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ABSTRACT 

This dissertation investigates element-level inspection data available in the National Bridge 

Inventory and proposes a novel coactive prioritization model for bridge asset management. The 

model accounts for time-dependent element interactions, referred to as coactiveness, in predicting 

bridge performance resulting from preventive maintenance, rehabilitation, or replacement (MRR) 

activities. The proposed coactive model hypothesizes that if one repairs one element, it should 

reduce the deterioration of other elements. Those improved elements, in turn, reduce the 

deterioration of the repaired element and so forth. Therefore, this study aims to enable data-driven 

time-dependent element interactions for MRR decision-making. The proposed model is used to 

analyze Georgia’s bridges at first. It is concluded that accounting for element interactions that are 

present in the element-data yields more realistic, and thus less overly conservative, performance 

predictions. The results also indicate that the overall Bridge Health Index (BHI) improves by 20% 

over the subsequent 20 years when expansion joints are repaired utilizing the coactive 

prioritization mechanism. In a subsequent study, it is concluded that coactive relationships exist 

among elements in the Alabama and Florida bridge inventories. In Alabama, MRR on bridge deck 

elements are more influential than MRR on the expansion joint for the long-term bridge 



 

 

performance. It is concluded from this study that early preventive maintenance implemented in 

Florida most leverages the coactive mechanism. However, most states that do not have as much 

resources as Florida for early maintenance should benefit from the coactive model. Therefore, 

three additional bridge inventories of Virginia, Pennsylvania, and New York are investigated to 

study the effectiveness of employing the coactive model. They are known to have an excellent 

bridge preservation program. In this last study, both state-owned and NHS bridges are investigated. 

A game theory model is applied to decision-making, and payoffs of two major players, the Federal 

Highway Administration and a state agency are evaluated. The analysis confirms that long-term 

bridge performance predictions leveraging a coactive mechanism are effective in prioritizing 

elements for MRR decisions.  
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CHAPTER 1 

1. INTRODUCTION 

 This chapter presents the background information, objectives, significance, and 

methodology employed in this study.  

1.1 Background 

The first subsection introduces the basic knowledge required to understand how bridge 

management practices in the United States. Bridge element performance and interactions are also 

presented as prerequisites to the Co-Active model presented in this dissertation.  

1.1.1 U.S. Transportation Agencies’ Bridge Asset Management Strategy 

Due to the complexity of bridges, optimal management strategies are crucial to keeping them in a 

safe condition, particularly in places where a large network of bridges exist. In Georgia, for 

example, there are approximately 15,000 in-service bridges. To cope with such a huge network of 

bridges, Bridge Management Systems (BMSs) has been developing since the early 1990’s to 

manage bridges efficiently (Guoping Bu, Lee, Guan, Blumenstein, & Loo, 2011). Bridge 

Management System, according to Federal Highway Administration (FHWA., 2017), is “a 

systematic process that provides, analyzes, and summarizes bridge information for use in selecting 

and implementing cost-effective bridge construction, rehabilitation, and maintenance programs.” 

Thus, BMSs have been critical to the successful implementation of various bridge management 

programs, enhancing the capability of bridge maintenance agencies to preserve public investment 

and users’ safety. 
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1.1.2 Bridge Performance Measures 

Bridge performance analysis generally entails a rigorous process of obtaining useful information 

crucial to the optimization of short- and long-term investment plans for bridge maintenance, repair, 

and rehabilitation (MR&R). Developing a performance-based approach to bridge management is 

critical for establishing accountability and improving the effectiveness of decision-making 

processes (Campbell, Perry, Connor, & Lloyd, 2016; Hearn, 2015). The scope and application of 

such analysis largely depend on the bridge management program and, by extension, bridge 

performance measures. As such, the adoption of an appropriate bridge performance measure is a 

prerequisite to the attainment of bridge management performance goals. AASHTO sufficiency 

rating, NBI general condition rating, among others, have been routinely used as bridge 

performance measures since 1970’s. The AASHTO sufficiency rating is a numeric value that 

indicates safety, functionality, overall adequacy, and ability of a bridge to remain in service. It was 

superseded by the Moving Ahead for Progress in the 21st Century, also known as MAP-21, 

legislation (Anderson, Rizzo, Huston, & Dewoolkar, 2017; Chase, Adu-Gyamfi, Aktan, & Minaie, 

2016; Weidner et al., 2018). Unlike the sufficiency rating (SR) which provides a ‘single-digit’ 

rating for a complete bridge, general condition rating (GCR) separately describes the performance 

of the three major bridge components (deck, superstructure, and substructure).  

While these approaches have been greatly streamlined, inherent deficiencies such as their 

inability to capture depreciation of bridge elements, particularly when the condition rating drops, 

have been well-documented in the literature (Fereshtehnejad et al., 2018; Jeong, Kim, Lee, & Lee, 

2018; Jonnalagadda, Ross, & Khademi, 2016; Lake & Seskis, 2013). The NBI GCR approach 

provides information on the severity of a condition but does not provide a quantitative evaluation 

of the degree of the severity (Lake & Seskis, 2013). 
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1.1.3 Bridge Element Level Inspection Data and Bridge Health Index  

Recently, a performance measure based on bridge health index utilizing element-based bridge 

inspection data has gained widespread attention in the United States. As the popularity of bridge 

health index increases, recent publications have recognized the potential benefits of the 

computation of bridge health index utilizing an element-based analysis and call for consideration 

of such performance analysis for infrastructure investments, including investments in highway 

bridge programs (Chase et al., 2016; Inkoom, Sobanjo, Thompson, Kerr, & Twumasi-Boakye, 

2017; Thomas & Sobanjo, 2012, 2016; Thompson, Bye, Western, & Valeo, 2018). 

1.1.4 Bridge Element Interactions and MRR Prioritization Strategy  

National Cooperative Highway Research Program (NCHRP) Report 551, ‘‘Performance Measures 

and Targets for Transportation Asset Management’’ presents a step-by-step guide for identifying 

performance measures and establishing target values (NCHRP, 2006). However, a commonly 

accepted, comprehensive methodology for bridge element-based performance analysis that 

recognizes interdependencies among bridge elements does not exist. Research is therefore needed, 

to provide bridge engineering professionals with a streamlined methodology for the utilization of 

element-based inspection records, most especially at a network level, to aid them in the 

prioritization and selection of the most appropriate bridge improvement alternatives that could 

result in the highest yield on investment. 

1.2 Problem Statement 

A bridge performance evaluation entails a rigorous process of obtaining its element condition 

states. However, a performance measure (or BHI) is not the only factor that determines a bridge 

action (preventive maintenance, rehabilitation, or replacement) priority. Factors such as the bridge 

action costs (i.e., preventive maintenance, rehabilitation, or replacement costs), threshold BHI, and 
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life cycle affect a bridge action prioritization plan. Thus, an efficient prioritization analysis 

incorporating such factors optimizes the allocation of limited funds because it enables cost-

effective preventive maintenance, rehabilitation, or replacement (MRR) decisions (Phillips, 2017; 

Puls, Hueste, Hurlebaus, & Damnjanovic, 2018). Among the factors, the bridge service life is 

dependent on the complex interactions among elements. There are groups of elements that act 

together to affect the BHI. They are referred to as “Co-Active elements” in this dissertation. When 

one prioritizes these elements for a bridge action (e.g., deck treatment as preventive maintenance), 

the overall bridge performance significantly improves (Inkoom & Sobanjo, 2018; Sabatino & 

Frangopol, 2017), and the improvement should be quantifiable.  

1.3 Research Objectives 

This study aims to enable data-driven time-dependent element interactions for MRR decision-

making. The specific aims of this dissertation are listed below and repeated in each chapter.  

Chapter 1 aims to: 

1. Review state-of-the-art strategies for bridge asset management in the United States. 

2. Synthesize information regarding element-level bridge inspection data and bridge health 

index, and how element interactions influence decision making on prioritization strategies for 

bridge maintenance, rehabilitation, or replacement (MRR).  

3. Present background information on the critical components of this dissertation.  

 

Chapter 2 aims to: 

1. Develop MATLAB codes that can be used to conduct a preliminary analysis of element-level 

bridge inspection data and obtain critical information that is influential to element and overall 

bridge performance.  
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2. Ensure that element-based inspection data are sufficient (in terms of quality and format) as an 

input file for Matlab® (©The MathWorks, Inc., 1994 – 2018), which is one of the primary 

software used for this study. 

 

Chapter 3 aims to: 

1.  Review, analyze, and identify possible knowledge gaps and make suggestions for future 

research in the application of BHI as a performance measure in the bridge management system.  

2. Compute BHI and definition of important concepts, namely, AASHTO CoRe elements, 

condition states, and element health index coefficient, are reviewed; second, sensitivity 

analysis of Caltrans BHI and Denver BHI; then, recommendations for the computation and 

improvement in the application of DBHI; finally, the conclusions are drawn from key findings 

for the advancement of frontiers of knowledge in the research field. 

 

Chapter 4 aims to: 

1. Analyze element-level bridge inspection data and develop age-bin based depreciation model 

for each element.  

2. Determine how the age-bin based depreciation models compare with the depreciation models 

obtained from the National Bridge Inventory data. 

 

Chapter 5 aims to answer the following research questions: 

1.  Can one define inter-dependent relationships among bridge elements’ health indices? 
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2. How should one optimize a return on investment (ROI) in terms of bridge service life 

extension? That is, how should one quantify the effects of inter-element relationships as a 

function of time and evaluate bridge long-term performance? 

3. Do inter-element relationships affect importance weighting factors and help prioritize actions 

(preventive maintenance, rehabilitation, or replacement) on bridge elements? 

 

Specifically, Chapter 6 aims to answer the following three key questions by analyzing bridge 

inventories in three states: 

1. Does Co-Activeness, among bridge elements, exist in the element data? 

2. If exists, is the Co-Activeness quantifiable? 

3. If exists and is quantifiable, are the U.S. state agencies leveraging Co-Activeness in their 

MRR strategies?  

 

Chapter 7 aims to answer the following research questions: 

1. Does the proposed Co-Active model have application to other U.S. state agencies?  

2. Is there any difference in the performance of NHS state-owned and non-NHS state-owned 

bridges? 

3. How should one quantify payoffs for two players, the FHWA and a state DOT, using a 

game theory? 

 

Finally, Chapter 8 provides conclusions and recommendations for future studies. 
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1.4 Research Significance and Scope 

The primary benefit of this study is to additionally accounts for the inter-dependencies that exist 

among elements in determining element weight factors, based on the concept of “Co-Active 

elements”, and accounts for the time-value of element’s depreciation. A Bridge Co-Active 

Prioritization Model (Br-CPM) is introduced. The Br-CPM determines how “Co-Active elements” 

affect a bridge health index and its service life at a discrete-time.  

This study focuses on wide-area applications of the proposed Co-Active model, including 

complementary concepts such as the performance gap index, investment-to-depreciation ratio, and 

game theory. 

1.5 Research Methodology 

To accomplish the aforementioned objectives, analytical studies are deployed in five specific tasks. 

These are outlined below.  

1.5.1 Task 1. Perform Extensive Literature Review 

A thorough review of bridge management practices by state DOTs is conducted to provide insight 

into current issues, practices, and challenges pertaining long-term bridge performance in the 

United States.  

1.5.2 Task 2. Perform Preliminary Data Analysis 

A preliminary data analysis is conducted to understand bridge element performance. Task 2 results 

are presented in Chapter 2.   
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1.5.3 Task 3. Conduct Sensitivity Analysis of the Bridge Health Index  

A sensitivity analysis of the bridge health index (BHI), which is the bridge performance measure 

used in the Co-Active model, is conducted. Task 3 results are presented in Chapter 3.    

1.5.4 Task 4. Comparatively Analyze the Element-and-NBI-based Bridge Deterioration 

Models 

The procedure for the age-bin based approach for developing element-level bridge depreciation 

models is presented. Then, the approach is used to analyze Georgia’s element data; develop 

element and overall bridge depreciation models for approximately 15,000 in-service bridges in 

Georgia. The element depreciation models are developed as one of the major inputs for the Co-

Active model. Lastly, a comparative analysis of the depreciation models obtained from element-

level and NBI data is performed. Task 4 results are presented in Chapter 4.  

1.5.5 Task 5. Analyze Georgia’s Bridges Using the Proposed Co-Active Model  

The proposed Co-Active model which accounts for time-dependent element interactions, referred 

to as Co-Activeness, in predicting bridge performance resulting from MRR activities, is used to 

analyze Georgia’s bridges at first. Also, bridge element depreciation models are developed as one 

of the major inputs for the Co-Active model. Task 5 results are presented in Chapter 5. 

1.5.6 Task 6. Apply the Proposed Co-Active Model to Southeastern U.S. States 

This task includes the application of the proposed Co-Active model to bridge management in 

southeastern U.S. states: Alabama, Georgia, and Florida. Task 6 results are presented in Chapter 

6. 
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1.5.7 Task 7. Investigate the Strategic Move for Service Life Extension of Bridges by 

Employing a Co-Active Prioritization Mechanism 

Additional bridge inventories in three additional states which are known to have proactive 

maintenance strategies are investigated. A game theory approach to model a strategic interaction 

between two players, the FHWA and a state DOT, is presented. The payoffs of the two players in 

prioritizing element MRR are quantified based on a service life extension of bridges. Results from 

this task are presented in Chapter 7.  

1.5.8 Task 8. Conclusions and Recommendations 

Results from this task are presented in Chapter 8.  

1.6 Organization of the Dissertation 

This dissertation is divided into seven chapters that describe procedures for the applications for 

the proposed Co-Active model and present results from the application of the model, which 

include: 

 Chapter 1 presents a general background on the bridge element inspection data and element 

interactions. Additionally, research objectives and significance are described. 

 Chapter 2 describes a preliminary data analysis conducted to understand bridge element 

performance. These analyses include data characterization, data quality assessment, and data 

processing.    

 Chapter 3 outlines a sensitivity analysis of the BHI, which is the bridge performance 

measure used in the Co-Active model. Caltrans BHI and Denver BHI are analyzed to provide more 

insights to the application of the BHI.  
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 Chapter 4 presents a stochastic bridge element depreciation modeling approach. In this 

chapter, the element depreciation predictions for approximately 15,000 in-service Georgia bridges 

are evaluated. Finally, a comparative analysis of age-bin based depreciation models, implemented 

in the Co-Active model in Chapter 5, and the models obtained from the National Bridge Inventory 

is presented. 

 Chapter 5 introduces a Co-Active model, which represents a time-dependent element 

interaction mechanism, and presents an analytical investigation of Georgia’s bridge performance 

using the proposed Co-Active model. The formulation of the Co-Active model is presented. This 

chapter offers insight into the essential components of the Co-Active model. Co-Active 

parameters, contingency tables, and element HI using a multilinear approach are computed.  

 Chapter 6 presents the application of the proposed Co-Active model to Southeastern US 

states. Concepts such as performance gap index and investment-to-depreciation ratio are used to 

quantify element interactions and improve the application of the Co-Active model to bridge asset 

management.  

 Chapter 7 presents the analysis of bridge performance in Georgia, Virginia, Pennsylvania, 

and New York using the Co-Active model. In this Chapter, a game theory is introduced to enhance 

the application of the Co-Active model to bridge asset management. 

 Chapter 8 presents conclusions and recommendations for future studies. 
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CHAPTER 2 

2. PRELIMINARY DATA ANALYSIS 

2.1 Introduction 

Element-based bridge inspection data include a quantitative assessment of each bridge element in 

four condition states (see Table 1). Table 2 illustrates how quantities are specified in the data. Such 

quantitative evaluation allows decision-makers to measure the extent of deterioration, determine 

current asset value, and prepare successful bridge management plans (AASHTO, 2019). Each 

condition state aggregates the cumulative effects of relevant defects. Thus, a preliminary data 

analysis is conducted to understand bridge element performance. It also ensures that element-based 

inspection data are sufficient (in terms of quality and format) as an input file for Matlab® (©The 

MathWorks, Inc., 1994 – 2018), which is the primary software used for this study.   

2.2 Data Characterization 

This section describes the characteristics of element-based bridge inspection records in Georgia. 

The purpose of data characterization is to obtain valuable information on the element inspection 

records that are relevant to bridge asset valuation.  

2.3 Data Quality Assessment 

Table 1 shows the four condition states defined in the AASHTO element inspection manual (2019). 

The quality assessment performed in this study is based on experience gained from the National 

Bridge Inventory (NBI) condition rating analysis, where bridges and components with incomplete 

entries were found and screened out. This analysis concluded with 46,176 (in Tape 2015); 83,370 
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(in Tape 2016); 87,624 (in Tape 2017); and 88,030 (in Tape 2018) element inspection records. 

Overall, these records are found to be complete with a few anomalies (i.e., incomplete and missing 

data and changes in element number assignments) observed in the 2015 and 2016 datasets.  

 

Table 1 – Condition state definitions (AASHTO, 2019). 

Defects  

Condition States for Element 12, Reinforced Concrete Deck 

1 2 3 4 

Delamination/ 

Spall/Patched 

Area  
(1080) 

None Delaminated. Spall 1 

in. or less deep or 6 

in. or less in 
diameter. Patched 

area that is sound. 

Spall greater than 1 

in. deep or greater 

than 6 in. diameter. 
Patched area that is 

unsound or 

showing distress. 

Does not warrant 
structural review. 

The condition 

warrants a 

structural review 
to determine the 

effect on strength 

or serviceability 
of the element or 

bridge; 

 

or,  
 

a structural 

review has been 
completed and 

the defects 

impact strength 
or serviceability 

of the element or 

bridge.                                     

   

   

      

Exposed Rebar  

(1090) 

None Present without 

measurable section 
loss. 

Present with 

measurable section 
loss but does not 

warrant structural 

review. 

 

      

Cracking (RC 
and Other)  

(1130) 

None or 
insignifican

t cracks 

Unsealed moderate 
width cracks or 

unsealed moderate 

pattern (map) 

cracking. Cracks 
from 0.012 to 0.05 

inches wide. 

Wide cracks or 
heavy pattern 

(map) cracking. 

Cracks greater than 

0.05 inches wide. 
  

  

      

Damage  
(7000) 

Not 
applicable 

The element has 
impact damage. The 

specific damage 

caused by the impact 

has been captured in 
condition state 2 

under the 

appropriate material 
defect entry. 

The element has 
impact damage. 

The specific 

damage caused by 

the impact has 
been captured in 

condition state 3 

under the 
appropriate 

material defect 

entry. 

The element has 
impact damage. 

The specific 

damage caused 

by the impact has 
been captured in 

condition state 4 

under the 
appropriate 

material defect 

entry. 
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2.4 Data Processing  

Unfortunately, element-based inspection data are not self-reliant. That is, there are important 

bridge variables that are comprehensively captured in the NBI but not captured by element-based 

inspection data. Among others, construction years are not available in the element inspection 

inventory (‘Tape’) as shown in Table 2. Therefore, element-based inspection data do not replace 

NBI data; rather, it is a supplementary data set that provides more details on each element’s 

quantitative condition. In Section 6, element inspection-based and NBI-based condition scores are 

compared. 

Table 2 – Element inspection records for selected bridges in Georgia. 

STATE STRUCNUM EN TOTALQTY CS1 CS2 CS3 CS4 

13 12105430 12 19393 19393 0 0 0 

13 12105430 515 21426 21426 0 0 0 

13 12105430 515 36 36 0 0 0 

13 12105430 234 190 188 2 0 0 

13 8100450 215 62 55 7 0 0 

13 3150100 110 1956 1956 0 0 0 

13 2101220 12 5630 5216 414 0 0 

13 14100010 215 112 100 12 0 0 

13 14100010 331 206 206 0 0 0 

13 14100010 234 104 74 30 0 0 

13 30350140 301 120 0 0 120 0 

 

Other relevant attributes in the NBI include structure number, designated as STRUCNUM 

(Item no. 8); year built, designated as YEAR BUILT (Item no. 27); and year reconstructed (Item 

no. 106). In this study, NBI data for 2017 and Tape data for 2018 are used for the analysis. The 

Excel program developed for this study can process any combination of standardized NBI and 

Tape (or element-based) data.  

The following three steps are used for data processing: 

(1) extract year built from NBI data;  
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(2) replace year built by the year reconstructed if the year reconstructed is greater than year 

built; and  

(3) align bridge identification numbers (IDs) in NBI data with bridge IDs in Tape (or 

element-based) data to extract year built/reconstructed.  

This process is illustrated in Figure 1 with the first five rows of the element-based bridge 

inspection data from Table 2. There is a total number of 14,863 bridges in NBI 2017 and 14,684 

bridges in Tape 2018. This querying process returns a total number of 14,039 bridges. It should be 

noted that NBI 2018 data was not available when this study was conducted. 

 

Figure 1 – Extraction of year built/reconstructed from NBI. 

Note: EN = Element Number, and ‘EPN’ indicates the parent element number. 
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CHAPTER 3 

3. SENSITIVITY ANALYSIS OF BRIDGE HEALTH INDEX TO DEPRECIATION OF 

CRITICAL ELEMENTS 

3.1 Introduction 

The application of the bridge management system is increasing due to the aging of the old and 

complexity of modern infrastructures, among others. As a result, various state departments of 

transportation and other agencies have developed measures of bridge performance for effective 

management and preservation of public equity. An important consideration is the minimization of 

the proportion of bridges that are structurally deficient and functionally obsolete. Bridge “health” 

(condition) index in most bridge management systems (e.g., AASHTOWare and OBMS) typically 

tracks the performance of bridges or network of bridges based on the available element-

level/components inspection records. It aggregates the elements/components health indices for the 

overall performance of bridges. Several studies have been conducted to investigate the sensitivity 

of BHI, but none of them have focused on critical CoRe elements. This study reviews recent 

developments in the computation of BHI and investigates different scenarios that reflect the 

depreciation of critical CoRe elements and their potential impacts on the interpretation of BHI. 

The relative importance and contributions of various elements to the continuing functionality of 

bridges are clearly highlighted. This analysis also includes the newly introduced concept of 

element quantity distribution coefficients and its potential application in bridge depreciation 

modeling.  
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3.2 Objectives 

The overarching goal of this study is to review, analyze, and identify possible knowledge gaps and 

make suggestions for future research in the application of BHI as a performance measure in the 

bridge management system. This chapter is organized as follows: first, the computation of BHI 

and definition of important concepts, namely, AASHTO CoRe elements, condition states, and 

element health index coefficient, are reviewed; second, sensitivity analysis of Caltrans BHI and 

Denver BHI; then, recommendations for the computation and improvement in the application of 

DBHI; finally, the conclusions are drawn from key findings for the advancement of frontiers of 

knowledge in the research field. 

3.3 Computation of BHI 

3.3.1 Computation of Caltrans BHI 

To account for the depreciation in asset value over time, BHI assigns important weights to element 

quantities in their initial and lower CSs as shown in Equations 1 through 4. 

𝐻𝐼 =
𝐶𝑉𝑒

𝑇𝑉𝑒
× 100                      (1) 

𝐶𝑉𝑒 = ∑ 𝐻𝑒𝑒 𝑇𝑉𝑒                       (2) 

𝑊𝑄𝑒 = ∑ 𝑊𝑒 ∑ 𝑄𝑒𝑖
𝑁𝑒
𝑖𝑒                      (3) 

𝐻𝑒 =
∑ 𝑄𝑒𝑗𝑒 𝐶𝑒𝑗

𝑇𝑉𝑒
× 100                         (4) 

Where, 

HI = health index, 

𝐶𝑉𝑒  = current element e value, 

𝑇𝑉𝑒  = total element e value (e.g.,𝑊𝑄𝑒or weighted value, 𝑊𝑉𝑒 ) 

𝑊𝑒= weight given to element e (e.g., repair, replacement or failure cost, or based on expert opinion) 
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𝐶𝑒𝑗= index coefficient (linear or nonlinear) of element e in condition state i   

𝑄𝑒𝑗= quantity of element e in each condition state  

𝑁𝑒= number of condition states for element e  

𝑊𝑄𝑒= weighted quantity of element e without index coefficient  

The element quantities and important weights are usually used for the aggregation of HI for 

a bridge or network of bridges based on the identified condition states (Shepard & Johnson, 2001). 

This aggregation makes use of the information obtained from component/element-based 

inspection inventories collected over a period. Important weights are usually applied to the element 

to account for the value (repair, failure or replacement cost), performance, and contributions to the 

overall health of the bridge. Ultimately, successful application of BHI as a decision-making tool 

for the management of bridges (e.g. in the allocation of resources for RR&R) largely depends on 

how accurately these important weights can represent the condition of each element and aggregates 

it for the whole bridge.  

3.3.2 Computation of Denver BHI 

Based on the analysis of the Caltrans BHI for bridges in Denver, Colorado, Jiang and Rens 

concluded that the current Caltrans BHI was subjective to a municipality’s often imprecise cost 

data (X. Jiang & Rens, 2010a). Even though most of the bridges had been in use for many years 

and needed rehabilitation, Caltrans BHI performance of almost 90% of the bridges was between 

90 and 100%. They also noted that the Caltrans BHI, in its current form, was not sensitive to the 

general deterioration of bridge elements. Furthermore, the element value, which is the product of 

the weight and the element quantity, did not indicate the effect of element damage on the bridge 

health and function. The result of the study served as the basis for developing an alternate BHI 

methodology, called Denver BHI. Jiang and Rens introduced new weight coefficient and proposed 
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Denver BHI as follow: 

𝐻𝑒 =
∑ 𝑘𝑠

𝑛𝑞𝑠𝑠

∑ 𝑞𝑠𝑠

× 100%                                                                   (5) 

𝑤𝑒
𝑎𝑗

= 𝑤𝑒𝐴𝐹𝑒                                                                                    (6) 

𝐻 =
∑ 𝐻𝑒𝑤𝑒

𝑎𝑗
𝑒

∑ 𝑤𝑒
𝑎𝑗

𝑒

× 100%                                                               (7) 

where,  

𝑘𝑠
𝑛 is the nonlinear health index coefficient corresponding to the sth condition state 

𝑤𝑒
𝑎𝑗

is the adjusted weight coefficient of element e  

𝐴𝐹𝑒 is the adjustment factor of element e 

𝑤𝑒 is the weight coefficient assigned to each element 

 

Figure 2 – Comparison of trends of linear “—” and nonlinear health index “----” coefficient 

of condition states, n = number of condition states (𝒌𝒔
𝒏). 

