
 

 

DEMAND AND WELFARE ANALYSIS WHEN PRODUCTS AND CONSUMERS ARE 

DIFFERENT 

by 

WENYING LI 

(Under the Direction of Chen Zhen) 

ABSTRACT 

 In this study, we show how to estimate large consumer demand and household collective 

models using big microdata in an efficient way. The dissertation is composed of three chapters, 

where we reduce aggregation bias in consumer demand systems, nest heterogeneous habit in 

household’s demand models, and evaluate the degree of intrahousehold inequality within 2-3 

person households in the United States. 

 In Chapter 1, we show how inferential errors due to inconsistent aggregation bias can be 

properly reduced. To manage dimensionality in consumer demand estimation, researchers' 

common practice is to aggregate elementary products to a higher level prior to econometric 

estimation. Inconsistent product aggregation, however, introduces bias to econometric estimates 

and policy-relevant inferences. We propose two alternative strategies for bias reduction. The first 

strategy uses the relative prices of elementary products as control variables in the aggregate 

demand. The second uses a residual-based instrumental variable method to achieve independence 

between the instrument and the residual.  

 In Chapter 2, we study the heterogeneity of habit strength in households’ demand for 

regular carbonated sweetened beverages (CSBs) and beer in the United States. A demand model 



that nests a smooth transition function is used to describe habit-based consumption patterns, 

revealing heterogeneous strengths of habits among households. We find that more habitual 

consumers, those with a strong preference for a particular product, are not as sensitive to price or 

expenditure as the aggregate population.  

 In Chapter 3, we examine the degree of intrahousehold inequality within 2-3 person 

households in the United States. Using structural collective model and household scanner data, 

we estimate the fraction of household resources that are consumed by husbands, wives and 

children. We find intrahousehold inequality exists in two-person (i.e. husband and wife) 

households but not in three-person (i.e. parents and one child under 5-year-old) households. The 

policy implication of this finding is two-fold: 1) this empirical finding suggests the current 

household income eligibility threshold for the Special Supplemental Nutrition Program for 

Women, Infants, and Children (WIC Program, a social welfare program targeting at women and 

children) should be increased for two-person households so that women who are currently not 

eligible for WIC Program but should have been can be covered; 2) Cost-efficient public policies 

can be achieved by allowing eligibility thresholds to vary by household demographics (e.g. 

education level, employment status, etc.). 

 

 

 

INDEX WORDS: Product Aggregation, Heterogeneity, Habit Strength, Resource Share, 

Collective Model 

 

  



 

 

DEMAND AND WELFARE ANALYSIS WHEN PRODUCTS AND CONSUMERS ARE 

DIFFERENT 

 

by 

 

WENYING LI 

MS, London School of Economics and Political Science, UK, 2014 

BA, Renmin University of China, China, 2013 

 

 

 

 

 

A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial 

Fulfillment of the Requirements for the Degree 

 

DOCTOR OF PHILOSOPHY 

 

ATHENS, GEORGIA 

2020 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 

Wenying Li 

All Rights Reserved 

  



 

 

DEMAND AND WELFARE ANALYSIS WHEN PRODUCTS AND CONSUMERS ARE 

DIFFERENT 

 

by 

 

WENYING LI 

 

 

 

 

      Major Professor: Chen Zhen 
      Committee:  Jeffrey H. Dorfman 
         Travis A. Smith 
          
          
 
 
 
 
 
 
 
 
 
 
Electronic Version Approved: 
 
Ron Walcott 
Interim Dean of the Graduate School 
The University of Georgia 
May 2020 
 



 

iv 

 

 

DEDICATION 

 I dedicate this dissertation to my grandparents for raising me up with affections and love 

and their unlimited support for my life.   

  



 

v 

 

 

ACKNOWLEDGEMENTS 

 I want to express my most sincere appreciation to my major advisor, Dr. Chen Zhen, who 

is a role model for me in both academics and life. I also want to especially thank my parents and 

my fiancée Dr. Yunhan Li for their patience and love throughout my life. Finally, I also want to 

thank my committee members Dr. Jeffrey Dorfman and Dr. Travis Smith for their guidance, 

suggestions, and comments. Part of this research was conducted in collaboration with USDA 

under a Third-Party Agreement with Information Resources, Inc. (IRI). Financial support from 

USDA Economic Research Service (ERS) Cooperative Agreement 58-5000-5-0009 is gratefully 

acknowledged. 

  



 

vi 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .............................................................................................................v 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

CHAPTER 

 1 Two Simple Strategies for Reducing Aggregation Bias in Demand System Models ....1 

   Introduction ..............................................................................................................1 

   Composite Commodity Theorems ...........................................................................4 

   Panel GCCT Test .....................................................................................................7 

   An Application .........................................................................................................9 

   Conclusion .............................................................................................................18 

 2 The Implications of Heterogeneous Habit in Consumer Beverage Purchases 

on Soda and Sin Taxes .................................................................................................32 

   Introduction ............................................................................................................32 

   Empirical Strategy .................................................................................................36 

   Data ........................................................................................................................42 

   Empirical Results ...................................................................................................46 

   Conclusions and Policy Implications .....................................................................49 

 3 Are Resources Equally Shared within Households? – A Collective Model Approach  

with Scanner Data. .......................................................................................................61 



 

vii 

   Introduction ............................................................................................................61 

   Structural Household Collective Model.................................................................62 

   Data ........................................................................................................................67 

   Empirical Results ...................................................................................................68 

   Conclusion .............................................................................................................70 

REFERENCES ..............................................................................................................................79  



 

viii 

 

 

LIST OF TABLES 

Page 

Table 1: Time-Series GCCT Test Results .....................................................................................21 

Table 2: Panel GCCT Test Results ................................................................................................24 

Table 3a: Price Elasticities of Fruit Demand (Model 1) ................................................................26 

Table 3b: Price Elasticities of Vegetable Demand (Model 1) .......................................................27 

Table 4a: Benchmark Fruit Group Demand Elasticities Derived from Model 1 Estimates ..........28 

Table 4b: Benchmark Vegetable Group Demand Elasticities Derived from Model 1 Estimates ..28 

Table 5a: Price Elasticities of Fruit Group Demand ......................................................................29 

Table 5b: Price Elasticities of Vegetable Group Demand .............................................................30 

Table 6: Elasticity Differences between Each Aggregate Demand and the Benchmark ...............31 

Table 7: Euclidean Norm between Each Aggregate Demand and the Benchmark .......................31 

Table 8: Homescan Sample Summary Statistics, by Products and Habit Strength Quartiles  .......52 

Table 9: Parameter Estimates for Regular CSBs and Beer  ...........................................................53 

Table 10: Homescan Sample Summary Statistics  ........................................................................73 

Table 11: Determinants of Household Resource Shares  ...............................................................74 

Table 12: Summary Statistics of Estimated women’s and children’s Household Shares ..............75 

 

  



 

ix 

 

 

LIST OF FIGURES 

Page 

Figure 1: Histogram of Average Habit Strength over Sample Period - CSBs Consumers ............54 

Figure 2: Histogram of Average Habit Strength over Sample Period - Beer Consumers .............55 

Figure 3: The Value of G - Functions Against Average Habit Strength over Sample Period .......56 

Figure 4: Habit, Price Elasticity and Expenditure Elasticity for Regular CSBs ............................57 

Figure 5: Decrease in Demand of Regular CSBs Due to Soda Tax under Both Heterogeneous and 

                Homogeneous Habit Assumptions .................................................................................58 

Figure 6: Habit, Price Elasticity and Expenditure Elasticity for Beer ...........................................59 

Figure 7: Decrease in Demand of Beer Due to Beer Tax under Both Heterogeneous and  

     Homogeneous Habit Assumptions .................................................................................60 

Figure 8: Estimated Women’s Household Resource Share in Type I Households........................76 

Figure 9: Estimated Women’s Household Resource Share in Type II Households ......................77 

Figure 10: Estimated Children’s Household Resource Shares in Type II Households .................78 

 



 

1 

 

 

CHAPTER 1 

TWO SIMPLE STRATEGIES FOR REDUCING AGGREGATION BIAS IN DEMAND 

SYSTEM MODELS 

1. Introduction 

In recent years, measuring the price elasticities of food demand―a traditional area of research 

for agricultural economists―is of growing interest to the broader community of public policy. 

The newfound interest in food demand is a response to the ever-increasing policy calls for using 

price (dis)incentives to improve diet and reduce obesity and nutrition-related noncommunicable 

diseases in the United States and globally. Many of the policy scenarios concern taxes or 

subsidies that target finely defined food and beverage categories differentiated by nutrient 

contents (e.g., sugary vs. diet beverages). The need for predicting and comparing outcomes of 

these policy alternatives fuels the drive toward estimating highly disaggregated food demand 

systems.  

Thanks to greater accessibility of scanner data, researchers now have the liberty of 

disaggregating demand to a level as detailed as the barcode (Broda and Weinstein 2010). 

However, unless one is willing to use restrictive functional forms such as the constant elasticity 

of substitution demand, a degree of product aggregation is necessary to make estimation 

practical. This is especially true for flexible functional form systems where there are at least as 

many price variables per equation as the number of goods in the system. Even if we impose the 

symmetry, homogeneity and adding up restrictions, the number of parameters would still be too 

high to estimate them for a large system. Aggregating to fewer product categories would reduce 
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the dimension of the parameter space but at the potential cost of creating bias if aggregation is 

inconsistent. From an economist’s perspective, an aggregation scheme is consistent if the 

aggregated categories maximize a utility function given aggregate price indexes and income.        

The canonical approach to reducing aggregation bias is to test the sufficient conditions for 

consistent aggregation. There are two alternative types of conditions. The first is a set of equality 

restrictions on product-level price and income elasticities implied by separable utility 

(Blackorby, Primont, and Russell 1977; Blackorby, Davidson, and Schworm 1991; Moschini, 

Moro, and Green 1994). This requires first estimating the product-level demand system and then 

determining if certain products can be aggregated into separable groups based on tests of the 

equality constraints. As prices of similar products tend to be highly collinear, thereby producing 

imprecise coefficient estimates, test of separability may have low power. Moreover, if a product-

level demand system can be estimated to credibly test the separability restrictions, it obviates the 

need for aggregating products into fewer groups. The alternative condition for consistent 

aggregation concerns movement of product prices in the same group. The Hicks-Leontief 

composite commodity theorem states that products whose prices are perfectly correlated can be 

consistently aggregated into a group. This requires within-group product prices to move in 

perfect synchronization, which is empirically unlikely. 

In a seminal paper, Lewbel (1996) extended the Hicks-Leontief theorem into an 

empirically more plausible generalized composite commodity theorem (GCCT) that only 

requires the deviation of product prices from its group price be independent of the group price. 

The significance of Lewbel’s GCCT is that its mild restrictions on price variation rationalize 

some of the common product groupings that were previously untested or rejected by separability 

tests (e.g., Davis, Lin, and Shumway 2000; Capps and Love, 2002; Reed, Levedahl, and 
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Hallahan 2005; Schulz, Schroeder, and Xia 2012; Heng, House, and Kim 2018). Indeed, 

Shumway and Davis (2001) found that GCCT tests had the lowest frequency of rejection among 

all types of aggregation tests in a survey of 22 peer-reviewed studies. There is a concern, 

however, that the low rejection rates may be an artifact of size distortions and power problems 

associated with time-series unit root and cointegration tests in small samples (Davis 2003).  

Although multiple aggregation tests are available, most demand studies do not test for consistent 

aggregation. Rather, aggregation decisions are guided by research questions, constrained by data 

availability, and often follow convention, intuition or even convenience. For example, the 

literature on sugar-sweetened beverage taxes has either aggregated all sugary drinks into a single 

category (Lin et al. 2011; Allcott, Lockwood and Taubinsky 2019) or up to three product types 

(Dharmasena and Capps 2012; Zhen et al. 2014). One factor in the infrequent deployment of 

aggregation tests in demand analysis may be time. Testing an exhaustive list of potential 

cointegrating relationships under the GCCT framework can be time-consuming even with a large 

number of elementary products.1  Given that aggregation decisions are not formally tested in 

most studies, it will be useful to develop a practical approach that reduces bias when the chosen 

aggregation schemes violate the GCCT.  

The objective of this study is to propose two alternative strategies for reducing 

aggregation bias. The first strategy uses the log relative (to the group) product prices as control 

variables in the group demand equations. Although Lewbel (1996) had used essentially the same 

procedure as a test for separability in a consistently aggregated demand system, its ability in 
 

1 The time-consuming aspect of the GCCT test arises from the fact that there are a large number of alternatives to 

combine elementary products into groups. The combinations with at least two nonstationary product-level prices 

need to be tested for cointegrating relationships. The final aggregation scheme can be especially difficult to choose 

if some unit root and cointegration test results are indeterminate.   
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reducing bias from inconsistent aggregation was not previously recognized. The second strategy 

uses linear regression to project each log group price onto the log relative prices of elementary 

products and a residual. The residual is then used as an instrument for the group price. Both the 

control variables method and the residual-based instrumental variables method are simple 

enough for use in any flexible demand systems where bias from inconsistent aggregation is of 

concern. To address the issue of low power in time-series unit root tests, we conduct the GCCT 

tests in a panel data setting. This is the first application of panel unit root tests to the GCCT. In 

an example application to fruit and vegetable demand, the more powerful panel tests rejected 

aggregation schemes at a much higher rate than time-series tests. The preferred bias-reduction 

method reduced aggregation bias in elasticity estimates by up to 67% for fruit and 91% for 

vegetables.         

The next section briefly reviews the GCCT, where we motivate bias from inconsistent 

aggregation as a special case of the omitted variable problem. We then discuss using the panel 

unit root tests to examine the GCCT with more power. This is followed by an empirical 

illustration of the proposed methods using retail scanner data on fruit and vegetable from 72 US 

markets over the 2008–2012 period. The final section summarizes and discusses an extension of 

the methods. 

2. Composite Commodity Theorems 

For ease of exposition, we discuss Lewbel’s GCCT in the context of a linear approximate almost 

ideal demand system. All results apply to other functional forms. Let the product-level demand 

system be   

(1)    𝑤𝑤𝑖𝑖 = 𝛼𝛼𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln𝑝𝑝𝑗𝑗𝑛𝑛
𝑗𝑗=1 + 𝜃𝜃𝑖𝑖 ln 𝑦𝑦 + 𝜀𝜀𝑖𝑖  
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where elementary products are indexed by 𝑖𝑖 ∈ 𝐷𝐷 = {1,2, … ,𝑛𝑛}, 𝑤𝑤𝑖𝑖 is the budget share of product 

𝑖𝑖, 𝑝𝑝𝑗𝑗 is the price of product 𝑗𝑗, 𝑦𝑦 is total expenditure in real terms, 𝛼𝛼, 𝛽𝛽, and 𝜃𝜃 are parameters, and 

𝜀𝜀𝑖𝑖 is the orthogonal residual term. We suppress the time and market subscripts to simplify 

notation in this section. They are introduced in later sections to properly denote variables in 

panel setting.     

To aggregate the 𝑛𝑛 products into 𝑁𝑁 groups, define an aggregate indexing set 𝐼𝐼 = {𝐼𝐼r}𝑟𝑟=1𝑁𝑁 , 

where  𝐼𝐼𝑟𝑟 ⊆ 𝐷𝐷 for any 𝑟𝑟 = 1, … ,𝑁𝑁 < 𝑛𝑛. Let the aggregate price index for group 𝑟𝑟 be 𝑃𝑃𝑟𝑟. The log 

ratio of 𝑝𝑝𝑗𝑗 to 𝑃𝑃𝑟𝑟 is calculated as   

(2)    ln�𝑝𝑝𝑗𝑗 𝑃𝑃𝑟𝑟⁄ � = 𝜌𝜌𝑗𝑗  , 𝑗𝑗 ∈ 𝐼𝐼𝑟𝑟 

where the relative price 𝜌𝜌𝑗𝑗  measures the deviation of the log product price from its group price 

index and can be considered as an aggregation error. Replacing ln 𝑝𝑝𝑗𝑗 in Eq. (1) with ln𝑃𝑃𝑟𝑟 and 𝜌𝜌𝑗𝑗 

yields 

(3)    𝑤𝑤𝑖𝑖 = 𝛼𝛼𝑖𝑖 + ∑ 𝜓𝜓𝑖𝑖𝑖𝑖 ln𝑃𝑃𝑟𝑟𝑁𝑁
𝑟𝑟=1 +  ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln 𝑝𝑝𝑗𝑗𝑗𝑗∉𝐼𝐼 + 𝜃𝜃𝑖𝑖 ln 𝑦𝑦 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼 + 𝜀𝜀𝑖𝑖 , 

where 𝜓𝜓𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑗𝑗∈𝐼𝐼𝑟𝑟 . Aggregating Eq. (3) of products 𝑖𝑖 ∈ 𝐼𝐼 into 𝑁𝑁 group share equations yields 

the following demand system:  

(4a)    𝑊𝑊𝑠𝑠 = Α𝑠𝑠 + ∑ Ψ𝑠𝑠𝑠𝑠 ln𝑃𝑃𝑟𝑟𝑁𝑁
𝑟𝑟=1 + ∑ Β𝑠𝑠𝑠𝑠 ln 𝑝𝑝𝑗𝑗𝑗𝑗∉𝐼𝐼 + Θ𝑠𝑠 ln𝑦𝑦 + ∑ Β𝑠𝑠𝑠𝑠𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼 + Ε𝑠𝑠 , 𝑠𝑠 = 1,2, … ,𝑁𝑁            

(4b)    𝑤𝑤𝑘𝑘 = 𝛼𝛼𝑘𝑘 + ∑ 𝜓𝜓𝑘𝑘𝑘𝑘 ln𝑃𝑃𝑟𝑟𝑁𝑁
𝑟𝑟=1 + ∑ 𝛽𝛽𝑘𝑘𝑘𝑘 ln 𝑝𝑝𝑗𝑗𝑗𝑗∉𝐼𝐼 + 𝜃𝜃𝑘𝑘 ln 𝑦𝑦 + ∑ 𝛽𝛽𝑘𝑘𝑘𝑘𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼 + 𝜀𝜀𝑘𝑘 , 𝑘𝑘 ∉ 𝐼𝐼 

where 𝑊𝑊𝑠𝑠 is the aggregate budget share of group 𝑠𝑠, 𝑤𝑤𝑘𝑘 is the budget share of product 𝑘𝑘 not 

aggregated into one of the 𝑁𝑁 groups, 𝐴𝐴𝑠𝑠 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠 , Ψ𝑠𝑠𝑠𝑠 = ∑ 𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠 , Β𝑠𝑠𝑠𝑠 = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠 , Θ𝑠𝑠 =

∑ 𝜃𝜃𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠 , and 𝐸𝐸𝑠𝑠 = ∑ 𝜀𝜀𝑖𝑖𝑖𝑖∈𝐼𝐼𝑠𝑠 . If all 𝑛𝑛 products are allocated into the 𝑁𝑁 groups, the system (4a-b) 

reduces to Eq. (4a).  
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The Hicks-Leontief composite commodity theorem states that products can be 

consistently aggregated into groups if product prices within each group 𝑟𝑟 are perfectly correlated, 

that is, 𝜌𝜌𝑗𝑗 being constant over time for ∀ 𝑗𝑗 ∈ 𝐼𝐼𝑟𝑟. This allows ∑ Β𝑠𝑠𝑠𝑠𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼  in (4a) and ∑ 𝛽𝛽𝑘𝑘𝑘𝑘𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼  in 

(4b) be combined with Α𝑠𝑠 and 𝛼𝛼𝑘𝑘, respectively, to form the new intercepts for the system (4a-b). 

