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ABSTRACT
Honey bee (Apis mellifera L.) queens are polyandrous, mating with multiple males.

Polyandry results in high within-colony genetic variation; however, the adaptive drivers of this
behavior are poorly understood. Most hypotheses trying to explain polyandry are variants of the
“genetic variance” hypothesis, which explains that high levels of polyandry provide allelic
richness to a colony, contributing to a colony’s survival and success. We investigated the
mechanisms underlying queen mating patterns by utilizing artificial insemination to produce
queens with a range of mating numbers and comparing their colonies for measures of fitness. We
found that increasing polyandry led to lower infestation rates of Varroa destructor mites which
supports the genetic variance hypotheses. Our findings bolster previous findings on the benefits
of polyandry to colony success and support an additive relationship between polyandry and

colony level phenotype.
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CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

Across the Animal Kingdom, organisms have evolved extremely complex and strikingly
diverse mating systems with which to survive and pass their genes on to the next generation [26].
Polyandry is one such mating system, in which females’ mate with multiple different males and
males’ mate with only one female [26]. Polyandry is a fundamental behavior for informing
studies in mate choice, particularly sexual selection in which individuals choose a mate based on
specific attributes [88]. Darwin (1859) first proposed the concept of sexual selection in the On
the Origin of Species by Means of Natural Selection [14]. However, it was Bateman (1948) who
provided the rigorous explanation of sexual differences owing to anisogamy in fruit flies [3; 68].
The ideas of Bateman carried the understanding of female sexual behavior until the 1970s, when
female birds were shown to be promiscuous, beginning the notion that females were active
players of the evolutionary games [88].

With the advent of DNA fingerprinting and the seminal reviews of sperm competition in
insects, increasing numbers of scientists have reported polyandry in natural litters, clutches, and
broods across species, leading to the recognition of polyandry as a common and ubiquitous
mating system in nature [88]. Polyandry occurs across a wide variety of taxa but has most
commonly been investigated in eusocial insects. In the complex eusocial Hymenoptera,
polyandry plays a super-charged role in facilitating within-nest genetic variance among the
workers. The evolution of a sterile worker caste, functionally recapitulating the organismal soma

[5; 78], means that hymenopteran polyandry generates in a colony the functional equivalent of



organismal heterosis. As such, polyandry has been important in the evolution of complex social
behaviors [26; 73] and is considered by scientists a tool for promoting colony health in managed
systems [43; 87].

Polyandry in Eusocial Hymenoptera

Eusociality is defined by cooperative brood care, overlapping generations of adults, and a
reproductive division of labor, with a reproductive queen and a worker caste [91]. According to
Hamilton’s (1964) kin selection theory, individuals are more likely to cooperate if they share
genes identical by descent, which explains evolution of eusociality [29]. If relatedness amongst
individuals within the group remains high, altruism is selected for as the benefits of cooperation
outweigh the costs [5]. However, within eusocial Hymenoptera, polyandry poses unique
consequences to Kin selection as it generates intracolonial genetic diversity, which depletes the
high level of relatedness among individuals by reducing their potential inclusive fitness [43]. The
challenges of polyandry are partially due to the haplodiploid sex determination of Hymenoptera,
but also the reproductive division of labor that characterizes eusociality.

Within a haplodiploid sex determination system, the sex of the individual is based on the
number of chromosomes an individual receives [5]. Males receive a single set of unpaired
chromosomes from their mother and are haploid, while females receive a set of chromosomes
from each of their mother and father and are thus diploid [5; 31]. As males are unfertilized, they
share 100% of their genes with their mother as no genetic recombination takes place [5]. In a
monandrous system where the queen mates with a single male, female siblings are related by
75% and are predicted to act altruistically to increase their inclusive fitness [5; 29]. Because the
level of relatedness between siblings in this scenario is 75%, daughters are predicted to prefer

rearing siblings (r=0.75) even in preference to their own offspring (r=0.5) [5].



However, polyandry works against the inclusive fitness of workers as the level of
relatedness drops with a queen’s additional mates. Specifically, the average relatedness among
individuals in a colony declines by the function 0.25+(0.5/me) where me is the effective mating
number of the queen [86]. However, workers that share the same father, known as supersisters,
are still related by 75% and are known as one subfamily or patriline [5; 31].

Due to the drop in relatedness, kin selection theory predicts that polyandry is likely to
encourage conflict among colony members [38]. However, conflict in a eusocial system is
uncommon, which may be because polyandry is derived and has only evolved in lineages which
have lost the ability to reproduce (reproductive totipotency) due to a division of labor [18; 32;
38]. Additionally, polyandry and lower relatedness can lead to a reduction of conflict potential
due to behaviors such as policing, where workers consume the eggs of other workers to prevent
selfish reproduction [38].

