd̂ + nRĉ

= (RM−1 −RM−1S(STM−1S)−1STM−1 + S(STM−1S)−1STM−1)y.

We can also get the fitted values of each components in the SS-ANOVA (1.6). In particular,

the fitted values of main effect f1 are

f̂1 = nθ10K10ĉ = θ10K10(M−1 −M−1S(STM−1S)−1STM−1)y,

and the fitted values of interaction f1,2 are

f̂1,2 = nθ11K11ĉ = θ11K11(M−1 −M−1S(STM−1S)−1STM−1)y. (1.13)

1.3 Testing the significance of SS-ANOVA Model

In this section, we construct our “Wald-type” test based on the penalized least squares

estimation of the unknown function f ∈ H and establish the asymptotic properties for the

proposed test.

1.3.1 Test statistic

In SS-ANOVA model (1.6), we aim to test the significance of the interaction f1,2, i.e. (1.7),

or equivalently,

H0 : f ∈ H00 ⊕H01 ⊕H10 v.s. H1 : f ∈ H/(H00 ⊕H01 ⊕H10)

9



We construct a “Wald-type” test statistic based on the (1.13) i.e. fitted values of f1,2,

Tn,λn =
1

n
||f̂1,2||22 =

θ2
11

n
||K11(M−1 −M−1S(STM−1S)−1STM−1)y||22 (1.14)

where || · ||2 is l2 norm. We have the following vector representation of y,

y = f0 + f1 + f2 + f1,2 + ε (1.15)

where f0 = f01, f1 = (f1(x
〈1〉
1 ), . . . , f1(x

〈1〉
n ) , f1(x

〈1〉
1 ), . . . , f1(x

〈1〉
n ))T , f2 = (f2(x

〈2〉
1 ), . . . , f2(x

〈2〉
1 ), f2(x

〈2〉
2 ), . . . , f2(x

〈2〉
2 ))T ,

f1,2 = (f1,2(x
〈1〉
1 , x

〈2〉
1 ), . . . , f1,2(x

〈1〉
n , x

〈2〉
1 ), f1,2(x

〈1〉
1 , x

〈2〉
2 ), . . . , f1,2(x

〈1〉
n , x

〈2〉
2 ))T , and ε = (ε11, . . . , εn1, ε12, . . . ,

εn2)T . Plugging (1.15) back into (1.14), we have

Tn,λn =
θ2

11

n
||K11M

−1(In − S(STM−1S)−1STM−1)(f0 + f1 + f2 + f1,2 + ε)||22. (1.16)

There exists a d0 ∈ R2 such that f0 + f2 = Sd0. Simple algebra yields

K11M
−1(In − S(STM−1S)−1STM−1)(f0 + f2)

= K11M
−1(In − S(STM−1S)−1STM−1)Sd0 = 0. (1.17)

Furthermore, we have

K11M
−1(I − S(STM−1S)−1STM−1)f1 = 0. (1.18)

See Appendix 1.8.1 for detailed derivation of (1.18). The test statistic in (1.16) thus reduces

to

Tn,λn =
θ2

11

n
||K11M

−1(In − S(STM−1S)−1STM−1)(f1,2 + ε)||22. (1.19)

1.3.2 Asymptotic distribution of the test statistic

Test statistic Tn,λn in (1.19) under the null hypothesis can be expressed as,

Tn,λn =
θ2

11

n
||K11M

−1(In − S(STM−1S)−1STM−1)ε||22

=
θ2

11

n
||K11M

−1ε||22 +
θ2

11

n
||K11M

−1S(STM−1S)−1STM−1ε||22

− 2θ2
11

n
εTM−1S(STM−1S)−1STM−1K2

11M
−1ε. (1.20)
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We shall now derive the asymptotic distribution of test statistic Tn,λn under the null

hypothesis. The primary tool used in the development is the eigenvalue analysis of kernel

function and matrix. Since our test statistic Tn,λn involves the empirical kernel matrix K, we

need to characterize the eigenvalues of K. To do so, we need to build a connection between

eigenvalues of K and those of the population kernel function K∗. Let µ1 ≥ µ2 ≥ . . . be the

eigenvalues for kernel function K∗. The ith eigenvalue has the order µi � i−2m [16]. The

first few eigenvalues play an important role in determining the distribution of test statistics

Tn,λn . We define the effective dimension sλn of the eigenvalues of the population kernels as

the number of eigenvalues larger than λn, i.e.,

sλn = max{i | µi ≥ λn}. (1.21)

We define µ̂1 ≥ µ̂2 ≥ . . . µ̂n ≥ 0 as the empirical eigenvalues of kernel matrix K. We then

define the effective dimension analogous to (1.21) as,

ŝλn = max{i | µ̂i ≥ λn}. (1.22)

We characterize the relationship between eigenvalues of empirical kernel matrix and the

population kernel function on the large eigenvalues under two commonly used designs. The

first one is the random design which assumes x〈1〉 is sampled from the probability density

ω〈1〉. The second one is the fixed design with x〈1〉 evenly distributed on [0, 1]. We summarize

these two designs in the following:

Assumption 1. (a). X
〈1〉
1 , X

〈1〉
2 , . . . , X

〈1〉
n are IID with a probability density function ω〈1〉

subject to

c1 ≤ ω〈1〉(t) ≤ c2 for all t ∈ [0, 1]

for positive constants c1 and c2. Such design is referred as quasi-uniform design [17].

(b). X
〈1〉
1 , X

〈1〉
2 , . . . , X

〈1〉
n are evenly distributed on [0, 1].

11



Under Assumption 1(a), by Lemma 1.8.1, we have

ŝλn � sλn , (1.23)

with probability at least 1 − (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε} for λn > 1/n, m > 3/2,

and any ε > 0. Under Assumption 1(b), the eigenvalues could be explicitly calculated since

the kernel matrix is a circulant matrix [16]. In Lemma 1.8.2, we prove that (1.23) is satisfied

for m > 1/2.

The following theorem provides the asymptotic distribution of our test statistic under

the null hypothesis.

Theorem 1.3.1. If Assumption 1 holds, as n → ∞, λn >
1
n

and λn → 0, under the null

hypothesis H0, we have

Tn,λn − µn,λn
σn,λn

→ N(0, 1)

where µn,λn = θ2
11σ

2Tr(∆)/n and σ2
n,λn

= 2θ4
11σ

4Tr(∆2)/n2 with ∆ = M−1K2
11M

−1.

The Wald test in linear regression is constructed using the minimizer of the ordinary least

squares estimators. Our test is built based on the minimizer of penalized least squares. In

a finite dimensional space, the square norm of the fitted values usually follows a chi-square

distribution with finite degrees of freedom. Here we call our test a “Wald-type” test in the

sense that we also use the squared l2 of the fitted values. However, in an infinite dimensional

space, Tn,λ has diverging degrees of freedom, and thus it is asymptotically normal distributed.

In addition, we notice that the asymptotic distribution is free from the “parametric” nuisance

parameters µ, f2 and “nonparametric” nuisance parameters f1. This property is also known

as the Wilks phenomenon which is an ideal property in nonparametric hypothesis testing

[9; 18].
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1.3.3 Asymptotic optimality

For hypothesis testing with single parameter, there exists the uniformly most powerful or uni-

formly most powerful unbiased test [19]. However, the uniformly most powerful or uniformly

most powerful unbiased test does not exist when the parameter space is infinite-dimensional

[11]. Alternatively, we study the proposed test through an asymptotically minimax approach

[11].

Based on the test statistic Tn,λn , the decision rule Φn,λn for testing hypothesis (1.7) is

Φn,λn = 1(|Tn,λn − µn,λn| ≥ z1−α/2σn,λn)

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution. Instead of the

alternative hypothesis of (1.7), we consider a slightly different alternative hypothesis (1.8).

Compared to f1,2 in the alternative hypothesis of (1.7), f1,2 in the alternative hypothesis

(1.8) is not only nonzero, but also dn distance away from zero. Consequently, the power of

the decision rule Φn,λn is

P(Φn,λn = 1 | f1,2 ∈ H11, ||f1,2||2 ≥ dn).

Asymptotically, it is highly desirable that our test power goes to one as the sample size goes

to infinity with dn as small as possible. Under an additional assumption, we show that this

is true for our test.

Assumption 2. We assume the function in H has bounded norm. Without loss of generality,

we assume,

||f ||H ≤ 1

where || · ||H denotes the norm on the tensor product RKHS H.

Assumption 2 is commonly used in studying the convergence rate of the kernel estimator

[10; 20]. The following theorem states that the our test has asymptotically maximum power

when the order of distinguishable rate is at least dn.
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Theorem 1.3.2. Suppose Assumptions 1 and 2 are satisfied, as n → ∞, λn → 0, for any

ε > 0, there exists constants N > 0 such that for any n > N , we have

inf
||f1,2||2�dn

P(Φn,λn = 1) > 1− 2ε

where dn =
√
λn + σn,λn.

In smoothing spline ANOVA model, the convergence rate is a trade-off between the bias

and variance of the f̂ . It has been shown in [21] that λn and sλn/n are the bias and variance

of f̂ respectively. Following the similar derivation, we can obtain the bias and variance of

f̂12 which have the same order with bias and variance of f̂ . Through balancing these two

terms, as shown in the left panel of Figure 1.1, the optimal estimation rate is achieved when

λ†n = O(n−2m/(2m+1)). In contrast, the distinguishable rate dn is a trade-off between the

bias of the f̂12 and the standard deviation of Tn,λ. The next theorem provides the optimal

distinguishable rate.

Estimation Testing

𝜆𝜆𝑛𝑛𝑓𝑓12 − 𝑓𝑓12∗ 𝑛𝑛
2 𝜆𝜆𝑛𝑛

𝜎𝜎𝑛𝑛,𝜆𝜆𝑛𝑛 = 𝒪𝒪(
𝑠𝑠𝜆𝜆𝑛𝑛
𝑛𝑛

)
𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓12 = 𝒪𝒪(

𝑠𝑠𝜆𝜆𝑛𝑛
𝑛𝑛

)

𝑑𝑑𝑛𝑛2

𝜆𝜆𝑛𝑛∗𝜆𝜆𝑛𝑛
†

Figure 1.1: The left panel shows the trade-off for achieving the optimal estimation rate where
f∗12 denotes the underlying true interaction. The right panel shows the trade-off for achieving the
optimal distinguishable rate.

Theorem 1.3.3. (Optimal distinguishable rate) Suppose Assumptions 2 holds, as n → ∞,

λn → 0 , the optimal distinguishable rate is

d∗n = O(n−2m/(4m+1))
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which is achieved when λ∗n = O(n−4m/(4m+1)) with probability at least 1 − 4 exp(−n1/(2m+1))

under Assumption 1(a), and almost surely under Assumption 1(b).

Theorem 1.3.3 states that the decision rule of proposed test can detect any local alterna-

tives with distinguishable rates no larger than n−2m/(4m+1). In this theorem, we derive that

the standard derivation of Tn,λn is O(
√
sλn/n) (see (1.57) for details) which is a decreasing

function of λn. As shown in the right panel of Figure 1.1, the optimal distinguishable rate

is achieved when λ∗n = O(n−4m/(4m+1)). Furthermore, this optimal distinguish rate, i.e., d∗n,

turns out to be the minimax distinguishable rate of the nonparametric test [11]. Thus, we

conclude that the proposed “Wald-type” test is minimax optimal.

1.4 Simulation Study

To assess the performance of the proposed “Wald-type” test, we carried out extensive anal-

yses on simulated data sets.

1.4.1 Power Analysis

We generated samples according to (1.5) for i = 1, . . . , n and j = 1, 2 where f was set to be

one of the four functions in settings 1-4 which were plotted in Figure 1.2. We generated i.i.d.

x
〈1〉
1 , . . . , x

〈1〉
n from U(0, 1) and set x

〈2〉
1 = 0 for control group and x

〈2〉
2 = 1 for case group. We

generated i.i.d. εijs from N(0, 1). The sample size 2n was set to be 200, 400, . . . , 1600, 2000.

We repeated the above procedures to simulate 500 replicated samples.

Setting 1.(Case and control have difference in magnitude).

f(x〈1〉, x〈2〉) = 2.5 sin(3πx〈1〉)(1− x〈1〉)1([x〈2〉 = 0])

+ (2.5− δ1) sin(3πx〈1〉)(1− x〈1〉)1([x〈2〉 = 1])

where we set δ1 to be 0.5, 1 and 1.5 to characterize the difference in magnitude between the

two groups.
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Figure 1.2: Curves of functions in Settings 1-4. The solid curve is curve for x〈2〉 = 0. The dashed,
dotted and dot-dash lines are curves for x〈2〉 = 1 with distinguishable parameter taken different
values.

Setting 2.(Case and control have difference in frequency).

f(x〈1〉, x〈2〉) = 2.5 sin(3πx〈1〉)(1− x〈1〉)1([x〈2〉 = 0])

+ 2.5 sin((3− δ2)πx〈1〉)(1− x〈1〉)1([x〈2〉 = 1])

where we set δ2 to be 0.25, 0.5 and 0.75 to characterize the difference in frequency between

the two groups.
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Setting 3.(Case and control have difference in both magnitude and frequency).

f(x〈1〉, x〈2〉) = 2.5 sin(3πx〈1〉)(1− x〈1〉)1([x〈2〉 = 0])

+ (2.5− δ3) sin((3− δ3)πx〈1〉)(1− x〈1〉)1([x〈2〉 = 1])

where we set δ3 to be 0.25, 0.5 and 0.75 to characterize difference in both magnitude and

frequency between the two groups.

Setting 4.(Case and control have nonlinear difference in magnitude).

f(x〈1〉, x〈2〉) = 2.5 sin(3πx〈1〉)(1− x〈1〉)1([x〈2〉 = 0])

+ 2.5 sin(3πx〈1〉)(1− x〈1〉)(1+δ4)([x〈2〉 = 1])

where we set δ4 to be 0.5, 1 and 1.5 to characterize nonlinear difference in magnitude between

the two groups.

We applied our proposed test with significance level α = 0.05 to the simulated datasets.

In addition, we compared the proposed test with the F-test in linear regression model,

yij = µ+ β1x
〈1〉
i + β2x

〈2〉
j + β12x

〈1〉
i x

〈2〉
j + εij,

where µ is the grand mean, β1 and β2 are the coefficients for main effects and β12 is the

coefficient for the interaction. We used the classical F-test of analysis of variance (ANOVA)

to test

H0 : β12 = 0 v.s. H1 : β12 6= 0 (1.24)

i.e. testing whether the interaction is significant.

For Setting 1, we plotted in Figure 1.3 the empirical power curves of our proposed test and

classical ANOVA test for three different δ1. The empirical power of our test increases rapidly

as sample size increases, and approaches to 1 even for the smallest magnitude (δ1 = 0.5).

In contrast, the empirical power of classical F test increase much slower than our proposed

test. When δ1 = 0.5, the empirical power of the classical F test is still less than 0.2 even

when the sample size is as large as 2000.
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Figure 1.3: (Setting 1) Plots of empirical power against the sample size. Red dashed, green dotted
and blue dot-dash lines denote different magnitude parameters δ1 = 0.5, 1, 1.5 respectively. Left:
The empirical power of our proposed test. Right: The empirical power of classical ANOVA test.