Independence of the residuals Ε𝑠𝑠 and 𝜀𝜀𝑘𝑘 from 𝑃𝑃𝑟𝑟 (𝑟𝑟 = 1, … ,𝑁𝑁) and 𝑝𝑝𝑘𝑘 (𝑘𝑘 ∉ 𝐼𝐼) ensures consistent 

estimation of Ψ𝑠𝑠𝑠𝑠, Β𝑠𝑠𝑠𝑠 (𝑗𝑗 ∉ 𝐼𝐼), and Θ𝑠𝑠 in (4a) and 𝜓𝜓𝑘𝑘𝑘𝑘, 𝛽𝛽𝑘𝑘𝑘𝑘 (𝑗𝑗 ∉ 𝐼𝐼), and 𝜃𝜃𝑘𝑘 in (4b). Unfortunately, 

the Hicks-Leontief theorem does not hold empirically because it requires prices of all products 

within a group move in absolute synchronization.  

Lewbel’s key insight is that consistent estimation of the slope coefficients in the system 

(4a-b) does not actually require constancy of 𝜌𝜌𝑗𝑗, only that the distribution of 𝜌𝜌𝑗𝑗 be independent 

of 𝑃𝑃𝑟𝑟 and 𝑝𝑝𝑘𝑘 ∀𝑗𝑗, 𝑟𝑟,𝑘𝑘. To see this, without loss of generality, let 𝜌𝜌𝑗𝑗 be a zero-mean random 

variable. This would be the case if both 𝑝𝑝𝑗𝑗 and 𝑃𝑃𝑟𝑟, 𝑗𝑗 ∈ 𝐼𝐼𝑟𝑟, are indexes normalized to 1 at the base, 

which is set to the sample mean of each variable. Then the new composite residuals of (4a) and 

(4b) are ∑ Β𝑠𝑠𝑠𝑠𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼 + Ε𝑠𝑠 and ∑ 𝛽𝛽𝑘𝑘𝑘𝑘𝜌𝜌𝑗𝑗𝑗𝑗∈𝐼𝐼 + 𝜀𝜀𝑘𝑘, respectively. Both would have an expected value 

of 0 and are independent of 𝑃𝑃𝑟𝑟 and 𝑝𝑝𝑘𝑘 if the GCCT holds. The GCCT relaxes the empirically 

untenable Hicks-Leontief theorem into a more plausible requirement on how product prices 

move within a group. Lewbel (1996, p. 526-527) showed that, under the GCCT if the adding up, 

symmetry and homogeneity conditions hold for the product-level Eq. (1), then the aggregate 

system (4a-b) would also possess these properties. In addition, elasticities derived from the 

system (4a-b) are the best unbiased estimates of group demand elasticities that would be obtained 

from estimation of Eq. (1) using disaggregate data (Lewbel 1996, p. 528).    

As noted earlier, in most cases, aggregation into groups is driven by the specific needs of 

the analysis as opposed to the GCCT test results. If the selected aggregation scheme violates the 
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GCCT, omission of the relative prices 𝜌𝜌𝑗𝑗 from the system (4a-b) will cause the composite 

residuals to be correlated with the group prices 𝑃𝑃𝑟𝑟 and, thereby, bias the coefficient estimates on 

group prices. This can be seen as a special case of the omitted variable problem in two aspects. 

First, unlike a standard case of omitted variables,2 conventional instrumental variables will not 

help reduce the endogeneity bias attributed to inconsistent aggregation. Given that 𝜌𝜌𝑗𝑗 is inversely 

related to 𝑃𝑃𝑟𝑟, it will be difficult to identify a naturally-occurring instrument that is strongly 

correlated with 𝑃𝑃𝑟𝑟 but independent of 𝜌𝜌𝑗𝑗 except in the trivial case of 𝜌𝜌𝑗𝑗 being independent of 𝑃𝑃𝑟𝑟. 

Second, unlike endogeneity bias due to unobserved heterogeneity, the relative prices are 

perfectly observed by the econometrician. The latter distinction leads to two surprisingly simple 

strategies for reducing bias in the group price coefficients Ψ𝑠𝑠𝑠𝑠 and 𝜓𝜓𝑘𝑘𝑘𝑘 in an inconsistently 

aggregated system.  

The first strategy uses the relative prices 𝜌𝜌𝑗𝑗 ∀𝑗𝑗 ∈ 𝐼𝐼 as control variables in the system (4a-

b). The second, called residual-based instrumental variables, is implemented by regressing each 

group price on all relative prices and using the residual as instruments for group prices in the 

aggregate demand. By design, the residual-based instrument is orthogonal to the relative prices 

and produces consistent estimates of the group price coefficients.  

3. Panel GCCT Tests    

Aggregation according to the GCCT entails testing the independence between the 𝜌𝜌’s and the 

𝑃𝑃’s. If prices are nonstationary, as they often appear to be, ordinary covariances and correlations 

 
2 Many standard sources of endogeneity bias are fundamentally an omitted variable problem. For example, classical 

demand-supply simultaneity bias in demand analysis is caused by unobservable (to the econometrician) demand 

shocks that are omitted from the demand regression. In the absence of direct measures of the unobserved demand 

shocks, supply-side variables are often used as instruments for the endogenous prices.  
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cannot be used to test independence. There are a few complications associated with detecting 

nonstationarity and testing for independence among nonstationary prices. Unit root tests, such as 

the augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979), are problematic in that they 

are not very powerful in distinguishing highly persistent stationary processes from nonstationary 

processes, especially in short time series. Schwert (1987) and Lo and MacKinlay (1989) 

documented that tests for a unit root (the null) have low power in finite samples against the local 

alternative of a root close to but below unity. Cochrane (1991) decomposed a unit root process 

into a stationary and a random walk component. He argued that because the random walk 

component can have arbitrarily small variance, a test of the null hypothesis of a unit root has 

arbitrarily low power against the alternative of trend stationarity in finite samples. To address the 

power issue in unit root tests, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski 

et al. 1992) switched the null to trend stationarity against the alternative of a unit root. However, 

Caner and Kilian (2001) showed that the use of conventional asymptotic critical values for 

stationarity tests may cause extreme size distortions, if the model under the null hypothesis is 

highly persistent. In essence, the size distortion of stationarity tests is the mirror image of the low 

power of unit root tests. If prices are indeed nonstationary, multivariate cointegration tests are 

necessary to determine independence. However, studies (Haug 1996; Ho and Sørensen 1996) 

have shown that the Engle and Granger (1987) cointegration test has power problems similar to 

those of the unit root tests. To confront these issues, Davis (2003) proposed modified Bonferroni 

procedures to strengthen the time series GCCT test. Davis et al. (2000) provided additional 

strategies to more powerfully test the GCCT using time series data.  

Inspired by the increasing availability of scanner panels, we take a different approach to 

strengthening the GCCT test. Testing unit roots using panel data is driven by the desire to gain 
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power over tests for single time series (Levin et al. 2002; Im et al. 2003; Breitung 2000). Since 

the low power problem is most severe in small samples, one can increase the sample size by 

pooling time series data across the cross-sectional units. That said, it is important to account for 

cross-sectional dependence when conducting panel unit root tests. Neglecting this common 

feature of panel data is shown to lead to severe power reduction and size distortion (O’Connell 

1998). For this reason, we chose Pesaran’s (2007) cross-sectionally augmented Im-Pesaran-Shin 

(CIPS) test to test for panel nonstationarity.    

4. An Application 

We illustrate the two bias reduction strategies with an example of fruit and vegetable demand 

that is of continuing interest to agricultural economists. Estimates of fruit and vegetable 

elasticities have been used to explain the farm-retail price spread (Wohlgenant 1989), understand 

the role of farm policy in the obesity epidemic (Okrent and Alston 2012), and predict the effects 

of prices on food waste (Hamilton and Richards 2019), among other applications. We selected 15 

fruits and 15 vegetables for analysis (see table 1 for a list). These tend to be the most commonly 

available fruit and vegetables at retail. We call each fruit or vegetable a product. The GCCT tests 

are used to determine whether these products may be consistently aggregated into fewer groups. 

We compare test results from the time series unit root tests with those from the panel tests to 

highlight the differences in aggregation scheme suggested by each type of tests. The demand 

system with GCCT-consistent aggregation scheme is treated as the benchmark model. We 

evaluate the performance of the bias reduction methods in a GCCT-inconsistent aggregate 

system by comparing the bias-adjusted estimates with the benchmark estimates.  

The Demand Model 
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We choose the quadratic almost ideal demand (QUAID) (Banks et al. 1997) as the functional 

form. Compared with the almost ideal demand, QUAID has more flexible Engel curves but 

retains exact aggregation over consumers. The group-level budget share equation for group 𝑠𝑠 is 

(5)    𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 + ∑ Ψ𝑠𝑠𝑠𝑠 ln𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 +Θ1𝑠𝑠 ln � 𝑥𝑥𝑚𝑚𝑚𝑚
𝑎𝑎(𝑃𝑃𝑚𝑚𝑚𝑚)� + Θ2𝑠𝑠

𝑏𝑏(𝑃𝑃𝑚𝑚𝑚𝑚) �ln �
𝑥𝑥𝑚𝑚𝑚𝑚

𝑎𝑎(𝑃𝑃𝑚𝑚𝑚𝑚)��
2

+ e𝑚𝑚𝑚𝑚𝑚𝑚 

where the subscripts 𝑚𝑚 and 𝑡𝑡 denote the cross-sectional unit and time period, respectively; 𝑥𝑥𝑚𝑚𝑚𝑚 is 

total nominal income; ln𝑎𝑎(𝑃𝑃𝑚𝑚𝑚𝑚) = 𝐴𝐴0 + ∑ 𝐴𝐴𝑠𝑠0 ln𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 + 0.5∑ ∑ Ψ𝑠𝑠𝑠𝑠 ln𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ln𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠 ; 

𝑏𝑏(𝑃𝑃𝑚𝑚𝑚𝑚) = ∏ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
Θ1𝑠𝑠

𝑠𝑠 ; e𝑚𝑚𝑚𝑚𝑚𝑚 is the residual; and the 𝐴𝐴’s, Ψ’s, and Θ’s are parameters. The intercept 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 is specified as 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴𝑠𝑠0 + 𝐳𝐳𝑚𝑚𝑚𝑚𝑚𝑚𝛅𝛅𝑠𝑠, where 𝐳𝐳𝑚𝑚𝑚𝑚𝑚𝑚 is a row vector of control variables and 

𝛅𝛅𝑠𝑠 is the corresponding column vector of parameters.  

Eq. (5) is the quadratic counterpart of group-level demand in Eq. (4a). To avoid 

notational clutter, we have assumed all products are aggregated into some groups so that Eq. (4b) 

drops out. This is a harmless assumption because if group 𝑟𝑟 consists of a single product then the 

group price 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 and budget share 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 equal those of the product.  

Data and Variable Construction  

Information on fruit and vegetable sales comes from the IRI InfoScan retail scanner data that the 

USDA Economic Research Service acquired to support food market and policy research. Our 

sample covers 65 quadweeks (i.e., 4-weekly periods) between January 6, 2008 and December 

29, 2012. In InfoScan, there are 65 markets and 8 standard whitespaces (i.e., remaining 

Areas of the contiguous United States). We dropped the Green Bay, WI market from the sample 

due to insufficient retail data for the study period. This gives a balanced panel with 4,680 

market-quadweek observations. Some InfoScan-participating retailers provided data at the store 

level but others only at the retail marketing area (RMA) level (Muth et al. 2016). The 

geographical coverage of RMA varies across retailers, but a typical RMA contains a cluster of 



 

11 

counties. We aggregated store-level data to the IRI market level. For RMA-only retailers, IRI 

reports the number of stores and addresses in each RMA. To estimate IRI market-level sales for 

these retailers, we divided RMA-level sales by store number to get average sales per store and 

allocate RMA sales to each IRI market based on the number of stores the retailer has in each IRI 

market. 

Compared to traditional budget surveys, the detailed product information in scanner data 

allows the researcher to better control for the unit value bias. A unit-value price is calculated as 

the expenditure on a good divided by its purchase quantity. Bias may arise if the construct of the 

demand model is abstract from the quality decision while the unit-value price encompasses both 

the quality and quantity dimensions of consumer choice (Deaton 1988; Cox and Wohlgenant 

1986). To differentiate quality among varieties within a fruit or vegetable, we define variety at 

the type (up to two types per fruit/vegetable, e.g., romaine vs. leafy lettuce), brand (name brand, 

no brand, private label), organic (organic, nonorganic), and form (fresh, frozen, canned) level. 

This yields up to 36 unique varieties per product.3 We then constructed the superlative Fisher 

Ideal price index for fruit or vegetable product 𝑗𝑗 as follows 

(6)    𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = ��∑ �𝑝𝑝𝑚𝑚𝑚𝑚
𝑘𝑘 𝑞𝑞0

𝑘𝑘�𝑘𝑘
∑ �𝑝𝑝0

𝑘𝑘𝑞𝑞0
𝑘𝑘�𝑘𝑘
� �∑ �𝑝𝑝𝑚𝑚𝑚𝑚

𝑘𝑘 𝑞𝑞𝑚𝑚𝑚𝑚
𝑘𝑘 �𝑘𝑘

∑ �𝑝𝑝0
𝑘𝑘𝑞𝑞𝑚𝑚𝑚𝑚

𝑘𝑘 �𝑘𝑘
� 

where the subscripts 𝑚𝑚 and 𝑡𝑡 index market and period, respectively; 𝑝𝑝𝑚𝑚𝑚𝑚𝑘𝑘  and 𝑞𝑞𝑚𝑚𝑚𝑚𝑘𝑘  are the price 

and volume sales of variety 𝑘𝑘, respectively, and 𝑝𝑝0𝑘𝑘 and 𝑞𝑞0𝑘𝑘 are the base price and volume of 

variety 𝑘𝑘 set at their sample means. The Fisher Ideal price index is superlative because it 

approximates the true cost of living index for a class of expenditure function (Diewert 1976). It 

allows the researcher to account for within-product substitution without estimating a variety-

 
3 Our maintained hypothesis is that the ≤36 varieties can be consistently aggregated into a single fruit or vegetable.  
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level demand system. Davis (1997) developed a test for unit value bias and found important 

differences in estimates and policy implications between a demand model using superlative price 

indexes and a model using unit-value prices.  

To construct the price index for the numéraire good, we multiplied annual Regional Price 

Parities for 2008-2009 from the Bureau of Economic Analysis with monthly Consumer Price 

Index from the Bureau of Labor Statistics to obtain a panel of the cost-of-living index for 

metropolitan statistical areas. The index numbers were then weighted by county population to 

construct the numéraire price index at the IRI market level.  

Price endogeneity is a concern, even with consistent aggregation, because of demand-

supply simultaneity and unobserved heterogeneity. We created a Hausman-type (Hausman et al. 

1997) instrument 𝑝𝑝−𝑚𝑚𝑚𝑚𝑚𝑚 for each fruit or vegetable price 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑝𝑝−𝑚𝑚𝑚𝑚𝑚𝑚 is the average price 

of 𝑗𝑗 in the five IRI markets closest to market 𝑚𝑚 in distance. Identification of the price 

coefficients in the demand model relies on 1) there be common supply shocks across nearby 

markets, and 2) the restriction that unobserved demand shocks be uncorrelated across markets 

after accounting for market, year and seasonal fixed effects in the 𝐳𝐳𝑚𝑚𝑚𝑚𝑚𝑚 vector. Using the nearest 

markets is designed to increase the strength of 𝑝𝑝−𝑚𝑚𝑚𝑚𝑚𝑚 in explaining the variations in 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. We 

used the same approach to create instruments for group prices.  

For the residual-based instrumental variables method, we use the following linear 

regression to generate the instrument 

(7)    ln𝑃𝑃−𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑟𝑟 + ∑ 𝑏𝑏𝑟𝑟𝑟𝑟𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗∈𝐼𝐼 + 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,       𝑟𝑟 ∈ 𝐼𝐼              

where 𝑃𝑃−𝑚𝑚𝑚𝑚𝑚𝑚 is the Hausman instrument for group price 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 of group 𝑟𝑟, the 𝑎𝑎’s and 𝑏𝑏’s are 

parameters, and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 is the residual. The fitted residual 𝑢𝑢�𝑚𝑚𝑚𝑚𝑚𝑚 serves as the residual-based 

instrument for group price 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚.  
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Aggregation Scheme  

We take a food-group based approach to aggregating the 30 fruits and vegetables into groups. 

Because much of the recent food demand literature has a nutrition policy focus, we follow the 

food categorization scheme used in MyPlate−the current USDA nutrition guide based on the 

recommendations of the Dietary Guidelines for Americans. According to MyPlate, the 15 fruits 

are categorized into three groups: berries, melons, and other fruits. Similarly, the 15 vegetables 

are categorized into four groups: dark-green vegetables, red and orange vegetables, starchy 

vegetables, and other vegetables. Table 1 presents the composition of each group. 

Consistent product aggregation requires the relative product price 𝜌𝜌𝑗𝑗 to be independent of 

the group price 𝑃𝑃𝑟𝑟. Therefore, testing whether an aggregation scheme is consistent with the 

GCCT is equivalent to testing whether 𝜌𝜌𝑗𝑗 and 𝑃𝑃𝑟𝑟 are independent of each other. Tests depend on 

the time series properties of the data. The procedure consists of two steps: (1) determine the 

stationarity of each 𝜌𝜌𝑗𝑗 and 𝑃𝑃𝑟𝑟 using unit root tests and (2) based on the results of step 1, test 

independence between 𝜌𝜌𝑗𝑗 and 𝑃𝑃𝑟𝑟. There are three alternative scenarios in step 2. First, if both 𝜌𝜌𝑗𝑗 

and 𝑃𝑃𝑟𝑟 are stationary, a correlation test is appropriate. Second, if 𝜌𝜌𝑗𝑗 and 𝑃𝑃𝑟𝑟 are both 

nonstationary, a cointegration test should be conducted. Third, if 𝜌𝜌𝑗𝑗 is stationary but 𝑃𝑃𝑟𝑟 is 

nonstationary or vice versa, then no test of independence is necessary because the two series 

cannot be cointegrated, which is evidence for independence (Lewbel 1996, p. 532).  

Davis (2003) correctly pointed out that the GCCT require testing independence of each 𝜌𝜌𝑖𝑖 

from all of the 𝑃𝑃𝑟𝑟’s, not just price of the group comprising product 𝑖𝑖 as was done in Lewbel 

(1996) and virtually all published work on GCCT. One reason for limiting the scope of the 

independence test is the power and size problems of multivariate cointegration tests. 

