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ABSTRACT 

Unit root testing is an important procedure when performing time series analysis, 

since all the succeeding inferences should be performed based on a stationary series. 

Thus, it is crucial to test the stationarity of the time series in hand accurately and 

efficiently. One issue among the existing popular unit root testing methods is that they all 

require certain assumptions about the model specification, whether on the functional form 

or the stochastic term distribution; then all the analyses are performed based on the pre-

determined model. However, various circumstances such as data incompleteness, variable 

selection, and distribution misspecification which may lead to an inappropriate model 

specification that will produce an erroneous conclusion since the test result depends on 

the particular model considered. This dissertation focuses on confronting this issue by 

proposing a new numerical Bayesian unit root test incorporating model averaging which 

can take model uncertainty as well as variable transformation into account. 

  The first chapter introduces a broad literature review of all the building blocks 

need for the development of the new methods, including traditional frequentist unit root 

tests, Bayesian unit root tests, and Bayesian model averaging. Following chapter II 



elaborates the mathematical derivation of the proposed methods, Monte Carlo simulation 

study and results, as well as testing conclusions on the benchmark Nelson and Plosser 

(1982) macroeconomic time series. Chapter III applies the method to investigate the 

effect of data frequency on unit root test results particularly for financial data. We 

perform our proposed Bayesian Model Averaging method to five commodity futures 

price series by averaging GARCH and ARCH models with different mean functions and 

distribution specifications to demonstrate the robustness and usefulness of our method 

especially when model specification uncertainty issue is presented.  Overall, the proposed 

numerical Bayesian unit root test is a general approach to considering model uncertainty 

when performing the stationary tests, and it provides an alternative to researchers who are 

concerned this is a significant issue in their research.       
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction 

Nonstationarity is one of the important issues in empirical research of economics 

and finance since time series usually display trending behavior or nonstationarity in the 

mean. Series like asset prices, exchange rates and the original levels of macroeconomic 

aggregates (GDP, for instance) are examples of these kind of data series. It is very 

important to detect these two kinds of trend in the data in order to adopt an appropriate 

strategy for accurate data analysis and model estimation. Unit root testing is the approach 

to achieve this goal and decide whether the data series is nonstationary. Thus, the test is 

of great importance in empirical research. 

This dissertation develops a robust numerical Bayesian unit root testing method 

which can take model specification uncertainty and variable transformation into account. 

This chapter will detail every element and technique that will be used to derive this 

method. It starts with an introduction of the mathematic background and development of 

frequentist unit root tests. Although the method discussed belongs to a Bayesian 

framework, it is necessary to better understand the discussion and comparison in the later 

chapters if commonly used frequentist methods are introduced first. Then a general 

review of the development of Bayesian unit root tests follows, with some content about 

the advantages of this approach. Detailed mathematical part is saved for Chapter II when 

the main method developed in this dissertation is exploited. The last past is a revise of the 
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history of Bayesian model averaging, another significant building block of the methods 

derived in this paper. Since this technique now is widely adopted in many fields in 

economics, several papers that employed Bayesian model averaged will be listed in 

different sub-fields of economics and their major conclusions will be introduced. Again, 

the formulation and mathematical detailed will be elaborated in Chapter 2.   

 

1.2 Review of Frequentist Unit Root Tests 

 The fundamental paper that elaborated perhaps the most popular method of 

univariate unit root testing in empirical research is Dickey and Fuller (1979) . Consider 

OLS estimation of an AR(1) model: 

 1t t ty yρ ε−= +   (1) 

where 2~ . . . (0, )t i i d Nε σ  and 0 0y = . The interested hypothesis test is: 

 0 : 1
:| | 1a

H
H

ρ
ρ
=

<
  (2) 

The estimation of ρ  is expressed by (Hamilton 1994, 2:475): 
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Under the alternative hypothesis, according to the asymptotical theory: 

 

2( )  (0, (1 ))TT L Nρ ρ ρ− −


.  (4) 

This does not hold under the null hypothesis, under which the distribution collapses to a 

point mass at zero. A larger normalizing constant is needed to obtain a nondegenerate 
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asymptotic distribution for Tρ  in the nonstationary case. Instead of normal, the 

aforementioned distribution will also be more complicated and involves standard 

Brownian motion. Based on Hamilton (1994), the DF test can be categorized into the 

following situations: 

Case 1. No constant term or time trend in the regression; true process is a random walk. 

        If both the true and estimated model are following the form (1) above, the OLS 

estimate of  Tρ  is characterized by: 

 

2

1
2

0

1/ 2{[W(1)] 1}( 1)  
[W(r)]

TT L
dr

ρ −
−

∫


  (5) 

in which ( )W ⋅  is a Standard Brownian motion. 

Case 2. Constant term but no time trend included in the regression; true process is a 

random walk. 

        The data generating process is assumed to remain of the form (1), while the 

estimated OLS model includes a constant term: 

 1t t ty yα ρ ε−= + +   (6) 

In this case the asymptotical distribution would have the form: 

 
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2 2
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Case 3. Constant term but no time trend included in the regression; true process is 

random walk with drift. 

        In this case, the true process is assumed to be: 

 1t t ty yα ε−= + +   (8) 

while the estimated model has the same form. The distribution will be: 

 




1/2
2

3/2

( )
  N( , )

( 1)

T

T

T
L

T

α α
σ

ρ

 −
 
 − 

-10 Q


.  (9) 

So in this case, the estimated coefficients follow a regular Gaussian distribution, thus the 

related hypothesis tests can be performed using standard OLS T or F tests. 

Case 4. Constant term and time trend included in the regression; true process is random 

walk with or without drift. 

        The true model has the same form as (8) this time, while the estimated model 

includes a time trend: 

 1t t ty y tα ρ δ ε−= + + +   (10) 

The inclusion of time trend will cause collinear problem in larger samples when 0α ≠ , 

thus the model need to be rearranged to the following form: 

 1
* * *

1

(1 ) [y (t 1)] ( ) t
   

t t t

t t

y
t

ρ α ρ α δ ρα ε

α ρ ξ δ ε
−

−

= − + − − + + +

≡ + + +
 . (11) 

Under this parameterization, the asymptotical distribution of the estimated coefficients 

would be: 
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The above described the theory of unit root test for a first order autoregression. 

However, more complicated dynamic structures are required in empirical research work 

than only AR(1). Two different classes of unit root tests were proposed to consider higher 

order serial correlation. Said and Dickey (1984) generalized the basic autoregressive unit 

root test to accommodate general ARMA (p, q) as well as unknown order, which is 

referred to as the augmented Dickey-Fuller (ADF) test. The null hypothesis of the ADF 

test is a time series is I (1) against the alternative that it is I (0). By introducing higher-

order autoregressive terms in the regression, ADF tests controls for serial correlation. 

More details about this test could be found in Dickey and Fuller (1979), Said and Dickey 

(1984), Hamilton (1994, 2:516). 

One of the disadvantages of the ADF test is that a researcher has to determine the 

lag length p before performing the test. A small p will cause the remaining serial 

correlation in the error to bias the test; too large p will affect the power of the test (Zivot 

and Wang 2007). Some variable selection criterions like AIC of BIC can be adopted to 

help choose the lag length. Ng and Perron (1995) proposed another data dependent rule 

for lag length selection which can result in stable size of the test and minimal power loss. 

Our method proposed later in this dissertation can mitigate this problem without having 

to choose a single lag length.  
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Another famous unit root test was proposed by P. C. B. Phillips and Perron 

(1988), the PP test, which takes serial correlation of the differenced data into account by 

adjusting the statistics calculated from a simple first  order autoregression. Under the null 

hypothesis, the PP test statistics have the same asymptotic distribution as the ADF t-

statistic. The advantages of PP test include that the researchers do not need to specify the 

lag length used in the autoregressive model; meanwhile, it is also robust to general forms 

of heteroskedasticity in the error term (Zivot and Wang 2007). 

Beside the aforementioned two classes of popular unit root tests, tremendous 

literatures exist on many other unit root tests methods derived from different aspects of 

underlying theory as well as data characteristics. Cochrane (1988) proposed a variance 

ratio unit root test based on the fact that if a series is stationary, or stationary with a 

deterministic time trend, the innovation should have no permanent effect on the series. 

Kwiatkowski, et al. (1992) suggested a test of the null hypothesis that an observable 

series is stationary around a deterministic trend, which is based on the LM test of the 

hypothesis that the random walk part of the series has zero variance. Stock (1994) 

provides a nice summary and survey to lots of major methods of unit root tests and 

related problems which is a great source to refer to. Recent developments about 

frequentist unit root test focus on deeper and more detailed problems of the existing 

methods, such as power and size problem under difference occasions  (Schwert 1989; 

Perron and Ng 1996; Lopez 1997), selection of optimal truncation lags (Ng and Perron 

1995; Lopez 1997; Ng and Perron 2001), and so on other topics, which will be skipped in 

this review. 
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1.3 Review of Bayesian Unit Root Test 

The previous section gave a brief review of unit root test under classical statistical 

approach and provided details of the most popular methods. The key idea is calculating 

the distribution of ρ  conditional on a particular assumed true value such as =1ρ  

(Hamilton 1994). However, this classical distribution of ρ can be strongly skewed and 

does not follow standard distributions even in large samples. Sims (1988) and Sims and 

Uhlig (1991) discuss this problem in detail and pushed a new wave of research and 

application of Bayesian unit root tests. According to Sims and Uhlig (1991), compared to 

the classical test of an unit root with the null =1ρ based only on the distribution of ρ  , 

the Bayesian unit root test focused on the distribution of |ρ ρ  for all the possible values 

of ρ , together with the information provided on the prior probability of  ρ . The key idea 

is that if the distribution of |ρ ρ had the same skew and dispersion for every ρ as it does 

at =1ρ , then we would conclude having observed any particular ρ the true value of ρ

has a larger probability to be large (Hamilton 1994).  

Since then, extensive literature has been devoted into the analysis of Bayesian 

unit root tests from various aspects. One of the directions is specifying the priors. P. C. 

Phillips (1991) noted that the adoption of flat priors in the previous two papers 

unwittingly biases inferences towards stationarity, and suggested using a Jeffreys prior 

instead, although this would not be appropriate if the prior distribution is intended to 

present the actual information available to the analysis before seeing the data (Hamilton 

1994). Schotman and Van Dijk (1991) fully explained that although a Jeffreys prior has 

an advantage in the analysis of autoregressive time-series models since it is invariant with   
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to the parameterization, researchers do pay a price for the invariance because it depends 

on the sample size, the data and the complete structure of the model. Meanwhile, they 

concluded that improper priors like the uniform and the Jeffreys prior are less suited for 

Bayesian inference on a sharp null hypothesis like a unit root. Schotman (1994) shown 

that the posterior of the autoregressive parameter can be very sensitive to the degree of 

prior dependence between the unconditional mean and the autocorrelation parameter 

through the analysis of an AR(1) model. The weaker the prior dependence between these 

two parameters, the more the posterior of the autoregressive parameter will be shifted 

toward the unit root. Recently, Griffiths (2012) investigated the effects of different 

choices of priors on Bayesian unit root test results. Four types of priors are considered: 

diffuse (unifrom), Jeffreys, Lubrano (1995), and Berger and Yang (1994). They 

concluded that both testing procedures (posterior odds or posterior credible intervals) as 

well as the choice of prior have a significant impact on performances; meanwhile, under 

their Monte Carlo settings and model specification, the prior which led to the best 

performance in terms of test size and power was the Lubrano prior. 

The previous research all focused on designing the priors on the dominant root 

and the other lag coefficients. An alternative and innovated method is specifying the 

priors directly on all the roots of the underlying dynamic process. Dorfman (1993) 

proposed this method, and by augmenting the AR process to state space form, he directly 

specified prior distributions on the eigenvalues of the coefficient matrix of the state 

vector for the dynamic system. This technique makes the connections between priors and 

underlying dynamic system explicit and provides straightforward understanding of the 

priors. So in the present paper, this mode is adopted as the fundamental idea on which the 
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new method will be built. The detailed description and mathematical derivations will be 

elaborated in Chapter II. 

Besides the discussion of prior specifications, another direction of Bayesian unit 

root test literature focused on the model specification, including deciding the number of 

autoregressive lags, inclusion of deterministic trend and drift, as well as specifying the 

distributional assumption of the stochastic component. These considerations are not new 

since they are widely discussed under the classical unit root test regime. Different 

specifications will directly affect the asymptotically distribution of the dominant root in 

classical unit root test theory, as well as the power and size of the test. It is of the same 

importance under the Bayesian framework. Phillips and Schmidt (1989) pointed out that 

the Dickey-Fuller tests are not well designed for testing trend reversion in the presence of 

a deterministic trend. They proposed methods, although not Bayesian, to handle this 

problem, which are essentially LM tests. DeJong and Whiteman (1991) reconsidered the 

macroeconomic time series from Nelson and Plosser (1982). Compared to the results that 

most (13 out of 14) series are consistent with the random walk hypothesis in the latter 

paper, DeJong and Whiteman adopted a likelihood principle approach and explicit 

Bayesian methods to investigate the problem and indicated that for most series the trend-

stationarity hypothesis is much more likely. Distribution of the stochastic component, 

generally speaking, is also related to model specification. Although in asymptotical 

theory it is not required of the stochastic term to have any specific distribution as long as 

it satisfies random walk conditions, certain ad hoc density functions do have significant 

effects on the empirical results of unit root tests. Furthermore, there is a branch of 

classical unit root test theory based on the likelihood function (Dickey and Fuller 1981; 
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Dufour and King 1991; Elliott, Rothenberg, and Stock 1992) that requires certain 

assumption about the stochastic term distribution. Of course, the Bayesian framework 

depends on the posterior distribution that is derived from likelihood function and prior 

distributions, so the distributional assumptions are central to Bayesian approaches. Since 

this part is closely related to the Chapter III of this thesis, the related review will be 

introduced in that chapter.    

So far a brief review of Bayesian unit root test methods has been given and 

several problems and research directions summarized, the detailed theory and 

mathematical derivation will be introduced in Chapter II. 

 

1.4 Review of Bayesian Model Averaging 

 The regular modeling approach in economic empirical research work is that first 

researchers select a single model form from possible model space which is assumed to be 

the “true model” that “generates” the data. Then all the analyses are performed based on 

this pre-determined model and conclusions will also be drawn from it. This typical 

practice is concise and effective when the chosen model is somewhat close to the real 

underlying “data generating processes”. However, due to various circumstances such as 

data incompleteness, variable selection, distribution misspecification, etc., this procedure 

may lead to inappropriate model assumption which will produce erroneous conclusions 

since estimates may well depend on the particular model considered (Moral-Benito 

2013). For example, Leamer (1983) wrote a quite interesting paper to point out the 

problem of regression modeling analysis depending on arbitrary decisions about the 

choice of independent variables. 
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 Researchers have developed ways to confront this problem, and model averaging 

is one of them which is popular in many fields. The basic idea is to estimate all the 

possible models from a certain model space and assign weight to each model. Inferences 

can be made from this weighted average model and by doing so researchers actually 

considered not only the uncertainty to the variables conditional on a given model, but 

also the uncertainty associated to the parameter estimates across different models (Moral-

Benito 2013). This approach generally includes two different directions in the literature: 

frequentist model averaging and Bayesian model averaging. The method proposed in this 

research is under the Bayesian framework so the following reviews as well as theory 

introduction will all be related to the Bayesian model averaging. The research paper by 

Moral-Benito (2013) provided one chapter of good review on frequentist model 

averaging. 

 Historically, the early mention of the idea of model combination could trace to 

Barnard (1963) about quality control in airline industry. Poirier (1991) is one of the key 

early paper which applied this technique to investigate the empirical evidence on the 

effects of unanticipated changes in nominal money on real output in 47 countries. Clemen 

(1989) provided a detailed review regarding the combination of models in forecasting 

field. There are several good reviews about Bayesian model averaging from different 

disciplines and perspectives, including data mining and statistical inference (Chatfield 

1995), social research (Raftery 1995). Hoeting et al. (1999) provided a great tutorial on 

Bayesian model averaging focused on implementation and practical matters. Recently, 

Clyde and George (2004) highlighted some of the new applications and methods related 

to Bayesian model averaging including tree models, graphical models, etc. 
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 It was a long time before Bayesian Model Averaging technique was widely used 

in different sub-fields of economics. The literature before was either focused on statistical 

method development, or solely on applications about forecasting. In recent decades, due 

to new methods and the availability of more powerful computing resources, BMA is 

spreading to almost all sub-fields of economic research works (Moral-Benito 2013). For 

instance, in policy analysis, Brock, Durlauf, and West (2007) explored ways to integrate 

model uncertainty into policy evaluation and provided an excellent description of both 

theory and empirics. Besides introducing the theory of model averaging, he also 

compared BMA with traditional frequentist model averaging. The empirical application 

they considered is in the field of monetary policy. By taking 25,000 models differentiated 

in lags of interest rates, inflation, and output gap in the IS and Philips curve equations, 

they assess simple monetary policy rules for some standard New Kaynesian 

specifications. 

 There are also many other applications of model averaging in the macroeconomic 

field. Min and Zellner (1993) analyzed forecasts of output growth rates for eighteen 

countries from 1974-1987 using Bayesian Model averaging. They also reported the 

comparison of performance in forecasting one-year ahead output growth rates of these 

eighteen countries between Bayesian pooling techniques and non-Bayesian forecast 

combining techniques. Koop and Potter (2004) considered the problem of forecasting in 

dynamic factor models using Bayesian model averaging. They applied the proposed 

methods to the topic of forecasting GDP and inflation using quarterly U.S. data on 162 

time series, and they claimed that relative to the small forecasting gains provided by 

including more factors, the gains provided by using Bayesian model averaging over 
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forecasting methods based on a singly model are appreciable. More recently, Eicher, 

Henn, and Papageorgiou (2012) argued that the effect of preferential trade agreements 

(PTAS)  on trade flows is subject to major model uncertainty problems which caused the 

existing empirical literature to produce remarkably disparate results. They performed 

Bayesian model averaging techniques on this topic and found strong evidence of trade 

creation, trade diversion and open bloc effects. 

 Another important field in economics where model averaging research is active is 

economic growth. The influential work by Sala, Martin and Miller (2004) analyzed long 

run economic growth by a Bayesian averaging of classical estimates approach which 

averaged OLS coefficients across models. Fernandez, Ley, and Steel (2001) investigated 

the issue of model uncertainty in cross country growth and proposed the advantage of 

using a Bayesian model averaging approach over choosing a single model in such kind of 

topics. 