 

This new approach is based on the application of the nonlinear index coefficient of condition 

states (Figure 2) and adjustment factor (Figure 3) to obtain new BHI. The weight coefficients are 

determined based on expert opinion. Weight coefficients define the contribution and relative 
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importance of each element to the health and functionality of the bridge. In Caltrans BHI, it is a 

function of element cost. 

Table 3 – Bridge Condition Indices (CI). 

CI Zones    CI Scales  

Action Value Condition description 

Immediate action not 

required 

(71-100) 

85 – 100 Excellent – no noticeable effects some 

 

 

70 – 84 

aging or wear visible 

 

Very good – only minor  

deterioration or defects evident. Economic analysis of 

repair alternatives 

recommended to 

determine appropriate 

maintenance action  

(41-70) 

55 – 69  

 

Good – some deterioration or defects 

evident, function not impaired. 

`40 – 54 

 

Fair – moderate deterioration, function 

not seriously impaired.  

Detailed evaluation 

required to determine the 

need for RR&R, safety 

evaluation recommended 

(0-40) 

25 – 39 

 

Poor – serious deterioration in at least 

some portion of structure, function 

  seriously impaired. 

 

10 – 24 

 

Very poor – extensive deterioration,  

  barely functional. 

 

0 – 9 

 

Failed – general failure or failure of a  

  
major component no longer 

functional. 
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Figure 3 – Linear step curve for calculating Adjustment Factor (AF). 

 

3.4 Sensitivity Analysis of BHI 

3.4.1 Analysis of Caltrans BHI    

As shown in Tables 4 and 5, the average value of the elements’ HIs for bridge A is different from 

the HI obtained by aggregating 𝐶𝑉𝑒  and 𝑇𝑉𝑒 . The element-based inspection records for the 

computation of the bridge HI for bridges A and B are shown in Appendix A. The average values 

of elements’ HI and aggregated HI are 89.21%, 91.69%, 67.69% and 99.42%, 90.48%, 81.44% for 

bridges A, B and C, respectively. This discrepancy in the values of overall bridge HI can be 

attributed to the fact that Caltrans BHI defines element value as a product of economic cost and 

element quantity. The Caltrans BHI directly relates the aggregated element quantity to the element 

HI and bridge HI. The implication is that elements with higher quantities assert greater influence 

than those with lower quantities on the bridge health, irrespective of their functionality. It is 

therefore recommended that, for the computation of bridge health index, element quantities in all 

the condition states are aggregated as a percentage of each element in ‘good health’.   
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Table 4 – Linear weighting factor for the Condition States (CS). 

No. of CSs CS 1  CS2 CS3 CS4 CS5 

5 1 0.75 0.50 0.25 0 

4 1 0.67 0.33 0.00 NA 

3 1 0.50 0.00 NA NA 

 

 

Table 5  – Computation of HI for Georgia bridge 100140 (Bridge A). 

*Element Meas. Element **Unit Resulting Resulting  𝐻𝐼𝑒  
key Unit Quantity FC 𝐶𝑉𝑒  𝑇𝑉𝑒  (𝐶𝑉𝑒/𝑇𝑉𝑒) *100 

12 ft. 6069 $600  $3,605,058  $3,641,400  99.00 

215 ft. 52 $3,500  $182,000  $182,000  100.00 

301 Sq.ft. 208 $556  $108,420  $115,648  93.75 

311 ft. 28 $500  $9,845  $14,000  70.32 

234 ft. 156 $8,740  $1,363,440  $1,363,440  100.00 

225 ft. 24 $819  $19,656  $19,656  100.00 

107 ea. 756 $65  $48,708  $49,140  99.12 

313 ea. 16 $650  $6,721  $10,400  64.63 
331 ft. 378 $456  $170,111  $172,368  98.69 

515 (107) Sq.ft. 4528 $300  $1,358,400  $1,358,400  100.00 

515 (225) Sq.ft. 10200 $300  $3,060,000  $3,060,000  100.00 
515 (311)  Sq.ft. 28 $300  $5,850  $8,400  69.64 

515 (313) Sq.ft. 16 $300  $3,102  $4,800  64.63 

   TOTAL $9,941,311  $9,999,652  
Average HI 

89.21% 
𝐶𝑉𝑒  = current element value; 𝑇𝑉𝑒=total element value; 𝐻𝐼𝑒=element HI; *Element descriptions  

in Appendix B; ** Unit failure costs obtained from literatures; 𝐶𝑉𝑒  

=∑ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑋 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑋  𝑢𝑛𝑖𝑡 𝐹𝐶
𝐶𝑆4
𝐶𝑆1 ;  𝑇𝑉𝑒  = Element Quantity X Unit FC.    

Aggregation of health index: 𝐻𝐼𝑒 =  (∑ 𝐶𝑉𝑒/𝑇𝑉𝑒𝑒 )X100 

 

For bridge A in Table 5, 

HI = ($9,941,311/$9,999,652) X 100% = 99.42% 

 

For bridge B in Table 6, 

HI = ($7,571,482/$8,368,242) X 100% = 90.48%    

For bridge C in Table 7, 
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HI = ($622,300/$764,144) X 100% = 81.44% 

 

Table 6 – Computation of HI for Colorado bridge D-03-V-150, bridge B (X. Jiang & Rens, 

2010a) 

Element 𝐻𝐼𝑒  𝑇𝑉𝑒      𝐶𝑉𝑒    

key (%) Value %  Value %   

14 100 $693,832 8.29  $693,832 9.16  

101 97 $1,069,122 12.78  $1,037,048 13.7  

106 100 $413,669 4.94  $413,669 5.46  

205         

210 100 $2,398,570 28.66  $2,398,570 31.68  

215 100 $866,047 10.35  $866,047 11.44  

234 67 $1,531,772 18.3  $1,026,287 13.55  

305 100 $63,610 0.76  $63,610 0.84  

306         

314 34 $374,014 4.47  $127,165 1.68  

326 100 $4,820 0.06  $4,820 0.06  

331 100 $398,900 4.77  $398,900 5.27  

333 100 $251,931 3.01  $251,931 3.33  

334 94 $205,878 2.46  $193,525 2.56  

338 100 $96,077 1.15  $96,077 1.27   

TOTAL 91.69 $8,368,242 100  $7,571,482 100  
 

𝐶𝑉𝑒  = current element value 𝑇𝑉𝑒  = total element value; 𝐻𝐼𝑒 = element HI = (𝐶𝑉𝑒/𝑇𝑉𝑒) *100 

𝑇𝑉𝑒  = Element Quantity X Unit FC; 𝐶𝑉𝑒  =∑ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑋 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑋 𝑢𝑛𝑖𝑡 𝐹𝐶
𝐶𝑆4
𝐶𝑆1  

 

 

 

Additional drawbacks of the current methodology for the computation of Caltrans BHI 

include: 

● It is based on the current and original (i.e., ideal) value of the structure. It does not consider 

the life span of the structure, which may make its application to long term TAMP less efficient. 

● It does not make provision for the historical bridge management practices (e.g., historic repair, 

rehabilitation, and or construction cost). The resulting deterioration models appear too 

idealistic. For example, a bridge element that is better maintained should have higher 
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importance weight compared to a similar element that is poorly maintained. However, this is 

presently not the case.  

Table 7 - Computation of HI for sample bridge, bridge C (Shepard & Johnson, 2001). 

Element 𝐻𝐼𝑒  𝑇𝑉𝑒      𝐶𝑉𝑒    

key (%) Value %  Value %   

14 50 $180,000 23.56  $90,000 14.46  

101         

106 89 $350,000 45.8  $311,500 50.06  

205 100 $36,000 4.71  $36,000 5.78   

210         

215 100 $184,800 24.18  $184,800 29.7  

234         

305         

306 0 $13,344 1.75  $0 0   

314         

326         

331         

333         

334         

338          

TOTAL 67.80 $764,144 100  $622,300 100  
 

𝐶𝑉𝑒  = current element value 𝑇𝑉𝑒  = total element value; 𝐻𝐼𝑒 = element HI = (𝐶𝑉𝑒/𝑇𝑉𝑒) *100 

𝑇𝑉𝑒  = Element Quantity X Unit FC; 𝐶𝑉𝑒  =∑ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑋 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑋 𝑢𝑛𝑖𝑡 𝐹𝐶
𝐶𝑆4
𝐶𝑆1  

 

3.4.2 Analysis of Denver BHI 

Reference to the BHI values in Table 6, computed based on the element level bridge inspection 

record for 8th Avenue Viaduct Bridge D-03-V-150 in Colorado shown in Appendix A, the initial 

parametric analysis (not presented in this study) reveals that the computed values of Denver BHI 

largely depend on the HI of elements with higher weight coefficients. This makes sense because 

the condition of critical bridge elements such as bridge deck, piers, abutments, etc., are more 

important than ‘auxiliary’ components such as asphaltic wearing surface or railings. In other 

words, the structural integrity of a bridge is more of a function of the condition of critical elements. 

A bridge can still function without major safety concerns even when the wearing surface is not in 
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good condition! So, the sensitivity analysis presented in this study revolves around the bridge 

elements with higher weight coefficients.  

Considering the condition indices given in Table 3, the analysis is divided into two categories 

(a) sensitivity of the HI when HI of critical elements vary between 0 and 100 and (b) sensitivity 

analysis when HIs of critical elements are less than 50. The critical elements, selected after 

preliminary analysis of the causes of major bridge collapse around the world (Choudhury & 

Hasnat, 2015; Deng, Wang, & Yu, 2015; Peng, Dai, & Taciroglu, 2014; Shi, Zhou, & Ruan, 2016; 

Turner, Brandenberg, & Stewart, 2016) include: 

1. Abutment 

2. Pier wall and cap 

3. Girder  

4. Pot bearing 

3.4.2.1 Sensitivity of the HI when HI of critical elements vary between 0 and 100 

The major defects in the bridge from the inspection data shown in Appendix A2 are in RC pier cap 

and pot bearing. In addition to pier cap and bearing, effects of deterioration of pier wall, girder, 

and abutment are analyzed as a function of their HI. To analyze the effects of adjusted weights, a 

concept of element quantity distribution coefficients is introduced as shown in Table 8. Upper 

bound (UB) and lower bound (LB) concepts are introduced to account for the relative performance 

of quantities measured for each condition state. Apart from its application for the sensitivity 

analysis of the BHI, bridge maintenance agency’s inspection engineers can find it useful for the 

development and ‘fine-tuning’ the deterioration models for a bridge or network of bridges. 

Because of its compatibility with the present AASHTO format for state and national bridge 

condition states reporting, it can also be adapted for element-based inspection. 
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Table 8 - Element quantities distribution coefficients for 210-RC pier wall. 

 
Condition  

State 1 

Condition  

State 2 

Condition 

State 3 

Condition State 

4 

 Distribution Coefficients 

 1 1 0 0 1 

 
Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Quantities 82.295 82.295       

Distributions 
             

  -82.295 +82.295         

Distributed 

Quantities  
82.295 82.295     

 

Table 9 shows the quantities (with and without distribution) for the computation of the DBHI 

for the bridge D-03-V-150. To demonstrate the application of distribution coefficients, we consider 

the quantity in CS1 for element 210 to be equally distributed between the bounds – upper and 

lower. We then applied a distribution coefficient of 0.5 across the boundary of CSs 1 and 2. 

Similarly, the quantities for abutment and steel open girders are distributed to account to 

deterioration. The sensitivity of the reduction in the element HI because of this distribution is 

analyzed for the critical elements.  

Figure 4 shows the relationship between the deterioration of these critical elements and 

overall BHI. This result shows that the effect of the critical elements’ deterioration follows the 

pattern of the linear step curve used for the calibration of the HI. The point of transition lies around 

50% HI, which can be broadly divided into two parts - high and low performance. The upper part 

gives a good indication of the performance of a typical bridge. Because of the relative importance 

of critical elements at higher rates of deterioration, it is necessary to conduct a detailed analysis of 

the bridge behavior for the low-performance part of the curve. 
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Figure 4 – Relationship between the critical element’s deterioration, BHI, and adjustment 

factor. 

 

3.3.2.2 Sensitivity of the overall BHI when HI of critical elements are less than 50 (i.e., more 

than 50% deterioration) 

The following scenarios are considered for the analysis: 

1. Reinforced concrete pier cap and pot bearing have deteriorated by 60% and 68%, 

respectively (Controls).   

2. In addition to pier cap and pot bearing, reinforced concrete abutment has deteriorated by 

80%. 

3. Reinforced concrete pier cap and pot bearing are in good condition, but pier wall and 

abutment have deteriorated by 70% and 80%. 

4. Reinforced concrete pier cap and pot bearing are in good condition, but pier wall or 

abutment has deteriorated by 80%.  
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Table 9 – Element quantities (with and without distribution) for the computation of the 

Denver BHI. 

Undistributed quantities: HI = 56.6%  Distributed quantities: HI = 51.8% 

Condition States 
Element 

key 
Condition States 

CS5 CS4 CS3 CS2 CS1  CS1 CS2 CS3 CS4 CS5 

0 0 0 0 8,895.28 14 8,895.28 0 0 0 0 

  0 0 144.48 1,300.28 101 1,300.28 144.48 0 0   

  0 0 0 176.48 106 88.24 88.24 0 0   

  0 0 0 164.59 210 82.295 82.295 0 0   

  0 0 0 27.43 215 13.715 13.715 0 0   

  0 0 175.26 0 234 0 175.26 0 0   

    0 0 27.43 305 27.43 0 0     

    55 4 27 314 27 4 55     

    0 0 4 326 4 0 0     

  0 0 0 874.78 331 874.78 0 0 0   

    0 0 569.98 333 569.98 0 0     

0 0 89 0 633.38 334 633.38 0 89 0 0 

  0 0 0 722.38 338 722.38 0 0 0   

 

The distribution of element quantities is also applied to obtain the deteriorated HI of the 

elements for each of the three scenarios. Tables 10 through 14 show the computation of BHI for 

the four scenarios. Scenario 2, as shown in Table 11, where the abutment has deteriorated by 80% 

and in addition to the significant deterioration of pier and pot bearing, one would expect a collapse 

or near-collapse condition for the overall bridge. Conversely, CI scale interpretation of the 

structure indicates otherwise – moderate deterioration, function not seriously impaired. This may 

be misleading considering the contribution of the critical elements such as abutment to the overall 

structural integrity of the bridge. In fact, the collapse of major bridges around the world has been 

attributed to the deteriorated condition of the abutment (Cook, 2014). Moreover, the CI zones 

action does not indicate any serious safety concerns - economic analysis of repair alternatives 

recommended to determine appropriate maintenance action. Scenario 3 gives similar observation, 

where abutment and pier wall has deteriorated to a level that they are barely functional. Yet, the 

condition interpretation indicates that the function is not seriously impaired. It is difficult, if not 
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impossible, to imagine the continuing functionality of a bridge where the pier wall and abutment 

(bridge critical load transmission elements) have deteriorated by 70% and 80%, respectively.  

Perhaps the most critical observation is the performance of the structure in scenario 4, where 

abutment has depreciated by 80%. The BHI is unexpectedly 64.8%. By interpretation, the bridge 

is still in good condition - function not impaired. How can a bridge continue to function when 80% 

of the abutment has depreciated? Surprisingly, this BHI is even higher than that of scenario 1 

which is 56.6%. It appears that the DBHI, in its present form, is less sensitive to the individual 

element distress.  

Table 10 – Computation of BHI for scenario 1 (Controls). 

Element 

key 

Element  

HI 

Weight coefficient Adjustment 

factor 

Adjusted 

weight 

coefficient 
 eH

*
aj

ew
 

Value % 

14 100 6 6 1 6 6.00 

101 94 12 13 1 12 11.28 

106 100 12 13 1 12 12.00 

210 100 15 16 1 15 15.00 

215 100 12 13 8 12 12.00 

234 40 15 16 8 120 48.00 

305 100 7 7 1 7 7.00 

314 32 6 6 8 48 15.36 

326 100 4 4 1 4 4.00 

331 100 2 2 1 2 2.00 

333 100 2 2 1 2 2.00 

334 91 2 2 1 2 1.82 

338 100 1 1 1 1 1.00 

 ∑ 96 100  243 137.46 

 

𝐻 =
∑ 𝐶𝑉𝑒𝑒

∑ 𝑇𝑉𝑒𝑒
× 100% =

∑ 𝐻𝑒𝑤𝑒
𝑎𝑗

𝑒

∑ 𝑤𝑒
𝑎𝑗

𝑒

× 100% = (137.46/243) X 100% = 56.6% 
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Table 11 – Computation of BHI for scenario 2. 

Element key 
Element  

HI 

Weight 

coefficient Adjustment 

factor 

Adjusted 

weight 

coefficient 

 eH
*

aj

ew
 

Value % 

14 100 6 6 1 6 6.00 

101 94 12 13 1 12 11.28 

106 100 12 13 1 12 12.00 
210 100 15 16 1 15 15.00 

215 20 12 13 8 96 19.20 

234 40 15 16 8 120 48.00 
305 100 7 7 1 7 7.00 

314 32 6 6 8 48 15.36 

326 100 4 4 1 4 4.00 
331 100 2 2 1 2 2.00 

333 100 2 2 1 2 2.00 

334 91 2 2 1 2 1.82 

338 100 1 1 1 1 1.00 

 ∑ 96 100  327 144.66 

 

HI = (144.66/327) X 100% = 44.2% 

 

Table 12 – Computation of BHI for scenario 3. 

Element 

key 

Element  

HI 

Weight 

coefficient Adjustment 

factor 

Adjusted 

weight 

coefficient 

 eH
*

aj

ew
 

Value % 

14 100 6 6 1 6 6.00 

101 94 12 13 1 12 11.28 

106 100 12 13 1 12 12.00 

210 30 15 16 8 120 36.00 

215 20 12 13 8 96 19.20 

234 100 15 16 1 15 15.00 

305 100 7 7 1 7 7.00 

314 100 6 6 1 6 6.00 

326 100 4 4 1 4 4.00 

331 100 2 2 1 2 2.00 

333 100 2 2 1 2 2.00 

334 91 2 2 1 2 1.82 

338 100 1 1 1 1 1.00 

 ∑ 96 100  285 123.30 

 

HI = (123.30/285) X 100% = 43.3% 
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Table 13 – Computation of BHI for scenario 4 (Abutment). 

Element key 
Element  

HI 

Weight 

coefficient Adjustment 

factor 

Adjusted 

weight 

coefficient 

 eH
*

aj

ew
 

Value % 

14 100 6 6 1 6 6.00 

101 94 12 13 1 12 11.28 

106 100 12 13 1 12 12.00 

210 100 15 16 1 15 15.00 

215 20 12 13 8 96 19.20 

234 100 15 16 1 15 15.00 

305 100 7 7 1 7 7.00 

314 100 6 6 1 6 6.00 

326 100 4 4 1 4 4.00 

331 100 2 2 1 2 2.00 

333 100 2 2 1 2 2.00 

334 91 2 2 1 2 1.82 

338 100 1 1 1 1 1.00 

 ∑ 96 100  180 102.30 

 

 

 

HI = (102.30/180) X 100% = 56.8% 

 

Table 14 – Computation of BHI for scenario 4 (Pier wall). 

Element 

key 

Element  

HI 

Weight 

coefficient Adjustment 

factor 

Adjusted 

weight 

coefficient 

 eH
*

aj

ew
 

Value % 

14 100 6 6 1 6 6.00 

101 94 12 13 1 12 11.28 

106 100 12 13 1 12 12.00 

210 20 15 16 8 120 24.00 

215 100 12 13 1 12 12.00 

234 100 15 16 1 15 15.00 

305 100 7 7 1 7 7.00 

314 100 6 6 1 6 6.00 

326 100 4 4 1 4 4.00 

331 100 2 2 1 2 2.00 

333 100 2 2 1 2 2.00 

334 91 2 2 1 2 1.82 

338 100 1 1 1 1 1.00 

 ∑ 96 100  201 104.10 
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HI = (104.10/201) X 100% = 51.8% 

Table 15 – Summary of computed values of BHI for the three scenarios and their 

interpretations 

CI Zones   CI Scales 

Action Scenario (BHI) Condition description 

Economic analysis of 

repair alternatives 

recommended to 

determine appropriate 

maintenance action 

4 (56.8) - Abutment Good – some deterioration or 

defects evident, function not 

impaired. 1(56.6) 

4 (51.8) – Pier wall Fair – moderate deterioration, 

function not seriously impaired.   3(43.3), 2(44.2) 

 

3.5 Discussion 

As earlier observed, element quantity cannot adequately account for the contribution of an 

individual element to the continuing functionality of the bridge. For example, how can the 

quantities of a reinforced concrete bridge deck and pier be related to the overall health of the 

bridge? By comparison, bridge deck can be two or more times greater than a pier in terms of 

quantities. Yet, a drastic reduction in the strength or failure of a pier can result in the partial or 

complete collapse of a bridge (e.g., the collapse of I-40 bridge in Webber Falls, Oklahoma in 

2002). The weight coefficient developed for Denver BHI assigns numerical values to each of the 

AASHTO CoRe elements. Table 3 shows the grouping based on the condition index used for the 

interpretation of the Denver BHI. The computation of HI using the Denver BHI method generally 

results in a lower HI compared to cost-based approaches. 

The successful application of BHI as a decision-making tool depends on how accurately it 

can predict the short- and long-term performances of bridges. In computing the BHI, important 

weights are usually applied to reflect the changes in the ‘value’ of each element that deteriorates 

over a period. While the failure or replacement cost of each bridge CoRe element can be obtained 

from relevant sources, there is currently no consensus on the application of important weights to 
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elements in each condition state. The nonlinear health index assigns the important weights more 

realistically than the linear health index, but the general application of this approach could be 

misleading. Hence, concepts like ‘pessimistic’ and ‘optimistic’ nonlinear health indices have been 

introduced recently.  

Various authors have pointed out the effects of ‘boundary’ elements in the computation of 

BHI. The new concepts of upper bound (UB) and lower bound (LB) with distribution coefficients 

are introduced for the boundary condition states, which can be aggregated to obtain condition states 

compatible with the present 2019 AASHTO element-level inspection format. This new approach 

can enable bridge inspection engineers to differentiate between quantities with higher and lower 

performance values within each condition state and perform quantities distribution, where 

necessary, to fine-tune and improve the accuracy of the agency’s bridge deterioration models.  

The computation of Denver BHI in its present form makes use of the numerical values 

(weight coefficients) assigned to bridge CoRe elements. These values are assigned based on the 

contribution of the elements to the health and continuing functionality of the bridge. In other 

words, it is an indicator stressing the effects of the deterioration of an individual element on the 

bridge health and function. While these values are more representative of the bridge condition than 

bridge quantities, its application needs further modification.  

As shown in Table 10, the computation of DBHI makes use of the assigned values of 

weight coefficients, which is not ‘close bound’. The total value of the coefficients is 96. The 

implication is that the computation of the overall BHI is dependent on 96% health condition of the 

bridge. This can even be more problematic because there are more than 80 bridge CoRe elements 

identified in the 2019 AASHTO Bridge Manual. Thus, the total value of weight coefficients for 

different bridges can vary significantly due to the variations in the element’s compositions (i.e., 
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the total value of the weight coefficients can be less-or-greater than 100) depending on the 

prevailing circumstances. 

 

Table 16 – Modification of bridge Condition Indices (CI) for Denver BHI interpretations. 

CI Zones    CI Scales  

Action Value Condition description 

Immediate action not 

required 
(71-100) 

85 – 100 Excellent – no noticeable effects some 

 
 

70 – 84 

aging or wear visible 

 

Very good – only minor  
deterioration or defects evident. Economic analysis of 

repair alternatives 

recommended to determine 

appropriate maintenance 
action  

(41-70) 

55 – 69  

 

Good – some deterioration or defects 
evident, function not impaired (check the 

critical elements). 

`40 – 54 

 

Fair – moderate deterioration, function 

not seriously impaired   

Detailed evaluation 

required to determine the 

need for RR&R, safety 
evaluation recommended 

(0-40) 

25 – 39 

 
 

Poor – serious deterioration in at least 

some portion of structure, function 

  seriously impaired. 

 

10 – 24 

 

Very poor – extensive deterioration,  

  barely functional. 

 
0 – 9 

 
Failed – general failure or failure of a  

  major component no longer functional. 

 

Instead of using the numeric values of individual elements’ weight coefficients, the 

contribution of each element should be standardized as a percentage. Based on this, elements’ 

weight coefficients for different types of bridges can be obtained as a redistributed percentage 

values of the initial coefficients. For a better interpretation of the DBHI, it is recommended that 

for computed values of DBHI between 40 and 69, the conditions of critical elements should be 

checked. This can be included as shown in Table 16. Finally, the modified bridge health index can 
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be computed when additional parameters such as threshold health index and average bridge service 

life are considered (See Appendix E). 

3.6 Conclusions 

The successful application of BHI as a decision-making tool depends on how accurately it can 

predict the short and long-term performances of bridges. In computing the BHI, important weights 

are usually applied to reflect the changes in the “value” of each element that deteriorates with time. 

While the failure or replacement cost of each bridge CoRe element can easily be computed, there 

is currently no consensus on the application of important weights to elements in each state. The 

nonlinear health index assigns the important weights more realistically than the linear health index, 

but the general application of this approach could be misleading. Hence, concepts like 

“pessimistic” and “optimistic” have been introduced recently. Can the present nonlinear health 

index approach accurately represent the general condition of bridges? Is it too optimistic or 

pessimistic? These are the questions the need urgent answers for an improvement in the accuracy 

of BHI as a bridge performance measure. The important weights, including nonlinear health 

indices, should not be treated as a rule-of-thumb. They should be products of deterioration models 

developed for each bridge/element.  

