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ABSTRACT

In this study, we show how to estimate large consumer demand and household collective
models using big microdata in an efficient way. The dissertation is composed of three chapters,
where we reduce aggregation bias in consumer demand systems, nest heterogeneous habit in
household’s demand models, and evaluate the degree of intrahousehold inequality within 2-3
person households in the United States.

In Chapter 1, we show how inferential errors due to inconsistent aggregation bias can be
properly reduced. To manage dimensionality in consumer demand estimation, researchers’
common practice is to aggregate elementary products to a higher level prior to econometric
estimation. Inconsistent product aggregation, however, introduces bias to econometric estimates
and policy-relevant inferences. We propose two alternative strategies for bias reduction. The first
strategy uses the relative prices of elementary products as control variables in the aggregate
demand. The second uses a residual-based instrumental variable method to achieve independence
between the instrument and the residual.

In Chapter 2, we study the heterogeneity of habit strength in households” demand for

regular carbonated sweetened beverages (CSBs) and beer in the United States. A demand model



that nests a smooth transition function is used to describe habit-based consumption patterns,
revealing heterogeneous strengths of habits among households. We find that more habitual
consumers, those with a strong preference for a particular product, are not as sensitive to price or
expenditure as the aggregate population.

In Chapter 3, we examine the degree of intrahousehold inequality within 2-3 person
households in the United States. Using structural collective model and household scanner data,
we estimate the fraction of household resources that are consumed by husbands, wives and
children. We find intrahousehold inequality exists in two-person (i.e. husband and wife)
households but not in three-person (i.e. parents and one child under 5-year-old) households. The
policy implication of this finding is two-fold: 1) this empirical finding suggests the current
household income eligibility threshold for the Special Supplemental Nutrition Program for
Women, Infants, and Children (WIC Program, a social welfare program targeting at women and
children) should be increased for two-person households so that women who are currently not
eligible for WIC Program but should have been can be covered; 2) Cost-efficient public policies
can be achieved by allowing eligibility thresholds to vary by household demographics (e.g.

education level, employment status, etc.).
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CHAPTER 1
TWO SIMPLE STRATEGIES FOR REDUCING AGGREGATION BIAS IN DEMAND
SYSTEM MODELS

1. Introduction
In recent years, measuring the price elasticities of food demand—a traditional area of research
for agricultural economists—is of growing interest to the broader community of public policy.
The newfound interest in food demand is a response to the ever-increasing policy calls for using
price (dis)incentives to improve diet and reduce obesity and nutrition-related noncommunicable
diseases in the United States and globally. Many of the policy scenarios concern taxes or
subsidies that target finely defined food and beverage categories differentiated by nutrient
contents (e.g., sugary vs. diet beverages). The need for predicting and comparing outcomes of
these policy alternatives fuels the drive toward estimating highly disaggregated food demand
systems.

Thanks to greater accessibility of scanner data, researchers now have the liberty of
disaggregating demand to a level as detailed as the barcode (Broda and Weinstein 2010).
However, unless one is willing to use restrictive functional forms such as the constant elasticity
of substitution demand, a degree of product aggregation is necessary to make estimation
practical. This is especially true for flexible functional form systems where there are at least as
many price variables per equation as the number of goods in the system. Even if we impose the
symmetry, homogeneity and adding up restrictions, the number of parameters would still be too

high to estimate them for a large system. Aggregating to fewer product categories would reduce



the dimension of the parameter space but at the potential cost of creating bias if aggregation is
inconsistent. From an economist’s perspective, an aggregation scheme is consistent if the
aggregated categories maximize a utility function given aggregate price indexes and income.
The canonical approach to reducing aggregation bias is to test the sufficient conditions for
consistent aggregation. There are two alternative types of conditions. The first is a set of equality
restrictions on product-level price and income elasticities implied by separable utility
(Blackorby, Primont, and Russell 1977; Blackorby, Davidson, and Schworm 1991; Moschini,
Moro, and Green 1994). This requires first estimating the product-level demand system and then
determining if certain products can be aggregated into separable groups based on tests of the
equality constraints. As prices of similar products tend to be highly collinear, thereby producing
imprecise coefficient estimates, test of separability may have low power. Moreover, if a product-
level demand system can be estimated to credibly test the separability restrictions, it obviates the
need for aggregating products into fewer groups. The alternative condition for consistent
aggregation concerns movement of product prices in the same group. The Hicks-Leontief
composite commodity theorem states that products whose prices are perfectly correlated can be
consistently aggregated into a group. This requires within-group product prices to move in
perfect synchronization, which is empirically unlikely.

In a seminal paper, Lewbel (1996) extended the Hicks-Leontief theorem into an
empirically more plausible generalized composite commodity theorem (GCCT) that only
requires the deviation of product prices from its group price be independent of the group price.
The significance of Lewbel’s GCCT is that its mild restrictions on price variation rationalize
some of the common product groupings that were previously untested or rejected by separability

tests (e.g., Davis, Lin, and Shumway 2000; Capps and Love, 2002; Reed, Levedahl, and



Hallahan 2005; Schulz, Schroeder, and Xia 2012; Heng, House, and Kim 2018). Indeed,
Shumway and Davis (2001) found that GCCT tests had the lowest frequency of rejection among
all types of aggregation tests in a survey of 22 peer-reviewed studies. There is a concern,
however, that the low rejection rates may be an artifact of size distortions and power problems
associated with time-series unit root and cointegration tests in small samples (Davis 2003).
Although multiple aggregation tests are available, most demand studies do not test for consistent
aggregation. Rather, aggregation decisions are guided by research questions, constrained by data
availability, and often follow convention, intuition or even convenience. For example, the
literature on sugar-sweetened beverage taxes has either aggregated all sugary drinks into a single
category (Lin et al. 2011; Allcott, Lockwood and Taubinsky 2019) or up to three product types
(Dharmasena and Capps 2012; Zhen et al. 2014). One factor in the infrequent deployment of
aggregation tests in demand analysis may be time. Testing an exhaustive list of potential
cointegrating relationships under the GCCT framework can be time-consuming even with a large
number of elementary products.! Given that aggregation decisions are not formally tested in
most studies, it will be useful to develop a practical approach that reduces bias when the chosen
aggregation schemes violate the GCCT.

The objective of this study is to propose two alternative strategies for reducing
aggregation bias. The first strategy uses the log relative (to the group) product prices as control
variables in the group demand equations. Although Lewbel (1996) had used essentially the same

procedure as a test for separability in a consistently aggregated demand system, its ability in

! The time-consuming aspect of the GCCT test arises from the fact that there are a large number of alternatives to
combine elementary products into groups. The combinations with at least two nonstationary product-level prices
need to be tested for cointegrating relationships. The final aggregation scheme can be especially difficult to choose

if some unit root and cointegration test results are indeterminate.



reducing bias from inconsistent aggregation was not previously recognized. The second strategy
uses linear regression to project each log group price onto the log relative prices of elementary
products and a residual. The residual is then used as an instrument for the group price. Both the
control variables method and the residual-based instrumental variables method are simple
enough for use in any flexible demand systems where bias from inconsistent aggregation is of
concern. To address the issue of low power in time-series unit root tests, we conduct the GCCT
tests in a panel data setting. This is the first application of panel unit root tests to the GCCT. In
an example application to fruit and vegetable demand, the more powerful panel tests rejected
aggregation schemes at a much higher rate than time-series tests. The preferred bias-reduction
method reduced aggregation bias in elasticity estimates by up to 67% for fruit and 91% for
vegetables.

The next section briefly reviews the GCCT, where we motivate bias from inconsistent
aggregation as a special case of the omitted variable problem. We then discuss using the panel
unit root tests to examine the GCCT with more power. This is followed by an empirical
illustration of the proposed methods using retail scanner data on fruit and vegetable from 72 US
markets over the 2008-2012 period. The final section summarizes and discusses an extension of
the methods.

2. Composite Commodity Theorems
For ease of exposition, we discuss Lewbel’s GCCT in the context of a linear approximate almost
ideal demand system. All results apply to other functional forms. Let the product-level demand

system be

(l) wW; = Qq; +Z_7]1=1:811 lnp] + 01' lny + &



where elementary products are indexed by i € D = {1,2, ..., n}, w; is the budget share of product
[, p; is the price of product j, y is total expenditure in real terms, a, 8, and 6 are parameters, and
g; 1s the orthogonal residual term. We suppress the time and market subscripts to simplify
notation in this section. They are introduced in later sections to properly denote variables in

panel setting.

To aggregate the n products into N groups, define an aggregate indexing set I = {I.}_,,

where I, € D forany r =1, ..., N < n. Let the aggregate price index for group r be B.. The log

ratio of p; to P. is calculated as

2 In(p;/R)=p;.j€l

where the relative price p; measures the deviation of the log product price from its group price
index and can be considered as an aggregation error. Replacing Inp; in Eq. (1) with In B. and p;
yields

() wi=a;+ X P+ Yjg BijInp; +6;Iny + Xjc; Bijpj + &,

where ¥, = ¥ je;, Bi;- Aggregating Eq. (3) of products i € I into N group share equations yields
the following demand system:

(4a) Wy =As+ X0 1YWy InP 4 Y Bs;Inp; + 05Iny + Y e/ Bgjp; +Es, s=12,...,N
(4b) wi = ax + XY Y NP+ Y g BrjInp; + O Iny + X jer Brjp; + &k k €1

where W, is the aggregate budget share of group s, wy, is the budget share of product k not
aggregated into one of the N groups, A5 = Ye;, @i, Ysr = Xier, Yirs Bsj = Xier, Bij» 05 =

Yier, 0;, and Es = Y¢;_&;. If all n products are allocated into the N groups, the system (4a-b)

reduces to Eq. (4a).



The Hicks-Leontief composite commodity theorem states that products can be
consistently aggregated into groups if product prices within each group r are perfectly correlated,
that is, p; being constant over time for Vv j € I,.. This allows Y. ¢, Bsjp; in (4a) and X, j¢; B jp; in
(4b) be combined with A, and «;, respectively, to form the new intercepts for the system (4a-b).
Independence of the residuals Eg and g, from B. (r = 1, ..., N) and p,, (k & I) ensures consistent
estimation of Ws,., Bs; (j € I), and O in (4a) and Yy, By; (j & I), and ), in (4b). Unfortunately,
the Hicks-Leontief theorem does not hold empirically because it requires prices of all products
within a group move in absolute synchronization.

Lewbel’s key insight is that consistent estimation of the slope coefficients in the system
(4a-b) does not actually require constancy of p;, only that the distribution of p; be independent
of P. and p, Vj, 7, k. To see this, without loss of generality, let p; be a zero-mean random
variable. This would be the case if both p; and B, j € I, are indexes normalized to 1 at the base,
which is set to the sample mean of each variable. Then the new composite residuals of (4a) and
(4b) are ¥ je; Bsjpj + Eg and X j¢; Byjp; + &, respectively. Both would have an expected value
of 0 and are independent of B. and p,, if the GCCT holds. The GCCT relaxes the empirically
untenable Hicks-Leontief theorem into a more plausible requirement on how product prices
move within a group. Lewbel (1996, p. 526-527) showed that, under the GCCT if the adding up,
symmetry and homogeneity conditions hold for the product-level Eq. (1), then the aggregate
system (4a-b) would also possess these properties. In addition, elasticities derived from the
system (4a-b) are the best unbiased estimates of group demand elasticities that would be obtained
from estimation of Eq. (1) using disaggregate data (Lewbel 1996, p. 528).

As noted earlier, in most cases, aggregation into groups is driven by the specific needs of

the analysis as opposed to the GCCT test results. If the selected aggregation scheme violates the



GCCT, omission of the relative prices p; from the system (4a-b) will cause the composite
residuals to be correlated with the group prices B. and, thereby, bias the coefficient estimates on
group prices. This can be seen as a special case of the omitted variable problem in two aspects.
First, unlike a standard case of omitted variables,? conventional instrumental variables will not
help reduce the endogeneity bias attributed to inconsistent aggregation. Given that p; is inversely
related to B., it will be difficult to identify a naturally-occurring instrument that is strongly
correlated with P, but independent of p; except in the trivial case of p; being independent of B..
Second, unlike endogeneity bias due to unobserved heterogeneity, the relative prices are
perfectly observed by the econometrician. The latter distinction leads to two surprisingly simple
strategies for reducing bias in the group price coefficients W, and i, in an inconsistently
aggregated system.

The first strategy uses the relative prices p; Vj € I as control variables in the system (4a-
b). The second, called residual-based instrumental variables, is implemented by regressing each
group price on all relative prices and using the residual as instruments for group prices in the
aggregate demand. By design, the residual-based instrument is orthogonal to the relative prices
and produces consistent estimates of the group price coefficients.
3. Panel GCCT Tests
Aggregation according to the GCCT entails testing the independence between the p’s and the

P’s. If prices are nonstationary, as they often appear to be, ordinary covariances and correlations

2 Many standard sources of endogeneity bias are fundamentally an omitted variable problem. For example, classical
demand-supply simultaneity bias in demand analysis is caused by unobservable (to the econometrician) demand
shocks that are omitted from the demand regression. In the absence of direct measures of the unobserved demand

shocks, supply-side variables are often used as instruments for the endogenous prices.



cannot be used to test independence. There are a few complications associated with detecting
nonstationarity and testing for independence among nonstationary prices. Unit root tests, such as
the augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979), are problematic in that they
are not very powerful in distinguishing highly persistent stationary processes from nonstationary
processes, especially in short time series. Schwert (1987) and Lo and MacKinlay (1989)
documented that tests for a unit root (the null) have low power in finite samples against the local
alternative of a root close to but below unity. Cochrane (1991) decomposed a unit root process
into a stationary and a random walk component. He argued that because the random walk
component can have arbitrarily small variance, a test of the null hypothesis of a unit root has
arbitrarily low power against the alternative of trend stationarity in finite samples. To address the
power issue in unit root tests, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski
et al. 1992) switched the null to trend stationarity against the alternative of a unit root. However,
Caner and Kilian (2001) showed that the use of conventional asymptotic critical values for
stationarity tests may cause extreme size distortions, if the model under the null hypothesis is
highly persistent. In essence, the size distortion of stationarity tests is the mirror image of the low
power of unit root tests. If prices are indeed nonstationary, multivariate cointegration tests are
necessary to determine independence. However, studies (Haug 1996; Ho and Sgrensen 1996)
have shown that the Engle and Granger (1987) cointegration test has power problems similar to
those of the unit root tests. To confront these issues, Davis (2003) proposed modified Bonferroni
procedures to strengthen the time series GCCT test. Davis et al. (2000) provided additional
strategies to more powerfully test the GCCT using time series data.