Within Hymenoptera, polyandry weakens the level of relatedness with an increased
number of mates and thereby reduces the level of inclusive fitness among colony members.
Despite these apparent handicaps of polyandry within Hymenoptera, polyandry independently
evolved 8 to 11 times in eusocial ants, bees, and wasps [89]. Therefore, polyandry provides an
adaptive advantage, but only at the level of the group. Many hypotheses have been proposed to
explain the potential costs and benefits of polyandrous behavior in the highly social insects [17;
24; 63]; however, circumstances favoring the behavior are still not completely understood.

Hypotheses for the Evolution of Polyandry

Most empirical and theoretical studies focus on variants of one overarching model — the

genetic variance (GV) hypotheses [34; 50]. Defined by Keller and Reeve (1994), the GV

hypotheses propose that queen and colony fitness is increased by intracolonial genetic variance



that results from polyandry [34; 65]. Increasing mating number causes an increase in the number
of subfamilies within the colony [86]. With a higher number of subfamilies, genes for different
phenotypes become varied among colony members, which enables individuals to adapt in varied
ecological conditions [86].

Although the basic premise is the same among GV hypotheses, each attributes the
adaptive advantage of polyandry to different levels of selection [86]. Some versions of the GV
hypotheses focus on the consequences of polyandry at the colony level, while others focus on the
queen as the main target of selection [38]. Due to differences in the selective forces, the GV
hypotheses are typically divided into two categories.

The first subset of GV hypotheses

The first category concerns the haplodiploid sex determination system and relates the
effects of haplodiploidy on brood viability [62; 63; 72] and conflict between workers and queens
over preferred sex ratios [4; 48; 65]. These subsets of hypotheses suggest: (1) queens with low
brood viability due to diploid male production have low fitness, and polyandry has evolved
because it reduces variance in the production of diploid males among colonies [12; 54; 63; 72;
80], and (2) polyandry reduces conflict between queens and workers over preferred sex ratios
[47; 54; 67; 70; 73].

Within the first category, polyandry is hypothesized to have evolved to reduce the
production of diploid males, which are inviable in a haplodiploid sex determination system [60;
63]. Diploid males are homozygous at the sex locus [65; 95], and result from inbreeding. If a
gueen mates with a drone carrying a sex allele identical to her own, a large percentage of her

eggs are inviable posing an energetic cost, as well as reduced brood viability and lower fitness



[65]. By mating with multiple males, a queen reduces the possibility of inviable drones and an
unsuccessful colony [65].

The second hypothesis within the first category proposes that polyandry evolved to
reduce the conflict between castes, the queen and her workers, over preferred sex ratios [47; 54;
73]. As the queen passes on 50% of her genes with every egg she lays, she is expected to favor a
1:1 ratio of male to female within the colony [16]. Workers however face a different dilemma
due to polyandry. Workers that share the same father are related by 75%, while workers that
have different fathers only have a probability of a 25% relatedness [5]. As drones are haploid,
workers are also related to their brothers by 25%. Due to this asymmetry in relatedness between
the siblings, workers are expected to prefer a 3:1 ratio of rearing sisters over brothers [16]. By
practicing polyandry, a mother decreases the average relatedness amongst her daughters to
~33%, while daughter/brother relatedness remains 25%. By reducing the magnitude of this
differential, polyandry very nearly restores the workers’ interest in a 1:1 sex ratio in agreement
with their mother [90].
The second subset of GV hypotheses

The second category of hypotheses refers to ecological fitness benefits that stem from the
genetic diversity within the worker population [54; 62; 63; 65; 72]. These hypotheses propose
that: (1) genetic variance allows an increased expression of caste- [13; 54] or task-specialization
[7; 8; 20; 23; 54-58; 61], (2) genetic variance increases the range of environments a colony can
tolerate [13; 52; 54; 57; 59; 60], and (3) genetic variance increases colonial resistance to
parasites and pathogens [81-83].

According to the first hypothesis, GV promotes an increased expression of behavioral

polymorphism [54]. With an increase in the number of subfamilies due to polyandry, there is a



higher level of behavioral diversity allowing for an efficient division of labor through task
specialization by individual workers [50]. With a higher level of behavioral diversity, workers
are predicted to increase colony level efficiency and fitness through specializing in specific tasks
[17]. Such tasks include acquiring food through foraging, general nest maintenance like guarding
and undertaking, and nursing the brood or the queen [42]. Due to the increase in colony
efficiency, task specialization could be a selective force in the evolution of polyandry [65].