 Besides the aforementioned areas that BMA has actively involved, there are also 

many others where BMA techniques can be found as tools of analysis. For example, 

Koske and Wanner (2013) used Bayesian model averaging techniques to study the 

determinants of labor income inequality among OECD countries and suggested that some 

specific labor tax policies and education have important effects on labor income. In 

finance, Cremers (2002) investigated the predictability of excess stock returns using 

Bayesian model averaging and claims that the averaged model results provided superior 

performance to individual models. All these studies indicate that Bayesian model 

averaging techniques have been widely used in fields of economics and play an important 

role as an econometric approach in empirical research work. One interested in more 
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thorough review can refer to Moral-Benito (2013) which also provides a detailed review 

on frequentist model averaging techniques.  

 

1.5 Conclusion 

 So far a brief review has been given on major blocks that will be needed to build 

the robust numerical Bayesian unit root test for model uncertainty in next chapters, 

including the famous (augmented) Dickey-Fuller unit root test as well as other methods 

that belong to the frequentist unit root test regime; the development of Bayesian unit root 

test methods and the main debated directions in the literature which is related to our 

method in next chapters; at the end the history and broad applications of Bayesian model 

averaging techniques are introduced. All these reviews concentrate on ideas and 

development of the corresponding theory, and the detailed mathematical derivation will 

be discussed in the Chapter II and Chapter III where these techniques are adopted. Next 

in Chapter II, the new proposed numerical Bayesian unit root test for model uncertainty 

will be elaborated with simulation results as well as an application to the famous 

benchmark data set from Nelson and Plosser (1982). In Chapter III, we propose to test the 

effect of data frequency on the results of unit root tests, specifically in the financial 

research field and apply our proposed BMA method to five commodity futures price 

series. The results demonstrate the robustness and usefulness of our method when model 

specification uncertainty issue is present.  

  

  

 

14 



 

References 

Avramov, Doron. 2002. “Stock Return Predictability and Model Uncertainty.” Journal of 

Financial Economics 64 (3): 423–58. 

Barnard, G. A. 1963. “New Methods of Quality Control.” Journal of the Royal Statistical 

Society. Series A (General) 126 (2): 255–58. doi:10.2307/2982365. 

Bauwens, Luc, Michel Lubrano, and Jean-Francois Richard. 2000a. Bayesian Inference 

in Dynamic Econometric Models. Oxford University Press. 

http://books.google.com/books?hl=en&lr=&id=hRV3XiQVWLUC&oi=fnd&pg=

PA1&dq=Bayesian+inference+in+dynamic+econometric+models&ots=mJMR-

mN8hn&sig=Yq1euDu-iE8DAzNeoBWaA0DIsAA. 

———. 2000b. Bayesian Inference in Dynamic Econometric Models. Oxford University 

Press. 

Berger, James O., and Ruo-yong Yang. 1994. “Noninformative Priors and Bayesian 

Testing for the AR(1) Model.” Econometric Theory 10 (3/4): 461–82. 

Bhargava, Alok. 1986. “On the Theory of Testing for Unit Roots in Observed Time 

Series.” Review of Economic Studies 53 (3): 369. 

Bollerslev, Tim. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” 

Journal of Econometrics 31 (3): 307–27. 

Boswijk, H. Peter. 2001. Testing for a Unit Root with near-Integrated Volatility. 

Tinbergen Institute Discussion Paper. 

http://www.econstor.eu/handle/10419/85890. 

15 



 

Boswijk, H Peter, and Franc Klaassen. 2012. “Why Frequency Matters for Unit Root 

Testing in Financial Time Series.” Journal of Business & Economic Statistics 30 

(3): 351–57. 

Box, George EP, and David R Cox. 1964. “An Analysis of Transformations.” Journal of 

the Royal Statistical Society. Series B (Methodological), 211–52. 

Brock, William A., Steven N. Durlauf, and Kenneth D. West. 2007. “Model Uncertainty 

and Policy Evaluation: Some Theory and Empirics.” Journal of Econometrics 136 

(2): 629–64. 

Campbell, John Y., and Pierre Perron. 1991. “Pitfalls and Opportunities: What 

Macroeconomists Should Know about Unit Roots.” In NBER Macroeconomics 

Annual 1991, Volume 6, 141–220. MIT Press. 

http://www.nber.org/chapters/c10983.pdf. 

Chambers, Marcus J. 3. “Testing for Unit Roots with Flow Data and Varying Sampling 

Frequency.” Journal of Econometrics 119 (1): 1–18. doi:10.1016/S0304-

4076(03)00152-0. 

Charitidou, Efstratia, Dimitris Fouskakis, and Ioannis Ntzoufras. 2013. “Bayesian 

Transformation Family Selection: Moving towards a Transformed Gaussian 

Universe.” arXiv Preprint arXiv:1312.3482. http://arxiv.org/abs/1312.3482. 

Chatfield, Chris. 1995. “Model Uncertainty, Data Mining and Statistical Inference.” 

Jorunal of the Royal Statistical Society 158 (3): 419–66. 

Choi, In. 1992. “Effects of Data Aggregation on the Power of Tests for a Unit Root: A 

Simulation Study.” Economics Letters 40 (4): 397–401. 

16 



 

Choi, In, and Bhum Suk Chung. 1995. “Sampling Frequency and the Power of Tests for a 

Unit Root: A Simulation Study.” Economics Letters 49 (2): 131–36. 

Claeskens, Gerda, and Nils Lid Hjort. 2008. Model Selection and Model Averaging. 1 

edition. Cambridge ; New York: Cambridge University Press. 

Clemen, Robert T. 1989. “Combining Forecasts: A Review and Annotated 

Bibliography.” International Journal of Forecasting 5 (4): 559–83. 

doi:10.1016/0169-2070(89)90012-5. 

Clyde, Merlise, and Edward I. George. 2004. “Model Uncertainty.” Statistical Science 19 

(1): 81–94. 

Cochrane, John H. 1988. “How Big Is the Random Walk in GNP?” Journal of Political 

Economy 96 (5): 893–920. 

Cremers, K. J. Martijn. 2002. “Stock Return Predictability: A Bayesian Model Selection 

Perspective.” Review of Financial Studies 15 (4): 1223–49. 

doi:10.1093/rfs/15.4.1223. 

DeJong, David N., John C. Nankervis, N. E. Savin, and Charles H. Whiteman. 1992. 

“The Power Problems of Unit Root Test in Time Series with Autoregressive 

Errors.” Journal of Econometrics 53 (1–3): 323–43. doi:10.1016/0304-

4076(92)90090-E. 

DeJong, David N., and Charles H. Whiteman. 1991. “Reconsidering ‘Trends and 

Random Walks in Macroeconomic Time Series.’” Journal of Monetary 

Economics 28 (2): 221–54. 

17 



 

Dickey, David A., and Wayne A. Fuller. 1979a. “Distribution of the Estimators for 

Autoregressive Time Series with a Unit Root.” Journal of the American Statistical 

Association 74 (366a): 427–31. doi:10.1080/01621459.1979.10482531. 

———. 1979b. “Distribution of the Estimators for Autoregressive Time Series with a 

Unit Root.” Journal of the American Statistical Association 74 (366a): 427–31. 

doi:10.1080/01621459.1979.10482531. 

———. 1981. “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit 

Root.” Econometrica 49 (4): 1057–72. doi:10.2307/1912517. 

Dorfman, Jeffrey H. 1993. “Bayesian Efficiency Tests for Commodity Futures Markets.” 

American Journal of Agricultural Economics 75 (5): 1206–10. 

Dorfman, Jeffrey H., and Myung D. Park. 2011. “Estimating the Risk-Return Tradeoff in 

Agribusiness Stocks: Linkages with the Broader Stock Market.” American 

Journal of Agricultural Economics 93 (2): 426–33. doi:10.1093/ajae/aaq158. 

Dufour, Jean-Marie, and Maxwell L. King. 1991. “Optimal Invariant Tests for the 

Autocorrelation Coefficient in Linear Regressions with Stationary or 

Nonstationary AR (1) Errors.” Journal of Econometrics 47 (1): 115–43. 

Eicher, Theo S., Christian Henn, and Chris Papageorgiou. 2012. “Trade Creation and 

Diversion Revisited: Accounting for Model Uncertainty and Natural Trading 

Partner Effects.” Journal of Applied Econometrics 27 (2): 296–321. 

doi:10.1002/jae.1198. 

Elliott, Graham, Thomas J. Rothenberg, and James H. Stock. 1992. Efficient Tests for an 

Autoregressive Unit Root. National Bureau of Economic Research Cambridge, 

Mass., USA. http://www.nber.org/papers/t0130. 

18 



 

Engle, Robert F. 1982. “Autoregressive Conditional Heteroscedasticity with Estimates of 

the Variance of United Kingdom Inflation.” Econometrica 50 (4): 987–1007. 

doi:10.2307/1912773. 

Engle, Robert F., and Victor K. Ng. 1993. “Measuring and Testing the Impact of News 

on Volatility.” The Journal of Finance 48 (5): 1749–78. doi:10.1111/j.1540-

6261.1993.tb05127.x. 

Fan, Jianqing, and Runze Li. 2001. “Variable Selection via Nonconcave Penalized 

Likelihood and Its Oracle Properties.” Journal of the American Statistical 

Association 96 (456): 1348–60. 

Fernandez, Carmen, Eduardo Ley, and Mark FJ Steel. 2001. “Model Uncertainty in 

Cross-Country Growth Regressions.” Journal of Applied Econometrics 16 (5): 

563–76. 

Fernández-Villaverde, Jesús, and Juan Francisco Rubio-Ramı́rez. 2004. “Comparing 

Dynamic Equilibrium Models to Data: A Bayesian Approach.” Journal of 

Econometrics 123 (1): 153–87. doi:10.1016/j.jeconom.2003.10.031. 

Gelfand, Alan E., and Adrian FM Smith. 1990. “Sampling-Based Approaches to 

Calculating Marginal Densities.” Journal of the American Statistical Association 

85 (410): 398–409. 

Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, 

and the Bayesian Restoration of Images.” Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, no. 6: 721–41. 

Geweke, John. 1992. “Evaluating the Accuracy of Sampling-Based Approaches to 

Calculating Posterior Moments.” In Bayesian Statistics 4, edited by Jose M. 

19 



 

Bernardo, James O. Berger, A.P. dawid, and J.F.M Smith, 169–93. Oxford 

University Press. 

Griffiths, Charley Xia. 2012. Bayesian Unit Root Testing: The Effect of Choice of Prior 

On Test Outcomes. The University of Melbourne. 

Hamilton, James Douglas. 1994. Time Series Analysis. Vol. 2. Princeton university press 

Princeton. 

Hansen, Peter R., and Asger Lunde. 2005. “A Forecast Comparison of Volatility Models: 

Does Anything Beat a GARCH(1,1)?” Journal of Applied Econometrics 20 (7): 

873–89. doi:10.1002/jae.800. 

Harris, R. I. D. 1992. “Testing for Unit Roots Using the Augmented Dickey-Fuller Test: 

Some Issues Relating to the Size, Power and the Lag Structure of the Test.” 

Economics Letters 38 (4): 381–86. doi:10.1016/0165-1765(92)90022-Q. 

Harvey, Andrew C, and AC Harvey. 1993. Time Series Models. Vol. 2. Harvester 

Wheatsheaf New York. 

Hastings, W. K. 1970. “Monte Carlo Sampling Methods Using Markov Chains and Their 

Applications.” Biometrika 57 (1): 97–109. doi:10.2307/2334940. 

Hoeting, Jennifer A., David Madigan, Adrian E. Raftery, and Chris T. Volinsky. 1999. 

“Bayesian Model Averaging: A Tutorial.” Statistical Science 14 (4): 382–401. 

Jing, Liang. 2010. “Hastings-within-Gibbs Algorithm: Introduction and Application on 

Hierarchical Model.” University of Texas at San Antonio. http://georglsm.r-

forge.r-project.org/site-projects/pdf/Hastings_within_Gibbs.pdf. 

20 



 

Koop, Gary, Eduardo Ley, Jacek Osiewalski, and Mark FJ Steel. 1997. “Bayesian 

Analysis of Long Memory and Persistence Using ARFIMA Models.” Journal of 

Econometrics 76 (1): 149–69. 

Koop, Gary, and Simon Potter. 2004a. “Forecasting in Dynamic Factor Models Using 

Bayesian Model Averaging.” The Econometrics Journal 7 (2): 550–65. 

———. 2004b. “Forecasting in Dynamic Factor Models Using Bayesian Model 

Averaging.” The Econometrics Journal 7 (2): 550–65. 

Koske, I., and I. Wanner. 2013. “The Drivers of Labour Income Inequality – an Analysis 

Based on Bayesian Model Averaging.” Applied Economics Letters 20 (2): 123–

26. doi:10.1080/13504851.2012.683164. 

Kwiatkowski, Denis, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. 1992. 

“Testing the Null Hypothesis of Stationarity against the Alternative of a Unit 

Root: How Sure Are We That Economic Time Series Have a Unit Root?” Journal 

of Econometrics 54 (1): 159–78. 

Leamer, Edward E. 1983. “Let’s Take the Con Out of Econometrics.” The American 

Economic Review 73 (1): 31–43. 

Lee, Peter M. 2012. Bayesian Statistics: An Introduction. John Wiley & Sons. 

Ling, Shiqing, and WK Li. 2003. “Asymptotic Inference for Unit Root Processes with 

GARCH (1, 1) Errors.” Econometric Theory 19 (04): 541–64. 

Lopez, J. Humberto. 1997. “The Power of the ADF Test.” Economics Letters 57 (1): 5–

10. doi:10.1016/S0165-1765(97)81872-1. 

Lubrano, Michel. 1995. “Testing for Unit Roots in a Bayesian Framework.” Journal of 

Econometrics 69 (1): 81–109. 

21 



 

Lucas, André. 1995. “Unit Root Tests Based on M Estimators.” Econometric Theory 11 

(02): 331–46. 

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. 

Teller, and Edward Teller. 1953. “Equation of State Calculations by Fast 

Computing Machines.” The Journal of Chemical Physics 21 (6): 1087–92. 

Min, Chung-ki, and Arnold Zellner. 1993. “Bayesian and Non-Bayesian Methods for 

Combining Models and Forecasts with Applications to Forecasting International 

Growth Rates.” Journal of Econometrics 56 (1–2): 89–118. doi:10.1016/0304-

4076(93)90102-B. 

Mitchell, James, Nigel Pain, and Rebecca Riley. 2011. “The Drivers of International 

Migration to the UK: A Panel-Based Bayesian Model Averaging Approach*.” 

The Economic Journal 121 (557): 1398–1444. 

Moral‐Benito, Enrique. 2013. “Model Averaging in Economics: An Overview.” Journal 

of Economic Surveys. 

Morales, Knashawn H., Joseph G. Ibrahim, Chien-Jen Chen, and Louise M. Ryan. 2006. 

“Bayesian Model Averaging with Applications to Benchmark Dose Estimation 

for Arsenic in Drinking Water.” Journal of the American Statistical Association 

101 (473): 9–17. 

Nelson, Charles R, and Charles R Plosser. 1982. “Trends and Random Walks in 

Macroeconmic Time Series: Some Evidence and Implications.” Journal of 

Monetary Economics 10 (2): 139–62. 

Nelson, Daniel B. 1991. “Conditional Heteroskedasticity in Asset Returns: A New 

Approach.” Econometrica: Journal of the Econometric Society, 347–70. 

22 



 

Ng, Serena, and Pierre Perron. 1995. “Unit Root Tests in ARMA Models with Data-

Dependent Methods for the Selection of the Truncation Lag.” Journal of the 

American Statistical Association 90 (429): 268–81. doi:10.2307/2291151. 

———. 2001. “Lag Length Selection and the Construction of Unit Root Tests with Good 

Size and Power.” Econometrica 69 (6): 1519–54. 

Pagano, Marcello. 1974. “Estimation of Models of Autoregressive Signal plus White 

Noise.” The Annals of Statistics, 99–108. 

Perron, Pierre, and Serena Ng. 1996. “Useful Modifications to Some Unit Root Tests 

with Dependent Errors and Their Local Asymptotic Properties.” The Review of 

Economic Studies 63 (3): 435–63. 

Phillips, Peter CB. 1991. “To Criticize the Critics: An Objective Bayesian Analysis of 

Stochastic Trends.” Journal of Applied Econometrics 6 (4): 333–64. 

Phillips, Peter C. B., and Pierre Perron. 1988. “Testing for a Unit Root in Time Series 

Regression.” Biometrika 75 (2): 335–46. doi:10.2307/2336182. 

Phillips, Peter C. B., and Peter Schmidt. 1989. Testing for a Unit Root in the Presence of 

Deterministic Trends. Cowles Foundation Discussion Paper 933. Cowles 

Foundation for Research in Economics, Yale University. 

https://ideas.repec.org/p/cwl/cwldpp/933.html. 

Phillips, Peter CB, and Peter Schmidt. 1989. Testing for a Unit Root in the Presence of 

Deterministic Trends. Cowles Foundation for Research in Economics, Yale 

University. http://ideas.repec.org/p/cwl/cwldpp/933.html. 

23 



 

Poirier, Dale J. 1991. “A Bayesian View of Nominal Money and Real Output through a 

New Classical Macroeconomic Window.” Journal of Business & Economic 

Statistics 9 (2): 125–48. doi:10.2307/1391778. 

Raftery, Adrian E. 1995. “Bayesian Model Selection in Social Research.” Sociological 

Methodology 25: 111–64. 

Roberts, G. O., and A. F. M. Smith. 1994. “Simple Conditions for the Convergence of the 

Gibbs Sampler and Metropolis-Hastings Algorithms.” Stochastic Processes and 

Their Applications 49 (2): 207–16. doi:10.1016/0304-4149(94)90134-1. 

Rothenberg, Thomas J, and James H Stock. 1997. “Inference in a Nearly Integrated 

Autoregressive Model with Nonnormal Innovations.” Journal of Econometrics 80 

(2): 269–86. 

Said, Said E., and David A. Dickey. 1984. “Testing for Unit Roots in Autoregressive-

Moving Average Models of Unknown Order.” Biometrika 71 (3): 599–607. 

doi:10.2307/2336570. 

Sala, Xavier, Gernot Doppelhofer Martin, and Ronald I Miller. 2004. “Determinants of 

Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) 

Approach.” The American Economic Review. 

Schotman, Peter C. 1994. “Priors for the AR(1) Model: Parameterization Issues and Time 

Series Considerations.” Econometric Theory 10 (3/4): 579–95. 

Schotman, Peter C, and Herman K Van Dijk. 1991. “On Bayesian Routes to Unit Roots.” 

Journal of Applied Econometrics 6 (4): 387–401. 