Various authors have pointed out the effects of “boundary” elements in the computation of 

BHI. The new concepts such as upper bound (UB) and lower bound (LB) with distribution 

coefficients are introduced for the boundary CSs, which can be aggregated to obtain CSs 

compatible with the present 2019 AASHTO format. This new approach can enable bridge 

inspection engineers to differentiate between quantities with higher and lower performance values 

within each CS and perform quantities distribution, where necessary, to fine-tune and improve the 

accuracy of the agency’s bridge depreciation models.  
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CHAPTER 4 

4. COMPARATIVE ANALYSIS OF ELEMENT- AND NBI-BASED STOCHASTIC 

BRIDGE DETERIORATION MODELS 

4.1 Introduction 

The rapidly growing gap between investment needs and available funds continues to threaten the 

functionality of a large network of bridge infrastructure, most especially in developed countries. 

Because of the limitation on resources, it is therefore important that bridge-owning agencies use 

proper planning and management strategies to make the best use of available funding. An 

important step in properly managing and preserving a bridge inventory is the prioritization of 

bridges for preservation (Puls et al., 2018). Thus, bridge managers are usually interested in the 

long-term performance of bridges and their associated elements. Prediction of such performance 

(i.e., condition of bridges) is usually captured using depreciation models. Bridge depreciation 

model, as an integral component of Bridge Management Systems (BMS), now constitutes one of 

the major requirements for the development of a long-term decision-making framework for 

effective bridge management. It aids the selection and performance of appropriate work for a 

bridge at the right point in time and cost-effectively (FHWA, 2018; Yanev & Richards, 2013). 

Notably, the forecast of long-term bridge performance expressed through a deterioration 

model has been identified as one of the main components of BMSs (Zambon, Vidovic, Strauss, 

Matos, & Amado, 2017). Most of these bridge deterioration models are data-driven, utilizing 

bridge condition states obtainable from the bridge performance inspection. 
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In the United States, the two major approaches for the bridge performance inspection include 

bridge overall-condition-rating, available in the National Bridge Inventory (NBI) inspections for 

bridge subsystems, and bridge health index, computed from the American Association of State 

Highway and Transportation Official (AASHTO) element inspections. While the NBI-based 

deterioration models have been extensively studied, only limited studies have been conducted on 

comprehensive element-based bridge deterioration models. There is no available information on 

how the granularity of the element-based inspections affects the overall bridge health index. 

Additionally, the two approaches have been independently investigated, and the potential impact 

of implementing the two approaches on the overall bridge management remains relatively 

unknown. Thus, this study provides a comparative analysis of the bridge deterioration predictive 

models developed from the two approaches.  

This chapter is organized as follows. First, a brief literature review on the bridge deterioration 

models is presented. Second, the methodology for this study, including a proposed age-bin-based 

approach is described. Then, the results obtained from the study described in the methodology are 

presented. A discussion of the results is provided in the following section. Last, conclusions and 

future work are provided. 

4. 2. Literature Review  

4.2.1 Bridge Deterioration Prediction Techniques 

Several models exist for quantifying bridge deterioration rates. Bridge inspection data have 

been collected and analyzed since the early 1970’s to assist decision-makers in predicting the 

likelihood of future changes in bridge conditions. A statistical approach is often adopted to 

investigate structural performance trends in individual elements (M. Chang & Maguire, 2016). A 
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predictive model that can describe the future state of a bridge component has enabled state agencies 

to prioritize and deploy resources to where they are most needed. A reliable prediction future 

performance index is expected to directly improve emergency response, management, and budget 

allocation (GP Bu et al., 2013; DeStefano & Grivas, 1998; Huang, Ong, & Alahakoon, 2015; 

Khatami, Shafei, & Smadi, 2016).  

MAP-21 establishes a performance- and outcome-based program to help state agencies invest 

resources in projects that “collectively will ensure progress towards the achievement of the 

national goals.” MAP-21 represents a strong commitment to a data-driven, risk-based approach to 

asset management in the United States. Pursuant to 23 U.S.C.150(c)(3)(A), transportation agencies 

are required to develop TAMPs which must contain deterioration models, as elaborated in 23 

C.F.R. 515.17 and MAP-21 §1106 (Campbell et al., 2016; CFR., 2017; FHWA., 2012; USC., 

2019). 

At present, cutting-edge bridge management systems classify bridge deterioration models into 

two major categories: deterministic models and stochastic models (Agrawal, Kawaguchi, & Chen, 

2010; Li, Sun, & Ning, 2014). For deterministic models, the measure of bridge condition is 

expressed without probabilistic considerations, whereas a stochastic approach reflects the 

uncertainties that each bridge condition represents.  

Deterministic models assume that bridge deterioration is certain, and thus a regression analysis 

is commonly used to determine a decay rate. They generally describe a relationship between 

factors affecting the facility’s deterioration (e.g., bridge age) and condition using a mathematical 

or a statistical formulation. These models calculate predicted conditions deterministically by 

ignoring the random error in predictions (Huang et al., 2015; Li et al., 2014; G Morcous, Lounis, 
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& Mirza, 2003). Such models aim to further improve the overall predictive performance of a 

system (Huang et al., 2015). 

This study uses a stochastic modeling approach, more suitable for handling a large network 

of bridges such as the approximately 15,000 in-service bridge in Georgia. Moreover, a stochastic 

approach gives a more realistic deterioration model (M. Chang & Maguire, 2016; Manafpour, 

Guler, Radlińska, Rajabipour, & Warn, 2018). The Markovian modeling technique, a special 

stochastic approach long used for bridge deterioration modeling, is described in Section 2.2.  

4.2.2 Markovian Bridge Deterioration Models 

Markovian bridge deterioration models forecast BHIs based on the concept of condition transitions 

from one state to another state during a transition period. The Markov-chain approach is a special 

case of the Markov-process with discrete-time and state parameters. These models have been 

employed by most state-of-the-art bridge management systems, such as AASHTOWare BrM, 

BRIDGIT, and Ontario Bridge Management System (Guoping Bu et al., 2011). Bridge 

deterioration models based on the Markov-chain approach assume a static condition or progressive 

deterioration to a lower condition state. For example, in AASHTOWare BrM, bridge element 

deterioration is typically modeled as annual transition estimates across four discrete condition 

states.  

There are two assumptions made in the Markov-chain process. First, the future state of a 

stochastic process depends only on the present condition (namely, a state independence 

assumption). The second assumption is that the transition probability between two states should 

be constant. A constant inspection period, where inspections are performed at predefined and 

fixed-time intervals, is required (Grussing, 2015; Li et al., 2014). The major advantages of the 
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Markov-process (Almeida, Teixeira, Delgado, & Engineering, 2015; M. Chang & Maguire, 2016; 

Huang et al., 2015) are as follows: 

● It can reflect a stochastic bridge deterioration process based on variables such as 

initial conditions, assessment errors, and inherent uncertainties; 

● A future-state prediction is based on the present state enabling an incremental 

approach; and 

● It can be applied to a large network of bridges. 

The procedure for developing Markovian bridge deterioration models is well documented in 

the literature (Agrawal et al., 2010; Guoping Bu et al., 2011; Cavalline, Whelan, Tempest, Goyal, 

& Ramsey, 2015; G  Morcous, 2006). The most significant task in the Markov-chain process is to 

determine a transition probability matrix, P, which quantifies the probabilities of condition state 

transitions (Li et al., 2014). Element-based health indices (0 to 100) in the 2019 AASHTO Bridge 

Manual are distributed across four possible bridge element states. Condition states 1 and 4 

correspond to the best and worst conditions, respectively. A change in condition state is assumed 

to occur at discrete time intervals that align with routine inspection periods. Consequently, the 

components, 𝑃𝑖𝑗, of the probability matrix, P, represent bridge elements transitioning from state 𝑖 

to state 𝑗 during a specified period (see Equation 8). The transition matrix has zero values below 

the diagonal because it is assumed that deterioration takes place without rehabilitation. Thus, the 

probability of improvement at any state is assumed to be zero (Cavalline et al., 2015). The values 

above the diagonal matrix indicate transitions to ‘immediately’ lower condition states. System 

states are “mutually exclusive and collectively exhaustive” after each transition so that the sum of 

each row is the unity (M. Chang & Maguire, 2016). 
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         𝑃 =

[
 
 
 
𝑃11 1 − 𝑃11

𝑃22 1 − 𝑃22

𝑃33 1 − 𝑃33

𝑃44 ]
 
 
 

                                          (8) 

For the NBI general condition rating, there are nine possible condition ratings distributed 

across nine possible bridge element states. The transition probability matrix, P, which is raised to 

the power t (time), is shown in Equation (9), where p9 indicates the probability of CR 9 remaining 

in CR 9, and q8 indicates the probability of CR9 transitioning to CR8; the other components in the 

matrix are zero (Agrawal et al., 2010) for each bridge or culvert group. 

𝑃𝑡 =

[
 
 
 
 
 
 
 
 
 
𝒑𝟏

𝑞1 𝒑𝟐

𝑞2 𝒑𝟑

        

𝑞3
    

𝒑𝟒

𝑞4 𝒑𝟓

𝑞5 𝒑𝟔

    

    
𝑞6

    

𝒑𝟕

𝑞7 𝒑𝟖

𝑞8 𝒑𝟗]
 
 
 
 
 
 
 
 
 
𝑡

                                            (9) 

 

4.3. Methodology 

4.3.1 Overview 

The granularity of element-based inspection data enables the development of deterioration models 

at the element level. These models are more quantitative and informative than the ones derived 

from the traditional NBI overall condition-rating-based approach for bridge subsystems. However, 

the element-based approach as currently implemented has its deficiencies. The main shortcoming 

relates to a lack of enough records. Many bridge authorities worldwide have similar problems 

using a BMS for accurate predictions of long-term bridge performance and budget planning (GP 
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Bu et al., 2013; Jeong, Kim, Lee, & Lee, 2017; Manafpour et al., 2018). While some state DOTs 

have collected element inspection data since the mid-1990’s, most have only assembled element 

inspection data since 2013, in compliance with the MAP-21 Legislation. Georgia Department of 

Transportation (GDOT) falls into the second category and recently started the element-based 

inspection of all bridges to comply with the FHWA’s element inspection requirements in Title 23 

of the United States Code §144(b).  

GDOT has collected bridge element inspection data since 2015, yielding two inspection 

records per bridge between 2015 and 2018, resulting from a biennial inspection process. Based on 

the experience of the authors, these inspection records are insufficient for developing meaningful 

deterioration models when a conventional approach is used. As an alternative method, this study 

has developed an age-bin-based approach for generating bridge deterioration models. This process 

must be validated once enough element-based inspection data are gathered. This study primarily 

utilizes GDOT’s element inspection records between 2015 and 2018.  

While element-based inspection data is relatively new, GDOT has sustained NBI inspection 

data for all bridges for more than 25 years. Section 4.3.3 describes the approach utilized to develop 

NBI overall condition-rating-based bridge deterioration models.  

4.3.2 Development of Element-based Deterioration Models 

4.3.2.1 Deterioration Models for Each Element 

The procedure for the development of deterioration models for each element has been described 

in Chapter 3. The following subsection describes how element health indices are aggregated to 

develop deterioration models for each bridge. 
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4.3.2.2. Deterioration Models for Each Bridge 

4.3.2.2.1 Aggregate Element Health Indices by Cost-based Weight Factors  

A weighted average of element health indices determines an overall BHI. This study utilizes bridge 

element importance weights recommended for the management of bridges in Florida (See Figure 

5). Element weights are determined based on element replacement costs, long-term costs, hazard 

vulnerability, and engineering judgment (Sobanjo & Thompson, 2016).  

Element weights generally represent the relative contributions of each element to the overall 

structural health of a bridge. This study introduces the concept of dynamic element weights (DEW) 

to re-scale the weighted health index by 100. For instance, consider a bridge (#32150490) with 

associated elements in the age bin 1930. The BHI is computed as the weighted values of element 

health indices in each age bin. The weighted average is 121 and is generally greater than 100. The 

dynamic health index is calculated as the product of the element health index and its dynamic 

weight. This study aggregates dynamic health indices for elements in age bins between the years 

1920 and 2020. 

Table 17 – Element weight factors in age bin 1930 for bridge number 32150490. 

 

Element 

key 

Health 

index 

(HI) 

Element 

weight 

(EW) 

Dynamic  

element weight 

(DEW=HI*EW/100) 

Element 

health  

(HI* EW)   

Dynamic 

element 

health  

(HI* DEW)   

301 61.36 12.00 7.36 736.32 451.81 
234 88.42 13.00 11.49 1149.46 1016.35 

227 44.29 11.00 4.87 487.19 215.78 
331 81.27 14.00 11.38 1137.78 924.67 
16 71.54 25.00 17.89 1788.5 1279.49 
110 78.37 33.00 25.86 2586.21 2026.81 
215 81.27 13.00 10.57 1056.51 858.63 

∑ 121.00 89.42 8941.97 6773.54 
Bridge HI     73.90 75.75 
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Figure 5 – FDOT bridge element important weights (Sobanjo & Thompson, 2016).  

 

4.3.2.2.2 Develop Deterioration Models for Each Bridge  

Deterioration curves for bridges in Georgia are developed using the Markovian approach. 

4.3.3 Development of NBI-based Deterioration Models 

4.3.3.1 Define NBI data and attributes  

4.3.3.1.1 State Code (Item No. 1) 

A total of 26 NBI data sets (1992-2017) containing the three-digit state code, ‘134’, Georgia, are 

downloaded from the NBI website (FHWA-NBI., 2018). 

4.3.3.1.2 Structure Number (Item No. 8) 

The GDOT bridge identification numbers are saved to develop deterioration models for each 

bridge in the NBI data.  
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4.3.3.1.3 Year Built (Item No. 27) 

The construction year is saved to review the historic condition ratings. See Appendices A and B. 

4.3.3.1.4 Structure Type (Item No. 43) 

This NBI item indicates the type of structure for the main span(s). The kind of material (43A) is 

primarily used to recognize more distinct bridge characteristics in differentiating deterioration 

models in bridge superstructures. They are divided into five categories: Concrete (Codes 1 and 2), 

Steel (Codes 3 and 4), and Prestressed/Precast (Codes 5 and 6), Timber (Code 7), and Others 

(Codes 8, 9, and 0). Culverts are identified by Item No. 43B (Code 19) and independently analyzed 

from bridges. 

4.3.3.1.5 Deck Structure Type (Item Number 107) 

Item 107 provides the (material) type of bridge deck system whereas Item 43A is associated with 

the bridge superstructure type. They are similarly divided into five categories: Concrete (Code 1), 

Precast (Code 2), Steel (Codes 3 through 7), Timber (Code 8), and the Others (Code 9).  

4.3.3.1.6 Condition Ratings – Deck, Superstructure, Substructure (Item Nos. 58 through 60) 

The overall deck, superstructure, and substructure condition rating of bridges are used in this study.  

Code 9 indicates an excellent condition, and 7 indicates bridges in good condition whereas 0 

indicates a failed condition. 

4.3.3.1.7 Condition Rating - Culverts (Item Number 62) 

For culverts, Items 58 through 60 are coded as ‘N’. Therefore, Item 62 is used to evaluate the 

overall condition rating of culverts. 



45 

4.3.3.2 Analyze Condition Rating Transition History 

The frequency of condition rating transition occurrences is computed for three bridge 

components (deck, superstructure, and substructure) as well as culverts. For example, Figure 6 

illustrates GDOT’s historic trend in the bridge deck condition rating distribution, and Figure 7 

shows the year-over-year condition rating (CR) transition probabilities over the past 25 years. The 

figure indicates the three most frequent CR changes (e.g., deterioration) in the GA inventory are: 

CR 7−> CR7, CR 8−>CR7, and CR6−>CR6. It also indicates that the CR transition trends have 

remained fairly unchanged over the past 25 years. The CR transition probabilities are determined 

by counting the CR transition occurrences between the years 1992 and 2017 in the bridge 

inventory. 

 

Figure 6 – Condition rating over the past 26 years. 
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Figure 7 – CR transition frequencies. 

 

4.3.3.3 Develop Deterioration Models for Each Component and Overall Bridge  

The entire Georgia bridge inventory is used to derive a transition probability matrix for each bridge 

component and subgroup. Detailed information on the bridge components and subgroups analyzed 

can be found in our previous communication (Mi Geum Chorzepa & Oyegbile, 2019). As 

described in Section 4.3.2, the CR transition counts are used to compute the transition probability 

matrix, P. Finally, the transition probability matrix, P, described by Equation (8) in Section 4.2.2, 

is multiplied by a condition rating matrix to determine a deterioration model. 

Once a deterioration model is constructed by the above procedure, a plot illustrating the 

lifecycle of each bridge is generated. Appendix B illustrates a sample plot for culverts and bridges, 

respectively. For culverts and bridges that were constructed before 1992, an initial condition rating 
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of 8 is assigned, from which CR is linearly extrapolated to the condition ratings reported in 1992. 

Their construction year records predate the year when the oldest NBI database was recorded, and 

thus the bridge condition ratings are not available. 

4.3.4 Comparison of Element and NBI-based Condition Scores 

A Chi-square goodness of fit test is performed to compare element-based bridge deterioration 

models (developed based on FDOT’s weight factors) and NBI overall condition-rating-based 

bridge deterioration models (see GDOT RP 18-30 final report, 2019 (Mi Geum Chorzepa & 

Oyegbile, 2019) for a network of bridges under consideration.  

The formula for the Chi-square distribution is given as (GP Bu, Lee, Guan, Loo, & 

Blumenstein, 2014; Y. Jiang & Sinha, 1989): 

𝜒2 = ∑
(𝐸(𝑡)𝑖 − 𝐴(𝑡)𝑖)

2

𝐸(𝑡)𝑖

𝑘

𝑖=1

                                                            (10) 

where, 𝜒2 = Chi-square distribution with k − 1 degrees of freedom (DOF); 𝐸(𝑡)𝑖= value of 

condition rating in year 𝑖 predicted using the element-based models, 𝐴(𝑡)𝑖 = value of condition 

rating in year 𝑖 predicted using NBI condition-rating-based models; and 𝑘 = number of prediction 

years 

The approach to the Chi-square hypothesis testing is shown in Figure 8. The test is performed 

using two bridge deterioration models (element-based and NBI condition-rating-based). NBI 

condition ratings are rescaled to a 100-point scale (e.g., an NBI condition rating of 9 is scaled to 

100), while the health indices are reduced by 22%. This reduction is necessary for a fair 

comparison. NBI condition-rating-based models are aggregated using Equation (11) to determine 

a blended general condition rating (Blended GCR) as proposed by the Virginia DOT (VDOT, 

2017). 
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Blended GCR =  0.25(Deck GCR) + 0.35(Superstructure GCR)  

+  0.40(Substructure GCR )                                                                                         (11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference between the Chi-square and the critical threshold values evaluates the null 

hypothesis: the two models are not correlated. The larger the difference between the Chi-square 

Selected EB bridge deterioration models, 
𝐸(𝑡)  

𝜒2 = ∑
(𝐸(𝑡)𝑖 − 𝐴(𝑡)𝑖)

2

𝐸(𝑡)𝑖

𝑘

𝑖=1

 

Selected NBI bridge deterioration models,  
𝐴(𝑡) 

Chi-

square 

test 

Element-based (EB) bridge deterioration models 

Categorization into age bins  

Selecting input models for Chi-square 

Element-based Method 

Link and extract common bridges 

Bridges common to EB and NBI  

Selection 

 process  

NBI OCR-based bridge deterioration models 

Categorization into age bins  

NBI-based Method  

Selecting input models for Chi-square 

Figure 8 – Process chart for the Chi-Square test. 
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and the critical values, the closer the predictions between the Chi-square test parameters (i.e., 𝐸(𝑡)𝑖 

and 𝐴(𝑡)𝑖).  

4.4 Results  

4.4.1 Element Performance Predictions 

The age-bin approach yields a time-dependent health index history for each element.  

4.4.1.1 Mathematical expression for describing element performance predictions 

Table 18 shows the mathematical equations describing time-dependent element health indices and 

lists diagonal components (P11, P22, P33, P44) of the transition probabilities for bridge elements. 

 

Table 18 – Equations for describing time-dependent element health index. 

     Deterioration equation Transition probabilities 

Category Element key  (Time T in Years) P11 P22 P33 P44 

Decks  

and Slabs 

12 0.1511𝑇3 − 2.4490𝑇2 + 6.9678T + 94.2513 0.9849 0.0049 0.7814 1.0000 

13 −0.1092𝑇3 + 1.4851𝑇2 − 5.1516T + 101.4598 0.9998 0.0000 0.0000 1.0000 

15 0.4884𝑇3 − 6.0982𝑇2 + 20.0941T + 81.4156 0.9949 0.0527 0.8042 1.0000 

16 −0.1530𝑇3 + 1.2990𝑇2 − 4.6632T + 103.5154 0.9839 0.9323 0.8596 1.0000 

28 0.4265𝑇3 − 4.0447𝑇2 + 5.7860T + 100.4697 0.9942 0.0000 0.0000 1.0000 

29 −0.1226𝑇3 + 0.9684𝑇2 − 4.8706T + 103.8687 0.9825 0.0023 0.9268 1.0000 

30 0.5547𝑇3 − 7.2746𝑇2 + 20.8149T + 82.3411 0.9735 0.3872 0.1274 1.0000 

31 0.1666𝑇3 − 1.9874𝑇2 + 3.1748T + 94.3892 0.9827 0.0000 0.0000 1.0000 

38 0.1355𝑇3 − 1.1674𝑇2 + 0.7712T + 99.8981 0.9972 0.0000 0.0000 1.0000 

54 0.1192𝑇3 − 2.1480𝑇2 + 4.9265T + 94.6867 0.9748 0.0114 0.8600 1.0000 

60 −0.1439𝑇3 + 2.8658𝑇2 − 15.4903T + 115.0714 0.9988 0.0000 0.0000 1.0000 

65 −0.6910𝑇3 + 8.9121𝑇2 − 34.3159T + 127.6112 0.9893 0.0008 0.9839 1.0000 

Girders 

102 −0.2733𝑇3 + 0.6392𝑇2 + 2.0611T + 95.3792 0.9639 0.8947 0.7985 1.0000 

104 −0.1818𝑇3 + 2.1016𝑇2 − 7.1032T + 104.1719 0.9968 0.1156 0.9680 1.0000 

105 −0.3058𝑇3 + 3.9018𝑇2 − 14.2819T + 111.8641 0.9989 0.0034 0.9660 1.0000 

106 −0.2391𝑇3 + 2.3433𝑇2 − 7.7390T + 105.5500 0.9896 0.2662 0.9320 1.0000 

107 −0.1793𝑇3 + 1.8265𝑇2 − 6.1996T + 103.9503 0.9936 0.0579 0.7892 1.0000 

109 0.0048𝑇3 − 0.0280𝑇2 − 0.0829T + 100.0693 0.9999 0.0000 0.0000 1.0000 

110 −0.0184𝑇3 − 0.0247𝑇2 + 0.6066T + 97.7558 0.9971 0.0242 0.7580 1.0000 

111 −0.2454𝑇3 + 2.6258𝑇2 − 9.4648T + 108.3868 0.9924 0.0648 0.7871 1.0000 

Stringer 

113 −0.3022𝑇3 + 5.7739𝑇2 − 30.3880T + 130.2841 0.9984 0.0000 0.0000 1.0000 

115 −0.3162𝑇3 + 3.5916𝑇2 − 14.1909T + 108.5664 0.9817 0.0000 0.9684 1.0000 

117 0.4058𝑇3 − 7.0331𝑇2 + 25.7675T + 77.5086 0.9559 0.8862 0.7874 1.0000 
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Table 18 Continued–Equations for describing time-dependent element health index. 
     Deterioration equation Transition probabilities 

