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ABSTRACT

The dissertation deals with the estimation of covariance and precision matrices for high-
dimensional time series with long-memory. In Chapter 2, we generalize part of the results of
[35] (i) from the spectral norm to the general vector norm induced matrix £y, norm |[-[[,
for any v, w € [1, 00], (ii) from the Frobenius norm to the general entrywise matrix L** norm
||| ;v for any v, w € [1,00], and (iii) from p > n° for some constant ¢ > 0 to p > (n/go)*

for some constant ¢ > 0, where g, is an upper bound of max;<x<,

(Pfi])nm , We also
generalize their minimax result by removing the restriction of p > n® for some 8 > 1. In
particular, we obtain the minimax result for the convergence rate of the precision matrix
estimator proposed by [L1]. In Chapter 3, based on the results of [35], we investigate the
joint estimation of multiple precision matrices. We generalize the results of [27] from i.i.d.
data to long-memory data. Especially, we obtain the estimation of the entrywise L' norm
and the Frobenius norm of risk, and their expectations. Our numerical experiment results
support our theory analysis. In Chapter 4, based on the results of [35], we investigate the
joint estimation of weighted multiple precision matrices. We generalize the results of [16]
from i.i.d. data to long-memory data. Especially, we obtain the estimation of the entrywise

L' norm and the Frobenius norm of risk, and their expectations. Our numerical experiment

results support our theory analysis. In Chapter 5, based on the results of [35], we introduce



a new assumption to investigate the joint estimation of multiple precision matrices, and
generalize the results of [27] from i.i.d. data to long-memory data. Especially, we obtain the
estimation of the vector norm induced matrix ¢; norm and the Frobenius norm of risk, and
their expectations.
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CHAPTER 1

OVERVIEW

1.1 INTRODUCTION

Multivariate time series data can be obtained in various fields, for example, prices in stock
markets, traffic flows on highways, outputs of solar power plants, and functional magnetic
resonance imaging (fMRI) data. One of main interests in multivariate time series analysis
is identifying relationships among multiple time series. For this purpose, the estimation of
covariance and precision (inverse of covariance matrix) matrices plays a key role in many
areas of statistical analysis such as graphical models, principal component analysis (PCA),
discriminant analysis, and canonical correlation analysis.

Let {Xi,...,X,} be a sample of p-dimensional random vectors with mean p,,, covariance
matrix ¥ and precision matrix = X!, The estimation of ¥ and € for high-dimensional
data has gained much attention in statistical and machine learning communities (see [,
9, 17, 23, 25, 30, 38]). However, most of the studies have been focused on independent
and identically distributed (i.i.d.) observations, and few studies have been done for serially
correlated data, especially for long-memory time series data. For example, for resting-state
fMRI data, the number of voxels in a brain (p) is typically greater than the number of
subjects (n). Also, some voxel time series in a resting brain are known to exhibit a long-
memory property (see Figures [3.113.3)); also see [10] and [32] for example.

Recently, Shu and Nan (see [35]) investigated the estimation of high-dimensional covari-
ance and precision matrices from long-memory time series. They extended the definition of
long-memory to multivariate time series, and proposed a new and straightforward temporal

dependence measure that solely depends on the Frobenius norm and the spectral norm of
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the autocorrelation matrices of {X,}};. Hence, long-memory multivariate time series can
be well dealt with based on their relaxed assumption.
Motivated by [35], this dissertation focuses on the estimation of covariance and precision

matrices from high-dimensional long-memory time series.

1.2 USEFUL BOUNDS

We borrow formulation of the problems and the notation from [35] for easy comparisons with
their results. The following norms are used in this dissertation. For a real matrix A = (a;;),
the spectral norm is defined as ||A |y = [@max(A T A)]*/2 where @y is the largest eigenvalue,
and ¢y and @, are the k-th and the smallest eigenvalues of A, respectively. The Frobenius
norm is defined as [|Allr = (32, Y, af;)'/?, the entrywise L' norm |A|; = Y, /]aj;], and its
off-diagonal version [Ali o = >, [a;;|. The entrywise L** norm is defined as [[Al[,,. =

1/w
(Z;;l oo, |aij|v)w/v> , and the entrywise L™ norm |A|, = max;;|a;;|. The vector

Ax .
| |“’, and vector norm induced

[,

norm induced matrix ¢,, norm is defined as [|A|, = sup
x#0

matrix £y, norm [|Afl, ) = sup"?}j'w. Also, denote vec(A) = (A],--- ;AT where A; is
’ x#£0 v
the j-th column of A, and denote A > 0 if A is positive definite.
Let X,xn = (%1, -+ ,X,). We assume that each column x; follows a distribution with the

same covariance matrix X = (og) Let xpyj,- -+, X[ be the p row vectors of X,,.,,, and

pXp*
Ry = (pfi])nm be the correlation matrix of xp, i.e., the autocorrelation matrix of the Ath

time series. For all k, the following inequalities are valid:
1
1< Ry < [Rugll, < R, <. (1.2.1)
Define gr(n) and go(n) as

1
max — Ry < gr(n), max |[Ryg[, < g2(n). (1.2.2)

We note that 1 < gr(n) < go(n) < n by (1.2.1)).

A multivariate time series is “long-memory” (see [35]) if and only if

max ”R[k]H1 = 00 as N — 0. (1.2.3)
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In [35], Shu and Nan considered a Polynomial-dominated decay (PDD) model with parameter
a > 0. The model is long-memory if and only if & < 1. They showed that the convergence
rates of the covariance/precision estimators they considered were characterized by the bounds
gr(n) and go(n). In this dissertation, we also consider the following long-memory model,

which is not covered by PDD in [35].

Definition 1.2.1. (Log-Polynomial-dominated decay (LPDD) model) X, , has LPDD tem-

poral dependence if

max
1<k<p

p%‘ < Co(log i — 7)™ for all |i —j| > 1,a > 0.

For the LPDD model, the generalized harmonic number (see [15]) is given as

n

H® = (logh)™ < 1+
k=2

n
(log n)>

(1.2.4)
Note that the model always allows at least one individual time series to be long-memory.
1.3 DATA GENERATING MECHANISM

As in [35], we assume that the vectorized data X,,, = vec(X,x,) are obtained through the

following linear spatio-temporal model

Xom =Hz +p,,, (1.3.1)
where H = (hij)pnxm is a real non-random matrix, pu,, = 1, ® p, where 1,, = (1,1,-- -, H"
with length n, ® denotes the Kronecker product, and z = (21, ,2,)' consists of m

independent random variables with E(z;) = 0 and E(2?) =1 for i = 1,--- ,m. We use X,x,

and X, interchangeably.

1.4 'THREE TYPES OF MOMENT CONDITIONS

We consider the following three types of moment conditions for the random variables
21,0,z in (1.3.1) as in [35]. Let W be a random variable, and K, ¥ and 7 be positive

constants.



(C1) Sub-Gaussian tails: For all k > 1, (E|W |F)V/*F < KEY/2.

(C2) Generalized sub-exponential tails: For some 9 € (0,2) and all k > o, (E[W|F)V* <
K(k/9)Y7,

(C3) Polynomial-type tails: For some k > 4, (E|W[F)Y/F < .

1.5 THE ORGANIZATION OF THIS DISSERTATION

In Chapter 2, we generalize part of the results in [35], (i) from the spectral norm to the
general vector norm induced matrix £, norm |[-[|., , for any v,w € [1,00], (ii) from the
Frobenius norm to the general entrywise matrix L"* norm ||-|;.. for any v,w € [1, oo, and
(iii) from p > n° for some constant ¢ > 0 to p > (n/gs)¢ for some constant ¢ > 0, where

g2 is an upper bound of max;<x<, (Pfi])nm

, We also generalize their minimax result by
removing the restriction of p > n® for some 3 > 1. In particular, we obtain the minimax
result for the convergence rate of the precision matrix estimator proposed by [11].

In Chapter 3, based on the results of [35], we investigate the joint estimation of multiple
precision matrices. We generalize the results of [27] from i.i.d. data to long-memory data.
Especially, we obtain the estimation of the entrywise L' norm and the Frobenius norm of
risk, and their expectations. Our numerical experiment results support our theory analysis.

In Chapter 4, based on the results of [35], we investigate the joint estimation of weighted
multiple precision matrices. We generalize the results of [16] from i.i.d. data to long-memory
data. Especially, we obtain the estimation of the entrywise L' norm and the Frobenius norm
of risk, and their expectations. Our numerical experiment results support our theory analysis.

In Chapter 5, based on the results of [35], we introduce a new assumption to investigate
the joint estimation of multiple precision matrices, and generalize the results of [27] from
i.i.d. data to long-memory data. Especially, we obtain the estimation of the vector norm

induced matrix ¢; norm and the Frobenius norm of risk, and their expectations.



CHAPTER 2

ESTIMATION OF COVARIANCE AND PRECISION MATRICES FOR HIGH-DIMENSIONAL TIME

SERIES WITH LONG-MEMORY

In this chapter, we focus on the estimation of covariance and precision matrices for high-
dimensional long-memory time series. In [18], Ding et al. proposed the rotational invariant
L¥'-norm (they call it Ry-norm), [[M||, = [[M]|[.. = 3. (3, m?j)l/Q, for the objective
functions of PCA, which makes R;-PCA robust to outliers and rotational invariant. This
motivates us to generalize part of the results in [35] to different matrix norms. In this chapter,
we generalize part of the results of [35], (i) from spectral norm to general vector norm induced
matrix £y, norm |-, for any v, w € [1, 0c], (ii) from Frobenius norm to general entrywise
matrix L norm ||-|| ;... for any v, w € [1, 00|, and (iii) from p > n° for some constant ¢ > 0

to p > (n/gs)° for some constant ¢ > 0, where g, is an upper bound of max; <<,

(pﬁ])nxn )
We also generalize their minimax result by removing the restriction of p > n” for some 3 > 1.
In particular, we obtain the minimax result for the convergence rate of the precision matrix

estimator proposed by [11].

2.1 ESTIMATION OF COVARIANCE AND CORRELATION MATRICES FOR SUB-(GAUSSIAN

DATA

In this section, we extend the results in [35] for the generalized thresholding covariance
matrix estimators to various matrix norms for sub-Gaussian data in (C1).
As in [35], let us consider the ¢,-ball sparse covariance matrices
P
U(q, cp,v0) = {2 : max Z loi|* < ¢p, max o < UO} ,

1<i<p 4
g=1
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where vy > 0and 0 < ¢ < 1. Let 3 := (Gij)x,, Pe the sample covariance matrix of observation

Xpxn given by

¥=-) xix! —xx (2.1.1)
=1

S|

where X = %Z?zl X;, X; is the 7th column of X.
For the covariance matrix estimation in high dimensional analysis, [35] considered the

—~

generalized thresholding estimators of X, S;( X) = (s,(;)) where s, : R — R is

pxp’
a generalized thresholding function with thresholding parameter 7 > 0, and it satisfies
the following conditions for all z € R: (i) |s.(2)] < |z|; (ii) s,(2) = 0 for |z| < 7; (iii)
|s,(2) — 2| < 7.

Define

11 = max {(logp)gg(n)/n, [(logp)gp(n)/n]1/2} , (2.1.2)

and we assume u; — 0 as n — 0o. The following theorem generalizes Theorem 1 of [35] from
the spectral and the Frobenius norms to various matrix norms based upon a mild assumption

p > (n/g2)* for some constant € > 0.

Theorem 2.1.1. Assume (i) X,x, is generated from and all z; satisfy condition
(C1) with the same K ; (ii) ¥ € U(q, cp,vo) and {Ryy}h_, subject to (1.2.9); (iii) uy = o(1)
with uy defined in . Then for sufficiently large constant My = Mi(vo, K, e, q) > 0 with

T = Myuy, uniformly on X € U(q, ¢, vo), we have

(i) If p > (n/ga)° for some constant € > 0, then with sufficiently large M, additionally

depending on € and q, we have

5.8 -%[ ) = o),

. 2
E () SH(X) -3 (v,w)) = O(cf)u?_Qq max{p*/*~2/¥ 1}), Vv, w € [1, o0],
1 - 2 )
WE () SH(X) — E‘ Lw) = O(cz/”u? 29y o, w € [1, 00).



(i) If p < (n/g2)® for any constant € > 0, then with sufficiently large My additionally

depending on ¢, and q, we have

il

E(‘ 5. (5)-%

1
pQ/wIE (‘

Moreover, if we also have p > f(n/gs),

2

2

5, () - %

o0 ast — oo, then
e
E(’

1
WWEG

Sﬁ(i)—zr)

o0

2
o)
2
)

5. (8) - %

S, (8 - 2‘

(ww)) B
Lv,w) -

5.0 -% ) = 06,

O(p~*),Vv,w € [1, 00,

O(p~*),Vv,w € [1, 00].

where f(+) is positive nondecreasing and f(t) —

0<(f<uil>)c* ,
O((f( )
()

Vo, w e 1, 00],

e

Vo, w e [1,00].

Proof of Theorem [2.1.1] By Riesz—Thorin interpolation theorem (see [4, page 1], [12]

page 2406]), we have

[A]l, < max{[|Afl;, [[Ally, [A]l} for all w € [1,00).

If A is symmetric, we have

IA]l, < A, for all w € [1, 0] (2.1.3)

since | All, = [ Al I1All, < /TAT, TAT, = Al (see [21L Corollary 2.3.2)). Also, |x],, <

x|, for any v, w € [1, 00] with v < w.

If A, is symmetric, it can be shown by Holder inequality that

|Ax|, [Ax]|, [x], %[,
||A||(v,w) sup = S ||A||w sup
xerr\(0} X[, xeme\poy X[, X, xero\ {0} [ X[,
< A, max{p"/*77 1} < ||A||, max{p"/7 1}, Vo, w € [1,00]. (2.1.4)



From the proof of Theorem 1 of [35],

S, () - 2”1 = Op(eul™).

Thus, we have

|

S (2)-%

IN

o S 52 =3 maxtpter
VW 1

= Op(cyuy Tmax{p"*V" 1}), Vv, w € [1, 00).
We recap the proof of Theorem 1 of [35]. By [21, (2.3.12) and (2.3.7)],

5, (8) - %

IA

a
$.(8)-3| < |

[e.9]

5.)-3], < 7

S, (2) - EHF

5.(2) -2 .

1

Similar to the proof of (S.35) of [36], we have

4

E ( S () -3 l) < p {E (‘ S () -3 F)]WO(p?) + C22,
E()Sn(i:)—z j) < p {E (‘ S, (8)- % :)T/Qo(p?)ﬂclcpu}q)?.

By the above inequalities, (2.1.4) and (S.40) of [36]

e (]

~ 2d
S, (2) - EHF) = 0(°) for d = 1,2, 3,

we have
~ 2 cg—cq
E ( S, (X)-% ) < O(p =)+ CHé2,
R 2 R 2
E (‘ 5,() -2 )) < max{p?*"%" 1}E (‘ S (5)- % >
v, 1
< O(p%) + max{pg/w_Q/”, 1}(Clcpu}_q)2,‘v’v,w € [1, 0],

where C7 > 0 is a constant only dependent on M;, ¢5 > 0 is a constant, and ¢; > 0 is a
sufficiently large constant.

(i) Since p > (n/gs)¢ for some constant ¢ > 0, we have

n/g> = n/gs

8

p < uy.



Thus, for sufficiently large ¢; > 0, we have
“(
E (‘ 5, (2) -2

It is straightforward to check that

5, () - %

2
) < o,

o0

2
) < (Crepu; D2 max{p? =" 1}, Yo, w € [1, 00).

(v,w)

p p w/v
‘ Sn(B) x|, = > (Z |57, (05) — %‘|U>

j=1 \i=1
-~ v—1 ~
< Z(Zmﬁxlsﬁ(mj)—mj! |ST1<Uij)_Uij|>
j=1 \i=1
P P w/v 1w
< max sy, (0;) — TS DY (Z |57, (035) — Uz’j\)
J j=1 \i=1
(0—1) p p w/v 1/w
< [su® 37" (3 (3 ) -l
o j=1 R
~ (v—1)/v ~ w/v 1w
s (s -5
—~ (v—1)/v —~ 1/v
= s, ®-= pl/W)sﬁ(z)—zH , (2.1.5)
o] 1
then by Holder inequality, we have
) |5, (8) - = Y < (e -l s, ) - s
p2/w " Low ) T Tl 0 Tl 1
N 9\ (v=1)/v N o\ 1/v
< E(STAE)—E ) E((Sn@)—z )
00 1

< O(cz/”u?_QQ/v).

(ii) Since p < (n/gq)¢ for any constant € > 0, we have

1
p/Ue) > pm1/2e) > = l/E g0 > 8P Casp oo,

N n/ g2

i/ 5 [losp o Jlogp
n/ga n/gr
9

and




then p~1/(4) > 4.

Note that ¢, < vgp. Thus, for small enough € > 0, we have
p T = p? (pmV9) P S (12 as p s oo
Therefore, we have

5. (8) - %

o0

“(

E(’Sﬁ(i)—ﬁl

1
|

Moreover, if we also have p > f(n/gs). Note that uil < ﬁ/gg;. We have

f (i) <f (”/92) < f(n/g2) <p,

Uy logp

2) = O(™),

2
) = O(p™),¥v,w € [1, 0],

(v,w)

5, (3) - %

i ) = O(p™),Yv,w € [1,0].

L'u,w

then

E ( S (2)-%
]E(‘

1
p2/w]E (‘

The proof is completed.

)=o) ),
w) = o\b6)
-) = ol

5, (2) - %

5, (8) - %

=
-
¢
N—— N
<
u@
S
m
=
8,

Remark 2.1.1. (i) ||| = [, and [[][ 22 =[] o-

(it) If p > [log(n/ga)|" for some constant ¢ > 0, we have

1 C C
(log —) < (log %) < (logn/g2) < p.
Uy log p

2 O
>:O<(logi> ),Vv,we[l,oo].
(v,w) Uy

10

Thus,
5, (3) - %

e (|



(iii) If p > [loglog(n/g2)]® for some constant ¢ > 0, we have

1 C C
(log log —) < (log log ?/g gz) < (loglogn/g2)” < p.
U ogp

2 1\ %
E(‘ ) :O<<loglog—) > Vo, w e [1, 00].
(v,w) Uy

(iv) For LPDD temporal dependence, we can set the bounds as

Thus,
5. (8) - =

gr = O(n/(logn)**), g = O(n/(logn)®),
then we have the following property
u1 S (logp)/(logn)®, a0 > 0,

by . Here, v, < yp if v, = O(y,) as n — 00.

Theorem 2.1.2. If we replace f], X, 04, 045, U(g, cp,v0), T1, and My by IA{, R, pij, pij
R(q, cp), T2, and My without depending on vy, respectively, Theorems holds.

The following theorem generalizes Theorem 3 of [35] from the spectral and the Frobenius
norms to various matrix norms based upon a mild assumption of ¢, and also by removing

the restriction of p > n® with some constant ¢; > 1. Denote z,, < y, if z, = O(y,) and

Theorem 2.1.3. (Minimaz rates) Assume (i) Xy, @s generated from and all z;
satisfy (C1) with constant K > Kg, where Kg = sups, /2/k [T (2£)//7] l/k, and T'(+)
is the gamma function; (i) 3 € U(q, cp,vo) and {Rp}y_, subject to , (iii) uy <
n\/w with k > 1. Denote Pi(q, ¢p, Vo, g, 92, K, k) as the set of distributions of Xpxn,
and ® denote the distribution of Xpyn. If \/(logp)/n = o(1),

1 1 Cilo
¢y = €y < min {aez,ppw —ﬂez;f}

2.1.
i (2.1.6)
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with some constants > 1, C, = (3ﬁ 1)5, enp = 1/ (logp)/n, then for any estimator, X, w

have
2 2
Ul,
o0

lgng&mmmi—EWwﬁ = Zui" P o, w € 1, 00] with w < v,
€P1

N

inf sup Ex, .o (
> DeP;

1 v
inf sup o ]Expmm( va) = Q/qu 210y, w € 1, 00].

s Dep P
Additionally if c, > 1, then for any estimator R we have

- 2
inf sup Ex, ..o (‘R— R‘ ) = ul
R DePy

inf sup Ex,.,.o (||R R|| ) = CQU?(I_q)pwwd/”,Vv,w € [1, 00] with w < v,

R DcP 2 b
| o
- Jv, 2—2q/v
11;5527[)) T — 7= Ex, [0 (HR R’ va) = c/uy Vv, w € [1,00].

Set 7y = Myuy and 1o = Msuy with sufficiently large positive constants My and Msy, then
the generalized thresholding estimators STl(i) and S, (f{) attain the above minimax optimal

rates, respectively.

Proof of Theorem [2.1.3| Our proof is similar to the proof of Theorem 3 of [35] and
Theorem 2 of [12].

For the upper bound, we only need to prove that

mfrnaXEwaE EH < 0202 2(1= q), (2.1.7)

and (2.1.7)) is valid by Theorem [2.1.1]

For the lower bound of igfrélaé(Exwﬂi — E||%v w) With v,w € [1,00], we only need to
¥ Ve ’

1/2
< (ExplE - BI2,,) " by

calculate infmaxEx|q Hf] - because Ex|g Hf] -
SIEE

(v,w) ('U"w

the Lyapunov inequality .
We recap the proof of Theorem 2 of [12]. By applying Lemma 3 of [12] with s = 1, we

have

> a -+ min ||[Pig AP,

(v,w) 2 1<i<r

fmax2E Hi—z
mfmax2ixyg

12



where r = [p/2], the smallest integer > p/2, and

Y - 12(0) = () (p.u)
(0.0 :HA©O)A0)=1}  H(y(0),v(0))

and

min HP 0 /\IP’”H >y >0 (2.1.8)

1<i<r
which we will prove below. The notations Z(Q),Rﬁo,ﬁm, H, and ~ are the same as in the
proof of Theorem 2 in [12].