Schwert, G. William. 1989a. “Tests for Unit Roots: A Monte Carlo Investigation.” 

Journal of Business & Economic Statistics 7 (2): 147–59. doi:10.2307/1391432. 

24 



 

———. 1989b. “Tests for Unit Roots: A Monte Carlo Investigation.” Journal of Business 

& Economic Statistics 7 (2): 147–59. doi:10.2307/1391432. 

Seo, Byeongseon. 1999. “Distribution Theory for Unit Root Tests with Conditional 

Heteroskedasticity.” Journal of Econometrics 91 (1): 113–44. 

Shiller, Robert J, and Pierre Perron. 1985. “Testing the Random Walk Hypothesis: Power 

versus Frequency of Observation.” Economics Letters 18 (4): 381–86. 

Sims, Christopher A. 1988. “Bayesian Skepticism on Unit Root Econometrics.” Journal 

of Economic Dynamics and Control 12 (2): 463–74. 

Sims, Christopher A, and Harald Uhlig. 1991. “Understanding Unit Rooters: A 

Helicopter Tour.” Econometrica: Journal of the Econometric Society, 1591–99. 

Stock, James H. 1994. “Unit Roots, Structural Breaks and Trends.” Handbook of 

Econometrics 4: 2739–2841. 

Tanner, Martin A. 1998. Tools for Statistical Inference: Methods for the Exploration of 

Posterior Distributions and Likelihood Functions. 3rd edition. New York: 

Springer. 

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of 

the Royal Statistical Society. Series B (Methodological) 58 (1): 267–88. 

Wright, Jonathan H. 2008. “Bayesian Model Averaging and Exchange Rate Forecasts.” 

Journal of Econometrics 146 (2): 329–41. 

Zellner, Arnold. 1996. An Introduction to Bayesian Inference in Econometrics. 1 edition. 

New York; Chichester: Wiley-Interscience. 

Zivot, Eric. 1994. “A Bayesian Analysis of the Unit Root Hypothesis within an 

Unobserved Components Model.” Econometric Theory 10 (3-4): 552–78. 

25 



 

Zivot, Eric, and Jiahui Wang. 2007. Modeling Financial Time Series with S-PLUS®. Vol. 

191. Springer. 

http://books.google.com/books?hl=en&lr=&id=Mby9u8_WXXgC&oi=fnd&pg=P

A1&dq=Modeling+Financial+Time+Series+with+S-

PLUS&ots=ppvXOD137o&sig=MznbxY3r1ntQm8-obUvNSfui9CA. 

 

26 



 

 

 

CHAPTER 2 

ROBUST NUMERICAL BAYESIAN UNIT ROOT TEST FOR MODEL 

UNCERTAINTY 

2.1 Introduction 

The regular modeling approach in applied economics empirical work is that first 

researchers select a single model specification which is assumed to be true, then all the 

analyses are performed based on this pre-determined model. Conclusions will also be 

drawn from it. This typical practice is concise and effective when the chosen model is 

somewhat close to the real underlying “data generating process.” However, due to 

various circumstances such as data incompleteness, variable selection, distribution 

misspecification, etc., this procedure may lead to inappropriate model assumptions which 

will produce erroneous conclusion since estimates may well depend on the particular 

model considered (Moral-Benito 2013). As long as empirical research involves model 

building and data analysis, this problem could potentially exist. 

Researchers have developed ways to confront this problem. For example, by 

constructing several different criteria like Akaike’s information criterion (AIC) or 

Bayesian information criterion (BIC), researchers can compare several candidate models 

and select one to perform their analysis (Claeskens and Hjort 2008); or use some discrete 

model selection techniques such as backwards, forwards and stepwise variable selection 

to filter the variables in hand and reach a parsimony model form. This is usually referred 

to as variable selection approach and in recently decades numerous new algorithms have 
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been proposed to continuous selection like Lasso (Tibshirani 1996) or SCAD (Fan and Li 

2001). However, these ideas focus more on the uncertainty of variables included in the 

model while ignoring the uncertainty of model form as well as the stochastic term 

distribution. This may bring limitations for the application of these methods in economic 

research since the economic theory should play a more important role when deciding the 

inclusion of certain variables, rather than the statistical standard. 

Another strategy is to consider all possible models and then try to “weighted 

average” them in some way then make inference based on the whole universe of 

candidate models (Moral-Benito 2013). This approach is referred as model averaging and 

generally has two directions: frequentist model averaging (FMA) and Bayesian model 

averaging (BMA). The method derived in this research fits under the Bayesian model 

averaging framework, which introduces a model prior distribution to reflect the 

uncertainty across the possible model space. This BMA approach has been widely 

adopted to different topics in the economics literature. For instance, in labor economics 

(Koske and Wanner 2013), health/environmental economics (Morales et al. 2006), 

migration (Mitchell, Pain, and Riley 2011), and so on. The most active field for 

application of BMA techniques might be empirical growth models (Moral-Benito 2013), 

including Sala et al. (2004); it is also being employed in macroeconomics and finance; 

for example, see Koop and Potter (2004),Wright (2008) and Avramov (2002). 

Among the numerous empirical works which have applied BMA, time series (or 

panel) data sets are commonly utilized. An important issue associated with using such 

data is the (non)stationarity of the data, based on which the following analysis is valid. 

Traditional unit root testing methods like Dickey-Fuller test will encounter contradictions 
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when applied within the BMA framework, since they are not Bayesian and all require 

some aspects of determined restrictions, either on the functional form, or on the 

distribution of the error term. For instance, the Dickey-Fuller (DF) test requires the 

specification of the number of lags included in the model before performing the test; 

while the Phillips-Perron (PP) test relaxed this requirement, but when estimating using 

maximum likelihood method it requires certain distribution form of the random term. 

Model uncertainty should be taken into account in the unit root testing process, no matter 

the uncertainty existing in the functional form or stochastic term distribution; especially if 

the researcher believes this uncertainty is an issue in his time series analysis and plans to 

use model averaging to help. Little research has been done on this topic. Koop et al. 

(1997) addressed a method to treat a unit root when he analyzed the long memory and 

persistence properties of real U.S. GNP using model averaging. However this method is 

particularly focused on the Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) model he used in the paper. There is no method proposed to process unit root 

tests issue in general model averaging circumstances. This research hopefully could make 

contributions to this gap in the literature. 

The purpose of this research is to develop a Bayesian unit root test robust to 

model averaging, which can consider not only the uncertainty of the functional form, but 

also various assumptions of the distribution of the random component. Meanwhile, we 

also hope to make the test robust to possible transformations of the data (like Box-Cox 

transformation).  

The structure of this paper is as follows. Section 2 motivates the idea of the 

proposed unit root test method and details the methodology including mathematical 
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derivation of the method, prior distribution, posterior distribution as well as some 

generalizations like transformation. After the comprehensive introduction, the Monte 

Carlo simulation design designated to test the suggested method is elaborated in Section 

3. The simulation results are shown together with some comparisons with existing 

popular unit root test methods. In Section 4, we apply our Bayesian unit root test to 14 

macroeconomic series from the famous Nelson and Plosser (1982) paper and discuss the 

results compared to some previous work which also tested the same data sets, 

concentrating on the model uncertainly problem. Section 5 concludes the whole paper.    

 

2.2 Methodology 

2.2.1 Model Parameterization 

 As most researchers did in the unit root test literature, this paper will derive the 

theory based on the fundamental univariate autoregression formula which has the 

following form (take AR(1) as an example now): 

 1,  t t t t ty t x x xγ δ ρ ε−= + + = +   (1) 

And 2~ (0, )t fε σ  has some distribution with mean 0 and variance 2σ  . This can be any 

distribution as long as it satisfies the white noise assumption. The unit root situation 

corresponds to =1ρ . This parameterization was first considered by Bhargava (1986), and 

discussed and adopted again by Phillips and Schmidt (1989), and following the 

terminology used in Lubrano (1995), this parameterization will be called a structural 

parameterization. For a unit root test we are not only interested in whether a series is 

difference stationary (i.e. =1ρ ), but also commonly test if a series is trend stationary. That 

is, one wishes to test for a unit root in the presence of a deterministic trend (Phillips and 
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Schmidt 1989). Deterministic terms play a key role in the dynamic behavior of the 

process and this dynamic pattern can be very different according to the parameterization 

of the model. The model forms in the original work by Dickey and Fuller (1979) are not 

well designed for testing trend reversion since it is either based on model without trend, 

or the model with trend but whose existence as well as distribution depend on the null 

hypothesis we want to test (Phillips and Schmidt 1989). The parameterization in (1) 

mitigates these problems. In the model mentioned above, parameter γ represents level 

(drift) and δ takes the place of deterministic trend, no matter if ρ equals 1 or not. So it 

permits for trend under both the null and the alternative hypothesis, without introducing 

any parameters that are irrelevant under either (Phillips and Schmidt 1989). 

Lubrano(1995) also provided a detailed comparison between this structural 

parameterization with a traditional model form which he referred as “reduced form 

parameterization”. This structural form will not only provide consistency under both 

hypotheses, but also will benefit to the method derived in this paper since in Bayesian 

framework priors need to be specified to every parameter, and it will be found during the 

following discussion that this consistency will allow both theoretically unambiguous and 

computationally tractable analysis of the hypotheses of interest. 

While previous equation (1) is a fundamental AR(1) process, to incorporate the 

more complicated and general form which is needed in the method to be derived in this 

paper, the common AR(p) process is necessary. Introducing a lag polynomial to the 

second part of (1) gives the following form: 

 ( ) t tA L x ε=   (2) 

where 
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 2
1 2( ) 1 ... p

pA L L L Lρ ρ ρ= − − − −   (3) 

The “L” is a lag operator which makes 1t tLx x −=  and in general k
t t kL x x −= .  Then the 

model becomes: 

 2,  ( ) ,  ~ (0, )t t t t ty t x A L x fγ δ ε ε σ= + + =   (4) 

 It can be written in a form that is more familiar like regular a AR(P) model with some 

rearrangement: 

 1 1 2 2

1 1 2 2
1 1 1

( ) y ( ) ( )
( ) ...

(1 ) [ (1 ) ] ...

t t

t t t p t p t

p p p

t i i i t t p t p t
i i i

A L A L t A L x
y A L t y y y

y i t y y y

γ δ
γ δ ρ ρ ρ ε

ρ γ ρ ρ δ ρ ρ ρ ε

− − −

− − −
= = =

= + +

⇒ = + + + + + +

⇒ = − + + − + + + + +∑ ∑ ∑

  (5) 

The main focus of a unit root test would be the coefficients of different lags, and from (5) 

it can be seen that all the other nuisance parameters are linear, so for convenience of 

derivation we denote ( , ) 'γ δ=θ , t
1 1 1

[(1 ), +(1 ) t]'
p p p

i i i
i i i

iρ ρ ρ
= = =

= − −∑ ∑ ∑x , 1 2( , ..., )pρ ρ ρ=ρ , 

and -1 1 2( , ,..., ) 't t t py y y− − −=y .   The model can be simplified to: 

 2
1 , ~ (0, )t t t ty fε ε σ−= + +' 'x θ y ρ   (6) 

2.2.2 Likelihood Function and the Initial Condition 

Although the stochastic term allows any distribution which satisfies the white 

noise assumption, for the convenience of derivation and without loss of generality, right 

now we assume that it follows a normal distribution with parameters specified above. So 

the likelihood function is: 

 2 2 /2 2
12

p+1

1(y | , ) (2 ) exp{ ( ) }
2

T p
T

t t
t

L yσ πσ
σ

+
−

−
=

= − − −∑ ' 'θ,ρ x θ y ρ   (7) 
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Notice that there should be (T+p) observations in the data in order to support 

autoregression lag p.  

 It is important to notice that the time series data in hand for analysis is usually 

only a portion of a dynamic process that may have started either in the infinite past or in a 

distant past (Bauwens, Lubrano, and Richard 2000a). Basically the initial observation 0y

is crucial information we may not know about the past so it is important to model the 

initial condition as well as to measure its impact as ρ approaches one. In the literature 

there are two main methods to treat the initial observation: consider the initial condition

0y as fixed and compute the likelihood function conditional on their first observation 

(Phillips 1991), or treat the initial conditions as random with some certain distribution 

derived from the assumption about the stochastic term (Zivot 1994; Lubrano 1995). 

Zellner (1996) proved that in the general stationary case and without a constant term, the 

consideration of fixed or random initial condition is not of importance. However, since 

mentioned before, it is of interest to include a constant as well as a deterministic trend in 

the test, the initial condition problem should be discussed here. Lubrano (1995) provided 

a detailed discussion and proof about the problems and consequences of treating 0y

differently in various circumstances which is highly recommended to refer to. According 

to his conclusion, treating 0y as fixed will cause the derived posterior distribution to be 

unbounded at the unit root case when the constant term is present, which makes it is 

unsuitable for Bayesian analysis. In contrast, random initial observation with certain 

distribution will overcome the aforementioned problem and provide a finite likelihood 

function at =1ρ even when there is a constant term (Lubrano 1995). Based on these 

results we will treat the initial condition as random in our analysis discussed below. To be 
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more specific, with normal distribution assumption mentioned above for the convenience 

of discussion, assume the process is AR(1) and starts from some past date at t s= − at 

which -sµ ϕ= , Griffiths (2012) showed that the initial observation 0y has the distribution 

 

2 2
0

2(s 1)
2

2
0

(y | , , ,s) N( , q( ,s))
1q( ,s)

1

s

s
i

i

f µ σ ϕ µ ρ ϕ σ ρ

ρρ ρ
ρ

+

=

= +

−
= =

−∑
  (8) 

Under the stationary assumption, in the infinite time horizon the distribution can be 

shown as 2 2
0 ~ ( , / (1 ))y N µ σ ρ− . For the general AR(p) process, the exact likelihood 

function would require the first p observations to be random. Hamilton (1994, 2:125) 

derived this joint density which is fairly complicated. An alternative applied in this 

research is treating only 0y  as random while considering 1 2 1(y , y ,..., y )P− as fixed 

(Schotman and Van Dijk 1991; Lubrano 1995). Meanwhile, Bauwens, Lubrano, and 

Richard (2000b, 182) provided a functional form which behaves similarly with q( ,s)ρ in 

(8) and that will be used in this analysis: 

 2

1( , )
1+ -

q υρ υ
υ ρ
+

=   (9) 

This function becomes usual modeling of 0y under stationary assumption when =0υ , and 

whenυ →∞ the function equals to 1. In between, it is possible to find s and υ  so that 

they have a similar behavior in the dominant root (Bauwens, Lubrano, and Richard 

2000b). A prior could also be assigned toυ and will be discussed in detail in the following 

part. Then the likelihood function is calculated as: 
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× − − − + −∑ x'θ y'ρ

  (10) 

in which ( ,s)q ρ is defined in (9).  

2.2.3 Bayesian Unit Root Test 

The prevalence of Bayesian unit root tests can be traced back to Sims (1988) and 

Sims and Uhlig (1991) who detailed the differences and advantage of Bayesian unit root 

tests compared to classical unit root test methods. Since then, extensive literature has 

been developed focusing on the analysis of this topic from various aspects. The most 

common approach is specifying prior distributions to the lag coefficients and performing 

inferences based on the distribution of |ρ ρ . This research will adopt a slightly different 

approach – instead of specifying priors for all the coefficients, we assign priors to the 

roots which determine the stochastic dynamic behavior of the system. The method is 

generalized from Dorfman (1993) who presented some early Bayesian numerical unit 

root tests. In his paper, the dynamic process of AR(p) is reparameterized to a state space 

model form whose dynamic properties can be investigated by studying the following 

matrix: 

 

1

2

3

1 0 0 0
0 1 0 0
0 0
0 0 0 1
0 0 0 0p

A

ρ
ρ
ρ

ρ

 
 
 
 =
 
 
  





 

 



  (11) 
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The 1 2( , ,..., ) 'Pρ ρ ρ=ρ are coefficients of lags in the autoregression model. The roots, or 

eigenvalues of this matrix, determine the behavior of the modeled process. If any 

eigenvalues of A have moduli greater or equal than one, the time series defined by these 

coefficients has a unit root and is nonstationary. So denote i iφ λ=  which is the moduli 

of the eigenvalues of A sorted by its magnitude where a stands for the Euclidian 

distance of a. Thus the statistical hypothesis of unit root can be expressed as: 

 0 1 1 1: 1  vs.  : 1H Hφ φ≥ <   (12) 

Unlike the classical unit root test method which focuses on deriving the 

asymptotically distribution of the coefficient on which the inference is to be made, in the 

Bayesian framework there is really no “test” concept similar to the classical world since 

the Bayesian method requires a posterior distribution which combines the likelihood 

function with prior distributions and usually does not have standard form to perform 

regular “test”. Instead, two alternative methods are usually used in practice: the Bayes 

factor and credible interval. The credible interval method is similar to the confidence 

interval in the under classical statistical inference framework but is not quite the same. 

