# EXPERIMENTALLY GROWN FORAMINIFERA AND THEIR RESPONSE TO HEAVY METAL (ARSENIC, CADMIUM, NICKEL, AND ZINC) CONTAMINATION

by

#### CHRISTOPHER W. SMITH

(Under the Direction of Susan T. Goldstein)

#### **ABSTRACT**

Benthic foraminifera have a long history as environmental indicators of heavymetal contaminants in marine environments. This study compares the effects of selected heavy metal contaminants (arsenic, cadmium, nickel, and zinc) on benthic foraminifera, grown experimentally from propagules (small juveniles) collected from two coastal sites: Sapelo Island, Georgia, and Little Duck Key, Florida.

Surface sediment was collected from both locations and sieved immediately after collection. The propagules were then used to experimentally grow assemblages with each assemblage exposed to a different heavy metal. The goal here was to compare the effects of these heavy metals on the abundance, diversity, and possible test deformities in benthic foraminifera while also comparing possible different responses of rotalid, miliolid, as well as monothalamid foraminifera. Samples of the two most common species from each location (*Ammonia tepida* (Cushman) and *Haynesina germanica* (Ehrenberg) from Sapelo Island and *Quinqueloculina sabulosa* (Cushman) and *Triloculina oblonga* (Montagu) from Little Duck Key) were then selected for trace element analysis using LA-ICP-MS to quantify possible heavy-metal incorporation among the foraminifera. Finally, additional experimental foraminiferal assemblages were grown under different

temperature and salinity regimes, including intermediate (22°C, 32 psu), elevated temperature (30°C, 32 psu), reduced temperature (18°C, 32 psu), elevated salinity (22°C, 40 psu), and reduced salinity (22°C, 12 psu) in an attempt to identify possible effects of salinity and temperature change on heavy-metal impact on foraminifera.

Increasing concentrations of the trace elements led to decreases in abundance and diversity for the foraminifera. Elevated concentrations above a certain threshold, especially with zinc, resulted in an increase of deformed tests among the foraminifera. However, test deformities did not consistently occur in different salinities and temperatures. Differences exist between the rotalid and miliolid species in their incorporation of the heavy metals. Rotalid species incorporated more cadmium as its concentration in the surrounding water increased, whereas miliolid species incorporated more of the metals zinc and nickel. These results underscore the importance of foraminifera as bioindicators, but also show that several factors, such as interspecific variation and environmental variability must be considered in using foraminifera in pollution studies.

INDEX WORDS: benthic foraminifera, heavy metals, biomonitoring, arsenic, cadmium, nickel, zinc, LA-ICP-MS

# EXPERIMENTALLY GROWN FORAMINIFERA AND THEIR RESPONSE TO HEAVY METAL (ARSENIC, CADMIUM, NICKEL, AND ZINC) CONTAMINATION

by

# CHRISTOPHER W. SMITH

B.S., University of North Carolina at Chapel Hill, 2011M.S., Auburn University, 2015

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

ATHENS, GEORGIA

2019

© 2019

Christopher W. Smith

All Rights Reserved

# EXPERIMENTALLY GROWN FORAMINIFERA AND THEIR RESPONSE TO HEAVY METAL (ARSENIC, CADMIUM, NICKEL, AND ZINC) CONTAMINATION

by

## CHRISTOPHER W. SMITH

Major Professor: Committee: Susan T. Goldstein Steven Holland Anthony Rathburn Paul A. Schroeder

Electronic Version Approved:

Ron Walcott Interim Dean of the Graduate School The University of Georgia December 2019

# DEDICATION

This is for my parents, Wayne and Kathy Smith, my fiancée, Samra Ward, and my supportive friends and family.

#### ACKNOWLEDGEMENTS

I would first like to thank my advisor Dr. Susan Goldstein providing me with the opportunity to pursue my doctorate at the University of Georgia. I have learned an incalculable amount from Sue in these past four and a half years and I will be forever grateful to her for all that she has taught me about not only foraminifera, but also every single facet of higher education and academia.

I would also like to thank my dissertation committee, Dr. Steven Holland, Dr. Anthony Rathburn, and Dr. Paul Schroeder for all of their help along the way. Steve has always been available with advice on statistical approaches and R coding. It has also been an absolute privilege to take his Data Analysis, Sequence Stratigraphy, and Sapelo Island Geology courses. It is not hyperbole to say that Steve is one of the best teachers I have ever had, and he has been an inspiration and model for me on how I would like to teach in my future career. I have also enjoyed the wealth of comic book movie discussions over the years. Dr. Rathburn has been a key resource for me on foraminifera. While the timing of our meetings through Skype have always been challenging, Tony has always gone out of his way to be available and helpful. Paul has been a great help to me with mineralogy and instrumentation. He has assumed the responsibility of Department Chair this past year and despite that, he has always remained available to me and I sincerely appreciate that. I had the pleasure of taking his Clay Mineralogy course and it proved invaluable when attempting to better understand the Sapelo Island and Little Duck Key sediments.

I also need to thank Dr. Jennifer Fehrenbacher, Dr. Chris Russo, and Theresa Fritz-Endres at Oregon State University for their help with chapter 3 of this dissertation. They were extraordinarily accommodating in my two trips there for LA-ICP-MS analysis. Jennifer was my coauthor on my second paper and her knowledge and experience with using laser ablation on foraminifera were key. Chris was a life saver, particularly with his aid in utilizing the LA-ICP-MS machinery. Theresa helped me greatly with not only cleaning my samples, but also LA-ICP-MS data analysis and management. Thanks also to Dr. John Shields and Dr. Eric Formo of the Georgia Electron Microscopy (GEM) Lab for their aid in electron microscopy and Dr. Sayed Hassan of the University of Georgia Center for Applied Isotope Studies (CAIS) for aid in ICP-MS analysis of residual water samples.

This research was funded by the Joseph A. Cushman Award for Student Research (Cushman Foundation for Foraminiferal Research), the Bernold M. "Bruno" Hanson Memorial Environmental Grant (American Association of Petroleum Geologists Foundation), the Garry Jones and Brian O'Neill Memorial Grant (North American Micropaleontology Section), the Levy Award for Marine Geology, and the Watts-Wheeler Fund (Department of Geology, University of Georgia).

Pursuing a doctorate can be enormously stressful and I would not have made it through without the help of my fellow graduate students. I would like to thank Erik Alberts, Garett Brown, Melanie Callihan, Kelly Cronin, Alex Edwards, Matt Hess, Cullen LaPointe, Pedro Monarrez, Rachel Rotz, Sierra Swenson, Devon Verellen, Kelsey Warden, and Sarah Wright for their friendship, laughs, and group therapy sessions. A special thank you to Cullen for helping me collect samples in the field. Another special

thank you to Pedro for being a constant source of valuable advice and guidance from the second I arrived in Athens. One last special thanks to Garett, Kelly, and Kelsey, for their friendship and for being a sounding board for ideas, problems, and all manner of issues.

I lastly want to thank my friends and family for supporting my long journey to this point. My best friend Cameron VanIderstine has always been available for a chat at times when it seemed like my sanity was ebbing away. I thank him for making me laugh and remember that there is life beyond the classroom. I would also be remiss if I did not thank my fiancée Samra Ward for all of her love and support. There were times that I thought of quitting and I can honestly say that without her, I do not know if I would have made it through. I also want to thank my parents, Wayne and Kathy Smith, for always being there when I needed them no matter what, whether it be a supportive phone call, a thoughtful surprise card in the mail, or even a field assistant on an emergency sampling trip to the Florida Keys.

# TABLE OF CONTENTS

|         |                                                   | Page  |
|---------|---------------------------------------------------|-------|
| ACKNOV  | WLEDGEMENTS                                       | v     |
| LIST OF | TABLES                                            | xi    |
| LIST OF | FIGURES                                           | xiii  |
| СНАРТЕ  | R                                                 |       |
| 1       | INTRODUCTION                                      | 1     |
|         | Foraminifera as Biomonitors                       | 1     |
|         | Heavy Metal Contamination                         | 2     |
|         | Propagule Method                                  | 3     |
|         | Purpose of Study                                  | 4     |
| 2       | THE EFFECTS OF SELECTED HEAVY METAL ELEMENTS (ARS | ENIC, |
|         | CADMIUM, NICKEL, ZINC) ON EXPERIMENTALLY GROWN    |       |
|         | FORAMINIFERAL ASSEMBLAGES FROM SAPELO ISLAND, GE  | ORGIA |
|         | AND LITTLE DUCK KEY, FLORIDA, U.S.A.              | 8     |
|         | Abstract                                          | 9     |
|         | Introduction                                      | 10    |
|         | Regional Setting                                  | 11    |
|         | Materials and Methods                             | 12    |
|         | Results                                           | 15    |
|         | Discussion                                        | 18    |

|        | Conclusions24                                      |
|--------|----------------------------------------------------|
| 3      | INCORPORATION OF HEAVY METALS IN EXPERIMENTALLY    |
|        | GROWN FORAMINIFERA FROM SAPELO ISLAND, GEORGIA AND |
|        | LITTLE DUCK KEY, FLORIDA, U.S.A39                  |
|        | Abstract40                                         |
|        | Introduction41                                     |
|        | Materials and Methods44                            |
|        | Results48                                          |
|        | Discussion51                                       |
|        | Conclusions59                                      |
| 4      | EFFECTS OF VARIED TEMPERATURE AND SALINITY ON      |
|        | ASSEMBLAGES OF FORAMINIFERA GROWN WITH EXPOSURE TO |
|        | HEAVY METAL POLLUTANTS (NICKEL AND ZINC)76         |
|        | Abstract77                                         |
|        | Introduction                                       |
|        | Materials and Methods79                            |
|        | Results82                                          |
|        | Discussion85                                       |
|        | Conclusions89                                      |
| 5      | CONCLUSIONS111                                     |
| REFERE | ENCES                                              |
| APPENI | DICES                                              |
| A      | R CODE AND SUPPLEMENTARY MATERIAL FOR CHAPTER 2133 |

|   | Part 1: R Code                                  | 133 |
|---|-------------------------------------------------|-----|
|   | Part 2: Data                                    | 134 |
| В | R CODE FOR CHAPTER 3                            | 142 |
| C | R CODE AND SUPPLEMENTARY MATERIAL FOR CHAPTER 4 | 144 |
|   | Part 1: R Code                                  | 144 |
|   | Part 2: Data                                    | 146 |

# LIST OF TABLES

| Page                                                                                     |
|------------------------------------------------------------------------------------------|
| Table 2.1: Diversity data and the percentage of deformed tests for the assemblages grown |
| from Sapelo Island propagules                                                            |
| Table 2.2: Diversity data and the percentage of deformed tests for the assemblages grown |
| from Little Duck Key propagules                                                          |
| Table 3.1: Metal concentration in water, mean incorporated metal, and standard deviation |
| among chambers in samples of Sapelo Island foraminifera used in propagule                |
| experiments61                                                                            |
| Table 3.2: Metal concentration in water, mean incorporated metal, and standard deviation |
| among chambers in samples of Little Duck Key foraminifera used in propagule              |
| experiments66                                                                            |
| Table 3.3: Two-way ANCOVA data comparing the amount of heavy-metal incorporation         |
| variance, for each metal, caused by water chemistry and foraminiferal clade68            |
| Table 3.4: Two-way ANCOVA data comparing the amount of heavy-metal incorporation         |
| variance, for each metal, caused by water chemistry and foraminiferal species69          |
| Table 3.5: R2 values by foraminiferal species                                            |
| Table 4.1: Diversity data and the percentage of deformed tests for the assemblages grown |
| from Sapelo Island propagules91                                                          |
| Table 4.2: Diversity data and the percentage of deformed tests for the assemblages grown |
| from Little Duck Key propagules95                                                        |

| Table 4.3: A breakdown of species with deformed tests in three assemblages with |    |
|---------------------------------------------------------------------------------|----|
| significant number of deformities.                                              | 99 |

# LIST OF FIGURES

| Page                                                                                             |
|--------------------------------------------------------------------------------------------------|
| Figure 2.1: Aerial views of the sampling sites in both study areas                               |
| Figure 2.2: SEM micrographs of the most common foraminifera species found in the                 |
| assemblages grown from Sapelo Island propagules31                                                |
| Figure 2.3: SEM micrographs of the most common foraminifera species found in the                 |
| assemblages grown from Little Duck Key propagules32                                              |
| Figure 2.4: Entire foraminiferal abundance in response to the natural log of the                 |
| concentration of a specific heavy metal                                                          |
| Figure 2.5: Abundance of <i>Haynesina germanica</i> and <i>Ammonia tepida</i> in response to the |
| natural log of the concentration of a specific heavy metal                                       |
| Figure 2.6: Abundance of Quinqueloculina sabulosa and Quinqueloculina bosciana in                |
| response to the natural log of the concentration of a specific heavy metal35                     |
| Figure 2.7: Abundance of <i>Psammophaga sapela</i> and <i>Ovammina opaca</i> in response to the  |
| natural log of the concentration of a specific heavy metal                                       |
| Figure 2.8: Proportion of test deformities in response to the natural log of zinc                |
| concentration in assemblages grown from Sapelo Island propagules37                               |
| Figure 2.9: SEM micrographs of deformed tests occurring in Sapelo Island assemblages             |
| in response to zinc                                                                              |
| Figure 3.1: Aerial views of the sampling sites71                                                 |

| Figure 3.2: SEM micrographs of the common foraminifera species that underwent LA-                  |    |
|----------------------------------------------------------------------------------------------------|----|
| ICP-MS.                                                                                            | 72 |
| Figure 3.3: Photographs of foraminifera species after LA-ICP-MS                                    | 73 |
| Figure 3.4: Variation of incorporated trace metals in A. tepida and H. germanica                   |    |
| compared to trace metal content in the experimental seawater.                                      | 74 |
| Figure 3.5: Variation of incorporated trace metals in Q. sabulosa and T. oblonga                   |    |
| compared to trace metal content in the experimental seawater.                                      | 75 |
| Figure 4.1: Aerial views of the sampling sites in both study areas                                 | 00 |
| Figure 4.2: SEM micrographs of the most common foraminifera species                                | 01 |
| Figure 4.3: Entire foraminiferal abundance in response to the natural log of the                   |    |
| concentration of nickel in Sapelo Island assemblages1                                              | 02 |
| Figure 4.4: Entire foraminiferal abundance in response to the natural log of the                   |    |
| concentration of nickel in Little Duck Key assemblages1                                            | 03 |
| Figure 4.5: Entire foraminiferal abundance in response to the natural log of the                   |    |
| concentration of zinc in Sapelo Island assemblages1                                                | 04 |
| Figure 4.6: Entire foraminiferal abundance in response to the natural log of the                   |    |
| concentration of zinc in Little Duck Key assemblages1                                              | 05 |
| Figure 4.7: Abundance of Ammonia tepida and Haynesina germanica in response to the                 | ;  |
| natural log of the concentration of nickel.                                                        | 06 |
| Figure 4.8: Abundance of Ammonia tepida and Haynesina germanica in response to the                 | ;  |
| natural log of the concentration of zinc                                                           | 07 |
| Figure 4.9: Abundance of <i>Quinqueloculina sabulosa</i> and <i>Triloculina oblonga</i> in respons | se |
| to the natural log of the concentration of nickel                                                  | 08 |

| Figure 4.10: Abundance of <i>Quinqueloculina sabulosa</i> and <i>Triloculina oblonga</i> in |      |
|---------------------------------------------------------------------------------------------|------|
| response to the natural log of the concentration of zinc.                                   | .109 |
| Figure 4.11: Proportion of test deformities in response to the natural log of zinc          |      |
| concentration in assemblages grown from Sapelo Island propagules                            | .110 |

#### CHAPTER 1

#### INTRODUCTION

#### Foraminifera as Biomonitors

Environmental change has become one of the key problems of the 21st century. Anthropogenic pollution and its deleterious effect on the environment have become especially important and have been the subject of an enormous upswing in scientific research. Identification of so-called bioindicator species or biomonitors has been one of the cornerstones of this research (James & Evison, 1979; Gerhardt, 2002) Bioindicators are defined as species of organisms that are used to gather important information about the overall ecosystem in which they live (Gerhardt, 2002). Marine protists such as foraminifera are known for their key role in the marine ecosystem and their sensitivity to environmental change, and thus are well suited to acting as bioindicators (Haynes, 1981; Anderson, 1988; Yanko et al., 1999).

Benthic foraminifera have long been used as biomonitors in marine environments (e.g., Alve, 1995; Yanko et al., 1998; Nigam et al., 2006; Martinez-Colon et al., 2009; Martins et al., 2013). They are abundant and diverse in marine settings, making them easy to use and cost effective in environmental studies (Alve, 1995; Yanko et al., 1999). Their effectiveness in this manner primarily derives from their great sensitivity to environmental changes (e.g., Resig, 1960; Schafer, 1970; Boltovskoy & Wright, 1976; Alve, 1991). Foraminifera respond to changes based on a multitude of factors, including temperature, salinity, solubility of CaCO3, water depth, wave action, light intensity,

nutrition, substrate, and dissolved oxygen (e.g., Murray, 1991; Boltovskoy et al., 1991). At first, the effects of sewage pollution on foraminifera were the primary focus of research (Resig, 1960; Watkins, 1961; Bandy et al., 1964; Schafer, 1970; Boltovskoy & Wright, 1976; Alve, 1991), but later, research expanded to include other types of human impacts as well as natural occurrences of contaminants (e.g., Yanko et al., 1994; Scott et al., 2001; McCloskey, 2009; Hart et al., 2014).

The use of foraminifera as environmental monitors centers on documenting and correlating certain foraminiferal characteristics, such as overall abundance, species relative abundances, species diversity, relative abundances of shell types (calcareous perforate, calcareous imperforate, agglutinated, organic), and the occurrence of shell deformities with the presence and abundance of contaminants in the environment (reviewed by Boltovskoy & Wright, 1976; Boltovoskoy et al., 1991; Yanko et al., 1994; 1999; Alve, 1995; Scott et al., 2001; Olugbode et al., 2005; Nigam et al., 2006; Martinez-Colon et al., 2009; Hart et al., 2014). Foraminiferal environmental sensitivity can become a problem when attempting to carry out analysis. It can be difficult to distinguish the effects of various factors on foraminiferal abundance, diversity, and test deformities (Geslin et al., 2000; Lee et al., 2015).

## **Heavy Metal Contamination**

In the context of environmental micropaleontology, the term "heavy metals" is used to describe any metallic element that is potentially toxic (Frontalini & Coccioni, 2008). While they occur naturally, heavy metals are among the most prominent byproducts of anthropogenic pollution, often introduced into marine environments via industrial pollution, agricultural waste, or urban runoff (e.g., Alloway, 2013; Alve, 1991;

Julian II, 2015; Tansel & Rafiuddin, 2016). Heavy metals differ from one another in various important ways, including chemical speciation, solubility, and metabolic utility (Rainbow, 2016). The metabolic utility, or essentiality, of heavy metals relates to their requirement in biological activities (Mertz, 1981; Adriano, 2001; Martinez-Colon et al., 2009; Maret, 2016; Desideri et al., 2016). This topic is controversial as the relative essentiality of some elements is the subject of much debate (Mertz, 1981; Maret, 2016).

Benthic foraminifera have unique potential as indicators for heavy metals, with their abundance and diversity clearly affected by exposure to heavy metals (Boltovoskoy et al., 1991; Yanko et al., 1994; 1999; Alve, 1995; Scott et al., 2001; Olugbode et al., 2005; Nigam et al., 2006; Martinez-Colon et al., 2009; Hart et al., 2014; Brouillette Price et al., 2019). Further, benthic foraminifera have long been known to take up heavy metals from the marine environment and incorporate them into their test structure (e.g., Boyle, 1981; Rosenthal et al., 1997; Dissard et al., 2010a; Dissard et al., 2010b; Munsel et al., 2010; Nardelli et al., 2016; Frontalini et al., 2018). Several factors complicate understanding the relationships between metal occurrences in the environment and benthic foraminifera, including sediment type and the diverse fine structure and test construction of different foraminiferal clades (e.g., Angell, 1979; Angell, 1980; Elderfield et al., 1996; Hansen, 1999; de Noojier et al., 2009a; de Noojier et al., 2009b; de Noojier et al., 2014).

### **Propagule Method**

The propagule method provides a valuable way to better understand the relationship between foraminifera and their surrounding environments. Propagules are juvenile foraminifera collected from sediment samples, which can lay dormant for long

periods of time before eventually maturing under the right conditions (Goldstein & Alve, 2011; Alve & Goldstein, 2014). The propagule method involves growing experimental assemblages of foraminifera in the laboratory from propagules present in the fine sediment (Alve & Goldstein, 2002; 2003; 2010). This allows for control of the environment during foraminiferal growth, including the many factors that can potentially influence foraminiferal assemblages. Using this technique, research studies can be designed that allow better analysis of foraminiferal response to various factors, including the presence of heavy metals in seawater.

### Purpose of Study

The purpose of this dissertation is to test the impact of heavy-metal contaminants on benthic foraminifera using the propagule method. The heavy metals chosen for this study include arsenic, cadmium, nickel, and zinc. These metals were selected because they are common heavy-metal contaminants in coastal marine settings and in most cases are known to severely impact marine organisms (Alve, 1995; Neff, 1997; Weber & Casazza, 2006). These metals also represent a spectrum of metabolic function for organisms. Arsenic is a dark gray metalloid that commonly occurs in the –III, 0, III, and V oxidation states (Adriano, 2001). Arsenic, well known for its toxicity in most organisms, was long considered non-essential, but now arsenic is known to have limited metabolic utility (Uthus, 2003; Zeng et al., 2005). Cadmium is a soft white metal that occurs naturally in the II oxidation state, commonly produced as a by-product of zinc refinement (Adriano, 2001). Cadmium is non-essential for almost all living things save for a select organism (e.g. a planktonic diatom) in a special ecological niche (Maret, 2016). Nickel and zinc are both metals that occur in nature commonly in the II state

(Adriano, 2001). Nickel is more essential in plants and bacteria than animals, playing a key role in enzymatic functions and seed germination, while zinc is broadly essential to enzymatic functions in all life (Mertz, 1981; Anke et al., 1984; Poonkothai & Vijayavathi, 2012; Maret, 2016).

Each part of this dissertation involves experimental foraminiferal assemblages and their exposure to these heavy metals in varying concentrations. United States Environmental Protection Agency's National Recommended Water Quality Criteria for Saltwater Criteria Maximum Concentration (CMC) was used to determine how much of each metal should be added to the assemblages. The CMC is the amount of a potentially harmful element that can occur in a marine setting before "resulting in an unacceptable effect" (U.S. EPA, 2006). Using the CMC as a starting point, a group of experimental assemblages were grown with exposure to a range of concentrations for each individual heavy metal.

The propagules for this study were collected from two locations: Sapelo Island, Georgia and Little Duck Key, Florida. Sapelo Island is a tidally dominated barrier island along the southeastern Georgia coast that was selected primarily because of its abundance of several species of rotalid foraminifera (Goldstein & Frey, 1986; Goldstein & Alve, 2011; Brouillette Price et al., 2019). Little Duck Key is a small key located in the middle Florida Keys chosen because of its abundance of miliolid foraminifera (Weinmann & Goldstein, 2016). The dichotomy of foraminifera present in each location allows for effective comparison of the impact of heavy metals on each clade respectively.

The second chapter of this dissertation focuses on the varying concentrations of arsenic, cadmium, nickel, and zinc and how they affect the abundance, diversity, and test

deformities of benthic foraminifera grown from propagules gathered from each location. The specific objectives are to (a) identify and compare different impacts of the selected heavy metals on the assemblages; (b) record the potentially different effects that each heavy metal has on rotalid and miliolid foraminifera; and (c) identify effective bioindicator species for environmental monitoring research.

The third chapter of this dissertation examines the incorporation of heavy metals in the calcite tests of selected benthic foraminifera. This is accomplished using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which provides concentrations (Me/Ca) of each heavy metal of interest within selected foraminiferal chambers. The objective is to identify differences in incorporation between clades, species, and individuals, including intra-individual variation. Because of the difficulties that often occur when parsing the effect of pollutants on foraminiferal abundance and diversity (e.g., Geslin et al., 2000; 2002; Lee et al., 2015), it is helpful to look at incorporation in foraminifera as an additional biomonitoring tool (Alve, 1995; Yanko et al., 1998; 1999; Nigam et al., 2006; Martinez-Colon et al., 2009; Martins et al., 2013). This information will improve the overall application of foraminifera as bioindicators of heavy-metal pollution.

Finally, the fourth chapter of this dissertation examines the effect of varying salinity and temperature on heavy-metal effects on foraminifera. As mentioned previously, the sensitivity of foraminifera can make distinguishing the effects of multiple factors difficult (e.g., Geslin et al., 2000; 2002; Lee et al., 2015). For foraminifera to be used effectively as bioindicators in natural marine settings, we must better understand how environmental factors can change the effect of pollutants. Foraminifera in higher or

lower salinities or temperatures might be more or less resistant to the impacts of contaminants. Because they caused a higher percentage of test deformities in the previous chapters, nickel and zinc were selected for this study. Abundance, diversity, and potential test deformities were analyzed for experimentally grown foraminifera exposed to nickel and zinc, but this time the salinity and temperature of the growth chamber environment were varied. Five temperature and salinity regime were used: intermediate (22°C, 32 psu), high temperature (30°C, 32 psu), low temperature (18°C, 32 psu), high salinity (22°C, 40 psu), and low salinity (22°C, 12 psu). A better understand of potential nuances of temperature and salinity variation will improve the use of bioindicator foraminifera in the future.

# CHAPTER 2

THE EFFECTS OF SELECTED HEAVY METAL ELEMENTS (ARSENIC, CADMIUM, NICKEL, ZINC) ON EXPERIMENTALLY GROWN FORAMINIFERAL ASSEMBLAGES FROM SAPELO ISLAND, GEORGIA AND LITTLE DUCK KEY, FLORIDA, U.S.A.1

<sup>&</sup>lt;sup>1</sup> Smith, C.W., Goldstein, S.T. 2019. Journal of Foraminiferal Research. 49: 303–318. Reprinted here with permission of publisher.

#### Abstract

Benthic foraminifera are valuable environmental indicators of heavy-metal contaminants in marine environments. To broaden their effectiveness as bioindicators, this study com- pares individually the effects of selected heavy-metal contaminants, including both metabolically essential and non-essential elements, on temperate rotalids and subtropical miliolids, as well as associated monothalamid foraminifera. To accomplish these aims, assemblages of foraminifera were grown experimentally from propagules (small juveniles) collected from two coastal sites: Sapelo Island, Georgia, and Little Duck Key, Florida, that provide an effective comparison between environments and types of foraminifera. Surface sediment was collected from both locations and sieved immediately after collection. Using the propagule method, assemblages of foraminifera were grown in the laboratory from propagules in the sediment samples. Two metabolically essential trace elements, nickel, and zinc, and two non-essential elements, arsenic and cadmium were used to represent both types of heavy metal. Experimental conditions were held constant while varying only the metal concentrations. In treatments from both origins, increasing concentrations of cadmium, nickel, and zinc led to decreases in abundance and diversity for the foraminifera. In addition, zinc, and to a lesser extent cadmium and nickel above certain concentrations, resulted in an increase of deformed tests among the foraminifera. Deformities occurred amongst the most common calcareous species from Sapelo island: Ammonia tepida and Haynesina germanica. Fewer deformities were observed in common calcareous species from Little Duck Key, the miliolids Quinqueloculina sabulosa and Quinqueloculina bosciana featured few deformities. Notably, monothalamid species such as Psammophaga sapela

remained present at high metal concentrations. These results support previous research and reinforce the usefulness of rotalids such as *A. tepida* and *H. germanica* as bioindicators of heavy-metal contamination as well as suggesting a possible use of monothalamids such as *P. sapela* in this manner.

#### Introduction

Benthic foraminifera have a long history as environmental bioindicators of various contaminants in marine and transitional marine settings (e.g., Alve, 1995; Yanko et al., 1998; Nigam et al., 2006; Martinez-Colon et al., 2009; Mar- tins et al., 2013). Specifically, they have been widely applied in research on heavy metals for decades (Alve, 1991; Carnahan et al., 2008; Frontalini & Coccioni, 2008; Brouillette & Goldstein, 2008; Brouillette Price et al., 2019; Foster et al., 2012; Linshy et al., 2013). However, our knowledge of how foraminiferal populations and assemblages are impacted by these heavy metals is limited. For example, uncertainty exists in how essential and non-essential elements affect foraminifera. Essential elements are required in some capacity for metabolism whereas non-essential elements have no metabolic function (Mertz, 1981; Adriano, 2001; Martinez-Colon et al., 2009; Desideri et al., 2016). Could essential elements be more readily bioavailable and thus cause a greater effect on foraminiferal populations? In addition, do miliolid and rotalid foraminifera respond to heavy-metal exposure differently? Previous research has suggested a link between heavymetal pollution and foraminiferal test deformities (Yanko et al., 1998; Brouillette Price et al., 2019; Foster et al., 2012). Do such deformities occur in all calcareous foraminifera? This study addresses these questions by examining the effects of a suite of heavy-metal contaminants, tested individually, on the abundance, diversity, and potential shell

deformities in experimentally grown assemblages (EGAs) of foraminifera. These EGAs were grown from propagules collected from two shallow-water sites: Sapelo Island, Georgia, and the Little Duck Key, Florida. The in situ foraminiferal assemblages of these two sites are distinct, reflecting environmental and climatic differences (e.g., Weinmann & Goldstein, 2016). The objectives are to (1) identify and compare the different impacts of selected essential and non- essential elements on experimentally grown foraminiferal assemblages, (2) record the potentially different effects that these contaminants have on representative rotalid, miliolid, and monothalamid foraminifera, so that (3) the best bioindicator species for each lineage and location might be identified. As shown in previous research, an ideal bioindicator foraminiferal species will be an easily identifiable one that is clearly affected by heavy-metal contamination, in abundance, diversity, or test structure (Alve, 1991; Carnahan et al., 2008; Carnahan et al., 2009; Frontalini et al., 2009). This study builds on previous work by Brouillette Price et al. (2019), in which EGAs (also from Sapelo Island) of foraminifera were exposed to varying concentrations of cadmium, lead, and zinc. That study found that increased exposure to these metals resulted in decreased abundances and species richness. Exposure to zinc also produced test deformities.

# Regional Setting

Sapelo Island (Fig. 2.1A) is a tidally dominated barrier island along the southeastern Georgia coast that contains isolated, rare mudflats (Roychoudhury, 2007). The sampling site, located north of Doboy Sound near the Sapelo Lighthouse on the southern end of the island, is a mudflat adjacent to prominent oyster beds and a low marsh that hosts *Spartina alterniflora* Loisel. The sediment is heterogeneous, consisting

of mostly clays with silt and sand. Surficial mudflat sediments appear brownish gray in color but transition to black a few millimeters below the surface. This black layer is known to be sulfide-rich (Roychoudhury, 2007). The hydrography of Sapelo Island waters is heavily tied to the seasons. Water temperature recorded in the Doboy Sound ranged from just above 10°C in January 2016 to 32°C in August 2016 while salinity ranged from 11 psu in January 2016 to 32 psu in August 2016 (http://gcelter.marsci.uga.edu/, accessed 5 December 2017).

Little Duck Key is a small key located just west of Marathon in the middle Florida Keys (Fig. 2.1B). The sample site is a back-reef area on the southern shore of the key. The sediment is heterogeneous, generally fine calcareous mud with sparse sand and silt sized grains present along with abundant shell debris (Weinmann & Goldstein, 2016). The sediment is whitish gray to light brown, with small intertidal sediment mounds ranging from 20–30 cm in diameter dotting the location. Sparse short blades of *Thalassia* are also present, but most appear to be either dead or in poor condition (Weinmann & Goldstein, 2016). The seasonal variation in hydrography at Little Duck Key is much less pronounced. The water temperature recorded at nearby Vaca Key (15 km away) ranged from 21°C in January 2016 to 32°C in August 2016 while the salinity at nearby Sombrero Key (12 km away) ranged between 29 and 38 psu in 2008 (http://www.ndbc.noaa.gov, Station-IDs VCAF1 and SMKF1).

#### Materials and Methods

Sediment samples were taken from Sapelo Island (31° 23′ 24.7704″ N81° 17′ 5.8164″ W) and Little Duck Key (24° 40′ 51.114″ N) during the summer of 2016 (Fig. 2.1). At both locations, surface sediment (the upper few mm) was collected within a ~1

square meter area of the mudflat. A 2- liter container was used to gather 1 liter of surface sediment. This sediment was then sieved immediately after collection using 53- and 850-micron stainless steel sieves. The 850- micron sieve removed larger debris such as plant material or gastropod shells and allowed for more efficient sieving of the <53-micron fraction, which was transported back to the University of Georgia and used as the source of propagules.

Using the propagule method (Goldstein & Alve, 2011; Alve & Goldstein, 2014), assemblages of foraminifera were grown in the laboratory from propagules present in the fine sediment (Alve & Goldstein, 2002; 2003; 2010). During growth, experimentally grown assemblages (EGAs) were each exposed to a selected heavy metal that is either essential or non-essential for metabolic functions. Two essential elements, nickel, and zinc, and two non-essential elements, arsenic and cadmium were used. Cadmium, nickel, and zinc were selected because they are among the most common heavy-metal contaminants in coastal marine settings (Alve, 1995). Arsenic was selected because it severely impacts marine organisms (Neff, 1997; Weber & Casazza, 2006; McCloskey, 2009).

The EGAs were grown in 118 mL polypropylene culture containers using the propagule-bearing sediment collected at each location. Each culture container contained 20 mL of the < 53-micron sediment fraction, and 40 mL of Instant Ocean adjusted to the salinity at the time of collection (32 psu for both locations). Following Brouillette (2009), a set concentration of one heavy metal was then added to the mixture in each container. The concentrations added were based upon the United States Environmental Protection Agency's National Recommended Water Quality Criteria for Saltwater Criteria

Maximum Concentration (Ni 0.074 mgL-1; Zn 0.090 mgL-1; As 0.069 mgL-1; and Cd 0.033 mgL-1; see https://www.epa.gov/ wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table). The Criteria Maximum Concentration (CMC) is the amount of heavy metal that can occur in an aquatic setting briefly before "resulting in an unacceptable effect" (U.S. EPA, 2006). Using the CMC as a starting point, the added concentrations increased by an order of magnitude for four additional levels for a total of five treatments. Heavy metals were added as dissolved chlorides except for arsenic, which was added as a dissolved oxide. Each growth chamber was exposed to a different concentration of each element during growth. Two treatments were made for each concentration level of all five metals along with two controls consisting of solely Instant Ocean, for a total of 104 treatments, 52 from each location.

Starting on May 24, 2016, containers were kept at a constant temperature and illuminated on a 12-hour cycle. The samples from Sapelo Island were incubated at 20°C, while the samples from Little Duck Key were incubated at 24°C. The containers were rotated twice a week in the incubator to provide equal access to the light source. After one month, on June 24, 2016, the containers were harvested by sieving over a 63-micron sieve, and the contents fixed using a 10% formalin mixture, buffered with sodium carbonate to a pH of around 8.0, containing 1 g/L rose Bengal added as a vital stain (Walton, 1952; Murray & Bower, 2000). The salinity and pH of the water in all treatments remained the same (32 psu and 8.1 respectively) as it was pre-experiment.

After approximately one week, the fixative/stain mixture was removed, and samples were rinsed with tap water and preserved in 50% ethanol. The contents were then picked wet for foraminifera, which were identified, and counted. All foraminifera

harvested were counted. In each EGA, complete assemblage abundance and the abundance of individual species were recorded, with stained and non-stained foraminifera noted. Diversity was calculated as species richness (S) and as Fisher's α. Finally, the Berger-Parker index was calculated as a measure of dominance (Berger & Parker, 1970; Hayek et al., 2010; Hayek & Buzas, 2013). Additionally, any shell deformities that occurred were recorded, and standardized as the percentage deformed of the total assemblage. Assemblage abundance was plotted against the heavy-metal concentration in solution of each treatment.

The dissolved heavy-metal concentration in each treatment was measured using ICP-MS at the termination of the experiment (e.g. Brouillette Price et al., 2019). SEM micrographs of the foraminifera were taken using a Zeiss 1450EP SEM (Georgia Electron Microscopy) (Figs. 2.2–2.3). Images were captured of the most abundant species at each location along with examples of deformed tests. Using R software, species abundance was plotted logarithmically against the heavy-metal content of each treatment for the two most common calcareous species at each location, as well as the most common monothalamid at each location (R Core Team 2018). The percentage of deformed tests was also plotted against heavy-metal content when applicable, along with the percentage of deformed tests among certain species.

#### Results

Cadmium, nickel, and zinc caused a decline in foraminiferal abundance as concentration increased over the CMC in EGAs from both locations. In most cases, this decline was exponential (Fig. 2.4). In the Little Duck Key EGAs, arsenic also caused an exponential decline in foraminiferal abundance as concentration increased over the CMC.

In almost all cases, there were discrepancies between the amount of metal added and the amount measured in solution after the experiment. This is consistent with previous work using these techniques (Brouillette Price et al. 2019). Because of this, the postexperiment measurement was used exclusively throughout. However, in the Sapelo Island EGAs, there were noticeably large discrepancies between the amount of arsenic added and the amount recorded in residual water by ICP-MS after the experiment. For example, in one EGA, 690 mgL<sub>-1</sub> of arsenic was added to mixture, but only 0.0804 mgL<sub>-1</sub> of arsenic was detected in the residual water by ICP-MS after the experiment. The two most abundant calcareous species in the EGAs from Sapelo Island were Haynesina germanica (Ehrenberg) and Ammonia tepida (Cushman) (Fig. 2.2), while the two most abundant calcareous species in the EGAs from Little Duck Key were Quinqueloculina sabulosa Cushman and Quinqueloculina bosciana d'Orbigny (Fig. 2.3). The abundance of all four species declined in response to increased concentrations of cadmium, nickel, and zinc, yet were among the hardiest calcareous species, as they grew even at higher concentrations (Figs. 2.5–2.6). In addition, the abundance of both Q. sabulosa and Q. bosciana declined in response to increased arsenic in the Little Duck Key EGAs (Fig. 2.6).

The most abundant monothalamid species in the EGAs from Sapelo Island was *Psammophaga sapela* Altin-Ballero, Habura, Goldstein (Fig. 2.2) and from Little Duck Key was *Ovammina opaca* Dahlgren (Fig. 2.3) though this species also grew in the Sapelo EGAs. For the most part, *P. sapela* remained present as heavy-metal concentrations of cadmium, nickel, and zinc increased (Fig. 2.7). While abundance declined in response to higher concentrations of cadmium and zinc, *P. sapela* was still

present at extremely high concentrations of both metals. Species abundance even appeared to increase slightly in response to elevated nickel concentrations. In contrast, the species abundance of *O. opaca* decreased exponentially as heavy-metal concentrations of arsenic, cadmium, nickel, and zinc increased (Fig. 2.7), more similar to the trends seen with calcareous species.

Test deformities occurred in EGAs exposed to all five metals (Tables 2.1 and 2.2), but only occurred in consistently high percentages with a large sample size in Sapelo Island EGAs exposed to zinc (Fig. 2.8). The percentage of deformed tests in these Sapelo Island EGAs spikes heavily at zinc concentrations of 0.0597 and 0.0545 mgL<sup>-1</sup> respectively, reaching 37% and 51% respectively (Table 2.1). In addition, the vast majority of deformed tests belonged to the rotalid species *Ammonia tepida* and *Haynesina germanica*, with no deformed tests recorded among miliolids or monothalamids (Fig. 2.9).

Diversity of the assemblages, when measured in species richness, tended to decrease as cadmium, nickel, and zinc concentrations increased at both locations (Tables 2.1 and 2.2). In the Sapelo Island EGAs, species richness decreased at cadmium concentrations above 149 mgL-1, nickel concentrations above 0.4094 mgL-1, and zinc concentrations above 0.0545 mgL-1. In the Little Duck Key EGAs, species richness decreased at cadmium concentrations above 0.148 mgL-1, nickel concentrations above 0.4075 mgL-1, and zinc concentrations above 0.263 mgL-1. Species richness also decreased in response to arsenic concentrations above 5.512 mgL-1 in the Little Duck Key EGAs. When measured in Fisher's α, this decrease in diversity is not as consistent, with diversity increasing in some cases in response to larger concentrations of cadmium

(182 mgL-1 in the Sapelo Island EGAs; 0.137 mgL-1 in the Little Duck Key EGAs), nickel (0.4094 mgL-1 in the Sapelo Island EGAs; 0.5585 mgL-1 in the Little Duck Key EGAs), and zinc (4.14 mgL-1 in the Sapelo Island EGAs; 0.221 mgL-1 in the Little Duck Key EGAs) at both locations. In contrast, dominance tended to increase as cadmium (149 mgL-1), nickel (1.2794 mgL-1), and zinc (4.14 mgL-1) concentrations increased in Sapelo Island EGAs. This was especially true of the Sapelo Island EGAs where *Psammophaga sapela* tended to be the sole remaining species at the highest concentrations (Table 2.1). In the Little Duck Key EGAs, dominance increases at higher concentrations of the metals at first, but then decreases as abundances decline at the largest concentrations of arsenic, cadmium, nickel, and zinc.

### Discussion

Because of their sensitivity to environmental changes, foraminifera have been used in pollution research for decades (e.g., Alve, 1995; Yanko et al., 1998; Nigam et al., 2006; Martinez-Colon et al., 2009; Martins et al., 2013). Historically, the use of foraminifera as bioindicators began with documenting and correlating certain foraminiferal characteristics, such as overall abundance, species relative abundances, species diversity, relative abundances of shell types (calcareous perforate, calcareous imperforate, agglutinated, organic), and the occurrence of shell deformities with the presence and abundance of contaminants in the environment (reviewed by Boltovoskoy et al., 1991; Boltovskoy & Wright, 1976; Yanko et al., 1994; 1999; Alve, 1995; Scott et al., 2001; Olugbode et al., 2005; Nigam et al., 2006; Martinez-Colon et al., 2009; Hart et al., 2014; Mar- tins et al., 2018). While at first the effects of sewage pollution on foraminifera were the initial focus (Resig, 1960; Watkins, 1961; Bandy et al., 1964;

Schafer, 1970; Boltovskoy & Wright, 1976; Alve, 1991), later the list expanded to include all manner of human impacts as well as natural occurrences of heavy metals (e.g., Yanko et al., 1994; Scott et al., 2001; Hart et al., 2014; Martins et al., 2018).

The very sensitivity that makes foraminifera so valuable can also prove to be a detriment in some cases. Distinguishing the effects of pollution from responses to naturally fluctuating environmental conditions can prove difficult (e.g. Geslin et al., 2000; Lee et al., 2015). Foraminiferal assemblages have been shown to change based on a multitude of factors, including temperature, salinity, solubility of CaCO3, water depth, wave action, light intensity, nutrition, substrate, and dissolved oxygen (e.g., Boltovskoy et al., 1991). The propagule method provides a helpful avenue around this complication by allowing experimental control of the foraminiferal growth environment and parsing of the effects of various factors on foraminiferal assemblages (Alve & Goldstein, 2002, 2003, 2010, 2014; Goldstein & Alve, 2011; Duffield et al., 2014, 2015; Brouillette Price et al., 2019).

The lower population densities and diversities in response to heavy-metal treatments seen in this study are consistent with previous field-based studies (Alve, 1995; Yanko et al., 1998; Linshy et al., 2013; Brouillette Price et al., 2019). As concentrations of cadmium, nickel, and zinc increase, the overall abundance, species abundance, and diversity decreased, for the most part in an exponential pattern in both the Sapelo Island and Little Duck Key EGAs. Arsenic caused a similar pattern in the Little Duck Key EGAs. This matches closely the pattern observed in previous work done on Sapelo Island foraminiferal EGAs (Brouillette Price et al., 2019).

Bioavailability, an important factor to consider, is the potential of living organisms to take up elements either from food or the environment (Adriano, 2001; Rainbow, 2007). Dissolved substances in solution tend to be more bioavailable than solids (Traina & Laperche, 1999). ICP-MS showed that each metal persisted in solution at the conclusion of the experiment. Consequently, foraminifera grown in this study were exposed to a single dissolved metal in solution for a month of growth time. Adsorption of metals onto the sediment and even the container wall probably occurred, making these metals less bioavailable to most foraminifera. However, some foraminifera are deposit feeders, which means the metal adsorbed could still be bioavailable to deposit feeding species. Nevertheless, it was vital that we measure the metal content in solution post-experiment rather than immediately upon addition of the metal content to better reflect the bioavailable concentration of the metals.

Both essential and non-essential elements can be taken up metabolically (Rainbow, 2007). However, our results show no discernable differences in the effects of essential and non-essential elements on abundance or diversity. Zinc and nickel, both metals that occur in nature commonly in the II state, are essential elements for all organisms due to their key role in various enzymatic functions (Adriano, 2001; Martinez-Colon et al., 2009). Arsenic, a metalloid that commonly occurs in the –III, 0, III, and V oxidation states, and cadmium, a soft metal that occurs naturally in the II oxidation state, are both considered non-essential, with no known metabolic function (Adriano, 2001; Martinez-Colon et al., 2009; Desideri et al., 2016). However, it should be noted that arsenic may have some use in the microbial metabolism (Nielsen, 1998; Tawfik & Viola, 2011). Despite their varying use in metabolic processes, all of these metals, essential and

non-essential, caused the same negative effects on abundance and diversity of foraminiferal assemblages (Figs. 2.4–2.5). Metals, regardless of essentiality, can be toxic at high concentrations (Rainbow, 2007).

Unlike the Little Duck Key EGAs, there was no discernable pattern to the effect of arsenic on the Sapelo Island EGAs (Fig. 2.4). This reflects a disparity between the amount of arsenic initially added in each treatment and the amount measured via ICP-MS after the experiment. It should be noted that in all cases, the amount of heavy-metal content measured post-experiment was substantially less than the amount added (Tables 2.1 and 2.2). This has occurred in previous studies of this type as well and could be a result of several factors, including adsorption of metal to the polypropylene container or supersaturation of metal in extremely high concentrations (Brouillette Price et al., 2019). Despite this, in most cases, the metal content measured still proved effective as a tool of comparison. The exceptions were the Sapelo Island treatments exposed to arsenic, where the discrepancy between metal added and measured was especially striking. The most likely explanation for this discrepancy lies in the differences between the sediments at the two sampling locations. Arsenic is more likely to be adsorbed in the clay-rich Sapelo Island sediment, resulting in lower concentrations in the residual water. Arsenic was added as As3+, which is commonly adsorbed by clays in environments like Sapelo Island (Ladeira et al., 2004; Roychoudhury, 2007), whereas the other elements that were added had a +2 charge. Additionally, arsenic is commonly adsorbed by the iron mineral goethite, which exists in considerable quantities in Sapelo island sediments (Ladeira et al., 2004; Roychoudhury, 2007). A similar effect has been shown in experiments

involving lead, where a decrease in lead concentration of the water is mirrored by the corresponding increase in concentration of lead in the sediment (Frontalini et al., 2018).