Similar to the proof of Lemma 5 of [12], we have

[H(4(0), 4O by

Hz(e) - E(QI)H(v,w) 2 pl/l)

Note that H(v(0),~v(0")) < p. Thus

o> Kenp kenp

min .
T A{O0):HGO O} [H (4(0), y(07)]) " pt/e T ptTH et/

Note also that k = max{[§cnpe, 9] — 1,0} and v,w > 1. Then,

> .= min ||[Piy AP

(v,w) 2 1<i<r

S ken p P,
- p1+1/v 1/w4

infmax2E Hi—z
Himaxctxe

> i@ken,ppl/w_l/” = cs(cyuy HptUTe,
Therefore,
i [8 - B[ > enct R a0
For the lower bound of 1nfmaX 2/ Ex| HE E‘ Lo’ , we have

I=(0) = B0 oo = [HOV(O). 1 (O] K e

by following the proof of Lemma 5 of [12]. Then

Lz (i [ - 2]

13

infmax——Ex
SIS p2/ |

2
Lv,w)



- recy . pl/wkl/venm 2
— 2p1/w P

1-1 C}"/:g 71”;1/@
> oy p_/“’-];l—l’/w

_ c4cz/vuf 2q/v.
Hence,
v 2—2q/v v 2—2q/v
1gfn€a€aé<WEX|9 HE E‘ o ccplyuy " = eq/ P
Similarly, for the lower bound of iI}fI’élaé(%]Ex‘g > — , we have
y be
> ei’p.
Thus,
infmaxEx/y |2 > i Cuy 2
infmax min —————————TCy = CoUJ.
S o = (00 HG Oy H(1(0), 7 (07) 2T 2N

Then, it only remains to prove (2.1.8)), which can be proven by Lemma 8 of [12]. In order

to check if Lemma 8 of [12] is valid in our setting, let us investigate Lemma 11 of [12].

According to the proof of Lemma 11 in [12], we only need to assume that

2ken
Cn pe3 q

27nkei’p

(1+ %)logp

<

1/3, (2.1.9)
0 as n — oo, (2.1.10)
2Tncy pes I < Cilogp, (2.1.11)
%(1—%)logp§ <52——61_1) log]%. (2.1.12)

Note that (logp)/n — 0 as n — oo. Here, and ( must be true if (2.1.11) is
satisfied. Thus, we only need to assume that (2.1.11]) and (2.1.12]) are satisfied simultaneously,

i.e.

which we can rewrite it as

Cnp = 27 n np?

1
4k < 2¢, €, < p27,

Cy logp
n,p S 27 n

3
Eq 7p ?
Cn,p S _Eq 7p]? 26

14



Then, we only need to assume
1 C, 1
Cp,p < Min {56‘1 pp% —7% Zpg}
Note that u; < k4/(logp)/n, and then
_ 12\ _ /2 _
ur = max {(10gp)gz(n)/ n, [(log p)gr(n)/n] } = [(log p)/n] ™" = €np-

If p > n? with some 3 > 1, we have g; logpegp3 <1 3 nppzﬁ and

Clogp 3
Cop S 57 Ty n

If p < n with some positive 3y < 8(> 1), we have 57 loipeq 3> 26% pp%’ when n is large

enough, and

1
¢ L
Cnp < §en7pp2/:f.

Note that C, = (3?%)/3’ then it is straightforward to have

/ oD [log(Qp) C(—1)leg A LR k2 b Tt + D)k M,} dt
t>ﬂ
< / , exXP {log(Qp) — (-1 - %) logp + (t+1)C, logp] dt

> 25
= 2pltes / exp { (t—1)(1— % —C) logp} dt
e o[ 1 (13w

( 5 ) log p
2

= — 0.

(1 — % — C*> log p
Therefore, Lemma 11 of [12] is valid under our assumptions.
Now, let us check the proof of Lemma 8 of [12]. Since implies that
k? < k? < 1
Pay —k T p/A—k = p¥

and ([2.1.9) implies that
1
) 2
J€np < kemp < gemp — 0 as n — o0,

Lemma 8 of [12] is valid under our assumption.

The proof is completed. 0
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2.2 ESTIMATION OF PRECISION MATRIX FOR SUB-(GAUSSIAN DATA

In this section, we extend the results in [35] for the precision matrix estimator the con-
strained entrywise L' minimization for inverse matrix estimation (CLIME) proposed by
[11], to various norms for sub-Gaussian data in (C1).

As in [35], we consider the following set of precision matrices

1<:<

g1<QaC*p7Mp7U ) {Q = 0: max Z |wij|q < Cupy ||Q||1 < Mp7 max g < UO} )
— 1<i<p

where 0 < g < 1.
To obtain the CLIME estimate, let @57,\ = (ég’/\))pxp be a solution to the following
optimization:

min [O; subject to [£.0 —I| <\, O € RP*P, (2.2.1)

where A is a tuning parameter, is =3+ el, > is given in 1} € > 0 is a perturbation
parameter [11], and I is the p X p identity matrix. Because the solution to the above optimiza-
tion problem does not guarantee symmetry, the final CLIME estimator QE Al (wz(; /\))po is

obtained by the following symmetrization step:

~ (g, ~(g,A) (e,A (A (g,\) h(eN) (e,\) (A
Y = o = 051065 < 16571 + 650100571 > 165)),

ij

where 1(A) is the indicator function of event A, x; = z1(z > 0) and sign(z) = 1(x >
0) —1(z <0).
The following theorem generalizes Theorem 4 of [35] from the spectral and the Frobenius

norms to various matrix norms based upon a mild assumption p > (n/gs)¢ for some constant

c>0.

Theorem 2.2.1. Assume (i) X,x,, is generated from and all z; satisfy condition (C1)
with the same K; (i) Q € Gi(q, ¢xp, My, vo) and {Ryy}h_, subject to (1.2.9), (iii) uy = o(1)
with wy defined in (2.1.9); () p > (n/g2)¢ and min{p=C,u;} < & < wy for some positive

constants ¢ and C. Set X\ = M Myu, with sufficiently large constant M = M (vy, K, ¢, C, q) >

16



0, uniformly on Q € Gi(q, cxp, My, vo), we have

E (9., - QF.)

E (Hﬁm - QH%W)) — O (2 (M2uy)* 2 max{p*" /" 1}) Vo, w € [1, ],

O ((M2ur)?),

*p p

1 O 2 2/v (a2, \2—2q/v
WE <||QE,>\ — Q||Lv,w> = O (2" (M?u,)*7") o, w € [1,00].
Proof of Theorem Similar to the proof of Theorem 4 of [35] we have

|ﬁa7/\ — Q|oo = OP(MZ?UQ),

||§€,)\ — Qi =0p (C*p(Msul)l_q) )
and then

HQE,)\ - QH(v,w) < ||Q€7)\ — QHl max{pl/W—l/U7 1}

= Op (cp(MJuy)' ™1 max{p"/*" /", 1}) Vv, w € [1,00].

Note that
1l < [8aa] < [E23], < pIS2I < PISCI:
< PP omax(E2)) = 27/ Puin(Een) = P/ [Pmin(T) + €]
< pile.

Similar to the proof of Theorem 2 of [11], we have
E (120 — Q) = O (¢, (MZm)*™) + 0 (p'(1/m)?p™") .
If p > (n/g2)° for some ¢ > 0, we have p*(1/u1)’*p™" = O (2, (MJuy)*"?7), then
E (10— QI}) = 0 (3, (Mu)* ).
By Riesz—Thorin interpolation theorem (see [4, page 1], [12 page 2406]),

E (1900~ Q%) < E (100 - QU2 ) max{p?2,1}

17



< max{p2/w—2/v’ 1}E (Hﬁrf)\ — QH%)

= O (&, (Muy)* max{p?* ", 1}) ,Yv,w € [1, o).

Note that |ﬁ€,>\ — Q| < Hﬁ&,\ — Q||;. Similarly, we have
E (|0 — Q%) = O ((M2w)?) +0 (' (1/m)*™").

If p > (n/go)" for some ¢ > 0, we have p*(1/u1)*p™ = O (2, (M?2u;)*7%7), then

*p
E (\ﬁm - ngo) — O (M2u)?) .

Similar to (2.1.5)), by Hélder inequality, we have

2(v—1)/v

~

1
— Q. —Q

E(HQE,,\—QH%U,w) < E(‘ﬁ&)\_ﬂ

2/v

")
N 5\ (v=1)/v N

E((Qm—n ) E(HQEA—Q

< O (200 (M2uy)>20v) .

o0

IN

o\ 1/v
)

The proof is completed. 0

Based on Theorem [2.2.1|, we have the following minimax result for the precision matrix

estimation.

Theorem 2.2.2. (Minimaz rates) Assume (i) X,x, is generated from and all z;
satisfy (C1) with same constant K > Kq, where Ko = supys, \/Q/_k: [F(lif)/\/ﬂ Uk, and
I'(-) is the gamma function; (i) 3 € U(q, ¢p,v0), & € Gi(q, Cap, My, v0) and {Ryy}r_, subject
to ; (171) uy < /@'\/m. Let Pi(q, ¢p, 0, gF, g2, K, k) be the set of distributions of
Xpun generated, and ® denote the distribution of Xpxn. If \/m =o(1)

1
g L
cp—cnp§26 D7

with some constants > 1, C, = (3/3—15’ énp =/ (logp)/n, p < n® with £ < 35+1f then for

any estimator Q and any v,w € [1, 00|, we have

2 . O
up S inf sup Ex, .0 (
Q DeP1NG;

o0

2
) < (M2,

18



ciu?(lfQ)p2/w—2/v < inf sup EXan@ <H§_ QH%vw)) < Cip(Mjul)Z—% max{pQ/w_Q/”,l},
Q DeP1NGy ’

_2q/v 1 ) s
Cg/vuf 2q/ S inf sup Q/wEXPXn|® <||Q Q||va> =0 (Cié (Mgul)Q 2q/ )
Q DePinG: P

Proof of Theorem By Theorem [2.2.1}, the upper bound is achieved.

For the lower bound of igfrglaécEXwHﬁ - Q||%v w With v,w € [1,00], we only need to
s o€ ’

1/2
(ExwllQ Qf Uw)> by

because Ex|g Hﬁ -

calculate infmaxEx|q Hﬁ - Q
S 00

(v,w) (v,w)

the Lyapunov inequality.

By the definition of 3(#) in the proof of Theorem 2 in [12], we can partition 3(f) as

I_, A
o= " "),
A21 Ir

where Ay = AT,. By (2.50) of [34], we have

I, +ALB Ay —ApBY
$(0)1 = » 12 21 12 |
BilAgl B!

where B =1, — Ay; Ay = I, — AT,A 5. Using the definition of 3() again, we have

B =1 -ALAL) =1+ Z(Angu)n-

n=1

It is straightforward to check that every element a of (AT,A5)™ is nonnegative and

al™ < gyl (2kei7p)n < p"_1 (leiﬁp)n,

v

thus every element a;; of Y o (Af,A5)™ is nonnegative and

N, 2N _ 1 2
= Z::aw S Z:: 2]{76 2]{?6 7pm S 3k€n,p7

provided

1
2pk‘ei = 2pc, p62 7 — QpSg+1 ng

This is guarranted by the assmuption p < n® with & < Since every element of Ay, is

3,8+1
nonnegative, we can drop > - (AT,A12)" in the remaining lower bound computation, and

take I, as the B=!. Similar to the proof of Theorem we can obtain this result.
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For the lower bound of igfrglachXwHﬁ — Q2. with v,w € [1,00], we only need to
s be

due to the Lyapunov inequality. Hence, we can complete
Lv,w

the proof by following a similar path in the proof of Theorem [2.1.3] O

compute infmaxEx Hﬁ — Q’
SIEC)

2.3 EXTENSION TO HEAVY TAIL DATA

In this section, we extend the results in [35] for the covariance and precision matrices esti-
mators to various norms for heavy-tailed data in (C2) and (C3).

Define
uy = max { (log p)" %7 go /n, (log p) 2" (g /n)"/?} (2.3.1)

and

U3 = max {p(2+20)/k92/n’p(4+2C)/k(gF/n>1/2} ) (2.3.2)

Theorem 2.3.1. (Generalized sub-exponential tails) Assume condition (C1), parameter K,

and uy are replaced by condition (C2), parameters {K,9}, and us, respectively, then Theo-

rems|2.1.1){2.1.4, and|2.2.1 hold.

Theorem 2.3.2. (Polynomial-type tails) Assume condition (C1), parameter K, and uy are

replaced by condition (C3), parameters {k,n}, and ug, respectively.

(i) Under the conditions of Theorem we have

S(E)-3| = Oplus)
’ SA(Z)- % o) Op(cpus P max{p"*~1* 1}), Vv, w € [1, oc],
1 S 2 2/y 2—2q/v
el ® -2 = on@rd v w e

(ii) Under the conditions of Theorem we have

Q0 — Qe = Op (Myus)

||ﬁ£,)\ - Q”(v,w) = OP (C*p(Miu?))l_q maX{pl/w—l/v, 1}) ,V’U, w € [1, OO],
1

p2/w

||§s,/\ — Q7w = Op (Ciév(M§U3)2_2q/”) Yo, w e (1, 00].
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The proofs of Theorems [2.3.1] and [2.3.2| are similar to those of the preceding theorems

by using the corresponding results given in Lemmas A.1, A.2 and A.3 of [35] for conditions

(C2) and (C3), respectively. Details are omitted.
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CHAPTER 3

JOINT ESTIMATION OF MULTIPLE PRECISION MATRICES WITH COMMON STRUCTURES

FOR HIGH-DIMENSIONAL TIME SERIES WITH LONG-MEMORY

In [35], Shu and Nan investigated the precision matrix of long-memory rfMRI data for a
single subject, provided by the WU-Minn Human Connectome Project (www.humanconnec-
tome.org). Oftentimes, a group analysis rather than a single subject analysis is desirable
in fMRI studies to draw a general conclusion. Hence, simultaneous estimation of multiple
precision matrices from a group of subjects is of interest. In such case, it is reasonable to
expect that the precision matrices of the subjects within a group would share some common
characteristics, and also individual precision matrices would have their unique characteristics.

In this chapter, we study the joint estimation of multiple precision matrices rather than
the separate estimation of individual precision matrices for long-memory data. In [27], Lee
and Liu proposed the joint estimation of multiple precision matrices with common structure
(JEMP), but they only obtained the entriwise L> norm of the risk of the common structure
for i.i.d. data. Motivated by [27] and [35], this chapter focuses on investigating the properties
of the estimated precision matrices by JEMP for long-memory data. Our theory analysis
generalizes part of the results in [27], (i) from i.i.d. data to long-memory data; (ii) from the
entrywise L*™ norm of C - Cy to the entrywise L' norm and the Frobenius norm where
Cy is the common structure of the target precision matrices and C is the estimator of Co;
and (iii) obtain the expectations of @p — Cy, where C o is the modified estimator, which will
be defined below. We also deal with the Polynomial-type tail on top of sub-Gaussian and

sub-exponential tails.
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We borrow formulation of the problems and the notation from [27] for easy comparisons
with their results. We consider a data set with S different groups (e.g. subjects in our fMRI

example), and each group has a different distribution. For the sth group (s =1,---,95), we

denote {ng), xS } as a time series random sample of size ny, where x,(c $) = (m,(fl), cee x,(:]’)))T

is a p-dimensional random vector with the covariance matrix E(()s) = (agj)o), and precision

matrix Q2§ := ()1, For the sth group, £ := (81(;))po denotes the sample covariance

matrix of observations X*) (p x n, dimension):

5 i=1
where x(*) = L 37 x %1% s the ith colomn of X(®). Also denote Q) = (wz(j)o), s =
1,---,8.
Define the common structure Cj and the unique structure Ués) as
S
§Z QF, and UY =) —Cps=1,---,8.
Note that 23321 U(() = 0. In order to estimate {Cy, U 1), e ,U(()S)} for long-memory time

series, we investigate the following constrained entrywise L' minimization problem [27]:

s
min {|C|1 + VZ ’U(S)}l}

s=1

s.t

% i {i@(c +UW) - 1}

where v is a prespecified weight, and (A, A2) are tuning parameters. If A\; > Ay, it is easy

S
<AL [EDE+TUY) -1 <0, U =0, (30
o s=1

o0

to see that the first inequality constraints does not work. Therefore, we always assume (A,
Ag) satisfying A; < A

We can also consider the following vector optimal problem for j =1,--- | p.

1 S S 1 S
(s) (s) (s)
n{gzcj >l Ly }
s=1 s=1 s=1 1
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< Ao, (3.0.2)

J

1 (a
52 {20 e}
s=1

is a vector in RP, e; is the jth colomn of the identity matrix I,,.

< A1, ‘i(s)cf) —e;

[e.9]
[e.9]

where c§S>

By the proof of Lemma 1 of [11], it can be seen that and have the same
solution set. This allows one to solve by CLIME for data analysis.
Assume {C;, UV, - ,ﬁ@} is a solution of , and denote Q( =C,+ 0V ) s
,S. Because it is not guaranteed that {ﬁgs),s = 1,---,5} is symmetric, [27] take
the following symmerization step. We define our final JEMP estimator {ﬁ(l) e S'Al(s)} of
(O, 2} as the symmetrized result of {Q,--- 9}, and denote QY = @),

zj,l

and Q) = (@Z(JS)), fors=1,---,5, then

= Afjln{z < Z

In what follows, we present the theoretical properties of the JEMP estimator. In this

S
>3 i

1. (3.0.3)

1], ]z 1 j’L 1

chapter, we consider the following class of matrices:
U={Q: Q>0 <Cu, |22, <Cy}.

We assume n = n; = --- = ng, and Q(()S) € U for all s = 1,---,85. Denote E(x®)) =

(15, )T

3.1 ESTIMATION OF PRECISION MATRICES FOR SUB-(GGAUSSIAN DATA

In this section, we extend the results in [27] for the precision matrix estimator from i.i.d to
long-memory for sub-Gaussian data in (C1).

Throughout this chapter, we define

1

g max |[Covlxp)|m < gr, max |Cov(xp)]], < g2, (3.1.1)
! i (s) (s)
= < < .
nl%?é) Cov( [k])H > 9ps 1@}?2{ ‘Cov ) , S 95, (3 1 2)
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where XE;:]) is the kth row vector of X, X[ is the kth row vector of X = (X(l), o, X)),

and we also define

il = max { o (log p)gh” n, [e2 I (l0g p)gf2 /] 2} (3.1.3)
iy = max {2 K*(log p)ga/Sn, [02K4(logp)gF/Sn]1/2} , (3.1.4)

where ¢y = (7 + 2)/c; with 7 > 0, ¢; > 0 is an absolute constant. We assume ﬁgs),'&l — 0

as n — 00. The following theorem generalizes Theorem 1 of [27] from i.i.d to long-memory

observations.

Theorem 3.1.1. Suppose that X, x,s is generated from with all z; satisfying condition

(C1) with the same K. Let A\; = Ay = 6C); max, a§s). Set v =S"1. Then
15
max (g 2

with probability greater than 1 — 4Sp™", where ﬁgs) is defined by .

~(s) ()
Wiiw — Wiso

) < 12C2, max @\”,

Since A\; = Ay in this theorem, the first inequality constraint in (3.0.1)) does not play
any role. In order to prove Theorem [3.1.1, we need the following lemma, which generalizes

Lemma 4 of [27] from i.i.d to long-memory observations.

Lemma 3.1.1. Suppose that X,xns is generated from with all z; satisfying condition

(C1) with the same K. For any fivzed s = 1,--- , S, we have

~(s) (s)
9ij — 9,

13,0

< 2l

max
ij

with probability greater than 1 — 4p~7, where ﬁgs) is defined by

Proof of Lemma By the proof of the first part of Lemma A2 of [35], we have
> 274 < 2pexp — Cln?)
0o K2g28

25
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) _ nu®  nu
+2p” exp ¢ —c¢; min Bk ) ,
Kigp' K?g,

where ¢; > 0 is an absolute constant. Let
u=1u\" = max {CQKQ(logp)gés)/n, [02K4(10gp)g§f)/n]1/2} ,
with ¢ = (7 +2)/cq, then
PE0 = 20 2 200" < 2p @@V 4 2p7@2D <4y = O(p),

U
Proof of Theorem We recap the proof of Theorem 1 of [27]. Lemma implies
that

=6 2P|, <2 forall s =1,--- S, (3.1.5)

with probability greater than 1 — 4Sp~7. In the proof below, we assume (3.1.5)) holds. Tt is
straightforward to check that {Cj, U(()l), e ,Ués)} is a feasible solution of || because

I-S0(Co+UY)| = | - =af

o0 e}

IN

o

1 ’2(8) - E(()S)|oo

< Op2i8 < N\y/3.

Similar to the proof of Theorem 1 of [27], we have

S S
S -0l = Y |0
s=1

Da/34 S0

s=1
S
< s{|ej|1+s—1z g 1})\2/3+SCM>\2
s=1
S
< S{|Cj70|1 +Sflz ugfg 1} )\2/3+SCM)\2
s=1

_ 2 ~(s)
< 280y = 12505, 121%}%% ,

)

where ¢€; is the jth column of C,, and ﬁf is the jth column of U, c;o is the jth column

of Cy, u% is the jth column of U(()S).
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It is straightforward to check that

S s
S) (s) ( )
max < ) < max - Z — Q57)ejl < 12C% Dax 4.

The proof is completed. 0
The following theorem generalizes Theorem 2 of [27] from i.i.d to long-memory observa-
tions. In Theorem [3.1.2 we obtain a faster convergence rate than Theorem by properly

choosing A; and using more structure information of the data.

Theorem 3.1.2. Suppose that (i) X,xns is generated from with all z; satisfying
condition (C1) with the same K, (ii) there exists Cyy > 0 such that HU(()S)
s=1,,Sand (33,

< Cy for all
1
uy

) < CyS'=? where 0 € (0,1). Let
1

S
s lo (s
(0] Cu (711 + Z 62K2g§ )ﬂ> +CyS~° msax2ug ),

n
s=1 S

)\1 = 'QZJl, /\2 = GOM max ’ljgs)
Set v = S9"t. Then
< (2C) + 4Cy) max {¢1, S0y max 2658)}

with probability greater than 1 — 2(2 + 3S5)p~", where '17&5) and uy are defined in and
3.1.4).

In order to prove Theorem [3.1.2] we need the following lemma, which generalizes Lemma

5 of [27] from i.i.d to long-memory observations.

Lemma 3.1.2. Suppose that X, x,s is generated from with all z; satisfying condition
(C1) with the same K. With probability greater than 1 —2(1 4 S)p™™ with T > 0,
S

> @ ol

s=1

max
ij

S
- o lo
< Siy+ Y erk?g) )%,
s=1

where uy is defined in .
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Proof of Lemma [3.1.2, We assume p.”

= 0 for all i and s. Denote y,(ﬂ) = g;gk)xﬁ) _

E(xg,sf)xg‘;;)), and @(3) =3 xf,‘? /n. Similar to the proof of Lemma 5 of [27], we have
s
Z (A(S zg 0) - Z <Z yk”/n - f ( )> . (316)
s=1 s=

We can define P,(C such that x) =

= P,(:)Hz, which is the transpose of the kth row of

X () where P,gs) to be the n x pn.S matrix with 1 in the (j, k+(j— 1)p) entries and 0 in all

other entries, j =1,--- ,n.