Usually, we reject 0H  if 1 1φ ≥  lies outside the 95% (or any other preferred range) 

credible interval defined by: 

 sup

inf

( | ) d 0.95f
λ

λ
λ λ =∫ Ω, y   (13) 

Here λ  is the dominant root and ( | )f λ Ω, y is the marginal posterior distribution with 

respect to λ (this will be discussed in detailed later) with parameter space Ω and data y. 
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An alternative choice is the Bayes factor approach. The Bayes factor B in favor of 0H  

against 1H  is defined as (Lee 2012): 

 0 1 0 1

0 1 1 0

( / )
( / )
p p pB

p
π

π π π
= =   (14) 

The elements are defined as follows: 

 

0 0

1 1

0 0

1 1

( | )
( | )
( )
( )

p P
p P

P
P

θ
θ

π θ
π θ

= ∈Θ
= ∈Θ
= ∈Θ
= ∈Θ

x
x

  (15) 

in whichθ is the unknown parameter from a set Θ ( 0 1 0 1,Θ Θ = Θ Θ Θ =∅  ) we want 

to test, and x is the data available whose density ( | )f θx  depends on θ . Here 0p and 1p  

are posterior probabilities of parameter supports of null ( 0Θ ) and alternative ( 1Θ ) 

hypotheses, while 0π and 1π  are prior probabilities of the two hypotheses parameters 

respectively. The Bayes factor is sometimes can be interpreted as “odds in favor of 0H  

against 1H that are given by the data” (Lee 2012). In this paper, we will use the Bayes 

factor approach since it is more convenient to numerical Bayesian technique. Let

2( , , ) 'γ δ σ=η , 1 2( , ,..., ) 'pφ φ φ=Φ  be the parameters with prior distribution 

1 2( ) ( , ,..., )pπ π φ φ φ=Φ and 2( ) ( , , )h h γ δ σ=η (the detailed prior distribution discussion 

will be given in next section). With the likelihood function denoted as (y; )f η,Φ , the 

marginal posterior of the dominant root would be: 

 
21 2 ( , ) 2( | ,..., ; y) (y; ) ( ) ( )

pp pp f h d d dφ φφ φ φ π φ φ= ∫ ∫ ∫ Φ ηη, η,Φ Φ η η    (16) 
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Using numerical methods (to be discussed later) samples can be drawn from this 

marginal posterior distribution.  Define an indicator function: 

 (1) 1
(1)

0

1                 1 in the sample (support H )
( )

0                         otherwise (support H )         
D

φ
φ

<
= 


  (17) 

 The posterior probability in support 1H is given by: 

 
(1) (1) 2

1
1 1

(1) 2
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D p
K p

p

φ φ φ φ

φ φ φ

=

=

= =
∑

∑

η y
y

η y
  (18) 

 where B is the number of valid iterations used in the sampler. Defining 0K  by analogous 

way to (18): 

 
(1) (1) 2
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(1) 2
1

[1 ( )] ( | , ,..., ; )
(H | )

( | , ,..., ; )

B

p
i

B

p
i

D p
K P

p

φ φ φ φ

φ φ φ

=

=

−
= =

∑

∑

η y
y

η y
  (19) 

 and the posterior odds ratio in favor of nonstationarity is: 

 
(1) (1) 2

1 0
01

1
(1) (1) 2

1

[1 ( )] ( | , ,..., ; y)
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  (20) 

This statistic is the center of the numerical Bayesian unit test we used in our method. And 

one can declare the series to have a nonstationary root if 01 1K > (or using different 

threshold depending on loss function specified).  
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2.2.4 Prior Distributions, Posterior Distributions and Sampling Methods 

 The choice of priors to the parameters is always a crucial issue in Bayesian 

econometric analysis. Sims (1988) adopted flat uninformative priors in his paper, while 

later Phillips (1991) criticized the flat priors by evidence from simulation and comparison 

with reference Jeffreys prior, claiming that it is not truly informative and will bias the 

results.  Berger and Yang (1994) compared various approaches to the development of a 

noninformative prior for the AR(1) model and pointed out the Jeffreys prior has two 

features: depends on the initial observation and favor of explosive case when sample size 

is large, which bring problems when performing unit root tests. They derived a reference 

prior approach which worked well for the stationary case but less satisfactory in the 

explosive case. Recently, Griffiths (2012) performed a Monte Carlo experiment to 

examine the size and power properties of Bayesian unit root tests with four different prior 

distributions. In light of this continuing debates, in this research we do not spent much 

time on judging the priors since this is not the main point of this research and it is still 

hard or impossible to find a perfect priors that works well under all circumstances due to 

the fact that it may well depend on the data and topic (preknowledge). We just applied 

priors similar to those in Dorfman (1993): independent Beta priors were assigned to the 

moduli of roots of (11), while maintaining an uninformative priors to the other 

parameters. Meanwhile, we wish to allow slightly explosive values of the dominant root 

since that incorporates the possibility of upward bias due to sampling error from 

estimation of the root from the posterior distribution (Dorfman 1993). To sum up, these 

informative priors on all the roots are: 

 1 2 1 1 2 2

1 1 2 2 3 3

( ) ( , ,..., )= ( ) ( )... ( )
( )~Beta(30,2); ( ) . ( ) ... ( ) ~ Beta(1.1,1.1)

p p p

p p

π π φ φ φ π φ π φ π φ

π φ υ π φ π φ π φ

=

− = = =

Φ
  (21) 
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These priors are informative on the moduli of dominant root with severely skewed to the 

right ranging from υ  to (1 )υ+ with mode around 1. The priors on all the other roots are 

quite weakly informative with very flat shape, round curves ranging over [0,1]. For the 

issue of choosingυ , by the recommendation of Bauwens, Lubrano, and Richard (2000) 

on =1/3υ , we follows Griffiths (2012) to adopt a hierarchical approach since his work 

suggests that assigning a prior to υ is a good strategy. We assign an exponential 

distribution with mean 1( )E υ κ −=  as a prior to υ , i.e., 

 ( | ) ef κυυ κ κ −=   (22) 

whereκ is chosen such that ( 0.15) 0.05P υ > = . 

 For the drift and coefficient of deterministic trend, we assign bivariate normal 

distributions as their priors, which has the following form: 

 
2

0 1
2

0 2

0
~MVN( ),

0
γγ ω
δδ ω

   
= =    

     
ω,Σ ω ,Σ   (23) 

Without loss of generality, we assume 0 0 0γ δ= = for computational simplicity. The 

variance of the error term is assumed to follow an inverse-gamma distribution with shape 

parameterα and scale parameter β  which is the conjugate prior of the normal likelihood 

function: 

 2 2 1
2~ ( , ) [ ] exp( )

( )
IG

α
αβ βσ α β σ

α σ
− −= −

Γ
  (24) 

Since these three parameters are assumed to be independent, the joint prior of all 

parameters except the roots shown in (15) is: 
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 2 2( ) ( , , )= ( , ) ( )h h f fγ δ σ γ δ σ=η   (25) 

So with all these settings, the joint posterior distribution of the parameters is: 

 ( , , | ) (y | ) ( ) ( ) ( | )f L h fυ π υ κ∝ × × ×Φ η y η,ρ Φ η   (26) 

where (y | )L η,ρ , ( )π Φ , ( )h η and ( | )f υ κ  are defined in (10), (21), (25) and (22)

respectively. The analytical form of the marginal posterior distribution of the nuisance 

parameters can be derived as follows: 

(1). The posterior for variance 2σ : 
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∝ − − − +

− − +

∑

∑

' '

' '

Φ y η,ρ

x θ y ρ

x θ y ρ



  (27) 

which also follows inverse-gamma distribution. 

(2). The posterior for the drift termγ : 

From the assumption of (23) the marginal prior distribution of γ is 2
0( , )N γγ σ . 

Assume the following notation: -1
1 1

[ (1 ) ]
p p

t i i
i i

A y i tρ ρ δ
= =

= − + − −∑ ∑ 'y ρ , the posterior 

distribution of γ is (several intermediate steps are omitted):   
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Thus, the marginal posterior distribution of drift term γ  is: 
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(3). The posterior for the deterministic trend coefficientδ : 

The marginal prior distribution of δ  is also normal of 2
0( , )N δδ σ  from (23). 

Similarly denote -1
1

(1 )
p

t i
i

B y ρ γ
=

= − − −∑ 'y ρ and
1 1

(1 )
p p

i i
i i

S t iρ ρ
= =

= − +∑ ∑  in model (5), the 

posterior distribution of δ  can be derived as (several intermediate steps are omitted): 
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   So the marginal posterior distribution of the deterministic trend coefficientδ  is: 
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The posterior distribution of the eigenvaluesΦ is fairly difficult to be analytically 

derived since the model parameterization using lag coefficients ρ  whereas the prior 

distribution is specified toΦ . Meanwhile it is also very difficult to derive the posterior 

distribution ofυ . A numerical method has to be adopted to sample from the marginal 

posterior distribution of these parameters and derive measures of their posterior 

empirically. 

From the above derivation, some parameter posterior distributions can be 

analytically calculated while others cannot. To better incorporate this property and 

achieve more accurate and faster sampling result, Metropolis–Hastings within Gibbs 

(MH within Gibbs) algorithm will be adopted in our computation. It is one of the Markov 
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Chain Monte Carlo (MCMC) methods that samples from a conditional distributions of 

subsets of parameters in order to constructing a Markov chain whose convergence 

distribution is the desired distribution. There are basically two fundamental mechanisms 

among MCMC sampling algorithms (Jing 2010). The first approach sets up an 

“accept/reject” rule to keep revising the chain so that it can reach the aimed convergence 

distribution, which is the spirit of the Metropolis-Hastings (MH) algorithm. It was first 

developed by Metropolis et al. (1953) and later generalized by Hastings (1970) and now 

is widely used in all areas which need numerical sampling including statistics, 

econometrics, physics, engineering. Assume that random variables X  have joint 

distribution ( )ψ X from which the sample need to be drawn. A MH algorithm requires 

choosing a proposal distribution ( | )q ⋅ X  which generates a candidate chain based on the 

current values of random variables, then decides to accept or reject according to the 

detailed balance rule. To be more specific, the algorithm can be described as below: 

(1). Assign initial values to X : (0) (0) (0)
1 2(x , x ,..., x )n=(0)X  ; 

(2). For iteration m from 1 to N, repeat the following procedures: 

 a. generate a candidate value from proposal density,  m~ ( | )q ⋅*X X  ; 

 b. generate a random variable ~ (0,1)u Uniform  ; 

 c. decide using the following rule: 

  ( 1)
( )

          if ( )
              otherwise     

m
m

m

u α+  ≤
= 


* ( ) *X X , X
X

X  
 , in which 

( )
( ) ( )

( ) ( )

( ) q( | )min{ ,1}          if ( )q( | ) 0 
( )= ( )q( | )

1                                                                 otherwise            

m
m m

m m m

ψ ψ
α ψ


>





* *
*

* ( ) *

X X X X X X
X , X X X X   
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 (3). Return the final values ( , ,..., )(0) (1) (N)X X X . 

The MH algorithm is flexible since the proposal density can be arbitrary, but there is a 

price for this convenience (Jing 2010). If the proposal density is not chosen appropriately, 

the acceptance rate is low which means that the sample we create may include lots of 

noise compared to the convergence distribution we actually want. Also the Markov Chain 

may not cover the whole support or (at least a large part) of the convergence distribution; 

sometimes it even can stick to a small area which leads to very poor sampling efficiency. 

 The second approach to a MCMC mechanism simplifies high dimensional 

situations by successively generating each variable or subset of variables from probability 

distributions conditional on the previously drawn samples, which is the general idea of a 

Gibbs sampler. The Gibbs sampling algorithm is one of the simplest but most powerful 

Markov chain Monte Carlo algorithms which was introduced by Geman and Geman 

(1984) in the context of image processing. Today Gibbs sampling is commonly used as a 

means of statistical inference, especially Bayesian inference. Gelfand and Smith (1990) 

demonstrate the importance of the Gibbs algorithm for a range of problems in Bayesian 

analysis with comparison to other sampling methods. Unlike the MH algorithm which 

requires a proposal density, the Gibbs sampler generates samples from full conditional 

distributions and is guaranteed to converge to the full joint probability distributions under 

mild regularity conditions introduced by Roberts and Smith (1994). In this paper we use 

the simplest but most widely used version of the Gibbs sampler which can be described 

below: 

 (1). Starting with some initial values (0) (0) (0) (0)
1 2(x , x ,..., x )n=X ; 

 (2). For iteration m from 1 to N, repeat the following procedures: 
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For variable i  from 1 to n , generate sample m
ix  from the conditional 

probability density 1 1 1( | ,..., , ,..., )i i i nf x x x x x− +  ; 

 (3). Return the final values ( , ,..., )(0) (1) (N)X X X . 

The price that the Gibbs sampler pays for reducing the dimensionality is slow 

convergence and high correlation when the components of sampled random variables 

exhibit heavy dependence (Jing 2010).  

 In this paper, we combined these two methods since the marginal posterior 

distribution of part of the parameters can be analytical derived conditional on all others 

while others cannot, which requires MH algorithm. To be more specific, we use the  

multivariate normal distribution as the proposal distribution density of the MH algorithm 

to sample the rootsΦ ; after that, conditional on all the other random variables draws of 

nuisance parameters ηcan be achieved one by one using a Gibbs sampler based on (27), 

(29) and (31). The details and results will be given in the next section.  

2.2.5 Allowing Variable Transformations 

 In economic empirical work, data transformation is usually needed either for 

achieving some assumption (like normality of the distribution) or for the convenience of 

interpretation of the coefficients (e.g., coefficients can be interpreted as elasticity for a 

linear model with log transformed data). It is also the case in time series analysis. 

Meanwhile, model transformation can also be treated as one type of model specification 

uncertainty which can be considered in our Bayesian unit root test method.  So in this 

paper we also want to incorporate variable transformation into our method. Specifically, 

we consider the famous and widely used Box-Cox transformation (Box and Cox 1964) 

which is: 
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  (32) 

There are lots of other kinds of transformations that can be used in our general 

framework, and one can refer to Charitidou, Fouskakis, and Ntzoufras (2013) for 

comparison of different transformation from a Bayesian perspective if interested in 

transformations. 

In order to average together with other models which use the un-transformed 

variables, the likelihood function needs to modified and becomes: 

 2 2 /2 2
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p+1 1

1(y | , ) (2 ) exp{ ( ) } | |
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 is the Jacobian for the corresponding transformation and x,θ,ρ  are 

defined the same as in (10). Then similar to before, we can derive the posterior 

distribution by multiplying the likelihood function by the prior distribution and 

integrating out the irrelevant term. Notice here to incorporate the Box-Cox transformation 

the only major difference is the likelihood function (the Jacobian part) while other 

components like initial conditions and prior distributions do not need to be adjusted so 

the detailed derivation will not be repeated here. 

2.2.6 Unit Root Test Using Bayesian Model Averaging  

 After all these derivations and interpretations, the last step is considering the 

model averaging which is the key contribution of this research. Suppose there are k 

possible candidate models which can hold differences in various aspects, for instance, 

different numbers of time lags can be included in the model, and the model could be with 
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or without deterministic trend, also there could be some models using the transformed 

data. We assign a model prior probability distribution across the possible model space, so 

each potential model has prior probability (M )kpr ,  

 

1

(y | M ) (M )(M | y)
(y | M ) (M )

k k
k k

l l
l

pr prpr
pr pr

=

=

∑
  (34) 

and the marginal likelihood function under Mk  is 

 (y | M ) (y | ,M ) ( | M )dk k k
S

pr pr pr= ∫ k k kΩ Ω Ω   (35) 

kΩ here is all the parameters in the model Mk (in our case, ( , , ) 'k k k kυΩ = Φ η  ) and 

( | M )kpr kΩ is the prior distribution of parameters Ω  under model kM  , and S is the 

support of Ω .Then the final comprehensive probability of possible unit root across the 

whole model space is: 

 1 1
1

( 1| y) ( 1| M , y) (M | y)
k

k k
i

pr pr prφ φ
=

≥ = ≥∑   (36) 

in which 1( 1| M , y)kpr φ ≥  is the posterior probability of unit root given model Mk  

derived in (16). 

 Finally we can compute the probability of the dominant root larger than 1 

considering all these circumstances including model uncertainty on functional form, 

random component distribution and transformation and draw the conclusion according to 

the decision rule defined in (20). 
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2.3 Simulation and Results 

2.3.1 Monte Carlo Simulation Design  

 Monte Carlo simulations are adopted to investigate the performance of the 

method we derived. In general, a desirable test should display accurate test size and 

maximize test power (Griffiths 2012) so it would be a good strategy to compare the 

proposed method with some existing unit root test methods. However, one thing to 

remember is that Bayesian and frequentist tests are completely different logically. For 

instance, Bayesian tests do not conform to the conventional 0.05 size from the traditional 

sampling theory (Griffiths 2012). Also one fundamental difference between these two 

frameworks is that the traditional frequentist framework treats unknown parameters as 

fixed and data as random, while the Bayesian technique believes data is fixed and treats 

parameters as random. In this case it might be inappropriate to evaluate a “pure” 

Bayesian test which makes decisions conditional on the fixed observed data using criteria 

constructed by sampling theory whose estimates based on data at hand plus hypothetical 

repeated sampling in the future with similar data. Regardless of these potential debates, 

we will compare the performances of the method proposed in this paper with two famous 

unit root tests: the Dickey-Fuller (DF) test and the Phillips-Perron (PP) test. One should 

bear in mind that no matter how the comparison results turn out, the method proposed in 

this paper provided a solution to performing unit root tests under model specification 

uncertainty, which cannot be achieved by other traditional test methods since they all 

require some kind of model restrictions. 

 In the simulation, we adopted a “autoregressive signal plus white noise” model 

from Pagano (1974) as the underlying data generating process. This approach will not 
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only generate autoregressive time series but also provides a convenient way to control the 

signal to noise ratio of the generated series, which is helpful to evaluate the performance 

of different test methods under various data circumstances, e.g., very clean data or noisier 

data. The fundamental data generating process can be described as: 

 
0

,  and 
q

t t t j t j t
j

x s sη β ε−
=

= + =∑   (37) 

Restrictions on this system are: 

(1). ts and tη are independent;  

(2). tη is independent identically distributed as 2(0, )N ησ , and 2 (0, )t iid N εε σ ; 

(3). 0 q=1  0β β ≠，   

According to this setting, ts is actually a AR(q) process guaranteed by condition (3), and 

the final data process tx is composed of signal series ts and noise component tη . Under 

these assumptions, the signal to noise ratio is defined as: 

 2 2/r ε ησ σ=   (38) 

Furthermore, researchers often face a question about whether the series should have drift 

and/or a deterministic trend term. If we consider this then two terms could be added to 

data generating process. For example, trend can be incorporated as 

 0
1

+ 
q

t j t j t
j

s sβ β ε−
=

= +∑   (39) 

 with all other assumptions unchanged, and a drift term can be specified by letting some 

initial value of 0s α= . This process can also be found in Harvey and Harvey (1993, 

2:122).  
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 In order to incorporate the model uncertainty problem in the data generating 

process, we adopt the following mechanism: 

(1). Generate two binomial distributed random variables with probability 0.5 to decide 

whether the DGP has drift or deterministic trend term; 

(2). Generate an uniformly distributed random variable ranging from 1 to 6 to set number 

of lags included in the DGP; i.e., the process might be randomly AR(1) to AR(6). Notice 

that any degree of lags could be included, what we did here is for discussion 

convenience.  

 Meanwhile, to completely measure and judge the performance of proposed 

method, numerous data sets were generated with different properties and used to test and 

compare the result. The dominant roots of the series were set to be 0.80, 0.85, 0.9, 0.95, 

0.96, 0.97, 0.98, 0.99 and 1 since more samples and results need to be collected near unit 

root to achieve a meticulous performance comparison. The signal to noise (SN) ratio was 

regulated to be 0.25, 0.5, 1, 5, 10, 50 and 100 in order to measure the capability of testing 

under various data circumstances. With each of these settings, data sets were generated in 

four different sample sizes: 50, 100, 300 and 500 so that both small sample properties and 

the asymptotical behavior of these methods can be viewed. Overall, 252 different 

combinations of DGP parameters were analyzed with either 200 or 500 data sets 

generated in order to test performance for each of the 252 settings. For dominant root 

equals to 1, 0.99, 0.98, 0.97, and 0.96, 500 data sets are generated for each value to 

evaluate performance more precisely and reliable; while for dominant root equals to 0.95, 

0.90, 0.85, 0.80, 200 replications are used for computational convenience.  All the 

detailed DGP information can be found in appendix A. Also, in order to remove the 
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initial condition effect, the first several generated observations (the specific number of 

observations removed depending on sample size) were eliminated (Schwert 1989).   