Additionally, given evidence for cointegration vectors, exclusion restriction tests are required to 
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determine whether the cointegration is between 𝜌𝜌𝑖𝑖 and the 𝑃𝑃𝑟𝑟’s, or among the 𝑃𝑃𝑟𝑟’s (Davis 2003, 

p. 479). The test workload can quickly become unwieldy as the number of elementary products 

and aggregation schemes increases. For these reasons, we confine the independence test to 

between 𝜌𝜌𝑗𝑗 and its own group price 𝑃𝑃𝑟𝑟 (𝑗𝑗 ∈ 𝐼𝐼𝑟𝑟), which is most likely to correlated or cointegrated 

with 𝜌𝜌𝑗𝑗 among all group prices.  

Time Series Test Results 

We conducted the ADF and KPSS tests on the relative product prices and group prices. The null 

hypothesis of the ADF test is the presence of a unit root, while the null of the KPSS is 

stationarity. Reversing the null and alternative hypotheses is designed to manage the power issue 

of time series GCCT tests (Davis et al. 2000). When results from the two tests are conflicted, 

inferences based on the joint confirmation hypothesis (JCH) of a unit root are used (Carrion-i-

Silvestre et al. 2001). If the group price 𝑃𝑃𝑟𝑟 and relative price 𝜌𝜌𝑗𝑗 are both nonstationary, we used 

the Engle-Granger test to examine the null hypothesis of no cointegration between the two series. 

The Spearman’s rank test is used to test for correlation when the two series are stationary, with a 

null hypothesis that the two series are not correlated.  

Table 1 reports the test results on fruit and vegetable grouping. The price indices of all 

groups, bar dark-green vegetables, are nonstationary, and so are 7 of the 30 relative prices. Of the 

5 nonstationary relative prices whose group indexes are also nonstationary, the Engle-Granger 

test failed to reject the null of no cointegration between each relative price and its group price. 

This confirms independence of the 30 relative prices from their corresponding group prices and 

consistent aggregation of these products into seven fruit and vegetable groups. This finding is 

consistent with previous time-series tests of the GCCT that found low rates of rejection of the 

proposed aggregation schemes (Shumway and Davis 2001).   
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Panel Test Results 

We hypothesize that rejection of consistent aggregation is more frequent in panel-based tests 

because of the increased power of panel unit roots tests. The null hypothesis of the CIPS panel 

unit root test is that all units of the panel contain unit roots. The alternative hypothesis is that at 

least some units are stationary. In contrast to the time-series results that found unit roots in all but 

one group prices, the panel test (table 2) indicates that only the group prices of berries and 

starchy vegetables contain unit roots. Tests of independence found that the relative prices of 21 

fruits and vegetables are significantly correlated with their group prices and, hence, cannot be 

consistently aggregated into the MyPlate-based groups.4 Berries and starchy vegetables, each 

containing two elementary products, are the only GCCT-consistent groups. Thus, without a bias-

reduction method, the researcher has to estimate the remaining 13 fruits and 13 vegetables as 

individual goods in a demand system to avoid inferential errors due to inconsistent aggregation.     

Demand Specifications and Results 

To evaluate the empirical performance of the two bias-reduction strategies, we estimate the 

following four versions of the demand system Eq. (5) separately for fruit and for vegetables: 

Model 1 uses the consistent aggregation schemes suggested by the panel test results. The 

demand estimates are set as the benchmark.       

Model 2 follows MyPlate grouping which is not fully supported by the panel test. The 

differences between Model 2 and Model 1 estimates measure the degree of bias attributable to 

inconsistent aggregation.   

 
4 A cointegration test is not applicable here because there is not a single case where the relative price and its group 

price are both nonstationary. Otherwise, we could use Westerlund’s (2007) test, which accounts for cross-sectional 

dependence, to examine panel cointegration.    
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Model 3 follows the same grouping as Model 2 but includes the relative prices as control 

variables in the 𝐳𝐳 vector so that the inconsistently aggregated group prices remain orthogonal to 

the error term 𝑒𝑒 in Eq. (5). Comparing the differences in elasticity estimates between Model 3 

and Model 1 with those between Model 2 and Model 1 provides empirical evidence on the 

efficacy of the control variable method.    

Model 4 again follows the same grouping as Model 2 but uses the residual-based price 

instruments. We expect Model 4 to produce bias reduction comparable to Model 3 in magnitude.  

We estimated each model using full information maximum likelihood (FIML). Models 1-3 use 

the Hausman-type instruments to control for price endogeneity. Model 4 uses the residual-based 

instruments to control for both price endogeneity and aggregation bias. The budget share 

equation for the numéraire was not estimated. Instead, we recovered its parameters using 

estimates from the fruit and vegetable budget share equations through the parametric restrictions 

implied by the adding up, homogeneity, and symmetry conditions. We calculated elasticities at 

the sample mean. The standard error for each point estimate is generated by taking 100 random 

draws from a multivariate normal distribution of the model parameters with the mean and 

covariance set to their estimated values (Krinsky and Robb 1990). These are the more policy-

relevant unconditional elasticities because they are not conditional on total fruit and vegetable 

expenditures that are likely endogenous with prices.  

Tables 3a and 3b present the Marshallian price elasticities of fruit and vegetable demand, 

respectively. All own-price elasticities are negative and statistically significant. Lemons/limes, 

tomatoes, and onions are the least price elastic with own-price elasticities at around −0.3. Many 

cross-price effects are consistent with a priori expectations. For example, we found statistically 

significant substitution between romaine/leafy lettuce and iceberg lettuce, between grapefruit, 
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tangerines and oranges, and between cherries and the berries group. Using the individual fruit 

and vegetable elasticities, we simulated the aggregate demand elasticity for group 𝑠𝑠 with respect 

to the aggregate price of group 𝑟𝑟 by changing the prices of all products in 𝑟𝑟 by the same 

percentage. The resulting group demand elasticities, shown in tables 4a and 4b, are the 

benchmark because they derive from the Model 1 estimates that are GCCT-consistent.  

Table 5a presents group demand elasticities estimated by the group demand Model 2, 3, and 4 for 

fruit. Comparing tables 4a and 5a indicates that the fruit cross-price elasticities of Model 2 and 3 

agree in sign but differ from the benchmark in sign between berries and other fruits. By contrast, 

Model 4, which used the residual-based instruments, correctly estimated the substitutive 

relationship between berries and other fruits.  

Turning now to comparing the vegetable results in table 5b with the benchmark in table 

4b. Model 3 and 4 correctly estimated the complementarity between dark-green vegetables and 

red and orange vegetables, while Model 2 incorrectly suggested substitution. Meanwhile, the 

substitution between starchy vegetables and red and orange vegetables is correctly predicted by 

Model 2 and 3 but not by Model 4. Finally, Model 4 is the only aggregate demand that estimated 

substitution between starchy vegetables and other vegetables.  

Table 6 summarizes these comparisons. In terms of the magnitude of the bias, Model 3 

and 4 performed better than Model 2, as expected, with the exception of the (unweighted) 

average own-price elasticity of Model 4 that is more biased than that of Model 2. This is entirely 

driven by the larger difference in own-price elasticity for berries, which account for 9% of total 

pound purchased. After weighting the bias by purchase quantity, Model 4 performs 67% better 

than Model 2 in terms of own-price elasticities. In general, the degree of bias reduction achieved 

by Model 3 is smaller than that of Model 4, and we observe a more significant bias reduction in 
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own-price elasticities than in cross-price elasticities, and in vegetable demand than in fruit 

demand.  

To further measure the difference between the elasticity matrix of the aggregate demand 

model and that of the benchmark model, we calculated the Euclidean norm, also known as the 𝐿𝐿2 

norm, which measures the distance between two matrices in an N dimensional space. The 

smaller Euclidean norm is, the closer the two matrices are. Table 7 presents the results. For both 

fruit and vegetables, the elasticity matrix produced by Model 4 has the smallest Euclidean norms 

with respect to the elasticity matrix produced by the benchmark model, which means elasticity 

matrix of Model 4 more closely resembles that of the benchmark model. As such, we find that 

comparing with the model with aggregation bias (Model 2), both control variable model (Model 

3) and instrumental variable model (Model 4) produces less biased estimates, and Model 4 is 

preferred empirically. 

5. Conclusion 

Users of flexible demand systems usually aggregate many elementary products into fewer groups 

and estimate consumer preferences at the group level. This is done for practical reasons of 

avoiding the curse of dimensionality and customizing the analysis to answer specific research 

questions. The chosen aggregation scheme is frequently justified by tests of the GCCT―the 

most empirically plausible aggregation theorem of all. Using more powerful panel unit root tests, 

we showed that the low rejection rates of GCCT-consistent aggregation schemes in past studies 

are likely caused by the low power of time-series unit root tests. Rejection of a proposed 

aggregation scheme can be inconvenient because estimation at a more disaggregated level may 
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not be practical due to multicollinearity and constraint on computing resources.5 With these in 

mind, it is of significant practical value to develop an approach that reduces bias in an 

inconsistently aggregated demand system. This would allow practitioners to continue using the 

aggregation schemes best suited for addressing their specific research questions.  

Our approach is motivated by noting a simple fact: the relative prices of elementary products, 

whose correlation with the group prices is the root cause for aggregation bias, are observable to 

the econometrician. One strategy is to include these relative prices as control variables in the 

aggregate demand model such that the group prices are no longer correlated with the regression 

error. Another strategy is to regress each group price on all relative prices and use the residual, 

which is free from correlation with the relative prices, as instrumental variables for the group 

prices in the aggregate demand.6 We call the latter strategy the residual-based instrumental 

variable method.  

Theory predicts that both strategies produce a similar degree of bias reduction. However, 

in the application to fruit and vegetable demand, we found the residual-based instrumental 

variable method to outperform the control variable method. In practice, there may be other 

reasons to prefer the former method to the latter. For example, when there is a large number of 

elementary relative product prices, it may not be practical to include all as control variables in 

the aggregate demand system, especially if the system is nonlinear. The stepwise nature of the 

residual-based instrumental variable method means that it can be implemented with ease 

 
5 In our experience estimating large demand systems, the highest consumption of computer memory lies in 

imposing the cross-equation parametric restrictions of homogeneity and symmetry.    

6 As shown in our empirical illustration, if unobserved demand shocks and heterogeneity exist, one can regress a 

conventional price instrument on all relative prices and use the residual as the instrument in the aggregate demand.  
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regardless how many elementary products are aggregated into groups. This method is even more 

appealing in situations where the researcher is already planning to use instrumental variables to 

account for, in addition to aggregation bias, conventional sources of price endogeneity such as 

supply-demand simultaneity and unobserved heterogeneity.  

Finally, although we illustrated the approach using market-level data, the methodology is 

equally applicable to demand system estimated on household-level data. For micro data 

applications of demand systems, another key motivation for product aggregation is to reduce the 

number of zeros. Accounting for these corner solutions introduces additional nonlinearity and, 

hence, complexity to the estimation. It will be straightforward to integrate the residual-based 

instrumental variable method into, for example, the extended Amemiya generalized least squares 

estimator for censored micro demand systems (Zhen et al. 2014) to correct for both aggregation 

bias and conventional price endogeneity.          
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Table 1. Time-Series GCCT Test Results  

Group and relative prices ADF Test H0: I(1)a KPSS Test H0: I(0)b I(1) or I(0)c Engle-Granger Testd: 
H0: Not Cointegrated 

Consistent 
Aggregation 
(Yes/No) 

P (Berries)   -2.23 (10) 0.17* I(1)  
  

ρstrawberries  -3.09 (7) 0.18* I(1)  -1.69 (2) yes 
ρblueberries  -3.53 (7)* 0.12  I(0)  n/a yes 

P (Melons) 3.10 (4) 0.17* I(1) 
  

ρwatermelon  -7.59 (8)* 0.13* I(0) n/a yes 
ρcantaloupe  -6.35 (10)* 0.13* I(0) n/a yes 

P (Other Fruits)  -1.55 (2) 0.15* I(1) 
  

ρgrapefruit  -7.76 (5)* 0.12* I(0) (JCH) n/a yes 
ρapples  -4.84 (1)* 0.15* I(0) (JCH) n/a yes 
ρgrapes  -5.41 (1)* 0.08 I(0) n/a yes 
ρlemons/limes  -3.21 (1)* 0.12* I(1) (JCH) -1.83 (1) yes 
ρpeaches  -5.37 (4)* 0.10 I(0)  n/a yes 
ρavocado  -3.18 (1)* 0.08 I(0)  n/a yes 
ρpears  -4.96 (1)* 0.14* I(0) (JCH) n/a yes 
ρcherries  -6.74 (8)* 0.09 I(0) n/a yes 
ρtangerines  -5.59 (5)* 0.10 I(0)  n/a yes 
ρoranges  -2.92 (10) 0.14* I(1)  -1.49 (10) yes 
ρpineapple  -6.02 (2)* 0.10 I(0) n/a yes 

P (Dark-Green Vegetables)  -3.19 (1)* 0.12 I(0)  
  

ρbroccoli  -3.10 (0) 0.17* I(1) n/a yes 
ρlettuce (romaine/leafy)  -3.14 (0) 0.16* I(1) n/a yes 

P (Red and Orange Vegetables)  -2.93 (1) 0.09 I(1) (JCH)   
ρtomatoes  -5.00 (5)* 0.11 I(0)  n/a yes 
ρbell peppers  -4.03 (0)* 0.09 I(0) n/a yes 
ρsweet potatoes  -5.88 (1)* 0.09 I(0) n/a yes 
ρcarrots  -3.39 (1)* 0.09 I(0)  n/a yes 

 

 



 

22 

Table 1. Continued 

Group and relative prices ADF Test H0: I(1)a KPSS Test H0: 
I(0)b I(1) or I(0)c Engle-Granger Testd: 

H0: Not Cointegrated 

Consistent 
Aggregation 
(Yes/No) 

P (Starchy Vegetables)   -2.07 (0) 0.11 I(1) (JCH)   
ρcorn  -5.68 (3)* 0.12 I(0) n/a yes 
ρpotatoes -4.55 (1)* 0.12 I(0) n/a yes 

P (Other Vegetables)   -2.52 (0) 0.07 I(1) (JCH)   
ρonions -2.51 (3) 0.09 I(1) (JCH) -2.87 (4) yes 
ρlettuce (iceberg)  -3.41 (3)* 0.07 I(0) n/a yes 
ρcelery  -5.63 (1)* 0.07 I(0) n/a yes 
ρcucumbers  -4.12 (1)* 0.07 I(0) n/a yes 
ρmushrooms  -2.66 (0) 0.12 I(1) (JCH) -2.67 (0) yes 
ρcabbage  -3.74 (1)* 0.07 I(0) n/a yes 
ρgreen beans  -5.90 (1)* 0.10 I(0) n/a yes 

10% Critical Value -3.17 0.12 (–3.64, 0.07) -3.11   
Notes: * denotes rejection of the null at the 0.10 significance level. 
a The test statistic of the null hypothesis of I(1) is the augmented Dickey-Fuller (1979) (ADF) t-statistic of the coefficient on the 
lagged level variable in the regression of the first-difference on a constant, a time trend, the lagged level, and lagged differences of 
variables appended to the regression. The number of lags of first differences is reported in parentheses and determined by Eviews 10. 
b The test statistic of the null hypothesis of I(0) is the Kwaitkowski et al. (1992) (KPSS) t-statistic. The t-statistic is the sum of the 
squared partial sums of residuals divided by an error variance estimator. The residuals are computed from a model in which the series 
is regressed on a constant and a time trend. For the correction of the error term, a Bartlett window with ten lags was used to ensure the 
variance matrix was well behaved. 
c Inferences based on the joint confirmation hypothesis (JCH) of a unit root are used when the ADF and KPSS tests are in conflict 
(Carrion-i-Silvestre et al., 2001). The joint critical values of (–3.60, 0.07) represent the midpoint of critical values for 50 and 100 
observations for the ADF and the KPSS (with Bartlett kernel) tests with trend. They are interpreted as follows. If the value of the ADF 
statistic is less (greater) than –3.60 and the value of the KPSS statistic is less (greater) than 0.07 then the series is considered (at 90% 
probability of joint confirmation) stationary (nonstationary). Otherwise, the series cannot be confirmed to have a unit root and is 
therefore considered stationary. 
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d The test statistic is for the Engle-Granger test of the null hypothesis that the 𝑘𝑘th relative price 𝜌𝜌𝑘𝑘 and its group price 𝑃𝑃𝑟𝑟 (𝑘𝑘 ∈ 𝐼𝐼𝑟𝑟) are 
not cointegrated. The entries are ADF tests of I(1) residuals formed from regressing the relative price on its integrated group price. 
The 10% critical values reported for the individual tests are based on 65 observations. The number of lags of the first-differenced 
residuals in the residual regression is determined by Eviews 10 and reported in parentheses. 
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Table 2. Panel GCCT Test Results  

Group and relative prices CIPS Test: H0: I(1)a I(1) or I(0) Correlation Testb: 
H0: Not correlated 

Consistent 
Aggregation 
(Yes/No) 

P (Berries)  -2.41  I(1)   
ρstrawberries -5.34*  I(0) n/a yes 
ρblueberries  -5.32*  I(0) n/a yes 

P (Melons) -4.90* I(0) 
  

ρwatermelon  -5.47* I(0) 0.71* no 
ρcantaloupe  -5.33* I(0) 0.74* no 

P (Other Fruits)  -5.03* I(0) 
  

ρgrapefruit  -5.11* I(0) -0.11* no 
ρapples  -4.84* I(0) 0.08* no 
ρgrapes  -6.15* I(0) -0.07* no 
ρlemons/limes  -4.02* I(0) -0.05 yes 
ρpeaches  -5.07* I(0) 0.14* no 
ρavocado  -4.43* I(0) -0.19* no 
ρpears  -4.87* I(0) 0.30* no 
ρcherries -5.67* I(0) 0.04 yes 
ρtangerines  -5.40* I(0) 0.34* no 
ρoranges  -2.33 I(1) n/a yes 
ρpineapple -4.44* I(0) -0.08* no 

P (Dark-Green Vegetables)  -4.40* I(0)   
ρbroccoli -4.74* I(0) 0.37* no 
ρlettuce (romaine/leafy)  -4.49* I(0) -0.36* no 

P (Red and Orange Vegetables) -4.75* I(0)   
ρtomatoes -5.02* I(0) -0.28* no 
ρbell peppers -4.61* I(0) -0.27* no 
ρsweet potatoes -4.79* I(0) 0.28* no 
ρcarrots  -4.87*  I(0) 0.50* no 
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Table 2. Continued  

Group and relative prices CIPS Test: H0: I(1)a I(1) or I(0) Correlation Testb: 
H0: Not correlated 

Consistent 
Aggregation 
(Yes/No) 

P (Starchy Vegetables)  -2.19  I(1)   
ρcorn -4.86* I(0) n/a yes 
ρpotatoes  -4.24* I(0) n/a yes 

P (Other Vegetables)  -4.43* I(0)   
ρonions  -4.33* I(0) -0.34* no 
ρlettuce (iceberg)  -4.23* I(0) -0.22* no 
ρcelery  -4.34* I(0) -0.29* no 
ρcucumbers  -4.53* I(0) -0.20* no 
ρmushrooms  -2.28 I(1) n/a yes 
ρcabbage  -4.87* I(0) 0.03 yes 
ρgreen beans  -4.24* I(0) 0.32* no 