T
Denote xp) = P Hz = (( E;f) R (X[(lf})> ) . It is easy to check that
Cov(xpy) = Cov(PyHz) = P,HH' P}

By Lemma A1-(i) of [35] and similar to the proof of the first part of Lemma A2 of [35],

we have

Loy . (nSu® nSu

exp{ —cymin [ ——, ——
P p 1 K4gF’ K292 )
where ¢; > 0 is an absolute constant. Let

u =0y = max {2 K*(logp)ga/Sn, [02K4(10gp)gp/5n]1/2} :

with ¢y = (7 + 2) /¢y, then

PR

Il'l&X

> Su1] < gp~ae) Lop=(@e=d) < 4p=m = O(p™").  (3.1.7)

By Lemma A1-(i) of [35] we have

2
P [m_ax 'z () 1 = P {max 79 > u2]
ij i

= P [max _Es) > u}

2
< 2exp |— Clu

K2 b [P HETPT
2
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P |max

I
s
.HM(O
B
i

O (s gl _
7070 > CQKzgyﬂ} <25p. (3.1.8)
n

S
< § P [max
ij

P max ; (55— oh)| = s +§;CQK2 X bg”]
< P _max lizn:y(s) > S ]
a I v 1
" ()] o N 2 (9logD
+P mi?x ;xZ z; Z;@Kg " ]
< 22+ 9)p"
The proof is completed. O
Proof of Theorem We recap the proof of Theorem 2 of [27].
By Lemma [3.1.1] and Lemma [3.1.2] we have
() (s) ~(s) YNNI 9 2 (s)logp
max | 7;;" — oyjg <2a;’, max Zl(aij —0550)| < Sty "‘ZICQK 92— (3.1.9)
for all s = 1,---, S with probability greater than 1 — 2(2 + 35)p~". In the proof below, we
assume holds.
It is straightforward to check that {Cy, U(()l), e ,U(()S)} is a feasible solution of ,
because
-S| - [ -smg).
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IN

|28] 129 - =0

< Cn2ilY < N\y/3,

and

S 12{1— CO+U(S)}

S
s=
S

[y

S
< ST +s7Y (= - =eup
s=1 %) s=1 00
R S
< [Col,y S*Z(zéﬁ—z@) +57y ol
s=1
(s)log p
< Cuy <u1+;ch2 nS>—|—C’S max2u1 < A\
Now, we estimate ‘S((Ajl —Cople;| = ‘ZL(A?) — Q%e;| . We have
S A~
> -0l < DofE B9
s=1 ) s=1 %S
S A~
+>- P00 — e,
s=1 00

S
Yooy (= — 90 e;
s=1
S S
< Z Q(S)(E(s) Z i(s))ﬁ( s)
= 0 0 J
s=1 o0 s=1 o0
S
< [Saust 50| +[Supis -5,

(e 9]

s=1 o
S R R S
< O[S -S| [yl 4+ max (=5 - 59)| 3 Ul
s=1 00 s=1
S
C ‘ 26 _ $30) ’ ~(s)
+Cy max | (2 )m; 7,

(3.1.10)



S
< (oM SO =S|+ max (25 - £ cUsl—e) el
s=1 o) i
S
SI—BO ‘ 2(5) i i(s) ‘ S@—l A(S)
+ M max (X )OO ; Wi,
S AN AN
< max {C’M Z(Zés) —3E)| 4 max ‘(Eés) — Z(S))‘ Cy S,
s=1 0o &
S
1—8 () Qs ~ 6—1 =(s)
S CMm?X‘(EO >t >))OO} x <\cj\1+s ; il 1)
S AN AN
< max {C'M Z(Z(()S) — X)) +max ‘(E(()s) - E(S))‘ CySt?,

[e.9]

S1-9Cy, max ‘(zgﬂ 510N

S
Oo} x <|cj,0|1 +8y ‘ug.j}
s=1

< (Cy + Cp) max {S%, S'0Cu max Qags)} ;

)

where ¢; is the jth column of 61, and ﬁ(-s) is the jth column of [AJES), Cjo is the jth column

of Cy, u SO is the jth column of U, and

S
ST ap (B0 1)
s=1

o

S

ZU(S SO0 — e,

+ZHU

A
g
0
9
5

[e.e]

IA

1Colly

) (SOQY — T)e,

S
Y (ZOQ —T)e;

s=

[e.e]

CySAL+ CyST0

IN

< CuSh + CyS' 760 max at)

< (Cu + 3Cy) max {sm, §10C); max zaﬁ} .
In sum, we have
-0 ~(s)
< (20 + 4Cy) max {@/}1, S7YChy max 2uy } )

The proof is completed. H
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Define a threshold estimator Q) = (cNul(;)) based on {Q®, .- QO as

o

> 6.},
where 6, > 2C3;SAs and ) is given in Theorem [3.1.1] Also define

W]

So :={(i,7,s): wz(;)o £0},8:={(i,],5) : cNuZ(]S) # 0} and Opin == min

(iyjzs)ESO

Then, we have the following theorem which generalizes Theorem 3 of [27] from i.i.d to long-

memory observations. The proof is straightforward. Details are omitted.

Theorem 3.1.3. Suppose that (i) X,xns is generated from with all z; satisfying
condition (C1) with the same K, (ii) Omin > 26,. Then

~

P(Sy=8)>1—4Sp.

3.2 MODIFIED ESTIMATOR (2,

In this section, we focus on dealing with the expectation of the convergence rates, for example,

~ 2
E (’C — CO‘ ) , motivated by [I1]. Because the main interest is the inverse matrix, even the
1

~ 2 ~
existence of E <‘C — Cy > is a concern. Hence, we modify the estimator €2 to ensure the
1
existence, and then consider the convergence rates.
Let {ﬁ§’;}} be the solution of the following optimization problem:

S
min {|C|1 + VZ ‘U(s)h}

s=1

s.t < A,

o0

S

1 ~

=D :{299(8) . 1}
s=1

where 5 = 5 4 pI with p > 0. Denote ﬁﬁj} = (wﬁ%) Define the symmetrized estimator

S
s=1

ﬁ;s) as in (3.0.3).

Theorem 3.2.1. Suppose that X, «ns is generated from with all z; satisfying condition
(C1) with the same K. Set v = S971.
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(i) Let \y = 21, Ay = 12C); maxg ag"’), where T > 0. If there exists Cyy > 0 such that

HU[()S) = Cy foralls=1,--- .8 and (3°_, | U

1) < CyS=? where 0 € (0,1) and

S
. ~ Slng ~(1 ~(S
OSPSmln{U1+S§:1C2K29§)Sn,ug)f",ug) )

with ¢ > 0, if p > n§ with € > 0, then
‘ép—CO‘ - ‘alp_c(]‘
< 2(2Cy + 4Cy) max {wl, S70C) max 2658)}

with probability greater than 1 — 2(1 + 35)p™T.

(ii) If there exists C;, C; > 0 such that ‘Q(S)‘l < C%, Ués) X < Cf and
s
> |up|, < st
1
s=1

Let

S
* * ~ S logp * Q— ~(S
wl = 2CM (Ul + E CQK29§ )W> + QOUS amgux 2u§ ),

s=1

A=, Ag = 1205, max al?,
where 7 > 0. Then
’(A}p - co\l <2 ‘élp - co‘l < 4p(Cys + Cy + Cy + 3C7) max {wf, s-cr, msax%gs)}
with probability greater than 1 —2(2 + 3S)p~".

(iii) If there exists Cft > 0 such that

p p

S < i Y

i=1 j=1 s=1 i=1 j=1

where 6 € (0,1), then

W)

q
# ol—0
7,0 SCUS

(s)
Uiz0

s
1 ~ B _ T 2 |~
L o)), <t g 2ol
s=1
with probability greater than 1 — 2(2 + 3S)p™", where t = max;;s ﬂg‘;)ij - uS}O , ﬁg‘;) =

(a42) U8 = (u).
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(iv) If the conditions in (i) and (ii) are satisfied and Ny = ¥, \y = 12C; max; ag"’), then

2

Hép ~Co F

< )ép—co( C, - C,

00 ‘ 1

with probability greater than 1 — 2(2 4+ 3S)p™7, and ‘@p — CO‘ and )ép — Co‘ with
0o 1
bound in (i) and (ii).

Proof of Theorem (i) Similar to the proof of Theorem [3.1.2]
(ii) Similar to the proof of Theorem . Note that {CO,Uél),-~- ,U(()S)} is a fea-

sible solution of (3.2.1). Now, we estimate the upper bound of ‘S(élp—Co)ej
1

)Zle(ﬁg‘j} — Q(()s))ej - Note that
S R S R R g
> (@) — e Z Q) (55 - Qe +Y QP E00F) —Te;| . (3.2.2)
s=1 s=1 1 s=1 1
Similar to the discussion of Theorem [3.1.2], we have
ZQ =500
/\ S ~
< Z G = $ B - 00|+ Y (=) - S
1 s=1 1
S R s R
< 1Coly D567 80| [el, + Z U] =6 20|,
s=1 00 s=1
+ max ‘Qés) (E(()S) — f]ﬁf))‘ ﬁgs)
S 00 1

s
< max{S@/}l,Sl QC’Mmax2u1 }<|CJ0|1+50 IZ gso) )’
1
s=1

where ¢; is the jth column of élp, and ﬁ( is the jth column of U( with Q S) Clp —|—U1p ,

c;o is the jth column of Cy, u SO is the jth column of U and

S
> af (B0 — T)e
s=1

< CSM + 800N

1

= (C3 +3C5)Su5.
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In sum, we have
H(Ajlp — COH1 < (Cyp + Cy + Cyy + 3CY) max {wf, s=0cs, max?ﬂgs)} ,

and then

o
°
|
£
AN

e,

IN

2 |G~ Gl

< Ap(Cys + Cy + Cy + 3C3) max {wf, S=0C%, max 2@@} .

(ili) We assume the solution ﬁgj,) is combined from the column solution set {Eg;)} of

3.0.2) with £ being replaced by flff). By the definition of {ﬁg‘?}, we have

S
(70
) —i—uzl ‘Ulpej

S
‘Clpej L S ]COej|1 + I/Z )Ués)ej
s=1

forj=1,---,p.
1

Denote
t = Hz'lj%X ag’;}ij - UE;,)O , where Uﬁ) = (a&]) 7Ués) = (“S}O) ’
L = (agj?)lj - UE?o) :
L) = (agj;jn( av| > 2t) - uﬁj’,)o) :
L = L®_-L®.
Then

Clpej

S
U(S) .
l—l—yZ( 0 €j

(UEf’ + L,(f)) e

e+ }Lﬁi)ejh)

@
Il
—

IN

Clpej

+
R
(]~
/

1 - |L>(ki)ej|1>

@
Il
—-

= Clpej Ugsp)e]

s
1) < [Coey|, + I/z; ()U(()S)ej

4+

X
(]
VRS

J

@
Il
—

which implies

S S
vy L] <v ) [Lie;|, + ‘(alp — Coe;
s=1 s=1

. .
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Thus

S S
v L), < VZ Le;|, +VZ L0, < QVZ [L%;], + (€1, — Coles|.

s=1

Similar to the proof of Theorem 6 of [I1], we have

S
Z|L£S)ej|1 - ZZ‘ulpw ‘ WU1pij >2t) 1(5)0
s=1 s=1 =1
S ZZ ’L]O ’LjO )‘
s=1 i=1
S p
+Zz‘u1m]1 ulp’b] >2t) S)O]l( 2(:73)0 >2t)‘
s=1 i=1
S
S 2t1 QZZ 1]0 +ZZ‘< lpz] z](])]l(agsp)zj >2t))
s=1 1=1 s=1 i=1
S p
+ 30 b inda,| = 26 - 1(fulsh| = 20}
s=1 i=
S
< (2t)' QZZ ult +tZZ]l avl > 20
s=1 i=1 i=
S p
33l ‘]1{“ Qt‘ < \ag;] —uy }‘
s=1 i= .
S 2t - QZZ lJO 1,0@] > 2t>
s=1 i=1 s=1 i=1
S p
+ZZ z]() zy(] < Bt}
s=1 i=1
S p q S p S p q
< <2t)17qzz uz(j,)O +tliqzz uz('j,)o 3t)1iqzz ng
s=1 1=1 s=1 1=1 s=1 1=1
S p q
< (23R Y Nl
s=1 i=1
Thus,
li‘L(S)e.‘ < gi“_;s)e} —I—i‘(61 —Co)e;
gl W = g LI S T gy [ ah
S p
< 214270435 33l /SjL ‘(Clp Cole;|.

s=1 i=1
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Therefore

S

1 S S S S
> [ug vl U - v
s=1

AN
Wl o
E

Il
—

1 1

|

2 | ~
< AL+27T 4 3O /S + |Gy, - Co)

(iv) Tt is straightforward by the definition of matrix norm.

The proof is completed. 0

Furthermore, we can consider the expectation of convergence rates, which generalizes

Theorems 2 and 5 of [I1] (i) from i.i.d. to long-memory observations, (ii) from a single

subject to a group of subjects.

Theorem 3.2.2. Under the conditions of Theorem|3.2.1, and

s
e logp (S
K208 08 —c
mln{u1+ SEZI Co gs Sn, y Uy 7y y Uy P
5 log p
< p<mind i+ K200 all o g® L
S psmi {Ul ;@ o) S Uq Uy

with ¢ > 0, if p > n§ with £ > 0, we have

2

2
) =0 ((C’M + Cp)? max {wl, S=9C); max; 2658)} ) ;

(i)E(ép—co

o0

2 2
) =0 <p2(C’j(4 + Cf)? max {w’f, S=0C%, max, 2uy° } ) :
1

2 —~ 2 —~ 2
)g E(’cp—co )E(‘cp—co‘).
F 00 1

-l
Proof of Theorem (3.2.2, Note that {(EEJS)> } is a feasible solution of ([3.2.1)).

~

(ii) E(Cp—co

(iii) E ( ‘ép ~ G,

Also, note that
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S
0 LS lg®
< mjax Clpe31+§; Ui e; )
.S
() (s
< max Ci e +Sl GZ‘UlpeJ 1)
s=1

max

IA
Nl —
E

IA
=
~

ol

(]

3 o | e !
< ms 3[(80) |
s=1
S
3 o)) L
< m?XS1—9Z (2;)> X
s=1
S
3p <A -1
< 2<s>)
G1-0 - p )
S
3p a7t
< IS ()
s=1
_ ey )
g1 92 /#rmin P
s=1
5
3p
< g 2 e="5"D/p
s=1

The proof is similar to the proof of Theorem 2 of [11].

For LPDD temporal dependence, we can set the bounds as
g = ny/(logn)**, gy = n,/(logn,)",
then we have the following property

W < (logp)/(log ns)®, a > 0.

For LPDD model, therefore, we only need to assume p > (logn,)® in the above theorem.
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3.3 EXTENSION TO HEAVY TAIL DATA

In this section, we extend the previous results for the precision matrices estimators to heavy-
tailed data in (C2) and (C3). According to the proof of Lemma A.2 of [36], similar to the
proof of Lemma |3.1.2] define

i) = max { (2K (2/9)" 10g p) 127987 [, (e K (4/9) " log p) #2792 m) 2} (3.3.1)

Uy = max { (2K (2/0)*" log p) /7 ga /S, (e K (4/9)"" log p)+*/* (g /nS) 2},

and

7 — ki max {Cgp(mT kg8 I, o2k () /n)1/2}, (3.3.2)

U3 = kn; max {cgp(2+2T)/ng/nS, Czp(4+2T)/k(gF/nS)1/2} 9

where ¢o = (7+2)/¢; with 7 > 0 and ¢; > 0 is an absolute constant, gés) and g}‘?) are defined

in , g2 and g are defined in . We assume ué ),u2,ué ),Ug — 0 as ngy — oo.

Theorem 3.3.1. (Generalized sub-exponential tails) Assume condition (C1), param-
eter K, 35 c2K2g§)logp, ﬁgs) and uy replaced by condition (C2), parameters {K,9},

ZS (oK (2/9)%/7? logp)HQ/ﬂg( °) ~é5) and Uy, respectively, then Theorems hold.

Theorem 3.3.2. (Polynomial-type tails) Assume condition (C1), 35 CQKzgés) log p,

parameter K, ul and uy replaced by condition (C3), ZS L C k:n,%p(“%)/kgés), parameters

{k,n}, 638 and us, respectively, then Theorems mm hold.

The proofs of Theorems|3.3.1and |3.3.2|are similar to the proofs of the preceding theorems

by using the corresponding results given in Lemmas A.1, A.2 and A.3 of [35] for conditions

(C2) and (C3), respectively. Details are omitted.

3.4 COMPUTATION

In this section, we solve the numerical solutions of the optimization problem in (3.0.1).

We follow the numerical algorithm in [27]. In Section we decompose the optimization
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problem (3.4.1)) into p individual subproblems, and a linear programming approach is applied
to solve them. In Section |3.4.2] we introduce the Gap-block data split for cross-validation

proposed by Shu and Nan (see [35]). Section explains the selection of tuning parameters.

3.4.1 DECOMPOSITION OF (3.0.1)) AND LINEAR PROGRAMMING APPROACH

Note that the optimization problem (3.0.1) can be decomposed into p individual vector
minimization problems, which is more doable for computation. Denote e; as the jth column
of p x p identity matrix I. For 1 < j < p, denote {c;, ﬁgl), e ,ﬁ§-S)} as the solution of the

following vector optimization problem:

6 (c+u®) — e

. < Amiu(s) =0,
. (3.4.1)
where ¢, u™, .- u® are vectors in RP.

We further reformulate the optimization problem in as a linear programming
problem, and use the simplex method to solve this problem (see [§]). For our simulation
study and the rfMRI data analysis, we obtain the solution of using the R-package
fastclime, which provides a generic fast linear programming solver (see [31]).

In R-package fastclime, the standard linear programming in inequality form is as follows:
max a’x subject to: Mx < b, x >0, x € R", (3.4.2)

where M € R™*" b € R™, a € R" are given. In order to apply the R-package fastclime, we

need to reformulate (3.4.1)) into the above linear programming form. Let

c=c—c,u¥ =u" —ul-

40



where ¢, ¢c—,u®*+, u®~ are p-dimensional vectors. Denote

ct c
u(1)+ u(l)_ X+
xt = , X = , X = ,
X~
]_1(5)+ u(S)f

where x* and x™ are (1+ S)p-dimensional vectors, and x is a 2(1 + S)p-dimensional vector.

Then the equation (3.4.1]) can be written as (3.4.2]), with

T
a = — 17 ’171/,- 71/717""17V7' , V )
—_—— ——— ——— ——
P pxS P pxS
A b,
—A b,
M = and b = ,
B bs
B by
with A = (K —A) and B = (]g, —]§> where
5578 gUish) 5-15) S-153(S)
(@) (1) Opxp -+ O,xp
A — $(2) O,y @ oo Opxyp ;
%) Opxp Opxp %)
)\1 + e )\1 — € 0
)\2 + € /\2 — €; 0
bl ’ b2 b3 -
)\2 +e; )\2 — €; 0
(S+1)px1 (S+1)px1 px1
B 0.1, I,
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3.4.2 GAP-BLOCK DATA SPLIT FOR CROSS-VALIDATION

Because of the long-memory property, we adopt the gap-block cross-validation method pro-

posed in [35] to select tuning parameters. We illustrate the steps below.

o Step 1. We split the data X;SX)H into H; blocks Xz(fx)n = (x{r x{ ,ng*) (Hy >
4); They are non-overlapping and all approximately equal-sized blocks. For every i,
XES)* will be used as validation data, and it is dropped along with its neighboring
blocks at both sides of XES)* from Xl(,sx)n. Denote the remaining data as XZ(-S)**, which

will be used as training data.

o Step 2. From X randomly sample Hy blocks ng

()« | (8)x
DPXN) ’ ’XH1+H2’ EVGI‘y XH1+j

*
+17..

consists of [n/H;]| consecutive columns of Xz(fx)n, j=1,---,Hy. For every i = H; +

1,---,H + Ho, X" will be used as validation data, and it is dropped along with its

)

neighboring blocks at both sides of Xz(.s)* from X?)

»xn- Denote the remaining data as

X** which will be used as training data.
In our numerical experiment, we select H; = Hy = 10 by considering the long-memory

characteristic and the 10-fold CV recommendation (see [20424]).

3.5 NUMERICAL STUDY

3.5.1 SIMULATION SETTINGS

We generate the common structure Co= (cg;;) of precision matrices from one of the following

two models, where Model 1 follows Model 4 of [35], and Model 2 follows Model 3 of [27]:

o Model 1. cos; = 1, coiivr1) = Co@iv1)i = 0.6, coiira) = Co(ire)yi = 0.3, and co;; = 0 for

li —j| > 3.

e Model 2. Cy = I' + 01, where every diagonal entry in I' is 0, and every off-diagonal
entry in I' independently follows the Bernoulli distribution, the success probability is

0.02 and the success entry is valued as 0.5.
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For every U(()S), we randomly select a pair of symmetric elements (off-diagonal), and assign
a value randomly generated from the interval [—1, —0.5] U [0.5, 1]. We repeat this procedure
until >, .1 (‘uéj])

0 is selected sufficiently large such that Cy + Ués) is positive definite. Finally, each matrix

> O) /> i<j L(|coiz] > 0) = p, where Cop= (cq;;) and Ués) = (ué‘z;) The

Q%) = Cy + UL will be divided by § to unitization diagonals.

Following [36], we set Corr(Xy;, Xyj) = A?epkg, where
A =(i—jl+1)7 1<ij<n, (3.5.1)

then p% ~ |i — 7]7*. Due to the large dimension, we simulate the data by the method of [7]
as in [36] so that is approximately satisfied.

The simulations are conducted with group size S = 4, sample size n = 200, variable
dimension p ranging from 50 to 100, o € {0.1,0.25,0.5,1,2}, p € {0.1,0.25,1,4}, and 50

replications under each setting.

3.5.2 TUNING PARAMETER SELECTION

We have two tuning parameters A; and A\, satisfying A\; < Ag. We select the optimal pair of
A1 and Ap by minimizing the following likelihood loss (LL) (see [27])

K

LL = Z Z [tr(fgz))*ﬁ?;:)(s)) — log det (ﬁzg)(s)ﬂ , K = Hy + Hy,

k=1 s=1
where the sample covariance matrix 252))* is computed from the validation set XEZ))* We com-
pare the performance of two methods, separately estimate each group by CLIME (SCLIME)
and JEMP. We compute SCLIME using the R package flare [2§], and adopt the default
perturbation ¢ = n~'/2 of flare. Also, the optimal tuning parameter for SCLIME is chosen
from 50 candidates as in [35]. The optimal tuning parameter (A, A2) for JEMP is chosen

from 6 x 6 candidates. The JEMP is computed by the R package fastclime [31].
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3.5.3 SIMULATION RESULTS

Tables report the results of the simulation. Tables and imply that, (i) if
a < 0.25, JEMP performs significantly better than SCLIME for both models in terms of
the spectral and the Frobenius norms; (ii) if « = 0.5 JEMP performs significantly better
than SCLIME in Model 2; (iii) if & = 0.5 and p € {0.25,1,4}, JEMP performs better than
SCLIME in Model 1; (iv) otherwise, SCLIME performs better than JEMP.Therefore, the
stronger temporal dependence is, the better JEMP performs.