 Since in the DGP, trends and number of lags are randomly assigned, each 

simulation data set has an unknown true model specification. For our proposed method, 

24 models will be averaged together to draw a conclusion on each data set:  

 (1). 
1

,  1, 2,...,6
P

t i t i t
i

y y pρ ξ−
=

= + =∑   

(2). 
1

,  1, 2,...,6
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t i t i t
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t i t i t
i

y y pρ ξ−
=

= =∑   

(4). 
1

log log , 1,2,...,6
P

t i t i t
i

y t y pµ β ρ ξ−
=

= + + + =∑   

The last 12 models employ a logarithm form to incorporate variable transformation, and 

one can always add other transformation formats into this frame. Here we only consider 

log transformation since it is not only one case of Box-Cox transformation which is 

commonly used in economic literature, but also helpful to demonstrate our method 

without introducing too much computational complexity.  

2.3.2 Monte Carlo Simulation Results 

Eight tests are performed to each data set generated according to the rules in 

previous section: the test method proposed in this paper by averaging 24 models, 6 

Augmented Dickey-Fuller tests with different lag specification 1 to 6, and the Phillips-

Perron test. For the ADF and the PP tests, the decision rule is do not reject the null 

hypothesis (nonstationary) if the p-value is larger or equal than 10%, which is a pretty 

loose standard. The results are compared and discussed below. 

52 



 

Figure 2. 1 displays the percentage of unit roots detected in 500 replicated sample 

simulations by each testing methods under different signal to noise ratios, which is 

connected to the idea of test size. The data generating process is I (1) series. First notice 

that the BMA test did fairly well in all these four samples especially when the sample 

size is small. Among all four panels, the BMA curve almost always stays the top of all 

others which indicates a strong ability to detect the existence of a unit root. When the 

sample size is small, BMA also keeps this consistency which shows good small sample 

property. This can also be demonstrated by viewing plots when sample size is 50 and 

100, where the BMA method detects most of the unit roots, especially when the signal to 

noise ratio is small. This also shows good ability of handling messy data when the 

underlying process is nonstationary. 

For our simulation data generating process (37), with a little transformation one 

can get the following formula: 

 
1 1 1
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∑

∑
  (40) 

The last part introduces moving average (MA) component to the data series. According to 

Schwert (1989), the ADF and PP tests will have severe size distortion when testing data 

series that have a large negative moving average root, and in his paper, simulation shows 

that when the dominant of MA root is -0.8, the size is almost 100%.  In our simulation 

formula (40), the MA root is -1, which directly explains the bad performance of ADF and 

PP test. Although overparameterizaiton in the ADF test could mitigate this problem on 

some level, it does not seem to have a significant impact and will bring problems to the  
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Figure 2.1 Percentage of Unit Root Detected with Different SN Ratio and Sample Size 

when the DGP is I (1) Process   
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test power which will be introduced in next few paragraphs. Furthermore, Schwert (1989) 

also indicates that the size of the PP test will suffer more in this situation and do not come 

close to their asymptotic distribution even when the sample size is fairly large. This 

shows in Figure 2. 1 since the PP test generally stays at the bottom of all curves showing 

quite unsatisfactory performance and does not move up as the sample size increases. On 

the contrary, the BMA approach can handle this problem well judging from the curves in 

Figure 2. 1, and behaves pretty consistent under all circumstances. Next we see that the 

BMA method keeps this good performance when the DGP is stationary compared to 

other methods.   

The second part of the simulation measures the performance when the underlying 

data generating process is stationary, i.e., I (0) process. Notice that in this case it is also 

possible for the generated data to have deterministic trend since it is randomly assigned, 

and the specific functional form is still unknown to each test method. This measurement 

is similar to test power in frequentist statistics and traditionally a power curve could be 

drawn. However, the method we derive belongs to the Bayesian framework where debate 

still exists about using traditional frequentist performance judgments for performance 

evaluation. Meanwhile, since we have many parameters combinations in the simulation, 

28 graphs are needed to fully show all the curves under different circumstances which is 

redundant and unclear. Instead of drawing the power curve graphs, an optimal method is 

chosen among all 8 tests for each combination of parameter settings and shown as a form 

of heat map. Figure 2.2 lists such graphs for the 4 different sample sizes. For each 

subgraph, the vertical axis stands for different dominant roots of the data generating 

process while the horizontal axis shows the various signal to noise ratios. Each color 
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demonstrates the testing method which achieved the optimal result (rejecting the unit root 

null hypothesis at the highest rate, since the underlying data is stationary). First notice is 

that among the 8 testing methods only 3 were proven to be best in different situations: the 

BMA test proposed in this paper, the ADF test with lag truncated at 1 and the PP test. 

The ADF test with lag 1 dominated over all other ADF tests with different lag 

specification in all four sample sizes. Several previous researches have shown that the 

power of the ADF test will suffer if the lag length is chosen too large (Harris 1992; Ng 

and Perron 1995) which could explain this dominance. Meanwhile, too small lag length 

may bias the test since there are remaining serial correlation in the errors, which provides 

insight into the better performance of the PP test compared to the ADF test since it is a 

nonparameteric approach which adjusts any serial correlation and heteroskedasticity in 

the errors by modifying the test statistics. However, the most significant result is that in 

each graph, the BMA test proposed in this paper occupies a larger area which indicates 

better performance in lots of the situations. The model specification uncertainty of the 

underlying data plays important role here, but in real unit root testing, the model 

specification is uncertain. Roughly 50% of the testing data actually contains a 

deterministic trend but when is unknown to the testing methods. It is well known that the 

power of the ADF and the PP tests is substantially reduced if the time trend term is 

inappropriately excluded from the testing model (Campbell and Perron 1991). On the 

contrary, the better performance of the BMA in general showed a good ability to handle 

unit root tests when model uncertainty is present. Meanwhile, notice that the advantage of 

the BMA test becomes more obvious as sample size increases since more information is 

provided by a larger sample. The better performance of the BMA test in larger sample  
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Figure 2.2 Optimal Testing Method with Different Sample Size and Parameter Settings 

when Underlying DGP is Stationary 
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sizes is surprising since ADF and PP should have larger power under large sample sizes 

because they are based on asymptotical properties. 

Secondly, examine each individual graph in more detail. From the view of the  

magnitude of dominant root, the BMA method works extremely well when the dominant 

root is close to 1, especially when the signal to noise ratio is larger than 1. The ADF and 

PP tests are known to have low power when testing series with a large autoregressive root 

(DeJong et al. 1992), which could be caused by the discontinuity in the asymptotic 

distribution near the unit root; while Bayesian framework can handle this problem 

perfectly by introducing priors on the parameters (Sims 1988). 

 Also notice that in the simulation under all circumstances, the prior used for 

dominant root is always the same highly left skewed Beta distribution with quite large 

density around 1; so in practice if one have some belief of stationary on the data he 

analyzes he can assign prior less skewed with more density to the stationary region, then 

the result of BMA test should gain more power. Nevertheless, with the consistent left 

skewed prior, the result is strong enough here to illustrate the advantages of BMA test 

approach when the dominant root is close to 1 and this advantage increases when sample 

size increases.       

It seems that the BMA approach works better when the signal to noise ratio is 

relatively high since one can observe that most dominance happens when this ratio is 

larger or equal to 1. One possible reason is that when the signal to noise ratio is quite low, 

like 0.25 and 0.5, according to the data generating process defined in (37), more than half 

of the data would be noise information which will cancel the real underlying AR process 

and in this case the highly skewed prior used in BMA approach may dominate the 
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posterior density which will produce more unit root conclusions that will lower the 

“power” of the test. As mentioned before, researchers usually should have some beliefs 

on whether their data is stationary, especially when the real dominant root is far away 

from unity, and thus assign more informative and reasonable priors to the parameters 

which will bring better results. Though increasing the prior variance (flattening the prior) 

to include more possible candidates can be helpful in this situation, more cost could 

happen by doing so (like lower the acceptance rate and increasing the computational 

burden) and it is beyond the discussion scope of this research. 

 

2.4 Empirical Application to the Nelson-Plosser Data 

 Nelson and Plosser (1982) investigated the stochastic behavior of 14 historical 

U.S. macroeconomic time series and concluded that all of them are non-stationary 

stochastic processes with no tendency to return to a trend line. Since then the debate 

about the behavior of these 14 series has been continuing and the data they used in the 

analysis has become benchmark data for unit root test methods. Therefore, we apply the 

methodology derived in this paper to evaluate the empirical performance of our method, 

and compare the results with that from Nelson and Plosser (1982) as well as other three 

famous paper which also analyzed the same data using Bayesian unit root test methods, 

Phillips (1991), DeJong and Whiteman (1991) and Lubrano (1995). For each of the 14 

series, we applied our method by averaging 24 models as we did in the simulation: 

models with and without deterministic trend, with original levels and logarithms of the 

data, and for each of the above settings with autoregressive lags from 1 to 6. The number 

of lags included in the formula and the existence of  a deterministic trend are evidences of 
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model uncertainty and even the three papers listed here have different opinions: Nelson 

and Plosser (1982) chose one lag value for each series from 1 to 6 suggested by 

autocorrelations of first differences and by the partial autocorrelations of the deviations 

from the trend, and they included time trend in all the series and test them. DeJong and 

Whiteman (1991) chose 3 lags for all the series and considered the trend in the series. 

Phillips (1991) considered both 1 lag and 3 lags together with trend, and he also 

compared two different priors to confront his main goal of the paper. Lubrano (1995) 

using 2 lags for all series except lag 4 for unemployment rate, consumer prices and bond 

yield which has chosen according to the computed Schwarz criterion. Our method will 

not have this inconsistency since it is designed to handle the issue of model specification 

uncertainty, and by averaging 24 models together, all the situations are considered at one 

time to achieve a comprehensive conclusion. 

 The model parameterization and priors assigned are identical to those in the 

previous simulation. The acceptance rate is controlled to around 40% for univariate 

draws and 25%~35% for multivariate situations to ensure the good mixture of the 

Markov chain. Meanwhile, 11,000 draws are taken for each series and the first 1,000 

draws are eliminated in order to reduce the initial condition effects as well as to achieve 

good convergence. 

 Figure 2.3 (i)-(xiv) displays the robust model averaged posterior densities of the 

dominant root for each of the Nelson& Plosser series. One may find the shape of all the 

posterior distribution are quite different from some other work using the similar data. The 

major reason is that instead of showing the density of only one model specification, the 

posterior distribution of the dominant root showed here is the average result of all 24 
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models so some part might be smoothed by different model result but most of them are 

still far away from any standard distribution density. Each density has some probability 

that the root exceeds 1 but the majority mass will decide whether the series has stochastic 

trend. Table 2.1 gives the results of averaged posterior probabilities of nonstationarity 

1( 1)P φ ≥ , and the 95% credible interval for the deterministic trend coefficient. To 

compare results, we also list the test statistics or probability from the aforementioned four 

papers. The first two columns 

1( )τ ρ  and 1( )t γ  are from Nelson and Plosser (1982) Table 

5 which are the test statistics for the root and trend term respectively. The following two 

columns are part of Table IV in Phillips (1991), who used the reduced form 

parameterization and the Jeffreys prior, and here both the results of AR(1) and AR(3) are 

listed. The results from DeJong and Whiteman (1991) are shown in column 5; in their 

paper they employed a truncated flat prior on the autoregressive coefficients but perform 

inference based on the root Λ . The next column provides the results from Table 1 in 

Lubrano (1995) who adopted a Beta prior and employed a structural parameterization 

including a special treatment of the first observation which we followed in this paper. 

The last two columns show result of our modeling averaging approach. Comparing all 

these results, one will find some different conclusions although most of them are broadly 

consistent with each other. These differences show that time series specification can have 

a significant influence on the posterior distribution as well as the unit root decision. 

Nelson and Plosser (1982) claimed that except for the marginal stationarity of 

unemployment rate, the other 13 macroeconomic series are difference stationary, i.e., 

contain a unit root. Meanwhile none of them has a significant deterministic trend. 
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 In general, the results of all five studies are qualitatively consistent in spite of 

some discrepancies on certain series, as well as differences in probability levels estimated 

which is reasonable because of the different priors, methods and specifications adopted. 

Our BMA approach finds 6 series contains stochastic trend: Nominal GNP, Consumer 

prices, Nominal wages, Velocity, Interest rate (Bond yield) and Common stock prices. 

Lubrano (1995) found two more besides the previous 6: GNP deflator and real wages. In 

Phillips (1991), 5 of 14 series show evidence of stochastic trends (if we adopt 0.15 as 

significant level mentioned in his paper) under the Jeffreys prior with AR(3) plus trend 

specification (except for unemployment AR(4) was used): Industrial production, 

Consumer prices, Velocity, Bond yields and Stock prices. Compared to these results, 

DeJong and Whiteman (1991) believed all series are trend stationary except two: 

Velocity and Bond yields, with marginal nonstationary in the case of Consumer prices. 

This is criticized by Phillips (1991) due to the fragile flat priors which are always biased 

away from stochastic trend alternatives that made the result quite different from others.  

In spite of mostly consistent results between our result and the two other Bayesian 

papers (excepting DeJong and Whiteman (1991)), there are differences concerning 

whether some series contains unit root. One of the differences is on industrial production, 

which is considered to have a unit root in Phillips (1991) when using Jeffreys prior on 

AR(3) with trend specification but stationary in our method as well as Lubrano (1995). 

Another one is wages which is considered stationary in Phillips (1991) but strictly 

nonstationary in our paper and Lubrano (1995). One possible reason for this kind of 

disagreement could be model uncertainty, i.e., the uncertainty over the number of lags 

included in the formula. For example, for wages, Phillips using both AR(1) and AR(3) 
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with trend, and concluded opposite results – with AR(1), he detected the existence of unit 

root but with AR (3) indicated stationarity. In contrast, Lubrano, using AR(2),  concluded 

nonstationarity, which is the same result as our conclusion. We examined the component 

and proportion of our final comprehensive posterior probability, and found that for 

testing this wages series, overall the models using logarithms of the data with a trend 

specification (6 models, with from 1 to 6 lags) had almost 97% of the model posterior 

weight. Further, we when dig into the 6 models using logarithm data with trend and we 

compute the weights of each model with different lags; we find: AR(1), 23.2%; AR(2), 

24.7%; AR(3), 15.2%; AR(4), 14.3%; AR(5), 11.0%; AR(6), 11.6%. It is clear that 

specifications of AR(1) and AR(3) take the majority of the support and results 

conditional on those two models, AR(1)  to AR(3), are that a unit root does exist in the 

series. Given that these three specifications gather about 63.1% of the support among all 

24 models, it is not surprising that the model-averaged results support the nonstationarity 

conclusion. Meanwhile, it is sometimes hard to decide the appropriate number of lags 

included in the model according to criteria like AIC or BIC since their values may not 

vary significant to strongly support one lag specification. Table 2.2 lists AIC and BIC 

value for each model specification of all the 14 series. Take common stock as an 

example, the AIC values are quite flat over all the 6 model specifications which may not 

provide enough evidence to fully support one model; meanwhile, for this series AIC and 

BIC will give different lag specification result if we choose lag numbers based on the 

minimum value. These all demonstrate the importance of accounting for model 

specification uncertainty issues in the empirical work, and also proves the effectiveness 

of our Bayesian model averaging approach in handling such situations.  
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2.5 Conclusion 

 Model uncertainty sometimes can be a significant issue in empirical economic 

research, which without a doubt, includes unit root tests in time series analysis. Although 

a tremendous literature has been devoted to unit root testing, both in the frequentist 

domain and the Bayesian framework, not much work has been done to propose a general 

approach to testing for unit roots under model uncertainty. This paper tries to contribute 

to filling this gap by introducing an approach which can test for unit roots by averaging 

all potential model candidates in a Bayesian framework. These model candidates can 

vary in different ways. For example, for autoregressive models, they may differ in the 

number of lags included in the model since lag length choice can have a major impact on 

unit root inference. It can also be uncertainty about the format of the response variable, 

like original level data or some function of the data since one might believe the 

underlying data generating process is transformed, or simply it is easier to interpret if 

working on some transformed data, like natural logs. Finally, it is often difficult to 

accurately decide the distribution of the stochastic term included in the model. We can 

simply average a set of potential assumptions to mitigate this uncertainty. This is not 

explicitly done in this paper, but it is a natural generalization of our method and will be 

discussed in the next chapter. 

 Provided the general approach developed in the first several subsection of this 

paper, a Monte Carlo simulation was performed to examine our method. By randomly 

assigning the number of lags, the existence of drift, and the inclusion of a deterministic 

trend, we generated the testing data sets have a specification unknown to the unit root test 

methods. Then 24 possible models were averaged to achieve the final conclusion: models 
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with/without deterministic trend, and using original data and log-transformed data, and 

for each of these four settings, models with from 1 to 6 autoregressive lags were 

considered. After analyzing the results and comparing them with two existing popular 

methods, the Augmented Dickey-Fuller Test and the Phillips-Perron test, we conclude 

that the proposed BMA method performed fairly well. In testing the nonstationary series, 

it has relatively smaller “size” (if we use terminology from frequentist statistics) 

compared to the PP test and some of the ADF tests with short lag length specifications. 

For stationary data sets, we found that BMA test proposed in this paper had higher power 

in a large percentage of scenarios tested compared to the other tests which indicates better 

performance in lots of the situations. This can be explained by better handling the model 

uncertainty of the underlying data generating process, since traditional test methods 

power will suffer under incorrect specification. Meanwhile, it is also noticed that the 

BMA method works extremely better when the sample size are large, as well as when the 

signal to noise ratio is relatively large (usually larger than one). 

 Following the simulation, we also applied our proposed approach to the famous 

Nelson and Plosser (1982) data of 14 macroeconomic time series, and compared the 

results with those from four other papers which also tested the same data using different 

methods: the original paper which used the Augmented Dickey-Fuller test, and other 

three papers which adopted various Bayesian unit root test frameworks. Generally 

speaking, we achieved similar decisions on most of the series with Phillips (1991) and 

Lubrano (1995), which indicates the empirically suitability, as well as the 

parameterization and prior validity of our method. We carefully examined the posterior 

odds of 24 models in the set of considered models and found that most posterior support 
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belonged to 3 models with autoregressive lags 4 to 6; whereas the two papers which 

achieved different result with ours happened to only use 3 or 4 lags. This again not only 

shows the robustness of our method but also proved the importance of considering model 

uncertainty when conducting unit root tests and the ability of the proposed method to 

successfully address this issue. 