Inspired by the increasing availability of scanner panels, we take a different approach to

strengthening the GCCT test. Testing unit roots using panel data is driven by the desire to gain



power over tests for single time series (Levin et al. 2002; Im et al. 2003; Breitung 2000). Since
the low power problem is most severe in small samples, one can increase the sample size by
pooling time series data across the cross-sectional units. That said, it is important to account for
cross-sectional dependence when conducting panel unit root tests. Neglecting this common
feature of panel data is shown to lead to severe power reduction and size distortion (O’Connell
1998). For this reason, we chose Pesaran’s (2007) cross-sectionally augmented Im-Pesaran-Shin

(CIPS) test to test for panel nonstationarity.

4. An Application

We illustrate the two bias reduction strategies with an example of fruit and vegetable demand
that is of continuing interest to agricultural economists. Estimates of fruit and vegetable
elasticities have been used to explain the farm-retail price spread (Wohlgenant 1989), understand
the role of farm policy in the obesity epidemic (Okrent and Alston 2012), and predict the effects
of prices on food waste (Hamilton and Richards 2019), among other applications. We selected 15
fruits and 15 vegetables for analysis (see table 1 for a list). These tend to be the most commonly
available fruit and vegetables at retail. We call each fruit or vegetable a product. The GCCT tests
are used to determine whether these products may be consistently aggregated into fewer groups.
We compare test results from the time series unit root tests with those from the panel tests to
highlight the differences in aggregation scheme suggested by each type of tests. The demand
system with GCCT-consistent aggregation scheme is treated as the benchmark model. We
evaluate the performance of the bias reduction methods in a GCCT-inconsistent aggregate
system by comparing the bias-adjusted estimates with the benchmark estimates.

The Demand Model



We choose the quadratic almost ideal demand (QUAID) (Banks et al. 1997) as the functional
form. Compared with the almost ideal demand, QUAID has more flexible Engel curves but

retains exact aggregation over consumers. The group-level budget share equation for group s is

m @ S m 2
(5) Winst = Amst + X Wor In Py +0451n [achmtt)] + b(me) {ln [achmtt)]} T €mst

where the subscripts m and t denote the cross-sectional unit and time period, respectively; x,,; IS

total nominal income; In a(P,,;) = Ag + X Aso In Pt + 0.5 )¢ X W In Py In Pyt ;

b(P,.:) =11 P,S;;; emse 1S the residual; and the A’s, W’s, and ©’s are parameters. The intercept

Apmse 18 specified as A,,g¢ = Ago + Zmst 85, Where z,,,¢: 1S a row vector of control variables and
8, is the corresponding column vector of parameters.

Eqg. (5) is the quadratic counterpart of group-level demand in Eq. (4a). To avoid
notational clutter, we have assumed all products are aggregated into some groups so that Eq. (4b)
drops out. This is a harmless assumption because if group r consists of a single product then the
group price P,,,+ and budget share W,,,,; equal those of the product.

Data and Variable Construction

Information on fruit and vegetable sales comes from the IRI InfoScan retail scanner data that the
USDA Economic Research Service acquired to support food market and policy research. Our
sample covers 65 quadweeks (i.e., 4-weekly periods) between January 6, 2008 and December
29, 2012. In InfoScan, there are 65 markets and 8 standard whitespaces (i.e., remaining

Areas of the contiguous United States). We dropped the Green Bay, WI market from the sample
due to insufficient retail data for the study period. This gives a balanced panel with 4,680
market-quadweek observations. Some InfoScan-participating retailers provided data at the store
level but others only at the retail marketing area (RMA) level (Muth et al. 2016). The

geographical coverage of RMA varies across retailers, but a typical RMA contains a cluster of

10



counties. We aggregated store-level data to the IRI market level. For RMA-only retailers, IRI
reports the number of stores and addresses in each RMA. To estimate IRl market-level sales for
these retailers, we divided RMA-level sales by store number to get average sales per store and
allocate RMA sales to each IRI market based on the number of stores the retailer has in each IRI
market.

Compared to traditional budget surveys, the detailed product information in scanner data
allows the researcher to better control for the unit value bias. A unit-value price is calculated as
the expenditure on a good divided by its purchase quantity. Bias may arise if the construct of the
demand model is abstract from the quality decision while the unit-value price encompasses both
the quality and quantity dimensions of consumer choice (Deaton 1988; Cox and Wohlgenant
1986). To differentiate quality among varieties within a fruit or vegetable, we define variety at
the type (up to two types per fruit/vegetable, e.g., romaine vs. leafy lettuce), brand (name brand,
no brand, private label), organic (organic, nonorganic), and form (fresh, frozen, canned) level.
This yields up to 36 unique varieties per product.® We then constructed the superlative Fisher

Ideal price index for fruit or vegetable product j as follows

© e = (Sl (2lrhti)

where the subscripts m and t index market and period, respectively; pX . and g%, are the price

and volume sales of variety k, respectively, and p& and g¥ are the base price and volume of
variety k set at their sample means. The Fisher Ideal price index is superlative because it
approximates the true cost of living index for a class of expenditure function (Diewert 1976). It

allows the researcher to account for within-product substitution without estimating a variety-

3 our maintained hypothesis is that the <36 varieties can be consistently aggregated into a single fruit or vegetable.

11



level demand system. Davis (1997) developed a test for unit value bias and found important
differences in estimates and policy implications between a demand model using superlative price
indexes and a model using unit-value prices.

To construct the price index for the numéraire good, we multiplied annual Regional Price
Parities for 2008-2009 from the Bureau of Economic Analysis with monthly Consumer Price
Index from the Bureau of Labor Statistics to obtain a panel of the cost-of-living index for
metropolitan statistical areas. The index numbers were then weighted by county population to
construct the numéraire price index at the IRl market level.

Price endogeneity is a concern, even with consistent aggregation, because of demand-
supply simultaneity and unobserved heterogeneity. We created a Hausman-type (Hausman et al.
1997) instrument p_,, ;. for each fruit or vegetable price p,;., where p_, ;, is the average price
of j in the five IRI markets closest to market m in distance. Identification of the price
coefficients in the demand model relies on 1) there be common supply shocks across nearby
markets, and 2) the restriction that unobserved demand shocks be uncorrelated across markets
after accounting for market, year and seasonal fixed effects in the z,,; vector. Using the nearest
markets is designed to increase the strength of p_, . in explaining the variations in p,, ;.. We
used the same approach to create instruments for group prices.

For the residual-based instrumental variables method, we use the following linear
regression to generate the instrument
(7)) InP_ypre = ar + Xjerbrjpmje + Umre,  TEI
where P_,,,; is the Hausman instrument for group price P,,,. of group r, the a’s and b’s are
parameters, and u,,,; is the residual. The fitted residual #,,,,+ serves as the residual-based

instrument for group price Pp,¢.

12



Aggregation Scheme

We take a food-group based approach to aggregating the 30 fruits and vegetables into groups.
Because much of the recent food demand literature has a nutrition policy focus, we follow the
food categorization scheme used in MyPlate—the current USDA nutrition guide based on the
recommendations of the Dietary Guidelines for Americans. According to MyPlate, the 15 fruits
are categorized into three groups: berries, melons, and other fruits. Similarly, the 15 vegetables
are categorized into four groups: dark-green vegetables, red and orange vegetables, starchy
vegetables, and other vegetables. Table 1 presents the composition of each group.

Consistent product aggregation requires the relative product price p; to be independent of
the group price B.. Therefore, testing whether an aggregation scheme is consistent with the
GCCT is equivalent to testing whether p; and B. are independent of each other. Tests depend on
the time series properties of the data. The procedure consists of two steps: (1) determine the
stationarity of each p; and B. using unit root tests and (2) based on the results of step 1, test
independence between p; and P.. There are three alternative scenarios in step 2. First, if both p;
and P, are stationary, a correlation test is appropriate. Second, if p; and B,. are both
nonstationary, a cointegration test should be conducted. Third, if p; is stationary but B. is
nonstationary or vice versa, then no test of independence is necessary because the two series
cannot be cointegrated, which is evidence for independence (Lewbel 1996, p. 532).

Davis (2003) correctly pointed out that the GCCT require testing independence of each p;
from all of the B.’s, not just price of the group comprising product i as was done in Lewbel
(1996) and virtually all published work on GCCT. One reason for limiting the scope of the
independence test is the power and size problems of multivariate cointegration tests.

Additionally, given evidence for cointegration vectors, exclusion restriction tests are required to

13



determine whether the cointegration is between p; and the B.’s, or among the B.’s (Davis 2003,
p. 479). The test workload can quickly become unwieldy as the number of elementary products
and aggregation schemes increases. For these reasons, we confine the independence test to
between p; and its own group price P. (j € I,.), which is most likely to correlated or cointegrated
with p; among all group prices.

Time Series Test Results

We conducted the ADF and KPSS tests on the relative product prices and group prices. The null
hypothesis of the ADF test is the presence of a unit root, while the null of the KPSS is
stationarity. Reversing the null and alternative hypotheses is designed to manage the power issue
of time series GCCT tests (Davis et al. 2000). When results from the two tests are conflicted,
inferences based on the joint confirmation hypothesis (JCH) of a unit root are used (Carrion-i-
Silvestre et al. 2001). If the group price B. and relative price p; are both nonstationary, we used
the Engle-Granger test to examine the null hypothesis of no cointegration between the two series.
The Spearman’s rank test is used to test for correlation when the two series are stationary, with a
null hypothesis that the two series are not correlated.

Table 1 reports the test results on fruit and vegetable grouping. The price indices of all
groups, bar dark-green vegetables, are nonstationary, and so are 7 of the 30 relative prices. Of the
5 nonstationary relative prices whose group indexes are also nonstationary, the Engle-Granger
test failed to reject the null of no cointegration between each relative price and its group price.
This confirms independence of the 30 relative prices from their corresponding group prices and
consistent aggregation of these products into seven fruit and vegetable groups. This finding is
consistent with previous time-series tests of the GCCT that found low rates of rejection of the

proposed aggregation schemes (Shumway and Davis 2001).
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Panel Test Results

We hypothesize that rejection of consistent aggregation is more frequent in panel-based tests
because of the increased power of panel unit roots tests. The null hypothesis of the CIPS panel
unit root test is that all units of the panel contain unit roots. The alternative hypothesis is that at
least some units are stationary. In contrast to the time-series results that found unit roots in all but
one group prices, the panel test (table 2) indicates that only the group prices of berries and
starchy vegetables contain unit roots. Tests of independence found that the relative prices of 21
fruits and vegetables are significantly correlated with their group prices and, hence, cannot be
consistently aggregated into the MyPlate-based groups.* Berries and starchy vegetables, each
containing two elementary products, are the only GCCT-consistent groups. Thus, without a bias-
reduction method, the researcher has to estimate the remaining 13 fruits and 13 vegetables as
individual goods in a demand system to avoid inferential errors due to inconsistent aggregation.
Demand Specifications and Results

To evaluate the empirical performance of the two bias-reduction strategies, we estimate the
following four versions of the demand system Eq. (5) separately for fruit and for vegetables:
Model 1 uses the consistent aggregation schemes suggested by the panel test results. The
demand estimates are set as the benchmark.

Model 2 follows MyPlate grouping which is not fully supported by the panel test. The
differences between Model 2 and Model 1 estimates measure the degree of bias attributable to

inconsistent aggregation.

A cointegration test is not applicable here because there is not a single case where the relative price and its group
price are both nonstationary. Otherwise, we could use Westerlund’s (2007) test, which accounts for cross-sectional

dependence, to examine panel cointegration.

15



Model 3 follows the same grouping as Model 2 but includes the relative prices as control
variables in the z vector so that the inconsistently aggregated group prices remain orthogonal to
the error term e in Eq. (5). Comparing the differences in elasticity estimates between Model 3
and Model 1 with those between Model 2 and Model 1 provides empirical evidence on the
efficacy of the control variable method.

Model 4 again follows the same grouping as Model 2 but uses the residual-based price
instruments. We expect Model 4 to produce bias reduction comparable to Model 3 in magnitude.
We estimated each model using full information maximum likelihood (FIML). Models 1-3 use
the Hausman-type instruments to control for price endogeneity. Model 4 uses the residual-based
instruments to control for both price endogeneity and aggregation bias. The budget share
equation for the numéraire was not estimated. Instead, we recovered its parameters using
estimates from the fruit and vegetable budget share equations through the parametric restrictions
implied by the adding up, homogeneity, and symmetry conditions. We calculated elasticities at
the sample mean. The standard error for each point estimate is generated by taking 100 random
draws from a multivariate normal distribution of the model parameters with the mean and
covariance set to their estimated values (Krinsky and Robb 1990). These are the more policy-
relevant unconditional elasticities because they are not conditional on total fruit and vegetable
expenditures that are likely endogenous with prices.

Tables 3a and 3b present the Marshallian price elasticities of fruit and vegetable demand,
respectively. All own-price elasticities are negative and statistically significant. Lemons/limes,
tomatoes, and onions are the least price elastic with own-price elasticities at around —0.3. Many
cross-price effects are consistent with a priori expectations. For example, we found statistically

significant substitution between romaine/leafy lettuce and iceberg lettuce, between grapefruit,
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tangerines and oranges, and between cherries and the berries group. Using the individual fruit
and vegetable elasticities, we simulated the aggregate demand elasticity for group s with respect
to the aggregate price of group r by changing the prices of all products in r by the same
percentage. The resulting group demand elasticities, shown in tables 4a and 4b, are the
benchmark because they derive from the Model 1 estimates that are GCCT-consistent.

Table 5a presents group demand elasticities estimated by the group demand Model 2, 3, and 4 for
fruit. Comparing tables 4a and 5a indicates that the fruit cross-price elasticities of Model 2 and 3
agree in sign but differ from the benchmark in sign between berries and other fruits. By contrast,
Model 4, which used the residual-based instruments, correctly estimated the substitutive
relationship between berries and other fruits.

Turning now to comparing the vegetable results in table 5b with the benchmark in table
4b. Model 3 and 4 correctly estimated the complementarity between dark-green vegetables and
red and orange vegetables, while Model 2 incorrectly suggested substitution. Meanwhile, the
substitution between starchy vegetables and red and orange vegetables is correctly predicted by
Model 2 and 3 but not by Model 4. Finally, Model 4 is the only aggregate demand that estimated
substitution between starchy vegetables and other vegetables.

Table 6 summarizes these comparisons. In terms of the magnitude of the bias, Model 3
and 4 performed better than Model 2, as expected, with the exception of the (unweighted)
average own-price elasticity of Model 4 that is more biased than that of Model 2. This is entirely
driven by the larger difference in own-price elasticity for berries, which account for 9% of total
pound purchased. After weighting the bias by purchase quantity, Model 4 performs 67% better
than Model 2 in terms of own-price elasticities. In general, the degree of bias reduction achieved

by Model 3 is smaller than that of Model 4, and we observe a more significant bias reduction in
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own-price elasticities than in cross-price elasticities, and in vegetable demand than in fruit
demand.