For Model 1 or Modle 2 with p = 50 or 100, we compute the computational time (hours)
for the 20 combinantions of o x p = {0.1,0.25,0.5,1,2} x {0.1,0.25,1,4}. The computation
time of JEMP is faster than SCLIME as can be seen in Tables [4.5] and [4.6] for p = 50 and
p = 100. Note that fastclime performs 2(1+.S5)p dimensional parametric linear computation.
Due to the very high dimension, JEMP will not work if \; and Ay are not sufficiently large.
Since A\; and Ay are too large, for example, for any combination of A; = {0.3, 0.31, 0.32,
0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4} and A\, = {0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38,

0.39, 0.4, 0.41, 0.42}, fastclime will estimate many nonzero elements to be 0.

3.5.4 RFMRI DATA ANALYSIS

For the estimation of precision matrices and the brain functional connectivity, we analyze the
rfMRI data of three healthy subjects (S = 3), provided by the WU-Minn Human Connectome
Project (www.humanconnectome.org). The original data of each subject consist of 1,200
temporal brain images, and each image contains about 2 x 10° brain voxels. Due to the high
image dimension, we reduce it to 907 by the grid-based method [37]. Also, the first 10 images
are discarded because of the early magnetization effect. We choose four subjects, Subjects
100307, 100408, 101006 and 101410 from the data, at the first step to test the stationarity,
linearity, and Gaussianity for the reliability of data. Each of them has 907 functional brain

nodes.
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Table 3.1: Comparison of average (SD) matrix losses for p = 50

SCLIME JEMP SCLIME JEMP
Q@ p Spectral norm Frobenius norm
Model 1
0.1 0.1 7.3422(0.3566)  4.0894(0.4229) 30.0442(0.9959) 12.5555(0.4134)
0.25 7.4576(0.2451)  4.2788(0.3776) 31.0838(0.8742) 13.6734(0.4866)
1 7.5935(0.3112)  4.0227(0.3617) 31.281(0.9004) 12.4848(0.4358)
4 8.4898(0.7337)  3.3796(0.3129) 34.0082(2.694) 10.6545(0.4399)
0.25 0.1 2.5548(0.1166) 1.1445(0.05) 8.979(0.3933)  4.0661(0.0608)
0.25 2.5351(0.1314)  1.0972(0.0638) 9.0665(0.4166)  3.6482(0.0989)
1 2.6534(0.1397)  1.086(0.0654) 9.3876(0.466)  3.6719(0.0717)
4 3.188(0.4022) 1.1329(0.0433) 10.6842(1.3126)  3.8565(0.0469)
0.5 0.1 1.2543(0.0693)  1.3681(0.0199) 4.0387(0.168)  4.1381(0.0342)
0.25 1.2325(0.0785)  1.1035(0.0221) 3.9957(0.1707)  3.2564(0.0359)
1 1.3004(0.0795)  1.213(0.0175) 4.1842(0.219)  3.7055(0.0352)
4 1.6605(0.2025)  1.301(0.0133) 5.1548(0.5732)  4.3187(0.0371)
1 01 0.8006(0.0312) 1.4709(0.0161) 2.566(0.0517) 4.539(0.0237)
0.25 0.7321(0.028) 1.2096(0.0156) 2.413(0.0369)  3.6048(0.0408)
1 0.7623(0.0233) 1.3199(0.0121) 2.5553(0.0477)  4.1461(0.0335)
4 1.1566(0.0769)  1.4015(0.0104) 3.5698(0.1661)  4.8118(0.0308)
2 041 0.8013(0.0311) 1.4918(0.0113) 2.3509(0.0553)  4.6469(0.0237)
0.25 0.7229(0.0226) 1.2269(0.0154) 2.1873(0.0437)  3.7163(0.0301)
1 0.7416(0.0216) 1.3395(0.0095) 2.2716(0.0355)  4.2496(0.0256)
4 0.9755(0.0448) 1.4227(0.0092) 3.1362(0.1101)  4.9376(0.0272)
Model 2
0.1 0.1 7.4786(0.2101) 4.5717(0.3843) 31.8289(0.758) 15.0458(0.4386)
0.25 7.5204(0.2372) 4.4613(0.3668) 31.9076(0.8567) 14.7588(0.4925)
1 7.5323(0.2538)  4.4467(0.401) 31.6324(0.8335)  14.3266(0.4507)
4 6.8425(0.7066) 2.9579(0.4899) 27.053(2.3511)  7.9602(1.0064)
0.25 0.1 2.5422(0.1049) 1.1459(0.0972) 9.3173(0.346)  3.2817(0.1565)
0.25 2.547(0.1256) 1.1463(0.1021) 9.3313(0.3673)  3.2976(0.1486)
1 2.5592(0.0984)  1.147(0.1031) 9.3329(0.3435)  3.3361(0.1197)
4 2.742(0.2182) 1.4989(0.0339) 9.7537(0.7667) 4.0451(0.071)
0.5 0.1 1.2162(0.0715)  0.6056(0.0307) 3.9003(0.1677)  1.7048(0.0536)
0.25 1.1843(0.0578)  0.6923(0.0453) 3.8548(0.1488)  1.8129(0.0631)
1 1.2162(0.0642)  0.9067(0.029) 3.8981(0.1728)  2.4029(0.0542)
4 1.6245(0.1341)  1.6221(0.0202) 5.4452(0.3647)  4.6693(0.1041)
1 01 0.5633(0.0356)  0.6489(0.0274) 1.8395(0.0732)  1.7925(0.0627)
0.25 0.569(0.0312)  0.7688(0.027) 1.8464(0.0588)  1.9618(0.0509)
1 0.6064(0.028) 1.0036(0.0169) 1.977(0.0494) 2.6913(0.047)
4 1.0828(0.0455)  1.6728(0.0229) 3.7852(0.0725)  5.0789(0.0967)
2 0.1 0.4888(0.0214) 0.6722(0.0205) 1.4671(0.0301) 1.9788(0.044)
0.25 0.5153(0.0267) 0.7901(0.0224) 1.5084(0.0297)  2.1447(0.0425)
1 0.5617(0.0217) 1.021(0.015) 1.664(0.0333)  2.8188(0.0307)
4 0.9993(0.0238) 1.6826(0.0208) 3.462(0.0354)  5.1763(0.1021)
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Table 3.2: Comparison of average (SD) matrix losses for p = 100

SCLIME JEMP SCLIME JEMP
Q@ p Spectral norm Frobenius norm
Model 1
0.1 0.1 8.2916(0.8387) 3.4815(0.3047) 49.9714(4.582) 13.5156(0.3612)
0.25 8.7608(0.4786) 3.7798(0.3) 53.5359(2.4532) 14.7279(0.3482)
1 8.066(0.4542) 3.4128(0.2821) 49.879(2.47) 13.1391(0.4187)
4 7.9247(0.5105)  3.2535(0.2874) 48.9273(2.6849) 12.0524(0.3935)
0.25 0.1 2.7247(0.1433)  1.4208(0.0309) 13.3898(0.5393)  5.7686(0.0475)
0.25 2.7988(0.1287) 1.1212(0.0527) 14.2116(0.5102)  4.7957(0.0734)
1 2.7569(0.1043)  1.1599(0.023) 13.9332(0.5264)  5.0797(0.0466)
4 2.6299(0.1222) 1.0925(0.0303) 13.1427(0.6099)  5.1277(0.0387)
0.5 0.1 1.315(0.0857)  1.6063(0.0252) 5.9231(0.2441)  6.3708(0.0736)
0.25 1.3608(0.0577) 1.2841(0.0182) 6.1493(0.1972)  5.0088(0.0476)
1 1.3513(0.0658)  1.3546(0.0143) 6.0731(0.2077)  5.7092(0.0564)
4 1.3435(0.0509)  1.2825(0.0109) 6.0848(0.1834)  5.9603(0.0494)
1 01 0.8857(0.0307) 1.6677(0.0189) 3.9214(0.0473) 6.865(0.0576)
0.25 0.7856(0.0246) 1.3653(0.0117) 3.6088(0.0429)  5.4635(0.0399)
1 0.8319(0.0221)  1.4229(0.009) 3.8161(0.0366)  6.2067(0.0418)
4 0.9099(0.0188)  1.3364(0.0104) 4.322(0.0239) 6.388(0.0533)
2 041 0.9118(0.0226)  1.677(0.0194) 3.7522(0.0757)  6.9839(0.0734)
0.25 0.8097(0.0188)  1.3791(0.0098) 3.3759(0.0461)  5.6197(0.0359)
1 0.853(0.0157)  1.4337(0.009) 3.5789(0.0435)  6.3182(0.0376)
4 0.9353(0.0156) 1.3417(0.0063) 4.1351(0.0458)  6.4555(0.0371)
Model 2
0.1 0.1 9.2967(0.4369) 4.3392(0.3593) 56.4275(2.3172) 17.8846(0.4256)
0.25 9.2136(0.4281) 4.2458(0.3316) 56.327(2.2826) 17.3155(0.5017)
1 8.405(0.4129) 3.8897(0.3091) 51.818(2.3159)  14.9214(0.449)
4 8.2434(0.6028) 3.6751(0.2552) 50.9657(3.2031) 14.0743(0.3692)
0.25 0.1 2.8867(0.1134) 1.1063(0.1111) 15.0803(0.5158)  4.1584(0.1287)
0.25 2.8446(0.1146)  1.104(0.1017) 14.9087(0.5353)  4.2513(0.1137)
1 2.8033(0.1292) 1.1249(0.0391) 14.3192(0.5911)  4.8262(0.0581)
4 2.7552(0.1266)  1.089(0.0475) 13.8253(0.6054)  4.9262(0.0606)
0.5 0.1 1.3967(0.0565) 0.8057(0.0265) 6.2999(0.2315)  3.1416(0.0549)
0.25 1.3711(0.0562)  0.8752(0.0226) 6.2353(0.2244)  3.5122(0.0649)
1 1.3498(0.059)  1.302(0.0159) 6.0388(0.2058)  5.1866(0.0474)
4 1.3634(0.0536)  1.2598(0.0138) 6.1103(0.2141)  5.4808(0.0464)
1 01 0.6559(0.0295)  0.8546(0.0219) 2.9758(0.0736)  3.4163(0.0532)
0.25 0.6643(0.0237) 0.9297(0.0179) 3.0494(0.0585)  3.8524(0.0525)
1 0.7278(0.0194) 1.3807(0.0119) 3.3172(0.0423)  5.7364(0.0395)
4 0.8353(0.0211) 1.3161(0.0095) 3.9022(0.0344)  5.9419(0.0558)
2 0.1 0.6126(0.0202)  0.8725(0.016) 2.541(0.0323) 3.6463(0.043)
0.25 0.6438(0.0139) 0.9432(0.0106) 2.6622(0.0346)  4.0495(0.0441)
1 0.7223(0.0232)  1.397(0.0087) 3.01(0.055)  5.8797(0.0295)
4 0.8619(0.0204) 1.3216(0.01) 3.6323(0.0427)  6.0349(0.0384)
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As in [36], all node time series in the four subjects have been checked by the Priestley-
Subba Rao test [33], the Hinich’s bispectral test [26], and the generalized Jarque-Bera test
[2], for stationarity, linearity, and Gaussianity, respectively. The nodes of each subject that
do not pass any test are removed from all subjects to keep the same dimension and nodes
for the four subjects. Therefore, the linear spatio-temporal model with sub-Gaussian tails,
defined in Section [1.3] seems adequate for the data. Detected by the GPH test [22], there
are 129,83, 87 and 132 long-memory time series in these four subjects, respectively. Finally,
we obtain 861 brain nodes of each subject. All these tests are performed at a significant level
(adjusted by [3]) of 0.05. Therefore, the models of [B, 6, [13] are not suitable for our data,
because their models are about weak temporal dependence.

In order to reduce the dimension, we select 3 subjects, Subjects 100307, 100408 and
101410 to perform the real data analysis. We call them Group 1 to Group 3, respectively.

For every node k, its autocorrelation function p(t) := pfi} (t = |i — j|) is approximated
by pr(t), which is the sample autocorrelation function. Figures [3.1 are the sample auto-
correlations of brain nodes of Group 1 to Group 3, respectively. In each figure, we plot two
long-memory time series, the max<x<, |pk(t)| time series, which is what we need to estimate
to confirm whether it is long-memory, and t~%2, the upper bound function. Besides, we also
plot two more time series to provide some rough understanding of the characteristic of long-
memory time series in the brain for each group. Figures |3.143.3| show that the rfMRI data
of these three groups all approximately satisfy the PDD model (see [35]) with Cy = 1 and
a = 0.30 since maxj<k<p |pr(t)] < %% roughly holds. The figures also illustrate that, for
each group, the estimated autocorrelation functions of the two selected brain nodes clearly
have different patterns.

In order to further reduce the dimension, we use SCLIME to estimate the precision matrix
of Group 1, and take the same nodes of three Groups of the first 50 hubs (high connectivity)
of Group 1 by SCLIME as our data to perform SCLIME and JEMP and compare the effects.

Next, we obtain the estimated precision matrices. We calculate the direct connectivity from
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Figure 3.2: Sample autocorrelations of brain nodes of Group 2
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Figure 3.3: Sample autocorrelations of brain nodes of Group 3
the estimated precision matrix Qe = (obl-(;))pxp via JEMP. For these three groups, the

minimum connectivity is 0, the maximum connectivity is 3, and the median is 0. Only 10
time series of Group 1 have nonzero connectivity, and they have 14 connections. On the
other hand, for SCLIME, the minimum connectivity is 6, the maximum connectivity is 47,
and the median is 43 for Group 1.

The time series indices of the top 10 hubs of three groups by JEMP are shown in Table
. We can see that the six time series (1, 10, 17, 18, 24, and 38) are found in their top 10
hubs in all three groups. For example, time series 10 is ranked the first in all three groups.
This implies that JEMP works well, and finds some common information across different

subjects.
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Table 3.3: The time series indices of the top 10 hubs for direct connectivity of Groups 1 — 3 found
by JEMP

Rank Group 1 Group 2 Group 3

1 10 10 10
2 4 18 18
3 18 19 17
4 1 17 23
) 7 21 24
6 17 20 36
7 21 38 38
8 24 24 1
9 28 34 2
10 38 1 3

Table 3.4: Top 10 hubs for direct connectivity of Group 1 found by JEMP and comparison with
SCLIME

JEMP Rank Order in 50 JEMP Degree SCLIME rank SCLIME degree

1 10 3 3 46
2 4 2 8 44
3 18 2 10 44
4 1 1 7 44
5 7 1 5 45
6 17 1 19 43
7 21 1 2 47
8 24 1 13 44
9 28 1 16 44
10 38 1 38 42

Table lists top 10 hubs of Group 1 found by JEMP and their degrees of connectivity.
Also, they are compared with the results from SCLIME. It can be seen that top 10 hubs
of Group 1 by JEMP has 6 overlaps with those of SCLIME: time series 1, 4, 7, 10, 18, 21.
Moreover, time series 24 and 26 also have 44 degree, which is the same as that of time series
1, 4, or 18. Hence, that time series could be considered as in top 10 as well. It implies that

the results of JEMP are similar to those of CLIME for this subject.
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CHAPTER 4

JOINT ESTIMATION OF MULTIPLE PRECISION MATRICES WITH WEIGHTED COMMON

STRUCTURES FOR HIGH-DIMENSIONAL TIME SERIES WITH LONG-MEMORY

In Chapter 3, we obtain the precision matrices by JEMP that produces a group precision
matrix through the common structure, which is captured by the simple average of individual
precision matrices. This is particularly useful in fMRI studies because it can produce a
representative brain network based on the estimated group precision matrix from multiple
subjects. If some subjects show different brain network patterns from the majority, however,
this may affect the construction of the common structure by JEMP because the simple
average cannot handle these outlying subjects. In [16], the authors proposed a new joint
method for estimating group and individual precision matrices by assigning different weights
to different groups (subjects in fMRI examples). We note that, however, they developed the
method under the i.i.d assumption. In this chapter, we extend the result of Chapter 3 to
the weighted aggregation of individual precision matrices for long-memory data, motivated
by [16], [27] and [35]. In particular, we remove the restriction of ny = -+ = ng in theory of
JEMP, and use the weights w® for the sth group to replace the uniform weight % for all
groups.

In this chapter, similar to Chapter 3, we consider a heterogeneous data set with .S different

groups. The notations {z\”, -+, 25}, n,, x,(f) = (x,(:'l), - ,x,(;,))T, p, B¢ = (UZ(;)O), X, 56,
(s)

QL = (wf;)()) and precision matrix Q% := (8())1 (s = 1,--- , S) have the same meaning as
1)

in Chapter 3. Our aim is to estimate the precision matrices Q(() o ,Qés) for long-memory

data by weighted-JEMP based on different weights w®).
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We consider the following class of matrices
U={Q2:Q>0,|, <Cu |, <Cy},

and assume that Q(()S) cUforalls=1,---,5. Write E(x®)) = (ugs), e ,,ul(,s))T.

Also, we define the common structure Cy and the unique structure U(()S) as
5 5
Cy = Zw(s)ﬂ(()s),Ués) — Qés) e Zw(S) —1Lw®>0s=1,---,8.
s=1 s=1

Note that Zle w(S)U(()S) = 0. In order to estimate {Cy, U(()l), e ,U(()S)}, we investigate the
following constrained entrywise L' minimization problem [16]:

s
min {|C|1 + VZU)(S) ‘U(s)h}

s=1

S

3w {$0C + U) - 1)

s=1

s.t S Al)

o0

S
S6(C 4+ UW) — 1‘ <X, > WU =,
o s=1
(4.0.1)

where v is a prespecified weight, and (A;, ) are tuning parameters with A\; < Ay as in

Chapter 3.

We can also consider the following vector optimal problem:

s
min { + v Z w®
1 s=1

S o~
> {507 -}
s=1

is a vector in RP, e; is the jth colomn of the identity matrix I,. Again, by the

S

3w

s=1

S

3wy

s=1

y

< Ay, (4.0.2)

oo

s.t <A 5(5)058) —€;

o0

where c§5)
proof of Lemma 1 of [I1], it is easy to see that these two problems have the same solution
set. We denote N = Zle n, in this chapter, and v is set to be S° or S? for our theoretical

results, so it will corresponding to 1/S or v = 1/5*% (like in chapter 3) if we let w(® = 1/S.
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4.1 ESTIMATION OF PRECISION MATRICES FOR SUB-(GAUSSIAN DATA

Assume {C;,U Do ,ﬁgs)} is a soution of (4.0.1), and denote ﬁgs) = C; + ﬁgs),s
,S. Using the same reason in Chapter 3, we define our final weighted-JEMP estimator
{ﬁ(l), e ,ﬁ(s)} of {Q(()l), e ,Q(S)} as the symmetrized result of {ﬁgl), e ,ﬁgs)} by the

following way. Denote (" = (@), and Q) ( N for s=1,---, 5, then

ij,1
~(s)  _ A(S
wij - 1] 1]1{271) 1], ZUJ ]zl
+@§§,)1]1{Z w® |G Zw 1@l (4.1.1)
s=1
for s =1,---,5. Then C= Zle w® Q).
Define 3¢) := <3i(; )> the sample covariance matrix given by
PXPp
~ ] &
) — () ()T _ (s)5e(s)T
o Z-ZIXZ X; X%
with x(*) = n% Yo X(S) Z(-S) is the ith column of X®). The following theorem generalizes

Theorem 1 of [27] from i.i.d to long-memory observations.

Theorem 4.1.1. Suppose that X,y is generated from with all z; satisfying condition

(C1) with the same K. Let A\; = Ay = 6C'); maxg ul . Setv=2S8%=1. Then
S
(s) |50
a
max (;w W;j

with probability greater than 1 — 4Sp~7, where u1 is defined in

w®
1] 0

> < 122, max @\

In order to prove Theorem we need the following lemma, which generalizes Lemma

4 in [27] from i.i.d to long-memory observations.

Lemma 4.1.1. Suppose that X,«n is generated from with all z; satisfying condition

(C1) with the same K. For any s =1,--- S, with probability greater than 1 — 4p™",

=(s) ()

where K 1is given in Theorem and ﬂ(ls) is defined in .

23
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Proof of Lemma [4.1.1} By the proof of Proposition 4 and the proof of the first part of

Lemma A2 in [35] we have
> QU} < 2pexpl — clns(u)
o K2gy

2
+2p2 eXp {_Cl HllIl ( nsu(s) ) nS/Lég)) } )
Kigp' K?g,

where ¢; > 0 is an absolute constant. Let

HIbRES

w=a{" = max {CQKZ(log )% (n) /s, [ea KA (log p)g) (1) /s ]1/2} , (4.1.2)

where ¢y = (T + 2) /¢y with 7 > 0, and

2

ONI PO = (s) H < g
g% COU(XW )Hz < gz (ns), 1%?2{19 Ns COU( ) 2 (4.1.3)
where X[k] is the k-th row vector of X , X[ is the kth row vector of X = (X(l), co X)),
then
PE0 - 20 > 200" < 2p~ @@V 4 2p7@0D <4y — 0(p),
The proof is completed. ]

Proof of Theorem [4.1.1. We recap the proof of Theorem 1 in [27]. It is easy to see
from Lemma [.1.1] that

56 —n@) <2a forall s=1,--- 5, (4.1.4)

with probability greater than 1 — 4Sp~". In the rest of the proof, we assume (4.1.4)) holds.

Note that {Cy, U ) ,U(()S) } is a feasible solution of 1’ because
S0 Up)| = [ - sy
< o8] 150 - =PI

< Cp2il < Ay/3.

Similar to the proof of Theorem 1 of [27], we have

S
Y w @ - el < Zw )
s=1

o4

G,

e/ Cardy



S
-~ s) |3(s)
< {|cj|l+;w() u; ‘1})\2/3-1—01\/1/\2
s
< {|cj70\1+;w(s) u;sg 1}A2/3+CM)\2

< 20 = 126% maxﬂgs),

where ¢; is the jth column of 6, and ﬁ;s) is the jth column of G(S), cjo is the jth column
of Cy, ufg is the jth column of U(()S).