Category 
Element 

key 
 (Time T in Years) P11 P22 P33 P44 

Trusses/ 

Arches 

120 −0.0764𝑇3 + 1.1226𝑇2 − 8.0852T + 108.1244  0.9888 0.0000 0.0000 1.0000 

135 0.3726𝑇3 − 4.8292𝑇2 + 8.0359T + 94.8630  0.9446 0.0032 0.7394 1.0000 

141 −0.0136𝑇3 + 0.5720𝑇2 − 11.6083T + 111.0455  0.9225 0.0000 0.9937 1.0000 

   144 0.2997𝑇3 − 2.8672𝑇2 − 2.0216T + 103.0959 0.9510 0.0000 0.0000 1.0000 

  145 −0.0136𝑇3 + 0.5720𝑇2 − 11.6083T + 111.0455 0.9225 0.0000 0.9937 1.0000 

Floor Beams & 

Miscellaneous 

Superstructure 

Elements 

147 0.2575𝑇3 − 4.0389𝑇2 + 11.7925T + 91.7796 0.9766 0.0166 0.8501 1.0000 

152 −0.2929𝑇3 + 5.4006𝑇2 − 27.6338T + 127.6848 0.9992 0.0000 0.0000 1.0000 

155 −1.0000𝑇3 + 11.2215𝑇2 − 18.5911T + 27.3454 0.0000 0.0755 0.0008 1.0000 

156 0.2142𝑇3 − 3.1530𝑇2 + 6.4074T + 97.1074 0.9718 0.0026 0.7784 1.0000 

161 −0.1660𝑇3 + 3.6218𝑇2 − 24.6024T + 123.4673 0.9752 0.0000 0.0000 1.0000 

162 0.3427𝑇3 − 3.5559𝑇2 + 6.2069T + 98.0005 0.9916 0.0000 0.0000 1.0000 

Columns/Pier 

Walls 

202 −0.2229𝑇3 + 2.7735𝑇2 − 15.8273T + 116.0349 0.9645 0.0125 0.9809 1.0000 

203 1.6130𝑇3 − 19.1205𝑇2 + 54.1177T + 60.2429 0.9520 0.0212 0.4622 1.0000 

204 0.0410𝑇3 − 0.4741𝑇2 + 1.3183T + 99.0977 0.9996 0.0282 0.7751 1.0000 

205 −0.1974𝑇3 + 1.8931𝑇2 − 6.4979T + 102.9826 0.9895 0.0184 0.8380 1.0000 

206 −0.5789𝑇3 + 8.7546𝑇2 − 43.1680T + 143.6437 0.9797 0.0000 0.0000 1.0000 

210 0.1867𝑇3 − 2.1425𝑇2 + 4.7253T + 94.4143 0.9927 0.0000 0.0000 1.0000 

211 −0.3867𝑇3 + 4.8406𝑇2 − 17.5379T + 111.2257 0.9959 0.0475 0.8097 1.0000 

213 −0.3624𝑇3 + 5.4961𝑇2 − 24.2161T + 108.9389 0.9914 0.0000 0.0000 1.0000 

Abutments 

215 −0.0501𝑇3 + 0.5681𝑇2 − 2.8296T + 101.7064 0.9958 0.0000 0.0000 1.0000 

216 −0.0368𝑇3 + 0.3911𝑇2 − 3.0559T + 102.2274 0.9932 0.0000 0.0000 1.0000 

217 −0.1438𝑇3 + 2.5721𝑇2 − 14.8861T + 113.1101 0.9921 0.1507 0.3741 1.0000 

218 0.0999𝑇3 − 0.8046𝑇2 − 0.5969T + 102.1581 0.9963 0.0000 0.0000 1.0000 

219 −0.5122𝑇3 + 8.5317𝑇2 − 41.0527T + 123.9565 0.7899 0.0000 0.9999 1.0000 

Piles/Pier 

Caps/Footings 

220 −0.6389𝑇3 + 10.1743𝑇2 + 2.8321T + 135.1197 0.9223 0.0000 0.0000 1.0000 

225 0.0093𝑇3 + 1.5020𝑇2 − 15.8565T + 115.5996 0.9895 0.0000 0.0000 1.0000 

226 −0.1297𝑇3 + 1.3238𝑇2 − 7.8336T + 104.4685 0.9718 0.0052 0.9838 1.0000 

227 0.3511𝑇3 − 3.7013𝑇2 + 3.9339T + 96.3666 0.9602 0.0328 0.8830 1.0000 

228 −0.1313𝑇3 + 2.7077𝑇2 − 18.0713T + 114.9383 0.9805 0.0000 0.0000 1.0000 

229 −0.7298𝑇3 + 9.8749𝑇2 − 39.9382T + 132.1143 0.9823 0.0000 0.9859 1.0000 

231 −0.7233𝑇3 + 11.1874𝑇2 − 52.2665T + 142.4373 0.9803 0.0000 0.0000 1.0000 

Piles/Pier 

Caps/Footings 

233 −0.2144𝑇3 + 2.0851𝑇2 − 7.4290T + 105.5556 0.9882 0.0477 0.9307 1.0000 

234 −0.0294𝑇3 + 0.2793𝑇2 − 1.4889T + 100.7699 0.9965 0.0309 0.7773 1.0000 

235 −0.1744𝑇3 + 2.1612𝑇2 − 9.3287T + 108.7321 0.9938 0.0563 0.7901 1.0000 

236 0.1402𝑇3 + 0.5315𝑇2 − 15.7073T + 116.7351 0.9606 0.0000 0.9999 1.0000 

Culverts 

240 −0.0842𝑇3 + 2.3358𝑇2 − 18.6154T + 114.8947 0.9732 0.1743 0.4373 1.0000 

241 0.0136𝑇3 − 0.0723𝑇2 − 2.9892T + 100.0298 0.9887 0.0000 0.0000 1.0000 

243 −0.4643𝑇3 + 7.2809𝑇2 − 34.7551T + 134.1467 0.9933 0.0000 0.0000 1.0000 

244 −0.4346𝑇3 + 7.1332𝑇2 − 35.6148T + 131.7878 0.9905 0.0008 0.0002 1.0000 

245 0.1813𝑇3 − 2.4789𝑇2 + 2.3095T + 101.1617 0.9695 0.3609 0.3189 1.0000 

Joints 

300 −0.4704𝑇3 + 6.6107𝑇2 − 29.3921T + 112.2405 0.9764 0.1710 0.6086 1.0000 

301 −0.1202𝑇3 + 2.1401𝑇2 − 15.9017T + 109.8458 0.9693 0.1029 0.2788 1.0000 

302 −0.0154𝑇3 + 2.4377𝑇2 − 18.5906T + 104.2560 0.9936 0.1302 0.5132 1.0000 

303 −1.0185𝑇3 + 14.2996𝑇2 − 64.5428T + 158.1630 0.9545 0.0320 0.6716 1.0000 

304 −0.0565𝑇3 + 2.2024𝑇2 − 17.4749T + 117.9738 0.9913 0.0000 0.0000 1.0000 

305 −0.3536𝑇3 + 3.6514𝑇2 − 11.9816T + 105.1657 0.9868 0.0346 0.8587 1.0000 

306 0.0053 − 0.5761𝑇2 − 4.1493T + 95.4245 0.9406 0.0221 0.6084 1.0000 
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Table 18 Continued – Equations for describing time-dependent element health index. 

     Deterioration equation Transition probabilities 

Category Element key  (Time T in Years) P11 P22 P33 P44 

Bearings 

310 −0.0055𝑇3 − 0.1459𝑇2 + 0.5291T + 99.6494 0.9967 0.0766 0.9125 1.0000 

311 −0.0025𝑇3 − 0.3854𝑇2 + 0.8707T + 91.6961 0.9868 0.0000 0.0000 1.0000 

312 0.1135𝑇3 − 1.3667𝑇2 + 4.1231T + 96.7693 0.9988 0.2028 0.2218 1.0000 

313 −0.1253𝑇3 + 1.4890𝑇2 − 7.3435T + 102.3654 0.9883 0.0000 0.0000 1.0000 

314 −0.0836𝑇3 + 0.8993𝑇2 − 7.4061T + 107.9560 0.9729 0.1267 0.9880 1.0000 

315 −0.3162𝑇3 + 3.5916𝑇2 − 14.1909T + 108.5664 0.9817 0.0000 0.9684 1.0000 

316 −0.5684𝑇3 + 6.8948𝑇2 − 25.3556T + 120.6585 0.9903 0.2095 0.9605 1.0000 

Railings 

330 −0.4342𝑇3 + 4.8417𝑇2 − 15.4665T + 112.1704 0.9957 0.0490 0.8068 1.0000 

331 −0.0497𝑇3 + 0.6634𝑇2 − 2.8795T + 101.8070 0.9983 0.1223 0.3533 1.0000 

332 −0.0316𝑇3 + 1.1579𝑇2 − 10.0941T + 109.6748 0.9917 0.0000 0.0000 1.0000 

333 −0.6065𝑇3 + 6.9569𝑇2 − 22.9647T + 119.0347 0.9951 0.0512 0.8047 1.0000 

334 −0.6813𝑇3 + 7.5481𝑇2 − 23.6620T + 119.1135 0.9942 0.0606 0.8077 1.0000 

Wearing Surface and 

Protective Coating 

510 0.0737𝑇3 − 0.9915𝑇2 + 2.5419T + 95.5164  0.9947 0.0000 0.0000 1.0000 

515 −0.2595𝑇3 + 2.9795𝑇2 − 12.8247T + 107.3627  0.9775 0.0137 0.9853 1.0000 

521 −0.1805𝑇3 + 2.0346𝑇2 − 6.5042T + 105.3158  0.9987 0.0303 0.8144 1.0000 

 

4.4.1.2 Deterioration curves for each element 

The long-term performance of bridge elements greatly influences the overall health of bridges in 

Georgia. For example, in Figure 9, a steel deck with corrugated material in a highly corrosive 

marine environment will deteriorate at a much faster rate than a reinforced concrete deck. Thus, 

bridge element deterioration models are invaluable for the development of short- and long-term 

planning strategies for the bridges considered in this study. Appendix C presents deterioration 

predictions for the remaining bridge elements in Georgia. 
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Figure 9 – Deck and slab elements in Georgia. 

RC = Reinforced Concrete; P/S = Prestressed/Precast; conc = concrete; and Steel deck with 

corrugated = steel deck with corrugated panels 

Note: In the brackets, the presence of each element within the Deck & Slab category is 

shown as a percentage. 

Figure 9 illustrates the overall performance of deck and slab elements. In reviewing the figure, 

it is important to recognize that Georgia’s bridge inventory consists of approximately 60% 

reinforced concrete decks (Element #12). Based on these results, long-term performance of bridge 

elements is mainly dependent on the following factors: (1) material type and properties; (2) 

resistance to environmental factors such as corrosion; (3) areas of applications, e.g., under water, 

surface, or concealed; and (4) design type. In reviewing the element-level deterioration prediction 

models in Appendix C, it is also important to recognize that the number of elements affects the 

results. Figures 10 and 11 show that Element #12’s health scores vary each year, particularly for 

Inspection Area #6, when normalized by the number of elements as shown in Figure 11. 
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Figure 10 – Twelve (12) inspection areas in Georgia 

 

 

Figure 11 – Health index normalized by the number of bridges (Element No. 12). 
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4.4.2 Element-based Overall Bridge Performance Predictions 

Deterioration models for 14,039 bridge structures have been developed. This number includes 

9,019 bridges and 5,020 culverts. Figures 12 and 13 show the deterioration curves for both bridges 

and culverts and bridges only, respectively, in each of the 12 age categories. The deterioration 

curves for ‘one-element’ bridge structures (i.e., culverts only) are shown in Appendix C.    

 
Figure 12 – Health index predictions of 14,039 bridges and culverts in Georgia. 

 

Culverts generally have a faster deterioration rate than bridges (Perrin Jr & Dwivedi, 2006). 

Therefore, Figure can be misleading when reviewing the predictions for bridges and culverts 

together. In Figure 13, the HI predictions of bridges are isolated from Figure 12. Figure 13 

indicates that older bridges yield slightly higher deterioration rates, which is reasonable based on 

Figure 14 and agrees with previous research findings (Bulusu & Sinha, 1997; George Morcous, 

Rivard, & Hanna, 2002; Qiao et al., 2016). In Figure 13, the uniquely slower deterioration of bridge 

structures in age categories 1920 and 1910 may be attributed to increased attention to maintenance 

over their service life and/or other reasons such as the limited number of bridges.   
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Figure 13 – Health index predictions of 9,019 bridges only in Georgia. 

 

 

Figure 14 – Typical bridge condition over time (FHWA., 2018). 

 

4.4.3 NBI-based Bridge Component Performance Predictions 



56 

Figure 15 shows the deterioration curves for all concrete and metal bridge decks in Georgia, based 

on a 1-9 CR scale. Comprehensive NBI-based deterioration curves for all networks of bridges in 

Georgia can be found in the GDOT RP 18-30 final report, 2019 (Mi Geum Chorzepa & Oyegbile, 

2019). 

  

(a)  (b)  

Figure 15 – Deterioration models for bridge decks: (a) Concrete; (b) Metal. 

 

4.4.4 Element versus NBI-based Predictions 

Overall, element-based bridge prediction models yield steeper deterioration curves (see Appendix 

D). Due to this discrepancy, the predictions of the two models are not well correlated although 

they have similar trends. The outcomes of the hypothesis test for 9,019 bridges are presented in 

Table 19, which summarizes the distribution of discretized Chi-square values at 99 DOFs, a Chi-

square critical value of 123.23, at a significance level (α = 0.05).  

 

 



57 

Table 19 – Discretization of 𝝌𝟐 using percentages at a significance level of 0.05. 

  Bridge count in each age category 

 𝝌𝟐 
percentage 

2020 2010 2000 1990 1980 1970 1960 1950 1940 1930 1920 1910 1900 

10 128 366 301 255 98 61 53 0 13 0 0 0 0 
20 112 245 192 169 76 70 59 3 8 3 0 0 0 
30 25 135 70 71 41 33 42 14 8 6 0 0 0 
40 18 85 72 67 29 20 25 11 9 2 0 0 0 
50 13 31 27 33 25 19 18 7 5 2 0 0 0 

60 3 21 18 31 13 9 19 4 2 4 2 0 0 
70 2 28 12 20 10 14 15 2 3 2 2 0 0 
80 4 29 13 18 13 7 18 1 4 2 3 0 0 
90 4 16 11 14 7 3 11 1 1 2 1 1 0 

100 2 25 8 16 14 7 11 2 3 1 1 1 0 
>100 68 467 635 874 979 1023 794 269 155 48 18 1 2 

Note: 𝜒2  percentage = Chi-square percentage. 

 

Table 20 – Description of discretized 𝝌𝟐 in form of percentages. 

 𝝌𝟐  

percentage 
Description 

10 0<=𝜒2  percentage <=10 

20 11<=𝜒2  percentage <=20 

30 21<=𝜒2  percentage <=30 

40 31<=𝜒2  percentage <=40 

50 41<=𝜒2  percentage <=50 

60 51<=𝜒2  percentage <=60 

70 61<=𝜒2  percentage <=70 

80 71<=𝜒2  percentage <=80 

90 81<=𝜒2  percentage <=90 

100 91<=𝜒2  percentage <=100 

>100 𝜒2  percentage >=101 

 

Table 20 gives the discretized Chi-square percentage values. Equation (12) is used to calculate 

the Chi-square in the form of a percentage. Figure 16 shows the percentage error ─ the NBI and 

element-based data are not correlated. 

                           Chi-square percentage = (
𝜒2

𝜒2critical
) ∗ 100                                    (12) 
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Figure 16 – Chi-Square percentage (% error) in each age bin. 

4.5 Discussion 

The performance of BMSs for optimal bridge MR&R strategy relies heavily on the efficiency 

bridge deterioration models. Efficient bridge deterioration models are valuable for future 

investment and design decisions. In this study, element- and NBI-based stochastic bridge 

deterioration models have been developed and compared for 14,039 bridges. For the element-

based approach, due to the insufficiency of the inspection data, deterioration models for bridge 

elements are developed by classifying bridges in 12 age-bins. The projected long-term 

performance of the bridge elements in each category (e.g., decks and slabs) shows a strong 

correlation to the design and material types, which agrees with previous research findings on the 

field bridge performance (Lee, 2002; Pyc, 1998). For example, steel decks, if not adequately 

protected, may deteriorate at faster rates than reinforced concrete decks. Presently, steel decks with 

corrugated metal have the fastest deterioration rates among bridge decks in Georgia. 
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The deterioration models give a good estimate of the element average service lives in 

Georgia. For the element-based overall bridge deterioration models, culverts generally have faster 

deterioration rates than bridges, with shorter service lives. The results obtained also show the 

uniquely slower deterioration of much older bridge structures, which may be attributed to 

increased attention to maintenance over their service life and/or other reasons such as the limited 

number of bridges. 

The comparative analysis of the two deterioration models provides useful guides to decision-

makers on the application of the models in the BMSs. Overall, element-based bridge prediction 

models yield steeper deterioration curves. Further review of the results shows an increasing 

steepness of the element-based bridge prediction models as the bridges become older, excluding 

much older bridges in lower age-bins. This shows that the older the bridges, the more the likelihood 

of discrepancies between the two models. This can be attributed to the fact that the element-based 

data offers far more detailed information regarding the bridge health status/performance reliability, 

most especially for older bridge structures where more defects and higher deterioration rates are 

expected. Due to the observed discrepancy between NBI and element-based bridge condition 

ratings, if both NBI and element-based inspection records were to be maintained, consistent criteria 

must be applied to close the gap. 

4.6 Conclusions 

Through this study, the authors have assessed bridge health indices (BHIs), developed 

deterioration prediction models for bridge elements and bridges, and compared element-based and 

NBI-based bridge deterioration models for a network of bridges in Georgia. Based on the findings 

of this study, the following conclusions are made: 
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1. The projected long-term performance of bridge elements, particularly decks and girders, 

shows strong correlations with two important factors, namely: (1) design types (i.e., 

prestressed and reinforced concrete) and (2) material types (i.e., concrete, steel, and timber). 

In terms of design, prestressed concrete members as a whole yield the best long-term element 

health index. For material types, bridge elements with concrete materials tend to lose their 

health index at slower rates than those with other materials (see Appendix C). 

2. Culverts (see Figure C.10) overall have faster deterioration rates, in the range between 35 and 

85% HI reductions in 70 years, than bridges (see Figure 13) showing about 15-25% HI 

reductions over 70 years, regardless of age. Steel culverts depreciate relatively faster (see 

Figure C.10) although only less than 10% of the culverts are made of steel. 

3. Most bridge elements’ deterioration rates tend to be slower as time passes (see Appendix C). 

This prediction trend is not anticipated but consistent with the findings of a previous study 

(Mi Geum Chorzepa & Oyegbile, 2019). 

4. The results of the Chi-square test accept the null hypothesis that the element- and NBI- based 

bridge condition prediction models are not correlated; element-based BHIs are generally 22% 

higher than NBI condition scores when rescaled to 100. 

5. Similar to NBI deterioration models (Mi Geum Chorzepa & Oyegbile, 2019), element-based 

forecasting trends indicate that bridges deteriorate slower as time passes (see Appendix D), 

which is not expected. That is, deterioration curves are steeper in the short term. 

 

 

 

 



61 

 

 

CHAPTER 5 

5. COACTIVE PRIORITIZATION BY MEANS OF CONTINGENCY TABLES FOR 

ANALYZING ELEMENT-LEVEL BRIDGE INSPECTION RESULTS AND 

OPTIMIZING RETURNS 

5.1 Introduction 

Transport infrastructure represents the complex, fixed, and crucial asset of a transport system. In 

order to manage constructed facilities such as in-service bridges, one needs to understand how 

bridges perform over time. A bridge generally consists of 30–80 elements, each of which is 

assessed in the recently-mandated Element-level Bridge Inspection (AASHTO, 2019). In order to 

analyze data from the Inspection process, transportation agencies usually calculate a Bridge Health 

Index (BHI). This is an element-priority-weighted average performance measure of bridges’ 

conditions. Therefore, a bridge performance evaluation entails a rigorous process of obtaining 

elements’ condition states. However, a performance measure (or BHI) is not the only factor that 

determines a bridge action (preventive maintenance, rehabilitation, or replacement) priority. 

Factors such as the bridge action costs (i.e., preventive maintenance, rehabilitation, or replacement 

costs), threshold BHI, and life cycle affect a bridge action prioritization plan. Thus, an efficient 

prioritization analysis incorporating such factors optimizes allocation of limited funds because it 

enables cost-effective preventive maintenance, rehabilitation, or replacement (MRR) decisions 

(Phillips, 2017; Puls et al., 2018). Among the factors, the bridge service life is dependent on the 

complex interactions among elements. There are groups of elements that act together to affect the 

BHI. They are referred to as “Co-Active elements” in this dissertation. When one prioritizes these 
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elements for a bridge action (e.g., deck treatment as a preventive maintenance), the overall bridge 

performance significantly improves (Inkoom & Sobanjo, 2018; Sabatino & Frangopol, 2017), and 

the improvement is quantifiable.  

5.1.1 General Background on Bridge Elements 

Elements in this dissertation refer to commonly recognized (CoRe) structural elements that 

constitute a bridge (AASHTO, 2019). This study develops a methodology based on the concept of 

“Co-Active elements”. The word, “Co-Active”, is used to represent a small group of elements that 

act together to improve a BHI over time. The term, ‘Co-Activeness’, measures the degree of inter-

dependency among “Co-Active elements”. 

The average service life of bridges in Georgia is 80–100 years. With the existing prediction 

models, however, BHIs rapidly decrease and do not yield the expected service lifecycle. This is 

because the existing approach for bridge performance evaluation and MRR prioritization in the 

U.S. does not consider how elements’ inter-dependencies affect the BHI, resulting in overly 

conservative predictions. For example, replacing a damaged expansion joint is inexpensive. It has 

an insignificant impact on the overall performance of the bridge in the short term, relative to other 

elements such as a column. However, as de-icing salt and/or contaminated water ingresses through 

the damaged expansion joint over time, it accelerates the deterioration of other critical elements 

beneath it. The deterioration rate of an adjacent element, deck, may also increase when debris 

accumulates in the expansion joints and restricts normal expansion and contraction of the deck. 

Thus, “Co-Active elements” are a group of elements, including expansion joint and other elements 

such as bearing and cap beam, which are affected by a deterioration of an expansion joint. 
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5.1.2 Motivation 

The Georgia Department of Transportation (GDOT) element-level bridge inspection data, which 

has been maintained over the past four years, between 2015 and 2018, serves as an input for the 

analyses performed in this study 

 

(a) 

 
(b) 

Figure 17 – Bridge and element counts in the Georgia (GA) bridge inventory. (a) The 

number of bridges constructed in 12 age bins. (b) The number of elements in a bridge by 

year constructed. 

 

Figure 17 illustrates that the inspection data contains 14,570 bridge structures (including 

culverts), with an average age of 40 years. The figure shows a steady increase in the number of 
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bridges and elements in each age bin with a 10-year increment, based on Georgia’s bridge 

inspection results for the years 2015 through 2018. Figure 17a shows that 2074 bridges constructed 

between 1970 and 1980 and were reported in the inspection year 2018. For the bridges built 

between 1980 and 1990 (designated as “1990” in the x-axis), 2530 bridges containing 72 elements, 

were reported in the same inspection year, 2018. Figure 17b shows an increase in the number of 

elements in recently constructed bridges and indicates that a bridge can contain up to 75 elements. 

5.1.3 Research Goals 

This study aims to answer the following three key research questions: 

3. Can one define inter-dependent relationships among bridge elements’ health indices? 

4. How should one optimize a return on investment (ROI) in terms of bridge service life 

extension? That is, how should one quantify the effects of inter-element relationships as a 

function of time and evaluate bridge long-term performance? 

5. Do inter-element relationships affect importance weighting factors and help prioritize actions 

(preventive maintenance, rehabilitation, or replacement) on bridge elements? 

5.1.4 Research Scope  

An analytical study consisting of three parts is designed for the implementation of a Bridge Co-

Active Prioritization Model (Br-CPM). Each of the three parts below provides answers for Section 

1.2: 

● In Part 1, inter-element relationships are defined and described as a function of time (time-

dependent Co-Active coefficient).  

● In Part 2, collaboration factors are computed to determine the Prioritization Coefficient (PC), 

by applying Co-Active coefficients from a contingency table.  

● In part 3, bridge elements and overall health indices are assessed.  
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5.1.5 Significance  

Due to the complexity of bridges, elements make varying degrees of structural contributions to 

BHIs. Element importance-weighting factors measure how important each element is, in terms of 

its contribution to the BHI. Hence, these factors are critical components for measuring bridge 

performance. Previous studies focus on estimating element weight factors based on the cost and 

functional importance of each element (Adhikari, Moselhi, & Bagchi, 2013; Inkoom et al., 2017; 

X. Jiang & Rens, 2010a, 2010b; Sobanjo & Thompson, 2016). This study additionally accounts 

for the inter-dependencies that exist among elements in determining element weight factors, based 

on the concept of “Co-Active elements”, and accounts for the time-value of element’s depreciation. 

Finally, a Bridge Co-Active Prioritization Model (Br-CPM) is introduced. The Br-CPM 

determines how “Co-Active elements” affect a bridge health index and its service life at discrete 

time 

5.2 Literature Review 

The scope and application of bridge MRR prioritization analysis largely depend on state 

Departments of Transportation (DOTs) bridge management program and how they measure bridge 

performance. The American Association of State Highway and Transportation Officials 

(AASHTO) sufficiency rating (SR) and National Bridge Inventory (NBI) general condition rating 

(GCR) among others have been routinely used as bridge performance measures since the 1970s. 

The AASHTO SR is a performance measure, which indicates safety, functionality, overall 

adequacy, and ability of a bridge to remain in service (Anderson et al., 2017; Chase et al., 2016; 

Weidner et al., 2018). Contrary to the AASHTO SR, the NBI GCR gives condition ratings of the 

three major bridge components (deck, superstructure, and substructure).  
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While bridge performance evaluation approaches such as AASHTO SR and NBI GCR have 

been widely implemented, inherent deficiencies exist (Fereshtehnejad et al., 2018; Jeong, Kim, 

Lee, & Lee, 2018; Jonnalagadda et al., 2016; Lake & Seskis, 2013). The NBI GCR approach 

provides information on the severity of a bridge condition in terms of the condition rating (CR) 

but does not provide a quantitative evaluation (Lake & Seskis, 2013). For example, in GCR, 310 

m2 bridge decks with a 150 m2 and 125 m2 spalling area are both classified as a CR of ‘4’ 

(Verhoeven & Flintsch, 2011) on the scale of 10 (excellent). However, based on the percentage of 

deteriorated areas, they may be given more precise and quantitative condition scores, 3.51 and 

4.49, respectively.  

Recently, the Element-level Bridge Inspection (AASHTO, 2019) data has enabled a 

quantitative performance analysis. One of the key strengths of element level inspection, which can 

be performed by the visual inspection of bridges, is its ability to simultaneously capture the severity 

and extent of deterioration of an element (Chase et al., 2016).  As a result, BHIs are determined 

based on bridge elements’ conditions, which makes them effective for the prioritization of MRR 

activities. Although element-level data result from visual inspections, they provide a numerical 

score based on physical quantities of each element in four condition states. The link that the health 

index provides between the condition and asset value allows bridge managers to translate the 

condition to dollar amounts. The Virginia Department of Transportation has been very successful 

in optimizing MRR activities and has saved millions of dollars by using bridge health index 

(Matteo, 2016; Matteo, Milton, & Springer, 2016; Shepard & Johnson, 2001). The relative 

importance of elements, together with their conditions, may enable state DOTs to make bridge 

action decisions. Hence, elements such as decks, piers, abutments, girders, and stay cables are 

classified as critical elements. These critical elements relatively have more significant effects on 
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the BHI (Enright & Frangopol, 2000; Mehrabi, 2006; Spyrakos & Loannidis, 2003; Yianni, Rama, 

Neves, Andrews, & Castlo, 2017). Identification, proper monitoring, and adequate maintenance of 

critical elements can help reduce elevated risks in bridges (De Risi, Di Sarno, & Paolacci, 2017; 

Yarnold & Weidner, 2016). 