In contrast to other factors, the connection between heavy-metal contaminants and abnormal tests can be much more tenuous. Numerous studies have reported a connection between pollution and test abnormalities (e.g., Alve, 1995; Yanko et al., 1998; Nigam et al., 2006; Weber & Casazza, 2006; Martinez-Colon et al., 2009; Hart et al., 2014; Abu-Zied et al., 2016). There is also evidence suggesting that abnormalities could be explained by the stress of natural fluctuations in temperature, salinity, sediment movement, and dissolved oxygen (Locklin & Maddocks, 1982). Abnormal tests can make up more than 50% of the individuals grown in hypersaline conditions as opposed to just 1% in normal conditions (Stouff, 1998; Geslin et al., 2000; Lee et al., 2015). This is another situation where the propagule method proves invaluable in analysis of effects on foraminiferal assemblages. In this study as well as previous propagule experiments on Sapelo Island foraminifera, test deformities in response to zinc are common (Brouillette Price et al. 2019). However, the deformities become numerous well below the CMC of zinc (0.09 mgL $_{-1}$ ). Only zinc caused substantial ( $\sim$ 50%) deformities in this study, and while this is supported by Brouillette Price et al. (2019) and others (Stubbles et al., 1996; Stubbles, 1999; Hart et al., 2014), a field study by Weber and Casazza (2006), however, reported a significant correlation between high concentrations of arsenic and test deformation. No such correlation was found in this current study. In addition, no connection between zinc and test abnormalities appeared in EGAs from Little Duck Key. Because miliolids were more common in Little Duck Key EGAs, this could reflect fundamental differences in test morphogenesis and calcification between miliolids and

rotalids (e.g., Angell, 1979; Angell, 1980; Elderfield et al., 1996; Erez, 2003; de Noojier et al., 2014).

Notably, the vast majority of deformed tests seen in this study belonged to rotalids. Previous research on this is mixed. Nardelli et al. (2013) reported that specimens of the species *Pseudotriloculina rotunda* grew new chambers more slowly when exposed to high concentrations of zinc, however they found no evidence of test deformities. In contrast, in propagule experiments, increased exposure to zinc resulted in a decrease in abundance and species diversity as well as test deformity (Brouillette Price et al., 2019). *Ammonia tepida* and *Haynesina germanica* were particularly prone to deformed test morphologies with exposure to elevated concentrations of zinc (Brouillette Price et al., 2019). The lack of deformed miliolids in the Little Duck Key EGAs is notable, because previous research has reported that miliolid test deformities can occur in response to increased heavy-metal concentrations (e.g. Yanko et al., 1998; Brouillette Price et al., 2019).

In the Sapelo Island EGAs, *Psammophaga sapela* showed remarkable stability in high-concentrations of all five heavy metals. This is in contrast with previous work by Brouillette Price et al. (2019) where *P. sapela* was not present in the highest concentrations of metals such as cadmium, lead, and zinc. Like other species of this genus, *P. sapela* ingests mineral grains and retains them within the cell body (Altin-Ballero et al., 2013). X-ray diffraction indicates that this species prefers heavy minerals such as anatase, ilmenite, orthoclase, zircon, basaluminite, pseudobrookite, and pyrrhotite; quartz, which is considerably abundant in the Sapelo Island environment, was almost entirely absent from the *P. sapela* cell body (Altin-Ballero et al., 2013). This

preference for heavier minerals may explain the resistance of *P. sapela* to the heavy-metal treatments used in this study. In contrast, *Ovammina opaca*, the most common monothalamid in the Little Duck Key EGAs, lacking any such mineral ingestion habit, revealed a severe population decline as heavy-metal concentration increased.

#### Conclusions

Arsenic, cadmium, nickel, and zinc each has a profoundly negative effect on foraminiferal population abundance and diversity at concentrations above the U.S. EPA's Criteria Maximum Concentration. There is no discernable difference between essential and non-essential elements in their effects on the foraminiferal assemblages from both locations.

The most common calcareous species from each location (*Haynesina germanica* and *Ammonia tepida* at Sapelo Island and *Quinqueloculina sabulosa* and *Q. bosciana* at Little Duck Key), while steadily declining as arsenic, cadmium, nickel, and zinc concentrations increased, persisted even at the greater concentrations, making them usable as bioindicators for each location respectively. In the Sapelo Island EGAs, at the highest heavy-metal concentrations, the last foraminiferal species present was usually *Psammophaga sapela*. Because it seemed to be significantly less affected by heavy-metal contamination, *P. sapela* could be an even more effective bioindicator than the common calcareous species at Sapelo Island.

Zinc was more likely to cause major test deformities than arsenic, cadmium, and nickel. Whereas rotalid species such as *Ammonia tepida* and *Haynesina germanica* were more susceptible to test deformities than miliolid foraminifera, specifically in response to

increasing zinc contamination in Sapelo Island EGAs, the comparative lack of deformities seen in the Little Duck Key EGAs indicates a more complicated picture.

## **Tables**

Table 2.1. Diversity data, including number of specimens (N), number of species (S), Fisher's  $\alpha$ , Berger-Parker Index, and the percentage of deformed tests for the assemblages grown from Sapelo Island propagules. The symbol N/A denotes an undetectable value.

| Sapelo Island  Expected (mgL-1) | Actual (mgL-1) | N   | S  | Fisher's α | Berger-<br>Parker | Deformities | Percent<br>Deformed |
|---------------------------------|----------------|-----|----|------------|-------------------|-------------|---------------------|
| Arsenic                         |                |     |    |            | 1 ai Kci          |             | Deformed            |
| (A) 0.069                       | 0.0434         | 44  | 11 | 4.71       | 0.27              | 0           | 0.0%                |
| (B) 0.069                       | 0.1282         | 75  | 10 | 3.10       | 0.31              | 2           | 2. 7%               |
| (A) 0.69                        | 0.0612         | 284 | 10 | 2.02       | 0.52              | 3           | 1.1%                |
| (B) 0.69                        | 0.058          | 124 | 10 | 2.56       | 0.35              | 3           | 2.4%                |
| (A) 6.9                         | 0.0512         | 177 | 11 | 2.59       | 0.22              | 3           | 1.7%                |
| (B) 6.9                         | 0.0538         | 141 | 10 | 2.46       | 0.37              | 0           | 0.0%                |
| (A) 69                          | 0.059          | 160 | 9  | 2.06       | 0.23              | 2           | 1.3%                |
| (B) 69                          | 0.0576         | 148 | 10 | 2.42       | 0.26              | 0           | 0.0%                |
| (A) 690                         | 0.0804         | 149 | 7  | 1.52       | 0.34              | 6           | 4.0%                |
| (B) 690                         | 0.0992         | 121 | 8  | 1.92       | 0.31              | 8           | 6.6%                |
| Cadmium                         |                |     |    |            |                   |             |                     |
| (A) 0.04                        | 3.43           | 156 | 9  | 2.08       | 0.29              | 0           | 0.0%                |
| (B) 0.04                        | 3.45           | 181 | 7  | 1.45       | 0.27              | 2           | 1.1%                |
| (A) 0.4                         | 4.34           | 101 | 11 | 3.14       | 0.22              | 3           | 3.0%                |
| (B) 0.4                         | 0.532          | 210 | 10 | 2.18       | 0.22              | 0           | 0.0%                |
| (A) 4                           | 149            | 29  | 5  | 1.74       | 0.48              | 0           | 0.0%                |
| (B) 4                           | 182            | 27  | 6  | 2.39       | 0.67              | 0           | 0.0%                |
| (A) 40                          | 149            | 37  | 5  | 1.56       | 0.51              | 5           | 13.6%               |
| (B) 40                          | 182            | 31  | 4  | 1.22       | 0.84              | 0           | 0.0%                |
| (A) 400                         | 508            | 15  | 3  | 1.12       | 0.87              | 1           | 6.7%                |
| (B) 400                         | 566            | 4   | 3  | 5.45       | 0.50              | 1           | 25.0%               |
| Nickel                          |                |     |    |            |                   |             |                     |
| (A) 0.074                       | 0.011          | 215 | 11 | 2.45       | 0.28              | 2           | 0.9%                |
| (B) 0.074                       | 0.0097         | 187 | 11 | 2.55       | 0.34              | 2           | 1.1%                |
| (A) 0.74                        | 0.009          | 71  | 9  | 2.73       | 0.38              | 0           | 0.0%                |
| (B) 0.74                        | 0.0087         | 125 | 10 | 2.55       | 0.48              | 4           | 3.2%                |
| (A) 7.4                         | 0.0106         | 102 | 9  | 2.38       | 0.36              | 2           | 2.0%                |
| (B) 7.4                         | 0.002096       | 46  | 9  | 3.34       | 0.30              | 0           | 0.0%                |
| (A) 74                          | 0.4094         | 7   | 4  | 3.87       | 0.43              | 0           | 0.0%                |
| (B) 74                          | 0.03438        | 117 | 10 | 2.62       | 0.26              | 11          | 9.4%                |
| (A) 740                         | 1.2794         | 16  | 4  | 1.71       | 0.56              | 1           | 6.3%                |
| (B) 740                         | 1.819          | 8   | 2  | 0.85       | 0.75              | 0           | 0.0%                |

| (A) 0.09 | 0.0195 | 60  | 10 | 3.43 | 0.42 | 1    | 1.7%  |
|----------|--------|-----|----|------|------|------|-------|
| (B) 0.09 | 0.0354 | 77  | 8  | 2.24 | 0.35 | 4    | 5.2%  |
| (A) 0.9  | 0.0188 | 135 | 10 | 2.49 | 0.36 | 26   | 19.3% |
| (B) 0.9  | 0.0165 | 208 | 11 | 2.47 | 0.25 | 16   | 7.7%  |
| (A) 9    | 0.0597 | 57  | 5  | 1.32 | 0.37 | 21   | 36.8% |
| (B) 9    | 0.0545 | 101 | 5  | 1.10 | 0.46 | 51   | 50.5% |
| (A) 90   | 11.4   | 1   | 1  | NA   | 1.00 | 0    | 0.0%  |
| (B) 90   | 4.14   | 6   | 3  | 2.39 | 0.67 | 0    | 0.0%  |
| (A) 900  | 328    | 4   | 2  | 1.59 | 0.50 | 0    | 0.0%  |
| (B) 900  | 246    | 6   | 2  | 1.05 | 0.67 | 0    | 0.0%  |
| Control  |        |     |    |      |      |      |       |
| A        | _      | 218 | 10 | 2.16 |      | 0.27 | 0.0%  |
| В        |        | 173 | 10 | 2.31 |      | 0.27 | 0.0%  |
|          |        |     |    |      |      |      |       |

Table 2.2. Diversity data, including number of specimens (N), number of species (S), Fisher's  $\alpha$ , Berger-Parker Index, and the percentage of deformed tests for the assemblages grown from Little Duck Key propagules. The symbol N/A denotes an undetectable value.

| Expected (mgL-1) | Actual (mgL-1) | N   | S  | Fisher's α | Berger-<br>Parker | Deformities | Percent<br>Deformed |
|------------------|----------------|-----|----|------------|-------------------|-------------|---------------------|
| Arsenic          |                |     |    |            |                   |             |                     |
| (A) 0.069        | 0.116          | 113 | 16 | 5.09       | 0.34              | 0           | 0.0%                |
| (B) 0.069        | 0.298          | 121 | 12 | 3.31       | 0.54              | 0           | 0.0%                |
| (A) 0.69         | 0.116          | 95  | 12 | 3.64       | 0.43              | 1           | 1.1%                |
| (B) 0.69         | 0.147          | 56  | 7  | 2.11       | 0.54              | 0           | 0.0%                |
| (A) 6.9          | 0.224          | 107 | 14 | 4.30       | 0.26              | 0           | 0.0%                |
| (B) 6.9          | 0.214          | 104 | 13 | 3.92       | 0.46              | 2           | 1.9%                |
| (A) 69           | 6.082          | 2   | 2  | NA         | 0.50              | 0           | 0.0%                |
| (B) 69           | 5.512          | 22  | 5  | 2.02       | 0.41              | 0           | 0.0%                |
| (A) 690          | 57.062         | 3   | 3  | NA         | 0.33              | 0           | 0.0%                |
| (B) 690          | 51.562         | 31  | 12 | 7.17       | 0.26              | 6           | 19.4%               |
| Cadmium          |                |     |    |            |                   |             |                     |
| (A) 0.04         | 0.00108        | 74  | 15 | 5.68       | 0.19              | 0           | 0.0%                |
| (B) 0.04         | 0.00017        | 145 | 13 | 3.46       | 0.28              | 0           | 0.0%                |
| (A) 0.4          | 0.0119         | 101 | 11 | 3.14       | 0.36              | 0           | 0.0%                |
| (B) 0.4          | 0.0157         | 113 | 12 | 3.39       | 0.49              | 2           | 1.8%                |
| (A) 4            | 0.148          | 56  | 5  | 1.33       | 0.89              | 0           | 0.0%                |
| (B) 4            | 0.05           | 57  | 9  | 3.01       | 0.23              | 1           | 1.8%                |
| (A) 40           | 0.137          | 46  | 15 | 7.74       | 0.24              | 5           | 10.9%               |
| (B) 40           | 0.146          | 23  | 12 | 10.12      | 0.26              | 2           | 8.7%                |
| (A) 400          | 1.08           | 5   | 3  | 3.16       | 0.40              | 0           | 0.0%                |
| (B) 400          | 1.35           | 4   | 3  | 5.45       | 0.50              | 2           | 50.0%               |
| Nickel           |                |     |    |            |                   |             |                     |
| (A) 0.074        | 0.0063         | 168 | 14 | 3.63       | 0.17              | 1           | 0.6%                |
| (B) 0.074        | 0.0096         | 102 | 10 | 2.75       | 0.30              | 0           | 0.0%                |
| (A) 0.74         | 0.0086         | 166 | 12 | 2.97       | 0.45              | 0           | 0.0%                |
| (B) 0.74         | 0.0093         | 102 | 11 | 3.13       | 0.19              | 1           | 1.0%                |
| (A) 7.4          | 0.0535         | 25  | 9  | 5.04       | 0.32              | 1           | 4.0%                |
| (B) 7.4          | 0.03559        | 73  | 9  | 2.70       | 0.22              | 0           | 0.0%                |
| (A) 74           | 0.5585         | 4   | 3  | 5.45       | 0.50              | 1           | 25.0%               |
| (B) 74           | 0.4075         | 17  | 5  | 2.39       | 0.35              | 7           | 41.2%               |
| (A) 740          | 3.2585         | 7   | 4  | 3.87       | 0.29              | 0           | 0.0%                |
| (B) 740          | 0.9765         | 6   | 4  | 5.24       | 0.50              | 1           | 16.7%               |
| Zinc             |                |     |    |            |                   |             |                     |
| (A) 0.09         | 0.0219         | 142 | 13 | 3.48       | 0.23              | 0           | 0.0%                |

| (B) 0.09 | 0.0262 | 132 | 13 | 3.58 | 0.53 | 0 | 0.0%  |
|----------|--------|-----|----|------|------|---|-------|
| (A) 0.9  | 0.0244 | 123 | 15 | 4.48 | 0.28 | 0 | 0.0%  |
| (B) 0.9  | 0.0239 | 109 | 12 | 3.44 | 0.35 | 2 | 1.8%  |
| (A) 9    | 0.0321 | 105 | 12 | 3.49 | 0.33 | 1 | 1.0%  |
| (B) 9    | 0.0425 | 109 | 10 | 2.68 | 0.38 | 1 | 0.9%  |
| (A) 90   | 0.263  | 5   | 5  | NA   | 0.20 | 0 | 0.0%  |
| (B) 90   | 0.221  | 28  | 10 | 5.56 | 0.29 | 4 | 14.3% |
| (A) 900  | 3.61   | 6   | 4  | 5.24 | 0.50 | 0 | 0.0%  |
| (B) 900  | 6.09   | 14  | 5  | 2.78 | 0.29 | 3 | 21.4% |
| Control  |        |     |    |      |      |   |       |
| A        |        | 107 | 12 | 3.47 | 0.40 | 0 | 0.0%  |
| В        |        | 123 | 16 | 4.91 | 0.24 | 0 | 0.0%  |

# Figures



Figure 2.1. Aerial views of the sampling sites in both study areas: **A** Sapelo Island, Georgia (31° 23' 24.7704" N81° 17' 5.8164" W), and **B** Little Duck Key, Florida (24° 40' 51.114" N) (Google Earth).



Figure 2.2. SEM micrographs of the most common foraminifera species found in the assemblages grown from Sapelo Island propagules: **1** *Haynesina germanica* (Ehrenberg), **2** *Ammonia tepida* (Cushman), **3** *Elphidium excavatum* (Terquem), **4** *Textularia earlandi* (Parker), **5** *Quinqueloculina dimidiata* (Terquem), **6** *Textularia palustris* (Warren), **7** *Psammophaga sapela* (Altin-Ballero, Habura, and Goldstein), **8** *Ovammina opaca* (Dahlgren), **9** *Textularia pseudogramen* (Chapman & Parr). All scale bars = 100 μm.



Figure 2.3. SEM micrographs of the most common foraminifera species found in the assemblages grown from Little Duck Key propagules: 1 *Ovammina opaca* (Dahlgren), 2 *Quinqueloculina dimidiata* (Terquem), 3 *Elphidium mexicanum* (Kornfeld), 4 *Bolivina striatula* (Cushman), 5 *Quinqueloculina sabulosa* (Cushman), 6 *Reophax gaussicus* (Rhumbler), 7 *Textularia earlandi* (Parker), 8 *Quinqueloculina bosciana* (d'Orbigney), 9 *Quinqueloculina agglutinans* (d'Orbigney). All scale bars = 100 μm.



Figure 2.4. Entire foraminiferal abundance in response to the natural log of the concentration of a specific heavy metal: Sapelo Island (left), **A** arsenic, **B** cadmium, **C** nickel, and **D** zinc, and Little Duck Key (right), **E** arsenic, **F** cadmium, **G** nickel, and **H** zinc. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of each respective metal. The curved and diagonal dashed lines represent the exponential regression line.



Figure 2.5. Abundance of *Haynesina germanica* (left) in response to the natural log of the concentration of a specific heavy metal: **A** arsenic, **B** cadmium, **C** nickel, and **D** zinc. Abundance of *Ammonia tepida* (right) in response to the natural log of the concentration of a specific heavy metal: **E** arsenic, **F** cadmium, **G** nickel, and **H** zinc. These were grown from propagules collected at Sapelo Island. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of each respective metal. The curved and diagonal dashed lines represent the exponential regression line.



Figure 2.6. Abundance of *Quinqueloculina sabulosa* (left) in response to the natural log of the concentration of a specific heavy metal: **A** arsenic, **B** cadmium, **C** nickel, and **D** zinc. Abundance of *Quinqueloculina bosciana* (right) in response to the natural log of the concentration of a specific heavy metal: **E** arsenic, **F** cadmium, **G** nickel, and **H** zinc These were grown from propagules collected at Little Duck Key. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of each respective metal. The curved and diagonal dashed lines represent the exponential regression line.



Figure 2.7. Abundance of *Psammophaga sapela* (left) in response to the natural log of the concentration of a specific heavy metal: **A** arsenic, **B** cadmium, **C** nickel, and **D** zinc. These were grown from propagules collected at Sapelo Island. Abundance of *Ovammina opaca* (right) in response to the natural log of the concentration of a specific heavy metal: **A** arsenic, **B** cadmium, **C** nickel, and **D** zinc. These were grown from propagules collected at Little Duck Key. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of each respective metal. The curved and diagonal dashed lines represent the exponential regression line.



Figure 2.8. Proportion of test deformities in response to the natural log of zinc concentration in assemblages grown from Sapelo Island propagules.



Figure 2.9. SEM micrographs of deformed tests occurring in Sapelo Island assemblages in response to zinc concentrations of 0.0597 and 0.0545 mgL-1. **1–5** is all specimens of either *Ammonia tepida* or *Haynesina germanica*. All scale bars =  $100 \, \mu m$ .

### CHAPTER 3

# INCORPORATION OF HEAVY METALS IN EXPERIMENTALLY GROWN FORAMINIFERA FROM SAPELO ISLAND, GEORGIA AND LITTLE DUCK KEY, ${\sf FLORIDA, U.S.A.2}$

<sup>2</sup> Smith, C.W., Fehrenbacher, J.S., Goldstein, S.T. Submitted to Marine Micropaleontology.

#### Abstract

Benthic foraminifera are valuable indicators in environmental studies, including those on marine pollution monitoring. While a great deal of foraminiferal biomonitoring research utilizes abundance and distributional data, further value resides in better understanding the incorporation of heavy-metal pollutants in foraminiferal calcite. By experimentally growing assemblages of foraminifera from propagules (small juveniles) gathered from Sapelo Island, Georgia and Little Duck Key Florida, this study examines foraminiferal incorporation of the heavy metals arsenic, cadmium, nickel, and zinc over a range of concentrations.

Surface sediment was collected and sieved to concentrate the propagules. The propagules were then used to experimentally grow assemblages with each exposed to a different heavy metal. After one month, the experimentally grown foraminifera were harvested and samples of the two most common species from each location (*Ammonia tepida* (Cushman) and *Haynesina germanica* (Ehrenberg) from Sapelo Island and *Quinqueloculina sabulosa* (Cushman) and *Triloculina oblonga* (Montagu) from Little Duck Key) were selected for trace element analysis. Calcite of the tests was analyzed using LA-ICP-MS to quantify the heavy-metal incorporation.

Rotalid species A. tepida and H. germanica incorporated more cadmium as its concentration in the surrounding water increased, whereas miliolid species Q. sabulosa and T. oblonga incorporated more of the metals zinc and nickel. This study shows that while foraminiferal incorporation of heavy metals has great potential as a biomonitoring tool, multiple factors (especially inter-clade variation) must be considered carefully. In

future marine environmental research, these factors may help create a more targeted assessment of environmental pollution.

#### Introduction

Foraminifera have been used as tools for modern and ancient environmental analysis for decades (e.g., Natland, 1935; Hallock & Glenn, 1986; Murray, 2006).

Benthic foraminifera in particular have proven effective as pollution monitoring tools reflecting their diversity and sensitivity to environmental changes (e.g., Resig, 1960; Schafer, 1970; Boltovskoy & Wright, 1976; Alve, 1991). Specifically, they have shown great responsiveness to heavy-metal contamination, with it affecting everything from their overall abundance and diversity (Alve, 1991; 1995; Yanko et al., 1994; 1999; Martin, 2000 and papers therein; Scott et al., 2001; Olugbode et al., 2005; Nigam et al., 2006; Martinez-Colon et al., 2009; Foster et al., 2012; Hart et al., 2014; Brouillette Price et al., 2019; Smith & Goldstein, 2019) to their shell chemistry (de Noojier et al., 2007; Frontalini et al., 2009; Munsel et al., 2010; Nardelli et al., 2016; van Dijk et al., 2017; Titelboim et. al, 2018).

Heavy metals are often introduced into marine environments via industrial pollution, agricultural waste, or urban runoff (e.g., Alloway, 2013; Julian II, 2015; Tansel & Rafiuddin, 2016). Foraminifera have remarkable potential as environmental indicators for heavy-metal contamination. Foraminiferal abundance and diversity are clearly affected by exposure to these metals (Boltovoskoy et al., 1991; Yanko et al., 1994; 1999; Alve, 1995; Scott et al., 2001; Olugbode et al., 2005; Nigam et al., 2006; Martinez-Colon et al., 2009; Hart et al., 2014; Brouillette Price et al., 2019; Smith & Goldstein, 2019). However, other environmental changes such as salinity and temperature variation can

have similar effects on foraminiferal assemblages (Geslin et al., 2000; Lee et al., 2015). Because of the difficulty in parsing effects, the shell chemistry of foraminifera can provide an additional approach. The trace element and stable isotope chemistry of foraminiferal tests is used extensively in paleoceanography (e.g., Emiliani, 1955; Erez and Luz, 1983; Erez, 2003; Katz et al., 2010; Schiebel et al., 2018). As others have noted, it follows that incorporation of contaminating heavy metals by foraminifera could act as a valuable environmental biomonitoring tool (Rosenthal et al., 1997; Dissard et al., 2010a; Dissard et al., 2010b; Frontalini et al., 2018; Titelboim et al., 2018; Bergamin et al., 2019).

Benthic foraminifera are known to take up heavy metals from their surrounding environment and incorporate them into the test during calcification (e.g., Boyle, 1981; Rosenthal et al., 1997; Dissard et al., 2010a; Dissard et al., 2010b; Munsel et al., 2010; Nardelli et al., 2016; Frontalini et al., 2018). Understanding relationships between metal occurrences in the environment and metal incorporation in foraminiferal tests will help refine foraminiferal applications in biomonitoring studies. Several factors need to be considered in this regard. Sediment type (e.g. clay mineralogy, presence of carbonates), for example, may affect trace element incorporation. Further, clades of calcareous foraminifera differ with regard to fine structure and test construction (e.g., Angell, 1979; Angell, 1980; Elderfield et al., 1996; Hansen, 1999; de Noojier et al., 2009a; de Noojier et al., 2009b; de Noojier et al., 2014). Miliolid and rotalid foraminifera therefore might incorporate a metal differently based on biological differences and modes of test construction and calcification. Titelboim (2018) found that miliolids tended to incorporate greater concentrations of heavy metals than rotalids, possibly because

miliolids tend to utilize high-Mg calcite in test construction whereas rotalids tend to utilize low-Mg calcite. Seawater is naturally high in Mg concentration. Therefore, when vacuolizing seawater, rotalids must alter the seawater chemistry before calcification can begin, whereas miliolids may not. Incorporation could also vary between species, between individuals, and ontogenetically within a single foraminifer (Rosenthal et al., 2000; Geerken et al., 2018). In addition, exposure to certain heavy metals has been correlated with foraminiferal test deformities (e.g., Alve, 1991; Yanko et al., 1998; Foster et al., 2012; Brouillette Price et al., 2019; Smith & Goldstein, 2019).

Here, we use the propagule method for growing benthic foraminifera under controlled conditions. The propagule method (Goldstein & Alve, 2011; Alve & Goldstein, 2014) provides an effective way to investigate foraminiferal incorporation of heavy metals and how it might be related to environmental variation, test construction, and differences between species and individuals. Propagules are juvenile foraminifera and they are often abundant in fine-grained sediment. They can lie dormant for months to years before eventually maturing if exposed to appropriate conditions (Alve and Goldstein, 2002; 2003; 2010). In this study, foraminifera were grown experimentally from propagules while exposed to an individual heavy metal (arsenic, cadmium, nickel, and zinc) over a range of concentrations and then analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to ascertain whether the foraminifera incorporated the metal into the calcite of their test and to further compare concentrations in the test with that of the artificial seawater in which they grew. These metals were chosen because they are amongst the most common sources of marine heavy-metal pollution (Alve, 1995; Martinez-Colon et al., 2009). Results provide insight

into potential differences in incorporation between foraminiferal clades (rotalids and miliolids), species, and individuals, including intra-individual variation, thus improving the application of selected coastal foraminifera as bioindicators of heavy-metal pollution.

#### Materials and Methods

Sediment samples from Sapelo Island, Georgia and Little Duck Key, Florida (Fig. 3.1) were collected in the summer of 2018. At both locations, the upper few millimeters of sediment were collected within a ~1 square meter area and transferred into a 2-liter container. This sediment was then sieved immediately at the collection site using 53- and 850-micron stainless steel sieves. The 850-micron sieve removed larger material, such as detrital plant material and gastropod shells and allowed smoother sieving. The > 53micron fraction was discarded while the < 53-micron fraction was transported back to facilities at the University of Georgia and used as the source of propagules. From these sediment samples, experimentally grown assemblages (EGAs) of benthic foraminifera were obtained using the propagule method (Goldstein & Alve, 2011; Alve & Goldstein, 2014). The EGAs were grown in artificial seawater that was spiked with varying concentrations of a heavy metal (arsenic, cadmium, nickel, or zinc) at the onset of the experiment (following Brouillette Price et al., 2019; Smith & Goldstein, 2019). The concentrations used were based upon the United States Environmental Protection Agency's National Recommended Water Quality Criteria for Saltwater Criteria Maximum Concentration (As 0.069 mg/L; Cd 0.033 mg/L; Ni 0.074 mg/L; and Zn 0.090 mg/L). The Criteria Maximum Concentration (CMC) is the amount of heavy metal that can occur in an aquatic setting briefly before "resulting in an unacceptable effect" (U.S. EPA, 2006). Using the CMC as a starting point, the added concentrations increased by an order of magnitude for four additional levels for a total of five treatments per metal. Heavy metals were added as dissolved chlorides except for arsenic, which was added as a dissolved oxide. Each EGA of foraminifera was exposed to a different concentration of each of the selected metals during growth. Replicates were made for each concentration level of all four metals along with two controls in which no metals were added. The final result was a total of 84 EGAs with 42 representing each sample location. The EGAs were kept at a constant temperature and illuminated on a 12-hour cycle. The samples from Sapelo Island were incubated at 32 psu and 20°C, while the samples from Little Duck Key were incubated at 32 psu and 24°C, reflecting the salinities and ambient water temperatures at the time of collection. The EGAs were rotated twice a week in the incubator to provide equal access to the light source.

After one month, the contents of the EGAs were harvested and fixed using a 10% formalin mixture, buffered with sodium carbonate to a pH of approximately 8.0–9.0, containing 1 g/L rose bengal added as a vital stain (Walton, 1952; Murray & Bowser, 2000). After one week, the fixative/stain mixture was removed, and samples were rinsed using deionized water and preserved in 50% ethanol. The contents were then picked wet for foraminifera. The two most common foraminifera in the Sapelo Island EGAs were *Ammonia tepida* (Cushman) and *Haynesina germanica* (Ehrenberg) while the two most common in the Little Duck Key EGAs were *Quinqueloculina sabulosa* (Cushman) and *Triloculina oblonga* (Montagu) (Smith & Goldstein, 2019) (Fig. 3.2). Where possible, approximately a dozen specimens of each species were picked from each EGA. Sampling was limited in some cases due to low abundance or the absence of foraminifera, especially in EGAs exposed to extremely high concentrations of a metal.

To prepare foraminifera for LA-ICP-MS, specimens were oxidatively cleaned using equal parts of 30% H<sub>2</sub>O<sub>2</sub> and 0.1 N NaOH to remove remnant trace organic matter (Fehrenbacher et al., 2015). The objective was to analyze only the calcite component of the test. Around a dozen selected foraminifera from each EGA were placed in 0.6 mL open-top microcentrifuge vials and rinsed thoroughly with Milli-Q water. The contents of each EGA were kept organized and separated with each EGA being assigned a single vial. Each vial was then filled with 150 µl of the cleaning solution and placed in a cleaning rack which was then transferred to a pre-heated (65°C) evaporating dish (large Pyrex crystallizing dish) that was filled with water. The samples were heated for 10 minutes and then removed from the evaporating dish. Each vial was then filled with Milli-Q water and the rack was rapped gently on the counter to remove bubbles and insure the foraminifera remain on the bottom of each vial. The water was then extracted from each vial with a micropipette. This rinsing step was repeated three times to ensure complete removal of the oxidizing agents. The foraminifera were then removed individually from the vials and carefully arranged on strips of carbon tape placed on microscope slides in preparation for laser analysis.

The foraminifera were analyzed via LA-ICP-MS using a Thermo Scientific X-Series II quadruple ICP-MS coupled to a Photon Machine Analyte G2 laser system.

During analysis, NIST 610 and NIST 612 glass standards were analyzed every hour to insure proper machine calibration. The glass standards were analyzed at a 5 Hz repetition rate using a 50 µm in diameter spot size and a laser fluence of 3.45 J/cm<sub>3</sub>.

When possible, each individual foraminifer was analyzed at least 3 times, once per chamber (Fig. 3.3). The penultimate chamber (F1) was targeted first, with F2 and F3

following. The youngest chamber (F), was avoided in most cases because it tended to be fragile and not ideal for analysis. In some cases, even the older chambers were weak and crumbled quickly. In these cases, additional chambers were analyzed to compensate. For the Sapelo Island foraminifera, the laser diameter was set at 50 µm and the fluence was set to 1.27 J/cm<sup>3</sup> with a 4 Hz repetition rate. The Little Duck Key foraminifera tended to be more fragile than their Sapelo Island counterparts. This necessitated operating the laser at a lower fluence (1.04 J/cm<sub>3</sub>). The laser spot size (50 µm) and frequency (4 Hz) were unchanged from the Sapelo Island foraminiferal analyses. Laser data were processed using LAtools, a Python toolbox used for manipulating and interpreting laser ablation data (Version 0.3.8; Branson, 2019). This process involved a series of data reduction techniques. First the data underwent a signal de-spiking routine to remove physically unrealistic outliers. Background correction was then carried out, followed by normalization to an internal standard (43Ca), and the calibration to standard reference materials (SRMs: NIST 610 and 612). This processing provided concentrations (reported as mmol/mol; Me/Ca) of each heavy metal of interest within each foraminiferal chamber. The average concentration and standard deviation of the incorporated heavy metal were calculated for each individual spot analysis (Branson, 2019). Repeat ablations on the same specimen were then averaged to obtain a specimen average ME/Ca value.

While the amount of heavy metal added to each EGA was calculated, it was important to have exact concentration numbers for the heavy-metal content of the water in the EGAs post-experiment. To accomplish this, ICP-MS water analysis was carried out on the residual water remaining from each EGA. For each heavy metal, the concentrations in the water were then plotted against the amount incorporated into each

individual foraminifer (R Core Team, 2019). Concentrations were plotted as ratios (Me/43Ca; mmol/mol). This allowed for comparison of the effects of different heavy metals on the foraminiferal incorporation as well as comparison of incorporation between species.

A two-way analysis of covariance (ANCOVA) was run to determine which factors explained the variance in incorporated metals (R Core Team, 2019). One analysis for each metal was run examining the factors of water chemistry and foraminiferal clade.

Another analysis for each metal was run for each clade (rotalids and miliolids) examining the factors of water chemistry and foraminiferal species.

#### Results

Arsenic, cadmium, nickel, and zinc were incorporated into the calcite of the foraminiferal tests examined, but to varying degrees (Figs. 3.4–3.5). The amount of incorporation varied in multiple ways: within individual tests (intra-individual), between individuals of the same species (inter-individual), between species of the same clade (inter-specific), and between rotalids and miliolids. The amount of incorporation was greater in specimens from EGAs exposed to higher concentrations of the metals in many, but not all, cases. In the Sapelo Island EGAs, *Ammonia tepida* and *Haynesina germanica* incorporated more cadmium at increased concentrations of cadmium (Fig. 3.4). Only *A. tepida* incorporated more arsenic when exposed to higher concentrations in the experimental water (Fig. 3.4). In the Little Duck Key EGAs, *Quinqueloculina sabulosa* and *Triloculina oblonga* incorporated greater amounts of nickel and zinc when exposed to higher concentrations of each metal respectively (Fig. 3.5). In specimens from Sapelo Island and Little Duck Key, variation in incorporation of heavy metals occurred within

individual foraminifera (Tables 3.1 and 3.2). In the case of cadmium, a general trend is apparent of larger standard deviation paired with greater amounts of heavy metal in the water. With the other metals, the standard deviation is sporadic with no visible pattern. Incorporation occurred in all of the individual foraminiferal chambers examined (F1, F2, F3, etc.), with no chamber in the sequence showing consistently greater amounts of metal incorporation.

Variation in incorporation occurred between individuals of the same species as well. For example, in the Sapelo Island specimens exposed to a X concentration of arsenic and of nickel, *Ammonia tepida* and *Haynesina germanica* incorporate a range of the heavy metal into their calcite (Fig. 3.4, Table 3.1). While this data spread is not as large in specimens exposed to other metals, variation is still clearly visible between individuals of all four species analyzed (Figs. 3.4–3.5, Tables 3.1 and 3.2).

In most cases, species belonging to the same clade had similar Me/Ca ratios at each experimental seawater concentration. For example, the rotalids *Ammonia tepida* and *Haynesina germanica* incorporated similar amounts of cadmium at 0.0167 mg/L and 0.0714 mg/L, nickel at 0.01634 mg/L and 0.0285 mg/L, and zinc at 0.02026 mg/L (Fig. 3.4). The miliolids *Quinqueloculina sabulosa* and *Triloculina oblonga* incorporated similar amounts of all four metals (Fig. 3.5). However, *A. tepida* and *H. germanica* incorporated arsenic differently, with *A. tepida* incorporating more arsenic with higher concentrations of arsenic in the water (Fig. 3.4).

In the Sapelo Island specimens, the relationship between the amount of heavy metals in the water and the amount incorporated by the foraminifera varied depending on the metal and on the foraminiferal species (Table 3.1). In specimens exposed to arsenic, a

moderately strong correlation exists between arsenic in the water and arsenic incorporated into *Ammonia tepida* ( $R_2 = 0.588$ ), but not *Haynesina germanica* ( $R_2 = 0.151$ ; Fig. 3.4). In those exposed to cadmium, *A. tepida* ( $R_2 = 0.884$ ) and *H. germanica* ( $R_2 = 0.930$ ) have strong correlations (Fig. 3.4). Of the foraminifera exposed to nickel, *A. tepida* ( $R_2 = 0.070$ ) and *H. germanica* ( $R_2 = 0.139$ ) show little correlation (Fig. 3.4). Finally, in EGAs exposed to zinc, *A. tepida* showed little correlation ( $R_2 = 0.136$ ), while *H. germanica* exhibited a weak relationship ( $R_2 = 0.278$ ; Fig. 3.4).

The Little Duck Key specimens illustrated different results (Table 3.2). In assemblages exposed to arsenic, the number of data points (N=X) are insufficient to establish a relationship between metal content in the water and incorporation into *Quinqueloculina sabulosa* or *Triloculina oblonga* tests (Fig. 3.5). In assemblages exposed to cadmium, there's a clear difference between the species (*Q. sabulosa* R<sub>2</sub> = 0.119, *T. oblonga* R<sub>2</sub> = 0.520; Fig. 3.5). Unlike in the Sapelo EGAs, a positive correlation exists in Little Duck Key assemblages exposed to nickel (*Q. sabulosa* R<sub>2</sub> = 0.406, *T. oblonga* R<sub>2</sub> = 0.588; Fig. 3.5). Lastly, a strong correlation occurs in Little Duck Key EGAs exposed to zinc, for *Q. sabulosa* (R<sub>2</sub> = 0.890) and *T. oblonga* (R<sub>2</sub> = 0.692; Fig. 3.5).

Results of the ANCOVA analyses reveal more detail on incorporation and which factors are associated with greater variation (Tables 3.3 and 3.4). An F ratio closer to one indicates that the variance between the groups is similar to the variance within the groups, that is, that group membership is not an important source of variation. Higher F ratios indicate that group membership is an increasing source of variation. For aminiferal clade was not an important source of variance for cadmium (F = 0.007, p = 0.93) and zinc (F = 0.108, p = 0.74), but important for arsenic (F = 5.016, p = 0.032) and nickel (F =

3.579, p = 0.064) (Table 3.3). In the case of foraminiferal species, among the rotalids of Sapelo Island, it was an important source of variance for arsenic (F = 7.953, p = 0.0093), but not for cadmium (F = 0.013, p = 0.91), nickel (F = 120.172, p = 1.3E-13), and zinc (F = 1.408, p = 0.24). Among the miliolids of Little Duck Key, species was a source of variance for nickel (F = 13.340, p = 0.00039), but not for arsenic (F = 0.038, p = 0.86), cadmium (F = 2.071, p = 0.19), and zinc (F = 1.855, p = 0.21) (Table 3.4).

#### Discussion

Foraminifera grown from both sample locations have clearly incorporated all four of the metals tested (As, Cd, Ni, and Zn) to varying degrees (Figs. 3.4–3.5). Variability in metal incorporation occurs within individuals, between individuals of the same species, between species of the same clade, and between clades. These variations could result from any of a number of factors, including the properties of the metals, differing composition of sediments at Sapelo Island and Little Duck Key, and the vital effects of the foraminifera involved, including the potential different modes of test formation of rotalids and miliolids, and the differing life habits of the species analyzed (e.g., Angell, 1979; Angell, 1980; de Noojier et al., 2014; Nardelli et al., 2016; Frontalini et al., 2018). *Metal Properties* 

Foraminifera are known to incorporate arsenic, cadmium, nickel, and/or zinc into the calcite of their tests (Boyle, 1981; Rosenthal et al., 1997; de Noojier et al., 2007; Katz et al., 2010; Kramar et al., 2010; Nardelli et al., 2016; Frontalini et al., 2018; Titelboim et al., 2018). These metals differ in many ways including their chemical speciation and their metabolic utility. These factors can affect the bioavailability of the metal, and thus the likelihood of the metal being incorporated into test structures.

One difference of note between the metals in this study was their essentiality, or requirement in biological activities (Mertz, 1981; Adriano, 2001; Martinez-Colon et al., 2009; Maret, 2016; Desideri et al., 2016). Essentiality is a controversial topic and there is much debate regarding the relative essentiality of some elements (Mertz, 1981; Maret, 2016). Even elements known to be toxic such as arsenic are now thought to have important roles as micronutrients in gene silencing and metabolism of the amino acid methionine (Uthus, 2003; Zeng et al., 2005). Essentiality depends also on the organism involved. Nickel, for example, is more essential in plants and bacteria than animals (Anke et al., 1984; Poonkothai and Vijayavathi, 2012; Maret, 2016). The elements in this study span a range of metabolic utility. Zinc is considered broadly essential to all life, while nickel is essential to a slightly more limited group of organisms (Mertz, 1981; Maret, 2016). Cadmium is used by only a select organism (e.g. a planktonic diatom) in a special ecological niche (Maret, 2016). Arsenic for many years was considered non-essential, but now is recognized to have limited utility as well (Uthus, 2003; Zeng et al., 2005). It is also important to point out that the essentiality of elements for foraminifera is not well known compared to other organisms.

Bioavailability of trace elements like the heavy metals in this study is dependent on multiple factors including chemical speciation, the solubility of the metal, potential adsorption of the metal in sediments, metal uptake and the excretion or detoxification of the heavy metals (Rainbow, 2016). Because of their use in biological functions, more essential elements might be more readily bioavailable for foraminifera and therefore more likely to become incorporated in the foraminiferal test. Results of the LA-ICP-MS analysis, however, do not reflect this. Incorporation of less essential metals, arsenic and

cadmium was strongly correlated with arsenic and cadmium content in the water in the Sapelo Island EGAs (Fig. 3.4). More essential metals, zinc and nickel exhibited a similarly strong connection with metal content in the water in the Little Duck Key EGAs (Fig. 3.5). Because the Sapelo species analyzed were both rotalids and the Little Duck Key species analyzed were miliolids, this suggests that clade differences in test construction, calcification, and test composition could influence incorporation (See *Rotalid and Miliolid Test Construction*). However, there is clearly incorporation occurring with all of the metals, even where no correlation exists with trace metal content in the water.

Chemical speciation is also an important consideration. All of the metals tested here have been shown to incorporate into foraminiferal calcite (Boyle, 1981; Rosenthal et al., 1997; de Noojier et al., 2007; Kramar et al., 2010; Nardelli et al., 2016; Frontalini et al., 2018; Titelboim et al., 2018). Metal ions with a 2+ charge might be incorporated more readily than those without due to their similarity to Ca2+ ions. Most typically, depending on the type of test structure, Mg2+ will often substitute in the place of the calcium cation in calcium carbonate structures (Nurnberg et al., 1996). In this experiment, cadmium, nickel, and zinc were all added to the EGAs as dissolved chlorides in the 2+ form.

Arsenic was added as a dissolved oxide in the 3+ form. This did not have much effect as arsenic incorporated just as much as the other metals, especially in the Little Duck Key EGAs. Speciation in sediment is also highly dependent on the pH of the environment (Adriano, 2001). For example, the predominant dissolved species of cadmium depends heavily on pH with Cd2+ ions more common at pH values below 7.0 and CdCO3 prevalent at pH values above 7.0 (Adriano, 2001). While it is possible lower pH could

result in more incorporation of certain metals, that was not seen in this experiment, because pH was kept around 8.0 throughout to simulate actual seawater.

Sedimentary Properties

Sediment composition may also influence metal incorporation in foraminiferal tests. Whereas other environmental factors are largely controlled, fine-grained sediment from the collection site is necessarily retained. Sapelo Island, a tidally dominated barrier island, has heterogeneous sediment consisting of clays as well as some siliciclastic silt and sand whereas Little Duck Key, a small key in the Florida Keys chain, has a heterogeneous mix of mostly calcareous mud and sand with scattered shell debris (Roychoudhury, 2007; Weinmann and Goldstein, 2016; Smith & Goldstein, 2019). This could affect incorporation considerably.

Goethite, a common iron mineral in surficial Sapelo Island sediments, has shown a propensity to absorb 3+ ions such as arsenic (Ladeira, 2004; Roychoudhury, 2007). The many clay minerals of Sapelo Island could absorb not only arsenic, but the other metals as well (Ladeira, 2004; Roychoudhury, 2007). This would theoretically lead to lower metal concentrations in the water column and therefore less metal available for possible incorporation. If this were true, there would be greater incorporation overall in Little Duck Key EGAs than in Sapelo Island EGAs. However, the metal concentration in seawater measured in the EGAs was measured post-experiment and represents at least the minimum amount of metal potentially bioavailable in the water at the end of the experiment. While there is evidence that the sediment played a major role in the metal concentration of the residual water post experiment, no great differences exist between

the amount of incorporation between EGAs from each site. Therefore, little evidence of major sedimentary effect on incorporation exists in this experiment.

#### Rotalid and Miliolid Test Construction

Rotalid and miliolid foraminifera have long been known to exercise different strategies for calcification and test morphogenesis (Angell, 1979; Angell, 1980; Hemleben et al., 1986; Elderfield et al., 1996; Hansen, 1999; de Noojier et al., 2009a; de Noojier et al., 2009b; de Noojier et al., 2014). Rotalids begin chamber construction by surrounding themselves in a protective cyst (Angell, 1979). Inside, some rotalids use low-Mg calcite with a bilamellar method of construction (Angell, 1979; Hansen, 1999). This results in the older, earlier chambers growing gradually thicker over time, with multiple layers of perforate calcite. Miliolids also begin by constructing a surrounding cyst, however, miliolids use high-Mg calcite with a non-lamellar construction that utilizes calcite rods to construct a porcelaneous test wall (Angell, 1980; Hemleben et al., 1986; Erez; 2003).