It is straightforward to check that

s
(s)
max w

Then, the proof is completed. ([l

~(s) (s)
Wiim — Wiio

s
) < max E w Q) — Qe; | < 1202, maxal”.
J s
s=1

The following theorem generalizes Theorem 2 of [27] from i.i.d to long-memory observa-

tions.

Theorem 4.1.2. Suppose that (i) X,«n is generated from with all z; satisfying
condition (C1) with the same K, (ii) there exists Cyy > 0 such that HU[()S)
s=1,---,5 and (Zle HU(()S)

< Cy for all
1

1) < CySY=? where 6 € (0,1). Let

s
N Cur (711 + Z CQKQE';s) 10gp) + Cp St max 2w<5>ags),

s=1
)\1 = wl,)\g = 6CM maxﬂgs).
Set v =25 Then

< 2(Cyy + 2Cy) max{ty, S™Cy, max 2'12(15)} max Sw®)

with probability greater than 1 —2(2+3S)p™ ", where aﬁs) is defined in , Uy 1S given in

1.1.6), and & is defined in .

In order to prove Theorem [4.1.2] we need the following lemma, which generalizes Lemma

5 in [27] from i.i.d to long-memory observations.
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Lemma 4.1.2. Suppose that X, «n is generated from with all z; satisfying condition

(C1) with the same K. With probability greater than 1 — 2(2 + S)p~7, the following holds

S

> w@ — oi)

s=1
where uy is given in , and éés) is defined in .

Proof of Lemma We may assume that u!” = 0 for all i and s. Denote

)

< iy +ZCQK2€2 log p,
s=1

max
ij

) ¢ = uOal) - B aldal)
- () () - () ().
Also denote T x =Dk zk) /ns. Similar to the proof of Lemma 5 of [27], we have
Zw ( ; Z]0>_Z<Zyk1]/n3_ (S) ()>
s=1 k=1

We can define P\” such that er(f) — PVHz = (Vu® /nsXE;]) )T, which is the transpose

of the kth row of X with the coefficient \/w(T/ns, where ng) is a ny X pN matrix with

\/w(T/nS in the (j,k + (j — 1)p) entries and 0 in all other entries, j = 1,--- ,n,, where
T ™7

N = ZSS=1 ns. Denote xj; = PyHz = ((XFk(]l)> AR (xrk(]s)> ) ,s = 1,--- 5. Also,

denote

max [|Cov(xiy)||". < &p(NV), max [|Cov(xy)|, < &(N). (4.1.5)

1<k<p 1<k<p

It is easy to check that
Cov(xjy) = Cov(PyHz) = P,HH P!,

By Lemma Al of [35] and similar to the proof of the first part of Lemma A2 of [35], we

have

< 2pexp{ —c;

<2/ HHTP |, [P, T,

o6



2 — ] u2
o exp{ o <K4 1P HHP |[PHE P,
u

K2/ PHATPT, [P HETP]],

- ) _ u? u u
< 2p°exp ] —cpmin Kigr K%, + 2pexp —C1K252 ;

where ¢; > 0 is an absolute constant.

Let
U = U] = max {ch (log p)&a, [02[( (logp)& 1/2}

with ¢y = (7 +2)/¢; and 7 > 0, where & and & are defined in (4.1.5), then

n

s
Z Z _ykw > U

1kt s -

max

By Lemma A1-(i) of [35] we have

(s)

7

7= ()

v

2
P {maxw( ) ] = P [maxw(s) > UQ}

= P [max ’\/w@)@@‘ > u]

cinsu?

IN

] < 2p (e popmae=d < 47T = O(p).

2pexp | —
K2 || ||PHE PP

[ 61u2
= 2pexp _K2—§(S) )
L 2

2

where ¢; > 0 is an absolute constant and

max
1<k<p

5) < (5)
Cov(x, )H2_€2 , max

Cov(x f))H <§

1/2
By taking u = <62K2§§s) logp) with ¢a = (7 +2)/c¢; and 7 > 0, we have

() (S)

P [max w'®
ij

>c K2§2 logp} <2p7

Using this result, we have that

S

> wlalat)

s=1

P

max
ij

S
> K logp]

s=1
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s
< P 2 > K 10gp]
s=1 * s=1
s
< ZP [w(s) max Eis)fg-s) > 02K2§§s) logp} <2S8p~". (4.1.9)
ij
s=1

P |max Zw(s) (82(;) — Uz'(;,)[))

S
NP S logp]

s=1

The proof is completed. U

Proof of Theorem We recap the proof of Theorem 2 of [27].
By Lemma and Lemma |4.1.2] we have

5(8) (s)

S
<+ Y k% logp,  (4.1.10)

s=1

< 20}, max
ij

S
>_w@) — o)
s=1

for all s =1,---,S with probability greater than 1 — 2(2+ 35)p~". In the rest of the proof,

we assume (4.1.10]) holds.
Note that {Cy, U(()l), e ,U(()S)} is a feasible solution of 1} because

1-S9(C, + U (= - £l

< o] 129 - =0
1
< Op2i < Ny/3,
and
S —~
3w {1 —SEO(Cy + U§f>)}
s=1 [e’)

o8



S
- [ - sepap
s=1 o
S N S R
= Zw(S)(E(()S) _ E(S))C + Zw(s)<zés) _ 2(8))Ués)
s=1 o0 s=1 0o
S N S ~
< GOl [P wt (2 8+ 37| fw 2.
s=1 s=1
S ,\ . S
< 1Coll | Doy = ) maxut(s) - 50| 7 ug],
s=1 0o —1

s
< Cu (ﬁl + Z 62K2§§S) logp> + CpySt? max 2w(5>a§3) <\

s=1
Now, we estimate (61 Co)e; ‘Z - Q(()S))ej . In particular, we use
5 R s L
STuw@QF —af)e;l < Do wP (@) - S0)Qe;
s=1 00 s=1 00
S AN ~
+D 0P w(EOQF — T)e; (4.1.11)
s=1 oo
Similar to the discussion of Theorem 2 of [27], we have
Z wE QP (ml) — 5EHQPe,
< Zw 20 (=) - B@)e cj Zw 20 — =ehal
< Z Cow(s) 2(5) + Z U(()S)w(S)(E(()S) _ i(s))ej
s=1 s=1 0
£ ®p - S0
s=1 o
S AN
< Cu | w (S - SO)| gyl + maxw®| (50 - £0)| Z U] 1,
s=1 9]
S
C ) $6) _ $i() ’ (s) |55(s)
—l—MmsaX( p )m;w ;|
s
< (CM Zw(s)(zés) SEN| 4 msaxw(s) (E(S) E(s))‘ CUsle) &1,
s=1 o9




S
S—OO ‘ 2(5) _ i(s) ’ S@ (s) A(S)
+ M max (X ) - z:;w |,
S AN AN
< max {C’M Zw(s)(Zés) ~ SO 4+ maxw® (E(()S) — Z(s))’ CyS',
s=1 0o o0
S
0 (5) _ (s) -~ 0 (s) |53(s)
S C’Mmsax‘(EO > )LO} X <\cj\1—|—5 Z_;w u; 1)
S A~ AN
< max {CM Y w(s - B9)) 4+ maxw® (2§ - 2<8>)] CySt,
S oo
s=1 00

(s)
uj,o

S
S_OCM max }(Eés) — i\](s))) } X (‘C]’,0|1 + Se Z’U}(S)
o s=1

)

where ¢; is the jth column of 61, and ﬁg-s) is the jth column of IAJSS), cjo is the jth column

< (O + Cy) max{ty, S™Cy, max )y max Sw®),

of Cy, and u§-50) is the jth column of U((]S), and

S
S (EEY — T)e;
s=1 e )
S S
< D oCuwEYQ ~De;| + D UFw(EWQY —T)e;
s=1 00 s=1 )
S S
< Gl [P w BV ~Dey| + 3 [UF]| [0 IR —De;|
s=1 00 s=1

< Oy + CyS  maxw® ),

< (Cy + 3Cy) max{y, S~Cy max 227%5)} max Sw®.

In sum, we have
’(AJ — COLO < ‘6‘1 — CO‘OO < 2(Cyy + 2Cy) max{ey, S™Cy, max 2a§8)} mBXSw(S).
The proof is completed. 0
Define a threshold estimator Q) = ((TJS)) based on {Q®, -+ QO as

o)

oy = o1 {w |

> 6.},
where 9, > 2C A2 and A; is given in Theorem [4.1.1 Also, define

So={(i.4.5) : wiph # 01,8 = {(i,j,5) : B # 0} and Oy = min_w [wy|.

(i7j78)680
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The following theorem generalizes Theorem 3 in [27] from i.i.d to long-memory observa-

tions. The proof is straightforward. Details are omitted.

Theorem 4.1.3. Suppose that (i) X,xn is generated from with all z; satisfying
condition (C1) with the same K, (ii) Omin > 20,,. Then

P(Sy=8)>1—-45p"

4.2 MODIFIED ESTIMATOR (),

This section focuses on dealing with the expectation of the convergence rates. In order to do
that, we modify the estimator © to ensure that the expectations exists. Let {ﬁlp} be the
solution of the following optimization problem:

S
min {|C|1 + VZU}(S) ‘U(S){l}

s=1

<A

S
1 EI(DS)Q(S) N I’OO < >\27 Zw(S)U(S) = 07 (421>

o) s=1

o {span-1)

where EPS = 5 4 pI with p > 0. Write ﬁﬁ} = (wﬁ%) Define the symmetrized estimator

ﬁf,s) as in (4.1.1).

Theorem 4.2.1. Suppose that X« n is generated from with all z; satisfying condition
(C1) with the same K. Set v = 5°.

(i) Let Ay = 21, Ay = 12C); maxg ﬂgs), where 7 > 0. ]f there exists Cy > 0 such that

HU(()S) <Cy foralls=1,---,5 and (Z ) < CySt=? where 0 € (0,1) and
1
S
0 < p < min {al + Z e K2 logp,all, - - @§S>} 7
s=1
then

‘ép - CO‘ - ‘61,) - co‘ < 4(Chy + 2Cy) max{n, §~Cyy max 2"} max Sw®

with probability greater than 1 —2(2 4 3S)p~
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(i)

(iii)

(iv)

If there exist Cyy, Cfy > 0 such that |Q®)|, < Cy, Ul

< Cf; and
1

1-60
S <8C

S
oy
s=1

Let

s
U = 203, (111 + Z 02K2§§S) log p) + 2(]{}51_0 max 2w(5)ﬂ§5),

s=1

A= U, Ay = 1207, max@\?,
where 7 > 0. Then

C, - Cy

IN

’ ~

2‘61,)—00

1 1

< 4p(Cyp + Cy + Oy + 3C3) max{y}, CrpS ™% max 2ﬂ§5)} max Sw'®
with probability greater than 1 —2(2 + 3S5)p~".
If there exists C’# > 0 such that

P
max E
gt

where § € (0,1). Then

S
max E w®
J
s=1

)

5
q q
< C# and mjax E o] < C#Sl’g

s=1 1

p

(s)
Uss0

1

11 ~
< 2(1421 943790 max Sw'®) /S04 = ‘(Clp — Cp)e;
1 s 14

(@ v

A~

U(s) —

) 1p

~(s) (s)
Uipij — Uij0

with probability greater than 1 — 4(2 + 3S)p™ 7, where t = max;;
(50,). 0% = (u3))
If the conditions in (i) and (ii) are both satisfied, A\; = 1}, Ay = 12C},; max; ’ngs), where
7> 0. Then
~ 2 ~ ~
€ - <, <[E e [€-a
F 00 1

with probability greater than 1 — 4(2 4+ 3S)p™7, and IGP - Cy with

and )(AJP — Gy
00 1

bound in (i) and (ii).

62

9
1



Proof of Theorem [4.2.1] (i) The proof is similar to the proof of Theorem m
(ii) The proof is similar to the proof of Theorem m Note that {Cy, U Do ,U(()S)}

is a feasible solution of (4.2.1)). Now, we estimate the upper bound of ‘(Clp —Cy)e;
1

D w<8>(ﬁ§f) — Q")e;| . Also note that
1

S

S w(@) - 0f)e;| < |3 QP u(Ef — £ e;

s=1 1 s=1 1
S AN

+D-ePu (B0 el .

s=1 1

Similar to the discussion of Theorem [3.2.1] we have

S
Zﬂgs)w(s)<zés) . 2; ))Q(S) e

< 2(Cy + Cp) max Sw®

1

5
x max{C},(2a; + Z e K2 logp) + C;;5* ™ max 2w )" ,Cr 870 max 2q° )},
s=1
and

oo

In sum, we have
Halp - COH < 2(Cy; + Cy + C3y + 3C7) max{w}, S~ max 22255)} max Sw'®)
1 s s

and then

|
§
A

Je, ol

VAN

sl -al,

< 4p(Cur + Cy + Oy + 3C5) max{yy, S7° max 23\ max Sw®)

(iii) We assume the solution ﬁ(s) is obtained from the column solution set {/c\f;;)} of (4.0.2

with 2 ) being replaced by E By the definition of {Q } we have

+I/ZU) U( e] forj=1,---,p.

< |Coejl, —|—1/Zw s)

s=1

S)
eJ

‘Clpe]
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Denote

t = HZIJ%X ug‘;)w — u§ ])0 where Ug? = (ﬁ;@) >Ués) = (uz('gs',)o) ’
L = (ugiij - UEJ)0>
Lo — (ugspzj]l( ael > 20) —u§;)0>,

L& — LG _L®

k3%

Then

IN
o
<,
O
+
N
@ 1]
S
.
/N
&
r'
\_‘;
bco

S)

which implies

/S i, 30 b, + @ - o,

Thus

IA

S S
r> ol (Ul 03w [0
s=1 s=1

S
< QVZU)(S) }L&S)ej‘l + ‘(alp - C())ej 1
s=1

s
v Z w'® ’L(S)ej|1
s=1

Similar to the proof of Theorem 6 of [I1], we have

S
Zw@ L,

=ZwZ%W&w>%
S Zw Z 1]0 (uz(])O <2t)‘
-0 S (i 20 -] > 0
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P
< (2t) 1 ‘IZ S)Z ”0 Z’(agi)”—u”(o 1( ugsp)z_j >2t)‘
=1
+ZU} ©) Z ’L]O ‘agizj > 2t) — ]l( UZ(-;)O > Qt)}‘
< e S S S| 22
s=1 i=1
S
i Zw( Zt‘ %le - UEJ)O }’
s=1
S p
< (Zt)lfq Zw(S) Z “z;)o + tZw Z ]1 1m] > 2t)
s=1 i=1
S p
+ 3D fuiso| L|uiiy| <3t}
s=1 1=1
S
SR D S MR S0 3 T,
+(3t)' qz S)Z uls),
- (s) |
- - 1- S S
< (1+21 74 3l ¢ qzw( )Z ulth
s=1 i=1
< (14277 4 3179 790% max Sw'® /S
Thus,
S R s
> w0 - Uy < 2Ywt L], + ‘ &, - Coley|,

< 2(1 4ol-a i))lfq)tlchl?jé max Sw(s)/se
1) ~
- ’(Clp - C(J)ej

14

1

(iv) It can been proven from the definition of the matrix norm.

The proof is completed. l

Furthermore, we can consider the convergence rates for expectation, which generalizes
Theorems 2 and 5 in [I1] from (i) i.i.d. to long-memory observations, and (ii) from a single

subject to a group.
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Theorem 4.2.2. Under the conditions of Theorem[{.2.1, and

S
min{ﬁl +ZCQK2§§S) logp, ug)) .. ’ﬂ§5)7p—c}

s=1

S
S pgmin{al+ZC2K2£§S)Ing7{LgI)7'H U’§S)}7

s=1

with ¢ > 0, if p > n§ with € > 0, we have

—~ 2
(U E:(‘Ch)—-Cb ~

2
) =0 ((CM + Cp) max{t;, S~C); max, 27155)} max, Sw(s)> ,

. 2 2
(ii) E (‘Cp - Co) ) =0 (p(C’]TJ + Cp) max{y;, S~0C7, max, 20\”} max, Sw(5)> ,
1

~ 2 ~ 2 —~ 2
(iii) E Hcp - COHF < \/]E (‘Cp ~ Gy ) E <‘cp - COL).

-1
Proof of Theorem |4.2.2, Note that {(E,@) } is a feasible solution of (4.2.1
note that
s
) Qe
m]aXZw( Qp)e] X
< maXZw Q(S
s (S
< max 1peJ —|—Zw ) |UY )
S
C(5) 0 &) [TTWa.
< max Clpejl—irS ;w Ui, e; 1)
5 ~ -1 S PR T ~ N1
< s ([0 (55) "o+ |((8) - S0 (55) )
J
s=1 1 s=1 s=1
S ~ -1 5 ~ N1
< max (S |(29) o +573[u ((£0) e,
J s=1 1 s=1 1
5 N1
b3 e (59 e, )
s=1 1
5 -1
< maXSSQZw(S) (Z?) e;
J s=1 1
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IN

S
~ -1
0 s s
3573 w® ‘(zf))
s=1
o -1
6 s (s
3ps? Y wt || (20 2
s=1

S
—~ -1
38" Y 0 (207)

s=1

1

IN

IN

S
= 3p50 Z w(s) 1/mein <§];S))

s=1

S
< 3ps*> w/p=13pS’/p.
s=1

The proof is similar to the proof of Theorem 2 of [11]. O

For LPDD temporal dependence, we can set the bounds as

9 = n,/(logn)*, g5 = n./(logn,)®,

then we have the following property
u” < (logp)/(log n,)*, a > 0.

For LPDD model, therefore, we only need to assume p > (logn,)® in the above theorem.

4.3 EXTENSION TO HEAVY TAIL DATA

In this section, we extend the previous results for the precision matrices estimators to heavy-
tailed data in (C2) and (C3). According to the proof of Lemma A.2 of [36, similar to the

proof of Lemma [4.1.2] we define
i) = mae { K (2/9)2 og 2] 68) [ e (410) " log ] (6 )2}, (4.3.)

Uy = max { [c2 K (2/0)*/" log p]' /7 &y, [ea K2 (4/0) Y Tog p) T2 (&)},

and

ﬂg‘s = kni max {cgp(ﬂ% /kQQ /s, Cop 4+27)/k(9§)/”s)1/2} ) (4.3.2)
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Ty = kni max {Cgp(2+27)/k¢€27 CQp(4+27)/k<§F)1/2} ’

where ¢o = (7+2)/¢; with 7 > 0 and ¢; > 0 is an absolute constant, gés) and géf) are defined

in 1' 558) and §§f) are defined in 1) & and &p are defined in |D We assume

) g, 0l iy — 0 as n, — oo,

Theorem 4.3.1. (Generalized sub-exponential tails) Assume condition (C1), parameter K,
¥, @, and P chzﬁés) logp replaced by condition (C2), parameters {K,9}, ﬂgs), Uy and

28321(02_[((2/19)2/19 logp)Hz/ﬂgés), respectively, then Theorems hold.

Theorem 4.3.2. (Polynomial-type tails) Assume condition (C1), Zle 02K2§£S) log p,

2+427) /k 558)

parameter K, (" and @, replaced by condition (C3), Zle c2kn2pt .parameters

{k,n}, ﬁés) and us, respectively, then Theorems hold.

The proofs of Theorems 4.3.1)and 4.3.2|are similar to the proofs of the preceding theorems

by using the corresponding results given in Lemmas A.1, A.2 and A.3 of [35] for conditions

(C2) and (C3), respectively. Details are omitted.

4.4 COMPUTATION

We can reformulate (4.0.1)) into the linear programming form (3.4.2)). The numerical algo-

rithm is similar to that of Chapter 3. The only difference is about the weight w®), s =

1,---,S. In order to do that, we need to use the following vector a and matrix A
a = [1,--, Lvw® - pw® o ™ s ]
Vv v - Ve -
p P p
a = —@a)’,
DRIRTIC) SCIRI) SIS SNRPRC SIC)
(1) (1) O,y 0,.,
A = $(2) O,x» $(2) o 0, 7
) O,xp Opp -+ SO
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and we need to use (4.1.1)) to symmeterize matrices. The case in Chapter 3 is a special case

of the uniform weights w®) = %

4.4.1 WEIGHT SELECTION

We can take weights w® (s = 1,---,S) as tuning parameters and select them in the fol-
lowing way. We set the tuning parameters {w(®)} to make the upper bound of ‘a — COLO
achieve its minima. This will enforce fastclime to work with smaller A\; and Ay, and pro-
duce more nonzero estimated elements, which in turn would achieve higher TPR, and faster
computation.

Divide the interval [0.1,0.7] into 60 equal-sized subintervals, so the step equal to 0.01,

and we can get an estimated optimal weight with error less than 0.01. Select every w(®) from

{014+ (m—1)x0.01:m=1,---,61} with 37| = 1. Denote Cppy = max{Cy, Cy}.
Similar to the proof of Theorem |4.1.2, we can estimate the upper bound of ‘C — CO‘ as
follows:
s R s R
S w@ - 0)ey| < D aPw(E - £9)Qe,
s=1 ) s=1 %)
S AN
+D-ePuIEO0P ~De;|
s=1 00
where
S AN
Z Nz — SEQe;
=1 00
S AN AN
< max {CM Zw(s)(Zés) — X)) + maxw® (288) - 2(5))’ Cy S,
s=1 00 ° o
R S
S=0Cy max }(Eés) — 2(5)))00} X (lcj,o|1 + 5° Zw(s) u(o) 1)
s=1
= Cyp max{thy, S°Ch max 2u{V} (1 + 59,
and
S —~
Z (EOQ —Te;




AN AN

S
S W (EOOF ~ e,

s
< |Gl + 3 [ [ EOR — ey
s=1 00 s=1
S AN ~
< Oy Y w(EOQY —Te;| +Cu)y
s=1 00
< Cuyi + Cy6C)y max 2&15).
Thus
S —~
Z w® QP — Q)e; < Cyymax{ey, S0Cyy max 20} (1 + 5°)
s=1 00
+CM’¢1 + CU6CM max 2&58).
Note that ﬁ(ls) is independent of w(®), for s = 1,---, S. Hence, we only need to minimize

1. Note that every term of 1; has K2, so we can assume K2 = 1. We set ¢, = 16. By
unifying Cy and C); to be Cyy, we only need to minimize

s
O =y + Z &5 logp + S1° max 20!

s=1

We may assume that different groups are independent. Therefore, by the definitions of

g5 ,9F7 ; ,§F &2, & m- and- we have

(s)

o) = max [|Couxd)|
) _ 1 2
9grp° = . fg,?gp Cov(x [k])
(s) (s)
) _ W o] _ W ()
2 1%?%(;; COU(XW) 2 my 92
()2 2 (s))?
@ () )H (W) (o
= n? e Covlx [k]) B ns IF
& = max Covlxy)] Hc ), = max ™ max [[covx)
2T T IO 2_1@32)1@&}% N ov(x 2 itess N 120, [0V,
e <w<s ;
& = mox [|Cov(xiy) | = s > et
and then
~5) _ 1 (5) | ), 1"
uy;’ = max ¢y (logp) gy’ /ns, |2 (logp) gp’ /ns
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o ] /}

= max{CQ (log p) f?;?é,HCOU H /s, [ logp) max

i = max{e; (logp) & [e2 (logp) &}

w®

Cov(x [k])‘

= max< ¢ (lo max max
{ 2 (log p) 1<s<S mg 1<k<p

[ o) s Sl <w:§))2 HCOU [k] H ]

1<k<p

Note that @ and @” only depend on ¢!, g;f , 58),5}3),52,@, which only dependent on

covariance matrices.