The second hypothesis is that GV increases the range of environmental conditions a
colony can tolerate [13; 54; 57; 60]. Like the first hypothesis, the behavioral variation due to
multiple mating, may help buffer colonies against fluctuations in the environment [9; 13; 64; 65].

The final hypothesis connected to worker diversity because of polyandry is the parasite
and pathogens hypothesis. Under this hypothesis, genetically diverse colonies are more resistant
to parasites and pathogens [54; 81-83], and polyandry evolved as an adaptive response to high
numbers of parasites and pathogens [50]. A key assumption of this hypothesis is that
susceptibility or resistance to pathogens varies between different patrilines in the colony [36; 81].
Of the second category of hypotheses, the parasite and pathogens hypothesis has garnered the
most empirical support. Genetically diverse colonies of honey bees have demonstrated lower
incidence of diseases when compared to genetically uniform colonies [39].

Outside of the GV hypotheses, other hypotheses have been proposed, but based on a
review by Crozier and Page (1985), most have been deemed improbable [13]. For example,
intra-spermathecal sperm competition was initially proposed [41; 54]. However, this hypothesis
was rejected by Crozier and Page (1985) because it depends on the successful males yielding
high quality offspring, and there is no reason to expect a correlation between sperm

competitiveness and offspring quality [13]. A second proposed hypothesis is based on the



volume of sperm a queen requires to lay successfully during her life span [11]. A queen typically
lives 2 to 3 years, and continuously lays eggs throughout her lifetime [92]. However, this
hypothesis also is implausible as males do not transfer their sperm directly into the spermatheca,
but ejaculate into the female’s sexual tract, the bursa copulatrix [2]. Due to this action, much of
the spermatozoa is discarded that the queens receive during mating [13].

Although there are many different interpretations of the genetic variance hypotheses, it is
likely that a variety of forces selected for the evolution of polyandry in the eusocial
Hymenoptera. Multiple hypotheses, and the interpretations of those hypotheses, in concert with
life history traits shaped the selection for the evolution of polyandry, and these together maintain
the high rate of polyandry within Apis. Despite the undue focus on the numerous hypotheses
seeking to explain polyandry, the effect of polyandry at the colony level remains
overwhelmingly beneficial. For example, field studies indicated that polyandrous honey bee
colonies demonstrated population growth, weight gain, and survival when compared to their
monandrous counterparts [16].

Consequences and Modern Effects of Polyandry

Polyandry is clearly an advantageous behavior, and the benefits appear to outweigh the
costs. But addressing the costs and benefits for eusocial Hymenoptera requires considering both
the individual and colony levels. For honey bees, the individuals considered are the queen and
her workers (males, or drones, die upon mating and only incur cost to the colony for rearing
them). Evolutionarily, the costs typically occur at the individual level, while the benefits occur at
the level of the superorganism.

As the queen is the sole reproducer in the colony, polyandrous behavior has potential to

be extremely costly for both the individual and the colony. In the early days of her life, a queen



flies to drone congregation areas where she mates with multiple males on the wing. The mating
flight poses a significant energetic cost, but also incurs risk from predation, harsh weather, and
exposure to disease infection [60; 75]. In other non-social species, polyandry has also been
demonstrated to reduce lifespan [1], which may be an additional cost to the queen. Energetically,
queens that return to the colony with an insufficient number of mates are forced to embark on
additional mating flights, increasing the costs with each additional trip [38; 76].

For the other caste in the colony, the workers, polyandry is costly to the level of
relatedness amongst individuals. Workers that share the same father (supersisters) are related by
75%, while workers with different fathers (subsisters) only have a probability of sharing 25% of
their genes [5]. The average relatedness among workers with a polyandrous mother can be
explained by the equation sisters = 0.25 + (0.5/k), where k is the mating number of the mother.
This value asymptotes to 0.3 relatedness at m=6, which means this is the average level of
relatedness amongst workers is roughly 30% [5]. When considering the level of relatedness
amongst the workers, it is also important to consider the cost of the worker with their reduced
relatedness to the next sister who becomes a queen. Workers would prefer to rear a supersister
(75%), but the vast majority tend to raise a sister with r=0.3 relatedness [90].