10% Critical Value -2.53     
Notes: * denotes rejection of the null at the 0.10 significance level. 
a Pesaran (2007)'s cross-sectionally augmented Im-Pesaran-Shin (CIPS) test regresses, for each unit 𝑚𝑚 in the panel, the first difference 
on a constant, a time trend, the lagged level and its cross-sectional mean, the first difference of the cross-sectional mean and its lags, 
and the lagged first differences. The CIPS statistic is the cross-sectional average of the t-statistics on the lagged level. The null 
hypothesis is I(1) for all units. The xtcips command in Stata 14 was used to perform the CIPS test. The maximum number of lags 
included in the model is set to ten for each cross-section. 
b Spearman’s correlation coefficient which can take values from -1 to 1. The closer the test statistic is to zero, the weaker the 
association between the group price and the relative price. The spearman command in Stata 14 was used to perform the test. 
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Table 3a. Price Elasticities of Fruit Demand (Model 1, aggregation supported by panel GCCT tests)   

 With respect to the price of  
 

Elasticity of demand for 
 Melons Other Fruits  

Berries Watermelon Cantaloupe Grapefruit Apples Grapes Lemons/Limes Peaches Avocado Pears Cherries Tangerines Oranges Pineapple Numeraire  
Berries -1.836 0.001 -0.020 0.013 0.061 -0.046 -0.040 0.062 -0.005 0.016 0.121 -0.016 -0.009 -0.030 1.582 

   (-30.910) (-0.077) (-1.682) (2.734) (-1.342) (-1.216) (-4.433) (2.485) (-0.436) (0.723) (3.868) (-5.349) (-0.511) (-1.961) (9.871) 

M
el

on
s 

Watermelon 0.004 -1.678 0.157 -0.022 -0.169 0.095 -0.057 -0.140 -0.005 -0.043 0.046 0.122 -0.062 -0.071 1.779 
  (-0.076) (-23.164) (-6.019) (-2.428) (-2.250) (1.661) (-4.029) (-3.352) (-0.203) (-3.568) (0.717) (2.673) (-1.637) (-2.539) (5.585) 
Cantaloupe -0.122 0.286 -1.743 0.045 -0.042 -0.048 -0.048 0.178 -0.022 0.023 0.164 0.230 0.021 -0.120 1.543 
  (-1.672) (-5.980) (-33.256) (2.856) (-0.377) (-0.709) (-2.363) (3.182) (-0.662) (0.833) (3.542) (4.097) (0.362) (-2.631) (5.649) 

O
th

er
 F

ru
its

 

Grapefruit 0.200 -0.098 0.113 -1.290 0.109 0.026 -0.257 -0.304 0.037 0.328 -0.015 0.044 0.330 0.142 0.441 
  (2.762) (-2.373) (2.855) (-23.354) (1.052) (0.539) (-4.737) (-4.090) (0.725) (5.66) (-0.091) (0.739) (5.607) (2.622) (2.399) 
Apples 0.051 -0.044 -0.006 0.006 -0.497 -0.025 -0.030 -0.034 -0.044 -0.003 -0.021 -0.008 0.048 0.003 0.651 
  (-1.295) (-2.197) (-0.368) (1.066) (-9.983) (-0.790) (-3.223) (-1.360) (-3.210) (-0.187) (-0.820) (-0.270) (2.214) (0.152) (5.327) 
Grapes -0.054 0.035 -0.009 0.002 -0.035 -1.111 -0.005 0.002 -0.009 0.008 0.125 -0.009 0.050 0.009 0.809 
  (-1.196) (1.687) (-0.711) (0.540) (-0.811) (-25.018) (-0.707) (0.072) (-0.974) (1.213) (4.334) (-0.240) (3.124) (0.772) (4.811) 
Lemons/Limes -0.220 -0.096 -0.044 -0.095 -0.194 -0.024 -0.302 -0.039 -0.101 -0.024 -0.022 -0.090 0.021 -0.093 1.142 
  (-4.409) (-4.117) (-2.354) (-4.778) (-3.246) (-0.706) (-8.876) (-0.907) (-4.341) (-0.85) (-0.742) (-2.545) (0.699) (-3.143) (7.928) 
Peaches 0.233 -0.156 0.110 -0.075 -0.145 0.008 -0.026 -1.650 -0.105 0.055 -0.187 0.189 0.077 -0.013 1.723 
  (2.523) (-3.35) (3.168) (-4.091) (-1.361) (0.087) (-0.899) (-15.149) (-2.961) (2.087) (-3.908) (2.870) (1.386) (-0.337) (6.387) 
Avocado -0.017 -0.005 -0.014 0.009 -0.196 -0.027 -0.070 -0.108 -0.946 0.022 -0.082 0.057 -0.191 0.023 1.455 
  (-0.404) (-0.184) (-0.656) (0.728) (-3.232) (-0.957) (-4.322) (-2.997) (-31.805) (1.516) (-2.930) (1.326) (-5.643) (0.641) (10.539) 
Pears 0.035 -0.077 0.023 0.129 -0.017 0.039 -0.025 0.086 0.035 -1.511 0.058 0.072 0.017 0.028 1.092 
  (0.769) (-3.569) (0.839) (5.68) (-0.184) (1.236) (-0.844) (2.101) (1.521) (-32.177) (2.102) (1.947) (0.438) (0.655) (8.276) 
Cherries 0.508 0.059 0.114 -0.004 -0.104 0.443 -0.017 -0.213 -0.091 0.041 -2.930 0.104 0.128 0.076 1.529 
  (3.929) (0.717) (3.568) (-0.095) (-0.844) (4.172) (-0.757) (-3.972) (-2.946) (2.091) (-18.241) (1.423) (2.472) (1.960) (3.236) 
Tangerines -0.642 0.173 0.179 0.014 -0.044 -0.037 -0.077 0.240 0.070 0.057 0.116 -1.932 0.462 0.143 0.810 
  (-5.205) (2.694) (3.984) (0.732) (-0.289) (-0.255) (-2.506) (2.823) (1.316) (1.927) (1.445) (-13.373) (6.479) (3.145) (1.891) 
Oranges -0.028 -0.063 0.012 0.075 0.189 0.142 0.013 0.070 -0.171 0.009 0.104 0.335 -1.066 -0.069 0.212 
  (-0.5) (-1.615) (0.366) (5.627) (2.193) (3.098) (0.696) (1.369) (-5.627) (0.431) (2.519) (6.419) (-21.803) (-1.83) (1.285) 
Pineapple -0.117 -0.084 -0.077 0.037 0.014 0.031 -0.066 -0.014 0.023 0.019 0.070 0.119 -0.078 -1.045 1.049 
 (-1.942) (-2.562) (-2.635) (2.605) (0.149) (0.778) (-3.135) (-0.342) (0.641) (0.652) (1.954) (3.118) (-1.832) (-18.567) (6.150) 

 Numeraire 0.005 0.002 0.001 0.000 -0.002 0.000 0.000 0.001 0.001 0.000 0.001 0.000 -0.001 0.000 -1.031 
   (6.953) (4.837) (3.605) (-2.185) (-2.607) (-0.082) (2.647) (3.481) (4.679) (0.990) (2.422) (0.686) (-3.588) (1.119) (-364.677) 

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold font. 
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              Table 3b. Price Elasticities of Vegetable Demand (Model 1, aggregation supported by panel GCCT tests) 
With respect to the price of 

Elasticity of demand for 

Dark Greens Red and Orange Vegetables Other Vegetables 

Broccoli 
Lettuce (Romaine/ 

Leafy) Tomatoes Bell Peppers Sweet Potatoes Carrots Starchy 
Vegetables Onions Lettuce  

(Iceberg) Celery Cucumbers Mushrooms Cabbage Green Beans Numeraire 

D
ar

k 
G

re
en

s 

Broccoli -0.952 0.078 0.141 0.013 -0.055 -0.089 -0.038 0.020 0.139 -0.038 0.046 0.203 -0.198 -0.024 0.650 
(-14.125) (1.577) (2.621) (0.182) (-1.086) (-1.192) (-0.525) (0.487) (3.852) (-1.042) (1.375) (2.329) (-6.555) (-0.389) (4.366) 

Lettuce (Romaine/ 
Leafy) 

0.112 -0.860 0.055 0.004 -0.085 -0.106 -0.091 0.024 0.121 0.004 0.011 0.379 0.087 -0.048 -0.171
(1.573) (-14.290) (0.851) (-0.016) (2.127) (0.111) (-1.619) (0.629) (3.300) (0.011) (0.268) (3.927) (2.279) (-0.818) (-0.968) 

Re
d 

an
d 

O
ra

ng
e 

V
eg

et
ab

le
s 

Tomatoes 0.036 0.010 -0.368 0.019 -0.012 -0.075 -0.107 -0.158 -0.043 0.009 0.007 -0.057 -0.007 0.019 0.563
(2.623) (0.863) (-7.736) (0.653) (-0.429) (-3.912) (-2.660) (-7.330) (-3.612) (0.370) (0.459) (-1.409) (-0.882) (1.098) (4.497) 

Bell Peppers 0.011 0.002 0.061 -0.957 0.099 0.082 -0.107 -0.002 0.043 -0.030 0.003 0.471 0.089 -0.021 -0.025
(0.176) (-0.017) (0.645) (-12.81) (2.093) (1.797) (-1.291) (-0.116) (1.555) (-0.619) (0.155) (4.912) (3.824) (-0.583) (-0.117) 

Sweet Potatoes -0.106 -0.113 -0.092 0.233 -2.742 -0.080 0.462 0.371 0.042 -0.045 -0.059 0.176 0.134 -0.244 1.436
(-1.089) (2.139) (-0.438) (2.081) (-22.976) (-0.781) (2.810) (2.594) (0.891) (-0.480) (-0.763) (0.789) (2.348) (-3.205) (3.727) 

Carrots -0.075 0.003 -0.247 0.085 -0.035 -1.155 0.047 -0.038 -0.079 0.064 0.155 -0.044 -0.174 0.089 1.204
(-1.195) (0.113) (-3.900) (1.797) (-0.779) (-13.051) (0.764) (-0.796) (-2.315) (1.465) (3.340) (-0.302) (-4.596) (1.679) (6.480) 

Starchy Vegetables -0.005 -0.007 -0.051 -0.016 0.029 0.007 -0.801 -0.025 0.016 0.013 -0.004 0.033 0.005 0.000 0.655
(-0.553) (-1.614) (-2.685) (-1.29) (2.868) (0.753) (-21.188) (-1.426) (-3.831) (2.224) (-0.413) (1.722) (1.537) (0.012) (5.322) 

O
th

er
 V

eg
et

ab
le

s 

Onions 0.013 0.011 -0.409 -0.002 0.127 -0.029 -0.137 -0.330 -0.028 -0.016 -0.006 0.012 0.031 -0.017 0.574
(0.480) (0.633) (-7.450) (-0.115) (2.598) (-0.797) (-1.420) (-4.667) (-1.334) (-0.590) (-0.329) (0.238) (1.987) (-0.647) (2.503) 

Lettuce (Iceberg) 0.200 0.120 -0.245 0.076 0.032 -0.135 0.188 -0.061 -0.399 0.060 0.003 -0.075 0.044 -0.055 0.330
(3.840) (3.313) (-3.636) (1.557) (0.896) (-2.315) (-3.841) (-1.338) (-10.368) (2.091) (0.122) (-0.876) (1.324) (-1.087) (2.197) 

Celery -0.066 0.004 0.059 -0.063 -0.040 0.133 0.185 -0.041 0.072 -0.540 -0.146 -0.056 -0.012 0.047 0.221
(-1.047) (0.012) (0.366) (-0.618) (-0.477) (1.463) (2.216) (-0.598) (2.085) (-7.565) (-1.733) (-0.322) (-0.342) (0.623) (0.834) 

Cucumbers 0.067 0.011 0.039 0.005 -0.045 0.268 -0.046 -0.013 0.003 -0.123 -0.657 0.491 0.046 -0.175 -0.197
(1.369) (0.270) (0.450) (0.154) (-0.765) (3.330) (-0.428) (-0.331) (0.121) (-1.731) (-8.055) (3.816) (1.083) (-2.831) (-1.042) 

Mushrooms 0.065 0.084 -0.070 0.185 0.029 -0.017 0.091 0.006 -0.016 -0.010 0.107 -0.897 0.070 -0.021 0.294
(2.329) (3.904) (-1.398) (4.974) (0.791) (-0.298) (1.760) (0.248) (-0.864) (-0.321) (3.836) (-9.346) (3.946) (-0.735) (1.632) 

Cabbage -0.531 0.161 -0.068 0.291 0.186 -0.553 0.112 0.126 0.082 -0.019 0.084 0.587 -1.527 0.212 0.773
(-6.540) (2.285) (-0.876) (3.817) (2.353) (-4.609) (1.571) (1.986) (1.326) (-0.341) (1.082) (3.932) (-18.295) (2.614) (4.037) 

Green Beans -0.026 -0.036 0.082 -0.027 -0.138 0.116 0.004 -0.028 -0.042 0.030 -0.131 -0.073 0.087 -1.393 1.547
(-0.389) (-0.809) (1.110) (-0.572) (-3.200) (1.686) (0.071) (-0.639) (-1.081) (0.626) (-2.810) (-0.731) (2.624) (-18.503) (11.325) 

Numeraire 0.000 -0.001 -0.002 -0.002 0.001 0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.003 0.000 0.001 -1.024 
(-1.931) (-5.939) (-2.599) (-4.209) (2.417) (2.429) (-1.095) (-1.324) (-2.822) (-2.743) (-4.886) (-4.294) (-0.797) (5.119) (-258.136) 

               Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold font.  
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Table 4a Benchmark Fruit Group Demand Elasticities Derived from Model 1 Estimates 

 With respect to the price of 
Elasticity of group demand for Berries Melons Other Fruits Numeraire 
Berries -1.836 -0.019 0.125 1.582 
Melons -0.021 -1.504 -0.168 1.731 
Other Fruits 0.035 -0.013 -1.007 0.900 
Numeraire 0.005 0.002 0.001 -1.031 

Notes: The group demand elasticities are simulated by changing individual fruit prices in Model 1 by the 
same percentage at the sample mean. Own-price elasticities in bold font.   

 

Table 4b Benchmark Vegetable Group Demand Elasticities Derived from Model 1 

Estimates 

 With respect to the price of 
 
Elasticity of group demand 
for 

Dark-
Green 

Vegetables 

Red and 
Orange 

Vegetables 

 
Starchy 

Vegetables 

 
Other 

Vegetables 

 
 

Numeraire 
Dark-Green Vegetables -0.773 -0.104 -0.080 0.492 -0.006 
Red and Orange Vegetables -0.032 -0.470 -0.012 -0.019 0.717 
Starchy Vegetables  -0.012 -0.031 -0.801 0.038 0.655 
Other Vegetables  0.081 -0.076 0.022 -0.502 0.579 
Numeraire -0.001 -0.002 -0.001 -0.005 -1.024 

Notes: The group demand elasticities are simulated by changing individual vegetable prices in Model 1 
by the same percentage at the sample mean. Own-price elasticities in bold font.   
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Table 5a Price Elasticities of Fruit Group Demand 

 With respect to the price of 
Elasticity of group demand for Berries Melons Other Fruits Numeraire 
 Model 2 (aggregation rejected) 
Berries -1.778 0.072 -0.047 1.356 
  (-47.151) (3.079) (-0.702) (13.472) 
Melons 0.152 -1.674 0.083 1.133 
  (3.092) (-37.489) (0.726) (6.756) 
Other Fruits -0.011 0.010 -0.980 0.819 
  (-0.633) (0.750) (-20.612) (12.539) 
Numeraire 0.004 0.001 0.000 -1.027 
  (8.603) (2.991) (-0.227) (-548.108) 
  
 Model 3 (relative prices used as control variables) 
Berries -1.703 0.062 -0.047 1.317 
  (-35.868) (2.400) (-0.614) (11.407) 
Melons 0.129 -1.613 0.075 1.092 
  (2.409) (-28.135) (0.641) (5.755) 
Other Fruits -0.011 0.010 -1.017 0.871 
  (-0.557) (0.674) (-18.006) (12.385) 
Numeraire 0.004 0.001 0.000 -1.028 
  (6.359) (2.494) (0.244) (-501.682) 
     
 Model 4 (residual-based instruments) 
Berries -1.573 0.062 0.197 0.899 
  (-45.933) (2.642) (2.847) (8.950) 
Melons 0.130 -1.493 -0.160 1.229 
  (2.658) (-33.813) (-1.209) (7.209) 
Other Fruits 0.052 -0.019 -0.972 0.784 
  (2.921) (-1.184) (-17.449) (11.093) 
Numeraire 0.002 0.001 -0.001 -1.024 
  (3.617) (3.532) (-0.847) (-525.866) 

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold 
font.       
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Table 5b Price Elasticities of Vegetable Group Demand  

 With respect to the price of 
Elasticity of group demand 
for 

Dark-Green 
Vegetables 

Red and Orange 
Vegetables 

Starchy 
Vegetables  

Other 
Vegetables 

 
Numeraire 

 Model 2 (aggregation rejected) 
Dark-Green Vegetables -0.812 0.072 -0.054 0.289 0.328 

(-20.662) (1.861) (-1.714) (4.768) (3.844) 
Red and Orange Vegetables 0.017 -0.521 -0.047 -0.203 0.533 

(1.845) (-14.574) (-1.695) (-5.775) (7.932) 
Starchy Vegetables  -0.011 -0.039 -0.857 -0.062 0.723 

(-1.751) (-1.712) (-28.182) (-2.588) (9.692) 
Other Vegetables  0.062 -0.177 -0.064 -0.258 0.286 

(4.776) (-5.738) (-2.533) (-5.38) (4.077) 
Numeraire -0.001 -0.003 0.000 -0.008 -1.021 

(-6.885) (-4.145) (-0.660) (-9.563) (-416.958) 
      
 Model 3 (relative prices used as control variables) 
Dark-Green Vegetables -0.772 -0.132 -0.075 0.331 0.517 
 (-15.196) (-2.22) (-2.148) (4.268) (6.046) 
Red and Orange Vegetables -0.033 -0.544 -0.059 -0.144 0.601 
 (-2.231) (-10.102) (-2.09) (-3.992) (6.621) 
Starchy Vegetables  -0.016 -0.049 -0.844 -0.021 0.692 
 (-2.193) (-2.119) (-24.246) (-1.178) (8.109) 
Other Vegetables  0.071 -0.125 -0.021 -0.491 0.411 
 (4.271) (-3.987) (-1.13) (-9.099) (5.268) 
Numeraire -0.001 -0.003 -0.001 -0.006 -1.024 
 (-4.224) (-3.018) (-0.889) (-6.105) (-347.559) 
      
 Model 4 (residual-based instruments) 
Dark-Green Vegetables -0.786 -0.113 -0.043 0.441 0.333 
 (-19.811) (-1.810) (-1.242) (6.354) (3.161) 
Red and Orange Vegetables -0.028 -0.466 0.018 -0.046 0.284 
 (-1.819) (-8.164) (0.851) (-0.905) (3.292) 
Starchy Vegetables  -0.009 0.014 -0.782 0.081 0.435 
 (-1.284) (0.840) (-21.730) (2.796) (4.789) 
Other Vegetables  0.095 -0.039 0.087 -0.515 0.206 
 (6.351) (-0.889) (2.836) (-8.491) (2.448) 
Numeraire -0.001 -0.006 -0.004 -0.008 -1.013 
 (-5.405) (-5.910) (-4.413) (-8.228) (-344.672) 

Notes: Elasticities and t-values (in parentheses) calculated at sample mean. Own-price elasticities in bold 
font.     
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Table 6 Elasticity Differences between Each Aggregate Demand and the Benchmark 

 Average absolute difference Percent improvement over Model 2 

 
Model 2 

(a) 
Model 3 

(b) 
Model 4 

(c) 
Model 3 
1-(b)/(a) 

Model 4 
1-(c)/(a) 

Elasticity Fruit Veg Fruit Veg Fruit Veg Fruit Veg Fruit Veg 
Own-Price           

Unweighted 0.09 0.10 0.08 0.03 0.10 0.01 11% 70% -11% 90% 
weighteda 0.09 0.11 0.06 0.03 0.03 0.01 33% 73% 67% 91% 

Cross-Price           
Unweighted 0.13 0.08 0.12 0.05 0.06 0.03 8% 38% 54% 63% 
weighteda 0.11 0.07 0.11 0.04 0.04 0.03 0% 43% 64% 57% 

Notes: The group demand elasticities derived from Model 1 estimates are set as the benchmark. The comparisons exclude all 
numeraire demand and price elasticities. aPurchase quantities used as weights. 