We will conduct the computation in three steps. Step 1. Compute gés), gl(ws), fé‘s), l(f) &0, EF;
Step 2. Select the weight {w®)} by minimizing the upper bound of ‘(A? — COLO as above;
Step 3. Compute the precision matrix by the vector optimization problem. We evaluate the

numerical performance of the weighted-JEMP (Weighted) estimators for high dimensional

precision matrices.

4.5 NUMERICAL EXPERIMENTS

4.5.1 RESULTS OF SIMULATION STUDY

Since this chapter is about weighted-JEMP, we study the weight estimation first. We sample
X(S)

pxn (8 = 1,-+--,5) 20 times with distribution ¥ and a € {0.1,0.25,0.5,1,2}. Then
compute weight {w®} by the above computation steps, and repeat 50 times. Because each
group is generated in the same way, the optimal weight is the uniform weight, 1/4 = 0.25.
Tables report the estimated weights for Groups 1-4. Overall, the weights are sub-
stantially different with the uniform weights in some settings, and the higher the dimension
is, the closer the estimated weights are to the uniform weights. In Table (p = 50), for
Model 1 and p = 0.1 or 4 and for Model 2 and p = 4, the difference between the estimated
and the uniform weights is large. For Model 1 with o = 1 or 2 and p = 1 and for Model 2

with @ = 2 and p = 1, the estimated weights are somewhat close to the uniform weights,
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but difference still exists. In the other settings, the difference is marginal, and the estimated
weights are close to 0.25. In Table (p = 100), for Model 1 and p = 0.1, and for Model 2
and o = 1 or 2 and p = 1 or 4, the difference between the estimated and the uniform weights
is large. For Model 1 with @ = 1 or 2 and p = 0.25, the estimated weights are somewhat
close to the uniform weights, but difference still exists. In the other settings, the difference
is marginal, and the estimated weights are close to 0.25.

In what follows, we compare the performance between ordinary JEMP and weighted-
JEMP. The following tables report the results on the comparison of average (SD) matrix
losses, and computation time of SCLIME, ordinary JEMP and weighted-JEMP for p = 50
and p = 100. In the tables, “Weighted” stands for weighted-JEMP.

Tables |4.314.7| show the results of the simulation study. From Tables and [4.4] we can
see that the average (SD) matrix losses for p = 50 and p = 100 of ordinary JEMP and
weighted-JEMP are almost the same. Tables and imply that the computation time
of weighted-JEMP is lower than the other two methods. Moreover, the tuning parameters
(A1, A2) chosen in weighted-JEMP is smaller by 0.01 than those of ordinary JEMP. Table
[4.7] shows that, SCLIME succeeds 200 times in all settings, i.e., the computational success
ratio of SCLIME is 100%. In comparison, ordinary JEMP only succeeds 172 times in all
settings (the number of failure is 28), i.e., the computational success ratio of ordinary JEMP
is 86%, and weighted-JEMP succeeds 182 times in all settings (the number of failure is 18),
i.e., the computational success ratio of weighted-JEMP is 90.5%. This also illustrates that

weighted-JEMP is more stable than ordinary JEMP in terms of computation.

4.5.2 RFMRI DATA ANALYSIS

We analyze the same rfMRI data set in Chapter 3 for the estimation of precision matrices
and brain functional connectivity by our weighted-JEMP. Based on the result in Chapter 3,
we estimate a to be 0.3. We estimate X by f], the sample covariance matrix. Following

the method introduced in Section [4.5.1, we sample 20 times, and obtain the estimated
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Table 4.1: Average (SD) weight for p = 50

@ P weight 1 weight 2 weight 3 weight 4
Model 1

0.1 0.1 0.2948(0.0306) 0.1908(0.0251) 0.2416(0.0311) 0.2728(0.0307)
0.25 0.2584(0.0257)  0.2476(0.0252) 0.2404(0.0241) 0.2536(0.0222)

1 0.2456(0.0219)  0.2662(0. 0228) 0.2268(0.0298)  0.2614(0. 0263)

4 0.539(0.2586) 0.1(0)  0.261(0.2586) 0.1(0)

0.25 0.1 0.2946(0.0266) 0.1894(0. 0271) 0.2378(0.0284)  0.2782(0. 028)
0.25 0.2538(0.0249)  0.237(0.0238)  0.251(0.0199) 0.2582(0.0262)

1 0.241(0.0247) 0. 2632(0 026) 0.2264(0.0338) 0.2694(0. 0236)

4 0.5368(0.2619) 0.1(0) 0.2632(0.2619) 0.1(0)

0.5 0.1 0.3024(0.025)  0.1854(0. 0239) 0.2308(0.0251)  0.2814(0. 0243)
0.25 0.2556(0.0238)  0.2376(0.0224) 0.2502(0.0212) 0.2566(0.0251)

1 0.2396(0.0241)  0.264(0. 0252) 0.2218(0.0278)  0.2746(0. 0207)

4 0.5814(0.2397) 0.1(0) 0.2186(0.2397) 0.1(0)

1 01 0.3214(0.0221)  0.184(0. 0156) 0.2246(0.0168) 0.27(0. 0169)
0.25 0.2574(0.0165)  0.243(0.0216) 0.2428(0.0158) 0.2568(0.0168)

1 0.2484(0.0146) 0.2676(0. 0151) 0.205(0.0164)  0.279(0. 0146)

4 0.652(0.1644) 0.1(0)  0.148(0.1644) 0.1(0)

2 041 0.3214(0.012)  0.1858(0. 0099) 0.222(0.009) 0.2708(0. 0099)
0.25 0.2572(0.0097) 0.2428(0.0136) 0.2406(0.0115)  0.2594(0.011)

1 0.2492(0. 0092) 0.2692(0. 0107) 0.1942(0. 0114) 0.2874(0. 0099)

4 0.7(0) 0.1(0) 0.1(0) 0.1(0)

Model 2

0.1 0.1 0.2518(0.0225)  0.2462(0.0199) 0.2546(0.0207)  0.2474(0.026)
0.25 0.2532(0.0203)  0.2482(0.0233) 0.2438(0.0205) 0.2548(0.0183)

1 0.2544(0. 0248) 0.2436(0. 0251) 0.237(0. 0309) 0.265(0. 0293)

4 0.1(0) 0.1(0) 0.1(0) 0.7(0)

0.25 0.1 0.2468(0 0226) 0.248(0 0202) 0.2516(0 018) 0.2536(0 0195)
0.25 0.2494(0.0203)  0.248(0.0192) 0.2538(0.0188) 0.2488(0.0199)

1 0.2464(0. 0198) 0.2558(0. 0255) 0.2386(0. 0247) 0.2592(0. 0248)

4 0.1(0) 0.1(0) 0.1(0) 0.7(0)

0.5 0.1 0.2452(0. 0201) 0.2514(0. 0171) 0.2532(0. 0181) 0.2502(0. 0174)
0.25 0.252(0.0174) 0.2494(0.0178)  0.252(0.0178) 0.2466(0.0178)

1 0.251(0. 0202) 0.2504(0. 0236) 0.2336(0. 0268) 0. 265(0 023)

4 0.1(0) 0.1(0) 0.1(0) 0.7(0)

1 01 0.2566(0. 0122) 0.2478(0. 0134) 0.2466(0. 0144) 0.249(0. 0128)
0.25 0.2564(0.0177) 0.2428(0.0151) 0.2512(0.0144) 0.2496(0.0118)

1 0.2454(0. 0168) 0.249(0. 0168) 0.2292(0. 0188) 0.2764(0. 0171)

4 0.1(0) 0.1(0) 0.1(0) 0.7(0)

2 01 0.2496(0. 0088) 0.251(0. 0071) 0.2466(0. 008) 0.2528(0. 0078)
0.25 0.2618(0.0085) 0.2346(0.0073)  0.2504(0.006) 0.2532(0.0068)

1 0.2408(0. 0078) 0. 2474(0 008)  0.2234(0. 0102) 0.2884(0. 0089)

4 0.1(0) 0.1(0) 0.1(0) 0.7(0)
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Table 4.2: Average (SD) weight for p = 100

@ P weight 1 weight 2 weight 3 weight 4
Model 1

0.1 0.1 0.138(0.0225) 0.1348(0.0287) 0.3316(0.0319) 0.3956(0.0383)
0.25 0.2712(0.0254)  0.2632(0.0285) 0.224(0.028)  0.2416(0.028)

1 0.263(0.024) 0.2568(0.0249) 0.2406(0.0261) 0.2396(0.0224)

4 0.2486(0.0252)  0.2594(0.0249) 0.2442(0.0247) 0.2478(0.0215)

0.25 0.1 0.139(0.023)  0.131(0.0267) 0.3366(0.0335) 0.3934(0.0391)
0.25 0.2766(0.0234) 0.2602(0.0225) 0.2192(0.0311)  0.244(0.0282)

1 0.2704(0.0254)  0.2578(0.027) 0.2376(0.0261) 0.2342(0.0261)

4 0.2466(0.0232) 0.2488(0.0259) 0.2454(0.0224) 0.2592(0.0255)

0.5 0.1 0.1348(0.0197)  0.1252(0.0232) 0.3356(0.0298)  0.4044(0.034)
0.25 0.2796(0.0234)  0.262(0.0214)  0.215(0.0292) 0.2434(0.0279)

1 0.2696(0.0208) 0.2574(0.02)  0.2376(0.026) 0.2354(0.0236)

4 0.2444(0.0192) 0.2492(0.0204) 0.2454(0.0238)  0.261(0.0234)

1 01 0.1278(0.0125) 0.1094(0.0108) 0.3452(0.0164) 0.4176(0.0264)
0.25 0.2874(0.0182) 0.2664(0.0174)  0.2018(0.018) 0.2444(0.0184)

1 0.265(0.0149)  0.2658(0.0133) 0.2358(0.0173) 0.2334(0.0167)

4 0.2574(0.0186) 0.2486(0.0159) 0.2394(0.0156) 0.2546(0.0164)

2 041 0.1264(0.0063) 0.1062(0.0067) 0.3508(0.0126) 0.4166(0.0165)
0.25 0.3016(0.0127)  0.259(0.0109) 0.1982(0.0112) 0.2412(0.0096)

1 0.2698(0.0098)  0.266(0.0081) 0.2426(0.0103) 0.2216(0.0102)

4 0.2548(0.0107)  0.251(0.0079) 0.2382(0.0106)  0.256(0.0086)

Model 2

0.1 0.1 0.2554(0.0193)  0.2452(0.0203) 0.2516(0.0217) 0.2478(0.0217)
0.25 0.2526(0.022) 0.2564(0.0228)  0.244(0.0237)  0.247(0.0253)

1 0.2356(0.027)  0.2584(0.0267) 0.2214(0.0333) 0.2846(0.0243)

4 0.2528(0.0233) 0.2632(0.0233) 0.252(0.026)  0.232(0.0257)

0.25 0.1 0.2496(0.0213)  0.2478(0.0223) 0.2568(0.0174) 0.2458(0.0208)
0.25 0.2554(0.017)  0.2502(0.0208) 0.2402(0.0174) 0.2542(0.0202)

1 0.2398(0.0282) 0.2536(0.0301)  0.221(0.0231) 0.2856(0.0281)

4 0.256(0.0221) 0.2714(0.0217) 0.2416(0.0247)  0.231(0.0236)

0.5 0.1 0.2488(0.0191)  0.249(0.0162) 0.2554(0.0182) 0.2468(0.0196)
0.25 0.253(0.0174) 0.2538(0.0185) 0.2424(0.0191) 0.2508(0.0171)

1 0.2364(0.023)  0.253(0.0247) 0.2204(0.0229) 0.2902(0.0254)

4 0.2574(0.0203)  0.269(0.0191) 0.2444(0.0237) 0.2292(0.0212)

1 01 0.2482(0.0141) 0.2492(0.0138)  0.255(0.0169) 0.2476(0.0132)
0.25 0.2554(0.0122)  0.255(0.0134) 0.2412(0.0142) 0.2484(0.0125)

1 0.2334(0.0187)  0.2566(0.0195)  0.194(0.0181)  0.316(0.0181)

4 0.2622(0.0149)  0.281(0.0179) 0.2472(0.0153) 0.2096(0.0131)

2 01 0.2462(0.0083) 0.2544(0.0079)  0.259(0.0079) 0.2404(0.0114)
0.25 0.2572(0.0086)  0.2566(0.008) 0.2398(0.0091) 0.2464(0.0069)

1 0.2294(0.011) 0.2638(0.0118) 0.1852(0.0133) 0.3216(0.0106)

4 0.264(0.0101) 0.2876(0.0089) 0.2492(0.0105) 0.1992(0.0097)
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Table 4.3: Comparison of average (SD) matrix losses for p = 50

JEMP  WEIGHTED JEMP WEIGHTED
Q@ p Spectral norm Frobenius norm
Model 1
0.1 0.1 4.0894(0.4229) 4.2301(0.4145) 12.5555(0.4134)  13.2803(0.4481)
0.25 4.2788(0.3776) 4.5247(0.4248) 13.6734(0.4866) 14.5708(0.4848)
1 4.0227(0.3617) 4.2107(0.3508) 12.4848(0.4358)  13.303(0.3987)
4 3.3796(0.3129)  3.6694(0.2727) 10.6545(0.4399) 11.9447(0.4253)
0.25 0.1 1.1445(0.05)  1.1458(0.0576) 4.0661(0.0608)  4.0971(0.0674)
0.25 1.0972(0.0638) 1.1315(0.0641) 3.6482(0.0989)  3.7337(0.1009)
1 1.086(0.0654) 1.1171(0.0706) 3.6719(0.0717)  3.7353(0.0736)
4 1.1329(0.0433)  1.127(0.0473) 3.8565(0.0469)  3.8827(0.0588)
0.5 0.1 1.3681(0.0199) 1.3552(0.0197) 4.1381(0.0342)  4.0953(0.0391)
0.25 1.1035(0.0221)  1.0941(0.0207) 3.2564(0.0359)  3.2363(0.0356)
1 1.213(0.0175)  1.2049(0.0198) 3.7055(0.0352)  3.6738(0.0345)
4 1.301(0.0133)  1.272(0.0165) 4.3187(0.0371) 4.1873(0.041)
1 01 1.4709(0.0161) 1.4643(0.0164) 4.539(0.0237)  4.5177(0.0281)
0.25 1.2096(0.0156)  1.2049(0.0154) 3.6048(0.0408)  3.6072(0.0336)
1 1.3199(0.0121) 1.3173(0.0113) 4.1461(0.0335) 4.133(0.0331)
4 1.4015(0.0104) 1.3791(0.0101) 4.8118(0.0308)  4.6904(0.0383)
2 041 1.4918(0.0113) 1.4873(0.0116) 4.6469(0.0237)  4.6341(0.0239)
0.25 1.2269(0.0154) 1.2277(0.0142) 3.7163(0.0301)  3.7289(0.0262)
1 1.3395(0.0095)  1.3396(0.0082) 4.2496(0.0256)  4.2495(0.0247)
4 1.4227(0.0092)  1.4056(0.011) 4.9376(0.0272)  4.8432(0.0427)
Model 2
0.1 0.1 4.5717(0.3843)  4.7924(0.3995) 15.0458(0.4386) 15.8879(0.4337)
0.25 4.4613(0.3668) 4.6725(0.3717) 14.7588(0.4925)  15.573(0.4585)
1 4.4467(0.401) 4.6726(0.4138) 14.3266(0.4507)  15.151(0.4662)
4 2.9579(0.4899)  3.316(0.5714) 7.9602(1.0064)  9.2158(1.4351)
0.25 0.1 1.1459(0.0972)  1.1906(0.0962) 3.2817(0.1565)  3.4479(0.1659)
0.25 1.1463(0.1021) 1.1868(0.1012) 3.2976(0.1486)  3.4352(0.1527)
1 1.147(0.1031) 1.1866(0.1063) 3.3361(0.1197)  3.4714(0.1293)
4 1.4989(0.0339) 1.4321(0.0592) 4.0451(0.071) 3.976(0.0806)
0.5 0.1 0.6056(0.0307) 0.602(0.028) 1.7048(0.0536) 1.72(0.0491)
0.25 0.6923(0.0453) 0.6891(0.0401) 1.8129(0.0631)  1.8317(0.0516)
1 0.9067(0.029) 0.8956(0.0313) 2.4029(0.0542)  2.3947(0.0508)
4 1.6221(0.0202)  1.5754(0.0499) 4.6693(0.1041)  4.4717(0.1952)
1 01 0.6489(0.0274)  0.659(0.0227) 1.7925(0.0627)  1.8635(0.0556)
0.25 0.7688(0.027)  0.7755(0.0265) 1.9618(0.0509)  2.0277(0.0711)
1 1.0036(0.0169)  0.9957(0.0164) 2.6913(0.047)  2.7041(0.0498)
4 1.6728(0.0229) 1.6379(0.0366) 5.0789(0.0967)  4.9208(0.1708)
2 0.1 0.6722(0.0205) 0.6767(0.0196) 1.9788(0.044)  1.9908(0.0467)
0.25 0.7901(0.0224) 0.7965(0.0194) 2.1447(0.0425)  2.1772(0.0457)
1 1.021(0.015) 1.0164(0.0146) 2.8188(0.0307) 2.8493(0.033)
4 1.6826(0.0208)  1.6565(0.0245) 5.1763(0.1021)  5.0767(0.1089)
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Table 4.4: Comparison of average (SD) matrix losses for p = 100

JEMP

WEIGHTED

JEMP

WEIGHTED

Spectral norm

Frobenius norm

0.1

0.25

0.5

0.1

0.25

0.5

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25

0.1
0.25
1

3.4815(0.3047)
3.7798(0.3)
3.4128(0.2821)
3.2535(0.2874)
1.4208(0.0309)
1.1212(0.0527)
1.1599(0.023)
1.0925(0.0303)
1.6063(0.0252)
1.2841(0.0182)
1.3546(0.0143)
1.2825(0.0109)
1.6677(0.0189)
1.3653(0.0117)
1.4229(0.009)
1.3364(0.0104)
1.677(0.0194)
1.3791(0.0098)
1.4337(0.009)
1.3417(0.0063)

4.3392(0.3593)
4.2458(0.3316)
3.8897(0.3091)
3.6751(0.2552)
1.1063(0.1111)

1.104(0.1017)
1.1249(0.0391)

1.089(0.0475)
0.8057(0.0265)
0.8752(0.0226)

1.302(0.0159)
1.2598(0.0138)
0.8546(0.0219)
0.9297(0.0179)
1.3807(0.0119)
1.3161(0.0095)

0.8725(0.016)
0.9432(0.0106)

1.397(0.0087)

1.3216(0.01)

Model 1

3.666(0.305)
3.9296(0.2875)
3.5977(0.3341)
3.4258(0.2915)
1.3932(0.0496)
1.1238(0.0591)
1.1424(0.0258)
1.0795(0.034)
1.6024(0.0364)
1.2646(0.0191)
1.3387(0.0137)
)

)

)

)

)

)

)

)

)

= =~

(

(

1.2725(0.0112
1.6917(0.0482
1.3511(0.0126
1.4143(0.0075
1.3412(0.0084
1.6986(0.0396
1.3629(0.0091
1.4279(0.0079
1.3465(0.0069

13.5156(0.3612)
14.7279(0.3482)
13.1391(0.4187)
12.0524(0.3935)
5.7686(0.0475)
4.7957(0.0734)
5.0797(0.0466)
5.1277(0.0387)
6.3708(0.0736)
5.0088(0.0476)
5.7092(0.0564)
5.9603(0.0494)
6.865(0.0576)
5.4635(0.0399)
6.2067(0.0418)
6.388(0.0533)
6.9839(0.0734)
5.6197(0.0359)
6.3182(0.0376)
6.4555(0.0371)

Model 2

4.3399(0.342)
4.2814(0.2959)
3.8919(0.2886)
3.6556(0.2674)
1.1059(0.1109)
1.0979(0.1031)

1.123(0.0384)
1.0864(0.0461)
0.8135(0.0242)
0.8793(0.0211)
1.3023(0.0162)
1.2618(0.0139)
0.8729(0.0223)
0.9434(0.0184)
1.3814(0.0116)
1.3233(0.0096)
0.8842(0.0155)
0.9532(0.0113)

1.3965(0.009)
1.3272(0.0085)

17.8846(0.4256)
17.3155(0.5017)
14.9214(0.449)
14.0743(0.3692)
4.1584(0.1287)
4.2513(0.1137)
4.8262(0.0581)
4.9262(0.0606)
3.1416(0.0549)
3.5122(0.0649)
5.1866(0.0474)
5.4808(0.0464)
3.4163(0.0532)
3.8524(0.0525)
5.7364(0.0395)
5.9419(0.0558)
3.6463(0.043)
4.0495(0.0441)
5.8797(0.0295)
6.0349(0.0384)

14.3779(0.3752
15.5837(0.3931
13.9195(0.4154
12.7715(0.411
5.7335(0.073
4.8631(0.076
5.0879(0.0479
5.1122(0.038
6.3258(0.1198
4.9606(0.0479
5.6348(0.0477
5.894(0.0433
6.9591(0.206
5.4406(0.0425
6.1739(0.0399
6.3996(0.0442
7.0682(0.1697
5.5715(0.0278
6.2861(0.0324
6.4675(0.0423

e e O D D Do DD o D D D

17.9009(0.4218)
17.3752(0.4738)
14.9163(0.4516)
14.0111(0.383)
4.1445(0.1439)
4.2391(0.1208)
4.8333(0.0623)
4.9263(0.056)
3.1794(0.0567)
3.5519(0.0632)
5.191(0.0491)

)
3.5677(0.0817)
3.9591(0.0691)
5.7592(0.0406)
5.9864(0.051)
3.743(0.0663)
4.1428(0.0521)
5.9(0.0311)
6.0771(0.037)

(

(
5.4903(0.0447
(

(
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Table 4.5: Computational time of SCLIME, JEMP and Weighted for p = 50

Model 1 Model 2
SCLIME 0.6723(0.2735) 0.5566(0.0221)
JEMP 0.6222(0.2434) 0.5469(0.2127)
Weighted 0.5026(0.1276) 0.5126(0.2089)

Table 4.6: Computational time of SCLIME, JEMP and Weighted for p = 100

Model 1 Model 2
SCLIME 4.9713(1.8507) 3.9432(0.7965)
JEMP 3.2713(1.1372) 3.0396(1.0667)
Weighted 2.2929(0.2301) 2.0825(0.2916)

Table 4.7: Number of computation successes in 100 repetitions

Model p SCLIME JEMP Weighted

1 50 50 40 45
100 50 45 45
2 50 50 46 46
100 50 41 46

(w®, w® w®), which is (0.43,0.33,0.24). For these 3 groups by weighted-JEMP, the min-
imum connectivity is 0, the maximum connectivity is 10, and the median is 0. Only 23 time
series of Group 1 have nonzero connectivity, and they have 60 connections. It is apparently
higher than that of ordinary JEMP.