As reviewed by de Noojier et al. (2014), a crucial factor in potential incorporation of heavy-metal elements is the primary source of Ca2+ that foraminifera use in biomineralization and the method by which they obtain it. There is no consensus understanding of the biomineralization pathways of foraminifera and there are several competing models (Erez, 2003; de Noojier et al., 2009a; de Noojier et al., 2009b; Nehrke et al., 2013; de Noojier et al., 2014). One model posits that foraminifera use seawater as a direct source of Ca2+ via endocytosis and vacuolization (Erez, 2003; de Noojier et al., 2009a; de Noojier et al., 2016). A similar model argues that seawater is the primary source of ions, but through direct passive

uptake, not endocytosis (Nehrke et al., 2013; de Noojier et al., 2014) Another model suggests that foraminifera use an internal reservoir of Ca2+ as their primary source of material (Ter Kuile et al., 1989; Erez, 2003; de Noojier et al., 2014). The relationship between heavy-metal contamination in the surrounding seawater and incorporation into the test may depend on which of these models is most accurate and how seawater is metabolically processed during calcification. If foraminifera are unable eliminate ions during calcification, it follows that it would lead to more incorporation of contaminating material in that seawater. Crucially, studies leading to these models rely heavily on rotalid species, not miliolids (Nardelli et al., 2016).

In this study, a correlation between incorporation and concentration in the surrounding water was seen in rotalids and miliolids, but with different metals. *Ammonia tepida* and *Haynesina germanica*, rotalids, show a strong relationship with cadmium, which supports previous research involving cadmium and rotalids (Boyle, 1988). *A. tepida* also exhibited a strong relationship with arsenic. For both *A. tepida* and *H. germanica*, there was either no relationship at all, or a weak one for nickel and zinc. In contrast, *Triloculina oblonga* and *Quinqueloculina sabulosa* had a strong correlation between incorporation and water concentration for zinc and an intermediate correlation for nickel, which supports previous research (Titelboim et al., 2018). *T. oblonga* differed in correlation for arsenic and *T. oblonga* and *Q. sabulosa* differed in correlation for cadmium. The variation in incorporation between rotalids and miliolids is also supported by the ANCOVA data, which shows greater variance between clades in samples exposed to arsenic and nickel (Table 3.3).

Overall, the rotalids seemed more likely to incorporate more heavy metal from the surrounding water if they were less essential (arsenic and cadmium) as opposed to more essential (nickel and zinc). This seeming inability for rotalids to take in more zinc and nickel with high concentrations of the metals in the water column has been noted by others (Nardelli et al., 2016; Frontalini et al., 2018). Heavy metals such as zinc have been shown to trigger cytological alterations and organelle degradation in foraminifera (Frontalini et al., 2018). These changes are thought to be a defense mechanism against heavy-metal toxicity and might prohibit the metals from incorporating after a certain threshold in the surrounding water is met (Frontalini et al., 2018). It is possible that in rotalids, these defense mechanisms are either ineffective or not as effective for less essential heavy metals such as arsenic and cadmium, leading to their greater incorporation rates at higher levels of saturation. However, these same defense mechanisms have been noted in miliolids as well (Frontalini et al., 2018). The strength of the relationship between cadmium in the seawater and cadmium incorporation in rotalids seen in this study is notable, but has been established in prior research (Boyle, 1988). However, the contrasting lack of relationship for cadmium incorporation in miliolids is striking. Likewise, the relationship between zinc content in the seawater and zinc incorporation is particularly strong for miliolids, whereas the opposite is true for rotalids. The results of this study suggest that these elements affect rotalids and miliolids in different ways. Ascertaining why will require further research into miliolids and their biomineralization strategies.

#### Variation Among Species

In addition to differences between rotalid and miliolid biomineralization, it is becoming increasingly apparent that foraminifera vary in biomineralization even on the species-level (Angell, 1979; Angell, 1980; de Noojier et al., 2014; Nardelli et al., 2016; Frontalini et al., 2018). In this project, the two rotalid species examined, *Haynesina germanica* and *Ammonia tepida*, as well as the two miliolid species, *Quinqueloculina sabulosa* and *Triloculina oblonga* exhibited different results from one another (Table 3.5).

The Sapelo Island specimens exposed to arsenic displayed the largest variation in incorporation between species. *A. tepida* incorporation of arsenic was strongly correlated with arsenic content in the water, but *H. germanica* incorporation was not (Fig. 3.5). This was corroborated by the ANCOVA data which shows a statistically significant variance between the two Sapelo species when exposed to arsenic (Table 3.4). The reason for this difference could reflect the contrasting feeding habits of *A. tepida* and *H. germanica*. *A. tepida* is a deposit feeder, ingesting bacteria, diatoms, and other microbiota along with organic detritus associated with small parcels of sediment consisting largely of clay platelets (Goldstein & Corliss, 1994). *H. germanica* acquires nutrition through sequestration of chloroplasts from diatoms without ingesting sediment aggregates (Lopez, 1979; Goldstein & Richardson, 2018). Because of the tendency for arsenic to be sequestered in the clay minerals and goethite of the Sapelo Island sediment, it seems likely that *A. tepida* is likely to ingest arsenic during feeding. This could have resulted in a higher degree of incorporation of arsenic into tests of *A. tepida*.

#### Conclusions

Incorporation of arsenic, cadmium, nickel and zinc was recorded in all species analyzed. LA-ICP-MS showed a clear difference between the rotalids and miliolids examined in their tendency to incorporate heavy metals. While *Haynesina germanica* and *Ammonia tepida* readily incorporated metals such as arsenic and cadmium as concentrations in the surrounding water increased, the same did not occur with metals such as zinc and nickel. In contrast, the miliolids *Quinqueloculina sabulosa* and *Triloculina oblonga* incorporated larger amounts of zinc and nickel as water concentration increased, while remaining steady as concentrations of arsenic and cadmium increased. This may reflect a fundamental difference in the biomineralization process between rotalid and miliolid foraminifera and warrants further investigation.

On the species level, incorporation rates were consistent in foraminifera of the same clade, with the exception of *A. tepida* incorporating more arsenic than *H. germanica*. While foraminiferal incorporation did vary in some isolated cases within individuals, there was no overall consistent distinguishable chamber-to-chamber variability.

While some foraminifera show a clear relationship between incorporation of heavy metals and metal content in the surrounding water, others do not. It is important to identify which taxa have the greatest potential for biomonitoring in certain environments and targeting specific pollutants. For example, when studying cadmium contaminations, taxa such as *A. tepida* and *H. germanica* could be useful because of their distinctive incorporation of cadmium. Other taxa such as *Q. sabulosa* and *T. oblonga*, are poor proxies for cadmium. This study shows that while foraminiferal incorporation can prove a

useful tool in heavy-metal pollution research, results may vary with the species examined and the metal tested.

### **Tables**

Table 3.1. Metal concentration in water, mean incorporated metal, and standard deviation among chambers in samples of Sapelo Island foraminifera used in propagule experiments. Each foraminifer was analyzed at least three times on three separate chambers. In some cases when the metal concentration measured by ICP-MS is particularly close to 0, the instrument can produce a negative number. These values have been marked as BDL (below detection limit) and are denoted by an asterisk.

| Sample Number           | Species      | Metal<br>Concentration in<br>Water (mg/L) | Mean<br>Incorporated<br>Me/Ca(mmol/mol) | Standard Deviation of Me/Ca Between Chambers (mmol/mol) |
|-------------------------|--------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------------|
| Arsenic                 |              |                                           |                                         |                                                         |
| SapeloAs0*069-2_2       | A. tepida    | BDL*                                      | 1.57                                    | 1.74                                                    |
| SapeloAs0*069-2_3       | H. germanica | BDL*                                      | 1.92                                    | 1.46                                                    |
| SapeloAs0*069-2_4       | H. germanica | BDL*                                      | 0.19                                    | 0.85                                                    |
| SapeloAs0*69-1_1        | H. germanica | 0.32235                                   | 0.37                                    | 0.39                                                    |
| SapeloAs0*69-1_2        | H. germanica | 0.32235                                   | 7.71                                    | 3.44                                                    |
| SapeloAs0*69-1_3        | H. germanica | 0.32235                                   | 0.31                                    | 2.94                                                    |
| SapeloAs0*69-1_4        | H. germanica | 0.32235                                   | 2.88                                    | 0.08                                                    |
| SapeloAs0*69-1_4B       | H. germanica | 0.32235                                   | 2.77                                    | 0.29                                                    |
| SapeloAs0*69-1_5        | A. tepida    | 0.32235                                   | 5.43                                    | 2.89                                                    |
| SapeloAs0*69-1_6        | H. germanica | 0.32235                                   | 5.43                                    | 5.23                                                    |
| SapeloAs0*69-2_1        | H. germanica | BDL*                                      | 0.86                                    | 0.71                                                    |
| SapeloAs0*69-2_2        | H. germanica | BDL*                                      | 0.12                                    | 1.24                                                    |
| SapeloAs0*69-2_3        | H. germanica | BDL*                                      | 0.28                                    | 1.38                                                    |
| SapeloAs0*69-2_4        | H. germanica | BDL*                                      | 0.47                                    | 0.73                                                    |
| SapeloAs0*69-2_5        | H. germanica | BDL*                                      | 1.55                                    | 2.29                                                    |
| SapeloAs6*9-2_1         | A. tepida    | 0.9265                                    | 12.23                                   | 14.11                                                   |
| SapeloAs6*9-2_3         | H. germanica | 0.9265                                    | 2.63                                    | 2.71                                                    |
| SapeloAs69-1_1          | H. germanica | 29.875                                    | 2.41                                    | 0.78                                                    |
| SapeloIslandControl1_1  | A. tepida    | 0.00191                                   | 1.91                                    | 0                                                       |
| SapeloIslandControl1_1B | A. tepida    | 0.00495                                   | 4.95                                    | 0.0034                                                  |
| SapeloIslandControl1_1C | H. germanica | 0.00065                                   | 0.65                                    | 0                                                       |
| SapeloIslandControl2_1  | H. germanica | 0.00065                                   | 0.65                                    | 0                                                       |
| SapeloIslandControl2_1B | H. germanica | BDL*                                      | 0.69                                    | 0.00012                                                 |
| SapeloIslandControl2_2  | H. germanica | BDL*                                      | 1.75                                    | 0.0025                                                  |

| SapeloIslandControl2_3  | H. germanica | BDL*    | 1.79   | 0       |
|-------------------------|--------------|---------|--------|---------|
| SapeloIslandControl2_3B | H. germanica | BDL*    | 4.8    | 0       |
| SapeloIslandControl2_4  | H. germanica | BDL*    | 0.18   | 0.0025  |
| SapeloIslandControl2_5  | H. germanica | BDL*    | 0.040  | 0.0025  |
| Cadmium                 |              |         |        |         |
| SapeloCd0*04-1_1        | A. tepida    | 0.0714  | 14.76  | 1.74    |
| SapeloCd0*04-1_2        | A. tepida    | 0.0714  | 10.82  | 1.11    |
| SapeloCd0*04-1_4        | H. germanica | 0.0714  | 9.19   | 0.71    |
| SapeloCd0*04-1_5        | H. germanica | 0.0714  | 13.51  | 3.45    |
| SapeloCd0*04-1_6        | H. germanica | 0.0714  | 19.78  | 3.62    |
| SapeloCd0*04-1_7        | H. germanica | 0.0714  | 11.17  | 1.31    |
| SapeloCd0*04-1_8        | H. germanica | 0.0714  | 10.97  | 0.89    |
| SapeloCd0*04-1_9        | H. germanica | 0.0714  | 54.19  | 3.24    |
| SapeloCd0*04-1_10       | H. germanica | 0.0714  | 22.31  | 4.79    |
| SapeloCd0*04-1_11       | H. germanica | 0.0714  | 54.42  | 4.46    |
| SapeloCd0*04-2_1        | A. tepida    | 0.04658 | 41.15  | 14.22   |
| SapeloCd0*4-1_1         | A. tepida    | 0.0167  | 9.24   | 3.36    |
| SapeloCd0*4-1_2         | H. germanica | 0.0167  | 12.55  | 0.28    |
| SapeloCd0*4-1_3         | H. germanica | 0.0167  | 13.74  | 3.16    |
| SapeloCd0*4-1_4         | H. germanica | 0.0167  | 15.49  | 6.60    |
| SapeloCd0*4-1_5         | H. germanica | 0.0167  | 11.32  | 2.06    |
| SapeloCd0*4-1_6         | H. germanica | 0.0167  | 20.76  | 5.68    |
| SapeloCd0*4-1_7         | H. germanica | 0.0167  | 28.93  | 5.75    |
| SapeloCd0*4-1_8         | H. germanica | 0.0167  | 15.69  | 6.01    |
| SapeloCd0*4-1_9         | H. germanica | 0.0167  | 21.21  | 4.53    |
| SapeloCd0*4-1_10        | H. germanica | 0.0167  | 9.71   | 0.74    |
| SapeloCd0*4-2_2         | H. germanica | 0.02596 | 35.14  | 16.09   |
| SapeloCd4-1_2           | H. germanica | 1.5175  | 956.87 | 99.89   |
| SapeloCd4-1_3           | H. germanica | 1.5175  | 895.20 | 349.47  |
| SapeloCd4-1_4           | H. germanica | 1.5175  | 811.25 | 74.10   |
| SapeloCd4-1_6           | H. germanica | 1.5175  | 175.41 | 20.02   |
| SapeloCd4-1_7           | H. germanica | 1.5175  | 199.97 | 27.79   |
| SapeloCd4-1_8           | H. germanica | 1.5175  | 199.70 | 35.39   |
| SapeloCd4-1_9           | H. germanica | 1.5175  | 745.97 | 169.76  |
| SapeloCd4-2_1           | H. germanica | 1.344   | 735.11 | 71.04   |
| SapeloCd4-2_2           | H. germanica | 1.344   | 753.77 | 32.21   |
| SapeloCd4-2_3           | H. germanica | 1.344   | 946.61 | 55.52   |
| SapeloCd4-2_4           | H. germanica | 1.344   | 908.05 | 62.73   |
| SapeloIslandControl1_1  | A. tepida    | 0.00001 | 0.014  | 0       |
| SapeloIslandControl1_1B | A. tepida    | 0.00015 | 0.15   | 0.00057 |
|                         |              |         |        |         |

| SapeloIslandControl1_1C | H. germanica | BDL*    | 0.16  | 0       |
|-------------------------|--------------|---------|-------|---------|
| SapeloIslandControl2_1  | H. germanica | BDL*    | 0.16  | 0       |
| SapeloIslandControl2_1B | H. germanica | BDL*    | 0.023 | 0.00002 |
| SapeloIslandControl2_2  | H. germanica | BDL*    | 0.085 | 0.00007 |
| SapeloIslandControl2_3  | H. germanica | BDL*    | 0.064 | 0       |
| SapeloIslandControl2_3B | H. germanica | BDL*    | 0.57  | 0       |
| SapeloIslandControl2_4  | H. germanica | BDL*    | 0.17  | 0.00008 |
| SapeloIslandControl2_5  | H. germanica | BDL*    | 0.11  | 0.00013 |
| Nickel                  |              |         |       |         |
| SapeloNi0*074-2_1       | H. germanica | 0.02257 | 22.17 | 1.77    |
| SapeloNi0*074-2_2       | H. germanica | 0.02257 | 17.85 | 3.97    |
| SapeloNi0*074-2_3       | H. germanica | 0.02257 | 15.59 | 1.93    |
| SapeloNi0*074-2_4       | H. germanica | 0.02257 | 19.47 | 2.30    |
| SapeloNi0*074-2_5       | H. germanica | 0.02257 | 14.54 | 4.23    |
| SapeloNi0*074-2_7       | H. germanica | 0.02257 | 22.15 | 4.37    |
| SapeloNi0*74-1_1        | H. germanica | 0.01634 | 3.56  | 1.97    |
| SapeloNi0*74-1_2        | H. germanica | 0.01634 | 7.98  | 5.85    |
| SapeloNi0*74-1_3        | A. tepida    | 0.01634 | 5.68  | 1.37    |
| SapeloNi0*74-1_4        | H. germanica | 0.01634 | 16.33 | 6.19    |
| SapeloNi0*74-1_5        | H. germanica | 0.01634 | 7.49  | 6.48    |
| SapeloNi0*74-1_6        | H. germanica | 0.01634 | 12.17 | 5.49    |
| SapeloNi0*74-1_7        | H. germanica | 0.01634 | 9.19  | 3.63    |
| SapeloNi0*74-1_8        | H. germanica | 0.01634 | 4.53  | 2.73    |
| SapeloNi0*74-1_9        | H. germanica | 0.01634 | 4.35  | 1.57    |
| SapeloNi0*74-1_10       | H. germanica | 0.01634 | 0.75  | 1.93    |
| SapeloNi0*74-2_1        | A. tepida    | 0.0285  | 0.055 | 1.48    |
| SapeloNi0*74-2_2        | H. germanica | 0.0285  | 1.02  | 2.07    |
| SapeloNi0*74-2_3        | H. germanica | 0.0285  | 0.88  | 1.96    |
| SapeloNi0*74-2_4        | A. tepida    | 0.0285  | 0.036 | 1.32    |
| SapeloNi0*74-2_5        | H. germanica | 0.0285  | 1.94  | 0.39    |
| SapeloNi0*74-2_6        | H. germanica | 0.0285  | 3.36  | 4.49    |
| SapeloNi0*74-2_7        | H. germanica | 0.0285  | 1.55  | 1.84    |
| SapeloNi0*74-2_8        | A. tepida    | 0.0285  | 0.091 | 3.25    |
| SapeloNi0*74-2_9        | A. tepida    | 0.0285  | 0.96  | 2.44    |
| SapeloNi0*74-2_10       | A. tepida    | 0.0285  | 0.12  | 1.61    |
| SapeloNi0*74-2_11       | H. germanica | 0.0285  | 0.44  | 0.61    |
| SapeloNi7*4-2_1         | A. tepida    | 0.32265 | 14.07 | 6.02    |
| SapeloNi7*4-2_2         | A. tepida    | 0.32265 | 23.97 | 11.83   |
| SapeloNi74-1_1          | H. germanica | 6.24    | 5.86  | 3.94    |
| SapeloIslandControl1_1  | A. tepida    | BDL*    | 15.37 | 0       |
|                         |              |         |       |         |

| SapeloIslandControl1_1B | A. tepida                  | BDL*    | 43.83  | 0.035  |
|-------------------------|----------------------------|---------|--------|--------|
| SapeloIslandControl1_1C | H. germanica               | BDL*    | 26.13  | 0      |
| SapeloIslandControl2_1  | H. germanica               | BDL*    | 26.13  | 0      |
| SapeloIslandControl2_1B | H. germanica               | BDL*    | 16.78  | 0.0075 |
| SapeloIslandControl2_2  | H. germanica               | BDL*    | 18.70  | 0.020  |
| SapeloIslandControl2_3  | H. germanica               | BDL*    | 21.47  | 0      |
| SapeloIslandControl2_3B | H. germanica               | BDL*    | 17.73  | 0      |
| SapeloIslandControl2_4  | H. germanica               | BDL*    | 7.61   | 0.0059 |
| SapeloIslandControl2_5  | H. germanica               | BDL*    | 5.54   | 0.0045 |
| Zinc                    |                            |         |        |        |
| SapeloZn0*09-2_1        | A. tepida                  | 0.16815 | 52.02  | 48.33  |
| SapeloZn0*09-2_2        | H. germanica               | 0.16815 | 20.97  | 1.88   |
| SapeloZn0*09-2_5        | A. tepida                  | 0.16815 | 11.55  | 4.23   |
| SapeloZn0*9-1_1         | H. germanica               | 0.02026 | 44.41  | 13.28  |
| SapeloZn0*9-1_2         | H. germanica               | 0.02026 | 28.29  | 2.87   |
| SapeloZn0*9-1_3         | A. tepida                  | 0.02026 | 1.94   | 11.77  |
| SapeloZn0*9-1_5         | A. tepida                  | 0.02026 | 32.07  | 3.79   |
| SapeloZn0*9-1_6         | H. germanica               | 0.02026 | 36.32  | 2.48   |
| SapeloZn0*9-1_7         | H. germanica               | 0.02026 | 39.72  | 3.09   |
| SapeloZn0*9-1_9         | H. germanica               | 0.02026 | 47.01  | 2.97   |
| SapeloZn0*9-1_10        | H. germanica               | 0.02026 | 39.16  | 3.93   |
| SapeloZn0*9-1_11        | H. germanica               | 0.02026 | 32.02  | 2.03   |
| SapeloZn0*9-1_12        | H. germanica               | 0.02026 | 33.37  | 9.65   |
| SapeloZn0*9-1_13        | H. germanica               | 0.02026 | 24.58  | 15.13  |
| SapeloZn9-1_1           | H. germanica               | 0.825   | 58.09  | 3.33   |
| SapeloZn9-1_2           | H. germanica               | 0.825   | 57.49  | 11.47  |
| SapeloZn9-1_3           | H. germanica               | 0.825   | 41.49  | 5.41   |
| SapeloZn9-1_4           | H. germanica               | 0.825   | 447.41 | 250.17 |
| SapeloZn9-2_1           | H. germanica               | 0.05495 | 716.05 | 33.07  |
| SapeloZn9-2_2           | A. tepida                  | 0.05495 | 149.53 | 61.85  |
| SapeloZn9-2_3           | A. tepida                  | 0.05495 | 84.24  | 26.83  |
| SapeloZn9-2_4           | A. tepida                  | 0.05495 | 101.73 | 7.64   |
| SapeloZn9-2_5           | H. germanica               | 0.05495 | 922.38 | 208.19 |
| SapeloZn9-2_6           | H. germanica<br>(deformed) | 0.05495 | 927.75 | 169.67 |
| SapeloZn9-2_7           | A. tepida<br>(deformed)    | 0.05495 | 161.39 | 65.74  |
| SapeloZn9-2_8           | H. germanica               | 0.05495 | 55.32  | 3.29   |
| SapeloZn9-2_9           | H. germanica               | 0.05495 | 950.79 | 177.09 |
| SapeloZn9-2_10          | A. tepida<br>(deformed)    | 0.05495 | 102.08 | 34.17  |

| A. tepida<br>(deformed)    | 0.05495                                                                                                                                                                                                                                                 | 123.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. tepida<br>(deformed)    | 0.05495                                                                                                                                                                                                                                                 | 139.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. tepida<br>(deformed)    | 0.05495                                                                                                                                                                                                                                                 | 172.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A. tepida                  | 20.455                                                                                                                                                                                                                                                  | 131.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| H. germanica<br>(deformed) | 518.5                                                                                                                                                                                                                                                   | 4948.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,339.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A. tepida                  | 0.00280                                                                                                                                                                                                                                                 | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A. tepida                  | 0.01441                                                                                                                                                                                                                                                 | 14.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H. germanica               | 0.01380                                                                                                                                                                                                                                                 | 13.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H. germanica               | 0.01380                                                                                                                                                                                                                                                 | 13.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H. germanica               | 0.01343                                                                                                                                                                                                                                                 | 13.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H. germanica               | 0.01542                                                                                                                                                                                                                                                 | 15.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H. germanica               | 0.00816                                                                                                                                                                                                                                                 | 8.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H. germanica               | 0.00577                                                                                                                                                                                                                                                 | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H. germanica               | 0.01356                                                                                                                                                                                                                                                 | 13.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H. germanica               | 0.02059                                                                                                                                                                                                                                                 | 20.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            | (deformed) A. tepida (deformed) A. tepida (deformed) A. tepida (deformed) H. germanica (deformed) A. tepida A. tepida H. germanica | (deformed)       0.05495         A. tepida       0.05495         (deformed)       0.05495         A. tepida       20.455         (deformed)       20.455         H. germanica       518.5         A. tepida       0.00280         A. tepida       0.01441         H. germanica       0.01380         H. germanica       0.01380         H. germanica       0.01343         H. germanica       0.00542         H. germanica       0.00816         H. germanica       0.00577         H. germanica       0.01356 | (deformed)       0.05495       123.35         A. tepida       0.05495       139.56         (deformed)       0.05495       172.35         A. tepida       20.455       131.45         (deformed)       518.5       4948.91         A. tepida       0.00280       2.80         A. tepida       0.01441       14.41         H. germanica       0.01380       13.80         H. germanica       0.01380       13.80         H. germanica       0.01343       13.43         H. germanica       0.01542       15.42         H. germanica       0.00816       8.16         H. germanica       0.00577       5.77         H. germanica       0.01356       13.56 |

Table 3.2. Metal concentration in water, mean incorporated metal, and standard deviation among chambers in samples of Little Duck Key foraminifera used in propagule experiments. Each foraminifer was analyzed at least three times on three separate chambers. In some cases when the metal concentration measured by ICP-MS is particularly close to 0, the instrument can produce a negative number. These values have been corrected to 0 and are denoted by an asterisk.

| Little Duck Key |              |                                           |                                             |                                                               |
|-----------------|--------------|-------------------------------------------|---------------------------------------------|---------------------------------------------------------------|
| Sample Number   | Species      | Metal<br>Concentration in<br>Water (mg/L) | Mean<br>Incorporated<br>Me/Ca<br>(mmol/mol) | Standard Deviation of<br>Me/Ca Between<br>Chambers (mmol/mol) |
| Arsenic         |              |                                           |                                             |                                                               |
| LDKAs0*069-1_1  | T. oblonga   | 1.111                                     | 373.15                                      | 30.22                                                         |
| LDKAs0*069-2_1  | T. oblonga   | 1.571                                     | 3.41                                        | 4.47                                                          |
| LDKControl-2_1  | Q. sabulosa  | BDL*                                      | 1.18                                        | 0.0032                                                        |
| LDKControl-2_1B | Q. sabulosa  | BDL*                                      | 3.45                                        | 0.0029                                                        |
| LDKControl-2_2  | T. oblonga   | BDL*                                      | 0.34                                        | 0.0023                                                        |
| LDKControl-2_2B | T. oblonga   | BDL*                                      | 0.29                                        | 0.0022                                                        |
| Cadmium         |              |                                           |                                             |                                                               |
| LDKCd0*04-1_1   | Q. sabulosa  | 0.1206                                    | 24.59                                       | 28.92                                                         |
| LDKCd0*04-1_2   | T. oblonga   | 0.1206                                    | 343.93                                      | 35.55                                                         |
| LDKCd0*04-1_3   | E. mexicanum | 0.1206                                    | 103.88                                      | 10.13                                                         |
| LDKCd0*04-2_2   | Q. sabulosa  | 0.09448                                   | 2.99                                        | 3.06                                                          |
| LDKCd0*04-2_3   | Q. sabulosa  | 0.09448                                   | 1.51                                        | 1.53                                                          |
| LDKCd0*04-2_5   | Q. sabulosa  | 0.09448                                   | 4.25                                        | 1.59                                                          |
| LDKCd0*04-2_6   | Q. sabulosa  | 0.09448                                   | 10.41                                       | 18.14                                                         |
| LDKCd0*4-2_1    | Q. sabulosa  | 0.3866                                    | 6.53                                        | 5.98                                                          |
| LDKControl-2_1  | Q. sabulosa  | BDL*                                      | 2.14                                        | 0.0007                                                        |
| LDKControl-2_1B | Q. sabulosa  | BDL*                                      | 4.62                                        | 0.0023                                                        |
| LDKControl-2_2  | T. oblonga   | BDL*                                      | 3.62                                        | 0.0017                                                        |
| LDKControl-2_2B | T. oblonga   | BDL*                                      | 4.47                                        | 0.0039                                                        |
| Nickel          |              |                                           |                                             |                                                               |
| LDKNi0*074-1_1  | T. oblonga   | 0.1229                                    | 25.22                                       | 5.87                                                          |
| LDKNi0*074-1_2  | T. oblonga   | 0.1229                                    | 22.62                                       | 3.72                                                          |
| LDKNi0*074-1_3  | T. oblonga   | 0.1229                                    | 16.46                                       | 2.91                                                          |
| LDKNi0*074-1_4  | T. oblonga   | 0.1229                                    | 14.91                                       | 4.02                                                          |
| LDKNi0*074-1_5  | T. oblonga   | 0.1229                                    | 24.27                                       | 6.82                                                          |
| LDKNi0*074-1_6  | T. oblonga   | 0.1229                                    | 15.68                                       | 6.13                                                          |
| LDKNi0*074-1_7  | T. oblonga   | 0.1229                                    | 20.98                                       | 9.31                                                          |

| LDKNi0*074-2_1  | Q. sabulosa  | 0.08327 | 9.033  | 1.82   |
|-----------------|--------------|---------|--------|--------|
| LDKNi0*074-2_3  | Q. sabulosa  | 0.08327 | 5.91   | 4.56   |
| LDKNi0*074-2_4  | Q. sabulosa  | 0.08327 | 1.56   | 10.38  |
| LDKNi0*074-2_6  | T. oblonga   | 0.08327 | 5.97   | 2.18   |
| LDKNi0*074-2_7  | Q. sabulosa  | 0.08327 | 6.82   | 5.72   |
| LDKNi0*74-1_2   | T. oblonga   | 0.2325  | 47.69  | 8.25   |
| LDKNi0*74-1_3   | T. oblonga   | 0.2325  | 11.82  | 3.49   |
| LDKNi0*74-2_1   | Q. sabulosa  | 0.2988  | 110.38 | 40.99  |
| LDKNi74-1_1     | E. mexicanum | 25.62   | 170.42 | 54.30  |
| LDKControl-2_1  | Q. sabulosa  | 0.00758 | 7.58   | 0.0079 |
| LDKControl-2_1B | Q. sabulosa  | 0.00174 | 1.74   | 0.0024 |
| LDKControl-2_2  | T. oblonga   | 0.00578 | 5.78   | 0.0046 |
| LDKControl-2_2B | T. oblonga   | 0.00501 | 5.01   | 0.0012 |
| Zinc            |              |         |        |        |
| LDKZn0*09-1_3   | Q. sabulosa  | 0.04465 | 53.15  | 31.04  |
| LDKZn0*09-2_1   | Q. sabulosa  | 0.04717 | 26.63  | 7.07   |
| LDKZn0*09-2_2   | Q. sabulosa  | 0.04717 | 38.01  | 10.48  |
| LDKZn0*09-2_4   | T. oblonga   | 0.04717 | 431.89 | 131.12 |
| LDKZn0*09-2_5   | Q. sabulosa  | 0.04717 | 22.49  | 6.43   |
| LDKZn0*9-1_1    | E. mexicanum | 0.2505  | 298.76 | 32.90  |
| LDKZn9-1_1      | Q. sabulosa  | 2.415   | 366.54 | 16.16  |
| LDKZn9-2_1      | T. oblonga   | 1.839   | 179.25 | 20.96  |
| LDKZn90-2_1     | T. oblonga   | 5.605   | 700.44 | 101.64 |
| LDKControl-2_1  | Q. sabulosa  | 0.00512 | 5.12   | 0.0025 |
| LDKControl-2_1B | Q. sabulosa  | 0.00836 | 8.36   | 0.0007 |
| LDKControl-2_2  | T. oblonga   | 0.02671 | 26.71  | 0.0030 |
| LDKControl-2_2B | T. oblonga   | 0.03037 | 30.37  | 0.0021 |
| LDKControl-2_2B | T. oblonga   | 0.03037 | 30.37  | 0.0021 |

Table 3.3. Two-way ANCOVA data comparing the amount of heavy-metal incorporation variance, for each metal, caused by water chemistry and foraminiferal clade. This analysis is for all of the foraminifera from both sites.

| Arsenic         | Degrees of Freedom | Sum of<br>Squares | Mean<br>Squares | F Ratio | P Value |
|-----------------|--------------------|-------------------|-----------------|---------|---------|
| Water Chemistry | 1                  | 1                 | 1               | 0       | 0.99    |
| Clade           | 1                  | 18622             | 18622           | 5.016   | 0.032   |
| Residuals       | 31                 | 115097            | 3713            |         |         |
| Cadmium         |                    |                   |                 |         |         |
| Water Chemistry | 1                  | 3523814           | 3523814         | 147.929 | 2.0E-16 |
| Clade           | 1                  | 177               | 177             | 0.007   | 0.93    |
| Residuals       | 52                 | 1238693           | 23821           |         |         |
| Nickel          |                    |                   |                 |         |         |
| Water Chemistry | 1                  | 22737             | 22737           | 79.958  | 1.9E-12 |
| Clade           | 1                  | 1018              | 1018            | 3.579   | 0.064   |
| Residuals       | 57                 | 16209             | 284             |         |         |
| Zinc            |                    |                   |                 |         |         |
| Water Chemistry | 1                  | 22671080          | 22671080        | 371.802 | 2.0E-16 |
| Clade           | 1                  | 6588              | 6588            | 0.108   | 0.74    |
| Residuals       | 53                 | 3231743           | 60976           |         |         |

Table 3.4. Two-way ANCOVA data comparing the amount of heavy-metal incorporation variance, for each metal, caused by water chemistry and foraminiferal species. This analysis was conducted for the Sapelo Island and Little Duck Key foraminifera separately.

| Sapelo Island   |                       |                   |                 |         |         |
|-----------------|-----------------------|-------------------|-----------------|---------|---------|
| Arsenic         | Degrees of<br>Freedom | Sum of<br>Squares | Mean<br>Squares | F Ratio | P Value |
| Water Chemistry | 1                     | 0.2               | 0.2             | 0.031   | 0.86    |
| Species         | 1                     | 49.95             | 49.95           | 7.953   | 0.0093  |
| Residuals       | 25                    | 157.01            | 6.28            |         |         |
| Cadmium         |                       |                   |                 |         |         |
| Water Chemistry | 1                     | 3357327           | 3357327         | 120.172 | 1.3E-13 |
| Species         | 1                     | 372               | 372             | 0.013   | 0.91    |
| Residuals       | 40                    | 1117506           | 27938           |         |         |
| Nickel          |                       |                   |                 |         |         |
| Water Chemistry | 1                     | 23                | 22.52           | 0.215   | 0.65    |
| Species         | 1                     | 5                 | 4.82            | 0.046   | 0.83    |
| Residuals       | 37                    | 3872              | 104.65          |         |         |
| Zinc            |                       |                   |                 |         |         |
| Water Chemistry | 1                     | 22544920          | 22544920        | 342.988 | 2.0E-16 |
| Species         | 1                     | 92564             | 92564           | 1.408   | 0.24    |
| Residuals       | 40                    | 2629238           | 65731           |         |         |
| Little Duck Key |                       |                   |                 |         |         |
| Arsenic         | Degrees of<br>Freedom | Sum of<br>Squares | Mean<br>Squares | F Ratio | P Value |
| Water Chemistry | 1                     | 24818             | 24818           | 0.836   | 0.43    |
| Species         | 1                     | 1116              | 1116            | 0.038   | 0.86    |
| Residuals       | 3                     | 89036             | 29679           |         |         |
| Cadmium         |                       |                   |                 |         |         |
| Water Chemistry | 1                     | 1407              | 1407            | 0.160   | 0.69    |
| Species         | 2                     | 36363             | 18182           | 2.071   | 0.19    |
| Residuals       | 8                     | 70228             | 8778            |         |         |
| Nickel          |                       |                   |                 |         |         |
| Water Chemistry | 1                     | 22130             | 22130           | 88.2    | 6.5E-08 |
| Species         | 2                     | 6694              | 3347            | 13.34   | 0.00039 |
| Residuals       | 16                    | 4015              | 251             |         |         |
| Zinc            |                       |                   |                 |         |         |
| Water Chemistry | 1                     | 376734            | 376734          | 24.53   | 0.00079 |
| Species         | 2                     | 56974             | 28487           | 1.855   | 0.21    |
| Residuals       | 9                     | 138226            | 15358           |         |         |

Table 3.5. R2 values representing the strength of the relationship between metal content in the water and the incorporation of that metal by a foraminiferal species. These values have been ranked from strongest to weakest.

| Species                  | Metal   | R <sub>2</sub> Value |
|--------------------------|---------|----------------------|
| Haynesina germanica      | cadmium | 0.930                |
| Quinqueloculina sabulosa | zinc    | 0.890                |
| Ammonia tepida           | cadmium | 0.884                |
| Triloculina oblonga      | zinc    | 0.692                |
| Ammonia tepida           | arsenic | 0.588                |
| Triloculina oblonga      | nickel  | 0.588                |
| Triloculina oblonga      | cadmium | 0.520                |
| Triloculina oblonga      | arsenic | 0.408                |
| Quinqueloculina sabulosa | nickel  | 0.406                |
| Haynesina germanica      | zinc    | 0.278                |
| Haynesina germanica      | arsenic | 0.151                |
| Haynesina germanica      | nickel  | 0.139                |
| Ammonia tepida           | zinc    | 0.136                |
| Quinqueloculina sabulosa | cadmium | 0.119                |
| Ammonia tepida           | nickel  | 0.070                |
| Quinqueloculina sabulosa | arsenic | N/A                  |

## Figures



Fig. 3.1. Aerial views of the sampling sites: A Sapelo Island, Georgia, and B Little Duck Key, Florida (Google Earth).



Fig. 3.2. SEM micrographs of the common foraminifera species that underwent LA-ICP-MS, Row A- Sapelo Island: **1** *Haynesina germanica* (Ehrenberg), **2** *Ammonia tepida* (Cushman) and Row B- Little Duck Key: **3** *Quinqueloculina sabulosa* (Cushman), **4** *Triloculina oblonga* (Montagu). All scale bars =  $100 \, \mu m$ .



Fig. 3.3. Photographs of foraminifera species after LA-ICP-MS, 1 *Ammonia tepida* (Cushman), 2 *Haynesina germanica* (Ehrenberg). Scale bar = 75  $\mu$ m.

# Sapelo Island B A In Cd/Ca in Test (mmol/mol) In As/Ca in Test (mmol/mol) A. tepida H. germanica A. tepida H. german In As/Ca in Water (mmol/mol) In Cd/Ca in Water (mmol/mol) D In Zn/Ca in Test (mmol/mol) In Ni/Ca in Test (mmol/mol) A. tepida H. germanica A. tepida H. germanica In Ni/Ca in Water (mmol/mol) ln Zn/Ca in Water (mmol/mol)

Fig. 3.4. Variation of incorporated trace metals in *A. tepida* and *H. germanica* compared to trace metal content in the experimental seawater for arsenic (A), cadmium (B), nickel (C), and zinc (D).

# Little Duck Key



Fig. 3.5. Variation of incorporated trace metals in *Q. sabulosa* and *T. oblonga* compared to trace metal content in the experimental seawater for arsenic (A), cadmium (B), nickel (C), and zinc (D).

#### CHAPTER 4

# EFFECTS OF VARIED TEMPERATURE AND SALINITY ON ASSEMBLAGES OF FORAMINIFERA GROWN WITH EXPOSURE TO HEAVY-METAL POLLUTANTS (NICKEL AND ZINC)3

#### Abstract

Benthic foraminifera are important environmental indicators of heavy-metal contaminants in marine environments because of their unique sensitivity to environmental change. However, this sensitivity can make parsing the effect of contaminants from other factors such as salinity and temperature difficult. To address this problem, this study compares individually the effects of heavy metals nickel and zinc on temperate rotalids and subtropical miliolids under different temperature and salinity regimes, including intermediate (22°C, 32 psu), elevated temperature (30°C, 32 psu), reduced temperature (18°C, 32 psu), elevated salinity (22°C, 40 psu), and reduced salinity (22°C, 12 psu). Assemblages of foraminifera were grown experimentally from propagules (small juveniles) collected from two shallow marine sites: Sapelo Island, Georgia, and Little Duck Key, Florida. Surface sediment was collected from both locations and sieved immediately after collection. Using the propagule method, assemblages of foraminifera were grown in a controlled setting from propagules in these sediment samples. Either nickel or zinc was added to each assemblage. Experimental conditions were held constant with only metal concentration, salinity, and temperature varying.

Increasing concentrations of nickel and zinc led to decreases in foraminiferal abundance under all temperatures and salinity conditions examined. In addition, high concentrations of nickel and especially zinc resulted in an increase of deformed tests of Sapelo Island foraminifera under intermediate (22°C, 32 psu) and high salinity (22°C, 40 psu) conditions. Far fewer deformities occurred in Sapelo Island assemblages in higher or lower salinities and temperatures. These results support the usefulness of foraminiferal

abundance and species abundance as tools for environmental analysis. Consistent with previous work, results also identify the problems associated with using test deformities alone as a bioindicator tool.

#### Introduction

Benthic foraminifera are known as important environmental indicators of contaminants in marine settings, specifically heavy metals (e.g., Alve, 1991; Alve, 1995; Yanko et al., 1998; Nigam et al., 2006; Frontalini & Coccioni, 2008; Martinez-Colon et al., 2009; Foster et al., 2012; Linshy et al., 2013; Martins et al., 2013; Brouillette Price et al., 2019; Smith & Goldstein, 2019). Their value as indicators stems from their sensitivity to changes in their environment (Boltovskoy et al., 1991; Alve, 1995; Yanko et al., 1994; Nigam et al., 2006; Martinez-Colon et al., 2009; Martins et al., 2013).

However, foraminiferal sensitivity to their environment can make distinguishing the effects of contaminants from other environmental factors difficult (e.g., Geslin et al., 2000; 2002; Lee et al., 2015). For example, foraminiferal assemblages change based on temperature, salinity, solubility of CaCO<sub>3</sub>, water depth, wave action, light intensity, nutrition, substrate, and dissolved oxygen (e.g., Boltovskoy et al., 1991). In previous studies, the propagule method has provided a useful approach to this problem by allowing experimental control of the foraminiferal environment (Alve & Goldstein, 2002; 2003; 2010; 2014; Goldstein & Alve, 2011; Duffield et al., 2014; 2015; Weinmann & Goldstein, 2016; Weinmann et al., 2019; Brouillette Price et al., 2019; Smith & Goldstein, 2019; Smith et al., submitted). This allows for a more constrained analysis of contaminants and their effects on foraminiferal assemblages while limiting confounding factors. As shown in previous research, an ideal bioindicator foraminiferal species will be an easily

identifiable one that is clearly affected by heavy-metal contamination, in abundance, diversity, or test structure (e.g., Alve, 1991; Carnahan et al., 2008; Carnahan et al., 2009; Frontalini et al., 2009). However, if foraminifera are to be used effectively as bioindicators in natural marine settings, we must better understand how environmental factors can alter the effect of contaminants. For example, foraminifera in relatively extreme environments (higher or lower salinity, temperature, etc.) might be more resistant to the impacts of contaminants. It is also possible that foraminifera exposed to these conditions might be weaker and more susceptible to those impacts.

This study examines the effects of nickel and zinc at different temperatures and salinities, on abundance, diversity, and the occurrence of test deformities in experimentally grown assemblages (EGAs) of foraminifera. These EGAs were grown from propagules collected from two shallow-water sites: Sapelo island, Georgia, and Little Duck Key, Florida. The objectives are to (1) identify the impacts of nickel and zinc on foraminiferal assemblages experimentally grown under five different temperature and salinity regimes: intermediate (22°C, 32 psu), high temperature (30°C, 32 psu), low temperature (18°C, 32 psu), high salinity (22°C, 40 psu), and low salinity (22°C, 12 psu); (2) compare the potentially different effects that these contaminants have under these respective conditions; so that (3) the best bioindicator species irrespective of salinity and temperature for either location might be identified.

#### Materials and Methods

Sediment samples were taken from Sapelo Island (31.39021 N 81.28472 W) and Little Duck Key (24.68111 N 81.23194 W) during the summer of 2018 (Fig. 4.1). The upper few millimeters of surface sediment were collected within a ~1 square meter area

at each location. The sediment was sieved using 53- and 850-micron stainless steel sieves. The < 53-micron fraction was transported to the University of Georgia to be used as the source of propagules (e.g., Smith & Goldstein, 2019).

Using the propagule method (Goldstein & Alve, 2011; Alve & Goldstein, 2014), foraminiferal assemblages were grown in incubators from propagules present in the fine sediment (Alve & Goldstein, 2002; 2003; 2010). During growth, these EGAs were each exposed to either nickel or zinc. Nickel and zinc were chosen both because they are common heavy-metal contaminants in coastal marine settings (Alve, 1995), and also because both had produced morphological abnormalities in foraminifera in previous experiments (Smith & Goldstein, 2019; Smith et al., submitted).

The EGAs were grown in polypropylene containers (118 mL). Each container was filled with 20 mL of the < 53-micron sediment fraction from one of the two sites, and 40 mL of Instant Ocean artificial seawater. Following prior experiments, a set concentration of one heavy metal was added to the mixture in each container (Brouillette Price et al., 2019; Smith & Goldstein, 2019; Smith et al, submitted). Both nickel and zinc were added as dissolved chlorides. The concentrations added were based upon the United States Environmental Protection Agency's National Recommended Water Quality Criteria for Saltwater Criteria Maximum Concentration, which were 0.074 mg/L and 0.090 mg/L for nickel and zinc respectively. The Criteria Maximum Concentration (CMC) is the amount of heavy metal that can occur in an aquatic setting briefly before "resulting in an unacceptable effect" (U.S. EPA, 2006). Using these values as a starting place, the added concentrations increased by an order of magnitude for four additional levels for a total of five treatments. For each location, two EGAs were grown as controls without heavy

metals added. Overall, five groups of samples were created: intermediate, high temperature, low temperature, high salinity, and low salinity. Each group contained 44 EGAs total, 10 for each metal at each location, along with two control EGAs at each location, totaling 220 EGAs in all.

Beginning on June 1, 2018, containers were kept at a constant temperature and illuminated on a 12-hour cycle. The containers were rotated twice a week in the incubator to provide equal access to the light source. EGAs in the intermediate group were incubated at 22°C and 32 psu. The high temperature EGAs were incubated at 30°C and 32 psu, while the low temperature EGAs were incubated at 18°C and 32 psu. The high salinity EGAs were incubated at 22°C and 40 psu, while the low salinity EGAs were incubated at 22°C and 12 psu. The intermediate temperature and salinity were chosen to best represent the environment in which the sediment samples were collected. The higher and lower temperature and salinity values were chosen both to illustrate a range of possible effects on the foraminifera-heavy metal interaction, and to maintain realistic environmental values. The pH of the water in all the EGAs (8.1) remained the same as pre-experiment. After one month, the containers were harvested by sieving over a 63micron sieve, and the contents fixed using a 10% formalin mixture, buffered with sodium carbonate to a pH of ~8.0–9.0, containing 1 g/L rose Bengal added as a vital stain (Walton, 1952; Murray & Bowser, 2000).

After one week, the fixative and stain mixture were removed, and the samples were rinsed with tap water and preserved in 50% ethanol. The contents were picked wet for foraminifera, which were identified, and counted. In each EGA, assemblage abundance and species abundance for every species were recorded, along with stained

and non-stained foraminifera. Diversity was calculated as species richness (S) and as Fisher's α. The Berger-Parker index was calculated as a measure of dominance (Berger & Parker, 1970; Hayek et al., 2010; Hayek & Buzas, 2013). Any shell deformities that occurred were recorded and standardized as the percentage deformed of the total assemblage. The dissolved heavy-metal concentration in the water of each EGA was measured using ICP-MS at the end of the experiment (e.g. Smith & Goldstein, 2019; Smith et al., submitted).