For setting 2, as shown in Figure 1.4, the empirical power of our proposed test converges

to 1 as the sample size increases for all three cases with δ2 = 0.2, 0.4 and 0.6. In contrast,

the F-test has very small power to detect the difference in frequency. The empirical power

is still lower than 0.2 when the sample size is as large as 2000.

Compared with setting 1, setting 3 included additional frequency differences. As shown

in Figure 1.5, the empirical power of our proposed test increases for all the three cases with

δ3 = 0.25, 0.5, 0.75. In contrast, the power of classical ANOVA test is smaller than setting 1.

For setting 4, we consider that there is a nonlinear difference in magnitude along the x〈1〉

between the two groups. As shown in Figure 1.6, F-test has nearly no power to detect the

nonlinear magnitude changes even when δ4 = 1.5. In contrast, the empirical power of our

proposed converges to 1 rapidly as the sample size increases.
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Figure 1.4: (Setting 2) Plots of empirical power against the sample size. Red dashed, green dotted
and blue dot-dash lines denote different frequency parameters δ2 = 0.25, 0.5, 0.75 respectively. Left:
The empirical power of proposed test. Right: The empirical power of classical ANOVA test.

1.4.2 Significance Levels

To examine the approximation of significance levels, we keep the function form of control

group same with the previous section. We only added a parallel shift for the case group, i.e.,

the model does not have the interaction term. We generated data from (1.5) with function

f specified in Setting 5, and rest of parameters were set as before.

Setting 5.

f(x〈1〉, x〈2〉) = 2.5 sin(3πx〈1〉)(1− x〈1〉) + δ5I[x〈2〉=1]

where we set δ5 to be 0, 0.5 and 1 to characterize different level parallel difference in the two

groups.

Figure 1.7 plots the empirical sizes of our proposed test and ANOVA F-test under Setting

5. We varied δ from 0 to 1 to model different magnitudes of main effect. As shown in Figure
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Figure 1.5: (Setting 3) Plots of empirical power against the sample size. Red dashed, green
dotted and blue dot-dash lines denote different magnitude-frequency parameters δ3 = 0.25, 0.5, 0.75
respectively. Left: The empirical power of our proposed test. Right: The empirical power of classical
ANOVA test.

5, the empirical size of our proposed test approaches to 0.05 as the sample size increases for

different values of δ. However the empirical sizes of ANOVA F-test are all significantly lower

than 0.05.

1.5 Real Data Examples

We now apply the technique to analyze a couple of real datasets.

1.5.1 DNA methylation in chronic lymphocytic leukemia

Recently, Filarsky et al. [5] reported a DNA methylation study for chronic lymphocytic

leukemia (CLL) patients. In the study, the DNA samples were extracted from CD19+ cells

from 12 CLL patients and B cells from 6 normal subjects. The DNA methylation is profiled
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Figure 1.6: (Setting 4) Plots of empirical power against the sample size. Red dashed, green dotted
and blue dot-dash lines denote different nonlinear magnitude parameters δ4 = 0.5, 1, 1.5 respectively.
Left: The empirical power of our proposed test. Right: The empirical power of classical ANOVA
test.

by the whole-genome tiling array technique. The goal is to identify differentially methylated

regions (DMRs) between CLL patients and normal subjects.

To achieve this goal, we compiled the DNA methylation intensities within the −3.8 to

+1.8 kb of transcription start sites (TSS) for each gene. We used the M-value suggested by

[22] as methylation level at each site and as our response variable. We fitted the nonpara-

metric model in (1.3), and we tested the hypothesis in (1.4) on 10383 regions.

Through control of the FDR < 0.01 using Benjamini-Hochberg Procedure [23], we

selected 613 DMRs. We conducted gene ontology analysis on the 613 genes corresponding

613 identified DMRs using the GSEA [24]. Among all genes, 79 genes participate the lipid

metabolic process which plays an important role in the development of CLL [25]. This bio-

logical process contributes to apoptosis resistance in CLL cells. Furthermore, 78 and 61 genes
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Figure 1.7: (Setting 5) Plots of empirical size against the sample size. Red dashed, green dotted
and blue dot-dash lines denote δ5 = 0.5, 1, 1.5 respectively. Left: The empirical size of our proposed
test. Right: The empirical size of classical ANOVA test.

participate the immune related biological process “Immune system process” and “Regulation

of immune system process” respectively, which indicates that the aberrant DNA methylation

has the potential impact on the immune system.

We highlighted two DMRs with significant interaction in Figure 1.8. The focal hyperme-

thylation at 42574000 and 42576500 are observed on the promoter region of gene MTA3. It

was reported in [26] that MTA3 signaling pathway is a potential bio-marker for CLL and

shows significantly altered gene expression. Our test also identified that the methylation pat-

tern of MTA3 gene has significantly altered, which has the potential prognostic value. In the

promoter region of DNMT3, we observed significantly hypomethylation at 25244500 genomic

location. DNMT3 is a family of DNA methyltransferases that could methylate hemimethy-

lated and unmethylated CpG sites at the same rate [27]. Since the global hypomethylation
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(a) MTA3 (b) DNMT3A

Figure 1.8: The promoter regions of two genes, (a) MTA3 and (b) DNMT3A. The horizontal axis
is the genomic location and the y axis is the M-value representing the methylation intensities. The
red and blue line are the fitted curves for the case and control groups respectively.

are observed, the aberrant methylation pattern of this DNA methylatransferases may have

influence on this global trend.

1.6 Extensions

In some applications, some signals might have strong linear pattern or quadratic pattern.

In these situation, the polynomial spline can better fit this situation. The proposed test can

be easily generalized to the polynomial spline kernels. Here we consider H〈1〉 = S(m) and

H〈2〉 = R2. For the general mth order Sobolev space Sm(I), we use the inner product

(f, f̃)Sm(I) =
m−1∑
ν=0

∫ 1

0

f (ν)(u)du

∫ 1

0

f̃ (ν)(u)du+

∫ 1

0

f (m)(u)f̃ (m)(u)du,
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which is associated with a reproducing kernel constructed by Bernoulli polynomials [1]. For

example, when m = 2, one has the tensor sum decomposition of S2(I) as

S2(I) ={f : f ∝ 1} ⊕ {f : f ∝ x− 0.5} ⊕ {f :

∫ 1

0

f =

∫ 1

0

ḟ = 0, f̈ ∈ L2(I)}

=H〈1〉00 ⊕H
〈1〉
01 ⊕H

〈1〉
1 .

More details of this decomposition are shown in Example 2.5 [1]. Thus, the ANOVA decom-

position on the tensor product space, S2(I)⊗ R2, can be written as

H =(H〈1〉00 ⊕H
〈1〉
01 ⊕H

〈1〉
1 )⊗ (H〈2〉0 ⊕H

〈2〉
1 )

=(H〈1〉00 ⊗H
〈2〉
0 )⊕ (H〈1〉01 ⊗H

〈2〉
0 )⊕ (H〈1〉1 ⊗H

〈2〉
0 )⊕ (H〈1〉00 ⊗H

〈2〉
1 )

(H〈1〉01 ⊗H
〈2〉
1 )⊕ (H〈1〉1 ⊗H

〈2〉
1 )

=H00,0 ⊕H01,0 ⊕H1,0 ⊕H00,1 ⊕H01,1 ⊕H1,1.

Correspondingly, for any bivariate function in f ∈ S2(I)⊗R2, we have the following decom-

position,

f = f00,0 + f01,0 + f1,0 + f00,1 + f01,1 + f1,1.

where f01,1 and f1,1 representing the linear and nonlinear interaction between x〈1〉 and x〈2〉 .

First we test whether the linear interaction of x〈1〉 and x〈2〉 exsits as follows:

H0 : f01,1 = 0 v.s H1 : f01,1 6= 0.

Since f01,1 is the linear interaction of x〈1〉 and x〈2〉, it can be tested using the standard

parametric test. If failing to reject the null hypothesis, we will continue to test the f1,1 which

is the nonlinear interaction between x〈1〉 and x〈2〉.

H0 : f1,1 = 0 v.s H1 : f1,1 6= 0

Notice that, f01,0 are linear in terms of x〈1〉. Applying the Theorem 1 in [28], we have

||f̂01,0 − f01,0||22 = O(1/n),
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which implies a faster convergence rate than the nonparametric term. Replacing y by y∗ =

y − f̂01,0 and plugging to (1.14), we perform the proposed test by assuming

f ∗ ∈ H00,0 ⊕H1,0 ⊕H00,1 ⊕H1,1.

where f ∗ = f − f̂01,0. Then the test statistics can be constructed using (1.14) by setting

M = R + λnI where R = θ00,1K00,1 + θ1,1K1,1 is the weighted sum of kernels for H00,1 and

H1,1 with positive weight θ00,1 and θ1,1.

1.7 Discussion

The hypothesis testing in SS-ANOVA is a very difficult problem. In this paper, we developed

a “Wald-type” test for testing the significance of the interaction in two-way SS-ANOVA

model. The optimality of the proposed test was justified by the minimax distinguishable

rate. The extensive empirical studies suggests that proposed test has a superior performance.

Even though we only discuss the test of the significance of the interaction in two-way SS-

ANOVA model, the test of the significance of main effects can be developed. In higher order

SS-ANOVA model, the test of significance of each term can be developed parallel to our

development.

1.8 Technical Proofs

This section collects some detailed derivation, proofs of the lemmas and theorems. In the

theoretical derivation, we only focus on single replicate case. If we have wj subjects for the

jth group, it is equivalent to say that there are wj replicated measurements. The proof can

be easily generalized to this situation by using the penalized weighted least squares (see [1]

section 3.2.4).
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1.8.1 Proof of Theorem 3.1

Before deriving the proof of Theorem 1.3.1, we need to derive several quantities and prove

Lemma 1.8.1, Lemma 1.8.2 and Lemma 1.8.3.

Derivation of Equation (1.18)

Write matrix R as

R = θ01K01 + θ11K11 =
1

2

 K θdK

θdK K

 ,
where θd = θ01 − θ11. The inverse of M can be written as

M−1 =

1
2
K + λnIn

θd
2
K

θd
2
K 1

2
K + λnIn

−1

,

A B

B A

−1

=

A−1 + A−1B(A−BA−1B)−1BA−1 −A−1B(A−BA−1B)−1

−A−1B(A−BA−1B)−1 (A−BA−1B)−1

 ,
where A = 1

2
K + λnIn, B = θd

2
K, and In denotes the n× n identity matrix. Note that S is

an 2n× 2 matrix defined in (1.12). We thus have

STM−1S =

a b

b c

 ,
where

a = 1TA−11 + 1TA−1B(A−BA−1B)−1BA−11 + 2b− c,

b = −1TBA−1(A−BA−1B)−11 + 1T (A−BA−1B)−11,

c = 1T (A−BA−1B)−11.
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Consequently,

S(STM−1S)−1ST =
1

ac− b2

 c11T (c− b)11T

(c− b)11T (a+ c− 2b)11T


=

1

ac− b2

 c11T (c− b)11T

(c− b)11T c11T

 ,
where the second equality is due to the fact a− 2b = 0 by Woodbury matrix identity.

Note that f1 = (f1(x
〈1〉
1 ), . . . , f1(x

〈1〉
n ), f1(x

〈1〉
1 ), . . . , f1(x

〈1〉
n )). Let

(f1(x
〈1〉
1 ), . . . , f1(x〈1〉n ) , hT .

Therefore, we have

K11M
−1(In − S(STM−1S)−1STM−1)f1

=
1

2

 K −K

−K K

 (M−1 − 1

ac− b2
M−1

 c11T (c− b)11T

(c− b)11T c11T

M−1)

h

h

 .

Since both M−1 and 1
ac−b2M

−1

 c11T (c− b)11T

(c− b)11T c11T

M−1) are symmetric matrices and

their diagnonal entries are identical, we haveh∗

h∗

 , (M−1 − 1

ac− b2
M−1

 c11T (c− b)11T

(c− b)11T c11T

M−1)

h

h

 .
Simple algebra yields (1.18). �

Lemma 1.8.1. Under Assumption 1(a), for λn > 1/n, m > 3/2, and any ε > 0, we have

ŝλn � sλn

with probability at least 1− (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε}.
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Proof. Under Assumption 1(a), X
〈1〉
1 ,. . . , X

〈n〉
n are i.i.d with distribution ω〈1〉. Therefore, by

Theorem 3 in [29], for 1 ≤ i ≤ n and i ≤ r ≤ n, simple algebra yields

P(|µ̂i − µi| ≤ cmµi + µr + Λr) ≥ 1− r(r + 1) exp{− nc2
m

2C4r2
},

where Λr =
∑∞

i=r+1 µi, C is an absolute constant, and cm is a constant depending solely on

m. Since the eigenvalue µi has the polynomial decay rate i−2m, we have

Λr �
∞∑

i=r+1

i−2m.

For m > 1/2,
∞∑

i=r+1

i−2m ≤
∫ ∞
r

x−2mdx =
r1−2m

2m− 1
= O(r1−2m).

Let r = n1/(2m−1)−ε, we have Λr + µr = O(n2εm−1−ε) = o(µi) for i = 1, . . . , n1/2m−ε. Next,

we have, for any i = 1, . . . , n
1

2m
−ε, the empirical eigenvalue µ̂i satisfies

|µ̂i − µi| ≤ cmµi

with probability at least

1− (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε} (1.25)

where c = c2m
2C4 , cm is a constant only related to m, and M is an absolute constant. To ensure

the probability in (1.25) goes to 1, we further require m > 3/2. Thus, we have, for λn > 1/n

and m > 3/2,

ŝλn � sλn

with probability at least 1− (n
2

2m−1
−2ε + n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε}.

Lemma 1.8.2. Under Assumption 1(b), for m > 1/2, we have

ŝλn � sλn

for any λn > 0.
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Proof. The kernel function K∗ can be explicitly written as,

K∗(x, y) = 2
∞∑
i=1

cos(2πk(x− y))

(2πk)2m
.

Under Assumption 1(b), we have the X
〈1〉
1 , . . . , X

〈1〉
n evenly distributed on [0, 1]. Without loss

of generality, we assume that X
〈1〉
1 < · · · < X

〈1〉
n . Therefore, the kernel matrix K is given by

[K∗(x〈1〉i , x
〈1〉
i′ )]1≤i,i′≤n which is a symmetric circulant matrix of order n [16] with eigenvalues

µ̂∗i =


∑∞

k=1
1

[2π(kn−i)]2m +
∑∞

k=0
1

[2π(kn+i)]2m
if 1 ≤ i ≤ n− 1

2
∑∞

k=1
1

(2πkn)2m
if i = n

. (1.26)

Note that µ̂∗i is a re-arrangement of µ̂i. When m > 1/2, simple calculation yields

1

[2π(n− i)]2m
+

1

(2πi)2m
+ 2cm(2πn)−2m ≤ µ̂∗i

≤ 1

[2π(n− i)]2m
+

1

(2πi)2m
+ 2c̄m(2πn)−2m, (1.27)

for i = 1, . . . , n− 1, and

µ̂∗n = 2c̄m(2πn)−2m,

where cm :=
∑∞

k=1 k
−2m, and c̄m =

∑∞
k=2 k

−2m. By (1.27), we have µ̂∗i � µi for 1 ≤ i ≤ n
2

and µ̂∗i � µn−i for n
2
≤ i ≤ n. Since {µ̂}ni=1 are obtained by ordering {µ̂∗i }ni=1 decreasingly,

we have µi � µ̂i, and consequently,

sλn � ŝλn .

for any λn > 0.