The top 10 hubs by weighted-JEMP are reported in Table .8 We can see that the six

time series (4, 10, 14, 17, 18, and 21) are found in their top 10 hubs in all three groups.

7



Table 4.8: Top 10 hubs for direct connectivity of Groups 1 — 3 found by weighted-JEMP

Rank Group 1 Group 2 Group 3

1 10 19 10
2 18 18 18
3 17 10 21
4 21 20 4
) 28 17 14
6 4 21 17
7 ) 14 38
8 14 22 1
9 38 4 15
10 20 24 16

Table 4.9: Top 10 hubs for direct connectivity of Group 1 found by weighted-JEMP
Weighted Rank Order in 50 Weighted Degree SCLIME rank SCLIME degree

1 10 10 3 46
2 18 7 10 44
3 17 ) 19 43
4 21 4 2 47
) 28 4 16 44
6 4 3 8 44
7 b} 3 4 45
8 14 3 18 43
9 38 3 38 42
10 20 2 1 47

This implies that weighted-JEMP works well, and finds some common information across
different subjects.

Table lists top 10 hubs of Group 1 found by weighted-JEMP and their degrees of
connectivity. Also, they are compared with the results from SCLIME. It can be seen that
top 10 hubs of Group 1 by JEMP has 6 overlaps with those of SCLIME: time series 4, 5,
10, 18, 20, and 21. Moreover, time series 28 also has 44 degree, which is the same as that
of time series 4 or 18. Hence, that time series could be considered as in top 10 as well. It

implies that the results of weighted-JEMP are similar to those of CLIME for this subject.
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CHAPTER 5

JOINT ESTIMATION OF MULTIPLE PRECISION MATRICES WITH DECAY /; NORM FOR

HIGH-DIMENSIONAL TIME SERIES WITH LONG-MEMORY

In Chapters 3 and 4, we consider the estimation of precision matrix of high-dimensional
time series with long-memory, and use the entrywise ||, ||, and [|-|| norm of the risk
of the estimation of the common part. However, those methods do not work for the vector
norm induced matrix ¢; norm ||-||;. In this chapter, based on the decay ¢; norm assumption,

ie., Zle

the matrix norm ||-||,, we propose the modified weighted JEMP estimator, called “weighted-

Qf”

< CyS'=? where 6 € (0, 1), we propose the optimal problem (5.0.1]) with
1

Joint”.
For simplicity, we assume that n = ny = ... = ng. We consider the following class of

madtrices

U={Q:Q=0,9|, <Cu},

and assume that Q(()S) €U forall s=1,---,5. Based on this assumption, the true precision

matrices should be sparse and have many small entries. Write E(x(®)) = ( §5), ) )T

In our joint estimation method, we assume the precision matrices have the decay /¢,

norm, i.e., the decreasing HQE)S) ‘ . To estimate {Q((]l), e ,Q[()S)}, we propose the following
1

constrained ¢; minimization criterion:

s
min {mjax ; w'®) ‘Q(S)ej ‘ 1 }

5.t ‘iﬂs)g(s) —I‘ < o, (5.0.1)

o0
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where e; is the jth column of identity matix I,, then Q(S)ej is the jth column of Q). X, is
tuning parameter, w(®) are positive weights with Zil w) =1.

We can also consider the following vector optimization problem:
S
i () [
min w

S (s) L(5)
t ‘E()cj —ejoo

< Ao (5.0.2)

(s)

where ¢;” is a vector in RP, e; is the jth colomn of the identity matrix I, w') is prespecified
weight.
Similar to the proof of Lemma 1 of [I1], it can be seen that the solution {&\”,--- &’}

(s =1,--+,95) of the vector optimization problem is a solution of the above matrix
optimization problem in (5.0.1]).

Assume {ﬁgl), e ,ﬁ@} is a solution of l) We define our final Joint estimator
{QW ... QO of {Qél), e ,Q(S)} as the symmetrized result of {le), e ,f\lgs)} in the

following way. Denote §§5) = (@(S ), and Q) = (W o) ), for s =1,---,S, then

17,1 7,]

S

A(S = zJl]l{z:w Zw(s Zws)
s=1

A(S)

ZJ7

50
zg 1

P+ Ag(f)1]l{z w

]11 ]7,1

(5.0.3)

5.1 ESTIMATION OF PRECISION MATRICES FOR SUB-(GAUSSIAN DATA

In this section, we consider the precision matrix estimator of long-memory data for sub-

Gaussian data in (C1). Denote $¢) := <8§;)> as the sample covariance matrix of obser-
pXp

vations X) (p x n, dimension) given by

~ 1 &
3 G () (T _ —(s)5(s)T
- ;1 X, X, X X

where xX8) = 1 ) ] x Z-s) is the ith colomn of the sth group X(). Define

i) = max { e K(log p)g}” /n, [e2 I (l0g p)gf? /]2 (5.1.1)
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iy := max {2 K*(logp)gz/Sn, [02K4(logp)gp/5n]1/2} , (5.1.2)

where ¢y = (74 2)/c¢; with 7 > 0 and ¢; > 0 is an absolute constant, gés), g}s), g2, and gp are

defined in (3.1.1)) and (3.1.2)).

We assume @\”, % — 0 as n — co.

Theorem 5.1.1. Suppose that X, xns is generated from with all z; satisfying condition
(C1) with the same K. Let Ay = 6C); max; ﬂgs). Then

s
(s)
max w

with probability greater than 1 —4Sp~", where ﬂgs) is defined in .

By —wisy ) < 8C} max iy
To prove Theorem we need the following lemma.

Lemma 5.1.1. Suppose that X,xns is generated from with all z; satisfying condition

(C1) with the same K. For any s = 1,---, S, with probability greater than 1 —4p™7,

max |o
iJ

where ags) and K are given in Theorem m

Proof of Lemma By the proof of the first part of Lemma A2 of [35], we have

ZQU} < 2pexpl — Clm(l)
o K%gy

) _ nu®  nu
+2p” exp ¢ —c¢; min ) ® ,
Kigp' K?g,

where ¢; > 0 is an absolute constant. Let

p ng S0

u =@ = max {02K *(logp)gs” /n. [caK*(log p)gy? /n]/ 2} :
with ¢ = (7 +2)/cq, then

P [!§<s> -2 > 2&%‘”] < 2pm(aeamh) gp=(ae < 4p™T = O(pT).
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The proof is completed. [l
Proof of Theorem We recap the proof of Theorem 1 of [27]. It is easy to see
from Lemma that

=6 -2, <2a foralls=1,---,5, (5.1.3)

with probability greater than 1 — 4Sp~". In the rest of the proof, we assume ({5.1.3)) holds.
Note that {Q(l) . Q(S } is a feasible solution of (5 since

’1 5107010

- \<Eés>—i<s>>ﬂ§f>

< ||, 59 - 5Pl
< Ca2aY < Mo/3.
Similar to the proof of Theorem 1 of [27], we have
S ~
Z’UJ Q(S 0 )ej|oo < Zw(s) Qgs)ej 1>\2/3+CM>\2
s=1

s
mjaxz w® ‘Q(S)ejh Ao /3 4+ Chrrha

<
< 4CM)\;/3 = 8C}, max al?,
Hence, we have the inequality
max (Zw — w;; 0‘) < maxZw QNe; |0 < 8C2, maxugs).
The proof is completed. O

Theorem 5.1.2. Suppose that (i) Xpxns is generated from with all z; satisfying
condition (C’l) with the same K, (ii) Zle HQ(()S)

< OySY0 where 0 € (0,1). Let Ay =
1

6Cs max, u1 . Then

< 8C2, max @{” max Sw® /5°

with probability greater than 1 —4Sp™7, where af’ and uy are defined in and .
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Proof of Theorem By Lemma 5.1.1} we have

max [5) — ai(;,)o‘ < 2a{", (5.1.4)

]
for all s = 1,---,S with probability greater than 1 — 4Sp~". In the rest of the proof, we

assume ((5.1.4)) holds.

Note that {Qél), e ,Qés)} is a feasible solution of (5.0.1)), because

100

o0 o0

() — E(()S) |oo

IN

oo

< Op2il) < Ay/3.

Now, we estimate the upper bound of ‘Zle w®(QF — Q)e;

. Note that
oo

S S
2w —a)e| < B 0w(E - SO
s=1 00 s=1 o0
S AN
+ ZQ&S)w(S)(Z(S)Q(S) —TI)e; (5.1.5)
s=1 o)
We have
s L S
Z E(S _E(S)>Q§S)ej < Z Qgs)w(s)(z(s) ES))Q(S)e]
s—1 00 s=1
S A~ ~
< Y|abe@i - 50| |0,
s=1 >
S
< @ [2® _ s (s) | Q)
B ; ) 0 1 0 oo 1€ 1
S
< Q) ’2(3’ () () QW)
< max o] 257 - 59| 3w
< S'7C%,2max aﬁs) max w'®,
and
S o s
S ISR ~Te)| < Y[ w(SOR e[
s=1 00 s=1




IN

SO -1,

[e.9]

s
(s)
; w

< S0y N maxw® = 6517902, max agS) max w'.

o

1

In sum, we have

S

3w <§<s> _ %s))

s=1

< 8C2, max @'” max Sw® /5°.

[e.9]

The proof is completed. O
Define a threshold estimator () = (Z;Z(j)) based on {QM) .. QO)} as

5 =091 {uw® |2

> 0.}
where 6, > 2C; Ao and Ag is given in Theorem [5.1.1| Also, define

(s)
wi]’o .

So :={(i,7,s): W) 4 04,8 :={(i,j,s) : @fj) #0} and Oy := min w®

ZJ70 (i>j7s)€SO

Similar to the Theorem 3 of [27], we have the following theorem. The proof is straight-

forward. Details are omitted.

Theorem 5.1.3. Suppose that (i) X,xns is generated from with all z; satisfying
condition (C1) with the same K, (i) Omin > 20,,. Then

~

P(Sy=8)>1-4Sp.

5.2 MODIFIED ESTIMATOR (2,

This section focuses on dealing with the expectation of the convergence rates, for example,
2
E (max Zle w'®) ‘Q(S)ej‘l) . In order to do that, we modify the estimator {2 to ensure that
J

the expectations exist. Let {ﬁlp} be the solution of the following optimization problem

S
min {mjax ; w'® |Q(S)ej ‘ 1 }

5.t ’i:gs)sz(s) —I’ < o, (5.2.1)

o0
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where S5 = 3() 4 pI with p > 0. Write ﬁ(s) = (wﬁ,@) Define the symmetrized estimator

p ) as in - ). Clearly, { ) 11 is a feasible point.

Theorem 5.2.1. Suppose that X,xns is generated from with all z; satisfying condition

(C1) with the same K. Let Ay = 12C); max; aﬁs), where 7 > 0. If p < ming af’), then

(i) If 5 1) Q) = Cy ST where 6 € (0,1), then

(s) <§§7s> )

with probability greater than 1 —4Sp~7.

O
Q

HMO:

< 16C2, max @\” max Sw® /S

o0

(i7) If there exists s(p) > 0 such that

Sl@

s=1 i=1

where § € (0,1), then

S
| (@) - ) o
s=1
(s)

1—q
< 2(1 4217743179 (166’2 M) s(p) max Sw'® /S?

min, w(®)

with probability greater than 1 — 4Sp~7

(#ii) If the conditions in (i) and (ii) are both satisfied, then

S
1 FaN s
~ 13w (g(ps) —Qf ))
p s=1 F
~ S ~
< Z w'®) (Q,(OS) - Q[()S)) mjaxz w'®) (QE)S) - Q(()s)> el
s=1 0o s=1

MOA
< 2(1+ 2794379 <16C’2 M) s(p)(max Sw*))? /5%

min, w(®) s

with probability greater than 1 — 4Sp™"

85



Proof of Theorem [5.2.1} (i) It is easy to check that

-0

- [(s -5t

o0 o0

(s) (s) (s
S HQO 1 ‘ZO B E(p) [e%¢)
< (oo i -5
s 1 [e%¢)
< o (5.2.2)

Thus {Q", - - Q(S } is a feasible solution of 1.} Therefore,

maXZw 1pej <max2w Q(S)ej (5.2.3)
s=1
Note that
(o)
S3(s) O (9) () (s
S (G CR IR
< 2\ (5.2.4)

It follows that

S
> w® (G - 0 e
s=1

S
< Sut|(85) - af)e,|
s=1
S ~
< Zw(S) Q(()S)E(()S) <Q§Z) _ Q(()S)> e N
s=1
s
< Zw(s) Q) ’28>( L,’ _Qés>> |
s=1
S AN A~ AN
< o], (55 (85 - )a]_+|(8-5) (82 -0) o] )
s=1
S AN A~
< S u||ef| (22+ |20 - 2P| (A - e )
s=1
S S R
< Zw(s) Q') X 2)\o + Z HQ[(]S) X ‘Eff) —x N (w(s) Q(S)ej +w® Qe 1)
s=1 s=1
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s s
< ;w@ 207 23, + Cag max [0 — 5 m; (0] 0)es] +u|0fe;] )
s
S
s=1
R s
+Cuy msax‘Egs) % N <max2w eJ —i—m]aXZw(s) Qe; 1)
s=1
S R s
oot 5] 23w o
s=1 =1
<

16C2, min @" max Sw'® /5°.

By the definition of 2, we have

3w <Q(5) >

(ii) Now, let us consider the L' norm.

(s) (ﬁg‘? - Qg;)) <1603, msin al?) max Sw'®/s°.

o0

5)

[

We assume the solution ﬁ(

is combined from the column solution set {6(-8)} of

0.2

Woij

with 3¢) being replaced by 5. By the definition of {Q } {<A(S )} we have

s s s
Zw(s) ﬁ(s)ej ) < Zw(s) ( )e] ) < Zw(s) Q(()s)ej X forj=1,---,p.
s=1 s=1 s=1

Denote
t = max |3 —wih|, where 9 = (w(3}).

(s) — (6 _ (s

L = <wm'j Wij,o> ,
(s) _— (~&q/1~06) _ (s

LY = <wpij]l(’wpij > 2t) wij@)’

L® = L& _-L®,

Then

s=1
S

< Yo (|0 +19) e, + (1,
s=1



S S
= Y w® (‘nyej 1) <3 wt (’Qé@ej
s=1

s=1

J

which implies

S S
Zw(s) ‘ng’k)ej’l < Zw(S) ‘Lf)ej‘l )
s=1

s=1

Thus

S S S S
> [E0e < 3w e, + 30 L, <20t 1.
s=1 s=1 s=1 s=1

Similar to the proof of Theorem 6 of [11], we have

S S p
Sl ), = 33w o \ s 20 - i)
s=1 s=1 i=1
S
< 33wl (u) < 21)|
s=1 i=1
S p
+ 3D W (el = 20 - wihn(wih| = 20)
s=1 i=1
S p
< Y w0 (85) - wh) 1| = 20)
s=1 i=1 s=1 i=1
S p
+ 30w wlhinal| = 26 - 1wl = 20}
s=1 i=1
S p
< 1 qz w® Wij,o —|—tZZw ‘ Wi > 2t)
s=1 i=1 s=1 i=1
S p
£ u <[a5) - h]y
s=1 i=1
S p
< (275)1"12 w® wi;,o —i—tZZw p” > 2t)
s=1 i=1 s=1 i=1
S p
+ZZw
s=1 i=1
S p S p
< (275)1_‘12 w'®) wf;)() —i—tl_qZZw
s=1 i=1 s=1 i=1
S D q
+(3t)1_qZZw(s) wf;)()
s=1 i=1
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bS]

(s) |?

s
< (L2703 Y Y Cwl) wl
s=1 i=1
< (14279 4 3 95(p) ST max w®).

s

w

By Theorem m, it is easy to see that ¢ < 16C%, max; ﬂgs)/ ming w®. Thus,

- p 1
s
_ (s) 1,08)
= m]aX;w ‘L ej‘l
S
) 11,0 e.
< Qm?xszlw |L* ej|1

< 214 217 4 319 95(p) max Sw® /S°
max, @} o

1=q l=q 2 T8 L (s) 1 gf

< 2(14+277+3 )(16CM insw($)> s(p) mngw /S°.

(iii) It is easy to check that

S 2 S S
1 S O (s B S O (s B S O (s S
» Zw”((lg)—ﬂ(())) < Zw”(ﬂg)—ﬂé)) maxZw() (QE;)_Q(())>QJ'1
s=1 F s=1 ) s=1
max; ") o
1—q 1—q 2 s Y1 (8)\2 7 @26
< 2142774379 <16CM—mins w(5)> s(p)(mSaXSw )°/S%.
The proof is completed. 0

Theorem 5.2.2. Under the conditions of Theorem and min{min, aﬁs),p—C} <p<

ming af) with ¢ > 0, if p > n§ with £ > 0, we have

~ 2
Q) — ) ~0 ((q?w max, ") max, Sw®)? /529) ,

(i) E (T2, w®

~ 2 ~(s)
(ii) E (ma; S5, 0 | (257 - 257 ) )] ) =0(<cﬁ%>2ﬂq>s2<p><max35w<s>>2/s%),
1 S

~ 2 ~(s)
(iii) EX HZL w®) (99 - Q((f)) HF ~0 ((02 maxs 071y (2-4) o () (max, Sw®))? /529) .

M ming w(s)

-1
Proof of Theorem |5.2.2 Note that {(E?) } is a feasible solution of (|5.2.1). Note

also that

ng))ej

S
. < max w®
1 j SZ:

1



IN
=
5

[
g/\

A
=
>

i~
g/\

IN
3

i~
EA

S
—~ -1
< Py (S)
s=1
S
= pz w(S)/)‘min (EEJS)> )
s=1

S
< pY w/p=p/p
s=1

2
Thus E (maxj Zle w®) ) is well defined. The proofs similarly follow
1

(ﬁgs) - Qés)> €;

the proof of Theorems 2 and 5 of [11]. O

For LPDD model, similarly, we only need to assume p > (logn,)¢ in the above theorem.

5.3 EXTENSION TO HEAVY TAIL DATA

In this section, we extend the previous results for the precision matrices estimators to heavy-

tailed data in (C2) and (C3). Define
i) = max { (oK (2/0)10g p] #2768 . (2 K2(4/9) " log p] 27 (g2 /) 2}, (5.3.1)

and
i) = ot max { 3p®+ 2/l g, ap 24 (gl )12 (5:3.2)

where ¢y = (74 2)/c¢; with 7 > 0 and ¢; > 0 is an absolute constant, gés), g}s), g2, and gp are

defined in d3.1.1|) and d3.1.2b. We assume ﬂgs), ﬂgs) — 0 as ngy — 00.

Theorem 5.3.1. (Generalized sub-exponential tails) Assume condition (C1), parameter K,
and ﬁgs) replaced by condition (C2), parameters {K, v}, and ﬂgs), respectively, then Theo-
rems hold.
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Theorem 5.3.2. (Polynomial-type tails) Assume condition (C1), parameter K, and

ﬂgs) replaced by condition (C3), parameters {k,n}, and ﬂés)

rems hold.

, respectively, then Theo-

The proofs of Theorems [5.3.1]and [5.3.2| are similar to the proofs of the preceding theorems

by using the corresponding results given in Lemmas A.1, A.2 and A.3 of [35] for conditions

(C2) and (C3), respectively. Details are omitted.

5.4 COMPUTATION

We can reformulate ((5.0.1) into the linear programming form ([3.4.2)). The numerical algo-
rithm is similar to that of Chapter 3. In order to do that, we need to use the following vector

a, matrix A, and vector b

a = w0 O ]
—_——— —_————
p p
a = —(aa),
b,
M = and b = ,
—A b

(1) O,y -+ Opp
i Opxp I Opxp |
Opxp Opxp 3©)
A2+ € Ao — €
bl - y b2 -
)\2 +e; )\2 — €
Spx1 Spx1

and we need to use (5.0.3)) to symmeterize matrices.
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5.4.1 WEIGHT SELECTION

We can take weights w(® (s = 1,---,9) as tuning parameters and select them in
the following way. We set the tuning parameters {w(*)} to make the upper bound of

max;; (Zil o — W)

) achieve its minima. Similar to the proof of Theorem 1 of [27], we

ij )
have
S N S N N
Z ](Qgs) — Q(()S))ejfoo < Cuy Zw(S) Qgs)ej 1 ’E(()S) O /w(S) 1+ SCy s
s=1 s=1 e

IN

S
Cy max E w® |Q(5)ej‘1 max (‘E(()s) (O /w(s)> + SCus
J S o0
s=1

IN

Cmax| s — £

/w(s) + SCM)\Q

< Cimax ‘E(()s) — 36

Jw® + 65C2, max @®.

Hence, we only need to minimize max ‘2(()3) SO O

We will conduct the computation in three steps. Step 1. Compute gés), ggf); Step 2. Select

~(5) (5)
Wiim — Wijo

the weight {w®)} by minimizing the upper bound of max;; (Zle

) as above;
Step 3. Compute the precision matrix by the vector optimization problem. We evaluate the

numerical performance of the Joint estimators for high dimensional precision matrices.