The benefits of polyandry result from an increased level of fitness, which for the colony
is measured in terms of the lifetime number of surviving swarms and drones produced [50]. GV
hypotheses are closely connected to the benefits of polyandry, as the level of fitness for a colony
increases by intracolonial genetic variance [65]. Empirical support for the benefits of polyandry
due to genetic variance has been demonstrated by stable colony homeothermy [25; 33; 43; 52;
53], reduced risk of brood pathogens [66; 79; 85], and heterozygosity maintenance at the sex

locus [63; 86]. In honey bees, differences amongst patrilines were also shown to influence the



type of forage [57], distance travelled to forage [58], foraging time of day [37], scouting [19; 45],
and dance communication [21; 44]. Additionally, newly founded genetically diverse colonies
were found to build comb faster and store greater amounts of food when compared to their
genetically uniform counterparts, when controlling for the number of workers and environmental
conditions [43].

Although emerging mechanisms leading to the evolution of extreme polyandry remain
conjectural, the consequences of polyandry are clearly beneficial at the colony level. While the
consequences of polyandry are important for understanding the maintenance of the behavior in
eusocial Hymenoptera, the benefits do not explain the extreme levels of polyandry seen within
the Apis genus.

Problem with Extreme Polyandry

Queens within all Apis species are hyperpolyandrous because they mate more than six to
ten times [54]. According to theory, a queen captures 90% of the alleles from the breeding
population in her first six mates. Beyond the sixth mate, there are vanishingly marginal increases
in intracolonial genetic heterogeneity [5; 54; 62] [51; 54] or variation in the distribution of
diploid males [62; 63]. Therefore, the current explanations for the evolution of polyandry cannot
explain the extreme levels of polyandry shown by Apis [48; 54; 60]. Although the GV
hypotheses are the most common explanations for the evolution of polyandrous behavior, they
are limited. The problem with most GV hypotheses is that they assume linear increase in in
fitness due to genetic diversity, and do not include non-linear fitness benefits or the steep fitness
increase because of extreme polyandry [38]. Additionally, GV hypotheses are problematic as the
benefits of GV are a function of selection acting on the colonies after mating has taken place

[86], which explains the maintenance of polyandry, but not the evolution of the behavior.



Fuchs and Moritz (1998) attempted to explain nonlinear fitness benefits that occur
through polyandry with a worker ‘specialist’ model, in which specialist workers needed to be
rare in the colony [24; 38]. However, there is little empirical support for this model, and often
conflicting evidence that genetically diverse colonies perform better as a collective (too many
cooks in the kitchen?) than less genetically diverse colonies [25; 33; 43; 50; 57; 64], as too many
worker specialists, would provide additional cost at the colony level [38].

Further research is required to understand how fitness benefits accrue in Apis and the
mechanisms of worker behavior that may explain the seemingly stochastic mating behavior in
Apis. If polyandrous behavior were simply a matter of collecting genes, a queen would be
expected to stop at around 6 mates. However, for the western honey bee, Apis mellifera L, a
queen often doubles mates with the species average at around 12 mates [16]. But, based on
microsatellites, outliers as high as 44 and 77 mates are present in the population [93]. Thus, more
work is needed to understand how GV extends to colony fitness and phenotype.

Utilizing a large range of polyandrous values, the goal of this work is to address how the
adaptive benefits and costs of polyandry occur. This is the first study to assess the effects of
polyandry across a range of values elucidating the mechanisms encouraging honey bee queens to
mate multiply. Previous studies have demonstrated that colony fitness increases with high levels
of polyandry, but the mechanisms encouraging queens to mate at such high rates has yet to be
elucidated. Understanding these mechanisms of multiple mating in honey bees may lead to broad
changes in traditional trait-based genetic selection as well as further understanding for the

evolution of polyandry in social insects more generally.
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CHAPTER 2
HOW MANY MATES IS ENOUGH? EXAMINING MULTIPLE MATING IN THE

HONEY BEE, APIS MELLIFERA L.
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ABSTRACT
In the first weeks of her life, a honey bee (Apis mellifera L) queen mates on the wing with
several males, storing their sperm in her spermatheca and using it thereafter to fertilize all her
female worker progeny. This behavior is known as polyandry and is a feature of all highly
eusocial Hymenoptera. Most hypotheses seeking to explain polyandry are variants the genetic
variance hypothesis, which suggests that higher levels of polyandry provide a diverse set of
genetics to the colony contributing to colony survival and success. However, the extreme level
at which honey bee queens’ mate is poorly understood. Theory dictates that 90% of the
population alleles is captured in a queen’s first 6 matings, yet the species average is ~12 mates
and outliers as high as 77 are known. In this study, we sought to investigate the mechanisms
underlying honey bee queen patterns and to determine the effect of polyandry on colony
fitness. We utilized artificial insemination to produce queens with a range of mating numbers
— each inseminated with 1, 2, 4, 8, 16, or 32 males — and compared their colonies for measures
of fitness, including colony bee populations, and colony load of the economically-damaging
mite parasite Varroa destructor. Using a generalized linear mixed model, we found extreme
polyandry led to lower infestation rates of mites through increasing levels of polyandry, which
supports the hypotheses that the benefits of polyandry accrue additively. These results suggest
that the relationship between polyandry and colony fitness is driven by ecologic
competitiveness deriving from increased genetic variance in the colony. This could explain
why honey bee queens routinely mate at double the rate theory predicts. Our findings bolster