 This paper developed a numerical Bayesian unit root test method which can 

incorporate the model specification uncertainty issues in empirical research work. By 

both simulation and analysis to real world data set, we showed the effectiveness of the 

proposed method. Though the method is not uniformly dominant, it works well in many 

circumstances and there are many future directions to improve the performance of the 

method, like introducing the structural breaks. As Lubrano (1995) said “intuitively it is 

very hazardous to discriminate between competing economic theories”, or Phillips (1991) 

indicated “we see no reason why empirical researchers should not judiciously pursue this 

approach (Bayesian unit root test, author’s note) as well as classical methods”. The most 

important thing is that it is a general approach to considering model uncertainty when 

performing unit root tests, and provides an alternative to researchers who are concerned 

this is a significant issue in their work.       
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                                        (iii)                                                                (iv) 

 

Figure 2.3 Averaged Posterior Density Plot of Dominant Root 
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                                        (vii)                                                             (viii) 

 

Figure 2.3 continued.  Averaged Posterior Density Plot of Dominant Root 
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Figure 2.3 continued.  Averaged Posterior Density Plot of Dominant Root 
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Figure 2.3 continued.  Averaged Posterior Density Plot of Dominant Root 
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Table 2.1 Testing Result of Nelson-Plosser Dataa 

Series Nelson 
Plosser (1982)b 

Phillips (1991) DeJong 
Whiteman 
(1991) 

Lubrano 
(1995) 

BMA Unit Root Test 

  AR1+trend AR3+trend ( 0.975)DJWP Λ ≥   ( 1| y)P ρ ≥    
 

1( )τ ρ   ( )t γ   ( 1)JP ρ ≥   ( 1)JP ρ ≥  1( 1)P φ ≥   95%  credible interval 

of deterministic trend 
Real GNP -2.99 3.03 0.193 0.012 0.003 0.031 0.0318 (0.0845, 1.360)                                 
Nominal GNP -2.32 2.34 0.361 0.074 0.02 0.149 0.582 (-0.728, 4.388) 
Real per capita 
GNP 

-3.04 3.01 0.163 0.01 0.003 0.029 0.274 (0.140, 1.629) 

Industrial 
production 

-2.53 2.44 0.124 0.188 0.001 0.015 0.0915 (-0.0102,0.418) 

Employment -2.66 2.54 0.190 0.04 0.004 0.012 0.0553 (-0.0816, 0.941) 
Unemployment 
rate 

-3.55 -0.23 0.126 0.086 0.002 0.001 0.0475 (0.143, 0.576) 

GNP deflator -2.52 2.65 0.162 0.02 0.01 0.267 0.0564 (0.0225, 1.001) 
Consumer prices -1.97 2.84 0.601 0.176 0.196 0.231 0.615 (-0.0437, 1.332) 
Wages -2.09 2.30 0.319 0.045 0.018 0.104 0.537 (0.0238, 2.181) 
Real wages -3.04 3.14 0.103 0.014 0.003 0.225 0.0570 (0.0386, 0.944) 
Money stock -3.08 3.03 0.315 0.008 0.005 0.014 0.0520 (0.250, 2.377) 
Velocity -1.66 -0.65 0.353 0.537 0.592 0.486 0.756 (-0.742, 1.576) 
Bond Yield 0.686 1.75 0.999 0.996 0.617 0.208 0.944 (-0.00110, 0.000477) 
Common stock 
prices 

-2.05 2.37 0.301 0.215 0.04 0.214 0.785 (-0.0166, 0.586) 

a.The bold font stands for decision of nonstationary in each paper, since different methods and criteria are used the meaning of specific probability number is not 
consistent and comparable in general.   
b.For Nelson and Plosser (1982) only Unemployment was detect to be marginally stationary. 
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Table 2.2 AIC/ BIC Value of Different Specifications of 14 Series 

Series  AR (1) AR (2) AR (3) AR (4) AR (5) AR (6) 
Real GNP 

 
AIC -156.15 -157.84 -152.46 -149.04 -144.42 -140.37 
BIC -149.82 -149.46 -142.08 -136.68 -130.11 -124.17 

Nominal GNP AIC -105.13 -113.07 -109.30 -105.77 -102.78 -99.25 
BIC -98.80 -104.69 -98.91 -93.41 -88.47 -83.05 

Real Per Capita 
GNP 

AIC -154.79 -156.57 -151.09 -147.19 -142.49 -138.73 
BIC -148.45 -148.19 -140.70 -134.83 -128.19 -122.52 

Industrial 
Production 

AIC -187.31 -183.02 -180.01 -175.45 -172.81 -177.36 
BIC -179.21 -172.25 -166.60 -159.41 -154.16 -156.13 

Employment AIC -290.62 -292.51 -288.45 -291.23 -288.63 -286.42 
BIC -283.48 -283.03 -276.67 -277.17 -272.32 -267.88 

Unemployment 
Rate 

AIC 107.01 103.78 101.01 85.81 87.69 88.82 
BIC 114.15 113.26 112.79 99.87 104.00 107.36 

GNP Deflator AIC -244.07 -254.61 -248.63 -243.19 -238.03 -236.67 
BIC -236.89 -245.08 -236.79 -229.05 -221.62 -218.02 

Consumer 
Prices 

AIC -312.00 -349.69 -355.98 -359.16 -366.21 -376.11 
BIC -303.89 -338.93 -342.57 -343.12 -347.56 -354.88 

Wages AIC -172.70 -183.82 -179.58 -173.96 -169.20 -163.66 
BIC -165.95 -174.88 -168.48 -160.73 -153.87 -146.26 

Real Wages AIC -258.27 -254.68 -248.36 -242.48 -236.92 -232.63 
BIC -251.52 -245.75 -237.26 -229.26 -221.59 -215.23 

Money Stock AIC -216.10 -249.74 -245.87 -240.22 -242.46 -236.37 
BIC -208.92 -240.21 -234.02 -226.08 -226.05 -217.72 

Velocity AIC -255.60 -251.35 -247.00 -248.39 -244.84 -240.99 
BIC -247.75 -240.93 -234.03 -232.88 -226.82 -220.47 

Bond Yield AIC -172.49 -168.01 -165.35 -161.63 -156.47 -152.58 
BIC -165.75 -159.07 -154.25 -148.40 -141.14 -135.18 

Common Stock 
Prices 

AIC -75.51 -76.75 -76.53 -72.75 -73.09 -73.40 
BIC -67.73 -66.41 -63.66 -57.37 -55.22 -53.06 
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Appendix A. 

A. 1. Simulation Data Generating Process 

The formula of data generating process (DGP) is introduced in Section 3, 

specifically (37) and (39). For every data, a random variable valued 1 to 6 is generated to 

decide the number of lags will be included in the process; the drift and deterministic trend 

are also randomly specified by a binomial distributed variable with probability 0.5. The 

dominant roots will range from 0.8 to 1, with 200 replications for small dominant root 

and 500 replications for larger one in order to better demonstrate test power. And for each 

dominant root various data sets are generated with different signal to noise ratio and 

sample size from 50 to 300. The detailed parameter setting is listed in Table A1. 

 

Table A1. Simulation Design 

DOMINANT 
ROOT 

LAGS COEFFICIENT ROOTS 

0.8 
(REP 200) 

1 
2 
3 
4 
5 
 
6 

0.8 
0.68,0.1 
0.6,-0.15,0.25 
0.52,-0.25,0.2,0.15 
0.45,-0.25,0.15,0.1,0.1 
 
0.39,-
0.15,0.15,0.05,0.05,0.05 

0.8 
0.8,-0.12 
0.8,-0.1+0.55i,-0.1-0.55i 
0.8,0.04+0.71i,0.04-0.71i,-0.36 
0.8,0.17+0.7i,0.17-
0.7i,0.34+0.34i, 
-0.34-0.34i 
0.8,0.26+0.57i,0.26-0.57i, 
-0.46,-0.23+0.54i,-0.23-0.54i 

0.85 
(REP 200) 

1 
2 
3 
4 
5 
 
6 
 

0.85 
0.733,0.1 
0.682,-0.15,0.25 
0.625,-0.25,0.2,0.15 
0.583,-0.25,0.15,0.1,0.1 
 
0.57,-
0.25,0.15,0.1,0.05,0.05 

0.85 
0.85,-0.12 
0.85,-0.08+0.54i,-0.08-0.54i 
0.85,0.07+0.69i,0.07-0.69i,-
0.36 
0.85,0.2+0.69i,0.2-0.69i, 
-0.33+0.34i,-0.33-0.34i 
0.85,0.25+0.62i,0.25-0.62i, 
-0.16+0.5i,-0.16-0.5i,-0.46 

0.9 
(REP 200) 

1 
2 

0.9 
0.8,0.1 

0.9 
0.9,-0.1 
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3 
4 
5 
 
6 

0.77,-0.15,0.25 
0.74,-0.25,0.2,0.15 
0.72,-0.25,0.15,0.1,0.1 
 
0.66,-0.25,-0.1,0.2,0.15,0.1 

0.9,-0.07+0.52i,-0.07-0.52i 
0.9,0.09+0.68i,0.09-0.68i,-0.35 
0.9,0.23+0.67i,0.23-0.67i, 
-0.32+0.33i,-0.32-0.33i 
0.9,0.39+0.79i,0.39-0.79i, 
-0.57,-0.23+0.44i,-0.23-0.44i 

0.95 
(REP 200) 

1 
2 
3 
4 
5 
 
6 

0.95 
0.845,0.1 
0.832,-0.15,0.25 
0.817,-0.25,0.2,0.15 
0.81,-0.25,0.15,0.1,0.1 
 
0.78,-0.25,-0.1,0.2,0.15,0.1 

0.95 
0.95,-0.11 
0.95,-0.06+0.5i,-0.06-0.5i 
0.95,0.1+0.7i,0.1-0.7i,-0.35 
0.95,0.25+0.66i,0.25-0.66i, 
-0.32+0.33i,-0.32-0.33i 
0.95,0.42+0.77i,0.42-0.77i, 
-0.56,-0.23+0.44i,-0.23-0.44i 

0.96 
(REP 500) 

1 
2 
3 
4 
5 
 
6 

0.96 
0.856,0.1 
0.845,-0.15,0.25 
0.835,-0.25,0.2,0.15 
0.828,-0.25,0.15,0.1,0.1 
 
0.805,-0.25,-
0.1,0.2,0.15,0.1 

0.96 
0.96,-0.1 
0.96,-0.05+0.5i,-0.05-0.5i 
0.96,0.11+0.66i,0.11-0.66i,-
0.34 
0.96,0.26+0.66i,0.26-0.66i, 
-0.32+0.33i,-0.32-0.33i 
0.96,0.43+0.76i,0.43-0.76i, 
-0.56,-0.23+0.44i,-0.23-0.44i 

0.97 
(REP 500) 

1 
2 
3 
4 
5 
 
6 

0.97 
0.868,0.1 
0.86,-0.15,0.25 
0.852,-0.25,0.2,0.15 
0.846,-0.25,0.15,0.1,0.1 
 
0.83,-0.25,-0.1,0.2,0.15,0.1 

0.97 
0.97,-0.1 
0.97,-0.06+0.5i,-0.06-0.5i 
0.97,0.11+0.66i,0.11-0.66i,-
0.34 
0.97,0.26+0.65i,0.26-0.65i, 
-0.32+0.32i,0.32-0.32i 
0.97,0.43+0.76i,0.43-0.76i, 
-0.55,-0.23+0.44i,-0.23-0.44i 

0.98 
(REP 500) 

1 
2 
3 
4 
5 
 
6 

0.98 
0.878,0.1 
0.873,-0.15,0.25 
0.868,-0.25,0.2,0.15 
0.865,-0.25,0.15,0.1,0.1 
 
0.855,-0.25,-
0.1,0.2,0.15,0.1 

0.98 
0.98,-0.1 
0.98,-0.05+0.5i,-0.05-0.5i 
0.98,0.12+0.65i,0.12-0.65i,-
0.34 
0.98,0.26+0.65i,0.26-0.65i, 
-0.32+0.32i,-0.32-0.32i 
0.98,0.44+0.75i,0.44-0.75i, 
-0.55,-0.23+0.44i,-0.23-0.44i 

0.99 
(REP 500) 

1 
2 
3 
4 
5 

0.99 
0.889,0.1 
0.887,-0.15,0.25 
0.885,-0.25,0.2,0.15 
0.883,-0.25,0.15,0.1,0.1 

0.99 
0.99,-0.1 
0.99,-0.05+0.5i,-0.05-0.5i 
0.99,0.12+0.65i,0.12-0.65i,-
0.35 
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6 

 
0.878,-0.25,-
0.1,0.2,0.15,0.1 

0.99,0.27+0.65i,0.27-0.65i, 
-0.32+0.32i,-0.32-0.32i 
0.99,0.44+0.75i,0.44-0.75i, 
-0.55,-0.22+0.44i,-0.22-0.44i 

1 
(REP 500) 

1 
2 
3 
4 
5 
 
6 

1 
0.9,0.1 
0.9,-0.15,0.25 
0.9,-0.25,0.2,0.15 
0.9,-0.25,0.15,0.1,0.1 
 
0.9,-0.25,-0.1,0.2,0.15,0.1 

1 
1,-0.1 
1,-0.05+0.5i,-0.05-0.5i 
1,0.12+0.65i,0.12-0.65i,-0.35 
1,0.27+0.64i,0.27-0.64i, 
-0.32+0.32i,-0.32-0.32i 
1,0.45+0.75i,0.45-0.75i, 
-0.55,-0.22+0.44i,-0.22-0.44i 
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CHAPTER 3 

DATA FREQUENCY ON THE STATIONARY TEST OF COMMODITY FUTURES 

PRICE 

3.1 Introduction 

 Unit root testing is one of the most important procedures when performing time 

series analysis, since all the estimation and tests should be performed on a stationary 

series otherwise certain preprocess should be taken (like first difference) before adopting 

any analysis. Thus it is crucial to test the stationarity of the time series in hand accurately 

and efficiently. Two paths can lead researchers to achieve this goal: obtaining more data, 

or improving the unit root test, and these are also related to the two tasks in present paper 

which will be elaborated soon. 

 For collecting more data, one can try to consider a longer time span of data which 

will have more information related to the stationary property and can lead to a more 

reliable testing result. An alternative would be using higher frequency data while keeping 

the same time span. This is generally believed to not provide much information since 

intuitively, stationarity requires a series to pass its mean regularly at least within the test 

sample, and increasing the frequency while keeping the time span does not change this 

mean reversion within the sample (Boswijk and Klaassen 2012). However this is not the 

case if the low frequency data is constructed by systematic sampling, i.e., skipping 

certain intermediate observations from high frequency sample, and this type of sampling 
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is usually seen in stock market or asset market variables. For example, researchers 

sometimes pick the price of one day each week to construct weekly data from daily data. 

Choi (1992) demonstrated by simulation that this kind of data aggregation will lower the 

power of augmented Dickey-Fuller tests and Phillps-Perron tests, although Chambers 

(2004) showed that this is a finite sample effect and asymptotically it is still possible to 

consistently test for a unit root when sampling frequency varies. 

 Recently, Boswijk and Klaassen (2012) proved that the effects of systematic 

sampling on unit root testing is not negligible when a high-frequency sample has 

volatility clustering with fat-tailed innovations, which are the typical characteristics of 

financial market data. They simulated data sets and using likelihood ratio-based tests and 

conclude that these tests can have more power than the traditional ADF test on data 

processes holding the aforementioned behavior characteristics. This leads to the second 

way to test for unit roots more accurate: improve the testing method. As the two authors 

claimed in their paper, traditional asymptotic based test methods like the augmented 

Dickey-Fuller test and Phillips-Perron test will have low power when being applied on 

volatility clustering and heavy-tailed samples. Therefore many researches are devoted 

into efficiently testing these kind of data, which mainly concentrate on modeling the 

heavy-tail by some non-Gaussian likelihood function, or describing the high volatility 

behavior by specifying the conditional variance structure. For example, unit root tests 

which focus on a non-Gaussian likelihood are considered by Lucas (1995), and 

Rothenberg and Stock (1997). Seo (1999), Boswijk (2001) and Ling and Li (2003) 

studied tests based on a Gaussian GARCH likelihood. Although these tests increased the 

power when testing the financial data, one of the common issue for the existing testing 

89 



 

methods is that they all require some specific model specification assumption, no matter 

on the functional form (like the ADF test requires the number of lags specified in the 

model) or the error term distribution (Gaussian distribution, etc). Even for the GARCH 

likelihood mentioned above one can only assume the innovation conditional variance has 

GARCH structure not others, and meanwhile they still need to specify the GARCH level 

before actually performing the test. However, due to various circumstances such as data 

incompleteness, variable selection, distribution misspecification, etc., this procedure may 

lead to inappropriate model assumptions which will produce erroneous conclusion since 

estimates may well depend on the particular model considered (Moral-Benito 2013).     

 In this paper, we will devote efforts into the two aforementioned directions in 

hopes of improving unit root test results. Using 5 commodity futures price data (corn, 

soybean, cotton, live cattle and lean hog), which all display typical financial series 

characteristics, we first show that systematic sampling does have effects on the results of 

unit root testing by testing three different frequency samples: daily, weekly, and monthly. 

Then, more importantly, we will test the stationarity of these series by averaging 24 

models using a Bayesian Model Averaging unit root test method derived in the previous 

chapter to confront the model specification uncertainty issue, and compare results with 

traditional unit root tests to show the performance of the BMA methods, as well as its 

ability to handle the model specification issue. 

The rest of the paper is structured as follows. Section 2 introduces the robust 

numerical Bayesian model averaging unit root test method which will be adopted in the 

later analysis, including mathematical derivation of the method, specific models that will 

be averaged as well as what behaviors they are modeling for respectively. After the 
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comprehensive introduction, data sets used in the analysis are introduced, followed by the 

priors, posterior distributions and the sampling methods. Section 3 shows and analyzes 

the results of the test, while section 4 concludes the whole paper.    