5.5 NUMERICAL EXPERIMENTS

5.5.1 RESULTS OF SIMULATION STUDY

Since this chapter is about weighted-Joint, we study the weight estimation first. We sample

X(S)

pXn

(s = 1,---,5) 20 times with distribution £¢) and a € {0.1,0.25,0.5,1,2}. Then
compute weight {w®} by the above computation steps, and repeat 50 times. Because each
group is generated in the same way, the optimal weight is the uniform weight, 1/4 = 0.25.
Tables 5.2 report the estimated weights for Groups 1-4. Overall, the weights are sub-
stantially different with the uniform weights in some settings, and the higher the dimension

is, the closer the estimated weights are to the uniform weights. In Table (p = 50), for
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Model 1 and p = 0.1 or 4 and for Model 2 and p = 4, the difference between the estimated
and the uniform weights is large. For Model 1 with & = 1 or 2 and p = 1 and for Model 2
with & = 2 and p = 1, the estimated weights are somewhat close to the uniform weights,
but difference still exists. In the other settings, the difference is marginal, and the estimated
weights are close to 0.25. In Table (p = 100), for Model 1 and p = 0.1, and for Model 2
and « = 1 or 2 and p = 1 or 4, the difference between the estimated and the uniform weights
is large. For Model 1 with @ = 1 or 2 and p = 0.25, the estimated weights are somewhat
close to the uniform weights, but difference still exists. In the other settings, the difference
is marginal, and the estimated weights are close to 0.25.

In what follows, we compare the performance between SCLIME and weighted-Joint. We
prespecified Ay from 0.05 to 0.25, the step is 0.01. In the tables, “Joint” stands for the
algorithm introduced in this chapter. Tables|5.3H5.4| show the results of the simulation study.
Tables and imply that, (i) if p = 50, @ = 0.1, Joint performs apparently better
than SCLIME for both models in terms of the Frobenius norms; (ii) if p = 50, a = 0.25
or 0.5, and p = 0.1,0.25, or 1, Joint performs apparently better than SCLIME for both
models in terms of the Frobenius norms; (iii) if p = 100 and a = 0.1 or 0.25, Joint performs
apparently better than SCLIME for both models in terms of the Frobenius norms, sometimes
significantly better. Except the above settings, occasionally, SCLIME performs significantly

better than Joint, generally, no apparent difference.

5.5.2 RFMRI DATA ANALYSIS

We analyze the same rfMRI data set in Chapter 3 for the estimation of precision matrices
and brain functional connectivity by our Joint. For these 3 groups by Joint, the minimum
connectivity is 0, the maximum connectivity is 35, and the median is 13.5. It is apparently

higher than that of ordinary JEMP and weighted-JEMP.
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Table 5.1: Average (SD) weight for p = 50

@ P weight 1 weight 2 weight 3 weight 4
Model 1

0.1 0.1 0.2084(0.0244) 0.3122(0.0313) 0.2546(0.0308) 0.2248(0.0276)
0.25 0.2416(0.0213)  0.2518(0.0249) 0.2592(0.0239) 0.2474(0.0209)

1 0.253(0.0223)  0.235(0.0213) 0.2722(0.0313) 0.2398(0.0258)

4 0.101(0.0036)  0.626(0.0284) 0.1008(0.0034) 0.1722(0.0256)

0.25 0.1 0.2084(0.0197)  0.314(0.0337) 0.2568(0.0285) 0.2208(0.0245)
0.25 0.2458(0.0219) 0.2638(0.0244) 0.2478(0.0195) 0.2426(0.0223)

1 0.2578(0.0245) 0.2362(0.0236)  0.275(0.0378)  0.231(0.0208)

4 0.1006(0.0024) 0.6306(0.0247) 0.1002(0.0014) 0.1686(0.0232)

0.5 0.1 0.2022(0.0178) 0.319(0.029) 0.2622(0.0257) 0.2166(0.0203)
0.25 0.2454(0.0221)  0.261(0.0228) 0.2494(0.0194) 0.2442(0.0241)

1 0.2578(0. 0249) 0.237(0.0225) 0.2788(0. 0321) 0.2264(0.0188)

4 0.1(0) 0.6356(0.0193) 0.1(0) 0.1644(0.0193)

1 01 0.19(0. 0147) 0.3192(0.0194)  0.2672(0. 0178) 0.2236(0.0132)
0.25 0.2436(0.016) 0.2566(0.0207) 0.2566(0.0148) 0.2432(0.0148)

1 0.2478(0. 0131) 0.2314(0.0148)  0.2986(0. 0208) 0.2222(0.0133)

4 0.1(0)  0.646(0.0095) 0.1(0)  0.154(0.0095)

2 041 0.19(0. 009) 0.3158(0.0116)  0.2704(0. 0109) 0.2238(0.0092)
0.25 0.243(0.0081) 0.2574(0.0126) 0.2588(0.0115) 0.2408(0.0105)

1 0.2456(0. 0088) 0.2284(0.0089)  0.3108(0. 0121) 0.2152(0.0071)

4 0.1(0) 0.6488(0.0075) 0.1(0) 0.1512(0.0075)

Model 2

0.1 0.1 0.2484(0.0214)  0.2528(0.0205) 0.2458(0.0208)  0.253(0.0275)
0.25 0.2464(0.0191)  0.2522(0.0227) 0.2566(0.0186) 0.2448(0.0164)

1 0.245(0. 0227) 0.255(0. 0242) 0.2634(0. 0307) 0.2366/(0. 0251)

4 0.7(0) 0.1(0) 0.1(0) 0.1(0)

0.25 0.1 0.2528(0 0225) 0.2526(0 0185) 0.2478(0 0159) 0.2468(0 018)
0.25 0.2502(0.0204) 0.2516(0.0186) 0.2468(0.0172) 0.2514(0.0195)

1 0.2526(0. 0201) 0.2436(0. 0239) 0.2624(0. 0258) 0.2414(0. 0234)

4 0.7(0) 0.1(0) 0.1(0) 0.1(0)

0.5 0.1 0.255(0. 0195) 0.2494(0. 0161) 0.2464(0. 0161) 0.2492(0. 0163)
0.25 0.2484(0.0162) 0.25(0.0171) 0.2486(0.0164)  0.253(0.0178)

1 0.2492(0. 0201) 0.2486(0. 0219) 0. 2654(0 026) 0.2368(0. 0206)

4 0.7(0) 0.1(0) 0.1(0) 0.1(0)

1 01 0.2448(0. 0109) 0.251(0. 0123) 0.2534(0. 0132) 0.2508(0. 0128)
0.25 0.244(0.0162) 0.2576(0.0162)  0.249(0.0136) 0.2494(0.0117)

1 0.253(0. 0159) 0.2504(0. 0164) 0.2694(0. 0187) 0.2272(0. 0155)

4 0.7(0) 0.1(0) 0.1(0) 0.1(0)

2 01 0.2498(0. 0082) 0.249(0. 0071) 0.2538(0. 0075) 0.2474(0. 0075)
0.25 0.2384(0.0084) 0.2652(0.0076) 0.2494(0.0059)  0.247(0.0061)

1 0.2572(0. 0081) 0.2506(0. 0079) 0.2766(0. 0114) 0.2156(0. 0064)

4 0.7(0) 0.1(0) 0.1(0) 0.1(0)
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Table 5.2: Average (SD) weight for p = 100

@ P weight 1 weight 2 weight 3 weight 4
Model 1

0.1 0.1 0.3516(0.0306) 0.3596(0.0387) 0.1566(0.0211) 0.1322(0.0202)
0.25 0.2296(0.0232)  0.2374(0.026) 0.2758(0.0306)  0.2572(0.027)

1 0.238(0.0212) 0.2432(0.0221) 0.2596(0.0271)  0.2592(0.023)

4 0.2518(0.026) 0.241(0.022) 0.2562(0.0251)  0.251(0.0195)

0.25 0.1 0.346(0.0334)  0.3694(0.0439)  0.153(0.0209) 0.1316(0.0194)
0.25 0.2256(0.0212) 0.2386(0.0213)  0.2826(0.036) 0.2532(0.0292)

1 0.2308(0.0216) 0.2418(0.0255) 0.2622(0.0261) 0.2652(0.0262)

4 0.253(0.0218)  0.2502(0.023) 0.2552(0.0219) 0.2416(0.0245)

0.5 0.1 0.3478(0.0309) 0.3744(0.0386) 0.1512(0.0198) 0.1266(0.0165)
0.25 0.2224(0.0205) 0.2368(0.0203)  0.286(0.0323) 0.2548(0.0272)

1 0.2326(0.0184)  0.2424(0.019) 0.2618(0.0256) 0.2632(0.0236)

4 0.2556(0.0209) 0.2508(0.0189) 0.2534(0.0238) 0.2402(0.0232)

1 01 0.3506(0.0133) 0.3942(0.0173)  0.139(0.0093) 0.1162(0.0109)
0.25 0.2146(0.0147) 0.2322(0.0147) 0.3002(0.0203)  0.253(0.0181)

1 0.2358(0.0139)  0.235(0.0115) 0.2628(0.0157) 0.2664(0.0163)

4 0.2434(0.017)  0.2514(0.0159) 0.2598(0.0155)  0.2454(0.015)

2 041 0.3538(0.009) 0.3956(0.0105) 0.1352(0.0058) 0.1154(0.0068)
0.25 0.2042(0.0095)  0.238(0.0097) 0.3032(0.0106) 0.2546(0.0095)

1 0.2316(0.0077)  0.234(0.0073) 0.2558(0.0109) 0.2786(0.0107)

4 0.2454(0.0101)  0.2488(0.0075) 0.2618(0.0114)  0.244(0.0078)

Model 2

0.1 0.1 0.245(0.0191)  0.2548(0.0201)  0.248(0.0202) 0.2522(0.0209)
0.25 0.2472(0.0215)  0.2442(0.0207) 0.2552(0.0233) 0.2534(0.0255)

1 0.2626(0.0302) 0.2392(0.0272) 0.28(0.0389) 0.2182(0.0198)

4 0.2458(0.0233)  0.2378(0.0223)  0.248(0.0252)  0.2684(0.026)

0.25 0.1 0.2498(0.02) 0.2526(0.0203) 0.2436(0.0161)  0.254(0.0193)
0.25 0.2448(0.0167) 0.2498(0.0208) 0.2588(0.0172) 0.2466(0.0194)

1 0.259(0.0303)  0.245(0.0297)  0.278(0.0253) 0.218(0.023)

4 0.2438(0.0216) 0.23(0.0195)  0.257(0.0247) 0.2692(0.0249)

0.5 0.1 0.25(0.0183)  0.251(0.0159) 0.2456(0.0172) 0.2534(0.0187)
0.25 0.2466(0.0165)  0.2466(0.017) 0.2578(0.0189)  0.249(0.0157)

1 0.261(0.0259)  0.245(0.0253)  0.279(0.0263)  0.215(0.0207)

4 0.2416(0.019)  0.2326(0.0168)  0.255(0.0232) 0.2708(0.0236)

1 01 0.2516(0.0145) 0.2506(0.0136)  0.246(0.0165) 0.2518(0.0129)
0.25 0.2446(0.0122) 0.2454(0.0139) 0.2584(0.0149) 0.2516(0.0125)

1 0.2604(0.0183) 0.2374(0.0194)  0.3076(0.021) 0.1946(0.0125)

4 0.237(0.0137)  0.2202(0.0156) 0.2498(0.0145)  0.293(0.0164)

2 01 0.2534(0.0082)  0.2452(0.0074)  0.242(0.0067) 0.2594(0.0111)
0.25 0.243(0.0086) 0.2438(0.0075) 0.26(0.0093) 0.2532(0.0071)

1 0.2618(0.0127) 0.2304(0.0109) 0.3166(0.0135) 0.1912(0.0077)

4 0.2336(0.0101) 0.2146(0.0079) 0.2466(0.0096) 0.3052(0.0127)
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Table 5.3: Comparison of average (SD) matrix losses for p = 50

SCLIME Joint SCLIME Joint
Q@ p Spectral norm Frobenius norm
Model 1
0.1 0.1 7.3422(0.3566)  8.0262(0.7119) 30.0442(0.9959) 27.1075(1.7891)
0.25 7.4576(0.2451)  8.4302(0.7103) 31.0838(0.8742) 28.9636(1.5121)
1 7.5935(0.3112)  8.0862(0.5829) 31.281(0.9004) 27.4566(1.6587)
4 8.4898(0.7337) 6.0131(0.6158) 34.0082(2.694)  20.109(2.2924)
0.25 0.1 2.5548(0.1166) 2.4192(0.1815) 8.979(0.3933)  7.7491(0.4788)
0.25 2.5351(0.1314)  2.3972(0.1177) 9.0665(0.4166)  7.8077(0.2998)
1 2.6534(0.1397) 2.4572(0.1761) 9.3876(0.466)  7.8991(0.4994)
4 3.188(0.4022) 5.2706(0.5627) 10.6842(1.3126) 17.1432(1.6608)
0.5 0.1 1.2543(0.0693)  1.2062(0.0901) 4.0387(0.168)  3.8691(0.1702)
0.25 1.2325(0.0785)  1.2002(0.0934) 3.9957(0.1707)  3.7744(0.1996)
1 1.3004(0.0795)  1.2341(0.094) 4.1842(0.219)  3.9139(0.1827)
4 1.6605(0.2025)  3.2807(0.342) 5.1548(0.5732)  9.9503(0.9592)
1 01 0.8006(0.0312)  0.8462(0.0357) 2.566(0.0517)  2.6626(0.0609)
0.25 0.7321(0.028)  0.7508(0.0303) 2.413(0.0369)  2.4435(0.0398)
1 0.7623(0.0233) 0.7929(0.0339) 2.5553(0.0477)  2.6226(0.0431)
4 1.1566(0.0769)  1.4052(0.2078) 3.5698(0.1661)  4.1448(0.4616)
2 041 0.8013(0.0311) 0.8089(0.0448) 2.3509(0.0553)  2.3721(0.0966)
0.25 0.7229(0.0226) 0.7406(0.0228) 2.1873(0.0437)  2.2261(0.0376)
1 0.7416(0.0216) 0.7607(0.0239) 2.2716(0.0355)  2.3178(0.0497)
4 0.9755(0.0448) 0.9235(0.0622) 3.1362(0.1101) 2.8834(0.09)
Model 2
0.1 0.1 7.4786(0.2101) 8.8921(0.6767) 31.8289(0.758) 31.3341(1.6403)
0.25 7.5204(0.2372) 8.7997(0.6127) 31.9076(0.8567) 31.1166(1.5828)
1 7.5323(0.2538) 8.9481(0.5451) 31.6324(0.8335) 30.8231(1.2818)
4 6.8425(0.7066)  5.0507(0.558) 27.053(2.3511)  14.9335(0.8595)
0.25 0.1 2.5422(0.1049)  2.556(0.1656) 9.3173(0.346)  8.5754(0.3512)
0.25 2.547(0.1256) 2.5617(0.1712) 9.3313(0.3673)  8.5574(0.3953)
1 2.5592(0.0984) 2.5006(0.1345) 9.3329(0.3435)  8.3611(0.3485)
4 2.742(0.2182) 5.7981(1.9469) 9.7537(0.7667) 18.8084(6.1082)
0.5 0.1 1.2162(0.0715) 1.2155(0.1073) 3.9003(0.1677)  3.6771(0.2334)
0.25 1.1843(0.0578) 1.1566(0.0951) 3.8548(0.1488)  3.5876(0.2491)
1 1.2162(0.0642) 1.2117(0.0894) 3.8981(0.1728)  3.6912(0.1548)
4 1.6245(0.1341)  3.2028(0.4083) 5.4452(0.3647)  9.8753(1.1542)
1 01 0.5633(0.0356)  0.5491(0.0405) 1.8395(0.0732)  1.7226(0.0608)
0.25 0.569(0.0312)  0.5603(0.0344) 1.8464(0.0588)  1.7451(0.0502)
1 0.6064(0.028) 0.6101(0.0391) 1.977(0.0494)  1.9278(0.0699)
4 1.0828(0.0455)  1.476(0.0679) 3.7852(0.0725)  4.2703(0.1108)
2 0.1 0.4888(0.0214) 0.4786(0.0231) 1.4671(0.0301)  1.3723(0.0333)
0.25 0.5153(0.0267)  0.5095(0.0286) 1.5084(0.0297) 1.424(0.0317)
1 0.5617(0.0217)  0.5587(0.0287) 1.664(0.0333)  1.6094(0.0418)
4 0.9993(0.0238)  0.8554(0.0532) 3.462(0.0354)  2.4739(0.0831)
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Table 5.4: Comparison of average (SD) matrix losses for p = 100

SCLIME Joint SCLIME Joint
Q@ p Spectral norm Frobenius norm
Model 1
0.1 0.1 8.2916(0.8387) 8.0836(0.6491) 49.9714(4.582) 36.7674(2.9551)
0.25 8.7608(0.4786) 8.7237(0.6116) 53.5359(2.4532) 41.1232(2.0235)
1 8.066(0.4542) 8.3149(0.5366) 49.879(2.47) 38.1606(1.8042)
4 7.9247(0.5105)  7.7772(0.5492) 48.9273(2.6849)  35.622(1.6146)
0.25 0.1 2.7247(0.1433) 2.4331(0.1614) 13.3898(0.5393)  10.5234(0.5714)
0.25 2.7988(0.1287) 2.5451(0.1794) 14.2116(0.5102)  11.1625(0.483)
1 2.7569(0.1043)  2.425(0.1601) 13.9332(0.5264)  10.464(0.4586)
4 2.6299(0.1222) 2.2851(0.1379) 13.1427(0.6099)  9.7812(0.2747)
0.5 0.1 1.315(0.0857)  3.391(1.1075) 5.9231(0.2441)  14.9783(4.814)
0.25 1.3608(0.0577)  1.9254(1.485) 6.1493(0.1972)  8.4979(6.7995)
1 1.3513(0.0658)  2.8675(1.7255) 6.0731(0.2077) 12.8117(7.8052)
4 1.3435(0.0509)  3.7323(1.7268) 6.0848(0.1834) 16.5892(7.5335)
1 01 0.8857(0.0307)  2.2098(0.4505) 3.9214(0.0473)  9.0145(1.8508)
0.25 0.7856(0.0246)  0.9207(0.3529) 3.6088(0.0429)  3.9731(1.4808)
1 0.8319(0.0221) 2.4453(0.5293) 3.8161(0.0366) 10.1235(2.0885)
4 0.9099(0.0188)  2.3269(0.6403) 4.322(0.0239)  9.6357(2.4321)
2 041 0.9118(0.0226)  1.5141(0.126) 3.7522(0.0757)  5.8817(0.4262)
0.25 0.8097(0.0188) 0.8429(0.0232) 3.3759(0.0461)  3.4847(0.0652)
1 0.853(0.0157)  0.8918(0.0177) 3.5789(0.0435)  3.6985(0.0325)
4 0.9353(0.0156) 1.0013(0.0229) 4.1351(0.0458)  4.3952(0.0872)
Model 2
0.1 0.1 9.2967(0.4369) 9.4896(0.6373) 56.4275(2.3172) 45.4309(2.2526)
0.25 9.2136(0.4281) 9.3945(0.6509) 56.327(2.2826) 44.9379(2.2564)
1 8.405(0.4129) 8.7049(0.4422) 51.818(2.3159) 40.0793(1.9151)
4 8.2434(0.6028) 8.2042(0.4948) 50.9657(3.2031) 38.2577(1.8575)
0.25 0.1 2.8867(0.1134)  2.6877(0.156) 15.0803(0.5158) 12.0609(0.2124)
0.25 2.8446(0.1146) 2.6645(0.1701) 14.9087(0.5353)  11.909(0.3842)
1 2.8033(0.1292) 2.5589(0.1701) 14.3192(0.5911)  11.1749(0.5875)
4 2.7552(0.1266) 2.4335(0.1542) 13.8253(0.6054) 10.4867(0.4645)
0.5 0.1 1.3967(0.0565) 1.2963(0.0643) 6.2999(0.2315)  5.2788(0.1328)
0.25 1.3711(0.0562) 1.2568(0.0613) 6.2353(0.2244)  5.2397(0.1216)
1 1.3498(0.059) 3.0057(1.8307) 6.0388(0.2058) 13.2595(8.3516)
4 1.3634(0.0536)  3.1202(1.8731) 6.1103(0.2141) 13.9106(8.3962)
1 01 0.6559(0.0295) 0.6501(0.0317) 2.9758(0.0736)  2.8707(0.0518)
0.25 0.6643(0.0237) 0.6677(0.0206) 3.0494(0.0585)  2.9807(0.0436)
1 0.7278(0.0194) 1.8967(0.9179) 3.3172(0.0423)  7.9415(3.7564)
4 0.8353(0.0211)  1.6304(0.8485) 3.9022(0.0344)  6.9268(3.3964)
2 0.1 0.6126(0.0202)  0.613(0.0188) 2.541(0.0323)  2.4848(0.0301)
0.25 0.6438(0.0139)  0.6538(0.014) 2.6622(0.0346)  2.6359(0.0341)
1 0.7223(0.0232)  0.7362(0.0275) 3.01(0.055)  3.0209(0.0804)
4 0.8619(0.0204) 0.9136(0.0181) 3.6323(0.0427)  3.8003(0.0287)
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Table 5.5: Top 10 hubs for direct connectivity of Groups 1 — 3 found by Joint

Rank Group 1 Group 2 Group 3

1 21 10 38
2 10 19 16
3 5 20 32
4 20 1 3
) 18 15 28
6 4 18 18
7 1 21 36
8 17 38 12
9 6 32 21
10 9 4 22

Table 5.6: Top 10 hubs for direct connectivity of Group 1 found by Joint
Joint Rank Order in 50 Joint Degree SCLIME rank SCLIME degree

1 21 35 2 47
2 10 32 3 46
3 5 26 4 45
4 20 25 1 47
) 18 24 10 44
6 4 23 8 44
7 1 22 7 44
8 17 21 19 43
9 6 20 47 7
10 9 20 9 44

The top 10 hubs by Joint are reported in Table [5.5] We can see that the six time series
(1, 4, 10, 18, 20, and 21) are found in their top 10 hubs of Group 1 and Group 2. This implies
that Joint works well, and finds some common information between Group 1 and Group 2.
Table lists top 10 hubs of Group 1 found by Joint and their degrees of connectivity.
Also, they are compared with the results from SCLIME. It can be seen that top 10 hubs of
Group 1 by Joint has 8 overlaps with those of SCLIME: time series 1, 4, 5, 9,10, 18, 20, and

21. It implies that the results of Joint are very similar to those of CLIME for this subject.
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CHAPTER 6

FUTURE WORK

Since the current R-package fastclime is not good at solving very high dimensional linear
problems and the True-positive ratio is very low in the simulation study, we plan to conduct
more simulation studies and real data analysis with high dimension. We are particularly
interested in fMRI group precision matrices analysis, because the inference and visualization
of brain network using a graphical model is widely used in fMRI analysis. The proposed
methods of joint;y estimating individual and group precision matrices can provide a repre-

sentative and robust estimation of brain networks.
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