previous evidence for the benefits of polyandry to colony success and suggest that benefits of
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increasing polyandry accrue additively.
INTRODUCTION

Across the Animal Kingdom, organisms have evolved extremely complex and strikingly
diverse mating systems with which to survive and pass their genes on to the next generation
[26]. One such mating system is polyandry, in which females’ mate with multiple different
males and males’ mate with only one female [26]. Polyandry has most commonly been
investigated in eusocial Hymenoptera (the wasps, ants, and bees) because this behavior has
evolved multiple times independently throughout the order, and many species, including the
western honey bee, exhibit high mating numbers, termed extreme polyandry [38].

In the western honey bee, queens’ mate with multiple males in a single reproductive
bout, store sperm, and use it to produce their lifetime cohort of diploid worker daughters and
future queens. During her single mating flight, the queen gathers enough sperm to last her 3 to
5-year life span. Theory shows that over 90% of the breeding population’s alleles is captured
by a queen in her first 6 mates (Figure 1) [16; 65]. However, the species average is around
m=12 mates [84], and frequently higher, with values up to m=77 evidenced in the literature
[22; 93; 94]. One effect of polyandry is reducing average worker relatedness in the colony
[74], so it is believed that polyandry cannot evolve unless its colony level benefits outweigh
its costs to workers [67].

Field studies conducted by Tarpy and Pettis (87), Mattila and Seeley (43), and Delaplane
et al (16) show that an increase in mating frequency is positively correlated with colony
performance through reduced loads of the parasitic mite Varroa destructor, improved
productivity of workers, and increased colony success at founding new colonies [43; 46; 87].
Many hypotheses have been put forth to explain the benefits of polyandry with the primary

focus set on the umbrella of genetic variance (GV) hypotheses [34], which posit that high
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levels of polyandry provide a diverse set of genetics to the colony, improving overall colony
survival and fitness. Although the base presumption is the same among the different genetic
variance hypotheses, considerable nuance exists between the different subsets and the
hypotheses themselves. Polyandry confers benefits through: (1) reducing the production of
diploid males [63], (2) reducing conflict between the queen and her workers over preferred
sex ratios [4; 48; 65], (3) increasing expression of caste or task specialization [54], (4)
increasing the types of environments that a colony can tolerate and (5) increasing genetic
heterogeneity in colonial resistance to parasites and pathogens [81].

Alternatively, Fuchs and Moritz (1998) explain the benefits of polyandry through a rare
allele model, in which a queen mates with multiple males to capture rare specialist alleles
leading to an increase in colony fitness [24; 38]. However, there is very little empirical
support for this model and further work must be done to investigate the mechanisms
motivating a honey bee queen to mate multiply.

Previous studies demonstrate the colony-level benefits of polyandrous behavior, but the
mechanisms underlying this behavior are poorly understood. For example, Delaplane et al.
(16) show that queens artificially inseminated with the semen of 30 or 60 drones had increased
brood rearing and lower Varroa destructor mite infestations, than those inseminated with 15
drones [16]. On the other hand, Oldroyd et al. (57) found that colonies at higher levels of
polyandry perform less well than those with lower polyandry [52]. Other studies found no
effect of polyandry on colony measures [27; 50]. However, no previous work has investigated
polyandry across a range of values. To investigate the link between multiple mating and
colony performance, we artificially inseminated honey bee queens with 1, 2, 4, 8, 16, or 32
drones and tracked colony fitness measures over the span of 5 months.