As the popularity of element-level inspection grows, most bridge management professionals 

are optimistic about its potential benefits, knowing that the bridge performance can be better 

assessed when detailed information is available. Yet, due to the uncertainties surrounding the 

determination of each element important weight, accurate predictions of BHIs remain challenging. 

Without a quantitative description of how critical each element is, the computation of a BHI using 

the broad classification of elements as critical and non-critical elements may be misleading. 

Studies on the application of element-level inspections indicate that the BHI, as a bridge 

performance measure, is better assessed by using various element important weight factors such 

as repair cost, reliability indices, or other agency-priority weights (Chase et al., 2016; Inkoom et 

al., 2017; Salim, Liew, & Shafie, 2014; Thomas & Sobanjo, 2012, 2016; Thompson et al., 2018). 

Jiang and Rens (X. Jiang & Rens, 2010b) suggested that element important weight factors should 

not be solely based on repair or replacement cost. Patidar et al. (Patidar, Labi, Sinha, & Thompson, 

2007) used multiple factors (risk, condition, cost, and priority) to determine element weight 

factors. More recently, Inkoom et al. (Inkoom et al., 2017) analyzed element weight factors based 

on the bridge element’s replacement costs, long-term maintenance costs, and vulnerability to 

natural and manmade hazards. 

A few studies that account for the relationships between elements are available in the 

literature (Hearn, 2015; Kosgodagan‐Dalla Torre et al., 2017). The fault tree and impact tree 

methods have been used to analyze how one element affects the other elements (Dori, Wild, 
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Borrmann, & Fischer, 2013; LeBeau & Wadia-Fascetti, 2000; Sianipar & Adams, 1997). However, 

these methods are probability-based analyses with hypothetical quantities and did not use actual 

quantities measured from the Element-level Bridge Inspections. The National Cooperative 

Highway Research Program (NCHRP) Report 551 presents a step-by-step guide for identifying 

performance measures (NCHRP, 2006) but is silent on inter-dependencies among elements.  

5.3 Methodology 

This section identified and computed Co-Active parameters that influence the overall BHIs. These 

parameters include Co-Active correlation coefficients and collaboration factors. Contingency 

tables are used for determining the Co-Active correlation coefficients, which are in turn used to 

assess the bridge health index.  

5.3.1 Development of Contingency Tables 

As presented earlier, the existing approach for bridge MRR prioritization considers elements 

independently, resulting in overly conservative predictions. This section describes how 

contingency tables are effectively used to prioritize MRRs.  

5.3.1.1 Identify Groups by Bridge Types 

Bridge structures are usually made up of different types and a number of elements due to the 

inherent variations. For example, a steel deck with corrugated material in a highly corrosive marine 

environment will deteriorate at a much faster rate than a reinforced concrete deck. Therefore, 

bridge groups having the same type and number of elements are identified. For this study, the three 

most common groups were identified among 9044 in-service bridges (excluding culverts) in the 

state of Georgia, U.S.A. 
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These groups consisted of bridges, which were categorized primarily based on the type of 

material used for the girder/beam element: 

1. Steel open girder/beam bridge (SO107): This group consisted of bridges with steel open 

girder (I section) as the means of supporting the overlying reinforced concrete deck, and in 

transmitting loads from the reinforced concrete deck into the underlying substructure. 

There were 598 bridges in this group. The last three numbers, ‘107’, in ‘SO107’, is an 

element identification number for steel open girder/beam bridge element. The first two 

letters, ‘SO’, means steel open, added to emphasize this group and make it unique in 

representation. 

2. Prestressed concrete open girder/beam bridge (PC109): In this group, each bridge 

contained prestressed concrete as the open girder/beam element’s material. The open 

girder/beam element in this bridge group performed similar functions as described in the 

group ‘SO107’, steel open girder/beam bridge. There were 1439 bridges in this group. 

Figure 18 shows a typical in-service prestressed concrete girder/beam bridge, which is the 

most common type in Georgia. 

3. Reinforced concrete open girder/beam with pile foundation bridge (RC110): Unlike the 

other two groups, bridges in this group contained reinforced concrete as a construction 

material for the open girder/beam element. Also, each bridge contained a pile foundation. 

There were 1098 bridges in this group. 
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Figure 18 – Typical bridge in the ‘PC109’ group. 

5.3.1.2 Create 12 Age Bins for Bridges in Each Group 

Bridges were categorized by 12 age bins shown in Figure 19 because ages should affect bridge 

performance. While bridges in the steel open girder/beam bridge (SO107) group were evenly 

distributed around the southern part of Georgia, there was a cluster of bridges around Atlanta, in 

inspection areas 7, 9, and 12, for the other bridge groups, prestressed concrete girder/beam bridge 

(PC109), and reinforced concrete open girder/beam with pile foundation bridge, RC110 (Figure 

19). The element health indices by age for bridges in the first bridge group, steel open girder/beam 

bridge (SO107), were presented later to illustrate the procedure for determining the Co-Active 

parameters, which were required for the implementation of the Br-CPM. In this study, the 

significance of the output from the proposed Br-CPM and the prioritization coefficient (PC) is 

clearly shown, in terms of decision making regarding how to optimize return on investment (ROI) 

on element’s preventive maintenance, rehabilitation, or replacement (MRR).  
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Figure 19 – Geographical locations of the identified bridge groups (SO107, PC109, and 

RC110) in twelve (12) inspection areas in Georgia. Notes: SO107 = Steel open girder/beam 

bridge; PC109 = Prestressed concrete girder/beam bridges; RC110 = Reinforced concrete 

open girder/beam bridge. 

5.3.1.3. Compute Health Indices for Elements in Each Age Bin 

In this study, the bridge health index (BHI) used as a bridge performance measure. Prior to the 

implementation of BHI in the Co-Active model, sensitivity analysis is performed to determine the 

efficiency of the BHI, using element-based inspection data. The results obtained from the 

sensitivity analysis have been presented separately in Chapter 4.  

 The procedure for computing element health indices is described by the following 3 steps.
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Step 1. Compute each element’s percentage quantities in 4 condition states for an age bin 

Table 21 shows the reinforced concrete deck element (No. 12) condition states (CSs) for 15 bridges 

in age bin 1940. In the table, there were four CSs, with one and four being the good and severe 

conditions, respectively. In each CS, the area of distress was quantified. The quantities in each CS 

were combined to determine the total quantity for the 15 bridges as shown in the “Row A”, at the 

bottom of Table 21. The last row, “Row B”, presents the percentage quantities in each CS. They 

were determined by taking the quantities in each CS and dividing by the total quantity, 4283 m2 

Table 21 – A typical element-level inspection in Georgia (reinforced concrete deck for age 

bin 1940). 

STRUCNUM EN 
TOTAL QTY 

(m2) 

CS1 

(m2) 

CS2 

(m2) 

CS3 

(m2) 

CS4 

(m2) 

20700220 12 310 0 264 46 0 

19950080 12 67 67 0 0 0 

28500340 12 1526 0 0 1526 0 

19950740 12 42 0 42 0 0 

26300160 12 499 487 11 0 0 

6300860 12 191 0 0 191 0 

19950490 12 36 0 36 0 0 

19900470 12 328 0 317 10 0 

20700210 12 310 0 294 16 0 

25550440 12 85 0 85 0 0 

19950520 12 279 0 0 279 0 
19950680 12 80 0 80 0 0 

17100110 12 232 0 231 0 0 

19950620 12 72 72 0 0 0 

20700140 12 226 0 213 13 0 

Row A—Quantity Sum 4283(a) 626(b) 1573(c) 2081(d) 0(e) 

*Row B—% Quantity 100 14.62(f) 36.73(g) 48.59(h) 0(i) 

Notes: STRUCNUM = structure number; EN = element number; TOTALQTY = total quantity; CS1 = condition 

state 1 (good); CS2 = condition state 2 (fair); CS3 = condition state 3(poor); CS4 = condition state 4 (severe); *The 

last row, “Row B”, corresponds to age-bin 1940 in Table 22. 

Step 2. Compute each element’s percentage quantities in 4 condition states for all age bins 

Repeating the process described in Step 1, each element’s % quantities were calculated for a group 

of bridges in each age bin as shown in Table 22.  
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Table 22 – Percentage quantities for element 12 (Reinforced concrete deck). 

Age-bin 

% Quantities in each condition state   

1 2 3 4  

(Good) (Fair) (Poor) (Severe)  

2020 99.52 0.48 0 0  

2010 90.39 8.10 1.51 0  

2000 76.17 22.27 1.56 0  

1990 75.41 21.26 3.33 0  

1980 60.19 39.70 0.11 0  

1970 25.61 62.58 11.81 0  

1960 18.57 70.63 10.8 0  

1950 24.77 54.96 20.28 0  
  **1940 14.62 36.73 48.59 0 (See “Row B”, in Table 1) 

1930 0 0 0 0  

1920 0 0 0 0  

1910 0 0 0 0  

Notes: **This row was obtained from Table 21. 

Step 3. Compute element health indices for all age bins 

This study utilized a multi‐linear function shown in Figure 20 and computed the element HI. The 

multi-linear function was defined by the element’s percentage quantities (see Table 22) and gave 

Table 23 as output. For example, the element’s percentage quantities in each age bin in Table 22 

(e.g., 14.62, 36.73, 48.59, and 0, in age bin 1940) were used to characterize the multilinear function 

with 4 points shown in Figure 20. Table 23 summaries the numerical values of the five areas (A, 

B, C, D, and E) shown in Figure 20.  
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Figure 20 – Multilinear function to aggregate element percentage quantities (age bin 1940). 

 

Table 23 – Computation of element 12 health indices, HI12 (reinforced concrete deck). 

(a) Age-bin 
Aggregated Percentage Quantity 

HI12 
(Area ‘A’)   (Area ‘B’) (Area ‘C’) (Area ‘D’)   (Area ‘E’) 

2020 49.90 0.10 0.20 0 0 99.80 

2010 47.40 1.90 4.80 0 0.70 96.20 
2000 43.80 5.40 11.90 0 0.80 91.40 

1990 43.40 4.90 12.30 0.10 1.60 90.50 

1980 40.00 9.90 19.90 0 0.10 86.40 

1970 29.80 14.30 37.20 0.60 5.30 70.50 

1960 28.20 16.40 40.70 0.50 4.90 68.50 

1950 28.30 11.60 37.60 1.70 8.40 67.00 

1940 20.20 5.50 42.70 8 16.40 51.20 

1930 0 0 0 0 0 0 

1920 0 0 0 0 0 0 

1910 0 0 0 0 0 0 

(b) Weighing 

factors (Inkoom et 
al., 2017b) 

2.0 0.24 0.20 0.12 0.0  

 

In Table 23, the product of each area (A through E) and its corresponding weighting factor 

(Inkoom et al., 2017) (see part ’b’) was calculated to determine HI for element 12 (reinforced 

concrete bridge deck) in the last column. For example, the HI for a group of reinforced concrete 
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decks in age bin 1940 was 51.20 (= (20.20 × 2.0) + (5.50 × 0.24) + (42.70 × 0.20) +

(8 × 0.12) + (16.40 × 0.0)). 

5.3.1.4 Develop deterioration prediction for each element 

An age-bin analysis approach, utilizing element HIs computed in Step 3 (Table 23), was used to 

develop deterioration predictions presented in this study using the Markov-chain method (Guoping 

Bu et al., 2011). The Markov-chain method requires condition state (CS) transition probabilities 

in each element and bridge. For each transition probability matrix, three unknowns (
11 33, .P P ) 

were estimated by minimizing the sum of errors between predicted and aggregated health indices 

(M. Chang & Maguire, 2016): 

𝑃̂ = 𝑚𝑖𝑛 [∑|𝑦𝑛,𝑗 − 𝑅𝑝,𝑛|

𝑁

𝑗=1

]  subject to 0 ≤ 𝑝𝑖𝑖 ≤ 1 for 𝑖 =  1,2,  3,  . .  ,  𝑛𝑠  (13) 

where, 𝑚𝑖𝑛 min  denotes minimization; N denotes the number of bridges or elements belonging to 

a subset; 𝑛𝑠 is the number of condition states; 𝑦𝑛,𝑗 is the observed (aggregated) health index at an 

𝑛𝑡ℎ age-bin of 𝑗th bridge; and 𝑅𝑝,𝑛 is the predicted health index. 

As a result of the process described from this section, HIs of bridge elements were described 

as a function of time. That is, deterioration models, which describe HIs as a function of time, were 

developed for each bridge element. Detailed procedure and deterioration predictions for Georgia’s 

bridge elements are presented in Chapter 5. 

5.3.1.5 Develop contingency tables and determine element co-active coefficients 

A contingency table was developed to provide interactions among Co-Active elements, 

describing correlation coefficients for pairs of Co-Active elements. It is expressed in a 2 × 2 table. 
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Equation (14) defines the Co-Active correlation coefficients. It measures how much one element 

HIs, ‘X’, affects the other element HIs, ‘Y’, based on the Pearson correlation coefficient 

(Embrechts, McNeil, & Straumann, 2002). 

𝜌(𝑋, 𝑌) =
Cov[𝑋, 𝑌]

√𝜎2[𝑋]𝜎2[𝑌]
 (14) 

where, 𝐶𝑜𝑣[𝑋, 𝑌] is the covariance between the two elements’ HIs and 𝜎2[𝑋] 𝜎2[𝑌] denotes their 

variances in each age bin. In the case of non-Co-Active elements, 𝜌(𝑋, 𝑌) = 0 since  𝐶𝑜𝑣[𝑋, 𝑌] =

0.  

5.3.2 Computation of Element Collaboration Factors 

5.3.2.1 Existing Element Weight Factors 

This study adopted the element weight factors recommended by Sobanjo and Thompson (Sobanjo 

& Thompson, 2016). In their approach, element weight factors are determined based on element 

replacement unit costs, element long-term unit costs, and more. 

5.2.2 Collaboration Factors  

The collaboration factors are defined by Equation (15) and used for a prioritization model (see 

Section 5). With the ‘𝑁𝑒
𝐶𝐴’ number of Co-Active elements, the number of 2-element interactions 

is 
1

2
(𝑁𝑒

𝐶𝐴!/(𝑁𝑒
𝐶𝐴 − 2)!) + 𝑁𝑒

𝐶𝐴. Collaboration factors were determined by multiplying the Co-

Active coefficients by the (importance) weight factors developed by Sobanjo and Thompson 

(Sobanjo & Thompson, 2016) including the cost and risk. They were used in the neighboring state, 

Florida, to weigh elements and determine the overall BHI. This collaboration factor plays an 

important role in decision making at discrete times (see Section 5.5.1).  
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 𝑊𝑒
𝐶 = ∑ 𝜌𝑒

CA𝑊𝑒

𝑁𝑒
𝐶𝐴

𝑖

 (15) 

where, 

𝑊𝑒
𝐶  = Collaboration factor, 

𝑊𝑒  = Weight factor (Sobanjo & Thompson, 2016) given to element, ‘e’, 

𝜌𝑒
CA = Co-Active correlation coefficient between two elements’ HIs (from Equation (14)), 

𝑁𝑒
𝐶𝐴 = the number of Co-Active elements. 

5.3.3 Bridge Health Index Assessment 

Figure 21 is a flowchart showing how one element’s change in HI affects the other elements. For 

example, when an expansion joint’s HI changed from 60 to 100 in Year 20, it affected HIs of the 

other elements (e.g., cap beam, bearing, column, and girder) due to the proposed Co-active model. 

The number in each arrow shows the Co-Active correlation coefficient between the expansion 

joint and each element. The overall BHIs were determined by a weighted average of element HIs.  
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Figure 21 – Flowchart showing how one element’s HI change affects a time-history of other 

elements. 

5.4 Analytical Investigation of Co-Active Elements in Three Bridge Groups 

This section presents the Co-Active coefficients, obtained from the contingency tables, and 

collaboration factors for the three major bridge groups identified in this study.  

5.4.1 Contingency Table for Co-Active Coefficients 

Table 24 lists bridge elements by age for bridges in the steel open girder/beam bridge (SO107) 

group. They were determined by the methodology described in Section 5.1.4. Figure 22 shows the 

contingency table representing Co-Active coefficients for Co-Active elements in the group 

‘SO107’ bridges. The small graphs in Figure 22 below the diagonal were bivariate scatter plots of 

two elements’ health indices, which were used for the calculation of the Co-Active coefficients. 

Each graph shows a relationship (e.g., a linear trend) between two elements.  

For example, the Co-Active coefficient in “Row 1”, “Col. 4”, in Figure 23 (designated as ‘A’, 

shown in Table 25) was calculated by Equation (16). 
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𝜌(No. 12,No. 311) =
Cov[HI12,HI311]

√𝜎2[HI12]𝜎2[HI311]
= 0.90 (16) 

where, HI12 and HI311 represent the health indices of deck and bearing elements, respectively. For 

example, HI12= [95.26, 92.30, 90.15, 83.73, 89.15, 77.76, 73.51, 63.32, 61.28] and HI311 = [88.41, 

95.95, 87.42, 93.99, 89.25, 84.22, 78.77, 66.45, 69.66] come from the second and fifth columns of 

Table 24.  

Table 24 – Element health indices by age for bridges in the ‘SO107’ group. 

Age-bin Deck Expansion Joint 
Beam/ 

Girder 
Bearing Cap Beam 

Pier/ 

Column 

2020 95.26 83.58 97.65 88.41 99.92 100.00 

2010 92.30 74.34 98.92 95.95 93.28 97.68 

2000 90.15 75.05 98.97 87.42 95.67 96.20 

1990 83.73 53.36 98.02 93.99 95.79 95.34 

1980 89.15 67.42 97.87 89.25 96.87 94.82 

1970 77.76 67.50 95.03 84.22 94.57 94.60 

1960 73.51 60.03 91.82 78.77 92.86 89.23 

1950 63.32 34.68 82.26 66.45 93.14 81.31 

1940 61.28 59.72 80.71 69.66 74.41 89.06 
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Figure 22 – Contingency table for the Co-Active elements in the ‘SO107’ group. Notes: * = 

Co-Active coefficient corresponding to “Row 1”, “Col. 4”. 

Figures 23 and 24 show the contingency tables for the Co-Active elements in the other two 

groups, PC109 and RC110.  

 

Figure 23 – Contingency table for the Co-Active elements in the ‘PC109’ group. 
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Figure 24 – Contingency table for the Co-Active elements in the ‘RC110’ group. 

 

The aggregated Co-Active coefficient (see part ‘(b)’ of Table 25) for each element was 

determined by combining all coefficients in each column. For example, an aggregated Co-Active 

coefficient for the reinforced concrete deck was 5.24 5.24 (= 1.00 + 0.78 + 0.94 + 0.90 +

0.72 + 0.90). 

5.4.2 Collaboration Factors  

Table 25 shows the Co-Active coefficients and collaboration factors calculated for the six Co-

Active elements in the group ‘SO107’ bridges. The collaboration factor was computed as the 

product of weight factors and the Co-Active coefficient for each element (see part ‘(d)’ of Table 

25).  

This process primarily applies weight factors based on relative costs of elements and inter-

dependency that exists among them. For example, the collaboration factor for the reinforced 

concrete deck was 136.58 [= (1.00 ∗ 25) + (0.78 ∗ 12) + (0.94 ∗ 49) + (0.90 ∗ 12) + (0.72 ∗

13) + (0.90 ∗ 40)]. Tables 26 and 27 show the Co-Active prioritization parameters in the other 
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two groups, PC109, and RC110. Element ranking changes when Co-Active coefficients were 

considered in conjunction with importance weight factors (part ‘(d)’ of Tables 25 through 27). 

 Table 25 – Co-Active prioritization parameters in the ‘SO107’ group.  

(a) On the element below 

The Effect of the Following Element’s Condition 

Change 

 

Deck 

Expansi

on Joint 

Beam/ 

Girder 
Bearing 

Cap 

Beam 

Pier/ 

Column 

Deck 1.00      

Expansion Joint 0.78 1.00     

Beam/Girder 0.94 0.68 1.00    

             Bearing            [a] = ‘A’ = 0.90 0.64 0.95 1.00   

Cap Beam 0.72 0.28 0.75 0.60 1.00  

Pier/Column 0.90 0.89 0.86 0.88 0.44 1.00 

(b) Aggregated Co-Active coefficient 

 

 

5.24 

(Rank 1) 

3.49 

(Rank 2) 

3.56 

(Rank 3) 

2.48 

 

1.44 

 

1.00 

 

(c) Importance weight (Sobanjo & 

Thompson, 2016) factor, [c]= 

                         

 

25.00 

 (Rank 3) 

12.00  

 

49.00 

 (Rank 1) 

12.00 

 

13.00 

 

40.00 

(Rank 2) 

(d) Collaboration factor       

= [c][a] 

 

136.58 

(Rank 1) 

92.24 

(Rank 3) 

104.55 

(Rank 2) 

55.00 

 

30.60 

 

40.00 

 

 

Table 26 – Co-Active prioritization parameters in the ‘PC109’ group. 

On the element below. 

The Effect of the Following Element’s Condition Change 

 

Deck 

Expansio

n Joint 

Beam/ 

Girder 
Bearing 

Cap 

Beam 

Pier/ 

Column 

Deck 1.00      

Expansion Joint 0.65 1.00     

Beam/Girder 0.99 0.53 1.00    

Bearing 0.89 0.88 0.81 1.00   

Cap Beam 0.99 0.70 0.97 0.90 1.00  

Pier/Column 0.79 ‘B’ = 0.96 0.68 0.98 0.82 1.00 

(b) Aggregated Co-Active coefficient 
 

 

5.31 
(Rank 1) 

4.07 
(Rank 2) 

3.46 
(Rank 3) 

2.88 
 

1.82 
 

1.00 
 

(c) Importance weight (Sobanjo & 

Thompson, 2016) factor 
      

 
25.00 

 (Rank 3) 

12.00  

 

46.00 

 (Rank 1) 

13.00 

 

13.00 

 

40.00 

(Rank 2) 

(d) Collaboration factor        

 
 

134.38 
(Rank 1) 

95.32 
(Rank 3) 

96.34 
(Rank 2) 

63.90 
 

45.80 
 

40.00 
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Table 27 – Co-Active prioritization parameters in ‘RC110’ group. 

(a) On the Element Below 

The Effect of the Following Element’s Condition Change 

 Expansion 

Joint 

Beam/ Cap 

Beam 

 

Deck Girder Pile 

Deck      1.00     

Expansion Joint      0.84 1.00    

Beam/Girder      0.85 0.62 1.00   

Cap Beam      0.94 0.97 0.80 1.00  
Pile      0.63 0.95 0.38 0.83 1.00 

(b)Aggregated Co-Active 
coefficient 

    4.26 3.54 2.18 1.83 1.00 

  (Rank 1)     (Rank 2) (Rank 3)     

(c) Importance weight (Sobanjo & 

Thompson, 2016) factor 
          

      25.00 12.00 33.00 13.00 17.00 

  (Rank 2)   (Rank 1)   (Rank 3) 

(d) Collaboration factor           

      86.06 61.22 49.86 27.11 17.00 

  (Rank 1)     (Rank 2) (Rank 3)     

 

5.4.3 Effect of Co-Active Elements on the Bridge Health Index 

A bridge generally consists of 30–80 elements. In order to analyze data from the recently mandated 

Element-Level Bridge Inspection program, transportation agencies in the U.S. will need to 

calculate a Bridge Health Index (BHI). This is a weighted average measure of the elements’ 

conditions. To illustrate how the proposed Co-Active model works, 1439 bridges from the Georgia 

Element-Level Bridge Inspection results, representing the group ‘PC109’, prestressed concrete 

open girder/beam bridges, were investigated (see Figures 25 and 26). Group PC109 was selected 

for the Co-Active model because it was the most dominant bridge group in Georgia. The effect of 

collaboration factors for the ‘PC109’ group is presented in the following sub-section, ‘Results.’ 

However, all groups were analyzed in the following section, “Analysis and interpretation of results 

and implementation”.  
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Figure 25 – A two-span bridge with a group of Co-Active elements in the group PC109. 

 

 
Figure 26 – Dominant inter-dependencies among the Co-Active elements in the group 

PC109. 

Figure 26 shows the complex interactions that existed among the six Co-Active elements in 

the prestressed concrete open girder/beam bridge (PC109) group. The arrow originating from one 

bridge element (e.g., expansion joint) to another one (e.g., bearing) shows that the long-term 

performance of bearing was dependent on the expansion joint’s performance, based on the 
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computed Co-Active coefficients shown in Table 26. In other words, if the condition of the 

expansion joint deteriorates/appreciates, it is likely going to affect the bearing element’s long-term 

performance. Furthermore, the four arrows originating from the expansion joint show that the long-

term performance of bearing, cap beam, and column was dependent on expansion joint’s 

deterioration/appreciation rates. The arrows shown in the figure are given in different colors to 

indicate the rates at which changes in the condition of an element affects the other dependent 

bridge elements. 

For example, the green color arrows show the most dominant inter-dependent relationship 

between pairs of Co-Active elements, having Co-Active coefficients between 0.90 and 1.00. Thus, 

the green color arrows originating from the expansion joint shows that the long-term performance 

of the pier/column was most dependent on the changes in the condition of the expansion joint. By 

investing in the expansion joint’s MRR, the long-term performance of other elements 

(beam/girder, bearing, cap, and column) also improves over time. 

Figure 27 shows the deterioration models (or time-history of HIs) for the six Co-Active 

elements and an overall bridge. The deterioration models were developed using the Markovian 

modeling approach (Agrawal, Kawaguchi, & Chen, 2010). In this study, the overall BHI represents 

HI predictions for bridges that pertained to the six elements. In Georgia for instance, at least 1439 

bridges pertained to these six elements. The elements’ deterioration models were aggregated to 

obtain an overall bridge model using element weight factors. For each element deterioration model, 

there were year-to-year depreciation factors (DFs) for each element’s HIs (i.e., the element’s 

deterioration rates). For example, if the reinforced concrete column’s HIs were 89.06 and 88.16 in 

the Years 2014 and 2015, respectively, the Year 2014–to–2015 DF was 0.01 (= (89.06–

88.16)/89.06).  
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Figure 27 - Bridge overall and element health index prediction models (group PC109). 