To further measure the difference between the elasticity matrix of the aggregate demand
model and that of the benchmark model, we calculated the Euclidean norm, also known as the L,
norm, which measures the distance between two matrices in an N dimensional space. The
smaller Euclidean norm is, the closer the two matrices are. Table 7 presents the results. For both
fruit and vegetables, the elasticity matrix produced by Model 4 has the smallest Euclidean norms
with respect to the elasticity matrix produced by the benchmark model, which means elasticity
matrix of Model 4 more closely resembles that of the benchmark model. As such, we find that
comparing with the model with aggregation bias (Model 2), both control variable model (Model
3) and instrumental variable model (Model 4) produces less biased estimates, and Model 4 is
preferred empirically.
5. Conclusion
Users of flexible demand systems usually aggregate many elementary products into fewer groups
and estimate consumer preferences at the group level. This is done for practical reasons of
avoiding the curse of dimensionality and customizing the analysis to answer specific research
questions. The chosen aggregation scheme is frequently justified by tests of the GCCT—the
most empirically plausible aggregation theorem of all. Using more powerful panel unit root tests,
we showed that the low rejection rates of GCCT-consistent aggregation schemes in past studies
are likely caused by the low power of time-series unit root tests. Rejection of a proposed

aggregation scheme can be inconvenient because estimation at a more disaggregated level may
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not be practical due to multicollinearity and constraint on computing resources.® With these in
mind, it is of significant practical value to develop an approach that reduces bias in an
inconsistently aggregated demand system. This would allow practitioners to continue using the
aggregation schemes best suited for addressing their specific research questions.

Our approach is motivated by noting a simple fact: the relative prices of elementary products,
whose correlation with the group prices is the root cause for aggregation bias, are observable to
the econometrician. One strategy is to include these relative prices as control variables in the
aggregate demand model such that the group prices are no longer correlated with the regression
error. Another strategy is to regress each group price on all relative prices and use the residual,
which is free from correlation with the relative prices, as instrumental variables for the group
prices in the aggregate demand.® We call the latter strategy the residual-based instrumental
variable method.

Theory predicts that both strategies produce a similar degree of bias reduction. However,
in the application to fruit and vegetable demand, we found the residual-based instrumental
variable method to outperform the control variable method. In practice, there may be other
reasons to prefer the former method to the latter. For example, when there is a large number of
elementary relative product prices, it may not be practical to include all as control variables in
the aggregate demand system, especially if the system is nonlinear. The stepwise nature of the

residual-based instrumental variable method means that it can be implemented with ease

®Inour experience estimating large demand systems, the highest consumption of computer memory lies in
imposing the cross-equation parametric restrictions of homogeneity and symmetry.
6 As shown in our empirical illustration, if unobserved demand shocks and heterogeneity exist, one can regress a

conventional price instrument on all relative prices and use the residual as the instrument in the aggregate demand.
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regardless how many elementary products are aggregated into groups. This method is even more
appealing in situations where the researcher is already planning to use instrumental variables to
account for, in addition to aggregation bias, conventional sources of price endogeneity such as
supply-demand simultaneity and unobserved heterogeneity.

Finally, although we illustrated the approach using market-level data, the methodology is
equally applicable to demand system estimated on household-level data. For micro data
applications of demand systems, another key motivation for product aggregation is to reduce the
number of zeros. Accounting for these corner solutions introduces additional nonlinearity and,
hence, complexity to the estimation. It will be straightforward to integrate the residual-based
instrumental variable method into, for example, the extended Amemiya generalized least squares
estimator for censored micro demand systems (Zhen et al. 2014) to correct for both aggregation

bias and conventional price endogeneity.
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Table 1. Time-Series GCCT Test Results

Engle-Granger Test: ~ Sonsistent
Group and relative prices ADF Test Ho: 1(1)2  KPSS Test Ho: 1(0)°  1(1) or 1(0)¢ H 'gN g : Aggregation
o: Not Cointegrated
(Yes/No)
P (Berries) -2.23 (10) 0.17* 1(2)
Pstrawberries -3.09 (7) 0.18* |(1) -1.69 (2) yes
Pblueberries -3.53 (7)* 0.12 |(O) n/a yes
P (Melons) 3.10 (4) 0.17* 1(2)
Pwatermelon -7.59 (8)* 0.13* |(O) n/a yes
Pcantaloupe -6.35 (10)* 0.13* |(O) n/a yes
P (Other Fruits) -1.55 (2) 0.15* 1(2)
Pgrapefruit -7.76 (5)* 0.12* 1(0) (JCH) n/a yes
Papples -4.84 (1)* 0.15% 1(0) (JCH) n/a yes
Pgrapes -5.41 (1)* 0.08 |(O) n/a yes
Plemons/limes -3.21 (1)* 0.12* I(1) JCH) -1.83 (1) yes
Ppeaches -5.37 (4)* 0.10 |(O) n/a yes
Pavocado -3.18 (1)* 0.08 |(O) n/a yes
Ppears -4.96 (1)* 0.14* 1(0) (JCH) n/a yes
Pcherries -6.74 (8)* 0.09 |(O) n/a yes
Ptangerines -5.59 (5)* 0.10 |(O) n/a yes
Poranges -2.92 (10) 0.14* |(1) -1.49 (10) yes
Ppineapple -6.02 (2)* 0.10 |(O) n/a yes
P (Dark-Green Vegetables) -3.19 (1)* 0.12 1(0)
Pbroccoli -3.10 (0) 0.17* |(1) n/a yes
Plettuce (romaine/leafy) -3.14 (0) 0.16* |(1) n/a yes
P (Red and Orange Vegetables) -2.93 (1) 0.09 1(1) (JCH)
Ptomatoes -5.00 (5)* 0.11 |(O) n/a yes
Phbell peppers -4.03 (0)* 0.09 |(O) n/a yes
Psweet potatoes -5.88 (1)* 0.09 1(0) n/a yes
Pecarrots -3.39 (1)* 0.09 |(O) n/a yes
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Table 1. Continued

. q. Consistent
Group and relative prices ADF Test Ho: 1(1)? :<PSbS Test Ho: 1(2) or 1(0)¢ Engle-Granger Test™ Aggregation
(V)] Ho: Not Cointegrated
(Yes/No)
P (Starchy Vegetables) -2.07 (0) 0.11 1(1) (JCH)
Pcormn -5.68 (3)* 0.12 1(0) n/a yes
Ppotatoes -4.55 (1)* 0.12 |(0) n/a yes
P (Other Vegetables) -2.52 (0) 0.07 1(1) (JCH)
Ponions -2.51 (3) 0.09 1(1) JCH) -2.87 (4) yes
Plettuce (iceberg) -3.41 (3)* 0.07 |(0) n/a yes
Pcelery -5.63 (1)* 0.07 |(0) n/a yes
Pcucumbers -4.12 (1)* 0.07 |(0) n/a yes
Pmushrooms -2.66 (O) 0.12 |(1) (JCH) -2.67 (0) yes
Pcabbage -3.74 (1)* 0.07 |(0) n/a yes
Pgreen beans -5.90 (1)* 0.10 |(0) n/a yes
10% Critical Value -3.17 0.12 (=3.64, 0.07) -3.11

Notes: * denotes rejection of the null at the 0.10 significance level.

4 The test statistic of the null hypothesis of I(1) is the augmented Dickey-Fuller (1979) (ADF) t-statistic of the coefficient on the
lagged level variable in the regression of the first-difference on a constant, a time trend, the lagged level, and lagged differences of
variables appended to the regression. The number of lags of first differences is reported in parentheses and determined by Eviews 10.

b The test statistic of the null hypothesis of 1(0) is the Kwaitkowski et al. (1992) (KPSS) t-statistic. The t-statistic is the sum of the
squared partial sums of residuals divided by an error variance estimator. The residuals are computed from a model in which the series
IS regressed on a constant and a time trend. For the correction of the error term, a Bartlett window with ten lags was used to ensure the
variance matrix was well behaved.

¢ Inferences based on the joint confirmation hypothesis (JCH) of a unit root are used when the ADF and KPSS tests are in conflict
(Carrion-i-Silvestre et al., 2001). The joint critical values of (-3.60, 0.07) represent the midpoint of critical values for 50 and 100
observations for the ADF and the KPSS (with Bartlett kernel) tests with trend. They are interpreted as follows. If the value of the ADF
statistic is less (greater) than —3.60 and the value of the KPSS statistic is less (greater) than 0.07 then the series is considered (at 90%
probability of joint confirmation) stationary (nonstationary). Otherwise, the series cannot be confirmed to have a unit root and is
therefore considered stationary.
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d The test statistic is for the Engle-Granger test of the null hypothesis that the kth relative price p, and its group price P. (k € I,) are
not cointegrated. The entries are ADF tests of 1(1) residuals formed from regressing the relative price on its integrated group price.
The 10% critical values reported for the individual tests are based on 65 observations. The number of lags of the first-differenced
residuals in the residual regression is determined by Eviews 10 and reported in parentheses.
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Table 2. Panel GCCT Test Results

Correlation Test®: Consistent
Group and relative prices CIPS Test: Ho: 1(1)? 1(1) or 1(0) Ho N ' Aggregation
o: Not correlated (Yes/No)

P (Berries) -2.41 1(2)

Pstrawberries -5.34* | (0) n/a yes
Pblueberries -5.32* |(0) n/a yes

P (Melons) -4.90* 1(0)

Pwatermelon -5.47* |(0) 0.71* no
Pcantaloupe -5.33* |(0) 0.74* no

P (Other Fruits) -5.03* 1(0)

Pgrapefruit -5.11* |(0) -0.11* no

Papples -4.84* |(0) 0.08* no

Pgrapes -6.15* |(0) -0.07* no
Plemons/limes -4.02* |(0) -0.05 yes
Ppeaches -5.07* |(0) 0.14* no
Pavocado -4.43* | (0) -0.19* no

Ppears -4.87* |(0) 0.30* no
Pcherries -5.67* |(0) 0.04 yes
Ptangerines -5.40* |(0) 0.34* no
Poranges -2.33 |(1) n/a yes
Ppineapple -4.44* |(0) -0.08* no

P (Dark-Green Vegetables) -4.40* 1(0)

Pbroccoli -4.74* |(0) 0.37* no

Plettuce (romaine/leafy) -4.49* I (0) -0.36* no

P (Red and Orange Vegetables) -4.75* 1(0)

Ptomatoes -5.02* |(0) -0.28* no

Phbell peppers -4.61* |(0) -0.27* no

Psweet potatoes -4.79* I (0) 0.28* no

Pearrots -4.87* 1(0) 0.50* no
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Table 2. Continued

. . Correlation Test: Consistent
Group and relative prices CIPS Test: Ho: 1(1)? I(1) or 1(0) ) ' Aggregation
Ho: Not correlated
(Yes/No)
P (Starchy Vegetables) -2.19 1(1)
Pcorn -4.86* |(O) n/a yes
Ppotatoes -4.24* |(O) n/a yes
P (Other Vegetables) -4.43* 1(0)
Ponions -4.33* |(O) -0.34* no
Plettuce (iceberg) -4.23* |(O) -0.22* no
Pecelery -4.34* |(O) -0.29* no
Pcucumbers -4.53* |(O) -0.20* no
Pmushrooms -2.28 |(1) n/a yes
Pcabbage -4.87* |(O) 0.03 yes
Pgreen beans -4.24* |(O) 0.32* no
10% Critical Value -2.53

Notes: * denotes rejection of the null at the 0.10 significance level.

2 Pesaran (2007)'s cross-sectionally augmented Im-Pesaran-Shin (CIPS) test regresses, for each unit m in the panel, the first difference
on a constant, a time trend, the lagged level and its cross-sectional mean, the first difference of the cross-sectional mean and its lags,
and the lagged first differences. The CIPS statistic is the cross-sectional average of the t-statistics on the lagged level. The null
hypothesis is I(1) for all units. The xtcips command in Stata 14 was used to perform the CIPS test. The maximum number of lags
included in the model is set to ten for each cross-section.

b Spearman’s correlation coefficient which can take values from -1 to 1. The closer the test statistic is to zero, the weaker the
association between the group price and the relative price. The spearman command in Stata 14 was used to perform the test.
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Table 3a. Price Elasticities of Fruit Demand (Model 1, aggregation supported by panel GCCT tests)