 

 

 

 

Table 7 Euclidean Norm between Each Aggregate Demand and the Benchmark 

 Distance to Benchmark Elasticity Matrix 

 
Model 2 

(a) 
Model 3 

(b) 
Model 4 

(c) 
 Fruit Veg Fruit Veg Fruit Veg 
Euclidean Norm 0.408 0.453 0.380 0.245 0.325 0.127 

Notes: The group demand elasticities derived from Model 1 estimates are set as the benchmark. The comparisons exclude all 
numeraire demand and price elasticities.  
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CHAPTER 2 

THE IMPLICATIONS OF HETEROGENEOUS HABIT IN CONSUMER BEVERAGE 

PURCHASES ON SODA AND SIN TAXES 

1. Introduction 

There are numerous studies that analyze consumer responses and welfare effects due to 

government policies related to products with habit effects. This type of research is specifically 

targeted at unhealthy and habit-forming products, such as sugary beverages, junk food, alcohol, 

and tobacco, etc. (Andreyeva et al., 2010; Goryakin et al., 2017; Härkänen et al., 2014; Lin et al., 

2017; Pacula, 1998).The models employed to study such policies consider price and income as 

the main determinants of consumption. A general question is whether increasing the cost would, 

in fact, decrease the consumption of unhealthy products and break consumers’ original habits, 

thus improving health outcomes. To answer such questions, a common practice is to estimate an 

econometric model for consumer demand under habit formation. Then, the associated economic 

impact under different tax or subsidy policies is simulated with the estimated model to assess 

such policies (Duffy, 2003; Haden, 1990; Herzfeld et al., 2014; Zhen et al., 2014, 2011; Zheng et 

al., 2017). 

Over decades, demand models have evolved to better describe people's behavior as well 

as to be consistent with economic theory. Models have been greatly improved by considering 

nonlinear income effects, endogeneity, dynamics, and censoring, etc. But one strict econometric 

assumption, homogeneity, has rarely been relaxed. Andreyeva et al. (2010) reviews all US-based 

studies on the price elasticities of demand for major food categories. Most of these studies obtain 



 

33 

price elasticity estimates from traditional homogeneous models. By assuming all consumers react 

equally to changes, such models might yield biased estimates of aggregate responses if 

heterogeneous responses are not symmetrically distributed. Moreover, intuition tells us there 

exists extreme variation in preference over specific goods, such as tobacco, alcohol, and 

sweetened beverages, which severely undermines the assumption of homogeneous responses. In 

the last decade, incorporating consumer heterogeneity in demand models has received increasing 

attention. The most prominent examples are Bertail and Caillavet (2008) and Wang (2015). 

Bertail and Caillavet (2008) studied the heterogeneity of fruit and vegetable consumption 

patterns in France. A finite mixture of AIDS models is used to describe food demand patterns 

revealing different preferences. Six different clusters which reflect specific socio-demographic 

characteristics and different income and price elasticities are obtained. Wang (2015) provides 

estimates of the relevant price elasticities based on a random coefficient dynamic demand model 

that addresses unobservable persistent heterogeneous tastes. It is found that traditional static 

analyses tend to overestimate the long-run own-price elasticity of regular soda by 60.8%, leading 

to an overestimated consumption reduction of sugar-sweetened soft drinks of up to 57.9%. 

As exploring the role of heterogeneity in explaining household demand is important especially 

from marketing and policy perspectives, and to extend earlier research in incorporating 

heterogeneity in demand estimation, this paper takes an innovative approach that combines a 

Panel Smooth Transition Regression (PSTR) model (González et al., 2017) with an ECON 

transition function (Hood and Dorfman, 2015) to investigate the demand for regular carbonated 

sweetened beverages (CSBs) and beer. Specifically, our research seeks to determine the extent to 

which heterogeneous habit strength characterizes households’ heterogeneous responses to price 

or income changes. At the final stage, an assessment of the potential effects of soda and beer 
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taxes is implemented. Our policy simulation finds that households with more habit-based 

consumption are more insensitive to price or income changes. Since a higher habit level is 

significantly associated with higher consumption on CSBs and beer,7 the overall effects of a sin 

tax would be highly over-estimated if heterogeneous consumer responses are not considered. 

Specifically, the forecast aggregate declines in soda and beer consumption due to a one-cent per 

ounce tax increase are found to be 20% and 26% larger, respectively, with homogeneous habit 

strength than with a model incorporating heterogeneity in habit strength. Because the top 10% of 

consumers in habit strength account for 18% and 23% of total consumption for CSBs and beer, 

respectively, it is important to account for their differential behavior in optimal policy design. 

Public health gains would come more from reductions in consumption from heavy users than 

occasional drinkers; thus, the tax rates may need to be raised further or alternative policies 

should be targeted at the more habitual and high-consumption consumers in order to meet public 

health goals. 

In this paper, we make three major contributions to the empirical literature on demand 

analysis. First and foremost, this study contributes to the existing literature by introducing a new 

approach to relaxing the homogeneity assumption in demand estimation with habit effects. The 

proposed model allows continually varying household price/income elasticities as habit strength 

varies across households. The model can be easily extended to include other exogenous variables 

representing household heterogeneity and can also be applied to more sophisticated demand 

systems. Second, habit is generally explained as a repeated behavior pattern. The underlying 

hypothesis is that current consumption of one product is substantially affected by consumption of 

 
7 Pearson’s correlation coefficient, ρ, between mean habit strength (see equation 1) and mean consumption by 

household are calculated for CSBs and beer: ρ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.53 (p-value < 0.0001); ρ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.51 (p-value < 0.0001). 
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the same product in the previous period. Lagged purchases are usually included in demand 

models to demonstrate habits. An issue of this approach is that lagged response variables could 

suppress the explanatory power of other explanatory variables. Consequently, it may become 

difficult to identify the relationship between quantity and each explanatory variable 

independently because lagged purchase and other independent variables tend to change in 

unison. Moreover, the inference of price and income elasticities will be less precise, which 

weakens the statistical power of the model and the results of policy evaluation. This can be 

solved by including a smooth transition function of past purchases in the demand model, as we 

do here. Third, we introduce variance as a co-measurement of habit. Habitual consumption 

behavior refers to situations where a consumer’s demand for a bundle of goods reveals very few 

differences across periods. Those loyal or even addicted consumers show different economic 

behavior than “normal” consumers and are more important in policy analysis due to their higher 

levels of consumption. A common practice in previous literature was to use only the sum of 

purchases in past periods, which does not take variation in past purchases into account when 

measuring habit. Occasional large purchases do not reflect a household buying for its own 

consumption the same as steady, consistent purchases. In previous models, both kinds of 

consumption might be classified equally as habitual behavior. Given this consideration, our 

variable of habit strength for a household is defined as the sum of consumption in the last eight 

quarters divided by the standard deviation of quarterly purchases. Thus, a large standard 

deviation due to inconsistent consumption behavior will lead to a lower habit strength. 

Incorporating variation in transition variables helps better measure customers’ habitual behavior 

and allows us to better characterize individual policy responses, leading to better estimates of the 

aggregate response. Moreover, with each household’s habit strength and demographics available, 
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we are able to find the common characteristics of the habitual household thus helping with better 

targeted policies. 

The outline of the paper is as follows. We lay out our research design and data 

description in Section 2 and 3, followed by the empirical demonstration in Section 4 that applies 

the heterogeneous habit model to both regular CSBs and beer in the United States, finding strong 

evidence for heterogeneity in both price and income elasticities across households. Finally, some 

policy implications and conclusions are provided. 

2. Empirical Strategy 

To examine the household’s heterogeneous responses to price or income changes, this paper 

extends previous literature by proposing an ECON-PSTR model combined with simple demand 

functions to model habit strength that is heterogeneous across households.  

Habit Strength  

Numerous studies have incorporated habit in demand models. It is well recognized among 

economists that demand in one period may depend on demand decisions in other periods (Becker 

and Murphy, 1988; Boyer, 1983). The literature has provided evidence of habit in not only 

addictive goods such as tobacco and alcohol but also non-addictive consumer goods (Arnade et 

al., 2008; Fuhrer, 2000; Heien and Durham, 1991; Holt and Goodwin, 1997). Particularly 

relevant here, Zhen et al. (2011) found the presence of habit in demand for nine categories of 

non-alcoholic beverages. 

Different than the common practice in previous literature that habit is measured by purchases 

in past periods, we proposed a new index for habit strength, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, defined as: 

(1)  𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 =
�∑ 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑8

𝑑𝑑=1 �
𝜈𝜈𝑖𝑖𝑖𝑖
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where 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 is the consumption of product j in quarter t for household i and 𝜈𝜈𝑖𝑖𝑖𝑖 is the standard 

deviation of �𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖−1,𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖−2, … ,𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖−8�. Accordingly, habitual behavior is indexed by the sum of 

quarterly consumptions in the last two years over the standard deviation of those eight lagged 

values. Both quantity and variation are incorporated to depict past consumption behavior such 

that habit strength is strictly increasing in past consumption but is decreasing in consumption 

volatility. Given the same aggregate consumption in the past two years, a household with a more 

consistent purchasing pattern is considered to have greater habit strength in our model than a 

household with a volatile purchasing history. This formulation of habit strength is inspired by 

careful inspection of the data which reveals occasional spikes in household CSB consumption 

leading to large aggregate consumption that may, in fact, may be caused by activities such as 

parties where CSBs were not necessarily consumed by the household alone. Including volatility 

of past consumption in our habit measure attempts to capture this feature of the data and more 

accurately measure true habitual consumption. 

For each consumer, we calculate the mean habit strength over the sample period and plot 

histograms for CSBs and beer consumers, shown in Figure 1 and Figure 2. Both histograms 

show a highly right-skewed pattern, due to extremely high habit strength in a small minority of 

consumers with consistent and large purchases over the sample period. 

ECON-PSTR Model Specification  

Economists have increased their interest in the modeling of heterogeneity by such methods as 

latent class models and clustering analysis (Baker and Burnham, 2001; Bertail and Caillavet, 

2008; Kikulwe et al., 2011; Ortega et al., 2011). These approaches can work well, but they 

reduce the modeling of heterogeneity down to a set of discrete values or groups. In contrast, we 

essentially create an infinite number of latent classes to represent the range of possible strengths 
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of habit in beverage demand by using a demand model that nests a smooth transition function. 

Each household is treated differently based on the value of an index variable that summarizes the 

strength of habit in their household beverage purchasing decisions. 

The Smooth Transition Regression (STR) model, initially developed by Bacon and Watts 

(1971), can be seen as a generalized regime switching model in such a way that the transition 

from one extreme regime to the other is not discrete, but smooth, with a function of the 

continuous transition variable. The PSTR model is a newly developed type of STR model in the 

first version of González et al. (2017) and Fok et al. (2005). Since its first appearance in 2005, 

the PSTR model has been applied to a wide variety of statistical and economic studies (e.g. 

Cheng and Wu, 2013; Delatte et al., 2012; Espinoza et al., 2012; Fok et al., 2005; Geng, 2011; 

Omay et al., 2018; Seleteng et al., 2013). In this paper, to estimate the impact of food tax policies 

on consumption, we use the PSTR approach to model continuous habit regimes, thus introducing 

heterogeneity in habit strength to demand studies. The PSTR model in this paper has a structure 

similar to Lundbergh et al. (2003), but is modified in a panel setting. The model is specified as 

follows: 

(2)  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜆𝜆𝑡𝑡 + 𝑓𝑓�𝑥𝑥,𝜃𝜃(1)��1 − 𝐺𝐺�𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑗𝑗𝑗𝑗 ,𝜎𝜎𝑗𝑗𝑗𝑗; 𝛾𝛾�� + 𝑓𝑓�𝑥𝑥,𝜃𝜃(2)�𝐺𝐺�𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑗𝑗𝑗𝑗 ,𝜎𝜎𝑗𝑗𝑗𝑗; 𝛾𝛾� + 𝜀𝜀𝑖𝑖𝑗𝑗𝑡𝑡        

where 𝜇𝜇𝑖𝑖 represent individual household fixed effects and 𝜆𝜆𝑡𝑡 represents quarter and year fixed 

effects, respectively, 𝜀𝜀𝑖𝑖𝑗𝑗𝑡𝑡 are the errors, 𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 is the natural logarithm of demand for product j at 

time t of household i, G is a smooth transition function, 𝑥𝑥 is a vector of intercept and regressors 

including, prices, expenditures, and social demographics, 𝜃𝜃 is a vector of coefficients, and 

𝑓𝑓�𝑥𝑥,𝜃𝜃(𝑘𝑘)� is the demand equation for regular CSBs or beer. Making things concrete, in the 

application that follows,  
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(3)  𝑓𝑓�𝑥𝑥,𝜃𝜃(𝑘𝑘)�  = 𝑥𝑥′𝜃𝜃(𝑘𝑘) = 𝜃𝜃1
(𝑘𝑘) +  𝜃𝜃2

(𝑘𝑘)𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗  + 𝜃𝜃3
(𝑘𝑘)𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 + 𝜃𝜃4

(𝑘𝑘)𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 + ∑ 𝜃𝜃5,ℎ
(𝑘𝑘)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖3

ℎ=1 +

𝜃𝜃6
(𝑘𝑘)𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝜃𝜃7

(𝑘𝑘)𝐶𝐶ℎ𝑑𝑑𝑖𝑖𝑖𝑖,    𝑘𝑘 = 1,2       

where 𝑙𝑙𝑙𝑙𝑃𝑃𝑗𝑗𝑗𝑗  is the Törnqvist panel price index of product j at time t, 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡 is the natural logarithm 

of expenditure of household 𝑖𝑖 at time 𝑡𝑡, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 is coded as 1 if the household head is male and 

zero otherwise, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖 are a set of binary indicators for the race of the household head (h =1 

for white, h = 2 for black, and h = 3 for Hispanic) with other races (Asian, American Indian, 

multiracial Americans, etc.) as the reference group. 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is an indicator for the household head 

having at least a college degree, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡 is an indicator for household i having at least one 

child at time t.  

The 𝑓𝑓�𝑥𝑥,𝜃𝜃(1)� and 𝑓𝑓�𝑥𝑥,𝜃𝜃(2)� are demand functions in two extreme regimes. Regime One 

represents the households who do not consume product i based on habit at all, implemented 

through the vector of parameters 𝜃𝜃(1), whereas, Regime Two represents households who have a 

strong habit of consistently consuming product i or are even addicted to it, expressed through a 

vector of parameters 𝜃𝜃(2). Most consumers behave consistent with some state in between the two 

extremes, with an infinite number of such regimes lying on that continuum and their location on 

the continuum expressed by the value of G. If consumers overall display little heterogeneity in 

the strength of their habits they will show similar responses to price or income changes; that is, 

the parameter vectors 𝜃𝜃(1) and 𝜃𝜃(2) will be similar. In this case, estimation results will be similar 

to those of a standard regression without a transition function.  

Among numerous variations of the transition function G, the logistic STAR (LSTAR) 

model and the exponential STAR (ESTAR) model are the most commonly used. The transition 

function employed in this paper follows the ECON-STAR model (Hood and Dorfman, 2015), 
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which is a variant of ESTAR model. In the ECON-STAR model, the transition function takes the 

form 

(4) 𝐺𝐺(𝑠𝑠𝑡𝑡, 𝑣𝑣𝑡𝑡; 𝛾𝛾, 𝑐𝑐, 𝑑𝑑) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝛾𝛾 ��𝑠𝑠𝑡𝑡−𝑐𝑐
𝜎𝜎𝑠𝑠
� �𝑣𝑣𝑡𝑡−𝑑𝑑

𝜎𝜎𝑣𝑣
��� 

where the speed-of-adjustment parameter 𝛾𝛾 > 0 is required, 𝑠𝑠𝑡𝑡 and 𝑣𝑣𝑡𝑡 are transition variables 

(such as rolling averages of past values of an economic indicator) in two adjacent regions, 𝑐𝑐 and 

𝑑𝑑 are the minimum transition variable values over time for each location thus ensuring (𝑠𝑠𝑡𝑡 − 𝑐𝑐) 

and (𝑣𝑣𝑡𝑡 − 𝑑𝑑) are non-negative. Also, (𝑠𝑠𝑡𝑡 − 𝑐𝑐) and (𝑣𝑣𝑡𝑡 − 𝑑𝑑) are normalized by their standard 

deviations, 𝜎𝜎𝑠𝑠 and 𝜎𝜎𝑣𝑣, respectively. With this specification, the value of the G(∙) function will be 

zero at least once when 𝑠𝑠𝑡𝑡 = 𝑐𝑐 or 𝑣𝑣𝑡𝑡 = 𝑑𝑑. 

In this paper, we generalize the transition function into a panel setting and offer modest 

improvements. The function 𝐺𝐺�𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑗𝑗𝑗𝑗 ,𝜎𝜎𝑗𝑗𝑗𝑗; 𝛾𝛾� is a continuous and smooth function of 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, 

𝑐𝑐𝑗𝑗𝑗𝑗 and 𝜎𝜎𝑗𝑗𝑗𝑗 , taking the form: 

(5) 𝐺𝐺�𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, 𝑐𝑐𝑗𝑗𝑗𝑗,𝜎𝜎𝑗𝑗𝑗𝑗; 𝛾𝛾� = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝛾𝛾 �𝛷𝛷 �𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑗𝑗𝑗𝑗
𝜎𝜎𝑗𝑗𝑗𝑗

��� 

where 𝛾𝛾 > 0 is required, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is the habit strength as defined in Equation (1), 𝑐𝑐𝑗𝑗𝑗𝑗 is the mean 

value of 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 across households, and 𝜎𝜎𝑗𝑗𝑗𝑗  is the standard deviation of 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑗𝑗𝑗𝑗 is normalized 

by 𝜎𝜎𝑗𝑗𝑗𝑗  to make the speed-of-adjustment parameter 𝛾𝛾 unit free, and Φ(∙) is the cumulative density 

function (cdf) of the standard normal distribution. Embedding the term 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑗𝑗𝑗𝑗
𝜎𝜎𝑗𝑗𝑗𝑗

 in the cdf of the 

standard normal distribution gives an almost linear shape for values of 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 within 2 standard 

deviations about zero but has flatter tails as the value of 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 goes to extremes when compared 

with the linear term 𝑠𝑠𝑡𝑡−𝑐𝑐
𝜎𝜎𝑠𝑠

 in Equation (4). This property enables coefficient estimates to be less 

influenced by extreme values of 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖, thus yielding more robust coefficient estimates. In addition, 
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𝛷𝛷 �𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑗𝑗𝑗𝑗
𝜎𝜎𝑗𝑗𝑗𝑗

� also satisfies the positivity requirement thus keeping the value of transition function 

bounded between 0 and 1 when combined with the imposed restriction of 𝛾𝛾 > 0.  