 

When one of Co-Active elements is maintained, rehabilitated, or replaced (MRR), it affects 

the DFs for the other Co-Active elements, the elements’ HIs, and the overall BHI. However, the 

extent to which the MRR of a Co-Active element affects the other elements’ DFs is quantified by 

𝐴𝐹𝑒
𝑎𝑐𝑡𝑖𝑛𝑔

𝜌𝑒
CA, where 𝐴𝐹𝑒

𝑎𝑐𝑡𝑖𝑛𝑔
 is the appreciation factor calculated for an element (e.g., expansion 

joint) being maintained, repaired, and rehabilitated. 𝐴𝐹𝑒
𝑎𝑐𝑡𝑖𝑛𝑔

 is 2.0 if an element HI increases from 

50 to 100 and 5.0 if it increases from 20 to 100. 𝜌𝑒
CA is the Co-Active coefficient between the acting 

element (e.g., expansion joint) and its co-active elements (e.g., column). The depreciation factor 

for the affected element (e.g., column) decreases due to the Co-Active relationship with the 

expansion joint: 

𝐷𝐹𝑒
𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑(1 − 𝐴𝐹𝑒

𝑎𝑐𝑡𝑖𝑛𝑔𝜌
𝑒
CA) (17) 

To illustrate how this equation works, a case study, involving the replacement of an expansion 

joint in the Year 20 (threshold element HI is 75), was considered. The following sub-section 

presents the results, which show the effects of Co-Active elements on the bridge performance over 
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time. A comparison of the analysis results (with and without the application of the Co-Active 

model) was also presented. The purpose of this comparison was to determine the impact of the Co-

Active model, in terms of projected overall BHI obtained after the bridge element’s repair or 

replacement.  

3.4.3.1. Results Obtained without Co-Active Model 

Figure 28 shows the overall bridge and element HIs, before applying the Co-Active model, when 

an expansion joint was replaced in Year 20. The HI of 100 indicates an excellent condition.  

 

 
Figure 28 - Effect of an expansion joint No. 301 replacement (before applying the Co-

Active approach). 

 

3.4.3.2. Results Obtained with Co-Active Model 

Figure 29 shows the overall bridge and element HIs, after applying the Co-Active model, 

when an expansion joint is replaced in Year 20. 𝐷𝐹𝑒
𝑎𝑓𝑓𝑐𝑡𝑒𝑑

 represents the initial slope of an affected 

element (e.g., bearing) in the depreciation model, which is reduced by 𝐴𝐹𝑒
𝑎𝑐𝑡𝑖𝑛𝑔

𝜌𝑒
CA computed from 
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the expansion joint’s HI change and Co-Active relationship with the affected elements (e.g., 

bearing and cap) shown in Figure 29. 

The Co-Active model considers the effects of the complex systems of interaction, which is a 

function of key parameters that define elements’ inter-dependent relationships, on the BHIs over 

time. By using the Co-Active model, bridge performance life improved from 50 to 60 years, an 

increase of 20% (see Figures 28 and 29). The 20% increase in the bridge performance life indicates 

the indirect effects of an expansion joint’s replacement on the other elements’ performance, which 

the current methodology in Figure 28 was unable to capture. 

 

Figure 29 – Effect of an expansion joint No. 301 replacement (after applying the Co-Active 

approach). 

 

When one of the Co-Active elements (e.g., an expansion joint) was replaced or repaired, its 

overall bridge performance improved. However, after the replacement or repair, the expansion 

joint’s HI, in fact, decreased over time as it deteriorated. Consequently, the Co-Active coefficients 

should vary as a function of time and have a diminishing effect on the overall bridge HI. Therefore, 
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the effect of Co-Active coefficient on the elements’ HIs and overall BHI predictions was dependent 

on three main factors:  

● The year in which a Co-Active element was maintained, rehabilitated, or replaced (MRR).  

● The condition of a Co-Active element (i.e., an element HI) before MRR and the type of MRR 

action. The more the performance gap (i.e., the difference between an element’s HI before and 

after MRR), the more influential the element’s MRR was on the HI predictions.  

● The inter-dependencies among the Co-Active elements. The elements’ inter-dependency was 

a function of their Co-Active coefficients. The higher the value of an element Co‐Active 

coefficient, the more dependent the element was. 

5.5 Analysis and Interpretation of Results and Implementation 

5.5.1 Prioritization for Bridge Maintenance 

The bridge element “prioritization coefficient (PC)” is a numerical value, which defines the 

relative maintenance priority of Co-Active elements at a discrete-time. While health indices should 

be time-dependent, decision making occurs at discrete times. Therefore, the proposed element ‘PC’ 

analysis informs state DOTs which elements are most influential for long-term bridge performance 

based on bridge health index depreciation models similar to one shown in Figure 29. The effective 

bridge preventive maintenance actions (e.g., deck treatment, beam painting, etc.) are intended to 

delay the need for costly rehabilitation or replacement while bridges are still in good or fair 

condition and before the onset of serious deterioration (FHWA, 2018).  

Thus, it is recommended that the results from the previous section are further analyzed by 

means of ‘PC’ defined by Equation (18). The ‘PC’ accounts for a performance target (e.g., a 

threshold health index) and associated performance gaps. Consequently, the ‘PC’ analysis helps 
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prioritize preventive maintenance activities, rehabilitation, or replacement. In this equation, the 

subscript, ‘e’, indicates an element. 

𝑃𝐶𝑒 = [𝐻𝐼𝑒
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐻𝐼𝑒  ] ×

𝑊𝑒
𝐶

100
  (18) 

where, 

𝑃𝐶𝑒 = Prioritization coefficient, 

𝐻𝐼𝑒  = Health index, 

𝐻𝐼𝑒
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  = Threshold health index, 

𝑊𝑒
𝐶  = Collaboration factor. 

The prioritization coefficients (PCs) for varying BHI thresholds (50, 75, and 90) in Year 2018 

are shown in Figure 30 for the case studied (prestressed concrete open girder/beam bridges) in the 

preceding section. Figures 31 and 32 show the PCs for the other bridge groups (steel open 

girder/beam bridges and reinforced concrete open girder/beam with pile foundation bridges) 

previously identified in this dissertation. 

When ‘PC’ is negative, it means that the element meets the performance level, having a 

specific prioritization requirement (see Table 28). As the ‘PC’ approaches zero, elements may 

require preventive maintenance activities. When ‘PC’ is positive, the first part of Equation (18) 

represents a “performance gap” in an element. The second part, including the weighed element 

collaboration factors, accounts for how Co-Active elements work together to affect the overall 

bridge performance. When the ‘PC’ is positive and higher in value, elements are prioritized 

because the performance gap is larger, and the collaboration factor is higher. The higher the 

positive value of an element’s ‘PC’, the more influential it is in closing the “performance gap” and 

in meeting the agency’s performance target. However, if the agency’s benchmark HI target is lower 



91 

(or 50), all elements’ condition would need a minimum improvement although elements with less 

negative ‘PC’ will be prioritized.  

Table 28 – Prioritization Coefficients (PC) scales. 

Negative (-) PC Positive (+) PC 

Coefficient Description Coefficient Description 

PC ≥ 100 
Very Low 

Priority 
PC ≥ 100 

Very High 

Priority 

90 ≤PC < 100 

Low Priority 

90 ≤PC < 100 

High Priority 
80 ≤ PC < 90 80 ≤ PC < 90 

70 ≤ PC < 80 70 ≤ PC < 80 

60 ≤ PC < 70 60 ≤ PC < 70 

50 ≤ PC < 60 Medium 
Priority 

50 ≤ PC < 60 Medium 
Priority 40 ≤ PC < 50 40 ≤ PC < 50 

30 ≤ PC < 40 

High Priority 

30 ≤ PC < 40 

Low Priority 20 ≤ PC < 30 20 ≤ PC < 30 

10 ≤ PC < 20 10 ≤ PC < 20 

0 ≤ PC < 10 
Very High 

Priority 
0 ≤ PC < 10 

Very Low 

Priority 

 

For example, in Figure 30, when the threshold BHI was 75, the ‘PC’ for expansion joint was 

8, which was the highest ‘PC’, and it was the only positive ‘PC’. The pier/column’s ‘PC’ was 

negative but approached zero. This indicates this element would soon need attention. By 

comparison, the ‘PCs’ of beam/girder, bearing, and cap beam in the ‘PC109’ group (Figure 30) 

show that these elements were less critical than similar elements in the ‘SO107’ group (Figure 31). 

Furthermore, due to the relatively lower magnitude of negative ‘PCs’, when the threshold BHI was 

50, most elements in the ‘RC110’ group (Figure 32) would become critical, sooner than similar 

elements in the other groups. 
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Figure 30 – Prioritization coefficients in the ‘PC109’ group for Bridge Health Index (BHI) 

thresholds (50, 75, and 90). Notes: negative value of ‘PC’ = the element meets the 

performance level; positive value of ‘PC’ = the element does not meet the performance 

level. 

 

 

Figure 31 – Prioritization coefficients in the ‘SO107’ group for BHI thresholds (50, 75, and 

90). 
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Figure 32– Prioritization coefficients in the ‘RC110’ group for BHI thresholds (50, 75, and 

90). 

3.5.2 Discussion of Results 

The return on the investment (ROI) in terms of bridge service life extension is optimized when an 

element with the highest prioritization coefficient is replaced or repaired. This Co-Active approach 

and associated long-term ROI is not currently being considered by transportation agencies. Among 

the group of six Co-Active elements analyzed, the prioritization coefficient of the expansion joint 

appears to be the highest. This shows that the deterioration of expansion joints in Georgia bridges 

is most influential on the performance of the adjacent and underlying elements, for the group of 

bridges studied. The prioritization coefficient is a resourceful parameter for closing performance 

gaps and prioritizing elements for preventive maintenance activities, rehabilitation, or 

replacement. 

For the three study bridge groups (steel open girder/beam bridge (SO107), prestressed 

concrete open girder/beam bridge (PC109), and reinforced concrete open girder/beam with pile 

foundation bridge (RC110), it was concluded that the expansion joint was the most influential 

element for improving the overall BHI when the threshold BHI target of 75 was used. This means 
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that by investing on expansion joint replacements in Year 20, for the prestressed concrete open 

girder/beam bridge (PC109) group, which contained 1439 in-service bridges in Georgia, the 

overall BHI would improve by 20% over the subsequent 20 years. The results from the 

prioritization analysis also suggest that expansion joints were the most critical element when a 

threshold BHI of 75 was considered. 

In addition to the expansion joint and deck, the third most influential element was bearing, in 

the steel open girder/beam bridge (SO107), and pile, in the reinforced concrete open girder/beam 

with pile foundation bridge (RC110). Although the cap beam element met the performance level 

in all the three bridge groups. Yet, the element’s PCs were not the same for the three studied 

groups. The relative difference in the element’s PCs, among the three study groups, had great 

potential for influencing the decision-making process on the element’s MRR. As per the element’s 

MRR requirements, the cap beam was more critical in reinforced concrete open girder/beam with 

the pile foundation bridge (RC110) group than in the steel open girder/beam bridge (SO107) and 

prestressed concrete open girder/beam bridge (PC109) groups. This means that the cap beam 

element would require MRR sooner in reinforced concrete open girder/beam with pile foundation 

bridge group (which contained bridges that were evenly distributed around the southern part of 

Georgia) than in the other two bridge groups, having a cluster of bridges around Atlanta (see 

inspection areas 7, 9, and 12 in Figure 19). 

5.6 Conclusions 

In this study, “Co-Active” bridge elements that act together to improve the overall bridge health 

index (BHI) were defined. The main advantage of using a “Co-Active” model lies in the fact that 

transportation agencies will be able to assess which element’s preventive maintenance, 

rehabilitation, or replacement (MRR) optimizes a return on investment (ROI), in terms of bridge 
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service life. Optimization of the ROI was achieved when the Co-Active element with the highest 

prioritization coefficient was selected for MRR. 

It was concluded that long-term gains from bridge investments (preventive maintenance, 

rehabilitation, or replacement) became apparent when the “Co-Active” elements were identified 

to extend the service life of bridges. The “Co-Active” elements extended the service life of bridges 

through complex systems of interaction, which is a function of key parameters that define 

elements’ inter-dependent relationships over time. This study shows how to determine “Co-

Active” coefficients and factors that enhance bridge performance by means of analyzing 

contingency tables. The “Co-active” model proposed in this study determines the effects of “Co-

Active” elements on the bridge performance over its life cycle. 

In addition to the proposed “Co-Active” model, a prioritization coefficient (PC) was 

introduced to account for a performance target and identify performance gaps established by a 

transportation agency. The proposed PC effectively found most influential MRR items in closing 

the performance gaps that might be present in a bridge inventory. 
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CHAPTER 6 

6. NOVEL PRIORITIZATION MECHANISM LEVERAGING TIME-DEPENDENT 

ELEMENT INTERACTIONS AND CAUSALITY TO ENHANCE DEPRECIATION 

PREDICTIONS FOR BRIDGE ASSET MANAGEMENT 

6.1 Introduction 

Transportation infrastructure is one of the most crucial components of overall infrastructure 

systems. Development of a bridge management strategy is vital in order to sustain the performance 

of critical transportation infrastructure such as bridges while using available funds efficiently 

(Karaaslan, Hiasa, & Catbas, 2018). In the United States, two major approaches exist for bridge 

inspection: 1) condition-rating of three major bridge components, i.e., deck, superstructure, and 

substructure and 2) element-based inspection, which allows a more comprehensive bridge 

performance assessment of element conditions and quantities (AASHTO, 2019). Regardless of the 

inspection methods employed, a bridge inspection enables transportation agencies to allocate 

funding for preventive maintenance, rehabilitation, or replacement (MRR) and to sustain the 

mobility for any events possibly including a national emergency. However, prioritization is often 

necessary due to limited resources. 

6.1.1 Research Motivation 

Each state Department of Transportation (DOT) in the United States maintains between 780 and 

54,131 bridges in its inventory, and each bridge’s health relies on the health of 60-80 elements 

(e.g., deck, girder, and column) with different performance characteristics. Most transportation 
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agencies make asset management decisions with budgetary constraints. Therefore, an efficient 

prioritization mechanism is essential for decision making. Here, a prioritization is defined as an 

element-level MRR ranking for which the long-term performance of a bridge is optimized. Many 

transportation agencies in North America have adopted a bridge management system (BMS) such 

as AASHTOWare. In most systems, however, performance gaps in a bridge inventory are 

determined by establishing a target performance (or threshold health index). Additionally, they 

predict future conditions by delineating depreciation rates from existing conditions and MRR 

strategies. Such predictions are overly conservative because element interactions, although present 

in a bridge inventory, are not considered in quantifying bridge depreciation. In Georgia, for 

example, deterioration predictions indicate that bridges on average last 65-75 years. However, 

well-maintained bridges serve for a longer period, 100-125 years. Logically, if one repairs one 

element, it should reduce the deterioration of other elements. Those improved elements, in turn, 

reduce the deterioration of the repaired element and so forth. This study proposes a novel 

prioritization mechanism that leverages time-dependent element interactions. They collectively 

measure a bridge’s performance and yield more accurate depreciation rates for long-term 

performance predictions.  Figure 33 shows the 12,723 bridge locations investigated to verify the 

proposed Co-Active approach. Depreciation is often used interchangeably with deterioration for 

bridge asset management. This dissertation adopts this perspective.  

6.1.2 Performance of Bridges in Three Southeastern States  

The bridges shown in Figure 33 are part of the National Highway System (NHS). In this study, 

health indices for bridge elements in Alabama, Georgia, and Florida are computed using bi-annual 

element-level bridge inspection data available in the National Bridge Inventory. For the purpose 

of quantifying a performance gap in this study, the element conditions are assessed in terms of 2 
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indicators: performance gap index (PGI) and investment-to-depreciation (I/D) ratio. 

 

 

(a) PGI 

 

(b) I/D Ratio (c) NHS Bridge Locations 

Figure 33 – Existing bridge conditions in Southeastern US states: Alabama, Georgia, and 

Florida.  

(a) NHS bridge element performance gap index (PGI); (b) Investment-to-depreciation (I/D) 

ratio; and (c) NHS bridge locations 

 

The performance gap index (PGI) is a proportional measure which represents the predicted 

long-term bridge performance, in relation to the exemplary long-term performance. Figure 34 

shows a typical comparison between exemplary and actual bridge element performance as 

measured by the Bridge Health Index (BHI). The exemplary curve (see ‘Area E’ in Figure 34) 

characterizes a state’s target long-term performance curve. 
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Figure 34 – Exemplary and actual bridge performance. 

This study hypothetically adopts the curve presented by the Federal Highway 

Administration (2018). It is indicated as ‘Area E’ in Figure 34. The PGI compares areas under the 

curves of exemplary and actual time-history of bridges’ health indices, indicated as ‘Area E’ and 

‘Area A’, respectively, and is computed by (Area A-Area E)/Area E. For example, a PGI of -0.7 

for the deck elements in Figure 33(a) indicates that the area under the predicted deck performance 

curve is 30% of the area under the exemplary deck performance. In other words, the element 

performance is not desirable with a large performance gap (70%). 

The investment-to-depreciation (I/D) ratio is the other indicator. It represents the ratio of a 

net positive change to health indices resulting from MRR to a net negative change in element 

health indices due to deterioration. Thus, an I/D ratio greater than 1 for an expansion joint in 

Florida (see Figure 33b) indicates that the average increase in health index by MRR is greater than 

the average reduction from depreciation. An element I/D ratio of 1 indicates that state agencies 

improve an element as much as it naturally and physically depreciates due to usage.  

In Figure 33, the PGI and I/D ratios are calculated for a group of six selected elements in 

Alabama, Georgia, and Florida. There is a smaller performance gap in Florida than in Georgia and 
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Alabama, which is indicated by a higher PGI in the figure. Alabama has the highest I/D ratio for 

deck, followed by Georgia. The I/D ratio and the associated PGI for expansion joints are higher in 

Florida than in Georgia and Alabama. This means that Florida is the most diligent in the 

maintenance of expansion joints. The PGI reflects sustained long-term performance of elements. 

Thus, an element with a low I/D ratio could still have high PGI; however, a low I/D ratio indicates 

that PGI may decline in the future if no investment is made. Overall, the element conditions in 

Florida appear to be better than Alabama and Georgia. Based on a review of the two performance 

indicators, one may undertake MRR for elements. However, an investment strategy for prioritizing 

elements that extend bridge service life is not straightforward. The following section describes 

complex interactions among elements that collectively influence the overall bridge performance.  

6.1.3 Research Goals and Scope 

This study aims to account for element interactions, referred to as “Co-Activeness” hereafter, in 

predicting the long-term performance of bridges by analyzing element data available in the 

National Bridge Inventory. Element data refer to element-level bridge inspection results, which 

are generally aggregated to bridge health indices to represent the overall bridge health. 

Specifically, this study aims to answer the following three key questions by analyzing bridge 

inventories in three states: 

1. Does Co-Activeness, among bridge elements, exist in the element data? 

2. If exists, is the Co-Activeness quantifiable? 

3. If exists and is quantifiable, are the U.S. state agencies leveraging Co-Activeness in their 

current maintenance, rehabilitation, or replacement (MRR) strategies?  

In order to answer these questions, an analytical study is designed in five parts:  

● Part 1: Co-Activeness is numerically quantified to investigate if strong correlations 



101 

exist among elements.  

● Part 2: Depreciation curves representing long-term performance of bridge elements in 

each of the 3 states are developed through an extensive data analysis employing the 

Markov method.  

● Part 3: The Co-Active parameters quantified in Part 1 are used to adjust the element 

depreciation prediction models developed in Part 2.  

● Part 4: Elements’ Co-Active performance is aggregated to evaluate the effects of two 

hypothetical investment (or MRR) scenarios. For comparison, the performance gap 

index (PGI) and investment-to-depreciation (I/D) ratio are re-evaluated after 

employing the Co-Activeness mechanism.  

● Part 5: Existing MRR strategies apparent in the element data of Alabama, Georgia, and 

Florida are reviewed in light of the findings. 

6.2 Literature Review  

Bridge performance analysis is becoming increasingly important due to aging infrastructures (K. 

Chang, Lim, Chi, & Hwang, 2019; Ferguson, Godson, & Gleason, 2019; Maizuar, Zhang, 

Miramini, Mendis, & Duffield, 2020). Bridge performance measures must be identified 

(Alsharqawi, Zayed, & Dabous, 2018), for decision-making on MRR, in addition to the condition 

assessment of bridges. As a result, various state departments of transportation (DOTs) and other 

agencies have developed measures of bridge performance for effective management and 

preservation of public equity (Adarkwa & Attoh-Okine, 2017; Garder, Aaleti, Zhong, & Sritharan, 

2019). Understanding the bridge “health index” (or condition) in most bridge management systems 

typically enables a transportation agency to assess the performance of bridges or a network of 

bridges based on the available element-level inspection records (Campbell et al., 2016; Jeong, 



102 

Kim, Lee, Lee, & Maintenance, 2018). Once the assessment is made, it is possible to aggregate 

the element health indices (HIs) to determine the overall bridge health index (BHI). Typically, a 

transportation agency reports a performance gap when a BHI falls below an established threshold. 

For example, the Virginia Department of Transportation has set a target health index of 

approximately 95.5 (VDOT, 2020). Additionally, BHI enables a transportation agency to develop 

performance prediction models. These models are beneficial in evaluating the long-term 

performance of bridges and bridge elements. 

Overall, bridge performance prediction models must be time-dependent. However, because 

they are time-dependent, multiple years of condition scores are required before the effects of 

annual investment on bridge MRR can be determined. In this study, an alternative approach, an 

age-bin based bridge element deterioration model is adopted. Most transportation agencies are 

often interested in determining which bridge actions (or MRR strategies) optimize spending on a 

bridge or a network of bridges. Bridge asset management models are usually developed based on 

the bridge performance models and predict the effect of annual or projected investments on bridge 

MRR (Shim, Lee, & Kang, 2017). One of the major deficiencies of this approach is that it does 

not account for the influence of element performance interactions and causality on the long-term 

bridge performance.  

6.3 Methodology 

6.3.1 Quantification of Element Co-Activeness (Part 1) 

In this study, Co-Activeness is quantified with a Co-Active coefficient. This parameter represents 

interactions among elements and is computed for a group of six selected elements previously 

identified in Figure 33. Equation (19) defines the Co-Active correlation coefficient. It measures 

how much one element’s HIs, a vector ‘X’, affects the other element’s HIs, a vector ‘Y’, in a bridge 
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inventory based on the Pearson correlation coefficient (Embrechts et al., 2002), where 𝐶𝑜𝑣[𝑋, 𝑌] 

is the covariance between the two elements’ HIs, and 𝜎2[𝑋]  𝑎𝑛𝑑 𝜎2[𝑌] denote the variances. In 

the case of elements with no correlation, 𝜌(𝑋, 𝑌) = 0.  

                                                    𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣[𝑋, 𝑌]

√𝜎2[𝑋]𝜎2[𝑌]
                                                        (19) 

6.3.1.1 Development of element depreciation predictions (Part 2) 

An age-bin analysis approach is used to develop deterioration prediction models for Georgia (M.G.  

Chorzepa, Durham, Kim, & Oyegbile, 2019). This methodology, used for Georgia, is employed to 

develop depreciation predictions for Alabama and Florida. This approach primarily employs the 

Markov-chain method (Guoping Bu et al., 2011) and is developed to overcome the limited 

element-data available as they have been collected bi-annually for each bridge since 2015. The 

age-bin approach for developing deterioration prediction models are briefly described as below. 

The first step in developing a model is to compute and aggregate element Health Indices (HIs)  

The computation of bridge element health indices follows the procedure available in the literature 

(Inkoom & Sobanjo, 2018; Sobanjo & Thompson, 2016). This study utilizes the element inspection 

records for the 3 states to compute element health indices. The computed element health indices 

are then aggregated and grouped into twelve age-bins with a 10-year interval as shown in Table 

29. The element health indices within age bins represent element performance scores over the last 

100 years. 

Table 29 – Age-bin-based health index predictions for selected elements in Georgia. 

Element # 
 Health Index 

2020 2010 2000 1990 1980 1970 1960 1950 1940 1930 1920 1910 

12 99.47 98.43 97.35 92.90 88.01 79.33 74.64 70.91 73.46 88.49 84.30 76.36 

38 99.92 97.41 94.04 95.77 92.55 85.83 81.17 99.44 68.84 77.43 67.26 55.00 

107 99.16 98.43 95.62 97.20 96.52 94.21 87.79 79.71 78.72 81.54 81.60 73.44 

205 98.00 97.09 93.78 93.61 95.73 89.45 80.87 71.83 90.38 76.82 42.93 59.69 

215 99.19 98.23 97.25 95.97 94.96 94.71 92.89 89.56 83.72 81.27 62.92 53.63 
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The second step is to apply the Markovian model to the aggregated element Health Indices (HIs)  

The Markovian modeling approach is used because it is more suitable for the large bridge 

inventories available in the 3 states investigated in this study. This Markovian approach typically 

requires calculating a transition probability matrix (Inkoom & Sobanjo, 2018; Sobanjo & 

Thompson, 2016). for each element. Using the transition probability matrices estimated for an 

element, the Markovian model evaluates element deterioration predictions. This procedure is 

repeated for each element in each state. 

6.3.1.2 Adjustment to the Depreciation Curves Accounting for Co-Activeness (Part 3) 

A Co-Active model accounts for the effect of element interactions (i.e., Co-Activeness) in 

developing the depreciation predictions resulting from an element MRR. The Co-Active model 

leverages on element interactions and more accurately predicts bridge performance. The following 

sections explain how one can use the proposed model. 

6.3.1.3 Evaluation of Two Hypothetical Investment Scenarios (Part 4) 

Two hypothetical cases involving an expansion joint replacement and a deck repair for the next 25 

years show how the proposed mechanism affects the bridge service life from MRRs. Additionally, 

the PGI and I/D ratio are evaluated for the MRR strategies.  