Lemma 1.8.3. If Assumptions 1 and 2 hold, for ∆ = M−1K2
11M

−1 defined in Theorem

1.3.1, we have

4ŝλn
9
≤ Tr(∆) ≤ 4

(1− θd)2
(ŝλn +

1

2λn

n∑
i=ŝλn+1

µ̂i). (1.28)

Proof. Note that the kernel matrix K in (1.11) has the spectral decomposition K = UDUT ,

where the eigenvector matrix U is a n × n unitary matrix and the eigenvalue matrix D =
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Diag{µ̂i} is a diagonal matrix with eigenvalues µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂n. Correspondingly, we

have the following decomposition,

K11 =
1

2

U 0

0 U

 D −D

−D D

UT 0

0 UT

 ,

M =
1

2

U 0

0 U

D + 2λnIn θdD

θdD D + 2λnIn

UT 0

0 UT

 ,
where In is the n× n identity matrix, and θd = θ01 − θ11. Letting E = D + 2λnIn =

Diag{µ̂i + 2λn} and F = θdD = Diag{θdµ̂i}, we have

K11M
−1 =

U 0

0 U

 D −D

−D D

E F

F E

−1 UT 0

0 UT

 .
Using the inverse of block matrix, we have D −D

−D D

E F

F E

−1

=

V11 V12

V21 V22


where

V11 = DE−1 + (D +DE−1F )(E − FE−1F )−1FE−1,

V12 = −(DE−1F +D)(E − FE−1F )−1,

V21 = −V12, (1.29)

V22 = −V11. (1.30)

Consequently,

∆ = M−1K2
11M

−1 =

U 0

0 U

V11 V12

V21 V22

T V11 V12

V21 V22

UT 0

0 UT

 .
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We thus have

Tr(∆) = Tr(M−1K2
11M

−1) = Tr(

V11 V12

V21 V22

T V11 V12

V21 V22

)

= Tr

V T
11V11 + V T

21V21 V T
11V12 + V T

21V22

V T
12V11 + V T

22V21 V T
12V12 + V T

22V22

 . (1.31)

By (1.29) and (1.30), we have

V T
11V11 + V T

21V21 = V T
12V12 + V T

22V22.

Simple algebra yields

V T
11V11 + V T

21V21 = 2V T
11V11.

Therefore, we have

Tr(∆) = 4Tr(V T
11V11). (1.32)

Notice that D, E, F are diagonal matrices, we have

Tr(∆) = 4Tr(V T
11V11) ≥ 4Tr(D2E−2).

Since

D2E−2 = Diag{ µ̂2
i

(µ̂i + 2λn)2
},

we have

Tr(∆) ≥ 4
n∑
i=1

µ̂2
i

(µ̂i + 2λn)2
≥ 4

ŝλn∑
i=1

µ̂2
i

(µ̂i + 2λn)2
, (1.33)

where ŝλn is the effective dimension for kernel matrix K11. By the definition of ŝλn in (1.22),

for the any i < ŝλn , we have µ̂i
µ̂i+2λn

> 1
3
. Thus we have

Tr(∆) ≥ 4

9
ŝλn .

Now we shall prove the upper bound for Tr(∆). Since Tr(∆) has the expression (1.32),

we expand V11 as

V11 = DE−1 +DE−1(F (E − FE−1F )−1FE−1 + (E − FE−1)−1F ).
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The ith diagonal entry of F (E − FE−1F )−1FE−1 is

Diagi(F (E − FE−1F )−1FE−1) =
θ2
dµ̂

2
i

(µ̂i + 2λn −
θ2dµ̂

2
i

µ̂i+2λn
)(µ̂i + 2λn)

≤ θ2
d

1− θ2
d

, (1.34)

and the ith diagonal entry of (E − FE−1)−1F is

Diagi((E − FE−1)−1F ) =
θdµ̂

µ̂i + 2λn −
θ2dµ̂

2
i

µ̂i+2λn

≤ θd
1− θ2

d

. (1.35)

Combining (1.34) and (1.35), we have the ith diagonal entry of V11

Diagi(V11) ≤ (1 +
θ2
d

1− θ2
d

+
θd

1− θ2
d

Diagi(DE
−1) =

1

1− θd
Diagi(DE

−1).

Since the lower diagonal block is identical to the upper diagonal block, we only need to

bound the trace of DE−1. We have

Tr(D2E−2) =

ŝλn∑
i=1

µ̂2
i

(µ̂i + 2λn)2
+

n∑
i=ŝλn+1

µ̂2
i

(µ̂i + 2λn)2

≤
ŝλn∑
i=1

µ̂i
µ̂i + 2λn

+
n∑

i=ŝλn+1

µ̂i
µ̂i + 2λn

≤ŝλn +
1

2λn

n∑
i=ŝλn+1

µ̂i.

Thus we have Tr(∆) ≤ 4
(1−θd)2

(ŝλn + 1
2λn

∑n
i=ŝλn+1 µ̂i).

Proof of Theorem 1.3.1

Proof. We define the three terms on the right-hand side of equation (1.20) as T1, T2 and T3,

i.e.,

T1 =
1

n
εT∆ε,

T2 =
1

n
εTM−1S(STM−1S)−1ST∆S(STM−1S)−1STM−1ε,

T3 =
1

n
εTM−1S(STM−1S)−1ST∆ε.
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We now show T2 and T3 are in smaller order compared to T1. First, we analyze the second

term T2 in (1.20). We have

E[T2] =
1

n
E[εTM−1S(STM−1S)−1ST∆S(STM−1S)−1STM−1ε]

=
σ2

n
Tr(M−1S(STM−1S)−1ST∆S(STM−1S)−1STM−1)

≤2σ2

n
λmax(∆)λmax(M−1S(STM−1S)−1STS(STM−1S)−1STM−1)

≤2σ2

n
λmax(∆),

where λmax denotes the largest eigenvalue. Since all eigenvalues of ∆ are less than 1, we have

E[T2] ≤ 2σ2

n
. Analogously, we can derive the variance inequality of T2. Combining the results

together and using the Chebyshev inequality, we have

T2 = Op(
1

n
). (1.36)

Second, we analyze the third term T3 in (1.20). We apply the Cauchy-Schwarz inequality

and have

|T3| ≤
√
T2

√
T1. (1.37)

Finally, we derive the magnitude of T1. We first consider the testing consistency of T1

conditional on X. Denote Eε as the expectation with respect to ε, and define Varε as the

variance with respect to ε. Note that

Eε[εT∆ε] = σ2Tr(∆), Varε[εT∆ε] = 2σ4Tr(∆2).

Let Z = (εT∆ε − σ2Tr(∆))/σ2
√

2Tr(∆2) and t ∈ (−1/2, 1/2). Then the log-characteristic

function of Z can be written as

logEε[exp(itZ)]

= logEε[exp(itεT∆ε/σ2
√

2Tr(∆2))]− itT r(∆)/σ2
√

2Tr(∆2)

=− 1

2
log det{I2n − 2it∆/σ2

√
2Tr(∆2)} − itT r(∆)/σ2

√
2Tr(∆2). (1.38)
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Through Taylor expansion, one has

− 1

2
log det{I2n − 2it∆/σ2

√
2Tr(∆2)}

= it
T r(∆)

σ2
√

2Tr(∆2)
− t2 Tr(∆2)

2σ4Tr(∆2)
+O(t3

Tr(∆3)

σ6[Tr(∆2)]3/2
). (1.39)

Combining Equations (1.38) and (1.39), we have

logEε[exp(itZ)] = − t2

2σ4
+O(t3

Tr(∆3)

σ6[Tr(∆2)]3/2
). (1.40)

Since all eigenvalues of ∆ are less than 1, we have Tr(∆3)
Tr(∆2)

≤ 1. Analogous to (1.33), we have

Tr(∆2) ≥ 16

81
ŝλn . (1.41)

Under Assumption 1(a), we have Tr(∆2)→∞ as λn → 0 with probability approaching

1 by Lemma 1.8.1 and (1.41). Hence, the second term on the right-hand side of Equation

(1.40) is op(1). We thus conclude that

Eε[exp(itZ)]
P−→ exp(− t2

2σ4
).

Next, we show that

E[exp(itZ)] = EX
[
Eε[exp(itZ)]

]
→ exp(−t2/(2σ4))

for t ∈ (−1
2
, 1

2
). If not, there exists a subsequence of r.v X

〈1〉
nk , such that for ∀ε > 0,

|E
X
〈1〉
nk
Eε exp(itZ) − exp(−t2/(2σ4))| > ε. On the other hand, since Eε exp(itZ(X

〈1〉
nk ))

P−→

exp(−t2/(2σ4)), which is bounded, there exists a sub-sub sequence {X〈1〉nkl}, such that

Eε exp(itZ(X
〈1〉
nkl))

a.s−→ exp(−t2/(2σ4)). Then by dominate convergence theorem, E
X
〈1〉
nkl

Eε exp(itZ)→

exp(−t2/(2σ4)), which is a contradiction.

Under Assumption 1(b), we can easily obtain E[exp(itZ)]→ exp(− t2

2σ4 ) by Lemma 1.8.2

and (1.41).

Thus Z is asymptotically Gaussian distributed, and

T1 − σ2Tr(∆)/n

σ2
√

2Tr(∆2)/n2

d−→ N(0, 1). (1.42)

Combining (1.36), (1.37) and (1.42), the theorem follows.
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1.8.2 Proof of Theorem 3.2

In SS-ANOVA (1.6), we denote g∗ = f1 + f1,2. We shall now estimate g∗ using the noise-free

data. That is, we consider the following penalized least squares,

1

2n
||f − Sd− nRc||22 + nλnc

TRc (1.43)

where f = (f(x
〈1〉
1 , x

〈2〉
1 ), . . . , f(x

〈1〉
n , x

〈2〉
n ))T . The minimizer of (1.43) is seen to be

c̃ =
1

n
[M−1 −M−1S(STM−1S)−1STM−1]f ,

d̃ = (STM−1S)−1STM−1f .

The estimator of g∗ is g̃∗ = ξT c̃, where the kernel vector ξ has the ith entry of θ01K01(xi, ·) +

θ11K11(xi, ·). We thus have

g̃∗ = R[M−1 −M−1S(STM−1S)−1STM−1]f ,

where g̃∗ = (g̃∗(x1), . . . , g̃∗(x1))T and g∗ = (g∗(x1), . . . , g∗(x1))T . By (1.17), we have

g̃∗ = R[M−1 −M−1S(STM−1S)−1STM−1]g∗, (1.44)

Lemma 1.8.4. If Assumption 2 holds, as n→∞, λn → 0 and λn ≥ n−1, we have,

||g̃∗ − g∗||2n ≤ cλn,

where c is a constant.

Proof. By Assumption 2, we have

||f1 + f1,2||2H10⊕H11
≤ ||f ||2H < 1. (1.45)

For any function g in H10⊕H11, we can represent it as g = ξT c̃+ζ(·), where ζ(·) ∈ H10⊕H11

is orthogonal to ξ. Moreover,

||f1 + f1,2||2H10⊕H11
=||ξT c̃||2H10⊕H11

+ ||ζ(·)||2H10⊕H11

≥nc̃TRc̃ =
1

n
(nc̃TR)R−1(nRc̃)

=
1

n
g∗TR−1g∗. (1.46)
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Combining (1.45) and (1.46), we have

1

n
g∗TR−1g∗ < 1. (1.47)

By (1.44), we have

||g̃∗ − g∗||2n =
1

n
||g∗ −RM−1g∗ +RM−1S(STM−1S)−1STM−1g∗||22

=
1

n
g∗T (I −RM−1)2g∗ +

1

n
||RM−1S(STM−1ST )−1STM−1g∗||22.

Noting that M = R + λnIn, the eigenvalues of In − R(R + λnIn)−1 are all smaller than 1,

and the rank of RM−1S(STM−1ST )−1STM−1 is 2, we have

||g̃∗ − g∗||2n ≤
1

n
g∗(I −R(R + λnI)−1)g∗ +O(

1

n
)

≤λn +O(
1

n
),

where the last inequality holds by applying Woodbury matrix identity,

(R + λnIn)−1 = R−1 −R−1(
1

λn
In +R−1)−1R−1 ≥ R−1 − λnR−2,

and (1.47). The proof is thus completed.

Remark for empirical norm and L2 norm

In this section, we discuss the relationship between the empirical norm and L2 norm under

Assumption 1. Recall the definition of empirical norm and L2 norm as,

||f ||2n =
1

2n

2∑
j=1

n∑
i=1

f 2(x
〈1〉
i , x

〈2〉
j ) and ||f ||22 =

1∑
x〈2〉=0

∫ 1

0

f 2(x〈1〉, x〈2〉)dω1.

In the following lemma, we will establish their relationship.

Lemma 1.8.5. Under Assumption 1, for f : X1 × X2 → R and a positive constant c, we

have

||f ||2 ≤ c||f ||n

i.e. the empirical norm of f dominates the L2 norm.
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Proof. Under Assumption 1(a), Theorem 3.1 of Eggermont et al. [17](page 384, [17]) implies

that || · ||ω〈1〉mh norm is equivalent to || · ||n for any fixed x〈2〉. The || · ||ω〈1〉hm is defined as

||f(x〈1〉, 0)||2
ω〈1〉mh

= ||f(x〈1〉, 0)||2
L2(ω〈1〉)

+ h2m||f(x〈1〉, 0)(m)||2 which trivially dominates the

|| · ||L2(ω〈1〉) norm. Since x〈2〉 can only take the value of 0 or 1, we have that || · ||n dominate

|| · ||2, i.e. there exists a positive constant c such that ||f ||2 ≤ c||f ||n.

Under assumption 1(b), Lemma 2.27 in Eggermont et al. [17] states that the || · ||n

dominates || · ||2 for x〈1〉 satisfying Assumption 1(b).

Poof of Theorem 1.3.2

Proof. Under the alternative hypothesis, the statistic Tn,λn in (1.19) can be decomposed into

three terms,

Tn,λn =
1

n
||Hε||22 +

1

n
||Hf1,2||22 +

2

n
fT1,2H

THε. (1.48)

where H = θ11K11M
−1(I − S(STM−1S)−1STM−1). Let W1 = 1

n
||Hε||22, W2 = 1

n
||Hf1,2||22,

and W3 = 2
n
fT1,2H

THε denote corresponding three terms on the right-hand side of equation

(1.48).

We now derive a lower bound for W2. By Lemma 1.8.4, we have

1

n
||Hf1,2 − f1,2||22 ≤

1

n
||Hf1,2 − f1,2||22 +

1

n
||Hf1 − f1||22

=
1

n
||Hf1 +Hf1,2 − f1 − f1,2||22

= ||g̃∗ − g∗||2n ≤ cλn. (1.49)

Let c′ =
√
c, we consider the distinguishable rate

1

n
||f1,2||22 = ||f1,2||2n > c′2d2

n = c(λn + σn,λn). (1.50)
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where the inequality is satisfied since || · ||n dominates || · ||2 by Lemma 1.8.5. The lower

bound of W2 is thus,

W2 =
1

n
||Hf1,2||22 =

1

n
||f1,2||22 −

1

n
||f1,2 −Hf1,2||22

≥cd2
n − cλn

≥cσn,λn . (1.51)

where the first inequality is obtained by (1.49) and the second inequality is obtained through

pluging in (1.50)

For the third term W3, it is seen that EW3 = 0. It is easy to verify that the eigenvalues

of HHT are all less than 1. Moreover,

EW 2
3 =

4

n2
E[fT1,2H

THεεTHTHf1,2]

=
4

n2
(Hf1,2)THHT (Hf1,2)

≤ 4

n2
(Hf1,2)T (Hf1,2) =

4

n
W2.