With respect to the price of

Melons Other Fruits \
Elasticity of demand for Berries | Watermelon Cantaloupe | Grapefruit Apples Grapes Lemons/Limes Peaches Avocado Pears Cherries Tangerines Oranges Pineapple | Numeraire
Berries -1.836 0.001 -0.020 0.013 0.061 -0.046 -0.040 0.062 -0.005 0.016 0.121 -0.016 -0.009 -0.030 1.582
(-30.910) (-0.077) (-1.682) (2.734) (-1.342) (-1.216) (-4.433) (2.485) (-0.436) (0.723) (3.868) (-5.349) (-0.511) (-1.961) (9.871)
Watermelon 0.004 -1.678 0.157 -0.022 -0.169 0.095 -0.057 -0.140 -0.005 -0.043 0.046 0.122 -0.062 -0.071 1.779
2 (-0.076) (-23.164) (-6.019) (-2.428) (-2.250) (1.661) (-4.029) (-3.352) (-0.203) (-3.568) (0.717) (2.673) (-1.637) (-2.539) (5.585)
3 Cantaloupe -0.122 0.286 -1.743 0.045 -0.042 -0.048 -0.048 0.178 -0.022 0.023 0.164 0.230 0.021 -0.120 1.543
= (-1.672) (-5.980) (-33.256) (2.856) (-0.377) (-0.709) (-2.363) (3.182) (-0.662) (0.833) (3.542) (4.097) (0.362) (-2.631) (5.649)
Grapefruit 0.200 -0.098 0.113 -1.290 0.109 0.026 -0.257 -0.304 0.037 0.328 -0.015 0.044 0.330 0.142 0.441
(2.762) (-2.373) (2.855) (-23.354) (1.052) (0.539) (-4.737) (-4.090) (0.725) (5.66) (-0.091) (0.739) (5.607) (2.622) (2.399)
Apples 0.051 -0.044 -0.006 0.006 -0.497 -0.025 -0.030 -0.034 -0.044 -0.003 -0.021 -0.008 0.048 0.003 0.651
(-1.295) (-2.197) (-0.368) (1.066) (-9.983) (-0.790) (-3.223) (-1.360) (-3.210) (-0.187) (-0.820) (-0.270) (2.214) (0.152) (5.327)
Grapes -0.054 0.035 -0.009 0.002 -0.035 -1.111 -0.005 0.002 -0.009 0.008 0.125 -0.009 0.050 0.009 0.809
(-1.196) (1.687) (-0.711) (0.540) (-0.811)  (-25.018) (-0.707) (0.072) (-0.974) (1.213) (4.334) (-0.240) (3.124) 0.772) (4.811)
Lemons/Limes -0.220 -0.096 -0.044 -0.095 -0.194 -0.024 -0.302 -0.039 -0.101 -0.024 -0.022 -0.090 0.021 -0.093 1.142
(-4.409) (-4.117) (-2.354) (-4.778) (-3.246) (-0.706) (-8.876) (-0.907) (-4.341) (-0.85) (-0.742) (-2.545) (0.699) (-3.143) (7.928)
Peaches 0.233 -0.156 0.110 -0.075 -0.145 0.008 -0.026 -1.650 -0.105 0.055 -0.187 0.189 0.077 -0.013 1.723
@ (2.523) (-3.35) (3.168) (-4.091) (-1.361) (0.087) (-0.899) (-15.149) (-2.961) (2.087) (-3.908) (2.870) (1.386) (-0.337) (6.387)
E Avocado -0.017 -0.005 -0.014 0.009 -0.196 -0.027 -0.070 -0.108 -0.946 0.022 -0.082 0.057 -0.191 0.023 1.455
5 (-0.404) (-0.184) (-0.656) (0.728) (-3.232) (-0.957) (-4.322) (-2.997) (-31.805) (1.516) (-2.930) (1.326) (-5.643) (0.641) (10.539)
g Pears 0.035 -0.077 0.023 0.129 -0.017 0.039 -0.025 0.086 0.035 -1.511 0.058 0.072 0.017 0.028 1.092
(0.769) (-3.569) (0.839) (5.68) (-0.184) (1.236) (-0.844) (2.101) (1.521) (-32.177) (2.102) (1.947) (0.438) (0.655) (8.276)
Cherries 0.508 0.059 0.114 -0.004 -0.104 0.443 -0.017 -0.213 -0.091 0.041 -2.930 0.104 0.128 0.076 1.529
(3.929) (0.717) (3.568) (-0.095) (-0.844) (4.172) (-0.757) (-3.972) (-2.946) (2.091) (-18.241) (1.423) (2.472) (1.960) (3.236)
Tangerines -0.642 0.173 0.179 0.014 -0.044 -0.037 -0.077 0.240 0.070 0.057 0.116 -1.932 0.462 0.143 0.810
(-5.205) (2.694) (3.984) (0.732) (-0.289) (-0.255) (-2.506) (2.823) (1.316) (1.927) (1.445) (-13.373) (6.479) (3.145) (1.891)
Oranges -0.028 -0.063 0.012 0.075 0.189 0.142 0.013 0.070 -0.171 0.009 0.104 0.335 -1.066 -0.069 0.212
(-0.5) (-1.615) (0.366) (5.627) (2.193) (3.098) (0.696) (1.369) (-5.627) (0.431) (2.519) (6.419) (-21.803) (-1.83) (1.285)
Pineapple -0.117 -0.084 -0.077 0.037 0.014 0.031 -0.066 -0.014 0.023 0.019 0.070 0.119 -0.078 -1.045 1.049
(-1.942) (-2.562) (-2.635) (2.605) (0.149) (0.778) (-3.135) (-0.342) (0.641) (0.652) (1.954) (3.118) (-1.832) (-18.567) (6.150)
Numeraire 0.005 0.002 0.001 0.000 -0.002 0.000 0.000 0.001 0.001 0.000 0.001 0.000 -0.001 0.000 -1.031
(6.953) (4.837) (3.605) (-2.185) (-2.607) (-0.082) (2.647) (3.481) (4.679) (0.990) (2.422) (0.686) (-3.588) (1.119) (-364.677)

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold font.
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Table 3b. Price Elasticities of Vegetable Demand (Model 1, aggregation supported by panel GCCT tests)

With respect to the price of

Dark Greens

Red and Orange Vegetables

Lettuce (Romaine/

Other Vegetables

Elasticity of demand for Broccoli Leafy) Tomatoes Bell Peppers Sweet Potatoes Carrots Starchy Onions Lettuce Celery Cucumbers ~ Mushrooms Cabbage Green Beans | Numeraire
Vegetables (Iceberg)

Broccoli -0.952 0.078 0.141 0.013 -0.055 -0.089 -0.038 0.020 0.139 -0.038 0.046 0.203 -0.198 -0.024 0.650

x g (-14.125) (1.577) (2.621) (0.182) (-1.086) (-1.192) (-0.525) (0.487) (3.852) (-1.042) (1.375) (2.329) (-6.555) (-0.389) (4.366)

8 ©| Lettuce (Romaine/ 0.112 -0.860 0.055 0.004 -0.085 -0.106 -0.091 0.024 0.121 0.004 0.011 0.379 0.087 -0.048 -0.171
O| Leafy) (1.573) (-14.290) (0.851) (-0.016) (2.127) (0.111) (-1.619) (0.629) (3.300) (0.011) (0.268) (3.927) (2.279) (-0.818) (-0.968)

Tomatoes 0.036 0.010 -0.368 0.019 -0.012 -0.075 -0.107 -0.158 -0.043 0.009 0.007 -0.057 -0.007 0.019 0.563
(2.623) (0.863) (-7.736) (0.653) (-0.429) (-3.912) (-2.660) (-7.330) (-3.612) (0.370) (0.459) (-1.409) (-0.882) (1.098) (4.497)

§’ »| Bell Peppers 0.011 0.002 0.061 -0.957 0.099 0.082 -0.107 -0.002 0.043 -0.030 0.003 0.471 0.089 -0.021 -0.025
g % (0.176) (-0.017) (0.645) (-12.81) (2.093) (1.797) (-1.291) (-0.116) (1.555) (-0.619) (0.155) (4.912) (3.824) (-0.583) (-0.117)

e ‘g Sweet Potatoes -0.106 -0.113 -0.092 0.233 -2.742 -0.080 0.462 0.371 0.042 -0.045 -0.059 0.176 0.134 -0.244 1.436
s S (-1.089) (2.139) (-0.438) (2.081) (-22.976) (-0.781) (2.810) (2.594) (0.891) (-0.480) (-0.763) (0.789) (2.348) (-3.205) (3.727)

& Carrots -0.075 0.003 -0.247 0.085 -0.035 -1.155 0.047 -0.038 -0.079 0.064 0.155 -0.044 -0.174 0.089 1.204
(-1.195) (0.113) (-3.900) (1.797) (-0.779) (-13.051) (0.764) (-0.796) (-2.315) (1.465) (3.340) (-0.302) (-4.596) (1.679) (6.480)

Starchy Vegetables -0.005 -0.007 -0.051 -0.016 0.029 0.007 -0.801 -0.025 0.016 0.013 -0.004 0.033 0.005 0.000 0.655
(-0.553) (-1.614) (-2.685) (-1.29) (2.868) (0.753) (-21.188) (-1.426) (-3.831) (2.224) (-0.413) (1.722) (1.537) (0.012) (5.322)

Onions 0.013 0.011 -0.409 -0.002 0.127 -0.029 -0.137 -0.330 -0.028 -0.016 -0.006 0.012 0.031 -0.017 0.574
(0.480) (0.633) (-7.450) (-0.115) (2.598) (-0.797) (-1.420) (-4.667) (-1.334) (-0.590) (-0.329) (0.238) (1.987) (-0.647) (2.503)

Lettuce (Iceberg) 0.200 0.120 -0.245 0.076 0.032 -0.135 0.188 -0.061 -0.399 0.060 0.003 -0.075 0.044 -0.055 0.330

(3.840) (3.313) (-3.636) (1.557) (0.896) (-2.315) (-3.841) (-1.338)  (-10.368) (2.091) (0.122) (-0.876) (1.324) (-1.087) (2.197)

- Celery -0.066 0.004 0.059 -0.063 -0.040 0.133 0.185 -0.041 0.072 -0.540 -0.146 -0.056 -0.012 0.047 0.221
= (-1.047) (0.012) (0.366) (-0.618) (-0.477) (1.463) (2.216) (-0.598) (2.085) (-7.565) (-1.733) (-0.322) (-0.342) (0.623) (0.834)
i Cucumbers 0.067 0.011 0.039 0.005 -0.045 0.268 -0.046 -0.013 0.003 -0.123 -0.657 0.491 0.046 -0.175 -0.197
S (1.369) (0.270) (0.450) (0.154) (-0.765) (3.330) (-0.428) (-0.331) (0.121) (-1.731) (-8.055) (3.816) (1.083) (-2.831) (-1.042)

3 Mushrooms 0.065 0.084 -0.070 0.185 0.029 -0.017 0.091 0.006 -0.016 -0.010 0.107 -0.897 0.070 -0.021 0.294
5 (2.329) (3.904) (-1.398) (4.974) (0.791) (-0.298) (1.760) (0.248) (-0.864) (-0.321) (3.836) (-9.346) (3.946) (-0.735) (1.632)

Cabbage -0.531 0.161 -0.068 0.291 0.186 -0.553 0.112 0.126 0.082 -0.019 0.084 0.587 -1.527 0.212 0.773
(-6.540) (2.285) (-0.876) (3.817) (2.353) (-4.609) (1.571) (1.986) (1.326) (-0.341) (1.082) (3.932) (-18.295) (2.614) (4.037)

Green Beans -0.026 -0.036 0.082 -0.027 -0.138 0.116 0.004 -0.028 -0.042 0.030 -0.131 -0.073 0.087 -1.393 1.547
(-0.389) (-0.809) (1.110) (-0.572) (-3.200) (1.686) (0.071) (-0.639) (-1.081) (0.626) (-2.810) (-0.731) (2.624) (-18.503) (11.325)

Numeraire 0.000 -0.001 -0.002 -0.002 0.001 0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.003 0.000 0.001 -1.024
(-1.931) (-5.939) (-2.599) (-4.209) (2.417) (2.429) (-1.095) (-1.324) (-2.822) (-2.743) (-4.886) (-4.294) (-0.797) (5.119) (-258.136)

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold font.

27



Table 4a Benchmark Fruit Group Demand Elasticities Derived from Model 1 Estimates

With respect to the price of

Elasticity of group demand for Berries Melons Other Fruits Numeraire
Berries -1.836 -0.019 0.125 1.582
Melons -0.021 -1.504 -0.168 1.731
Other Fruits 0.035 -0.013 -1.007 0.900
Numeraire 0.005 0.002 0.001 -1.031

Notes: The group demand elasticities are simulated by changing individual fruit prices in Model 1 by the
same percentage at the sample mean. Own-price elasticities in bold font.

Table 4b Benchmark Vegetable Group Demand Elasticities Derived from Model 1

Estimates
With respect to the price of
Dark- Red and

Elasticity of group demand Green Orange Starchy Other

for Vegetables  Vegetables  Vegetables  Vegetables Numeraire
Dark-Green Vegetables -0.773 -0.104 -0.080 0.492 -0.006
Red and Orange Vegetables -0.032 -0.470 -0.012 -0.019 0.717
Starchy Vegetables -0.012 -0.031 -0.801 0.038 0.655
Other Vegetables 0.081 -0.076 0.022 -0.502 0.579
Numeraire -0.001 -0.002 -0.001 -0.005 -1.024

Notes: The group demand elasticities are simulated by changing individual vegetable prices in Model 1
by the same percentage at the sample mean. Own-price elasticities in bold font.
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Table 5a Price Elasticities of Fruit Group Demand

With respect to the price of

Elasticity of group demand for Berries Melons Other Fruits Numeraire
Model 2 (aggregation rejected)
Berries -1.778 0.072 -0.047 1.356
(-47.151) (3.079) (-0.702) (13.472)
Melons 0.152 -1.674 0.083 1.133
(3.092) (-37.489) (0.726) (6.756)
Other Fruits -0.011 0.010 -0.980 0.819
(-0.633) (0.750) (-20.612) (12.539)
Numeraire 0.004 0.001 0.000 -1.027
(8.603) (2.991) (-0.227) (-548.108)

Model 3 (relative prices used as control variables)

Berries -1.703 0.062 -0.047 1.317
(-35.868) (2.400) (-0.614) (11.407)
Melons 0.129 -1.613 0.075 1.092
(2.409) (-28.135) (0.641) (5.755)
Other Fruits -0.011 0.010 -1.017 0.871
(-0.557) (0.674) (-18.006) (12.385)
Numeraire 0.004 0.001 0.000 -1.028
(6.359) (2.494) (0.244) (-501.682)

Model 4 (residual-based instruments)

Berries -1.573 0.062 0.197 0.899
(-45.933) (2.642) (2.847) (8.950)
Melons 0.130 -1.493 -0.160 1.229
(2.658) (-33.813) (-1.209) (7.209)
Other Fruits 0.052 -0.019 -0.972 0.784
(2.921) (-1.184) (-17.449) (11.093)
Numeraire 0.002 0.001 -0.001 -1.024
(3.617) (3.532) (-0.847) (-525.866)

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold
font.
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Table 5b Price Elasticities of Vegetable Group Demand

With respect to the price of

Elasticity of group demand  Dark-Green Red and Orange  Starchy Other

for Vegetables Vegetables Vegetables Vegetables Numeraire
Model 2 (aggregation rejected)
Dark-Green Vegetables -0.812 0.072 -0.054 0.289 0.328
(-20.662) (1.861) (-1.714) (4.768) (3.844)
Red and Orange Vegetables 0.017 -0.521 -0.047 -0.203 0.533
(1.845) (-14.574) (-1.695) (-5.775) (7.932)
Starchy Vegetables -0.011 -0.039 -0.857 -0.062 0.723
(-1.751) (-1.712) (-28.182) (-2.588) (9.692)
Other Vegetables 0.062 -0.177 -0.064 -0.258 0.286
(4.776) (-5.738) (-2.533) (-5.38) (4.077)
Numeraire -0.001 -0.003 0.000 -0.008 -1.021
(-6.885) (-4.145) (-0.660) (-9.563)  (-416.958)

Model 3 (relative prices used as control variables)

Dark-Green Vegetables -0.772 -0.132 -0.075 0.331 0.517

(-15.196) (-2.22) (-2.148) (4.268) (6.046)

Red and Orange Vegetables -0.033 -0.544 -0.059 -0.144 0.601

(-2.231) (-10.102) (-2.09) (-3.992) (6.621)

Starchy Vegetables -0.016 -0.049 -0.844 -0.021 0.692

(-2.193) (-2.119) (-24.246) (-1.178) (8.109)

Other Vegetables 0.071 -0.125 -0.021 -0.491 0.411

(4.271) (-3.987) (-1.13) (-9.099) (5.268)

Numeraire -0.001 -0.003 -0.001 -0.006 -1.024
(-4.224) (-3.018) (-0.889) (-6.105)  (-347.559)

Model 4 (residual-based instruments)

Dark-Green Vegetables -0.786 -0.113 -0.043 0.441 0.333

(-19.811) (-1.810) (-1.242) (6.354) (3.161)

Red and Orange Vegetables -0.028 -0.466 0.018 -0.046 0.284

(-1.819) (-8.164) (0.851) (-0.905) (3.292)

Starchy Vegetables -0.009 0.014 -0.782 0.081 0.435

(-1.284) (0.840) (-21.730) (2.796) (4.789)

Other Vegetables 0.095 -0.039 0.087 -0.515 0.206

(6.351) (-0.889) (2.836) (-8.491) (2.448)

Numeraire -0.001 -0.006 -0.004 -0.008 -1.013
(-5.405) (-5.910) (-4.413) (-8.228)  (-344.672)

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold
font.
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Table 6 Elasticity Differences between Each Aggregate Demand and the Benchmark

Average absolute difference Percent improvement over Model 2
Model 2 Model 3 Model 4 Model 3 Model 4
(@) (b) (© 1-(b)/(a) 1-(c)/(a)
Elasticity Fruit Veg Fruit Veg Fruit Veg Fruit Veg Fruit Veg
Own-Price
Unweighted 0.09 0.10 0.08 0.03 0.10 0.01 11% 70% -11% 90%
weighted? 0.09 0.11 0.06 0.03 0.03 0.01 33% 73% 67% 91%
Cross-Price
Unweighted 0.13 0.08 0.12 0.05 0.06 0.03 8% 38% 54% 63%
weighted? 0.11 0.07 0.11 0.04 0.04 0.03 0% 43% 64% 57%

Notes: The group demand elasticities derived from Model 1 estimates are set as the benchmark. The comparisons exclude all
numeraire demand and price elasticities. 2Purchase quantities used as weights.