6.3.1.4 Review of Existing MRR Strategies (Part 5) 

Biannual changes, from bi-annual inspections, in the element health indices (i.e., increase or 

decrease in the element HIs) are computed for all elements in the 3 states. The existing MRR 

strategies apparent in the element data are discussed in light of the findings.    
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6.4 Results Employing the Proposed Co-Active Mechanism 

6.4.1 Co-Active Parameters  

This section presents the results obtained from studying the three-state element data. Tables 30 

through 32 show the Co-Active parameters for Alabama, Georgia, and Florida. These parameters 

include co-active coefficients and aggregated Co-Active parameters (Parts ‘a’ and ‘b’ in Tables 30 

through 31). The Co-Active coefficients are calculated using Equation (20). For example, the Co-

Active coefficient for Alabama, designated as ‘A’ in Part ‘a’ of Table 30, is calculated as follows: 

𝜌(𝐷𝑒𝑐𝑘,  𝐽𝑜𝑖𝑛𝑡) =
𝐶𝑜𝑣[𝐻𝐼𝑑𝑒𝑐𝑘 , 𝐻𝐼𝑗𝑜𝑖𝑛𝑡]

√𝜎2[𝐻𝐼𝑑𝑒𝑐𝑘]𝜎2[𝐻𝐼𝑗𝑜𝑖𝑛𝑡]

= 0.96 (20) 

In Equation (20), 𝐻𝐼𝑑𝑒𝑐𝑘  and 𝐻𝐼𝑗𝑜𝑖𝑛𝑡  represent the age-bin aggregated health indices of deck and 

expansion joint elements, respectively. 𝐶𝑜𝑣[𝐻𝐼𝑑𝑒𝑐𝑘 , 𝐻𝐼𝑗𝑜𝑖𝑛𝑡] is the covariance between deck’s and 

expansion joint’s HIs, and 𝜎2[𝐻𝐼𝑑𝑒𝑐𝑘]  𝑎𝑛𝑑 𝜎2[𝐻𝐼𝑗𝑜𝑖𝑛𝑡] denote their variances. The aggregated 

Co-Active parameter (see part ‘(b)’ in Table 30) is obtained by combining all Co-Active 

coefficients for each element. For example, the aggregated Co-Active parameter for deck in 

Alabama is 5.02 (= 1.00 + 0.96 + 0.89 + 0.50 + 0.71 + 0.96). 

  The correlation matrix shown in Tables 30 through 31 is assumed asymmetric in this study. 

That is, it is assumed that there is a uni-directional cause and effect for maintenance such as one 

associated with a water intrusion. However, an asymmetric matrix may also be considered if there 

is strong evidence that the bearing element affects the deck condition and that the column 

significantly affects the deck element. The cause and effect question addressing meaningful bridge 

element interactions must be identified after carefully reviewing service and maintenance records. 

Asymmetric matrix was considered for this study, and for the six elements selected in the three 
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states, it was concluded that the asymmetric matrices better represent element interactions 

observed in in-service bridges. Therefore, the results from asymmetric element interactions are 

presented in this dissertation. 

As shown in Table 30, the expansion joint and deck are highly interactive and affect the 

underlying elements. The expansion joint and deck with the underlying elements are more 

interactive in Georgia than Alabama and Florida. Among the three states, the expansion joint and 

deck elements in Florida have the least interactions with the underlying elements. This aspect is 

further discussed in the later section. The element interactions for the three states are graphically 

illustrated in Figure 35. It should be recognized that the Co-Active parameters only describe the 

interactions among elements present in each state’s element data. It is important to recognize, 

however, the conditions of Co-Active elements mainly drive the overall bridge health indices. That 

is, the element interactions are reflected in predicting bridge health indices in order to account for 

the Co-Activeness recognized in the data; however, current element conditions (or bridge 

inspection results) primarily characterize the bridge performance deterioration. 

Table 30 – Co-Active parameters for Alabama. 

(a) On the element below 

The Effect of the following element’s condition change 

 

Deck 

Expansion 

Joint 

Beam/ 

Girder Bearing 

Cap 

Beam 

Pier/ 

Column 

Deck 1      

Expansion Joint 0.96 1     

Beam/Girder 0.89 0.82 1    

Bearing 0.50 0.36 0.61 1   

Cap Beam 0.71 0.57 0.75 0.86 1  

Pier/Column 0.96 0.93 0.96 0.54 0.68 1 

(b) Aggregated Co-Active parameter 

 

5.02 3.68 3.32 2.4 1.68 1 
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Table 31- Co-Active parameters for Georgia. 

(a) On the element below 

The Effect of the following element’s condition change 

 

Deck 

Expansion 

Joint 

Beam/ 

Girder Bearing 

Cap 

Beam 

Pier/ 

Column 

Deck 1.00      

Expansion Joint 0.65 1.00     

Beam/Girder 0.99 0.53 1.00    

Bearing 0.89 0.88 0.81 1.00   

Cap Beam 0.99 0.70 0.97 0.90 1.00  

Pier/Column 0.79 0.96 0.68 0.98 0.82 1.00 

(b) Aggregated Co-Active coefficient 5.31 

 

4.07 

 

3.46 

 

2.88 

 

1.82 

 

1.00 

 

 

Table 32 - Co-Active parameters for Florida. 

(a) On the element below 

The Effect of the following element’s condition change 

 

Deck 

Expansion 

Joint 

Beam/ 

Girder Bearing 

Cap 

Beam 

Pier/ 

Column 

Deck 1.00      

Expansion Joint 0.37 1.00     

Beam/Girder 0.41 0.70 1.00    

Bearing 0.21 0.34 0.03 1.00   

Cap Beam 0.88 0.49 0.58 0.00 1.00  

Pier/Column 0.85 0.61 0.72 0.08 0.89 1.00 

(b) Aggregated Co-Active coefficient 

 

3.72 3.14 2.33 1.08 1.89 1.00 

 

 

Figure 35 shows the complex interactions that exist among the six Co-Active elements for 

the three states. The arrowtail (i.e., the origin of each arrow) represents the influential element, 

and the arrowhead (i.e., end of each arrow) shows the dependent element being affected by the 

influential element (i.e., defines the causality). In Figure 35, each arrowhead shows the Co-Active 

coefficient between two elements. For example, in Figure 35, the arrow originating from the 

beam/girder and terminating at the cap beam shows that the cap beam is highly dependent on the 

changes in the condition of the beam/girder, as evident with the Co-Active coefficient of 0.97. As 

indicated earlier, the arrows may go both ways if one must define such causality. Among the three 

states, changes in the deck conditions in Alabama appear most influential on the long-term 
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performance of the expansion joints. Similarly, the changes in the conditions of expansion joints 

are most influential on the long-term performance of the underlying elements in Georgia (see 

Figure 36a). 

Overall, the development of element interactions enables transportation agencies to depict 

data-driven element interactions for decision-making on bridge investment. The following section 

presents two hypothetical cases. They show how investments on MRR of two critical elements 

(expansion joints or decks) affect the long-term bridge performance when the proposed Co-Active 

mechanism is employed.  

6.4.2 Effects of MRR on Bridge Performance  

6.4.2.1 Case 1. Expansion Joint Replacement  

When an element is maintained, rehabilitated, or replaced (MRR), it affects the deterioration rate. 

Additionally, it affects the other elements’ HIs as well as the overall BHI. In this study, the extent 

to which the MRR of an element affects the other elements’ depreciation rate is affected by the 

Co-Active coefficients shown in Tables 30 through 32. Thus, the Co-Active mechanism leverages 

on element interactions and brings a deterioration rate close to real-world observations. 

To illustrate how this novel mechanism works, a case study, involving a replacement of all 

expansion joints in the inventory is considered. Figure 36 shows the overall bridge and element HI 

predictions, not including and including the Co-Active mechanism, when an expansion joint is 

replaced in (future) Year 25 holding everything else equal.  The HI of 100 indicates an excellent 

condition. As shown in Figures 36 (b), (d), and (f), the depreciation rates of the other elements are 

affected by the expansion joint replacements. 
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(a) Alabama 

 
(b) Georgia 

 
(c) Florida 

Figure 35 – Graphical illustration showing element interactions: 

Alabama; (b) Georgia; (c) Florida. 
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As shown in Figure 36, element interactions do not have significant effects on the 

deterioration predictions for elements in Alabama and Florida. The element interactions in Georgia 

improve the deterioration predictions and enhance the overall bridge performance by extending 

the service life by about 5 years. This is significant because the extension applies to 3,324 bridges 

in Georgia. The figure also shows that the deterioration predictions are dependent on the magnitude 

of the Co-Active parameters.  

Figure 37 presents the PGI and I/D ratio calculated for the expansion joint replacement 

scenario. For Alabama, the Co-Active analysis (including element interactions) marginally 

improves the element and overall bridge PGIs. For Georgia, on the other hand, the Co-Active 

analysis improves HI of the other elements and overall bridge PGIs more than it did in Alabama. 

The Co-Active analysis has no impact in Florida. Overall, the Co-Active mechanism extends the 

bridge service life by 5 years and improves the overall bridge PGI and I/D ratios in Georgia (see 

Figure 37).  
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(a) Not including Co-Activeness (Alabama) (b) Including Co-Activeness (Alabama) 

  

(c) Not including Co-Activeness (Georgia) (d) Including Co-Activeness (Georgia) 

  

(e) Not including Co-Activeness (Florida) (f) Including Co-Activeness (Florida) 

Figure 36 – The Effect of an expansion joint replacement not including and including the 

Co-Active mechanism: (a) and (b) in Alabama, (c) and (d) in Georgia, and (e) and (f) in 

Florida.  
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(a) PGI Including Co-Activeness (Alabama) (b) I/D Including Co-Activeness (Alabama) 

  
(c) PGI Including Co-Activeness (Georgia) (d) I/D Including Co-Activeness (Georgia) 

  

(e) PGI Including Co-Activeness (Florida) (f) I/D Including Co-Activeness (Florida) 

Figure 37 – Case 1: Performance gap index and I/D ratio for Southeastern US states: 

(a) and (b) in Alabama; (c) and (d) in Georgia; (e) and (f) in Florida. 

(b)  
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6.4.2.2 Case 2: Deck Repair  

Figure 38 shows the overall bridge and element HI predictions, with and without employing the 

Co-Active mechanism, when all deck elements in the inventory are repaired in Year 25, holding 

everything else equal. As shown in Figure 38, element interactions do not have significant effects 

on the deterioration predictions for elements in Georgia and Florida. The element interactions in 

Alabama improve the deterioration predictions and enhance the overall bridge performance by 

extending the service life by about 4 years. In Figure 38, it is important to recognize that the 

increase in the deck HIs has slowed the deterioration rate of the other elements, notably expansion 

joints and columns. Similar to the findings from the first scenario, it is concluded that the Co-

Active analysis has no impact in Florida. This will be further discussed in the following section. 

Figure 39 shows the corresponding performance gap index and investment-depreciation 

(I/D) ratio computed for the analysis presented in Figure 38. The Co-Active analysis improves HIs 

of the other elements and overall BHIs as well as PGIs in Alabama, while it marginally improves 

the PGIs in Georgia. The Co-Active analysis has no significant impact on the Florida data. 

Additionally, the Co-Active analysis improves the element I/D ratios for the expansion joints, 

piers, and overall bridges in Alabama. 
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(a) Not including Co-Activeness (Alabama) (b) Including Co-Activeness (Alabama) 

  
(c) Not including Co-Activeness (Georgia) (d) Including Co-Activeness (Georgia) 

  
(e) Not including Co-Activeness (Florida) (f) Including Co-Activeness (Florida) 

 

Figure 38 – The effect of a deck repair not including and including the Co-Active 

mechanism: (a) and (b) in Alabama, (c) and (d) in Georgia, and (e) and (f) in Florida. 
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(a) PGI Including Co-Activeness (Alabama) (b) I/D Including Co-Activeness (Alabama) 

  
(c) PGI Including Co-Activeness (Georgia) (d) I/D Including Co-Activeness (Georgia) 

  
(e) PGI Including Co-Activeness (Florida) (f) I/D Including Co-Activeness (Florida) 

Figure 39 – Case 2: Performance gap index and I/D ratio for Southeastern US states: 

(a) and (b) in Alabama; (c) and (d) in Georgia; (e) and (f) in Florida. 
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6.5 Analysis of MRR Strategies and Discussion of Results  

In the previous section, hypothetical scenarios are studied to identify critical elements that need to 

be prioritized for asset management decision making. In Figures 40 through 42, the increase or 

decrease in the element health indices is graphically presented to review and deduce each state’s 

MRR approach. This step answers the third research question: if a state agency can leverage the 

Co-Active mechanism for decision making.   

  

(a) Overall Bridge (b) Deck 

 
 

(c) Expansion Joint (d) Bearing 

Figure 40 – Biannual bridge performance for Alabama. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 
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The bar charts show the element (or bridge) health indices in 2016 versus the change in health 

indices from 2016 to 2018 on a horizontal plane, and present a percentage of elements/bridges in 

the inventory in the vertical axis. Figure 40 shows that Alabama focuses on the maintenance of 

decks with health indices (HIs) between 20 and 70. Additionally, it actively carries out preventive 

maintenance for relatively new decks (i.e., decks with HIs between 90 and 100). In terms of 

performance, decks with high HIs (i.e., HIs between 80 and 100) are depreciating faster than those 

in the other states as indicated by the change in HIs (see Figure 40b). Alabama appears to invest 

more in expansion joints, particularly invests heavily in expansion joints with HIs between 40 and 

60 (see Figure 40c). However, the Co-Active analysis presented in this study informs that Alabama 

could benefit more (i.e., extend the bridge service life in the long-term) if it were to increase 

investments on decks. The data also show that newly installed expansion joints (or expansion joints 

with HIs between 80 and 100) are depreciating faster than those with HIs lower than 80. Alabama 

may move on to the expansion joint element after or while addressing deck MRR. 

Figure 41 presents the bridge MRR strategy for Georgia. It focuses on the maintenance of 

decks and expansion joints with HIs between 0 and 60. As a result, decks and expansion joints 

with higher HIs (about 50 to 100) are depreciating faster. The current MRR strategy appears to 

negatively affect the overall bridge performance (see Figure 41a) because bridges with higher HIs 

(about 60 to 100) are also depreciating faster than bridges with relatively lower HIs. Based on the 

review of Georgia’s element data and Co-Active analysis findings, Georgia should be able to 

optimize its long-term bridge performance by investing more in expansion joints, particularly 

focusing on joint replacements and early preventive maintenance.  



118 

  
(a)  Overall Bridge (b) Concrete Deck 

 
 

(c) Expansion Joint (d) Bearing 

 

Figure 41 – Biannual bridge performance for Georgia. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

Compared to Florida’s strategy shown in Figure 42(c), Georgia’s investment in expansion 

joints is relatively lower. Similarly, investments on decks’ preventive maintenance and minor 

repairs made early in their service life should increase in order to effectively extend the bridge 

service life. This particular finding for Georgia is significant because the U.S. DOT requires less 

than 10% of the total deck area in a state is allowed to be structurally deficient, leading to allocating 
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resources to decks. 

 
 

(a) Overall Bridge (b) Concrete Deck 

  
(c) Expansion Joint (d) Bearing 

Figure 42 – Biannual bridge performance for Florida. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

Figure 42 shows how Florida’s MRR strategy affects bridge/element health indices. 

Similar to the other two states, Florida focuses extensively on repairs and rehabilitations of decks 

and expansion joints. However, it invests more into newer elements than Georgia and Alabama 

do. In other words, Florida’s bridge MRR strategy effectively delays a progressive deterioration 
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through purposeful preventive maintenance early in-service life. This strategy appears highly 

effective in improving the overall bridge performance as evident in Figure 42a, although this 

outcome may result from more resources allocated. Similar to Georgia, bridges with high HIs (i.e., 

bridges with HIs between 80 and 100) are also depreciating fast. However, Florida appears to 

recognize the depreciation and invest heavily in bridges with high HIs, in addition to MRR on 

bridges with relatively lower HIs. 

6.5.1 Summary of Results 

Although one element is not selected over the other elements for asset management, a 

prioritization of elements exists in the inventories. 

1. MRR on the bridge deck is more influential than MRR on the expansion joint for the long-

term performance of bridges in Alabama. 

2. MRR on the expansion joint is more influential than MRR on the bridge deck for the long-

term bridge performance in Georgia. 

3. The element interactions do not have significant effects on the long-term bridge 

performance in Florida. This may be attributed to the bridge management strategy (i.e., 

early preventive maintenance) in Florida.  

4. Florida’s strategy leverages Co-Activeness in bridge maintenance, repair, and 

rehabilitation (MRR).  

In Georgia, where the expansion joint is the most influential element, the PGI for column 

improved by 50% as a result of an expansion joint replacement. The percentage reduction in the 

I/D ratio was also higher than in the column element. This shows that the condition of expansion 

joints in Georgia is most critical to the long-term performance of columns. Therefore, by investing 

in expansion joint replacements, Georgia also benefits, indirectly, in closing the performance gaps 



121 

in critical elements such as a column.  For the bridge management in Alabama, the PGI for column 

and expansion joint improved by 25% and 20%, respectively, when a deck was replaced in Year 

25. Alabama bridge management strategy slows the depreciation of columns and expansion joints 

by allocating more resources on the deck’s MRR (AASHTO, 2019). The Florida outcome, 

resulting from early preventive maintenance, is anticipated but is significant because it provides 

evidence that the Co-Active model well characterizes element interactions and bridge 

performance. 

6.6 Conclusions 

The proposed Co-Active mechanism used in bridge performance predictions leverages time-

dependent element interactions that affect depreciation rates of bridges. In this study, the element 

data from three southeastern US states (Alabama, Georgia, and Florida) are investigated to 

illustrate the capability of the proposed model. It is concluded that Co-Activeness exists in the 

element data, and the extent of Co-Activeness among elements are numerically quantifiable. Two 

indicators, the investment-to-depreciation (I/D) ratio and performance gap index (PGI), is used to 

measure a long-term bridge performance gap. Based on the findings of this study, the following 

conclusions are made:  

● Accounting for element interactions (i.e., Co-Activeness) that are present in the element-

data yields more realistic, and thus less overly conservative, performance predictions.  

● Long-term bridge performance predictions reflecting a Co-Active mechanism that is 

present in a bridge inventory are effective in prioritizing elements for maintenance, 

rehabilitation, and repair decisions. 
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● State agencies with relatively lower bridge health indices are more likely to benefit from 

using the proposed method that accounts for the Co-Active mechanism because condition 

changes in one element are more likely to significantly influence the bridge health indices. 

● Early preventive measures undertaken for a bridge inventory have a similar effect as 

leveraging the proposed Co-Active mechanism. That is, early MRR measures enables 

states to fully leverage the Co-Activeness in bridge long-term performance. 
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CHAPTER 7 

7. A STRATEGIC MOVE FOR SERVICE LIFE EXTENSION OF BRIDGES BY 

EMPLOYING A CO-ACTIVE PRIORITIZATION MECHANISM 

7.1 Introduction  

Transportation asset management often requires a data-driven decision-making process to 

effectively preserve the long-term performance of transportation assets. This data-driven decision-

making process is dependent on the information obtainable from the quantitative analysis of 

transportation assets inspection records. Thus, there has been an increasing interest in the 

performance analysis of transportation asset among agencies around the world because each 

nation’s infrastructure is essential for supporting economic development and sustainability and 

boosting the public health and safety (Contreras-Nieto, Shan, Lewis, & Hartell, 2019). Among this 

infrastructure, bridges constitute the most expensive assets, by mile, for transportation agencies 

across the United States and around the world. Also, bridges are a crucial component of the overall 

transportation system. The collapse or breakage of a bridge generally causes considerable damage 

and social loss to the users. Therefore, it is critical to preserve a certain level of bridge performance 

(Kim, Lee, & Lee, 2018). Bridge preservative measures include preventive maintenance, 

rehabilitation, or replacement (MRR). For an effective application of these preservative measures, 

bridge agencies need to implement a bridge management strategy that effectively prioritizes 

bridges for actions, most especially for large bridge networks such as those available in the United 

States.    
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7.1.1 Research Motivation 

Most of the bridges in the United States were constructed between the 1950s and the 1970s, with 

an average lifespan ranges from 50 to 100 years. Consequently, an increasing number of these 

bridges are getting old, resulting in a decrease in the overall bridge structural and functional 

performance, and thus requiring much more frequent inspections, repairs, or rehabilitation to keep 

them safe and functional. Also, due to constrained construction and maintenance budgets, bridge 

owners now have a difficult task of balancing the condition of their bridges with the cost of 

maintaining them (Kim et al., 2018). Particularly, bridge managers are facing ever-increasing 

challenges in prioritizing investment to maintain the safety and functionality of deteriorating 

bridges (W. Zhang & Wang, 2017). 

The main purpose of investment in bridge preventive maintenance, rehabilitation, or 

replacement (MRR) is obtaining the highest return while the risk associated with it is minimum 

(Agdas, Rice, Martinez, & Lasa, 2016; Andrijcic & Haimes, 2017; Sabatino & Frangopol, 2017). 

Thus, significant research efforts have focused on the development of bridge prioritization 

strategies that optimize return on investment on bridge MRR. Recently, most studies on the bridge 

prioritization for MRR adopt a risk-based approach (Contreras-Nieto et al., 2019; Kim et al., 2018; 

Puls et al., 2018; W. Zhang & Wang, 2017). They often determine the risk associated with the 

continuing usage of a bridge based on its current and projected performance. However, 

consideration for risk alone does not provide a comprehensive solution to bridge asset 

management. To better manage bridge inventories, therefore, tools that can accurately predict the 

future condition of a bridge, as well as its remaining life, are required (Lu & Phares, 2018). The 

effects of the changes in the condition of each element, how these changes relate to the element 

interactions, and how element interactions impact the long-term bridge performance, needs to be 

fully understood. These element conditions can be assessed by computing element health indices 
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from the recently mandated element-level inspection data (AASHTO, 2019). Once a bridge 

prioritization approach is developed, its efficacy may be determined by estimating the return on 

investment in terms of bridge service life. Within this context, a strategic move is defined in this 

study as the purposeful step taken by a bridge agency to enhance the return on investment on bridge 

MRR. This strategic move is implemented in a game theory approach, together with a Co-Active 

model, which accounts for time-dependent element interactions, referred to as Co-Activeness, in 

predicting bridge performance resulting from MRR activities.     

7.1.2 Research Goals and Scope 

This study investigates the feasibility of implementing a proposed Co-Active model in multiple 

states with a game theory approach, which models a strategic interaction between two players, the 

FHWA and a state DOT. Specifically, this study aims to answer the following three key questions 

by analyzing bridge inventories in four states (Georgia, Virginia, Pennsylvania, and New York): 

1. Does the proposed Co-Active model have an application to other U.S. state agencies?  

2. Is there any difference in the performance of NHS state-owned and non-NHS state-owned 

bridges? 

3. How should one quantify payoffs for two players, the FHWA and a state DOT, using a 

game theory? 

7.2 Literature Review  

The two major challenges to an effective transportation asset management include 1) bridge 

deterioration predictions and 2) limited budget as the bridge MRR has to compete for resources 

with other transportation assets, such as pavements, rail lines, and ports (Contreras-Nieto et al., 

2019). Therefore, the development of an efficient bridge prioritization strategy, which effectively 

balances deterioration predictions and available funds, has become a critical component of 
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transportation asset management plans in many state DOTs in the United States (Lu & Phares, 

2018). A study conducted by Elbehairy, Elbeltagi, Hegazy, and Soudki (2006) investigated the 

application of two evolutionary-based optimization techniques that are capable of handling large-

size problems, namely Genetic Algorithms and Shuffled Frog Leaping, to optimize bridge decks 

maintenance and repair decisions. A risk-based year-by-year optimization strategy, coupled with 

the use of a pre-processing function to allocate repair funds first to critical bridges, was 

recommended. Another approach by X. Zhang and Gao (2012) proposed an optimization model 

and the search algorithm that was consequently applied to three bridge decks maintenance 

scenarios. The optimization model was developed to determine the optimal length of the 

maintenance period based on the proposed maintenance policy, to minimize the system’s life cycle 

cost per unit time. W. Zhang and Wang (2017) developed a decision model for bridge network 

management and project prioritization that enables the operational performance of a transportation 

system to be optimized, given the safety requirements mandated by AASHTO and the inevitable 

budgetary constraints imposed by limited resources. More recently, Kim et al. (2018) in their study 

presents a prioritization model that reflects both existing structural conditions and possible future 

risk factors. In their study, bridge risk was defined as a risk factor that can deteriorate the 

functionality of a public bridge, and it was used as an index for determining the maintenance 

priority by quantitatively deriving the risk. All of the previous efforts relating to prioritization of 

bridges for MRR are commendable because they all attempted to maximize return on investment 

of bridge MRR. However, these prioritization models are mainly risk-based. In this study, the 

feasibility of implementing a proposed Co-Active model in multiple states in the U.S. is 

investigated. The Co-Active bridge prioritization model additionally accounts for the effects of 

time-dependent element interactions on the long-term bridge performance. Also, the model is 
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implemented alongside a game theory approach, which quantifies payoffs for two players, FHWA 

and state DOTs. The model is further used to investigate the performance of NHS and non-NHS 

bridges.  

7.3 Methodology  

7.3.1 Overall Approach 

This study investigates the feasibility of implementing the proposed Co-Active model in multiple 

states with a game theory approach. Therefore, bridge inventories in four states which are known 

to have proactive maintenance strategies are investigated. Title 23 of the United States Code 

§150(c)(3), in compliance with MAP-21 Legislation, requires state DOTs to establish, as part of 

their governance of performance measures, “minimum standards for States to use in developing 

and operating bridge and pavement management system”. For bridges on the National Highway 

System (NHS), Title 23 of the United States Code §119(f) stipulates that no more than 10% of the 

total NHS bridge deck area be structurally deficient (U.S.C., 2018). However, other important 

factors for measuring bridge performance such as the average life cycle must be considered.  