Using R software, assemblage total abundance and species abundance were plotted logarithmically against the heavy-metal content of each treatment. In the case of species abundance, only the two most common calcareous species at each location were plotted: *Ammonia tepida* (Cushman) and *Haynesina germanica* (Ehrenberg) at Sapelo Island, *Quinqueloculina sabulosa* Cushman and *Triloculina oblonga* (Montagu) at Little Duck Key (Fig. 4.2); R Core Team, 2019). The percentage of deformed tests was also plotted against heavy-metal content where applicable.

#### Results

Nickel and zinc caused an exponential decline in foraminiferal abundance as concentration increased over the CMC in EGAs from Sapelo Island and Little Duck Key (Figs. 4.3–4.6). This decline occurred in EGAs of all salinities (12, 32, and 40 psu) and temperatures (18, 22, and 30°C). In almost all cases, discrepancies occurred between the amount of metal added and the amount measured in solution after the experiment, which is consistent with previous research (Brouillette Price at al. 2019; Smith & Goldstein, 2019). Because of this, the post-experiment measurements were used throughout.

Abundances of the four most common species, *Ammonia tepida*, *Haynesina germanica*, *Quinqueloculina sabulosa*, and *Triloculina oblonga* declined in response to increased concentrations of nickel and zinc (Figs. 4.7–4.10). This decline occurred in each group of EGAs regardless of salinity or temperature, with three exceptions. In the high temperature EGAs exposed to nickel, *H. germanica* was never abundant and thus did not show a decline (Fig. 4.7), in the low salinity EGAs exposed to zinc, *Q. sabulosa* was never abundant and did not show a decline (Fig. 4.10), and in the low temperature EGAs exposed to zinc, *T. oblonga* was never abundant and also did not show a decline (Fig. 10).

Test deformities occurred in Sapelo Island EGAs exposed to nickel and zinc (Table 4.1), but only occurred in consistently high percentages (with a large sample size) in those exposed to zinc. Specifically, these high percentages occurred mostly in EGAs grown under intermediate conditions (22°C, 32 psu) exposed to zinc (Fig. 4.8). The percentage of deformed tests in these EGAs spikes at zinc concentrations of 0.055 mg/L (33.77 % deformed) and 0.825 mg/L (17.86 % deformed) respectively. The only other EGA with substantial deformities is in the high salinity group exposed to 0.88 mg/L of zinc (19.05 %; Table 4.1). Test deformities were virtually non-existent in EGAs from Little Duck Key exposed to both metals (Table 4.2). In all three assemblages with significant deformities, only rotalid species had deformed tests, with deformed *Ammonia tepida* present in all three, and deformed *Haynesina germanica* present in only one (0.055 mg/L; Table 4.3).

Diversity of the EGAs, measured as species richness, tended to decrease as nickel and zinc concentrations increased at Sapelo Island and Little Duck Key (Table 4.1 and

4.2). This is consistent with previous research (Smith & Goldstein, 2019). In the Sapelo Island EGAs, species richness decreased at nickel concentrations above 0.029 mg/L (22°C, 32 psu), 0.454 mg/L (22°C, 12 psu), 0.355 mg/L (22°C, 40 psu), 1.376 mg/L (18°C, 32 psu), and 0.84 mg/L (22°C, 40 psu). In those exposed to zinc, species richness decreased at concentrations above 0.825 mg/L (22°C, 32 psu), 0.172 mg/L (22°C, 12 psu), 0.88 mg/L (22°C, 40 psu), 0.286 mg/L (18°C, 32 psu), and 0.273 mg/L (30°C, 32 psu). In the Little Duck Key EGAs, species richness decreased at nickel concentrations above 0.299 mg/L (22°C, 32 psu), 0.106 mg/L (22°C, 12 psu), 0.199 mg/L (22°C, 40 psu), 0.02 mg/L (18°C, 32 psu), and 0.175 mg/L (30°C, 32 psu). In those exposed to zinc, species richness decreased at concentrations above 0.274 mg/L (22°C, 32 psu), 1.3 mg/L (22°C, 12 psu), 0.934 mg/L (22°C, 40 psu), 1.174 mg/L (18°C, 32 psu), and 0.723 mg/L (22°C, 32 psu).

Fisher's  $\alpha$  shows no consistent pattern in response to larger concentrations of nickel or zinc in Sapelo Island and Little Duck Key EGAs (Tables 4.1 and 4.2). In some cases, in contrast to species richness, it even increases in response to greater concentrations of heavy metal.

In contrast, dominance as measured by Berger-Parker, generally increases in response to nickel or zinc (Tables 4.1 and 4.2). In intermediate (22°C, 32 psu) and high salinity (22°C, 40 psu), Sapelo Island EGAs exposed to both metals, dominance tends to increase as concentration increases. In low salinity (22°C, 12 psu) and low temperature (18°C, 32 psu) Little Duck Key EGAs exposed to nickel, dominance starts high, decreases, and then increases as concentration increases. In low temperature (18°C, 32

psu) Little Duck Key EGAs exposed to zinc and high temperature (30°C, 32 psu) Little Duck Key EGAs exposed to both metals, dominance increases as concentration increases.

#### Discussion

Previous studies have shown that foraminiferal population density tends to decline in response to heavy-metal contamination (e.g., Alve, 1995; Yanko et al., 1998; Linshy et al., 2013; Brouillette Price et al., 2019; Smith & Goldstein, 2019). The results of this study are consistent with these findings; increased nickel and zinc concentrations result in the exponential decline of overall abundance and individual species abundances in both the Sapelo Island and Little Duck Key EGAs (Smith & Goldstein, 2019). This pattern occurs in EGAs exposed to each set of environmental conditions. The only noticeable difference is a depressed initial abundance in EGAs with low concentrations of metal in high and low salinity and temperature settings (Figs. 4.3–4.6).

Temperature and salinity had the most dramatic effect on the number of test deformities in the assemblages. Deformities primarily occurred in assemblages exposed to zinc, not nickel, which aligns with previous work (Smith & Goldstein, 2019). However, substantial deformities only occurred in assemblages incubated at 22°C and 32 or 40 psu. Assemblages at low salinities, high temperatures, and low temperatures contained a few deformities, but not substantial percentages.

Abundance and Diversity

The most prevalent foraminifera in this study (*Ammonia tepida* and *Haynesina germanica* from Sapelo Island, *Quinqueloculina sabulosa* and *Triloculina oblonga* from Little Duck Key) were all common in assemblages with salinity at 32 psu. However, in assemblages with salinity at 12 psu or 40 psu, these species proved much less common.

Foraminiferal response to salinity depends heavily on the species involved and their specific salinity preferences (Boltovskoy et al., 1991). Both elevated and lowered salinities can act as a stressor on foraminiferal populations (Murray, 1973; Brasier, 1975; Scott & Medioli, 1980a; Boltovskoy et al., 1991). The combination of elevated or lowered salinities and heavy-metal contamination could amplify the negative effects on foraminifera. However, in this study, foraminiferal response to increased heavy-metal concentrations remained fairly consistent across all salinities tested with total abundance declining, in most cases exponentially. The coefficients for each plot are relatively similar to one another and show similar declines (Figs. 4.3–4.6). Because the abundance of foraminifera in the uncontaminated high and low salinity assemblages were comparatively low, the decrease in abundance as nickel and zinc concentration increases is less dramatic in most cases.

Both locations in this study are warm-water locations, with Sapelo Island varying more seasonally (7–31°C) than Little Duck Key (17–31°C; Goldstein & Alve, 2011; Weinmann & Goldstein, 2016). The most prevalent foraminifera in this study were all common in assemblages with temperature at 22°C. However, in assemblages with temperature at 18°C or 30°C, these species proved much less abundant. As with salinity, similar coefficients indicate foraminiferal response to increased heavy-metal concentrations remained relatively consistent across all temperatures tested with total abundance declining exponentially in most cases (Figs. 4.3–4.6). Because the abundance of foraminifera in the high and low temperature control assemblages were comparatively low (Tables 4.1 and 4.2), the decrease in abundance as nickel and zinc concentration increases is less severe in most cases.

The decline of species richness and more inconsistent response of Fisher's  $\alpha$  are both consistent with previous findings (Smith & Goldstein, 2019). Species richness is the number of species present, while Fisher's  $\alpha$  is equivalent to the number of singletons present. The decline in number of species makes sense as less species are able to tolerate the contamination as heavy metal concentration increases. The number of singletons is less likely to decrease, because as concentration increases, often there are more singletons of species that had been more prevalent at lower concentrations. Because of this, species richness is probably a better indicator of diversity in this specific case. Regardless, diversity responds in similar ways to greater nickel and zinc concentrations regardless of salinity or temperature (Tables 4.1 and 4.2), which supports the use of diversity in heavy-metal contamination monitoring.

#### Test Deformities

Salinity may be related to morphologic test changes in foraminifera (Boltovskoy et al., 1991). In salinities lower than a species' preference, tests are reportedly smaller, more thin-walled, and have decreased ornamentation (Tappan, 1951; Morishima, 1955; Kurc, 1961; Wright, 1968; Murray, 1991; Murray, 2006). Other types of morphologic change have been reported in response to hypersaline environments (Brasier, 1975; Scott & Medioli, 1980). However, no test deformities were present in the hypersaline or hyposaline assemblages grown without exposure to a metal. The only significant deformities occurred in the two assemblages grown at normal salinity (32 psu), and in one assemblage at high salinity (40 psu), both exposed to elevated concentrations of zinc.

No major differences in the composition of species assemblages exist in the three EGAs with significant test deformities, (Table 4.3). In all three, the primary species

effected are *Ammonia tepida*, with deformed *Haynesina germanica* present only in one of the intermediate EGAs (0.055 mg/L). The relative lack of deformities in the high and low salinity assemblages exposed to zinc is puzzling. Studies have reported extensive deformities, specifically in *A. tepida*, in environments that are consistently hypersaline (Stouff, 1999a; 1999b; Debenay et al., 2001; Geslin et al., 2002). However, other research has shown that foraminifera can occur in hypersaline environments with virtually no test deformities (Scott et al., 1976; Malmgren, 1984; Boltovskoy et al., 1991). Another possible explanation is the lack of salinity fluctuation during the experiment. In all of the EGAs, the salinity, whether elevated, intermediate, or reduced, was constant throughout. The root cause of test deformities in hypersaline and hyposaline environments could be caused by the fluctuation of salinity and not the high or low salinity alone (Arnal, 1955; Tufescu, 1968; Closs & Madeira, 1968; Boltovskoy et al., 1991; Murray, 2006; Lee et al., 2015).

Temperature is also suspected to play a significant role in foraminiferal test structure (Carpenter, 1856; Schnitker, 1974; Walton and Sloan, 1990; Boltovskoy et al., 1991; Murray, 2006). Specifically, decreases in temperature are thought to cause size increases of tests (Bandy, 1963; Arnold, 1967; Boltovskoy et al., 1991), however, some contradictory evidence shows the opposite to be true (Phleger and Hamilton, 1946; Theyer, 1971). Regarding other morphological changes, results seem to vary depending on the species involved (Schnitker, 1974; Miller et al., 1982; Walton & Sloan, 1990; Boltovskoy et al., 1991; Murray, 2006). For example, temperature variation reportedly causes multiple test shapes in *Ammonia beccarii* (Linnaeus; Schnitker, 1974; Walton and Sloan, 1990) and *Elphidium excavatum* (Terquem; Miller et al., 1982). In this study,

similar to salinity, temperature alone caused no noticeable deformities in the foraminifera. This is unusual as previous propagule experiments from Sapelo Island have shown numerous deformities in foraminifera grown with exposure to zinc at 18°C (Brouillette Price et al., 2019). The depressed foraminiferal abundance in high and low temperature assemblages possibly resulted in fewer deformed tests. Temperature variation could also cause less significant test deformities comparable to other factors such as pollution and salinity.

#### Conclusions

Nickel and zinc have a negative effect on foraminiferal population abundance at concentrations above the U.S. EPA's Criteria Maximum Concentration. This negative effect was present under all salinity and temperature conditions tested. Diversity in richness showed decline in response to higher metal concentrations in some, but not all cases, while diversity in Fisher's  $\alpha$  is more inconsistent in response.

The most common calcareous species from each location (*Haynesina germanica* and *Ammonia tepida* at Sapelo Island and *Quinqueloculina sabulosa* and *Triloculina oblonga* at Little Duck Key) declined as nickel and zinc concentrations increased under all environmental conditions. However, these species persisted at greater concentrations across the range of salinities and temperatures tested, making them viable bioindicators in multiple types of environments.

Confirming, previous studies, zinc was more likely to cause major test deformities than nickel, and rotalid species such as *Ammonia tepida* and *Haynesina germanica* were much more susceptible to deformation than miliolid species. However, these deformities only occurred in assemblages at temperatures of 22°C and salinities of 32 psu and 40 psu.

In EGAs exposed to higher or lower salinities and temperatures, very few deformities occurred.

## **Tables**

Table 4.1. Diversity data, including number of specimens (N), number of species (S), Fisher's  $\alpha$ , Berger-Parker Index, and the percentage of deformed tests for the assemblages grown from Sapelo Island propagules. The symbol N/A denotes an undetectable value.

| Sapelo Island (22º 3 | 2 PSU)        |     |   |                       |            |               |
|----------------------|---------------|-----|---|-----------------------|------------|---------------|
| Expected (mg/L)      | Actual (mg/L) | N   | S | Deformed<br>Tests (%) | Fisher's α | Berger-Parker |
| Nickel               |               |     |   |                       |            |               |
| 0.074 (A)            | 0.011         | 36  | 4 | 0                     | 1.15       | 0.44          |
| 0.074 (B)            | 0.023         | 37  | 4 | 5.41                  | 1.14       | 0.59          |
| 0.74 (A)             | 0.016         | 260 | 7 | 0.77                  | 1.32       | 0.37          |
| 0.74 (B)             | 0.029         | 225 | 8 | 1.33                  | 1.62       | 0.33          |
| 7.4 (A)              | 0.438         | 40  | 3 | 0                     | 0.75       | 0.40          |
| 7.4 (B)              | 0.323         | 35  | 2 | 2.86                  | 0.46       | 0.46          |
| 74 (A)               | 6.24          | 8   | 2 | 0                     | 0.85       | 0.50          |
| 74 (B)               | 26.73         | 3   | 2 | 33.33                 | 2.62       | 0.67          |
| 740 (A)              | 151.1         | 17  | 3 | 0                     | 1.06       | 0.88          |
| 740 (B)              | 264.4         | 14  | 2 | 0                     | 0.64       | 0.71          |
| Zinc                 |               |     |   |                       |            |               |
| 0.09 (A)             | 0.015         | 109 | 6 | 0                     | 1.37       | 0.34          |
| 0.09 (B)             | 0.168         | 104 | 9 | 0                     | 2.36       | 0.38          |
| 0.9 (A)              | 0.02          | 132 | 4 | 1.52                  | 0.78       | 0.65          |
| 0.9 (B)              | 0.024         | 110 | 7 | 0.91                  | 1.66       | 0.28          |
| 9.0 (A)              | 0.825         | 28  | 5 | 17.86                 | 1.77       | 0.54          |
| 9.0 (B)              | 0.055         | 77  | 4 | 33.77                 | 0.89       | 0.53          |
| 90 (A)               | 17.05         | 0   | 0 | 0                     | 0          | 0             |
| 90 (B)               | 20.46         | 8   | 1 | 37.50                 | 0.30       | 1             |
| 900 (A)              | 518.5         | 1   | 1 | 0                     | N/A        | 1             |
| 900 (B)              | 634.5         | 0   | 0 | 0                     | 0          | 0             |
| Controls             |               |     |   |                       |            |               |
| Nickel (mg/L)        | Zinc (mg/L)   |     |   |                       |            |               |
| 1 0.0406             | 0.0123        | 124 | 3 | 0                     | 0.55       | 0.55          |
| 2 0.0424             | 0.0115        | 111 | 2 | 1.80                  | 0.34       | 0.74          |
| Sapelo Island (22º 1 | 2 PSU)        |     |   |                       |            |               |
| Expected (mg/L)      | Actual (mg/L) | N   | S | Deformed<br>Tests (%) | Fisher's α | Berger-Parker |
| Nickel               |               |     |   |                       |            |               |
| 0.074 (A)            | 0.007         | 56  | 5 | 0                     | 1.33       | 0.50          |
| 0.074 (B)            | 0.008         | 128 | 5 | 0                     | 1.04       | 0.55          |

| 0.74    | l (A)             | 0.019         | 142 | 5 | 0                     | 1.01       | 0.73         |
|---------|-------------------|---------------|-----|---|-----------------------|------------|--------------|
| 0.74    | l (B)             | 0.019         | 136 | 5 | 0                     | 1.02       | 0.75         |
| 7.4 (A) |                   | 0.454         | 30  | 5 | 0                     | 1.71       | 0.33         |
| 7.4     | (B)               | 0.509         | 41  | 5 | 0                     | 1.49       | 0.54         |
| 74 (    | A)                | 6.58          | 21  | 4 | 4.76                  | 1.46       | 0.48         |
| 74 (    | В)                | 5.88          | 10  | 3 | 10                    | 1.45       | 0.80         |
| 740     | (A)               | 154.4         | 22  | 3 | 0                     | 0.94       | 0.68         |
| 740     | (B)               | 316.4         | 15  | 2 | 0                     | 0.62       | 0.60         |
| Zinc    | :                 |               |     |   |                       |            |              |
| 0.09    | 9 (A)             | 0             | 203 | 6 | 0                     | 1.16       | 0.66         |
| 0.09    | ) (B)             | 0.059         | 166 | 6 | 0                     | 1.22       | 0.61         |
| 0.9     | (A)               | 0.172         | 60  | 4 | 0                     | 0.96       | 0.77         |
| 0.9     | (B)               | 0.01          | 60  | 6 | 0                     | 1.66       | 0.38         |
| 9.0     | (A)               | 0.817         | 62  | 2 | 0                     | 0.39       | 0.95         |
| 9.0     | (B)               | 0.634         | 45  | 1 | 0                     | 0.18       | 1            |
| 90 (    | A)                | 9.78          | 13  | 2 | 0                     | 0.66       | 0.62         |
| 90 (    | В)                | 24.09         | 18  | 2 | 0                     | 0.57       | 0.61         |
| 900     | (A)               | 615.8         | 4   | 1 | 0                     | 0.43       | 1            |
| 900     | (B)               | 865.7         | 5   | 2 | 0                     | 1.24       | 0.80         |
| Con     | trols             |               |     |   |                       |            |              |
|         | Nickel (mg/L)     | Zinc (mg/L)   |     |   |                       |            |              |
| 1       | 0.0255            | 0.00501       | 105 | 5 | 0                     | 1.09       | 0.43         |
| 2       | 0.0205            | 0.00688       | 132 | 6 | 0                     | 1.29       | 0.42         |
| Sap     | elo Island (22º 4 | 0 PSU)        |     |   |                       |            |              |
| Ехр     | ected (mg/L)      | Actual (mg/L) | N   | S | Deformed<br>Tests (%) | Fisher's α | Berger-Parke |
| Nick    | cel               |               |     |   |                       |            |              |
| 0.07    | 74 (A)            | 0.015         | 97  | 4 | 0                     | 0.84       | 0.56         |
| 0.07    | 74 (B)            | 0.015         | 108 | 3 | 0                     | 0.57       | 0.47         |

| Expected (mg/L) | Actual (mg/L) | N   | S | Deformed<br>Tests (%) | Fisher's α | Berger-Parker |
|-----------------|---------------|-----|---|-----------------------|------------|---------------|
| Nickel          |               |     |   |                       |            |               |
| 0.074 (A)       | 0.015         | 97  | 4 | 0                     | 0.84       | 0.56          |
| 0.074 (B)       | 0.015         | 108 | 3 | 0                     | 0.57       | 0.47          |
| 0.74 (A)        | 0.027         | 60  | 3 | 1.67                  | 0.66       | 0.67          |
| 0.74 (B)        | 0.027         | 94  | 6 | 0                     | 1.43       | 0.45          |
| 7.4 (A)         | 0.203         | 93  | 7 | 0                     | 1.75       | 0.38          |
| 7.4 (B)         | 0.355         | 131 | 5 | 0                     | 1.03       | 0.56          |
| 74 (A)          | 15.1          | 11  | 1 | 0                     | 0.27       | 1             |
| 74 (B)          | 9.49          | 9   | 1 | 0                     | 0.29       | 1             |
| 740 (A)         | 145.5         | 17  | 2 | 0                     | 0.59       | 0.65          |
| 740 (B)         | 238.9         | 15  | 3 | 0                     | 1.12       | 0.40          |
| Zinc            |               |     |   |                       |            |               |
| 0.09 (A)        | 0             | 160 | 6 | 0                     | 1.23       | 0.60          |
| 0.09 (B)        | 0             | 152 | 6 | 0                     | 1.25       | 0.49          |

| 0.9 (B) 0. 117 7 1.71 1.63 0.62 9.0 (A) 0.88 21 2 1 19.05 0.54 0.52 9.0 (B) 0.113 8 2 0 0.85 0.63 90 (A) 11.15 0 0 0 0 0.00 0.00 90 (B) 11.07 0 0 0 0 0.00 0.60 900 (B) 636.5 24 3 0 0.90 0.71  Controls    Nickel (mg/L)   Zinc (mg/L)   1 0.002 0.0043 118 4 0 0.80 0.55 2 0.0203 0.00614 128 5 0 1.04 0.40  Sapelo Island (18° 32 PSU)    Expected (mg/L)   Actual (mg/L)   N   S   Deformed Fisher's α   Berger-Parker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |               |     |   |       |            |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----|---|-------|------------|---------------|
| 9.0 (A)         0.88         21         2         19.05         0.54         0.52           9.0 (B)         0.113         8         2         0         0.85         0.63           90 (A)         11.15         0         0         0         0.00         0           90 (B)         11.07         0         0         0.00         0.00         0           900 (B)         636.5         24         3         0         0.90         0.71           Controls           Nickel (mg/L)         Zinc (mg/L)         V         V         V         V         Deformed Tests (%)         0.80         0.55           2 0.0203         0.00614         128         5         0         1.04         0.40           Sapelo Island (189* 2* PSU)           Expected (mg/L)         Actual (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Fisher's α         Berger-Parker           Expected (mg/L)         Actual (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Fisher's α         Berger-Parker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9 (A)              | 0.005         | 108 | 7 | 3.70  | 1.67       | 0.53          |
| 9.0 (β)         0.113         8         2         0         0.85         0.63           90 (A)         11.15         0         0         0         0.00         0           90 (B)         11.07         0         0         0         0.00         0           900 (B)         636.5         24         3         0         0.90         0.71           Coutrois           Nickel (mg/L)         Zinc (mg/L)         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 0             | 117 |   |       | 1.63       |               |
| 90 (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.0 (A)              | 0.88          | 21  | 2 | 19.05 | 0.54       | 0.52          |
| 90 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.0 (B)              | 0.113         | 8   | 2 | 0     | 0.85       | 0.63          |
| 900 (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90 (A)               | 11.15         | 0   | 0 | 0     | 0.00       | 0             |
| Policy   Policy | 90 (B)               | 11.07         | 0   | 0 | 0     | 0.00       | 0             |
| Nickel (mg/L)   Zinc (mg/L)     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900 (A)              | 581.9         | 16  | 2 | 0     | 0.60       | 0.81          |
| Nickel (mg/L)   Zinc (mg/L)     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900 (B)              | 636.5         | 24  | 3 | 0     | 0.90       | 0.71          |
| 1         0.0202         0.00403         118         4         0         0.80         0.55           2         0.0203         0.00614         128         5         0         1.04         0.40           Sapelo Island (18° 32 PSU)           Expected (mg/L)         Actual (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nicket           USA (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nicket           USA (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nicket           USA (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nicket           USA (mg/L)         0.02         0.48         0.4         0.02         0.21         0.48         0.48         0.04         0.02         0.34         0.02         0.21         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Controls             |               |     |   |       |            |               |
| Sapelo Island (18° 32 PSU)           Expected (mg/L)         Actual (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nickel           No 12 (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           No 12 (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           No 12 (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           No 12 (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           No 12 (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           No 12 (mg/L)         N         S         0         1.26         0.48           0.074 (B)         0.012 (mg/L)         64 (mg/L)         0         0.221 (mg/L)         0.29           0.74 (A)         0.099         55 (mg/L)         6.41 (mg/L)         1.19 (mg/L)         0.72           74 (B)         1.376 (mg/L)         78 (mg/L)         2 (mg/L)         0.62 (mg/L)         0.60 (mg/L) <tr< td=""><td>Nickel (mg/L)</td><td>Zinc (mg/L)</td><td></td><td></td><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nickel (mg/L)        | Zinc (mg/L)   |     |   |       |            |               |
| Expected (mg/L)         Actual (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nickel           0.074 (A)         0.02         65         5         0         1.26         0.48           0.074 (B)         0.012         64         6         0         1.62         0.34           0.74 (A)         0.019         31         6         0         1.58         0.26           7.4 (B)         0.015         69         6         0         1.58         0.26           7.4 (A)         0.909         55         6         0         1.71         0.40           7.4 (B)         1.376         78         5         6.41         1.19         0.72           7.4 (A)         9.64         10         3         0         1.45         0.50           7.4 (B)         9.64         4         2         0         1.59         0.50           7.4 (B)         9.64         4         2         0         0.62         0.60           7.4 (B)         9.64         4         2         0         0.62         0.60           7.4 (B)         9.64         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0.0202             | 0.00403       | 118 | 4 | 0     | 0.80       | 0.55          |
| Expected (mg/L)         Actual (mg/L)         N         S         Deformed Tests (%)         Fisher's α         Berger-Parker           Nickel           0.074 (A)         0.02         65         5         0         1.26         0.48           0.074 (B)         0.012         64         6         0         1.62         0.34           0.74 (A)         0.019         31         6         0         2.21         0.29           0.74 (B)         0.015         69         6         0         1.58         0.26           7.4 (A)         0.909         55         6         0         1.71         0.40           7.4 (B)         1.376         78         5         6.41         1.19         0.72           74 (A)         9.64         10         3         0         1.45         0.50           74 (B)         9.64         4         2         0         1.59         0.50           74 (B)         9.64         4         2         0         0.62         0.60           74 (B)         9.64         4         2         0         0.62         0.60           74 (B)         9.64         4         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 0.0203             | 0.00614       | 128 | 5 | 0     | 1.04       | 0.40          |
| Nickel         No. 1         Serger-Parker           0.074 (A)         0.02         65         5         0         1.26         0.48           0.074 (B)         0.012         64         6         0         1.62         0.34           0.74 (B)         0.019         31         6         0         2.21         0.29           0.74 (B)         0.015         69         6         0         1.58         0.26           7.4 (A)         0.909         55         6         0         1.71         0.40           7.4 (B)         1.376         78         5         6.41         1.19         0.72           74 (A)         9.64         10         3         0         1.45         0.50           74 (B)         9.64         4         2         0         1.59         0.50           74 (B)         9.64         4         2         0         1.59         0.50           74 (B)         9.64         4         2         0         0.62         0.60           74 (B)         9.64         4         2         0         0.62         0.60           74 (B)         30.15         7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sapelo Island (18º 3 | 32 PSU)       |     |   |       |            |               |
| 0.074 (A)         0.02         65         5         0         1.26         0.48           0.074 (B)         0.012         64         6         0         1.62         0.34           0.74 (A)         0.019         31         6         0         2.21         0.29           0.74 (B)         0.015         69         6         0         1.58         0.26           7.4 (A)         0.909         55         6         0         1.71         0.40           7.4 (B)         1.376         78         5         6.41         1.19         0.72           74 (A)         9.64         10         3         0         1.45         0.50           74 (B)         9.64         4         2         0         0.62         0.60           740 (A)         242.4         15         2         0         0.62         0.60           740 (B)         301.5         7         1         0         0.32         1           Zinc           0.09 (A)         0.007         52         5         0         1.36         0.35           0.9 (B)         0.008         48         4         2.08         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Expected (mg/L)      | Actual (mg/L) | N   | S |       | Fisher's α | Berger-Parker |
| 0.074 (B)       0.012       64       6       0       1.62       0.34         0.74 (A)       0.019       31       6       0       2.21       0.29         0.74 (B)       0.015       69       6       0       1.58       0.26         7.4 (A)       0.909       55       6       0       1.71       0.40         7.4 (B)       1.376       78       5       6.41       1.19       0.72         74 (A)       9.64       10       3       0       1.45       0.50         74 (B)       9.64       4       2       0       1.59       0.50         740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         Zinc         Zinc       0       0.62       0.60         Zinc       0       0.62       0.60         Zinc       0       0.32       1         Zinc       0       0.32       1          0       0.32       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nickel               |               |     |   |       |            |               |
| 0.74 (A)       0.019       31       6       0       2.21       0.29         0.74 (B)       0.015       69       6       0       1.58       0.26         7.4 (A)       0.909       55       6       0       1.71       0.40         7.4 (B)       1.376       78       5       6.41       1.19       0.72         74 (A)       9.64       10       3       0       1.45       0.50         74 (B)       9.64       4       2       0       1.59       0.50         740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         Zinc         Zinc         0.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (B)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.074 (A)            | 0.02          | 65  | 5 | 0     | 1.26       | 0.48          |
| 0.74 (B)       0.015       69       6       0       1.58       0.26         7.4 (A)       0.909       55       6       0       1.71       0.40         7.4 (B)       1.376       78       5       6.41       1.19       0.72         74 (A)       9.64       10       3       0       1.45       0.50         740 (B)       9.64       4       2       0       1.59       0.50         740 (B)       301.5       7       1       0       0.32       1         Zinc         Zinc       2       0       1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.074 (B)            | 0.012         | 64  | 6 | 0     | 1.62       | 0.34          |
| 7.4 (A)       0.909       55       6       0       1.71       0.40         7.4 (B)       1.376       78       5       6.41       1.19       0.72         74 (A)       9.64       10       3       0       1.45       0.50         74 (B)       9.64       4       2       0       1.59       0.50         740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         Zinc         0.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.74 (A)             | 0.019         | 31  | 6 | 0     | 2.21       | 0.29          |
| 7.4 (B)       1.376       78       5       6.41       1.19       0.72         74 (A)       9.64       10       3       0       1.45       0.50         74 (B)       9.64       4       2       0       1.59       0.50         740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         Zinc         D.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.74 (B)             | 0.015         | 69  | 6 | 0     | 1.58       | 0.26          |
| 74 (A)       9.64       10       3       0       1.45       0.50         74 (B)       9.64       4       2       0       1.59       0.50         740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         Zinc         D.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.62       0.73         900 (B)       698.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.4 (A)              | 0.909         | 55  | 6 | 0     | 1.71       | 0.40          |
| 74 (B)       9.64       4       2       0       1.59       0.50         740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         USD         0.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (B)       698.3       15       2       0       0.62       0.73         Controls </td <td>7.4 (B)</td> <td>1.376</td> <td>78</td> <td>5</td> <td>6.41</td> <td>1.19</td> <td>0.72</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4 (B)              | 1.376         | 78  | 5 | 6.41  | 1.19       | 0.72          |
| 740 (A)       242.4       15       2       0       0.62       0.60         740 (B)       301.5       7       1       0       0.32       1         Zinc         0.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (B)       698.3       15       2       0       0.62       0.73         Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 74 (A)               | 9.64          | 10  | 3 | 0     | 1.45       | 0.50          |
| 740 (B)         301.5         7         1         0         0.32         1           Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74 (B)               | 9.64          | 4   | 2 | 0     | 1.59       | 0.50          |
| Zinc         0.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (A)       683.5       5       1       0       0.38       1         900 (B)       698.3       15       2       0       0.62       0.73         Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 740 (A)              | 242.4         | 15  | 2 | 0     | 0.62       | 0.60          |
| 0.09 (A)       0.007       52       5       0       1.36       0.35         0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (A)       683.5       5       1       0       0.38       1         900 (B)       698.3       15       2       0       0.62       0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 740 (B)              | 301.5         | 7   | 1 | 0     | 0.32       | 1             |
| 0.09 (B)       0.008       48       4       2.08       1.04       0.58         0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (A)       683.5       5       1       0       0.38       1         900 (B)       698.3       15       2       0       0.62       0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zinc                 |               |     |   |       |            |               |
| 0.9 (A)       0.024       85       3       2.35       0.61       0.78         0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (A)       683.5       5       1       0       0.38       1         900 (B)       698.3       15       2       0       0.62       0.73     Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09 (A)             | 0.007         | 52  | 5 | 0     | 1.36       | 0.35          |
| 0.9 (B)       0.024       115       3       0.87       0.56       0.75         9.0 (A)       0.286       21       2       0       0.54       0.81         9.0 (B)       0.179       85       4       8.24       0.87       0.65         90 (A)       12.12       15       2       0       0.62       0.73         90 (B)       9.96       10       2       0       0.75       0.80         900 (A)       683.5       5       1       0       0.38       1         900 (B)       698.3       15       2       0       0.62       0.73    Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09 (B)             | 0.008         | 48  | 4 | 2.08  | 1.04       | 0.58          |
| 9.0 (A) 0.286 21 2 0 0.54 0.81<br>9.0 (B) 0.179 85 4 8.24 0.87 0.65<br>90 (A) 12.12 15 2 0 0.62 0.73<br>90 (B) 9.96 10 2 0 0.75 0.80<br>900 (A) 683.5 5 1 0 0.38 1<br>900 (B) 698.3 15 2 0 0.62 0.73<br>Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9 (A)              | 0.024         | 85  | 3 | 2.35  | 0.61       | 0.78          |
| 9.0 (B) 0.179 85 4 8.24 0.87 0.65<br>90 (A) 12.12 15 2 0 0.62 0.73<br>90 (B) 9.96 10 2 0 0.75 0.80<br>900 (A) 683.5 5 1 0 0.38 1<br>900 (B) 698.3 15 2 0 0.62 0.73<br>Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9 (B)              | 0.024         | 115 | 3 | 0.87  | 0.56       | 0.75          |
| 90 (A) 12.12 15 2 0 0.62 0.73<br>90 (B) 9.96 10 2 0 0.75 0.80<br>900 (A) 683.5 5 1 0 0.38 1<br>900 (B) 698.3 15 2 0 0.62 0.73<br>Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0 (A)              | 0.286         | 21  | 2 | 0     | 0.54       | 0.81          |
| 90 (B) 9.96 10 2 0 0.75 0.80<br>900 (A) 683.5 5 1 0 0.38 1<br>900 (B) 698.3 15 2 0 0.62 0.73<br>Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0 (B)              | 0.179         | 85  | 4 | 8.24  | 0.87       | 0.65          |
| 900 (A) 683.5 5 1 0 0.38 1<br>900 (B) 698.3 15 2 0 0.62 0.73<br>Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90 (A)               | 12.12         | 15  | 2 | 0     | 0.62       | 0.73          |
| 900 (B) 698.3 15 2 0 0.62 0.73  Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90 (B)               | 9.96          | 10  | 2 | 0     | 0.75       | 0.80          |
| Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900 (A)              | 683.5         | 5   | 1 | 0     | 0.38       | 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 900 (B)              | 698.3         | 15  | 2 | 0     | 0.62       | 0.73          |
| Michael (mark) - Parada mili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Controls             |               |     |   |       |            |               |
| NICKEI (mg/L) ZINC (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel (mg/L)        | Zinc (mg/L)   |     |   |       |            |               |

0

1.11

0.46

5

98

0.0390

1

0.00574

| 2       | 0.0380            | 0.517         | 124      | 6 | 0 1.32                |            | 0.43          |
|---------|-------------------|---------------|----------|---|-----------------------|------------|---------------|
| Sap     | elo Island (30º 3 | 2 PSU)        |          |   |                       |            |               |
| Ехр     | ected (mg/L)      | Actual (mg/L) | N        | S | Deformed<br>Tests (%) | Fisher's α | Berger-Parker |
| Nic     | kel               |               |          |   |                       |            |               |
| 0.0     | 74 (A)            | 0.0124        | 41       | 3 | 0                     | 0.75       | 0.85          |
| 0.0     | 74 (B)            | 0.0152        | 212      | 7 | 0                     | 1.39       | 0.47          |
| 0.74    | 4 (A)             | 0.0263        | 220      | 4 | 0                     | 0.69       | 0.48          |
| 0.74    | 4 (B)             | 0.0287        | 141      | 6 | 0                     | 1.27       | 0.55          |
| 7.4     | (A)               | 0.192         | 100      | 6 | 0                     | 1.40       | 0.54          |
| 7.4     | (B)               | 0.1744        | 39       | 5 | 0                     | 1.52       | 0.33          |
| 74 (    | (A)               | 1.3           | 21       | 2 | 0                     | 0.54       | 0.62          |
| 74 (    | (B)               | 0.84          | 35       | 4 | 8.57 1.16             |            | 0.37          |
| 740     | ) (A)             | 111.3         | 3 10 2 0 |   | 0.75                  | 0.70       |               |
| 740 (B) |                   | 116.9         | 9        | 2 | 0                     | 0.80       | 0.56          |
| Zin     | С                 |               |          |   |                       |            |               |
| 0.0     | 9 (A)             | 0             | 104      | 7 | 0                     | 1.69       | 0.43          |
| 0.0     | 9 (B)             | 0             | 80       | 6 | 0                     | 1.50       | 0.55          |
| 0.9     | (A)               | 0             | 104      | 4 | 0                     | 0.83       | 0.76          |
| 0.9     | (B)               | 0             | 60       | 4 | 0                     | 0.96       | 0.55          |
| 9.0     | (A)               | 0.103         | 143      | 5 | 9.79                  | 1.01       | 0.52          |
| 9.0     | (B)               | 0.273         | 57       | 3 | 7.02                  | 0.67       | 0.49          |
| 90 (    | (A)               | 1.64          | 12       | 2 | 0                     | 0.69       | 0.58          |
| 90 (    | (B)               | 3.42          | 15       | 3 | 0                     | 1.12       | 0.53          |
| 900     | ) (A)             | 595.7         | 0        | 0 | 0                     | 0.00       | 0             |
| 900     | ) (B)             | 291           | 3        | 2 | 0                     | 2.62       | 0.67          |
| Cor     | ntrols            |               |          |   |                       |            |               |
|         | Nickel (mg/L)     | Zinc (mg/L)   |          |   |                       |            |               |
| 1       | 0.0351            | 1.068         | 104      | 4 | 0                     | 0.83       | 0.61          |
| 2       | 0.0336            | 0.00956       | 98       | 4 | 0                     | 0.84       | 0.35          |

Table 4.2. Diversity data, including number of specimens (N), number of species (S), Fisher's α, Berger-Parker Index, and the percentage of deformed tests for the assemblages grown from Little Duck Key propagules. The symbol N/A denotes an undetectable value.

|                 | Ouck Key (22º |               |     |    | Deformed              | <b>-</b> 1 ' |               |
|-----------------|---------------|---------------|-----|----|-----------------------|--------------|---------------|
| Expect          | ted (mg/L)    | Actual (mg/L) | N   | 5  | Tests (%)             | Fisher's α   | Berger-Parker |
| Nickel          |               |               |     |    |                       |              |               |
| 0.074 (A)       |               | 0.123         | 100 | 11 | 0                     | 3.15         | 0.32          |
| 0.074 (         | (B)           | 0.083         | 102 | 7  | 0                     | 1.70         | 0.29          |
| 0.74 ( <i>A</i> | ٨)            | 0.233         | 73  | 10 | 0                     | 3.13         | 0.22          |
| 0.74 (E         | 3)            | 0.299         | 35  | 7  | 0                     | 2.63         | 0.31          |
| 7.4 (A)         |               | 1.341         | 12  | 9  | 0                     | 16.34        | 0.25          |
| 7.4 (B)         |               | 1.748         | 27  | 6  | 0                     | 2.39         | 0.81          |
| 74 (A)          |               | 25.62         | 6   | 5  | 0                     | 14.11        | 0.33          |
| 74 (B)          |               | 17.86         | 2   | 2  | 0                     | N/A          | 0.50          |
| 740 (A          | )             | 290.1         | 7   | 2  | 0                     | 0.93         | 0.71          |
| 740 (B          | )             | 336.7         | 8   | 2  | 0                     | 0.85         | 0.75          |
| Zinc            |               |               |     |    |                       |              |               |
| 0.09 ( <i>A</i> | ٨)            | 0.045         | 46  | 6  | 0                     | 1.84         | 0.35          |
| 0.09 (E         | 3)            | 0.047         | 72  | 7  | 0                     | 1.92         | 0.25          |
| 0.9 (A)         |               | 0.251         | 22  | 8  | 0                     | 4.52         | 0.36          |
| 0.9 (B)         |               | 0.274         | 21  | 5  | 0                     | 2.07         | 0.38          |
| 9.0 (A)         |               | 2.415         | 1   | 1  | 0                     | N/A          | 1             |
| 9.0 (B)         |               | 1.839         | 3   | 3  | 0                     | N/A          | 0.33          |
| 90 (A)          |               | 5.4           | 3   | 3  | 0                     | N/A          | 0.33          |
| 90 (B)          |               | 5.61          | 3   | 3  | 0                     | N/A          | 0.33          |
| 900 (A          | )             | 9.1           | 0   | 0  | 0                     | 0            | 0             |
| 900 (B          | )             | 10.8          | 0   | 0  | 0                     | 0            | 0             |
| Contro          | ols           |               |     |    |                       |              |               |
| N               | lickel (mg/L) | Zinc (mg/L)   |     |    |                       |              |               |
| 1 0             | 0.0188        | 0.00369       | 88  | 7  | 0                     | 1.79         | 0.33          |
| 2 0             | 0.0169        | 0.00316       | 84  | 9  | 0                     | 2.55         | 0.25          |
| Little [        | Ouck Key (22º | 12 PSU)       |     |    |                       |              |               |
| Expect          | ted (mg/L)    | Actual (mg/L) | N   | s  | Deformed<br>Tests (%) | Fisher's α   | Berger-Parke  |
| Nickel          |               |               |     |    |                       |              |               |
| 0.074 (         | (A)           | 0.11          | 38  | 3  | 0                     | 0.76         | 0.71          |
| 0.074 (         | (B)           | 0.091         | 57  | 3  | 0                     | 0.67         | 0.61          |
| 0.74 (A)        |               | 0.098         | 0   | 0  | 0                     | 0            | 0             |

| 7.4 (                                                                                  | (A)                                                                                                  | 0.106                                                                     | 24                         | 5                               | 0                                   | 1.92                                                        | 0.42                                                 |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------|---------------------------------|-------------------------------------|-------------------------------------------------------------|------------------------------------------------------|
| 7.4 (B)                                                                                |                                                                                                      | 0.083                                                                     | 33                         | 5                               | 0                                   | 1.64                                                        | 0.33                                                 |
| 74 (A)                                                                                 |                                                                                                      | 0.21                                                                      | 4                          | 2                               | 0                                   | 1.59                                                        | 0.75                                                 |
| 74 (I                                                                                  | В)                                                                                                   | 0.22                                                                      | 10                         | 2                               | 0                                   | 0.75                                                        | 0.70                                                 |
| 740                                                                                    | (A)                                                                                                  | 1.8                                                                       | 11                         | 2                               | 0                                   | 0.72                                                        | 0.91                                                 |
| 740                                                                                    | (B)                                                                                                  | 1.4                                                                       | 6                          | 2                               | 0                                   | 1.05                                                        | 0.67                                                 |
| Zinc                                                                                   |                                                                                                      |                                                                           |                            |                                 |                                     |                                                             |                                                      |
| 0.09                                                                                   | 9 (A)                                                                                                | 0                                                                         | 45                         | 2                               | 0                                   | 0.43                                                        | 0.76                                                 |
| 0.09                                                                                   | 9 (B)                                                                                                | 0                                                                         | 51                         | 3                               | 0                                   | 0.70                                                        | 0.76                                                 |
| 0.9 (                                                                                  | (A)                                                                                                  | 0                                                                         | 0                          | 0                               | 0                                   | 0                                                           | 0                                                    |
| 0.9 (                                                                                  | (B)                                                                                                  | 0                                                                         | 5                          | 4                               | 0                                   | 9.24                                                        | 0.40                                                 |
| 9.0 (                                                                                  | (A)                                                                                                  | 0                                                                         | 11                         | 4                               | 0                                   | 2.26                                                        | 0.64                                                 |
| 9.0 (                                                                                  | (B)                                                                                                  | 0                                                                         | 12                         | 2                               | 0                                   | 0.69                                                        | 0.75                                                 |
| 90 (                                                                                   | A)                                                                                                   | 0                                                                         | 0                          | 0                               | 0                                   | 0                                                           | 0                                                    |
| 90 (I                                                                                  | В)                                                                                                   | 0                                                                         | 0                          | 0                               | 0                                   | 0                                                           | 0                                                    |
| 900                                                                                    | (A)                                                                                                  | 1.3                                                                       | 2                          | 1                               | 0                                   | 0.80                                                        | 1                                                    |
| 900                                                                                    | (B)                                                                                                  | 1.4                                                                       | 2                          | 1                               | 0                                   | 0.80                                                        | 1                                                    |
| Con                                                                                    | trols                                                                                                |                                                                           |                            |                                 |                                     |                                                             |                                                      |
|                                                                                        | Nickel (mg/L)                                                                                        | Zinc (mg/L)                                                               |                            |                                 |                                     |                                                             |                                                      |
| 1                                                                                      | 0.00901                                                                                              | 0.00349                                                                   | 61                         | 4                               | 0                                   | 0.96                                                        | 0.67                                                 |
| т                                                                                      | 0.00501                                                                                              |                                                                           |                            |                                 |                                     |                                                             |                                                      |
| 2                                                                                      | 0.00685                                                                                              | 0.00668                                                                   | 57                         | 4                               | 0                                   | 0.98                                                        | 0.51                                                 |
| 2                                                                                      |                                                                                                      | 0.00668                                                                   | 57                         | 4                               | 0                                   | 0.98                                                        | 0.51                                                 |
| 2<br>Little                                                                            | 0.00685<br>e Duck Key (22º<br>ected (mg/L)                                                           | 0.00668                                                                   | 57<br>N                    | 5<br>5                          | 0 Deformed Tests (%)                | 0.98<br>Fisher's α                                          |                                                      |
| 2<br>Little<br>Expe                                                                    | 0.00685<br>le Duck Key (22º<br>ected (mg/L)<br>kel                                                   | 0.00668<br><b>40 PSU)</b><br>Actual (mg/L)                                | N                          | S                               | Deformed<br>Tests (%)               | Fisher's α                                                  | Berger-Parker                                        |
| 2<br>Little<br>Expe<br>Nick<br>0.07                                                    | 0.00685  e Duck Key (22° ected (mg/L) kel 74 (A)                                                     | 0.00668<br>40 PSU)<br>Actual (mg/L)<br>0.093                              | <b>N</b> 148               | <b>s</b> 7                      | Deformed<br>Tests (%)               | Fisher's α                                                  | Berger-Parker                                        |
| 2<br>Little<br>Expe<br>Nick<br>0.07<br>0.07                                            | 0.00685  e Duck Key (22º ected (mg/L)  kel 74 (A) 74 (B)                                             | 0.00668<br><b>40 PSU) Actual (mg/L)</b> 0.093  0.076                      | <b>N</b> 148 159           | <b>s</b> 7 5                    | Deformed<br>Tests (%)               | Fisher's α  1.53  0.98                                      | 0.26<br>0.33                                         |
| 2<br>Little<br>Expe<br>Nick<br>0.07<br>0.07                                            | 0.00685  e Duck Key (22º ected (mg/L)  kel 74 (A) 74 (B) 4 (A)                                       | 0.00668<br><b>40 PSU) Actual (mg/L)</b> 0.093  0.076  0.194               | N 148 159 108              | <i>s</i> 7 5 6                  | Deformed Tests (%)  0 0 0           | Fisher's α  1.53  0.98  1.37                                | 0.26<br>0.33<br>0.23                                 |
| 2<br>Little<br>Expe<br>Nick<br>0.07<br>0.07<br>0.74                                    | 0.00685  le Duck Key (22º lected (mg/L)  kel  74 (A)  74 (B)  H (A)                                  | 0.00668<br><b>40 PSU)</b> Actual (mg/L)  0.093 0.076 0.194 0.199          | N 148 159 108 122          | 7<br>5<br>6<br>6                | Deformed Tests (%)  0 0 0 0         | 1.53<br>0.98<br>1.37<br>1.32                                | 0.26<br>0.33<br>0.23<br>0.29                         |
| 2<br>Little<br>Nick<br>0.07<br>0.07<br>0.74<br>0.74                                    | 0.00685  e Duck Key (22º ected (mg/L)  kel 74 (A) 74 (B) 4 (A) 4 (B) (A)                             | 0.00668  40 PSU)  Actual (mg/L)  0.093 0.076 0.194 0.199 2.113            | N 148 159 108 122 82       | 7<br>5<br>6<br>6<br>4           | Deformed Tests (%)  0 0 0 0 0       | 1.53<br>0.98<br>1.37<br>1.32<br>0.88                        | 0.26<br>0.33<br>0.23<br>0.29<br>0.71                 |
| 2<br>Little<br>Expe<br>0.07<br>0.07<br>0.74<br>0.74<br>(7.4 (                          | 0.00685  le Duck Key (22º lected (mg/L)  kel  74 (A)  74 (B)  4 (B)  4 (B)  (A)  (B)                 | 0.00668  40 PSU)  Actual (mg/L)  0.093 0.076 0.194 0.199 2.113 1.376      | N  148 159 108 122 82 92   | 7<br>5<br>6<br>6<br>4<br>5      | Deformed Tests (%)  0 0 0 0 0 0 0   | 1.53<br>0.98<br>1.37<br>1.32<br>0.88<br>1.13                | 0.26<br>0.33<br>0.23<br>0.29<br>0.71<br>0.61         |
| 2<br>Little<br>Expe<br>Nick<br>0.07<br>0.74<br>0.74<br>7.4 (<br>7.4 (                  | 0.00685  e Duck Key (22º ected (mg/L)  kel  74 (A)  74 (B)  4 (A)  4 (B)  (A)  (B)  (A)              | 0.00668  40 PSU)  Actual (mg/L)  0.093 0.076 0.194 0.199 2.113            | N 148 159 108 122 82       | 7<br>5<br>6<br>6<br>4           | Deformed Tests (%)  0 0 0 0 0       | 1.53<br>0.98<br>1.37<br>1.32<br>0.88<br>1.13<br>N/A         | 0.26<br>0.33<br>0.23<br>0.29<br>0.71                 |
| 2<br>Little<br>Nick<br>0.07<br>0.74<br>0.74<br>(7.4 (7.4 (7.4 (7.4 (7.4 (7.4 (7.4 (7.4 | 0.00685  e Duck Key (22° ected (mg/L)  kel  74 (A)  74 (B)  4 (B)  4 (B)  (A)  (B)  (A)  (B)  A)  B) | 0.00668  40 PSU)  Actual (mg/L)  0.093 0.076 0.194 0.199 2.113 1.376      | N  148 159 108 122 82 92   | 7<br>5<br>6<br>6<br>4<br>5      | Deformed Tests (%)  0 0 0 0 0 0 0   | 1.53<br>0.98<br>1.37<br>1.32<br>0.88<br>1.13<br>N/A<br>0.80 | 0.26<br>0.33<br>0.23<br>0.29<br>0.71<br>0.61         |
| 2<br>Little<br>Expe<br>Nick<br>0.07<br>0.07                                            | 0.00685  e Duck Key (22º ected (mg/L)  xel  74 (A)  74 (B)  4 (A)  4 (B)  (A)  (B)  (A)  (B)  (A)    | 0.00668  40 PSU)  Actual (mg/L)  0.093 0.076 0.194 0.199 2.113 1.376 8.52 | N  148 159 108 122 82 92 3 | 7<br>5<br>6<br>6<br>4<br>5<br>3 | Deformed Tests (%)  0 0 0 0 0 0 0 0 | 1.53<br>0.98<br>1.37<br>1.32<br>0.88<br>1.13<br>N/A         | 0.26<br>0.33<br>0.23<br>0.29<br>0.71<br>0.61<br>0.33 |