By Chebyshev’s inequality, for any ε > 0, we have

P(|W3| ≥
2ε−

1
2W

1
2

2√
n

) ≤ nEW 2
3

4ε−1W2

≤ ε.

Consequently, there exists an N1, for any n > N1, we have

P{|W3| >
1

2
W2} ≤ P(|W3| ≥

2ε−
1
2W

1
2

2√
n

) ≤ ε. (1.52)

By the triangle inequality, we have

|W1 − µn,λn
σn,λn

+
W2 +W3

σn,λn
| ≥ |W2 +W3

σn,λn
| − |W1 − µn,λn

σn,λn
|

≥ | W2

σn,λn
| − | W3

σn,λn
| − |W1 − µn,λn

σn,λn
|. (1.53)

If
|W1−µn,λn |

σn,λn
≤ Cε, and |W3| ≤ 1

2
W2 hold, in view of (1.53) and (1.51), we have

|W1 − µn,λn
σn,λn

+
W2 +W3

σn,λn
| ≥ 1

2
c− Cε.
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Noting that W1 is identical to (1.20), by Theorem 1.3.1, we have
|W1−µn,λn |

σn,λn
= Op(1). That is

for a Cε > 0, there exists an N2, for any n > N2, we have

P(
|W1 − µn,λn|

σn,λn
> Cε) ≤ ε. (1.54)

Setting c ≥ 2(Cε + z1−α
2
) and N = max(N1, N2), for any n > N , we have

P(Φn,λn = 1) =P{|W1 +W2 +W3 − µn,λn|
σn,λn

≥ z1−α
2
}

≥P{|W1 − µn,λn|
σn,λn

≤ Cε, |W3| ≤
1

2
W2}

≥1− P{|W1 − µn,λn|
σn,λn

> Cε} − P{|W3| >
1

2
W2}

≥1− 2ε,

where the second inequality is due to Boole’s inequality and the last inequality is obtained

through plugging (1.51) and (1.54). The proof is completed.

1.8.3 Proof of Theorem 3.3

In order to find the optimal distinguishable rate, we need to bound the tail sum of the

eigenvalues of the empirical kernel matrix. We state the following two lemma which gives

an upper bound for the tail sum of the eigenvalues of the empirical kernel matrix under

Assumption 1(a) and 1(b) respectively.

Lemma 1.8.6. (Liu et al. [21]) If 1/n < λn → 0 and Assumption 1(a) is satisfied, then

with probability at least 1− 4e−sλn ,

n∑
i=ŝλn+1

µ̂i ≤ Csλnµsλn ,

where C > 0 is an absolute constant.
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Lemma 1.8.7. If λn > 0 and Assumption 1(b) is satisfied, we have

n∑
i=ŝλn+1

µ̂i ≤ Csλnµsλn ,

where C > 0 is an absolute constant.

Proof. Under Assumption 1(b), the empirical eigenvalues could be calculated by (1.26). By

the definition of ŝλn in (1.22), we have

n∑
i=ŝλn+1

µ̂i =
∑

{i|µ̂∗i<λn}

µ̂∗i . (1.55)

Since the population eigenvalues are {(2πi)−2m}∞i=1, we calculate the population efficient

dimension as sλn = (λn)−1/2m/2π. Through the inequalities in (1.27), we have µ̂∗i ≥ λn for

i = 1, . . . , sλn or i = n− sλn , . . . , n. We can bound the term in (1.55)

∑
{i|µ̂∗i<λn}

µ̂∗i ≤
n−sλn∑
i=sλn

µ̂∗i

By the upper bound of µ̂∗i given in (1.27), we have

n−sλn∑
i=sλn

µ̂∗i ≤ Csλnµsλn

which completes the proof.

Proof of Theorem 1.3.3

Proof. The distinguishable rate is

dn =
√
λn + σn,λn ,

where σ2
n,λn

= 2θ4
11σ

4Tr(∆2)/n2. We now derive the order of σ2
n,λn

. Since the eigenvalues of

∆ are less than 1, and by Lemma 1.8.3, we have

Tr(∆2) ≤ Tr(∆) ≤ 4

(1− θd)2
(ŝλn +

1

2λn

n∑
i=ŝλn+1

µ̂i).
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Under Assumption 1(a), we apply the results in Lemma A.1 and have

Tr(∆2) .
4

(1− θd)2
(ŝλn +

1

2λn
λnsλn)

satisfied with probability at least 1− 4e−sλn . Combining with the lower bound of Tr(∆2) in

(1.41) and Lemma 1.8.1, we have

Tr(∆2) = O(sλn). (1.56)

with probability at least 1−4e−sλ− (n
2

2m−1
−2ε +n

1
2m−1 ) exp{−cn

2m−3
2m−1

+2ε}. Similarly, we have

(1.56) satisfied under Assumption 1(b) by applying the results in Lemma 1.8.2 and Lemma

1.8.7.

By using (1.56), we have

σ2
n,λn � λ

− 1
2m

n n−2 � sλnn
−2. (1.57)

By Cauchy-Schwartz inequality, the distinguishable rate dn =
√
λn + σn,λn is minimized

when λn = σn,λn , i.e.,

λn � n−4m/(4m+1)

Thus we have the minimum distinguishable rate

d∗n = O(n−2m/(4m+1)),

By Lemma 1.8.5, this optimal distinguishable rate is achieved in the sense of L2 norm.

Reference

[1] Chong Gu. Smoothing spline ANOVA models. Springer, 2013.

[2] Grace Wahba. Spline models for observational data. Siam, 1990.

[3] Trevor Hastie and Robert Tibshirani. Generalized additive models. Wiley Online

Library, 1990.

41



[4] Dirk Stach, Oliver J Schmitz, Stephan Stilgenbauer, Axel Benner, Hartmut DoÈhner,
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Chapter 2

MetaGen: reference-free learning with multiple metagenomic samples

2.1 Background

Due to the rapid advancement of high-throughput sequencing technologies, metagenomics,

which investigates the genetic contents of the entire collection of microbial species in a set of

environmental samples, is becoming a major tool for studying microbial ecology, evolution,

and diversity, as well as linking microbial features to the surrounding environment or human

health [1–3].

In the past decade, many methods have been proposed to estimate microbial compositions

from metagenomic sequencing data, with a majority focused on those targeted sequencing

data that only provide information on a few selected genes such as 16s rRNA [4]. Because

the targeted approach requires the sequencing of only a limited number of genes instead

of hundreds of microbial genomes, it is cheap and computationally efficient. The trade-

offs are that it can only reach a fairly high taxonomy rank, i.e. having a relatively low

resolution in differentiating distinct species, and that it cannot provide information regarding

other important genomic components. Moreover, statistical estimation based on targeted

sequencing data can be biased because the PCR primers used for amplifying the targeted

genes, such as 16s rRNA, have different levels of sensitivity in different species [5].

Because of the drastic cost reduction in next-generation sequencing technologies and the

disadvantages of targeted-gene based approaches, the genome-wide shotgun sequencing has

become a dominant technique in metagenomic studies. The genomic fragments obtained from

metagenomic samples are binned into different species or taxonomical bins either according
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to the fragments’ similarities to some known reference genomes or according to the sequence

composition similarities (e.g., similarities between k-mer distributions [6] or oligonucleotide

frequencies [7]). This class of approaches is referred to as “binning methods”. Reference-

based binning methods such as MAGEN [8], MetaPhyler [9], Kraken [10] and CLARK [11]

require us to know the reference genomes of the interested microbial species, which can be

a serious limitation. In contrast, the k-mer or the oligonucleotide-frequency based methods

are reference-free. However, the binning accuracy of k-mer based method can be significantly

compromised because the k-mer distributions estimated from short contigs (e.g., <10kb) can

be far from their corresponding whole-genome k-mer distributions. Meanwhile, the effec-

tiveness of k-mer based methods is also diminished when the microbial community under

consideration contains organisms with moderate to high sequence similarities. In order to

improve k-mer based approaches, coverage-based methods such as CONCOCT [12], MaxBin

[13], MetaBAT [14], Groopm [15] and VizBin [16] are developed to integrate the coverage

information (i.e., the average number of short-reads covering each base pair of a contig after

alignment) with the sequence composition information. Although integrating coverage infor-

mation can significantly improve the binning accuracy, how to balance the k-mer information

with the coverage information is by no means a banal development. Our simulation studies

suggest that most of the existing coverage-based methods still fail in distinguishing genet-

ically similar species. Moreover, the coverage estimate is biased when the species does not

have adequately coverage or when the sequence bias is high.

In this article, we propose a reference-free and distribution-free binning method,

MetaGen, which makes use of the relative abundance information from multiple samples to

cluster contigs into different species bins and relies on the Bayesian information criterion

(BIC) to determine the number of species in the samples. Since MetaGen solely uses the

cross-sample abundance patterns for binning, we recommend that the number of samples in

consideration should be larger than 10 (or 5% of the total number of specie). Compared to
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existing unsupervised binning methods, MetaGen not only clusters short contigs accurately

for samples with low coverage but also has the ability to distinguish species with high

sequence similarities. In addition, MetaGen can estimate the relative abundance of cultured

and uncultured species simultaneously, which provides a way to study distributional changes

in microbial colonies dynamically and spatially. Moreover, MetaGen is not susceptible to

sequencing biases, which is an important advantage compared with many existing methods.

MetaGen is computationally efficient and can easily handle large data sets with more than

500, 000 contigs.

2.2 Results

2.2.1 Multi-sample reference-free binning: An overview

We consider metagenomic sequencing data consisting of short reads from the genomes of the

organisms in the samples. The first step in almost all analysis methods is to connect over-

lapping short reads from the pooled sample into longer sequences, termed as “contigs”. The

k-mer based reference-free methods proceed to “bin” (i.e., cluster) these contigs, regarding

them as coming from the same or similar species, according to similarities among the k-mer

distributions of these contigs. Our proposed method, MetaGen, however, uses the relative

abundance information of the contigs across multiple samples to cluster them. Thus, whereas

the k-mer based methods need to assume that contigs derived from the same species have sim-

ilar k-mer distributions, MetaGen assumes that abundances of different species vary across

multiple samples.

Since each contig is composed of many short reads coming from all samples, we define

each contig’s sample profile as the vector of percentages of short reads mapped from different

samples. As the genome of a species can be thought of as the longest possible contig, we refer

to the similarly-defined short-read percentage vector as the species’s sample profile. In theory,

a contig’s sample profile should be the same as the sample profile of the species that contains

48



contig 1 ଵଵݔ ଵଶݔ … ଵ௉ݔ
contig 2 ଶଵݔ ଶଶݔ … ଶ௉ݔ
… … … … …

contig N ேଵݔ ேଶݔ … ே௉ݔ

sample 1 sample 2

sample 1 sample P

contig 1 contig 2 contig 3 contig N

Pooled Assembly

RCMM Extraction

Clustering by EM Algorithm

contig 1 ଵଵݔ ଵଶݔ … ଵ௉ݔ
contig 2 ଶଵݔ ଶଶݔ … ଶ௉ݔ
… … … … …

contig N ேଵݔ ேଶݔ … ே௉ݔ

sample 1 sample 2

sample 1 sample P

contig 1 contig 2 contig 3 contig N

Pooled Assembly

RCMM Extraction

Clustering by EM Algorithm

sp
1 sp2 sp1 sp2

B.

A.

C.

D. Sample profile for sp1 ොܽଵ ൌ
ሺ ොܽଵଵǡ ǥ ǡ ොܽଵ௉ሻ

Sample profile for sp K
ොܽ௄ ൌ ሺ ොܽ௄ଵǡ ǥ ǡ ොܽ௄௉ሻ

sample 2

sample 2
sample 1

sample Psp
2 p2222222

sp
K sp

1 sp
2

sp
Kpp

sp
1 p1pppppppp1ppppp

sp
2 pp22222222222222222222

sp
K

sample P

contig 1

contig N

Cluster label Ƹݖଵ

Cluster label Ƹݖே

൅

Figure 2.1: MetaGen Pipline: A. Sequencing the DNA of P metagenomic samples. B. Pooled
assembly for multiple samples. C. Constructing the RCMM (Read Counts Mapping Matrix). D.
Clustering the contigs and estimating the sample profile by the EM Algorithm.

the contig (if we assume that the contig is long enough for a unique mapping). Thus, if two

contigs have similar sample profiles, they are likely derived from the same genome. MetaGen
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models the mapped short-read counts of each contig by a mixture of multinomial distribu-

tions, with each of its mixture components representing a distinct species. The limitation

of MetaGen is that if two species have nearly proportional abundances in all the samples,

their corresponding contigs will tend to have highly correlated sample profiles, which makes

it difficult for MetaGen to differentiate the two species. As shown by our simulation studies,

however, this difficulty can be alleviated by increasing the sequencing depth.

2.2.2 Statistical deconvolution of metagenomic samples

As explained previously, if two contigs have very similar sample profiles, they are likely part of

the same species’ genome. Let us assume that N contigs were obtained from P metagenomic

samples, with a total of K species involved. The extracted read counts mapping matrix

(RCMM) has N rows and P columns, with its (i, j)th entry recording the read count from

the jth sample mapped on to the ith contig, as shown in Step C of Fig. 2.1. Thus, each row

of RCMM is proportional to the sample profile of a contig. A direct clustering of the rows

of RCMM provides information about the number of species and their distributions in the

samples.

Let Xi, i = 1, . . . , N , denote the row vectors of the RCMM, each of length P , and let Zi

take values in {1, . . . , K}, indicating from which species contig i is derived. We assume that

the Zi’s are independent, and P (Zi = k) = πk, with the probability vector π = (π1, . . . , πK).

Furthermore, we assume that given the species label Zi, Xi follows the multinomial distri-

bution:

Pr(Xi = xi|Zi = k) =
ni

xi1! . . . xiP !
axi1k1 . . . a

xiP
kP (2.1)

where ak = (ak1, . . . , akP ),
∑P

j=1 akj = 1, is the sample profile of the kth species, ni =∑P
j=1 xij is the total number of mapped reads on ith contig. Let A denote the K×P sample

profile matrix constructed by stacking up the ak’s, and let θ = (π, A). Treating Zi as missing
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data, we have the complete-data likelihood function as

L(θ; x1, . . . ,xN , z1, . . . , zN) =

N∏
i=1

K∑
k=1

πk1(zi = k)
ni

xi1! . . . xiP !
axi1k1 . . . a

xiP
kP (2.2)

where 1(·) is an indicator function. The maximum likelihood estimate (MLE) of θ can be

obtained by the Expectation-Maximization (EM) algorithm [17], which iterates the following

two steps:

E-step: Calculate Q(θ|θ(t)), the expectation of the complete-data log-likelihood function

based on the parameter fixed at θ(t):

Q(θ | θ(t)) =
N∑
i=1

K∑
k=1

q̂
(t)
ik

[
log πk +

P∑
j=1

xij log(akj)

]
, (2.3)

where q̂
(t)
ik = π

(t)
k a

(t)
k1

xi1
. . . a

(t)
kP

xiP
/[∑K

l=1 π
(t)
l a

(t)
l1

xi1
. . . a

(t)
lP

xiP
]

.