 

3.2 Robust Numerical Unit Root Test for Model Uncertainty 

3.2.1 Model Parameterization 

 Although the variance function specification is the key description for high 

frequency data considered in this paper, it is also of importance to specify the mean 

function accurately. Besides, model uncertainty issue also arises here which can be 

handled by the approach adopted in the analysis. In this paper we will adopt a common 

autoregressive model with lag p as mean function which has the following form: 

 ( ) t tA L x ε=   (41) 

 where 

 2
1 2( ) 1 ... p

pA L L L Lρ ρ ρ= − − − −   (42) 

The “L” is a lag operator which makes 1t tLx x −=  and in general k
t t kL x x −= . The stochastic 

term 2~ (0, )t fε σ  has some distribution with mean 0 and variance 2σ . This can be any 

distribution as long as it satisfies the white noise assumption. Notice that the 

deterministic trend is eliminated here by theory since any deterministic trend would 

suggest market inefficiency (Dorfman 1993). Equation (41) can be re-written to a form 

that is more familiar  (and denote 1 2( , ,..., ) 't t t px x x− − −=x , 1 2( , ..., )pρ ρ ρ=ρ ): 

 1 1 2 2

2

...

, ~ (0, )
t t t p t p t

t t t

x x x x

x f

ρ ρ ρ ε

ε ε σ
− − −= + + + +

⇒ = +x'ρ
  (43) 
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Given the mean function specification as above, we will consider models with 

autocorrelation lags from 1 to 6 to incorporate the uncertainty issue in the mean function, 

which will be discussed in detail later. 

 As mentioned before, financial series usually contains high-frequency innovations 

with fat-tailed distribution and displays volatility clustering (Boswijk and Klaassen 

2012), which may have a effect on the results of unit root tests (Choi and Chung 1995). 

So it is necessary to incorporate modeling of these characteristics when performing the 

test in order to achieve a more reliable conclusion. This behavior usually requires extra 

modeling on the variance term and many possible models exist in the literature. Famous 

and widely used models include the Autoregressive Conditional Heteroscedasticity model 

(ARCH) developed by Engle (1982) which includes a nonlinear function in variance, and 

the Generalized Autoregressive Conditional Heteroskedasticity model (GARCH) 

proposed by Bollerslev (1986). After these two seminal papers many similar derivations 

of these models have been developed to handle different situations, like NGARCH 

(Engle and Ng 1993) and EGARCH (D. B. Nelson 1991). And for each model 

specification different assumptions about the distribution of stochastic term could be 

made to consider various data behaviors. In this paper, keeping the linear mean function 

to be autoregressive with lag 1 to 6, we will consider averaging four types of different 

variance function specifications to reflect the uncertainty on the variance structure: 

(1). GARCH (1, 1) with Student’s t distribution: 

The Student’s t distribution with small degrees of freedom will capture the heavy-

tail characteristic of the analyzed data while the high volatile can be modeled by a 

GARCH specification, which has the following form: 
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1

2
0 1 1 1 1

( | ,...)

+

t t t t

t t t

t t t

x E x x

z h

h h

ε

ε

α α ε β

−

− −

= +

=

= +

  (44) 

Model parsimony is one concern here since the purpose is investigating frequency effect 

on unit root tests rather than estimation or forecasting; besides, Hansen and Lunde (2005) 

compared 330 ARCH-type models in terms of their ability to describe the conditional 

variance and concluded that GARCH (1, 1) outperformed other higher level GARCH 

models so it seems enough to consider only lag 1 here. In this case, the conditional 

variance is described by th  while the unconditional variance is 2 0

1 11tE αε
α β

=
− −

 . And 

the mean function 1( | ,...)t tE x x − comes from (43) with lag number from 1 to 6, 

respectively. To consider the possible fat-tail density, Student’s t distribution with small 

degrees of freedom is specified to tz  which has the following distribution form: 

 
12

2

1( )
2z ~ t( ) ~ (1 )
( )
2

t
x ν

ν

ν ν ννπ

+
−

+
Γ

+
Γ

  (45) 

with small value of ν  satisfies 2ν > . We will also set a prior to ν which will be discussed 

in detail later.  

(2). GARCH (1, 1) with standard Normal distribution: 

 In this case, we consider the standard GARCH model, i.e. z ~N(0,1)t with the 

familiar density function: 

 21 1~ (0,1) ~ exp( )
22t tz N z

π
−   (46) 
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 All the other settings are same as (44). 

(3). ARCH (1) with Student’s t distribution: 

 The ARCH model is another common used model to describe highly volatile error 

behavior so we also consider it here, and it has the following specification: 

 
1

2
0 1 1

( | ,...)t t t t

t t t

t t

x E x x

z h

h

ε

ε

α α ε

−

−

= +

=

= +

  (47) 

Meanwhile zt is assumed to have Student’s t distribution with form (45). 

(4). Autoregressive in mean with Student’s t distribution: 

 In this case we do not add any conditional heterskedasticity effect in the variance 

formula and focus only on modeling the heavy-tail behavior. The mean function is (43), 

and the stochastic term has t distribution with form (45). 

 The aforementioned four different models mainly focus on describing the 

variance behavior, together with mean specification of autoregressive model with lag 1 to 

6 for each of the above four models, 24 models in total will be averaged to analyze one 

data series to get a comprehensive conclusion. In the next subsection the framework of 

the Bayesian model averaging unit root test will be introduced. 

3.2.2 Bayesian Unit Root Test under Model Uncertainty     

The main focus of unit root test will be on the coefficients of the lags, and the 

dynamic properties of the series can be investigated by examination of the following 

matrix: 
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1

2

3

1 0 0 0
0 1 0 0
0 0
0 0 0 1
0 0 0 0p

A

ρ
ρ
ρ

ρ

 
 
 
 =
 
 
  





 

 



  (48) 

The first column is composed of coefficients of lags in the AR model. The roots, or 

eigenvalues of this matrix, determine the behavior of the modeled process. If any 

eigenvalues of A have moduli greater or equal than one, the time series defined by these 

coefficients has a unit root and is nonstationary. So denote i iφ λ= which is the moduli 

of the eigenvalues of A sorted by its magnitude where a stands for the Euclidian 

distance of a. Thus the statistical hypothesis of unit root can be expressed as: 

 0 1 1 1: 1  vs.  : 1H Hφ φ≥ <   (49) 

Unlike the classical unit root test method which focuses on deriving the asymptotical 

distribution of the coefficient on which the inference is to be made, in the Bayesian 

framework there is really no “test” concept similar to the classical world since the 

Bayesian method requires a posterior distribution which combines the likelihood function 

with prior distributions and usually does not have standard form to perform a regular 

“test”. One alternative is the Bayes factor approach, which defines the Bayes factor B in 

favor of 0H against 1H is defined as (Lee 2012): 

 0 1 0 1

0 1 1 0

( / )
( / )
p p pB

p
π

π π π
= =   (50) 

 And the elements in (50) are defined as: 
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0 0

1 1

0 0

1 1

( | )
( | )
( )
( )

p P
p P

P
P

θ
θ

π θ
π θ

= ∈Θ
= ∈Θ
= ∈Θ
= ∈Θ

x
x

  (51) 

in which θ  is the unknown parameter from a set Θ ( 0 1 0 1,Θ Θ = Θ Θ Θ =∅  ) we want 

to test, and x is the data available whose density ( | )f θx  depends onθ . Here 0p and 1p  

are posterior probabilities of parameter supports of null ( 0Θ ) and alternative ( 1Θ ) 

hypotheses, while 0π and 1π  are prior probabilities. We will use this approach to perform 

our test since it is also convenient to numerical Bayesian technique. Let 

1 2( , ,..., ) 'pφ φ φ=Φ be the vector of the moduli of the eigenvalues of the matrix A , and η

stands for all the other parameters which varies with different variance specification (for 

example, in GARCH (1,1) with student t distribution, 0 1 1=( , , , )'α α β νη ; in GARCH (1, 1) 

with normal distribution, 2
0 1 1=( , , , )'α α β ση ), and the prior distributions are denoted as 

1 2( ) ( , ,..., )pπ π φ φ φ=Φ and ( )h η respectively (the detailed prior distribution discussion will 

be given in next part). With likelihood function denoted as ( ; )f x η,Φ , the marginal 

posterior of the dominant root would be: 

 
21 2 ( , ) 2( | ,..., ; ) ( ; ) ( ) ( )

pp pp x f x h d d dφ φφ φ φ π φ φ= ∫ ∫ ∫ Φ ηη, η,Φ Φ η η    (52) 

Using numerical methods (to be discussed later) samples can be drawn from this 

marginal posterior distribution.  Define an indicator function: 

 (1) 1
(1)

0

1                 1 in the sample (support H )
( )

0                         otherwise (support H )         
D

φ
φ

<
= 


  (53) 
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The posterior probability in support 1H is given by: 

 
(1) (1) 2

1
1 1

(1) 2
1

( ) ( | , ,..., ; )
(H | )

( | , ,..., ; )

B

p
i

B

p
i

D p
K p

p

φ φ φ φ

φ φ φ

=

=

= =
∑

∑

η x
x

η x
  (54) 

where B is the number of valid iterations used in the sampler. Defining 0K in a analogous 

way to (54), we have: 

 
(1) (1) 2

1
0 0

(1) 2
1

[1 ( )] ( | , ,..., ; )
(H | )

( | , ,..., ; )

B

p
i

B

p
i

D p
K P

p

φ φ φ φ

φ φ φ

=

=

−
= =

∑

∑

η x
x

η x
  (55) 

and the posterior odds ratio in favor of nonstationarity of the tested series is: 

 
(1) (1) 2

1 0
01

1
(1) (1) 2

1

[1 ( )] ( | , ,..., ; y)

( ) ( | , ,..., ; y)

B

p
i

B

p
i

D p
KK
KD p

φ φ φ φ

φ φ φ φ

=

=

−
= =
∑

∑

η

η
  (56) 

This statistic is the center of the numerical Bayesian unit test we derived in our method. 

And one can declare the series to have a nonstationary root if 01 1K >  (or depending on 

your loss function, at a different threshold).  

 The above discussion showed how to infer the stationarity properties for a series 

using numerical Bayesian unit root test based on single model. For our purpose to 

incorporate model specification uncertainty, the next step would be averaging all results 

concluded from possible candidate models and come to a final comprehensive 

conclusion. Suppose there are k possible candidate models which can hold differences in 

various aspects, for instance in our cases, different number of time lags can be included 
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in the model, and the specification of the variance terms could also be different. We 

assign a model prior probability distribution across the possible model space, so each 

potential model has probability (M )kpr , so the posterior probability for model Mk is: 

 

1

(x | M ) (M )(M | x)
(x | M ) (M )

k k
k k

l l
l

pr prpr
pr pr

=

=

∑
  (57) 

and the marginal likelihood function under Mk  is 

 (x | M ) (x | ,M ) ( | M )dk k k
S

pr pr pr= ∫ k k kΩ Ω Ω   (58) 

kΩ here is all the parameters in the model Mk  (in our case, ( , ) 'k k k kυ=Ω Φ η， , and kυ

is another parameter which will be introduced later) and ( | M )kpr kΩ  is the prior 

distribution of parameters Ω  under model kM , and S is the support of Ω . Then the 

final comprehensive probability of a possible unit root across the whole model space is: 

 1 1
1

( 1| x) ( 1| M , x) (M | x)
k

k k
i

pr pr prφ φ
=

≥ = ≥∑   (59) 

in which 1( 1| M , x)kpr φ ≥  is the posterior probability of a unit root given model Mk  

derived in(52). Finally we can compute the probability of the dominant root larger than 1 

considering all these circumstances and draw a conclusion according to the decision rule 

defined in (56). 
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3.3 Testing the Unit Root in Commodities Futures Data with Different Frequency 

3.3.1 Data 

 In this paper, 5 commodity futures prices series are used to test and compare the 

unit root results: corn, soybean, cotton, live cattle and lean hog. To evaluate the effect of 

data frequency on the testing result, 3 different frequencies are used for each series: daily, 

weekly and monthly. The high-frequency sample is the real daily settled price of each 

commodity from Chicago Board of Trade (corn, soybean, live cattle and lean hog) and 

Intercontinental Exchange (cotton)1. Each daily data sample size is 2,000 which is from 

March, 2007 to March, 2015. The low-frequency sample is constructed from the daily 

data by what is usually referred to as systematic sampling. Assume the daily sample is tY

, we skip certain observations to achieve the low-frequency data (Boswijk and Klaassen 

2012), i.e., 

 * *, 0,...,j mj
nj n
m

= = =Y Y   (60) 

where for weekly data we take m=5 and m=20 for monthly data, which can be treated as 

end-of-week and end-of-month price given 5 trading days in a week and 20 days in a 

month. Since the daily data sample size is 2000, the constructed weekly sample size is 

400 and the monthly data size is 100. The first row of each subgraph of Figure 1 shows 

the time series plot of each commodity with different frequency samples which gives a 

direct view of the data. 

 

 

1 The continuous futures data are available for downloading from the Open Financial Data Project in 
Quandl: https://www.quandl.com. The front month contact price is used to build the continuous data. 
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3.3.2 Priors, Posterior Distribution and Sampling Methods 

 The choice of priors for the parameters is always a crucial issue in Bayesian 

econometric analysis. Numerous literature has been devoted into the area of trying to find 

properties and suitability for different priors. Berger and Yang (1994) compared various 

approaches to the development of a noninformative prior for the AR(1) model, and 

recently Griffiths (2012) performed a Monte Carlo experiment as well as an application 

to real world data to examine the effects of choices of different priors on Bayesian unit 

root test outcomes. In light of this continuing debates, in this research we do not plan to 

spend much time on judging the priors since this is not the main point of this research and 

it is still hard or impossible to find a perfect prior that works well under all circumstances 

due to the fact that it may well depend on the data and topic (preknowledge). Instead we 

will follow the approach similar to Dorfman (1993), assigning independent Beta priors to 

the moduli of roots of (48), while maintaining an uninformative priors on other 

parameters. Meanwhile, a slightly explosive situation is allowed for the value of the 

dominant root in order to take the possible upward bias due to sampling error from 

estimation of the root into account (Dorfman 1993). Specifically, the informative priors 

of all the roots are: 

 1 2 1 1 2 2

1 1 2 2 3 3

( ) ( , ,..., )= ( ) ( )... ( )
( )~Beta(30,2); ( ) . ( ) ... ( ) ~ Beta(1.1,1.1)

p p p

p p

π π φ φ φ π φ π φ π φ

π φ τ π φ π φ π φ

=

− = = =

Φ
  (61) 

These priors are informative on the moduli of the dominant root since it severely skewed 

to the right, and ranging from τ to (1 )τ+ . The priors on all the other roots are quite 

weakly informative with very flat, round curves ranging over [0,1]. Parameter υ controls 

the degree of allowed explosive from unity, and it is also assigned a prior to fully involve 
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in the Bayesian framework. Griffiths (2012) suggested a hierarchical approach which we 

follow here, assigning an exponential distribution with mean 1( )E τ κ −= as a prior to τ , 

i.e., 

 ( | ) ef κττ κ κ −=   (62) 

whereκ is chosen such that ( 0.15) 0.05P τ > = . 

 For the parameters in the conditional variance specification, the prior can be 

uninformative as long as it satisfies positivity in all circumstances. The common way in 

past practices was to strictly restrict all the parameters to be non-negative and the 

constant to be positive. Instead doing so, we impose positivity directly on volatility which 

is inspired by Dorfman and Park (2011). By doing so we allow negative coefficients in 

the conditional variance which widened the parameter space and possibility of getting 

better estimates if the negative coefficients are truly more appropriate than their positive 

counterpart. Thus all priors are set to have a normal distribution with mean zero and are 

mutually independent. So the prior of the volatility coefficient can be represented as: 

GARCH (1, 1): 
0 1 10 1 1( , , ) ( ) (0,3) (0,3) (0,3)tp I h N N Nα α βα α β =      

ARCH (1): 
0 10 1( , ) ( ) (0,3) (0,3)tp I h N Nα αα α =    

The ( )tI h here is an indicator function used to control the positivity of volatility which 

equals one if a sampled parameter vector provides for a positive conditional variance in 

all time periods and equals zero otherwise. 

 Another parameter to consider is the degrees of freedom ν  of the Student’s t 

distribution. For modeling the fat-tail behavior well, the large part of the density should 
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be kept around a small value, yet we also need to have some degree of spreading to 

incorporate more possible candidates into consideration. In this case we will assign a 

truncated exponential distribution as a prior for ν  which has the following density form: 

 ( | , ) exp( ( )) ( )p Iν λ δ λ λ ν δ ν δ= − − >
  (63) 

The values of λ  and δ  can be set to control the density shape of the exponential 

distribution. The indicator function and parameter δ  are used to make sure the generated 

t distribution is well defined (so 2δ ≥ ); it can also be used to approximate a Normal 

distribution if the value of δ  is set to be relatively large. 

 Lastly, for the models assuming the stochastic term follows Normal distribution, 

an inverse-gamma distribution is assigned as the prior on the variance 2σ  which has the 

following density form: 

 2 2 1
2~ ( , ) [ ] exp( )

( )
IG

α
αβ βσ α β σ

α σ
− −= −

Γ
  (64) 

This is commonly used in practice since it is the conjugate prior of the Normal likelihood 

function. Now we can write the full form of the joint posterior distribution for each model 

as follows: 

(1). GARCH (1, 1) with Student’s t distribution:  

 0 1 1 0 1 1

0 1 1

( , , , , , | ) ( | , , , , ) ( )
                                     ( , , ) ( | , ) ( | )
p L

p p f
α α β ν υ α α β ν π

α α β ν λ δ υ κ
∝ ×
× × ×

Φ x x ρ Φ
  (65) 

The term 0 1 1( | , , , , )L α α β νx ρ  is the likelihood function of a Student’s t distribution which 

has the following form (assume sample size is T, ignoring the effects of number of lags 

included in the model to the sample size): 
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[( 1)/2]2
1/2

0 1 1 1/2
1 1

2
0 1 1 1 1

( )[( 1) / 2] 1( | , , , , )= ( 2) exp 1
( / 2) 2 ( 2)

T T T
t

t
t t t

t t t

xL h
h

h h

ν
να α β ν ν

π ν ν

α α ε β

+

−

= =

− −

    −Γ +  − − − +   Γ −     
= + +

∏ ∏ x'ρx ρ
 (66) 

And all the other terms in (65) are defined before in the previous part of this paper. 

(2). GARCH (1, 1) with Normal distribution: 

 
2 2

0 1 1 0 1 1
2

0 1 1

( , , , , , | ) ( | , , , , ) ( )
                                     ( , , ) ( | , ) ( | )
p L

p p f
α α β σ υ α α β σ π

α α β σ α β υ κ

∝ ×

× × ×

Φ x x ρ Φ   (67) 

Again the term 2
0 1 1( | , , , , )L α α β σx ρ is the likelihood function of Normal distribution 

which has the following: 

 
( )-T/22 1/2 2

0 1 1
1 1

2
0 1 1 1 1

1( | , , , , )= 2 exp ( )
2

T T

t t
t tt

t t t

L h x
h

h h

α α β σ π

α α ε β

−

= =

− −

  
− −  

  
= + +

∏ ∏x ρ x'ρ
  (68) 

The posterior densities of the other two models (ARCH (1) with Student’s t distribution 

and regular autoregressive model with Student’s t distribution) will be omitted here since 

they have similar formula as the above with minor parameter changes. 