30 7 0

0.33

2.87

0.74 (B)

0.09 (A)

0.09 (B)

0.9 (A)

0

0

0

0.097

6

6

7

0

0

0

1.27

1.29

1.73

0.26

0.28

0.29

141

135

98

| 0.9 (B)              | 0             | 101 | 8  | 0                     | 2.04       | 0.32          |
|----------------------|---------------|-----|----|-----------------------|------------|---------------|
| 9.0 (A)              | 2.929         | 42  | 8  | 0                     | 2.93       | 0.31          |
| 9.0 (B)              | 0.934         | 53  | 7  | 0                     | 2.16       | 0.43          |
| 90 (A)               | 4.96          | 0   | 0  | 0                     | 0          | 0             |
| 90 (B)               | 5.59          | 0   | 0  | 0                     | 0          | 0             |
| 900 (A)              | 8.6           | 0   | 0  | 0                     | 0          | 0             |
| 900 (B)              | 11            | 7   | 2  | 0                     | 0.93       | 0.57          |
| Controls             |               |     |    |                       |            |               |
| Nickel (mg/L)        | Zinc (mg/L)   |     |    |                       |            |               |
| 1 0.0166             | 0.00124       | 154 | 6  | 0                     | 1.24       | 0.27          |
| 2 0.0151             | 0.00628       | 139 | 7  | 0                     | 1.55       | 0.28          |
| Little Duck Key (18º | 32 PSU)       |     |    |                       |            |               |
| Expected (mg/L)      | Actual (mg/L) | N   | S  | Deformed<br>Tests (%) | Fisher's α | Berger-Parker |
| Nickel               |               |     |    |                       |            |               |
| 0.074 (A)            | 0.029         | 89  | 9  | 0                     | 2.50       | 0.51          |
| 0.074 (B)            | 0.034         | 97  | 10 | 0                     | 2.80       | 0.53          |
| 0.74 (A)             | 0.225         | 38  | 11 | 0                     | 5.19       | 0.26          |
| 0.74 (B)             | 0.306         | 54  | 10 | 0                     | 3.61       | 0.30          |
| 7.4 (A)              | 0.018         | 28  | 8  | 0                     | 3.74       | 0.29          |
| 7.4 (B)              | 0.02          | 45  | 7  | 0                     | 2.32       | 0.29          |
| 74 (A)               | 39.04         | 8   | 5  | 0                     | 5.70       | 0.38          |
| 74 (B)               | 41.09         | 5   | 2  | 0                     | 1.24       | 0.60          |
| 740 (A)              | 377.3         | 2   | 1  | 0                     | 0.80       | 1             |
| 740 (B)              | 447.6         | 0   | 0  | 0                     | 0          | 0             |
| Zinc                 |               |     |    |                       |            |               |
| 0.09 (A)             | 0             | 44  | 7  | 0                     | 2.34       | 0.30          |
| 0.09 (B)             | 0             | 57  | 7  | 0                     | 2.09       | 0.23          |
| 0.9 (A)              | 0             | 16  | 9  | 0                     | 8.50       | 0.25          |
| 0.9 (B)              | 0             | 20  | 6  | 0                     | 2.91       | 0.30          |
| 9.0 (A)              | 1.271         | 1   | 1  | 0                     | N/A        | 1             |
| 9.0 (B)              | 1.174         | 0   | 0  | 0                     | 0          | 0             |
| 90 (A)               | 8.42          | 4   | 2  | 0                     | 1.59       | 0.50          |
| 90 (B)               | 8.39          | 6   | 2  | 0                     | 1.05       | 0.83          |
| 900 (A)              | 13.4          | 4   | 1  | 0                     | 0.43       | 1             |
| 900 (B)              | 11.8          | 1   | 1  | 0                     | N/A        | 1             |
| Controls             |               |     |    |                       |            |               |
| Nickel (mg/L)        | Zinc (mg/L)   |     |    |                       |            |               |
| 1 0.0170             | 0.00206       | 122 | 8  | 0                     | 1.92       | 0.50          |
|                      |               | 122 | 8  | 0                     | 1.92       | 0.5           |

10

122

0

2.58

0.39

0.00618

2 0.0152

| Little Duck Key (30º 32 PSU) |               |     |    |                       |            |               |  |  |  |
|------------------------------|---------------|-----|----|-----------------------|------------|---------------|--|--|--|
| Expected (mg/L)              | Actual (mg/L) | N   | S  | Deformed<br>Tests (%) | Fisher's α | Berger-Parker |  |  |  |
| Nickel                       |               |     |    |                       |            |               |  |  |  |
| 0.074 (A)                    | 0.07          | 180 | 11 | 0                     | 2.58       | 0.21          |  |  |  |
| 0.074 (B)                    | 0.07          | 157 | 10 | 0                     | 2.38       | 0.25          |  |  |  |
| 0.74 (A)                     | 0.192         | 110 | 6  | 0                     | 1.36       | 0.27          |  |  |  |
| 0.74 (B)                     | 0.175         | 100 | 6  | 0                     | 1.40       | 0.25          |  |  |  |
| 7.4 (A)                      | 1.307         | 85  | 12 | 0                     | 3.81       | 0.20          |  |  |  |
| 7.4 (B)                      | 1.239         | 95  | 14 | 0                     | 4.53       | 0.25          |  |  |  |
| 74 (A)                       | 1.86          | 4   | 4  | 0                     | N/A        | 0.25          |  |  |  |
| 74 (B)                       | 2.79          | 10  | 4  | 0                     | 2.47       | 0.40          |  |  |  |
| 740 (A)                      | 377.4         | 2   | 1  | 0                     | 0.80       | 1             |  |  |  |
| 740 (B)                      | 306.2         | 3   | 1  | 0                     | 0.53       | 1             |  |  |  |
| Zinc                         |               |     |    |                       |            |               |  |  |  |
| 0.09 (A)                     | 0             | 168 | 7  | 0                     | 1.48       | 0.33          |  |  |  |
| 0.09 (B)                     | 0             | 177 | 7  | 0                     | 1.46       | 0.34          |  |  |  |
| 0.9 (A)                      | 0             | 30  | 7  | 0.03                  | 2.87       | 0.37          |  |  |  |
| 0.9 (B)                      | 0             | 56  | 6  | 0                     | 1.70       | 0.34          |  |  |  |
| 9.0 (A)                      | 1.091         | 10  | 6  | 0                     | 6.33       | 0.20          |  |  |  |
| 9.0 (B)                      | 0.723         | 15  | 7  | 0                     | 5.10       | 0.53          |  |  |  |
| 90 (A)                       | 2.26          | 1   | 1  | 0                     | N/A        | 1             |  |  |  |
| 90 (B)                       | 3.11          | 2   | 2  | 0                     | N/A        | 1             |  |  |  |
| 900 (A)                      | 4.8           | 2   | 2  | 0                     | N/A        | 0.50          |  |  |  |
| 900 (B)                      | 3.8           | 5   | 2  | 0                     | 1.24       | 0.60          |  |  |  |
| Controls                     |               |     |    |                       |            |               |  |  |  |
| Nickel (mg/L)                | Zinc (mg/L)   |     |    |                       |            |               |  |  |  |
| 1 0.0163                     | 0.0729        | 197 | 9  | 0                     | 1.94       | 0.24          |  |  |  |
| 2 0.0145                     | 0.00472       | 145 | 8  | 0                     | 1.82       | 0.22          |  |  |  |

Table 4.3. A breakdown of species with deformed tests in three assemblages with significant number of deformities.

| Conditions          |      | 22º 3        | 22º 40 psu |              |                |          |  |
|---------------------|------|--------------|------------|--------------|----------------|----------|--|
| Concentration       | 0.82 | 25 mg/L Zinc | 0.05       | 55 mg/L Zinc | 0.88 mg/L Zinc |          |  |
| Species             | N    | Deformed     | N          | Deformed     | N              | Deformed |  |
| Ammonia tepida      | 9    | 5            | 41         | 19           | 11             | 4        |  |
| Haynesina germanica | 15   | 0            | 17         | 7            | 0              | 0        |  |

## Figures



Fig. 4.1. Aerial views of the sampling sites in both study areas: **A** Little Duck Key, Florida (24.68111 N 81.23194 W ), and **B** Sapelo Island, Georgia (31.39021 N 81.28472 W) (Google Earth).



Fig. 4.2. SEM micrographs of the most common foraminifera species, Row A- Little Duck Key: 1 *Quinqueloculina sabulosa* (Cushman), 2 *Triloculina oblonga* (Montagu) and Row B- Little Duck Key: 3 *Haynesina germanica* (Ehrenberg), 4 *Ammonia tepida* (Cushman). All scale bars =  $100 \, \mu m$ .



Fig. 4.3. Entire foraminiferal abundance in response to the natural log of the concentration of nickel in Sapelo Island assemblages: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of nickel. The curved and diagonal dashed lines represent the exponential regression line.

# Little Duck Key



Fig. 4.4. Entire foraminiferal abundance in response to the natural log of the concentration of nickel in Little Duck Key assemblages: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of nickel. The curved and diagonal dashed lines represent the exponential regression line.



Fig. 4.5. Entire foraminiferal abundance in response to the natural log of the concentration of zinc in Sapelo Island assemblages: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of nickel. The curved and diagonal dashed lines represent the exponential regression line.

#### Little Duck Key TF = 33.132 $e^{(-0.2 \ln(Zn))}$ TF = $15.684 e^{(-0.309 \ln(Zn))}$ TF = -1.761Zn + 10.905 300 Total Foraminifera B A 12 psu 22° 40 psu 32 psu 200 22° 200 22° 200 100 100 100 20 20 20 0 5 -5 Ó 5 In Zinc (mg/L) TF = $18.855 e^{(-0.166 \ln(Zn))}$ TF = 38.002 $e^{(-0.17 \ln(Zn))}$ 300 300 Total Foraminifera 32 psu 32 psu 18° 200 30° 100 100 20 20 Ó

Fig. 4.6. Entire foraminiferal abundance in response to the natural log of the concentration of zinc in Little Duck Key assemblages: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of nickel. The curved and diagonal dashed lines represent the exponential regression line.

In Zinc (mg/L)

In Zinc (mg/L)



Fig. 4.7. Abundance of *Ammonia tepida* and *Haynesina germanica* in response to the natural log of the concentration of nickel: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). These were grown from propagules collected at Sapelo Island. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of nickel. The curved and diagonal dashed lines represent the exponential regression line for each species.



Fig. 4.8. Abundance of *Ammonia tepida* and *Haynesina germanica* in response to the natural log of the concentration of zinc: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). These were grown from propagules collected at Sapelo Island. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of zinc. The curved and diagonal dashed lines represent the exponential regression line for each species.

#### Little Duck Key 100 100 Species Abundance Q sabulosa T oblonga · · · · · Q sabulos · · · · · T. oblonga - Q sabulosa - T. oblonga 80 8 B 9 9 40 psu 32 psu 12 psu 22° 22° 22° 40 9 20 20 0 -5 -5 5 In Nickel (mg/L) Species Abundance O sabulosa T. oblonga ---- Q sabulosa ----- T. oblonga 80 $\mathbf{E}$ 9 32 psu 32 psu 18° 30° 4 20

Fig. 4.9. Abundance of *Quinqueloculina sabulosa* and *Triloculina oblonga* in response to the natural log of the concentration of nickel: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). These were grown from propagules collected at Sapelo Island. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of nickel. The curved and diagonal dashed lines represent the exponential regression line for each species.

In Nickel (mg/L)

In Nickel (mg/L)

# Little Duck Key



Fig. 4.10. Abundance of *Quinqueloculina sabulosa* and *Triloculina oblonga* in response to the natural log of the concentration of zinc: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°). These were grown from propagules collected at Sapelo Island. The vertical dashed lines indicate the U.S. EPA's CMC (Criteria Maximum Concentration) of zinc. The curved and diagonal dashed lines represent the exponential regression line for each species.



Fig. 4.11. Proportion of test deformities in response to the natural log of zinc concentration in assemblages grown from Sapelo Island propagules: **A** low salinity (18 psu, 22°), **B** high salinity (40 psu, 22°), **C** intermediate (32 psu, 22°), **D** low temperature (32 psu, 18°), and **E** high temperature (32 psu, 30°).

### CHAPTER 5

### **CONCLUSIONS**

In chapter 2, arsenic, cadmium, nickel, and zinc all had a negative impact on foraminiferal abundance and diversity where the concentration increased over the CMC. There appeared to be little difference between the effects of the elements based on their respective metabolic utility. Haynesina germanica and Ammonia tepida at Sapelo Island and Quinqueloculina sabulosa and Quinqueloculina bosciana at Little Duck Key were identified as bioindicators for each location. All of these species declined as arsenic, cadmium, nickel, and zinc concentrations increased, but were still present even at the greater concentrations. In the Sapelo Island assemblages, *Psammophaga sapela* also showed great potential as a bioindicator, because it tended to be the last species present at the highest metal concentrations. Zinc was more likely to cause major test deformities than arsenic, cadmium, and nickel. There were also major differences between rotalids and miliolids. While the rotalid species A. tepida and H. germanica were more vulnerable to test deformities when exposed to zinc than the other foraminifera, the comparative lack of deformities seen in the miliolid species such as Q. sabulosa and Triloculina oblonga suggests major differences in calcification between the two clades.

In chapter 3, LA-ICP-MS indicated incorporation of arsenic, cadmium, nickel and zinc in all species analyzed. Analysis revealed a clear difference between the rotalids and miliolids in their tendency to incorporate heavy metals. *Haynesina germanica* and *Ammonia tepida* readily incorporated metals such as arsenic and cadmium as

concentrations in the surrounding water increased but did not do the same with zinc and nickel. Conversely, *Quinqueloculina sabulosa* and *Triloculina oblonga* incorporated larger amounts of zinc and nickel as water concentration increased but did not do the same with arsenic and cadmium. This could further highlight fundamental differences in the biomineralization process between rotalid and miliolid foraminifera. With the exception of *A. tepida* incorporating more arsenic than *H. germanica*, incorporation rates were consistent in foraminifera of the same clade. There was no consistent chamber-to-chamber variability apparent, although variation was apparent in some isolated cases within individuals. *A. tepida* and *H. germanica* showed a clear relationship between incorporation of cadmium and cadmium content in the surrounding water, implying that these species and perhaps other rotalids as well, might be especially useful in studies involving cadmium, even at high contamination levels. In contrast, *Q. sabulosa* and *T. oblonga* show a clear relationship between incorporation of zinc and zinc content in the surrounding water.

In chapter 4, the negative effect of nickel and zinc was present at all salinities and temperatures tested. As in chapter 2, the most prevalent calcareous species (in this case, *Haynesina germanica* and *Ammonia tepida* at Sapelo Island and Quinqueloculina sabulosa and *Triloculina oblonga* at Little Duck Key) declined as nickel and zinc concentrations increased. However, these species persisted at greater concentrations across the range of salinities and temperatures tested. This implies that these species are viable bioindicators in multiple types of environments. Just as in chapter 2, zinc was the most likely heavy metal to cause major test deformities with rotalids *Ammonia tepida* and *Haynesina germanica* proving more susceptible to deformation than the miliolids. But,

these deformities only occurred in assemblages at temperatures of 22°C and salinities of 32 psu and 40 psu. In assemblages exposed to other salinities and temperatures, very few deformities occurred.

Future research should focus on better understanding of the calcification process in miliolids and rotalids, with particular focus on pathway of elements from the surrounding seawater. In addition, the relationship between zinc and foraminiferal test deformities has been demonstrated by multiple studies and warrants further investigation. More work must also be done on the different environmental factors that affect foraminiferal assemblages, especially pH and sediment type, as both may play key roles in foraminiferal response to heavy metals.

Benthic foraminiferal usage in environmental monitoring research has increased greatly in recent years. While the sensitivity of these organisms justifies their importance as biomonitoring tools, it is vital to properly identify the best species to use in specific situations with specific contaminants. Further knowledge of the varying factors that can impact the relationship between foraminifera and heavy metals, including salinity, temperature, differing test construction, substrate, and bioavailability, is also important in fully realizing the potential of benthic foraminifera as environmental indicators.

### REFERENCES

- Abu-Zied, R. H., Talha, Al-Dubai, T. A. M., Bantan, R. A., 2016, Environmental conditions of shallow waters alongside the southern Corniche of Jeddah based on benthic foraminifera, physio-chemical parameters and heavy metals: Journal of Foraminiferal Research, v. 46, p. 149–170.
- Adriano, D. C., 2001, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals: Springer-Verlag, New York, 186 p.
- Alloway, B. J., 2013, Sources of Heavy Metals and Metalloids in Soils: Alloway, B.J.

  (ed) Heavy Metals in Soils: Springer, Dordrecht, Environmental Pollution, v. 22, p. 11–50.
- Altin-Ballero, D. Z., Habura, A., and Goldstein, S. T., 2013, *Psammophaga sapela* n. sp., a new monothalamous foraminiferan from Coastal Georgia, USA: Fine structure, gametogenesis, and phylogenetic placement: Journal of Foraminiferal Research, v. 43, p. 113–126.
- Alve, E., 1991, Benthic foraminifera reflecting heavy metal pollution in Sorljord, Western Norway: Journal of Foraminiferal Research, v. 34, p. 1641–1652.
- Alve, E., 1995, Benthic foraminiferal responses to estuarine pollution: A review: Journal of Foraminiferal Research, v. 25, p. 190–203.
- Alve, E., and Goldstein, S. T., 2002, Resting stage in benthic foraminiferal propagules: a key feature for dispersal? Evidence from two shallow-water species: Journal of Micropaleontology, v. 21, p. 95–96.

- Alve, E., and Goldstein, S. T., 2003, Propagule transport as a key method of dispersal in benthic foraminifera (Protista): Limnology and Oceanography, v. 48, p. 2163–2170.
- Alve, E., and Goldstein, S. T., 2010, Dispersal, survival and delayed growth of benthic foraminiferal propagules: Journal of Sea Research, v. 63, p. 36–51.
- Alve, E., and Goldstein, S. T., 2014, The propagule method as an experimental tool in foraminiferal ecology, in Kitazato, H., and Bernhard, J. M. (eds.), Approaches to Study Living Foraminifera, Environmental Science and Engineering, Springer, Tokyo, p. 1–12.
- Anderson, O. R., 1988, Comparative Protozoology: Ecology, Physiology, Life History, Springer-Verlag, Heidelberg, 482 p.
- Angell, R. W., 1979, Calcification during chamber development in *Rosalina floridana*: Journal of Foraminiferal Research, v. 9, p. 341–353.
- Angell, R. W., 1980, Test morphogenesis (chamber formation) in the foraminifer Spiroloculina hyalina Schulze: Journal of Foraminiferal Research, v. 10, p. 89–101.
- Anke, M., Groppel, B., Kronemann, H., Grün, M., 1984, Nickel—an essential element: IARC Scientific Publications: v. 53, p. 339–365.
- Arnal, R. E., 1955, Significance of abnormal foraminifera: Geological Society of America Bulletin, v. 66, p. 1641.
- Arnold, Z. M., 1967, Biological observations on the foraminifer *Calcituba polymorpha*Roboz: Archiv fur Protistenkunde, v. 110, p. 28–304.

- Bandy, O. L., 1963, Larger living foraminifera of the continental borderland of southern California: Cushman Foundation for Foraminiferal Research, v. 14, p. 121–126.
- Bandy, O. L., Ingle, J. C., and Resig, J. M., 1964, Foraminiferal trends, Laguna Beach outfall area, California: Limnology and Oceanography, v. 9, p. 112–123.
- Bergamin, L., Di Bella, L., Ferraro, L., Frezza, V., Pierfranceschi, G., Romano, E., 2019,

  Benthic foraminifera in a coastal marine area of the eastern Ligurian Sea (Italy):

  Response to environmental stress: Ecological Indicators, v. 96, p. 16–31.
- Berger, W. H., and Parker, F. L., 1970, Diversity of planktonic foraminifera in deep-sea sediments: Science, v. 168, p. 1345–1347.
- Boltovskoy, E., and Wright, R., 1976, Recent foraminifera. Dr. W. Junk Publishers, The Hague.
- Boltovskoy, E., Scott, D. B., and Medioli, F. S., 1991, Morphological variations of benthic foraminiferal tests in response to changes in ecological parameters: a review: Journal of Paleontology, v. 65, p. 175–185.
- Boyle, E. A., 1981, Cadmium, zinc, copper, and barium in foraminifera tests: Earth and Planetary Science Letters, v. 53, p. 11–35.
- Boyle, E. A., 1988, Cadmium: Chemical tracer of deepwater paleoceanography: Paleoceanography, v. 3, p. 471–489.
- Branson, O., 2019, LAtools Python Toolbox Version 0.3.8.
- Brasier, M. D., 1975, Morphology and habitat of living benthonic Foraminiferids from Caribbean carbonate environment: Revista Española de Micropaleontologia, v. 7, p. 567–569.

- Brouillette, E., 2009, An experimental approach to understand the responses of benthic foraminifera to Cd, Pb, Hg, and Zn. Unpublished Master's thesis, Department of Geology, University of Georgia, 80 p.
- Brouillette, E. R., and Goldstein, S. T., 2008, An experimental approach to understanding the response of benthic foraminifera to Cd, Hg, Pb, and Zn: Gulf Coast Association of Geological Societies Transactions, v. 58, p. 143–146.
- Brouillette Price, E., Kabengi, N., and Goldstein, S. T., 2019, Effects of heavy-metal contaminants (Cd, Pb, Zn) on benthic foraminiferal assemblages grown from propagules, Sapelo Island, Georgia (USA): Marine Micropaleontology, v. 147, p. 1–11.
- Carnahan, E., Hoare, A. M., Hallock, P., Lidz, B. H., and Reich, C. D., 2008, Distribution of heavy metals and foraminiferal assemblages in sediments of Biscayne Bay, Florida, USA: Journal of Coastal Research, v. 24, p. 159–169.
- Carnahan, E., Hoare, A. M., Hallock, P., Lidz, B. H., and Reich, C. D., 2009,

  Foraminiferal assemblages in Biscayne Bay, Florida, USA: Responses to urban and agricultural influence in a subtropical estuary: Marine Pollution Bulletin, v. 59, p. 8–12.
- Carpenter, W. B., 1856, Researches in the foraminifera: Royal Society of London, Philosophical Transactions, v. 146, p. 547–569.
- Closs, D., and Madeira, M. L., 1968, Seasonal variations of brackish foraminifera in the Patos Lagoon, southern Brazil: Universidade do Rio Grande do Sul, Escola de Geologia, Publicacao especial, v. 15, p. 1–51.

- Debenay, J. P., Geslin., E., Eichler, B. B., Duleba, W., Sylvestre, F., and Eichler, P., 2001, Foraminiferal assemblages in a hypersaline lagoon, Araruama (R.J.) Brazil: Journal of Foraminiferal Research, v. 31, p. 133–151.
- de Noojier, L. J., Reichart, G. J., Duenas Bohorquez, A. D. B., Wolthers, M., Ernst, S. R., Mason, P. R. D., Van der Zwaan, G. J., 2007, Copper incorporation in foraminiferal calcite: results from culturing experiments: Biogeosciences

  Discussions, v. 4, p. 961–991.
- de Nooijer, L. J., Langer, G., Bijma, J., 2009, Physiological controls on seawater uptake and calcification in the benthic foraminifer *Ammonia tepida*: Biogeosciences, v. 6, p. 2669–2675.
- de Nooijer, L. J., Toyofuku, T., Kitazato, H., 2009, Foraminifera promote calcification by elevating their intracellular pH: Proceedings of the National Academy of Sciences of the United States of America, v. 106, p. 15374–15378.
- de Noojier, L. J., Spero, H. J., Erez, J., Bijma, J., and Reichart, G. J., 2014,

  Biomineralization in perforate foraminifera: Earth-Science Reviews, v. 135, p. 48–58.
- de Rijk, S., 1995, Salinity control on the distribution of salt marsh Foraminifera (Great Marshes, Massachusetts): Journal of Foraminiferal Research, v. 25, p. 156–166.
- Desideri, D., Cantaluppi, C., Ceccotto, Meli, M. A., Roselli, C., and Feduzi, L., 2016, Essential and toxic elements in seaweeds for human consumption: Journal of Toxicology an Environmental Health, v. 79, p. 112–122.

- Dissard, D., Nehrke, G., Reichart, G. J., Bijma, J., 2010a, The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera *Ammonia tepida*: Results from culture experiments: Geochimica et Cosmochimica Acta, v. 74, p. 928–940.
- Dissard, D., Nehrke, G., Reichart, G. J., Bijma, J., 2010b, Impact of seawater pCO<sub>2</sub> on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: Results from culturing experiments with *Ammonia tepida*: Biogeosciences, v. 7, p. 81–93.
- Duffield, C. J., Edvardsen, B., Eikrem, W., and Alve, E., 2014, Effects of different potential food sources on upper-bathyal benthic foraminifera: An experiment with propagules: Journal of Foraminiferal Research, v. 44, 416–433.
- Duffield, C. J., Hess, S., Norling, K., and Alve, E., 2015, The response of *Nonionella iridea* and other benthic foraminifera to "fresh" organic matter enrichment and physical disturbance" Marine Micropaleontology, v. 120, p. 20–30.
- Elderfield, H., Bertram, C. J., Erez, J., 1996, A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate: Earth and Planetary Science Letters, v. 142, p. 409–423.
- Emiliani, C., 1955, Pleistocene temperatures: Journal of Geology, v. 63, p. 538–578.
- Erez, J., 2003, The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies: Reviews in mineralogy and geochemistry, v. 54, p. 115–149.
- Erez, J., Luz, B., 1983, Experimental paleotemperature equation for planktonic foraminifera: Geochimica Cosmochimica Acta, v. 47, p. 1025–1031.

- Fehrenbacher, J. S., Spero, H. J., Russell, A. D., Vetter, L., Eggins, S., 2015, Optimizing LA-ICP-MS analytical procedures for elemental depth profiling of foraminifera shells: Chemical Geology, v. 407, p. 2–9.
- Foster, W. J., Armynot du Chatelet, E., Rogerson, M., 2012, Testing benthic foraminiferal distributions as a contemporary quantitative approach to biomonitoring estuarine heavy metal pollution: Marine Pollution Bulletin, v. 64, p. 1039–1048.
- Frontalini, F., and Coccioni, R., 2008, Benthic foraminifera for heavy metal pollution monitoring: A case study from the central Adriatic Sea coast of Italy: Estuarine, Coastal and Shelf Science, v. 76, p. 404–417.
- Frontalini, F., Buosi, C., Da Pelo, S., Coccioni, R., Cherchi, A., and Bucci, C., 2009,

  Benthic foraminifera as bio-indicators of trace element pollution in the heavily

  contaminated Santa Gilla lagoon (Cagliari, Italy): Marine Pollution Bulletin, v.

  58, p. 858–877.
- Frontalini, F., Nardelli, M. P., Curzi, D., Martin-Gonzelez, A., Sabbatini, A., Negri, A., Losada, M. T., Gobbi, P., Coccioni, R., Bernhard, J. M., 2018, Benthic foraminiferal ultrastructural alteration induced by heavy metals: Marine Micropaleontology, v. 138, p. 83–89.
- Frontalini, F., Semprucci, S., Di Bella, L., Caruso, A., Cosentino, C., Maccotta, A., Scopelliti, G., Sbrocca, C., Bucci, C., Balsamo, M., Martins, M. V., Armynot du Chatelet, E., and Coccioni, R., 2018, The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments: Environmental Toxicology and Chemistry, v. 37, p. 2439–2447.

- Geerken, E., de Noojier, L. J., van Dijk, I., Reichart, G. J., 2018, Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents: Biogeosciences, v. 15, p. 2205–2218.
- Gerhardt, A., 2002, Bioindicator species and their use in biomonitoring: Environmental Monitoring, v. 1, p. 77–123.
- Geslin, E., Debenay, J., Duleba, W., and Bonetti, C., 2002, Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas: Marine Micropaleontology, v. 45, p. 151–168.
- Geslin, E., Stouff, V., Debenay, J., and Lesourd, M., 2000, Environmental variation and foraminiferal test abnormalities: from Environmental Micropaleontology, Topics in Geobiology, v. 15, ed. Martin, R., Kluwer Academic/Plenum Publishers, New York, p. 191–215.
- Goldstein, S. T., 1999, Foraminifera: A biological overview. In: Gupta, B.K.S. (Ed.)

  Modern foraminifera: Kluwer Academic Publishers, Dordrecht, p. 37–55.
- Goldstein, S. T., and Alve, E., 2011, Experimental assembly of foraminiferal communities from coastal propagule banks: Marine Ecology Progress Series, v. 437, p. 1–11.
- Goldstein, S. T., Corliss, B. H., 1994, Deposit feeding in selected deep-sea and shallow-water benthic foraminifera: Deep Sea Research Part I: Oceanographic Research Papers, v. 41, p. 229–241.
- Goldstein, S. T., and Frey, R. W., 1986, Salt marsh foraminifera, Sapelo Island, Georgia: Senckenbergiana maritima, v. 18, p. 97–121.

- Hallock, P., Glenn, E. C., 1986, Larger foraminifera: A tool for paleoenvironemtal analysis of Cenozoic carbonate deposition facies: PALAIOS, v. 1, p. 55–64.
- Hansen, H. J., 1999, Shell construction in modern calcareous Foraminifera. In: Gupta B.K.S. (Ed.) Modern foraminifera: Kluwer Academic Publishers, Dordrecht, p. 57–70.
- Hart, M. B., Stubbles, S. J., Smart, C. W., Fisher, J. K., Hoddinot, C., Marshall-Penn, I., and Yeo, A., 2014, Foraminifera from the Fowey Estuary, Cornwall: Geoscience in South-West England, v. 13, p. 304–315.
- Hayek, L. A. C., and Buzas, M. A., 2010, Surveying natural populations: quantitative tools for assessing biodiversity, Columbia University Press, 596 p.
- Hayek, L. A. C., and Buzas, M. A., 2013, On the proper and efficient use of diversity measures with individual field samples: Journal of Foraminiferal Research, v. 43, p. 305–313.
- Haynes, J., 1981, Foraminifera, John Wiley, New York, 348 p.
- Hemleben, C., Anderson, O. R., Berthold, W., Spindler, M., 1986, Calcification and chamber formation in Foraminifera a brief overview: Leadbetter, B.S.C. and Riding, R. (Eds.) Biomineralization in Lower Plants and Animals, Systematics Association, Special Volume 30, p. 237–249.
- James, A., and Evison, L. (eds.), 1979, Biological Indicators of Water Quality, John Wiley and Sons, New York, 650 p.
- Julian II, P., 2015, South Florida Coastal Sediment Ecological Risk Assessment: Bulletin of Environmental Contamination and Toxicology, v. 95, p. 188–193.

- Katz, M. E., Cramer, B. S., Franzese, A., Honisch, B., Miller, K. G., Rosenthal, Y., Wright, J. D., 2010, Traditional and emerging geochemical proxies in foraminifera: Journal of Foraminiferal Research, v. 40, p. 165–192.
- Khalifa, G. M., Kirchenbuechler, D., Koifman, N., Klienerman, O., Talmon, Y., Elbaum, M., Addadi, L., Weiner, S., Erez, J., 2016, Biomineralization pathways in a foraminifer revealed using a novel correlative cryo-fluorescence-SEM-EDS technique: Journal of Structural Biology, v. 196, p. 155–163.
- Kramar, U., Munsel, D., Berner, Z., Bijma, J., Nehrke, G., 2010, Determination of trace element incorporation into tests of in vitro grown foraminifera by micro-SYXRF-A basis for the development of paleoproxies: AIP Conference Proceedings, v. 1221, p. 154–159.
- Kurc, G., 1961, Foraminiferes et ostracodes de l'étang de Thau: Revue des Travaux: Institut des Péches Maritimes, v. 25, p. 134–248.
- Ladeira, A. C. Q., and Ciminelli, V. S. T., 2004, Adsorption and description of arsenic on an oxisol and its constituents: Water Research, v. 38, p. 2087–2094.
- Lee, Y. G., Kim, S., Kim, Y. W., Jeong, D. U., Lee, J. S., Woo, H. J., and Shin, H. C., 2015, Benthic foraminifera as bioindicators of salinity variation in Lake Shinwa, South Korea: Journal of Foraminiferal Research, v. 45, p. 235–249.
- Linshy, R. S., Kurtarkar, S. R., and Nigam, R., 2013, Experiment to decipher the effect of heavy metal cadmium on coastal benthic foraminifer *Pararotalia nipponica* (Asano): Journal of the Paleontological Society of India, v. 58, p. 205–211.

- Locklin, J. A., and Maddocks, R. F., 1982, Recent foraminifera around petroleum production platforms on the southwest Louisiana shelf, Trans Gulf Assoc. Geol. Soc., v. 32, p. 377–397.
- Lopez, E., 1979, Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence: Marine Biology, v. 53, p. 201–211.
- Malmgren, B. A., 1984, Analysis of the environmental influence on the morphology of *Ammonia beccarii* (Linné) in southern European Salinas: Geobios, v. 17, p. 737–746.
- Maret, W., 2016, The metals in the biological periodic system of the elements: Concepts and conjectures: International Journal of Molecular Sciences, v. 17, p. 66–72.
- Martin, R. E., (Ed.) 2000, Environmental micropaleontology: the application of microfossils to environmental geology, Springer Science & Business Media, New York, 459 p.
- Martinez-Colon, M., Hallock, P., and Green-Ruiz, C., 2009, Strategies for using shallow-water benthic foraminifera as bioindicators of potentially toxic elements: A review, Journal of Foraminiferal Research, v. 39, p. 278–299.
- Martins, V. A., Frontalini, F., Tramonte, K. M., Figueira, R. C. L., Miranda, P., Sequeira,
  C., Fernandez-Fernandez, S., Dias, J. A., Yamashita, C., Reno, R., Laut, L. L. M.,
  Silva, F. S., Rodrigues, M. A. C., Bernardes C., Nagai, R., Sousa, S. H. M.,
  Mahiques, M., Rubio, B., Bernabeu, A., Rey, D., Rocha, F., 2013, Assessment of
  the health quality of Ria de Aviero (Portugal): Heavy metals and benthic
  foraminifera: Marine Pollution Bulletin, v. 70, p. 18–33.

- Martins, M. V. A., Hohenegger, J., Frontalini, F., Laut, L., Miranda, P., Rodrigues, M. A., Duleba, W., Geraldes, M. C., and Rocha, F., 2018, Heterogeneity of environments in a coastal lagoon mouth by the comparison between living and dead benthic foraminiferal assemblages (Ria de Aveiro Portugal): Estuarine, Coastal, and Shelf Science, v. 213, p. 199–216.
- Mertz, W., 1981, The essential trace elements: Science, v. 213, p. 1332–1338.
- Miller, A. A. L., Scott, D. B., and Medioli, F. S., 1982, *Elphidium excavatum* (Terquem): Ecophenotypic versus subspecific variation: Journal of Foraminiferal Research, v. 12, p. 116–144.
- Morishima, M., 1955, Deposits of foraminiferal tests in the Tokyo Bay, Japan: University of Kyoto, College of Science, Memoires, v. 22, p. 213–222.
- Munsel, D., Kramar, U., Dissard, D., Nehrke, G., Berner, Z., Bijma, J., Reichart, G. J., Neumann, T., 2010, Heavy metal uptake in foraminiferal calcite: results of multi-element culture experiments: Biogeosciences Discussions, v. 7, p. 953–977.
- Murray, J. W., 1973, Distribution and Ecology of Living Benthic Foraminiferids, Crane, Russak and Co., New York, 274 p.
- Murray, J. W., 1991, Ecology and Palaeocology of Benthic Foraminifera, Longman, London, 397 p.
- Murray, J. W., and Bowser, S. S., 2000, Mortality, protoplasm decay rate, and reliability of staining techniques to recognize 'living' foraminifera: A review: Journal of Foraminiferal Research, v. 30, p. 66–70.
- Murray, J. W., 2006, Ecology and applications of benthic foraminifera, Cambridge University Press, New York, 426 p.

- Nardelli, M. P., 2013, Experimental chronic exposure of the foraminifer *Pseudotriloculina rotunda* to Zinc: Acta Protozoologica, v. 52, p. 193–202.
- Nardelli, M. P., Malferrari, D., Ferretti, A., Bartolini, A., Sabbatini, A., Negri, A., 2016, Zinc incorporation in the miliolid foraminifer *Pseudotriloculina rotunda* under laboratory conditions: Marine Micropaleontology, v. 126, p. 42–49.
- Natland, M. L., 1935, The temperature and depth-distribution of some Recent and fossil foraminifera in the southern California region: Scripps Institute of Oceanography Technical Report, v. 3, 255 p.
- Neff, J. M., 1997, Ecotoxicology of arsenic in the marine environment: Environmental Toxicology and Chemistry, v. 16, p. 917–927.
- Nehrke, G., Keul, N., Langer, G., de Noojier, L. J., Bijma, J., 2013, A new model for biomineralization and trace element signatures of foraminifera tests:Biogeosciences, v. 10, p. 6759–6767.
- Nielsen, F. H., 1998, Ultratrace elements in nutrition: Current knowledge and speculation: The Journal of Trace Elements in Experimental Medicine, v. 11, p. 251–274.
- Nigam, R., Saraswat, R., and Panchang, R., 2006, Application of foraminifers in ecotoxicology: Retrospect, perspect and prospect: Environmental International, v. 32, p. 273–283.
- Nurnberg, D., Bijma, J., Hemleben, C., 1996, Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures: Geochimica et Cosmochimica, v. 60, p. 803–814.

- Olugbode, O. I., Hart, M. B., and Stubbles, S. J., 2005, Foraminifera from Restronguet Creek: Monitoring recovery from the Wheal Jane pollution incident: Geoscience in South-West England, v. 11, p. 92–92.
- Phleger, F. B., and Hamilton, W. A., 1946, Foraminifera of two submarine cores from the North Atlantic Basin: Geological Society of America Bulletin, v. 57, p. 951–966.
- Poonkothai, M. V. B. S., Vijayavathi, B. S., 2012, Nickel as an essential element and a toxicant: International Journal of Environmental Sciences, v. 1, p. 285–288.
- R Core Team (2018). R: A language and environment for statistical computing. R

  Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- R Core Team (2019). R: A language and environment for statistical computing. R

  Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Rainbow, P. S., 2007, Trace metal bioaccumulation: Models, metabolic availability and toxicity: Environmental International, v. 33, p. 576–582.
- Resig, J., 1960, Foraminiferal ecology around ocean outfalls off southern California. In:

  Person, E. (Ed.) Disposal in the Marine Environment, Pergamon Press, London, p.

  104–121.
- Rosenthal, Y., Boyle, E. A., Slowey, N., 1997, Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography:

  Geochimica et Cosmochimica Acta, v. 61, p. 3633–3643.

- Roychoudhury, A. N., 2007, Spatial and seasonal variations in depth profile of trace metals in saltmarsh sediments from Sapelo Island, Georgia, USA: Estuarine, Coastal and Shelf Science, v. 72, p. 675–689.
- Schafer, C. T., 1970, Studies of benthic foraminifera in Restigouche Estuary: Faunal distribution patterns near pollution sources: Maritime Sediments, v. 6, p. 121–134.
- Schiebel, R., Smart, S. M., Jentzen, A., Jonkers, L., Morard, R., Meilland, J., Michel, E., Coxall, H. K., Hull, P. M., de Garidel-Thoron, T., Aze, T., 2018, Advances in planktonic foraminifer research: New perspectives for paleoceanography: Revue de Micropaleontologie, v. 61, p. 113–138.
- Schnitker, D., 1974, Ecophenotypic variation in *Ammonia beccarii* (Linné): Journal of Foraminiferal Research, v. 4, p. 216–223.
- Scott, D. B., and Medioli, F. S., 1980a, Quantitative studies of marsh foraminiferal distributions in Nova Scotia: Implications for sea level studies: Cushman Foundation for Foraminiferal Research, Special Publication, v. 17, 58 p.
- Scott, D. B., Medioli, F. S., and Schafer, C. T., 2001, Monitoring in coastal marine environments using foraminifera and thecamoebians as indicators, Cambridge University Press, 1–177.
- Scott, D. B., Mudie, P. J., and Bradshaw, J. S., 1976, Benthic foraminifera of the three southern California lagoons: Ecology and Recent stratigraphy: Journal of Foraminiferal Research, v. 6, p. 59–75.
- Smith, C.W., and Goldstein, S.T., 2019, The effects of selected heavy metal elements on experimentally grown foraminiferal assemblages from Sapelo Island, Georgia and

- Little Duck Key, Florida, USA: Journal of Foraminiferal Research v. 49 (3), p. 303–318.
- Smith, C.W., Fehrenbacher, J., and Goldstein, S.T., submitted, Incorporation of heavy metals in experimentally grown foraminifera from Sapelo Island, Georgia and Little Duck Key, Florida, USA, Marine Micropaleontology.
- Stouff, V., 1998, Interet des elevages de foraminiferes en laboratoroire: Etudes biologiques et ultrastructurales, These de Doctorat, Universite d'Angers et EPHE, France, p. 405.
- Stouff, V., Debenay, J. P., and Lesourd, M., 1999a, Origin of double and multiple tests in benthic foraminifera: Observations in laboratory cultures: Marine Micropaleontology, v. 36, p. 189–204.
- Stouff, V., Geslin, E., Debenay, J. P., and Lesourd, M., 1999a, Origin of morphological abnormalities in *Ammonia* (foraminifera): Studies in laboratory and natural environments: Journal of Foraminiferal Research, v. 29, p. 152–170.
- Stubbles, S. J., 1999, Responses of recent benthic foraminifera to metal pollution in South West England estuaries: A study of impact and change: Unpublished Ph.D. thesis, Plymouth University.
- Stubbles, S. J., Green, J. C., Hart, M. B., and Williams, C. L., 1996, Response of foraminifera to the presence of heavy metal contamination and acidic mine drainage: Minerals, Metals and the Environment II, Prague. Institute of Mining and Mineralogy, London, Special Publication, p. 217–235.