As a response variable, we focused on a character of high fitness returns — colony levels
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of the parasitic mite Varroa destructor. To investigate the mechanisms underpinning the
benefits of polyandrous behavior in honey bees, we used artificial insemination to provide a
range of polyandrous conditions and measured respective colony mite loads. By providing a
geometric range of polyandry levels, we attempt to (1) illustrate how our model fitness
parameter changes across a range of polyandrous conditions unmatched in the scientific
literature and (2) gain understanding of the way colony level benefits accrue. If the response
variable asymptotes near the m=6 mark of Palmer and Oldroyd, then it simply mirrors GV
predictions. If it asymptotes significantly further than m=6, this would support a rare allele
hypothesis. If a linear response continues indefinitely, this suggests either that phenotypic
benefits accrue additively, apparently uncoupled from the genotypic limits suggested by
Palmer and Oldroyd (2000) or else that beneficial rare alleles occur in high numbers [65]. By
manipulating queen mating number and measuring colony fitness, we can inform management
practices such as artificial insemination, deliver guidance in optimum mating numbers, and
improve managed colony health and productivity.
MATERIALS AND METHODS

Study Area and Experimental Design

The experiment was conducted at the University of Georgia Horticultural Farm
(33.884783, -83.421114) in Watkinsville, Georgia during the summer of 2019 and into the
spring of 2020. Colonies were each started between March 20-21, 2019 with a standard
package containing one queen and 3 Ib. (1.4 kg) workers housed in a single deep 10 frame
super (Figure 2). Forty virgin queens were reared and artificially inseminated beginning April
15, 2019. There were 6 to 8 colonies representative of our different insemination levels.
Artificial Insemination

Queens were each instrumentally inseminated with standard methods [10; 30]. Each
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virgin queen was instrumentally inseminated with a ~1.5 to 2.0 pL mixture comprised of
physiological saline 15% of volume) and the semen of 1 drone, 2 drones, 4 drones, 8 drones,
16 drones, or 32 drones. Batches representing multiple drones were each expressed into an
Eppendorf tube, manually mixed to approach equal representation per drone, and redrawn into
the same syringe tip subsequently used for inseminating a queen. As our independent variable
was polyandry per se and not drone source, we randomly selected 10 colonies to serve as a
source for drones. Our different treatments, excluding our single inseminated queens, were
each a mixture of semen from a random sampling of drones from the 10 colonies. Each queen
received a semen mixture volume of ~4 uL, thereby controlling for any effects of volume on
insemination [69]. Following insemination, each queen was marked with a unique number and
housed in one of the previously installed package colonies. Over the next successive two days,
each queen was treated with CO2 for 10 minutes to encourage egg laying [40].
Colony Management and Sample Collection

Queens were released after 1-3 days and colonies managed according to standard
practices. Colonies were fed supplemental sugar solution, and additional supers were provided
as required to permit colony growth. After all queens were released, all colonies were
maintained for 5 months to ensure adequate queen egg laying performance and ensure that the
progeny of the experimental queens were the workers we monitored. Following this initial
period of attrition, the beginning numbers of queens/colonies for each insemination group
were m=1 (N= 6 colonies), m=2 (7 colonies), m=4 (6 colonies), m=8 (7 colonies), m=16 (8
colonies), and m=32 (6 colonies).
Dependent Variables

The relative numbers of Varroa destructor mites were determined using sticky screens,

which were placed in the screened bottom board the day of assessment and removed three
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days later. The mites were then counted on the screens.

Ten colonies were selected to randomly provide drones for artificial insemination.
Depending on the level of artificial insemination, drone source colonies were annotated for
each queen to investigate the role of specific drone sources in colony health measures.
Specific drone colonies sources were analyzed using a generalized linear mixed model to
determine if patrilines were driving our results.

Statistical Analysis

All analyses were carried out using R [71]. The rate of colony survival during the
experiment (over the course of 5 months) and the rate of colony survival post experiment (to
Spring 2020) was assessed using a generalized linear model with a binomial error structure.
Our other colony health metrics including total number of bees, total number of mites per
colony, and mites per bee were analyzed using a generalized linear mixed model. Because it
was a generalized linear mixed model, type 11l ANOVA and chi-square statistics were used.
Using a generalized linear mixed model allowed us to account for multiple time points per
colony and nesting of colonies within each polyandrous treatment. Our fixed effects were
timepoint and polyandry. Only the colonies that survived the duration of the experiment were
analyzed for the level of total mites. The effect of time was included as mite populations grew
over the course of the experiment. Mites per bee were calculated by dividing the number of
mites by adult bee population. Mites per bee were 9" root transformed to meet the
assumptions of the generalized linear mixed model. Shapiro Wilcox test was used to test for
normality.

RESULTS

There was a significant effect of polyandry (¥?13= 5.68; p=0.017) on number of mites

per colony. Using a Poisson distribution, polyandry was shown to correlate negatively with
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the total number of mites. Therefore, increasing levels of polyandry reduced total number of
mites. To account for time between our sampling periods, timepoint was included as a
categorical variable in our analysis. We found that there was a significant effect of timepoint
on total number of mites (x’1,3= 1658.95; p<0.001) such that timepoint was positively
correlated to total number of mites (Figure A.1). This indicates that throughout our sampling
periods, there was an increase in the level of mites, but the more polyandrous colonies had a
reduction in total mite load.