Table 7 Euclidean Norm between Each Aggregate Demand and the Benchmark

Distance to Benchmark Elasticity Matrix

Model 2 Model 3 Model 4
(@) (b) (©)
Fruit Veg Fruit Veg Fruit Veg
Euclidean Norm 0.408 0.453 0.380 0.245 0.325 0.127

Notes: The group demand elasticities derived from Model 1 estimates are set as the benchmark. The comparisons exclude all
numeraire demand and price elasticities.
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CHAPTER 2
THE IMPLICATIONS OF HETEROGENEOUS HABIT IN CONSUMER BEVERAGE

PURCHASES ON SODA AND SIN TAXES

1. Introduction

There are numerous studies that analyze consumer responses and welfare effects due to
government policies related to products with habit effects. This type of research is specifically
targeted at unhealthy and habit-forming products, such as sugary beverages, junk food, alcohol,
and tobacco, etc. (Andreyeva et al., 2010; Goryakin et al., 2017; Harkénen et al., 2014; Lin et al.,
2017; Pacula, 1998).The models employed to study such policies consider price and income as
the main determinants of consumption. A general question is whether increasing the cost would,
in fact, decrease the consumption of unhealthy products and break consumers’ original habits,
thus improving health outcomes. To answer such questions, a common practice is to estimate an
econometric model for consumer demand under habit formation. Then, the associated economic
impact under different tax or subsidy policies is simulated with the estimated model to assess
such policies (Duffy, 2003; Haden, 1990; Herzfeld et al., 2014; Zhen et al., 2014, 2011; Zheng et
al., 2017).

Over decades, demand models have evolved to better describe people’s behavior as well
as to be consistent with economic theory. Models have been greatly improved by considering
nonlinear income effects, endogeneity, dynamics, and censoring, etc. But one strict econometric
assumption, homogeneity, has rarely been relaxed. Andreyeva et al. (2010) reviews all US-based

studies on the price elasticities of demand for major food categories. Most of these studies obtain
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price elasticity estimates from traditional homogeneous models. By assuming all consumers react
equally to changes, such models might yield biased estimates of aggregate responses if
heterogeneous responses are not symmetrically distributed. Moreover, intuition tells us there
exists extreme variation in preference over specific goods, such as tobacco, alcohol, and
sweetened beverages, which severely undermines the assumption of homogeneous responses. In
the last decade, incorporating consumer heterogeneity in demand models has received increasing
attention. The most prominent examples are Bertail and Caillavet (2008) and Wang (2015).
Bertail and Caillavet (2008) studied the heterogeneity of fruit and vegetable consumption
patterns in France. A finite mixture of AIDS models is used to describe food demand patterns
revealing different preferences. Six different clusters which reflect specific socio-demographic
characteristics and different income and price elasticities are obtained. Wang (2015) provides
estimates of the relevant price elasticities based on a random coefficient dynamic demand model
that addresses unobservable persistent heterogeneous tastes. It is found that traditional static
analyses tend to overestimate the long-run own-price elasticity of regular soda by 60.8%, leading
to an overestimated consumption reduction of sugar-sweetened soft drinks of up to 57.9%.

As exploring the role of heterogeneity in explaining household demand is important especially
from marketing and policy perspectives, and to extend earlier research in incorporating
heterogeneity in demand estimation, this paper takes an innovative approach that combines a
Panel Smooth Transition Regression (PSTR) model (Gonzélez et al., 2017) with an ECON
transition function (Hood and Dorfman, 2015) to investigate the demand for regular carbonated
sweetened beverages (CSBs) and beer. Specifically, our research seeks to determine the extent to
which heterogeneous habit strength characterizes households’ heterogeneous responses to price

or income changes. At the final stage, an assessment of the potential effects of soda and beer
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taxes is implemented. Our policy simulation finds that households with more habit-based
consumption are more insensitive to price or income changes. Since a higher habit level is
significantly associated with higher consumption on CSBs and beer,” the overall effects of a sin
tax would be highly over-estimated if heterogeneous consumer responses are not considered.
Specifically, the forecast aggregate declines in soda and beer consumption due to a one-cent per
ounce tax increase are found to be 20% and 26% larger, respectively, with homogeneous habit
strength than with a model incorporating heterogeneity in habit strength. Because the top 10% of
consumers in habit strength account for 18% and 23% of total consumption for CSBs and beer,
respectively, it is important to account for their differential behavior in optimal policy design.
Public health gains would come more from reductions in consumption from heavy users than
occasional drinkers; thus, the tax rates may need to be raised further or alternative policies
should be targeted at the more habitual and high-consumption consumers in order to meet public
health goals.

In this paper, we make three major contributions to the empirical literature on demand
analysis. First and foremost, this study contributes to the existing literature by introducing a new
approach to relaxing the homogeneity assumption in demand estimation with habit effects. The
proposed model allows continually varying household price/income elasticities as habit strength
varies across households. The model can be easily extended to include other exogenous variables
representing household heterogeneity and can also be applied to more sophisticated demand
systems. Second, habit is generally explained as a repeated behavior pattern. The underlying

hypothesis is that current consumption of one product is substantially affected by consumption of

7 Pearson’s correlation coefficient, p, between mean habit strength (see equation 1) and mean consumption by

household are calculated for CSBs and beer: p.ss = 0.53 (p-value < 0.0001); ppeer = 0.51 (p-value < 0.0001).
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the same product in the previous period. Lagged purchases are usually included in demand
models to demonstrate habits. An issue of this approach is that lagged response variables could
suppress the explanatory power of other explanatory variables. Consequently, it may become
difficult to identify the relationship between quantity and each explanatory variable
independently because lagged purchase and other independent variables tend to change in
unison. Moreover, the inference of price and income elasticities will be less precise, which
weakens the statistical power of the model and the results of policy evaluation. This can be
solved by including a smooth transition function of past purchases in the demand model, as we
do here. Third, we introduce variance as a co-measurement of habit. Habitual consumption
behavior refers to situations where a consumer’s demand for a bundle of goods reveals very few
differences across periods. Those loyal or even addicted consumers show different economic
behavior than “normal” consumers and are more important in policy analysis due to their higher
levels of consumption. A common practice in previous literature was to use only the sum of
purchases in past periods, which does not take variation in past purchases into account when
measuring habit. Occasional large purchases do not reflect a household buying for its own
consumption the same as steady, consistent purchases. In previous models, both kinds of
consumption might be classified equally as habitual behavior. Given this consideration, our
variable of habit strength for a household is defined as the sum of consumption in the last eight
quarters divided by the standard deviation of quarterly purchases. Thus, a large standard
deviation due to inconsistent consumption behavior will lead to a lower habit strength.
Incorporating variation in transition variables helps better measure customers’ habitual behavior
and allows us to better characterize individual policy responses, leading to better estimates of the

aggregate response. Moreover, with each household’s habit strength and demographics available,
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we are able to find the common characteristics of the habitual household thus helping with better
targeted policies.

The outline of the paper is as follows. We lay out our research design and data
description in Section 2 and 3, followed by the empirical demonstration in Section 4 that applies
the heterogeneous habit model to both regular CSBs and beer in the United States, finding strong
evidence for heterogeneity in both price and income elasticities across households. Finally, some

policy implications and conclusions are provided.

2. Empirical Strategy
To examine the household’s heterogeneous responses to price or income changes, this paper
extends previous literature by proposing an ECON-PSTR model combined with simple demand
functions to model habit strength that is heterogeneous across households.
Habit Strength
Numerous studies have incorporated habit in demand models. It is well recognized among
economists that demand in one period may depend on demand decisions in other periods (Becker
and Murphy, 1988; Boyer, 1983). The literature has provided evidence of habit in not only
addictive goods such as tobacco and alcohol but also non-addictive consumer goods (Arnade et
al., 2008; Fuhrer, 2000; Heien and Durham, 1991; Holt and Goodwin, 1997). Particularly
relevant here, Zhen et al. (2011) found the presence of habit in demand for nine categories of
non-alcoholic beverages.

Different than the common practice in previous literature that habit is measured by purchases

in past periods, we proposed a new index for habit strength, s, defined as:

(25=1Qije-a)

VL]

(1) sie =
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where Q. is the consumption of product j in quarter t for household i and v;; is the standard

deviation of (Q;j¢-1, Qijt—2, -, Qije—g ). Accordingly, habitual behavior is indexed by the sum of
quarterly consumptions in the last two years over the standard deviation of those eight lagged
values. Both quantity and variation are incorporated to depict past consumption behavior such
that habit strength is strictly increasing in past consumption but is decreasing in consumption
volatility. Given the same aggregate consumption in the past two years, a household with a more
consistent purchasing pattern is considered to have greater habit strength in our model than a
household with a volatile purchasing history. This formulation of habit strength is inspired by
careful inspection of the data which reveals occasional spikes in household CSB consumption
leading to large aggregate consumption that may, in fact, may be caused by activities such as
parties where CSBs were not necessarily consumed by the household alone. Including volatility
of past consumption in our habit measure attempts to capture this feature of the data and more
accurately measure true habitual consumption.

For each consumer, we calculate the mean habit strength over the sample period and plot
histograms for CSBs and beer consumers, shown in Figure 1 and Figure 2. Both histograms
show a highly right-skewed pattern, due to extremely high habit strength in a small minority of
consumers with consistent and large purchases over the sample period.

ECON-PSTR Model Specification

Economists have increased their interest in the modeling of heterogeneity by such methods as
latent class models and clustering analysis (Baker and Burnham, 2001; Bertail and Caillavet,
2008; Kikulwe et al., 2011; Ortega et al., 2011). These approaches can work well, but they
reduce the modeling of heterogeneity down to a set of discrete values or groups. In contrast, we

essentially create an infinite number of latent classes to represent the range of possible strengths

37



of habit in beverage demand by using a demand model that nests a smooth transition function.
Each household is treated differently based on the value of an index variable that summarizes the
strength of habit in their household beverage purchasing decisions.

The Smooth Transition Regression (STR) model, initially developed by Bacon and Watts
(1971), can be seen as a generalized regime switching model in such a way that the transition
from one extreme regime to the other is not discrete, but smooth, with a function of the
continuous transition variable. The PSTR model is a newly developed type of STR model in the
first version of Gonzalez et al. (2017) and Fok et al. (2005). Since its first appearance in 2005,
the PSTR model has been applied to a wide variety of statistical and economic studies (e.g.
Cheng and Wu, 2013; Delatte et al., 2012; Espinoza et al., 2012; Fok et al., 2005; Geng, 2011;
Omay et al., 2018; Seleteng et al., 2013). In this paper, to estimate the impact of food tax policies
on consumption, we use the PSTR approach to model continuous habit regimes, thus introducing
heterogeneity in habit strength to demand studies. The PSTR model in this paper has a structure
similar to Lundbergh et al. (2003), but is modified in a panel setting. The model is specified as
follows:

(2) Qe = i + At + £, 0D)[1 = G(sije jer 0j6s V)| + £ (5, 6D)G (e, it 065 V) + €4t
where u; represent individual household fixed effects and A, represents quarter and year fixed

effects, respectively, ¢;;, are the errors, InQ;;, is the natural logarithm of demand for product j at
time t of household i, G is a smooth transition function, x is a vector of intercept and regressors
including, prices, expenditures, and social demographics, 6 is a vector of coefficients, and

f(x, 9(")) is the demand equation for regular CSBs or beer. Making things concrete, in the

application that follows,
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@A) f(x,0®) =x0W = Hl(k) + Hz(k)lnPjt + Hék)ln}’l-t + Hik)Genderi + Y3, Hs(’kh)Racehl- +
0 Edu; + 689 Chdy,, k =1,2
where [nP;, is the Tornqvist panel price index of product j at time t, [nY; . is the natural logarithm
of expenditure of household i at time t, Gender; is coded as 1 if the household head is male and
zero otherwise, the Racey,; are a set of binary indicators for the race of the household head (h =1
for white, h = 2 for black, and h = 3 for Hispanic) with other races (Asian, American Indian,
multiracial Americans, etc.) as the reference group. Edu; is an indicator for the household head
having at least a college degree, and CHD; . is an indicator for household i having at least one
child at time t.

The f(x,6®) and f(x, @) are demand functions in two extreme regimes. Regime One
represents the households who do not consume product i based on habit at all, implemented
through the vector of parameters 8, whereas, Regime Two represents households who have a
strong habit of consistently consuming product i or are even addicted to it, expressed through a
vector of parameters 2. Most consumers behave consistent with some state in between the two
extremes, with an infinite number of such regimes lying on that continuum and their location on
the continuum expressed by the value of G. If consumers overall display little heterogeneity in
the strength of their habits they will show similar responses to price or income changes; that is,
the parameter vectors 8 and 6 will be similar. In this case, estimation results will be similar
to those of a standard regression without a transition function.