7.3.2 Game Theory Approach  

This study uses a game theory approach to model a strategic interaction between two players, the 

FHWA and a state DOT. A sequential game with two FHWA’s strategic moves, one imposing the 

10% deck requirement and the other with a reallocated 0.5% in deck requirement (from 10% to 

10.5%) while requiring states to maintain all joints in superior conditions. Both NHS bridges and 

non-NHS bridges are investigated to review the effectiveness of FHWA’s strategic moves. 

7.3.3 Payoffs 

The payoffs of the two players in prioritizing element MRR are quantified based on a service life 

extension of bridges when a threshold bridge health index (BHI) is set at 70. A threshold BHI is 
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set at 60 for New York, due to the observed bridge performance in the state. The cost of reducing 

deck MRR by 0.5% is assumed equivalent to the cost of rehabilitating all expansion joints and 

joint seals in a bridge inventory. This reduction is calculated based on the total quantity of deck 

areas and the total linear footage of joints.  

7.4 Results 

7.4.1 Analysis of Georgia DOT’s Element Data 

Figure 43a shows the average service life of NHS bridges in Georgia when no joints are 

rehabilitated or replaced. Figure 43b presents the NHS bridge performance when additional 

resources are allocated to expansion joints and joint sealant rehabilitation and/or replacements. 

The Co-Active model is used in this figure. The average service life has been extended by 10 years 

because the service life is 65 and 75 years in Figures 43 (a) and (b), respectively, for the HI 

threshold of 70. Similarly, Figure 44 shows the non-NHS bridge performance. Figure 45 illustrates 

a payoff of the two players, FHWA and state DOT. 

  
(a) Bridge Performance Prediction  

(Georgia) 
(b) Prediction with the proposed joint requirement 

(Georgia) 

Figure 43 – NHS bridge performance prediction (a) Current projection and (b) Projection 

with joint MRR in Georgia. 
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(a) Bridge Performance Prediction  

(Georgia) 
(b) Prediction with the proposed joint requirement 

(Georgia) 

Figure 44 – Non-NHS bridge performance prediction (a) Current projection and (b) 

projection with joint MRR in Georgia. 

 

 

Figure 45 – Game tree illustrating a strategic move and payoffs of 2 players in Georgia. 

 

In comparison with NHS bridges, non-NHS but state-owned bridge performance and 

performance predictions are investigated. In the absence of a strategic incentive and resources, 

non-NHS bridges are not as well maintained as the NHS bridges (see Figures 46 and 47). 
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(a) Overall Bridge (b) Deck 

  
(c) Expansion Joint (d) Bearing 

Figure 46 – NHS bridge performance in Georgia. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

  
(a) Overall Bridge (b) Deck 
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(c) Expansion Joint (d) Bearing 

Figure 47 – Non-NHS bridge performance in Georgia. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

 

  
(a) Not Including Co-Activeness (NHS) (b) Including Co-Activeness (NHS) 

  
(c) Not Including Co-Activeness (non-NHS) (d) Including Co-Activeness (non-NHS) 

Figure 48 – The effect of an expansion joint replacement not including and 

including the Co-Active mechanism: (a) and (b) in NHS bridges, (c) and (d) in Non-

NHS bridges in Georgia. 
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Finally, Figure 48 shows that the proposed Co-Active mechanism yields less conservative 

deterioration predictions. Therefore, the results presented in Figure 43 were a more realistic 

comparison, which resulted in a 2-3-year service life extension for the bridges in Georgia. 

 

7.4.2 Analysis of Virginia DOT’s Element Data  

Figure 49a shows the average service life of bridges in Virginia when no joints are rehabilitated or 

replaced. Figure 49b presents the bridge performance when additional resources are allocated to 

expansion joints and joint sealant rehabilitation and/or replacements. The Co-Active model is used 

in this figure. The average service life has been extended by 10 years because the service life is 35 

and 45 years in Figures 49 (a) and (b), respectively, for the health index threshold of 70. Figure 51 

illustrates a payoff of the players for the existing and new strategies. 

  
(a) Bridge Performance Prediction  

(Virginia) 
(b) Prediction with the Proposed Joint 

requirement (Virginia) 

Figure 49 – NHS bridge performance prediction (a) Current projection and (b) 

projection with joint MRR in Virginia. 
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(a) Bridge Performance Prediction  

(Virginia) 
(b) Prediction with the proposed joint requirement 

(Virginia) 

Figure 50 – Non-NHS bridge performance prediction (a) Current projection and (b) 

Projection with joint MRR in Virginia. 

 

 
Figure 51 – Game tree illustrating a strategic move and payoffs of 2 players in Virginia. 
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(a) Overall Bridge (b) Deck 

  
(c) Expansion Joint (d) Bearing 

Figure 52 – NHS bridge performance in Virginia. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

Similarly, non-NHS but state-owned bridge performance and performance predictions are 

investigated, in comparison with NHS bridges. In the absence of a strategic incentive and 

resources, non-NHS bridges are not as well maintained as the NHS bridges (see Figures 52 and 

53). 
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(a) Overall Bridge (b) Deck 

 
 

(c) Expansion Joint (d) Bearing 

Figure 53 – Non-NHS bridge performance in Virginia. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

Finally, Figure 54 shows that the proposed Co-Active mechanism yields less conservative 

deterioration predictions. 

  
(a) Not Including Co-Activeness (NHS) (b) Including Co-Activeness (NHS) 
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(c) Not including Co-Activeness (non-NHS) (d) Including Co-Activeness (non-NHS) 

Figure 54 – The effect of an expansion joint replacement not including and 

including the Co-Active mechanism: (a) and (b) in NHS bridges, (c) and (d) in Non-

NHS bridges in Virginia. 

 

7.4.3 Analysis of Pennsylvania DOT’s Element Data  

Figure 55a shows the average service life of bridges in Pennsylvania when no joints are 

rehabilitated or replaced. Figure 55b presents the bridge performance when additional resources 

are allocated to expansion joints and joint sealant rehabilitation and/or replacements. The Co-

Active model is used in this figure. The average service life has been extended by 5 years because 

the service life is 50 and 55 years in Figures 55 (a) and (b), respectively, for the HI threshold of 

70.  Figure 57 illustrates a payoff of the players for the existing and new strategies. 

  
(a) Bridge Performance Prediction  

(Pennsylvania) 
(b) Prediction with the Proposed Joint 

Requirement (Pennsylvania) 

Figure 55 – NHS bridge performance prediction (a) current projection and (b) 

projection with joint MRR in Pennsylvania. 
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(a) Bridge Performance Prediction 

(Pennsylvania) 

(b) Prediction with the Proposed Joint 

Requirement (Pennsylvania) 

Figure 56 – Non-NHS bridge performance prediction (a) Current projection and (b) 

projection with joint MRR in Pennsylvania. 

 

 
Figure 57 – Game tree illustrating a strategic move and payoffs of 2 players in 

Pennsylvania. 
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(a) Overall Bridge (b) Deck 

  
(c) Expansion Joint (d) Bearing 

Figure 58 – NHS bridge performance in Pennsylvania. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

  
(a) Overall Bridge (b) Deck 
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(c) Expansion Joint (d) Bearing 

Figure 59 – Non-NHS bridge performance in Pennsylvania. 

(a) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

In comparison with NHS bridges, non-NHS but state-owned bridge performance and 

performance predictions are investigated. In the absence of a strategic incentive and resources, 

there is no significant difference between the maintenance of non-NHS bridges and the NHS 

bridges (see Figures 58 and 59). 

Finally, Figure 60 shows that the proposed Co-Active mechanism yields less conservative 

deterioration predictions. 

  
(a) Not Including Co-Activeness (NHS) (b) Including Co-Activeness (NHS) 
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(c) Not including Co-Activeness (non-NHS) (d) Including Co-Activeness (non-NHS) 

Figure 60 – The effect of an expansion joint replacement not including and including the 

Co-Active mechanism: (a) and (b) in NHS bridges, (c) and (d) in Non-NHS bridges in 

Pennsylvania.  

 

7.4.4 Analysis of New York DOT’s Element Data  

Figure 61a shows the average service life of bridges in New York when no joints are rehabilitated 

or replaced. Figure 61b presents the bridge performance when additional resources are allocated 

to expansion joints and joint sealant rehabilitation and/or replacements. The Co-Active model is 

used in this figure. The average service life has been extended by 15 years because the service life 

is 35 and 50 years in Figures 61 (a) and (b), respectively, for the health index threshold of 60.  

Figure 63 illustrates a payoff of the players for the existing and new strategies. 

  
(a) Bridge Performance Prediction 

(New York) 
(b) Prediction with the Proposed Joint 

Requirement (New York) 

Figure 61 – NHS bridge performance prediction (a) Current Projection and (b) Projection 

with joint MRR in New York.  
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(a) Bridge Performance Prediction  

(New York) 
(b) Prediction with the proposed joint requirement 

(New York) 

Figure 62 – Non-NHS bridge performance prediction (a) Current projection and (b) 

Projection with joint MRR in Pennsylvania. 

 

 
Figure 63 – Game tree illustrating a strategic move and payoffs of 2 players in New York. 
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(a) Overall Bridge (b) Deck 

  
(c) Expansion Joint (d) Bearing 

Figure 64 – NHS bridge performance in New York. 

(b) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

In comparison with NHS bridges, non-NHS but state-owned bridge performance and 

performance predictions are investigated. In the absence of a strategic incentive and resources, 

non-NHS bridges are not as well maintained as the NHS bridges (see Figures 64 and 65). 
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(a) Overall Bridge (b) Deck 

 

 
(c) Expansion Joint (d) Bearing 

Figure 65 – Non-NHS bridge performance in New York. 

(b) Overall bridge; (b) Concrete deck; (c) Expansion joint; (d) Bearing. 

 

Finally, Figure 66 shows that the proposed Co-Active mechanism yields less conservative 

deterioration predictions. 
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(a) Not Including Co-Activeness (NHS) (b) Including Co-Activeness (NHS) 

  
(c) Not Including Co-Activeness (non-NHS) (d) Including Co-Activeness (non-NHS) 

Figure 66 – The effect of an expansion joint replacement not including and including the 

Co-Active mechanism: (a) and (b) in NHS bridges, (c) and (d) in Non-NHS bridges in New 

York.  

 

7.5 Discussion of Results  

The bridge performance analysis presented in this study integrates a Co-Active model and a game 

theory approach for optimizing return on investment (ROI) on bridge maintenance, rehabilitation, 

or replacement (MRR) actions. This Co-Active approach and the strategic move associated with 

the game theory approach are not currently being considered by transportation agencies. The game 

theory approach modeled a strategic interaction between two players, the FHWA and a state DOT. 

In each of the four states investigated, the Co-Active model leverages on element interactions and 

gives a realistic long-term bridge performance prediction. The proposed Co-Active model and the 
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game theory approach is most effective in prioritizing bridge actions in New York, where the 

bridge average service life is extended by 15 years. This may be attributed to the relatively lower 

bridge health indices and high Co-Activeness among the elements in the New York bridge 

inventory. The effectiveness of the Co-Active model in the Georgia and Virginia bridge 

inventories is similar. In both states, the bridge average service life is extended by 10 years. The 

proposed Co-Active model and the game theory approach indicates that the bridge average service 

life is extended by 5 years in Pennsylvania. This lower value of service life extension in 

Pennsylvania, compared to the other states investigated in this study, may be attributed to 

Pennsylvania’s bridge management strategy, which currently leverages the proposed Co-

Activeness mechanism in their bridge MRR, even though bridges in Pennsylvania are exposed to 

aggressively deteriorating environment condition similar to what is obtainable in Virginia and New 

York.   

7.6 Conclusions 

The element data from four U.S. states (Georgia, Virginia, Pennsylvania, and New York) are 

investigated to determine the feasibility of implementing a proposed Co-Active mechanism in 

multiple states with a game theory approach. It is concluded that Co-Activeness exists in the 

element data, and the extent of Co-Activeness among elements affects the long-term bridge 

performance. Based on the findings of this study, the following conclusions are made:  

• The Federal Highway Administration (FHWA) requires that states have less than 10% of 

the total deck area that is structurally deficient. Therefore, the FHWA has a minimum risk 

benchmark, which can be described as a “worst-case scenario”, for its investments on the 

nation’s NHS bridges. However, criteria for obtaining the highest return on investment 

(ROI) on bridge maintenance, rehabilitation, and replacement (MRR) is needed. 
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• Long-term bridge performance predictions reflecting a Co-Active mechanism that is 

present in a bridge inventory are effective in prioritizing elements for MRR decisions. 

• Investments on the bridge MRR is optimized when the Co-Active mechanism that exists 

in a bridge network is determined and considered in the long-term bridge performance 

predictions. 

• By applying a game theory approach, it is possible to identify an inherent and particular 

payoff structure between FHWA and a state DOT. The 10% limit on deck maintenance in 

current requirements may not be most cost-beneficial for extending the service life in the 

long term. By reallocating 0.5% (from 10% to 10.5%) of the FHWA’s deck requirement, 

both FHWA and state DOTs will be able to allocate additional resources to expansion joints 

and joint seals. The outcome of such a strategic move yields higher a payoff for the players. 

• State agencies with relatively lower bridge health indices are more likely to benefit from 

using the proposed method that accounts for the Co-Active mechanism because condition 

changes in one element are more likely to significantly influence the bridge health indices.  
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8. CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

This dissertation investigates element-level inspection data available in the National Bridge 

Inventory and proposes a novel Co-Active prioritization model for bridge asset management. The 

model accounts for time-dependent element interactions, referred to as “Co-Activeness”, in 

predicting bridge performance resulting from preventive maintenance, rehabilitation, or 

replacement (MRR) activities. Based on the findings of the studies presented in this dissertation, 

the following conclusions are made: 

● Co-Activeness exists in the element data, and the extent of Co-Activeness among elements 

are numerically quantifiable. 

● Accounting for element interactions (i.e., Co-Activeness) that are present in the element-

data yields more realistic, and thus less overly conservative, performance predictions.  

● Inter-dependent relationships among Co-Active elements are highly affected by Co-Active 

coefficients. They are determined from the element-data in a state bridge inventory and 

increase when the degree of dependency among elements is strong. 

● In the first study, involving the performance analysis of Georgia’s bridges (see Chapter 5), 

overall Bridge Health Indices (BHIs) improve by 20% in the subsequent 20 years when 

expansion joints are replaced, which is an outcome of applying the proposed Co-Active 

prioritization mechanism deduced from Georgia’s element-data.  
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● In the subsequent study, it is concluded that such Co-Active mechanism also exists in 

Alabama (see Chapter 6). In Alabama, MRR on bridge deck elements are more beneficial 

than MRR on the expansion joints for the long-term bridge performance.  

● In Florida, a Co-Active mechanism is present; however, the Co-Active model had no 

significant impact on the service life extension because MRR strategies, primarily 

involving preventive maintenance, implemented in Florida are already leveraging the Co-

Active mechanism.  

● As anticipated, the Florida study confirms (see Chapter 6) that the proposed Co-Active 

mechanism mathematically characterizes cascading and causal effects in a bridge 

inventory. That is, in states implementing proactive early maintenance strategies, a Co-

Active mechanism is already being leveraged whereas in states prioritizing repairs and 

rehabilitation, due to limited resources, they should be able to fully leverage the proposed 

Co-Active model. 

● In order to further investigate the feasibility of implementing the Co-Active model in 

multiple states, bridge inventories in three additional states which are known to have 

proactive maintenance strategies are investigated. The analysis of Virginia, Pennsylvania, 

and New York’s bridge inventory (see Chapter 7) confirms that long-term bridge 

performance predictions leveraging a Co-Active mechanism are effective in prioritizing 

elements for MRR decisions. 

● The Federal Highway Administration (FHWA) requires that states have less than 10% of 

the total deck area that is structurally deficient. By applying a game theory approach, it is 

possible to identify an inherent and particular payoff structure between FHWA and a state 

DOT. The 10% limit on deck maintenance in current requirements may not most cost-
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beneficial for extending the service life in the long term. By reallocating 0.5% (from 10% 

to 10.5%) of the FHWA’s deck requirement, both FHWA and state DOTs will be able to 

allocate additional resources to expansion joints and joint seals. The outcome of such a 

strategic move yields a higher payoff for the players. 

8.2 Recommendations 

The inter-dependent relationships among “Co-Active” elements define how the performance of 

one element affects the other bridge elements. Bridge asset managers should be able to optimize a 

return on investment (ROI), with respect to bridge actions (i.e., preventive maintenance, 

rehabilitation, or replacement), by understanding and defining inter-dependent relationships 

among elements. The “Co-Active” coefficients, which define the relationships among elements, 

vary from 0.28 to 0.99. Future research should, therefore, focus on identifying additional groups 

of Co-Active elements and improving the “Co-Activeness” of elements. Future work should 

consider applying the proposed Co-Active mechanism to geographically different areas of the U.S. 

with additional groups of bridge elements that may be Co-Active. Each state should investigate 

and define the cause and effect relationship (or Co-Activeness) in its element-based inspection 

data. 

The results presented in Chapter 7 are limited to the NHS and non-NHS bridge inspection 

and asset management in the United States. Future work should consider applying the proposed 

Co-Active mechanism to locally owned bridges, which are known to have much-limited resources 

for MRR. The cause and effects of the differences between the performances of NHS and non-

NHS bridges should be investigated in detail. Additional pairs/groups of players and strategic 

moves should also be identified for a broader implementation of the proposed game theory 

approach. Furthermore, developing depreciation predictions with limited data requires extensive 
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data analysis for each state. The limited collection period of the element data should improve over 

time, and the proposed Co-Active model should be calibrated and improved based on future data. 
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Appendix A – Bridge Inspection Records. 

Table A.1 – A typical GDOT element-based bridge inspection record for Sweetwater Creek 

Trib. (100140). 

    Element Condition States 

Element Description Unit Quantity State 1 State 2 
State 

3 

State 

4 

12-RC Deck ft. 6069 5887 179 3   

215-RC Abutment ft. 52 52       

301-Pourable Joint Seal Sq.ft. 208 182   26   

311-Movable Bearing ft. 28 9 7 12   

234-RC Pier Cap ft. 156 156       

225-Steel Pile ft. 24 24       

107-Steel Open Web 

Girder/Beam 
ea. 756 741 5 10   

313-Fixed Bearing ea. 16 4 2 10   

331-RC Bridge Railing ft. 378 363 15     

515-Steel Protective Coating 

(107) 
Sq.ft. 4528 4528       

515-Steel Protective Coating 

(225) 
Sq.ft. 10200 10200       

515-Steel Protective Coating 

(311)  
Sq.ft. 28 11   17   

515-Steel Protective Coating 

(313) 
Sq.ft. 16 4 2 10   

RC = reinforced concrete 
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Table A.2 – Element based inspection record for Colorado bridge D-03-V-150 (Jiang & Rens, 

2010a). 

    Element Condition States   

Element Description Unit Quantity State 1 
State 

2 
State 3 State 4 State 5  

14-P conc deck/AC 

ovly 
in. 8,895.28 8,895.28 

0 0 0 
0 

101-Unpnt stl box 

girder 
in. 1,444.76 1,300.28 

144.48 0 0 
  

106-Unpnt stl opn 

girder 
in. 176.48 176.48 

0 
0 

0 
  

210-R/conc pier wall ft. 164.59 164.59 0 0 0   

215-R/conc abutment ft. 27.43 27.43 0 0 0   

234-R/conc cap in. 175.26 0 175.26 0 0   

305-Elastomeric flex 

Jt 
in. 27.43 27.43 

0 
0     

314-Pot bearing ea. 86 27 4 55     

326-Bridge wingwalls ea. 4 4 0 0     

331-Conc bridge 

railing 
ea. 874.78 874.78 

0 
0 

0 
  

333-Other bridge 

railing 
ea. 569.98 569.98 

0 
0     

334-Metal rail coated ea. 722.38 633.38 0 89 0 0 

338-Conc curbs/SW ea. 722.38 722.38 0 0 0   
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Appendix B – CR History and Deterioration Models for Culvert and Bridge. 

 

Figure B.1 – CR History and a deterioration model for a culvert. 

 

Figure B.2 – CR History and a deterioration model for a bridge. 
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Appendix C – Element Deterioration Prediction Models for Georgia. 

 
RC = Reinforced concrete; P/S conc = Prestressed concrete; conc = concrete; and Steel deck 

with corrugated = Steel deck with corrugated panels 

Figure C.1 – Deck and slab elements in Georgia. 

Note: In the brackets, the presence of each element within the category is shown as a 

percentage. 

 

 
P/S conc = Prestressed concrete; R/conc = Reinforced concrete; and conc = concrete 

Figure C.2 – Girders in Georgia. 
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P/S conc = Prestressed concrete 

Figure C.3 – Stringer elements.  

 

 
R/conc = Reinforced concrete 

Figure C.4 – Trusses and arches.  
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Figure C.5 – Floor beams and miscellaneous superstructure elements.  

 

 
            coln = column; P/S conc = Prestressed concrete; and R/conc = Reinforced concrete 

Figure C.6 – Columns and pier walls.  
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R/conc = Reinforced concrete 

Figure C.7 – Abutments.  

 

 
                     P/S conc = Prestressed concrete and R/conc = Reinforced concrete 

Figure C.8 – Piles.  
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R/conc = Reinforced concrete and P/S conc = Prestressed concrete 

Figure C.9 – Pier caps and footings.  

 

 
R/conc = Reinforced concrete and P/S conc = Prestressed concrete 

Figure C.10 – Culverts. 
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Pour = Pourable; Comp = Compression; Assemb = Assembly; exp = expansion; and jnt = 

joint 

Figure C.11 – Joints in Georgia. 

 

 
Figure C.12 – Bearings in Georgia. 
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R/conc = Reinforced concrete 

Figure C.13 – Railings in Georgia. 

 

 
Conc = Concrete 

Figure C.14 – Wearing surface and protective coating in Georgia. 
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Appendix D: Element versus NBI-Based Bridge Deterioration Predictions. 

 

 
Figure D.1 – Element‐based vs. NBI-based bridge deterioration models 

(Age Bin 2020). 

Note: NBI condition ratings are rescaled to the 100-scale (e.g., an NBI condition rating of 9 

is scaled to 100), and the health indices are reduced by 22% for a fair comparison. 

 

 
Figure D.2 – Element‐based vs. NBI-based bridge deterioration models  
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(Age Bin 2010). 

 
Figure D.3 – Element‐based vs. NBI-based bridge deterioration models 

(Age Bin 2000). 

 

 
Figure D.4 – Element‐based vs. NBI-based bridge deterioration models 

(Age Bin 1990). 
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Figure D.5 – Element‐based vs. NBI-based bridge deterioration models  

(Age Bin 1980). 

 

 
Figure D.6 – Element‐based vs. NBI-based bridge deterioration models  

(Age Bin 1970). 
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Figure D.7 – Element‐based vs. NBI-based bridge deterioration models  

(Age Bin 1960). 

 

 
Figure D.8 – Element‐based vs. NBI-based bridge deterioration models 

 (Age Bin 1950). 
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Figure D.9 – Element‐based vs. NBI-based bridge deterioration models  

(Age Bin 1940). 

 

 
Figure D.10 – Element‐based vs. NBI-based bridge deterioration models  

(Age Bin 1930). 
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Figure D.11 – Element‐based vs. NBI-based bridge deterioration models 

(Age Bin 1920). 

 

 
Figure D.12 – Element‐based vs. NBI-based bridge deterioration models  

(Age Bin 1910). 



180 

 

 

Appendix E – MHI Predictions and Associated Parameters. 

 
Figure E.1 – Model 1 MHI predictions for bridges & culverts  

(100yr & Threshold=50). 

 

 
Figure E.2 – Model 1 MHI predictions for bridges & culverts                                        

(70yr & Threshold=50). 
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Figure E.3 – Model 1 MHI predictions for bridges only                                                 

(100yr & Threshold=50).  

 

 
Figure E.4 – Model 1 MHI predictions for bridges only                                           

(70yr & Threshold=50). 
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Figure E.5 – Model 2 MHI predictions for bridges & culverts                                   

(100yr & Threshold=45). 

 

 
Figure E.6 – Model 2 MHI predictions for bridges & culverts                                   

(70yr & Threshold=45). 
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Figure E.7 – Model 2 MHI predictions for bridges only 

(100yr & Threshold=45). 

 

 
Figure E.8 – Model 2 MHI predictions for bridges only                                                   

(70yr & Threshold=45). 
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Figure E.9 – Model 3 MHI predictions for bridges & culverts                                   

(100yr & Threshold=40). 

 

 
Figure E.10 – Model 3 MHI predictions for bridges & culverts                                       

(70yr & Threshold=40). 
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Figure E.11 – Model 3 MHI predictions for bridges only                                         

(100yr & Threshold=40). 

 

 

Figure E.12 – Model 3 MHI predictions for bridges only                                            

(70yr & Threshold=40). 
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Figure E.13 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges & culverts 

for model 1 (100yr & Threshold=50). 

 

 

Figure E.14 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges & culverts 

for model 1 (70yr & Threshold=50). 
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Figure E.15 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges only for 

model 1 (100yr & Threshold=50). 

 

 

Figure E.16 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges only for 

model 1 (70yr & Threshold=50). 
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Figure E.17 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges and 

culverts for model 2 (100yr & Threshold=45). 

 

 

Figure E.18 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges and 

culverts for model 2 (70yr & Threshold=45). 
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Figure E.19 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges only for 

model 2 (100yr & Threshold=45). 

 

 

Figure E.20 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges only for 

model 2 (70yr & Threshold=45). 
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Figure E.21 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges & culverts 

for model 3 (100yr & Threshold=40). 

 

 

Figure E.22 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges & culverts 

for model 3 (70yr & Threshold=40). 
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Figure E.23 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges only for 

model 3 (100yr & Threshold=40). 

 

 

Figure E.24 – Health Indices (HIs) - Modified Health Indices (MHIs) of bridges only for 

model 3 (70yr & Threshold=40). 