To adjust for differences in colony size, mites per bee were calculated by dividing the
number of mites, which scales with colony size, by bee population. In checking the
distribution of our data through histograms (Figure A.2), mites per bee were 9" root
transformed to meet the assumptions of the generalized linear model (Figure A.3). Shapiro
Wilcox test was used to determine normality (w=0.992; p=0.622). Using a generalized linear
mixed model with a Gaussian error structure, we found that polyandry had a significant effect
on the number of mites per bee (x%1.4= 6.78; p=0.009), and was negatively correlated with
number of mites. Timepoint had a positive effect (x?1,4= 101.15; p < 0.001) on the number of
mites per bee present in the colonies and was positively correlated to the number of mites per
bee. Therefore, mite numbers predictably increased over time, but within timepoint polyandry
had a consistent depressing effect on per capita mite numbers (Figure 3). Gaussian generalized
linear mixed models were graphically inspected for goodness of fit (Figure 4).

Finally, we assessed the source colonies of our drones using a generalized linear mixed
model with a Gaussian error structure. Polyandry was excluded as it was not a predictor of
sperm source, and our colonies were treated as random factors. We found no evidence that any

specific sperm source significantly decreased mite load (Table 1).
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DISCUSSION

In this study, we instrumentally inseminated honey bee queens to determine the effect of
polyandry on colony fitness. Our findings demonstrate that increasing levels of polyandry
reduce Varroa destructor mite loads, adding to a growing body of literature on the benefits of
polyandry to honey bee colony health. Previous studies assessing honey bee health in terms of
gueen mating number have included a narrower range of insemination values [16; 42], and no
work has approached the range of polyandrous values provided here.

Our results provide support for the genetic variance hypotheses, particularly the subset
of hypotheses related to colonial resistance to parasites and pathogens (hypothesis (5) in the
introduction). Our findings also challenge what theory predicts is the maximum at which the
benefits of polyandrous behavior occur, as phenotypic benefits extended beyond what we
would expect based on an average mating asymptote of m=6. Either phenotypic effects accrue
additively, apparently uncoupled from the asymptote predicted by classic GV theory [65], or
else rare alleles, however rare individually, nevertheless occur in high enough numbers that
their acquisition produces a linear effect.

As part of our investigation of the rare allele model, we assessed the source colonies of
drones to determine if there was a relationship between any drone source and the level of
mites per bee. We found no evidence that any drone colonies were associated with mites per
bee (Table 1). This is inconsistent with the idea of a rare allele model, in which queens’ mate
with multiple males to capture rare specialist alleles in the population. Support for the rare
allele model would show a significant effect of some, but not all, of the source colonies within
the population at reducing mites per bee.

Although we found no support for the rare allele model, there are potential routes by
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which such a mechanism could express. Moritz et al (49) first proposed the idea of rare
“royal” subfamilies, in which emergency queens reared during a supersedure event were
reared from rare “royal” subfamilies, which were undetected or present at low frequency in the
worker population. Withrow and Tarpy (93) further tested the “royal” patriline theory by
genotype analysis of sampled workers and found that cryptic subfamilies are common across
colonies and frequently undetected in traditional tests of queen mating number and colony
composition. Thus, in addressing the rare allele model, genotype analysis may be necessary to
fully reject the rare allele model.

Genotype analysis is also useful for appraising the uniformity of progeny expression by
patrilines in a queen’s spermatheca. During copulation, drones ejaculate into the female’s
sexual tract, the bursa copulatrix [2]. When a queen returns from her mating flight, she begins
storing the sperm in her spermatheca [6; 35]. Therefore, there may be considerable variation in
the amount of sperm a queen receives from a focal drone, either due to lost semen during her
mating flight [95] or by sperm competition [30]. Differences in drone contribution may thus
provide an unknown source of variation for queen mating levels.

To our knowledge, no other studies have investigated a range of insemination levels
comparable to those we used here. We used a geometric progression in mating number to
examine a wide range of polyandry more economically, and despite this still showed only
additive change in phenotype. This begs the question how phenotype can accrue additively
while alleles accrue non-additively. What mechanisms obtain this? At what point does
phenotype asymptote, if not m=6 as theory predicts? Unfortunately, our design is insufficient
to these questions.