Among numerous variations of the transition function G, the logistic STAR (LSTAR)
model and the exponential STAR (ESTAR) model are the most commonly used. The transition

function employed in this paper follows the ECON-STAR model (Hood and Dorfman, 2015),
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which is a variant of ESTAR model. In the ECON-STAR model, the transition function takes the

form

4) G(sg,ve;7,¢,d) =1 —exp {—y [(ﬂ) (ﬂ)]}

o5 oy
where the speed-of-adjustment parameter y > 0 is required, s, and v, are transition variables
(such as rolling averages of past values of an economic indicator) in two adjacent regions, ¢ and
d are the minimum transition variable values over time for each location thus ensuring (s; — c)
and (v, — d) are non-negative. Also, (s; — c¢) and (v; — d) are normalized by their standard
deviations, o, and a,, respectively. With this specification, the value of the G(-) function will be
zero at least once when s, = c or v, = d.

In this paper, we generalize the transition function into a panel setting and offer modest
improvements. The function G(sl-jt, Cit, Ojt; y) is a continuous and smooth function of s;,

¢jc and gy, taking the form:

(5) G(sije Cjt, 0jr;¥) = 1 — exp {_V [(p (M)]}

th
where y > 0 is required, s;;; is the habit strength as defined in Equation (1), ¢;; is the mean
value of s;;, across households, and o}, is the standard deviation of s;;;, s;;: — ¢;¢ is normalized

by gj, to make the speed-of-adjustment parameter y unit free, and ®(+) is the cumulative density

function (cdf) of the standard normal distribution. Embedding the term 275t in the cdf of the
th

standard normal distribution gives an almost linear shape for values of s;;; within 2 standard

deviations about zero but has flatter tails as the value of s;;, goes to extremes when compared

St—

“in Equation (4). This property enables coefficient estimates to be less

with the linear term

Os

influenced by extreme values of s;;;, thus yielding more robust coefficient estimates. In addition,
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@ (@) also satisfies the positivity requirement thus keeping the value of transition function
jt

bounded between 0 and 1 when combined with the imposed restriction of y > 0.

The Estimation of a PSTR model

The estimation of the PSTR model is accomplished by a two-step procedure (Gonzélez et al.,
2017). The first step is eliminating fixed effects (u; and A;) by subtracting the individual- and
time-specific means on both sides of the equation. The second step is to estimate the model with
the transformed data by nonlinear least squares (NLS). To simplify algebra and without loss of
generality, we define a PSTR demand model with only one product for household i at time t:
(6) Qi = i + A + Xi' 0P G (2i;¥) + x5 0 P[1 = G (236 ¥)] + €

where z;; = S”U;Ct First, we subtracted the mean for each household over time and the mean for
t

each time period across all households from the dependent variable and the residuals to construct

centered variables, Q;;€ and g;,°:

(7) Qit° = InQ;¢ — FQL - W
@B e =¢e—&—-5&

where TnQ, = - Sl InQue, InQr = - X% nQue, & = 1 Dely e & = 3 Dicy e, Ty is the
number of time periods that household i was observed in the panel, and N; is the number of
households observed at time t. For the terms x;;'G(z;;; v) and x;;'[1 — G(z;:; v)], we make the

following transformations:
—_

) A (i) = %' G(zisy) — A, — 4,

(10) Bitc(zit; V) =xit'[1 = G(zi;¥)] — El’ - B_t’
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where 4, = - 3,1, xieG (2ie; V), Ae = - Bily %G (2 v), By = - XLy xie [1 = Gz ¥)], and
B, = NiZf’;l xit[1 — G(z;; v)]. Therefore, each row of the new centered design matrix becomes
t
xit(Zi; V)" = [Ai“(Zies V)" Bie (2ie; V).
After eliminating fixed effects by data transformation, we can apply nonlinear least

squares (NLS) to estimate the coefficients that minimize the concentrated sum of squared errors:

A 2
(11) SSE°(y) = §V=1 Z{=1[Qitc — xit°(Zit; V) 9(]’)]
where 8(y) is obtained by ordinary least squares (OLS) at each iteration in the non-linear
optimization and is strongly dependent on the quality of initial values. A grid search for the

parameter y in the transition function G (z;;; y) is applied to obtain the starting value of y.®

3. Data

Data Description

Our primary source of data is the Nielsen Homescan household panel for the years 2008 to 2015.
More than 100,000 households across the U.S. record information on shopping trips and
purchased items using an optical scanner on a weekly basis over a period of at least a year. Every
recorded transaction contains information including the Universal Product Code (UPC), quantity,
price paid, size, single or multipack, and brand. The Nielsen Homescan data is available to
academic researchers through a partnership between Nielsen and USDA-Economic Research
Service (ERS). The biggest advantage of the Homescan panel data set is that the sample is
nationally representative. The participating households reside in fifty-two Nielsen markets and

nine remaining areas in the United States. Household survey weights provided by Nielsen can be

8 The Model and NLIN procedures in SAS 9.4 are used for model estimation. For future researchers who are
interested in applying PSTR models, an R package (PSTR) written by Y. Yang provides a useful tool for model

setup, estimation, and evaluation.
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used to create national estimates of household purchases. Further, the Homescan dataset includes
almost all U.S. retailers including mass merchants such as Walmart.
To analyze heterogeneous demand responsiveness, we focus on CSBs and beer products.
CSBs is one of the four categories included in Sugary-sweetened beverages (SSBs), which is a
common target of soda tax policies. The other three categories are regular non-diet fruit juices,
non-diet sports and energy drinks, and all other SSBs. Among the four categories of SSBs,
regular CSBs are the most prevalent SSB type across all years for all age groups except children
(for whom fruit drinks were the most prevalent in 1999 and 2005) (Han and Powell, 2013). We
choose only CSBs as our research subject since it is the most representative group and analyzing
the effect of soda tax on the full categories of SSBs would generally involve product aggregation
or estimation of a system of demand equations, which is out of the research scope of this paper.
We apply the following screens to ensure the data used consist only of households who
consistently recorded their purchasing sometime between 2008 and 2015. Households who fail to
satisfy any of the following criteria are excluded from the dataset:
() Each household must be on the panel for at least nine quarters since we track household
habits based on two years of purchasing history.
(i) Each household must have at least one shopping trip per quarter. A quarter is considered
long enough to identify that the household has stopped recording its purchases.
(iii)  The consumption of regular CSBs or beer by the household must be positive for at least
one quarter because the target population in our study is CSBs or beer consumers.
We also deleted observations with abnormally large or small prices. Specifically, we deleted
transactions in which unit price for a specific product was more than five times or less than one-

fifth of the sample mean price.
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Summary Statistics

Table 8 summarizes the demographics of the households of different habit strength levels. For
each product, CSBs and beer, the households are classified into four groups, with Group 1
representing the quartile of households with the greatest habit strength, that is, the most habitual
households, Group 2 representing the second most habitual households, and so on.

For CSBs, the most habitual consumers are associated with a smaller household size, a lower
annual household income, a higher probability of having a male and white household head
without college degree, and a higher probability of having one or more children, on average, than
other consumers. We do not find a significant difference in mean household size between any
two of Group 1, 2, and 3. However, mean household size of Group 4 is significantly larger than
each of Group 1 to 3, although the largest difference is only 0.14, indicating the least habitual
households are associated with a slightly larger household size on average. Similarly, significant
differences in mean income are found only between Group 1 and 3, and between Group 1 and 4,
with the most habitual households associated with the lowest mean income in the sample. The
most habitual households are more likely to have a male household head than any of the other
groups, and the least habitual households are less likely to have a male household head than any
of the other groups. A more habitual household is associated with a higher probability of having
a white household head, hence a lower probability of having a non-white household head and is
also associated with a higher probability of having at least one child. Last but not least, the heads
of the most habitual households are found to be least likely to hold a college degree or higher
while the heads of the least habitual households are the most likely to have a college or higher

degree.
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Similarly, for beer, the most habitual consumers are associated with a smaller household
size, lower annual household income, a higher probability of having a male and white household
head without college degree, and a lower probability of having one or more children, on average,
than the other consumers. Specifically, statistically significant differences in mean household
size are found between Group 1 and each of Group 2 to 4, although the largest difference is only
0.2, indicating the most habitual households are associated with a slightly smaller household size
on average. The mean annual household income of Group 1 is found to be the lowest among the
four groups. As with CSBs consumers, the most habitual households are found to be the most
likely to have a male household and the least habitual households are the least likely to have a
male household head among all the groups. Also, Group 1 is associated with the highest
probability of having a white household head, and Group 4 with the least. Moreover, more
habitual households are found to have a lower probability of having at least one child, and a
lower probability of holding a college degree or higher.

Price Index

To reduce the unit value bias (Cox and Wohlgenant, 1986; Deaton, 1988), we created a quarterly
superlative Tornqvist price index for product j for each state. Let an entity be a unique
combination of location and time. For example, the same location (e.g., a county) in period t and
period t + 1 is considered as two distinct entities in index formulas. The Tornqgvist price index is
defined as

(6) 2" = exp{0.5 Lyeor(sy + s5) In(pg /p)}

where p¥ is the is the price of product v in entity k; pS and g2 are the base price and quantity of
product v, respectively; v,, demotes the common set of items sold in both base 0 and entity k,

and s? and sk are budget shares of product v in base 0 and entity k.
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4. Empirical Results

This section presents demand estimation for regular CSBs and beer, respectively, with both
homogeneous and heterogeneous habit strength, followed by a simulation of demand change
when soda and beer taxes are imposed. We assess a sin tax effect because taxes on energy-dense,
low-nutrient foods such as sugar-sweetened beverages (SSBs) is the most commonly proposed
anti-obesity policy (Cawley, 2015). From the policy maker’s perspective, the stated goal of the
soda tax is to reduce consumption of these beverages, stem the obesity epidemic, fund health-
related initiatives, and raise much-needed revenue to offset a large state budget deficit (New
York State Department of Health, 2010).

Carbonated Sweetened Beverages

First, the linear demand model in equation (3) is estimated for regular CSBs. As shown in Table
9, the coefficient on InP;, B4, is estimated to be -1.055 and statistically significant, indicating
that a one percent increase in prices would result in a 1.055% decrease in quantity consumed.
Next, the ECON-PSTR model of heterogeneous habit strength is estimated. The fourth column
of Table 9 presents the PSTR model results, which are further illustrated in Figure 4. In Figure 4,
the x-axis represents the value of G, which is bounded between 0 (no habit at all) and 1
(addiction). Based on our estimation, the value of G ranges across households from 0.07 to 0.99.
The solid line shows a household’s own-price elasticity decreases in magnitude from -1.422 to -
0.410 as a household’s habit strength increases from 0.07 to 0.99. Thus, for the more habitual
consumers, who are the primary target of public health policy makers, sin tax style policies are
not as effective as for those who are not as habitual in consumption. The dotted line represents
the expenditure elasticity of each household under different habits. The expenditure elasticity

increases from 0.276 to 0.365 as a household’s habit level increase from 0.07 to 0.99. These
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findings are in line with expected behavior. Habitual consumers would allocate more spending
on goods they are most habituated to as their total expenditure increases. Additionally, model
selection criteria (AIC and BIC) are smaller when the PSTR model is applied, providing
evidence in favor of the heterogeneous habit model for these data. Figure 3 plots the value of G
functions against mean habit strength of CSBs and beer consumers.

To understand the influence of a soda tax on consumption, we simulate a scenario where a one-
cent per ounce tax® is levied on regular CSBs. We assume that the tax is fully passed through to
retail prices. Applying the parameters of the homogeneous habit model, the estimated decrease in
purchases of each household is illustrated in Figure 5, where blue bars and orange bars indicate
demand drop under homogeneous and heterogeneous habit strength assumptions, respectively.
With a model of homogeneous habit, the percentage change is the same across households given
equal price elasticities. Consequently, the absolute decrease in purchases of habitual households
is larger than for non-habitual households when facing the same percentage increase in prices.
Based on the reactions simulated for each household with homogeneous habit, the one-cent per
ounce soda tax would result in an aggregate 28.84% decrease in household CSBs.

From the results of the heterogeneous habit strength model, the own-price elasticity ranges from
-1.422 t0 -0.410. As the orange bar in Figure 5 indicates, the net decrease in purchases of
habitual households is not much larger than that of non-habitual households because the
households with the largest purchases tend to be more price inelastic. Based on this simulation, a

one-cent per ounce soda tax would result in a 24.11% decrease in overall consumption. Thus, the

% Some past literature used half-cent per ounce soda tax in policy simulations (Dharmasena and Capps, 2012; Lin et
al., 2011; Zhen et al., 2014, 2011). In the November 4, 2014 election, Berkeley, California, enacted the first soda tax
in the United States, establishing one-cent per ounce tax on sugary drinks. To make the simulations more relevant to

current public policy, we use one-cent per ounce as the proposed soda tax.
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demand response to a soda tax when heterogeneous habit strength is allowed for in the model is
considerably less than under the standard, homogeneous habit model. In fact, when individual
heterogeneity is ignored, the overall decrease in household regular CSBs demand would be
overestimated by 4.73 percentage points.

Beer

To further demonstrate the importance of allowing heterogeneity in habit, we perform a second
simulation, this time applied to beer purchasing behavior. Similar results will suggest that the
specific product chosen has not biased our results. Intuitively, beer is a more habit-forming
product than regular CSBs. As before, first, a constant habit regression for beer demand is
conducted using equation (3). The coefficient on [nP;, is estimated to be -1.089 and statistically
significant, indicating that a one percent increase in prices would result in a 1.089% decrease in
average consumption of beer. Linear regression results are presented in the fifth column of Table
9.

Next, we estimate our heterogeneous habit PSTR model for beer. Column 6 in Table 9 presents
the nonlinear regression results, and Figure 6 shows the relationship between habit, price
elasticity, and income elasticity. Similar to Figure 4, the x-axis measures the level of habit,
which ranges from 0.21 to 0.99, suggesting that even the least habitual consumers in the dataset
have a moderate level of habit in purchasing beer. The absolute own-price elasticity decreases
from 1.323 to 0.357 and the expenditure elasticity increases slightly from 0.643 to 0.679 as a
household’s habit level increases. Additionally, model selection statistics (AIC and BIC) are
again smaller when the PSTR model is applied, indicating that incorporating heterogeneous habit
is the preferred model specification. The shape of G functions with respect to mean household

habit strength of beer consumers is illustrated in Figure 3.
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We again simulate a scenario of an additional one-cent per ounce tax being implemented and
fully passed through to retail prices. Based on the results of the homogeneous habit model, with
its price elasticity of -1.089, the tax would result in a 15.76% decrease in overall beer sales. The
decrease in purchases among consumers with different habit strengths when habit strength is
modeled as constant is illustrated by the blue bar in Figure 7. Under our heterogeneous habit
model, a one-cent per ounce beer tax would result in only a 12.49% decrease in overall sales of
beer. The reduced purchases among consumers at different habit levels when heterogeneous
habit strength is modeled are illustrated by the orange bar in Figure 7. The figure makes clear
that beer is a more habitual product, and the more habitual a household is, the less sensitive to
price changes they are. Like the results from regular CSBs, the net decrease from more habitual
households is quite similar to less habitual households. If individual heterogeneity is ignored, the
overall decrease in household beer demand would be overestimated by 3.27 percentage points. In
other words, with the stronger habit of beer demand across the spectrum, incorporating
heterogeneous habit leads to estimates of responsiveness to a beer tax only 80% of that suggested
by the uniform habit model.