M-step: Find θ̂ that maximizes the function Q(θ|θ(t)). This leads to

π
(t+1)
k ∝

N∑
i=1

q̂
(t)
ik ; and a

(t+1)
kj ∝

N∑
i=1

q̂
(t)
ik xij (2.4)

Initialization and final clustering: Although each EM iteration increases the observed-

data likelihood function, the algorithm does not guarantee to converge to the global max-

imum. We thus employed the following initialization strategy: we first select the 10% ∼ 30%

contigs with the largest number of mapped reads and cluster the selected contigs into K

species using hierarchical clustering with their pairwise distance defined by

d(x1,x2) = 1−
∑P

j=1 x1jx2j√∑P
j=1 x

2
1j

∑P
j=1 x

2
2j

.

The class mean of species k is then used as the starting values a
(0)
kj , j = 1, · · · , P . With the

MLE θ̂ obtained by the EM-algorithm, we assign each xi to the species with the highest

posterior probability, i.e., we set ẑi = argmink q̂ik, i = 1, . . . , N .
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2.2.3 Determining the number of species in the samples

Since the number of species is generally unknown in most applications, we employed the

Bayesian information criteria (BIC) [18; 19] to select the number of species. The BIC score

for our model with K species is defined as

BIC(K) = −2 logL(θ̂; x1, . . . ,xN) + (K ∗ P +K) log(N) (2.5)

We determine the number of species K̃ by minimizing this score, i.e.,

K̃ = argmin
K

BIC(K) (2.6)

In practice, we gradually increase the number of species and stop when BIC score begins to

increase. Our simulation studies showed that the criterion worked satisfactorily in accurately

determining the number of species involved in the studies.

2.2.4 Comparison with coverage-based metagenomic binning methods

There are two types of information contained in metagenomic data: the sequence content

information and the sequence quantity information (i.e., numbers of mapped reads of con-

structed contigs). The sequence content information has been extensively used in existing

metagenomic binning methods, whereas the sequence quantity information is much less used.

A few exceptions such as CONCOCT, Maxbin and MetaBAT bin contigs together if their

sequencing coverages (the average number of reads that can be aligned to a reference base)

are similar. These methods intrinsically assume that no fragment of any involved genome in

the sample has positional bias. They work well for GC-neutral or GC-rich species, in which

the regional GC-bias is not a serious issue. As shown in [20–22], however, the sequencing

coverage can be highly variable along the genome, especially for species with a low GC con-

tent. For example, it was shown in [21] that Beta vulgaris BAC ZR-47B15 has nearly 7 times

more coverage in GC-rich regions than in GC-poor regions. Consequently, binning contigs
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based on their coverage similarities is highly susceptible to sequencing bias. In contrast,

MetaGen is less susceptible to sequencing bias since it bins contigs based on the ratio of the

mapped-reads counts (i.e., the sample profile). Sequencing biases do not affect the sample

profile because these biases are the same across samples and thus can be canceled out. In

other words, two contigs from the same species can still be binned together even if their

observed coverage is very different due to positional biases.

Another unique feature of MetaGen is that it does not use the sequence (content) infor-

mation in binning, because the information gain is offset by undesirable sequencing biases

and high computational costs, especially when one deals with short contigs produced from

data with relatively low sequencing coverages. As reviewed previously, short contigs are more

susceptible to positional and sequencing biases. As shown in our simulation studies, for con-

tigs shorter than 5000 bps, including the sequence information did not increase the binning

accuracy, but greatly increased the computational complexity. Another reason for not using

the sequence information in MetaGen is that features summarized from the sequence infor-

mation and those from sequencing coverages are usually at different scales. An ad hoc com-

bination of the two types of information can make the computation unstable since one type

may completely dominate the other. A potential remedy is to weigh the sequence features

and sequencing coverage information properly so that the contribution from each sources is

on the same scale [14]. However, choosing a data-driven weight significantly increases the

computational burden without bringing much improvement most of the time.

Finally, MetaGen directly models short-read counts rather than their transformations

as proposed in some recent papers. Thus, it does not need to add deliberately a small

”pseudo-count” to zero coverage values when calculating their logarithmic transformations

as suggested in CONCOCT. Moreover, MetaGen avoids using inappropriate Gaussian distri-

butions for non-negative zero-inflated observations as in MetaBAT, which can be important

especially for low-coverage data.
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2.2.5 Simulation studies

To investigate how the binning accuracy was affected by other parameters such as the

sequencing depth, the sample size and the number of species, we conducted extensive sim-

ulations to compare MetaGen with three state-of-the-art reference-free binning methods:

CONCOCT [12], MaxBin [13] and MetaBAT [14]; and one reference-based method, CLARK

[11]. The names of the species (or sub-strains) used for all the setups are given in Table S1-3.

All the algorithms compared here were implemented on a computer configured with 2× Intel

Xeon E5-2670 and 8× 32GB RAM. Under all the simulation setups, MetaGen is at least 10

times faster than other reference-free binning methods (Figure S1).

How binning accuracy is affected by sequencing depth

First, we examined three sequencing depths for the pooled sample: 80x (1x per sample),

120x (1.5x per sample), and 160x (2x per sample). Short reads from 100 species mixed

at a randomly generated proportional distribution was independently simulated for each of

the 80 samples. Because all the methods except MetaGen can be significantly impaired for

contigs shorter than 1000bps, we used only the subset of contigs with a length longer than

1000bps for CONCOCT, MetaGen, MaxBin and CLARK. For MetaBAT we used contigs

longer than 1500bps, which is the default minimum length for contigs that can be used in

MetaBAT. As shown in Figure 2.2, MetaGen performed well at all sequence depths by all

three measures: precision, recall, and the adjusted Rand index (ARI, a combination of the

precision and recall measurements), especially for data with very low sequencing depth. For

example, in the case of 1x per sample, MetaGen achieved 0.88 ARI, whereas CONCOCT,

MaxBin, and MetaBat had only 0.59, 0.14, and 0.66 ARI, respectively.

It is clear that CLARK outperformed almost all reference-free methods, especially when

the sequence depth is low, because we give a significant advantage to CLARK by assuming

that all the reference genomes are known (unrealistic, though). It was also shown in Figure
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Figure 2.2: (A).Adjusted Rand Index, (B).Precision and (C).Recall of CLARK, MetaGen,
MaxBin, CONCOCT, and MetaBAT are evaluated under different sequencing depth, 80 samples
and 100 species.

2.2 that the benefit of knowing the reference genome is not so significant when the sequence

depth is high enough (say, 1.5x per sample). In fact, the binning accuracy for CLARK is

worse than for MetaGen by a tiny margin at 2x per sample due to the alignment error gen-

erated by quickly approximating the similarities between contigs and the reference genomes

using CLARK. The accuracy of reference-based binning methods can be improved by using

BLAST, but the computational cost would be intolerably high.

How binning accuracy is affected by sample size

In this experiment, we let the sample size vary from 20, 40 to 80 for 100 species with the

pooled sequencing depth at 120x. We followed the same rule as used in the first experiment to

generate each metagenomic samples and select subsets of contigs. Note that the per sample

sequencing depth in this experiment decreased as we increased the sample size. Since the

pooled sequencing depth was fixed, a contig’s coverage in a single sample decreased with

the increase in the sample size. As shown in Figure 2.3, the binning accuracy decreased for
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all the existing coverage-based binning methods because the approximated distribution of

the log-transformation of the sequencing coverage, which was used to bin contigs, performs

badly if the per sample coverage is low (near zero, for example).

● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

1.0

5 10 20 40 80
Number of Samples

Ad
ju

st
ed

 R
an

d 
In

de
x

● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

1.0

5 10 20 40 80
Number of Samples

Re
ca

ll

●
● ● ● ●

0.6

0.7

0.8

0.9

1.0

5 10 20 40 80
Number of Samples

Pr
ec

isi
on

● CLARK

MetaGen−1000

MaxBin−1000

CONCOCT−1000

MetaBAT−1500

Figure 2.3: (A).Adjusted Rand Index, (B).Recall and (C).Precision of CLARK, MetaGen,
MaxBin, CONCOCT, and MetaBAT are evaluated under different number of samples, 120x
sequence depth and 100 species.

However, increasing sample size is a blessing for MetaGen, as the larger the sample size

is, the higher the discrimination power of the ratio is and the higher the binning specificity is.

As shown in our simulation studies, the precision increased from 0.93 to 0.99 as we increased

the sample size, which in turn led to the increases in ARI.

How binning accuracy is affected by number of species

Here we increased the number of species from 50 to 100 and 150, with the pooled sequencing

depth fixed at 120x and the sample size fixed at 80. Again, due to the fixed pooled sequencing

depth, contigs tend to be shorter for a larger number of species. Thus, increasing the number

of species can lead to a higher binning error rate for all methods except MetaGen, because all

other methods use k-mer distribution similarities for binning and consequently suffer from

high binning errors, especially for contigs from genetically similar species.
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Figure 2.4: (A).Adjusted Rand Index, (B). Recall and (C). Precision of CLARK, MetaGen,
MaxBin, CONCOCT, and MetaBAT are evaluated under different number of species, 120x
sequence depth and 80 samples.

Compared to all the methods that use sequencing information, MetaGen only uses the

abundance variation across samples and is consequently less susceptible to the lengths of

contigs and more robust for data with a large number of species. As illustrated in Figure 2.3,

the binning accuracy of MetaGen did not change significantly as we increased the number

of species.

How binning accuracy are affected by sequence similarity

Because MetaGen does not use the sequence information, the binning accuracy is not signif-

icantly affected when some of the species are highly similar in their sequences. But MetaGen

requires that the distribution of species in different samples be distinguishable. For example,

as shown in Figure 2.5, Cupriavidus metallidurans CH34 (green) and Ralstonia eutropha

JMP134 (white), two species that are highly similar in their sequence, are successfully sepa-

rated by MetaGen but mistakenly binned together in MaxBin, CONCOCT, and MetaBAT.
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MetaBAT(E) under 120x sequencing depth, 80 samples and 100 species (represented by different
colors). Each bar represents one bin obtained using the corresponding binning method. The color
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Strain-level profiling

We studied the performance of MetaGen in distinguishing microbial strains using a mock

data set with 57 E. coli strains and 91 circular elements. The data set we generated using

MetaSim contains 40 metagenomic samples, each with 2 million paired-end reads. MetaGen

outperformed other reference-free binning methods we considered including CONCOCT,

MetaBat, and MaxBin, as well as the reference-based method, CLARK, in strain-level dis-

crimination. More specifically, the ARI for MetaGen was 0.50 which is significantly higher

than that for CONCOCT (0.16). CLARK assigned all the contigs to one bin because the

lowest taxonomy rank that CLARK can reach is at the species level. MetaBat and MaxBin

also failed in strain-level profiling by binning all 57 E. coli strains into one bin (MetaBat)

or two bins (MaxBin). The comparison results are summarized in Table 2.1.
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Table 2.1: Adjusted Rand Index, Precision and Recall of CLARK, MetaGen, MaxBin, CONCOCT,
and MetaBAT are evaluated on the simulated metagenomic community with 57 E. coli substrains.

MetaGen MaxBin CONCOCT MetaBAT CLARK
ARI 0.50 0.01 0.16 0.00 0.00

Recall 0.65 0.86 0.80 1.00 1.00
Precision 0.81 0.16 0.48 0.13 0.12

Moreover, we found that MetaGen also outperformed the most popular strain-level pro-

filing tool, ConStrains, using the data simulated under the same settings as [23]. The modified

Jenson-Shannon divergence, a measure proposed in [23] to justify the profiling error, was 0.04

for MetaGen and 0.26 for ConStrains. We did not compare MetaGen with ConStrains in dis-

tinguishing the 57 E. coli strains and 91 circular elements because ConStrains requires 10x

coverage in at least one sample. This requirement was not satisfied by the 57 E. coli strains

mock data set, which had only about 1.5x average coverage.

Binning results for a complex community

To investigate the effectiveness of MetaGen for analyzing complex metagenomic communities

with a limited number of samples, we simulated 10 metagenomic samples, each with 545

genomes and 439 circular elements based on the most abundant species identified by CLARK

in the 269 gut metagenomic samples from [24; 25]. The relative abundance of each species

in the ten samples was generated by the CLARK-estimated relative abundance from 10

randomly selected samples in [24; 25] to mimic the real relative abundance. Summarized

in Table 2.2 are the adjusted Rand indexes for MetaGen, CONCOCT, MaxBin, MetaBat,

and CLARK. MetaGen achieved a higher binning accuracy compared to all the reference-

free binning methods in comparison, but a lower accuracy compared to the reference-based

method, CLARK.
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Table 2.2: Adjusted Rand Index, Precision and Recall of CLARK, MetaGen, MaxBin, CONCOCT,
and MetaBAT are evaluated on the complex metagenomic community with 545 genomes and 439
circular elements.

MetaGen MaxBin CONCOCT MetaBAT CLARK
ARI 0.67 0.51 0.42 0.07 0.86

Recall 0.89 0.73 0.86 0.79 0.96
Precision 0.76 0.65 0.53 0.40 0.90

Reference-free estimation of relative abundances

MetaGen provided an estimate of the relative abundance of the microbial species in each

sample without utilizing any reference information. Compared to those reference-based

methods, which estimate the relative abundance of each species using the proportion of

reads from its genome showing up in each sample [26; 27], MetaGen estimates the relative

abundance using the estimated sample profile for each bin (See Eq. (7)). To compare the

relative abundance estimated by each tool, we used Pearson correlation coefficients [28]

to characterize the overall relationship between the estimated relative abundance (across

different species within one sample) and the underlying truth. We did the comparisons

for all nine simulated data sets with varying sequencing depths, number of samples, and

number of species. As shown in Figure 2.6, the accuracy of estimated relative abundance

by MetaGen is significantly higher than those estimated by CLARK. Even for data with a

very low sequencing depth (1x per sample), MetaGen demonstrated a high accuracy with

an average correlation of 0.908 between the estimated relative abundance and the truth.

Some other factors relevant to estimation accuracies

Some minor but essential issues were also considered in our simulation. We first compared the

binning accuracy of MetaGen to other candidate methods when some species were missing in
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certain samples. In this simulation, only 50 or 75 out of 100 species were randomly selected

for each sample and the binning accuracy is plotted in Figure S11 indicating that MetaGen

was not affected by missing species.

We then tested how the binning accuracy is affected by using different genome assemblers,

such as MegaHIT [29] and Ray [30]. Figure S14 plots the ARI, recall and precision of all five

binning methods under consideration for Ray and MegaHIT respectively. Clearly, CLARK,

MetaGen and MetaBAT performed marginally better using Ray and CONCOCT performs

marginally better using MegaHIT. The binning accuracy of MaxBin was significantly better

for MegaHIT compared to Ray. Compared to the other methods, MetaGen was least affected

by the use of different assemblers.