The Estimation of a PSTR model  

The estimation of the PSTR model is accomplished by a two-step procedure (González et al., 

2017). The first step is eliminating fixed effects (𝜇𝜇𝑖𝑖 and 𝜆𝜆𝑡𝑡) by subtracting the individual- and 

time-specific means on both sides of the equation. The second step is to estimate the model with 

the transformed data by nonlinear least squares (NLS). To simplify algebra and without loss of 

generality, we define a PSTR demand model with only one product for household 𝑖𝑖 at time 𝑡𝑡: 

(6)  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜆𝜆𝑡𝑡 + 𝑥𝑥𝑖𝑖𝑖𝑖′𝜃𝜃(1)𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾) + 𝑥𝑥𝑖𝑖𝑖𝑖′𝜃𝜃(2)[1 − 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾)] + 𝜀𝜀𝑖𝑖𝑖𝑖     

where 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖−𝑐𝑐𝑡𝑡
𝜎𝜎𝑡𝑡

. First, we subtracted the mean for each household over time and the mean for 

each time period across all households from the dependent variable and the residuals to construct 

centered variables, 𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐 and 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐:  

(7) 𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙𝚤𝚤������ − 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡������  

(8) 𝜀𝜀𝑖𝑖𝑖𝑖𝑐𝑐 = 𝜀𝜀𝑖𝑖𝑖𝑖 − 𝜀𝜀𝚤𝚤� − 𝜀𝜀𝑡𝑡�  

where 𝑙𝑙𝑙𝑙𝑙𝑙𝚤𝚤������ = 1
𝑇𝑇𝑖𝑖
∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖
𝑡𝑡=1 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡������ = 1

𝑁𝑁𝑡𝑡
∑ 𝑙𝑙𝑙𝑙𝑄𝑄𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1 , 𝜀𝜀𝚤𝚤� = 1

𝑇𝑇𝑖𝑖
∑ 𝜀𝜀𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖
𝑡𝑡=1 , 𝜀𝜀𝑡𝑡� = 1

𝑁𝑁𝑡𝑡
∑ 𝜀𝜀𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1 ,𝑇𝑇𝑖𝑖 is the 

number of time periods that household 𝑖𝑖 was observed in the panel, and 𝑁𝑁𝑡𝑡 is the number of 

households observed at time 𝑡𝑡. For the terms 𝑥𝑥𝑖𝑖𝑖𝑖′𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾) and 𝑥𝑥𝑖𝑖𝑖𝑖′[1 − 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾)], we make the 

following transformations:  

(9) 𝐴𝐴𝑖𝑖𝑖𝑖𝑐𝑐(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾) = 𝑥𝑥𝑖𝑖𝑖𝑖′𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾) − 𝐴𝐴𝚤𝚤�
′ − 𝐴𝐴𝑡𝑡���

′     

(10) 𝐵𝐵𝑖𝑖𝑖𝑖𝑐𝑐(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾) = 𝑥𝑥𝑖𝑖𝑖𝑖′[1 − 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾)]− 𝐵𝐵𝚤𝚤�
′ − 𝐵𝐵𝑡𝑡���

′           
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where 𝐴𝐴𝚤𝚤� = 1
𝑇𝑇𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾)𝑇𝑇𝑖𝑖
𝑡𝑡=1 , 𝐴𝐴𝑡𝑡��� = 1

𝑁𝑁𝑡𝑡
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾)𝑁𝑁𝑡𝑡
𝑖𝑖=1 , 𝐵𝐵𝚤𝚤� = 1

𝑇𝑇𝑖𝑖
∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖
𝑡𝑡=1 [1 − 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾)], and 

𝐵𝐵𝑡𝑡��� = 1
𝑁𝑁𝑡𝑡
∑ 𝑥𝑥𝑖𝑖𝑖𝑖[1 − 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾)𝑁𝑁𝑡𝑡
𝑖𝑖=1 ]. Therefore, each row of the new centered design matrix becomes 

𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾)′ = [𝐴𝐴𝑖𝑖𝑖𝑖𝑐𝑐(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾)′;𝐵𝐵𝑖𝑖𝑖𝑖𝑐𝑐(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾)′].    

 After eliminating fixed effects by data transformation, we can apply nonlinear least 

squares (NLS) to estimate the coefficients that minimize the concentrated sum of squared errors:  

(11)  𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐(𝛾𝛾) = ∑ ∑ �𝑄𝑄𝑖𝑖𝑖𝑖𝑐𝑐 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐(𝑧𝑧𝑖𝑖𝑖𝑖;𝛾𝛾)′𝜃𝜃�(𝛾𝛾)�
2𝑇𝑇

𝑡𝑡=1
𝑁𝑁
𝑖𝑖=1         

where 𝜃𝜃�(𝛾𝛾) is obtained by ordinary least squares (OLS) at each iteration in the non-linear 

optimization and is strongly dependent on the quality of initial values. A grid search for the 

parameter 𝛾𝛾 in the transition function 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖; 𝛾𝛾) is applied to obtain the starting value of 𝛾𝛾.8  

3. Data 

Data Description 

Our primary source of data is the Nielsen Homescan household panel for the years 2008 to 2015. 

More than 100,000 households across the U.S. record information on shopping trips and 

purchased items using an optical scanner on a weekly basis over a period of at least a year. Every 

recorded transaction contains information including the Universal Product Code (UPC), quantity, 

price paid, size, single or multipack, and brand. The Nielsen Homescan data is available to 

academic researchers through a partnership between Nielsen and USDA-Economic Research 

Service (ERS). The biggest advantage of the Homescan panel data set is that the sample is 

nationally representative. The participating households reside in fifty-two Nielsen markets and 

nine remaining areas in the United States. Household survey weights provided by Nielsen can be 
 

8 The Model and NLIN procedures in SAS 9.4 are used for model estimation. For future researchers who are 

interested in applying PSTR models, an R package (PSTR) written by Y. Yang provides a useful tool for model 

setup, estimation, and evaluation. 
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used to create national estimates of household purchases. Further, the Homescan dataset includes 

almost all U.S. retailers including mass merchants such as Walmart.   

To analyze heterogeneous demand responsiveness, we focus on CSBs and beer products. 

CSBs is one of the four categories included in Sugary-sweetened beverages (SSBs), which is a 

common target of soda tax policies. The other three categories are regular non-diet fruit juices, 

non-diet sports and energy drinks, and all other SSBs. Among the four categories of SSBs, 

regular CSBs are the most prevalent SSB type across all years for all age groups except children 

(for whom fruit drinks were the most prevalent in 1999 and 2005) (Han and Powell, 2013). We 

choose only CSBs as our research subject since it is the most representative group and analyzing 

the effect of soda tax on the full categories of SSBs would generally involve product aggregation 

or estimation of a system of demand equations, which is out of the research scope of this paper.  

We apply the following screens to ensure the data used consist only of households who 

consistently recorded their purchasing sometime between 2008 and 2015. Households who fail to 

satisfy any of the following criteria are excluded from the dataset:  

(i) Each household must be on the panel for at least nine quarters since we track household 

habits based on two years of purchasing history. 

(ii) Each household must have at least one shopping trip per quarter. A quarter is considered 

long enough to identify that the household has stopped recording its purchases. 

(iii) The consumption of regular CSBs or beer by the household must be positive for at least 

one quarter because the target population in our study is CSBs or beer consumers. 

We also deleted observations with abnormally large or small prices. Specifically, we deleted 

transactions in which unit price for a specific product was more than five times or less than one-

fifth of the sample mean price. 
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Summary Statistics 

Table 8 summarizes the demographics of the households of different habit strength levels. For 

each product, CSBs and beer, the households are classified into four groups, with Group 1 

representing the quartile of households with the greatest habit strength, that is, the most habitual 

households, Group 2 representing the second most habitual households, and so on.  

For CSBs, the most habitual consumers are associated with a smaller household size, a lower 

annual household income, a higher probability of having a male and white household head 

without college degree, and a higher probability of having one or more children, on average, than 

other consumers. We do not find a significant difference in mean household size between any 

two of Group 1, 2, and 3. However, mean household size of Group 4 is significantly larger than 

each of Group 1 to 3, although the largest difference is only 0.14, indicating the least habitual 

households are associated with a slightly larger household size on average. Similarly, significant 

differences in mean income are found only between Group 1 and 3, and between Group 1 and 4, 

with the most habitual households associated with the lowest mean income in the sample. The 

most habitual households are more likely to have a male household head than any of the other 

groups, and the least habitual households are less likely to have a male household head than any 

of the other groups. A more habitual household is associated with a higher probability of having 

a white household head, hence a lower probability of having a non-white household head and is 

also associated with a higher probability of having at least one child. Last but not least, the heads 

of the most habitual households are found to be least likely to hold a college degree or higher 

while the heads of the least habitual households are the most likely to have a college or higher 

degree.  
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Similarly, for beer, the most habitual consumers are associated with a smaller household 

size, lower annual household income, a higher probability of having a male and white household 

head without college degree, and a lower probability of having one or more children, on average, 

than the other consumers. Specifically, statistically significant differences in mean household 

size are found between Group 1 and each of Group 2 to 4, although the largest difference is only 

0.2, indicating the most habitual households are associated with a slightly smaller household size 

on average. The mean annual household income of Group 1 is found to be the lowest among the 

four groups. As with CSBs consumers, the most habitual households are found to be the most 

likely to have a male household and the least habitual households are the least likely to have a 

male household head among all the groups. Also, Group 1 is associated with the highest 

probability of having a white household head, and Group 4 with the least. Moreover, more 

habitual households are found to have a lower probability of having at least one child, and a 

lower probability of holding a college degree or higher. 

Price Index 

To reduce the unit value bias (Cox and Wohlgenant, 1986; Deaton, 1988), we created a quarterly 

superlative Törnqvist price index for product j for each state. Let an entity be a unique 

combination of location and time. For example, the same location (e.g., a county) in period 𝑡𝑡 and 

period 𝑡𝑡 + 1 is considered as two distinct entities in index formulas. The Törnqvist price index is 

defined as 

(6) 𝑝𝑝𝑇𝑇0𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑒𝑒{0.5∑ (𝑠𝑠𝑣𝑣0 + 𝑠𝑠𝑣𝑣𝑘𝑘) ln(𝑝𝑝𝑣𝑣𝑘𝑘 𝑝𝑝𝑣𝑣0⁄ )𝑣𝑣∈0𝑘𝑘 }                                      

where 𝑝𝑝𝑣𝑣𝑘𝑘 is the is the price of product v in entity k; 𝑝𝑝𝑣𝑣0 and 𝑞𝑞𝑣𝑣0 are the base price and quantity of 

product v, respectively; 𝑣𝑣0𝑘𝑘 demotes the common set of items sold in both base 0 and entity k, 

and 𝑠𝑠𝑣𝑣0 and 𝑠𝑠𝑣𝑣𝑘𝑘 are budget shares of product v in base 0 and entity k. 
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4. Empirical Results 

This section presents demand estimation for regular CSBs and beer, respectively, with both 

homogeneous and heterogeneous habit strength, followed by a simulation of demand change 

when soda and beer taxes are imposed. We assess a sin tax effect because taxes on energy-dense, 

low-nutrient foods such as sugar-sweetened beverages (SSBs) is the most commonly proposed 

anti-obesity policy (Cawley, 2015). From the policy maker’s perspective, the stated goal of the 

soda tax is to reduce consumption of these beverages, stem the obesity epidemic, fund health-

related initiatives, and raise much-needed revenue to offset a large state budget deficit (New 

York State Department of Health, 2010). 

 Carbonated Sweetened Beverages 

First, the linear demand model in equation (3) is estimated for regular CSBs. As shown in Table 

9, the coefficient on 𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗, 𝛽𝛽1, is estimated to be -1.055 and statistically significant, indicating 

that a one percent increase in prices would result in a 1.055% decrease in quantity consumed.   

Next, the ECON-PSTR model of heterogeneous habit strength is estimated. The fourth column 

of Table 9 presents the PSTR model results, which are further illustrated in Figure 4. In Figure 4, 

the x-axis represents the value of G, which is bounded between 0 (no habit at all) and 1 

(addiction). Based on our estimation, the value of G ranges across households from 0.07 to 0.99. 

The solid line shows a household’s own-price elasticity decreases in magnitude from -1.422 to -

0.410 as a household’s habit strength increases from 0.07 to 0.99. Thus, for the more habitual 

consumers, who are the primary target of public health policy makers, sin tax style policies are 

not as effective as for those who are not as habitual in consumption. The dotted line represents 

the expenditure elasticity of each household under different habits. The expenditure elasticity 

increases from 0.276 to 0.365 as a household’s habit level increase from 0.07 to 0.99. These 
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findings are in line with expected behavior. Habitual consumers would allocate more spending 

on goods they are most habituated to as their total expenditure increases. Additionally, model 

selection criteria (AIC and BIC) are smaller when the PSTR model is applied, providing 

evidence in favor of the heterogeneous habit model for these data. Figure 3 plots the value of G 

functions against mean habit strength of CSBs and beer consumers.  

To understand the influence of a soda tax on consumption, we simulate a scenario where a one-

cent per ounce tax9 is levied on regular CSBs. We assume that the tax is fully passed through to 

retail prices. Applying the parameters of the homogeneous habit model, the estimated decrease in 

purchases of each household is illustrated in Figure 5, where blue bars and orange bars indicate 

demand drop under homogeneous and heterogeneous habit strength assumptions, respectively. 

With a model of homogeneous habit, the percentage change is the same across households given 

equal price elasticities. Consequently, the absolute decrease in purchases of habitual households 

is larger than for non-habitual households when facing the same percentage increase in prices. 

Based on the reactions simulated for each household with homogeneous habit, the one-cent per 

ounce soda tax would result in an aggregate 28.84% decrease in household CSBs.  

From the results of the heterogeneous habit strength model, the own-price elasticity ranges from 

-1.422 to -0.410. As the orange bar in Figure 5 indicates, the net decrease in purchases of 

habitual households is not much larger than that of non-habitual households because the 

households with the largest purchases tend to be more price inelastic. Based on this simulation, a 

one-cent per ounce soda tax would result in a 24.11% decrease in overall consumption. Thus, the 
 

9 Some past literature used half-cent per ounce soda tax in policy simulations (Dharmasena and Capps, 2012; Lin et 

al., 2011; Zhen et al., 2014, 2011). In the November 4, 2014 election, Berkeley, California, enacted the first soda tax 

in the United States, establishing one-cent per ounce tax on sugary drinks. To make the simulations more relevant to 

current public policy, we use one-cent per ounce as the proposed soda tax.     
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demand response to a soda tax when heterogeneous habit strength is allowed for in the model is 

considerably less than under the standard, homogeneous habit model. In fact, when individual 

heterogeneity is ignored, the overall decrease in household regular CSBs demand would be 

overestimated by 4.73 percentage points. 

Beer 

To further demonstrate the importance of allowing heterogeneity in habit, we perform a second 

simulation, this time applied to beer purchasing behavior. Similar results will suggest that the 

specific product chosen has not biased our results. Intuitively, beer is a more habit-forming 

product than regular CSBs. As before, first, a constant habit regression for beer demand is 

conducted using equation (3). The coefficient on 𝑙𝑙𝑙𝑙𝑙𝑙𝑗𝑗𝑗𝑗 is estimated to be -1.089 and statistically 

significant, indicating that a one percent increase in prices would result in a 1.089% decrease in 

average consumption of beer. Linear regression results are presented in the fifth column of Table 

9. 

Next, we estimate our heterogeneous habit PSTR model for beer. Column 6 in Table 9 presents 

the nonlinear regression results, and Figure 6 shows the relationship between habit, price 

elasticity, and income elasticity. Similar to Figure 4, the x-axis measures the level of habit, 

which ranges from 0.21 to 0.99, suggesting that even the least habitual consumers in the dataset 

have a moderate level of habit in purchasing beer. The absolute own-price elasticity decreases 

from 1.323 to 0.357 and the expenditure elasticity increases slightly from 0.643 to 0.679 as a 

household’s habit level increases. Additionally, model selection statistics (AIC and BIC) are 

again smaller when the PSTR model is applied, indicating that incorporating heterogeneous habit 

is the preferred model specification. The shape of G functions with respect to mean household 

habit strength of beer consumers is illustrated in Figure 3.      
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We again simulate a scenario of an additional one-cent per ounce tax being implemented and 

fully passed through to retail prices. Based on the results of the homogeneous habit model, with 

its price elasticity of -1.089, the tax would result in a 15.76% decrease in overall beer sales. The 

decrease in purchases among consumers with different habit strengths when habit strength is 

modeled as constant is illustrated by the blue bar in Figure 7. Under our heterogeneous habit 

model, a one-cent per ounce beer tax would result in only a 12.49% decrease in overall sales of 

beer. The reduced purchases among consumers at different habit levels when heterogeneous 

habit strength is modeled are illustrated by the orange bar in Figure 7. The figure makes clear 

that beer is a more habitual product, and the more habitual a household is, the less sensitive to 

price changes they are. Like the results from regular CSBs, the net decrease from more habitual 

households is quite similar to less habitual households. If individual heterogeneity is ignored, the 

overall decrease in household beer demand would be overestimated by 3.27 percentage points. In 

other words, with the stronger habit of beer demand across the spectrum, incorporating 

heterogeneous habit leads to estimates of responsiveness to a beer tax only 80% of that suggested 

by the uniform habit model. 

5. Conclusions and Policy Implications 

Previous food demand research typically has found an own-price elasticity of -1.05 to -1.1 for 

the category of regular CSBs (Bergtold et al., 2004; Heien and Wessells, 1990; Pittman, 2005). 

An estimated own-price elasticity of -1.2 was applied by Yale University’s Rudd Center to 

calculate the tax revenues generated by a soda tax (Rudd Center for Food Policy and Obesity, 

2010). More recently, Zhen et al., (2014) estimated that the price elasticity of regular CSBs as -

1.035 based on the Nielsen Homescan Dataset (also used here). With previous published 

estimates of price elasticities, the percentage drop in aggregated purchase of regular CSBs due to 
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a one-cent per ounce soda tax is between the interval of 28.71% to 32.81% given our calculated 

CSBs prices, which contains our simulated results (28.84%) in the homogeneous habit model. 

Compared with the more general and realistic heterogeneous habit strength model, assuming 

constant habit strength leads to significant overestimation of the effect of a soda tax on CSBs 

purchases. 

In this paper, we proposed an innovative procedure to investigate the demand for regular 

CSBs and beer under heterogeneous habit strength. To demonstrate how important this model 

generalization is for policy analysis, we reported an analysis of the potential effects of a one-cent 

per ounce soda tax and a one-cent per ounce beer tax. Our results shed light on the importance of 

incorporating individual heterogeneity when conducting research on public food policies. 