5. Conclusions and Policy Implications

Previous food demand research typically has found an own-price elasticity of -1.05 to -1.1 for
the category of regular CSBs (Bergtold et al., 2004; Heien and Wessells, 1990; Pittman, 2005).
An estimated own-price elasticity of -1.2 was applied by Yale University’s Rudd Center to
calculate the tax revenues generated by a soda tax (Rudd Center for Food Policy and Obesity,
2010). More recently, Zhen et al., (2014) estimated that the price elasticity of regular CSBs as -
1.035 based on the Nielsen Homescan Dataset (also used here). With previous published

estimates of price elasticities, the percentage drop in aggregated purchase of regular CSBs due to
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a one-cent per ounce soda tax is between the interval of 28.71% to 32.81% given our calculated
CSBs prices, which contains our simulated results (28.84%) in the homogeneous habit model.
Compared with the more general and realistic heterogeneous habit strength model, assuming
constant habit strength leads to significant overestimation of the effect of a soda tax on CSBs
purchases.

In this paper, we proposed an innovative procedure to investigate the demand for regular
CSBs and beer under heterogeneous habit strength. To demonstrate how important this model
generalization is for policy analysis, we reported an analysis of the potential effects of a one-cent
per ounce soda tax and a one-cent per ounce beer tax. Our results shed light on the importance of
incorporating individual heterogeneity when conducting research on public food policies.
Habitual consumers have the strongest preference for a particular product and are less price
sensitive than those with weaker habit effects. Because those with stronger habit effects have
more inelastic demands and consume larger than average quantities, ignoring the heterogeneity
of habit leads to an aggregation bias that could lead to faulty policy analyses. Consequently, the
welfare measurement of the policy may be inaccurate due to price and expenditure insensitivity
of highly habitual consumers. Table 8 provides possible criteria related to demographics to
screen the highly habitual consumers at whom a more specific policy could target.

The ECON-PSTR model of habit strength introduced here reveals heterogeneous
consumption patterns for regular CSBs and beer, leading to different responses to public policy
among people. If individual heterogeneity in habit strength is ignored, the overall effect of soda
tax and beer tax would be overestimated by 4.73 and 3.27 percentage points respectively. In
other words, the aggregate declines in soda and beer consumption are over-estimated by 20%

and 26%, respectively, under the homogeneity assumption. This implies sin and food taxes will
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be less successful at discouraging consumption than predicted by constant-habit demand models.
Our analysis also suggests food policies should be designed with consideration of heterogeneity
in consumers’ habits and their varying sensitivity to price and income changes. In particular,
public health professionals and nutrition experts don’t simply want to reduce consumption of
sugar sweetened beverages and beer, they specifically want to reduce consumption among the
heaviest consumers of these unhealthy beverages. Once heterogeneity of habit strength is
accounted for, we find that sin taxes have less effect on exactly these targeted consumers. Thus,
our results suggest that from a public health perspective, policies beyond simple price

adjustments are needed to achieve the desired objectives.
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Table 8 Homescan Sample Summary Statistics, by Products and Habit Strength Quartiles

. Mean Mean Mean Race of Household Head Household Head
G Rargfeﬁf maablt Sggsﬁglgfs Habit Household Household Pﬂgsg;%? dOLZ/:cljle At least one Child holding at least
roup 9 Strength Size Income® White Black Hispanic Others College Degree
! > Q3 2731 36.27 2.38 8.29 35.77% 92.27% 4.25% 3.22% 0.26% 22.38% 38.04%
(9.08) (1.11) (2.84) (9.17e-3) (5.11e-3)  (3.86e-3)  (3.38e-3)  (9.68e-4) (7.98e-3) (3.86e-4)
2 (Q2,Qs] 2730 24.40 2.37 8.36 30.11% 89.12% 6.23% 3.85% 0.81% 19.67% 40.55%
CSBs (1.74) (1.15) (2.94) (8.78e-3) (5.96e-3)  (4.62e-3)  (3.68e-3)  (1.71e-3) (7.61e-3) (9.40e-3)
Households 3
(N =10921) (Q1,Q.] 2730 19.43 2.42 8.43 31.14% 88.10% 7.18% 4.18% 0.55% 17.47% 39.93%
(1.23) (1.20) (2.87) (8.86e-3) (6.20e-3)  (4.94e-3)  (3.83e-3)  (1.41e-3) (7.27e-3) (9.37e-3)
4 <Q 2730 14.79 251 8.44 29.08% 84.84% 9.19% 5.13% 0.84% 15.16% 41.43%
(1.85) (1.30) (2.97) (8.6%-3) (6.86e-3)  (5.53e-3)  (4.22e-3)  (1.75e-3) (6.86e-3) (9.43e-3)
! > Qs 404 30.19 2.03 8.27 44.42% 90.07% 5.46% 4.22% 0.25% 8.93% 33.75%
(9.90) (0.92) (2.91) (2.47e-2) (1.49%-2)  (1.13e-2)  (1.00e-2)  (2.48e-3) (1.42e-2) (2.35e-2)
2 (Q2,Qs] 403 17.80 2.14 8.78 41.69% 87.10% 8.68% 3.72% 0.50% 10.17% 35.48%
Beer (1.58) 0.92) (2.51) (2.46-2) (L67e2)  (1.40e-2)  (9.43e-3)  (3.50e-3) (1.51e-2) (2.38e-2)
Households 3
(N =1613) (Q1, Q] 403 13.40 2.22 9.02 42.43% 88.83% 6.20% 3.97% 0.99% 12.90% 42.93%
(1.08) (1.03) (2.69) (2.46e-2) (1.57e-2)  (1.20e-2)  (9.73e-3)  (4.94e-3) (1.67e-2) (2.47e-2)
4 <Q 403 9.62 2.23 9.13 40.94% 84.37% 11.17% 3.72% 0.74% 14.39% 47.15%
(1.34) (0.95) (2.67) (2.45e-2) (1.81e-2)  (157e-2)  (9.43e-3)  (4.28e-3) (1.75e-2) (2.49-2)

2Q4, Q2, Q3 represent the first, second, and third quartile of the habit strength, respectively.

b Household Income is a categorical variable where annual income ranges from $0 to $9,999 is coded as 1, $10,000 to $11,999 as 2, $12,000 to $14,999 as 3, $15,000 to $19,999 as
4, $20,000 to $24,999 as 5, $25,000 to $34,999 as 6, $35,000 to $44,999 as 7, $45,000 to $49,999 as 8, $50,000 to $59,999 as 9, $60,000 to $69,999 as 10, $70,000 to $99,999 as
11, and $100,000 and greater as 12.
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Table 9 Parameter Estimates for Regular CSBs and Beer

Parameter Estimates for Regular Carbonated Sweetened Beverages and Beer

Regular Carbonated Sweetened Beverages Beer
Model Linear Demand Model PSTR Model Linear Demand Model ~ PSTR Model
Intercept 4.284* 3.002* 1.959* 0.002
(0.061) (1.012) (0.531) (0.003)
Natural log of Price -1.055* -1.598* -1.089* -1.936*
(0.082) (0.197) (0.128) (0.154)
Natural log of Expenditure 0.347* 0.261* 0.677* 0.620*
(0.006) (0.020) (0.003) (0.005)
Gender of Household 0.055* 0.058* 0.198* 0.164*
(0.013) (0.020) (0.001) (0.006)
Scheme 1  Racel 0.103* 0.141* 0.213* 0.249*
(0.037) (0.053) (0.001) (0.013)
Race2 -0.126* -0.037* -0.171* -0.143*
(0.043) (0.062) (0.001) (0.018)
Race3 -0.019 0.127 0.015* 0.194*
(0.061) (0.097) (0.002) (0.022)
Education Level of Household Head -0.096* -0.045* -0.266* -0.253*
(0.013) (0.019) (0.000) (0.006)
Two or more children in the household 0.121* 0.015 -0.220* -0.233*
(0.016) (0.022) (0.001) (0.007)
Gamma Gamma 1.385* 1.735*
(0.044) (0.036)
Intercept 0.823* 7.301*
(0.210) (0.667)
Natural log of Price -0.126* -0.191*
(0.023) (0.002)
Natural log of Expenditure 0.384* 0.689*
(0.015) (0.138)
Gender of Household 0.015 1.388*
(0.028) (0.227)
Scheme 2  Racel -0.094 -1.705
(0.076) (1.335)
Race2 -0.224* -1.309
(0.090) (0.766)
Race3 -0.254 -7.728*
(0.132) (0.951)
Education Level of Household Head -0.154* -0.544*
(0.027) (0.231)
Two or more children in the household 0.294* -0.014
(0.032) (0.326)
N 243859 243859 40291 40291
SSE 181180 156250 57810 52330
Number of Parameters 9 19 9 19
AIC -31446.77 -47104.58 6335.30 4612.66
BIC -31416.28 -47040.23 6358.75 4662.16

x Significant at 5% significance level. Heteroscedasticity-consistent standard error in parenthesis.
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Figure 1 Histogram of Average Habit Strength over Sample Period - CSBs Consumers
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Figure 2 Histogram of Average Habit Strength over Sample Period - Beer Consumers
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CHAPTER 3
ARE RESOURCES EQUALLY SHARED WITHIN HOUSEHOLDS? — A COLLECTIVE

MODEL APPROACH WITH SCANNER DATA.

1. Introduction

Intrahousehold inequality has been widely studied for developing countries but rarely for
developed countries like the United States. Intrahousehold inequality can be assessed by each
household member’s individual consumption, and his/her consumption share within the total
household. In practice, however, the consumption data at individual level is difficult to obtain
and in fact, consumption data are usually collected at the household level. Nonetheless,
Browning, Chiappori, and Lewbel (2013) (hereafter BCL), proposed a household collective
model which makes possible the identification of individual-level consumption based on the
consumption data from households which are composed of individuals, each with heterogenous
preferences, symmetric bargaining power and joint consumption of public goods. Following their
work, we examine the degree of the U.S. intrahousehold inequality among two types of
households, two-adult no-child (Type 1) households and two-adult one-child (Type I1)
households, in the United States by using the Nielsen household scanner data. Specifically, we
estimated resource shares, defined as each member’s share of total household consumption
within the household using Engel curves. Our findings show that, in a Type | household, women
command an average of 45% of the total household resources, 10 percentage points less than
men’s shares. As for Type Il households, wives, husbands, and children are estimated to

consume 39%, 41%, and 20% of the total resources on average, respectively. We conclude that
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resources are more “equally” shared within Type Il households as the estimated shares are very
close to the equal-division rule suggested by OECD (i.e. 38.5% for each of the parents and 23%
for the child). Moreover, women’s full-time job, women’s education level, and men’s education
level are found to be positively associated with resource shares for women. Additionally, age-
related covariates are found to have significant impact on the share of women only from Type Il
households.

With above findings, we further examine the appropriateness of the current household
income eligibility threshold for the Special Supplemental Nutrition Program for Women, Infants,
and Children (WIC Program), a public food assistance program aiming to provide supplemental
foods, nutrition education and other related services to women and children from at-risk and low-
income households. Based on the estimated household collective model, we suggest that the
eligibility line of WIC program for the Type | household should be increased by 11% to ensure
the intended purpose of the program to be achieved, and that the threshold for Type 1l
households remain unchanged. Further, the household characteristics (e.g. level of women’s
education, women’s employment status) that are found to have significant impact on women’s
shares would enable policy makers to better identify and target the at-risk women, and to
improve government spending efficiency.

The remainder of the paper is organized as follows. Section 2 provides an overview of the
structural model and its identification assumption. Section 3 describes the data source and the

construction dataset. Section 4 presents the structural estimation results. Section 5 concludes.

2. Structural Household Collective Model
Early literature on household consumption is often modeled as the outcome of a single decision-

making, utility-maximizing agent, so called unitary models. However, empirical results argue

62



that the assumptions under the unitary approach are too restrictive (Chiappori and Mazzocco,
2017). In contrast to the unitary approach, some other papers (e.g. Becker 1965, 1981; Chiappori
1988, 1992) adopt the collective approach, modeling a household consisting of multiple
individuals, each with own preferences. The underlying assumption of the model is Pareto
Efficiency, and the behavior of a household is equivalent to the behavior of each household
member who maximizes their own utility function, subject to shadow prices and

shadow incomes which reflect the sharing of goods.

The particular interest of the collective model is to estimate an individual’s household
resource share, A, defined as his/her share of total household consumption within the household.
Consider a household comprised of J individuals indexed j = 1,...,J with total household
expenditure y. Each household consumes K types of goods with prices p = (p?, ..., p%) and

observed quantities h = (h1, ..., h%). Let X = (x}, ...,ij) be the vector of quantities, which are

unobserved, of the K types of goods (referred to as private good equivalents hereafter) consumed
by individual j if the individual lived alone. Under the assumption of Barten-type technology

(BCL), the purchased quantities, h, by the household can be translated into private good

equivalents, x;, by a K X K transformation matrix A such that h = A Z§=1 Xj.

We have provided here an example to illustrate how Barten-type consumption technology
transfers household consumption, h, into private good equivalents, x. Suppose that individuals in
a Type | household ride together and share the consumption of gasoline half of the time, and that
the total household consumption of gasoline is 20 gallons per month. Therefore, if the two

individuals lived alone, their total monthly consumption of gasoline (or private good equivalents,

Xr + x,,) would have been 30 gallons, which are 1.5 times the quantity purchased at the

household level. Assuming the consumption of gasoline (good k) does not depend on

63



consumption of other goods, then the (k, k) element of A4 is 2 representing the level of
publicness of good k within the household, and the (k, j) elements of A are zeros, where k # j.
In this way, the k" element of h isg (xf + xm).