- Tansel, B., Rafiuddin, S., 2016, Heavy metal content in relation to particle size and organic content of surficial sediments in Miami River and transport potential:

  International Journal of Sediment Research, v. 31, p. 324–329.
- Tappan, H., 1951, Foraminifera from the Arctic Slope of Alaska: U.S. Geological Survey Professional Paper, v. 236A, p. 1–20.
- Tawfik, D. S., and Viola, R. E., 2011, Arsenate replacing phosphate: alternative life chemistries and ion promiscuity: Biochemistry, v. 50, p. 1128–1134.
- Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J., 2012, Heavy Metal Toxicity and the Environment: Luch, A. (Ed.) Molecular, Clinical and Environmental Toxicology, Experientia Supplementum, v. 101, p. 133–164.
- Ter Kuile, B., Erez, J., Padan, E., 1989, Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera: Marine Biology, v. 103, p. 241–251.
- Theyer, F., 1966, Size-depth variation in *Cyclammina cancellata* Brady, Peru-Chile Trench Area: Antarctic Research, v. 15, p. 309–318.
- Titelboim, D., Sadekov, A., Hyams-Kaphzan, O., Almogi-Labin, A., Herut, B., Kucera, M., Abramovich, S., 2018, Foraminiferal single chamber analyses of heavy metals as a tool for monitoring permanent and short term anthropogenic footprints:

  Marine Pollution Bulletin, v. 128, p. 65–71.
- Traina, S. J., and Laperche, V., 1999, Contaminant bioavailability in soils, sediments, and aquatic environments: Proceedings of the National Academy of Science USA, v. 96, p. 3365–3371.

- Tufescu, M., 1968, *Ammonia tepida* (Cushman) (ord. Foraminifera). Some features of its variability in the Black Sea Basin: Revue Roumaine de Biologie et Zoologie, v. 13, p. 169–177.
- Uthus, E. O., 2003, Arsenic essentiality: A role affecting methionine metabolism: Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, v. 16, p. 345–355.
- van Dijk, I., de Noojier, L. J., and Reichart, G. J., 2017, Trends in element incorporation in hyaline and porcelaneous foraminifera as a function of pCO 2: Biogeosciences, v. 14, p. 497–510.
- Walton, W., 1952, Techniques for recognition of living foraminifera: Contributions to the Cushman Foundation for Foraminiferal Research, v. 3, p. 56–60.
- Walton, W. R., and Sloan, B. J., 1990, The genus *Ammonia* Brünnich, 1772: Its geographic distribution and morphologic variability: Journal of Foraminiferal Research, v. 20, p. 128–156.
- Watkins, J. G., 1961, Foraminiferal ecology around the Orange County, California ocean sewer outfall: Micropaleontology, v. 7, p. 199–206.
- Weber, M., and Casazza, L. R., 2006, The effects of heavy metal contamination on the foraminifera of a San Francisco Bay salt marsh: FORAMS 2006- International Symposium on Foraminifera, Natal, Brazil, Anuario do Instituto de Geociencias, v. 29, p. 443–444
- Weinmann, A. E., and Goldstein, S. T., 2016, Changing structure of benthic foraminiferal communities: Implications from experimentally grown assemblages from coastal Georgia and Florida, U.S.A.: Marine Ecology, v. 37, p. 891–906.

- Weinmann, A. E., Goldstein, S. T., Triantaphyllou, M. V., and Langer, M. R., 2019, Effects of sampling site, season, and substrate on foraminiferal assemblages grown from propagule banks from lagoon sediments of Corfu Island (Greece, Ionian Sea): PLoS one, v. 14, e0219015.
- Wright, R. C., 1968, Miliolidae (foraminiferos) recientes del estuario del Rio Quequen Grande (Prov. De Buenos Aires): Museo Argentino de Ciencias Naturales, Revista de Hidrobiologia, v. 2, p. 225–256.
- Yanko, V., Kronfeld, J., and Flexer, A., 1994, Response of benthic foraminifera to various pollution sources: implication for pollution monitoring: Journal of Foraminiferal Research, v. 28, p. 177–200.
- Yanko, V., Ahmad, A. and Bresler, V., 1998, Morphological deformities of benthic foraminiferal tests in response to pollution by heavy metals: implications for pollution monitoring: Journal of Foraminiferal Research, v. 28, p. 177–200.
- Yanko, V., Arnold, A. J., and Parker, W. C., 1999, Effects of marine pollution on benthic foraminifera, in Sen Gupta, B. K. (ed.), Modern Foraminifera: Kluwer Academic Publishers, Dordrecht, p. 217–235.
- Zeng, H., Uthus, E. O., Combs, G. F., 2005, Mechanistic aspects of the interaction between selenium and arsenic: Journal of Inorganic Biochemistry, v. 99, p. 1269–1274.

#### APPENDIX A

## R CODE AND SUPPLEMENTARY DATA FOR CHAPTER 2

#### Part 1: R Code

R code for all plotting and statistical analysis conducted, including functions and scripts that run the commands.

R Function for plotting population density or species abundance against metal concentration.

```
y <- c()
X < - C()
logx < - log(x)
plot (logx, y, xlab="Metal (ppm)", ylab="", pch=19,
xlim=c(-8, 8), ylim=c(0, 300)
, cex.lab=2, cex.axis=2, cex.main=2, cex.sub=2)
abline(v=c((log(CMC Concentration)), (log(0.000001))),
col=c('red','blue'), lty=c(2,1), lwd =c(3,3))
#Exponential Trendline
f \leftarrow function(logx,a,b) \{a * exp(b * logx)\}
fit <- nls(y \sim f(logx,a,b), start = c(a=1, b=1))
co <- coef(fit)</pre>
curve(f(x, a=co[1], b=co[2]), add = TRUE,, lty=2, lwd=3)
#Exponential Coefficients
lm coef <- coef(fit) # extract coefficients</pre>
lm coefA <- round(lm coef[1],3)</pre>
lm coefB <- round(lm coef[2],3)</pre>
mtext((bquote("TF" == .(lm coefA)~"e"
(.(lm coefB) \sim "ln(Ni)")), adj=1, padj=0, cex=2) # display
equation
#Linear Trendline (if necessary)
fit < - lm(y \sim logx)
abline (fit, lty=2, lwd = 3)
#Linear Coefficients (if necessary)
lm coef <- round(coef(fit), 3) # extract coefficients</pre>
mtext(bquote(y == .(lm coef[2])*x + .(lm coef[1])),
```

adj=1, padj=0,cex=2) # display equation Part 2: Data

# Foraminiferal count data for chapter 2.

| Sapelo Island                     |                |                |             |              |              |              |             |             |              |              |
|-----------------------------------|----------------|----------------|-------------|--------------|--------------|--------------|-------------|-------------|--------------|--------------|
| Arsenic                           | 0.069<br>ppm 1 | 0.069<br>ppm 2 | 0.69 1      | 0.69 2       | 6.9<br>ppm 1 | 6.9 ppm<br>2 | 69<br>ppm 1 | 69 ppm<br>2 | 690<br>ppm 1 | 690<br>ppm 2 |
| Actual                            | 0.0434         | 0.1282         | 0.0612      | 0.058        | 0.0512       | 0.0538       | 0.059       | 0.0576      | 0.0804       | 0.0992       |
| Concentration                     | ppm            | ppm            | ppm         | ppm          | ppm          | ppm          | ppm         | ppm         | ppm          | ppm          |
| Ovammina opaca                    | 2              | 2              | 8           | 14           | 8            | 4            | 13          | 1           | 3            | 1            |
| Psammophaga<br>sapela             | 5              | 5              | 6           | 3            | 16           | 2            | 16          | 12          | 3            | 9            |
| Ammonia tepida                    | 3              | 23             | 28          | 21           | 39           | 16           | 24          | 33          | 33           | 38           |
| Haynesina<br>germanica            | 12             | 15             | 37          | 44           | 37           | 52           | 37          | 20          | 29           | 38           |
| Buliminella<br>elegantissima      | 1              | 2              | 4           | 3            | 4            | 3            | 3           | 2           | 0            | 4            |
| Miliammina fusca                  | 2              | 13             | 148         | 1            | 21           | 10           | 10          | 39          | 50           | 4            |
| Textularia<br>candeiana           | 4              | 2              | 6           | 8            | 18           | 10           | 26          | 8           | 9            | 4            |
| Textularia<br>earlandi            | 4              | 3              | 10          | 14           | 4            | 2            | 3           | 3           | 5            | 0            |
| Textularia<br>palustris           | 1              | 2              | 10          | 1            | 5            | 12           | 2           | 9           | 0            | 0            |
| Ammottium salsum                  | 0              | 0              | 0           | 0            | 1            | 0            | 0           | 0           | 0            | 0            |
| Quinqueloculina<br>jugosa         | 1              | 0              | 0           | 0            | 0            | 0            | 0           | 0           | 0            | 2            |
| Elphidium<br>excavatum            | 9              | 8              | 27          | 15           | 24           | 30           | 26          | 21          | 17           | 21           |
| Cadmium                           | 0.04           | 0.04           | 0.4         | 0.4          | 4 ppm        | 4 ppm 2      | 40          | 40 ppm      | 400          | 400          |
|                                   | ppm 1          | ppm 2          | ppm 1       | ppm 2        | 1 140        |              | ppm 1       | 2           | ppm 1        | ppm 2        |
| Actual<br>Concentration           | 3.43<br>ppm    | 3.45<br>ppm    | 4.34<br>ppm | 0.532<br>ppm | 149<br>ppm   | 182<br>ppm   | 149<br>ppm  | 182<br>ppm  | 508<br>ppm   | 566<br>ppm   |
|                                   | 7              | 8<br>8         | 18          | 4            | 0            | 1            | 0           | 1           | 0            | 1            |
| Ovammina opaca<br>Psammophaga     | 16             | 47             | 8           | 27           | 11           | 18           | 19          | 26          | 13           | 1            |
| sapela<br>Ammonia tepida          | 31             | 40             | 8           | 46           | 0            | 0            | 5           | 0           | 0            | 0            |
| Haynesina                         | 45             | 48             | 17          | 35           | 2            | 4            | 8           | 3           | 1            | 2            |
| germanica<br>Buliminella          | 9              | 8              | 22          | 12           | 0            | 0            | 0           | 0           | 0            | 0            |
| elegantissima<br>Miliammina fusca | 11             | 0              | 11          | 2            | 14           | 0            | 0           | 0           | 0            | 0            |
| Textularia<br>candeiana           | 4              | 1              | 3           | 25           | 0            | 0            | 0           | 0           | 0            | 0            |
| Textularia<br>earlandi            | 2              | 0              | 7           | 15           | 1            | 1            | 1           | 0           | 0            | 0            |
| Textularia<br>palustris           | 2              | 0              | 1           | 30           | 0            | 0            | 0           | 0           | 0            | 0            |
| Ammottium<br>salsum               | 0              | 0              | 0           | 0            | 0            | 0            | 0           | 0           | 0            | 0            |
| Quinqueloculina<br>jugosa         | 0              | 1              | 1           | 1            | 0            | 1            | 0           | 0           | 1            | 0            |

| Elphidium<br>excavatum                                                     | 29             | 28             | 5             | 13            | 1               | 2            | 4            | 1                | 0            | 0               |
|----------------------------------------------------------------------------|----------------|----------------|---------------|---------------|-----------------|--------------|--------------|------------------|--------------|-----------------|
| Nickel                                                                     | 0.074<br>ppm 1 | 0.074<br>ppm 2 | 0.74<br>ppm 1 | 0.74<br>ppm 2 | 7.4<br>ppm 1    | 7.4 ppm<br>2 | 74<br>ppm 1  | 74 ppm<br>2      | 740<br>ppm 1 | 740<br>ppm 2    |
| Actual                                                                     | 0.011          | 0.0097         | 0.009         | 0.0087        | 0.0106          | 0.00209      | 0.4094       | 0.03438          | 1.2794       | 1.819           |
| Ovammina opaca                                                             | <b>ppm</b> 4   | <b>ppm</b> 3   | <b>ppm</b> 2  | <b>ppm</b> 1  | <b>ppm</b><br>0 | <b>6 ppm</b> | <b>ppm</b> 0 | <b>ppm</b><br>19 | <b>ppm</b> 1 | <b>ppm</b><br>0 |
| Psammophaga                                                                | 14             | 13             | 7             | 3             | 3               | 1            | 1            | 21               | 9            | 6               |
| sapela                                                                     | 42             | 21             |               | 20            | 20              | 2            | 0            | 20               | 0            | 0               |
| Ammonia tepida                                                             | 43             | 31             | 6             | 28            | 28              | 3            | 0            | 30               | 0            | 0               |
| Haynesina<br>germanica<br>Buliminella                                      | 61             | 63             | 27            | 60            | 37              | 13           | 3            | 27               | 3            | 2               |
| elegantissima                                                              | 2              | 6              | 1             | 1             | 0               | 2            | 0            | 1                | 0            | 0               |
| Miliammina fusca                                                           | 18             | 29             | 15            | 16            | 8               | 14           | 2            | 0                | 3            | 0               |
| Textularia<br>candeiana                                                    | 8              | 9              | 2             | 8             | 3               | 4            | 0            | 4                | 0            | 0               |
| Textularia<br>earlandi                                                     | 6              | 5              | 0             | 6             | 1               | 1            | 0            | 2                | 0            | 0               |
| Textularia<br>palustris                                                    | 1              | 4              | 0             | 1             | 2               | 4            | 1            | 1                | 0            | 0               |
| Ammottium<br>salsum                                                        | 0              | 0              | 0             | 0             | 0               | 0            | 0            | 0                | 0            | 0               |
| Quinqueloculina<br>jugosa<br>Elphidium                                     | 18             | 2              | 2             | 1             | 1               | 0            | 0            | 1                | 0            | 0               |
| excavatum                                                                  | 40             | 22             | 9             | 0             | 19              | 4            | 0            | 11               | 0            | 0               |
| Zinc                                                                       | 0.09<br>ppm 1  | 0.09<br>ppm 2  | 0.9<br>ppm 1  | 0.9<br>ppm 2  | 9 ppm<br>1      | 9 ppm 2      | 90<br>ppm 1  | 90 ppm<br>2      | 900<br>ppm 1 | 900<br>ppm 2    |
| Actual                                                                     | 0.0195         | 0.0354         | 0.0188        | 0.0165        | 0.0597          | 0.0545       | 11.4         | 4.14             | 328          | 246             |
| Concentration                                                              | ppm            | ppm            | ppm           | ppm           | ppm             | ppm          | ppm          | ppm              | ppm          | ppm             |
| Ovammina opaca                                                             | 1              | 2              | 1             | 6             | 2               | 12           | 0            | 1                | 0            | 0               |
| Psammophaga<br>sapela                                                      | 1              | 1              | 0             | 8             | 21              | 9            | 1            | 4                | 2            | 4               |
| Ammonia tepida                                                             | 3              | 15             | 49            | 42            | 10              | 46           | 0            | 0                | 0            | 0               |
| Haynesina<br>germanica                                                     | 18             | 27             | 42            | 53            | 19              | 18           | 0            | 1                | 2            | 2               |
| Buliminella<br>elegantissima                                               | 1              | 8              | 5             | 5             | 0               | 0            | 0            | 0                | 0            | 0               |
| Miliammina fusca                                                           | 25             | 14             | 5             | 17            | 0               | 6            | 0            | 0                | 0            | 0               |
| Textularia<br>candeiana                                                    | 1              | 0              | 5             | 16            | 0               | 0            | 0            | 0                | 0            | 0               |
| Textularia<br>earlandi                                                     | 1              | 0              | 1             | 10            | 0               | 0            | 0            | 0                | 0            | 0               |
| Textularia<br>palustris                                                    | 6              | 1              | 8             | 11            | 0               | 0            | 0            | 0                | 0            | 0               |
| •                                                                          |                |                |               |               |                 |              |              |                  |              | 0               |
| Ammottium<br>salsum                                                        | 0              | 0              | 0             | 0             | 0               | 0            | 0            | 0                | 0            | 0               |
| Ammottium<br>salsum<br>Quinqueloculina<br>jugosa                           | 0              | 0              | 1             | 20            | 0               | 0            | 0            | 0                | 0            | 0               |
| Ammottium<br>salsum<br>Quinqueloculina<br>jugosa<br>Elphidium<br>excavatum | 0              | 0<br>9         |               |               |                 |              |              |                  |              |                 |
| Ammottium salsum Quinqueloculina jugosa Elphidium excavatum  Controls      | 0              | 0              | 1             | 20            | 0               | 0            | 0            | 0                | 0            | 0               |
| Ammottium<br>salsum<br>Quinqueloculina<br>jugosa<br>Elphidium<br>excavatum | 0              | 0<br>9         | 1             | 20            | 0               | 0            | 0            | 0                | 0            | 0               |

| Ammonia tepida               | 34 | 23 |
|------------------------------|----|----|
| Haynesina<br>germanica       | 39 | 29 |
| Buliminella<br>elegantissima | 9  | 7  |
| Miliammina fusca             | 59 | 47 |
| Textularia<br>candeiana      | 7  | 8  |
| Textularia<br>earlandi       | 11 | 8  |
| Textularia<br>palustris      | 19 | 14 |
| Ammottium<br>salsum          | 0  | 0  |
| Quinqueloculina<br>jugosa    | 0  | 0  |
| Elphidium<br>excavatum       | 24 | 19 |

# Little Duck Key

| Arsenic                      | 0.069          | 0.069          | 0.69 1 | 0.69 2 | 6.9            | 6.9 ppm | 69             | 69 ppm | 690             | 690             |
|------------------------------|----------------|----------------|--------|--------|----------------|---------|----------------|--------|-----------------|-----------------|
| Actual                       | ppm 1<br>0.116 | ppm 2<br>0.298 | 0.116  | 0.147  | ppm 1<br>0.224 | 0.214   | ppm 1<br>6.082 | 5.512  | ppm 1<br>57.062 | ppm 2<br>51.562 |
| Concentration                | ppm            | ppm            | ppm    | ppm    | ppm            | ppm     | ppm            | ppm    | ppm             | ppm             |
| Ammonia tepida               | 1              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 2               |
| Archais angulatus            | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Bolivina lowmani             | 8              | 1              | 11     | 1      | 5              | 2       | 0              | 0      | 1               | 1               |
| Bolivina pulchella           | 9              | 2              | 3      | 0      | 2              | 1       | 1              | 0      | 0               | 0               |
| Bolivina striatula           | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Buliminella<br>elegantissima | 0              | 0              | 0      | 0      | 1              | 0       | 0              | 0      | 0               | 0               |
| Cibicides spp.               | 1              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Cornuspira<br>planorbis      | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 1               |
| Discorbis mira               | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Elphidium<br>discoidale      | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 3               |
| Elphidium<br>mexicanum       | 1              | 7              | 0      | 0      | 11             | 1       | 0              | 1      | 0               | 1               |
| Hauerina bradyi              | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Miliolinella<br>circularis   | 2              | 0              | 2      | 0      | 4              | 3       | 0              | 0      | 0               | 1               |
| Miliolinella<br>subrotunda   | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 3               |
| Nonionoides<br>grateloupi    | 0              | 0              | 0      | 0      | 1              | 0       | 0              | 0      | 0               | 0               |
| Ovammina opaca               | 38             | 65             | 41     | 16     | 7              | 48      | 0              | 0      | 0               | 0               |
| Peneroplis<br>pertusus       | 0              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Quinqueloculina agglutinans  | 2              | 0              | 0      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |
| Quinqueloculina<br>bosciana  | 9              | 6              | 2      | 3      | 8              | 8       | 0              | 2      | 0               | 8               |
| Quinqueloculina<br>laevigata | 0              | 0              | 1      | 0      | 0              | 0       | 0              | 0      | 0               | 0               |

| 0 ' 1 ''                                                                                                                                                                  |                                 |                                      |                                      |                                           |                                 |                                      |                                            |                                 |                                           |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|
| Quinqueloculina<br>lamarckiana                                                                                                                                            | 0                               | 0                                    | 1                                    | 0                                         | 2                               | 4                                    | 0                                          | 0                               | 0                                         | 0                                    |
| Quinqueloculina                                                                                                                                                           | 0                               | 0                                    | 2                                    | 0                                         | 0                               | 4                                    | 0                                          | 0                               | 0                                         | 0                                    |
| poeyana<br>Quinqueloculina                                                                                                                                                |                                 |                                      |                                      |                                           |                                 |                                      |                                            |                                 |                                           |                                      |
| polygona                                                                                                                                                                  | 0                               | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 0                                    |
| Quinqueloculina<br>sabulosa                                                                                                                                               | 6                               | 8                                    | 11                                   | 1                                         | 14                              | 21                                   | 0                                          | 0                               | 0                                         | 5                                    |
| Quinqueloculina<br>seminula                                                                                                                                               | 5                               | 3                                    | 0                                    | 3                                         | 8                               | 3                                    | 0                                          | 2                               | 0                                         | 4                                    |
| Reophax                                                                                                                                                                   | 11                              | 13                                   | 8                                    | 2                                         | 6                               | 3                                    | 1                                          | 8                               | 0                                         | 0                                    |
| gaussicus<br>Rosalina                                                                                                                                                     |                                 |                                      |                                      |                                           |                                 |                                      |                                            |                                 |                                           |                                      |
| floridana<br>Rosalina                                                                                                                                                     | 0                               | 0                                    | 1                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 1                                         | 0                                    |
| globularis                                                                                                                                                                | 1                               | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 0                                    |
| Sorites marginalis                                                                                                                                                        | 1                               | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 1                                         | 0                                    |
| Textularia<br>candeiana                                                                                                                                                   | 11                              | 11                                   | 12                                   | 30                                        | 28                              | 4                                    | 0                                          | 9                               | 0                                         | 0                                    |
| Textularia                                                                                                                                                                | 7                               | 1                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 0                                    |
| earlandi<br>Triloculina                                                                                                                                                   | ,                               | -                                    | Ü                                    |                                           | Ü                               | Ü                                    | Ü                                          | Ü                               | Ü                                         | Ů                                    |
| oblonga                                                                                                                                                                   | 0                               | 3                                    | 0                                    | 0                                         | 10                              | 2                                    | 0                                          | 0                               | 0                                         | 0                                    |
| Triloculina<br>rotunda                                                                                                                                                    | 0                               | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 1                                    |
| Triloculina                                                                                                                                                               | 0                               | 1                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 1                                    |
| tricarinata                                                                                                                                                               |                                 |                                      |                                      |                                           |                                 |                                      |                                            |                                 |                                           |                                      |
| Cadmium                                                                                                                                                                   | 0.04<br>ppm 1                   | 0.04<br>ppm 2                        | 0.4<br>ppm 1                         | 0.4<br>ppm 2                              | 4 ppm<br>1                      | 4 ppm 2                              | 40<br>ppm 1                                | 40 ppm<br>2                     | 400<br>ppm 1                              | 400<br>ppm 2                         |
| Actual                                                                                                                                                                    | 0.00108                         | 0.00017                              | 0.0119                               | 0.0157                                    | 0.148                           | 0.05                                 | 0.137                                      | 0.146                           | 1.08                                      | 1.35                                 |
| Concentration                                                                                                                                                             | ppm                             | ppm                                  | ppm                                  | ppm                                       | ppm                             | ppm                                  | ppm                                        | ppm                             | ppm                                       | ppm                                  |
| Ammonia tepida                                                                                                                                                            | 1                               | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 1                                          | 0                               | 0                                         | 0                                    |
| Archais angulatus                                                                                                                                                         | 0                               | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 0                                    |
| Bolivina lowmani                                                                                                                                                          | 7                               | 16                                   | 1                                    | 4                                         | 0                               | 4                                    | 0                                          | 2                               | 0                                         | 0                                    |
| Bolivina pulchella                                                                                                                                                        | 2                               | 6                                    |                                      |                                           |                                 |                                      |                                            |                                 |                                           |                                      |
| Bolivina striatula                                                                                                                                                        |                                 |                                      | 0                                    | 1                                         | 1                               | 1                                    | 1                                          | 0                               | 0                                         | 0                                    |
|                                                                                                                                                                           | 0                               | 0                                    | 0                                    | 1 0                                       | 1 0                             | 1 0                                  | 1                                          | 0                               |                                           | 0                                    |
| Buliminella<br>elegantissima                                                                                                                                              | 0                               |                                      |                                      |                                           |                                 |                                      |                                            |                                 | 0                                         |                                      |
| elegantissima                                                                                                                                                             |                                 | 0                                    | 0                                    | 0                                         | 0                               | 0                                    | 0                                          | 0                               | 0                                         | 0                                    |
| elegantissima<br>Cibicides spp.<br>Cornuspira                                                                                                                             | 1                               | 0                                    | 0                                    | 0                                         | 0                               | 0 2                                  | 0                                          | 0                               | 0<br>0<br>0                               | 0                                    |
| elegantissima<br>Cibicides spp.<br>Cornuspira<br>planorbis                                                                                                                | 1                               | 0<br>0<br>0                          | 0<br>0<br>0                          | 0<br>0<br>0                               | 0<br>0<br>0                     | 0<br>2<br>0                          | 0<br>0<br>0                                | 0<br>0<br>0                     | 0<br>0<br>0                               | 0<br>0<br>0                          |
| elegantissima<br>Cibicides spp.<br>Cornuspira<br>planorbis<br>Discorbis mira<br>Elphidium                                                                                 | 1<br>0<br>0                     | 0<br>0<br>0                          | 0<br>0<br>0                          | 0<br>0<br>0                               | 0<br>0<br>0                     | 0<br>2<br>0<br>0                     | 0<br>0<br>0                                | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0                          | 0<br>0<br>0                          |
| elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium                                                                           | 1<br>0<br>0                     | 0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                | 0<br>2<br>0<br>0                     | 0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0                     |
| elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum                                                                 | 1<br>0<br>0<br>1<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>2<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1           |
| elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum Hauerina bradyi                                                 | 1<br>0<br>0<br>1                | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0           | 0<br>2<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                |
| elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum Hauerina bradyi Miliolinella circularis                         | 1<br>0<br>0<br>1<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>2<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>1           |
| elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum Hauerina bradyi Miliolinella circularis Miliolinella subrotunda | 1<br>0<br>0<br>1<br>0<br>6      | 0<br>0<br>0<br>0<br>0<br>0<br>8      | 0<br>0<br>0<br>0<br>0<br>0<br>7      | 0<br>0<br>0<br>0<br>0<br>0<br>4           | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>2<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>1<br>0      |
| elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum Hauerina bradyi Miliolinella circularis Miliolinella            | 1<br>0<br>0<br>1<br>0<br>6<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>8<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>7<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>4<br>0<br>4 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>2<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>11<br>0<br>7 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>2<br>0 | 0<br>0<br>0<br>0<br>0<br>1<br>0<br>0 |

| Peneroplis<br>pertusus                                                                                                                                                                  |                                                                    |                                                                    |                                            |                                                 |                                                          |                                                             |                                              |                                                       |                                          |                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------|--------------------------------------------|
| periusus                                                                                                                                                                                | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 1                                            | 0                                                     | 0                                        | 0                                          |
| Quinqueloculina                                                                                                                                                                         |                                                                    | _                                                                  | _                                          | _                                               |                                                          | _                                                           | _                                            |                                                       | _                                        | _                                          |
| agglutinans                                                                                                                                                                             | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 0                                            | 0                                                     | 0                                        | 0                                          |
| Quinqueloculina                                                                                                                                                                         | 9                                                                  | 18                                                                 | 6                                          | 6                                               | 0                                                        | 8                                                           | 7                                            | 6                                                     | 1                                        | 1                                          |
| bosciana                                                                                                                                                                                |                                                                    | 10                                                                 | Ü                                          | Ü                                               | Ü                                                        | O                                                           | ,                                            | Ü                                                     | •                                        | 1                                          |
| Quinqueloculina<br>laevigata                                                                                                                                                            | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 1                                            | 1                                                     | 0                                        | 0                                          |
| Quinqueloculina                                                                                                                                                                         |                                                                    |                                                                    |                                            |                                                 |                                                          |                                                             |                                              |                                                       |                                          |                                            |
| lamarckiana                                                                                                                                                                             | 0                                                                  | 1                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 1                                            | 0                                                     | 0                                        | 0                                          |
| Quinqueloculina                                                                                                                                                                         | 8                                                                  | 4                                                                  | 0                                          | 2                                               | 0                                                        | 0                                                           | 2                                            | 1                                                     | 0                                        | 2                                          |
| poeyana<br>Orizonala artica                                                                                                                                                             |                                                                    |                                                                    |                                            |                                                 |                                                          |                                                             |                                              |                                                       |                                          |                                            |
| Quinqueloculina<br>polygona                                                                                                                                                             | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 2                                            | 2                                                     | 0                                        | 0                                          |
| Quinqueloculina                                                                                                                                                                         | 2                                                                  | 1.5                                                                | -                                          | 10                                              | 2                                                        | 10                                                          |                                              | 2                                                     | 0                                        | 0                                          |
| sabulosa                                                                                                                                                                                | 3                                                                  | 15                                                                 | 7                                          | 13                                              | 2                                                        | 13                                                          | 1                                            | 2                                                     | 0                                        | 0                                          |
| Quinqueloculina                                                                                                                                                                         | 9                                                                  | 10                                                                 | 5                                          | 2                                               | 0                                                        | 7                                                           | 4                                            | 1                                                     | 2                                        | 0                                          |
| seminula<br>Reophax                                                                                                                                                                     |                                                                    |                                                                    |                                            |                                                 |                                                          |                                                             |                                              |                                                       |                                          |                                            |
| gaussicus                                                                                                                                                                               | 8                                                                  | 7                                                                  | 6                                          | 6                                               | 2                                                        | 7                                                           | 2                                            | 2                                                     | 0                                        | 0                                          |
| Rosalina                                                                                                                                                                                | 1                                                                  | 0                                                                  | 1                                          | 0                                               | 0                                                        | 0                                                           | 0                                            | 2                                                     | 0                                        | 0                                          |
| floridana                                                                                                                                                                               | 1                                                                  | U                                                                  | 1                                          | U                                               | U                                                        | U                                                           | U                                            | 2                                                     | U                                        | U                                          |
| Rosalina<br>globularis                                                                                                                                                                  | 1                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 0                                            | 0                                                     | 0                                        | 0                                          |
| Sorites marginalis                                                                                                                                                                      | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 0                                            | 0                                                     | 0                                        | 0                                          |
| Textularia                                                                                                                                                                              | O                                                                  | O                                                                  | O                                          | O                                               |                                                          | O                                                           | O                                            | O                                                     | O                                        |                                            |
| candeiana                                                                                                                                                                               | 3                                                                  | 13                                                                 | 5                                          | 11                                              | 0                                                        | 10                                                          | 0                                            | 0                                                     | 0                                        | 0                                          |
| Textularia                                                                                                                                                                              | 0                                                                  | 0                                                                  | 1                                          | 0                                               | 0                                                        | 0                                                           | 1                                            | 3                                                     | 0                                        | 0                                          |
| earlandi<br>                                                                                                                                                                            | O                                                                  | U                                                                  | 1                                          | O                                               | O                                                        | O                                                           | 1                                            | 3                                                     | O                                        | O                                          |
| Triloculina<br>oblonga                                                                                                                                                                  | 0                                                                  | 5                                                                  | 26                                         | 5                                               | 1                                                        | 0                                                           | 0                                            | 0                                                     | 0                                        | 0                                          |
| Triloculina                                                                                                                                                                             |                                                                    |                                                                    |                                            |                                                 |                                                          |                                                             |                                              |                                                       |                                          |                                            |
| rotunda                                                                                                                                                                                 | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 0                                            | 0                                                     | 0                                        | 0                                          |
| Triloculina                                                                                                                                                                             | 0                                                                  | 0                                                                  | 0                                          | 0                                               | 0                                                        | 0                                                           | 0                                            | 0                                                     | 0                                        | 0                                          |
|                                                                                                                                                                                         | U                                                                  |                                                                    |                                            |                                                 |                                                          |                                                             |                                              |                                                       |                                          |                                            |
| tricarinata                                                                                                                                                                             |                                                                    |                                                                    | 0.74                                       | 0.74                                            | 7.4                                                      | 7.4 nnm                                                     | 74                                           | 74 nnm                                                | 740                                      | 740                                        |
| tricarinata                                                                                                                                                                             | 0.74                                                               | 0.074                                                              | 0.74<br>ppm 1                              | 0.74<br>ppm 2                                   | 7.4<br>ppm 1                                             | 7.4 ppm<br>2                                                | 74<br>ppm 1                                  | 74 ppm<br>2                                           | 740<br>ppm 1                             | 740<br>ppm 2                               |
| tricarinata<br>Nickel                                                                                                                                                                   |                                                                    |                                                                    | 0.74<br>ppm 1<br>0.0086                    | 0.74<br>ppm 2<br>0.0093                         | 7.4<br>ppm 1<br>0.0535                                   |                                                             | 74<br>ppm 1<br>0.5585                        |                                                       | 740<br>ppm 1<br>3.2585                   | 740<br>ppm 2<br>0.9765                     |
| tricarinata Nickel Actual                                                                                                                                                               | 0.74<br>ppm 1                                                      | 0.074<br>ppm 2                                                     | ppm 1                                      | ppm 2                                           | ppm 1                                                    | 2                                                           | ppm 1                                        | 2                                                     | ppm 1                                    | ppm 2                                      |
| tricarinata Nickel Actual Concentration                                                                                                                                                 | 0.74<br>ppm 1<br>0.0063                                            | 0.074<br>ppm 2<br>0.0096                                           | ppm 1<br>0.0086                            | ppm 2<br>0.0093                                 | ppm 1<br>0.0535                                          | 2<br>0.03559                                                | ppm 1<br>0.5585                              | 2<br>0.4075                                           | ppm 1<br>3.2585                          | ppm 2<br>0.9765                            |
| Nickel Actual Concentration Ammonia tepida                                                                                                                                              | 0.74<br>ppm 1<br>0.0063<br>ppm                                     | 0.074<br>ppm 2<br>0.0096<br>ppm                                    | ppm 1<br>0.0086<br>ppm                     | ppm 2<br>0.0093<br>ppm                          | ppm 1<br>0.0535<br>ppm                                   | 2<br>0.03559<br>ppm                                         | ppm 1<br>0.5585<br>ppm                       | 2<br>0.4075<br>ppm                                    | ppm 1<br>3.2585<br>ppm                   | ppm 2<br>0.9765<br>ppm                     |
| Nickel Actual Concentration Ammonia tepida Archais angulatus                                                                                                                            | 0.74<br>ppm 1<br>0.0063<br>ppm                                     | 0.074<br>ppm 2<br>0.0096<br>ppm                                    | ppm 1<br>0.0086<br>ppm                     | ppm 2<br>0.0093<br>ppm                          | ppm 1<br>0.0535<br>ppm<br>0                              | 2<br>0.03559<br>ppm<br>0                                    | ppm 1<br>0.5585<br>ppm                       | 2<br>0.4075<br>ppm<br>0                               | 3.2585<br>ppm<br>0                       | ppm 2<br>0.9765<br>ppm                     |
| Nickel Actual Concentration Ammonia tepida Archais angulatus Bolivina lowmani                                                                                                           | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0                           | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0                               | ppm 1<br>0.0086<br>ppm<br>0<br>0           | ppm 2<br>0.0093<br>ppm<br>1<br>0                | ppm 1<br>0.0535<br>ppm<br>0<br>0                         | 2<br>0.03559<br>ppm<br>0<br>0                               | ppm 1<br>0.5585<br>ppm<br>0<br>0             | 2<br>0.4075<br>ppm<br>0<br>0                          | ppm 1 3.2585 ppm 0 0                     | ppm 2<br>0.9765<br>ppm<br>1<br>0           |
| Nickel Actual Concentration Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella                                                                                        | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10                     | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>0                          | ppm 1<br>0.0086<br>ppm<br>0<br>0<br>4      | ppm 2<br>0.0093<br>ppm<br>1<br>0<br>8           | ppm 1 0.0535 ppm 0 1                                     | 2<br>0.03559<br>ppm<br>0<br>0<br>4                          | ppm 1<br>0.5585<br>ppm<br>0<br>0             | 2<br>0.4075<br>ppm<br>0<br>0                          | ppm 1 3.2585 ppm 0 0 0                   | ppm 2<br>0.9765<br>ppm<br>1<br>0           |
| Nickel Actual Concentration Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula                                                                     | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10<br>3                | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>0<br>4<br>1                | ppm 1 0.0086 ppm 0 0 4 3 0                 | ppm 2<br>0.0093<br>ppm<br>1<br>0<br>8<br>0      | ppm 1 0.0535 ppm 0 1 2 0                                 | 2<br>0.03559<br>ppm<br>0<br>0<br>4<br>0                     | ppm 1 0.5585 ppm 0 0 1 0 0 0                 | 2<br>0.4075<br>ppm<br>0<br>0<br>0<br>0                | ppm 1 3.2585 ppm 0 0 0 0 0               | ppm 2<br>0.9765<br>ppm<br>1<br>0<br>0<br>0 |
| rricarinata  Nickel  Actual  Concentration  Ammonia tepida  Archais angulatus  Bolivina lowmani  Bolivina pulchella  Bolivina striatula  Buliminella                                    | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10                     | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>0<br>4                     | ppm 1<br>0.0086<br>ppm<br>0<br>0<br>4<br>3 | ppm 2<br>0.0093<br>ppm<br>1<br>0<br>8<br>0      | ppm 1 0.0535 ppm 0 1 2                                   | 0.03559<br>ppm<br>0<br>0<br>4<br>0                          | ppm 1 0.5585 ppm 0 0 0 1                     | 2<br>0.4075<br>ppm<br>0<br>0<br>0                     | ppm 1 3.2585 ppm 0 0 0 0                 | ppm 2<br>0.9765<br>ppm<br>1<br>0<br>0      |
| rricarinata  Nickel  Actual  Concentration  Ammonia tepida  Archais angulatus  Bolivina lowmani  Bolivina pulchella  Bolivina striatula  Buliminella elegantissima                      | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10<br>3                | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>0<br>4<br>1                | ppm 1 0.0086 ppm 0 0 4 3 0                 | ppm 2<br>0.0093<br>ppm<br>1<br>0<br>8<br>0      | ppm 1 0.0535 ppm 0 1 2 0                                 | 2<br>0.03559<br>ppm<br>0<br>0<br>4<br>0                     | ppm 1 0.5585 ppm 0 0 1 0 0 0                 | 2<br>0.4075<br>ppm<br>0<br>0<br>0<br>0                | ppm 1 3.2585 ppm 0 0 0 0 0               | ppm 2<br>0.9765<br>ppm<br>1<br>0<br>0<br>0 |
| Nickel  Actual Concentration  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira               | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10<br>3<br>0           | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>4<br>1<br>0                | ppm 1 0.0086 ppm 0 4 3 0                   | ppm 2<br>0.0093<br>ppm<br>1<br>0<br>8<br>0<br>0 | ppm 1 0.0535 ppm 0 1 2 0 1                               | 2<br>0.03559<br>ppm<br>0<br>0<br>4<br>0<br>0                | ppm 1 0.5585 ppm 0 0 0 1 0 0                 | 2<br>0.4075<br>ppm<br>0<br>0<br>0<br>0<br>0           | ppm 1 3.2585 ppm 0 0 0 0 0 0             | ppm 2 0.9765 ppm 1 0 0 0 0 0               |
| Nickel  Actual Concentration  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis     | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10<br>3<br>0           | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>4<br>1<br>0                | ppm 1 0.0086 ppm 0 4 3 0 0                 | ppm 2 0.0093 ppm  1 0 8 0 0 0 0                 | ppm 1 0.0535 ppm 0 0 1 2 0 1 0                           | 2<br>0.03559<br>ppm<br>0<br>0<br>4<br>0<br>0<br>0           | ppm 1 0.5585 ppm 0 0 0 1 0 0 0               | 2<br>0.4075<br>ppm<br>0<br>0<br>0<br>0<br>0<br>1      | ppm 1 3.2585 ppm 0 0 0 0 0 0 0           | ppm 2 0.9765 ppm 1 0 0 0 0 0 0             |
| Nickel Actual Concentration Ammonia tepida Archais angulatus Bolivina lowmani Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10<br>3<br>0<br>0      | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>4<br>1<br>0<br>0           | ppm 1 0.0086 ppm 0 0 4 3 0 0 0 0           | ppm 2 0.0093 ppm  1 0 8 0 0 0 0 0               | ppm 1 0.0535 ppm 0 1 2 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 | 2<br>0.03559<br>ppm<br>0<br>0<br>4<br>0<br>0<br>0<br>0      | ppm 1 0.5585 ppm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2<br>0.4075<br>ppm<br>0<br>0<br>0<br>0<br>1           | ppm 1 3.2585 ppm 0 0 0 0 0 0 0 0 0 0     | ppm 2 0.9765 ppm  1 0 0 0 0 0 0 0 0        |
| nickel                                                                                                                                                                                  | 0.74<br>ppm 1<br>0.0063<br>ppm<br>2<br>0<br>10<br>3<br>0<br>0<br>0 | 0.074<br>ppm 2<br>0.0096<br>ppm<br>0<br>0<br>4<br>1<br>0<br>0<br>0 | ppm 1 0.0086 ppm 0 0 4 3 0 0 0 0 0 0       | ppm 2 0.0093 ppm  1 0 8 0 0 0 0 0 0             | ppm 1 0.0535 ppm 0 0 1 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | 2<br>0.03559<br>ppm<br>0<br>0<br>4<br>0<br>0<br>0<br>0<br>0 | ppm 1 0.5585 ppm 0 0 0 1 0 0 0 0 0 0 0 0 0   | 2<br>0.4075<br>ppm<br>0<br>0<br>0<br>0<br>1<br>0<br>1 | ppm 1 3.2585 ppm 0 0 0 0 0 0 0 0 0 0 0 0 | ppm 2 0.9765 ppm  1 0 0 0 0 0 0 0 0 0      |

| 1           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16          | 31                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25          | 6                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2           | 0                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2           | 0                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9           | 2                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29          | 11                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15          | 22                                                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6           | 12                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21          | 8                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.09        | 0.09                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ppm 1       | ppm 2                                                                                            | ppm 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppm 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppm 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ppm 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppm 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>ppm</b><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19          | 9                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3           | Λ                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3           | 4                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>3<br>4 | 4<br>0<br>2                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3           | 0                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 0<br>0<br>16<br>0<br>0<br>25<br>2<br>0<br>2<br>0<br>9<br>29<br>15<br>0<br>0<br>6<br>0<br>21<br>0 | 0       0         0       0         16       31         0       0         0       0         25       6         2       0         0       0         2       0         0       0         9       2         29       11         15       22         0       0         0       0         0       0         0       0         21       8         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0         0       0 | 0       0       0         0       0       0         16       31       14         0       0       0         0       0       0         25       6       9         2       0       3         0       0       0         2       0       1         0       0       0         9       2       3         29       11       10         15       22       19         0       0       0         0       0       0         0       0       0         0       0       0         12       14         0       0       0         21       8       12         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0 <tr< td=""><td>0       0       0       0         16       31       14       0         0       0       0       0         0       0       0       0         0       0       0       0         25       6       9       13         2       0       3       1         0       0       0       0         2       0       1       4         0       0       0       0         9       2       3       18         29       11       10       7         15       22       19       7         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         13       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0</td><td>0         0         0         0         0           16         31         14         0         8           0         0         0         0         0           0         0         0         0         0           2         6         9         13         3           2         0         3         1         0           0         0         0         0         0           2         0         1         4         0           0         0         0         0         0           9         2         3         18         2           29         11         10         7         2           15         22         19         7         5           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           1         1         1         1         <t< td=""><td>0         0         0         0         0         0           16         31         14         0         8         13           0         0         0         0         0         0           0         0         0         0         0         0           0         0         0         0         0         0           25         6         9         13         3         9           2         0         3         1         0         0           0         0         0         0         0         0           2         0         1         4         0         2           0         0         0         0         0         0           9         2         3         18         2         6           29         11         10         7         2         5           15         22         19         7         5         16           0         0         0         0         0         0           0         0         0         0         0         0           0</td><td>0         0         0         0         0         0           16         31         14         0         8         13         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0         0           25         6         9         13         3         9         1         1         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0&lt;</td><td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td><td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td></t<></td></tr<> | 0       0       0       0         16       31       14       0         0       0       0       0         0       0       0       0         0       0       0       0         25       6       9       13         2       0       3       1         0       0       0       0         2       0       1       4         0       0       0       0         9       2       3       18         29       11       10       7         15       22       19       7         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         13       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0 | 0         0         0         0         0           16         31         14         0         8           0         0         0         0         0           0         0         0         0         0           2         6         9         13         3           2         0         3         1         0           0         0         0         0         0           2         0         1         4         0           0         0         0         0         0           9         2         3         18         2           29         11         10         7         2           15         22         19         7         5           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           1         1         1         1 <t< td=""><td>0         0         0         0         0         0           16         31         14         0         8         13           0         0         0         0         0         0           0         0         0         0         0         0           0         0         0         0         0         0           25         6         9         13         3         9           2         0         3         1         0         0           0         0         0         0         0         0           2         0         1         4         0         2           0         0         0         0         0         0           9         2         3         18         2         6           29         11         10         7         2         5           15         22         19         7         5         16           0         0         0         0         0         0           0         0         0         0         0         0           0</td><td>0         0         0         0         0         0           16         31         14         0         8         13         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0         0           25         6         9         13         3         9         1         1         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0&lt;</td><td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td><td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td></t<> | 0         0         0         0         0         0           16         31         14         0         8         13           0         0         0         0         0         0           0         0         0         0         0         0           0         0         0         0         0         0           25         6         9         13         3         9           2         0         3         1         0         0           0         0         0         0         0         0           2         0         1         4         0         2           0         0         0         0         0         0           9         2         3         18         2         6           29         11         10         7         2         5           15         22         19         7         5         16           0         0         0         0         0         0           0         0         0         0         0         0           0 | 0         0         0         0         0         0           16         31         14         0         8         13         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0           0         0         0         0         0         0         0         0           25         6         9         13         3         9         1         1         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0< | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

| Discorbis mira                                 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
|------------------------------------------------|----|----|----|----|----|----|---|---|---|---|
| Elphidium<br>discoidale                        | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Elphidium<br>mexicanum                         | 8  | 4  | 6  | 4  | 3  | 6  | 1 | 2 | 1 | 4 |
| Hauerina bradyi                                | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Miliolinella<br>circularis                     | 4  | 0  | 0  | 1  | 0  | 0  | 1 | 1 | 0 | 0 |
| Miliolinella<br>subrotunda                     | 0  | 0  | 4  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Nonionoides<br>grateloupi                      | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Ovammina opaca                                 | 0  | 70 | 35 | 20 | 35 | 41 | 0 | 0 | 0 | 0 |
| Peneroplis pertusus                            | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Quinqueloculina<br>agglutinans                 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Quinqueloculina<br>bosciana                    | 22 | 4  | 7  | 7  | 5  | 11 | 1 | 6 | 0 | 4 |
| Quinqueloculina<br>laevigata                   | 0  | 0  | 1  | 0  | 0  | 0  | 0 | 2 | 0 | 0 |
| Quinqueloculina<br>lamarckiana                 | 1  | 0  | 2  | 0  | 0  | 0  | 0 | 3 | 0 | 0 |
| Quinqueloculina<br>poeyana                     | 32 | 1  | 2  | 3  | 0  | 0  | 0 | 2 | 0 | 1 |
| Quinqueloculina<br>polygona                    | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 1 | 0 | 0 |
| Quinqueloculina<br>sabulosa<br>Quinqueloculina | 0  | 6  | 29 | 38 | 25 | 8  | 0 | 0 | 0 | 0 |
| seminula<br>Reophax                            | 25 | 4  | 7  | 3  | 5  | 8  | 0 | 8 | 1 | 3 |
| gaussicus                                      | 0  | 8  | 10 | 18 | 8  | 14 | 1 | 2 | 0 | 0 |
| Rosalina<br>floridana                          | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Rosalina<br>globularis                         | 1  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Sorites marginalis                             | 0  | 0  | 0  | 0  | 1  | 0  | 1 | 0 | 0 | 0 |
| Textularia<br>candeiana                        | 0  | 11 | 5  | 6  | 17 | 11 | 0 | 1 | 0 | 0 |
| Textularia<br>earlandi                         | 0  | 0  | 1  | 0  | 0  | 0  | 0 | 0 | 0 | 0 |
| Triloculina<br>oblonga                         | 0  | 8  | 9  | 2  | 0  | 0  | 0 | 0 | 0 | 0 |
| Triloculina<br>rotunda<br>Triloculina          | 0  | 0  | 0  | 1  | 0  | 0  | 0 | 0 | 0 | 0 |
| tricarinata                                    | 1  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 3 | 0 |
| Controls                                       | 1  | 2  |    |    |    |    |   |   |   |   |
| Ammonia tepida                                 | 0  | 0  |    |    |    |    |   |   |   |   |
| Archais angulatus                              | 0  | 0  |    |    |    |    |   |   |   |   |
| Bolivina lowmani                               | 7  | 10 |    |    |    |    |   |   |   |   |
| Bolivina pulchella                             | 5  | 1  |    |    |    |    |   |   |   |   |
| Bolivina striatula                             | 0  | 0  |    |    |    |    |   |   |   |   |

| Buliminella<br>elegantissima    | 0  | 1  |
|---------------------------------|----|----|
| eieganiissima<br>Cibicides spp. | 0  | 0  |
| Cornuspira                      |    |    |
| planorbis                       | 0  | 0  |
| Discorbis mira                  | 0  | 0  |
| Elphidium                       | 0  | 2  |
| discoidale<br>Elphidium         | -  | =  |
| Егрпгагит<br>mexicanum          | 4  | 16 |
| Hauerina bradyi                 | 4  | 0  |
| Miliolinella                    |    |    |
| circularis                      | 2  | 4  |
| Miliolinella<br>subrotunda      | 0  | 0  |
| subrotunaa<br>Nonionoides       |    |    |
| grateloupi                      | 0  | 0  |
| Ovammina opaca                  | 43 | 29 |
| Peneroplis                      | 0  | 0  |
| pertusus<br>Quinqueloculina     |    |    |
| Quinquetocutina<br>agglutinans  | 0  | 0  |
| Quinqueloculina                 | 4  | 6  |
| bosciana                        | 7  | J  |
| Quinqueloculina<br>laevigata    | 1  | 0  |
| Quinqueloculina                 | 0  | 1  |
| lamarckiana                     | U  | 1  |
| Quinqueloculina<br>poeyana      | 0  | 1  |
| poeyana<br>Quinqueloculina      | 0  | 0  |
| polygona                        | 0  | 0  |
| Quinqueloculina                 | 2  | 19 |
| sabulosa<br>Quinqueloculina     |    |    |
| seminula                        | 14 | 6  |
| Reophax                         | 13 | 11 |
| gaussicus<br>Rosalina           |    |    |
| floridana                       | 0  | 1  |
| Rosalina                        | 0  | 0  |
| globularis                      |    |    |
| Sorites marginalis              | 0  | 0  |
| Textularia<br>candeiana         | 8  | 10 |
| Canaeiana<br>Textularia         | 0  | 0  |
| earlandi                        | 0  | 0  |
| Triloculina<br>oblonga          | 0  | 5  |
| овіопда<br>Triloculina          | 0  | 0  |
| rotunda                         | 0  | 0  |
| Triloculina                     | 0  | 0  |
| tricarinata                     |    |    |

#### APPENDIX B

# R CODE FOR CHAPTER 3

R code for all plotting and statistical analysis conducted, including functions and scripts that run the commands.