2.2.6 Metagenomic analysis of inflammatory bowel disease

Inflammatory bowel disease (IBD) is an idiopathic disease caused by humans’ dysregulated

immune responses to their intestinal microbiota. IBD can cause abdominal cramps, bloody

diarrhea, fever and weight loss, and may also increase the risk of colon cancer. Each year,

about six hundred thousand Americans suffer from one of the two IBD subtypes: ulcerative

colitis (UC) and Crohns disease (CD). It was recently shown in [31] that IBD is closely related

to aberrant interactions between gut microbial species and the host’s immune system.

Qin et al. [24] collected gut microbial DNA samples from 124 European individuals,

including 25 IBD patients. The DNA samples were sequenced using Illumina Genome Ana-

lyzer with 576.7Gb paired-end reads generated. Using MetaGen, we inferred that at least

2, 150 clusters/species (See Figure S24) were presented in the samples, much more than

the 155 species identified in [24] using a reference-based method. The significant difference

between the two results is mainly caused by the limited availability of reference bacterial

species. In fact, only 6.54% of the total contigs can find a closely matched reference genome

in the NCBI nucleotide database. The scale of the number of species predicted by MetaGen
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is also consistent with the conjecture made in [24]. For the contigs that can be mapped to

reference genomes, we found that MetaGen achieved a high binning accuracy with preci-

sion 0.937 and recall 0.753. We did not compare our method to other reference-free binning

methods for this study because the dataset was too large for other methods to obtain results

using the computing resources we had access to.
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Figure 2.7: (A) Boxplots of the number for significant species in each individual of the IBD and
control groups, respectively. (B)(Upper panel) Prevalences of the 5 highly enriched species in the
individuals in the control group relative to the IBD patients. (Lower panel) Prevalences of the 8
highly enriched species in the IBD patients relative to the individuals in the control group. (C)
The projection of the 4 CD patients and 21 UC patients along the first two principal component
directions of the relative abundances of their microbial species.

Figure 2.7(A) shows boxplots of the number of significant microbial species (See Mate-

rials and Methods for definition) found in each individual in the IBD and control groups,

respectively, indicating that the biodiversity of microbita in IBD patients is significantly

lower than that in individuals in the control group (p-value=0.03). This phenomena was also

observed in [25] and [32]. By testing the 561 microbial species that were shared by at least 10
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individuals, we found that five species were significantly less common and eight species were

significantly more common in IBD patients with the false discovery rate (FDR) controlled

at under 5% [33]. Among the 8 species that are more commonly seen in IBD patients, we

found that 13 of 25 contigs in one bin (highlighted by the black box in the lower panel

of Figure 2.7(B)) could be mapped to an antibiotic resistance bacterial strain Bacteroides

fragilis HMW 615 with more than 99% identity. Among the 13 contigs, 6 were mapped to

Bacteroides fragilis HMW 615 with 100% identity.

Based on large scale metagenomic data sets, predictive models using machine learning

tools have revealed good predictive capabilities for different phenotypes, such as disease

state [34], plant productivity [35], and environmental factors [36]. To investigate whether the

microbial composition estimated by MetaGen can be used for disease prediction, we built a

logistic regression model with LASSO penalty [37] to classify the IBD and control subjects

using relative abundance (See Materials and Methods (2.7)) of the clusters inferred by

MetaGen as features. The leave-one-out cross validation (CV) procedure was used to assess

the classification accuracy. The overall prediction power of the logistic regression model is

quite significant, with a leave-one-out CV misclassification rate of 0.1129; the number of

misclassifications for the IBD group was 12 and for the control group was 2. We further

zoomed in to investigate the difference in gut microbiota between two types of patients, CD

and UC, which are not readily separable using existing medical techniques [38]. Fig. 2.7(C)

shows the projection of the 25 IBD subjects onto the space formed by their first and second

principal components, which shows a clear separation between the two IBD subtypes.

2.2.7 Metagenomic analysis of Type 2 diabetes

Type 2 diabetes (T2D) is the most prevalent endocrine disease, which involves a long term

metabolic disorder influenced by both genetic and environmental factors [39]. Qin et al.

[25] sequenced gut microbial DNA samples from 71 Chinese T2D patients and 74 Chinese
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individuals unaffected by T2D using Illumina Genome Analyzer and obtained 3.3M genes

based on the 378.4Gb pair-end reads. They could not obtain taxonomy assignments and the

corresponding microbial distribution estimations using a reference-based binning method

because only 8.89% of contigs can be mapped to reference genomes. We re-analyzed this

data set using MetaGen and identified 2, 450 species clusters (See Figure S25).

Using Fisher’s exact test with FDR controlled at 5%, we found that two clusters were

more abundant in the control group than in the T2D group (See Figure S26). The majority

of contigs in one of the clusters can be mapped to the butyrate-producing bacteria, Rose-

buria intestinalis, which has been shown in [40] to have an immuno-metablic effect and is

thus significantly less abundant in T2D patients. This finding also validates the conjecture

made in [25] that beneficial bacteria are universally lost in the T2D gut. We also tested to

differentiate T2D patients from the control group by building a classifier using the subjects’

microbial distributions and the LASSO-logistic regression method used in the previous sec-

tion. We observed that the leave-one-out CV classification error rate was 0.248. We further

validated the classification accuracy using an independent dataset from [25] with 98 T2D

patients and 99 controls, and obtained a misclassification error at 0.345, which is highly

significant. Although the prediction accuracy is not yet ideal, our study of the T2D metage-

nomic data showed that an individuals microbial composition estimated in a reference-free

way can be significantly predictive of the individuals disease status.

2.2.8 Metagenomic analysis of obesity

Obesity is a growing epidemic worldwide and has a significant negative impact on human

health. Obese people have significantly higher risks for various diseases, such as high blood

pressure, stroke, heart disease, diabetes, cancer, gallstones, etc. Despite its clinical impor-

tance, causes for obesity and possible therapeutic options for curing obesity remain poorly

understood. Recent studies have found that some bacteria in the human gut can disrupt

65



metabolic/energy homeostasis [2; 41], and the bacteria’s interactions with the host’s genes

[42] are closely associated with the host’s obesity level. It is thus expected that under-

standing bacterial compositions of metagenomic samples from human guts may be key to

understanding obesity.

In [1], DNA samples were extracted from feces of 18 human subjects belonging to 6

families, each of which includes a pair of twins and their maternal parent. After pre-processing

(See SI), we obtained 25, 383 contigs. For each contig, we searched the NCBI nucleotide

database and used TAXAassign (https://github.com/umerijaz/TAXAassign) to assign it to

a taxonomic group. Only 29% of the contigs could be assigned at the species level and 54%

could be assigned at the phylum level. Roughly 46% of contigs could not be mapped to any

reference genomes even at the phylum level. Thus, reference-free binning methods are highly

desirable for this data.

Using MetaGen, we identified 56 bins/species (Figure S26) and estimated their relative

abundances across samples. For the contigs that have species-level reference genomes, we

compared MetaGen with CONCOCT using the reference-based binning results as a gold-

standard. We observed that the results of MetaGen were closer to the reference-based binning

results (with adjusted Rand index of 0.746) than those of CONCOCT are (with adjusted

Rand index 0.592). In Figure 2.8(A), we compared the estimated relative abundances to

those published in [2] at phylum level (more details in SI Note). MetaGen can accurately

estimate relative abundances of the four most enriched phylums: Firmicutes, Bacteroidetes,

Actinobacteria and Verrucomicrobia. Figure 2.8(B) provides a more detailed relative abun-

dance estimate at species level, an estimate that could not be obtained in [2] due to the

limitations of the reference based binning methods.

Figure 2.8(C) shows all pairwise Pearson correlations of the relative abundance for the 18

individuals. Using hierarchical clustering, we obtained two major clusters: Group I includes

three families, in which all mothers were obese although the children were either obese or lean.
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Figure 2.8: (A) Relative abundances of Firmicutes,Bacteroidetes, Actinobacteria and Verrucomi-
crobia phylums estimated by MetaGen. (B) Relative abundances of the 25 species mapped to one
of the four aforementioned phylums. Cluster 1 to 12 are species in Firmicutes, cluster 13 to 22 are
species in Bacteroidetes, cluster 23 to 24 are species in Actinobacteria and cluster 25 is a species in
Verrucomicrobia. (C) Heatmap of the correlation of the relative abundance for the 18 individuals
(samples). The samples are clustered by hierarchical clustering using complete linkage functions.
In all the plots, a subject’s ID can be parsed into three parts: the family ID (1-6), twin or mother
(T, M), and BMI (LEan, OVerweight, or OBese).

In contrast, all mothers in group II were overweight. Only members of one family were split

into the two clusters. The correlation analysis suggests that the microbial distribution of the

mother is associated with her BMI status and also plays a key role in shaping up the microbial

distribution of her children. To test the predictive power of the microbial distribution of the
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identified species for a individual’s BMI status, we fitted a LASSO-logistic regression model

using the relative abundances as predictors and the individual’s BMI status as the response.

The leave-one-out cross-validation error rate of the resulting model was 0.33.

2.3 Discussion

We proposed a new method, MetaGen, for estimating species compositions in multiple

metagenomic samples without any prior knowledge of either reference microbial genomes

or the actual microbial distributions of the samples. MetaGen is thus a completely reference-

free metagenomic procedure and is especially useful for analyzing new and foreign microbial

samples. As demonstrated by our simulation studies, MetaGen can handle data with fairly

low sequencing coverage, which can be extremely challenging with the currently available

methods for metagenomic analysis. When a reference genome is available for some of the

microbial species, we recommend the use of MetaGen together with reference-based methods

as a safeguard against possible false positives.

As a trade-off for having no reference genomes, MetaGen requires multiple samples

(preferably ≥ 10) and imposes a key differential abundance assumption, i.e., the abundance

patterns of microbial species across multiple samples should vary appreciably. This assump-

tion is clearly confounded with sequencing depth in the study: by increasing the sequencing

depth, one can recognize more species as is true for all other available methods. The differ-

ential abundance assumption can be satisfied in most metagenomic studies related to human

health, such as the study of microbial distributions in the human gut and the study of human

pathogens in a bio-threat attack. When the number of bacterial species is extremely large,

many low abundance species will have low coverage and cannot be detected. This limitation

can be overcome by performing a screening step to trim the contigs with very low coverage.
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2.4 Materials and Methods

2.4.1 Connection with Non-negative Matrix Factorization

The sample profile-based binning problem can also be solved by a non-negative matrix fac-

torization (NMF) algorithm, of which the EM algorithm can be viewed as a principled

generalization. In situations where the information is strong enough so that random errors

and fluctuation can be ignored, the (i, j)th entry of RCMM, xij, is just the theoretical amount

of reads that are mapped to contig i in sample j, which should be equal to the number of

short-reads that one copy of contig i can produce multiplied by the number of copies of

contig i in jth sample.

If we assume that the contig is long enough so that it only belongs to one species, we

can rewrite the RCMM X as the product of a signature matrix M and the total abundance

matrix E, where (i, k)th entry of M is the number of reads that a single copy of contig i

in species k can produce (it is zero if the kth species does not contain contig i), and the

(k, j)th entry of E represents the amount of species k in sample j. Thus, we can obtain

an estimate of both M and E simultaneously by minimizing ||X − ME||F , where || · ||F

denotes the Frobenius matrix norm. Note that if we normalize each row of E to sum to

one, it gives rise to the sample profile matrix A, i.e., E = DA, where D is a diagnal matrix

with dii indicating the total number of counts for contig i in the pooled sample. Based on

extensive simulations, we observed that the NMF algorithm and the EM algorithm lead to

very similar results empirically for given K. However, this NMF approach cannot account

for the estimation uncertainty and also does not provide a principled way to determine the

number of species K.
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2.4.2 Normalization to compare microbial distributions across samples

To compare microbial distributions across samples, we need to normalize the sample profiles

of different species to control the between-sample library size (sequence depth) variation

and the genome length variation. Motivated by the definition of RPKM, which has been

commonly used to normalize RNAseq data across samples and across genes, we first rescale

the number of mapped reads for species k in sample j, i.e., âkj
∑
{i:ẑi=k} ni, where ni is the

total number of mapped reads on contig i, by a factor reflecting sample j’s library size, i.e.,

the total reads Tj in sample j, and by another factor estimating the genome length of each

species, i.e.,the sum of length of all contigs for species k, say Lk. To set the number in a

comfortable range, we multiply the rescaled number by a constant 109 and denote it by b̂kj:

b̂kj = 109 ×
âkj
∑
{i:ẑi=k} ni

LkTj
, (2.7)

where âkj and ẑi are obtained using our algorithm. We refer to b̂kj as relative abundance of

species k in sample j. To compare the relative abundance in each sample, we recommend to

add an additional step to correct the GC bias by using GCcorrect (R package) [43]. When a

species has relative abundance b̂kj ≥ 0.1%
∑K

k=1 b̂kj, we define the species to be a significant

microbial species for sample j. Here, we use 0.1% as a convenient cut off because the relative

abundances that are lower than 0.1% may suffer from a much higher estimation error and

thus be unreliable.

2.4.3 Evaluating the binning results

In order to evaluate the estimated bins with true taxonomical groups, we define two group-

ings, x = (x1, · · · , xr) and y = (y1, · · · , ys) where r and s are the number of clusters for

groupings x and y, respectively. Then we denote nij as the number of members that belong

to both the xi and yj clusters (overlap). The adjusted Rand index is defined as,
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is the expected index.

The precision is defined as the clustering accuracy under the most favorable species label

assignment for each cluster. That is, assuming that grouping y is the true species label, the

precision can be expressed as

Precision =

∑r
i=1 max(ni1, · · · , nis)

N
. (2.9)

On the other hand, the recall is defined as how well the best cluster for each species regroup

all the cluster’s contigs. That is, assuming that grouping y is the true species label, the recall

is

Recall =

∑s
j=1 max(n1j, · · · , nrj)

N
. (2.10)
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Chapter 3

Model-based Dictionary Learning: Sparse Coding beyond Gaussian

Independent Model

3.1 Introduction

Dictionary learning aims at decomposing an m dimensional random vector as a linear com-

bination of K interpretable vectors, a collection of which is also referred to as a dictionary.

Each vector in a dictionary is referred to as an atom [1; 2]. Comparing to the wavelet or kernel

estimation methods which use predefined basis functions [3], dictionary learning is more inter-

pretable and flexible, which leads to the state-of-the-art discoveries in numerous scientific

fields such as neuroscience, genomics, artificial intelligence and astronomics [4–7]. Particu-

larly, dictionary learning has been shown to perform remarkably better than many existing

approaches in brain image analysis [8]. Thus, effective and efficient dictionary learning algo-

rithms are highly desirable.

More than often, not all atoms in a dictionary are important to approximate a random

vector. The coefficients of a linear combination are usually sparse. Let || · ||1 denote the L1

norm of a vector. Observing random vectors x1,x2, . . . ,xn ∈ Rm, a sparse dictionary learning

model assumes

xi = Dαi + ε 1 ≤ i ≤ n (3.1)

with the constraint that ||αi||1 is less than a constant ρ, where αi ∈ RK is called the sparse

coefficient for xi. D ∈ Rm×K is the dictionary matrix with each column representing an

atom, and ε is the random noise. The dictionary and sparse coefficients are usually obtained
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by minimizing some empirical loss function

L(α1, · · · ,αn, D) =
1

n

n∑
i=1

(
1

2
||xi −Dαi||2 + λ||αi||1),

where λ is a trade-off between the sparsity of αi and goodness of fit.