Let U;(x;) denote the consumption utility function of individual j over the vector of
goods x;, where U(+) is assumed to be monotonically increasing, twice continuously
differentiable and strictly quasi-concave. We assume that each household member’s total utility,
Uj, to be dependent on the utility of other household members and weakly separable over the

consumption utility functions of all household members, and that direct consumption
externalities are ruled out. Under above assumptions, the household member j who gets utility

from the other family members’ well-being as well as her own would have a utility function

0; = U; (Uy(x0), -, U () ).
At the household level, the consumption decision is modeled as a Pareto efficient
outcome among household members, each with heterogenous preferences, and asymmetric

bargaining power. The household maximizes a social welfare function, Uy, defined as
W) U0, . Ty, p.y) =X O T
where ;(+) is a function that returns Pareto weights for individual ;. The household’s welfare

maximization problem can be described as:

I (B) T
@, ;2 Tt ()7

.....

subject to

h= AZlexJ-,y = h'p, and U; = T (Ul(xl), U](x]))
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The solutions of this problem give the bundles of private good equivalents, x;, Pareto weights p;,
and hence the resource share, 4;, since there exists a monotonic correspondence between the
pareto weights and resource share, and resource share is tractable as it is invariant to the
cardinalization of utility functions (BCL).

Dunbar, Lewbel and Pendakur (2013), hereafter DLP, extended BCL to include children.
They identify resource shares, 4;, by using Engel curve curves for each assignable private good
consumed by each household member type j. A private good, as opposed to public good (e.g.
heat, TV, housing, etc), is defined to be a good that does not have any economies of scale in
consumption (e.g. food and clothing), while an assignable private good is defined as a private
good consumed exclusively by household members of known type - e.g., male/female/children
clothing. Under the Barten-type consumption technology assumption, Ay, = 1and 4;; =
0 (k # j) for an assignable private good of type k, suggesting that the private good k do not have
any economies of scale in consumption. The identification also assumes that resource shares and
expenditure are independent, and preferences over the assignable private goods are similar
among household members. The household demand functions for private assignable goods can
be expressed as:
) Wi (v, p) = 4w;(A'p, 4;y)
where w; is the is the demand function of each household member of type j when facing her
personal shadow budget constraint. Holding prices constant and given W;(+) and y, the resource
shares 4, can be implicitly inverted.

In this study, we select three assignable private goods: men's toiletries, women's
cosmetics, and baby food for men, women, and children, respectively. To make sure that each

category of assignable private products is exclusively used by a specific household member, we
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only focus on two types of households mentioned previously®. We choose the price independent
generalized logarithmic (Piglog) functional form, which yields Engel curves that are linear in the
logarithm of household expenditure. Like Calvi, 2019, we also allow preference parameters and
resource shares to vary by household demographic characteristics. As such, the Engel curve

systems for households with one child can be expressed as:

—

Ay
W= ol + By In (52) 4 fA Iy + £ (5)
A
W, = a.A; + BA:In (FC) + BA lny + €, (6)
where

U = 6%, +08g, X1+ + 8¢ Xz
ae = 60, + 04 X1+ -+ 6 X2
B= 63+ 6X + -+ 857Xy,

Ar = 59\f + 83X+t SR X1,
Ay =689 +84 X1+ + 6% Xip

Ae=1— Ap— Ay,

10 In most datasets reporting household expenditures, individual consumption is not recorded. If future researchers
are interested in including more household members, additional strong identifying assumptions must be imposed.
For example, according to Calvi (2019), researchers need to assume the preferences to be the same for all household
members of a specific type (i.e. common to all men, all women, and all children). One obstacle to our inclusion of
more children in our model is that very few families in the household scanner dataset have more than one children

under five at the same time.
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where W¢, W, and W, are the budget shares spent on women’s cosmetics, men's toiletries

and children’s baby food products, respectively, F, M, and C represent the number of women,
men and children in a household, respectively, and y is the household total expenditure. F =

M = 1forTypeland F = M = C = 1 for Type Il households. The vector X = (X,...,X12)
represents the socio-economic characteristics which may have impact on individual’s preferences
and hence resource shares. ar, a,, and a., and § are preference parameters, and A¢, A, and A
are resource shares for women, men and children, respectively. For Type | households, the
system contains only Engel curves (4) and (5). The system is estimated by non-linear Seemingly
Unrelated Regression (SUR) approach. SUR is iterated until the estimated parameters and the

covariance matrix settle.

3. Data

For this empirical exercise, we leverage the 2013-2017 weekly Homescan data, which is
collected at household level by the Nielsen Company (US), LLC and made available for research
purposes by the Kilts Marketing Data Center at The University of Chicago Booth School of
Business. More than 100,000 households across the U.S. record information on shopping trips
and purchased items using an optical scanner on a weekly basis over a period of at least a year.
Every recorded transaction contains information including the Universal Product Code (UPC),
quantity, price, size, brand, etc. The advantage of the Homescan panel dataset is that the sample
is nationally representative since the participating households reside in fifty-two Nielsen markets
and nine remaining areas in the United States and weights of observations are provided by
Nielsen. Further, the Homescan dataset includes almost all U.S. retailers including mass

merchants such as Walmart.

67



Based on the full dataset, we apply the following screens to ensure the data used consist
only of households who consistently recorded their purchasing sometime between 2013 and
2017. Households who fail to satisfy any of the following criteria are excluded from the dataset:
(1) Each household must be on the panel for at least three consecutive years from 2013 to 2017.
(2) Each household must have non-zero aggregate spending on one of the private assignable

products from 2013 to 2017.
(3) Each household must have an annual expenditure between 5" and 95" percentiles among the

households of the same type to eliminate outliers.
Since WIC program targets on children under five-year-old, we only keep one-child households
whose child is under five-year old. After filtering, our sample includes 970 one-child households,
among which 131 have a single-parent, and 2760 no-child households, among which 799 are
living alone. As for household demographics, we include the standardized age of the wife (X;),
the standardized age gap (X,) between husband and wife (the age of husband minus the age of
wife), indicators for the wife and husband having full-time jobs (X5 and X,, respectively), an
indicator for wife having at least high school degree (Xs), an indicator (X) for the husband
having higher education level than the wife. X, and Xg are two binary indicators for the race
identification of the household (X, = 1 for black, and Xg = 1 for other races) with white as the
reference group. X, is coded as 1 if the household is recognized having Hispanic origin, and X;,
to X, are three binary indicators for the statistical region indicators defined by The Census
Bureau (X;, = 1 for the Northeast region, X;; = 1 for the Midwest region, and X;, = 1 for the

South region) with the West as the reference group**. The demographic characteristics are

11 Northeast Region: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey,

New York, and Pennsylvania.
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summarized in Table 10. Compared with women in Type | households, women in Type Il
households are younger, and higher proportion of them have high school degrees, but lower
proportion of them take full-time jobs. These differences are due to the fact that we only choose
the households with children under 5-year-old, therefore, their mothers may be young, and it was
the special stage in their life to dedicate themselves to kids and families.
4. Empirical Results
Table 11 reports the estimated coefficients on the covariates X = (X3,...,X;,) determining
women’s and men’s resource shares (A and A,,, respectively). The results for Type |
households and Type Il households are presented in the second and third columns, respectively.
For Type | households, women’s estimated resource share (T\f) will significantly increase
if she holds at least high school degree and/or has a full-time job. The education level of the male
is also found to be positively related to A. Ceteris paribus, the black households have lower
resource shares devoted to women than white households, while women from the households
whose races are not black or white have higher resource shares than those from white
households. The age-related variables, male’s employment, and location indicators are not
statistically significant.
For Type Il households, women’s resource share (7\,:) is positively associated with

female’s employment and males’ education. The women in black households are found to have

Midwest Region: Illinois, Indiana, Michigan, Ohio, Wisconsin, lowa, Kansas, Minnesota, Missouri, Nebraska,
North Dakota, and South Dakota.

South Region: Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, District of
Columbia, West Virginia, Alabama, Kentucky, Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, and Texas.
West Region: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming, Alaska, California,

Hawaii, Oregon, and Washington.
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lower resource shares compared with those from white households. The age of female and the
age gap are found to have positive impact on women’s shares, and both are statistically
significant at the 10% and 1% level, respectively. Specifically, one standard deviation increase in
women’s age (6.1 years) and age gap (2.1 years) are associated with a 1.2 and 1.7 percentage
point increase in their resource shares. For the male household member, his estimated resource
share (A,,) is positively related to female’s age and is negatively correlated with women’s
education level. Men from black households have higher resource shares than those from white
households. Other men’s resource share covariates are not significant.

Estimated women’s resource shares for Type | households are presented in Figure 8. We
note that few women’s household shares are below 18% or above 74%. And women's resource
shares are less than or equal to Men’s in 61% of the households, suggesting the existence of
gender inequality in Type I households. The summary statistics are presented in Table 12. The
average value of women ’s household resource share is 45%, 10 percentage points less than men.
With the current household income eligibility line, which is set under the assumption that each
household member gets an equal share of resources, there exists a considerate number of
households whose income is not eligible (i.e. income above the eligibility line) for the WIC
program but whose female members are actually living in defined poverty due to gender

inequality and should have been protected by the WIC program. As a result, to reach the
intended purpose, the current eligibility line should be increased by at least % *100% =

11% to account for the derived gender inequality.
In Figure 9 and Figure 10, we show the estimated women's and children's resource shares
in Type Il households. In about 60% of the families, women ’s resource share is below 40%, and

few women hold more than half of the household resources. In 70% of the families, the
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children’s resource share is higher than 15% and less than 30%. As indicated in Table 12, wives,
husbands, and children are estimated to consume 39%, 41%, and 20% of the total resources on
average, respectively. We conclude resources are more “equally” shared within Type Il
households as the estimated shares are very close to the equal-division rule suggested by
OECD*2 (i.e. 38.5% for each of the parents and 23% for the child), and as such, revision of the
eligibility line of the WIC program does not seem to be necessary for one-child households.

Among all the household demographic variables that are found to have significant impact
on women’s share in Type | households, we notice two can be possible criterial applied in policy
making, which are indicators of women’s high school degree and women’s full-time job.
Specifically, women have no high school degree or full-time job are more vulnerable than those
who have and should be more likely to be targeted by assistance programs.
5. Conclusion
Many public welfare programs specifically target at people who are at risk, such as the elderly,
women, and children. The eligibility criteria of these programs theoretically rely on the level of
individual consumption of wives and children, but in practice are determined at household level
under equal-share assumption due to data limitation.

In this paper, we estimated intrahousehold resource shares in two-person no-child and
three-person one-child households by using the household scanner data and household collective
models proposed by Browning et al. (2013) and Dunbar et al. (2013). Particularly, we backed out

an estimate of the fraction of total household expenditure that is consumed by each family

12 To account for the possibility that children may have lower needs than adults, following DLP, we use the OECD
estimate of the relative needs of children (60 percent that of adults), and so the ‘equal distribution’ rule for the Type
Il households is 1:1:0.6 for man, woman and the child, which can be translated as “38.5% for each of the parents and

23% for the child’.
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member on all goods they consume given household-level Engel curve data on private assignable
goods.

We find the average value of women ’s household resource share is 45% in a two-person
no-child household, suggesting 10% difference in consumption shares between men and women.
As a result, we suggest the eligibility income threshold of the WIC program should be increased
by at least 11% to achieve the intended purpose. Intrahousehold consumption in three-person
one-child households are found to be rather equal, which does not warrant an adjustment in
eligibility line for the WIC program. Moreover, we propose two household traits in two-person
no-child households that policy makers may leverage to make vulnerable women more likely to
be targeted by those assistance programs. By doing this, the government welfare spending can be

optimized.
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Table 10 Homescan Sample Summary Statistics

Type | Households

Type Il Households

Age
Female 49.28 35.09
(8.67) (6.10)
Gap (Male-Female) 1.12 2.07
(4.87) (4.53)
Full-time Employment
Female 59.74% 46.63%
(0.49) (0.50)
Male 82.89% 95.70%
(0.38) (0.20)
Education
Female (High School) 42.63% 65.07%
(0.49) (0.39)
Male (Higher Degree) 22.94% 18.09%
(0.42) (0.39)
Race and Origin
White 76.46% 82.05%
(0.42) (0.38)
Black 13.58% 10.16%
(0.34) (0.30)
Other 9.96% 7.79%
(0.30) (0.27)
Hispanic Origin 8.25% 6.56%
(0.28) (0.25)
Region
Northeast 16.97% 16.26%
(0.38) (0.37)
Midwest 27.92% 26.63%
(0.45) (0.44)
South 39.49% 39.31%
(0.49) (0.49)
West 15.62% 17.77%
(0.36) (0.38)
Number of Households 2760 970
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Table 11 Determinants of Household Resource Shares

Type | Households Type Il Households

Women

Intercept (67 ) 0.236%** 0.405%**
(0.062) (0.057)
Female Age (6}\f) -0.002 0.012*
(0.011) (0.006)

Age Gap ((Sif) 0.016 0.017***
(0.010) (0.006)

Female Employment (63) 0.237*** 0.065***
(0.038) (0.011)
Male Employment (6‘}\f) 0.002 0.004
(0.031) (0.012)
Female Education ((S?\f) 0.153** 0.017
(0.033) (0.018)

Male Education (Higher Degree) (6‘}\f) 0.070%** 0.060***
(0.022) (0.011)

Black (67 ;) -0.082*** -0.087**
(0.040) (0.035)
Other (68 ;) 0.088* 0.052
(0.046) (0.041)
Hispanic Origin (S%f) 0.041 -0.038
(0.240) (0.032)
Northeast (6}\‘}) 0.008 -0.018
(0.043) (0.031)

Midwest (5 }\1f) -0.013 -0.050*
(0.040) (0.027)
South (8%2) 0.021 -0.033
(0.037) (0.025)

Male

Intercept (6% ) 0.478***
(0.056)

Female Age (6} ) 0.028***
(0.007)
Age Gap (6%, ) -0.001
(0.007)
Female Employment (6% ) 0.001
(0.012)
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Male Employment (67 ) 0.283
(0.371)
Female Education (63 ) -0.038**
(0.019)
Male Education (Higher Degree) (S%m) 0.016
(0.015)
Black (67 ) 0.098***
(0.037)
Other (5% ) -0.022
(0.042)
Hispanic Origin (63, ) 0.013
(0.33)
Northeast (6% ) 0.032
(0.032)
Midwest (57 ) 0.031
(0.028)
South (8% ) 0.019
(0.026)
Number of Households 2760 970

Note: * p < 0.10,**p < 0.05,x** p < 0.01. Robust standard errors are in parentheses.

Women’s age and age gaps are standardized to ease computation.

Table 12 Summary Statistics of Estimated women’s and children’s Household Shares (T\},

Ao

Type | Households

Type Il Households

Mean
Standard Deviation

Median

Women (Ay) Women (Ar) Children (A;)
0.45 0.39 0.20
0.15 0.06 0.10
0.47 0.39 0.22
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