Habitual consumers have the strongest preference for a particular product and are less price 

sensitive than those with weaker habit effects. Because those with stronger habit effects have 

more inelastic demands and consume larger than average quantities, ignoring the heterogeneity 

of habit leads to an aggregation bias that could lead to faulty policy analyses. Consequently, the 

welfare measurement of the policy may be inaccurate due to price and expenditure insensitivity 

of highly habitual consumers. Table 8 provides possible criteria related to demographics to 

screen the highly habitual consumers at whom a more specific policy could target. 

The ECON-PSTR model of habit strength introduced here reveals heterogeneous 

consumption patterns for regular CSBs and beer, leading to different responses to public policy 

among people. If individual heterogeneity in habit strength is ignored, the overall effect of soda 

tax and beer tax would be overestimated by 4.73 and 3.27 percentage points respectively. In 

other words, the aggregate declines in soda and beer consumption are over-estimated by 20% 

and 26%, respectively, under the homogeneity assumption. This implies sin and food taxes will 
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be less successful at discouraging consumption than predicted by constant-habit demand models. 

Our analysis also suggests food policies should be designed with consideration of heterogeneity 

in consumers’ habits and their varying sensitivity to price and income changes. In particular, 

public health professionals and nutrition experts don’t simply want to reduce consumption of 

sugar sweetened beverages and beer, they specifically want to reduce consumption among the 

heaviest consumers of these unhealthy beverages. Once heterogeneity of habit strength is 

accounted for, we find that sin taxes have less effect on exactly these targeted consumers. Thus, 

our results suggest that from a public health perspective, policies beyond simple price 

adjustments are needed to achieve the desired objectives.  
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Table 8 Homescan Sample Summary Statistics, by Products and Habit Strength Quartiles   

  
Range of Habit 

Strengtha 
Number of 
Households 

Mean 
Habit 

Strength 

Mean 
Household 

Size 

Mean 
Household 
Incomeb 

Percentage of Male 
Household Head 

Race of Household Head 
At least one Child 

Household Head 
holding at least 
College Degree  Group White Black Hispanic Others 

CSBs 
Households 
(N = 10921) 

1 > 𝐐𝐐𝟑𝟑 2731 36.27 2.38 8.29 35.77% 92.27% 4.25% 3.22% 0.26% 22.38% 38.04% 

   (9.08) (1.11) (2.84) (9.17e-3) (5.11e-3) (3.86e-3) (3.38e-3) (9.68e-4) (7.98e-3) (3.86e-4) 

2 (𝐐𝐐𝟐𝟐,𝐐𝐐𝟑𝟑] 2730 24.40 2.37 8.36 30.11% 89.12% 6.23% 3.85% 0.81% 19.67% 40.55% 

   (1.74) (1.15) (2.94) (8.78e-3) (5.96e-3) (4.62e-3) (3.68e-3) (1.71e-3) (7.61e-3) (9.40e-3) 

3 (𝐐𝐐𝟏𝟏,𝐐𝐐𝟐𝟐] 2730 19.43 2.42 8.43 31.14% 88.10% 7.18% 4.18% 0.55% 17.47% 39.93% 

   (1.23) (1.20) (2.87) (8.86e-3) (6.20e-3) (4.94e-3) (3.83e-3) (1.41e-3) (7.27e-3) (9.37e-3) 

4 ≤ 𝐐𝐐𝟏𝟏 2730 14.79 2.51 8.44 29.08% 84.84% 9.19% 5.13% 0.84% 15.16% 41.43% 

   (1.85) (1.30) (2.97) (8.69e-3) (6.86e-3) (5.53e-3) (4.22e-3) (1.75e-3) (6.86e-3) (9.43e-3) 

Beer 
Households 
(N = 1613) 

1 > 𝐐𝐐𝟑𝟑 404 30.19 2.03 8.27 44.42% 90.07% 5.46% 4.22% 0.25% 8.93% 33.75% 

   (9.90) (0.91) (2.91) (2.47e-2) (1.49e-2) (1.13e-2) (1.00e-2) (2.48e-3) (1.42e-2) (2.35e-2) 

2 (𝐐𝐐𝟐𝟐,𝐐𝐐𝟑𝟑] 403 17.80 2.14 8.78 41.69% 87.10% 8.68% 3.72% 0.50% 10.17% 35.48% 

   (1.58) (0.92) (2.51) (2.46e-2) (1.67e-2) (1.40e-2) (9.43e-3) (3.50e-3) (1.51e-2) (2.38e-2) 

3 (𝐐𝐐𝟏𝟏,𝐐𝐐𝟐𝟐] 403 13.40 2.22 9.02 42.43% 88.83% 6.20% 3.97% 0.99% 12.90% 42.93% 

   (1.08) (1.03) (2.69) (2.46e-2) (1.57e-2) (1.20e-2) (9.73e-3) (4.94e-3) (1.67e-2) (2.47e-2) 

4 ≤ 𝐐𝐐𝟏𝟏 403 9.62 2.23 9.13 40.94% 84.37% 11.17% 3.72% 0.74% 14.39% 47.15% 

   (1.34) (0.95) (2.67) (2.45e-2) (1.81e-2) (1.57e-2) (9.43e-3) (4.28e-3) (1.75e-2) (2.49e-2) 

 
a Q1, Q2, Q3 represent the first, second, and third quartile of the habit strength, respectively. 
b Household Income is a categorical variable where annual income ranges from $0 to $9,999 is coded as 1, $10,000 to $11,999 as 2, $12,000 to $14,999 as 3, $15,000 to $19,999 as 

4, $20,000 to $24,999 as 5, $25,000 to $34,999 as 6, $35,000 to $44,999 as 7, $45,000 to $49,999 as 8, $50,000 to $59,999 as 9, $60,000 to $69,999 as 10, $70,000 to $99,999 as 

11, and $100,000 and greater as 12.          
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Table 9 Parameter Estimates for Regular CSBs and Beer 

  Parameter Estimates for Regular Carbonated Sweetened Beverages and Beer 
 
 
 
 
 
 
 
 
 
 
Scheme 1 

  Regular Carbonated Sweetened Beverages   Beer 

Model Linear Demand Model PSTR Model 
 

Linear Demand Model PSTR Model 
Intercept 4.284* 3.002* 

 
1.959* 0.002 

  (0.061) (1.012) 
 

(0.531) (0.003) 
Natural log of Price -1.055* -1.598* 

 
-1.089* -1.936* 

  (0.082) (0.197) 
 

(0.128) (0.154) 
Natural log of Expenditure 0.347* 0.261* 

 
0.677* 0.620* 

  (0.006) (0.010) 
 

(0.003) (0.005) 
Gender of Household 0.055* 0.058* 

 
0.198* 0.164* 

  (0.013) (0.020) 
 

(0.001) (0.006) 
Race1 0.103* 0.141* 

 
0.213* 0.249* 

  (0.037) (0.053) 
 

(0.001) (0.013) 
Race2 -0.126* -0.037* 

 
-0.171* -0.143* 

  (0.043) (0.062) 
 

(0.001) (0.018) 
Race3 -0.019 0.127 

 
0.015* 0.194* 

  (0.061) (0.097) 
 

(0.002) (0.022) 
Education Level of Household Head -0.096* -0.045* 

 
-0.266* -0.253* 

  (0.013) (0.019) 
 

(0.000) (0.006) 
Two or more children in the household  0.121* 0.015 

 
-0.220* -0.233* 

  (0.016) (0.022) 
 

(0.001) (0.007) 
Gamma Gamma 

 
1.385*   

 
1.735* 

  
 

(0.044)   
 

(0.036) 
 
 
 
 
 
 
 
 
Scheme 2 

Intercept 
 

0.823* 
  

7.301* 
  

 
(0.210) 

  
(0.667) 

Natural log of Price 
 

-0.126* 
  

-0.191* 
  

 
(0.023) 

  
(0.002) 

Natural log of Expenditure 
 

0.384* 
  

0.689* 
  

 
(0.015) 

  
(0.138) 

Gender of Household 
 

0.015 
  

1.388* 
  

 
(0.028) 

  
(0.227) 

Race1 
 

-0.094 
  

-1.705 
  

 
(0.076) 

  
(1.335) 

Race2 
 

-0.224* 
  

-1.309 
  

 
(0.090) 

  
(0.766) 

Race3 
 

-0.254 
  

-7.728* 
  

 
(0.132) 

  
(0.951) 

Education Level of Household Head 
 

-0.154* 
  

-0.544* 
  

 
(0.027) 

  
(0.231) 

Two or more children in the household  
 

0.294* 
  

-0.014 
  

 
(0.032)   

 
(0.326) 

  N 243859 243859   40291 40291 
SSE 181180 156250 

 
57810 52330 

Number of Parameters 9 19 
 

9 19 
AIC -31446.77 -47104.58 

 
6335.30 4612.66 

BIC -31416.28 -47040.23   6358.75 4662.16 
⁎ Significant at 5% significance level. Heteroscedasticity-consistent standard error in parenthesis. 
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Figure 1 Histogram of Average Habit Strength over Sample Period - CSBs Consumers 
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Figure 2 Histogram of Average Habit Strength over Sample Period - Beer Consumers 

 

  



 

56 

 

 

Figure 3 The Value of G - Functions Against Average Habit Strength over Sample Period 
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Figure 4 Habit, Price Elasticity and Expenditure Elasticity for Regular CSBs 
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Figure 5 Decrease in Demand of Regular CSBs Due to Soda Tax under Both Heterogeneous and Homogeneous Habit 

Assumptions 
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Figure 6 Habit, Price Elasticity and Expenditure Elasticity for Beer 
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Figure 7 Decrease in Demand of Beer Due to Beer Tax under Both Heterogeneous and Homogeneous Habit Assumptions 
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CHAPTER 3 

ARE RESOURCES EQUALLY SHARED WITHIN HOUSEHOLDS? – A COLLECTIVE 

MODEL APPROACH WITH SCANNER DATA. 

1. Introduction 

Intrahousehold inequality has been widely studied for developing countries but rarely for 

developed countries like the United States. Intrahousehold inequality can be assessed by each 

household member’s individual consumption, and his/her consumption share within the total 

household. In practice, however, the consumption data at individual level is difficult to obtain 

and in fact, consumption data are usually collected at the household level. Nonetheless, 

Browning, Chiappori, and Lewbel (2013) (hereafter BCL), proposed a household collective 

model which makes possible the identification of individual-level consumption based on the 

consumption data from households which are composed of individuals, each with heterogenous 

preferences, symmetric bargaining power and joint consumption of public goods. Following their 

work, we examine the degree of the U.S. intrahousehold inequality among two types of 

households, two-adult no-child (Type I) households and two-adult one-child (Type II) 

households, in the United States by using the Nielsen household scanner data. Specifically, we 

estimated resource shares, defined as each member’s share of total household consumption 

within the household using Engel curves. Our findings show that, in a Type I household, women 

command an average of 45% of the total household resources, 10 percentage points less than 

men’s shares. As for Type II households, wives, husbands, and children are estimated to 

consume 39%, 41%, and 20% of the total resources on average, respectively. We conclude that 
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resources are more “equally” shared within Type II households as the estimated shares are very 

close to the equal-division rule suggested by OECD (i.e. 38.5% for each of the parents and 23% 

for the child). Moreover, women’s full-time job, women’s education level, and men’s education 

level are found to be positively associated with resource shares for women. Additionally, age-

related covariates are found to have significant impact on the share of women only from Type II 

households. 

With above findings, we further examine the appropriateness of the current household 

income eligibility threshold for the Special Supplemental Nutrition Program for Women, Infants, 

and Children (WIC Program), a public food assistance program aiming to provide supplemental 

foods, nutrition education and other related services to women and children from at-risk and low-

income households. Based on the estimated household collective model, we suggest that the 

eligibility line of WIC program for the Type I household should be increased by 11% to ensure 

the intended purpose of the program to be achieved, and that the threshold for Type II 

households remain unchanged. Further, the household characteristics (e.g. level of women’s 

education, women’s employment status) that are found to have significant impact on women’s 

shares would enable policy makers to better identify and target the at-risk women, and to 

improve government spending efficiency. 

The remainder of the paper is organized as follows. Section 2 provides an overview of the 

structural model and its identification assumption. Section 3 describes the data source and the 

construction dataset. Section 4 presents the structural estimation results. Section 5 concludes. 

2. Structural Household Collective Model  

Early literature on household consumption is often modeled as the outcome of a single decision-

making, utility-maximizing agent, so called unitary models. However, empirical results argue 
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that the assumptions under the unitary approach are too restrictive (Chiappori and Mazzocco, 

2017). In contrast to the unitary approach, some other papers (e.g. Becker 1965, 1981; Chiappori 

1988, 1992) adopt the collective approach, modeling a household consisting of multiple 

individuals, each with own preferences. The underlying assumption of the model is Pareto 

Efficiency, and the behavior of a household is equivalent to the behavior of each household 

member who maximizes their own utility function, subject to shadow prices and 

shadow incomes which reflect the sharing of goods. 

 The particular interest of the collective model is to estimate an individual’s household 

resource share, Λ, defined as his/her share of total household consumption within the household. 

Consider a household comprised of 𝐽𝐽 individuals indexed 𝑗𝑗 =  1, . . . , 𝐽𝐽 with total household 

expenditure 𝑦𝑦. Each household consumes 𝐾𝐾 types of goods with prices 𝒑𝒑 = (𝑝𝑝1, … ,𝑝𝑝𝐾𝐾) and 

observed quantities 𝒉𝒉 = (ℎ1, … ,ℎ𝐾𝐾). Let 𝒙𝒙𝒋𝒋 = (𝑥𝑥𝑗𝑗1, … , 𝑥𝑥𝑗𝑗𝐾𝐾) be the vector of quantities, which are 

unobserved, of the K types of goods (referred to as private good equivalents hereafter) consumed 

by individual 𝑗𝑗 if the individual lived alone. Under the assumption of Barten-type technology 

(BCL), the purchased quantities, ℎ, by the household can be translated into private good 

equivalents, 𝒙𝒙𝒋𝒋, by a 𝐾𝐾 × 𝐾𝐾 transformation matrix 𝑨𝑨 such that 𝒉𝒉 = 𝑨𝑨∑ 𝒙𝒙𝒋𝒋
𝐽𝐽
𝑗𝑗=1 . 

  We have provided here an example to illustrate how Barten-type consumption technology 

transfers household consumption, ℎ, into private good equivalents, 𝑥𝑥. Suppose that individuals in 

a Type I household ride together and share the consumption of gasoline half of the time, and that 

the total household consumption of gasoline is 20 gallons per month. Therefore, if the two 

individuals lived alone, their total monthly consumption of gasoline (or private good equivalents, 

𝑥𝑥𝑓𝑓 + 𝑥𝑥𝑚𝑚) would have been 30 gallons, which are 1.5 times the quantity purchased at the 

household level. Assuming the consumption of gasoline (good k) does not depend on 
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consumption of other goods, then the (𝑘𝑘,𝑘𝑘) element of 𝑨𝑨 is 2
3
, representing the level of 

publicness of good 𝑘𝑘 within the household,  and the (𝑘𝑘, 𝑗𝑗) elements of 𝑨𝑨 are zeros, where 𝑘𝑘 ≠ 𝑗𝑗. 

In this way, the 𝑘𝑘𝑡𝑡ℎ element of ℎ is 2
3

 (𝑥𝑥𝑓𝑓 + 𝑥𝑥𝑚𝑚).  

  Let 𝑈𝑈𝑗𝑗(𝑥𝑥𝑗𝑗) denote the consumption utility function of individual 𝑗𝑗 over the vector of 

goods 𝑥𝑥𝑗𝑗, where 𝑈𝑈(∙) is assumed to be monotonically increasing, twice continuously 

differentiable and strictly quasi-concave. We assume that each household member’s total utility, 

𝑈𝑈�𝑗𝑗, to be dependent on the utility of other household members and weakly separable over the 

consumption utility functions of all household members, and that direct consumption 

externalities are ruled out. Under above assumptions, the household member 𝑗𝑗 who gets utility 

from the other family members’ well-being as well as her own would have a utility function 

𝑈𝑈�𝑗𝑗 = 𝑈𝑈�𝑗𝑗 �𝑈𝑈1(𝒙𝒙1), … ,𝑈𝑈𝐽𝐽�𝒙𝒙𝐽𝐽��. 

  At the household level, the consumption decision is modeled as a Pareto efficient 

outcome among household members, each with heterogenous preferences, and asymmetric 

bargaining power.  The household maximizes a social welfare function, 𝑈𝑈𝐻𝐻, defined as  

(1) 𝑈𝑈𝐻𝐻�𝑈𝑈�1, … ,𝑈𝑈�𝐽𝐽,𝒑𝒑,𝑦𝑦�  = ∑ 𝜇𝜇𝑗𝑗(𝒑𝒑
𝑦𝑦

)𝐽𝐽
𝑗𝑗=1 𝑈𝑈�𝑗𝑗  

where 𝜇𝜇𝑗𝑗(∙) is a function that returns Pareto weights for individual 𝑗𝑗. The household’s welfare 

maximization problem can be described as:   

(2) max
𝒉𝒉,𝒙𝒙𝟏𝟏,…,𝒙𝒙𝑱𝑱    

∑ 𝜇𝜇𝑗𝑗 �
𝒑𝒑
𝑦𝑦
�𝐽𝐽

𝑗𝑗=1 𝑈𝑈�𝑗𝑗   

subject to 

𝒉𝒉 = 𝑨𝑨∑ 𝒙𝒙𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , 𝑦𝑦 = 𝒉𝒉′𝒑𝒑, and 𝑈𝑈�𝑗𝑗 = 𝑈𝑈�𝑗𝑗 �𝑈𝑈1(𝒙𝒙1), … ,𝑈𝑈𝐽𝐽�𝒙𝒙𝐽𝐽�� 
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The solutions of this problem give the bundles of private good equivalents, 𝒙𝒙𝑗𝑗, Pareto weights 𝜇𝜇𝑗𝑗, 

and hence the resource share, 𝜆𝜆𝑗𝑗, since there exists a monotonic correspondence between the 

pareto weights and resource share, and resource share is tractable as it is invariant to the 

cardinalization of utility functions (BCL).  

  Dunbar, Lewbel and Pendakur (2013), hereafter DLP, extended BCL to include children. 

They identify resource shares, 𝜆𝜆𝑗𝑗, by using Engel curve curves for each assignable private good 

consumed by each household member type 𝑗𝑗. A private good, as opposed to public good (e.g. 

heat, TV, housing, etc), is defined to be a good that does not have any economies of scale in 

consumption (e.g. food and clothing), while an assignable private good is defined as a private 

good consumed exclusively by household members of known type - e.g., male/female/children 

clothing. Under the Barten-type consumption technology assumption,  𝑨𝑨𝑘𝑘𝑘𝑘 = 1 and 𝑨𝑨𝑘𝑘𝑘𝑘 =

0 (𝑘𝑘 ≠ 𝑗𝑗) for an assignable private good of type 𝑘𝑘, suggesting that the private good k do not have 

any economies of scale in consumption. The identification also assumes that resource shares and 

expenditure are independent, and preferences over the assignable private goods are similar 

among household members. The household demand functions for private assignable goods can 

be expressed as:  

(3) 𝑊𝑊𝑗𝑗(𝑦𝑦,𝒑𝒑) = 𝜆𝜆𝑗𝑗𝑤𝑤𝑗𝑗(𝑨𝑨′𝒑𝒑, 𝜆𝜆𝑗𝑗𝑦𝑦) 

where 𝑤𝑤𝑗𝑗 is the is the demand function of each household member of type 𝑗𝑗 when facing her 

personal shadow budget constraint. Holding prices constant and given 𝑊𝑊𝑗𝑗(∙) and 𝑦𝑦, the resource 

shares 𝜆𝜆, can be implicitly inverted.  

  In this study, we select three assignable private goods: men's toiletries, women's 

cosmetics, and baby food for men, women, and children, respectively. To make sure that each 

category of assignable private products is exclusively used by a specific household member, we 
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only focus on two types of households mentioned previously10. We choose the price independent 

generalized logarithmic (Piglog) functional form, which yields Engel curves that are linear in the 

logarithm of household expenditure. Like Calvi, 2019, we also allow preference parameters and 

resource shares to vary by household demographic characteristics. As such, the Engel curve 

systems for households with one child can be expressed as:  

 

𝑊𝑊𝑓𝑓 =  𝛼𝛼𝑓𝑓Λ𝑓𝑓 +  𝛽𝛽Λ𝑓𝑓 ln �
Λ𝑓𝑓
𝐹𝐹
� +  𝛽𝛽Λ𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 +  𝜀𝜀𝑓𝑓 (4) 

   𝑊𝑊𝑚𝑚 = 𝛼𝛼𝑚𝑚Λ𝑚𝑚 + 𝛽𝛽Λ𝑚𝑚 ln �Λ𝑚𝑚
𝑀𝑀
� + 𝛽𝛽Λ𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜀𝜀𝑚𝑚 (5) 

𝑊𝑊𝑐𝑐  =  𝛼𝛼𝑐𝑐Λ𝑐𝑐 +  𝛽𝛽Λ𝑐𝑐 ln �
Λ𝑐𝑐
𝐶𝐶
� +  𝛽𝛽Λ𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙 +  𝜀𝜀𝑐𝑐 (6) 

 

where    
  𝛼𝛼𝑓𝑓  = 𝛿𝛿 𝛼𝛼𝑓𝑓

0 + 𝛿𝛿 𝛼𝛼𝑓𝑓
1 𝑋𝑋1 + ⋯+  𝛿𝛿 𝛼𝛼𝑓𝑓

12 𝑋𝑋12  

  𝛼𝛼𝑚𝑚 =  𝛿𝛿 𝛼𝛼𝑚𝑚
0 + 𝛿𝛿 𝛼𝛼𝑚𝑚

1 𝑋𝑋1 + ⋯+  𝛿𝛿 𝛼𝛼𝑚𝑚
12 𝑋𝑋12 

  𝛼𝛼𝑐𝑐   =  𝛿𝛿 𝛼𝛼𝑐𝑐
0 + 𝛿𝛿 𝛼𝛼𝑐𝑐

1 𝑋𝑋1 + ⋯+  𝛿𝛿 𝛼𝛼𝑐𝑐
12𝑋𝑋12 

  𝛽𝛽 =  𝛿𝛿𝛽𝛽
0 + 𝛿𝛿𝛽𝛽1𝑋𝑋1 + ⋯+  𝛿𝛿𝛽𝛽12𝑋𝑋12   

  Λ𝑓𝑓  = 𝛿𝛿 Λ𝑓𝑓
0 + 𝛿𝛿 Λ𝑓𝑓

1 𝑋𝑋1 + ⋯+  𝛿𝛿 Λ𝑓𝑓
12 𝑋𝑋12 

  Λ𝑚𝑚 = 𝛿𝛿 Λ𝑚𝑚
0 + 𝛿𝛿 Λ𝑚𝑚

1 𝑋𝑋1 + ⋯+  𝛿𝛿 Λ𝑚𝑚
12 𝑋𝑋12 

  Λ𝑐𝑐 = 1 −  Λ𝑓𝑓 −  Λ𝑚𝑚 

 
10 In most datasets reporting household expenditures, individual consumption is not recorded. If future researchers 

are interested in including more household members, additional strong identifying assumptions must be imposed. 

For example, according to Calvi (2019), researchers need to assume the preferences to be the same for all household 

members of a specific type (i.e. common to all men, all women, and all children). One obstacle to our inclusion of 

more children in our model is that very few families in the household scanner dataset have more than one children 

under five at the same time. 



 

67 

where 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑚𝑚 and 𝑊𝑊𝑐𝑐 are the budget shares spent on women’s cosmetics, men's toiletries 

and children’s baby food products, respectively,  𝐹𝐹, 𝑀𝑀, and 𝐶𝐶 represent the number of women, 

men and children in a household, respectively, and 𝑦𝑦 is the household total expenditure. 𝐹𝐹 =

𝑀𝑀 = 1 for Type I and 𝐹𝐹 = 𝑀𝑀 = 𝐶𝐶 = 1 for Type II households. The vector 𝑿𝑿 =  (𝑋𝑋1, . . . ,𝑋𝑋12) 

represents the socio-economic characteristics which may have impact on individual’s preferences 

and hence resource shares. 𝛼𝛼𝑓𝑓, 𝛼𝛼𝑚𝑚 and 𝛼𝛼𝑐𝑐, and 𝛽𝛽 are preference parameters, and Λ𝑓𝑓, Λ𝑚𝑚 and Λ𝑐𝑐 

are resource shares for women, men and children, respectively. For Type I households, the 

system contains only Engel curves (4) and (5). The system is estimated by non-linear Seemingly 

Unrelated Regression (SUR) approach. SUR is iterated until the estimated parameters and the 

covariance matrix settle. 

3. Data  

For this empirical exercise, we leverage the 2013-2017 weekly Homescan data, which is 

collected at household level by the Nielsen Company (US), LLC and made available for research 

purposes by the Kilts Marketing Data Center at The University of Chicago Booth School of 

Business. More than 100,000 households across the U.S. record information on shopping trips 

and purchased items using an optical scanner on a weekly basis over a period of at least a year. 

Every recorded transaction contains information including the Universal Product Code (UPC), 

quantity, price, size, brand, etc. The advantage of the Homescan panel dataset is that the sample 

is nationally representative since the participating households reside in fifty-two Nielsen markets 

and nine remaining areas in the United States and weights of observations are provided by 

Nielsen. Further, the Homescan dataset includes almost all U.S. retailers including mass 

merchants such as Walmart. 
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Based on the full dataset, we apply the following screens to ensure the data used consist 

only of households who consistently recorded their purchasing sometime between 2013 and 

2017. Households who fail to satisfy any of the following criteria are excluded from the dataset: 

(1) Each household must be on the panel for at least three consecutive years from 2013 to 2017. 

(2) Each household must have non-zero aggregate spending on one of the private assignable 

products from 2013 to 2017. 

(3) Each household must have an annual expenditure between 5th and 95th percentiles among the 

households of the same type to eliminate outliers.  

Since WIC program targets on children under five-year-old, we only keep one-child households 

whose child is under five-year old. After filtering, our sample includes 970 one-child households, 

among which 131 have a single-parent, and 2760 no-child households, among which 799 are 

living alone. As for household demographics, we include the standardized age of the wife (𝑋𝑋1), 

the standardized age gap (𝑋𝑋2) between husband and wife (the age of husband minus the age of 

wife), indicators for the wife and husband having full-time jobs (𝑋𝑋3 and 𝑋𝑋4, respectively), an 

indicator for wife having at least high school degree (𝑋𝑋5), an indicator (𝑋𝑋6) for the husband 

having higher education level than the wife. 𝑋𝑋7 and 𝑋𝑋8 are two binary indicators for the race 

identification of the household (𝑋𝑋7 = 1 for black, and 𝑋𝑋8 = 1 for other races) with white as the 

reference group. 𝑋𝑋9 is coded as 1 if the household is recognized having Hispanic origin, and 𝑋𝑋10 

to 𝑋𝑋12 are three binary indicators for the statistical region indicators defined by The Census 

Bureau (𝑋𝑋10 = 1 for the Northeast region, 𝑋𝑋11 = 1 for the Midwest region, and 𝑋𝑋12 = 1 for the 

South region) with the West as the reference group11. The demographic characteristics are 

 
11 Northeast Region: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, 

New York, and Pennsylvania.  
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summarized in Table 10. Compared with women in Type I households, women in Type II 

households are younger, and higher proportion of them have high school degrees, but lower 

proportion of them take full-time jobs. These differences are due to the fact that we only choose 

the households with children under 5-year-old, therefore, their mothers may be young, and it was 

the special stage in their life to dedicate themselves to kids and families. 

4. Empirical Results  

Table 11 reports the estimated coefficients on the covariates 𝑋𝑋 =  (𝑋𝑋1, . . . ,𝑋𝑋12) determining 

women’s and men’s resource shares (Λ𝑓𝑓 and  Λ𝑚𝑚, respectively). The results for Type I 

households and Type II households are presented in the second and third columns, respectively.  

  For Type I households, women’s estimated resource share (Λ�𝑓𝑓) will significantly increase 

if she holds at least high school degree and/or has a full-time job. The education level of the male 

is also found to be positively related to Λ𝑓𝑓. Ceteris paribus, the black households have lower 

resource shares devoted to women than white households, while women from the households 

whose races are not black or white have higher resource shares than those from white 

households. The age-related variables, male’s employment, and location indicators are not 

statistically significant. 

 For Type II households, women’s resource share (Λ�𝑓𝑓) is positively associated with 

female’s employment and males’ education. The women in black households are found to have 
 

Midwest Region: Illinois, Indiana, Michigan, Ohio, Wisconsin, Iowa, Kansas, Minnesota, Missouri, Nebraska, 

North Dakota, and South Dakota.  

South Region: Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, District of 

Columbia, West Virginia, Alabama, Kentucky, Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, and Texas. 

West Region: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming, Alaska, California, 

Hawaii, Oregon, and Washington. 



 

70 

lower resource shares compared with those from white households. The age of female and the 

age gap are found to have positive impact on women’s shares, and both are statistically 

significant at the 10% and 1% level, respectively. Specifically, one standard deviation increase in 

women’s age (6.1 years) and age gap (2.1 years) are associated with a 1.2 and 1.7 percentage 

point increase in their resource shares. For the male household member, his estimated resource 

share (Λ�𝑚𝑚) is positively related to female’s age and is negatively correlated with women’s 

education level. Men from black households have higher resource shares than those from white 

households. Other men’s resource share covariates are not significant. 

Estimated women’s resource shares for Type I households are presented in Figure 8. We 

note that few women’s household shares are below 18% or above 74%. And women's resource 

shares are less than or equal to Men’s in 61% of the households, suggesting the existence of 

gender inequality in Type I households. The summary statistics are presented in Table 12. The 

average value of women ’s household resource share is 45%, 10 percentage points less than men. 

With the current household income eligibility line, which is set under the assumption that each 

household member gets an equal share of resources, there exists a considerate number of 

households whose income is not eligible (i.e. income above the eligibility line) for the WIC 

program but whose female members are actually living in defined poverty due to gender 

inequality and should have been protected by the WIC program. As a result, to reach the 

intended purpose, the current eligibility line should be increased by at least 0.5
0.45

∗ 100% =

11% to account for the derived gender inequality. 

In Figure 9 and Figure 10, we show the estimated women's and children's resource shares 

in Type II households. In about 60% of the families, women ’s resource share is below 40%, and 

few women hold more than half of the household resources. In 70% of the families, the 
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children’s resource share is higher than 15% and less than 30%. As indicated in Table 12, wives, 

husbands, and children are estimated to consume 39%, 41%, and 20% of the total resources on 

average, respectively. We conclude resources are more “equally” shared within Type II 

households as the estimated shares are very close to the equal-division rule suggested by 

OECD12 (i.e. 38.5% for each of the parents and 23% for the child), and as such, revision of the 

eligibility line of the WIC program does not seem to be necessary for one-child households. 

Among all the household demographic variables that are found to have significant impact 

on women’s share in Type I households, we notice two can be possible criterial applied in policy 

making, which are indicators of women’s high school degree and women’s full-time job. 

Specifically, women have no high school degree or full-time job are more vulnerable than those 

who have and should be more likely to be targeted by assistance programs. 

5. Conclusion 

Many public welfare programs specifically target at people who are at risk, such as the elderly, 

women, and children. The eligibility criteria of these programs theoretically rely on the level of 

individual consumption of wives and children, but in practice are determined at household level 

under equal-share assumption due to data limitation.  

In this paper, we estimated intrahousehold resource shares in two-person no-child and 

three-person one-child households by using the household scanner data and household collective 

models proposed by Browning et al. (2013) and Dunbar et al. (2013). Particularly, we backed out 

an estimate of the fraction of total household expenditure that is consumed by each family 
 

12 To account for the possibility that children may have lower needs than adults, following DLP, we  use the OECD 

estimate of the relative needs of children (60 percent that of adults), and so the ‘equal distribution’ rule for the Type 

II households is 1:1:0.6 for man, woman and the child, which can be translated as ‘38.5% for each of the parents and 

23% for the child’. 
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member on all goods they consume given household-level Engel curve data on private assignable 

goods. 

We find the average value of women ’s household resource share is 45% in a two-person 

no-child household, suggesting 10% difference in consumption shares between men and women. 

As a result, we suggest the eligibility income threshold of the WIC program should be increased 

by at least 11% to achieve the intended purpose. Intrahousehold consumption in three-person 

one-child households are found to be rather equal, which does not warrant an adjustment in 

eligibility line for the WIC program. Moreover, we propose two household traits in two-person 

no-child households that policy makers may leverage to make vulnerable women more likely to 

be targeted by those assistance programs. By doing this, the government welfare spending can be 

optimized.  
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Table 10 Homescan Sample Summary Statistics 

 Type I Households Type II Households 
Age   

Female 49.28 35.09 
 (8.67) (6.10) 
Gap (Male-Female) 1.12 2.07 
 (4.87) (4.53) 

Full-time Employment   
Female 59.74% 46.63% 
 (0.49) (0.50) 
Male 82.89% 95.70% 

 (0.38) (0.20) 
Education   

Female (High School) 42.63% 65.07% 
 (0.49) (0.39) 
Male (Higher Degree) 22.94% 18.09% 

 (0.42) (0.39) 
Race and Origin   

White 76.46% 82.05% 
 (0.42) (0.38) 

Black 13.58% 10.16% 
 (0.34) (0.30) 
Other 9.96% 7.79% 
 (0.30) (0.27) 
Hispanic Origin 8.25% 6.56% 

 (0.28) (0.25) 
Region   

Northeast 16.97% 16.26% 
 (0.38) (0.37) 
Midwest 27.92% 26.63% 
 (0.45) (0.44) 
South 39.49% 39.31% 
 (0.49) (0.49) 
West 15.62% 17.77% 

 (0.36) (0.38) 
Number of Households 2760 970 
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Table 11 Determinants of Household Resource Shares  

 Type I Households Type II Households 
Women   

Intercept (𝛿𝛿 Λ𝑓𝑓
0 ) 0.236*** 0.405*** 

 (0.062) (0.057) 
Female Age (𝛿𝛿 Λ𝑓𝑓

1 ) -0.002 0.012* 
 (0.011) (0.006) 
Age Gap (𝛿𝛿 Λ𝑓𝑓

2 ) 0.016 0.017*** 
 (0.010) (0.006) 
Female Employment (𝛿𝛿 Λ𝑓𝑓

3 ) 0.237*** 0.065*** 
 (0.038) (0.011) 
Male Employment (𝛿𝛿 Λ𝑓𝑓

4 ) 0.002 0.004 
 (0.031) (0.012) 
Female Education (𝛿𝛿 Λ𝑓𝑓

5 ) 0.153** 0.017 
 (0.033) (0.018) 
Male Education (Higher Degree) (𝛿𝛿 Λ𝑓𝑓

6 ) 0.070*** 0.060*** 
 (0.022) (0.011) 
Black (𝛿𝛿 Λ𝑓𝑓

7 ) -0.082*** -0.087** 
 (0.040) (0.035) 
Other (𝛿𝛿 Λ𝑓𝑓

8 ) 0.088* 0.052 
 (0.046) (0.041) 
Hispanic Origin (𝛿𝛿 Λ𝑓𝑓

9 ) 0.041 -0.038 
 (0.240) (0.032) 
Northeast (𝛿𝛿 Λ𝑓𝑓

10 ) 0.008 -0.018 
 (0.043) (0.031) 
Midwest (𝛿𝛿 Λ𝑓𝑓

11 ) -0.013 -0.050* 
 (0.040) (0.027) 
South (𝛿𝛿 Λ𝑓𝑓

12 ) 0.021 -0.033 
 (0.037) (0.025) 

Male    
Intercept (𝛿𝛿 Λ𝑚𝑚

0 )  0.478*** 
  (0.056) 
Female Age (𝛿𝛿 Λ𝑚𝑚

1 )  0.028*** 
  (0.007) 
Age Gap (𝛿𝛿 Λ𝑚𝑚

2 )  -0.001 
  (0.007) 
Female Employment (𝛿𝛿 Λ𝑚𝑚

3 )  0.001 
  (0.012) 



 

75 

Male Employment (𝛿𝛿 Λ𝑚𝑚
4 )  0.283 

  (0.371) 
Female Education (𝛿𝛿 Λ𝑚𝑚

5 )  -0.038** 
  (0.019) 
Male Education (Higher Degree) (𝛿𝛿 Λ𝑚𝑚

6 )  0.016 
  (0.015) 
Black (𝛿𝛿 Λ𝑚𝑚

7 )  0.098*** 
  (0.037) 
Other (𝛿𝛿 Λ𝑚𝑚

8 )  -0.022 
  (0.042) 
Hispanic Origin (𝛿𝛿 Λ𝑚𝑚

9 )  0.013 
  (0.33) 
Northeast (𝛿𝛿 Λ𝑚𝑚

10 )  0.032 
  (0.032) 
Midwest (𝛿𝛿 Λ𝑚𝑚

11 )  0.031 
  (0.028) 
South (𝛿𝛿 Λ𝑚𝑚

12 )  0.019 
  (0.026) 

Number of Households 2760 970 

Note: ∗ 𝑝𝑝 <  0.10,∗∗ 𝑝𝑝 <  0.05,∗∗∗ 𝑝𝑝 <  0.01. Robust standard errors are in parentheses. 

Women’s age and age gaps are standardized to ease computation.  

 

Table 12 Summary Statistics of Estimated women’s and children’s Household Shares (𝚲𝚲𝒇𝒇� , 
𝚲𝚲𝒄𝒄�)  

 Type I Households Type II Households 

 Women (Λ𝑓𝑓�) Women (Λ𝑓𝑓�) Children (Λ𝑐𝑐�) 

Mean 0.45 0.39 0.20 

Standard Deviation 0.15 0.06 0.10 

Median 0.47 0.39 0.22 
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Figure 8 Estimated Women’s Household Resource Share in Type I Households 
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Figure 9 Estimated Women’s Household Resource Share in Type II Households 
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Figure 10 Estimated Children’s Household Resource Shares in Type II Households 
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