The dictionary learning algorithms have been studied over decades. Although these algo-

rithms are very intuitive and empirically effective, their theoretical performance is difficult

to study and establish, simply due to the non-convexity of loss function and the iterative

nature of the algorithm. Thus, despite the urgent need, the focus of the dictionary learning

research is mainly on algorithm development. The majority of existing algorithms follow the

alternative estimation approach where αi and D are estimated iteratively. A few popular

methods along this line of thinking are K-SVD [1], online dictionary learning [2] and recur-

sive least squares [9], which all first estimate αi by either matching pursuit algorithm[10] or

orthogonal matching pursuit [11] algorithm, then update D by coordinate descent approach.

Despite the appealing empirical performance, the dictionary learning algorithms are

extremely computationally intensive. The computational cost mainly spends on the search

of the appropriate tuning parameter λ. Although there are several discussions on how to

select λ using CV in the early literature [12–14], these proposals have not been developed

to their fruition. In this manuscript, we establish the model-based dictionary learning algo-

rithm which is essentially a stylized version of the traditional sparse coding algorithm that is

based on grid search of λ. MDL is a generalization of the model-based clustering method to

the sparse coding problem. We show that the existing dictionary learning method is a spe-

cial case of the model-based dictionary learning method. In the MDL algorithm, only finite

steps are required to produce sparse dictionary learning estimates, which notably improves

the computational efficiency. Besides the computational improvement, we show that MDL

algorithm converges to a stationary point theoretically.

Beyond the algorithm, MDL approach provides a rich and flexible framework to overcome

limitations contained in the existing dictionary learning algorithms. For example, when xi
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is on a discrete domain, we use a mixture of Poisson distributions to model the counts

data. When observations have spatial or temporal correlations such as observations from

image data or time course data, we can easily incorporate these correlations into dictionary

learning algorithms by using an data-adaptive covariance structure. We make theoretical

and methodological efforts to generalize the existing dictionary learning methods and have

a broad impact on applications in many areas.

The rest of the article is organized as follows. Section 2 will formally propose the proba-

bilistic sparse coding model. An algorithm based on the model and discussion of the oppor-

tunities and challenges raised by the algorithm will be discussed in Section 3. Theoretical

properties of the proposed algorithm will be discussed in Section 4. Simulations and appli-

cations will be collected in Section 5.

3.2 Model Set-up

Assume xi follows a mixture distribution, of which each component is distributed from

f(xi|θij) for j = 1, · · · , J . The fractions of each component are (π1, · · · , πJ). Notation-wise,

we write

xi ∼ π1f(xi|θi1) + · · ·+ πJf(xi|θiJ). (3.2)

A binary membership labeling variable zij for observation i can be introduced such that

xi|zij = 1 ∼ f(xi|θij). In general, θij is not estimable, as there are more parameters than

observations. However, when θij satisfies some sparsity constraints, the number of parameters

will significantly reduce and model (3.2) is estimable.

Model (3.2) is very general where many popular models can be considered as its special

cases. For example, if J = 1 and f(xi|θi) is the density function of a Gaussian distribution

with mean Dαi and covariance matrix σ2I, where D ∈ Rm×K and αi ∈ RK , we can show

that model (3.2) is equivalent to the conventional dictionary learning model.
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If we further assume ||αi||1 ≤ ρ or equivalently αi is sparse, only a subset of atoms in a

dictionary is involved in θi. For example, if the `th entry of αi is zero, atom ` is excluded

from estimating θi. Notice that each element in αi can be classified into two categories: zero

or nonzero. Thus, we have in total 2K indicators denoted as {γj}Jj=1 in which γj is the index

for a unique subset of parameters in the jth component. In another word, we can use a 2K

factorial design to quantify all the possible combinations of atoms and generate all possible

sparse representations of a dictionary D. The only difference between a 2K design matrix and

{γj}Jj=1 is that we use −1 to represent that a factor is used as a control in a design matrix,

while under dictionary learning, we use 0 instead of −1 when an atom is not included in a

dictionary.

Heuristically, (3.2) can be casted as a probabilistic version of the dictionary learning

model (3.1) for certain choice of ρ. To further illustrate how to use model (3.2) for sparse

dictionary learning, we use a simple toy example with K = 2. Model (3.2) can be rewritten

as

xi ∼ π1N(xi|D

0

0

 ,Σi) + π2N(xi|D

 0

[αi2]2

 ,Σi)

+ π3N(xi|D

[αi3]1

0

 ,Σi) + π4N(xi|D(

[αi4]1

[αi4]2

 ,Σi).

where αij ∈ R2 for j = 1, . . . , 4, and [·]k defines an operator that takes the kth entry of a

vector. Correspondingly, for an optimal sparse model, we do not need to estimate ρ but only

need to estimate π1 to πJ to see which one is larger. The component with the larger fraction

is the optimal sparse dictionary learning model.

In the next subsection, we will first discuss the sparse dictionary learning when f(xi|θij)

is a Gaussian density with covariance matrix σ2
i I. Then we will generalize the Gaussian

mixture model to incorporate spatial correlations. Finally, we will generalize the Gaussian

mixture results to Poisson mixture to model counts data.
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3.2.1 Simple d-sparse Gaussian MDL

In practice, the sparsity in dictionary learning can only be achieved for certain value of λ

because you cannot control the maximum number of nonzero coefficients using a L1 penalty.

In order to have real sparsity, we propose the following d-sparse model which requires that

at most d atoms have nonzero coefficients in a dictionary learning model. The d-sparse

dictionary learning model is equivalent to conventional dictionary learning model but only

for some fixed value of λ. Mathematically, we can formulate the d-sparse dictionary learning

as

xi ∼ π1N (xi|Dαi1 ◦ γ1, σ
2
i I) + · · · + πJN (xi|DαiJ ◦ γJ , σ

2
i I), (3.3)

where αij ∈ RK , γj = (γj1, · · · , γjK)′ is a K-dimensional binary vector that controls which

atoms are selected to learn xi. Here, we use ◦ to denote the Hadamard product. To achieve

d-sparse, i.e.,
∑K

l=1 γjl ≤ d, we only need to reduce the choices of γj from 2K elements to∑d
`=1

(
K
`

)
elements. It is easy to see that model (3.3) exhaustively include all possible d-

sparse combinations of atoms, where each combination is referred to a specific component in

(3.3).

3.2.2 Spatial d-sparse Gaussian MDL

Now let us turn our attention to some applications such as estimating the functional brain

network using fMRI data and image denoising, both of which have significant spatial correla-

tions between entries of xis. For this type of application, we need to incorporate the spatial

correlation into model (3.3). With a little abuse of notation, we let xi = {xi(s`)} denote

observations measured at s`, ` = 1, · · · ,m where s` ∈ Rp. We then assume that

xi ∼ π1N (xi|Dαi1 ◦ γ1,Σi) + · · · + πJN (xi|DαiJ ◦ γJ ,Σi), (3.4)

where Σi is the covariance matrix with the ``′th entry gives the covariance between xi(s`)

and xi(s`′). When p = 1, we use Σi model the temporal covariance. When p = 2, we use
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Σi to model the spatial covariance. In general, we assume the covariance between random

variables at two time points or two locations depends on the time lag or their inter-location

distance ∆``′ . The most popular temporal covariance is the auto-correlated covariance which

assumes that {Σi}``′ = σ2
i ω
−∆``′
i . For spatial covariance, a few popular models include the

exponential model which assumes that {Σi}``′ = σ2
i exp (−ωi∆``′) and the Gaussian model

which assumes {Σi}``′ = σ2
i exp (−ωi∆2

``′).

3.2.3 Exponential family d-sparse MDL

In general, we assume that f(xi|θij) is a density in exponential family, i.e.,

xi|zij = 1 ∼ h(xi, φi) exp{
η′ijxi − A(ηij)

c(φi)
}, (3.5)

where ηij is a function of the mean, c(φi) is the dispersion parameter and A(ηij) is the

cumulant function. It is clear that both Gaussian distribution and Poisson distribution belong

to the exponential family. When xi has an independent normal distribution, ηij is the mean

of xi and c(φi) = σ2
i . For Poisson and binomial models without over-dispersion, we have

φi = 1. When xi follows a Poisson distribution, we let ηij be the logarithm of its mean.

To achieve d-sparse dictionary learning, we further assume that ηij has the following

decomposition, i.e.,

ηij = Dαij ◦ γj

for a given γj. This family of distributions has broad applications in many scientific studies

such as the RNA-seq analysis where xi is on a discrete domain or network deconvolution

where xi is a binary vector. It can greatly broaden the application of sparse dictionary

learning algorithm. For example, we use the exponential family d-sparse MDL to find cancer

tissue related genetic signatures.
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3.3 EM algorithm for sparse coding

Let θij denote the collection of all parameters for the ith observation and the jth component.

In a simple d-sparse Gaussian MDL, θij = {D, πj,αij, σi} and in an exponential family d-

sparse MDL, θij = {D, πj,αij, φi}. In spatial d-sparse Gaussian MDL, we usually assume

Σi = σ2
iR(ωi), where R(ωi) is the correlation matrix related to spatial or temporal correlation

structures. Correspondingly, θij = {D, πj,αij, σi, ωi}. Observing X = (x1, · · · ,xn), the the

likelihood function is

L(θ11, · · · , θnJ |X) =
n∏
i=1

J∑
j=1

πjf(xi|θij).

Let Z be a n×J model-labeling matrix with the ijth entry zij. Then, the complete likelihood

function is

L(θ11, · · · , θnJ |X, Z) =
n∏
i=1

J∏
j=1

(
πjf(xi|θij)

)zij , (3.6)

and the log-likelihood of complete data is,

`(θ|X,Z) =
n∑
i=1

J∑
j=1

zij
(

log πj + log f(xi|θij)
)
. (3.7)

EM algorithm is one of the most common tools for the estimation in mixture models.

It has been extensively discussed in the statistical literature. There are a large amount of

EM variants that have been proposed to facilitate the computation. A few examples include

the rejection-control EM [15], stochastic EM [16] and classification EM [17]. The classical

EM algorithm has two steps: E step, which computes the expectation of the complete-data

log-likelihood function (3.7) based on the parameters estimated in the tth iteration, i.e.,

Q(θ|θ(t)) = EZ|X,θ(t)`(θ|Z,X);

and M step, in which we found θ(t+1) by maximizing the function Q(θ|θ(t)). In terms of the

sparse coding, the E step is the computation of

wij =
π

(t)
j f(xi|θ(t)

ij )∑J
j=1 π

(t)
j f(xi|θ(t)

ij )
(3.8)
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and the M-step involves maximization of

Q(θ|θ(t)) =
n∑
i=1

J∑
j=1

wij log πj (3.9)

+
n∑
i=1

J∑
j=1

wij log f(xi|θij) (3.10)

with respect to πj and θij, where Q(θ|θ(t)) is generated by replacing zij in (3.7) by the wij

obtained from E step. Clearly, maximizing Q(θ|θ(t)) is equivalent to maximizing (3.9) with

respect to πj and maximizing (3.10) with respect to θij separately. Maximizing (3.9) leads

to

π
(t+1)
j =

1

n

n∑
i=1

wij.

3.3.1 Update dictionary for Gaussian distribution

Notice that for (simple or spatial ) d-sparse Gaussian MDL model, we rewrite (3.10) as

−
n∑
i=1

J∑
j=1

wij
2

(
(xi − Dαij ◦ γj)′Σ−1

i (xi − Dαij ◦ γj) +
m log 2π + log |Σi|

2

)
. (3.11)

Update the variance: For spatial d-sparse Gaussian MDL model we have Σi = σ2
iR(ωi).

Let η
(t)
ij = D(t)α

(t)
ij ◦γj, where D(t) and α

(t)
ij are the current estimate of D and αij respectively.

Given D(t), α
(t)
ij and ω

(t)
i , maximizing (3.11) with respect to σ2

i leads to an updated estimate

of σ2
i , which is

σ
(t+1)
i

2
=

∑J
j=1 wij(xi − η

(t)
ij )′R−1(ω

(t)
i )(xi − η(t)

ij )

m
,

and for simple d-sparse model where R(ωi) = I, we can update σ2
i by

σ2
i

(t+1)
=

1

m

J∑
j=1

wij(xi − η(t)
ij )′(xi − η(t)

ij ).

Update dictionary and its coefficients: Notice that Dαij ◦ γj = γj ⊗ Dαij. Let

Dj = [[γj ⊗ D]] be the sparse dictionary for the jth component and D
(t)
j = [[γj ⊗ D(t)]],

where [[·]] defines an operator that only taking nonzero columns of a matrix. Given Σ
(t)
i ,
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maximizing (3.11) is equivalent to solving a weighted least square regression which leads to

an estimate of αij, i.e.,

α
(t+1)
ij =

(
D

(t)
j

′
Ω

(t)
i D

(t)
j

)−1
D

(t)
j

′
Ω

(t)
i xi,

where Ω
(t)
i is the inverse matrix of Σ

(t)
i and is usually referred to as the precision matrix.

For simple sparse coding model, Ω
(t)
i = 1

σ2
i
(t) I and α

(t+1)
ij has a form of a conventional

least square estimate, i.e.,

α
(t+1)
ij =

(
D

(t)
j

′
D

(t)
j

)−1
D

(t)
j

′
xi.

Notice that |γj|1 ≤ d, which implies that α
(t+1)
ij is at most of dimension d but not dimen-

sion K as αij. Thus, we need to transform α
(t+1)
ij to K dimensional vector to generate final

estimate of αij denoted by α
∗(t+1)
ij . We fill in entries of α

∗(t+1)
ij by zero if the corresponding

entries of γj is zero and α
(t+1)
ij otherwise. To ease the description, we still use α

(t+1)
ij to denote

the α
∗(t+1)
ij in the subsequent updates.

Next, we sequentially update each column of D for given α
(t+1)
ij and Σ

(t)
i by using a block

coordinate descent algorithm. Let dk denote the kth column of the dictionary matrix D. Let

cijk = [α
(t+1)
ij ◦ γj]k. Now given d

(t)
k , α

(t+1)
ij and Σ

(t)
i , we can update dk by

d
(t+1)
k = M−1

n∑
i=1

J∑
j=1

M∗
ijk

(
xi − cijkd−k

)
,

where M =
∑n

i=1

∑J
j=1wijc

2
ijkΩ

(t)
i , M∗

ijk = wijcijkΩ
(t)
i and d−k =

∑
l<k d

(t+1)
l +

∑
l>k d

(t)
l .

Notice that Ω
(t)
i = R−1(ω

(t)
i )/σ

(t)
i , where R(ω

(t)
i ) quantifies the spatial correlations.

For the simple sparse coding model where R(ω
(t)
i ) = I, we can update dk by the simple

form

d
(t+1)
k =

n∑
i=1

J∑
j=1

νijk
(
xi − cijkd−k

)
,

where νijk =
wijcijk∑n

i=1

∑J
j=1 wijc

2
ijk

.

Update the spatial correlation parameter: The final update in M-step is to max-

imize (3.11) with respect to the spatial hyper-parameter ωi based on the updated D, αij
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and σ2. Newton-Raphson is the most popular algorithm for this type of minimization. Given

D(t+1), α(t+1), σ
(t+1)
i , we can recursively update ωi by

ω
(t+1)
i = ω

(t)
i + b−1f

where b = ∂2Q(θ|θ(t))/∂2ωi and f = ∂Q(θ|θ(t))/∂ωi.