In any case, it seems likely that tradeoffs between costs and benefits of polyandry are a

delicate balance between individual- and colony-level fitness. The known constraints to
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mating number include predation rates as well as sexually transmitted diseases that are
unlikely to completely disappear. Assessing when the benefits of polyandry asymptote is
necessary to further informing our understanding of the evolution of this mating behavior in
the western honey bee.

Secondarily, our results convincingly show that more polyandrous colonies have less
per-capita mites, which may occur through a few different mechanisms. A simple
interpretation of the GV hypotheses would suggest that polyandrous behavior evolves due to
genotypic variation in the colony, promoting resilience (and resistance) to parasites and
pathogens [77]. However, could synergistic interactions between workers leading to further
hygienic behavior also play a role? Previous work has demonstrated that colonies headed by
gueens inseminated with multiple males are healthier than colonies headed by a single
inseminated queen due to an increase in the flow of nutrients into a honey bee colony and the
rate it is distributed among colony members [21]. Support has also been found for the better
recruitment and signal communication of foragers of genetically diverse colonies when
compared to their less genetically diverse counterparts [28].

Emergent properties may also provide explanation for the phenotypic benefits that
appear to accrue past m=6. Emergent properties refer to the creation of order out of pre-
existing individuality [15]. For the honey bee, the superorganism provides a level of
organization that would not be possible at the level of individual. Resistance to mites with
increasing polyandry may be an artifact of unknown structural elements that emerge out of
complexified sociality, elements that could obtain in genetically diverse eusocial organisms in
general.

Using a range of artificial insemination treatments has demonstrated that the level of

mites per bee decreases with increasing levels of polyandry, and that instrumental
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insemination can deliver this benefit. Investigating low cost alternatives to deliver the benefits
of artificial insemination may be valuable for future research. Polyandry, delivered through
artificial insemination, may be important to mitigate the negative impacts of parasites and
pathogens within honey bee colonies. Investigating the performance of honey bee colonies at
different levels of polyandry has potential to completely change traditional trait-based
beekeeping. While beekeepers often select for traits like temperament or honey production,
these may come at a cost to colony health. By understanding the mechanisms by which honey
bees have marshalled genetics to solve problems in evolutionary time, we can better deliver

those mechanisms to maximize colony productivity in managed systems.
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FIGURES

Diminishing increase in colony genetic diversity
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Figure 1: Theory shows that over 90% of the change in within-colony genetic relatedness is

explained by a queen’s first 6 matings, but the species routinely reach beyond this asymptote

and mate, on average with 12 males and some up to 77 [93].
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Figure 2: Packages of bees were installed in single deep 10 frame super. Mites were collected

using sticky screens in the bottom of the colony.
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Figure 3: The relationship between the number of mites per bee and the level of polyandry.
The number of mites per bee decreases as levels of polyandry increase. This graph depicts our

polyandry treatments (over our 5 timepoints depicted by dotted lines). We also included our

natural scale of insemination values below our original x-axis.
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Figure 4: Gaussian generalized linear mixed models were graphically inspected for goodness

of fit. Mites per bee data appear to be reasonably distributed with no clustering.
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TABLES

Drone Source | Chi-square p-value
Colonies
(Effect)
Timepoint 101.15 <.001
L8 0.47 0.494
TO21 1.32 0.25
LHILL 71 0.91 0.341
FARM 9 0.15 0.696
F2 151 0.219
F22 0.02 0.893
ED32 0.94 0.334
BHILL 34 0.68 0.411
TO1 1.02 0.312
RED 1 0.2 0.657

Table 1: Depicts our analysis of sperm source colonies. Generalized linear mixed model with
a Gaussian error structure was used to model the data. Polyandry was removed as a predictor
variable and colony was treated as a random factor. Analysis indicates that no drone source

colony deviated from a null expectation of non-difference in its effect on per-capita mite load.
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APPENDIX

Histogram of Total Mites
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Figure A.1: Histogram of total number of mites. Relatively well distributed data with no need

for transformation.
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Histogram of Mites per Bee (untransformed)
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Figure A.2: Histogram of untransformed mites per bee. Our data is skewed to the left, which
indicates abnormally distributed data. We visually assessed the different transformations to

see which would be closer to normal distribution. Normal distribution follows a bell curve.
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Histogram of Mites per bee 9" root transformed
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Figure A.3: Histogram of 9" root transformed mites per bee. Transforming the data allows us
to better meet the assumptions of the model and become closer to being normally distributed.
We visually assessed the different transformations to see which would be closer to normal

distribution. This transforms our response variable (mites per bee) to mites per bee ” (1/9).
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