 With all the discussion and assembling above, to find a final decision of 

stationarity of the analyzed series all we need to do is that find the marginal posterior of 

the dominant root using equation  (52) by integrating out all the nuisance parameter for 

every model, then averaging the results of all 24 models by (59). However, the first task 

is quite difficult, sometimes impossible to do analytically, since the joint posterior density 

is usually too complicated to have a closed form. In our case, the combination of different 

prior densities makes the posterior not have a standard distribution form; furthermore, we 
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specify the Beta prior to the moduli of the eigenvalues of matrix A in (48) for the purpose 

of being logically straightforward, while the calculation of likelihood function actually 

needs the value of the coefficient ρ . One needs to explicitly formulate the mapping 

process in order to achieve the corresponding likelihood function. Without solving these 

arduous issues analytically, numerical method will be adopted to achieve an empirical 

sample from the marginal posterior distribution of interested parameters, and Metropolis–

Hastings (MH) algorithm will be adopted in our computation. It is one of the Markov 

Chain Monte Carlo (MCMC) methods that samples from a conditional distributions of 

subsets of parameters in order to constructing a Markov chain whose convergence 

distribution is the desired distribution. It was first suggested by Metropolis et al. (1953) 

and later generalized by Hastings (1970) and now is widely applied in all areas which 

need numerical sampling technique including econometrics, statistics, physics and 

engineering. The basic idea to the Metropolis-Hastings algorithm is setting up an 

“accept/reject” rule to keep revising the Markov chain so that it can reach the aimed 

convergence distribution (Tanner 1998) . Assume that random variables Χ  have joint 

distribution ( )ψ X from which the sample need to be drawn. A MH algorithm requires 

choosing a proposal distribution ( | )q ⋅ X  which generates a candidate chain based on the 

current values of random variables, then decides to accept or reject according to the 

detailed balance rule. To be more specific, for this paper, the algorithm can be described 

as below: 

(1). Assign initial values to parameter space Χ : (0) (0) (0)( , )=Χ ρ η , here ρ is 

coefficients of different lags whose length may depend on models, and η is all the other 

parameters which varies according to different volatility specification; 
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(2). For iteration m from 1 to N, repeat the following procedures: 

a. generate a candidate value from proposal density,  (m)~ ( | )q ⋅*X X , in this     

paper the proposal density is multivariate Normal distribution; 

b. generate a random variable ~ (0,1)u Uniform  ; 

c. decide the next sample unit using the following rule: 

(m 1)
(m)

          if ( )
              otherwise     

mu α+  ≤
= 


* ( ) *X X , X
X

X  
, in which  

   

(m)
(m) (m)

(m) (m)

( )q( | )min{ ,1}          if ( )q( | ) 0 
( )= ( )q( | )

1                                                                 otherwise            

m

ψ ψ
α ψ


>





* *
*

* ( ) *

X X X X X X
X , X X X X  

(3). Return the final values ( , ,..., )(0) (1) (N)X X X  which is the sample from the 

posterior density.  

The MH algorithm is flexible since the proposal density can be arbitrary, but there 

is a price for this convenience (Jing 2010). If the proposal density is not chosen 

appropriately, the acceptance rate is low which means that the sample we create may 

include lots of noise compared to the convergence distribution we actually want. Also the 

Markov Chain may not cover the whole support (or at least a large part) of the 

convergence distribution; sometimes it even can stick to a small area which leads to very 

poor sampling efficiency. We will adjust the proposal density repeatedly by tuning the 

mean and variance, as well as trying different sets of starting values, to achieve certain 

rate of acceptance to guarantee the good mixture of posterior density. 
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3.3.3 Results 

We tested for unit roots in all 3 different sample frequencies of 5 commodities 

futures price by averaging 4 types of conditional variance structures introduced in Section 

3.2: GARCH (1, 1) with error term modeled as Student’s t distribution; GARCH (1, 1) 

with error term assumed as Normal distribution, ARCH (1) with Student’s t distribution 

and regular AR models with Student’s t distribution. For each type of variance structure, 

the mean functions are assumed to be autoregressive model with maximum lag length 

between 1 and 6 to incorporate model specification uncertainty in the mean process. So 

for each data series the final decision is made by averaging 24 models. For each model, 

we set 51,000 Monte Carlo iterations for the MH algorithm to achieve better convergence 

with elimination of first 21,000 draws for better posterior sample mixture, and the 

Geweke test (Geweke 1992) is adopted to examine the convergence of each posterior 

sample. 

Table 3.1 lists the probability of a dominant root greater than 1 using our BMA 

methods according to (55), where a value greater than or equal to 0.5 is considered to 

support nonstationarity. To compare, the p value of two other commonly used unit root 

test methods, the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test 

are also shown in the table. One thing to remember is that Bayesian and frequentist tests 

are complete different logically. For instance, Bayesian tests do not conform to the 

conventional 0.05 size from the traditional sampling theory (Griffiths 2012). Also one 

fundamental difference between these two frameworks is that the traditional frequentist 

framework treats unknown parameters as fixed and data as random, while the Bayesian 

technique believes data is fixed and treats parameters as random. In this case it might be 
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inappropriate to evaluate a “pure” Bayesian test which makes decisions conditional on 

the fixed observed data using criteria constructed by sampling theory whose estimates 

based on data at hand plus hypothetical repeated sampling in the future with similar data, 

and one should be cautious when using standards in frequentist econometrics like 

“power” to compare tests in Bayesian framework although it might be a good 

measurement of the performance of a test in frequentist econometrics. Regardless of 

these potential debates, in this paper some of the terminologies will be used for 

conceptional convenience when comparing the results of BMA with ADF and PP test.  

One should bear in mind that no matter how the comparison results turn out, the BMA 

method proposed in this paper provided a solution to performing unit root tests under 

model specification uncertainty, which cannot be achieved by other traditional test 

methods since they all require some kind of model restrictions.    

Generally speaking the results various among different commodities as well as 

different data frequencies, which is the focus of this paper. First, notice that for the BMA 

result, although the probability of having a unit root varies between different frequency 

samples, the conclusion is basically consistent except for cotton. It is believed that the 

futures prices are stationary for the commodities soybean, live cattle and lean hogs, but 

nonstationary for corn. For cotton, the BMA method indicates a unit root exists for 

weekly and monthly data but not in daily data, although the probability is 0.498 which is 

quite close to 0.5, which might be thought as “marginally stationary” and could be caused 

by sampling error.  

Another result to notice is that  for each commodity, the probability of a dominant 

root greater than 1, 1( 1| x)pr φ ≥ , computed by averaging 24 models using BMA method 
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is increasing as the frequency of tested data decreasing. This indicates that more mean-

reversion information is provided by using the high frequency data which is consistent 

with the conclusion in Boswijk and Klaassen (2012). To be more specific, high frequency 

samples carry more information through high volatile and fat-tail behavior which can be 

captured by GARCH and ARCH models with Student’s t distribution in the BMA 

method. This information will be lost when constructing low frequency sample through 

system sampling (constructing low frequency sample by skipping intermediate high-

frequency observations). 

Table 3.2 shows the residual kurtosis of the AR (1) mean function. Here the mean 

function will not have significant effect on the variability of the residuals so only AR (1) 

residuals are shown here for simplicity. Kurtosis is a statistic which primarily describes 

the peakedness (width of peak), tail weight, and lack of shoulders of probability 

distribution; and the larger the kurtosis is, the higher and sharper the central peak is, and 

the longer and fatter the tails will be. It is clear that the high frequency daily data has 

leptokurtic property, while for low frequency weekly and monthly data the kurtosis value 

significantly dropped to small values. So this extra information contained in daily sample 

can be well captured by GARCH and ARCH models in the BMA method but will be 

ignored by traditional methods like ADF or PP test. In Table 1, one can find that the 

conclusion based on ADF or PP test does not vary across different sample frequencies, 

which indicates the power of the ADF and PP test is hardly effected by the sampling 

frequency (Boswijk and Klaassen 2012).  As mentioned before which is the most 

desirable property of BMA method is it can handle model specification uncertainty in a 

unit root test. This issue exists in all empirical modeling work since we all need some sort  
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Table 3.1. Unit Root Test Results of Five Commodity Futures Prices Data 

  BMA DF 1 DF 2 DF 3 DF 4 DF 5 DF 6 PP 

 

CORN 

Day 0.503 0.576 0.538 0.475 0.339 0.390 0.315 0.542 

Week 0.717 0.530 0.535 0.497 0.577 0.648 0.622 0.552 

Month 0.784 0.576 0.538 0.475 0.338 0.390 0.315 0.519 

 

SOYBEAN 

Day 0.372 0.271 0.312 0.282 0.332 0.359 0.357 0.298 

Week 0.406 0.346 0.381 0.319 0.296 0.277 0.256 0.317 

Month 0.481 0.227 0.098 0.163 0.113 0.0431 0.0264 0.263 

 

COTTON 

Day 0.498 0.622 0.627 0.628 0.624 0.579 0.647 0.621 

Week 0.535 0.593 0.651 0.662 0.641 0.550 0.499 0.616 

Month 0.685 0.489 0.320 0.216 0.468 0.463 0.402 0.519 

 

LIVE 

CATTLE 

Day 0.222 0.537 0.570 0.545 0.559 0.546 0.553 0.542 

Week 0.254 0.530 0.535 0.497 0.577 0.648 0.622 0.552 

Month 0.408 0.576 0.538 0.475 0.338 0.390 0.315 0.519 

 

LEAN 

HOG 

Day 0.141 0.084 0.060 0.010 0.010 0.010 0.010 0.010 

Week 0.188 0.010 0.010 0.010 0.010 0.010 0.0188 0.010 

Month 0.396 0.010 0.010 0.010 0.010 0.010 0.0262 0.010 

 
Notes: 
1. First column shows the probability of the dominant root equals to or greater than 1 (

1( 1| x)pr φ ≥ ), and the value equals to or greater than 0.5 indicates evidence of 
nonstationarity. 
2. Column 2-8 lists the p-values from Phillips-Perron (PP) test and augmented Dickey-
Fuller tests with lag length 1 to 6 (DF1-DF6). Usually p-value larger than 0.1 is 
considered as evidence of nonstationarity.  
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of assumptions in the analysis, but the importance of this issue may depend on the goal of 

the research or researcher’s belief. Sometimes the model uncertainty may cause 

contradictory results which may bring troubles to the succeeding analysis. In this paper 

one such example is the soybean monthly sample. Using the ADF test on the monthly 

data and under a commonly used 10% significance level, it is confirmed nonstationary if 

the model specification is AR (1), AR (3) or AR (4), while for AR (2), AR (5) and AR (6) 

the test indicates stationarity of the data which is opposite to the result using other lags as 

well as daily and weekly data. So the model specification uncertainty problem is 

important here since improper specification of the lag will lead to completely different 

results which will affect the following analysis. The BMA method confronts this problem 

by averaging all 6 possible lag specification (or more if the researcher needed) and 

reaching a final, more robust conclusion. Table 3.3 lists the number of unit root detected 

by each variance structure specification in BMA methods. Notice that although in many 

situations all AR (1) to AR (6) have detected the existence of unit root, under several 

cases only part of the specifications did, which proved the issue of model uncertainty has 

an effect on the testing result, as well as the ability of our BMA approach to handle this 

issue. Also in this paper, four different treatments of the conditional variance are 

averaged to consider the uncertainty in the specification of the variance structure. This is 

also an advantage compared to the aforementioned papers which also investigated the 

effects of sample frequency on the unit root test result but still based their conclusions on 

one preassumed model functional form. As can be seen from Table 3.3, most findings of 

nonstationarity are concentrated on GARCH model with Normal errors and the regular 

AR model with Students’ t errors, which capture the heteroscedasticity and heavy tailed  
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Table 3.2. AR (1) Residual Kurtosis of Different Samples 

COMMODITY FREQUENCY AR (1) RESIDUAL KURTOSIS 

CORN daily 23.97 

weekly 5.32 

monthly 3.53 

SOYBEAN daily 26.40 

weekly 1.03 

monthly 0.70 

COTTON daily 60.22 

weekly 17.80 

monthly 6.31 

LIVE 

CATTLE 

daily 23.97 

weekly 5.32 

monthly 3.53 

LEAN HOG daily 23.97 

weekly 5.32 

monthly 3.53 
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behaviors respectively, so any single model specification may not fully describe the 

behavior of the data and information will be lost which may lead to an inappropriate 

conclusion. Table 3.4 shows the posterior ratio of each type of conditional variance 

specification (aggregating the mean function AR (1)-AR (6)) in the BMA method for 3 

frequency samples of each commodity. It shows that for the daily sample, GARCH and 

ARCH models takes a almost majority of the posterior weights which captures the high 

volatile and heavy tail behavior. For low frequency data like monthly, the weight of AR-t 

is increasing comparing to other frequencies since the kurtosis is low so the high 

volatility property is fading away, which reduced the weights of ARCH and GARCH 

models; meanwhile, they still contain heavy-tail behavior which can be captured by the 

Student’s t distribution used in the model. The heavy-tail character can be seen from the 

second row of Figure 3.1, which plots the densities of residuals of AR (1) model (for 

simplicity purpose we skip the other mean function form, but the fat tail behavior exists 

in models with all AR lags). 

The results shows that BMA method can handle model specification uncertainty 

well. Meanwhile, it can also self-adjust the posterior weight to the “right” model which 

can describe the data behavior most accurately. Fernández-Villaverde and Francisco 

Rubio-Ramı́rez (2004) actually proved that asymptotically, Bayesian methods will give 

the highest posterior probability to the best model under the Kullback-Leibler distance.  
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Table 3.3 Number of Unit Roots Detected by Each Model Specification in BMA Methods 

FREQUENCY MODEL CORN SOYB
EAN 

COTTON LIVE 
CATTLE 

LEAN 
HOG 

DAILY GARCH-T 
 

0 0 0 0 0 

GARCH-N 
 

6 6 6 6 0 

ARCH-T 
 

0 0 0 0 0 

AR-T 
 

6 0 6 5 0 

Total 
 

12 6 12 11 0 

WEEKLY GARCH-T 
 

0 0 0 0 0 

GARCH-N 
 

6 4 6 3 0 

ARCH-T 
 

0 0 0 0 0 

AR-T 
 

6 6 6 6 0 

Total 
 

12 10 12 9 0 

MONTHLY GARCH-T 
 

0 0 2 0 3 

GARCH-N 
 

6 6 6 6 0 

ARCH-T 
 

0 0 0 0 0 

AR-T 
 

6 1 6 6 0 

Total 
 

12 7 14 12 3 

 
Note: 
Numbers indicate that how many unit roots detected under each variance structure 
specification, and the “Total” shows the summation of all 4 structures which gives the 
overall number of unit roots in 24 models.  
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Table 3.4 Posterior Weights of Each Type of Model for Different Frequency 

COMMODITY MODEL SAMPLE FREQUENCY 

Daily Weekly Monthly 

CORN GARCH (1, 1)-t 0.244 0.0307 0.189 

GARCH (1, 1)-Normal 0.277 0.521 0.361 

ARCH (1)-t 0.231 0.0193 0.182 

AR-t 0.248 0.429 0.268 

SOYBEAN GARCH (1, 1)-t 0.0892 0.169 0.192 

GARCH (1, 1)-Normal 0.462 0.172 0.158 

ARCH (1)-t 0.0758 0.176 0.181 

AR-t 0.373 0.483 0.469 

COTTON GARCH (1, 1)-t 0.173 0.305 0.263 

GARCH (1, 1)-Normal 0.368 0.417 0.249 

ARCH (1)-t 0.152 0.135 0.261 

AR-t 0.307 0.143 0.227 

LIVE 

CATTLE 

GARCH (1, 1)-t 0.388 0.351 0.308 

GARCH (1, 1)-Normal 0.115 0.158 0.196 

ARCH (1)-t 0.385 0.347 0.312 

AR-t 0.112 0.144 0.184 

LEAN HOG GARCH (1, 1)-t 0.305 0.218 0.223 

GARCH (1, 1)-Normal 0.321 0.433 0.322 

ARCH (1)-t 0.205 0.215 0.221 

AR-t 0.169 0.134 0.234 
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3.4 Conclusion  

 Financial data series usually display high volatility clustering with heavy tail 

distributions, which may affect the results of traditional asymptotic theory-based unit root 

tests. Some likelihood ratio-based tests may mitigate this problem by considering special 

conditional variance structures like GARCH, but such approaches depend on some 

preassumed functional form, which is sometimes difficult to specify and may lead to  

incorrect conclusions if the model structure is not appropriately specified. This paper 

investigated these issues by testing 5 commodity futures data: corn, soybean, cotton, live 

cattle and lean hog futures prices. The tests are performed on three different sample 

frequencies: daily settlement price (high frequency), weekly and monthly price 

(constructed by skip intermediate observations on the daily data, low frequency). By 

applying a new developed Bayesian Model Averaging unit root test, we first showed that 

sample frequency has effects on the unit root test results. High frequency data contains 

more mean-reversion information which will be ignored by traditional frequentist tests 

like the Augmented Dickey-Fuller test. 

Results from the empirical application offer several useful insights. First, 

specifying the conditional variance structure in the test improved the test results. Second, 

for unit root tests to rely on a single model specification can sometimes produce results 

that are not robust. This could be seen from the ADF test on soybean monthly data, by 

specifying different lags included in the test, completely different decisions are made on 

the stationarity of the series which could bring troubles to the succeeding analysis steps. 

Using BMA methods, however, the result is consistency across different sampling 

frequency, and it can average all the possible model candidates the researcher believes is 
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possible and then reached a comprehensive decision which solves the model specification 

problem in the unit root test. By examining the posterior weight of BMA methods, we 

find that the model weights will “self-adjust” to the models that may best describe the 

behavior of certain sample frequency to make sure they have higher posterior probability.  

Overall, this paper shows that sampling frequency did matter to the unit root 

result so one should be cautious when performing the systematic sampling to get low 

frequency sample from the high frequency one. We also provided a BMA approach to 

test for unit roots to accommodate the high volatility and heavy tail behavior of the 

financial data. Our BMA test can handle model specification uncertainty issues well 

which provided more robustness and flexibility compared with other similar methods, 

and it also suggested an alternative to the researchers who are concerned this is a 

significant problem in their work.   
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