3.3.2 Update Dictionary for distribution in exponential family

Update αij: In general, if xi|zij = 1 follows a distribution in exponential family (3.5) with

known dispersion parameter c(φ), the term (3.10) can be rewritten as

n∑
i=1

J∑
j=1

wij
c(φi)

(
η′ijxi − A(ηij)

)
, (3.12)

where ηij = Dαij ◦γj. Using chain rule, the maximizer of (3.12) with respect to αij has the

form

α
(t+1)
ij = (D

(t)′
j W (t)D

(t)
j )−1D

(t)′
j W (t)x∗i , (3.13)

where W (t) is a m×m diagonal matrix with lth diagonal entry

W
(t)
ll =

1

c(φ)
(
∂2A(η

(t)
ij )/∂2[ηij]l

)(
∂g([η

(t)
ij ]l)/∂[ηij]l

)2

where g is the inverse link function, and x∗i = η
(t)
ij + B−1(xi − g(η

(t)
ij )) of which B is a

m×m diagonal matrix with lth diagonal entry ∂g([η
(t)
ij ]l)/∂[ηij]l. For Poisson distribution,

the inverse link function is g = exp(·). For binomial distribution, the inverse link function is

g(·) = exp(·)/(1 + exp(·)).

Update D: For general distributions of exponential family, the explicit form of D is hard

to obtain since the inverse link function is nonlinear. In practice, we use the gradient ascent

algorithm to update dk by

d
(t+1)
k = d

(t)
k + τUdk ,
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where Udk is the score function with respect to dk, and τ is the step size. We use Barzilai-

Borwein method to choose a proper τ as

τ =
(d

(t)
k − d

(t−1)
k )T (U

d
(t)
k
− U

d
(t−1)
k

)

||U
d
(t)
k
− U

d
(t−1)
k
||2

.

Since our algorithm uses the value of d
(t)
k for computing d

(t+1)
k , a single iteration has empiri-

cally been found to be enough. As in Gaussian sparse coding, we do not need to evaluate all

the possible d-sparse combination to estimate d
(t)
k . We only need to focus on the combination

containing the kth atom.

3.3.3 Rejection-control EM

With the exponentially increasing number of components, the E-step results in a huge number

of wijs, many of which are extremely small. The small wij can make the optimization in M-

step very inefficient, unstable and sometimes even infeasible. To alleviate the computation

and stabilize the algorithm, we use the rejection-control EM that is proposed in [15] instead

of EM for our MDL algorithms. Let a small number c (e.g., c = 0.01) be a rejection-control

threshold. We approximate zij by

w∗ij =


wij if wij > c else

c with probability wij/c

0 with probability 1− wij/c

for j = 1, · · · , J .

3.3.4 Information Criteria for selecting d

The sparsity of the traditional sparse coding method is controlled by the ||αi||1 ≤ ρ where

ρ ∈ (0,∞). A commonly used method is to set some grid points in some bounded interval

(0, c) and search the optimal estimation by cross validation. There are two difficulties for this
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approach: the number of grid points is large; cross validation is computationally infeasible for

the large data set. These problems can be solved by using the MDL method, which provides

a framework for model comparison.

The Bayesian information criterion (BIC) [18] has been shown to be an effective method

for model comparison in mixture models [19; 20]. The minimizer of BIC can well balance the

model complexity and goodness-of-fit. In this article, we propose to use

BIC(d) = −2`(θ̂|X) + p(d) log(n×m) (3.14)

where θ̂ is the final estimated parameters and p(d) is the number of parameters to be esti-

mated in the model. We set psi(d) = mK+2n+n
∑d

l=1 l
(
K
l

)
, psp(d) = mK+3n+n

∑d
l=1 l

(
K
l

)
and pex(d) = mK + n + n

∑d
l=1 l

(
K
l

)
as the number of parameters for simple, spatial and

exponential family d-sparse models respectively.

3.4 Convergence Analysis

The convergence of EM algorithm has been well studied in [21; 22]. The main difference of

the d-sparse EM algorithm lies in the M-step where we update the D and β alternatively. In

the following theorem, we show that MDL algorithm also converges as the traditional EM

algorithm.

Theorem 3.4.1. (Convergence to a stationary point). Let {θ(t)} be an instance of a d-sparse

MDL algorithm, then all the limiting points of θ(t) are stationary points, denoted as θ∗. Then

we have L(θ(t)) converges monotonically to L(θ∗).

Sketch of the proof, we are aimed to show the monotonicity of the likelihood function in

the iterations, that is,

log
(
L(θ;X)) − log(L(θ(t);X)

)
=
(
Q(θ; θ(t)) − Q(θ(t); θ(t))

)
−
(
H(θ; θ(t)) − H(θ(t); θ(t))

)
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where H(θ; θ(t)) = E(θ(t))

(
log k(x|z, θ)|y

)
, k(x|z, θ) = L(θ;X)/L(θ;X,Z). By the proof of

theorem 1 in [22], H(θ; θ(t)) − H(θ(t); θ(t)) < 0. In the M-step, we update the coefficients

αij and dictionary D alternatively. First, we use the classical generalized linear model for

computing the decomposition of xi over the dictionary. The uniqueness of αij and increment

of Q function are guaranteed for the this step. Next, the new dictionary D is computed

by column-wise, which ensures the nondecreasing of the Q function. Combining this two

steps, we have the non-decreasing property for the Q function. Thus, we have the likelihood

function converge monotonically to some value L∗.

3.5 Empirical Studies

3.5.1 Gaussian d-sparse model

SIMULATION: Fifty mock data was simulated to compare the empirical performance of

our MDL methods with the popular dictionary learning methods such as K-SVD and online

dictionary learning. We generated each signal xi ∈ Rm, where m = 100, from a mixture

of normal distribution
∑J

j=1 πjN (Dαij ◦ γj, σ2R(ω)), i = 1, . . . , n. Each element of the

dictionary matrix D ∈ Rm×K , where K = 30, was fixed realization from Uniform[0, 1], and

every column of D was normalized. Each element of αij was generated from Uniform[1, 10]

and was kept fixed once generated. The weight πj was set to 1/J , where J =
∑2

l=1

(
30
l

)
,

for j = 1, . . . , J . The spatial locations of signals were randomly realized from the [0, 100]2

spatial domain. The exponential correlation function with ω = 1/25 was employed to model

the spatial correlation of signals. We set σ2 = ||Dαij ◦ γj||2/SNR, where SNR = 2, 3, 4, 5

respectively.

The spatial d-sparse Gaussian MDL (sp-MDL) algorithm, the simple d-sparse Gaussian

MDL (si-MDL) algorithm, the online dictionary learning (Online) algorithm, and the K-SVD

algorithm were implemented on the synthetic signals with sample size n varying from 100 to

500. In each plot of Figure 3.1, we drew boxplots of the distance between the space spanned
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Figure 3.1: Simulation results for Gaussian d-sparse model with SNR = 2, 3, 4, 5 corresponding to
Figure A, B, C, D respectively. The spatial d-sparse Gaussian MDL (sp-MDL) algorithm achieved
the smallest distance between estimated and true dictionary space, compared with the simple d-
sparse MDL (si-MDL) algorithm, the online dictionary learning (Online) algorithm, and the K-SVD
algorithm.

by the estimated dictionary and the space spanned by the true dictionary for different sample

sizes. Clearly, the sp-MDL algorithm outperformed other algorithms both in terms of average

distance and in terms of standard deviation. Moreover, as we increased the noise level, the

sp-MDL algorithm had a significant advantage over other comparable algorithms, which

implies that the sp-MDL algorithm is especially useful for noisy data.

APPLICATION (Image denoising): In this example, Five 128pixel×128pixel images

were used for denoising. Noise from a Gaussian random field with covariance function
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Figure 3.2: Plotted in the columns are generated images (first column), donoised images (2-5
columns) using K-SVD, online dictionary learning (Online), simple d-sparse Gaussian MDL (si-
MDL) and spatial d-sparse Gaussian MDL (sp-MDL) respectively.

Figure 3.3: Plotted here are the MSE of denoised images using the spatial d-sparse Gaussian MDL
(sp-MDL) algorithm, the simple d-sparse Gaussian MDL (si-MDL) algorithm, the online dictionary
learning (Online) algorithm and the K-SVD algorithm.

{Σi}``′ = σ2 exp (−1/4∆``′) was artificially added to the raw images. We compared the

denoised images at σ2 = 202 and σ2 = 352 and plotted them in the first and second row of

Figure 3.2 respectively. We have n = 1600 overlapping blocks with intensity of which were

stretched as a m = 144(12pixel × 12pixel) dimensional vector. Clearly each entry in the

vector were spatially correlated.
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RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN7 RSN8 RSN9 RSN10

Template
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Language

Figure 3.4: Ten Resting-state network (RSN 1-10) identified by sp-MDL algorithm.

Plotted in Figure 3.3 is the mean squared error (MSE) of the denoised images withK = 64

and d = 2 for spatial d-sparse Gaussian MDL (sp-MDL) and simple d-sparse Gaussian MDL

(si-MDL), and with default setting for online dictionary learning as well as K-SVD. Clearly,

sp-MDL significantly outperformed comparable algorithms in terms of estimation error. Both

sp-MDL and si-MDL outperformed the existing algorithms, where the sp-MDL has a better

estimation performance for spatially correlated data.

APPLICATION (Brain connectivity study use fMRI data): Understanding the

organizational architecture of human brain function has been of intense interest since the

inception of human neuroscience. After decades of active research using in-vivo functional

neuroimaging techniques such as fMRI, there are accumulating evidence that human brain

function emerges from and is realized by the interaction of multiple concurrent neural pro-

cesses or networks, each of which is spatially distributed across the specific structural sub-

strate of neuroanatomical areas. Although this discovery holds a lot of promise on con-

structing the concurrent functional networks and network-level interactions robustly and

faithfully at the whole population level, the delivery of this promise, however, has not yet
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been fully materialized, due to the lack of effective and efficient analytical tools for han-

dling huge and complicated brain image data. Thus, it is largely unknown to what extent

those multiple interacting functional networks spatially overlap with each other and jointly

generate the total brain function.

To answer this question, we applied the proposed spatial d-sparse Gaussian MDL on

the Human Connectome Project (HCP) Q1 release functional magnetic resonance imaging

(fMRI) data. Three tasks (“Emotion”, “Gambling”, and “Language” ), each including fMRI

images of 5 subjects, were selected to demonstrate how MDL can help understanding the

human brain connectivity. The data was preprocessed using FSL [23]. Using K = 100 and

Gaussian spatial correlation function {Σi}``′ = σ2
i exp (−ωi∆2

``′), we found the optimal sparse

level d = 4 based on the BIC criteria (3.14).

For each task, we mapped the learned atom {dk}50
k=1 in the dictionary on the brain and

compared them with the resting state networks (RSNs) [24; 25]. The intrinsic RSNs has

also been observed in task-based fMRI data [24; 26]. As shown in Figure 3.4, we found the

learned networks corresponding to the (RSNs 1-10) using task-based fMRI data. RSN 1-3

mainly include the visual cortex; RNS 4 is often referred to as the default mode network;

RNS 5 covers the cerebellum; RSN6 dominantly features sensor-motor network; RSN7 covers

the auditory network; RSN8 covers the executive control network; the symmetric RSN9 and

RSN10 cover the left and right middle frontal, orbital and superior parietal areas, while for

certain tasks (e.g. Language) it is observed that RSN9 and RSN10 will merge into the same

network.

3.5.2 Poisson d-sparse Model

SIMULATION: Fifty mock data was simulated from a mixture of Poisson distribution∑J
j=1 πjPoisson(θij), where log θij = Dαij◦γj withD ∈ R100×10. The dictionaryD, coefficient

αij and weight πj was generated in the same way as the Gaussian d-sparse simulation.
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The exponential family d-sparse MDL (ex-MDL) algorithm, the online dictionary learning

(Online) algorithm, and the K-SVD algorithm were implemented on the synthetic signals

with sample size n varying from 100 to 500. The distance between the column space of an

estimated dictionary and the column space of the true D was plotted in Figure 3.5. Our

exponential d-sparse MDL algorithm provided a significantly better estimate of the true

dictionary.

Figure 3.5: Estimation error of data with Poisson distribution.

APPLICATION (Spatial Transcriptomic imaging for Breast Cancer Data):

In this real data analysis, we applied the exponential family d-sparse MDL (ex-MDL) algo-

rithm to a breast cancer spatial transcriptomics dataset [27]. Spatial transcriptomics is a

recent sequencing strategy that quantifies the gene expression within a tissue section with

two-dimensional positional information. In the dataset, the sequenced reads are aligned to

reference genome to count the number of reads mapped to a specific gene. We select 1573

genes with reads count larger than 100 at 254 locations in a histological section of a breast

cancer biopsy including the invasive cancer areas, the cancer in situ areas, as well as the non-

cancer areas. The input data vectors xi ∈ Rm are the mapped reads count at m locations in

a histological section for i = 1, . . . , n where n is the number of selected genes.
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We applied the ex-MDL algorithm to this dataset with dictionary size K = 10. The

optimal d was set as two based on the BIC criteria. The learned atoms were mapped back

to the tissue image and plotted in Figure 3.6. There is a strong association between the

atoms and the cell types. Three atoms were drawn on the same histological section of breast

cancer biopsy, with the first one representing the gene expression of the invasive cancer areas

(Figure 3.6 B), the second one representing the gene expression of the cancer in situ areas

(Figure 3.6 C) and the last one representing the gene expression of the non-cancer areas

(Figure 3.6 D). Comparing with traditional cell-type identification methods with human

supervision, the exponential family d-sparse MDL provides a data-driven way for pathological

analysis.

Figure 3.6: Plotted in A is the histological section of a breast cancer biopsy with invasive ductal
cancer areas (yellow line), ductal cancer in situ areas (white line) and non-cancer areas (other
areas). We plotted the predicted invasive ductal cancer areas in B, ductal cancer in situ areas in C
and non cancer areas in D.
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3.6 Discussion

The contribution of MDL procedure to the development of dictionary learning algorithm is

two-fold. First, it can deal with any type of observations: continuous observations or discrete

observations. The mixture model framework that the MDL procedure relies on includes

classical dictionary learning algorithm as a special case. Therefore, MDL can be considered as

a generalization of classical dictionary learning approach to the general data format. Second,

as demonstrated by our simulation studies, MDL can effectively handle spatially correlated

predictors, which can be challenging for existing dictionary learning methods. Another key of

MDL is that it does not need to tune any model as required by classical dictionary learning

method and its variants. Thus, the algorithm is computational efficient as we only need to

estimate a finite number of sparse models instead of searching tuning parameter with infinite

number of candidates. We believe that MDL should become an indispensable member of the

repository of dictionary learning tools and recommend its broad use. We have implemented

the MDL procedure in R, and the R package can be requested from the authors directly.
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Å. Borg, F. Pontén, P. I. Costea, P. Sahlén, J. Mulder, O. Bergmann, J. Lundeberg,

and J. Frisén. Visualization and analysis of gene expression in tissue sections by spatial

transcriptomics. Science, 353:78–82, July 2016. doi: 10.1126/science.aaf2403.

101