R Function for plotting incorporation against metal concentration.

```
ATy < - c()
ATx < - c()
logATx <- log(ATx)</pre>
logATy <- log(ATy)</pre>
plot (logATx, logATy, xlab = "Metal in Water (Me/Ca)", ylab
= "Incorporated Metal (Me/Ca)", pch=19, xlim=c(-10, 4),
vlim=c(-10, 4)
, cex.lab=1, cex.axis=1, cex.main=1, cex.sub=1)
HGy <- c
HGx <- c
logHGy <- log(HGy)</pre>
logHGx <- log(HGx)</pre>
points(logHGx, logHGy, pch=1)
#Exponential Trendline
f <- function(logx,a,b) {a * exp(b * logx)}</pre>
fit <- nls(y \sim f(logx,a,b), start = c(a=2, b=2))
co <- coef(fit)</pre>
curve (f(x, a=co[1], b=co[2]), add = TRUE, , lty=2, lwd=3)
abline (v=c((log(0.090/0.400)), (log(0.000001))),
col=c('red','blue'), lty=c(2,1), lwd =c(3,3))
#Linear Trendline (if necessary)
ATfit<- lm(logATy~logATx)
abline (ATfit, lty=2, lwd = 2)
HGfit<- lm(logHGy~logHGx)</pre>
abline (HGfit, lty=3, lwd = 2)
#R-Squared Values
```

```
ATSummary <- summary(ATfit)

HGSummary <- summary(HGfit)

ATr2 = ATSummary$adj.r.squared

HGr2 = HGSummary$adj.r.squared

ATr2label = bquote(italic(R)^2 == .(format(ATr2, digits = 3)))

text(x = 3, y = 4.2, labels = ATr2label, cex=0.8)

text(x = 0.9, y = 4.2, "A. tepida", cex=0.8, font=3)

HGr2label = bquote(italic(R)^2 == .(format(HGr2, digits = 3)))

text(x = 3, y = 3.7, labels = HGr2label, cex=0.8)

text(x = 0.9, y = 3.7, "H. germanica", cex=0.8, font=3)

#Legend
legend(0, -8, legend=c("A. tepida", "H. germanica"), lty=c(2,3), pch=c(19,1), cex=1)
```

#### APPENDIX C

## R CODE AND SUPPLEMENTARY DATA FOR CHAPTER 4

#### Part 1: R Code

R code for all plotting and statistical analysis conducted, including functions and scripts that run the commands.

R Function for plotting population density or species abundance against metal concentration.

```
ATy < -c()
ATx < - c()
logATx <- log(ATx)</pre>
plot (logATx, ATy, xlab = "Metal (mg/L)", ylab = "",
pch=19, xlim=c(-8, 8), ylim=c(0, 100), cex.lab=2,
cex.axis=2, cex.main=2, cex.sub=2)
HGv <- c
HGx <- c
logHGx <- log(HGx)</pre>
points(logHGx, HGy, pch=1)
abline(v=c((log(CMC)), (log(0.000001))),
col=c('red','blue'), lty=c(2,1), lwd =c(3,3))
#Legend
legend(3, 95, legend=c("Species", "Species"), lty= c(3,6),
pch=c(19,1),cex=1)
#Exponential Trendline
f <- function(logATx,a,b) {a * exp(b * logATx)}</pre>
fit <- nls(ATy \sim f(logATx,a,b), start = c(a=1, b=1))
co <- coef(fit)</pre>
curve(f(x, a=co[1], b=co[2]), add = TRUE,, lty=3, lwd=3)
f <- function(logHGx,a,b) {a * exp(b * logHGx)}</pre>
fit <- nls(HGy \sim f(logHGx,a,b), start = c(a=1, b=1))
co <- coef(fit)</pre>
curve(f(x, a=co[1], b=co[2]), add = TRUE, lty=6, lwd=3)
#Linear Trendline (If necessary)
```

```
fit<- lm(ATy~logATx)
abline(fit,lty=3,lwd = 3)
fit<- lm(HGy~logHGx)
abline(fit,lty=6,lwd = 3)</pre>
```

Part 2: Data
Foraminiferal count data for chapter 4.

| Sapelo Island                     |             |             |             |             |             |             |       |            |            |       |
|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|------------|------------|-------|
| Nickel                            |             |             |             |             |             |             |       |            |            |       |
| Metal Added<br>(mg/L)             | 0.074       | 0.074       | 0.74        | 0.74        | 7.4         | 7.4         | 74    | 74         | 740        | 740   |
| Actual<br>Concentration<br>(mg/L) | 0.010<br>65 | 0.022<br>57 | 0.016<br>34 | 0.028<br>5  | 0.437<br>95 | 0.322<br>65 | 6.24  | 26.72<br>5 | 151.0<br>5 | 264.4 |
| Temperature<br>(Celsius)          | 22º         | 22º         | 22º         | 22º         | 22º         | 22º         | 22º   | 22º        | 22º        | 22º   |
| Salinity (PSU)                    | 32          | 32          | 32          | 32          | 32          | 32          | 32    | 32         | 32         | 32    |
| Ovammina opaca                    | 0           | 0           | 2           | 3           | 5           | 5           | 0     | 0          | 1          | 4     |
| Psammophaga<br>sapela             | 0           | 0           | 14          | 14          | 2           | 0           | 0     | 0          | 1          | 0     |
| Ammonia tepida                    | 0           | 10          | 48          | 40          | 16          | 16          | 4     | 1          | 0          | 0     |
| Haynesina<br>germanica            | 0           | 22          | 51          | 74          | 6           | 14          | 4     | 2          | 0          | 0     |
| Buliminella<br>elegantissima      | 0           | 0           | 0           | 0           | 0           | 0           | 0     | 0          | 0          | 0     |
| Miliammina fusca                  | 11          | 0           | 96          | 68          | 2           | 0           | 0     | 0          | 15         | 10    |
| Textularia<br>candeiana           | 16          | 2           | 47          | 16          | 6           | 0           | 0     | 0          | 0          | 0     |
| Textularia earlandi               | 4           | 0           | 0           | 6           | 0           | 0           | 0     | 0          | 0          | 0     |
| Textularia palustris              | 5           | 3           | 2           | 4           | 0           | 0           | 0     | 0          | 0          | 0     |
| Triloculina oblonga               | 0           | 0           | 0           | 0           | 1           | 0           | 0     | 0          | 0          | 0     |
| Ammottium salsum                  | 0           | 0           | 0           | 0           | 0           | 0           | 0     | 0          | 0          | 0     |
| Reophax cf. R. arcticus           | 0           | 0           | 0           | 0           | 2           | 0           | 0     | 0          | 0          | 0     |
| Quinqueloculina<br>jugosa         | 0           | 0           | 0           | 0           | 0           | 0           | 0     | 0          | 0          | 0     |
| Elphidium<br>excavatum            | 0           | 0           | 0           | 0           | 0           | 0           | 0     | 0          | 0          | 0     |
| Metal Added<br>(mg/L)             | 0.074       | 0.074       | 0.74        | 0.74        | 7.4         | 7.4         | 74    | 74         | 740        | 740   |
| Actual<br>Concentration<br>(mg/L) | 0.007<br>33 | 0.008<br>34 | 0.018<br>68 | 0.018<br>72 | 0.453<br>9  | 0.509<br>4  | 6.582 | 5.879      | 154.4      | 316.4 |
| Temperature (Celsius)             | <b>22</b> º | 22º         | 22º         | 22º         | 22º         | 22º         | 22º   | 22º        | 22º        | 22º   |
| Salinity (PSU)                    | 12          | 12          | 12          | 12          | 12          | 12          | 12    | 12         | 12         | 12    |
| Ovammina opaca                    | 2           | 13          | 8           | 7           | 8           | 22          | 6     | 8          | 6          | 9     |
| Psammophaga<br>sapela             | 4           | 10          | 9           | 12          | 4           | 6           | 4     | 1          | 1          | 0     |

| Ammonia tepida                                                                                                                                   | 28                      | 21                           | 15                         | 14                          | 5                            | 6                           | 1                          | 1                          | 0                           | 0                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------|
| Haynesina<br>germanica                                                                                                                           | 21                      | 14                           | 0                          | 0                           | 10                           | 5                           | 0                          | 0                          | 0                           | 0                     |
| Buliminella<br>elegantissima                                                                                                                     | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Miliammina fusca                                                                                                                                 | 0                       | 70                           | 104                        | 102                         | 0                            | 0                           | 10                         | 0                          | 15                          | 6                     |
| Textularia<br>candeiana                                                                                                                          | 1                       | 0                            | 6                          | 1                           | 3                            | 2                           | 0                          | 0                          | 0                           | 0                     |
| Textularia earlandi                                                                                                                              | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Textularia palustris                                                                                                                             | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Triloculina oblonga                                                                                                                              | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Ammottium salsum                                                                                                                                 | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Reophax cf. R.<br>arcticus                                                                                                                       | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Quinqueloculina<br>jugosa                                                                                                                        | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Elphidium<br>excavatum                                                                                                                           | 0                       | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| Metal Added<br>(mg/L)                                                                                                                            | 0.074                   | 0.074                        | 0.74                       | 0.74                        | 7.4                          | 7.4                         | 74                         | 74                         | 740                         | 740                   |
| Actual<br>Concentration<br>(mg/L)                                                                                                                | 0.014<br>52             | 0.015<br>4                   | 0.027<br>33                | 0.026<br>97                 | 0.202<br>9                   | 0.355<br>4                  | 15.1                       | 9.486                      | 145.5                       | 238.9                 |
| Temperature                                                                                                                                      | 22º                     | <b>22</b> º                  | <b>22</b> º                | <b>22</b> º                 | <b>22</b> º                  | 22º                         | <b>22</b> º                | <b>22</b> º                | 22º                         | <b>22</b> º           |
| (Celsius)<br>Salinity (PSU)                                                                                                                      | 40                      | 40                           | 40                         | 40                          | 40                           | 40                          | 40                         | 40                         | 40                          | 40                    |
| Ovammina opaca                                                                                                                                   | 0                       | 0                            | 8                          | 14                          | 2                            | 0                           | 11                         | 9                          | 6                           | 6                     |
| Psammophaga<br>sapela                                                                                                                            | 0                       | 0                            | 0                          | 11                          | 5                            | 5                           | 0                          | 0                          | 0                           | 3                     |
| Ammonia tepida                                                                                                                                   | 23                      | 38                           | 40                         | 42                          | 28                           | 73                          | 0                          | 0                          | 0                           | 0                     |
| Haynesina<br>germanica                                                                                                                           | 0                       | 0                            | 12                         | _                           |                              |                             |                            |                            |                             |                       |
| 5 11 1 11                                                                                                                                        |                         | -                            | 12                         | 9                           | 0                            | 25                          | 0                          | 0                          | 0                           | 0                     |
| Buliminella<br>elegantissima                                                                                                                     | 0                       | 0                            | 0                          | 9                           | 0                            | 25<br>0                     | 0                          | 0                          | 0                           | 0                     |
|                                                                                                                                                  | 0<br>54                 |                              |                            |                             |                              |                             |                            |                            |                             |                       |
| elegantissima                                                                                                                                    |                         | 0                            | 0                          | 0                           | 0                            | 0                           | 0                          | 0                          | 0                           | 0                     |
| elegantissima<br>Miliammina fusca<br>Textularia                                                                                                  | 54                      | 0<br>51                      | 0                          | 0<br>13                     | 0                            | 0                           | 0                          | 0                          | 0<br>11                     | 0<br>6                |
| elegantissima<br>Miliammina fusca<br>Textularia<br>candeiana                                                                                     | 54<br>18                | 0<br>51<br>19                | 0<br>0<br>0                | 0<br>13<br>5                | 0<br>0<br>9                  | 0<br>0<br>25                | 0<br>0<br>0                | 0<br>0<br>0                | 0<br>11<br>0                | 0<br>6<br>0           |
| elegantissima<br>Miliammina fusca<br>Textularia<br>candeiana<br>Textularia earlandi                                                              | 54<br>18<br>0           | 0<br>51<br>19<br>0           | 0<br>0<br>0                | 0<br>13<br>5<br>0           | 0<br>0<br>9<br>11            | 0<br>0<br>25<br>3           | 0<br>0<br>0                | 0<br>0<br>0                | 0<br>11<br>0<br>0           | 0<br>6<br>0           |
| elegantissima<br>Miliammina fusca<br>Textularia<br>candeiana<br>Textularia earlandi<br>Textularia palustris                                      | 54<br>18<br>0<br>0      | 0<br>51<br>19<br>0           | 0<br>0<br>0<br>0           | 0<br>13<br>5<br>0           | 0<br>0<br>9<br>11<br>35      | 0<br>0<br>25<br>3<br>0      | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0           | 0<br>11<br>0<br>0           | 0<br>6<br>0<br>0      |
| elegantissima<br>Miliammina fusca<br>Textularia<br>candeiana<br>Textularia earlandi<br>Textularia palustris<br>Triloculina oblonga               | 54<br>18<br>0<br>0      | 0<br>51<br>19<br>0<br>0      | 0<br>0<br>0<br>0<br>0      | 0<br>13<br>5<br>0<br>0      | 0<br>0<br>9<br>11<br>35<br>0 | 0<br>0<br>25<br>3<br>0      | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0      | 0<br>11<br>0<br>0<br>0      | 0<br>6<br>0<br>0<br>0 |
| elegantissima Miliammina fusca Textularia candeiana Textularia earlandi Textularia palustris Triloculina oblonga Ammottium salsum Reophax cf. R. | 54<br>18<br>0<br>0<br>0 | 0<br>51<br>19<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>13<br>5<br>0<br>0<br>0 | 0<br>0<br>9<br>11<br>35<br>0 | 0<br>0<br>25<br>3<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>11<br>0<br>0<br>0<br>0 | 0<br>6<br>0<br>0<br>0 |

| Metal Added<br>(mg/L)             | 0.074       | 0.074       | 0.74        | 0.74        | 7.4        | 7.4        | 74    | 74         | 740   | 740   |
|-----------------------------------|-------------|-------------|-------------|-------------|------------|------------|-------|------------|-------|-------|
| Actual<br>Concentration<br>(mg/L) | 0.019<br>7  | 0.012<br>13 | 0.018<br>56 | 0.014<br>65 | 0.908<br>9 | 1.376      | 9.642 | 9.637      | 242.4 | 301.5 |
| Temperature<br>(Celsius)          | 18º         | 18º         | 18º         | 18º         | 18º        | 18º        | 18º   | 18º        | 18º   | 18º   |
| Salinity (PSU)                    | 32          | 32          | 32          | 32          | 32         | 32         | 32    | 32         | 32    | 32    |
| Ovammina opaca                    | 14          | 12          | 8           | 18          | 11         | 1          | 3     | 0          | 9     | 7     |
| Psammophaga<br>sapela             | 5           | 12          | 9           | 16          | 2          | 2          | 5     | 2          | 6     | 0     |
| Ammonia tepida                    | 11          | 9           | 7           | 8           | 15         | 18         | 0     | 0          | 0     | 0     |
| Haynesina<br>germanica            | 31          | 22          | 4           | 16          | 22         | 56         | 0     | 0          | 0     | 0     |
| Buliminella<br>elegantissima      | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| Miliammina fusca                  | 0           | 0           | 2           | 8           | 4          | 1          | 2     | 2          | 0     | 0     |
| Textularia<br>candeiana           | 0           | 3           | 0           | 3           | 0          | 0          | 0     | 0          | 0     | 0     |
| Textularia earlandi               | 4           | 6           | 0           | 0           | 1          | 0          | 0     | 0          | 0     | 0     |
| Textularia palustris              | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| Triloculina oblonga               | 0           | 0           | 1           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| Ammottium salsum                  | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| Reophax cf. R. arcticus           | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| Quinqueloculina                   | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| jugosa<br>Elphidium               | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| excavatum Metal Added             |             |             |             |             |            |            |       |            |       |       |
| (mg/L)                            | 0.074       | 0.074       | 0.74        | 0.74        | 7.4        | 7.4        | 74    | 74         | 740   | 740   |
| Actual<br>Concentration<br>(mg/L) | 0.012<br>43 | 0.015<br>23 | 0.026<br>34 | 0.028<br>7  | 0.192      | 0.174<br>4 | 1.301 | 0.838<br>8 | 111.3 | 116.9 |
| Temperature (Celsius)             | 30º         | 30º         | 30º         | 30º         | 30º        | 30º        | 30º   | 30º        | 30º   | 30º   |
| Salinity (PSU)                    | 32          | 32          | 32          | 32          | 32         | 32         | 32    | 32         | 32    | 32    |
| Ovammina opaca                    | 3           | 17          | 5           | 7           | 11         | 4          | 8     | 0          | 3     | 5     |
| Psammophaga<br>sapela             | 0           | 12          | 0           | 5           | 8          | 2          | 13    | 11         | 0     | 0     |
| Ammonia tepida                    | 0           | 14          | 16          | 11          | 54         | 11         | 0     | 13         | 0     | 0     |
| Haynesina<br>germanica            | 0           | 2           | 0           | 0           | 6          | 0          | 0     | 4          | 0     | 0     |
| Buliminella<br>elegantissima      | 0           | 0           | 0           | 0           | 0          | 0          | 0     | 0          | 0     | 0     |
| Miliammina fusca                  | 35          | 56          | 105         | 77          | 0          | 0          | 0     | 0          | 7     | 4     |
| Textularia<br>candeiana           | 0           | 99          | 94          | 36          | 20         | 9          | 0     | 7          | 0     | 0     |

| Salinity (PSU)                         | 12        | 12        | 12        | 12        | 12           | 12        | 12       | 12       | 12           | 12           |
|----------------------------------------|-----------|-----------|-----------|-----------|--------------|-----------|----------|----------|--------------|--------------|
| Temperature<br>(Celsius)               | 22º       | 22º       | 22º       | 22º       | 22º          | 22º       | 22º      | 22º      | 22º          | 22º          |
| Concentration (mg/L)                   | 0         | 56        | 3         | 0.010     | 1            | 2         | 9.784    | 24.09    | 615.8        | 865.7        |
| (mg/L)<br>Actual                       |           | 0.058     | 0.172     | 0.010     | 0.817        | 0.634     |          |          |              |              |
| Metal Added                            | 0.09      | 0.09      | 0.9       | 0.9       | 9            | 9         | 90       | 90       | 900          | 900          |
| Elphidium<br>excavatum                 | 0         | 4         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Quinqueloculina<br>jugosa              | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Reophax cf. R.<br>arcticus             | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Ammottium salsum                       | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Triloculina oblonga                    | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Textularia palustris                   | 17        | 4         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Textularia earlandi                    | 37        | 3         | 0         | 3         | 0            | 0         | 0        | 0        | 0            | 0            |
| Textularia<br>candeiana                | 12        | 13        | 17        | 7         | 0            | 0         | 0        | 0        | 0            | 0            |
| elegantissima<br>Miliammina fusca      | 5         | 7         | 86        | 22        | 1            | 0         | 0        | 0        | 0            | 0            |
| germanica<br>Buliminella               | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Haynesina                              | 16        | 40        | 15        | 18        | 15           | 17        | 0        | 8        | 0            | 0            |
| sapela<br>Ammonia tepida               | 22        | _<br>27   | 14        | 31        | 9            | 41        | 0        | 0        | 1            | 0            |
| Psammophaga                            | 0         | 2         | 0         | 6         | 2            | 11        | 0        | 0        | 0            | 0            |
| Ovammina opaca                         | 0         | 4         | 0         | 23        | 1            | 8         | 0        | 0        | 0            | 0            |
| (Celsius) Salinity (PSU)               | 32        | 32        | 32        | 32        | 32           | 32        | 32       | 32       | 32           | 32           |
| Concentration<br>(mg/L)<br>Temperature | 38<br>22º | 15<br>22º | 26<br>22º | 17<br>22º | 0.825<br>22º | 95<br>22º | 5<br>22º | 5<br>22º | 518.5<br>22º | 634.5<br>22º |
| (mg/L)<br>Actual                       | 0.015     | 0.168     | 0.020     | 0.024     |              | 0.054     | 17.04    | 20.45    |              |              |
| Zinc<br>Metal Added                    | 0.09      | 0.09      | 0.9       | 0.9       | 9            | 9         | 90       | 90       | 900          | 900          |
| excavatum                              | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Quinqueloculina<br>jugosa<br>Elphidium | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Reophax cf. R.<br>arcticus             | 3         | 12        | 0         | 5         | 1            | 13        | 0        | 0        | 0            | 0            |
| Ammottium salsum                       | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Triloculina oblonga                    | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Textularia palustris                   | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
| Textularia earlandi                    | 0         | 0         | 0         | 0         | 0            | 0         | 0        | 0        | 0            | 0            |
|                                        |           |           |           |           |              |           |          |          |              |              |

| Ovammina opaca                                                                                                                                                                                                                                                 | 17                              | 14                              | 46                                        | 8                                               | 59                               | 45                         | 8                              | 11                             | 4                         | 1                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------------|----------------------------------|----------------------------|--------------------------------|--------------------------------|---------------------------|---------------------------|
| Psammophaga<br>sapela                                                                                                                                                                                                                                          | 14                              | 11                              | 3                                         | 5                                               | 3                                | 0                          | 5                              | 7                              | 0                         | 0                         |
| Ammonia tepida                                                                                                                                                                                                                                                 | 16                              | 22                              | 6                                         | 23                                              | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Haynesina                                                                                                                                                                                                                                                      |                                 | 10                              | _                                         |                                                 |                                  |                            | 0                              | 0                              | 0                         | 0                         |
| germanica                                                                                                                                                                                                                                                      | 5                               | 10                              | 5                                         | 6                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Buliminella<br>elegantissima                                                                                                                                                                                                                                   | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Miliammina fusca                                                                                                                                                                                                                                               | 133                             | 101                             | 0                                         | 15                                              | 0                                | 0                          | 0                              | 0                              | 0                         | 4                         |
| Textularia                                                                                                                                                                                                                                                     | 18                              | 8                               | 0                                         | 3                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| candeiana                                                                                                                                                                                                                                                      |                                 |                                 |                                           |                                                 |                                  |                            |                                |                                |                           |                           |
| Textularia earlandi                                                                                                                                                                                                                                            | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Textularia palustris                                                                                                                                                                                                                                           | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Triloculina oblonga                                                                                                                                                                                                                                            | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Ammottium salsum                                                                                                                                                                                                                                               | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Reophax cf. R.<br>arcticus                                                                                                                                                                                                                                     | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Quinqueloculina                                                                                                                                                                                                                                                | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| jugosa<br>Elabidina                                                                                                                                                                                                                                            | U                               | U                               | O                                         | U                                               | U                                | O                          | O                              | O                              | U                         | Ü                         |
| Elphidium<br>excavatum                                                                                                                                                                                                                                         | 0                               | 0                               | 0                                         | 0                                               | 0                                | 0                          | 0                              | 0                              | 0                         | 0                         |
| Metal Added                                                                                                                                                                                                                                                    | 0.00                            | 0.09                            | 0.9                                       | 0.9                                             | 0                                | 9                          | 90                             | 90                             | 000                       | 900                       |
| (mg/L)                                                                                                                                                                                                                                                         | 0.09                            | 0.09                            | 0.9                                       | 0.9                                             | 9                                | 9                          | 90                             | 90                             | 900                       | 900                       |
| Actual                                                                                                                                                                                                                                                         | •                               | •                               | 0.005                                     | •                                               | 0.879                            | 0.112                      | 44.45                          | 44.07                          | <b>504.0</b>              | 626 5                     |
|                                                                                                                                                                                                                                                                |                                 |                                 |                                           |                                                 |                                  |                            |                                |                                |                           |                           |
| Concentration (mg/L)                                                                                                                                                                                                                                           | 0                               | 0                               | 03                                        | 0                                               | 9                                | 7                          | 11.15                          | 11.07                          | 581.9                     | 636.5                     |
| (mg/L) Temperature                                                                                                                                                                                                                                             |                                 |                                 |                                           |                                                 |                                  |                            |                                |                                |                           |                           |
| (mg/L)                                                                                                                                                                                                                                                         | 0<br>22º                        | 0<br>22º                        | 03<br>22º                                 | 0<br>22º                                        | 9<br>22º                         | 7<br>22º                   | 229                            | 22º                            | 229                       | 229                       |
| (mg/L)<br>Temperature                                                                                                                                                                                                                                          |                                 |                                 |                                           |                                                 |                                  |                            |                                |                                |                           |                           |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca                                                                                                                                                                                                     | <b>22</b> º                     | <b>22</b> º                     | <b>22</b> º                               | 22º                                             | 22º                              | 229                        | <b>22</b> º                    | <b>22</b> º                    | <b>22</b> º               | 22º                       |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga                                                                                                                                                                                         | 22º<br>40                       | 22º<br>40                       | 22º<br>40                                 | 22º<br>40                                       | 22º<br>40                        | 22º<br>40                  | 22º<br>40                      | 22º<br>40                      | 22º<br>40                 | 22º<br>40                 |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela                                                                                                                                                                                  | 22º<br>40<br>0<br>16            | 22º<br>40<br>0<br>21            | 22º<br>40<br>8<br>1                       | 22º<br>40<br>10<br>4                            | 22º<br>40<br>10<br>0             | <b>22º 40</b> 5            | <b>22º 40</b> 0 0              | <b>22º 40</b> 0 0              | <b>22º 40</b> 3 0         | <b>22º 40</b> 5           |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida                                                                                                                                                                   | 22º<br>40<br>0<br>16<br>12      | 22º<br>40<br>0<br>21<br>21      | 22º<br>40<br>8<br>1<br>25                 | 22º<br>40<br>10<br>4<br>24                      | 22º<br>40<br>10<br>0<br>11       | 22º 40 5 0 3               | 22º 40 0 0 0                   | 22º 40 0 0 0                   | 22º 40 3 0                | 22º 40 5 2                |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica                                                                                                                                               | 22º<br>40<br>0<br>16            | 22º<br>40<br>0<br>21            | 22º<br>40<br>8<br>1                       | 22º<br>40<br>10<br>4                            | 22º<br>40<br>10<br>0             | <b>22º 40</b> 5            | <b>22º 40</b> 0 0              | <b>22º 40</b> 0 0              | <b>22º 40</b> 3 0         | <b>22º 40</b> 5           |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella                                                                                                                                   | 22º<br>40<br>0<br>16<br>12      | 22º<br>40<br>0<br>21<br>21      | 22º<br>40<br>8<br>1<br>25                 | 22º<br>40<br>10<br>4<br>24                      | 22º<br>40<br>10<br>0<br>11       | 22º 40 5 0 3               | 22º 40 0 0 0                   | 22º 40 0 0 0                   | 22º 40 3 0                | 22º 40 5 2                |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima                                                                                                                     | 22º 40 0 16 12 9                | 22º 40 0 21 21 6 0              | 22º<br>40<br>8<br>1<br>25<br>6            | 22º<br>40<br>10<br>4<br>24<br>4                 | 22º 40 10 0 11 0 0               | 22º 40 5 0 3 0             | 22º 40 0 0 0 0 0               | 22º 40 0 0 0 0 0               | 22º 40 3 0 0 0            | 22º 40 5 2 0 0            |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella                                                                                                                                   | 22º 40 0 16 12 9 0 96           | 22º 40 0 21 21 6 0 75           | 22º<br>40<br>8<br>1<br>25<br>6<br>0<br>57 | 22º 40 10 4 24 4 0 72                           | 22º 40 10 0 11 0 0 0             | 22º 40 5 0 3 0 0           | 22º 40 0 0 0 0 0 0             | 22º 40 0 0 0 0 0 0             | 22º 40 3 0 0 0 13         | 22º 40 5 2 0 0 17         |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima Miliammina fusca                                                                                                   | 22º 40 0 16 12 9                | 22º 40 0 21 21 6 0              | 22º<br>40<br>8<br>1<br>25<br>6            | 22º<br>40<br>10<br>4<br>24<br>4                 | 22º 40 10 0 11 0 0               | 22º 40 5 0 3 0             | 22º 40 0 0 0 0 0               | 22º 40 0 0 0 0 0               | 22º 40 3 0 0 0            | 22º 40 5 2 0 0            |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima Miliammina fusca Textularia                                                                                         | 22º 40 0 16 12 9 0 96           | 22º 40 0 21 21 6 0 75           | 22º<br>40<br>8<br>1<br>25<br>6<br>0<br>57 | 22º 40 10 4 24 4 0 72                           | 22º 40 10 0 11 0 0 0             | 22º 40 5 0 3 0 0           | 22º 40 0 0 0 0 0 0             | 22º 40 0 0 0 0 0 0             | 22º 40 3 0 0 0 13         | 22º 40 5 2 0 0 17         |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima Miliammina fusca Textularia candeiana                                                                               | 22º 40 0 16 12 9 0 96 12        | 22º 40 0 21 21 6 0 75           | 22º 40 8 1 25 6 0 57 5                    | 22º<br>40<br>10<br>4<br>24<br>4<br>0<br>72<br>2 | 22º 40 10 0 11 0 0 0 0 0         | 22º 40 5 0 3 0 0 0         | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0 0         | 22º 40 3 0 0 0 13 0       | 22º 40 5 2 0 0 17 0       |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima Miliammina fusca Textularia candeiana Textularia earlandi                                                          | 22º 40 0 16 12 9 0 96 12 15     | 22º 40 0 21 21 6 0 75 17        | 22º 40 8 1 25 6 0 57 5 6                  | 22º 40 10 4 24 4 0 72 2 1                       | 22º 40 10 0 11 0 0 0 0 0 0       | 22º 40 5 0 3 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 3 0 0 0 13 0 0     | 22º 40 5 2 0 0 17 0 0     |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima Miliammina fusca Textularia candeiana Textularia earlandi Textularia palustris Triloculina oblonga Ammottium salsum | 22º 40 0 16 12 9 0 96 12 15 0   | 22º 40 0 21 21 6 0 75 17 12 0   | 22º 40 8 1 25 6 0 57 5 6 0                | 22º 40 10 4 24 4 0 72 2 1 0                     | 22º 40 10 0 11 0 0 0 0 0 0 0 0   | 22º 40 5 0 3 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 3 0 0 0 13 0 0 0   | 22º 40 5 2 0 0 17 0 0 0   |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ovammina opaca Psammophaga sapela Ammonia tepida Haynesina germanica Buliminella elegantissima Miliammina fusca Textularia candeiana Textularia earlandi Textularia palustris Triloculina oblonga                 | 22º 40 0 16 12 9 0 96 12 15 0 0 | 22º 40 0 21 21 6 0 75 17 12 0 0 | 22º 40 8 1 25 6 0 57 5 6 0 0              | 22º 40 10 4 24 4 0 72 2 1 0 0                   | 22º 40 10 0 11 0 0 0 0 0 0 0 0 0 | 22º 40 5 0 3 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 3 0 0 0 13 0 0 0 0 | 22º 40 5 2 0 0 17 0 0 0 0 |

| Elphidium<br>excavatum             | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
|------------------------------------|-------------|-------------|-------------|------------|------------|------------|-------|-------|-------|-------|
| Metal Added<br>(mg/L)              | 0.09        | 0.09        | 0.9         | 0.9        | 9          | 9          | 90    | 90    | 900   | 900   |
| Actual<br>Concentration<br>(mg/L)  | 0.007<br>09 | 0.007<br>55 | 0.023<br>53 | 0.024<br>1 | 0.285<br>6 | 0.179      | 12.12 | 9.96  | 683.5 | 698.3 |
| Temperature<br>(Celsius)           | 18º         | 18º         | 18º         | 18º        | 18º        | 18º        | 18º   | 18º   | 18º   | 18º   |
| Salinity (PSU)                     | 32          | 32          | 32          | 32         | 32         | 32         | 32    | 32    | 32    | 32    |
| Ovammina opaca                     | 18          | 28          | 13          | 25         | 17         | 55         | 11    | 8     | 5     | 11    |
| Psammophaga<br>sapela              | 5           | 0           | 0           | 0          | 4          | 13         | 4     | 2     | 0     | 4     |
| Ammonia tepida                     | 12          | 4           | 6           | 4          | 0          | 12         | 0     | 0     | 0     | 0     |
| Haynesina<br>germanica             | 3           | 14          | 66          | 86         | 0          | 5          | 0     | 0     | 0     | 0     |
| Buliminella<br>elegantissima       | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Miliammina fusca                   | 14          | 2           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Textularia<br>candeiana            | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Textularia earlandi                | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Textularia palustris               | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Triloculina oblonga                | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Ammottium salsum                   | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Reophax cf. R.<br>arcticus         | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>jugosa          | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Elphidium<br>excavatum             | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Metal Added                        | 0.09        | 0.09        | 0.9         | 0.9        | 9          | 9          | 90    | 90    | 900   | 900   |
| (mg/L)                             | 0.09        | 0.03        | 0.5         | 0.5        | 9          | 9          | 30    | 30    | 300   | 300   |
| Actual<br>Concentration            | 0           | 0           | 0           | 0          | 0.103      | 0.272<br>6 | 1.64  | 3.415 | 595.7 | 291   |
| (mg/L)<br>Temperature<br>(Celsius) | 30º         | 30º         | 30º         | 30º        | 30º        | 30º        | 30º   | 30º   | 30º   | 30º   |
| Salinity (PSU)                     | 32          | 32          | 32          | 32         | 32         | 32         | 32    | 32    | 32    | 32    |
| Ovammina opaca                     | 5           | 1           | 15          | 21         | 74         | 28         | 5     | 6     | 0     | 2     |
| Psammophaga<br>sapela              | 12          | 0           | 6           | 0          | 14         | 18         | 7     | 8     | 0     | 0     |
| Ammonia tepida                     | 45          | 16          | 0           | 0          | 35         | 11         | 0     | 0     | 0     | 0     |
| Haynesina<br>germanica             | 13          | 3           | 0           | 0          | 16         | 0          | 0     | 1     | 0     | 0     |
| Buliminella<br>elegantissima       | 0           | 0           | 0           | 0          | 0          | 0          | 0     | 0     | 0     | 0     |
| Miliammina fusca                   | 22          | 44          | 79          | 33         | 0          | 0          | 0     | 0     | 0     | 1     |

| Textularia<br>candeiana      | 3           | 9           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------|-------------|
| Textularia earlandi          | 4           | 7           | 4           | 4           | 0           | 0           | 0           | 0          | 0     | 0           |
| Textularia palustris         | 0           | 0           | 0           | 0           | 4           | 0           | 0           | 0          | 0     | 0           |
| Triloculina oblonga          | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Ammottium salsum             | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Reophax cf. R.<br>arcticus   | 0           | 0           | 0           | 2           | 0           | 0           | 0           | 0          | 0     | 0           |
| Quinqueloculina<br>jugosa    | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Elphidium<br>excavatum       | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Control                      |             |             |             |             |             |             |             |            |       |             |
| Metal Added                  | N/A         | N/A        | N/A   | N/A         |
| (mg/L)<br>Actual Nickel      | 0.040       | 0.042       | 0.025       | 0.020       | 0.020       | 0.020       | 0.039       | 0.038      | 0.035 | 0.033       |
| (mg/L)                       | 63          | 43          | 47          | 47          | 21          | 32          | 0.039       | 0.038      | 0.033 | 61          |
| Actual Zinc (mg/L)           | 0.012<br>25 | 0.011<br>53 | 0.005<br>01 | 0.006<br>88 | 0.004<br>03 | 0.006<br>14 | 0.005<br>74 | 0.517<br>4 | 1.068 | 0.009<br>56 |
| Temperature (Celsius)        | 22º         | 22º         | 22º         | 22º         | 22º         | 22º         | 18º         | 18º        | 30∘   | 30º         |
| Salinity (PSU)               | 32          | 32          | 12          | 12          | 40          | 40          | 32          | 32         | 32    | 32          |
| Ovammina opaca               | 0           | 0           | 5           | 6           | 0           | 0           | 20          | 20         | 9     | 8           |
| Psammophaga<br>sapela        | 0           | 0           | 9           | 14          | 0           | 0           | 8           | 11         | 0     | 0           |
| Ammonia tepida               | 46          | 29          | 42          | 40          | 32          | 45          | 17          | 25         | 21    | 29          |
| Haynesina<br>germanica       | 68          | 82          | 45          | 56          | 0           | 15          | 45          | 53         | 11    | 27          |
| Buliminella<br>elegantissima | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Miliammina fusca             | 10          | 0           | 0           | 0           | 65          | 51          | 0           | 0          | 63    | 34          |
| Textularia<br>candeiana      | 0           | 0           | 4           | 11          | 17          | 16          | 0           | 4          | 0     | 0           |
| Textularia earlandi          | 0           | 0           | 0           | 5           | 0           | 0           | 8           | 11         | 0     | 0           |
| Textularia palustris         | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Triloculina oblonga          | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Ammottium salsum             | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Reophax cf. R.<br>arcticus   | 0           | 0           | 0           | 0           | 4           | 1           | 0           | 0          | 0     | 0           |
| Quinqueloculina<br>jugosa    | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Elphidium<br>excavatum       | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0     | 0           |
| Little Duck Key              |             |             |             |             |             |             |             |            |       |             |
| Nickel                       |             |             |             |             |             |             |             |            |       |             |
| Metal Added<br>(mg/L)        | 0.074       | 0.074       | 0.74        | 0.74        | 7.4         | 7.4         | 74          | 74         | 740   | 740         |

| Actual<br>Concentration<br>(mg/L) | 0.122<br>9 | 0.083<br>27 | 0.232<br>5 | 0.298<br>8 | 1.341 | 1.748 | 25.62 | 17.86 | 290.1 | 336.7 |
|-----------------------------------|------------|-------------|------------|------------|-------|-------|-------|-------|-------|-------|
| Temperature<br>(Celsius)          | 22º        | 22º         | 22º        | 22º        | 22º   | 22º   | 22º   | 22º   | 22º   | 22º   |
| Salinity (PSU)                    | 32         | 32          | 32         | 32         | 32    | 32    | 32    | 32    | 32    | 32    |
| Ammonia tepida                    | 1          | 0           | 0          | 0          | 0     | 1     | 1     | 0     | 0     | 0     |
| Archais angulatus                 | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Bolivina lowmani                  | 6          | 4           | 5          | 2          | 0     | 0     | 0     | 0     | 0     | 0     |
| Bolivina pulchella                | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Bolivina striatula                | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Buliminella<br>elegantissima      | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Cibicides spp.                    | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Cornuspira<br>planorbis           | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Discorbis mira                    | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Elphidium<br>discoidale           | 0          | 0           | 0          | 0          | 0     | 0     | 2     | 0     | 0     | 0     |
| Elphidium<br>mexicanum            | 0          | 0           | 1          | 0          | 1     | 22    | 0     | 0     | 0     | 0     |
| Hauerina bradyi                   | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Miliolinella<br>circularis        | 8          | 0           | 0          | 0          | 2     | 0     | 0     | 0     | 0     | 0     |
| Miliolinella<br>subrotunda        | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Nonionoides<br>grateloupi         | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Ovammina opaca                    | 13         | 0           | 16         | 11         | 3     | 1     | 1     | 0     | 5     | 6     |
| Peneroplis pertusus               | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>agglutinans    | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>bosciana       | 0          | 4           | 6          | 3          | 0     | 0     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>laevigata      | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>lamarckiana    | 2          | 0           | 0          | 0          | 1     | 0     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>poeyana        | 0          | 0           | 0          | 0          | 0     | 1     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>polygona       | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>sabulosa       | 11         | 17          | 12         | 7          | 1     | 0     | 1     | 1     | 0     | 0     |
| Quinqueloculina<br>seminula       | 32         | 11          | 3          | 0          | 1     | 0     | 0     | 1     | 0     | 0     |
| Reophax gaussicus                 | 1          | 17          | 15         | 0          | 1     | 1     | 0     | 0     | 0     | 0     |
| Rosalina floridana                | 0          | 0           | 0          | 0          | 0     | 0     | 0     | 0     | 0     | 0     |

| Rosalina globularis               | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
|-----------------------------------|------------|-------------|-------------|-------------|------------|-------------|------------|------------|-------|-------|
| Sorites marginalis                | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Textularia                        |            | U           | U           | U           | U          | U           | U          | U          | U     | U     |
| candeiana                         | 6          | 19          | 7           | 6           | 0          | 1           | 0          | 0          | 0     | 0     |
| Textularia earlandi               | 4          | 0           | 2           | 1           | 1          | 0           | 0          | 0          | 0     | 0     |
| Triloculina oblonga               | 16         | 30          | 6           | 5           | 1          | 0           | 1          | 0          | 2     | 2     |
| Triloculina rotunda               | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Triloculina<br>tricarinata        | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Metal Added<br>(mg/L)             | 0.074      | 0.074       | 0.74        | 0.74        | 7.4        | 7.4         | 74         | 74         | 740   | 740   |
| Actual<br>Concentration<br>(mg/L) | 0.109<br>5 | 0.091<br>23 | 0.097<br>98 | 0.097<br>04 | 0.105<br>7 | 0.083<br>35 | 0.205<br>1 | 0.215<br>2 | 1.832 | 1.377 |
| Temperature<br>(Celsius)          | 22º        | 22º         | 22º         | 22º         | 22º        | 22º         | 22º        | 22º        | 22º   | 22º   |
| Salinity (PSU)                    | 12         | 12          | 12          | 12          | 12         | 12          | 12         | 12         | 12    | 12    |
| Ammonia tepida                    | 0          | 0           | 0           | 2           | 0          | 0           | 0          | 0          | 0     | 0     |
| Archais angulatus                 | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Bolivina lowmani                  | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Bolivina pulchella                | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Bolivina striatula                | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Buliminella<br>elegantissima      | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Cibicides spp.                    | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Cornuspira<br>planorbis           | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Discorbis mira                    | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Elphidium<br>discoidale           | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Elphidium<br>mexicanum            | 0          | 0           | 0           | 4           | 6          | 11          | 0          | 0          | 0     | 0     |
| Hauerina bradyi                   | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Miliolinella<br>circularis        | 0          | 0           | 0           | 2           | 1          | 2           | 0          | 0          | 0     | 0     |
| Miliolinella<br>subrotunda        | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Nonionoides<br>grateloupi         | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Ovammina opaca                    | 27         | 35          | 0           | 10          | 6          | 4           | 3          | 7          | 10    | 4     |
| Peneroplis pertusus               | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Quinqueloculina<br>agglutinans    | 0          | 0           | 0           | 0           | 0          | 0           | 0          | 0          | 0     | 0     |
| Quinqueloculina<br>bosciana       | 0          | 0           | 0           | 2           | 0          | 0           | 0          | 0          | 0     | 0     |
| Quinqueloculina<br>laevigata      | 0          | 0           | 0           | 3           | 0          | 0           | 0          | 0          | 0     | 0     |

| Quinqueloculina<br>Iamarckiana                                                                                                                                                                                                                    | 0                                 | 0                                                  | 0                                                      | 0                                                           | 1                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------------------|
| Quinqueloculina<br>poeyana                                                                                                                                                                                                                        | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Quinqueloculina<br>polygona                                                                                                                                                                                                                       | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Quinqueloculina<br>sabulosa                                                                                                                                                                                                                       | 3                                 | 7                                                  | 0                                                      | 0                                                           | 10                             | 11                             | 0                              | 0                              | 0                              | 0                                            |
| Quinqueloculina<br>seminula                                                                                                                                                                                                                       | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 1                              | 0                              | 0                              | 0                                            |
| Reophax gaussicus                                                                                                                                                                                                                                 | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Rosalina floridana                                                                                                                                                                                                                                | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Rosalina globularis                                                                                                                                                                                                                               | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Sorites marginalis                                                                                                                                                                                                                                | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Textularia<br>candeiana                                                                                                                                                                                                                           | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Textularia earlandi                                                                                                                                                                                                                               | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Triloculina oblonga                                                                                                                                                                                                                               | 8                                 | 15                                                 | 0                                                      | 7                                                           | 0                              | 5                              | 0                              | 3                              | 1                              | 2                                            |
| Triloculina rotunda                                                                                                                                                                                                                               | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| Triloculina                                                                                                                                                                                                                                       | 0                                 | 0                                                  | 0                                                      | 0                                                           | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                            |
| tricarinata Metal Added                                                                                                                                                                                                                           |                                   |                                                    |                                                        |                                                             |                                |                                |                                |                                |                                |                                              |
| (mg/L)                                                                                                                                                                                                                                            | 0.074                             | 0.074                                              | 0.74                                                   | 0.74                                                        | 7.4                            | 7.4                            | 74                             | 74                             | 740                            | 740                                          |
| Actual                                                                                                                                                                                                                                            |                                   |                                                    |                                                        |                                                             |                                |                                |                                |                                |                                |                                              |
|                                                                                                                                                                                                                                                   | 0.092                             | 0.076                                              | 0.193                                                  | 0.199                                                       | 2 4 4 2                        | 4 076                          | 0.50                           | 0.075                          |                                | 227.0                                        |
| Concentration                                                                                                                                                                                                                                     | 0.092<br>73                       | 0.076<br>09                                        | 0.193<br>8                                             | 0.199<br>4                                                  | 2.113                          | 1.376                          | 8.52                           | 8.875                          | 337.5                          | 337.9                                        |
| Concentration<br>(mg/L)<br>Temperature                                                                                                                                                                                                            | 73                                | 09                                                 | 8                                                      | 4                                                           |                                |                                |                                |                                |                                |                                              |
| (mg/L)<br>Temperature<br>(Celsius)                                                                                                                                                                                                                | 73<br>22º                         | 09<br>22º                                          | 8<br>22º                                               | 4<br>22º                                                    | 22º                            | 22º                            | 22º                            | <b>22</b> º                    | 22º                            | <b>22</b> º                                  |
| (mg/L)<br>Temperature<br>(Celsius)<br>Salinity (PSU)                                                                                                                                                                                              | 73<br>22º<br>40                   | 09<br>22º<br>40                                    | 8<br>22º<br>40                                         | 4<br>22º<br>40                                              | 22º<br>40                      | 22º<br>40                      | 22º<br>40                      | 22º<br>40                      | 22º<br>40                      | 22º<br>40                                    |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ammonia tepida                                                                                                                                                                                        | 73<br>22º<br>40                   | 09<br>22º<br>40                                    | 8<br>22º                                               | 4<br>22º<br>40                                              | <b>22º 40</b> 0                              |
| (mg/L)<br>Temperature<br>(Celsius)<br>Salinity (PSU)                                                                                                                                                                                              | 73<br>22º<br>40                   | 09<br>22º<br>40                                    | 8<br>22º<br>40                                         | 4<br>22º<br>40                                              | 22º<br>40                      | 22º<br>40                      | 22º<br>40                      | 22º<br>40                      | 22º<br>40                      | 22º<br>40                                    |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ammonia tepida                                                                                                                                                                                        | 73<br>22º<br>40                   | 09<br>22º<br>40                                    | 8<br>22º<br>40                                         | 4<br>22º<br>40                                              | <b>22º 40</b> 0                | <b>22º 40</b> 0                | <b>22º 40</b> 0                | 22º 40 0 0 0                   | <b>22º 40</b> 0                | <b>22º 40</b> 0                              |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ammonia tepida Archais angulatus                                                                                                                                                                      | 73 22º 40 0 0                     | 09<br>22º<br>40<br>0<br>0<br>5<br>0                | 8<br>22º<br>40<br>0<br>0                               | 4<br>22º<br>40<br>0<br>0                                    | 22º 40 0                       | <b>22º 40</b> 0 0              | <b>22º 40</b> 0 0              | <b>22º 40</b> 0 0              | 22º 40 0                       | 22º<br>40<br>0                               |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula                                                                                                              | 73 22º 40 0 0 8                   | 09 22º 40 0 0 5                                    | 8<br>22º<br>40<br>0<br>0<br>9                          | 4<br>22º<br>40<br>0<br>0<br>7                               | 22º<br>40<br>0<br>0            | 22º 40 0 0 0                   | 22º<br>40<br>0<br>0            | 22º 40 0 0 0                   | 22º<br>40<br>0<br>0<br>0       | 22º<br>40<br>0<br>0                          |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella                                                                                                   | 73 22º 40 0 0 8 0                 | 09<br>22º<br>40<br>0<br>0<br>5<br>0                | 8<br>22º<br>40<br>0<br>0<br>9                          | 4<br>22º<br>40<br>0<br>0<br>7<br>0                          | 22º 40 0 0 0 0                 | 22º<br>40<br>0<br>0<br>0<br>0                |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima                                                                                     | 73 22º 40 0 0 8 0 0 2             | 09 22º 40 0 0 5 0 0                                | 8<br>22º<br>40<br>0<br>0<br>9<br>0<br>0                | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0                | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º<br>40<br>0<br>0<br>0<br>0<br>0           |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp.                                                                     | 73 22º 40 0 0 8 0 0 2 0           | 09<br>22º<br>40<br>0<br>0<br>5<br>0<br>0<br>0      | 8<br>22º<br>40<br>0<br>0<br>9<br>0<br>0<br>0           | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0                | 22º 40 0 0 0 0 0 0 0 0         | 22º 40 0 0 0 0 0 0 0 0         | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0         | 22º<br>40<br>0<br>0<br>0<br>0<br>0<br>0      |
| (mg/L) Temperature (Celsius) Salinity (PSU) Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima                                                                                     | 73 22º 40 0 0 8 0 0 2             | 09 22º 40 0 0 5 0 0                                | 8<br>22º<br>40<br>0<br>0<br>9<br>0<br>0                | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0                | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º 40 0 0 0 0 0 0 0           | 22º<br>40<br>0<br>0<br>0<br>0<br>0           |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira                                 | 73 22º 40 0 0 8 0 0 2 0           | 09<br>22º<br>40<br>0<br>0<br>5<br>0<br>0<br>0      | 8<br>22º<br>40<br>0<br>0<br>9<br>0<br>0<br>0           | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0                | 22º 40 0 0 0 0 0 0 0 0         | 22º 40 0 0 0 0 0 0 0 0         | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0         | 22º<br>40<br>0<br>0<br>0<br>0<br>0<br>0      |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale            | 73 22º 40 0 0 8 0 0 2 0 0         | 09<br>22º<br>40<br>0<br>0<br>5<br>0<br>0<br>0      | 8<br>22º<br>40<br>0<br>0<br>9<br>0<br>0<br>0<br>0      | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0<br>0           | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0       | 22º<br>40<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium                       | 73 22º 40 0 0 8 0 0 2 0 0 0 0     | 09<br>22º<br>40<br>0<br>0<br>5<br>0<br>0<br>0<br>0 | 8<br>22º<br>40<br>0<br>0<br>9<br>0<br>0<br>0<br>0<br>0 | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0<br>0<br>0      | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0 0   | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0                   |
| (mg/L) Temperature (Celsius) Salinity (PSU)  Ammonia tepida  Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium | 73 22º 40 0 0 8 0 0 2 0 0 0 0 0 0 | 09 22º 40 0 0 5 0 0 0 0 0 0 0                      | 8 22º 40 0 0 9 0 0 0 0 0 0 0                           | 4<br>22º<br>40<br>0<br>0<br>7<br>0<br>0<br>0<br>0<br>0<br>0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 0             |

| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37    | 36                                                                      | 25                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 38    | 49                                                                      | 22                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22    | 17                                                                      | 20                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 12                                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 38    | 52                                                                      | 20                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.074 | 0.074                                                                   | 0.74                                  | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 377.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 447.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 62    | 87                                                                      | ,                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 18º   | 18º                                                                     | 18º                                   | 18º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18⁰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 32    | 32                                                                      | 32                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6     | 5                                                                       | 6                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 2                                                                       | 2                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0     | 0                                                                       | 0                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 0 37 0 0 0 0 0 0 0 0 38 0 22 0 0 0 0 38 0 0 0  0 18º 32 0 0 0 6 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0       0       0         37       36       25         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         38       49       22         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0         0       0       0 <td>0       0       0       0         37       36       25       35         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         38       49       22       24         0       0       0       0         22       17       20       9         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         38       52       20       28         0       0       0       0         0       0       0       0         0       0       0       0         38       52       20       2         0       0       0       0</td> <td>0         0         0         0         0           37         36         25         35         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           38         49         22         24         10           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0</td> <td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> <td>0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td> | 0       0       0       0         37       36       25       35         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         38       49       22       24         0       0       0       0         22       17       20       9         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         0       0       0       0         38       52       20       28         0       0       0       0         0       0       0       0         0       0       0       0         38       52       20       2         0       0       0       0 | 0         0         0         0         0           37         36         25         35         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           38         49         22         24         10           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

| Cibicides spp.                 | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
|--------------------------------|-------------|-------------|------------|------------|-------|-------|------|-------|-------|-------|
| Cornuspira                     | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| planorbis                      |             |             |            |            |       |       |      |       |       |       |
| Discorbis mira                 | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Elphidium<br>discoidale        | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Elphidium<br>mexicanum         | 0           | 0           | 0          | 1          | 0     | 3     | 1    | 0     | 0     | 0     |
| Hauerina bradyi                | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Miliolinella<br>circularis     | 0           | 0           | 0          | 3          | 3     | 0     | 0    | 0     | 0     | 0     |
| Miliolinella                   |             |             | _          | _          | _     |       | _    |       | _     | _     |
| subrotunda                     | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Nonionoides<br>grateloupi      | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Ovammina opaca                 | 45          | 51          | 3          | 6          | 3     | 8     | 3    | 3     | 2     | 0     |
| Peneroplis pertusus            | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Quinqueloculina<br>agglutinans | 5           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Quinqueloculina<br>bosciana    | 0           | 4           | 2          | 0          | 0     | 4     | 0    | 0     | 0     | 0     |
| Quinqueloculina<br>laevigata   | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Quinqueloculina<br>lamarckiana | 1           | 0           | 0          | 0          | 1     | 0     | 1    | 2     | 0     | 0     |
| Quinqueloculina<br>poeyana     | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Quinqueloculina<br>polygona    | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Quinqueloculina<br>sabulosa    | 18          | 13          | 1          | 8          | 8     | 13    | 0    | 0     | 0     | 0     |
| Quinqueloculina                |             |             |            | 4          | •     | •     | •    |       | •     | •     |
| seminula                       | 1           | 4           | 2          | 1          | 0     | 0     | 0    | 0     | 0     | 0     |
| Reophax gaussicus              | 1           | 5           | 2          | 6          | 3     | 6     | 0    | 0     | 0     | 0     |
| Rosalina floridana             | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Rosalina globularis            | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Sorites marginalis             | 0           | 0           | 1          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Textularia<br>candeiana        | 8           | 3           | 10         | 16         | 3     | 0     | 0    | 0     | 0     | 0     |
| Textularia earlandi            | 0           | 2           | 4          | 4          | 0     | 0     | 0    | 0     | 0     | 0     |
| Triloculina oblonga            | 4           | 8           | 5          | 6          | 5     | 7     | 1    | 0     | 0     | 0     |
| Triloculina rotunda            | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Triloculina<br>tricarinata     | 0           | 0           | 0          | 0          | 0     | 0     | 0    | 0     | 0     | 0     |
| Metal Added<br>(mg/L)          | 0.074       | 0.074       | 0.74       | 0.74       | 7.4   | 7.4   | 74   | 74    | 740   | 740   |
| Actual Concentration (mg/L)    | 0.070<br>07 | 0.070<br>02 | 0.192<br>4 | 0.175<br>1 | 1.307 | 1.239 | 1.86 | 2.791 | 377.4 | 306.2 |

| Temperature<br>(Celsius)       | 30º | 30º | 30º | 30º | 30º | 30º | 30∘ | 30º | 30º | 30º |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Salinity (PSU)                 | 32  | 32  | 32  | 32  | 32  | 32  | 32  | 32  | 32  | 32  |
| Ammonia tepida                 | 0   | 0   | 10  | 13  | 0   | 0   | 0   | 0   | 0   | 0   |
| Archais angulatus              | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Bolivina lowmani               | 10  | 3   | 0   | 0   | 3   | 5   | 0   | 0   | 0   | 0   |
| Bolivina pulchella             | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   |
| Bolivina striatula             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Buliminella<br>elegantissima   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Cibicides spp.                 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Cornuspira<br>planorbis        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Discorbis mira                 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Elphidium<br>discoidale        | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Elphidium<br>mexicanum         | 27  | 18  | 26  | 25  | 17  | 24  | 0   | 0   | 0   | 0   |
| Hauerina bradyi                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Miliolinella                   |     |     |     |     |     |     |     |     |     |     |
| circularis                     | 3   | 0   | 0   | 0   | 5   | 2   | 0   | 0   | 0   | 0   |
| Miliolinella                   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| subrotunda<br>Nonionoides      |     |     |     |     |     |     |     |     |     |     |
| grateloupi                     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Ovammina opaca                 | 5   | 2   | 0   | 0   | 6   | 5   | 1   | 2   | 2   | 3   |
| Peneroplis pertusus            | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Quinqueloculina                | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| agglutinans<br>Quinqueloculina | -   | -   |     | -   | -   | -   | -   | -   | -   | -   |
| bosciana                       | 10  | 4   | 0   | 0   | 3   | 5   | 1   | 0   | 0   | 0   |
| Quinqueloculina<br>laevigata   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   |
| Quinqueloculina<br>Iamarckiana | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   |
| Quinqueloculina<br>poeyana     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Quinqueloculina<br>polygona    | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Quinqueloculina<br>sabulosa    | 22  | 17  | 14  | 8   | 5   | 3   | 0   | 0   | 0   | 0   |
| Quinqueloculina<br>seminula    | 3   | 4   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   |
| Reophax gaussicus              | 24  | 29  | 11  | 14  | 17  | 19  | 0   | 0   | 0   | 0   |
| Rosalina floridana             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Rosalina globularis            | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| Sorites marginalis             | 2   | 5   | 0   | 0   | 1   | 3   | 1   | 2   | 0   | 0   |

| Textularia<br>candeiana                    | 36          | 40          | 30         | 20         | 16    | 12    | 0   | 0     | 0     | 0     |
|--------------------------------------------|-------------|-------------|------------|------------|-------|-------|-----|-------|-------|-------|
| Textularia earlandi                        | 0           | 0           | 0          | 0          | 2     | 1     | 0   | 0     | 0     | 0     |
| Triloculina oblonga                        | 38          | 35          | 19         | 20         | 9     | 12    | 1   | 4     | 0     | 0     |
| Triloculina rotunda                        | 0           | 0           | 0          | 0          | 0     | 1     | 0   | 0     | 0     | 0     |
| Triloculina<br>tricarinata                 | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Zinc                                       |             |             |            |            |       |       |     |       |       |       |
| Metal Added<br>(mg/L)                      | 0.09        | 0.09        | 0.9        | 0.9        | 9     | 9     | 90  | 90    | 900   | 900   |
| Actual Concentration (mg/L)                | 0.044<br>65 | 0.047<br>17 | 0.250<br>5 | 0.273<br>5 | 2.415 | 1.839 | 5.4 | 5.605 | 9.088 | 10.79 |
| Temperature<br>(Celsius)                   | 22º         | 22º         | 22º        | 22º        | 22º   | 22º   | 22º | 22º   | 22º   | 22º   |
| Salinity (PSU)                             | 32          | 32          | 32         | 32         | 32    | 32    | 32  | 32    | 32    | 32    |
| Ammonia tepida                             | 0           | 0           | 1          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Archais angulatus                          | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Bolivina lowmani                           | 0           | 4           | 2          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Bolivina pulchella                         | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Bolivina striatula                         | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Buliminella<br>elegantissima               | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Cibicides spp.                             | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Cornuspira<br>planorbis                    | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Discorbis mira                             | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Elphidium<br>discoidale                    | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Elphidium<br>mexicanum                     | 0           | 0           | 1          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Hauerina bradyi                            | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Miliolinella<br>circularis<br>Miliolinella | 0           | 5           | 0          | 0          | 0     | 1     | 0   | 0     | 0     | 0     |
| subrotunda<br>Nonionoides                  | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| grateloupi                                 | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Ovammina opaca                             | 5           | 0           | 0          | 0          | 0     | 1     | 1   | 0     | 0     | 0     |
| Peneroplis pertusus                        | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Quinqueloculina<br>agglutinans             | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |
| Quinqueloculina<br>bosciana                | 4           | 0           | 3          | 2          | 0     | 0     | 0   | 0     | 0     | 0     |
| Quinqueloculina<br>laevigata               | 0           | 0           | 2          | 0          | 1     | 1     | 1   | 1     | 0     | 0     |
| Quinqueloculina<br>lamarckiana             | 0           | 0           | 0          | 0          | 0     | 0     | 0   | 0     | 0     | 0     |

| Quinqueloculina<br>poeyana                                                                                                                                                                                                                                          | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| Quinqueloculina<br>polygona                                                                                                                                                                                                                                         | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Quinqueloculina<br>sabulosa                                                                                                                                                                                                                                         | 10                                              | 18                                        | 2                                         | 6                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Quinqueloculina<br>seminula                                                                                                                                                                                                                                         | 3                                               | 5                                         | 0                                         | 4                                              | 0                                         | 0                                         | 0                                         | 1                                               | 0                                               | 0                                         |
| Reophax gaussicus                                                                                                                                                                                                                                                   | 16                                              | 12                                        | 8                                         | 8                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Rosalina floridana                                                                                                                                                                                                                                                  | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Rosalina globularis                                                                                                                                                                                                                                                 | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Sorites marginalis                                                                                                                                                                                                                                                  | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Textularia<br>candeiana                                                                                                                                                                                                                                             | 0                                               | 11                                        | 0                                         | 1                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Textularia earlandi                                                                                                                                                                                                                                                 | 0                                               | 0                                         | 3                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Triloculina oblonga                                                                                                                                                                                                                                                 | 8                                               | 17                                        | 0                                         | 0                                              | 0                                         | 0                                         | 1                                         | 1                                               | 0                                               | 0                                         |
| Triloculina rotunda                                                                                                                                                                                                                                                 | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Triloculina<br>tricarinata                                                                                                                                                                                                                                          | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 0                                               | 0                                         |
| Metal Added                                                                                                                                                                                                                                                         | 0.09                                            | 0.09                                      | 0.9                                       | 0.9                                            | 9                                         | 9                                         | 90                                        | 90                                              | 900                                             | 900                                       |
| (mg/L)                                                                                                                                                                                                                                                              | 0.03                                            | 0.03                                      | 0.5                                       | 0.5                                            | ,                                         | •                                         | 30                                        | 30                                              | 300                                             | 300                                       |
| Actual<br>Concentration                                                                                                                                                                                                                                             | 0                                               | 0                                         | 0                                         | 0                                              | 0                                         | 0                                         | 0                                         | 0                                               | 1.263                                           | 1.375                                     |
| (mg/L)                                                                                                                                                                                                                                                              |                                                 |                                           |                                           |                                                |                                           |                                           |                                           |                                                 |                                                 |                                           |
| (IIIg/L)                                                                                                                                                                                                                                                            |                                                 |                                           |                                           |                                                |                                           |                                           |                                           |                                                 |                                                 |                                           |
| Temperature<br>(Celsius)                                                                                                                                                                                                                                            | 22º                                             | 22º                                       | 22º                                       | 22º                                            | 22º                                       | 22º                                       | 22º                                       | 22º                                             | 22º                                             | 22º                                       |
| Temperature                                                                                                                                                                                                                                                         | 22º<br>12                                       | 22º<br>12                                 | 22º<br>12                                 | 22º<br>12                                      | 22º<br>12                                 | 22º<br>12                                 | 22º<br>12                                 | 22º<br>12                                       | 22º<br>12                                       | 22º<br>12                                 |
| Temperature<br>(Celsius)                                                                                                                                                                                                                                            |                                                 |                                           |                                           |                                                |                                           |                                           |                                           |                                                 |                                                 |                                           |
| Temperature<br>(Celsius)<br>Salinity (PSU)                                                                                                                                                                                                                          | 12                                              | 12                                        | 12                                        | 12                                             | 12                                        | 12                                        | 12                                        | 12                                              | 12                                              | 12                                        |
| Temperature (Celsius) Salinity (PSU) Ammonia tepida                                                                                                                                                                                                                 | <b>12</b>                                       | <b>12</b>                                 | <b>12</b>                                 | <b>12</b>                                      | <b>12</b>                                 | <b>12</b>                                 | <b>12</b>                                 | <b>12</b>                                       | <b>12</b>                                       | <b>12</b>                                 |
| Temperature<br>(Celsius)<br>Salinity (PSU)<br>Ammonia tepida<br>Archais angulatus                                                                                                                                                                                   | 12<br>0<br>0                                    | 0<br>0                                    | 12<br>0<br>0                              | 12<br>0<br>0                                   | 0<br>0                                    | 0<br>0                                    | 12<br>0<br>0                              | 12<br>0<br>0                                    | 12<br>0<br>0                                    | 12<br>0<br>0                              |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula                                                                                                                                       | 0<br>0<br>0                                     | 0<br>0<br>0                               | 12<br>0<br>0<br>0                         | 12<br>0<br>0<br>1                              | 0<br>0<br>0                               | 12<br>0<br>0<br>0                         | 12<br>0<br>0<br>0                         | 12<br>0<br>0<br>0                               | 0<br>0<br>0                                     | 0<br>0<br>0                               |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella                                                                                                                                                          | 0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                          | 0<br>0<br>1<br>0                               | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                                | 12<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                          |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp.                                                                                              | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                     | 12<br>0<br>0<br>1<br>0<br>0                    | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0                     |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0                | 12<br>0<br>0<br>1<br>0<br>0                    | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0                | 12<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0<br>0<br>0                |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 12<br>0<br>0<br>1<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0<br>0<br>0<br>0           |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>1<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum                 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum Hauerina bradyi | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum                 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 12<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| Nonionoides                       | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
|-----------------------------------|------|------|-----|-----|-------|-------|------|-------|-------|-------|--|
| grateloupi<br>Ovammina opaca      | 34   | 39   | 0   | 0   | 7     | 9     | 0    | 0     | 2     | 2     |  |
| Peneroplis pertusus               | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Quinqueloculina                   |      |      |     |     |       |       |      |       |       |       |  |
| agglutinans                       | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Quinqueloculina<br>bosciana       | 0    | 0    | 0   | 1   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Quinqueloculina                   | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| laevigata                         | U    | U    | U   | U   | U     | U     | U    | U     | U     | U     |  |
| Quinqueloculina<br>lamarckiana    | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Quinqueloculina                   | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| poeyana<br>Ovinavala valia v      | U    | U    | U   | U   | U     | U     | U    | U     | U     | U     |  |
| Quinqueloculina<br>polygona       | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Quinqueloculina                   | 0    | 3    | 0   | 0   | 1     | 3     | 0    | 0     | 0     | 0     |  |
| sabulosa                          | Ū    | 3    | O   | O   | _     | 3     | Ü    | Ū     | J     | U     |  |
| Quinqueloculina<br>seminula       | 0    | 0    | 0   | 0   | 1     | 0     | 0    | 0     | 0     | 0     |  |
| Reophax gaussicus                 | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Rosalina floridana                | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Rosalina globularis               | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Sorites marginalis                | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Textularia<br>candeiana           | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Textularia earlandi               | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Triloculina oblonga               | 11   | 9    | 0   | 0   | 2     | 0     | 0    | 0     | 0     | 0     |  |
| Triloculina rotunda               | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Triloculina                       | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| tricarinata Metal Added           |      |      |     |     |       |       |      |       |       |       |  |
| (mg/L)                            | 0.09 | 0.09 | 0.9 | 0.9 | 9     | 9     | 90   | 90    | 900   | 900   |  |
| Actual                            |      | _    | _   |     |       | 0.933 |      |       |       |       |  |
| Concentration (mg/L)              | 0    | 0    | 0   | 0   | 2.929 | 6     | 4.96 | 5.585 | 8.551 | 11.04 |  |
| Temperature                       | 22º  | 22º  | 22º | 22º | 22º   | 22º   | 22º  | 22º   | 22º   | 22º   |  |
| (Celsius)                         |      |      |     |     |       |       |      |       |       |       |  |
| Salinity (PSU)                    | 40   | 40   | 40  | 40  | 40    | 40    | 40   | 40    | 40    | 40    |  |
| Ammonia tepida                    | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Archais angulatus                 | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Bolivina lowmani                  | 10   | 9    | 6   | 1   | 4     | 2     | 0    | 0     | 0     | 0     |  |
| Bolivina pulchella                | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Bolivina striatula<br>Buliminella | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| elegantissima                     | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |
| Cibicides spp.                    | 0    | 0    | 0   | 0   | 0     | 0     | 0    | 0     | 0     | 0     |  |

| Concentration (mg/L)                             | 0       | 0       | 0       | 0       | 1.271 | 1.174  | 8.415 | 8.385 | 13.44 | 11.82 |
|--------------------------------------------------|---------|---------|---------|---------|-------|--------|-------|-------|-------|-------|
| Metal Added<br>(mg/L)<br>Actual                  | 0.09    | 0.09    | 0.9     | 0.9     | 9     | 9      | 90    | 90    | 900   | 900   |
| Triloculina<br>tricarinata                       | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Triloculina rotunda                              | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Triloculina oblonga                              | 36      | 38      | 28      | 25      | 13    | 23     | 0     | 0     | 0     | 4     |
| candeiana<br>Textularia earlandi                 | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Sorites marginalis Textularia                    | 16      | 9       | 19      | 19      | 6     | 6      | 0     | 0     | 0     | 0     |
|                                                  | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Rosalina globularis                              | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Rosalina floridana                               | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>seminula<br>Reophax gaussicus | 0<br>13 | 0<br>19 | 0<br>14 | 0<br>11 | 0     | 0<br>7 | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>sabulosa                      | 35      | 35      | 22      | 32      | 10    | 12     | 0     | 0     | 0     | 0     |
| poeyana<br>Quinqueloculina<br>polygona           | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| lamarckiana<br>Quinqueloculina                   | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| laevigata<br>Quinqueloculina                     | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>bosciana<br>Quinqueloculina   | 0       | 0       | 4       | 2       | 3     | 2      | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>agglutinans                   | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Peneroplis pertusus                              | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Ovammina opaca                                   | 31      | 25      | 0       | 10      | 0     | 0      | 0     | 0     | 0     | 3     |
| subrotunda<br>Nonionoides<br>grateloupi          | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| circularis<br>Miliolinella                       | 0       | 0       | 0       | 0       | 2     | 1      | 0     | 0     | 0     | 0     |
| Hauerina bradyi<br>Miliolinella                  | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Elphidium<br>mexicanum                           | 0       | 0       | 5       | 1       | 1     | 0      | 0     | 0     | 0     | 0     |
| Elphidium<br>discoidale                          | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Discorbis mira                                   | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |
| Cornuspira<br>planorbis                          | 0       | 0       | 0       | 0       | 0     | 0      | 0     | 0     | 0     | 0     |

| Salinity (PSU)         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32        | nperature<br>sius) | 18 | 18º |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----|-----|
| Archais angulatus       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                         | nity (PSU)         | 3  | 32  |
| Bolivina lowmani         11         8         2         3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                       | nonia tepida       | C  | 0   |
| Bolivina pulchella         0         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                      | nais angulatus     | C  | 0   |
| Bolivina striatula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vina lowmani       | C  | 0   |
| Buliminella elegantissima         0         0         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>vina pulchella</td> <td>C</td> <td>0</td> | vina pulchella     | C  | 0   |
| elegantissima       0       0       2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                     | vina striatula     | C  | 0   |
| Cornuspira 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | C  | 0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * *                | C  | 0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | C  | 0   |
| <i>Discorbis mira</i> 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | C  | 0   |
| Elphidium         0         0         0         0         0         0         0         0           discoidale         5 labidium         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                    | oidale             | C  | 0   |
| Elphidium         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                     |                    | C  | 0   |
| Hauerina bradyi 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | C  | 0   |
| Miliolinella 0 0 1 2 1 0 0 0 0 0 circularis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | C  | 0   |
| Miliolinella 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rotunda            | C  | 0   |
| Nonionoides 0 0 0 0 0 0 0 0 0 0 grateloupi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | teloupi            | C  | 0   |
| Ovammina opaca 3 6 3 5 0 0 2 5 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mmina opaca        | 1  | 1   |
| Peneroplis pertusus 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | C  | 0   |
| Quinqueloculina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lutinans           | C  | 0   |
| Quinqueloculina 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ciana              | C  | 0   |
| Quinqueloculina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rigata             | C  | 0   |
| lamarckiana  Ouingueloguling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arckiana           |    |     |
| poeyana<br>Quinqueloculina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yana               |    |     |
| polygona Ovingueloguling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vgona              |    |     |
| sabulosa  Ouinqueloculing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulosa              |    |     |
| Seminula       2       5       0       0       0       0       2       0       0       0         Reophax gaussicus       6       12       1       2       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inula              |    |     |
| Rosalina floridana 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  |    |     |
| Rosalina globularis         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                  |    |     |
| Sorites marginalis         0         0         1         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |    |     |

| Textularia<br>candeiana            | 8    | 11   | 4   | 6   | 0     | 0          | 0     | 0     | 0     | 0     |
|------------------------------------|------|------|-----|-----|-------|------------|-------|-------|-------|-------|
| Textularia earlandi                | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Triloculina oblonga                | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Triloculina rotunda                | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Triloculina<br>tricarinata         | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Metal Added<br>(mg/L)              | 0.09 | 0.09 | 0.9 | 0.9 | 9     | 9          | 90    | 90    | 900   | 900   |
| Actual<br>Concentration            | 0    | 0    | 0   | 0   | 1.091 | 0.723<br>3 | 2.263 | 3.109 | 4.793 | 3.832 |
| (mg/L)<br>Temperature<br>(Celsius) | 30º  | 30º  | 30º | 30º | 30º   | 30º        | 30º   | 30º   | 30º   | 30∘   |
| Salinity (PSU)                     | 32   | 32   | 32  | 32  | 32    | 32         | 32    | 32    | 32    | 32    |
| Ammonia tepida                     | 55   | 49   | 1   | 2   | 0     | 1          | 0     | 0     | 0     | 0     |
| Archais angulatus                  | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Bolivina lowmani                   | 16   | 22   | 11  | 12  | 0     | 0          | 0     | 0     | 0     | 0     |
| Bolivina pulchella                 | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Bolivina striatula                 | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Buliminella                        | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| elegantissima<br>Cibicides spp.    | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Cornuspira                         |      |      |     |     |       |            |       |       |       |       |
| planorbis                          | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Discorbis mira                     | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Elphidium<br>discoidale            | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Elphidium<br>mexicanum             | 0    | 0    | 0   | 5   | 2     | 1          | 0     | 0     | 0     | 0     |
| Hauerina bradyi                    | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Miliolinella<br>circularis         | 0    | 0    | 0   | 0   | 2     | 0          | 0     | 0     | 0     | 0     |
| Miliolinella<br>subrotunda         | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Nonionoides<br>grateloupi          | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Ovammina opaca                     | 0    | 0    | 5   | 12  | 0     | 1          | 0     | 0     | 1     | 3     |
| Peneroplis pertusus                | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>agglutinans     | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>bosciana        | 8    | 9    | 1   | 0   | 1     | 2          | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>laevigata       | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
| Quinqueloculina<br>lamarckiana     | 0    | 0    | 0   | 0   | 0     | 0          | 0     | 0     | 0     | 0     |
|                                    |      |      |     |     |       |            |       |       |       |       |

| naevana                                                                                                                                                                                                                                                             | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|----------------------------------|----------------------------|---------------------------------|--------------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| poeyana<br>Quinqueloculina                                                                                                                                                                                                                                          |                                     |                                 |                                  |                            |                                 |                                |                                |                                     |                                                         |                                                         |
| polygona                                                                                                                                                                                                                                                            | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Quinqueloculina<br>sabulosa                                                                                                                                                                                                                                         | 52                                  | 60                              | 5                                | 6                          | 1                               | 1                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Quinqueloculina<br>seminula                                                                                                                                                                                                                                         | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Reophax gaussicus                                                                                                                                                                                                                                                   | 12                                  | 8                               | 5                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Rosalina floridana                                                                                                                                                                                                                                                  | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Rosalina globularis                                                                                                                                                                                                                                                 | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Sorites marginalis                                                                                                                                                                                                                                                  | 0                                   | 0                               | 0                                | 0                          | 2                               | 1                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Textularia<br>candeiana                                                                                                                                                                                                                                             | 7                                   | 5                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Textularia earlandi                                                                                                                                                                                                                                                 | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Triloculina oblonga                                                                                                                                                                                                                                                 | 18                                  | 24                              | 2                                | 19                         | 2                               | 8                              | 1                              | 2                                   | 1                                                       | 2                                                       |
| Triloculina rotunda                                                                                                                                                                                                                                                 | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| Triloculina                                                                                                                                                                                                                                                         | 0                                   | 0                               | 0                                | 0                          | 0                               | 0                              | 0                              | 0                                   | 0                                                       | 0                                                       |
| tricarinata                                                                                                                                                                                                                                                         |                                     |                                 |                                  |                            |                                 |                                |                                |                                     |                                                         |                                                         |
| Control                                                                                                                                                                                                                                                             |                                     |                                 |                                  |                            |                                 |                                |                                |                                     |                                                         |                                                         |
| Metal Added<br>(mg/L)                                                                                                                                                                                                                                               | N/A                                 | N/A                             | N/A                              | N/A                        | N/A                             | N/A                            | N/A                            | N/A                                 | N/A                                                     | N/A                                                     |
| Actual Nickel                                                                                                                                                                                                                                                       | 0.040                               | 0.042                           | 0.025                            | 0.020                      | 0.020                           | 0.020                          | 0.017                          | 0.015                               | 0.016                                                   | 0.014                                                   |
| (mg/L)                                                                                                                                                                                                                                                              | 63                                  | 43                              | 47                               | 47                         | 21                              | 32                             | 01                             | 21                                  | 28                                                      | 45                                                      |
| Actual Zinc (mg/L)                                                                                                                                                                                                                                                  | 0.003                               | 0.003                           | 0.003                            | 0.006                      | 0.001                           | 0.006                          | 0.002                          | 0.006                               | 0.072                                                   | 0.004                                                   |
| Actual Zilic (Ilig/L)                                                                                                                                                                                                                                               | 69                                  | 16                              | 49                               | 68                         | 24                              | 28                             | 06                             | 18                                  | 91                                                      | 72                                                      |
| Temperature<br>(Celsius)                                                                                                                                                                                                                                            | 69<br><b>22</b> º                   | 16<br>22º                       | 49<br>22º                        | 68<br>22º                  | 24<br>22º                       | 28<br>22º                      | 06<br>18º                      | 18<br>18º                           | 91<br>30º                                               | 72<br>30º                                               |
| Temperature                                                                                                                                                                                                                                                         |                                     |                                 |                                  |                            |                                 |                                |                                |                                     |                                                         |                                                         |
| Temperature<br>(Celsius)                                                                                                                                                                                                                                            | 22º                                 | 22º                             | 22º                              | 22º                        | 22º                             | 22º                            | 18º                            | 18º                                 | 30º                                                     | 30º                                                     |
| Temperature<br>(Celsius)<br>Salinity (PSU)                                                                                                                                                                                                                          | 22º<br>32                           | 22º<br>32                       | 22º<br>12                        | 22º<br>12                  | 22º<br>40                       | 22º<br>40                      | 18º<br>32                      | 18º<br>32                           | 30º<br>32                                               | 30º<br>32                                               |
| Temperature<br>(Celsius)<br>Salinity (PSU)                                                                                                                                                                                                                          | <b>22º 32</b> 4                     | <b>22º 32</b> 0                 | <b>22º 12</b> 0                  | 22º<br>12                  | <b>22º 40</b> 0                 | <b>22º 40</b> 0                | <b>18º 32</b> 0                | 18º<br>32                           | <b>30º 32</b> 0                                         | <b>30º 32</b> 0                                         |
| Temperature<br>(Celsius)<br>Salinity (PSU)<br>Ammonia tepida<br>Archais angulatus                                                                                                                                                                                   | <b>22º 32</b> 4 0                   | 22º<br>32<br>0<br>0             | 22º 12 0 0                       | 22º 12 1 0                 | <b>22º 40</b> 0 0               | <b>22º 40</b> 0 0              | 18º<br>32<br>0<br>0            | 18º<br>32<br>2<br>0                 | 30º<br>32<br>0<br>0                                     | 30º<br>32<br>0<br>0                                     |
| Temperature<br>(Celsius)<br>Salinity (PSU)<br>Ammonia tepida<br>Archais angulatus<br>Bolivina lowmani                                                                                                                                                               | 22º<br>32<br>4<br>0<br>16           | 22º 32 0 0 11                   | 22º 12 0 0 0                     | 22º 12 1 0 1               | 22º<br>40<br>0<br>0<br>13       | 22º 40 0 0 0                   | 18º<br>32<br>0<br>0<br>8       | 18º 32 2 0 11                       | 30º<br>32<br>0<br>0<br>18                               | 30º<br>32<br>0<br>0<br>13                               |
| Temperature<br>(Celsius)<br>Salinity (PSU)<br>Ammonia tepida<br>Archais angulatus<br>Bolivina lowmani<br>Bolivina pulchella                                                                                                                                         | 22º<br>32<br>4<br>0<br>16<br>0      | 22º<br>32<br>0<br>0<br>11<br>0  | 22º 12 0 0 0 0 0                 | 22º 12 1 0 1 0             | 22º<br>40<br>0<br>0<br>13<br>0  | 22º 40 0 0 0 0 0               | 18º<br>32<br>0<br>0<br>8<br>0  | 18º<br>32<br>2<br>0<br>11<br>0      | 30º<br>32<br>0<br>0<br>18<br>0                          | 30º<br>32<br>0<br>0<br>13<br>0                          |
| Temperature<br>(Celsius)<br>Salinity (PSU)<br>Ammonia tepida<br>Archais angulatus<br>Bolivina lowmani<br>Bolivina pulchella<br>Bolivina striatula<br>Buliminella                                                                                                    | 22º<br>32<br>4<br>0<br>16<br>0      | 22º 32 0 0 11 0 0               | 22º 12 0 0 0 0 0 0               | 22º 12 1 0 1 0 0 0         | 22º<br>40<br>0<br>0<br>13<br>0  | 22º 40 0 0 0 0 0 0             | 18º 32 0 0 8 0 0               | 18º<br>32<br>2<br>0<br>11<br>0      | 30º<br>32<br>0<br>0<br>18<br>0                          | 30º<br>32<br>0<br>0<br>13<br>0                          |
| Temperature (Celsius) Salinity (PSU) Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima                                                                                                              | 22º<br>32<br>4<br>0<br>16<br>0<br>0 | 22º 32 0 0 11 0 0 0             | 22º 12 0 0 0 0 0 0 0             | 22º 12 1 0 1 0 0 0 0       | 22º 40 0 0 13 0 0               | 22º 40 0 0 0 0 0 0 0           | 18º 32 0 0 8 0 0 0             | 18º<br>32<br>2<br>0<br>11<br>0<br>0 | 30º<br>32<br>0<br>0<br>18<br>0<br>0                     | 30°<br>32<br>0<br>0<br>13<br>0<br>0                     |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira                                                                                   | 22º<br>32<br>4<br>0<br>16<br>0<br>0 | 22º 32 0 0 11 0 0 0 0           | 22º 12 0 0 0 0 0 0 0 0           | 22º 12 1 0 1 0 0 0 0       | 22º 40 0 0 13 0 0 0 0           | 22º 40 0 0 0 0 0 0 0 0 0       | 18º 32 0 0 8 0 0 0 0           | 18º 32 2 0 11 0 0 0                 | 30º<br>32<br>0<br>0<br>18<br>0<br>0<br>0                | 30°<br>32<br>0<br>0<br>13<br>0<br>0<br>0                |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale                                     | 22º 32 4 0 16 0 0 0 0               | 22º 32 0 0 11 0 0 0 0 0         | 22º 12 0 0 0 0 0 0 0 0 0         | 22º 12 1 0 1 0 0 0 0 0     | 22º 40 0 0 13 0 0 0 0 0 0       | 22º 40 0 0 0 0 0 0 0 0 0 0     | 18º 32 0 0 8 0 0 0 0 0 0       | 18º<br>32<br>0<br>11<br>0<br>0<br>0 | 30º<br>32<br>0<br>0<br>18<br>0<br>0<br>0<br>0           | 30°<br>32<br>0<br>0<br>13<br>0<br>0<br>0                |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium                                                | 22º 32 4 0 16 0 0 0 0 0             | 22º 32 0 0 11 0 0 0 0 0 0 0     | 22º 12 0 0 0 0 0 0 0 0 0 0       | 22º 12 1 0 1 0 0 0 0 0 0   | 22º 40 0 0 13 0 0 0 0 0 0 0     | 22º 40 0 0 0 0 0 0 0 0 0 0 0   | 18º 32 0 0 8 0 0 0 0 0 0 0     | 18º 32 0 11 0 0 0 0 0               | 30º<br>32<br>0<br>0<br>18<br>0<br>0<br>0<br>0<br>0      | 30° 32 0 0 0 13 0 0 0 0 0 0 0 0 0 0                     |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum Hauerina bradyi | 22º 32 4 0 16 0 0 0 0 0 0 0         | 22º 32 0 0 11 0 0 0 0 0 0 0 0 0 | 22º 12 0 0 0 0 0 0 0 0 0 0 0 0   | 22º 12 1 0 1 0 0 0 0 0 0 0 | 22º 40 0 0 13 0 0 0 0 0 0 0 0 0 | 22º 40 0 0 0 0 0 0 0 0 0 0 0 0 | 18º 32 0 0 8 0 0 0 0 0 0 0 0   | 18º 32 0 11 0 0 0 0 0 0             | 30º<br>32<br>0<br>0<br>18<br>0<br>0<br>0<br>0<br>0      | 30º<br>32<br>0<br>0<br>13<br>0<br>0<br>0<br>0<br>0      |
| Temperature (Celsius) Salinity (PSU)  Ammonia tepida Archais angulatus Bolivina lowmani Bolivina pulchella Bolivina striatula Buliminella elegantissima Cibicides spp. Cornuspira planorbis Discorbis mira Elphidium discoidale Elphidium mexicanum                 | 22º 32 4 0 16 0 0 0 0 0 0 0         | 22º 32 0 0 11 0 0 0 0 0 0 3     | 22º 12 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22º 12 1 0 1 0 0 0 0 0 1 1 | 22º 40 0 0 13 0 0 0 0 0 0 0 0 6 | 22º 40 0 0 0 0 0 0 0 0 0 0 9   | 18º 32 0 0 8 0 0 0 0 0 0 0 0 0 | 18º 32 0 11 0 0 0 0 0 4             | 30º<br>32<br>0<br>0<br>18<br>0<br>0<br>0<br>0<br>0<br>0 | 30º<br>32<br>0<br>0<br>13<br>0<br>0<br>0<br>0<br>0<br>0 |

Quinqueloculina

| Miliolinella<br>subrotunda     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|--------------------------------|----|----|----|----|----|----|----|----|----|----|
| Nonionoides<br>grateloupi      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Ovammina opaca                 | 29 | 14 | 41 | 29 | 39 | 39 | 61 | 48 | 12 | 5  |
| Peneroplis pertusus            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Quinqueloculina<br>agglutinans | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Quinqueloculina<br>bosciana    | 2  | 3  | 0  | 0  | 0  | 0  | 3  | 1  | 15 | 0  |
| Quinqueloculina<br>laevigata   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Quinqueloculina<br>lamarckiana | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Quinqueloculina<br>poeyana     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Quinqueloculina<br>polygona    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Quinqueloculina<br>sabulosa    | 16 | 21 | 8  | 14 | 27 | 17 | 25 | 17 | 34 | 27 |
| Quinqueloculina<br>seminula    | 0  | 5  | 0  | 0  | 27 | 4  | 3  | 0  | 1  | 5  |
| Reophax gaussicus              | 11 | 0  | 0  | 0  | 0  | 33 | 10 | 5  | 16 | 14 |
| Rosalina floridana             | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Rosalina globularis            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Sorites marginalis             | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Textularia<br>candeiana        | 0  | 6  | 0  | 0  | 0  | 0  | 6  | 15 | 32 | 28 |
| Textularia earlandi            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  |
| Triloculina oblonga            | 10 | 18 | 10 | 7  | 42 | 33 | 6  | 16 | 47 | 32 |
| Triloculina rotunda            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Triloculina<br>tricarinata     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |